) oickanc

RTE—A PROGRAMMER
' &
SYSTEM MANAGER

VOLUME 1

STUDENT WORKBOOK

22999-90546 : | | FEB. 1984

<1
a

© Copyright. All rights reserved. No part of this work may be reproduced or copled in any form or by any means — graphic,

electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems — without written permis-
sion of Hewlett-Packard Company.

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

|

o

INTRODUCTION
TO RTE-A

CHAPTER 1

Table of

Chapter I: =~
INTRODUCTION TO RTE-A

What is an Operating System?

HP 1000 -- A Real-Time System
RTE Origins e o o & & s s
RTE-A System .]]]]
T HE COMMAND

Using the 2621 Terminal
Using the 2622 Terminal
CI BasiCsS « o o o o o o«
Running Programs
Command Stack . .
T HE F I LE

Files and Records
The Disc File . .
Directories . « « o«
Hierarchical Structure .

Program Files vs., Programs
PERIPHERAL DEV
Addressing Peripheral Devices
CDS -- Shareable Programs . .

CDSs -- Transparent Segmentatio
Spooling System (VC+) . « « &

LOGON Program . « « »
Logging Off .
HARDWAR
Block Diagram
Power-Up . . o o o
VCP -- Virtual Control Panel
VCP Commands =« o o ¢ o o o &

e
-3

e o e o
o o e o
e o o [N o
e o o 1o o o o o

E

T
M
I

o Qoo

o o H e o

R

e o [Z] o

OVE

e o o o o [Tle o o o

o o e ¢ ¢ e e Ne o o o o

TTe o o o

* [) [) [) * 'U. * L] *

1o o o o o e o o o o

e o T 0 0o 0o o o o

Contents

Ne ¢ o o o

TTe o o o

* L * [) * m. [) L] *

L * » L] L *

e o o o o Jeo o o o

Tle o o o

TTe o o o

* o o o o e o o o o ¢ o o o

[S S S W iy W Sy W
[
HFOoOWwWoOoO~JOOndwN -

T
I I I I I |
P

A W

MODULE OBJECTIVES

Learn the special aspects of a real-time computer system.

Know how to log on and use simple commands through the Command

-Interpreter.

Learn the relationship between directories, subdirectories and

Understand the additional features offered by the VC+

enhancement to the RTE-A operating system.

Be familar with the hardware components on the system.

ii

1-30

1-60

SELF-EVALUATION QUESTIONS

If you were given a "generic" computer system, what would you
look for to determine it's wusefulness as a real-time system?

Classify the following as either: (I) Hardware
(II) Operating System
(III) Utility Program

a. Pascal compiler

b. Load A-Register (machine instruction)

c. EDIT (text editor)

d. Terminal device driver

e. Time.base generator (generates 10ms interrupts)

" f. System clock ,

g. EXEC(9) (subroutine to schedule a program)
h. WH command

i. FmpOpen (file system subroutine)

j. Select code on an HP-IB I/0 card

What happens when you type in the following command:

CI> co myfile yourfile

followed by 4 backarrow (<==) keys and a carriage return?

What is the difference between:

CI> wh
and:
CI> ru wh

What is the effect of the following command?
C1> /////

When vyou type in your user name and password, the LOGON
program creates a session for you then runs a program that
was specified by the System Manager when he set up your
account (this is normally CI). What would happen if he had
specified WH as the program to run when you logged on?

Explain the three features of the spooling system. What are
the advantages to spooling?

What is the difference between an LU and a select code? How
can you find your terminal LU? ...your terminal select code?

iii

1-9, What is the size of physical memory in the system you're
~using? How does this differ from logical memory?

1-10., What is the ID segment list? How can you create more than

one ID segment for a program? Name two ways in which ID
- segments are purged.

iv

1.1 What is an Operating System?

Interface to users -- interactive users (terminals) and programs
are isolated from the 1low-level details of the hardware and 1/0
communication.

Controls resources -- the CPU, memory, and peripheral devices must
be shared by users and programs. The operating system enforces a
policy that determines who gets what, when and how much.

Interrupt handling -- the operating system must respond to
interrupts in a timely manner. Interrupts may be caused by a user
striking a key, a signal from a disc drive after completing an I/0
operation, a pressure sensor detecting a critical condition, etc.

File system -- the operating system provides a simple method for

accessing disc files and removes the user from the physical aspects
of the various disc devices,

Tl-1

What 1s an
Operating System?

TERMINALS PROGRAMS

EXTERNAL

INTERRUPTS OPERATING

SYSTEM

N
A4

CPU \ -
PERIPHERAL
MEMORY CEVICES

s:;r{l o=
(A
e

R1.1

1.2 HP 1000 -~ A Real-Time System

Interrupts -- External events interrupt the CPU. The operating
system handles the interrupt (e.g., 1ignore it, schedule a program,
execute a task immediately) before returning to the interrupted
program. The primary feature of a real-time system is the fast
response to these interrupts.

System clock -- Maintains the time of day and date. A time base
generator (TBG) generates an interrupt every 10 milliseconds from
which the system increments the clock. In a real-time system
programs may be scheduled to run at a specific time with reference
to the system clock.

Program queue -- Programs are run in order of priority. If the top
program must wait (e.g., for 1/0), other programs can run
concurrently. Programs with equal priority may take turns using
the CPU which is known as "time~slicing".

Multiple Users -- Each user interacts with a separate program.
These programs are typically time-sliced to give each user the
impression of having a personal computer.

HP /1000
A REAL—TIME SYSTEM

SYSTEM
CLOCK

INTERRUPTS

N

RTE—A

S

e

wh‘ h

priority

low
priority

PROGRAM QUEUE

R1.2

1.3 RTE Origins

RTE -- No file system
2 memory partitions
64 kb memory

RTE-B == BASIC command interpreter
RTE-C == Memory based RTE
RTE-II -- FMGR file system

I/0 spooling

Command files
RTE-III -- Multiple partitions
: Multiple users

2 mb memory
RTE-M -- Memory based

2 mb memory

RTE-1IV -- EMA
Class 1/0
-FORTRAN 1V
RTE-IVB -- Session monitor
Full screen editor
Pascal
RTE-6/VM -- VMA
MLS/LOC
Macro assembler

RTE-L -- Disc or memory based
Fast system generation
Fast I/0
64 kb memory
RTE-XL - -- Multi-tasking
512 kb memory
RTE-A.1 -- EMA
VMA
32 mb memory
RTE-A -= Command Interpreter
Hierarchical files
RTE-A/VC+ Code and data separation
Auto-segmentation
Mul ti-user sessions
Out-spooling

T1-3

RTE

ORIGINDS

||
VC+
RTE—A
RTE—A.1
RTE—6 / VM A-—series
RTE—-XL
RTEl—l\I/B RTE—L
RTE-lIV -
MEF—Series T L—series
RTE—M RTE-III
memory based systems
RTE-I
RTE—I-B RT|ETC
RTE

84

82

80

78

76

74

72

R1.3

1.4 RTE-A System

Operating system -- Manages resources such as memory, cpu, I/0
devices, etc. Utilizes time base generator to provide date, time,
and scheduling.

Device Handlers -- Provides an easy method for communicating with
different I/0 devices.

File system -- Provides convenient access to files on disc devices.

Cl -- Command interp:eter is the wuser 1level interface to the
facilities of the RTE-A operating systenm.

All other programs -- May share the hardware and operating system
facilities via access through RTE-A.

Ti-4

RTE—A SYSTEM

APPLICATION

OPERATING CI

SYSTEM

ASSEMBLER

1-4 ‘ Ri.4

T

H

E

COMMAND

INTERPRETER

T1l-5

‘The
Command
Interpreter

l.6 Using the 2621 Terminal

Command Entry:

RETURN -- All commands are terminated with this key.

BACK SPACE -- Used to correct commands before hitting RETURN,
Note: Do not use the left arrow key in place of the backspace key.

DEL -- Deletes the entire command entered so far.

Screen Editing:
ROLL SCREEN -- Scrolls thru display memory; cursor does not move.

MOVE CURSOR -- Moves cursor around screen display; cursor wraps
around.

HOME CURSOR -- Displays first page of display memory with cursor at
the top left,

CLEAR LINE -- Clears line from cursor to the right.
CLEAR DISPLAY -- Clears display memory from cursor position down.

INSERT/DELETE KEYS -- Used for editing characters and lines.

References: Terminal User's Manual
Tl-6

USING THE 2621 TERMINAL

DISPLAY
__— MEMORY
g

—

SCREEN
[""" pIsPrAY

.
N

— R1.8

[

1.7 Using the 2622 Terminal

Command Entry: |

RETURN -- All commands are terminated with this key.

BACK SPACE -- Used to correct commands before hitting RETURN,

Note: Do not wuse the left arrow key in place of the back space
key.

DEL -- Deletes the entire command entered so far.

Screen Editing:

ROLL SCREEN -- Scrolls thru display memory; cursor does not move.
MOVE CURSOR -- Moves cursor around screen display; cursor wraps
around,

HOME CURSOR -- Displays first Page of display memory with cursor at
the top left,

CLEAR LINE -- Clears line from cursor to the right.
CLEAR DISPLAY -- Clears display memory from cursor position down.

INSERT/DELETE KEYS -- Used for editing characters and lines.

References: Terminal User's Manual
T1-7

USING THE 2622 TERMINAL

DISPLAY
MEMORY

\ SCREEN
[L —"" DISPLAY

— VW " “l
Al '47::7;'5.'5
VNI AT 4 0

PR A
[5

330
)

b
‘.

3

%

S U

)

‘

‘

INS |DEL

DEL

_CTR RETURN
SHIFT | | sHiFT|

=

R1.6A

|
~

1.8 CI Basics

Commands can only be entered after the prompt. The command is
terminated with a carriage return,

Commands may be upper or 1lower case (all are converted to upper
case internally).

Delimiters may either be spaces or a comma (spaces are converted to
a comma internally).

References: User's Manual

-

CI BASICS

ClI>_
ClI> tm
Sun Jan 1, 1984 12:01:23 am

Cl> LI MyFile.txt

This sure is easy using Cl to
ist the contents of my file.

More...('A' to abort)

Cl> co,myfile.txt,MiscComments.txt
Copying MYFILE.TXT to MISCCOMMENTS.TXT... [ok]

CI> ?
help facility

1-8 R1.7

1.9 Running Programs
All of the examples shown are equivalent.

Implied Run -- If the command cannot be found, CI puts "RU" in
front of the command 1line and tries again. The "RU" is only
explicitely needed if the Program name matches that of a CI
command. In this case "print" is not a CI command so the "RU" is
not needed to run the PRINT program.

Program Parameters=--~ Any parameters following the program name are
passed to the program, in this case PRINT, to be dealt with by the
program. Sometimes parameters can be defaulted. In this case the

output device defaults to "6", and therefore does not need to be
specified.

References: User's Manual ‘
T1-9

RUNNING PROGRAMS
2

CI> ru print lab1.txt 6

Print job supervised by PRINT
CI> print lab1.txt 6
Print job supervised by PRINT
~ CI> print, lab1.txt
~ Print job supervised by PRIN1
CI> —

1-9 ‘ R1.8

l.10 Command Stack

Use cursor control and local edit keys to modify a command in the
stack. RETURN executes the command.

References: User's Manual
Tl-10

COMMAND STACK

- Cl> /

———Commands———

tm

LI MyFile.txt
co,myfile.txt,MiscCommentzs.txt
ru print lab1.txt 6

print lab1.txt 6

print,lab1.txt

1-10 R1.9

T

HE

FILE

SYSTEM

Tl-11

The File System

Q

1-11

1.12 Files and Records

(blank)

References: User's Manual
T1-12

|

FILES AND RECORDS

A file is a collection of related
pieces of information:

* names and addresses of all employess

+ a Pascal source program

* a binary memory image of a runnable program
A Record is an individual piece
of information in the file:

* the name and address of one employee

* a single Pascal statement

* a standard size "chunk'" of a memory—
image file (eg. 128 bytes)

RECORD 1 | RECORD 2 RECORD n EOF

. J

N
A file which might reside on disc or mag tape

1-12 R1.11

1.13 The Disc File

Disc file -- recorded on one or more tracks of the disc volume.
Records -- basic units of the disc file.

Directory -- a disc file with the following Special properties:
1. Found at a known location on the disc.

2, Contains the names and addresses of other files on the disc,

References: User's Manual
T1-13

THE DISC FILE

— DIRECTORY

1.14 Directories

Directories -- Are files that contain information about other files
such as file name, size, and its location on disc. Directories are
extendable; that is they can reference any number of files (limited
only by the space on the disc volume).

Directory Names -- May be found 1in one of two formats as shown
here. /user/ refers to the same directory as ::user and either may
be displayed by RTE-A in its messages.

DL command -- is used to list the contents of a directory. Note
that the command shown could also have been specified:

CI> dl ::users

References: User's Manual
T1-14

DIRECTORIES

+:USER

LAB1.TXT | LAB2.TXT | TEST.PAS

T

9

CI> dl /user/
directory ::USER
LAB1.TXT LAB2.TXT TEST.PAS

CI> __

1-14 R1.13

1.15 Hierarchical Structure

Global Directories -- are at the top of the hierarchy and are
referenced as /user/ or ::user

Sub-directories -~ may nest to any level and are referenced as
/user/tests/ and /user/tests/more/

Files -~ can be found at any 1level and are referenced as
/user/doc.txt and /user/tests/more/t8.ftn

ADVANTAGES

l. Files can be catagorized to any hierarchical level to keep the
number of files in each directory to a manageable number.

2. Unrelated files can be kept logically separate.

3. Disc space for files within a directory is allocated
dynamically from the space on a volume. Unused space can be
given to any directory that needs it. (In the previous FMGR
file system, each directory was given a fixed amount of disc
space that could not be used by any other directory.)

References: User's Manual
T1-~15

HIERARCHICAL
STRUCTURE

::USER

LABS TESTS DOC.TXT
Q e o _

N

\

Llr.m 27T | ... L]T;LPAS MORE | - . .
L

-) TB.FTN « o

1.16 Program Files vs. Programs

Skeleton ID Segment -- A byte-for-byte copy of the ID segment that
will be put into the system partition. It contains information
such as the program name, priority, segmentation information, and
space that will be used by the system to store temporary
information about the program. 1In addition, the skeleton 1ID
segment contains disc related information such as entry points and
checksums for the program file.

ID Segment Table -- Contains space for as many program's 1ID
segments as may be running concurrently. This number is determined
at system generation time. Each ID segment is used to keep track
of the current status and location of a program running in the
system.

RP Command -- (Restore program) Is used to create an ID segment for
the program file. Program names can be only five characters long.
The default program name is the first five characters of the
program file name. The 1ID segment remains until explicitly
removed.,

RU Command -- Begins execution of the program. If no 1ID segment
exists for the program, an implici P will be performed before
executing the program and the ID segment will be removed upon
termination.

