3

RTE FORTRAN 1V

Reference Manual

(bp HEWLETT

PACKARD

HEWLETT-PACKARD COMPANY

Data Systems Division
11000 Wolfe Road MANUAL PART NO. 92060-90023

Cupertino, California 95014 Printed in U.S.A. July 1980

PRINTING HISTORY

The Printing History below identifies the Edition of this Manual and any Updates that are included. Periodically, Update
packages are distributed which contain the latest replacement pages and write-in instructions to be merged into the
manual, including an updated copy of this Printing History page.

To replenish stock, this manual will be reprinted as necessary. Each such reprinting will incorporate all past Updates,
however, no new information will be added. Thus, the reprinted copy will be identical in content to prior printings of the
same edition with its user-inserted update information.

To determine the specific manual edition and update which is compatible with your current software revision code, refer to
the appropriate Software Numbering Catalog.

Seventh Edition, Mar 1980
Update 1 ...t Jul 1980
Reprintooiiireii i, Jul 1980 (Update 1 incorporated)
NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be
liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1980 by HEWLETT-PACKARD COMPANY

ii

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

PREFACE

The front matter includes a Table of Contents and an Introduction to the manual. Sections I
through III describe the form of source programs and the types, identification, and format of
data and expressions used in RTE FORTRAN IV. Sections IV through IX describe the
language elements used to code a source program, including the formats and uses of RTE
FORTRAN IV statements. The Appendixes describe the format of data in memory, the form of
RTE FORTRAN IV jobs, departures from and extensions of ANSI FORTRAN IV specifications,
features included in RTE FORTRAN 1V for compatibility with HP FORTRAN, RTE
FORTRAN IV Compiler error diagnostics, the HP character set for computer systems, and the

RTE FORTRAN IV invocation command for RTE-II, RTE-III, RTE-IV, and RTE-M Operating
Systems.

NOTE: Throughout the manual are special boxed notes that
explain departures from ANSI FORTRAN IV specifi-

cations or features for compatibility with HP
FORTRAN.

This manual is a reference text for programmers who have had FORTRAN programming
experience, either with HP FORTRAN or with other FORTRAN compilers.

The documentation maps on the following pages are a guide to HP documentation pertinent to
the use of RTE FORTRAN 1IV.

iii

RTE-M OPERATING SYSTEM

DOCUMENTATION MAP

HP FORTRAN
Reference
Manual
02116-9015

RTE FORTRAN IV
Reference Manual

92060-90023

RTE Assembler
Reference
Manual
92060-90005

BASIC/1000M
Language
Reference
Manual
92065-90001

START
RTE-M
Programmer’s
Reference
Manual
92064-90002
21MX Computer Operator's Manual
(M-Series)
RTE-M 02108-90004
System and
Generation 21MX Computer Reference Manual
Manual {M-Series)
92064-90003 02108-90002
or
21MX E-Series Computer
Operating and Reference Manual
02109-90001
RTE-M
Editor
Reference
Manual
92064-90004
RTE-M Pocket Guide gy‘;‘fegpg;?;gg and
92064-90007 Device Subroutines
Manual
92200-33005
RTE/DOS RTE-M RTE-M BASIC
Relocatable Software Software
Library Numbering Numbering
24998-90001 Catalog Catalog
92064-90001 92065-90002

7700-24

iv

YOU
ARE
HERE

RTE-11/111/IV OPERATING SYSTEMS

DOCUMENTATION MAP

YOU

i

ARE
HERE

f

START
Y
DOS/RTE
RTE-1il General Relocatable
Information Manual | Library
92060-90009 Reference Manual
24998-90001
RTE Software 1
Numbering Catalog
RTE-IV . .92067-90004 . > RTE
RTE-I11..92060-90019 RTE A Suide for ZIMX Marual | | FORTRAN Iv
RTE-Hl ..92001-93003 ew perators Manua Reference Manual
92060-90012 <« 02108-90004 92060-90023
ﬂk
Y
A4
RTE On-Line >l RTE Programming
Generator and Operating Manual languages HP FORTRAN
Reference Manual RTE-IV92067-90001 »+—4 Reference Manual
RTE-IV92067-90002 RTE-1H. . ..92060-80004 02116-9015
RTE-11/111. .92060-90020 RTE-I92001-93001
v
ALGOL
J J‘ | Reference Manual
y A 02116-9072
RT_E Interactive Batch-Spool Monitor RTE Utility Programs RTE Operating System
Editor Reference Reference Manual 92060-90017 Drivers and Subroutines
Manua) 92060-90013 Manual
92060-90014 92200-93005
RTE Assembler
| Reference Manual
\ 92060-90005
RTE-IV Assembiler
Reference Manua)
92067-90003
Basic/1000D
ick ref RTE and BSM Multi-User
quick reference »| Pocket Guide < error messages || Real-Time BASIC
92060-90010 Reference Manual
92060-90016
Decimal String
_’(Arithmetic
Routines
02100-90140
7700-23

v/ vi

CONTENTS

xiii

2-10
2~-11
2-12
2~-12
2-12
2-13
2-13
2-14

PREFACE

DOCUMENTATION MAP — RTE-M
DOCUMENTATION MAP — RTE-II/III
DOCUMENTATION MAP — RTE-IVB
INTRODUCTION

SECTION 1
THE FORM OF A FORTRAN IV PROGRAM
FORTRAN IV SOURCE PROGRAMS
FORTRAN IV CHARACTER SET
SOURCE PROGRAM LINES
SOURCE PROGRAM STATEMENTS AND LABELS

ORDER OF STATEMENTS IN A SOURCE PROGRAM

SECTION II
DATA, CONSTANTS, VARIABLES AND ARRAYS
IDENTIFYING DATA TYPES
Data Type Association
Establishing Data Names
Using Data Names
WRITING CONSTANTS, VARIABLES AND ARRAYS
INTEGER CONSTANT
REAL CONSTANT
DOUBLE PRECISION CONSTANT
COMPLEX CONSTANT
LOGICAL CONSTANT
HOLLERITH CONSTANT
OCTAL CONSTANT
SIMPLE VARIABLE
ARRAY
Array Element
Subscript Expressions
Subscript
Defining Variables and Array Elements

SUBSCRIPTED VARIABLE

vii

3-1
3-1
3-1
3-1
3-2
3-3
3-3
3-4
3-4
3-5
3-5

5-1
5-3
5-4

6~1

6-3

o-4
6-5

SECTION I1I
EXPRESSIONS

ARITHMETIC EXPRESSIONS
Arithmetic Operators
Arithmetic Elements
Combining Arithmetic Elements
Exponentiation of Arithmetic Elements
Evaluating Expressions
LOGICAL EXPRESSIONS
Logical Operators
Logical Elements
RELATIONAL EXPRESSIONS

Relational Operators

SECTION IV

SPECIFICATION STATEMENTS
ARRAY DECLARATOR
EXTERNAL

TYPE-SPECIFICATION
DIMENSION
COMMON
EXTENDED MEMORY AREA (EMA) DIRECTIVE
EXTENDED MEMORY AREA (EMA) STATEMENT
EQUIVALENCE
DATA
IMPLICIT STATEMENT
SECTION V
ASSIGNMENT STATEMENTS
ARITHMETIC ASSIGNMENT STATEMENT
LOGICAL ASSIGNMENT STATEMENT

ASSIGN TQ STATEMENT

SECTION VI
CONTROL STATEMENTS
GO TO (UNCONDITIONAL)
GO TO (ASSIGNED)
GO TO (COMPUTED)
IF (ARITHMETIC)
IF (LOGICAL)

viii

6-7
6-8
6-9
6-10
6-11
6-12
6~16

7-1
7-1
7-1
7-2
7-2

7-3
7-4
7-5

7=7
7-8
7-9
7-9
7-10
7-11
7-11
7-11
7-12

SECTION VI (cont.)
CONTROL STATEMENTS

CALL

RETURN

CONTINUE

STOP

PAUSE

DO

END

SECTION VII
INPUT/QUTPUT STATEMENTS
IDENTIFYING INPUT/OUTPUT UNITS
IDENTIFYING ARRAY NAMES OR FORMAT STATEMENTS
INPUT/OUTPUT LISTS
Simple Lists
DO-Implied Lists
FORMATTED AND UNFORMATTED RECORDS
READ (FORMATTED)
WRITE (FORMATTED)
READ (UNFORMATTED)
WRITE (UNFORMATTED)
REWIND, BACKSPACE, ENDFILE
FREE FIELD INPUT
Data Item Delimiters
Record Terminator
Sign of Data Item
Floating Point Number Data Item
Octal Data Item

Comment Delimiters

SECTION VIII

THE FORMAT STATEMENT
FORMAT
FIELD DESCRIPTOR
REPEAT SPECIFICATION

I-TYPE CONVERSION (INTEGER NUMBERS)

ix

SECTION VIII (cont.)
THE FORMAT STATEMENT

8-8 SCALE FACTOR
8-10 E-TYPE CONVERSICN (REAL NUMBERS)
8-12 F-TYPE CONVERSION (REAL NUMBERS)
8-14 G-TYPE CONVERSION (REAL NUMBERS)
8-16 D-TYPE CONVERSION (DOUBLE PRECISION NUMBERS)
8-17 COMPLEX CONVERSION (COMPLEX NUMBERS)
8-18 L-TYPE CONVERSION (LOGICAL NUMBERS)
8-19 @-TYPE, K-TYPE AND O-TYPE CONVERSIONS
(OCTAL NUMBERS)
8-21 A-TYPE CONVERSION (HOLLERITH INFORMATION)
8~-23 R-TYPE CONVERSION (HOLLERITH INFORMATION)
8-25 wH EDITING (HOLLERITH INFORMATION)
8-26 "..." EDITING (HOLLERITH INFORMATION)
8-27 X-TYPE CONVERSION (SKIP OR BLANKS)
8-28 FIELD SEPARATOR
8-29 CARRIAGE CONTROL
SECTION IX
9-1 PROGRAMS, FUNCTIONS, SUBROUTINES, AND
BLOCK DATA SUBPROGRAMS
9-1 PROGRAM STATEMENT
9-3 FUNCTIONS
9-4 SUBROUTINES
9-4 Data Types for Functions and Subroutines
9-5 DUMMY ARGUMENTS
9-5 BLOCK DATA SUBPROGRAMS
9-6 STATEMENT FUNCTION
9-7 Defining Statement Functions
9-7 Referencing Statement Functions
9-8 FORTRAN IV LIBRARY FUNCTION
9-12 FUNCTION SUBPROGRAM
9-13 Defining Function Subprograms

9-15 Referencing Function Subprograms

SECTION IX (cont.)

PROGRAMS, FUNCTIONS, SUBROUTINES, AND
BLOCK DATA SUBPROGRAMS

9-17 SUBROUTINE

9-18 Defining Subroutines

9-18 Referencing Subroutines

9-20 BLOCK DATA SUBPROGRAMS
APPENDIX A

A-1 DATA FORMAT IN MEMORY
APPENDIX B

B-1 COMPOSING AN RTE FORTRAN IV JOB DECK
APPENDIX C

C-1 SUMMARY OF COMPATIBILITY WITH ANSI FORTRAN IV
APPENDIX D

D-1 COMPATIBILITY BETWEEN HP FORTRAN AND
RTE FORTRAN IV
APPENDIX E

E-1 CROSS REFERENCE SYMBOL TABLE
APPENDIX F

F-1 SAMPLE LISTING OF RTE FORTRAN IV PROGRAM
APPENDIX G

G-1 RTE FORTRAN IV COMPILER ERROR DIAGNOSTICS
APPENDIX H

H-1 OBJECT PROGRAM DIAGNOSTIC MESSAGES
APPENDIX 1

I-1 HP CHARACTER SET FOR COMPUTER SYSTEMS
APPENDIX J

J-1 RTE FORTRAN IV OPERATIONS

Index-1 INDEX

Xi

TABLES

Table

(in

Table

Table

Table
Table

Table

2-1.

The Value of an Array Subscript

an Array)

3-1.
3-2.

Results: Combining Arithmetic Elements

Results: Exponentiation of
Arithmetic Elements

Rules for Assigning e to v
FORTRAN IV LIBRARY FUNCTIONS

RTE FORTRAN IV Compiler Error Diagnostics

Xii

INTRODUCTION

COMPILER PURPOSE

The RTE FORTRAN IV Compiler is used to construct object language programs from
source language programs written according to the rules of the RTE FORTRAN IV

language described in this manual.

FILE DEFINITION

In the following discussion, a file is defined to be a sequential access device
which may be either on a mass storage device such as a disc, or an external

device such as a card reader.

COMPILER SYNOPSIS

The RTE FORTRAN IV Compiler reads source input from a source file. The

compiler writes the resultant object program on a standard binary output file
in a format acceptable to the Relocating Loader. Exact detail for specifying
these files is found in the Reference Manuals for the Operating System being

used (see the Documentation Maps on pages iv and V).

RTE FORTRAN IV is a multi-pass compiler. A pass is defined as a processing
cycle of the source program. In the initial pass, the source program is
processed, a symbol table is constructed, and a set of intermediate machine
code is generated. During subsequent passes, the compiler searches the symbol
table for object code references, completes translation of the intermediate
object code on the disc and produces a relocatable binary object program. It
produces the object program as directed at invocation. Source and object
listings may be produced, if specified in the FORTRAN IV control statement
(see Appendix B), or the Operating System program invocation command (see

Appendix J).

xiii

COMPILER ENVIRONMENT

The RTE FORTRAN IV Compiler is available in the HP 92001 RTE~II, HP 922060
RTE-III, HP 92067 RTE-IV, and HP 92064 RTE-M Operating Systems. The hardware
configurations required for compiling and executing RTE FORTRAN IV programs
under control of these systems are described in the appropriate system

documentation.
The libraries of relocatable subroutines available to RTE FORTRAN IV are

described in the HP DOS/RTE Relocatable Library Reference Manual. See the

documentation maps on p. IV or V for the part number of this manual.

xiv

SECTION |
THE FORM OF A FORTRAN IV PROGRAM

The RTE FORTRAN IV Compiler accepts as input a source program written accord-
ing to the specifications contained in this manual. Each source program is
constructed from characters grouped into lines and statements. Appendix F
shows a sample program listing. The elements used to construct a source

language program are defined in the following text.

FORTRAN IV SOURCE PROGRAMS

The following terms define FORTRAN IV source programs:

Executable Program: A program that can be used as a self-contained computing
procedure. An executable program consists of precisely
one main program and its subprograms and segments*, if

any.

Main Program: A set of statements and comments not containing a
FUNCTION, SUBROUTINE, or BLOCK DATA statement, beginning

with a program statement and ending with an END statement.

Subprogram: A set of statements and comments containing a FUNCTION,
SUBROUTINE, or a BLOCK DATA statement. When defined by
FORTRAN statements and headed by a FUNCTION statement, it
is called a function subprogram. When defined by FORTRAN
statements and headed by a SUBROUTINE statement, it is
called a subroutine subprogram. When defined by FORTRAN
statements and headed by a BLOCK DATA statement, it is
called a block data subprogram. Subprograms also can be
written in HP FORTRAN, HP ALGOL, or HP Assembler

languages.

*Segmented programs may not be supported in some operating systems.

1-1

Program Unit: A main program or a subprogram.
Segments *: An overlayable set of statements beginning with a

PROGRAM statement which specifies Type 5, and ending

with an END statement.

FORTRAN IV CHARACTER SET

A source language program is written using the following character set.

Letters: The twenty-six letters A through Z.

Digits: The ten digits O, 1, 2, 3, 4, 5, 6, 7, 8, 9. Unless
specified otherwise, a string of digits is interpreted
in the decimal base number system when a number system

base interpretation is appropriate.

Alphanumeric A letter or a digit.
Character:
Blank Character: Has no meaning and may be used to improve the appearance

of a program with the following exceptions:

a. A continuation line cannot contain a blank in
column 6.
b. A blank character is valid and significant in

Hollerith data strings.

C. In numeric input conversions, leading blanks are
not significant, but embedded blanks are converted
to zeros. A field of all blanks is converted to

all zeros.

*Segmented programs may not be supported in some operating systems.

1-2

Special Characters: Used for special program functions. They are:

SYMBOL REPRESENTING

blank

= equals

+ plus

- minus

* asterisk

/ slash

(left parenthesis

) right parenthesis

' comma
. decimal point
$ currency symbol

guote - string delimiter

SOURCE PROGRAM LINES

Source program lines are written according to the following rules.

Lines: A line is a string of 72 characters. All charac-
ters must be from the HP ASCII character set (see
Appendix I). The character positions in a line are
called columns, and are consecutively numbered
1, 2, 3, ..., 72. The number indicates the
sequential position of a character in the line,

starting at the left and proceeding to the right.

Comment Line: A comment line is denoted by a "C" or by an "*" in column 1.
A comment line is not a statement and does not effect the
program in any way. A comment line beginning with "*" will

be listed in mixed listings.

EXTENSIONS TO THE STANDARD

Comment lines may appear at any point in a program, including between lines
of a continued statement. Comment lines beginning with a "C" will not be
included in mixed listings.

Initial Line:

Debug Line:

Continuation Line:

An initial line is a line that is neither a comment line
nor an end line, and that contains the digit 0 or the
character blank in column 6. Columns 1 through 5 may

contain a statement label or the character blank.

The letter D in column 1 of a line designates that line
as a debug line. Compilation of debug lines is optional.
Unless specifically directed to compile debug lines, the
RTE FORTRAN IV compiler will treat debug lines the same

as comment lines.

To cause compilation of debug lines, specify the charac-
ter D as a parameter either in the FTN4 control statement
(see Appendix B) or as an FTN4 invocation command option
(see Appendix J). In either case, when the character D is

specified, the debug lines are compiled.

A continuation line is a line that contains any characters
other than the digit 0 or the character blank in column 6,
and does not contain the character C or § in column 1.

Any other character may be placed in column 1. Any
characters may be placed in columns 2 through 5. Except
for comment lines, a continuation line may follow only an

initial line or another continuation line.

In all cases, a statement may be continued

indefinitely (extension of the standard).

SOURCE PROGRAM STATEMENTS AND LABELS

Source program statements and statement labels are written according to the

following rules.

Statements: A statement consists of an initial line optionally
followed by continuation lines. The statement is
written in columns 7 through 72 of the lines. The order
of the characters in the statement is columns 7 through
72 of the first continuation line, columns 7 through 72

of the next continuation line, etc.

Symbolic Names: A symbolic name consists of from one to six alpha-
numeric characters, the first of which must be

alphabetic.

External names (i.e., SUBROUTINE, FUNCTION, COMMON labels, and Main pro-
gram names are shortened automatically to five characters by deletion of

the fifth character. For example, the name PROGO1l becomes PROG1.

ORDER OF STATEMENTS IN A SOURCE PROGRAM

The following diagram shows the source program statement ordering requirements
for RTE FORTRAN IV main programs and subprograms. Statement types that must
appear in a specific sequence are separated by the horizontal lines. For
example, the PROGRAM statement must precede FORMAT statements, while Specifi-
cation statements must precede DATA statements, and so forth. Statement types
that may be interspersed with higher level statements are separated by the
Vertical lines. For example, Arithmetic statement function definitions and

Executable statements may be interspersed with DATA statements, and so forth.

EMA Statement

PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA Statement

Implicit Statements
Specification Statements
Comment
Lines
FORMAT Arithmetic Statement
Statements DATA Function Definitions
Statements (See Note 3)
(See Notes 1
2
and 2) Executable Statements
(See Note 3)
END Statement
NOTES : 1. TItems in the DATA statement list are initialized at loading

and not at every entrance to a program or subprogram.

2. Compile time is shortened if all DATA statements Iimmediately
follow the last specification statement (with no intervening
arithmetic statement function definitions).

3. Arithmetic statement function definitions and executable
statements are not allowed in block data subprograms.

SECTION Il
DATA, CONSTANTS, VARIABLES AND ARRAYS

There are six types of data in FORTRAN IV:

INTEGER

REAL

DOUBLE PRECISION
COMPLEX

LOGICAL
HOLLERITH

Each data type has a specific format in main memory and a unique mathema-

tical significance and representation.

IDENTIFYING DATA TYPES

A symbolic name, called a data name, is used to reference or otherwise
identify data of any type. The following rules are used when identifying

data:

a. Data is named when it is identified, but not necessarily made

available.
b. Data is defined when it has a value assigned to it.

c. Data is referenced when the current defined value of the data
is made available during the execution of the statement that

contains the data reference.

Data Type Association

The data name used to identify data carries the data type association,
subject to the following restrictions:
a. A data item keeps the same data type throughout the program

unit.

b. An explicit type specification overrides both the IMPLICIT specificatior

(see section 4) and the default specification.

Establishing Data Names

There are different ways of establishing a data name for a data type, depend-

ing upon the type of data and how the data is used.

The form of a string representing a constant defines both the value and the
type of the data. This definition is a function of how data is stored in

main memory. The type of a constant is implicit in its name.

A data name that identifies a variable or an array may have its data type

specified in a Type-specification. (See Section IV, "Specification Statements.")
In the absence of an explicit declaration in a Type-specification, the data type
is implied by the first character of the data name. The default type specifica-

tions are as follows:

I, J, X, L, M, or N
any other letter

integer type data
real type data

This implied type specification may be changed using the IMPLICIT statement

(see section IV).

Using Data Names

Data names are used to identify

VARTABLES
ARRAYS, or ARRAY ELEMENTS
FUNCTIONS (See Section IX.)

WRITING CONSTANTS, VARIABLES AND ARRAYS

The following pages describe how to write constants, variables and arrays
in FORTRAN 1IV. See Appendix A "Formats of Data in Core Memory," for

a description of how each data type is stored in main memory.

INTEGER CONSTANT

PURPOSE: An integer constant is written as a string of digits interpreted

as a decimal number.

FORMAT:

n = a decimal number with a range of -32,768 to 32,767

COMMENTS: an integer constant is signed when it is written immediately
following a + or - sign. If it is unsigned, an integer constant

is assumed to be positive.

EXAMPLES:

REAL CONSTANT

PURPOSE: A real constant is written as a string of decimal digits con-
taining an integer part, a decimal point, a decimal fraction
and an exponent, in that order.

FORMAT :
+m . n Ex
m = an integer constant
. = a decimal point
n = a decimal constant representing a fraction
Ex = the character E followed by the exponent, a signed
or unsigned integer

COMMENTS: The decimal exponent is a multiplier (applied to the constant
written immediately before it) that is equal to the number
10, raised to the power indicated by the integer following the
E.

Either m or n (but not both) may be omitted; and either the
decimal point or the exponent (but not both) may be omitted
from a real constant.

EXAMPLES:

1.29 0.18E+2
.00123 2E-3
=-901.. 1.E+15
256.177E2 -256.177E-2

2-5

DOUBLE PRECISION CONSTANT

PURPOSE: A double precision constant is written as a string of decimal
digits containing an integer part, a decimal point, a decimal

fraction and an exponent, in that order.

FORMAT :

+m . n Dx

m = an integer constant
= a decimal point
n = a decimal constant representing a fraction
Dx = the character D feollowed by the exponent, a signed or

unsigned integer

COMMENTS: The decimal exponent is a multiplier (applied to the constant
written immediately before it) that is equal to the number 10,

raised to the power indicated by the integer following the D.

Either m or n (but not both) can be omitted. A decimal point
must separate m and n when both are specified. When m is

present, both the decimal point and n can be omitted.

EXAMPLES:
1.29D0
.0123D-1
256.17702D02
-256.17702D-2
2D~-3

COMPLEX CONSTANT

PURPOSE: A complex constant is composed of a real part and an imaginary
part, and is written as an ordered pair of real constants, sep-

arated by a comma and enclosed in parentheses.

FORMAT:

(ml ' m2)

ml and m2 are real constants, signed or unsigned

COMMENTS: The first real constant is the real part; the second, the

imaginary part.

EXAMPLES:
(1.29, 256.177E-2)
(-901., 0.)
(-.123E+01, -12.3E-4)
(0., 0.)

LOGICAL CONSTANT

PURPOSE: A logical constant is a truth value, either true or false.
FORMAT :
.TRUE.
.FALSE.

COMMENTS: The periods must be used as shown.

EXAMPLES:
ITRUE = .TRUE.
When the above instruction is executed in an RTE Fortran IV
program, the internal representation of logical true will be

assigned to the variable ITRUE.

HOLLERITH CONSTANT

PURPOSE: A Hollerith constant is written as an integer constant followed
by the letter H, followed by any ASCII character except
carriage return.

FORMAT:

nHx

n = an integer constant

o
i

the Hollerith descriptor, which is the character H

X = one to n alphanumeric characters

COMMENTS:

EXAMPLES:

The character immadiately following the H is placed in the
left half of the computer word used to store the constant.
The right half of the word contains the next character and
so on. If n is odd, the last word will have a blank in its

right hal€f.

Hollerith constants are typed as follows:

n =1 or 2 integer
3 or 4 real
5 or 6 double precision
7 or 8 complex
n > 8 legal only as a simple parameter in a CALL
statement or a function reference, or in
FORMAT statements.
1H@ 2HBB
1HA 2H$S
2H A 2H12
8HABCDEFGH 10HCALL STMT.

PURPOSE:

OCTAL CONSTANT

An octal constant is written as a string of from one to six

octal digits terminating with a B octal descriptor. Aan octal

constant is an implied integer constant.

FORMAT:

i—nln2n3n4n5n 6B

n, to n6 = octal digits

B = the octal descriptor, the character B

COMMENTS:

EXAMPLES:

If an octal constant has more than six digits or

if the

leading digit in a six-digit constant is greater than one,

an error diagnostic occurs.

Integers n. up to n

1 5
octal constant may carry a sign.

21B
+00B

0B

177777B
-1705B

may be omitted if they equal 0. The

NOTE :

The B suffix to indicate octal is an extension of the standard.

SIMPLE VARIABLE

PURPOSE : Is the symbolic name of a single value.

FORMAT :
One to six alphanumeric characters, the first of

which must be a letter.-

COMMENTS: 1If the variable has a first character of I, J, K, L, M or N,
it is implicitly typed as an integer variable. All other

first letters imply that the variable is real.

Implicit typing may be overridden for individual symbolic

names by declaring them in a Type-specification. (See Section IV.)

EXAMPLES:

Integer Real

Compute;
1125 A125S Museum
JMAX HMAX
MREAL REAL
K X

ARRAY

An array is an ordered set of data of one, two or three dimensions. An array

is identified by a symbolic name called the array name. The size and number

of dimensions of an array must be defined in a DIMENSION, COMMON or TYPE-

statement.

ARRAY ELEMENT

An array element is a member of the array data set. The array element is

identified by a subscript immediately following the array name.

An array element may be defined and referenced.

SUBSCRIPT EXPRESSIONS

A subscript expression may be any arithmetic expression allowed in FORTRAN IV.

If the expression is of a data type other than integer, it is converted to in-

teger before being used as a subscript. It must evaluate to an integer between

1 and 32767 inclusive.

In a program unit any appearance of a symbolic name that identifies an array

must be immediately followed by a subscript, except in the following cases:

a.

b.

C.

d.

In the list of an input/output statement
In a list of dummy argquments

In the list of actual arguments in a function or subroutine

reference
In a COMMON statement
In a TYPE- statement

In a DATA statement

SUBSCRIPT

A subscript is written as a parenthesized list of subscript expressions.