References: User's Manual
: T1l-16

PROGRAM FILES
Vs.

PRO GRAMS

DISC MEMORY
PROGRAM _-(>J PROGRAM
FILE
SKEI.iEI'ON
SEGMENT E—
' MEMORY
w -
| RECORDS
OPERATING
SYSTEM
....J\\
~

L

— ¥
ID SEGMENT

\

TABLE

CI> rp program_ file name
CI> ru name

R1.15

1.17 PERIPHERAL DEVICES

T1l-17

PERIPHERAL
DEVICES

1.18 Addressing Peripheral Devices

Logical Unit Number -- Or "LU" tells the device drivers within
RTE-A with which interface card and device to communicate. The
actual LU of each device is specified during system generation.

Device Drivers -- Part of the operating system software that
contains the protocol required to communicate with a particular
device.

fTerminals -- Reference to LU l, whether interactively or

programmatically, always refers to the user's terminal. The actual
LU of the terminal may be found by use of the WH command.

Disc -- Each physical disc may be broken into separate logical LUs
of various sizes. Each disc LU is then treated as an independent
unit.

Printer -- Usually LU 6. Many wutilities that use the printer
default to LU 6.

Mag tape -- Usually LU 8. Cartridge tape drives (integral to CS/80
disc units) are usually LU 24,

References: User's Manual
T1-18

ADDRESSING
PERIPHERAL DEVICES

———USER PROGRAM-—

TO:
LOGICAL UNIT NUMBER

TERMINAL

.RTE—A
DEVICE DRIVERS

1-18 R1.17

1.19 LUs and Select Codes

LU -~ Logical Unit number. The user or program aiways refers to a
device by it's LU,

LU Table -- Translates the LU reference to a select code.

Select Code -- Is physically set on each I/0 board to assign it a
physical address., The I/0 board is connected directly to a device,

References: System Installation Manual, System Generation Manual
Tl-19

- LUs AND SELECT CODES

W\ @

| SELECT c»'bEIS

To DEVICE

1-19 . R1.19

1.20 VIRTUAL C ODE +

T1-20

- VIRTUAL CODE +

VC+

RTE-A

1.21 Multi-user Environment

User -- Each user is assigned a session. The session is maintained
through a system table to provide logical separation between users.

Super-user -- Is assigned a session also. The super-user has the
capability to create user accounts, modify system programs, set the
system «clock, initialize disc volumes, and override the file
protection of a general user.

References: User's Manual
T1-21

MULTI-USER
ENVIRONMENT (VC+)

USER

USER m
| M s

| -LOGON/PASSWORD
| -WORKING DIRECTORY

USER

| -DIRECTORY OWNERSHIP
| - FILE PROTECTION

NV

USER /
“ SUPER USER]l

1-21 : R1.20

USER

1l.22 CDS -- Shareable Programs V(+9~L\
CDS ~- Code and Data Separation.

Physical Memory -- Contains two logically separate data partitions
but only one copy of the program code.

Data Path -- Can be rapidly switched from one data partition to
another using a dynamic mapping system.

CPU -- The CPU "sees" only the data relevent to the current user of
the program.

Instruction Path -- Is the same for both users of the program.

References: User's Manual, System Design Manual
: T1-22

CDS (VC+)
SHAREABLE PROGRAMS

PHYSICAL
par ff{éﬁ:fw MEMORY
Chae pr \7&;, csde
DATA

DATA PATH PARTITION
/%7 (USER 2)
CPU 0
{EzzzIo > DATA
DATA PATH V| PARTITION
A (USER 1)

| CODE
INSTRUCTION PATI-> PARTITION

1-22 R1.21

1.23 CDS -- Transparent Segmentation

CDS -- code and data separation.

Physical Memory -- Contains logically dependent code segments.

Each segment contains one or more subprograms. Up to 128 code
segments allowed.

CPU -- The CPU "sees" just one code segment at a time which is
entirely within the 15-bit address space of the CPU.

Instruction Path -- Can be rapidly switched from one code segment
to another using a dynamic mapping system.

References: Link User's Manual, System Design Manual
T1-23

CDS

TRANSPARENT
SEGMENTATION
PHYSICAL
MEMORY
INSTRUCTION CODE
C:EAEH:::> SEGT}SAENT
|N3TP|1uTEI110N’&
CPU |22 S[—:CGOr\ZADEENT
% CODE
INSTRUCTION SEGMENT

PATH 1

1-23

R1.22

1.24 Spooling System (VC+)

Out-spooling -~ Data goes to a spooling file until released to
Printer (or other device).

LU Redirection -~ All data sent to an LU (device) is redirected to
another device.

Error-Logging -- logon, logoff and system~wide errors are sent to
an error log file,
BENEFITS

l. Provides an "unlimited" I/0 buffer so the program need not wait
for lengthy I/0.

2. Provides a user-independent way of sharing output devices.

3. Allows a program to complete I/O requests even if the I/0
device is busy.

4. Allows redirection of the output from a program without
changing the program itself.

5. Provides a log file to document user activity and system errors
that are normally listed on the system console.

References: User's Manual
T1-24

SPOOLING SYSTEM
(VC+)

Out—spooling

~ Error loggin?>8

1-24

1.25 LOGON Program

User Session -- Is created for each user that logs on. All
Programs run by the user are associated with the session. When all
Programs for the session terminate (including the user's logon
program) the session goes away.

Cl -- Is normally the Program that is run when the user logs on.
CI then issues the "CI>" prompt and executes commands issued by the
user. The EX command exits CI which may or may not be the last
Program associated with the session.

References: User's Manual
T1l-25

[

LOGGING ON (vc+)

Please log in: William/casper

ny

CREATE A
USER SESSION

J

RUN USER'S

LOGON PROGRAM '—j:>

TERMINATE
USER SESSION

J

Please log in:

1-25

CI

J, EX
COMMAND

R1.24

1.26 Logging Off

EX Command -~ This terminates ‘the CI program and 1it's associated
session. If there are any other active programs, the user has the
option to create a background session in which they can continue to
run. When the last program terminates, the background session will
go away.

T1-26

LOGGING OFF (VC+)

CI> ex
Your programs:
DLOG

PRINT co
Continue, Logoff, Background or ? [C]

C = CONTINUE, IGNORE EX COMMAND
L = LOG OFF, TERMINATE PROGRAMS

B = LOG OFF, CREATE A BACKGROUND
SESSION IN WHICH TO CONTINUE

THE ACTIVE PROGRAMS

? = GET ADDITIONAL HELP WITH
THIS COMMAND

CI> ex
FINISHED

1-26

R1.25

1.27 HARDWARE OVERVIEW

T1-27

HARDWARE
OVERVIEW

1-27

1l.28 Block Diagram

A600 - 1 processor board

1 memory controller with memory

0 to 4 additional memory boards (128 kb to 4 mb total)
A700 - 2 processor boards + 1 optional for floating point

1l memory controller

1l to 4 memory boards (128 kb to 4 mb total)
A900 - processor boards

3
1l memory controller board
1l to 8 memory boards (768 kb to 6 mb total)

I1/0 Boards -- Async serial interface
Async serial fiber optic interface
HP-IB interface
8 channel multiplexer
300/1200 baud modem
Data link slave interface
Data link master interface
DS HDLC interface
DSN/MRJE interface
DSN/X.25 interface
Analog 1/0
Digital 1/0
PROM storage
A700 Writable control store
A700 PROM control store
A900 control store
Integrated disc controller

T1-28

BLOCK DIAGRAM

PROCESSOR
BOARDS

-

N

N]

|/O CONTROL—

MEMORY
BOARDS

|

{\ DMA
——
—

*T— PER
CHANNEL

— 1/0
BOARD
1/0
BOARD
TERMINAL I
Q— . A
BOARD
PRINTER I
— 1/0
| BOARD
HP-IB
INSTRUMENT

1-28

R1.27

1.29 Power-Up

There are 2 selftests executed when the machine is powered up or
reset. The first is the microcoded selftest which tests the logic
on the processor and memory controller boards. The execution time
for this test 1is negligible. The second test is the assembly
language test residing in the VCP ROMs.

This test checks:

basic instruction set
several internal flags
all of memory (non-destructively if battery backup is used)

The execution time is less than 10 seconds.

Both test display pass/fail information on the LEDs which reside on
the frontplane or processor card.

The path taken after the selftests complete is determined by
switches on the frontplane or processor card.

References: System Installation Manual

[

T1-29

MICROCODE
SELFTEST

ASSEMBLY LANGUAGE
SELFTEST

V |
VCP BOOTSTRAP PROGRAM IN MEMORY
LOADERS (if battery backup)

1-29 R1.28

1.30 VCP -- Virtual Control Panel

MEMORY -- Amount of standard memory available.

ECA -- Amount of error-correcting memory available.

P -- Program counter register.

A, B -- A- and B-Register.

RW -- working map set used with dynamic mapping system.
M -- last memory location accessed.

T -- contents of location M.

References: System Installation Manual
T1-30

VCP
VIRTUAL CONTROL PANEL

PROCESSOR BOARD VCP TERMINAL
OR FRONTPLANE

N— 0O0R— \—O0R-"

BREAK,]

OFF

HP1000 A—SERIES ? FOR HELP
512KB MEMORY OKB ECA

PO00000 A000003 B002011 RWO00000 MO00000 TO00000

VCP> _

1-30 R1.29

1.31 VCP Commands

References: Computer Reference Manual
Tl1-31

VCP COMMANDS

. VIEW/ALTER HARDWARE REGISTERS
. VIEW/ALTER MAIN MEMORY

. BOOT

* LOAD

* RUN

- EXECUTE

. CLEAR MEMORY

© EXECUTE SELFTEST

1-31

USING YOUR
RTE—A SYSTEM

CHAPTER 2

Table of

Chapter 2
USING YOUR RTE-A SYSTEM

Properties of a Session (VC+)
When CI is BUSY ¢ « ¢ o o o &
PROMT Program (VC+)
Non-VC+ Considerations .
PROGRAM DE VEL
EDIT/lOOO [} [} . [}
A Simple Pascal Program .
Compiling a Pascal Program
A Simple FORTRAN Program .
Compiling a FORTRAN Program
LINK Relocating Loader .
PROGRAM EXEZC
Program Scheduling
Priorities . . .
Mul ti-Programming
Time-Slicing . .
Swap File
Program Swapping . .
User Memory Partitions .
Physical Memory . « « « &
Logical Memory . « « « &
Dynamic Mapping System .

o o O

e & © o © o o o o o e o e o o o Mo

T

o o6 o o o ¢ o 0o 0o o Oe o o o o o O

e o o o o o Zeo o o 0o 0o o XTo

Contents
ENT
ENV

[] L] [] [] L] L] L] L] [] L] e [] L] L] [] L]

o o o o © o o & o o e o o o o o

e o o o o o o o o s O o o o o o

e o o o o o o o o o Ze o o o o o

[] [] L] L] L] L] L] L] [] [] z. [] [] L] [] L]

e o o o ¢ o o o o o [Tfe o o o o o

e o o o o o

e o o o o & & o o o rle o o o o o

oo dWN -

2.
3.

4.

5.

MODULE OBJECTIVES

- Understand the relationship between CI, CM and SYSTEM (RTE)

prompts and capabilities available from each,
Create a Pascal or FORTRAN source file using the editor.
Compile and load a simple Pascal or FORTRAN program.

Learn the concepts of real-time, background and time-sliced
programs in relation to program priority.

Know the relationship of physical to logical memory and types
of memory partitions to be found therein.

ii

SELF-EVALUATION QUESTIONS

What 1is the program responsible for creating foreground
sessions in a VC+ environment, Are multiple sessions
available on a non-VC+ system?

With the CM> prompt on the screen, you type in a command. Do
your keystrokes generate solicited or unsolicited interrupts
to the terminal driver?

What causes a program to go from:

a. Dormant list to scheduled program list?

b. Scheduled list to execute state?

c. Execute state to wait list?

d. Execute state to dormant list?

The time-slice fence 1is at priority 50. Two programs of
priority 70 are started simultaneously and their execution
profile looks like (use your imagination):

"A" FH===11]===]]]| === [1l===111===11]

"g" ===l ll===111===10000EEE i ===t ===l ===
time --> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
a. What can you say about the time-slice quantum?

b. What might have happened at time 5?

c. What could you change to make program A run to completion
before program B started?

What 1is the difference between real-time and background
programs?

There 1is a system program called "D.RTR" which does the
communication with the disc drives for file calls, swapping,
etc. It typically runs at priority 1. Is there any
situation under which it might be swapped out for another
program?

iii

2.1 Properties of a Session (VC+)

Session Numbers -- When a user at terminal LU nn 1logs on to the
system, the session created will be session number nn.

Attributes -- CI and all programs started by the user share the
attributes of the session. If any of the attributes are changed
(such as the working directory), they are changed for all those
programs running under the session.

Programs -- Belong to the session under which they were invoked.
This includes the copy of CI which was scheduled at logon.

Interactive Sessions -- Are created by the program LOGON and are
always associated with an active terminal.

Background Sessions -- Are the system session, which 1is always
active, and sessions created programmatically. Programs such as CI
create background sessions (as when 1logging off with active
programs) by use of session management subroutines described in the
Relocatable Library Reference Manual.

References: System Design Manual
T2-1

PROPERTIES OF
A SESSION (VC+)

* SESSION NUMBER SAME AS TERMINAL LU

~* ATTRIBUTES: User Name
Working Directory
Normal/Super—User

* PROGRAMS BELONG TO THE SESSION

* FOREGROUND SESSIONS:

are interactive

* BACKGROUND SESSIONS:

Systefn Sessions
DS Sessions
"Logoff" Sessions

2.2 When CI is Busy

Non-VC+ systems -- Terminal driver selects the "primary" program or
(if CI is busy), the "secondary" program CM. CM is a special copy
of CI that will execute any of the CI commands but will exit after
the completion of one command. If all else fails (CM is also

busy), the RTE operating system issues a prompt and executes one of
the base set commands.

Unsolicited Interrupt -- Is easier to define in terms of a
solicited interrupt. When a READ statement is issued from a
program, the terminal driver knows where to send data received from

~the keyboard. Each keystroke from the keyboard generates an
interrupt which 1is said to be solicited and the terminal driver
sends the received character to the soliciting program. If the
terminal driver is not expecting data from the keyboard, each
keystroke generates an interrupt which 1is said to be unsolicited
and the terminal driver schedules a pre-defined program to handle
the keyboard input.

Primary/Secondary Programs -— Are defined at system generation
time. These are programs that will handle the keyboard input when
the terminal driver does not otherwise know where to send the data
from the keyboard.

RTE Base Set Commands -- Are a limited subset of the CI commands.
The most used base set command is OF,CM which will abort the CM
program and thus make it available to the terminal driver.