Each subscript expression is separated by a comma from its successor, if

there is a successor.

The number of subscript expressions must be less than or equal to the num-

ber of dimensions declared for the array name in a DIMENSION, COMMON or

TYPE- statement.

The value of a subscript is defined in Table 2-1, below.

The value refers to the number of array elements (stored in column order)

inclusively between the base entry and the one represented by the subscript.

TABLE 2-1
THE VALUE OF AN ARRAY SUBSCRIPT
(IN AN ARRAY)

*MINIMUM *MAXIMUM
ARRAY SUBSCRIPT SUBSCRIPT SUBSCRIPT SUBSCRIPT
DIMENSION (S) DECLARATOR SUBSCRIPT VALUE VALUE VALUE
1 (a) (a) a 1 A
2 (A,B) (a,b) a+A* (b-1) 1 A*B
3 (A,B,C) (a,b,c) a+A* (b-1)
+A*B* (c-1) 1 A*B*C

*Refer to warning on page 2-14.

Usage of an unsubscripted array name always denotes the first element of

that array, except in an I/O statement or a DATA statement, where the

entire array is referenced.

DEFINING VARIABLES AND ARRAY ELEMENTS

Variables and array elements become initially defined (before execution

begins) if, and only if, their names are associated in a DATA statement

with a constant of the same data type as the variable or array in question.

Any entity not so defined is said to be "undefined" at the time the first

executable statement in a main program is executed.

2-13

SUBSCRIPTED VARIABLE

PURPOSE : Refers to a particular element of an array of the same symbolic

name as that of the subscripted variable.

FORMAT :

s (al, a2, ceey an)

s = the symbolic name of the array
a = expression(s) which determine the values of the
subscript(s) of the subscripted variable

n=1, 2, or 3

COMMENTS: sSubscripted variables must have their subscript bounds specified
in a COMMON, DIMENSION, or TYPE- statement prior to their first

appearance in an executable statement or in a DATA statement.

A subscript may be any arithmetic expression. If non-integer, the
subscript is evaluated and converted to integer (by truncating)

before being used as a subscript.

A subscripted variable is named and typed according to the same

rules as a simple variable.

WARNING: No check is made by the compiler to verify that
array subscript values fall within declared DI-
MENSION bounds. Unpredictable results occur if
references are made to dimensioned variables
outside of the declared bounds of the array.
Thus, array subscripts may not be less than
one or greater than the declared array size.

EXAMPLES:
A(3,5,2) MAX (I,J)
I(10) MIN (I-J,(I-J)*K/A,4)
ARRAY (2,5)

SECTION I

EXPRESSIONS

An expression is a constant, variable or function reference (see Section IX),

or combination of these, separated by operators, commas or parentheses.

There are three types of expressions:

ARITHMETIC EXPRESSIONS

arithmetic, logical and relational.

An arithmetic expression, formed with operators and elements, defines a

numerical value.

Both the expression and its elements identify integer,

real, double precision or complex values.

Arithmetic Operators

The arithmetic operators are:

Symbol

* %

Mathematic Function

exponentiation

division

multiplication

subtraction (or negative wvalue)

addition (or positive value)

Arithmetic Elements

The arithmetic elements are defined as:

PRIMARY:

Example
A**B
A/B
A*B
A-B or -A

A+B or +A

An arithmetic expression enclosed in paren-

theses, a constant, a variable reference, an

array element reference or a function reference.

3-1

FACTOR: A primary, or a construct of the form:

PRIMARY**PRIMARY
TERM: A factor, or a construct of one of the
forms:
TERM/FACTOR
TERM*TERM

SIGNED TERM: A term, immediately preceded by + or -

SIMPLE ARITHMETIC EXPRESSION: A term, or two simple arithmetic express-
ions separated by + or -.

ARITHMETIC EXPRESSION: A simple arithmetic expression or a signed

term or either of the preceding forms

immediately followed by + or -, followed by

a simple arithmetic expression.

Combining Arithmetic Elements

When adding, subtracting, dividing or multiplying, the compiler combines

arithmetic elements according to the rules shown in Table 3-1.

TABLE 3-1

RESULTS: COMBINING ARITHMETIC ELEMENTS (+,-,%*,/)
FIRST
ELEMENT SECOND ELEMENT TYPE
TYPE INTEGER REAL DOUBLE PRECISION COMPLEX
INTEGER INTEGER REAL DOUBLE PRECISION COMPLEX
REAL REAL REAL DOUBLE PRECISION COMPLEX
DOUBLE DOUBLE DOUBLE DOUBLE PRECISION COMPLEX
PRECISION PRECISION PRECISION
COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX

CAUTION: Real or Integer Division by zero produces the following results:

:INTEGER/0 = ABS|INTEGER

e.g.

K = -123/0 = 123

:REAL/0 = LARGEST REAL NUMBER
e.g.

A = 18.4/0. = .17014E+39

The overflow bit is set but does not affect the use of the result in succeeding
FORTRAN statements.

NO DIAGNOSTIC WARNING OR ERROR MESSAGE IS DISPLAYED.

Exponentiation of Arithmetic Elements

Arithmetic elements can be exponentiated according to the rules shown in

Table 3-2.
TABLE 3-2
RESULTS: EXPONENTIATION OF ARITHMETIC ELEMENTS (*¥*)
EXPONENT TYPE

BASE TYPE INTEGER REAL DOUBLE PRECISION COMPLEX
INTEGER INTEGER NOT ALLOWED NOT ALLOWED NOT ALLOWED
REAL REAL REAL DOUBLE PRECISION NOT ALLOWED
DOUBLE DOUBLE DOUBLE

PRECISION PRECISION PRECISION DOUBLE PRECISION NOT ALLOWED
COMPLEX COMPLEX NOT ALLOWED NOT ALLOWED NOT ALLOWED

Evaluating Expressions

The compiler evaluates expressions from left to right, according to the

following rules:

PRECEDENCE FROM HIGHEST TO LOWEST:

(() parentheses, for grouping expressions
*x exponentiation
*,/ multiplication and division (whichever occurs
rithmetic < .
a + first)
- unary minus
L +,- addition and subtraction (whichever occurs first).
relational .LT.,.LE.,.EQ.,.NE.,.GT.,.GE. (whichever occurs first).
logical .NOT.
.AND.
.OR.
SEQUENCE: Evaluation begins with the subexpression most deeply

nested within parentheses.

Within parentheses, subexpressions are evaluated from

left to right in the order of precedence above.

Function references are evaluated from left to right as

they occur.

No factor is evaluated that requires a negative valued primary to be raised
to a real or double precision exponent. No factor is evaluated that requires
raising a zero valued primary to a zero valued exponent. No element is
evaluated if its value has not been mathematically defined. Integer overflow

resulting from arithmetic operations is not detected at execution time.

LOGICAL EXPRESSIONS

A logical expression is a rule for computing a logical value. It is formed

with logical operators and logical elements and has the value true or false.

Logical Operators

The logical operators and the logical result of their use in an expression

are:
Symbol Mathematic Function Example
.OR. LOGICAL DISJUNCTION A .CR., B
.AND. LOGICAL CONJUNCTION A .AND. B
.NOT. LOGICAL NEGATION .NOT.A
Logical Expression LOGICAL RESULT IS
(logical elements A and B]) TRUE FALSE
A .OR. B If either A or If both A and B
B is true are false
A .AND. B If both A and B If either A or B
are true is false
.NOT. A If A is false If A is true

Logical Elements

The logical elements are defined as:

LOGICAL PRIMARY: A logical expression enclosed in parentheses, a
relational expression, a logical constant, a
logical variable reference, a logical array element

reference, or a logical function reference.

LOGICAL FACTOR: A logical primary, or .NOT, followed by a logical
primary.
LOGICAL TERM: A logical factor or a construct of the form:

LOGICAL TERM .AND. LOGICAL TERM

LOGICAL EXPRESSION: A logical term or a construct of the form:

LOGICAL EXPRESSION .OR. LOGICAL EXPRESSION

RELATIONAL EXPRESSIONS

A relational expression is a rule for computing a conditional logical ex-
pression., It consists of two arithmetic expressions separated by a re-
lational operator. The relation has the value true or false as the relation
is true or false. The operands of a relational operator must be of type
integer, real, or double precision, except that the operators .EQ. and .NE.

may have operands of type complex.

Relational Operators

The relational operators are:

Symbol Mathematic Function Example
.LT. less than A .LT. B
.LE. less than or equal to A .LE. B
.EQ. equal to A .EQ. B
.NE. not equal to A .NE. B
.GT. greater than A .GT. B
.GE. greater than or equal to A .GE. B

EXAMPLE: If A = 5 and B = 3, then

(A .LT. B) is false
((A .LE. B) .OR. (B .LE. A)) is true

CAUTION: The relational operators .LT., .LE., .GT., and

.GE. may cause an integer overflow when executed. This will
not be detected at execution time. If overflow is anticipated
(i.e., the variables to be compared may be more than 32767
apart), they may still be correctly tested by FLOATing them
prior to the test. For example, (I .LT. J) would become
(FLOAT(I) .LT. FLOAT(J)).

The object code generated by this compiler for relational
operators on integers is as follows:

-I.LT.Jd I.LE.J LEQ.J- I .NE. J I.GT.d I1.GE.J

LDAJ LDAI LDAI LDA1 LDAI LDAJ

CMA,INA CMA,JINA CPAJ CPAJ CMA,INA CMA,INA

ADAI ADAJ CCA,RSS CLA,RSS ADAJ ADA1
CMA CLA CCA CMA

SECTION IV
SPECIFICATION STATEMENTS

Specification statements are non-executable statements that specify variables,
arrays and other storage information to the compiler. There are six specifi-
cation statements in FORTRAN IV. It is recommended, but not required, that
specification statements be used in the following order:

IMPLICIT
TYPE-
DIMENSION
COMMON
EQUIVALENCE
EXTERNAL
DATA

Refer to section I on Order of Statements in a Source Program for a complete

explanation of the ordering requirements.

ARRAY DECLARATOR

DIMENSION, COMMON and TYPE- statements use array declarators to specify the
arrays used in a program unit. An array declarator indicates the symbolic
name of the array, the number of dimensions (one, two or three), and the
size of each array dimension. An array declarator has the following format:
v (1)
v = the symbolic name of the array
i = one, two or three declarator subscripts (for one, two or
three dimensional arrays). Each subscript must be an
integer constant or a dummy integer variable name. (See

Section IX.)

If a two or a three dimensional array is being specified, each declarator

subscript is separated from its successor by a comma.

The values given for the declarator subscripts indicate the maximum value
that the subscripts can attain in any array element name. The minimum

value is always one; the maximum value is 32767.

EXTERNAL

PURPOSE : To declare external function or subroutine names that will be

referenced in the program unit.

FORMAT :

EXTERNAL Vl' v2, ceey vn

v = any external function or subroutine name

COMMENTS: 1If an external function or subroutine name is used as an argu-
ment to another external function or subroutine, it must appear
in an EXTERNAL statement in the program unit in which it is so

used.

NOTE: EXTERNAL names are limited to five characters in
length. Names of six characters are shortened auto-
matically to five by deletion of the fifth character.

EXAMPLES:
EXTERNAL SIN, IS, FUN

4-2

TYPE-SPECIFICATION

PURPOSE: To declare the data type of variable names, array names, function

names or array declarators used in a program unit.
FORMAT:

INTEGER

REAL

DOUBLE PRECISION vl, v2, caey vn

COMPLEX

LOGICAL

v = a variable, array, function, or array declarator.

COMMENTS: subroutine names cannot appear in a Type-specification statement.
The same symbolic name may not appear in a second Type-specifica-
tion statement with a different type.
A Type-specification statement can be used to override or confirm
the implicit typing of integer or real data and must be used to
declare the data type for double precision, complex or logical data.
A symbolic name in a Type-specification statement informs the
compiler that it is of the specified data type for all
appearances in the program unit.

EXAMPLES:

INTEGER I,A,ARRAY(3,5,2)

REAL MAX, UNREAL, R(5)

DOUBLE PRECISION D, DOUBLE(2), DARRAY(3,3)
COMPLEX C, CPLEX, CARRAY(2,3,4), CAREA
LOGICAL T, FALSE, L(4), J

4-3

DIMENSION

PURPOQSE: To specify the symbolic names and dimension(s) of arrays used

in a program unit.

FORMAT :

DIMENSION Vl(ll), v2(12), ey Vn(ln)

v(i) = an array declarator

COMMENTS:; Every array in a program unit must be specified in a DIMENSION,
TYPE or COMMON statement.

WARNING: No check is made by the compiler to verify that
array subscript values fall within declared DI-
MENSION bounds. Unpredictable results occur if
references are made to dimensioned variable
outside of the declared bounds of the array.
Thus, array subscripts may not be less than
one or greater than the declared array size.

EXAMPLES: bImEnsION MATRIX(3,3,3)

DIMENSION I(4), A(3,2)

COMMON

PURPOSE : To provide a means for sharing a common block of memory between
a main program and its subprograms, or between subprograms. A
block of common memory labeled by a name refers to block common.

A block without a label refers to blank common.

FORMAT:
COMMON/blockname /a ,...,a ... /blockname /a ,...,a
1 1 n n 1 n
COMMON// @ ,...,a
1 n
COMMON a ,...,a
1 n
blockname = a symbolic common block name delimited with slash
characters.
// = a blank common block.
a = a variable or array name, or an array declarator.

COMMENTS: A symbolic name in a COMMON statement must be a variable or
array name, or an array declarator. Once declared in a COMMON
statement, a name cannot be declared in another COMMON statement

within the same program unit.

The size of a common block is the sum of the storage required
for the elements introduced through COMMON and EQUIVALENCE state-
ments in a program unit. Common entities are strung together in

the order in which they are declared.

A blank common block is declared by specifying a null block name
(//). If a blank common block is declared as the first block in a

COMMON statement, the slashes can be omitted.

COMMENTS: Blank common is available to every module of a program. Each
(Cont') module must completely describe all entries in any common block
that it references. In multiprogramming systems, blank common

and/or block common may be available to more than one program.,

By using named common blocks, the program may group together
similar data constructs and set up the programs common area so
that only the data of interest to a given module need be

declared.

Named common blocks, except EMA common, must be described in
a BLOCK DATA subprogram. Furthermore, the required BLOCK DATA
subprogram may initialize named common blocks while blank

common blocks cannot be initialized.

EXAMPLES:
COMMON I,CAREA(2,3),J(3)/HELLO/W,X(2,5),2/BYE/A
COMMON/HELLO/KK (10) //Q,P
I, CAREA, and J are in blank common. W, X, and Z are
in a common block named HELLO. A is in a common block
named BYE. KK follows Z in a common block named HELLO.

Q and P follow J in blank common.

For an example of HP implementation of named common,

see Appendix F.

EXTENDED MEMORY AREA (EMA) DIRECTIVE

PURPOSE: To provide a means for the storage and manipulation of large
amounts of data, up to the total amount of available physical
memory. Available in RTE-IV only.

FORMAT:

SEMA (blockname,mseq)

where:

$ The dollar sign ($) must appear in column 1.

blockname is the symbolic name of a block common area to
be further defined in one or more COMMON statements.

mseg is the size in pages of the RTE MSEG. If O or not
specified, MSEG is the default size determined at
load time (default MSEG = maximum logical address
space - program size-1l). For more information on
MSEG refer to the RTE-IV Programmer's Reference
Manual. The EMA directive is an extension to the
ANSI standard.

COMMENTS: The EMA common is a memory access method that allows very quick

referencing and manipulation of large amounts of data. The size
of the EMA may be as large as all of available physical memory.

Refer to the RTE-IV Programmer's Reference Manual.

The EMA directive must be the first non-comment statement in the
module. The common blockname must not be initialized and the
EMA directive is not allowed in a BLOCK DATA subprogram. Only
one EMA directive per module is allowed, and must appear in

each module that references in EMA variable. All variables

specified in the common block will go into the EMA.

COMMENTS :
(cont.)

An EMA variable is referenced within a main program like any

other variable except when being passed to other subroutines or
functions. When calling subroutines which do not expect EMA
parameters, e.g. EXEC, the user must take care to pass EMA
variables "by value". Call by value is indicated by enclosing the
variable in an extra layer of parentheses, e.g. F((x)) or by
passing the variable as part of an arithmetic expression, e.gq.
F(x+0.). The arguments of functions listed in Table G-2, Appendix G,
and the arguments of statement functions are always passed by value

regardless of parentheses.

The implication of "call by value" is that only the value of the
variable is available to the subroutine. Therefore, the variable
may not be modified by the subroutine. Also, an EMA array may not

be passed as an argument to a subroutine or function.

For subroutines expecting EMA variables, arguments may be passed
by reference. "Call by reference" implies that the variable
itself with its value is available and can be altered by the
subroutine. To modify EMA variables and/or pass EMA arrays, EMA
variables may be referenced within a subroutine or function in

one or both ways:

1. By declaring the EMA common inside the subroutine or

function.

2. By declaring formal parameters to be type EMA (see EMA

statement) and passing the actual arguments "by reference".

An additional restriction on EMA variables is that they may not
be used as format specifiers in READ or WRITE statements. For
example, if J is an EMA variable, the following code is illegal:
10 FORMAT (.......)

ASSIGN 10 TO J

WRITE (1,J)
An EMA variable may be equivalenced the same as any other variable
in a common block., The same restrictions apply. Refer to the

EQUIVALENCE statement elsewhere in this section.

NOTES ON USAGE OF EMA

While any variable may be declared to be in EMA, it is recommended that the
user restrict EMA usage to those arrays which require a large area. Since
references to EMA variables take longer than references to local variables,

this policy will speed the execution of programs.

EXAMPLE PROGRAM ILLUSTRATING THE USE OF EMA

FTN4,L

SEMA (XYZ, 3)
PROGRAM TEST
COMMON /XYZ/A(100,200),C(3000,80),E(200,300)
EQUIVALENCE (A(99,1000),B)

B=SIN(A(J,K))
C CALL BY VALUE TO UFUN
D=UFUN ((A(J,K)))
C PASS SUBSCRIPTS FOR EMA ARRAYS TO SUBROUTINE ADDIL
C SUBR ADD1 HAS EMA ARRAYS DEFINED IN NAMED COMMON
CALL ADD1 (J,K)

C PASS EMA ARRAY E BY REFERENCE WITH ITS
C DIMENSIONS TO SUBROUTINE ADD2
CALL ADD2 (E,200,300,SUM)

END

FUNCTION UFUN (X)
C SQUARE THE NUMBER

UFUN = X * X

RETURN

END

SEMA (XYZ, 3)
SUBROUTINE ADD] (M,N)
C M AND N ARE SUBSCRIPT PARAMETERS
COMMON /XYZ/A(100,200),C(3000,80) ,E(200,300)
C INCREMENT AN ELEMENT IN THE EMA ARRAY A
A(M,N) = A(M,N) + 1

RETURN
END

SUBROUTINE ADD2(EPRIME,ME,NE,SUM)
c EPRIME IS AN EMA ARRAY PASSED BY REFERENCE AND SUM IS NON-EMA
NOTE THAT SUBROUTINE ADD2 DOES NOT REQUIRE A
$EMA DIRECTIVE OR ANY EMA NAMED COMMON BLOCKS
EMA EPRIME (ME,NE)

(ol ®!

J=1

DO 100 I=1,NE

EPRIME(J,I) = EPRIME(J,I) + 2
100 CONTINUE

RETURN
END

Arrays A, C, and E are in EMA common because they are in the block common
named XYZ, which is declared in the EMA directive. B is in EMA it is
equivalenced to A. EPRIME is a formal parameter declared to be in EMA by
the EMA statement.

The call to SIN may use standard notation because SIN is in Table G-2. The
call to UFUN must use "call by value" because its parameter is not declared
in an EMA statement. This is indicated by enclosing its argument in an extra
layer of parentheses as shown. An element in array A is incremented in
Subroutine ADD1l, which has declared the EMA common block. The array E is
passed by reference to Subroutine ADD2, which has declared the formal

parameter, EPRIME, to be in EMA.

EXTENDED MEMORY AREA (EMA) STATEMENT

PURPOSE :

To declare that formal parameters are located in EMA and have

been passed by reference. Available in RTE-IV only.

FORMAT :

EMA vl1,v2,...,Vn
v = a variable, array or array declarator which is a

formal parameter.

The EMA statement is an extension to the ANSI standard.

COMMENTS:

WARNING:

EXAMPLE :

Since variables in EMA are accessed by a different mechanism
than those not in EMA, it is necessary to specify which formal
parameters are EMA parameters to the compiler. The default type
for formal parameters is non-EMA. See the EMA directive for a

discussion of call by value and call by reference.

The addressing mode (EMA or non-EMA) of actual and formal
parameters must match. If they do not, an incorrect address
will be used. The effect will be similar to accessing an array
with a subscript of unknown value. Therefore, do not pass a
non-EMA variable to a subroutine expecting an EMA argument or

vice versa.

EMA EARRAY (100,1000) ,EVAR,IARR(5000)

4-11

EQUIVALENCE

PURPOSE: Allows the sharing of memory locations by two or more

entities.

FORMAT:
EQUIVALENCE (kl), (kz)’ cees (kn)

k = a list of two or more variable names, array names oY

array element names with integer constant subscripts.

COMMENTS: A symbolic name which appears in an EQUIVALENCE statement must be

a variable, array, or array element name.

Equivalence can be established between different data types, but
the EQUIVALENCE statement cannot be used to equate two or more

entities mathematically.

CAUTION: RTE FORTRAN IV does not use the same amount of
storage for INTEGER and REAL variables (see
Appendix A). Therefore, mixed variable types
should be equivalenced with caution.

The EQUIVALENCE statement can associate a variable in COMMON with
one or more variables not in COMMON, or may associate two or more

variables none of which are in COMMON.

No equivalence grouping is allowed between two entities in COMMON.
Dummy parameters may not appear in EQUIVALENCE statements. A variable
not in COMMON, when equivalenced to a variable in COMMON, becomes a
part of the COMMON area. A COMMON area, however, only can be lengthened
by equivalence groupings. If an equivalence grouping causes an entity
to be relocated before the first entity in COMMON, an error diagnostic

OCccurs.

EXAMPLES:
See the following page for examples of correct egquivalence

grouping.

The following statements will result in the allocation of space for variables

in COMMON and non-COMMON areas as shown. Double precision is assumed to be 4-word.

INTEGER I, A, ARRAY
REAL R(4) CAREA
COMPLEX CAREA (1,1)
LOGICAL L B
DOUBLE PRECISION DOUBLE(2), DARRAY
DIMENSION DARRAY (2) CAREA 1 R(1)
DIMENSION I(4),A(3,2), L(4) (2,1)
COMMON CAREA (2,2), I, DOUBLE T RE®)
EQUIVALENCE (CAREA(2,1),R), (DOUBLE(2) ,DARRAY)
EQUIVALENCE (A (3,2), L(4)) carea | RO
(1,2)
<+ R(4)
Results in this COMMON and
equivalenced area of 32 words g CAREA]
(28 words in original COMMON, (2,2))
4 added by EQUIVALENCE). B
I(l)
I(2)
Results in this non-COMMON
equivalenced area of six words. iiz;
l DOUBLE -}~
(1) 4
A(1,1)
T
A2, 1) DOUBLE -t DARRAY
A(3,1) L(1) (2) — (1)
A(1,2) L(2)
A(2,2) L(3)]: DARRAY
A(3,2) L(4) 4 @

4

13

DATA

PURPOSE: To define the initial values of variables, single array elements,

portions of arrays or entire arrays.

FORMAT:
DATA k., /d /s k,/d /s +eus Kk /4 /

k = lists of names of variables, array elements or arrays

d = lists of constants (optionally signed) which can be
immediately preceded by an integer constant (followed
by an asterisk) identifying the number of times the
constant is to be repeated.

/ = separators, used to bound each constant list

COMMENTS: Mixed mode assignments are not permitted. The DATA statement may
only assign values that agree in mode to their identifiers.
Hollerith data can be assigned to any variable provided that the
data fits into that variables allocated storage space. Hollerith
data is padded with blanks on the right to fill the allocated

storage space.

If you use a DATA statement within a serially reusable program,
the data may not be the same each time the program is reused
because the DATA statement elements are not initialized upon

re-entry into the program.

COMMENTS: If a list contains more than one entry, the entries must be
(Cont') separated by commas. An initially-defined variable, array element

or array may not be in a common area, nor can it be a dummy

argument, except that in a block data subprogram, all entries

must be in a named common block.

DATA statements must come after all specification statements in

the program.

NOTE: Unsubscripted array names are allowed in DATA statements.
If the array has n elements, the next n constants from
the list are used to initialize the array (in column
order). If the remainder of the constant list has m<n
elements in it, then only the first m elements of the
array are initialized.

EXAMPLES:
1) DIMENSION IA(2,3),IB(3)

DATA Ia/1,2,3,4,5,6/,X/1.9E-1/,IB/3%*2/

The above data statement will assign values to the variables

as follows:

IA(1,1)=1 IA(2,1)=2 IA(1l,2)=3 IA(2,2)=4 IA(1l,3)=5 IA(2,3)=6
X=.19
IB(1l)=2 IB(2)=2 IB(3)=2

2) DATA FALSE,ICHAR/.FALSE.,2HXY/,DBLE/~2.39D-01/

The above data statement will assign values to the variables

as follows:

FALSE = <internal representation of boolean false>

ICHAR

<hollerith character string XY>

DBLE -.239 represented as a double precision number.

PURPOSE :

IMPLICIT Statement

To change or confirm the default implicit integer and real

typing of variables.

FORMAT :

COMMENTS:

IMPLICIT type(al,al....)[,type(al,al....)]....

is one of INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
or LOGICAL

is either a single letter or a range of single letters

in alphabeticl order. A range is denoted by the first

and last letters of the range separated by a minus sign;
e.g., aj-as. A range will specify the default type of
all identifiers beginning with letters in the interval

a] to as, inclusive.

An IMPLICIT statement specifies a type for all variables, arrays,
and functions (except intrinsic functions) that begin with any
letter that appears in the specification, either as a single
letter or included in a range of letters. IMPLICIT statements

do not change the type of any intrinsic functions. An IMPLICIT

statement applies only to the program unit that contains it.

Type specification by an IMPLICIT statement may be overridden

or confirmed for any particular variable, array, or function
name by the appearance of that name in a type-statement. An
explicit type specification in a FUNCTION statement overrides an

IMPLICIT statement for the name of that function subprogram.

Within the specification statements of a program unit, IMPLICIT
statements must precede all other specification statements. A

program unit may contain any number of IMPLICIT statements.

The same letter must not appear as a single letter, or be
included in a range of letters, more than once in all of the

IMPLICIT statements in a program unit.

4-16

SECTION V
ASSIGNMENT STATEMENTS

Assignment statements are executable statements that assign values to vari-

ables and array elements. There are three types of assignment statements:

Arithmetic assignment statements
Logical assignment statements

ASSIGN TO statement

ARITHMETIC ASSIGNMENT STATEMENT

PURPOSE: causes the value represented by an arithmetic expression to be

assigned to a variable.

FORMAT:

v =8

<
1l

a variable name or an array element name of any data

type except logical

o
It

any arithmetic expression

COMMENTS: v is altered according to the rules expressed in Table 5-1,

A variable must have a value assigned to it before it can be

referenced.

EXAMPLES:
K = 2HAB
A(I,J,K)=SIN(X)*2.5-A(2,1,3)
I=1

5-1

Table 5-1.

RULES FOR ASSIGNING e to v

If v Type Is

Integer
Integer
Integer

Integer

Real
Real
Real
Real

Double
Double
Double
Double

Complex
Complex
Complex

Complex

NOTES:

Precision
Precision
Precision

Precision

And e Type Is

Integer
Real
Double Precision

Complex

Integer
Real
Double Precision

Complex

Integer
Real
Double Precision

Complex

Integer
Real
Double Precision

Complex

The Assignment Rule Is

Assign
Fix & Assign
Fix & Assign

Fix Real Part & Assign

Float & Assign
Assign
DP Evaluate & Real Assign

Assign Real Part

DP Float & Assign
DP Evaluate & Assign
Assign

DP Evaluate Real Part & Assign

Convert & Assign
as Real Part With
Imaginary Part = 0

Assign

1. Assign means transmit the resulting value, without change, to

the entity.

2. Real Assign means transmit to the entity as much precision of the

most significant part of the resulting value as a real datum can

contain.

3. DP Evaluate means evaluate the expression then DP Float.

4. Fix means truncate any fractional part of the result and transform

that value to the form of an integer datum.

5. Float means transform the value to the form of a real datum.

6. DP Float means transform the value to the form of a double pre-

cision datum, retaining in the process as much of the precision

of the value as a double precision datum can contain.

LOGICAL ASSIGNMENT STATEMENT

PURPOSE: causes the value represented by the logical expression to be as-

signed to a simple or subscripted variable.

FORMAT:
v=ce
v = a logical variable name or a logical array element
name
e = a logical expression

COMMENTS: A variable must have a value assigned to it before it can be

referenced.

EXAMPLES:

T = .TRUE.
FALSE = .FALSE.
T = A.LT.B

ASSIGN TO STATEMENT

PURPQSE: Initializes an INTEGER Variable to a statement label.

FORMAT:

ASSIGN k TO i
a statement label

o
i

'.J.
[

an integer variable name

COMMENTS: After the ASSIGN TO statement is executed, any subsequent exe-
cution of an assigned GO TO statement using the integer variable
causes the statement identified by the assigned statement label

to be executed next. The integer variable may also be used in a

READ or WRITE statement as the format identifier.

STANDARD extension. The INTEGER variable may be used in a CALL
statement or function reference and the dummy assigned its value

may be used in an assigned GO TO, READ, or WRITE statement.

Once mentioned in an ASSIGN TO statement, an integer variable may
not be referenced in any statement other than an assigned GO TO
statement or as a format reference in a READ or WRITE statement

until it has been redefined.

EXAMPLES:
ASSIGN 1234 TO ILABEL
GO TO ILABEL, (100,1234,200) (or, GO TO ILABEL)
1234 1 =1

SECTION VI
CONTROL STATEMENTS

Normally, a program begins with the execution of the first executable state-
ment in the program. When the execution of that statement is completed, the

next sequential executable statement is executed. This process continues

until the program ends.

A subprogram, if referenced, starts with its first executable statement,
then executes the next sequential executable statement, and so on, until it

returns control to the program statement which referenced it.

Control statements are executable statements that alter the normal flow of

a program or subprogram. There are twelve control statements in FORTRAN
IvV.

GO TO {(Unconditional)
GO TO (Assigned)
GO TO (Computed)
IF (Arithmetic)
IF (Logical)
CALL

RETURN

CONTINUE

PAUSE

STOP

DO

END

GO TO

UNCONDITIONAL

PURPOSE: Causes the statement identified by the statement label to be

executed next.

FORMAT :
GO TO k

k = a statement label

COMMENTS: The program continues to execute from the statement identified

by k.

EXAMPLE:
GO TO 1234

GO TO

ASSIGNED

PURPOSE: Causes the statement identified by the current value of an in-

teger variable reference to be executed next.

FORMAT:

GO TO i, (kl, k2, ey kn)

GO TO i

an integer variable reference

k = a statement label

COMMENTS: The current value of i must have been assigned by a previous

execution of an ASSIGN TO statement.

The compiler does not check if i contains one of the statement
labels in the list. The list is for programmer's documentation

purposes only. The values kl' k eeey krl are checked to ensure

2!
that they are valid statement numbers.

EXAMPLE :

ASSIGN 1234 TO ILABEL

GO TO ILABEL, (1234,200,100) (or, GO TO ILABEL)

GO TO

COMPUTED

PURPOSE: Causes the statement identified by an indexed label from a

list of labels to be executed next.

FORMAT:

GO TO (k., k .. k), e
1 n

2’

o
Il

a statement label

e = an arithmetic expression

COMMENTS: The expression is evaluated, and converted to integer, if

necessary.

If the expression value is less than one, statement kl is
executed. If the expression value is greater than n,
statement kn is executed. If 1 < e < n, statement ke is

executed.

EXAMPLE:
GO TO (100,200,300), k

100 CONTINUE (if k

A

1)
2)

200 CONTINUE (if k
300 CONTINUE (if k > 3)

IF

ARITHMETIC

PURPOSE: Causes one of two or three statements to be executed next, depend-

ing upon the value of an arithmetic expression.

FORMAT: -
IF (e) kl' k2' k3
IF (e) kl, k2
e = an arithmetic expression of type integer, real or
double precision.
k = a statement label

COMMENTS: when the statement contains three statement labels, the state-

ment identified by the label kl, k., or k3 is executed next if

2
the value of e is less than zero, equal to zero, or greater than

zero, respectively.

When the statement contains two statement labels, the statement

identified by k. is executed next when the value of e is less

1
than zero; k2 is executed next when the value of e is equal to

or greater than zero.

EXAMPLES:
IF (A - B) 100, 200, 300
IF (SIN(X) - A*B) 100,200

IF

LOGICAL

PURPOSE: cCauses a statement to be executed next if a logical expression is

true, or causes one of two statements to be executed, depending

upon the value of the logical expression.

FORMAT:
IF (e} s
IF (e) k;/ k,
s = an executable statement (except a DO or a logical IF)
= a logical expression
k = a statement label

COMMENTS: 1If the logical expression is true (first format), statement s
is executed. If s does not transfer control elsewhere, execu-
tion then continues with the statement following the IF. If
e 1s false, the statement s is not executed, but the next

sequential statement after the IF is executed.

If the logical expression is true (second format), statement
kl is executed. If the logical expression is false, state-

ment k2 is executed.

Refer to the sections on logical expressions and relational
expressions for a further explanation. Note particularly the
caution on the use of the relational operators .LT., .LE.,

.GT., and ,GE..

EXAMPLES: IFr (A .EQ. B) A = 1.0
IF (SIN(X) .LE. (A-B)) 100,200

CALL

PURPOSE: Causes a subroutine to be executed.
FORMAT:
CALL s
CALL s (al, VAR an)
s = the name of a subroutine
a = an actual argument
COMMENTS: wWhen the subroutine returns control to the main program, exe-
cution resumes at the statement following the CALL.
An actual argument is a constant, a variable name, an array
name, an array element name, expression or subprogram name.
Actual arguments in a CALL statement must agree in order,
type and number with the corresponding dummy parameters in
a subroutine. (See Section IX.)
EMA variables appearing as an actual argument must be passed
using "call by value". Refer to the section on the EMA
statement for more information.
EXAMPLES:

CALL MATRX SUBROUTINE MATRX
CALL SUBR (I, J) RETURN
END

SUBROUTINE SUBR (I,J)

RETURN
END

PURPOSE

RETURN

Causes control to return to the current calling program unit, if
it occurs in a function subprogram or a subroutine. Causes the

program to stop if it occurs in a main program.

FORMAT:

RETURN

COMMENTS:

EXAMPLES:

When the RETURN statement occurs in a subroutine, control returns
to the first executable statement following the CALL statement

that referenced the subroutine.

When the RETURN statement appears in a function subprogram, con-
trol returns to the referencing statement. The value of the
function is made available in the expression which referenced

the function subprogram.

The END statement of a function subprogram or a subroutine is
also interpreted as a RETURN statement, provided there is a path

to the END statement.

CALL MATRX SUBROUTINE MATRX
I = MIX(L,M)/A*B RETURN
: END

INTEGER FUNCTION MIX(I,J)

CONTINUE

PURPOSE:

Causes continuation of the program's normal execution sequence.

FORMAT:

CONTINUE

COMMENTS: The CONTINUE statement can be used as the terminal statement in a
DO loop.

If used elsewhere, the CONTINUE statement acts as a dummy state-

ment which causes no action on the execution of a program.

EXAMPLE:

5 CONTINUE

STOP

PURPOSE: Causes the program to stop executing.

FORMAT:
STOP n
STOP

n = an octal digit string of one to four characters

COMMENTS: When this statement is executed, STOP is printed on the teleprinter
output unit. If n is given, its value is also printed, after the

word STOP.

EXAMPLES:
STOP 1234
STOP

6-10

PAUSE

PURPOSE: causes the program to stop executing. Execution is resumable in
sequence.
FORMAT:
PAUSE
PAUSE n

n = an octal digit string of one to four characters

COMMENTS: when this statement is executed, PAUSE is printed on the tele-

printer output unit. If n is given, its value is also printed,

after the word PAUSE.

The decision to resume processing is not under program control.
To restart, a system directive must be issued by the system

operator.

EXAMPLES:
PAUSE 1234
PAUSE

6-11

DO

PURPOSE: To initiate and control the sequence of instructions in a pro-

grammed loop.

FORMAT:

DOn [,] 1= ml’ m., m

2 3

DOn [,] 1i=m, m

1 2

n = the statement label of an executable statement (called
the terminal statement)

[,1 = an optional comma

i = a simple integer variable name (called the control variable)

m; = an arithmetic expression (called the initial parameter)
m2 = an arithmetic expression (called the terminal parameter)
m3 = an arithmetic expression (called the step-size parameter)

COMMENTS: The terminal statement must physically follow and be in the
same program unit as the DO statement. The terminal statement
may not be any form of a GO TO, an arithmetic IF, a two-branch
logical IF, a RETURN, STOP, PAUSE, DO or a logical IF statement

containing any of these statements.

The initial, terminal and step-size parameters can be any arith-

metic expressions. However, if these expressions are not of

type integer, they are converted to integer (by truncation)

after they are evaluated.

CAUTION: The maximum allowable difference between the initial
parameter and the terminal parameter is 32,767
(215—1). If more iterations are desired, two or more

DO loops can be nested to achieve this (see Example d
following) .

If the step~size parameter is omitted (format 2), a value of +1
is implied for the step size.
NOTE: The step—size may be positive or negative, allowing

either incrementing or decrementing to the terminal
parameter value.

6-12

COMMENTS:
(cont.)

The range of a DO statement is from (and including) the first
executable statement following the DO to (and including) the

terminal statement of the DO.

When the range of one DO statement contains another DO statement,

the range of the contained DO must be a subset of the range of the

containing DO.

Succeeding executions of the DO loop do not cause re-evaluation of
the initial, terminal or step~size parameters if they are expressions.
Therefore, any changes made within the DO loop to the values of
variables occurring in these expressions do not affect the control

of the loop's execution. Only changes to the control variable

itself or to step~size parameters (if they are unsigned simple

integer variables) affect the loop's execution.

NOTE: A DO statement is executed at least once regardless
of the relationship of the initial parameter to the
terminal parameter.

If a subprogram reference occurs in the range of a DO, the actions

of that subprogram are considered to be temporarily within that

range.

When a statement terminates more than one DO loop, the label

of that statement may be used only in a GO TO or arithmetic

IF statement that occurs in the range of the most deeply nested
DO that ends with that terminal statement. Other control flows
can be achieved by having separate terminal statements for DO

loops.

EXAMPLES:

a) DO 5I=1,5 b) DO 20 I=1,10,2 <) DO 20 I=1,10,2
5 CONTINUE DO 20 J=1,5 DO 15 J=2,5
20 CONTINUE 15 CONTINUE
d) DO 100 I=1,200 20 CONTINUE
DO 50 J=1,250
A(I,J)=A(I,J)+1 Array A declared to be in EMA.

50 CONTINUE
100 CONTINUE

The following occurs when a DO statement is executed:

a.

The control variable is assigned the value represented by the
initial parameter. The DO loop is executed at least once regard-
less of the relationship of the initial parameter to the terminal

parameter value.
The range of the DO is executed.

If control reaches the terminal statement, then after execution
of the terminal statement, the control variable of the most re-
cently executed DO statement associated with the terminal state-
ment is modified by the value represented by the associated step-

size parameter.

If the value of the control variable (after modification by the
step-size parameter) has not gone past the value represented by
the associated terminal parameter, then the action described

starting as step b. is repeated, with the understanding that the
range is that of the DO whose control variable has been most re-
cently modified. If the value of the control variable has gone
past the value represented by its associated terminal parameter,

then the DO is said to have been satisfied.

6-14

At this point, if there were one or more other DO statements
referring to the terminal statement in question, the control
variable of the next most recently executed DO statement is
modified by the value represented by its associated step-size
parameter and the action in step d. is repeated until all DO
statements referring to the particular terminal statement are
satisfied, at which time the first executable statement follow-

ing the terminal statement is executed.

Upon exiting from the range of a DO by the execution of a GO TO
or an arithmetic IF statement (that is, by exiting other than by
satisfying the DO), the control variable of the DO is defined
and is equal to the most recent value attained as defined in

steps a. through e.

6-15

PURPOSE:

END

Indicates to the compiler that this is the last statement in a

program unit.

FORMAT:

END

COMMENTS:

EXAMPLES:

Every program unit must terminate with an END statement.

The characters E, N and D (once each and in that order in
columns 7 through 72) can be preceded by, interspersed with,
or followed by blank characters; column 6 must contain a
blank character. Columns 1 through 5 may contain either a
statement label or blank characters. Undefined source program
statement numbers are printed when the END statement is
encountered. External names shortened from six characters