The following commands are available from the RTE> prompt

AS, BR, CD, DS, DN, DT, GO, OF, PR, PS,
RU, SS, Sz, ™, VS, UP, UL, WS, XQ

VC+ Systems -- When the terminal driver receives an unsolicited
interrupt, the program PROMT is scheduled. PROMT checks to see if
there is an session active for the terminal and schedules an
appropriate program to handle the user input. PROMT is designed to
execute very quickly and is effectively "always" available. For
this reason, no secondary program is defined for VC+ systems.

PROMT -- NOTE: The program name is purposely spelled this way. It
is left as an exersize to the reader to figure out why.

References: User's Manual, Driver Reference Manual
T2-2

WHEN CI IS BUSY

UNSOLICITED

NTERRU PT

, NON-
-) VC+
TERMINAL
DRIVER >
PRIMARY
PROGRAM J/——

, SECONDARY
PROGRAM
CI CM

UNSOLICITED
INTERRUPT

TERMINAL > —_—
DRIVER

"ALWAYS"

AVAILABLE
2-2

2.3 PROMT Program (VC+)

The terminal driver always schedules PROMT upon an unsolicited
interrupt. PROMT does very little processing itself (it schedules
other programs to do whatever is necessary), and therefore should
never be busy.

PROMT first checks to see if a session is enabled for the terminal
and if not, issues the logon prompt and schedules LOGON. Upon
successful logon, LOGON will normally schedule CI.

If a key is pressed while CI is busy, PROMT will issue the CM>
prompt and schedule CM. CM is a special copy of CI that executes a
single CI command and then exits. Note that rapidly pressing a
terminal key after sending a command to CM may result in another
CM> prompt before the first command has been processed. Remember,
the CM> prompt comes from the program PROMT and not from CM itself.
PROMT will queue up such commands to CM, and will eventually
schedule CM to process each of them. '

If a terminal key is pressed when CM is busy, PROMT will issue a
SYSTEM> prompt and take an RTE system level command similar to the
RTE commands available in a non-VC+ system. The recommended action
is to issue the command OF,CM to allow access to the CM program.

The following commands are available from the SYSTEM> prompt:

AS, BR, CD, DS, DT, GO, OF, PR, PS, e

RU, SS, sz, vs, UP, UL, WS, XQ

Note that these are the same as with RTE> with the absence of the
commands TM and DN.

Note: When using the RU command from SYSTEM or RTE prompts, the
program must already have an ID segment established (RP'ed).

References: User's Manual

PROMT PROGRAM (VC+)
<

LOGGED
ON NO
?

YES

CM ~o
BUSY

e
W

CopE @7 >

SYSTEM | CM LOGON

2.4 Non=VC+ Considerations

The non-VC+ environment can be thought of as having one session
with the name "SYSTEM". All users are part of the same session and
the following characteristics apply:

Working Directory -- Changing the working directory changes it for
all users. Application programs that reference files should always
use full path names to avoid working directory problems.

File Protection -- No protection is available without the W+
option. There is no counterpart to the FMGR security code.

Super-User -- All users are effectively super-users. There 1is no
protection against file access, offing programs, changing system
time or initializing disc volumes.

Spooling -- None of the facilities of the spooling system are
available: out-spooling, LU redirection and error logging. The
PRINT utility allows spooling to the printer (see the Utilities

Manual) .

References: User's Manual .
T2-4

NON-VC
CONSIDERATIONS

* WORKING DIRECTORY

same for all users

* FILE PROTECTION

not available

- * SUPER-USER

all users have Super—user capability

- ¥ SPOOLING
» printer spooling only (PRINT utility)

R2.4

2.5 PROGRAM DEVELOPEMENT

T2-5

PROGRAM
DEVELOPMENT

IDEA

EDIT

COMPILE

|LOAD !

2-5

" RUN

I—

2.6 EDIT/1000

EDIT runstring:

edit <sourcefile>

Screen commands:

“F -- forward screen
P -- previous screen
s -- screen from cursor position
“Q -- quit screen mode
~%... -—- same as above but d?n't save screen
e s '\- T “ry ’ Vi
Exiting EDIT: - '
EC -- exit create
ER -- exit replace
A -- abort
® = the CNTL key. Hold this key down while typing the lettered
key .)

References: EDIT Reference Manual
T2-6

EDIT /1000

EDIT <sourcefile>

2.7 A Simple Pascal Program
Computes area of circle given the radius.
Note HP Pascal extension:

* Use of underscore as the last character in a writeln statement
leaves cursor on same line,

References: Pascal Ref Manual
T2-7

A SIMPLE
PASCAL PROGRAM

program area (input, output);
var radius, area:real;
begin

writeln (‘area of circle program');
repeat
writeln (‘radius:_");
read (radius);
area:=3.1 4159*rodius*rodius;
if radius > 0O
then writeln (‘area=', area:4:2)
- else writeln (‘finished')
until radius <=0
~end.

2-7 R2.7

2.8 Complling a Pascal Program
PASCA -- Five character program name for PASCAL program file.

<filename> -- Pascal source file created by EDIT. Name should have
.PAS type extension.

<list> -- Can be a device LU or a filename to which is sent the
source listing and compiler errors.

"_" —- Relocatable filename defaulted to same as source file except
with a .REL type extension.

PASCO -- Pascal compiler, accepts Wirth standard Pascal, ANSI
standard, HP Pascal, and HP 1000 Pascal. Produces a temporary file
to pass to the macroassembler.

MACRO -- Macroassembler scheduled 1if compiler finishes with no
errors, ’

AREA.REL -- Relocatable file created by MACRO.

References: Pascal Ref Manual
T2-8

_ COMPILING
‘A PASCAL PROGRAM

- CI> pascal area.pas 1 —

L PASCA |
monitor
‘ - PASCO
compiler
OK? | {}

| MACRO |
> sssss bler

y

AREA.REL

2.9 A Simple FORTRAN Program
Computes area of circle given the radius.

Note HP FORTRAN extension:

* Use of underscore as the last character in a write statement
leaves cursor on same line,

References: FORTRAN Ref Manual
T2-9

A SIMPLE
FORTRAN PROGRAM

program area
real radius, area
write (1,'("area of circle program")")
‘radius = 1
do while (radius.GT.0)

write (1,'("radius:_")")

read (1,%) radius = kbt el

area=3.14159*radius*radius

if (radius.GT.0) then

write (1,'(""area="F4.2)") area

else o |
write (1,'("finished")")
end if -
end do
end

2-9 R2.9

2.10 Compiling a FORTRAN Program

FTNTX —- Name of FORTRAN program file. Compiler accepts ANSI
standard FORTRAN 77 and MIL-STD-1753 FORTRAN plus a number of HP
extensions to the language.

¢<filename> -- FORTRAN source file created by EDIT. Name should
have .FTN type extension.

<list> -- Can be a device LU or a filename to which is sent the
source listing and compiler errors.

"_w __- Relocatable filename defaulted to same as source file except
with a .REL type extension. | % bowe . ETa eclor oo,
. A

AREA.REL -- Relocatable file created by FTN7X.

References: FORTRAN Ref Manual
T2-10

_ COMPILING A
FORTRAN PROGRAM

CI> ftn7x area.ftn 1 -

J

D FTN7x
| ’ compiler

" AREA.REL

2.11 LINK Relocating Loader

AREA.REL -- Relocatable file produced by compiler

/LIBRARIES/ -- Directory that contains system and user library
routines. These libraries may or may not be searched automatically

by LINK. The default search 1libraries are defined at system
generation time.

AREA.RUN -- Runnable memory image code.

References: Link User's Manual
T2-11

 LINK
RELOCATING LOADER

- CI> link area.rel
_/
| —'} LINK # $BIGLB.LIB
! $PLIB.LIB
U | $FNDLB.LIB |
AREA.RUN

2.12 PROGRAM EXECUTTION ENVIRONMENT

T2-12

PROGRAM EXECUTION
ENVIRONMENT

2-12 R2.12

2.13 Program Scheduling

RP Command -- (Restore Program) Initializes an ID segment. This
command is normally not necessary because of the action of the RU
command.

RU Command -- Moves the program from the dormant state into the

scheduled program list. Note that the RU command will implicitly
RP the program if it is not found 1in the dormant program 1list
(i.e., if it does not have an ID segment).

Dormant Program List -- This contains all programs that have been
explicitly RP'ed but are not yet scheduled to run.

Scheduled Program List -- This contains all programs that have been
scheduled via the RU command or other means. The programs are
dispatched in order of priority.

Priority -- Order of importance represented by integers in the
range 1 to 32767, 1 being the highest priority.

Execute State —- The program is currently executing.
Suspend/Wait List -- The program is active but suspended for some

reason (e.g., requested a resource that is not immediately
available, a higher priority program was ready to run).

References: System Design Manual
T2-13

PROGRAM SCHEDULING

RP COMMAND

SUSPEND /WAIT
LIST

I

PROGRAM
LIST

DORMANT

EX ECUTE STATE

\/ \/ RU COMMAND

\

>

2-13

SCHEDULED
PROGRAM
LIST

(IN ORDER OF

PRIORITY)

R2.13

2.14 Priorities

TTime-Slice Fence -- Programs of priority lower than the boundary
are subject to time-slicing, but only if the programs have the same
priority. The value of the time-slice fence is set at system
generation time and may be changed in the boot-up command filegy

Program Priority Boundary -- Also called the hackground fence.
Programs of priority 1lower than the boundary are considered
background programs. All others are real-time programs.
Background programs get chosen first as candidates to be swapped to
disc to make room for programs requiring memory from the system.
The value of the program priority boundary 1is set at system
generation time and may be changed in the boot-up command file.

References: System Design Manual
T2-14

30

50/

PRIORITIES

— HIGHEST PRIORITY

ke o
j/ﬁwlw
— — — — — TIME-SLICE FENCE

— — — — — PROGRAM PRIORITY
' BOUNDARY

- 32767

—LOWEST PRIORITY

2—-14 R2.14

2.15 Multi-Programming

Program A -- An I/0O intensive program.

Program B -- A compute intensive program of 1lower priority than
program A,

Program C -- A high priority program.

References: System Design Manual
: T2-15

MULTI-PROGRAMMING

PRIORITY SUSPENDED
FOR 1/0
1 —T1]
A (40) L 1
/N
[] [
B (60) = =
C (10)
A
TIME
CI> ru A - 7
CI> ru B —
CI> ru C

2-15 R2.15

2.16 Time-Slicing

Time-Slice Fence -- Programs with priorities lower than the fence
will time-slice with programs of equal priority. Programs with
-priorities equal to or higher than the fence will run to completion
(or suspension) béfore another program of equal priority can run.
The time-slice fence is set at system generation and may be changed
in the boot-up command file.

Time-Slice Quantum -- Is the length of time a program will run
before being suspended to let another program (of equal priority)
run. The time-slice quantum is set at system generation and may be
‘changed in the boot-up command file.

Programs D, E -- Compute intensive programs, same priority,
time-slice side of fence.

Programs F, G -- Compute intensive programs, same priority, other
side of fence.

References: System Design Manual
T2-16

TIME—-SLICING

PRIORITY

l

D (90)

AN

—s k— TIME SLICE QUANTUM

N]

E (90)

(30) + — — TIME SLICE FENCE — — — — — — — —

F (25)

G (25)

CI> ru D -
CI> ru E
Cl>ruF

CI> ru G

2-16 R2.18

2.17 Swap File

Swap file —-- The name and size of the swap file are defined in the
bootup command file.

Swap Out -- If no partitions are available for a scheduled program,
space is made available by swapping some other program (or
programs) out to the swap file. The program to be swapped out is
chosen for the least impact on the system and is typically not
running at the time (i.e., waiting or suspended).

Swap In -- When the swapped out program is again ready to run
(i.e., at the top of the scheduled 1list) it is brought back into
memory from the swap file.

References: System Design Manual
T2-17

' SWAP FILE

PROGRAM
X
MEMORY
PROGRAW SWAP FILE
A |
>
PROGRAM | [gwap OUT>_/
B

PROGRAM
C

PROGRAM
D

PRCOGRAM

B

< SWAP IN

2-17

7

R2.17

2.18 Program Swapping

Program Priority Boundary -- Defines the distinction between
real-time and background programs. The default value is set during
system generation and can be changed in the boot-up command file.
Background Program -- Has priority set lower or equal to the
program priority boundary.

Real-Time Program -- Has priority set higher than the program
priority boundary.

Free Memory -- Unoccupied memory partitions.

Suspended Real-Time Program -~ Waiting for I/0.

Scheduled Real-Time Program -~- Currently running or waiting on
higher priority programs to run.

Non-Swappable Program -- A program that executed an EXEC 22 request
or is I/0 suspended with a buffer in the program partition.

Shareable EMA -- Extended Memory Area (for large amounts of data)
that multiple programs use to share data.

References:
T2-18

PROGRAM

FIRST CHOICE—>
NEXT CHOICE 1

BACKGROUND
PROGRAM

PROGRAM PRIORITY

(50) BOUNDARY

SWAPPING

[
R

REAL-TIME

PROGRAM

MEMORY PARTITIONS

FREE
MEMORY

BACKGROUND
PROGRAM

SUSPENDED
REAL—TIME
PROGRAM

SCHEDULED
REAL-TIME
PROGRAM
(LOWER PRIORITY)

NON—SWAPPABLE
IPROGRAM
OR

SHAREABLE EMA

2-18

R2.18

2.19 User Memory Partitions

CDS data partition (VC+) -- Contains all data for a CDS program
including heap area (e.g., Pascal dynamic variables), stack used
for saving local variables upon procedure entry, and global data
area. This also contains the EMA area or VMA working set if these

facilities are used.

CDS Code Partition (VC+) -- Contains the code portion of a CDS
program. This portion may be shared among many users since user
specific data is contained in the data partition.

Non-CDS Program Partition -- Contains the program and data for a
non-CDS program.

References: System Design Manual
T2-19

USER
-MEMORY PARTITIONS

CDS DATA PARTITION (VC+)

EMA/VMA

HEAP /STACK
GLOBALS

CDS CODE PARTITION (VC+)

CODE
SEGMENT
BLOCKS

NON-CDS PROGRAM

HEAP AREA

SEGMENT
OVERLAY AREA

MAIN PROGRAM

2-19 " R2.19

2.20 Physical Memory

User memory

Dynamic Partitions -- Variable sized partitions allocated from free
memory and, if necessary, background or suspended program
partitions. This is where normal programs are run which would

include CI, LINK, Pascal, EDIT, user application programs, etc.

Reserved Partitions -- Fixed size partitons that are used by
programs specifically assigned to them. These partitions must be
specified during system generation.

System memory

Operating System =-- This includes program scheduling, resource
management, I/0 requests, memory management, system clock, spooling
(VC+), basic system commands and error handling routines.