to five characters are reported as well as any user supplied
names that conflict with implicit library names.

~~~n~-END
annnnnEANLD
~~100.END

6-16



SECTION Vi
INPUT/OUTPUT STATEMENTS

Input/output statements are executable statements which allow the transfer
of data records to and from external files and memory, and the positioning
and demarcation of external files. The FORTRAN IV input/output state-

ments are:

READ (Formatted Records)
WRITE (Formatted Records)
READ (Unformatted Records)
WRITE (Unformatted Records)
REWIND

BACKSPACE

ENDFILE

NOTE: All external files must be sequential files.

IDENTIFYING INPUT/OUTPUT UNITS

An input or output unit is identified by a logical unit number assigned to
it by the operating system. (See the RTE Operating System Reference Manuals
for a description of logical units.) The logical unit reference may be an
integer constant or an integer variable whose value identifies the unit. Any
variable used to identify an input/output unit must be defined at the time

of its use.

IDENTIFYING ARRAY NAMES OR FORMAT STATEMENTS

The format specifier for a record or records may be an array name or the
statement label of a FORMAT statement (see Section VIII). If the format
specifier is an array name, the first part of the information contained in
the array must constitute a valid FORMAT specification: a normal FORMAT

statement less the statement number and the word "FORMAT."

If the format specifier is a FORMAT statement label, the identified state-

ment must appear in the same unit as the input or output statement.

7-1



INPUT/OUTPUT LISTS

An input list specifies the names of the variables, arrays and array elements
to which values are assigned on input. An output list specifies the refer-
ences to variables, arrays, array elements and constants whose values are
transmitted on output. Input and output lists have the same form, except
that a constant is a permissable output list element. List elements consist
of variable names, array names, array element names and constants (output
only), separated by commas. The order in which the elements appear in the
list is the sequence of transmission.

There are two types of input/output lists in FORTRAN 1IV: simple lists and

DO-implied lists.

Simple Lists

A simple list, n, is a variable name, an array name, an array element name,
a constant (output only) or two simple lists separated by a comma. It has

the form:

DO-Implied Lists

A DO-implied list contains a simple list followed by a comma and a DO-implied
specification, all enclosed by parentheses. It has the form:

n, 1=m m

17 m3)

2[
where

n = a simple list

i a control variable (a simple integer variable)

m, = the initial parameter (an integer arithmetic expression)

Il

the terminal parameter (an integer arithmetic expression)

= the step-size parameter (an integer arithmetic expression)

The parameters mj, m;, and m3 may be any arithmetic expression. However,
if these expressions are not Type-INTEGER, they are converted to Type-
INTEGER by truncation following evaluation. Functions may be referenced
only if they do not execute, or cause to be executed, any other READ or
WRITE statements, or other I/O operations.




Data defined by the list elements is transmitted starting at the value of

m in increments of m_, until m_ is exceeded. If m_ is omitted, the step-

1’ 3 2 3
size is assumed to be +1.

The step-size parameter may be positive or negative, allowing incrementing

or decrementing to the terminal parameter value.

The elements of a DO-implied list are specified for each cycle of the

implied DO loop.

EXAMPLES:
Simple List DO-Implied List
A,B,C ((ARRAY (I,J),J=1,5),I=1,5)
READ (5,10)A,B,C READ (5,10) ((ARRAY (I, J),Jd=1,5),I=1,5)

Note: For output lists, signed or unsigned
constants are permitted as list
elements.

FORMATTED AND UNFORMATTED RECORDS

A formatted record consists of a string of the characters that are permissi-
ble in Hollerith constants. The transfer of such a record requires that a
format specification be referenced to supply the necessary positioning and
conversion specifications. The number of records transferred by the exe-
cution of a formatted READ or WRITE statement is dependent upon the list

and referenced format specification.

An unformatted record consists of binary values.



READ

FORMATTED

PURPOSE: To read formatted records from an external device into main memory
or to provide data conversion from ASCII data to numeric data.

FORMAT:

READ (u,f) k
READ (u,*) k
READ (u,f)
u = an input unit
f = an array name or a FORMAT statement label or an integer
variable defined in an ASSIGN statement (must not be in EMA)
k = an input list
* = specification for free-field input (no format statement)

COMMENTS: The format statement or specification (in an array) can be any-
where in the program unit.

If free-field input is specified, the formatting is directed by
special characters in the input records; a FORMAT statement or
specification is not required.

If data conversion is to be made, a call to the relocatable
subroutine CODE must precede the READ instruction,

The Fortran IV Formatter supports the transfer of data records
containing a maximum of 132 characters within a formatted READ
operation. In some systems the user may extend this size by
supplying an alternate buffer. Refer to the explanation of the
LGBUF subroutine in the DOS/RTE Relocatable Library Reference
Manual.

EXAMPLES:

READ (5,100) (A(I), I =1, 20)

READ (5,200) A,L,X

READ (5,*) (A(J), J=1, 10)

READ (5,ARRAY)

READ (5,100) ((a(1,J),I=1,5),J=1,20)
ASSIGN 100 to K

READ (5,K) ((a(1,J),I=1,5), J=1,20)

The following performs a data conversion of the ASCII buffer
IN and stores the numeric equivalents in variables A,L,X:

CALL CODE
READ (IN,200) A,L,X

In this case any required statement labels must be on the
CALL CODE statement and it must not be the terminal state-
ment of a DO loop. Caution: IN should not be subscripted.

7-4



PURPOSE:

WRITE

FORMATTED

To write formatted records from main memory to an external device
or to provide data conversion from numeric data to ASCII data.

FORMAT:

COMMENTS:

EXAMPLES:

WRITE (u,f) k
WRITE (u,f)

= an output unit

= an array name or a FORMAT statement label or an integer
variable defined in an ASSIGN statement (must not be in EMA)
an output list

The FORMAT statement or specification (in an array) can be
anywhere in the program unit.

If data conversion is to be performed, a call to the reloca-
table subroutine CODE must precede the WRITE instruction.

The Fortran IV Formatter supports the transfer of data records
containing a maximum of 132 characters within a formatted WRITE
operation. In some systems the user may extend this.size by
supplying an alternate buffer. Refer to the explanation of the
LGBUF subroutine in the DOS/RTE Relocatable Library Reference
Manual.

WRITE (2,200) A, L, X
WRITE (2, ARRAY)

The following performs a data conversion of variables BA,L,X

and stores the ASCII equivalents in buffer TU:

CALL CODE

WRITE (TU,200) A,L,X

In this case any required statement labels must be on the
CALL CODE statement and it must not be the terminal state-

ment of a DO loop. Caution: TU should not be subscripted.



READ

UNFORMATTED

PURPOSE: To read one unformatted record from an external file.
FORMAT:
READ (u) k
READ (u)
= an input unit
= an input list
COMMENTS: The sequence of values required by the list may not exceed the
sequence of values from the unformatted record.
READ (u) causes a record to be skipped.
The Fortran IV Formatter supports the transfer of data records
containing a maximum of 60 words within an unformatted (binary)
READ operation. In some systems the user may employ the LGBUF
subroutine to extend this limit. Refer to the explanation of
LGBUF in the DOS/RTE Relocatable Library Reference Manual.
EXAMPLES: REaD (5) A, L, X

READ (5)




WRITE

UNFORMATTED

PURPOSE: To write one unformatted record from main memory to an external

file.

FORMAT:
WRITE (u) k

an output unit

an output list

COMMENTS: This statement transfers the next binary record from main memory

to unit u from the sequence of values represented by the list k.

The Fortran IV Formatter supports the transfer of data records
containing a maximum of 60 words within an unformatted (binary)
WRITE operation. In some systems the user may employ the LGBUF
subroutine to extend this limit. Refer to the explanation of

LGBUF in the DOS/RTE Relocatable Library Reference Manual.

EXAMPLES: wrRITE (2) A, L, X




REWIND, BACKSPACE, ENDFILE

PURPOSE: These statements are used for magnetic tape files. REWIND is
used to rewind a tape to the beginning of tape. BACKSPACE is
used to backspace a tape file one record. ENDFILE is used to
write an end-of-file record on a tape file.

FORMAT:
REWIND u
BACKSPACE u
ENDFILE u
u = an input/output unit

COMMENTS: If the magnetic tape unit is at beginning of tape when a REWIND
or a BACKSPACE statement is executed, the statement has no effect.

EXAMPLES:

BACKSPACE 2
ENDFILE I
REWIND 5




FREE FIELD INPUT

By following certain conventions in the preparation of his input data, a
FORTRAN IV programmer can Write programs without using an input FORMAT state-
ment. The programmer uses special characters included within input data

items to direct the formatting of records,

Data records composed this way are called free field input records, and can
be used for numeric input data only. Free field input is indicated in a
formatted READ statement by using an asterisk (*) instead of an array name

or a FORMAT statement label.

The special characters used to direct the formatting of free field input

records are:

space or , data item delimiters
/ record terminator

+ or - sign of item

. E+ - floating point number
@ octal integer

o.M comments

Data Item Delimiters

A space or a comma is used to delimit a contiguous string of numeric and

special formatting characters (called a data item), whose value corresponds
to a list element. A data item must occur between two commas, a comma and
a space or between two spaces. (A string of consecutive spaces is equiva-
lent to one space.) Two consecutive commas indicate that no data item is

supplied for the corresponding list element, i.e., the current value of the
list element is unchanged. An initial comma causes the first list element

to be skipped.



EXAMPLES:

100 READ (5,*) I, J, K, L 200 READ (5,*) I, J, X, L
Input data items: Input data items:
1720,1966,1980, 1492 +01794,2000

Result: Result:

I=1720 I=1720

J = 1966 J = 1966

K = 1980 K = 1794

L = 1492 L = 2000

Record Terminator

A slash within a record causes the next record to be read immediately; the

remainder of the current record is skipped.

EXAMPLE:

READ (5,*) I, J, K, L, M

Input data items:

987,654,321,123/DESCENDING

456

Result:
I = 987
J = 654
K = 321
L =123
M = 456

NOTE: If the input list requires more than one
external input record, a slash (/) is
required to terminate each of the input
records except the last one,




Sign of Data Item

Data items may be signed. If they are not signed, they are assumed to be

positive.

Floating Point Number Data Item

A floating point data item is represented in the same form as E-TYPE con-
version of an external real number on input. (See Section VIII.) If the
decimal point is not present, it is assumed to follow the last digit of

the number.

Octal Data Item

The symbol @ is used to indicate an octal data item. List elements

corresponding to the octal items must be type integer.

EXAMPLE:

READ (5,*) I, J, K

Input Data Items:
@177777, @0, @5555

Result:

I =1777778B
J =0

K = 55558

7-11



Comment Delimiters

Quotation marks ("...") are used to bound comments; characters appearing

between quotation marks are ignored.

EXAMPLE:
READ (5,*) I, J, K, L

Input Data Items:
123, 456, "ASCENDING"123, 456

Result:
I =123
J = 456
K = 123
L = 456

7-12



SECTION Viii
THE FORMAT STATEMENT

There are three ways a user can transfer data records to and from

memory using READ and WRITE statements (described in Section VII).

As "free field input" when the input data itself contains
special characters that direct the formatting of the records

in memory. (See "Free Field Input.")

As unformatted input or output records containing strings of
binary values. (See "READ (Unformatted)" and “WRITE
(Unformatted).™)

As formatted input or output records. (See "READ (Formatted)"
and “"WRITE (Formatted).")

When a formatted READ or WRITE statement is executed, the actual number of

records transferred depends upon:

The elements of an input/output list (if present), which

specify the data items involved in the transfer, and

A format specification for the list element(s), which
defines the positioning and conversion codes used for the

string of characters in a record.

A format specification for a formatted READ or a formatted WRITE list

element can be defined in either:

a.

b.

A FORMAT statement, or

An array, the first elements of which contain a valid format
specification constructed according to the rules of a FORMAT

statement (minus the FORMAT statement label and the "FORMAT").

The FORMAT statement and its components are described in the following

pages.



FORMAT

PURPOSE:  The FORMAT statement is a non-executable statement that provides
format control for data records being transferred to and from

core memory by defining a format specification for each record.

FORMAT:

t

label FORMAT (qltlzl t222 e nzn tn+lq2)

label a statement label.

g = a series of slashes (optional)
t = a field descriptor, or a group of field descriptors

z = a field separator

COMMENTS: A FORMAT statement must be labeled.

When a formatted READ statement is executed, one record is read
when format control is initiated; thereafter, additional records
are read only as the format specification(s) demand. When a for-
matted WRITE statement is executed, one record is written each

time a format specification demands that a new record be started.

EXAMPLES:
READ (5,100)A,B,C WRITE(2,200)3,L,X

100 FORMAT (2F5.1, F6.2) 200 FORMAT (F5.1, 110, F6.4)

The components of a format specification (field separators, field descriptors,
scale factor, repeat specification and conversion codes) are described in

the following pages.



FIELD DESCRIPTOR

PURPOSE: To provide the elements that define the type, magnitude and

method of conversion and editing between input and output.

FORMAT: oOne of

Integer data:

Real data:

Double pre-
cision data:

Logical data:

Column
positioning:

Complex data:

£
I

the following conversion and editing codes:

riw

srEw.d
srFw.d
srGw.d

srbw.d

rLw

wX,Tw,TLw, TRw

sEw.d,Ew.d

Octal data:

Hollerith
data:

r@w
rKw
row

rAw
rRw

wHh h

lh2 R

" ... h™"
r hlh2 w )
! ... '
r( hlha v )

a positive integer constant, representing the length of

the field in the external character string.

1]
1]

precision type conversions).

a scale factor designator (optional for real and double

r = a repeat specification, an optional positive integer

constant indicating the number of times to repeat the

succeeding field descriptor or group of field descriptors.

h = any character in the FORTRAN character set.

d = an non-negative integer constant representing the number

of digits in the fractional part of the external charac-

ter string (except for G-type conversion codes).

. = a decimal point.

The characters ¥, E, G, I, @, X, 0, L, A, R, H, ", ', T, TL, TR

and X indicate the manner of conversion and editing between the

internal and external character representations, and are called

the conversion codes.




COMMENTS:

EXAMPLES:

For all field descriptors, except "h.h_ ... h " and 'h.h ... h '
12 w 1la w

the field length (w) must be specified, and must be greater than

14

or equal to d.

For field descriptors of the form w.d, the d must be specified,

even if it is zero.

A basic field descriptor is a field descriptor unmodified by the

scale factor (s) or the repeat specification (x).

The internal representation of external fields corresponds to the

internal representation of the corresponding data type constants.
A numeric input field of all blanks is treated as the number zero.

The use of a decimal point in the input data field overrides the

d portion of a floating point conversion format.
Negative numbers are output with a minus sign.

If the output field is larger than that required by the datum
being written, the datum is right-justified in the output field.

The number of characters produced by an output conversion must
not exceed the field width (w). If the characters produced do
exceed the field width, the field is filled with the currency
symbol $.

2I10 2@2
E20.10 2K2
F5.1 202
G20.10 242
Dl10.2 2R2
E10.4, E10.4 2HAB
2X "ABCD"



PURPOSE:

REPEAT SPECIFICATION

Allows repetition of field descriptors through the use of a
repeat count preceding the descriptor. The specified con-
version is interpreted repetitively, up to the specified

number of times.

FORMAT:

r (basic field descriptor)

r = an integer constant, called the group repeat count.

COMMENTS:

EXAMPLES:

All basic field descriptors may have group repeat counts,

except these codes: wH or wX.

A further grouping may be formed by enclosing field descriptors,
field separators, or basic groups within parentheses, and by
specifying a group repeat count for the group. The depth of
this grouping is limited to the fourth level.

The parentheses enclosing the format specification are not

group delineating parentheses.

2110

6El4.6
4(E10.4, E10.4)
3/




I-TYPE CONVERSION

INTEGER NUMBERS

PURPOSE: Provides conversion between an internal integer number and an

external integer number.

FORMAT:
rIw
r = a repeat specification (optional)
w = length of external field
COMMENTS:

Input: The external input field contains a character string
in the form of an integer constant or a signed integer
constant. Blank characters are treated as zeros.

Output: The external output field consists of blanks, if
necessary, a minus (if the value of the internal
datum is negative), and the magnitude of the internal
value converted to an integer constant, right-
justified in the field.

If the output field is too short, the field is
filled with the currency symbol $.
EXAMPLES:

See the next page.




EXAMPLES: (Cont.)

INPUT:
External Field Format Internal Numbexr
~-.123 15 -123
12003 I5 12003
~102 I4 102
3 Il 3

OUTPUT:

Internal Number Format External Field
-1234 I5 -1234
+12345 I5 12345
+12345 14 $888
+12345 16 ~12345

8-7



SCALE FACTOR

PURPOSE : Provides a means of normalizing the number and exponent parts of

real or double precision numbers specified in a FORMAT statement.

FORMAT:

npP

3
Il

an integer constant or a minus sign followed by
an integer constant.

g
I

the scale factor indicator, the character P

COMMENTS: WwWhen format control is initialized, a scale factor of zero is
established. Once a scale factor has been established, it applies
to all subsequent real and double precision conversions until

another scale factor is encountered.

Input: When there is no exponent in the external field, the relationship
between the externally represented number (E) and the internally
represented number (I) is this:

T=g8 * 10"

When there is an exponent in the external field, the scale factor

has no effect.

Output: For E- and D- type output, the basic real constant part (I) of the
output quantity is multiplied by 10™ and the exponent is reduced
by n. For G-type output, the effect of the scale factor is
suspended unless the magnitude of the datum to be converted is

outside the range that permits effective F-type conversion.

EXAMPLES:

See the next page.



EXAMPLES:

(Cont.)
INPUT:

External Field

528.6
.5286E+03
528.6

OUTPUT:

Internal Number

528.6
. 5286
5.286
52.86
-5286.

Format
1pF10.3
1PG10.3
-2PDI10.3

Format
1PF8.2
2PE10. 4
-1PD10.4
1pPG10.3
1pG10.3

8-9

Internal Number

52.86
528.6
52860.

External Field
.5286.00
52.860E-02

~+0529D+02
An52.9. .04
-5.286E+03



E-TYPE CONVERSION

REAL NUMBERS

PURPOSE: Provides conversion between an internal real number and an
external floating-point number.
FORMAT :
srEw. d
s = a scale factor (optional)
= a repeat specification (optional)
w = the length of the external field
. = the decimal point
d = the total number of digits to the right of the
decimal point in the external field.
COMMENTS:
Input: The external input field may contain an optional sign,
followed by a string of digits optionally containing
a decimal point, followed by an exponent, in one of
the following forms: a signed integer constant; or
E followed by an integer constant or a signed integer
constant.
Output: The external output field may contain a minus sign (or
a blank, if the number is positive), a zero, a decimal
point, the most significant rounded digits of the internal
value, the letter E and a decimal exponent (which is
signed if it is negative).
EXAMPLES:

See the next page.

8-10




EXAMPLES: (Cont.)

INPUT:

External Field Format Internal Number
123.456E6 E9.3 123456000
.456E6 E6.5 456000
.456 E4.3 .456
123E6 E5.0 123000000
123 E3.1 12.3
E6 E9.3 o
~ E9.3 0

OUTPUT :

Internal Number Format External Field
+12.34 E10.3 ~~+s123E+02
-12.34 E10.3 ~—.123E+02
+12.34 El2.4 ~nn~e1234E+02
-12.34 El2.4 ~~—«1234E+02
+12.34 E7.3 .12E+02
+12.34 E5.1 $$989

8-11



F-TYPE CONVERSION

REAL NUMBERS

PURPOSE : Provides conversion between an internal real number and an

external fixed-point number.

FORMAT:

1]
[}

a}
1l

3
1]

srFw.d

a scale factor (optional)
a repeat specification (optional)

the length of the externmnal field

. the decimal point

d = the total number of digits to the right of the
decimal point in the external field
COMMENTS:
Input: The external input field is the same as for E-TYPE
conversion.
Output: The external output field may contain blanks, a minus
(if the internal value is negative), a string of digits
containing a decimal point (as modified by the scale
factor) rounded to d fractional digits.
EXAMPLES:

See the next page.

8-12




EXAMPLES: (Cont.)

INPUT: Same as in E-TYPE conversion, except "F" replaces "E"
in the format specification.

OUTPUT:

Internal Number Format External Field
+12.34 F10.3 Ananal2.340
-12.34 F10.3 ~n~—12.340
+12, 34 F12.3 nannanal2.340
-12.34 F12.3 annn~—12.340
+12.34 F4.3 12.3
+12345.12 F4.3 $5$3

8-13



G-TYPE CONVERSION

REAL NUMBERS

PURPQSE : Provides conversion between an internal real number and an

external floating-point or fixed-point number.

FORMAT:
srGw.d
s = a scale factor (optional)
r = a repeat specification (optional)
w = the length of the external field

. the decimal point

d = the total number of digits to the right of the
decimal point in the external field.
COMMENTS:
Input: The external input field is the same as for E-TYPE conversion.
Output: The external output field depends upon the magnitude of the
real data being converted, and follows these rules:
Magnitude Of Data Equivalent Conversion
0.1 <N <1 F(w-4).d,4Xx
1 <N <10 F(w-4). (d-1) ,4X
10972 < § < 1047 F (w-4) .1,4X
10971 < w < 10¢ F (w-4).0,4X
otherwise SEw.d
EXAMPLES:

See the next page.

8-14




EXAMPLES: (Cont.)

INPUT: Same as for E-TYPE conversion, except

that "G" replaces "E" in the format specification.

OUTPUT:
Format Internal Number External Field
.05234 ~~-523E-01
.5234 nne523. 00
G10.3 52.34 AnB52.3.0 0
523.4 an5230anna
5234. ~~+523E+04

8-15



D-TYPE CONVERSION

DOUBLE PRECISION NUMBERS

PURPOSE: Provides conversion between an internal double precision number

and an external floating-point number.

FORMAT:
srDbDw.d
s = a scale factor (optional)
r = a repeat specification (optional)
w = the length of the external field

. the decimal point

d = the total number of digits to the right of the

decimal point in the external field.
COMMENTS:

Input: The external input field is the same as for E-TYPE
conversion.

Output: The external output field is the same as for E-TYPE
conversion;, except that the character D replaces the
character E in the exponent.

EXAMPLES:

INPUT: Same as in E-TYPE conversion except "D" replaces "E."

OUTPUT: Same as in E-TYPE conversion except "D" replaces "E."

8~16




COMPLEX CONVERSION

COMPLEX NUMBERS

PURPOSE: Provides conversion between an internal ordered pair of real

numnbers and an external complex number.

FORMAT:
A complex datum consists of a pair of separate real data.
The total conversion is specified by two real field de-
scriptors, interpreted successively. The first descriptor

supplies the real part; the second, the imaginary part.

COMMENTS:

Input: Same as for any pair of real data.

Output: Same as for any pair of real data.

EXAMPLES:

See E-~, F- and G-TYPE conversions.

8-17



L-TYPE CONVERSION

LOGICAL NUMBERS

PURPOSE:  Provides conversion between an external field representing a

logical value and an internal logical datum.

FORMAT:

L w

w = the length of the external field.

COMMENTS:

Input: The external input field consists of optional blanks
followed by a T or an ¥ followed by optional characters,
representing the values true or false, respectively.

Output: The external output field consists of w - 1 blanks
followed by a T or an F as the value of the internal
logical datum is true or false, respectively.

EXAMPLES:

INPUT:

External Field Format Internal Number
~TRUE L5 | 1000008
~ananF L6 0

OUTPUT :

Internal Number Format External Field
0 (or positive) L3 ~AF
(negative) Ll T

8-18




@ -TYPE, K-TYPE AND O-TYPE CONVERSIONS

OCTAL NUMBERS

PURPOSE : Provides conversion between an external octal number and an
internal octal datum.
FORMAT:
r Qw
r Kw
r Ow
r = a repeat specification (optional)
w = the width of the external field in octal digits.

COMMENTS: 1ist elements must be of type integer.

Input: If w > 6, up to six octal digits are stored; non-octal digits
are ignored. If the value of the octal digits within the field
is greater than 177777, results are unpredictable. If w < 6 or
if less than six octal digits are encountered in the field, the
number is right-justified with zeros to the left.

Output: If w > 6, six octal digits are written right-justified in the
field with blanks to the left. If w < 6, the w least significant
octal digits are written.

EXAMPLES:

See the next page.

8-19




EXAMPLES:

(Cont.)
INPUT:

External Field

123456
~-123456
2342342342
, 396E-05

OUTPUT :

Internal Number

99

99

-1
32767

Format

@6
07
2K5
2@4

Format

Ké
02
@8
@6

Internal Number

123456
123456
023423 and 042342
000036 and 000005

External Field
~anl43
43
~L177777
17777




A-TYPE CONVERSION

HOLLERITH INFORMATION

PURPOSE: Allows a specified number of Hollerith characters to be read

into, or written from, a specified list element.

FORMAT:

rAw

o}
Il

a repeat specification, (optional)

ES
I

the length of the Hollerith character string.

COMMENTS: 1Input: Assume "n" to be the size of the list element in
characters. If w > n, the rightmost n characters
are taken from the external input field. If w <n,
the characters appear left-justified in the list

element, with w-n trailing blanks.

Output: If w > n, the external output field consists of
w - n blanks, followed by n characters from the
internal representation. If w = <n, the characters

in the left part of the list element is written.

EXAMPLES:

See the next page.



EXAMPLES:

(Cont.)
INPUT:

External Field

XYz
VWXYZ

OUTPUT :

Internal Value

XY
WXYZ
XY

Format

A2
AS
Al

Format

A2
Ab
Al

8-22

Intexrnal Value

XY
WXYZ (Real variable)
X.

External Field

Xy
~~WXYZ (Real variable)
X



PURPOSE:

R-TYPE CONVERSION

HOLLERITH INFORMATION

Allows a specified number of Hollerith characters to be read

into, or written from, a specified list element.

FORMAT:

-
Il

£
I

r Rw

a repeat specification (optional)

the length of the Hollerith character string.

COMMENTS:

Assume "n" to be the size of the list element in characters. The
Rw descriptor is equivalent to the Aw descriptor, except that
characters are right-justified in the word with leading binary
zeros (on input); and on output, if w = 1, the characters in the

right part of the list element is written.

NOTE: The HP FORTRAN conversion Aw is replaced by the

FORTRAN IV conversion Rw.

EXAMPLES:

See the next page.

NOTE: The FORTRAN IV program can be modified at run-time

to interpret A as in HP FORTRAN if the user calls
the OLDIO entry point:

CALL OLDIO

To change back to a FORTRAN IV A conversion,
the user calls the NEWIO entry point:

CALL NEWIO

8-23




EXAMPLES:

(Cont.)
INPUT:

External Field

XYZ
VWXYZ

OUTPUT:

Internal Value

Xy
WXYZ

Format

R5

Format

R6
R1

8-24

Internal Value

XY
WXYZ (Real variable)

0X

External Field

XY
_.WXYZ (Real variable)

Y



wH EDITING

HOLLERITH INFORMATION

PURPOSE: Allows Hollerith information to be read into, or written £from,

the characters following the wH descriptor in a format specifi-

cation.
FORMAT:
w ves
H hl h2 h,
w = a nonzero positive integer constant equal to the total

number of h's

h = any character in the HP ASCII character set.
COMMENTS:
Input: The characters in the external field (hl to QN) replace
the characters in the field specification.
Output: The characters in the field specification are written
to an output file.
EXAMPLES:
INPUT:
Resulting Internal Value
External Field Format of Formatted Item
PACKARD 7JHHEWLETT 7HPACKARD
OUTPUT:
Format External Field
7HPACKARD PACKARD

8-25



... AND “...” EDITING

HOLLERITH INFORMATION

PURPOSE:  Allows Hollerith information to be written from the characters

enclosed by the quotation marks in a format specification.

FORMAT:

111 " ) 1
r hlh2 e hw or r h1h2 e hw

=
Il

any character in the FORTRAN character set,

except the quote mark being used.

r = a repeat count.

COMMENTS: 1Input: The number of characters within the quotation

marks is skipped (equivalent to wX).

Output: Is equivalent to wH, with a repeat specification

capability added.

EXAMPLES:
QUTPUT:
Format External Field
"ABZ“ ABZ
2 U X X 3 khkkkk*k

8-26



X,T,TL,TR-TYPE CONVERSION

SKIP OR BLANKS

PURPOQSE: Sets the next column at which conversion will start.

FORMAT:
w X, Tw, TLw or TRw

w = a positive integer constant

COMMENTS:
T: Move to column w.
TL: Move left w columns.
X,TR: Move right w columns.
On output, if the new position is to the right of the
previous rightmost position, the intervening positions
are blank-filled.
EXAMPLES:
14X
2X
T5
TL3
TR72

8-27



FIELD SEPARATOR

PURPOSE: To separate each field descriptor, or group of field descriptors
in a FORMAT statement.

FORMAT:

/ or ,

COMMENTS: A repeat count can be specified immediately preceding the slash
(/) field separator. Each slash terminates a record. A series
of slashes causes records to be skipped on input, or lines to

be skipped on an output listing.

EXAMPLES:

READ (5,100)A,B Causes A and B to be read from one record.
100 FORMAT (F5.1,F7.3)

READ (5,101)a,B } Causes A and B to be read from two

101 FORMAT (F5.1/F7.3) consecutive records.

READ (5,102)A,B Causes two records to be skipped, A to be

read from the third record, two more

102 FORMAT(//F5.1///F%7.3/)
records to be skipped, B to be read from
the sixth record and one additional record

to be skipped.

WRITE (6,100)A,B } Causes A and B to be printed on the same
line.

WRITE (6,101)A,B Causes A and B to be printed on two con-
secutive lines.

WRITE (6,102)A,B Causes two lines to be skipped, A to be
printed on the third line, two more lines
to be skipped, B to be printed on the
sixth line and one more additional line
to be skipped.

8-28



CARRIAGE CONTROL

PURPOSE: To indicate the line spacing used when printing an output

record on a line printer or a teleprinter.

FORMAT:

1 as the first character in the record

any other character -

~ = single space (print on every line).
0 = double space (print on every other line).
1l = eject page

*
|

= suppress spacing (overprint current line).

any other character = single space (print on every line).
EXAMPLES:
When these records are printed... they look like this:
100 FORMAT (" .PRINT ON EVERY LINE") PRINT ON EVERY LINE

120 FORMAT ("OPRINT ON EVERY OTHER LINE") PRINT ON EVERY OTHER LINE

140 FORMAT ("1") (a page is ejected, then a
line is skipped)

160 FORMAT ("*PRINT ON CURRENT LINE") (an overprint of current line)

180 FORMAT ("PRINT ON EVERY LINE") RINT ON EVERY LINE

999 FORMAT (1H1l, El6.8, I5) (a page is ejected, and a

floating point number and an

integer are then printed.)






SECTION IX

PROGRAMS, FUNCTIONS, SUBROUTINES, AND
BLOCK DATA SUBPROGRAMS

PROGRAM STATEMENT

PURPOSE: The PROGRAM statement names the main program and assigns parameters
to it which are passed to the binary record and hence to the loader
loading the relocatable object code. Similarly, a comment line can

be passed to the loader.

Refer to the FORTRAN IV Operations Section of this manual for

additional information.

FORMAT :
PROGRAM name (pl,pz,...,pB), comment
or,
PROGRAM name ,pl,p2,...,p8, comment
name = the name assigned to the program.

P~pPg = up to eight integer parameters to be passed to the
loader. See the appropriate operating system documenta-
tion for the meaning attached to these parameters. If

not specified, the defaults are:

pl = 3 disc~based, background
(ignored by RTE-M)

P, = 929 priority

p3-p8 =0 time values

comment = a comment line to be passed to the loader. All charac-
ters after the comma (,) including blanks are passed.

The comment is limited to 84 characters in length.




COMMENTS: 1In the first format shown above, cne or more of the parameters may
be omitted while still retaining the comment. In the second format,
all parameters must be accounted for at least by the presence of a
comma. Data after the program name is optional. The PROGRAM state-
ment, 1if present, must be the first non-comment statement in the

module.

EXAMPLES:
PROGRAM XY () ,THIS PROGRAM HAS NO PARAMETERS
PROGRAM XY, ,,,,,,,,COMMAS MUST BE PRESENT TO FIND THIS COMMENT
PROGRAM XY

PROGRAM XY (1,10) ,HELP! 770105

NOTE: All information following the program name
within the PROGRAM statement 1s an extension
of the standard.




An executable FORTRAN IV program consists of one main program with or with-
out subprograms. Subprograms, which are either functions, subroutines, or
block data subprograms, are sets of statements that may be written and

compiled separately from the main program.

A main program calls or references subprograms; subprograms can call or
reference other subprograms as long as the calls are non-recursive. That is,
if subprogram A calls subprogram B, subprogram B may not call subprogram A,
Furthermore, a program or subprogram may not call itself. A calling program

is a main program or subprogram that refers to another subprogram.

Main programs and subprograms communicate by means of arguments (parameters).
The arguments appearing in a call or a reference are called actual argu-
ments. The corresponding parameters appearing within the called or refer-

enced definition are called dummy arguments.

FUNCTIONS

If the value of one quantity depends on the value of another guantity,
then it is a function of that quantity. Quantities that determine the

value of the function are called the actual arguments of the function.

In FORTRAN IV, there are three types of functions (collectively called

function procedures); they supply a value to be used at the point of refer-

ence.

a. A statement function is defined and referenced internally in

a program unit.

b. A FORTRAN IV library function is processor-defined external
to the program unit that references it. The FORTRAN IV functions

are stored on an external disc or tape file.



c. A function subprogram is user-defined external to the program
unit that references it. The user compiles function subprograms,
loads them with his calling program unit and references them the

same way he references FORTRAN IV library functions.

SUBROUTINES

The RTE FORTRAN IV user can compile a program unit and store the resultant
object program in an external file. If the program unit begins with a
SUBROUTINE statement and contains a RETURN statement, it can be called as a

subroutine by another program unit.

Data Types For Functions and Subroutines

All functions are identified by symbolic names.

A symbolic name that identifies a statement function may have its data type
declared in a Type-specification statement. In the absence of an explicit
declaration in a Type-specification statement, the type is implied by the

first character of the name, as follows:

I, J, X, L, M, or N = integer type data

any other character = real type data

A symbolic name that identifies a FORTRAN IV function has a predefined data

type associated with it, as explained in Table 9-1.

A symbolic name that identifies a function subprogram may have its data type
declared in the FUNCTION statement that begins the subprogram or in a sub-
sequent Type-specification statement. In the absence of an explicit declara-
tion in the FUNCTION statement or a Type-specification statement, the data
type is implied by the first character of the name, as for statement functions.
A function subprogram which has been explicitly typed must also have its name
identically typed (in a Type-specification statement) in each program unit

which calls it. Otherwise, unpredictable results may occur.

The symbolic names which identify subroutines are not associated with any

data type.



DUMMY ARGUMENTS

Dummy arguments are identified by symbolic name. They are used in functions
and subroutines to identify variables, arrays, other subroutines or other
function subprograms. The dummy arguments indicate the type, order and

number of the actual arguments upon which the value of the function depends.

When a variable or an array reference is specified by symbolic name, a dummy
argument can be used, providing a value of the same type is made available

through argument association.

When a subroutine reference is specified by the symbolic name, a dummy argu-

ment can be used if a subroutine name is associated with that dummy argument.
When a function subprogram reference is specified by symbolic name, a dummy

argument can be used if a function subprogram name is associated with that

dummy argument.

BLOCK DATA SUBPROGRAMS

Block data subprograms are used to define and, optionally, to initialize
named common blocks. A block data subprogram begins with a BLOCK DATA state-
ment followed by specification statements describing variables in various
named common blocks, optional DATA statements to initialize these variables,

and an END statement.



STATEMENT FUNCTION

PURPOSE: To define a user-specified function in a program unit for later

reference in that program unit.
FORMAT:
£ ( al, a2, ceor an Yy = e
f = the user-specified function name, a symbolic name
a = a distinct variable name (the durmmy arguments of the
function)

e = an arithmetic or logical expression

COMMENTS: The statement function is referenced by using its symbolic name,
with an actual argument list, in an arithmetic or logical ex-
pression.
In a given program unit, all statement function definitions must
precede the first executable statement of the program unit and
must follow any specification statements used in the program
unit.
The name of a statement function must not be a variable name or
an array name in the same program unit.

EXAMPLES:

ISUM(I,J,K) = I+J+K
)
ROOT1 (A,B,C) = (-B+SQRT (B**2-4,0%A*C))/(2.0*A)
L = ISUM(M**2,1,M-1)
I
R = ROOT1 (X,Y,Z)




Defining Statement Functions

The names of dummy arguments may be identical to variable names of the same
type that appear elsewhere in the program unit, since they bear no relation

to the variable names.

The dummy arguments must be simple variables; they represent the values
passed to the statement function. These values are used in an expression
to evaluate the user-specified function. Dummy arguments cannot be used to

represent array elements or function subprograms.

Aside from the dummy arguments, the expression may contain only these values:

Constants

Variable references (both simple and subscripted)

FORTRAN IV library function references

External function references

References to previously-defined statement functions in the

same program

Referencing Statement Functions

When referenced, the symbolic name of the statement function must be immedi-

ately followed by an actual argument list.

The actual arguments constituting the argument list must agree in order,
number and type with the corresponding dummy arguments. An actual argument
in a statement function reference may be an expression of the same type as

the corresponding dummy argument.

When a statement function reference is executed, the actual argument values
are associated with the corresponding dummy arguments in the statement
function definition and the expression is evaluated. Following this, the
resultant value is made available to the expression that contained the state-

ment function reference.



FORTRAN IV LIBRARY FUNCTION

PURPOSE: To reference a processor-defined function by specifying its sym~
bolic name in an arithmetic or logical expression. The value is

made available at the point of reference.

FORMAT :
An arithmetic or logical expression that
contains the symbolic name of the FORTRAN
IV function (together with an actual argument list)

as a primary.

COMMENTS: Table 9-1 contains the FORTRAN IV library functions available
with the FORTRAN 1V Compiler. The trigonometric functions

listed in this table use radians measure.

If the symbolic name for the function appears in a TYPE-specification
statement which defines the name as a data type different from that
specified for the function in Table 9-1, the function becomes
"external”. The user must then supply his own version of the

FORTRAN IV library function.

NOTE: Some "intrinsic" functions are accessed by FORTRAN IV
using different names and/or calling sequences than
for "external” functions. Care should be taken when
using names of intrinsic functions for user-specified
subroutines.

EXAMPLES:
SIN(Y)

ted
1

IFIX(X)



TABLE 9-1

FORTRAN IV LIBRARY FUNCTIONS

Number of Symbolic Type of:
FORTRAN IV Function Definition Arguments Name Argument Function

Absolute Value Real+
Integer+

Double

Truncation Sign of a times Real+
largest integer Integer+

< lal Integer

Remaindering* a (mod a2) Real*

Integer*
Choosing Largest Value Real
Real
Integer
Integer

Double

Choosing Smallest Value Real
Real
Integer
Integer

Double

Conversicon from Real+

integer to real

Conversion from Integer+

real to integer

Transfer of Sign Sign of a, times Real+

Ial] Integer+

Double

Positive Difference a, - Min (a.,

1 1 2 Real

Integer

Obtain Most Significant Real
Part of Double Precision

Argument

Obtain Real Part of Complex

Argument

Obtain Imaginary Part of

Complex Argument

Express Single Precision
Argument in Double

Precision Form




TABLE 9-1 (cont.)

FORTRAN IV LIBRARY FUNCTIONS

Number of Symbolic Type of:
FORTRAN IV Function Definition Arguements Name Argument Function

Express Two Real Arguments

in Complex Form

Obtain Conjugate of a Complex

Complex Argument

Exponential Real Real+
Double Double+

Complex Complex+

Natural Logarithm o Real Real+
Double Double+

Complex Complex+

Common Logarithm Real Real+

Double Double+

Trigonometric Sine Real Real+

Double Double

Complex Complex+

Trigonometric Cosine a Real Real+
Double Double

Complex Complex+

Trigonometric Tangent tan (a) Real Real+
Double Double+
Hyperbolic Tangent tanh(a) Real Real+
Double Double+
a)l/2

Square Root ( Real Real+
Double Double+

Complex Complex

Arctangent arctan (a) Real Real+

Double Double

arctan(al/a2) Real Real

Double Double
Remaindering* a; (mod a2) Double Double*
Modulus Complex Real

Logical Product i.] Integer Integer+

Logical Sum 1+ Integer Integer+
Exclusive OR Integer Integer
Complement i Integer Integer+

Sense Switch Register Integer Integer+

Switch (n)




* The functions MOD, AMOD and DMOD are defined as al-[al/a2]a2
where [X] is the largest integer whose magnitude does not exceed

the magnitude of X and whose sign is the same as the sign of X.

+ These FORTRAN IV functions have different entry points when
called by value and called by name. See the DOS/RTE Relccatable

Library Reference Manual for a complete description of each

entry point,

Double precision functions have different entry points for
3-word and 4-word double precision, The names used to call
these functions within a FORTRAN program are the same for

both sizes of double precision.



FUNCTION SUBPROGRAM

PURPOSE: To define a user-specified subprogram that supplies a function
value when its symbolic name is used as a reference.
FORMAT:
t FUNCTION £ (a., a., -.., a ), comment
1 2 n
t = omitted, or one of the following data type identifiers
REAL
INTEGER
DOUBLE PRECISION
COMPLEX
LOGICAL
f = the symbolic name of the function
a = a dummy argument.
comment = up to 50 character comment
COMMENTS: The FUNCTION statement must be the first statement of a function
subprogram. A function subprogram is referenced by using its
symbolic name (together with an actual argument list) as a prim-
ary in an arithmetic or logical expression in another program unit.
The comment and its preceeding comma are optional. If present it
is passed to the loader via the relocatable object code.
EXAMPLES:
VAR = USERl (X,Y,2Z)**USER2(X,Y) REAL FUNCTION USER1(A,B,C)

USER1 = A+B/C

RETURN

END

REAL FUNCTION USER2 (VARR1l, VARR2)

USER2 = VARR1-VARR2
RETURN
END

NOTE: The " ,comment” in the FUNCTION statement is an
extension of the standard.

9-12



Defining Function Subprograms

The symbolic name of the function subprogram must also appear as a variable
name in the defining subprogram. During every execution of the subprogram,
this variable must be defined, and, once defined, may be referenced or re-
defined. The value of the variable at the time of execution of any RETURN

statement in this subprogram is called the value of the function.

The symbolic name of the function subprogram must not appear in any non-
executable statement in this program unit, except as a symbolic name of the
function subprogram in the FUNCTION statement or in a Type-specification

statement.

The symbolic names of the dummy arguments may not appear in an EQUIVALENCE,
COMMON or DATA statement in the function subprogram.

A dummy parameter can be used to dimension in array name, which also appears
as a dummy parameter of the function. An array which is declared with dummy
dimensions in a function must correspond to an array which is declared with
constant dimensions (through some sequence of argument association) in a
calling program unit. An array declared with dummy dimensions may not be

in common.

The symbolic name of a dummy argument may represent a variable, array, a

subroutine or another function subprogram.

The function subprogram may contain any statements except PROGRAM, SUBROUTINE,
BLOCK DATA, another FUNCTION statement, or any statement that directly or

indirectly references the function being defined.

The function subprogram may define or redefine one or more of its arguments
to return results as well as the value of the function. Therefore, the user
must be aware of this when writing his programs. For example, a function
subprogram that defines the value of GAMMA as well as finding the value of
ZETA could be coded:



FUNCTION ZETA (BETA, DELTA, GAMMA)
A = BETA**2 - DELTA**3

GAMMA = A*5.2

ZETA = GAMMA**2

RETURN

END

Then, a program referencing the function could be:

GAMMB = 5.0
RSLT = GAMMB+7.5 + ZETA (.2,.3,GAMMB)

which results in the following calculation:
RSLT = 5.0 + 7.5 + ZETA, where ZETA is determined as:

A

L2%%2 ~ [ 3%*%*3 = 04 - .027 = .013

GAMMA .013*5.2 = ,0676 (GAMMB is not altered)
ZETA = .0676%**2 .00456976

5.0 + 7.5 + .0046976 = 12.50456976

RSLT

However, the program:

GAMMB = 5.0
RSLT = ZETA (.2,.3,GAMMB) + 7.5 + GAMMB

would result in the following calculations for ZETA and GAMMB:

A= ,2%%2 - . 3%%3 = .04 - .027 = .013
GAMMA = .013*5.2 = .0676 = GAMMB
ZETA = .0676**2 = ,00456976
RSLT = .00456976 + 7.5 + .0676 = 7.,57216976



Referencing Function Subprograms

The actual arguments of a function subprogram reference argument list must
agree in order, number and type with the corresponding dummy arguments in

the function subprogram.

When referenced, the symbeclic name of the function subprogram must be
immediately followed by an actual argument list, except when used in a Type-
specification or EXTERNAL statement, or as an actual argument to another

subprogram.

An actual argument in a function subprogram reference may be one of the

following:

A constant

A variable name

An array element name

An array name

Any other expression

The name of a FORTRAN IV library function

The name of a user-defined FUNCTION or SUBROUTINE subprogram.

If an actual argument is a function subprogram name or a subroutine name,

the corresponding dummy argument must be used as a function subprogram

name or a subroutine name, respectively.

If an actual argument corresponds to a dummy argument defined or redefined
in the referenced function subprogram, the actual argument must be a

variable name, an array element name, or an array name.



Execution of a function subprogram reference results in an association of
actual arguments with all appearances of dummy arguments in executable
statements and adjustable dimensions in the defining subprogram. If the
actual argument is an expression, this association is by value rather than
by name. Following these associations, the first executable statement of

the defining subprogram is executed.

An actual argument which is an array name containing variables in the sub-
script could, in every case, be replaced by the same argument with a con-
stant subscript containing the same values as would be derived by computing
the variable subscript just before the association of arguments takes

place.

If a dummy argument of a function subprogram is an array name, the corres-

ponding actual argument must be an array name or an array element name.



SUBROUTINE

PURPOSE : To define a user-specified subroutine, which may be compiled

independently from a program unit which references it.

FORMAT:
SUBROUTINE s, comment

SUBROUTINE s (al, a caay an), comment

2’

s the symbolic name of the subroutine

Computer’
Museum

a dummy argument

comment = up to 84 character comment

COMMENTS: To reference a subroutine, a program unit uses a CALL statement.

The SUBROUTINE statement must be the first statement in a

subroutine subprogram.

The SUBROUTINE statement cannot be used in a function subprogram.
The comment and its preceeding comma is optional. If present it is

passed to the loader via the relocatable object code.

EXAMPLES:
CALL MATRX SUBROUTINE MATRX, INVERSE- DATE 19 OCT
Ir Ir
CALL SUBR(I,J) RETURN
END

SUBROUTINE SUBR (K,L), DATE 30 OCT 76
I

RETURN

END

NOTE: The " ,comment” in the SUBROUTINE statement 1s an
extension of the standard.




Defining Subroutines

The symbolic name of the subroutine must not appear in any statement except

as the symbolic name of the subroutine in the SUBROUTINE statement itself.

The symbolic names of the dummy arguments may not appear in an EQUIVALENCE,
COMMON, or a DATA statement in the subroutine.

A dummy parameter can be used to dimension an array name, which also appears
as a dummy parameter of the subroutine. An array which is declared with
dummy dimensions in a subroutine must correspond to an array which is de-
clared with constant dimensions (through some sequence of argument associ-
ation) in a calling program unit. If a parameter array is declared with
values (instead of dummy dimensions) in a subroutine, the actual values must
be specified for the first (N-1) dimensions. An array declared with dummy

dimensions may not be in common.

The symbolic name of a dummy argument may be used to represent a variable,

array, another subroutine or a function subprogram.

The subroutine defines or redefines one or more of its arguments to return

results.
The subroutine may contain any statements except a FUNCTION statement, BLOCK

DATA statement, PROGRAM statement, another SUBROUTINE statement, or any

statement that directly or indirectly references the subroutine being defined.

Referencing Subroutines

The actual arguments which constitute the argument list must agree in order,
number and type with the corresponding dummy arguments in the defining

subroutine.



An actual argument in a subroutine reference may be one of the following:

A constant

A variable name

An array element name

An array name

Any other expression

A FORTRAN IV library function name

A user-defined function or subroutine subprogram name

If an actual argument is a function subprogram name or a subroutine name,
the corresponding dummy argument must be used as a function subprogram

name or a subroutine name, respectively.

If an actual argument corresponds to a dummy argument defined or redefined
in the referenced subroutine, the actual argument must be a variable name,

an array element name, or an array name.

Execution of a subroutine reference results in an association of actual
arguments with all appearances of dummy arguments in executable statements
and adjustable dimensions in the defining subroutine. 1If the actual argu-
ment is an expression, this association is by value rather than by name.
Following these associations, the first executable statement of the de-

fining subroutine is executed.

An actual argument which is an array name containing variables in the sub-
script could, in every case, be replaced by the same argument with a con-

stant subscript just before the association of arguments takes place.

If a dummy argument of a subroutine is an array name, the corresponding

actual argument must be an array name or an array element name,



BLOCK DATA SUBPROGRAMS

PURPOSE: To define a block data subprogram, which may be compiled in-
dependently from a program unit which references it.
FORMAT:
BLOCK DATA name, comment
name = an optional name
comment = up to 84-character comment
COMMENTS: The block data subprogram is used to:

1. Define the size of and generate subprograms which reserve

space for each named common block, except EMA common.

2. Optionally to initialize the variables in one (or more)

named common block.

The BLOCK DATA statement must be the first non-comment statement

in a block data subprogram.

The name specified in the BLOCK DATA statement is used only in the
heading produced for the listing. Each different named common block
within a block data subprogram will produce a separate subprogram
module which will have the common block name. The comment string
will be passed to the loader with each named common subprogram

produced.

FEach named common block, except EMA common, referenced in an
executable FORTRAN program must be defined in a block data
subprogram. This is necessary to reserve room for the named

common block.



EXAMPLES:

BLOCK DATA XYZ,DATE=770707

COMMON/XYZ/A (10) ,B(200) ,KKK

COMMON/BITS/IB(16)

DATA IB/1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,100000B

NOTE: The " ,comment" parameter in the BLOCK DATA
statement is an extension of the standard.







APPENDIX A
DATA FORMAT IN MEMORY

The six types of data used in FORTRAN IV (integer, real, double precision,
complex, logical, and Hollerith) have the following format when stored in

memory.

INTEGER FORMAT

PURPOSE: an integer datum is always an exact representation of a positive,
negative or zero valued integer, occupies one 16-bit word and

has a range of —215 to 215—1.

FORMAT:

|15|14 0|
le—l number bits I
sign bit




REAL FORMAT

PURPOSE: A real datum is a processor approximation to the positive, neg-
ative or zero valued real number, occupies two consecutive
16-bit words in memory and has an approximate range of 10-38
to 1038.
FORMAT:

tg———1mplied binary point
IlS 14 0 l word 1
fraction bit
|t_sign of fractiorliac rom e
|15 8| 7 1| 0| word 2
f ti bit t bit
e P S eenent 4]

COMMENTS: A real number has a 23-bit fraction and a 7-bit exponent.

Significance (to the user) is to six or seven decimal digits,

depending upon the magnitude of the leading digit in the
faction.




3 WORD DOUBLE PRECISION FORMAT

PURPOSE: A double precision datum is a processor approximation to a
positive, negative or zero valued double precision number,

occupies three consecutive 16-bit words in memory and

has an approximate range of 10_38 to 1038.
FORMAT:
.«——— implied binary point