Drivers -- These routines take generic I/0 requests from the system
program and convert them to the necessary format for the I/0 board
and device addressed.

System Tables -- These provide flexibility in the number and type
of devices the operating system can control and allow efficient
operation for either minimally or maximally configured systems.

System Common -- This area may be mapped into multiple program
partitions to allow common data areas between programs.

System Available Memory (SAM) -- This is a memory area used by the
system for I/0 buffering, class I/0 (mailbox 1I/0), and string
passage.

References: System Design Manual
T2-20

PHYSICAL MEMORY

HIGHEST | | -
ADDRESS DYNAMIC
PARTITIONS ‘,
> USER
MEMORY
RESERVED
PARTITIONS
=
SYSTEM AVAILABLE

MEMORY (SAM)

SYSTEM
COMMON

SYSTEM
SYSTEM >
TABLES MEMORY

DRIVERS

OPERATING
SYSTEM

ADDRESS 0 —

2-20 R2.20

2,21 Logical Memory
A user program partition is shown as an example.

Physical Memory -- The portions that make up a 1logical memory
partition may come from distinctly separate physical areas.

Logical Partition -- Is seen by the program as one contiguous
logical unit, References to logical memory locations are
sequential from 0 to the top of the logical partition.

ID Segment -- Contains the information necessary to set up the
mapping between physical memory and the logical partition for the
program.

DMS -- Dynamic Mapping System, to be described 1later in this
chapter.

References: System Design Manual
T2-21

LOGICAL MEMORY

' PHYSICAL

MEMORY LOGICAL

) PARTITION HIGHEST

procraM | ADDRESS
CODE

mis

SYSTEM
j COMMON
J PROGRAM

BASE PAGE ADDRESS 0

1D
— 1 SEGMENT

2-21 R2.21

2.22 Dyhamic Mapping System PMS.

Logical Address -- Obtained from the program instruction. The
logical address space is 32k words (from 15 bits). Ten bits are
used to select one word from a 1024 word page in physical memory.
Five bits are used to select one of 32 page mapping registers. The
16th bit is used for 1nd1rect addre551ng LIEpSrd, | | faye ypset]

&d@rkﬂ’" 2" 1S ¢ e o

"N \\

’M

X

Page Mapping Registers -- Contaln a 14-bit address that selects one
of the available pages in physical memory. The address in the PMR

is set up by the operating system when a partition 1is allocated.
The remaining two bits in the register are used for read and/or
write protection. 2% = FTyrgeatdn| § vord apdrer s |

. 1<« 1D q -]
Physical Memory -- Up to 16 megawords (16384 pages) although the
actual size is limited by current memory board density and the size
of the customer's budget.

B\(0 -9 J}(?‘&ﬂ LA 10 i gé (v{"\}‘ai(SV 9 M/u(ﬁ. }‘\%
N Nl xR A B

[f,,&sﬂ /(OJL\'D\M (km"‘
(()W ")’8 Wre!
> byt

;LJ TP E I ¢ €7Zy

References: System Design Manual, Computer Ref Manual
T2-22

DYNAMIC MAPPING SYSTEM

PHYSICAL
MEMORY
16 M

words @

: _ PAGE
|_-_—| 10 bits PAGE OFFS/EF > (1K words)

PAGE MAPPING
LOGICAL prcisTERS

ADDRESS ir
its
31 PAGE ADDRESS
5 bits
) 7
0 ' 1) —

2-22 R2.22

FILE SYSTEM

CHAPTER 3

Table of Contents

FILE SYSTEM

Chapter 3

123456789012345
UL L L L L L L s I K B M M
(aa N aa B0 Ms2 N ae a2 a2 B 52 I 5.0 T [N RS O I I

e © o o o & o o o e e o o o o o e o & o .o e o o o o o o o o
e e - © o & & o o e o o o o o o e o o & o e o o o & o o o o
e o e © & o o s o e © o o o o o e o o o o e e © o o o o s o
e & e e o o o o o e o o o o o o e o o o o e e © & o o o o o
e e e e & o & o o e & o o o o o e o & o o e o © o o & o o o
e e e & o o & s o e o o o o o o e o o o o e o o o & o & o o
e ©® e e & o & o o e o o o o o o e o o o o e e © o & o & o o
e e e e o o & o o e o o o o o o e ©& o o o e o e & o & o o o
e e o o o & o o o e o e o & o o e o & o o e o e o & o o o o
e e e & o o o o o e o o o o o o e e o o o e © o o o o o o o
e e e e o o & s o e o o o o o oM.........
e o e e o o o 9 o e o o o o o oE.........
e ©® e e e o o o o e ® e o o » oT.........
e e o e & & & o o e o o o o o oS.........
e & e o o o ° 9 o e o & o o o oY.........
e e e & o & o o o e e o o o o oS.........
e e e e o ¢ & o o e ® & o o o o e e o o o e o e & o o o o o
e o o oo e o e Dy e o o o o o o e o o o OS[1] o o o o o o o o o
Q 9]
e o e o 4y e o o O e o o o o o .~ e o o o 0.1 o o o o o o o o o
3 e +
o o e o 4 e o 2o D ooooooCGoooo — e o o o o o o o o
4] Y > —
o o o e 3 s o) o e o o o o~rZ o o o o4y o O~ & o o 0 o o
- n ot (3 +
e o e U Q oDEoorooopISQQQV . Q o ¢ o o o o
7] 0~ lo] ot ~ ~ n >
e o @ o MO DN o e e e o Qo e\ o] eD~r o o o ° o
et —~N Ot Mo 0, —~W0n ol KV o)) . | e
e e MM BPDPY O HAH et o o4+ LD DO M e M o g o >NO o U
OV M Q M [S Y] ar.m o Lo X =R =R I Q
QD o Dt et QDU MK cePD OV *> < N O NPV AOCH o
— crhriem 30T (W Qo4 [/ o St N~ O > ©
wt B O O Vet W O QO S W Mmfnlu Py >NoP D o
e O M A A m s - 0 QO coOnNnoum® [A
ot O oA V0 » W EE O > - EO0VOL 00O
V=AM DO VP VE@M AN TELOY NDNONDMLNEAZE M
n o ra.nolutuumtaiohut OMuIBXLZ Ve —Co~am
-t P A e) O L.~~O0NOL L o O oM Vo~ PT ©M Q
QAumsoITeLd ~DpHO M o010 A MH OO DO M o
0 Q| [B =RV 0o VOP 0 TNMXLNXOOD ~EO0RAXKEPEXCX
QM ONVIPE H ANHAHOAHEO NHAR VW D>EOP 9 ~0
LA A3 CHMBON HArASrArdN~A A COTCI VOO WNE nE
SN 0N OATODO D MMM AR EAESODAONO AR DMK

2.

3.

5,

MODULE OBJECTIVES

‘Be able to use file manipulation commands with various path
lengths and working directories.

Use source and destination file masking with wildcard
characters, time stamps, directory paths, and file types.

Use file protection and directory ownership features.
Use the spooling feature to outspool files and redirect LUs.

Use DS transparency to copy files from one system to another.

ii

3-10

3-2.

3-3.

SELF-EVALUATION QUESTIONS

What is the root directory? How do you list it's contents?

What 1s the difference between a global directory, a
sub-directory, and a working directory?

What type of file does EDIT create? How could you specify a
different type? What would happen if you specified a type 99
file?

What type of file requires a record length specification when
you create it? Why?

Change the following file descriptors to hierarchical format:

a. memo::henry

b. orders/july 12::produce dept

C., ::henry.dir:2:48:32

Change the following file descriptors to combined format:

d. /programs/ci.run

e. /henry/docs/zap.txt

f. /friday:::4:30

A file is created at 1:00 pm. At 1:05 the editor opens the
file, some changes are made and the file is closed at 1:10

pm. What are the create, update and access time stamps for
the file?

Directory /PROGRAMS has protection "rw/r" and the owner is
SYSTEM. Can you as a general user:

a. Copy a file from /PROGRAMS to your own directory?

b. Copy a file from your directory into /PROGRAMS?
C. Run a program contained in /PROGRAMS?

d. Edit a file in /PROGRAMS?

iii

What do the following CI commands do?

“a. dl /

b. co'l temp.txt (what terminates this command?)

- b. pu /mary/@.@

'c. unpu memos/@.@.c-830812

d. rn /henry/@.text /henry/@.txt

e. mo /elmer/programs.dir.d /george/programs/@.@
f. co @b@.---.s /b files/@.@

g. dl /doris/@.@.os

h. dl @swap@.run.e

i. co /lester/@pr-.----.pxsc83u8306-830615 @.ohno

What is the difference between the following spooling system
commands?

- sSp on 6
Spooling started from LU 6 to OUTSPOOL22.SPL: :SPOOL

- Sp on 6 outspool22.spl::spool
Spooling started from LU 6 to OUTSPOOL22.SPL: :SPOOL

What does the following command do?
CI> co henry/boggle.run>l5 /george/@.@>15[george]

What 1is a FMGR cartridge? If a CL command produced the
following output:

File System disc LUs: 17 19

- FMGR Disc LUs (CRN): 16(16) 18(AL)

How would you get a list of the files on LU 18? What are two
ways to specify the "crn" in the following command if $quark
is on LU 182

CI> 41 %quark::crn

iv

3.1 The Disc File

Data -- Basic elements of information such as digits in an address,
characters in a Pascal keyword, or bits in a memory image file.

Record -- Logical grouping of data such as one line in a text file
or a standard size "chunk" of a memory image file.

File -- Is a named collection of records on disc and 1is the means
by which a program stores data for use at some later time.

T3-1

THE DISC FILE

RECORD

FILE

3.2 Directories

Hierarchical Structure -- Allows a directory to have entries for
sub-directories as well as files. "Directory®™ 1is the generic name
for either global or sub-directories.

References: System Design Manual
T3-2

‘DIRECTORIES

HENRY

<TEMP.TX'I> PROGRAMS MEMOS

-~ DOCS | - SOURCE <JLY1 9.TX>
<ZAP.TXT> <ZAP.PAS> <TE ST.FTN>

3—-2 R3.2

|

3.3 Global Directories

Disc Volume -- A logically independent disc volume. This may be a
flexible disc, a part of a hard disc, or an entire hard disc unit.
Each volume is treated as a separate logical unit (LU).

Volume Header -- Contains information on disc free space and a
pointer to the root directory. The volume header is the only
information on a disc volume that is a fixed size and has a fixed
location (last track of volume).

Root Directory -- Contains the name and location of each global
directory on a volume. An unlimited number of global directories
are allowed although all global directory names must be unique
across volumes.

Global Directory -- Contains information about an unlimited number
of files. The information includes the file name, various file
properties, and the file's 1location on the disc. Global
directories may also contain information about other directories.

Path -- Files are specified by the path the system must take to
find them. The path starts at the root directory which |is
indicated by a leading slash.

References: System Design Manual
T3-3

GLOBAL DIRECTORIES

/ -
dQME/

VOLUME HEADER

Q
 ROOT DIRECTORY e e
> OTHEF GLOBAL
~ DIRECTORIES
v GLOBAL DIRECTORY
NAME -
TYPE EXTENSION
SIZE
TYPE
RECORD LENGTH

OWNER (VC+)

PROTECTION {(VC+)

TIME STAMP ﬁ /
| LOCATION OF FILE

PATH: . .
— /GlobalDirectory /File

SPECIFIES ROOT \ ™ FILENAME
DIRECTORY GLOBAL DIRECTORY NAME

3—-3 R3.3

3.4 Sub-directories

Global Directory -- The only real distinction to global directories
is that they are at the top of the directory path.

Sub-directory -- These contain identical information to global
directories, which may include information about still. 1lower

sub-directories.

Path -- May contain any number of directories but is limited to 64
characters in the path name including slashes, colons and file
descriptor information.

References: System Design Manual
T3-4

. SUB-DIRECTORIES

GLOBAL DIRECTORY

| SUBDIRECTORY FILE

pd

p

SUBDIRECTORY

FILE

PATH:

/GLOBALDIRECTORY /SUBDIRECTORY /FILE
/DIRECTORY/DIRECTORY /DIRECTORY/ ...
< < 64 >

3—4 | o R3.4

[

3.5 The Hierarchical Structure
SYSTEM

System Table -- Called the <cartridge directory keeps track of
"mounted" disc volumes. Mounted volumes are available for use.
Unmounted volumes must be mounted with the MC command before they
are accessible:

CI> mc 23 {mounts the volume with LU 23)

Root Directories -- Contain the names of all global directories
whose names must be unique in the system.

VISIBLE

Global Directories -- This 1is the highest level 1in the file
structure that can be manipulated by the user. All global
directories must have unique names.

Sub-directories -- Can be nested to any depth. Sub-directory names
may be the same as global directories names. Sub-directories
contained in different parent directories may also use the same
name.

Files -- Can be found at any 1level below the global directories.
File names must only be unique within their parent directory.

Volume Boundary -- the file system hierarchy may not cross the
volume boundary. This has effects on two types of commands:

* Create Commands -- Files and directories will always be created
on the same volume as their parent directory.

* Move Command -- Files may not be moved across volume boundaries
since a move changes only directory information and does not
physically move data. The copy command must be used to cross
volume boundaries.

References: User's Manual
T3-5

HIERARCHICAL STRUCTURE

SYSTEM
TABLE |
|]
LU18 LU19 LUZ20
VYOLUME VOLUME VYOLUME
HEADER HEADER HEADER
" ROOT ROOT ROOT
| SYSTEM
l VISIBLE
H| (1
GLOBAL
DIRECTORIESI '
‘ AllBllc
NO!
SUB-DIRECTORIES
AND VOLUME
FILES ‘ l/ BOUNDARY
- 3=5 . R3.8

3.6 Creating Directories

References: User's Manual
T3-6

CREATING DIRECTORIES

crdir <name> <lu>

CI> crdir /mike
CI> crdir /sale 23
CI> crdir /sale/prices

3.7 Path Specification

Fill in 2,

References:

3 and 4.

User's Manual

T3-7

"PATH SPECIFICATIONS

HENRY
0F
'<TEMP.TX‘I> PROGRAMS
DOCS SOURCE
X+))

MEMOS

D)
<ULY1 9.TX'>
®

/

|

% /HENRY/TEMP.TXT @ /

@/

3—-7

R3.6

3.8 Working Directory

Typically, your working directory at logon is the global directory
by your logon name.

Working directories are specified by their path names with the WD
command.

Fill in 2.

References: User's Manual
T3-8

WORKING DIRECTORY

)

DOCS

r

om) (o) o)

¢:‘ DEFAULT
'HENRY
PROGRAMS MEMOS
<
\
D

SOURCE

<ULY1 9.TX'>

(DCI> WD/HENRY/PROGRAMS ® CI> WD/
OR

- CI> WD PROGRAMS

|

3-8

OR

CI> WD

3.9 Using the Working Directory

Note for UNIX hacks:

There is no way to specify the parent directory in a path name
as UNIX does with "..".