15114 QJ word 1
fraction bits
t_sign of fraction
|15 QJ word 2
' fraction bits
l15 8J 7 ll OI word 3

fraction bits l exponent bits | ’I
sign of exponent

COMMENTS: A double precision number has a 39-bit fraction and a 7-bit

exponen

Significance (to the user) is from 11.44 to 11.74 decimal

digits, depending upon the magnitude of the leading bit in

the fra

t.

ction.




4-WORD DOUBLE PRECISION FORMAT

PURPOSE: A double precision datum is a processor approximation to a
positive, negative or zero valued double precision number,

occupies four consecutive 16-bit words in memory and

has an approximate range of 10-38 to 1038.
FORMAT:
je——1implied binary point
|15 14 0 l word 1
I fraction bits
sign of fraction
15 OI word 2
fraction bits
15 o] word 3
fraction bits
llS 8{ 7 1{ OI word 4
fraction bits exponent bits |
sign of exponent -———,

COMMENTS: A double precision number has a 55-bit fraction and a 7-bit

exponent.

Significance {(to the user) is from 16.26 to 16.56 decimal
digits, depending upon the magnitude of the leading digit in

the fraction.




COMPLEX FORMAT

PURPOSE: A complex datum is a processor approximation to the value of a
complex number and occupies four consecutive 16-bit words in
memory. Both the real and imaginary parts have an approximate

range of 10—38 to 1038.

FORMAT:
- «———— 1implied binary point '
|15 14 QJ word 1
| fraction bits
t_sign of fraction
real
part
L |15 8|7 |0 l word 2
fraction bits exponent bits I
|sign of exponent ————} I
- <«——— 1implied binary point
|15 14 0 J word 3
I fraction bits
t.sign of fraction
imaginary
part
| |15 8| 7 1 IO | word 4

fraction bits l exponent bits I I
sign of exponent

COMMENTS: Both the real part and the imaginary part have 23-bit fractions

and 7-bit exponents; both have the same significance as a real

number.



LOGICAL FORMAT

PURPOSE: A logical datum occupies one 16-bit word in memory. The

sign bit determines the truth value: 1 = true, 0 = false.

FORMAT:

|5 |14 o| . .TRUE.
|t {o 0000000000000 o

|15] 14 o] = .FALSE.

IO I 0 0000 OO OCOOUOU OOU OO OI

HOLLERITH FORMAT

PURPOSE: A Hollerith datum is a one or two character string taken from

the HP ASCII character set; it occupies one 16-bit word in

memory.
FORMAT:

|15 8 | 7 o|

I HOLLERITH 1 | HOLLERITH 2 |




APPENDIX B
COMPOSING AN RTE FORTRAN IV JOB DECK

After a source program has been written, it is submitted as a FORTRAN IV
job deck. A job deck is input in the form of a disc file, punched cards,

a source paper tape or through a teleprinter. The job deck has the

following form:

FORTRAN CONTROL STATEMENT
MAIN PROGRAM
I
END STATEMENT
SUBPROGRAM (1)
Ir
END STATEMENT

SUBPROGRAM {n)
I
END STATEMENT
FORTRAN END JOB STATEMENT

FORTRAN CONTROL STATEMENT

The FORTRAN CONTROL STATEMENT specifies the type of output to be produced by
the compiler. The CONTROL STATEMENT parameters within a job deck may be
overridden using the options parameter when the FORTRAN IV Compiler is in-

voked. Refer to the FORTRAN IV Operations Section in this manual for more

information.

FORTRAN END JOB STATEMENT

A FORTRAN end job statement is a source statement that contains the currency

symbol ($) in column one or ENDS in columns 7-72.






APPENDIX C

SUMMARY OF COMPATIBILITY WITH ANSI
FORTRAN IV

The RTE FORTRAN IV compiler conforms to the American National Standards
Institute FORTRAN IV specifications as described in the ASA publication

X3.9-1966, with the following exceptions and extensions.

EXCEPTIONS TO STANDARD

Program, subprodgram, and external names are limited to five characters. Six
character symbols are accepted but are shortened to five characters by
deletion of the fifth character. For example, the program name JOHNOl is

changed to JOHN1 by the RTE FORTRAN IV compiler.

Intrinsic functions are treated as external functions.

Integer values occupy one word less than real values.

RTE FORTRAN IV requires that each named common block be described in a block

data subprogram even if no variables are to be initialized.

The FORTRAN IV Formatter supports the transfer of data records containing a
maximum of 132 characters within a formatted READ or WRITE operation, or a

maximum of 60 words within an unformatted (binary) READ or WRITE operation.

The Formatter processes READ or WRITE requests for the transfer of records
larger than these limits by dividing the original record into records sized

to match the limits. This process affects the file positioning operations.

For example, assume that a READ request is issued for a 1000-word binary
record. The Formatter divides this record into 16 records of 60 words each
and 1 record of 20 words. 1In order to backspace and re-read from the
beginning of the original record, 17 backspace operations must be performed

prior to the request to re-read the data.



EXTENSIONS OF STANDARD

A subscript expression may be any arithmetic expression allowed in RTE
FORTRAN IV. However, if an expression is of a type other than INTEGER, it is

converted to Type-INTEGER after it has been evaluated.

The initial, terminal, and step-size parameters of a DO statement or an
implied DO list may be any arithmetic expression. If the expressions are not
of Type-INTEGER, they are converted to Type-INTEGER after they have been
evaluated. The step-size parameter may be either positive or negative, thereby
allowing either incrementing or decrementing the terminal parameter value.
(Implied DO lists may use only integer arithmetic expressions which do not
reference functions that perform I/0O operations or execute READ/WRITE

statements.)

Comment lines may appear anywhere including within statements continued on

additional lines.

Strings may appear in PROGRAM, FUNCTION, SUBROUTINE, and BLOCK DATA

statements.

Specification of a comma as a statement separator is allowed in a DO

statement.

For all statements, there is no limit to the number of continuation lines.



The integer variable reference in a computed GO TO can be replaced by any
arithmetic expression. Non-integer expressions are converted to type in-
teger before the GO TO statement is executed. If the value of the express-
ion is less than one, the first statement in the computed GO TO list is
executed. If the value is greater than the number of statements listed in

the GO TO, the last statement in the computed GO TO list is executed.

The Hollerith constant nHClC2"'Cn (for n<9) may be used in any arithmetic
expression where a constant or an expression of type implied by n (see page
2~9) is permitted. Note, however, the n=0 is not permitted and that if n is
odd the c_ is stored in the left half of the computer word, with a blank

character in the right half.

Any two arithmetic types may be mixed in any relational or arithmetic oper-

ation except exponentiation.

Additional types of exponentiation are permitted. (See Table 3-2.)

An unsubscripted array name is an admissible list element in a DATA state-
ment. In this case, the correspondence with constant values is as follows:
If the array has n elements, then the next m constants from the list are
used to initialize the array in the order in which it is stored (column
order). If the remainder of the constant list (at the time the array name
is encountered) has m < n elements in it, then only the first m elements

of the array are initialized.

ASSIGN statements may be used with FORMAT statement numbers and the integer

variable then can be used in READ and WRITE statements.

Integer variables defined by the ASSIGN statement may be passed to functions

and subfunctions.






APPENDIX D

COMPATIBILITY BETWEEN HP FORTRAN AND
RTE FORTRAN IV

RTE FORTRAN IV contains some language extensions to provide compatibility

with HP FORTRAN. These features are:

Special characters included with ASCII input data can direct its formatting
(free field input); a FORMAT statement need not be specified in the source

Program.

Alphanumeric data can be written without giving the character count by speci-
fying heading and editing information in the FORMAT statement through "..."

entries.

The Aw conversion code of HP FORTRAN is equivalent to the Rw conversion code
in RTE FORTRAN IV. A single character stored in a word under R format control
is placed in the right half of the word with zeros in the left half. On out-
put, using the Rw format, the right half of the word is written. A HP FORTRAN
program using an Al FORMAT specification may have to be changed to use the

Rl specification. The user may also use calls to OLDIO. (See the Relocatable

Subroutines manual.)

The END statement is interpreted as a RETURN statement (in a subprogram) or
as a STOP statement (in a main program). A RETURN statement in a main pro-

gram is interpreted as a STOP statement.
The HP FORTRAN External Functions which perform masking (Boolean) operations
(IAND, IOR, NOT) and test the sense switches (ISSW) are retained as RTE

FORTRAN IV library functions.

The two-branch arithmetic IF statement (IF (e) nl, n2) is retained in RTE

FORTRAN IV.

Octal constants are valid in RTE FORTRAN IV.



Using an unsubscripted array name always denotes the first element of that
array, except in an I/0 statement or a DATA statement, where the entire array
is referenced. A single subscript, i, with a multiply-dimensioned array,

denotes the ith element of the array as it 1s stored (in column order).

The PROGRAM statement syntax for HP FORTRAN differs between the RTE-II/III
and the RTE-M Operating Systems. The difference is in the handling of the
optional parameter string and the inclusion of a comment in the PROGRAM
statement. Refer to the RTE-II, RTE-III, and RTE-M Programming and Operating

Manuals for specific details.

In the previous HP FORTRAN IV compiler, FORMAT statement code was generated
in line within the program code produced by the compiler. This required use of
a jump operation to avoid execution of the FORMAT statement. The FORMAT state-
ment number was associated with the jump operation which allowed the FORMAT
statement number to be used to control the flow of the program (that is, in

GO TO, IF, or DO statements).

Because the ANSI standard for FORTRAN IV dictates that statement labels used
in program control statements must be associated only with executable state-
ments within the same program unit, RTE FORTRAN IV does not allow the FORMAT
statement number to be used in this manner. The RTE FORTRAN IV compiler
generates FORMAT statement code in the data area following the program code.
The jump operation is not generated and the statement number is associated
directly with the FORMAT statement. This allows usage of the ASSIGN state-
ment with FORMAT statements but precludes the use of a FORMAT statement

number in program control statements such as GO TO, IF, or DO statements.

An additional difference between the previous HP FORTRAN IV compiler and the
RTE FORTRAN IV compiler exists in the handling of array addresses. The HP
FORTRAN IV compiler generated the address of each array mentioned in the
specification statements prior to generation of any executable code. Usually,

the array addresses immediately preceded the actual array.

The RTE FORTRAN IV compiler generates array addresses only if they are needed.
If generated, the addresses usually appear in the data area following the

program code while the actual array precedes the program code.



APPENDIX E
CROSS REFERENCE SYMBOL TABLE

The RTE FORTRAN IV Compiler provides the option of producing a cross
reference listing of symbols and labels used in the source program. The
sample program listing shown in Appendix F contains a cross reference
symbol table as the last item listed. If requested, the cross reference
symbol table is always the last listing produced for each compiled program

unit.

REQUESTING A CROSS REFERENCE SYMBOL TABLE LISTING

The optional parameter C is used in the FORTRAN Control Statement to regquest
a cross reference symbol table. Appendix J describes the format and

parameters of the FORTRAN Control Statement.

CHARACTERISTICS QF TABLE

Each symbol is printed followed by the line numbers in which the symbol
appears. Multiple references in one line to the same symbol are noted.

Statement labels are preceded by the @ character.

Up to eight line numbers are printed per line of the cross reference symbol
table. The line numbers are listed in ascending order except when they occur

in an EQUIVALENCE statement. For example,

0092  COMMON N

0100 EQUIVALENCE (N(1), M(1))
0101 DIMENSION N(50), M(50)
0102 N(1)=1

E~1



produces, for the symbol N, the following cross reference information:

N 0099 0101 o0l00 0102

ERROR CONDITIONS

The cross reference symbol table is not complete for lines which contain com-
pilation errors, since compilation is terminated at the point in the line
where the error is detected. Also for programs with a large number of
EQUIVALENCE statements some references in the EQUIVALENCE statements may be

absent from the cross reference.

E-2



APPENDIX F

SAMPLE LISTING OF RTE
FORTRAN IV PROGRAM

F-1



PAGE 0001 FTN. 3:34 PH  FRI., 17 JUHE, 1977

2031 FTH4,L.H

QR R ) BLGCK DATA X,TEST BLOCK DATA 7701907
w003 COMMON /NAREL/BITS

004 DIMENSION BITS(16)

DODG INTEGER BITS

D036 COMMON /NAME2/ B.A.C

VHHT DIMENSION AC(S5),B¢G,5),€¢(5,5,%5)

0008 C

0%y €

0010 DATA BITS5/1.2.4,8.,16.32,64.128,256.,512.,1024,2048,409
B € 8192,16384.100000B/,A/5%5./

12 END

FTH4 COMPILER: HFP92960-16092 REY. 1720

##% N WARNINGS #% NO ERRORS *x%



PAGE 0002 NAME1 3:54 PM FRI.. 17 JUNE., 1977

N0RE BLOCK DATA X, TEST BLOCK DATA 770107
G0H3 COMMON /NAMEL/BITS
NHOS DIMENSION BITS(16)
D095 INTEGER BITS
3006 COMMON /NAMEZ2/ B.RA.C
D007 DIMENSION ACS),B(S5,50,C(5,5.,5)
WO10 DATR BITS5/1.2,4,8.16,32,64,128,256,512,1024,2048,40%0,
D00H0 000001 GCT 000001
DOHDHL VOO0 2Z GCT 000002
Po0H2  HDOH0O4 GCT 000004
P00HD3 090010 GCT 000010
V00DN4  0DHOD2Y GCT 0600290
V0005 V00040 GCT 000040
D000 VOD100 GCT 090190
V0007 HHP200 GCT 090290
0010 000409 QGCT 090400
D001 001090 GCT 001000
P0012  Q02ZYRYd acT 002090
VOULI3Z DV40%0 GCT 0904000
V0014 H1DH00 GCT 010000
B0 C 8192.,16384,100000B/,A4/5%3./
DOVES 20009 GCT 0200990
V00te  04H0090 GCT 040090
0017 1DO0NO0 UCT 160009
WPLz2 END
BLOCK COMMON MAMEL S5I12E = 20016



PRAGE 4003  MNA

DHHL
RHH3I
004
SRNG
LRy Ex Rt
Y7
G919
0011

a0ie

¢

DHD62
00063
90964
BOREE
HOHE6
DOLHT
DOHT7H
00071
DOH72
HH073

HE2 3:54 PW  FRI.. 17 JUHNE,

BLOCK DnTA K, TEST BLOCK BATH

COMMON /NAMEI/BITS
DIMENSION BITS(16
INTEZGER BITS

COUMMON SHEMEZ2/ B.A.C

1977

Froiod

DIMEMSION A(5)1,B(5.,52,€{5,5.:5)
DATH BITS5/1.2,4,8.16,32.64.128,256.512,1024,2048.40%0,

8192,16384. 10000082, 8/5+«5 ./

/!

-

D58 a0)dRE

D5HA00 GCT 050099
DHONDY 6 aCT 099036
DSANHH €T 0590990
G0DHD e LT 000096
TRV RVE) OCT 059009
VYN8 acT 209990
D300 GLT 059000
DAVHY 6 GCT 000004
DBHHIY CT 050000
DRVHY 0 GCT 900008

ERD
B35 00372R

BLOCK COMMOUN NAMEZ SIZE = 00310



FRAGE 0004 NAMEZ 3:54 PM  FRI.., 7 JUNE, 1377

SYMBOL TARELE

NANME RDDRESS USAGE TYPE LOCRTIGH

A BoHHe2+ ARRAY %) REAL L CONMON KaMEz
8 REVOHO + ARRRAYC #,% ) REAL L COMMON HaMEz
B1T3 GRDPODO+ BRRAYC %) INTEGER L COMMON HANE I
€ GOH074d + ARRAY(*, %, %) REAL L CONMON HANEZ
IHME ! GHRDILR CONMOM LABEL INTEGER LGEnL

Nafee SNN466R CONMON LOBEL INTEGER Léinac



PAGE 04035 FTN. 3:54 PM FR1., 17 JURE, 1977

0013 PROGRAML D, MAIN NANMED COMMON

%014 COMMON /NAMEL/BITGSE{16)/NAREZ/B(G,52,R(5),C(5,5.3)
D015 INTEGER BITS

D016 YRITEC(S, 109)XBITS.(ACII), Jd=1,30, ({BCKK. KKK, KK=1,3),KKK=1.5>.,C
D017 100 FORMAT(X,16K7,/ L, 31{5{KF1D.2,280/0)

9948 DO6I=1.3

0019 AC T )=1=%1

90290 DO7d=8.3

B0218 BOT  Jdo=Tx1+d*d

wo22 DOBK=1.5

$923 COT.d.KI=T#T +d*deK%K

G024 & CONTINUE

D023 7 CONTINUE

W26 8 CONTINUE

D027 WRITE(6,1008BITS5.R,8B.C

D028 CONTINUE

2029 END

FTN4 COMPILER: HP32080-180%2 REY. 172%

*% NGO YWARNINGS #% NO ERRORGE #x* PROGRAM = 0019¢ CORMMON = 000090



PAGE 0008 FTN. 3:54 PN FRI.., 17 JUNE, 1977

0013 PROGRAMC D, MAIN NAMED COMMON
214 COMMON /NAMEL!/BITS(186)/NAME2/B(5,5),A¢(5),C(5,5,5)
D013 INTEGER BITS
D016 WRITE(G, 100MBITS,{AC LD, dd=1, 80 CCBCKK . KKKD,KK=1,58),KKK=1.38).C
DOV YNDDNDHY NOP
00091 0DOHDLX J5B CLRIO
V0HH2  VHHNH3IR DEF »-2+000038
DONHT HHH242R LDA 0w242K
09004 HDVE400 CLE
DOHOS  0HH00 2K M5B .DIC.
99006 GN0261R DEF @109
VOHVT YDOHT2R DEF 0007 2K
DONI0 HPOHN3IK JGB . IAY.
V0011 DHHHI4EX DEF MANMEL
DVOVNO+
20012 0HHH2Z0 GCT 009029
BSS 00002k
VDLIS 00024 3R LDA JJ
DODLIE 001900 ALS
PODLT VDD 244R ADA 00244KE
ROD20  DUH245R STA R.ODY
D0H21  BHPNOEX JSR .RIO.
D0H22  100245R DEF A. 001,11
aRG 900138
O00L3  000246R LDA 09246E
w014 DDHO243R 5Ta Jd
B35 00006k
D0P23 HHH24 3R LhbA Jd
VON24  0DH246FR Aba 002468
VO025  HHO243R STa Jd
Douge  0N3IV04 CHA,INA
uooay  0ON241R Aba H0241LE
VOO3Y  odzozd 55R.K55
DOHP3IL DHOHOITR JHP 0001 5E
BESS 00004E
WOV3p DIDZEEZR LDR 0025%2K
DOVIT 0N24990 CLn
DOH4Y DODHVEXK 5B . MAP
S04t DHP2H3IR DEF 202538
BYN4E V02T 0R DEF KK
0943 0DO2TLIR DEF KKK
DOH44 0HDHZ4 LR DEF 902418
DIN45 DON245R STR A.00Y
VO0N48  0DIDHEX JSR .RIO.
DRHD47 10D 245R DEF A.061.1
BRG OD034K
DOH34 DHH246F LR 002458
DOLIT DNHZEOR STA KK
BESE 090128
DOHTH HHHZ2EHR LD KK
BOHSL DHH246R RDA 0H248E
VROTZ  DO02E0R S5TA KK
DOOSI D03IN04 CMR.INA
VOHTE4 00D 24 1R ADA HO24 1R
DEDER HH2H2t 55A.R55

¥-7



PAGE 2097

5017

Y1

019

D020

D021

FTN. 3154
DHVIB VVUNIHER
0032 DHHD246R

WOH3IZ DNH2TLR

POVST V0025 LER
009860 V00 2440R
b6l O9H2LLIR
PO0e2  DO3004
D663 DO024 LR
D064 OHEZ0Zl
B0H6T  H0YNR4F
iod
DOVBE DNDDVIT R
DOVBT7T DH0010XK
PDOPOT 4+
HDONTO  DINLITPTE
DGATL BUONLLX
DheI=t.5
0261 024139
DP2oz  DZEVEL
20203 933113
0264 033454
w0265 V27454
VH266 031461
Doze?  HD24065
20270 H241390
PAT7TL V4306
D272  V3HN3Je
29273 0310534
00274 931139
G275 024457
0o2Z76  H24451
DON72 DO0246R
0073 000254R
ACT)=1=]
0074 DOV254R
DODTE HOL1000
WOHNT76 D00244R
bo7d=1.5
D0077  ONV245R
D010 HO0254R
DOLHL D90HL2X
D01H2  DH0254R
D01H3 HHOH13R
D01H4  HO0014X
20405 199245R
DNLINE HOO246R
D0107  HONZ2EER
B¢
D010 09H252R
0111 0024900
0112 0HV0V8X

FH

@100

T.,30=1#1+J%d

FRI ..

JHF
OrG
LDOA
37a
BS55
Lhe
nbha
374
e,
nrhe
556h.

JMP

FORMATO K. 16K7,/7.31405¢

J5B
DEF

acy
J5hR

X o

U3 O O 0D UY O OY O U G
>

T X

O3 OY Y oY

[}
x
o

Lba
5Tn

LbA
ALSR
nba

5Th
LDA
458
DEF
d5R
d5R
DEF
Lbn
5TAa
LDB
Cin
d SR

F-8

17

JUBE., 1977

P0G IBE
VHDI2E
D0246E

KKK

HHue 3B

KKK

00246k

KKK

INn

002416

R55

00DI4H
KFEL0 . 2,2K37))
CRAY.
HANEZ2+000T74R

00D17S
.DTa.

OO0 167R
1.0¥%
1..1
1,8k
1)?,\
1.7,
1,31
1,45
1.44
1. F1
1,4,
1.‘2)
1.2%
1.3/
1.0
0007 2R
00246K
1

I

0024 4K

A.O0t

1

.HPY

1

FLOAT
.D5T
A.00t.1
00246R
J

002528

. HAP



PRGE 0498

Lu22

RO 23

0025

3:54 PH

FTH.

3O113 D00 2%3ER
D0114  HHH2T4R
PHILES QU0 2LTR
DOLEE DN0241LE
90117 OHO245F
P01 2 VON25T4R
00121 Q0HRiZX
90122 HOH2%4R

DGaK=1.5
0123 09024 7R
0124 QOHO25GR
VD125 HOONIZEK
D01 26 DOP2ETR
30127 DH0247F
WOL139  DHNHL IR
DO1I31L HHONLI4K
99132 19H0245R
0133 OH02468
DPL134 VHNO2ELER

C
0135 000252K
9H136 HH2404
POLIIT HODDOEK
00140 HHO257F
00141 HNP254P
pHid4z  HOHO255SR
9143 2H025%6R
HHO1 44 HHO241F
9145 OND24 1R
09146 O00245R
Y147 0002%4R
9180 OO0 2K
90131 H002%4R
V0152 HHO247R
D153 000255
WH154 O0NHLI 2K
VDO1I8S HN0258R
01586 000247 R
8 CONTINUE
09157 OH02690R
V0160 0HP2%6R
P0161  0H091ZX
PO162  HHY256R
90163 DOV2ROR
V0164  OD0013X
00165 000014X
Dolee  100245R
¥ CONTINUE
90167 HH0256R
99170 HHQ246R
0178 D002%6R
90172 003904
90173 H0H241R
PO1I74 V02021
VOLPS O0H0L35R

a8

FRI .. 7 JUME., 1577
DEF 00253k
DEF 1
DEF 4
DEF 00241E
STl A.O0L
Lbn 1
5B MPY
DEF 1
5TA 1.0014
Lbp J
J5E O HPY
DEF J
AbAa 1,004
5B FLOAT
J5B .D5T
DEF A. 0011

LDA O0248R
iTA K

(1L K=l wT +dwd e KK

LDR 00252E
Cip,INRA
J58 . MAF
DEF 00257E
DEF 1

DEF J

DEF K

DEF 00241ER
DEF 0%241E
S5Ta A. 001
Lha 1

JSB . MPY
DEF 1

S5TaA 1.001
Lba J

J5B . HPY
DEF

aba 1.0401
3ThA 1.9002
Lbn K

J5B . MNPY
DEF K

ADbR 1 .9002
d5B FLOAT
JS5E .DST
DEF A.9001.,1

LbR K

ADR 002406HR
ST K
CHA,INA
ADAR 00241ER
55A.RS8S
dMP 00135E

F-9



PAGE 0009

0026

D28

No29

FTIN. 3:34 PM FRI..,
6 CANTINUE
V0176 D00255R @7 LDa
00177 9H00246R AbA
02900  YOO2TTR STA
20291 V03004 CHA
0292 HDOO241R ADA
DO203 092921 554
V0294 VIO11OR J NP
V0295  0H9254F €e LDaA
V296 VHV246R ADA
00207 H0O0254R 5Ta
V0210 003004 HA
Vo2il 000241R ADA
DozZiz  HHz02Zl 558
V0213 HIDO74R JMP
V0214  00HD24 2R Lba
VOZIT D06400 LR
V216 DOVH0ZX 4 5B
DO2Z17  ON0261LPR DEF
V0220 WOHN236R DEF
0221 00000 3X J5ER
Vo222  HVHV04XK DEF
DODOO0O+
D223 000020 acT
V0224 PNOOVTX JSE
Vo225 0090140XK DEF
VOYY62+
Ne226  NVOHHOT acTy
DG227  HHVHVTH J5SER
20239 0O00D19X DEF
YO00H 0+
V0231 HOVHIY acy
CONTINUE
PVO23I2 HDHAVVITXE JSH
Y233 VOVDIOX DEF
VUVOT 4+
$0234 NOOIVS GCT
0235 000011 XK J5E
EMD
30236 D0H015X J5R
0237 DDOH24 1R DEF
06240 HHH242R DEF
V6241 e R Ro R R B acTt
DEZ42  QHPONDE K
Jd B55
0244 D00010K DEF
DPVO6D+
A.H01  BSS
G246 VLNNOL acT
I1.9%1 HES5S
D232 WHVONZ acT
G233 HOHHLIOX DEF
PHHONH +
1 BSS

F-10

17 JUKE.,

d
002468
d

s THA
0024 18H
+RSS
001108
. C

1
00240K
1

»INRA
00Z241R
+RS5
0007 4R
0024 2R

.blg.
81090
P0236E
1Ay
NAME!L

D0HH20
.RRY.

1977

NAMEZ+00082E

0009095
.RAY.
HAMEZ

H00031

.RAY.

HAMEZ+000748

000LTE
.DTa.

EXEC

OONT2R+HD01478

HDO242E
QONNDHE
DODOHE
ONOH LR

NAME2+000808

D000 1R
0090901
0000 3K
000002
HAME 2

DHHH IR



PRGE 9010 FTN. 3:54 PM  FRI., 17 JUNE, 1977

90237 000019X DEF NAME2+900748B
V00074 +
I1.002 BSS 000178



PAGE 9911}

FTHN.

SYNBOL TARBLE

NANME

8139
@6

av

@y

A

B
BITS
€
CLRIQ
EFEC
FLOAT
I

J¢

Jd
K
KK
KKK
NANE!
NAMEZ

RDDRESS

2H0281R
ROB2HDER
COOITER
GO e R
DRI R R -9
000000+
000090+
QUOOTY ¢
O0HNL R
LEEIEV D S8
HODDIIN
DONZTYR
BOVZIGR
POOZ43R
AVHP2TER
PO250R
BONDZIIR
DO9004 K
DONOLON

3:54 PH FRI

USAGE

e 17

STATEMENT MHUMEER
STATEMENT HUMBER
STATEMENT HNUMBER
STATENMENT NUMBER

ARRAYL %)
ARRAY 4, %)
ARRAYL *)
ARRAYC %, %, %)
SUBPROGRAN
SUBPROGRAN
SUBPROGRAN
YARIABLE
TARIABLE
YRRIABLE
YARTABLE
YARIABLE
YARIABLE
COMMON LABEL
CONMON LABREL

F-12

JUNE ,

1977

TYPE

REAL
REAL
INTEGEK
RERL
RERL
REAL
REAL
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGEF
INTEGER

LOCATION

COMMON
COMMOGN
COMMON
CGMMON
EXTERNAL
EXTERNAL
EXTERNAL
LacatL
Lacat
LaCnaL
Lacat
LOcAL
Lacat
EXTERMAL
EXTERNAL

™ rrrr

BraMEZ
RAHEZ
HAME!
HANEZ



PAGE 0012 FTIN. 3:54 PM  FRI .., {7 JUHNE., 1977

w030 $






APPENDIX G

RTE FORTRAN IV COMPILER

ERROR DIAGNOSTICS

TYPES OF COMPILER DIAGNOSTICS

There are three

types of RTE FORTRAN IV compiler diagnostics:

WARNING: The compiler continues to process the statement, but the
object code may be erroneous. The program should be
recompiled.

ERROR: The compiler ignores the remainder of the erroneous source
statement, including any continuation lines. The object code
is incomplete, and the program must be recompiled.

DISASTR: The compiler ignored the remainder of the FORTRAN IV job.
The error must be corrected before compilation can proceed.

NOTE: If an error occurs 1in a program, the object code

will contain a reference to the non-system ex-
ternal name .BAD. This prevents loading of the
object tape, unless forced by the user. It is
strongly recommended that a program with
compilation errors not be executed. This
reference is not produced for warnings.




FORMAT OF

COMPILER DIAGNOSTICS

When an error is detected in a source statement, the source statement number
is printed, followed by the statement text. A question mark (?) is printed

after the erroneous column. Then, a message is printed in the format:
WARNING
** program name ** { ERROR nn DETECTED AT COLUMN cc
DISASTR

program name

the name of the program being compiled
nn = the diagnostic error number

cc = the column number of the source line being
scanned when the error was detected

NOTE: If cc=01, the error is in the source line preceding
the last line printed. If cc=00, there is an error
in an EQUIVALENCE group, and the group (or a
portion of the group) is printed before the error
message.

When the END statement is encountered by the compiler and undefined source
program statement numbers still exist, an error message is printed of the

form:

@ nnnnn UNDEFINED

nnnnn

is the statement number that did not appear in columns
1 through 5 of any of the initial lines of the program
just compiled.

At this point, a report is printed of any six-character names that will be

shortened

Following
form:

** nn

nn is.

mm 1s

XXXXX

yyyyy

to five characters.

the listing of the source program, a summary line is listed of the

ERRORS ** ** mpm WARNINGS PROGRAM = xxxxx COMMON = yyyyy
the number of errors detected (nn-NO, if no errors were detected).
the number of warnings detected (mm=NO if no warnings were detected).

is the decimal number of main memory locations required for the
program object code.

is the decimal number of main memory locations required for the
blank common block. (The size of named common blocks is printed
immediately following the listing of the block data subprogram
which defines each block.)



When compilation is completed, a summary message is displayed at the system
console. This message reports the number of disaster, error, or warning
conditions encountered during compilation. The RTE FORTRAN IV compiler
returns this information via the parameter return subroutine PRTN (see the
appropriate Operating System Programming and Operating Manual for a
description of this subroutine). The message appears in the form:

SEND FTN4: nn DISASTRS nn ERRORS nn WARNINGS
nn is the total number of DISASTR, ERROR, or WARNING conditions encountered
during compilation of all programs in the job deck (nn = NO, if none

were encountered).

The parameters returned via PRTN are:

parameter 1 - the total value of parameters 2 thru 4.
parameter 2 - the number of disasters encountered.
parameter 3 - the number of errors encountered.
parameter 4 - the number of warnings encountered.
parameter 5 - the revision level of the compiler.



TABLE G-1

RTE FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERRCR
CODE EXPLANATION EFFECT ACTION

0l COMPILER CONTROL STATEMENT MISSING Compilation
There is no FTN or FTN4 directive terminated
preceding the FORTRAN IV job.

02 ERROR IN COMPILER CONTROL STATE- Compilation
MENT terminated
Incorrect syntax or illegal para-
meter in FTN or FTN4 directive.

03 SYMBOL TABLE OVERFLOW Compilation Reduce number of
Insufficient memory exists for terminated sym?ols (constants,
continuing compilation variable names and

statement numbers)

in program and short-
en lengths of vari-
able names and state-
ment numbers.

04 LABELED COMMON Statement

" . terminated
Name too long or "/" missing or
name already used for variable.

05 IMPLICIT statement used to define Warning
default type for some character
more than once. The last defined
type is used.

06 END OF FILE OCCURRED BEFORE "§$" Compilation Example: no "$" or

) , terminated ENDS statement at
Source input file ended before the ermi € ds £ € £i1
"$" or ENDS$ statement ending the end ol source Iile
FORTRAN IV job was encountered.
07 RETURN IN MAIN PROGRAM Comment

A RETURN statement occurs in a
main program. It is interpreted
as a STOP statement.




TABLE G-1 (Cont.)

RTE FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE EXPLANATION EFFECT ACTION
08 ILLEGAL COMPLEX NUMBER Warning Example: non-real
A complex number does not con- constant as part
of complex number:
form to the syntax: (1.0, 2)
(+ real constant, + real constant) T
09 MISMATCHED OR MISSING PARENTHESIS Statement
An unbalanced parenthesis exists terminated
in a statement or an expected
parenthesis is missing.
10 ILLEGAL STATEMENT Statement Examples: The first
The statement in question cannot terminated 72 columns of a
, e statement do not
be identified. )
contain one of the
following: (a) the
‘=" sign if it is a
statement function
or an assignment
statement, (b) the
',' following the
initial parameter
if it is a DO state-
ment, (c) 'IF(' for
an IF statement or
(d) the first four
characters of the
statement keyword
for all other state-
ments (e.g. DIME,
WRIT). A statement
keyword may also be
misspelled in the
first four charac-
ters (e.g. RAED).
11 ILLEGAL DECIMAL EXPONENT Statement
Non-integer constant exponent terminated
in floating point constant.
12 INTEGER CONSTANT EXCEEDS MAXIMUM Statement
INTEGER SIZE terminated

An integer constant is not in the
range of -32768 to 32767.




TABLE G-1 (Cont.)

ERROR
CODE

RTE FORTRAN IV COMPILER ERROR DIAGNOSTICS

EXPLANATION EFFECT

ACTION

13

14

15

16

17

18

HOLLERITH STRING NOT TERMINATED Statement

In the use of 'nH', less than n terminated

characters follow the H before
the end of the statement occurs.
In a FORMAT statement, an odd
number of quotation marks sur-
round literals.

CONSTANT OVERFLOW OR UNDERFLOW Warning

The binary exponent of a floating
point constant exceeds the maximum,
i.e., |exponent| > 38. If under-
flow, the value is set to O.

ILLEGAL SIGN IN LOGICAL EXPRESSION Warning

An arithmetic operator precedes
a logical constant.
ILLEGAL OCTAL NUMBER Statement

An octal number has more than six terminated

digits, is greater than 177777B or
is non-integer.

MISSING OPERAND - UNEXPECTED DE-
LIMITER

Statement
terminated

Missing subscript in an array
declarator in a DIMENSION
statement or missing name in
an EQUIVALENCE group.

ILLEGAL CONSTANT USAGE Warning

A constant is used where a symbolic
name is expected. Some illegal us-
ages are when a constant is used as
a subprogram or statement function
name, as a parameter or a subprogram
or statement function, as an element
of an EQUIVALENCE group, or as the
blockname in a $EMA directive.

Examples:
+.TRUE.

- .FALSE.,

Examples:
2777778,

0000012B,
.1234B

Examples:
DIMENSION A(2,4,)
EQUIVALENCE (B(2))

Examples:

SUBROUTINE 1234
FUNCTION NAME(X,12,A)
EQUIVALENCE (I,5)
SEMA (1234,0)




TABLE G-1 (Cont.)

RTE FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE EXPLANATION EFFECT ACTION
19 INTEGER CONSTANT REQUIRED Statement Examples: A non-
. . . terminated dummy integer vari-
An integer variable is used of g .
. . able is used in an
where an integer constant is
required array declarator or
* an integer variable
is used as a sub-
script in an
EQUIVALENCE group.
20 EMPTY HOLLERITH STRING Statement
In an 'nH' specification, n=0. terminated
21 NON-OCTAL DIGIT IN OCTAL CONSTANT Warning Example: 1289B
A digit > 7 occurs in an octal
constant.
22 ILLEGAL USAGE OF NAME Statement
A variable is used as a sub- terminated
program name Or an array name
is used as a DO statement
index variable.
23 DO TERMINATOR DEFINED PREVIOUS TO Statement Example:
DO STATEMENT terminated 10 po 10 I=1,5
The terminating statement of a DO
loop comes before the DO statement
or is the DO statement itself.
24 JLLEGAL CONSTANT Statement
A variable name is expected terminated
but a constant appears.
25 ILLEGAL SUBPROGRAM NAME USAGE Statement Examples: A subpro-
terminated gram name ocCcurs on

A subprogram name is used where
a variable name or constant is
expected.

the left-hand side
of an assignment

statement. A FUNCTION
or statement function
name occurs as an op-
erand in an expression

but no argument list
is given.




TABLE G-1 (Cont.) RTE FORTRAN

IV COMPILER ERROR DIAGNOSTICS

A statement number must be a
1-5 digit integer.

ERROR
CODE EXPLANATION EFFECT ACTION
26 INTEGER VARIABLE OR CONSTANT Statement Examples: A sub-
REQUIRED terminated script in an
Non-integer value is used where EQUIVALENCE group
an integer quantity is required element is a non-
' integer constant.
A READ or WRITE
statement has a
non-integer logical
unit reference.
27 STATEMENT NUMBER PREVIOUSLY Statement
DEFINED terminated
The same statement number appears
on two statements.
28 UNEXPECTED CHARACTER Statement
. termina
Syntax of statement is rminated
incorrect.
29 ONLY STATEMENT NUMBER ON SOURCE Warning
LINE
Some source code must appear
within the first 72 columns of
a numbered statement.
30 IMPROPER DO NESTING OR ILLEGAL Statement
DO TERMINATING STATEMENT terminated
The ranges of nested DO loops
overlap or a statement such as
a GO TO, IF, RETURN or END ter-
minated a DO loop.
31 STATEMENT NUMBER STARTS WITH Statement Example: Statement
NON-DIGIT terminated source code appears

in columns 1-5 of
first line of a
statement.




TABLE G-1 (Cont.) RTE FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE EXPLANATION EFFECT ACTION
32 INVALID STATEMENT NUMBER OR Statement Examples: GOTO 100
ILLEGAL USAGE OF A STATEMENT terminated 100 FORMAT (-)
NUMBER WRITE (6,10)
10 J=1
A statement number has more than
five digits, or it contains a non-
digit character, or it is
undefined. A statement number is
of a wrong statement type.
33 VARIABLE NAME USED AS SUBROUTINE Statement Example: A=SIN
NAME B=SIN(X)
A name which has been previously
used as a variable is now used
in a subprogram reference.
34 STATEMENT OUT OF ORDER Statement Examples: A sub-
Source statements must be in terminated progFam na?e oc-
- . curring, with an
the order 1. Specification, argument list, on
2. DATA, 3. Statement Functions, the left—hand’side
and 4. Executable statements. .
of an assignment
statement may also
generate this
error message.
35 NO PATH TO THIS STATEMENT OR UN- Comment
NUMBERED FORMAT STATEMENT
The statement can never be executed
since it is not numbered and it
follows a transfer of control state-
ment. A FORMAT statement is not
numbered and therefore it cannot
be used by the program.
36 DOUBLY DEFINED COMMON NAME Statement
. terminated
A name occurs more than once in
a COMMON block.
37 ILLEGAL USE OF DUMMY VARIABLE Statement
terminated

A subprogram parameter occurs
in a COMMON statement or dummy
variables are equivalenced.




TABLE G-1 (Cont.) RTE FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE

EXPLANATION

EFFECT

ACTION

38

39

40

41

42

43

MORE SUBSCRIPTS THAN DIMENSIONS

An array name is referenced using
more subscripts than dimensions

declared for it.

ADJUSTABLE DIMENSION IS NOT A
DUMMY PARAMETER

The variable dimension used with
a dummy array name must also be

a dummy parameter.

IMPOSSIBLE EQUIVALENCE GROUP

Two entries in COMMON appear in

an EQUIVALENCE group or two
EQUIVALENCE groups conflict.
Further EQUIVALENCE groups are
ignored.

ILLEGAL COMMON BLOCK EXTENSION

An EQUIVALENCE group requires
the COMMON block base to be
altered. Further EQUIVALENCE
groups are ignored.

FUNCTION HAS NO PARAMETERS OR
ARRAY HAS EMPTY DECLARATOR
LIST

A function must have at least
one parameter. There is in-
sufficient information to
dimension an array name.

PROGRAM, FUNCTION OR SUBROUTINE
OR BLOCK DATA NOT FIRST STATEMENT

A PROGRAM statement, if present,

must come first. A FUNCTION or

BLOCK DATA or SUBROUTINE statement

is required for subprograms.

Statement
terminated

Statement
terminated

Statement
terminated

Statement
terminated

Statement
terminated

Statement
terminated




TABLE G-1 (Cont.)

RTE FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE

EXPLANATION

EFFECT

ACTION

44

45

46

47

48

49

50

NAME IN CONSTANT LIST IN
DATA STATEMENT

A constant list in a DATA state-
ment contains a non-constant.

ILLEGAL EXPONENTIATION

Exponentiation is not permitted
with data types used.

FUNCTION NAME UNUSED OR SUB-
ROUTINE NAME USED

In a FUNCTION subprogram, the
name of the FUNCTION is not de-
fined or a SUBROUTINE name is
used within the subroutine.

FORMAT SPECIFICATION NOT A
LOCAL ARRAY NAME, STATEMENT
NUMBER OR * OR IT IS AN EMA
REFERENCE

The FORMAT reference in an
I/0 statement is invalid.

ILLEGAL USE OF EMA

A variably dimensioned EMA
array has its dimension (s)
in EMA or was mentioned
without subscripts in an
I/0 list.

IMPROPER USE OF NAME

A variable is used as a sub-
program name.

DO STATEMENT IN LOGICAL IF

A DO statement is illegal as
the "true" branch of a logical
IF.

Statement
terminated

Statement
terminated

Warning

Statement
terminated

Statement
terminated

Statement
terminated

Warning

Example:
EMA X(I),T




TABLE G-1 (Cont.)

RTE FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR |
CODE EXPLANATION EFFECT ACTION
51 CONTROL VARIABLE REPEATED IN Statement
DO NEST terminated
A variable occurs as the index
of two DO loops or implied DO's
or a combination of these which
are nested.
52 IOGICAL IF WITHIN LOGICAL IF Statement
A logical IF statement is terminated
illegal as the "true" branch of
another logical IF.
53 ILLEGAL EXPRESSION OR Statement Examples:
ILLEGAL DELIMITER terminated The expression con-
. , . i i 1 -
Arithmetic or logical express- tains an 1llega. °pP
, . , erator or delimiter,
ion has invalid syntax or a ..
. L o has a missing opera-
delimiter is invalid in state- .
tor (adjacent oper-
ment syntax. . .
ands) or a missing
operand (adjacent
operators). A READ
or WRITE statement
list has a delimiter
syntax error.
54 DOUBLY DEFINED ARRAY NAME Statement
. , terminated
An array name has dimensions
defined for it twice.
55 LOGICAL CONVERSION ILLEGAL Statement
. . inated
Conversion of logical data to terminate
arithmetic or arithmetic to
logical is not defined.
56 OPERATOR REQUIRES LOGICAL Statement
OPERANDS terminated
An operand of type INTEGER, REAL,
DOUBLE PRECISION or COMPLEX has
been used with .AND., .OR., .NOT.

G-12



TABLE G-1 (Cont.) RTE FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE

EXPLANATION

57

58

59

60

6l

62

EFFECT ACTION

OPERATOR REQUIRES ARITHMETIC
OPERANDS

A logical operand has been used

in an arithmetic operation, i.e. +,
-, *, /, **, or a relational opera-
tor.

COMPLEX ILLEGAL

One of the relational operators
.LT., .LE., .GT. or .GE. has a
COMPLEX operand or an IF statement
has a COMPLEX expression.

INCORRECT NUMBER OF ARGUMENTS
FOR SUBPROGRAM

One of the library routines SIGN,
ISIGN, IAND or IOR is called with
the number of arguments less or
greater than two or a library
routine which is called by value is
called with more than one argument.

ARGUMENT MODE ERROR

A library routine which is called
by value is called with an argu-
ment that is DOUBLE PRECISION,
COMPLEX or LOGICAL.

LOGICAL IF WITH THREE BRANCHES

The expression in an IF statement
is of type logical and there are

three statement numbers specified
in the IF statement.

ARITHMETIC IF WITH NO BRANCHES

No statement numbers in an arith-
metic IF statement.

Statement
terminated

Statement
terminated

Statement
terminated

Statement
terminated

Warning

Warning

G-13




TABLE G-1 (Cont.) RTE FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE

EXPLANATION EFFECT

ACTION

63

64

65

66

67

68

69

REQUIRED I/O LIST MISSING Statement

The I/0 list required for a free terminated

field input or unformatted out-
put statement has not been
specified.

FREE FIELD OUTPUT ILLEGAL Statement

. t i
An '*' in place of a format erminated

designation is illegal in a
WRITE statement.

HOLLERITH constant with count ERROR
greater than 8 used in other than
FORMAT or subprogram reference.

PROGRAM UNIT HAS NO BODY or BLOCK Warning
DATA SUBPROGRAM HAS A BODY

A main program, SUBROUTINE or
FUNCTION requires an object program,
or a BLOCK DATA subprogram has a
function statement or executable
statements.

SOURCE FILE OPEN OR ACCESS Compilation
PROBLEM OR terminated

EOF or ENDS$S or $ occurs before
END statement or open or read
error occurs while attempting
to access the source file.

EXTERNAL. NAME HAS MORE THAN FIVE Warning
CHARACTERS

The name of a PROGRAM, SUBROUTINE
or FUNCTION has more than five
characters. The fifth character
is deleted.

OCTAL STRING IN STOP OR PAUSE Warning
STATEMENT IS TOO LONG

In the statement STOP n or PAUSE n,
n has more than four digits.

Examplie: END state-
ment contains syn-

tax error or it is

missing.




TABLE G-1 (Cont.)

RTE FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE

EXPLANATION

EFFECT

ACTION

70

71

72

73

74

75

76

EQUIVALENCE GROUP SYNTAX

An EQUIVALENCE group does not
start with a left parenthesis.
All further groups are ignored.

DUMMY VARIABLE IN DATA LIST

Dummy parameters of a subprogram
cannot be initialized in a DATA
statement.

COMMON VARIABLE IN DATA LIST or in
BLOCK DATA SUBPROGRAM

VARIABLE IN DATA LIST NOT IN BLOCK
COMMON.
Entities of a COMMON block cannot

Statement
terminated

Statement
terminated

Statement
terminated

be initialized with a DATA statement.
Similarly, in block data subprograms,
only entities in a named common block

may be initialized.
MIXED MODE IN DATA STATEMENT

A name and its corresponding
constant in a DATA statement do
not agree in type.

ILLEGAL USE OF STATEMENT FUNCTION
NAME

The name of a statement function
also occurs in its dummy parameter
list.

RECURSION ILLEGAL

The current program unit name
has been used in a CALL state-~-
ment.

DOUBLY DEFINED DUMMY VARIABLE

The same dummy variable name
occurs twice in a subprogram
or statement function para-
meter list.

Statement
terminated

Warning

Statement
terminated

Warning




ERROR
CODE

TABLE G-1 (Cont.) RTE FORTRAN IV COMPILER ERROR DIAGNOSTICS

0

EXPLANATION EFFECT

ACTION

77

78

79

80

81

82

83

STATEMENT NUMBER IGNORED Warning

A statement number on a specifi-
cation, DATA statement, continua-~
tion line, or on a statement
function is ignored.

PROGRAM UNIT HAS NO EXECUTABLE Warning
STATEMENTS

A program unit has only specifi-
cation or DATA statements or
statement functions.

FORMAT DOES NOT START WITH Warning
LEFT PARENTHESIS

FORMAT DOES NOT END WITH Warning
RIGHT PARENTHESIS

ILLEGAL EQUIVALENCE GROUP Statement
SEPARATOR terminated

EQUIVALENCE groups are not
separated by a comma or a non-
array name has subscripts in an
EQUIVALENCE group. All further
EQUIVALENCE groups are ignored.

ILLEGAL USE OF ARRAY NAME IN AN Statement
EQUIVALENCE GROUP terminated

An array name in an EQUIVALENCE
group is not followed by '(', °',°
or '")'. All further EQUIVALENCE
groups are ignored.

SUBPROGRAM NAME RETYPED Warning

The type declared for a sub-

program name within its body

does not agree with the type

established in the SUBROUTINE
or FUNCTION statement.




TABLE G-1 (Cont.)

RTE FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE EXPLANATION EFFECT ACTION
84 OBJECT CODE MEMORY OVERFLOW Compiler
. . , inated
Object program size 1s greater terminate
than 32K.
85 POSSIBLE RECURSION MAY RESULT Warning The user is advised
The use of one of the library to change the name
. of the subprogram
names, enumerated in Table G-2 .
or to make certain
as the name of a program, sub- ;
that no mixed mode
program, or common block may . ,
. . exists in the pro-
produce recursion if the body
gram and that no
of the subprogram so named :
. . .. library subprogram
required an implicit call to .
one of these names used requires a
’ call to ERR{.
86 DUMMY VARIABLE IN STATEMENT Warning Example:
FUNCTION CANNOT BE SUBSCRIPTED ASF(A)=A(1,1)+A(2,2)
A dummy variable in a statement
function cannot represent an
array or a subprogram name.
Computer ?
Museum .3
87 NOT CURRENTLY USED.
88 END OR FORMAT STATEMENT IN Statement Specify a branch
LOGICAL IF terminated that is not an END
. FORMAT statement.
An END or FORMAT statement is or emen
illegal as the "true" branch of
a logical IF.
89 CONTINUE STATEMENT OR NO BRANCH Warning Specify a valid
IN LOGICAL IF branch or delete
. . statement.
Specifying no branch or a
CONTINUE statement as a branch
in a logical IF is logically
equivalent to a NOP (No Operation).
The statement is assembled as
stated.
90 FIRST RECORD OF SUBPROGRAM IS A Statement Statements are
CONTINUATION LINE termination missing or out of

The first statement is incomplete
if it contains a continuation code.

oxdexr in source
program.




TABLE G-1 (Cont.) RTE FORTRAN IV COMPILER ERROR DIAGNOSTICS

SCRATCH FILE

Scratch file access failed
(OPEN, WRITE, REWIND).

ERROR
CODE EXPLANATION EFFECT ACTION
91 RESULT OF RENAME DUPLICATES ERROR Use a name that
EXISTING EXTERNAL NAME does not duplicate
an existing ex-
ternal name.
92 RESULT OF RENAME DUPLICATES ERROR Use a name that
REQUIRED INTRINSIC does not duplicate
the intrinsic name.
93 DATA STATEMENT attempts to ERROR Delete DATA STATE-
initialize EMA variable MENT or remove
variable from EMA.
94 NAME IN EMA STATEMENT IS NOT ERROR
FORMAL PARAMETER OR APPEARS
TWICE IN THE STATEMENT
96 A BREAK WAS DETECTED DISASTR
Operator break causes the
compiler to be terminated.
97 OPEN OR WRITE ERROR ON DISASTR
BINARY FILE
File does not exist or
improper security code
given or there is no room.
98 READ ACCESS ERROR ON DISASTR
SCRATCH FILE
Scratch file access failed.
99 WRITE ACCESS ERROR ON DISASTR




TABLE G-2. LIBRARY ROUTINE INTRINSIC LIST

The use of these names as program,

(see Table G-1, Error number 85).

subprogram, or common block names may
result in a recursive operation if the program, subprogram, or common
block contains an implicit call to a name that duplicates its own name

ABS CSGRT DMAX1 IAND TANH
AINT CSIN DMIN1 IFIX
ALOG DABS DMOD INT
ALOG10* DATAN DSIGN IOR
ALOGT DATAN2* DSIN ISIGN
ATAN DATN2 DSQRT ISSW
CCOS DBLE DTAN NOT
CEXP DCOS DTANH REAL
CLOG DDINT ERRO SIGN
CLRIO DEXP EXEC SIN
CMPLX DLOG EXP SNGL
CONJG DLOG10* FLOAT SQRT
COS DLOGT IABS TAN
* The five-character equivalent for these names: ALOGO
DATAZ2
DLOGO

Arguments to these functions (except EXEC) are always passed by value

even without extra parentheses.







APPENDIX H
OBJECT PROGRAM DIAGNOSTIC MESSAGES

During execution of programs referencing Relocatable Library Subroutines,

error messages may be generated. Error messages are listed together with the
subroutine involved.

Mathematical Subroutines

Error messages are printed in the form:

program name nn Xxx

program name is the name of the user program where the error
was encountered.

nn is a number in the range 02 through 14 which
identifies the subroutine involved in the error
condition.

XX is the error type, as follows:

OF = Integer or Floating Point Overflow
OR = Out of Range
UN = Floating Point Undefined

These error messages can occur when system intrinsics are called or during
an exponentiation operation. Suppose X and Y are real values and I and J
are integers. Then, the following relocatable subroutines are called for
these computations:

X**y ~RTOR (real to real)
X**1 <RTOI (real to integer)
I**J L.ITOI (integer to integer)

The following is a summary of possible error messages:

Error Issuing Where Error
Message Subroutine Used Condition
02-UN ALOG ALOG X<0

ALOGT X <0
CLOG X=0
03-UN SQRT
Q SQRT < <0
DSQRT



Error
Message

04-UN

05-0OR

06-UN

07-OF

08-UN
08-0OF
09-0OR

10-0OF

11-UN

12-UN

13-UN

14-UN

15-UN

Utility Subroutines

Subroutine

MAGTP

. SWCH

Issuing
Subroutine

- RTOR

SIN

. RTOI

EXP

.ITOI

. ITOTI

TAN

DEXP

DLOG

.DTOI

.DTOD

.CTOI

DATN2

Where
Used

-RTOR

SIN
CSNCS
CEXP
Ccos

<RTOI

EXP
CEXP
.RTOR
CSNCS

JITOI

. ITOI

TAN

DEXP
.DTOD
.DTOR

. RTOD

DLOG
DLOGT

.DTOI

.DTOD
.DTOR
. RTOD
.CTOI

DATNZ2

Error

Error
Condition
X=0,Y<0
X< 0,Y#O0
1 X 1
14
—t—+—}> 2
2 m 2

X=0,Y<0

X * logze > 124
* > 4
Xl log2e > 12
I X * ALOG (X) | > 124

* 1 > 124
X2 og2e >

I=0,J<0

15
IJ > 215 or IJ < =2
% > 214
- 1
eX > (1-2 39) 5 27

>
1
e
H
| A
@)

(@

Returns on an illegal call.

Returns if element is out
of range.

H-2



During execution of the object program error messages may be printed on the
output unit by the input/output system supplied for FORTRAN programs. The
error message is printed in the form:

FMT ERR nn program name

nn is the error code.

program name is the name of the user program.

The following is a summary of the FMT error codes:

Error
Code Explanation Action
01 FORMAT ERROR: Irrecoverable error;
a) w or d field does not contain program must be
proper digits. recompiled.
b) No decimal point after w
field.
c) w=-d <= 4 for E-
specification.

02 a) FORMAT specifications are Irrecoverable error;
nested more than one level program must be
deep. recompiled.

b) A FORMAT statement contains
more right parentheses than
left parentheses.

03 a) Illegal character in FORMAT Irrecoverable error;
statement. program must be

- mpiled.

b) Format repetition factor of recompiled

zero.
¢) FORMAT statement defines

more character positions

than possible for device.
d) List items remain and no con-

version items are accessible

in FORMAT statement.

04 Illegal character in fixed field Verify data.

input item or number not right-
justified in field.
05 A number has an illegal form Verify data.

{e.g., two Es, two decimal
points, two signs, etc.).

H-3






APPENDIX |
HP CHARACTER SET FOR COMPUTER SYSTEMS

Effect of Control key * L
TN

|«— 0000378 —» 040-0778 —>|<—1oo-1378—>|<—14o-177e—>|
0 0 1

b7b6b5: o, | O, v | 1y 0y ‘o, 1o ",
BITS COLUMN
N 0 1 2 3 4 5 6 7
by by by by| ROW ¢
olo|o|o 0 NUL | DLE sp 0 @ P ‘ p
ololo]1 1 SOH | DC1 ! 1 A Q a q
ojo{1{0 2 STX DC2 " 2 8 R b r
olo|1]1 3 ETX DC3 # 3 c S c s
ol1|ofo 4 EOT DC4 $ 4 D T d t
o[1/0{1 5 ENQ | NAK % 5 E U e u
o{1/1]o0 6 ACK | SYN & 6 F v f v
o{1[1]1 7 BEL ETB ' 7 G w g w
1]olo]o 8 8sS CAN { 8 H X h x
11o[0]1 9 HT EM ) 9 I Y i y
1]of[1]0 10 LF suB . J z i z
1]of111 1 vT ESC + ; K [ k {
1/1]0l0 12 FF FS , < L \ | !
1{110]1 13 CR GS — = M ] m }
1(1{1]0 14 e} RS . > N A n ~
1l 15 sl uUs / ? 0 _ o DEL
N——
32 CONTROL ,
e,
-—— 64 CHARACTER SET ——|
<—— 96 CHARACTER SET >
- 128 CHARACTER SET >

EXAMPLE: The representation for the character “K’* (column 4, row 11) is.

b7 bg bg bg by by by
BINARY 1 0 0 1 0 1 1

OCTAL 1 1 3

* Depressing the Control key while typing an upper case letter produces
the corresponding control code on most terminals. For example,
Control-H is a backspace.

9206- 1A



¢inoany #1818Q u 13a 121000 00v2L0 12}

HEW UoHsSanD ¢ £40000 00vLE0 £9 J0IR1BGBS hun % SN 2£0000 00vZ10 >

uey] JBleas - 9,0000 000/£0 29 Jolesedag pPI0Oay Sy SH 9£0000 000 40 ot

sienb3 = G20000 00v3£0 19 Jolesedag dnoig S 33} S£0000 00v910 62

UBy] ssa87 . v/0000 0009€0 09 jolesedas 94 Sy S4 $£0000 000910 82

Slel[ejelIVEIN . £.0000 00PSEQ 6G ,9deas3 5 2S3 ££0000 00¥S10 22

uojo) : 2,0000 0005€0 8S aInlisgng & ans 2€£0000 000610 92

6 120000 00vren 15 WNIPaW jO pu3 y W E! 1£0000 00ry10 o1

8 0£0000 000v€0 95 3oue) N NYO 0€0000 000710 vZ

l 190000 00vEE0 GG A20|g UOISSIWSUE.] O PuU] 5 8.3 220000 00vEL0 €2

9 990000 000££0 vs a)p1 SNOUDIYOUAS * NAS 920000 000EL0 4

siaquinN ‘s S S90000 00v2e0 £S abpamoundy annebay N MYN 520000 ooveiLo 14

v v90000 0002€£0 25 (3dvl) v 104607 82InaQ " v0a 20000 000210 0z

€ £90000 00r1£0 1S (440-%) € 10107 821raQ fq £00 £20000 0ov1 10 6l

2z 290000 0001€0 0S (3dv1) g 1011800 821mag % 2oa 220000 000110 81

L 190000 00r0£0 6y (NO-X) 1 104u00) 931r8Q a 100 120000 00v010 L)

0 090000 0000€£0 8y adeos3 sun eleq b Eplel 020000 000010 9l

weis ‘useig / 150000 00v220 Ly 135 Jaioeiey) ul g 'g 1S £10000 00r200 Gl

1uI0d {ewIdaq ‘pousd ) 950000 000420 9y aleusally N0 YIS % oS 910000 000400 4
useq 'souy ‘uaudAn - SG0000 00v320 Sy wniey abeiien E S1e) 510000 00v300 €1

BlIIP8Y) "BwIwO) ¢ ¥S0000 000920 142 P8a4 wio4 4 45 10000 000900 zi

snid + £50000 00r520 (514 uolieINGE L [BIIBA N A £10000 00500 1l

JBIS 'MSuBISY . 250000 000520 2y pas4 aun i Enl 210000 000500 ot

sisauluaied (Buiso) by ( 150000 00vr20 Ly ucHEeINge | [BIuOZIIOH 4 1H 1 10000 00v %00 6
sisayuaed (Buwsdo) ya ) 050000 000v20 0] 9oedsxoeg 5% Sg 010000 000v00 8
822y 3NJY ‘dudolisody , £v0000 00v€20 6€ jeubig uolually 1189 U 139 200000 00¥€00 L
ubis puy ‘puesiaduwy ki 9¥0000 000€20 8g aBpaimousay i< MOV 900000 000€00 9
W3218d % S¥0000 00v2eo i€ Ainbug 9 ON3 500000 00200 S

ubig seyog g v¥0000 000220 9g UOISSIWSURIY {0 Pu3 5 103 700000 000200 4

ubis punog 'ubig JaquinN #* £r0000 00r120 se X8 0 pu3 5 X13 £00000 00v 100 €
WEW uoneiony “ 2r0000 000120 ve 1¥3] |0 Lelg % X18 200000 000100 2z
luiog UONEWR)oX3 | 1 %0000 00v020 £e BuipesH 0 LeIg = HOS 100000 00r000 !

uelg ‘soeds Qr0000 000020 2€ 1N N 0N 000000 000000 0

a1Agybiy | aAg 18| anjea a1Ag 1ybry | a1Ag Ha7 anjeA
Buiueapy 191084R4D) lewtsaq Bujues|p Fu_zn_m._mu JIUCWBUY lewi2aq

san(eA €190

SaN|eA (8190

S$8p09 JaloRIRYD Bt 9z | ubnoiul Oy Saniea 1BID0 By SBPOD 1041U0D ik /| pue ¢£ YyBnosyl o s8nes 18100 ay |

( ey siyl ul 0487 aie s Alued ayl) Z0GOV0O uialied 1Bj20 ayl saonpoid gy

aidwexa

104 S8NjeA OMI 3y PPR ‘DJOM BUIBS 3] U $I910BIBYD OM) O UIBIRd 8Ul PUIj O 0i3Z 8B S)IG aul j0 158J 8y} pue (81Ag Wbu) g o
010 (314Q J3l) | 01 g SIG SAIANIO0 J310BIBYD BY} USYM PIOM UG G| B U SuIdjIed |BID0 3yl MOyS Suwniod 8iAq 1ybu pue s sy

SW3ILSAS H3LNdWOD HOH L3S HILOVHVYHO AUV IOV -LLITMIH

82i1A8P INOA 104
|enuBW 341 IINSUOY) (JUO) UBIABUBPURDS JO 135 Bumesg aum '8|dwexd 10j) LBUYD Siyl Ul UMOUS 9S0Y1 WOI| SIRI0RIBYD SlBuIdle
8INsSQNs ABW $82IABP AWOS £/61-2€ £X SNY PUB (JIDSYSN) 8961-Y €X SNV 10 uoneluawdidw! S dH SMOYS 8|Qel SiyL

9206- 1B



19%081Q i§9) & Ol PaLAAUOD 8Q PINOM 8IBIQ Y3l 9yl 'aidwexd 404 ( v
ybnoiyy @) Ja1oeieYD 85ED Jaddn BuIPudsa1i00 Byl O) ( - yBnoiyl | ) SIOGWAS pPue $13113] 3SeD JamO) YIySAN SBDAJP BWIOS

MOLIE ¥OBQ pue AMOLE dN ayl SINISUNS $301ABP dWOS PBABIdSID 8ie BUIIBPUN PUB 13,2 au) AllBWION,
90eds 40 © @. © T . se pakeidsip aq Aew 3181aQ;

jeulwIa)
09z e uo ABdSIp BUl SIEBI0 . AQ PBMO(I0} OS3 BI0Wexa Jo4 20UaNDas 0UOD [B1D8dS B JO JaloeIRYD ISy Ayl S) 8deIsT,

80eds 10 ' @ se $8p02 (04uad |8 Aeidsip S8omap awos Paioubl o ‘paIndexa ‘pakeidsip
S1 9pOD |0AUOD Y} i BUILIBIBD WBISAS INOA Ul BIBMPIBY DUB 3/BM|OS By [ uoneluasaidas Aejdsip pJBPURIS 8yl St SIuL,  SBION
. »MOLY ®OBEG BuliBpUN - LE1000 00v.S0 G6
§UIIBAD 'PIN | ~ 9£1000 00040 9zt »MOJIy dN X8jwNonY 18ie) L v 9£ 1000 000450 v6
s80r1g (BUISOID) WBIY { 521000 00v9.0 sel 19oeig (Buisod) by [ SE1000 00v950 £6
LUl (22IAA . v£1000 0009.0 ! IUBIS 8S19A8Y yseIs®Ieg AN vEL000 000950 26
s90eg (Buwado) yan } ££1000 00v5.0 ecl 19%0e1g (Buiuado) ya7 ] £€1000 00v5S0 16
z 241000 000520 22 z 2£1000 000550 06
A 121000 00vvL0 ¥4 A LE1000 00ppS0 68
x 021000 000v20 o2t X 0E1000 000vS0 28
M 291000 00vEL0 611 M 221000 00pES0 /8
A 9391000 000£.0 gLt A 921000 000£S0 98
n 591000 00v2L0 FANS n 521000 00250 S8
) ¥91000 00020 91l L v21000 000250 v8
s £91000 00v120 Sl S £21000 00v 150 £8
i 291000 000120 vit 2] 221000 0001t S0 28
b 191000 00v0.0 gt o} 121000 00r0S0 18
d 091000 000020 2l d 021000 000050 08
o 251000 00vZ90 LLt sion07 e1den l¢] 211000 00vL¥0 6/
$5131197 ase) 1am0o7 u 951000 000290 Ot 1sqeudiy ase) saddn N 911000 00040 8.
w 551000 007990 601 W 511000 00v9r0 i
[ ¥51000 000990 801 hl v1 1000 0009%0 9.
bl £51000 00r590 201 bl £1 1000 00rSY0 S
I 251000 000590 901 r 211000 000570 ve
I 151000 00v%90 o] i 111000 00p PO €L
y 051000 000r90 vol H 011000 000p¥0 2L
6 /71000 00r£90 €01 9 201000 00vEPO 1L
} 9v 1000 000E90 204 4 901000 000EP0 0L
] S¥ 1000 00v290 101 3 501000 00p290 69
p vy 1000 000290 001 a v0 1000 000270 89
2 £v1000 00r 190 66 0 £01000 00PLY0 .9
q 2v 1000 000190 86 8 201000 000170 99
e Ly 1000 00090 .6 v 101000 00r0v0 S9
1U80dY BRI N 0v 1000 000090 96 Iy je1218wWwo) O] 001000 0000r0 v9
a1Ag 1ybly | a3Ag 380 anjep 31Ag Wby | a1Ag 7 anjep
Buluespy Jayoeieyd lew12ag Busueay Jajoeseyd |eun2aq
san(eA {8190 sanjeA @120

9206- 1C



RTE SPECIAL CHARACTERS

Mnemonic QOctal Value
SOH (Control A) 1
EM (Control Y) 31
BS (Control H) 10
EOT (Control D) 4

9206-1D

Use

Backspace (TTY)
Backspace (2600)

Backspace (TTY, 2615, 2640, 2644,
2645)

End-of-file (TTY 2615, 2640, 2644,
2645)



APPENDIX J
RTE FORTRAN IV OPERATIONS

INTRODUCTION

This Appendix contains information pertinent to RTE FORTRAN IV operations in
an RTE operating system. This information explains the on-line loading of the
compiler; the capabilities and invocation procedures of the compiler; and
possible error messages to the operator that may arise during compiler
operations.

RTE FORTRAN IV is a problem-oriented programming languade that is translated
by a compiler into relocatable object code. Source programs are accepted
from either an input device or an FMGR file. Error messages, list output,
and relocatable object code are stored in FMGR files nr output to devices.
The object code produced by the compiler can be loaded by the RTE Relocating
Loader and then executed using the RU command. When an RTE FORTRAN IV
program has been completely debugged, the RTE Relocating Loader can make it
a permanent part of the RTE system if desired.

The RTE FORTRAN IV compiler is a segmented program that executes in the back-
ground under control of RTE-IV. It consists of a main program and overlay
segments, and normally resides in the protected area of the disc which has
been reserved for such programs during the generation process.

LOADING THE RTE FORTRAN-IV COMPILER ON-LINE

The compiler can be loaded on-line using the RTE-IV Relocating Loader. The
page size of the program should be increased to give the compiler room for
its symbol table. The minimum recommended size is thirteen pages, with
fourteen or more preferred. The following example presents a typical RTE-IV