References: User's Manual
T3-9

USING THE WORKING
DIRECTORIES

HENRY

<TEMP.TX'I> PROGRAMS MEMOS

& WD

DOCS - SOURCE <ULY19.TX>
@/ ©
ZAP.TXT <ZAP PA;> TEST.FTN

- DOCS/ZAP.TXT souce | Tl £
@ /H,«/‘J /7@1 < -

3-9 R3.8

|

3.10 USING FILES

T3-10

 USING FILES

u _
2 = MO
P c!
u r
. CR
| D A
owlner
crdir
prot
. pu
WD ,I

3.11 Filenames

Restricted Characters —- These have special meaning to CI. Other
punctuation may be wused in filenames although HP "officially"
recommends using only alpha characters and numbers. This allows HP
to use other punctuation for something special in the future,

Filename -- 16 characters allow you to use meaningful filenames.
TYpe~Extension -- Provides standard type classifications to aid
readability. Also provides protection with those programs that

will not accept a file with the wrong type extension.

Standard type extensions --

. cmd CI command file

. Cop compiler options
.dbg debug file

.dat data file

.dir directory

.ftn FORTRAN source file
.ftni FORTRAN include file
.1ib library of relocatable files
.lod LINK command file
.1st listing from compiler
.mac Macro source file
.maci Macro include file
.map loader map listing

. pas Pascal source file
.pasi Pascal include file
.rel relocatable file
.run runnable program
.Snp system snapshot file
.spl spooling system file
. bxt text file

. SYS system file

References: User's Manual
T3-11

FILENAMES

RESTRICTED CHARACTERS:
/ + . @ = [>

FILENAME: |
A_LONG_FILE_NAME
7 J
alpha

< 16 CHARACTERS

TYPE EXTENSION:

FILE_NAME,TYPE
SEPARATOR L < 4 CHARACTERS

STANDARD TYPE EXTENSIONS:
.CMD COMMAND FILE ~ .PAS PASCAL

DIR DIRECTORY REL RELOCATABLE
JFTN FORTRAN | .RUN PROGRAM
LST LISTING JTXT TEXT

3-11 : R3.10

3.12 File Attributes
Type -— Not to be confused with type extension.

Other types available are:

0 -- used with programmatic file calls to access an I/0 device as
a file.
7 -- absolute binary files.

8 thru 32767 ~-- user defined.

The F option for the DL command will list the file type for the
specified files.

Size -~ Space is allocated on disc whether its used or not. If
more space is subsequently required, extents are allocated
automatically.

If more than 16383 blocks are required, space is allocated in 128
block "chunks". The number of chunks 1is specified by a negative
size parameter (e.g., -139 = 16640 blocks).

The S option for the DL command will 1ist the size of the files.

Record Length -- Automatic record 1lengths are computed for the
following type files:

1 -- 128 words
3 and above -- variable record length.
The R option for the DL command will list the record length. For

type 3 and above files, the length of the longest record in the
file will be listed.

References: User's Manual
T3-12

FILE ATTRIBUTES

TYPE
1 RANDOM ACCESS
128 WORD RECORD LENGTH
2 RANDOM ACCESS

FIXED RECORD LENGTH

3.4 TEXT FILES
VARIABLE RECORD LENGTH

5 RELOCATABLE CODE
6 RUNNABLE PROGRAMS
SIZE

IN BLOCKS, 1 BLOCK =128 WORDS

RANGE: 1 TO 16383 BLOCKS
DEFAULT: 24 BLOCKS

RECORD LENGTH

IN WORDS, FOR TYPE 2 FILES ONLY
ALL OTHER TYPES ARE AUTOMATIC

3-12 R3.11

3.13 The File Descriptor
Hierarchical Format -- Preferred method of specifying files.

Combined Format -- Is used sometimes by the file system so
programmatic calls can be made from either CI or FMGR based
programs. The output from the DL command is a good example.

FMGR Format -- Included here for historical perspective. "sc"
refers to security code. "crn" refers to cartridge reference
number, which is similar in function to a global directory.

References: User's Manual
T3-13

THE FILE DESCRIPTOR

HIERARCHICAL FORMAT:

/GLOBAL/SUB/ FILE[::TYPE:SIZE:RECIEI%

TN

optional

COMBINED FORMAT:

SUB,/FILE::GLOBAL: TYPE:SIZE:RECLEN
| J

—~—

FMGR FORMAT:

FILE:SC:CRN:TYPE:SIZE:RECIEN
. J

N

optional

3-13 | R3.12

|

3.14 File Commands

CR -- Create a file, <name> may include full file-descriptor
information.

PU -- Purge a file. If <name> includes file-descriptor
information, the file will be purged only if all fields match.

UNPU -- Unpurge a file. Purged files are not really deleted but
only flagged as being purged. If the space has not yet been
reclaimed, the file may be unpurged. There is no guarantee as to
how long a purged file may exist and still be unpurgeable.

RN -- Rename a file.

CO -- Copy a file. A copy of <source> file is made under the
<destination> name. The source file remains unchanged. The copy
command will not overwrite an existing file unless the "D" option
is included. If the "P" option is specified, the <source> file
will be purged after a successful copy. The copy command does not
verify.

MO -- Move a file, The move command changes only directory
information for the file and is therefore faster than copy. The
only restriction 1is that files may not be moved across LU
boundaries.

References: User's Manual
T3-14

FILE COMMANDS

~cr <name>
pu <name>

unpu <name>

rn <old name> <new name>
co <source> <destination> [DP]

mo <source> <destination>

3.15 Time Stamps

All files are time-stamped, directories are not. Times stamps
include date and time to 1 second resolution., Times are posted at:

Creation -- When file is created programmatically, with the CR
(create) command or with the CO (copy) command,

Update -- Posted when the file is closed after being changed. Also
posted at creation. This is the only time stamp that is not posted
during a copy operation

Access -- Posted when the file 1is opened for reading or update.
Also posted at creation, This time stamp 1is not effected by
examining file attributes 1in the directory such as size, type,
protection, etc.

References: User's Manual
T3-15

TIME STAMPS

UPDATED
JUL 7 1983
10:18:52pM

5-15 R3.154

3.16 Protection (VC+)

Protection applies to all general users; superusers override all
file protection. '

To change protection, the user must own the file (explained on the
next slide).

Examples:
CI> prot eyes.only rw/rw -- everyone has access

CI> prot eyes.only rw/r -- owner has full access
others can only read

CI> prot eyes.only r/ -—- owner can read
no one can write

CI> prot eyes.only /rw -—- owner cannot access
others can read or write

CI> prot eyes.only / -- no one can read or write
only superusers can access
CI> prot eyes.only —- lists current protection
directory ::HENRY
name prot

EYES.ONLY rw/r

References: User's Manual
T3-16

PROTECTION (VC+)

CI> prot eyes.only rw/rw

ooooo . T

other users J
r = read access
W = write access

3—-16

| ﬁaves. ONLY \
f' .

R3.16A

3.17 Directory Ownership (VC+)
The owner of a directory has two privileges:

1. Access to files is allowed as assigned by the owner field of
the protection command.

2. ‘The owner may transfer ownership to another user. No te,
however, that all privileges are transferred to the new owner
and are then unavailable to the previous owner.

A sub-directory may be owned by someone other than it's parent
directory.

References: User's Manual
‘ T3-17

'DIRECTORY OWNERSHIP (VC+)

DIRECTORY

EST. 1963 | @
OWNER: HENRY ‘

<\C@_?HO.TXT) | (SPOT.PAS)|{(DONR.PAS>
éEES.ONLﬁ <SPOT.RUN)

CI> Owner /Henry William
CI> Owner /Henry
Owner of /HENRY is WILLIAM

3-17 R3.17A

3.18 F ILE MASEKING

T3-18

FILE MASKING

3.19 Wildcard Characters

"_" ——- Will not match the "." between the file name and type
extension. For example, "joker-wild"™ will not match "joker.wild".
"@¥ —- Does not match the "." either but... when the mask ends
with "@", the system assumes you meant "@.@" . (unless you have
explicitly used "." somewhere in the mask). For example, "jok@"

will translate to "jok@.@" and match "“joker.wild" as well as
" joker"™ (blank type extension). -

Note that the file system will make some default assumptions about
the mask intended in certain circumstances. For example:

When the mask is: The file system will assume:

/name/ /name/@-@

/hame/ @ /name/@.@

/name/@, /name/@. (blank type extension)

References: User's Manual
T3-19

WILDCARD CHARACTERS

botch jo job joke joker joker.wild

— MATCHES ANY NON-BLANK CHARACTER
>job

>joke

>botch joker

— v — — —

@ MATCHES ZERO OR MORE CHARACTERS

jo@ >jo job joke joker joker.wild
jok@ >joke joker joker.wild
jok®@. —>joke joker
-0@ >
@be >] ,
@l >All files with wild type
- extension
@.-@ >All files with non-blank

type extension

J3-19 RX.17

3.20 Mask Qualifier

File Characteristics -- Files that match the name and type
extension mask are then selected to meet the qualifier
specification. The "b" qualifier refers to files that have their
backup flag set. This is used by the TF utility during incremental
backup. The "t" qualifier refers to files that were flagged as
temporary when they were opened.

Search Directives -- The system normally searches through only the
directory specified in the file descriptor (or the working
directory if none was specified). The search directives expand the
search to 1include additional directories. The "d4d" directive
selects all files whose directory matches the mask.

Time stamps -- Files may be selected whose time stamp falls within
a range of dates., This may be done with either the creation date,
access date, or update date.

Examples:

* List all files created during the first six months of 1983:
CI> dl @.e.c830101-830630

* List all FORTRAN source files updated since July 15, 1983:
CI> dl e.ftn.u830716-

* Purge all files not accessed since December 31, 1982:
CI> pu @.@.a-821231

References: User's Manual
T3-20

MASK QUALIFIER

<f11ename> <ext> <qualifier>
/HENRY/©.@.5

FILE CHARACTERISTICS:

B — SELECT FILES THAT HAVE BACKUP BIT SET
O — SELECT OPEN FILES

P — SELECT PURGED FILES

T — SELECT TEMPORARY FILES

X — SELECT FILES WITH EXTENTS

SEARCH DIRECTIVES:

S — SEARCH DIRECTORY AND IT'S SUB-
DIRECTORIES

3 E — SEARCH EVERYWHERE
D — DIRECTORY MATCH De fa. et "
Mo Rpe e
N - NEGATE DIRECTORY MATCH orr] ey
L- T2 30 B (’A/ky,u_,]

TIME STAMPS:
C, A, U — SELECT BY TIME STAMP

3-20 R3.18

3.21 Destination Masks

If the destination mask uses "@" for the filename or type
extension, the source filename or tvpe extension is used for the
destination filename. Otherwise, the destination mask defines the
filename or type extension.

References: User's Manual
T3-21

DESTINATION MASKS

@ MASKS ENTIRE FILE NAME
OR ENTIRE TYPE EXTENSION

CI> RN @.SRC @.FTN

T__ USE NEW TYPE EXTENSION
USE OLD FILE NAME

~

HOP.REL

SKIP.SRC

JUMP.SRC

SKIP.FTNk

JUMP.FTN

J-21

SELECTION

L

A
N

V

RENAMING

R3.19

3.22 Mask Examples

What do these commands do?

References: User's Manual
T3-22

MASK EXAMPLES

CI> MO MAIN.FTN SUBl1.@
CI> DL @.TXT.S

CI> PU @.PAS.U-82

CI> RN P-—--.@ @.TXT
CI> DL PROGRAMS.@.D

CI> UNPU @.Q.E

CI> DL /WILLIAM.@.X

CI> CO @.@.N SUBDIR/@.@

3-22 R3.20

3.23 Owner Accounting (VC+)

FONN -- Displays the total disc spaée owned by each user for the
files specified by <mask>. The default is for all files in the
system. :

<mask> -- Specifies which files to consider for ownership
accounting. In general, the mask "/<global.dir>/@.@.s" will
provide ownership accounting for all files under global directory
<global.dir>.

SYSTEM -- Are those files created under a non-VC+ system and have
no owner. '

Unknown -- Files whose owners have been removed from the system or
files accessed through DS/1000 remote file access.

FMGR Files -- 01d file system files have no owner and therefore are
not scanned.

References: User's Manual
T3-23

OWNER ACCOUNTING (VC+)

FOWN <mask>

CI> FOWN |
Scanning... Mask = /@.@.S
Owner Disc Blocks

SYSTEM | 9041
MANAGER 62594
WILLIAM ' | 6115
SHELLY 985
LESLIE 7685
Unknown (#10) | 96
Total | 86114

FMGR files not scanned

CI> FOWN /WILLIAM/@.@.S

Scanning... Mask = /WILLIAM/@.@.S

Owner | Disc Blocks

WILLIAM 4126

MANAGER | | 82

Total 4208
3-23

R3.21

3.24 USBSING T HE F ILE SYS TEM

T3-24

USING THE
FILE SYSTEM

R3.22

3.25 Device S;atus

I1/0 Command -- Shows assignment of 1logical unit numbers and the
status of each associated device. The list of LUs may be up to 255
long. The first and last LU of interest (e.g., 6 and 10) may be
included in the I/0 command to limit the amount of output,

LU -- The logical unit number of the device.

Device Name —~- Name assigned to the device during system
generation.

Select Code —- This is a physical switch setting on the 1I/0 card

and must match the number shown here which was defined at system
generation.

HPIB Address -- This is a physical switch setting on the device and
must match the number shown here which was defined at system
generation.

Device Status -- This is the current status of the device as found
in a device table associated with it's LU. Typical statuses are:

* up -- The device is ready for I1/0.
* down -- The device is not responding to system requests because
either it is off-line (as a printer might be when it runs out of

paper) or it may have a hardware problem.

* Locked to <program> -- The device has been locked for exclusive
use by the named program.

* Busy with class request -- Often seen when a program (such as
CI) is waiting for input from a terminal.

Re ferences: User's Manual
T3-25

DEVICE STATUS

CI> 10 6 10

LU Device Name Select HPIB Device
- Code Address Status

6 Printer 30 € Up
7 Not Assigned
8 Tape Drive - 27 4 Locked to TF
9 Instrument | 27 36 Down
10 Floppy Disc 27 S Up
3-25 R3.23

3.26 Commands Using LUs

DL Command -- The third parameter is the LU to which the directory
listing is sent. This normally defaults to LU 1.

CO Command -- Either the source or destination may be the LU of a
device,

Bit Bucket -- LU O may be used to send data to a non-existant
device when that data is not wanted.