on-line load of the RTE FORTRAN-IV compiler. %CLIB need be searched only if
it is not in the system library or if it contains modules that should be used
instead of system library modules.

:RU, LOADR
/LOADR: SZ,14
/LOADR: RE, $FTN4 *main
/LOADR: RE, $FFTN4 *helper module
/LOADR: SE,%CLIB *search compiler library
/LOADR: RE, $0FTN4 *first segment
/LOADR: SE, %CLIB
/LOADR: RE, $1FTN4 *second segment
/LOADR: SE, %CLIB
/LOADR: RE, $2FTN4 *third segment

continue similarly for all segments(c“s)

/LOADR: SE, %CLIB *last search of library
/LOADR: EN *end LOADR operations



The following example presents a typical on-line load of the FORTRAN-IV
compiler for an RTE-II or RTE-III system.

:LG,10

: MR, %3FTN4
:MR, $FFTN4
:MR, %0FTN4
:MR, %$1FTN4
:MR, %$2FTN4

continue similarly for all segments

:RU,LOADR, 99,6, ,1

FORMAT OF AN RTE FORTRAN IV PROGRAM

Several statements pertinent to the RTE implementation of FORTRAN are
described in the following pages. These statements define compiler options
and give other information necessary for the compiler's operation.

Fortran Control Statement

PURPOSE: To describe the output to be produced by the RTE FORTRAN IV
compiler.

FORMAT :

P17 Pg

FTN4,pl,p2,p3,p4,p5,p6,p7,p8,p9

are optional parameters, in any order, chosen from the
parameters in Table J-1.
TABLE J-1 RTE FORTRAN IV OPERATIONS

Parameter

Meaning

L

List output. A listing of the source language program is
output to the list namr as the source program is read.

Assembly listing. A listing of the object program in assembly
language is output to the list namr.

Symbol table listing. A listing of the symbol table for each
main or subprogram is output to the list device. If a U follows
the address of a variable, that variable is undefined. An A or
M specification also produces a symbol table listing.

Mixed listing. A listing of both the source and object program
is produced. Each source line is included with the object code
it generated in the compilation process. This listing is pro-
duced during both the source code and the intermediate code in
order for this parameter to be used. If both M and A are speci-
fied, M is used. Source code lines are passed to the inter-
pass file as they are encountered. This means that in the mixed
listing, object code will not necessarily immediately follow
the source code that produced it (see the sample listing in
Appendix F).

Cross reference symbol table listing. A cross reference listing
of symbols and labels used in the source program is produced.

-




TABLE J-1 (cont.) RTE FORTRAN IV OPERATIONS

Parameter

Meaning

F

Perform page eject. Usually, terminal driver software
will replace a page eject function code with two line
space function codes to keep text displayed on a CRT
terminal screen. If you are using another type of
terminal (such as a teleprinter), you may specify F to
perform a normal page eject. If the output namr is a
line printer, this parameter is ignored and normal page
ejects are done.

Compile debug lines. The character D specified in column
position 1 of a source program line will cause such a
line to be treated as a comment by the compiler. To cause
compilation of these lines, specify D as a control state-
ment parameter.

Error routine n supplied. n is a decimal digit (1-9) which
specifies an error routine, ERRn. The error routine is
called when an error occurs in the ALOG, SQRT, .RTOT,SIN,
COS,.RTOI,EXP,.ITOI, or TAN. "The ERRn routine must be
written in Assembler. The calling sequence for ERRn must
be the same as ERRO, as listed in the DOS/RTE Relocatable
Library Reference Manual (24998-90001)." If this option
does not appear, the standard library error routine, ERRO
is used.

This option is ignored. See the FORTRAN invocation command
sequence for information about producing binary output
files.

Double precision is three words (default).

Double precision is four words. The default setting may be
changed to four words at generation time.

Includes the approximate relocatable address of each state-
ment on a listing. Each line of the listing becomes 6
characters longer. If the Q option is specified, the L
option is implied.

RTE FORTRAN IV PROGRAM STATEMENT

The program statement is a source code statement defining the name and
optionally the type, priority, and time values of the module in which it

appears.

The program statement must be the first non-comment statement in a module
without the extended memory area (EMA). In a module with EMA, the EMA

directive must be the first non-comment statement, and the program statement

must be the second non-comment statement.

In the absence of a PROGRAM statement, the program name defaults to FTIN., and

the type, priority, and time parameters default as specified below.

J-3




FORMAT:

COMMENTS:

PROGRAM name, (type,pri,res,mult,hr,min,sec,msec)

where:

name is the name of the program (and its entry point).

type 1is the program type (set to 3 for main program, or 7

fo

SNSoubh W O

[00]

r

subroutines, if not given).

system program

memory-resident

real-time disc-resident

background disc-resident

background disc-resident without Table Area II access
segment

illegal

library, utility subroutines (appended to calling
program)

if program is a main, it is deleted from the system

-Qr-—-

if program is a subroutine, then it is used to satisfy
any external references during generation. However, it
is not loaded in the relocatable library area of the
disc.

NOTE: In some cases the primary type code (i.e. types 1 through
8) may be expanded by adding 8,16, or 24 to the number.
These expanded types allow features such as access to
real-time COMMON by background programs, and access to

SSGA.
pri is the priority (1-32767, set to 99 if not given)
res is the resolution code
mult is the execution multiple
hr is hours
min is minutes
sec is seconds
msec 1is tens of milliseconds

The parameters type through msec must appear in the order shown.
Even though the parameters are optional, if any one parameter is
given, those preceding it must appear also. For example:

PROGRAM name(,90)



COMMENTS:
(cont.)

is illegal and will be rejected by the system. The only method of
legally defaulting the parameters is shown below:

PROGRAM name
PROGRAM name (3,90)

All parameters are set to 0 if not specified with the following
two exceptions:

a. The priority parameter pri is set to 99, the lowest priority
recognized by FORTRAN.
b. The program type parameter type is set to 3 for a main pro-

gram, or 7 for a subroutine.

RTE FORTRAN IV can also pass a comment line to the loader, via
binary record. The following format should be used:

PROGRAM name (pl,... ,p8),comment
or:
PROGRAM name,p ,p ,... ,P ,comment
1l 2 8
where:

name and pl—p8 are as defined above

comment = a comment line to be passed to the loader. All
characters after the comma (,) including blanks
are passed. The comment is limited to 84
characters in length.

In the first format shown above, one or more of the parameters
may be omitted while still retaining the comment. In the second
format, all parameters must be accounted for at least by the
presence of a comma. Data after the program name is optional.

COMPILER INVOCATION

PURPOSE:

To schedule the RTE FORTRAN IV compiler.

FORMAT:

*ON . . .
*RU ,FTN4, source input[,list output|,binary output
RO [,1ine count[,options]]]]

source input Name of an FMGR file or a logical unit number
of the device containing the FORTRAN source code;
this entry must conform to the format required
by the FMGR namr parameter.

J-5



source input
(cont.)

list output

binary output

If an interactive device is specified, FTN4 will
print a right bracket (]) on the device as a
prompt. It will then accept input a line at a
time and issue another prompt until an END
statement is entered.

Choose one of the following:

- (minus symbol)
FMGR file name
logical unit number
null (omitted)

If the minus symbol is specified, and the source
file name begins with an ampersand, the ampersand
is replaced with an apostrophe and the remaining
source file name characters are used for the list
file name. The list file is forced to reside on
the same cartridge (cartridge reference code) as
the source file. For example:

&FIL1 source file name
'FIL1 list file name

If an FMGR file name is specified, it must con-
form to the format required by the FMGR namr
parameter. The list file is created if it does
not exist. If the file does exist, the first
character in the file name must be an apostrophe;
otherwise, an error results.

If a logical unit number is specified, the listed
output is directed to that logical device.

If this parameter is omitted, the user's terminal
is assumed. Further, if subsequent parameters
are specified, the comma must be used as a
parameter placeholder.

Choose one of the following:

- (minus symbol)
FMGR file name
logical unit number
null (omitted)

If the minus symbol is specified, and the source
file name begins with an ampersand, the ampersand
is replaced with a percent symbol and the remain-
ing source file name characters are used for the
binary file name. This binary file is forced to
reside on the same cartridge (cartridge reference
code) as the source file. For example:

&FIL1 source file name
$FILL1 binary file name



binary output
(cont.)

line count

options

EXAMPLES:

*RU,FTN4,&PROGA, -, -

If an FMGR file name is specified, it must con-
form to the format required by the FMGR namr
parameter. The binary file is created if it does
not exist. If the file exists, it is necessary
that:

a. the first character of the file's name be
a percent sign (%).

b. the existing file be of the type specified
in the namr parameter (if the file type is
not declared in namr, the file's type must
be Type 5, relocatable binary).

If the above conditions are not met, a compiler
error will result.

If a logical unit number is specified, the binary
output is directed to that logical device.

If this parameter is omitted, no binary relocat-~
able code is generated. Further, if the subse-
quent parameter is specified, the comma must be
used as a parameter placeholder.

A decimal number which defines the number of
lines per page for the list device.

Specification of this parameter is optional. If
it is omitted, 56 lines per page are assumed. If
a number less than 10 is specified, the compiler
treats it as effectively infinite. The line count
must be in the range 10 < line count < 999,

Up to seven characters that select control
function options. No commas are allowed within
the option string. These characters are: A, C,

D, F, L, M, T and Q. If specified, these options
replace (override) the character options declared
in the FTN4 control statement (see Appendix B).
These options do not override the FTN4 control
statement numeric options.

Characters other than the above are ignored, except

that any option specified in this parameter position

negates all character options declared in the FTN4

control statement.

NOTE: The X and Y options are intentionally omitted,
as they have no meaning in this option list.

Schedules RTE FTN4 to compile source file &PROGA. Listed output is
directed to list file “PROGA and binary relocatable code is directed
to binary file %PROGA. The number of lines per list file page defaults

to 56.



:RU,FTN4,&FIL1l, "LIST

Schedules RTE FTN4 to compile source file &FIL1l. Listed output is
directed to list file “LIST. No binary relocatable code is generated.
The number of lines per list file page defaults to 56.

:RU,FTN4, &ABCD

Schedules RTE FTN4 to compile source file &ABCD. Listed output defaults
to the user's terminal. No binary relocatable code is generated. The
number of lines per list file page defaults to 56.

:RU,FTN4,&AAAA,~,~,28

Schedules RTE FTN4 to compile source file &AAAA. Listed output is
directed to list file “AAAA. Binary relocatable code is directed to
binary file %AAAA. The number of lines per list file page is 28.

:RU,FTN4,&SFIL,-,~, ,MTD

Schedules RTE FTN4 to compile source file &SFIL. Listed output is
directed to list file “SFIL. Binary relocatable code is directed to
binary file %SFIL. The number of lines per list file page defaults
to 56. A mixed listing and a symbol table will be produced, and
debug lines will be compiled.

:RU,FTN4,&SFIL,-,~, X

This command string results in the same action as the previous example,
except that only errors will be listed and debug lines will not be
compiled. The character X in the options parameter position is ignored,
but it does negate any character options that may have been declared
in program's FTN4 control statement.

RTE-M OPERATING SYSTEM

RTE FORTRAN IV invocation command syntax for RTE-M:

*ON
,FTN4 [,fi,le,nm} [,line count]
*RU
or,
*ON
,FTN4 [,lu number} [,,,line count]
*RU



fi,le,nm The name of a file containing the input, output, and list
file responses for the compiler. This file name is specified
as parameters 1, 2, and 3 with two file name characters per
parameter. If these parameters are omitted, the file
responses are assumed to be from the session console.

line count A decimal number which defines the number of lines per page
for the list file. This entry is specified as parameter 4. In
the alternate syntax shown above, the three leading commas
are required as parameter position placeholders. If this
parameter is omitted, 56 lines per page are assumed. The line
count must be in the range 10 < line count < 999.

lu number The logical unit number of a device from which the input,
output, and list file responses to the compiler will be
entered. This value is specified as parameter 1. If this
parameter is omitted, the file responses are assumed to be
from the session console.

When the RTE FORTRAN IV compiler is executed, it expects to obtain the input,
output, and list file information from a named file, a logical device, or

(by default) from the session console depending on the parameters passed

in the invocation command. If these file responses are expected from the
session console (or other keyboard/display device), the compiler will display
separate requests in the form:

INPUT
OUTPUT
LIST

WU W

Enter a FMGR namr in response to each request. Parameters beyond the cartridge
reference number are ignored.

EXAMPLES:

*RU, FTN4

Schedules RTE FTN4 to compile a program for which the input, output,
and list file names will be entered from the session console. The list
file will be formatted to 56 lines per page.

*ON,FTN4,7,,,28

Schedules RTE FTN4 to compile a program for which the input, output,
and list file names will be entered from the device associated with
logical unit number 7. List file output will be formatted with 28
lines per page. The commas appearing between the logical unit number
and the list file line count are placeholders for null parameters.



EXAMPLES: (Cont.)
*RU,FTN4,RE,SP,NS

Schedules RTE FTN4 to compile a program for which the input, output,
and list file names will be obtained from a file named RESPNS. The
list file will be formatted with 56 lines per page.

MESSAGES TO OPERATOR

More than one source tape can be compiled into one FORTRAN program by leaving
off the SEND statement on all but the last source tape. When the end of each
source tape is encountered (end of tape or EOT condition), RTE driver DVROO
can interpret it in two ways. An EOT can set the tape reader down (make it
inactive), or not set it down. The action depends on how DVROO subchannels
were configured during generation. In any case, an EOT does not suspend the
FORTRAN compiler. Therefore, it is recommended that when compiling multiple
tapes, DVROO be configured to set the tape reader down on EOT (see the LU
command) . For more information, refer to the DVROO manual (29029-35001).

If an end of tape causes the tape reader to be set down, the RTE system will
output a message to the operator:

I/OET L 1lu E egt S sub

The operator must place the next source tape into the tape reader and set
the tape reader up with the UP command.

UP, eqt
where egt is the number reported in the above message.

If an EQT does not cause the tape reader to be set down, the RTE system does
not output ant message and the compiler is not suspended.

RTE FORTRAN IV MESSAGES

At the end of the compilation (when the compiler detects the $END statement),
the following message is printed:

SEND FTN4: nn DISASTRS nn ERRORS nn WARNINGS

where "nn" will be the number of occurrences of each problem type or "NO" if
there are no occurrences of a particular type.

All error messages are output to the list output file or device unless
there is an error in the list output specification itself. There are two
possibilities:



If the operator incorrectly specified the list destination. The following
message will appear on the log list device:

/FTN4: ACCESS FAILED ON LIST

If the operator incorrectly specified both the source input and list output
parameters, the following message will appear on the log list device:

/FTN4: ACCESS FAILED ON LIST AND SOURCE

EXAMPLE RTE FORTRAN IV PROGRAM

FTN4,L,T
PROGRAM PROGA, 3,90
WRITE (1,100)

100  FORMAT(1X,"HELLO")
END
ENDS

If the above source code were stored into a FMGR file name &PROGA, it could
be compiled with the following command (among others):

*RU,FTN4,&PROGA, 6, $PROGA
This command would compile the source code in file &PROGA. Error messages, a
program listing, and a symbol table listing would be output to logical unit

6 since L and T were specified in the control statement of the source
program. The relocatable object code would be stored in the FMGR file %PROGA.

SPECIAL USAGE NOTE

In the event that a FORTRAN source file is compiled under a RTE Operating
System (e.g. RTE-IVB) that supports the four-word (Y) compiler option for
double precision data, transportation of the relocatable file to a HP 2100

with FFP for execution is not allowed unless the software versions of .DFER
and .XFER are loaded.






INDEX

Actual argument...... e eaan ..6-7,9-5
¥ T T I ol K e 3 o cee3-1
Alphanumeric character...........1-2
ANSI FORTRAN IV..:eeeeecascsnn e..D-2
Argument, actual..... ceeseses®=7,9-5
Argument, dUMMY.....coeeeseeccee- 9-5
Arithmetic assignment
statement......ceeceetacnneasad-1
Arithmetic element....cccevieucns 3-1
Arithmetic expression......... ee.3-1
Arithmetic IF........ ctecesaseann 6-5
Arithmetic operator....c.ceoueseunn 3-1
AYYaAY.eeseosossasanses ceeeeaa.2=12,8-1
Array declarator..... cenaens ceeasad-1
Array element........ B . V)
Assignment statement,
arithmetic......... ceeanen eeessb-1
Assignment statement, logical....5-3
ASSIGN TO.ceevneesasonesnes ceecsaa.5-4
Assigned GO TO....... e esesesnana 6-3

A-Type CONversSiON....vsseesasasa8=21

B

BACKSPACE .« e nasescacnansascannans
Blank character....cececesaccanss
Blank COMMON. 4 cusaanasaacaananaanad=h
Block data subprogram.......9-20,9-5
BLOCK DATA statement............9-20

C

CALL teveccevonsssssssssosscsossasesbd=?
CARRIAGE CONTROL.ccsesseosesssss8=29
Character, alphanumeriC...s.ee.e.l=
Character, blanK..:seceeeecsseassal~
Character, special.cececeeseceessl-
Character Seteciececesscocesel=2,I-
Comment lin€...cieeecerssaceccneaal=
a4-
4-
4-
4-

7-8
1-2

COMMON, blanKe.eseeceoooseceocosons
ICOMMON /EMA .. cececscaccsasanasass
COMMON, labeled....ecceeaesccacas
COMMON, named...sceeesssccacesoss
Compiler diagnosticS.ceeeececass G-l
Compiler environmMent....ceee.eeeXiv
Compiler PUYPOSE.sessasessessasXiil
Compiler SYyNOPSiS.sceecssessesss.Xiii
Complex constant...ceesecesacaees2=7

VLU LLWE WNDIND

. Descriptor, field....seeeeneennns 8~

Complex conversion..............8-17
Complex data format.............. A-5
Computed GO TO..cvieuewne. cesaaassssbd
Constant, compleX...ceeeoeecececsel™
Constant, double precision.......2
Constant, Hollerith..... ceceaaana 2-
Constant, integer....... vee..2-4,2-9
Constant, logical.......ve0200...2-8
Constant, octal........ cheeeeas.a2-10
Constant, real......cceevee..2=-5,2-7
CONTINUE......cc0... P
Continuation line.....ceseeeeaa..1-4
Control statement, FORTRAN.......J-2
Control variable.....ciese..6-12,7-2
Conversion, A-Type€....eesesea....8-21

Conversion, compleX...ceeeeeeens 8-17
Conversion, D-TyPE..ceeeesscacas 8-16
Conversion, E-Type...... ceeeenan 8-10
Conversion, F=TypPeiceeeaceaaceas 8-12
Conversion, G-TYPE€..eeeeseeacens 8-14
Conversion, I-TypP€e.cseesoss ee...8-6
Conversion, K-Type..... ceeenaene 8-19
Conversion, L=TypP€.s.ssessecesss.8-18
Conversion, O-TyYPEs.escecooaanns 8-19
Conversion, R-TyP€...ceeeeeeas..8-23
Conversion, X-TypP€.c.eceeeeasans 8-27

Conversion, G=TyYPCesescssasces.s8=19
Cross Reference Symbol Table.....E-1

Data 1tem....cveiveveenreeonsseaasl=9

Data item delimiter......eecee...7-9
Debug line..... cesseesaaannn .1-4,3-
DeclaratOY, ArraY.:e.seeessessess 4~
Delimiter, data item......... R e

Diagnostic error messages....G-1,H-
DigitS.eeeeaaesnn e £
DIMENSION. ..o e0sseccecsoccssssssssd
DISASTR, €YYOY.eeeeoeooossoasssasG
Division........ crsesecaacanne ees3

HE&ENDEHWWOWERELN

Double precision constant........ 2-6
Double precision data format
3-WOrd..eeeseeencan tececcaannn A-3
4-word. . viveetiinnesseacesaaase A4
Dummy argument.....cevsesscenesessd=5
D-Type conversion.......... ee...8-16

INDEX=1



E

Editing, WHeue.veeeeeeveeeooeasaB8~25
Editing, "..o" tieiecccerceees.8-26
Element, arithmetiC..eceeeeeessa3-1
Element, array...cecceececceees.2-12
Element, logical....eeeseseese..3=5
EMA directive...veeeesenescoens.d=7
EMA statement.......ccc0eeeee.4d-11
END.vvieeeooncnnccnancsenss6-8,6-16
ENDFILE..coeveesssssccccncssscnas 7-8
End job statement, FORTRAN......B-1
End lin€.eieeveneveesnsennsenns.al-4
EQUIVALENCE. couveeosnsossosesasod=1l2
ERROR, COMPILER DIAGNOSTICS.....G-1
ERROR, OBJECT PROGRAM MESSAGES..H-1
E-Type conversioN....ceeseee...8=-10
Evaluating expressionS..........3-3
Executable program........see.0..1-1
Executing FIN4.....coereeeaconssassd=D
Exponentiation.....ceeeeeeeeecaaa3-1
Exponentiation of

arithmetic elements......c.0v...3~
EXPYreSSiON.eiiesceesessescsceesseeld™
Expression, arithmetic...........3-
Expression, logical...eceseeesess3-
Expression, relational...........3-
Expression, subscript...........2-1
Extended MemOry Ar€aA..ececcscecess
EXTERNAL...cccocecesacscasasosanse
External fileS....veeevssosecccns

F'

FaCtOr..u: tieeececeneacsnssannesald—2
Factor, scale....c.ceceeessesee..8-8
Field descriptor......cecceeee...8-3

HFNMNSNMODObASHEFW

\ls?sb

Field separator...... ceisesaenas 8-28
File definition...eeceeecenaa...xiii
Files, external......ccce.... eenaal-l

FORMAT. v+ vecvnnaeneeenasa8-2,1-5,7-1
Format specification.........8-1,7-3
Format, complex data......ece....BA-5
Format, double precision data....A-3
Format, Hollerith data...........A-6
Format, integer data.............A-1
Format, logical data....ceecee...r-6
Format, real dat@..eceeeceeceees A-2
Formatted READ....cavseseesse’l—4,8-1
Formatted records....ceeee...7-3,8-1
Formatted WRITE....v.000e00..7-5,8-1
FORTRAN control statement........J-2
FORTRAN end job statement........B-1
FORTRAN IV library function......9-7
FORTRAN IV job decK....eceeee....B-1
Free field input.........7-9,7-4,8-1

F-Type cOnversion.....cee.es....8=-12
FUNCtion. . ieeeeereeeceonneneeesaad=3
Function, statement.......eecee...9-6
Function subprogram.....9-12,9-3,1-1

G

GO TO, assigned.....ceveeseceeseabm
GO TO, computed....cceeereeeessss b~
GO TO, unconditional...e..eeeeessb—
G-Type conversioN......ceeeee...8-14

N B W

H

Hollerith constant.......eeee...

.2-9
Hollerith data format............BA-6

IF, arithmeticC...ceeeeeeeeceen..6=5
IF, logical...iveereceeenncense6=6
IMPLICIT statement....ee.cvee...4-16
Initial line.eececenneeesesenesal=d
Initial parameter..........6-12,7-2
Input/output list...........7=-2,8-1
Input/output unit....cceeeveeeeas7-1
Input, free field.......7-9,7-4,8-1
Integer constant............2-4,2-9
Integer data format...eeeeeees..d-1
Invocation of compiler..........J-
Item, dat@.cieessseocececconnsessl
I-Type CONVEerSiON.:ue:eeseseseasss B

[o) INORRT) |

J

Job deck, FORTRAN IV.¢ccceecoessaB=-1

K

K-Type conversioN....ceeceeeeee.8-19

L

Label, statement....ceeeeeeee-eel=5
Labeled common...... ceeraseceeaed=5
Letter..ieiieeeiencnssensnnnanaal=2
Library Function, FORTRAN IV....9-7
LinesS..ceeeeeeeecececsansanensessl=3
Line, comment....eeeeecoacececeel=3
Line, continuation.cceeveeeeces.l1-4
Line, debug..seeceeeeeces...1-4,3-2
Line, end....ececeeceesencecscesal=d
Line, initial.....c.eeeveeesoeeocl—4
Line, program........... ceseveeel=3

INDEX-2



List, DO-implied.csessccecsceases =
List, input/output.....ce...7-2,8-
List, Simple.cceceececssccsccccee lm
Loading FORTRAN-IV..eeeseeoesesod-
Logical assignment statement....5-
Logical constant.cesessoeaesoessl=
Logical data format...eeeeeeess A=
Logical element.ceeceacecessseesd—
Logical eXpression...ssseceeesess3-
Logical IF.eeesssssecssosncnsasssbdm
Logical operatoricsiseessscessees3
Logical uniteeeeeeeceoccesscannsdm
L-Type COnversiON.is.eceesssessese8-1

Magnetic tape unit.....sceceeee.7-8
Main prograMe...sccecesessessl—1,1-6
MeSSaAgeS.eceesesesscsssesscsaeeed~10
Mixed mode..ceenvevevsscaneeesod—ld

O LUV ODODWEHEDMDEDND

MultiplicationN.sesseeessseeseeee3d—1
N
Named COMMON........ cestesaassanssd=b
Name, SymboliC....cceeveee ee. 1-5,2-1
0
Octal constant...... secssssssssa2=lO
Operator, arithmetic....... ceacase 3-1
Operator, logical...ceecececacanss 3-4
Operator, relational.........cc.. 3-6
O-Type CONvVersSioNn....ececeececcees 8-19
P
Parameter, initial........ ..6=-12,7-2
Parameter, step-size........ 6-12,7-2
Parameter, terminal......... 6-12,7-2
Parentheses..........civeeunnn. 3-3
PAUSE . ¢ et ittt eerecnanranncnsens 6-11
Primary........cecu... e 3-1
Program, executable.............. 1-1
Program line..........ieceevneaenn 1-3
Program, main....... eer e ..1-1,1-6
PROGRAM statement............ 9-1,J-3
Program Unit......cu.eeeennennnnn. 1-2
R
READ, formatted...... ceseeesesl—4,8-1
READ, unformatted......ve¢...7-6,8-1
Real constant.....cecceee eee.2-5,2-7
Real data format.ceeceesecesenes A2
Record, formatted............7-3,8-1

Record terminator....cecceeecee..7-10
Record, unformatted...... eeesa?-3,8-1
Relational exXpressiON.c.ccecececse3=5
Relational Operator..veseesessese3=6
RELOCATABLE SUBROUTINES.....Xiv,9-11
Repeat specification....eceecee..8=5
RETURN. ¢t eeeesrreascscssocscnacss6=8
REWIND...eoeeesocesesosccocscsanss /=8
RTE special characters...... B
R-Type conversioN.....ceeceeeeeas 8-23

S

Scale factOr...e.viveersecvssescss.8-8
Separator, field........c¢¢0e....8-28
Simple 1ist..iieiiivecesnnneaseaal=2
Simple variable,..... B A 1 §
Special character..... ceecrcannas
Specification, format........8-1,
Specification, repeat...eeeeec...
Statement......... e
Statement function.....ecccveee.e
Statement label......ccceveee. .e1-5
Statement, terminal........ 6-12,6~9
Step-size parameter..
STOP. e eeeeeene ceceaterccccens 6-10
SUbPrOgrame . coeceeeas cesecenn 1-1,1-5
Subprogram, block data...... 9-20,9-5
Subprogram, function........
Subprogram, subroutine..........l-1
Subroutine........ccceeeees 9-4,9-17
Subroutine subprogram........ eo.1-1
Subscript....... ceeessecea.
Subscript expression.,..

1-3
7-3
8-5
1-5
9-6

Subscripted variable, 2-14
Subtraction........... .3-1
Symbolic names,.... ceeeecasesl=5,2-1
T
Tape unit, magnetic............. 7-8
PeYM.teoassscscesssacsssnccssnss 3-2
Terminal parameter.........6-12,7-2
Terminal statement,........ 6-12,6-9
Terminator, record,........ ee..7-10
Type-specification...... 4-3,2-2,2-11
U
Unconditional GO TO....... cesnan 6-2
Unformatted READ......ceeevecees 7-6
Unformatted records,...eeeeeeses/=3
Unformatted WRITE.. ..vcveaceassol=7

INDEX-3



Unit, input/output.............. 7-1
Unit, logical.......... ceeeeneeal-l
Unit, Program.....cceesaeacessss 1-2
Unlabeled COMMON, ....cveeeoccsees 4-5

vV

Variable, control..........6-12,7-2
Variable, simple........ce.....2711
Variable, subscripted..........2-14

WARNING, €@rrOr..ecceccaseasasaanas G-1
wH editing........ ceessecnssssa8-25
WRITE, formatted............7-5,8-1
Write, unformatted..........7-7,8-1

X

X-Type conversion..............8=27

. " editingiiiciiiiiieie e 8-26
@-Type conversion......cceeeees 8-19

INDEX-4



HEWLETT
[bﬁ] PACKARD

HEWLETT-PACKARD COMPANY
Data Systems Division
MANUAL PART NO. 92060-90023 11000 Wolfe Road

Printed in U.S.A. July 1980 Cupertino, California- 95014