References: User's Manual
T3-26

COMMANDS USING LUs

CI> DL /WILLIAM/,,6

CI> CO MEMO.TXT 6

CI> CO 1 68

CI> FTN7X AREA.FIN 1 0

3-26 R3.24

3.27 Spooling System (VC+)

SP Command ~-- The spooling system is a program that is initialized
by the System Manager and runs under the system session. The SP
command gives each user access to the spooling system. Each user
may spool output to LUs or redirect output from one LU to another
independent of other users. The SP command may also be given with
a command parameter. The command will then execute and return
immediately to CI, for example:

CI> sp st
(spooling status here)
CI1> _ .
ST Command -- Gives the status of the spooling system. LU
redirection is shown for the user's session. This is independent

of other wuser's redirection status. Spool file status shows all
active spooling on the system. Each spool file is associated with
an LU. An LU 1is currently being spooled for a particular user if
"Owner" shows that user's logon name, “Spool LU" indicates the LU,
and "File Status" shows "Actively spooling".

EX Command -- Exits interactive spool mode.

References: User's Manual
T3-27

SPOOLING SYSTEM (VC+)

CI> SP

RTE—A Spooling System
Type ? for help

- ST

Redirection Status:
6 =>68

Spool File Status:

Maximum Spool Files = 21 |

Filename = OUTSPOOL 22.SPL::SPOOL

Owner = HENRY Terminal LU = 68 -
Spool LU =8 File Status = Actively Spooling
Approximate Line Count =0

- EX

CI>

3=27 R3.25

3.28 Qutput Spooling

ON Command -- The spooling system directs all output that would
have gone to the specified LU to a file created by the spooling
system. This file is kept in directory ::SPOOL and has a name
created by the spooling system. Files in this directory must not
be modified except through the spooling system to avoid confusing
it. These files are read/write protected from the general user for
this reason.

OF Command -- Terminates spooling to the spool file. The file is
then put into a spooling queue for output to the specified LU,
after which it is purged. The LU 1is locked by the spooling system
during output so no other output to the LU can interfere.

LI Command -- The named file is put into a spooling queue for
output to the specified LU. The LU is locked by the spooling
system during output so no other output to the LU can interfere.
The third parameter "nc" specifies no carriage control (a space is
padded at the beginning of each record), which is normal for most
text files.

References: User's Manual .
T3-28

OUTPUT SPOOLING (VC+)

on <lu>
of <lu>
li <file> <lu> n

— on 6
Spooling started from LU 6
To OUTSPOOL22.SPL::SPOOL

— of 6 |
Spooling terminated from LU 6
To OUTSPOOL22.SPL::SPOOL

— li area.pas 6 nc
File AREA.PAS::HENRY
Queued for output to LU 6

3-28 R3.26

3.29 LU Redirection

ON Command -- Subsequent output to the LU is redirected into the
named file or LU. This does not protect the file or redirected LU
from being written to by other programs.

OF Command -- Terminates redirection from the specified LU, If
redirection was to a file, the file 1is closed and not written to
the LU as with output spooling.

References: User's Manual
T3-29

LU REDIRECTION (VC+)

on <lu> <file>

on <lu> <lu>

— on 8 MYFILE
Spooling started from LU 8
To MYFILE::HENRY

— on 6 67
LU redirection started
from LU 6 to LU 67

— of 6
Spooling terminated
from LU 6 to LU 67

3-29 R3.27

3.30 D8 Transparency

RTE~A systems which use the DS/1000-IV Distributed Systems Network
can access files which reside on other RTE-A systems within the
network. Any command or program that specifies a file, directory
or mask may be used with DS transparency (e.g., co, pu, dl, edit,
link).

If the remote node is running with VC+ multiple sessions, a general
user session will be created for you on the remote system (even if
you are a super-user on your system). You then have the file
access rights of a general user. You may optionally log on as a
specific user (which may be a super-user) by specifying a logon
name and password in the file descriptor. You will be logged off
when the file you are accessing is closed.

Copy, purge, and directory list are typical commands utilizing DS
transparency. Remote files may be used as the input to programs
such as EDIT or the Pascal compiler.

The'following are limitations of the DS system:

1. You cannot access I/0 devices on a remote system (such as a
printer or tape drive).

2. You cannot run a program on a remote system (although you may
copy the file to your system and run it).

3. Working directories are not available on a remote system. You
must specify full path names.

4. CI commands are not available through your remote logon.

5. Note that the 1last copy command, if issued from node 11, will
transfer the file via the route:

24 => 19 => 16 => 11 => 16 => 19

References: User's Manual
T3-30

DS TRANSPARENCY

FILENAME >NODENAME [LOGON]

CO AREA.PAS /GEORGE/@:>24
EDIT /GEORGE/MEMO12.TXT>24
DL /PROGRAMS>16 [MANAGER/ZYX]

CO /AMY/DOCS>24 /ALICE/DOCS>19

3-30 R3.28

3.31 FMGR File System

Filename -~ Up to 6 characters, must start with a 1letter, cannot

use the characters : , - +, names with / are unusable in CI as are
names with periods as the first or last character.

SC -- Security code, two characters or a decimal number in the
range -32768 thru 32767. Zero specifies no security code.

CRN -- Cartridge Reference Number, two characters or a decimal
number in the range -64 thru 32767. When the number is negative,
it refers to the LU of the disc cartridge (volume).

Type, size, reclen -- Same as in CI.

References: Utilities Manual
T3-31

FMGR FILE SYSTEM

DIRECTORY

LU16 ——> | crn = AA &

FHOS

filename:sc:crn:type:size:reclen

ONE DIRECTORY PER LU
6 CHARACTER FILE NAMES

NO TYPE EXTENSIONS, TIME STAMPS
NO UNPURGE

3—31 R3.29

3.32 Using FMGR

Subsystems -~ Such as 1Image/1000 or Graphics/1000 cannot wuse
hierarchical files.

Master Relocatables -- Are supplied with FMGR filenames in FC
format.

BL Command -- Change buffer limits (UN = unbuffered):

tommmm— e + R + Fmm————— +
| program | ===> | buffer | ====> | terminal |
o + e e L LR T e + e +
| I
lower upper
(eg. 100) (eg. 300)
IN Command -- Initialize a FMGR cartridge.
PK Command -- Pack a FMGR cartridge,

Copying FMGR Files -- The CI copy command can be used to put FMGR
files into the hierarchical file system. In fact, any CI command
will accept a FMGR filename within the naming restrictions imposed
by CI.

References: Utilities Manual
T3-32

USING FMGR

CI> FMGR
FMGR: EX
CI>

« SUBSYSTEMS
» MASTER RELOCATABLES
o BL, lu, BU/UN, low, high

o IN, msc, oldcrn, newcrn label,,
dirtracks

o PK,crn

CI> CO <FMGR file> <CI file>

3-32

R3.30

3.33 FMGR Cartridges

File System Disc LUs -- These are the mounted hierarchical file
system volumes.

FMGR disc LUs -- These are the mounted FMGR cartridges.

CRN -- (Cartridge Reference Name) is a name by which the FMGR
cartidges may be referred that is similar to a directory name. The
CRN is stored as a 16 bit integer and may take on the form of two
ASCII characters or an integer in the range -64 to 32767. When the
CRN specified is negative, it refers to the LU assigned to the FMGR
cartridge. LU 17 may be referred to as "DB" or "-17" in the CRN
specification., LU 16 may be referred to as "16" or "-16". Note
that the DL command requires a positive LU number.

References: Utilities Manual
T3-33

" FMGR CARTRIDGES

CI> CL
File System Disc LUs: 18 19 23

FMGR Disc LUs (CRN): 16(16) 17(DB)

CI> LI &AREA::DB
CI> LINK %ZAREA::—17
CI> DL 17

3-33

R3.31

 PROGRAM
DEVELOPMENT

CHAPTER 4

Table of Contents

Chapter 4
PROGRAM DEVELOPMENT

The Pascal/1000 Compiler . . o o o . 4-1
Pascal Compiler OptionS e o o e o o o o o e o o o o o ¢ o 4"2
Pascal EXtensSions o« « « o o o o o o o o o o o o o o o s 9 9+ s 4-3
The FORTRAN/77 Compiler e e o o e e e o ° o o o o o o o o 0 . 4-4
FORTRAN Compiler OptionS e o e o o e e e e e o o o o o ¢ ¢ o 4-5
FORTRAN ExtenSionS e e e e e e e o o e e © o o o ¢ o ¢ o o o 4-6
LINKING RELOCATABTULE FILES 4-7
USing LINK Interactively * o o o o o o o ’o o o o o o o o o o 4-8
LINK CommMandS e o o o o o o o o o o o o o o6 9+ ¢ o o o o o o o 4-9
Libraries e ®© e e o o 6 e » e 6 o 6 e © o o o o o o o ¢ o o o 4-10
Type 6 File e o e o e o o o e o o ¢ o o o o 6 o o o o s e o o 4-11
Private Libraries e e e o o o o o o o o o o o e o o o o o o o 4_12
SYMBOLTIC DEBUG/1000 4-13
USing Debug e e o o e o o © o o o o o o o o o o o o o o e o o 4_14
Debug Commands e © o o o o o o o o o o o o o & o o o o o o o 4-15
C OMMAND FILES o o 4-16
USing Command FileS o ¢ o o o o o o o o o o o o o o o o o o o 4-17
$ Parameters e o e o o o o o © o o © o e e o s o o o o o o o 4_18
Command File as a CI Parameter . o« o« o o o o o ¢ o o o o o » 4-19
Exiting Command Files o o e o o o e o o o o o o o o o o o o o 4_20

e o e e e e o e o e o o o o o o o o o o 4_21

Nesting Command Files

1.

2.

3.

4.

MODULE OBJECTIVES

»Be able to use EDIT/1000 to create a Pascal or FORTRAN program

with compiler options. Compile, link and run the program.
Debug a program using Debug/1000.
Be able to create a private, indexed library.

Use command files with variable parameters and nesting.

ii

4-1.

4-2,

SELF-EVALUATION QUESTIONS

The first line of the Pascal source file CRASH.PAS contains
the option specification:

SLIST OFF, TABLES OFF, KEEPASMB, MIX ON

A file called CRASH,.COP contains the line:

$LIST ON, MIX OFF

The runstring to compile the program is:

CI> pascal CRASH.PAS 6 0 - LIST,TABtES'

What are the option settings during the compilation? What
will appear at LU 67 Why is LU O specified for the
relocatable file? :

The first few lines of source file CRASH.FTN look like:

program crash

dimension node(20)
data pi/3.14159/

[NV N Vo

The runstring used to compile the program is:
CI> ftn7x CRASH.FTN 1 -,,sm

What compiler options are in effect during the compilation?
What will appear at the terminal (LU 1)? Where is the
relocatable file put? Why are two commas used 1in the
runstring? How many files are produced by the compiler
assuming a successful compilation?

What is the difference between a private library and a
library like $BIGLB? What would happen if you named your
private library (in your working directory) $BIGLB? Would
there be any way to resolve references to routines contained
in $BIGLB.LIB::LIBRARIES?

When you linked your program, the load map showed that your

main program started at location 2000 octal (1024 decimal).
What is in locations 0 through 1777 octal? :

iii

4.1 The Pascal/1000 Compiler
Defaults for <list>, <relocatable> and <option> files:
* If nothing is specified, no file is produced.

* If "-" is specified, the source filename 1is wused with
default type extension.

For example:

CI> pascal area.pas 1 -

the

sends the source listing to LU 1 (the terminal) and creates a

relocatable file called AREA.REL.
CI> pascal area.pas - 0 -

sends the source 1listing a file called AREA.LST, sends
relocatable file to the bit bucket, and looks for an option
called AREA.COP, Using LU 0 for the relocatable file saves
when debugging syntax errors in large programs since

the
file
time
the

compiler does not waste time creating relocatable code for the

correct parts of the program.

References: Pascal Ref Manual
T4-1

4,2 Pascal Compiler Options

Options are separated from each other with commas. Parameters to
options (e.g., ON or OFF) are separated from the option with a
blank. Where options have an ON or OFF parameter, the default will
be ON if no parameter is specified.

Runstring -- Options here can contain no blanks, therefore options
with parameters (e.g., LIST OFF) are unusable in . the runstring.
Remember that options 1like LIST can be used with no parameter and
will default to ON.

Option File -- Each line containing options begins with a §$ sign.
Options here override those in the runstring.

Source File -- Each line containing options begins with a $ sign.
Options here override those in the runstring or option file.

References: Pascal Ref Manual
T4-2

4.2 Pascal Compiler Options

Options are separated from each other with commas. Parameters to
options (e.g., ON or OFF) are separated from the option with a
blank. Where options have an ON or OFF parameter, the default will
be ON if no parameter is specified.

Runstring -- Options here can contain no blanks, therefore options
with parameters (e.g., LIST OFF) are unusable in the runstring.
Remember that options 1like LIST can be used with no parameter and
will default to ON,

Option File -~ Each line containing options begins with a $ sign.
Options here override those in the runstring.

Source File -~ Each line.containing options begins with a $ sign.
Options here override those in the runstring or option file.

References: Pascal Ref Manual
T4-2

PASCAL COMPILER
OPTIONS

$tables on,list

LIST [ON or OFF] — turn on/off source
listing (errors always listed)

LIST_CODE [ON or OFE]— mix Pascal source
| with assembly code

TABLES [ON or OFF] — list relocatable addresses
and symbol table

XREF — produce cross—reference listing of
~all variables within block

4-2 . R42

4.3 Pasdal Extensions

Extensions to the language are discussed in Chapter 1 of the Pascal
Reference Manual.

References: Pascal Ref Manual
T4-3

PASCAL EXTENSIONS

WIRTH "STANDARD" PASCAL

PLUS:

1. Additional 1/0 routines

2. Functions may return records,
arrays and sets

3. CASE has subranges and OTHERWISE

4. Constant expressions and
structured constants

5. External routines

6. Separate compilation

R4.3

4.4 The FORTRAN/77 Compiler
Defaults for <list> and <relocataple> files:
* If nothing is specified, no file is produced.

* If "-" is specified, the source filename 1is used with the
default type extension.

For example:
CI> ftn7x area.ftn 1 -

sends the source listing to LU 1 (the terminal) and creates a
relocatable file called AREA.REL,

CI> ftn7x area.ftn 6 0 80

sends the source 1listing to LU 6 (the printer), sends the
relocatable file to LU 0 (the bit bucket) and sets the lines per
page to 80. Setting the relocatable to 0 allows the compiler to
run faster, which may be helpful while debugging syntax errors
in large programs.

References: FORTRAN Ref Manual
T4-4

'THE FORTRAN /77
COMPILER

FTN7X <source> <list> <relocatable>
<line count> <options>

<source> FTIN
<list> LST
<relocatable> .REL

<line count> 59 default, <10=no pagination

- <options> no delimiters

- 44 | R4.4

4.5 FORTRAN Compiler Options

Source File -- Single character options must be specified in the
first line of the program and are separated by commas. The options
“must be preceded by FTN77 (which specifies FORTRAN 77
compatibility). If nothing is specified, FTN77,L is assumed.

Runstring -- Any single character options may be specified in the
runstring. Runstring options are not separated by commas.

References: FORTRAN Ref Manual
T4-5

C -

I

- FORTRAN COMPILER

OPTIONS

(line 1) FTIN7X,T,L,Q

produce cross—reference listing
of all variables and labels.

produce a source listing

$LIST [ON OR OFF] - a program statement

to turn on/off source listing.

produce a mixed listing of o
FORTRAN source and assembly code.

include the relocatable address
with the source listing.

insert information for Symbolic
Debug into relocatable file.

produce a symbol table.

4-5 R4.5

4.6 FORTRAN Extensions

The extensions and their backward compatibility are discussed in
the FORTRAN 77 Reference Manual in Chapter 8 and Appendix E.

References: FORTRAN Ref Manual
T4-6

FORTRAN EXTENSIONS

* F H X X X X *

FORTRAN 66
+

FORTRAN 77
+

MIL-STD-1753

DO WHILE

block DO
IMPLICIT NONE

+ : :
HP/1000 FORTRAN

bit manipulation

include files

EMA common areas
character concatenation

> 6 character names
recursion

4—6

R4.6

4.7 LINKING RELOCATABTULE FILES

T4-7

LINKING
RELOCATABLE

FILES

4-7

4.8 Using LINK Interactively

? Command -- Lists all the available commands. Note that there is
no help with individual commands as there is in CI.

RE Command -- Relocates a relocatable module into the current
program file being linked.

EN Command -- Ends the 1linking process. The system 1libraries are
searched to resolve external references (I/0 routines, math
routines, etc.) and a runnable program file is created.

Modules used to resolve all external references are 1listed, then

the load map is 1listed which indicates the starting address and
size of each module.

References: Link User's Manual
T4-8

USING LINK
INTERACTIVELY

- CI> link

link Rev.2326 Use ? for help
link: re area.rel

AREA
link: en

PNAME XREIO REIO LOGLU

- Load Map: "
~ AREA 2000 126. - 3y s v oS
PNAME 2210 24. wffan e e OchS

Program AREA.RUN ready; 6 [Pages

Runnable only on an RTE—A system
CI>_

R4.8

4.9 LINK Commands

PR Command -- Set program priority. This defaults to 99 if not
otherwise specified in the source file,

DE Command -- Set debug mode. A file with type extension of DBG is
created which contains information required by Symbolic Debug/1000.

DI Command -- Displays as yet undefined external references. These
must be resolved using the SE command if the references are not in
the standard system libraries.

SE Command -- Search a library. LINK will assume a file type
extension of .LIB and will look for the file in both your working
directory and the directory /LIBRARIES if not otherwise specified.

A Command -- Aborts LINK.

References: Link User's Manual
T4-9

LINK COMMANDS

link: PR 65
link: DE |
link: DI
Undefined symbols;

.NFEX .EI0 .FION .FI0 .RIO .DTA
link: SE $BIGLB

PNAME XREIO REIO LOGLU
link: A

aborting link
CI>_

4-9

R4.9

4.10 Libraries

$BIGLB =-- Contains 1I/0 routines, file handling routines, math
routines, and system calls.

SFNDLB -- Contains FORTRAN routines.
$PLIB -- Contains Pascal routines.

These libraries may or may not be searched automatically when

LINKing your programs. The libraries to be searched are defined
during system generation.

References: System Generation and Installation Manual
T4-10

LIBRARIES

4.11 Type 6 File

Contains 256 byte blocks. The first block contains housekeeping

information. The remaining blocks contain the program memory image
records.

References: none
T4-11

TYPE 6 FILE

BLOCK 1

SKELETON
ID SEGMENT
HEADER INFO
BLOCK 2
IREEEEEEEEEE
MEMORY
IMAGE
RECORDS
BLOCK n

- 4-11 R4.11

4.12 Private Libraries

Any set of relocatable files can be made into a 1library using the
MERGE and LINDX utilities.

MERGE -- The first parameter is shown as LU 1 which causes the
program to prompt for a 1list of relocatable files to be merged.
This parameter can also be a filename which contains the 1list of
relocatable files to be merged.

The second parameter must be the name of the file which will
contain the merged files.

L%NDX -~ Creates an index to all external references in the library
f leo)

References: Utilities Manual, Link User's Manual
T4-12

" PRIVATE LIBRARIES

CI> merge 1 mylib.rel

Enter filename libl.rel
Enter filename lib2.rel
Enter filename <cr>

LIB1.REL EJJJ LIB2.REL

CI> lindx mylib.rel mylib.lib
Sorting entries

A_ENTRY
B__ENTRY
[~
[,
MYLIB.LB | | < J| MYLIB.REL J<——
~
\/

4-12 R4.12

4.13 SYMBOLTIC DEBUG/1000

T4-13

SYMBOLIC
DEBUG /1000

4.14 Using Debug

Debug may only be used if the program was compiled with the debug
compiler option 1in effect and if the relocatable file was LINKed
using the DE command with LINK, LINK will create a file with the
same name as the program but with a type extension of DBG. Note
that Debug will appear to work if an o0l1d copy of the DBG file is
used with a newer version of the program, but with misleading
results,

Debug displays a pdrtion of the source file and has a pointer to
the 1line that 1is about to be executed. Help with commands 1is
available by using the ? command.

P Command -- Proceed to a specified line number. If no line number
is specified, the program runs to the next breakpoint or to
completion if no breakpoint is encountered.

E Command -- Exit debug. The symbol table is saved in the file
with type extension DBG.

References: Debug Ref Manual
T4-14

USING DEBUG

CI> debug area

program area
real radius, area

write (1,'("area of circle program")')
radius = 1
do while (radius .GT. 0)

write (1,'("radius: "))

read (1,*)radius

2326 Version
DEBUG>

M |
O PTG WM

DEBUG> p 7
area of circle program

DEBUG> e
Saving symbol table

CI> _

4—-14

R4.14

4.15 Debug Commands

B Command -- Sets a breakpoint at the line specified. Any number
of breakpoints may be set in a program. Breakpoints may be
specified within a different module (source file) by specifying the
module name after the line number, separating them with a slash.
Breakpoints may also be set to break after a certain number of
iterations thru the breakpoint (as in a loop). They may also break
contingent on the value of a variable. See the Debug/1000
Reference Manual for more information.

P Command -- Proéeed to a breakpoint or a specified line number.

D Command -- Display the value of a variable.

C Command

Clear a breakpoint.

M Command -- Modify the value of a variable.

References: Debug Ref Manual
T4-15

DEBUG> b 7
Breakpoint set at 7/AREA

DEBUG> p
area of circle program

DEBUG> d radius
RADIUS = 1

DEBUG> ¢ 7
Cleared 7/AREA

DEBUG> m radius 0O
RADIUS:1 =>0

DEBUG> p
Program ran to completion

CI> _

4-15

- DEBUG COMMANDS

“

R4.15

4.16 COMMAND FILES

T4-16

COMMAND FILES

CX> FTNTX ARE
FTN7X AREA.FTN
LINK AREA.REL

DEBUG AREA

4-16 R4.16

4.17 Using Command Files

-Command files contain a 1list of commands to be executed
sequentially. The TR command transfers control to the command

" file, the commands are executed, and control is transferred back to
CI. .)

References: User's Manual
T4-17

USING COMMAND

—

AREA.CMD

/

pascal area

link area.rel
rp area.run
pr area 20
ru areqa

edit area.pas
.pas — -

| Q// |

CI> tr area.cmd

4-17

FILES

R4.17

4,18 $ Parameters

The parameters included in the TR command are automatically given
the names $1, $2, ..., $9. These names can then be used in the

command file to directly substitute the characters from the
runstring. '

References: User's Manual
: T4-18

& PARAMETERS

| $(41 £9
CI> tr <cmdfile><paraml><param?2>...<param9>

*/DEV.CL;>
__/ |
-

edit $1.pas

pascal $1.pas — —
link $1.rel

rp $1.run

pr $1 $2

ru $1

of $1 ID

>t

CI> tr dev.cmd area 20

4-18 R4.18

_4.19 Command File as a CI Parameter

The Command Interpreter CI executes the program file CI which
requires the creation of a clone name.

The first parameter to the program CI is assumed to be a command
file. The commands in this file are executed by the CI clone and
the clone is terminated. The third through eleventh parameters are
the $§ parameters to the command file,

References: User's Manual
T4-19

COMMAND FILE AS A
CI PARAMETER

CI> ci <cmdfi1e> <parameters>

. C_

4.20 Exiting Command Files

When a command file is executed with a TR command, there 1is an
implied TR,1 command at the end of the file. This effectively
terminates the command sequence even if the command files were
nested.

When a command file 1is executed as a parameter to CI, there is an
implied EX command at the end of the file. This exits the CI clone
that was executing the command file and returns control to the
previous copy of CI that created the clone. Notice the effect on
nested command files, :

References: User's Manual
T4-20

EXITING
COMMAND FILES

CI> tr <filel> —

CcI>__

/T

tr<file2>

e
- CI> CI <FILE1> —
CL.A = 3
CI>_
> ci<file2> |C— CI..Bﬂ
oy
0 ||&

4.21 Nesting Command Files

Nesting is accomplished by cloning copies of CI with command file
parameters. Nesting can be to any level to the limit of the number
of ID segments available for the cloned copies of CI. Note that
although parameters can be passed from each copy of CI to it's
clone, no information can be passed back.

References: User's Manual
' T4-21

NESTING
COMMAND FILES

CI> tr<filel>

. |

))
ci<file2> J

ci<file3>

\Z
CI>

- NESTING
COMMAND FILES

CI> tr<filel>

N
7

ci<file2>

T

ci<file3>

CI> _

4-21

- USING RTE-A
PROGRAMMATICALLY

CHAPTER 5

Table of Contents

Chapter 5
USING RTE-A PROGRAMMATICALLY

LUT' DVT and DeVice Driver e o o o o o o o o ¢ o e o o o o o 5-1
IFT and Interface Driver . . . ¢ ¢ o ¢ ¢ ¢ o o o o o o o o o 5=2
EXEC CALLS 5-3
Intro to EXEC Calls e e o o o o e o 6 o o e o o o o o o o o o 5-4
The Generic EXEC Call e e e o o o o o o o o & o o o o o o o o 5-5
Read and Wt‘ite - EXEC l' 2 ° 5-6
Automatic Qltput Buffering e e o o o o o o o o o e o o o o o 5-7
Unbuffered Write e e e o o o o o o o o o o o e o o o o o o o 5-8
Device Status From the A-Register == ABREG . . ¢« ¢« ¢ ¢« « « o 5-9
User Errol’ l'landling e e o6 6 6 o &6 &6 e e e e & o o o s o o o o 5-10
Prompting fOl' Input e o o o e o o o o o o o & o ° o o o o o o 5-11
Buffered Input - REIO e e e o o o o o o o o o o o o o °o o o 5-12
Standard LU Addressing ® e o o o o o o o e o o o o o o o o o 5-13
Extended EXEC Calls =- XLUEX, XREIO . + ¢ ¢ o o o o o« o o o o« 5-14
Buffering ReView e & o o o6 o o o o 6 o e e o & o © o o o o o 5-15
S YSTEM SUBROUTINES 5-16
Op System Command - MESSS e & o o o e o e o o o * o o o o o 5-17
Get Prograln Name --= PNAME e o o o o o e o o o o 6 e o o o o o 5-18
Get System Time - FTIME e o o o o o o o6 o o o s o o o o o o 5-19
Send Logging Message == LOGIT (VC+) « o o o o o o o o o o » o 5=20
Other System Subroutines . « o ¢ o ¢ o o o o o ¢ o o o o o o« 5=21

2.

3.

MODULE OBJECTIVES

Understand the control path from an I/0 request through the LU

table, device table, and interface table to the device itself.

Know the advantages and disadvantages of using EXEC I/0 as

opposed to using the I/0 routines of a higher level language.

Be able to write a program using EXEC I/O with programmatic
error recovery and the various forms of I/0 buffering.

ii

SELF-EVALUATION QUESTIONS

What is the function of the device driver?

What is the function of the interface driver?

Where does the device status information come from?
What are the disadvantages of using EXEC services?

What are the advantages of using EXEC services?

What happens in an EXEC 2 (write) call with no option bits

set if the device to which you are writing is off-line?

What are the advantages'of using a buffered read or write?

What are the disadvantages?

When reading from a device, how can your program detect the

"end of file"?

What is the advantage of always using XLUEX and XREIO? Can

you think of any disadvantages?

iii

5.1 LUT, DVT and Device Driver

I/0 Request -- References an LU. The system uses the LU number as
an index into the LU table.

LU Table (LUT) -- Maps each LU to an entry in the device table
associated with the requested device.

Device Table (DVT) -- Contains the latest status information for
the device and the entry point for the device driver routine.

Device Driver -- Makes the communication protocol required for the
device transparent to the user.

References: System Design Manual
T5-1

" LUT. DVT AND
DEVICE DRIVER

FORTRAN
|/0 REQUEST
1 WRITE (6,...

DEVICE
DRIVER

> 6

STATUS

L L]

LUT DVT

5.2 IFT and Interface Driver

Device Table (DVT) -~ Also contains a pointer into the interface
table to an entry associated with the type of I/0 card to which the
device is connected.

‘Interface Table (IFT) -- Contains the select code which physically
identifies the I/0 card. It also contains the entry point for the
interface driver routine associated with the I/0 card.

Interface Driver -- Communicates with the device driver and the 1/0
card to provide the necessary protocol for the I/0 card.

1/0 Card -- Is physically connected to the device.

References: System Design Manual

T5-2

- IFT AND
INTERFACE DRIVER

FORTRAN
1/0 REQUEST
WRITE (6,...

Ry | /0
| CARD
DEVICE \——", ~INTERFACE)—,
DRIVER " DRIVER >
| | — —

T T -

56 ° > b‘_l
===

LUT DVT IFT

5.3 EXEC CALLS

T5-3

EXEC
CALLS

5-3

5.4 Intro to EXEC Calls
ADVANTAGES

Less Code -- This means the program will use less memory and, in
general, be faster than the Pascal or FORTRAN counterpart.

Unavailable Services -- Services not available from high-level
languages include communication to other programs and scheduling
other programs. EXEC calls also allow much more control over
standard 1/0 services such as testing a device to see if its busy
before initiating data transfer.

DISADVANTAGES

Not Portable -- Programs using EXEC calls will not be portable to
other types of computers and may be marginally portable to previous
RTE operating systems.

Less Readable -- EXEC calls are very criptic., The main difference
between EXEC calls is the first parameter, for example EXEC(l,...)
is a read request and EXEC(ll,...) is a time request.

More Difficult -- EXEC calls have two or (usually) more parameters.
‘Their are many flag bits that may be set in various combinations to
control the way the request is handled. Formatting and error

returns must be handled by the program.

EXEC calls were originally written to interface with FORTRAN
programs. The use of EXEC calls with Pascal is sometimes more
difficult than FORTRAN because of differing data formats (e.g.,
EXEC often expects strings to be passed in integer arrays) and
because of Pascal's strong type checking (e.g., EXEC(l,...) and
EXEC(11l,...) have to be declared as separate procedures and aliased
to reference the same external name because of differing parameter
types).

References: Prog Ref Manual
' T5-4

INTRO TO EXEC

RTE—-A EXEC Services:

* |/0 Communication

* Program to Program Communication

* Program Control

* System Time Requests

Advantages:

* Produce less code than
Pascal /FORTRAN

* Perform services unavailable
from high—level languages

Disadvantages:

* Programs not as portable
* Programs are less readable

* More difficult to use than
high—level language services

CALLS

R5.4

5.5 The Generic EXEC call

May be called as a procedure (Pascal), a subroutine (FORTRAN), or a
function (Pascal or FORTRAN). In Pascal, the EXEC call must be
declared external in the procedure declaration section.

ECODE -- is a one-word integer that identifies the specific service
requested from EXEC. Bit 14 and 15 in this word are used to change
the form of error handling and are not used to identify the service
request. Therefore, the ECODES 2, 16386, -16382, and -32766 (in
‘decimal) are all for the same service request.

Parameters -- Are wusually one-word integers or integer arrays.
Parameters are assumed to be passed by reference. This presents no
problems in FORTRAN/77 or Pascal/l000 since values are always
passed to subroutines by reference (in Pascal/1000, it is the
procedure itself that de-references the non-VAR parameters).

A- and B-Registers -- Return error information or other data
related to the specific request. If the EXEC call is made as a
function, the returned value is the A- and B-Register for two-word
function types or just the A-Register for one-word types.

This info will be useful when setting control bits:

Control bit: Decimal: Octal: Hexidecimal:
0 1 1 1
1 2 2 2
———— 2 m——————e 4 ————— 4 ————- 4 ——-
3 8 10 8
4 16 20 10
———= 5 e—————- 32 —=———- 40 -——-- 20 —--
6 64 100 40
7 128 200 80
————8 —————- 256 =--=- 400 ----100 ---
9 512 1000 200
10 1024 2000 400
-——11 -———- 2048 --- 4000 ---- 800 —---
12 4096 10000 1000
13 8192 20000 2000
=== 14 ---—- 16384 -- 40000 --- 4000 ---
15 -32768 100000 8000

References: Prog Ref Manual
T5-5

THE GENERIC

EXEC CALL

THIS CALL OPERATES DIFFERENTLY
WITH DIFFERENT ECODES AND IS

SUITABLE FOR EVERYDAY USE.

EXEC (ECODE,P1,P2,...,Pn)
L J

—

IDENTIFIES FURTHER SPECIFIIZS
THE SPECIFIC THE REQUEST
SERVICE REQUESTED

RETURNS:

P1,P2,...Pn | RETURN PARAMETERS CONTAIN
THE INFORMATION REQUESTED

A AND B REGISTERS

ERRORS:

RTE HANDLER OPERATING SYSTEM ABORTS
| OR SUSPENDS THE PROGRAM.
PROGRAMMATIC NO ACTION IS TAKEN BY RTE.

THE PROGRAM MUST DETECT
AND CORRECT THE ERROR.

5-5 RS5.5

5.6 Read and Write -- EXEC 1, 2

FORTRAN example:
program example

integer bufr(40), prompt(13), INOTE: must be integer buffers

+ bufln, promptln, cntwd, lu, ec
data prompt/'ENTER UP TO 80 CHARACTERS: '/
+ bufln/40/, promptln/13/, ec/400b/
lu =1 !send the prompt to the terminal (LU 1)

cntwd = 1lu
call exec(2,cntwd,prompt,promptln)

cntwd = lu + ec !read and echo input
call exec(l,cntwd,bufr,bufln)

cntwd = 1lu !write input back to terminal
call exec(2,cntwd,bufr,bufln)
end

Pascal Example:
program example (input, output);

type buffer = packed array [1..80] of char;
int = =32768..32767;
var bufr, prompt : buffer;
bufln, promptln, cntwd, lu, ec : int;
procedure exec (ecode, cntwd: int; bufr: buffer, bufln: int);
external;

begin
prompt := 'ENTER UP TO 80 CHARACTERS';
bufln := -80;
promptln := =25;
ec := 256;
lu := 1;

cntwd := 1lu; {send the prompt to the terminal (LU 1)}
exec (2, cntwd, prompt, promptln);

cntwd := lu + ec; {read and echo input}
exec (1, cntwd, bufr, bufln);

cntwd := 1lu; {write input back to terminal}
exec (2, cntwd, bufr, bufln);
end.

References: Prog Ref Manual
TS5-6

READ AND WRITE

EXEC (ECODE,CNTWD,BUFR,BUFLN)

ECODE 1=READ
2=WRITE} ASCII
CNTWD:
NB Y4 EC LU
14 12 8 5§ 4 3 2 1 o0
LU LU OF DEVICE
EC ECHO TO TERMINAL (TERMINAL READ)
Z LOOK FOR ADDITIONAL PARAMETERS
NB NON—BUFFERED 1/0
BUFR INTEGER ARRAY
BUFLN LENGTH OF BUFR (+WORDS OR
—CHARACTERS)
A—-REGISTER RETURNS DEVICE STATUS
(UNBUFFERED 1/0 ONLY)
B-REGISTER RETURNS ACTUAL NUMBER OF

WORDS (CHARACTERS) READ/WRITTEN
(ALWAYS POSITIVE)

5.7 Automatic Output Buffering
SAM -- System Available Memory

BL command -- (buffer limits) can be changed interactively
through FMGR:

CI> fmgr

FMGR: bl,1,bu,100,300 sets buffer limits to 100,300
FMGR: bl,1,un sets unbuffered operation
FMGR: bl,6 displays current buffer limits
LU¥ 6 BU BL= 96, 384 AaC= 85 and accumulated characters
FMGR: ex

CcI>

References: Prog Ref Manual

AUTOMATIC
OUTPUT BUFFERING

 * TERMINALS AND PRINTERS ARE
USUALLY BUFFERED FOR OUTPUT

* FMGR: bl,<lu>,bu,<low>,<high>

USER PROGRAM BUFFER
PROGRAM -]
PARTITION | I

1§

)V
SAM ATA BUFFE
PARTITION DATA BUFFER

PARTITION

* PROGRAM CONTINUES AFTER DATA
IS TRANSFERRED TO SAM

* PROGRAM IS SWAPPABLE WHILE DOING I/0

5.8 Unbuffered Write

FORTRAN example:

integer nb
data nb/40000b/

cntwd = lu + nb

Pascal example:

.var nb : int

nb:= 16384;

References: Prog Ref Manual

T5-8

" UNBUFFERED WRITE

CNTWD:

14

L ar

USER PROGRAM BUFFER
PROGRAM .
PARTITION

—

PROGRAM MUST WAIT FOR I1/0

PROGRAM NON—SWAPPABLE
WHILE DOING 1/0

MUST BE USED TO OBTAIN
DEVICE STATUS OR FOR
USER ERROR HANDLING

5-8

5.9 Device Status From the A-Register -- ABREG

DB -- Device busy, such as a tape rewind preventing any other
operation from starting.

EOM -- End of medium, such as attempting to write past the end of
the tape. '

SOM -- Start of medium, might be found after issuing a rewind
request,

SE -- Soft error would be found if the read/write was successful,
but not without some error recovery attempts such as a re-read
after an initial parity error.

E -- Hard error 1is found when the I/O operation was unsuccessful
such as for device time-out, down device, or write-protection. For
any error of this nature, the appropriate error message is
displayed (unless the UE bit was set for the request).

References: Prog Ref Manual
T5-9

DEVICE STATUS
FROM THE A-REGISTER

 ABREG (A,B)

EXEC CALL
]
U | ABREG CALL
A—REGISTER
DEVICE STATUS: DVT
. . iv?
AV | DEVICE TYPE EOF| DB |EOM |SOM |SE E
16 14 13121110 9 8 7 6 & 4 3 0

AV — AVAILABILITY: O=AVAILABLE, 1=DOWN

12 =PRINTER, 37=HPIB
END OF FILE DETECTED

DEVICE TYPE -
EOF -
DB — DEVICE BUSY
EOM — END OF MEDIUM
SOM — START OF MEDIUM
SE - SOFT ERROR
E - HARD ERROR

- 5-9

0-7=TERMINAL, 23=MAG TAPE

RS.9

5.10 User Error Handling

FORTRAN example:

integer areg, breg, nb, na, ns
data nb/40000b/, na/100000b/, ns/40000/

cntwd = lu + nb

call exec(2+na+ns,cntwd,bufr,bufln)

goto 777 lreturn here if error occurs
continue lreturn here if all is ok

7717 call abreg(areg,breg)
write(l,' ("Error on write = ",a2,a2)') areg,breg

Pascal example:

label 777;
var areqg, breg, nb, na, ns : int;

procedure abreg (areg, breg: int);

external;
begin

nb := 16384;

na := =-32768;

ns := 16384;

cntwd := lu + nb;

exec (2+na+ns, cntwd, bufr, bufln);

goto 777; {return here if error occurs}
; {return here if all is ok}

777 abreg (areg, breg);
writeln ('Error on write = ', areg, breg);

References: Prog Ref Manual, Pascal & FORTRAN Ref Manuals
T5-10

USER ERROR HANDLING

 ECODE:

NA — NO ABORT
NS — NO SUSPEND (LU DOWN, LU LOCKED, ETC)

CALL EXEC (...) frpor |

GOTO 777 £ NORMAL
RETURN

CONTINUE

N

A—REGISTER:'_ SC SCHEDULING ERROR

RN RESOURCE NUMBER ERROR
LU LU ERROR

CL CLASS 1/0 ERROR

IO 1/0 ERROR

UNCONDITIONAL ABORT:

EXEC ERROR — TOO MANY PARAMETERS,
ILLEGAL ECODE

CPU ERROR — UNIMPLEMENTED INSTRUCTION,

MEMORY PROTECT VIOLATION, ETC

5-10

R5.10

5.11 Prompting for Input

FORTRAN example:

integer ec, z '
data ec/400b/, z/10000b/

cntwd = 1lu + ec + 2z Ilprompt for data and read it
call exec(l,cntwd,bufr,bufln,prompt,promptln)

Pascal example:

var ec, z : int;

begin
ec := 256;
2z := 4096;

cntwd := 1lu + ec + z; {prompt for data and read it}
exec (1, cntwd, bufr, bufln, prompt, promptln);

References: Prog Ref Manual
T5-11

PROMPTING FOR INPUT

~ EXEC 1 READ/WRITE

exec (1,entwd,bufr,bufln,prompt,promptin)

Z
12

Z — look for additional parameters

* PROGRAM IS NOT SWAPPABLE

5-11 RS.11

5.12 Buffered Input -- REIO

FORTRAN example:

call reio (1, cntwd, bufr, bufln)

Pascal example:

reio (1, cntwd, bufr, bufln);

References: Prog Ref Manual
T5-12

BUFFERED INPUT

reio (ecode, cntwd, bufr, bufln)
ecode =1

WAIT ON
_CLASS 1/0
| A~ (SWAPPABLE)
USER READ BUFFER .~
PROGRAM |
PARTITION -
CLASS BUFFER
SAM | /
PARTITION N 142
L ————
SYSTEM (/J\
PARTITION] AN
_ “\\ CLASS 1/0
SYSTEM
5-12 R5.12

5.13 Sstandard LU Addressing

T5-13

STANDARD LU ADDRESSING

- CNTWD:

IILLIJII
54 32 10

HOW MANY LU'S
CAN WE ADDRESS 7

. 5-13 | RS.13

5.14 Extended EXEC Calls -- XLUEX, XREIO

FORTRAN example:

integer cntwd(2), ec, nb, ov, os
data ec/400b/, nb/40000b/, ov/100000b/, 0s/40000b/

cntwd (1) = lu + ov + os

cntwd (2) ec + nb

call xluex(2,cntwd,prompt,promptln)
call xreio(l,cntwd,bufr,bufln)

Pascal example:

type intarray = array [l..2] of int;

var cntwd : intarray;
ec, nb, ov, os : int;

begin
ec := 256;
nb := 16384;
ov := =32767;
os := 16384;

cntwd[1l] := lu + ov + 0S;

cntwd[2] := ec + nb;

Xxluex (2, cntwd, prompt, promptln);
xreio (1, cntwd, bufr, bufln);

References: Prog Ref Manual
_ T5-14

EXTENDED EXEC CALLS

U'S > 63 |
XLUEX < > EXEC
XREIO < > REIO
CNTWD:
oV |0S LCGICAL UNIT

SAME AS BEFORE
15 14 13 12 1110 9876543210

OV - OVERRIDE LU MAPPING (VC+)

OS - OVERRIDE SPOOLING (VC+)

NOTE: You should normally use
XLUEX and XREIO. XI.UEX

will also replace EXEC
3, 13,17 ,18 ,19 ,20.

5-14 RS.14

5.15 Buffering Review

(£ill in)

References: Prog Ref Manual
T5-15

BUFFERING REVIEW

' BUFFERED | SWAPPABLE
EXEC CALL YES NO | YES No

EXEC 1
XLUEX 1

EXEC 2
XLUEX 2

REIO 1
XREIO 1

REIO 2
XREIO 2

5-15 RS.15

5.16 SYSTEM SUBROUTINES

T5-16

SYSTEM
SUBROUTINES

5.17 Op System Command -- MESSS

FORTRAN example:

program messscall

integer bufr(40), lu, count, ic
data bufr/'RU,WH'/, count/80/

lu 71

ic messs (bufr,count, lu)

if (ic.ne.0) write (1,'(80a)') bufr
end

Pascal example:

program messscall (input, output);

type buffer = packed array [l1..80] of char;
int = -32768..32767;

var bufr : buffer;
lu, count, ic : int;

function messs (bufr: buffer, count, lu: int) : int;

external;
begin
count := 80;
bufr := 'RU,WH';
lu := 71;
ic := messs (bufr, count, 1lu);
if ic <> 0

then writeln (bufr)
end.

References: Prog Ref Manual
TS5-17

OP SYSTEM COMMAND

ic = MESSS (bufr, count[,lu])

ic — NEGATIVE CHARACTER COUNT OF
RETURNED MESSAGE OR O IF NO
MESSAGE.

bufr - CONTAINS SYSTEM COMMAND ON
ENTRY, RETURNED MESSAGE ON
RETURN.

count - NUMBER OF CHARACTERS IN bufr.

lu — FOR RU AND XQ REQUE'STS ONLY.
RUNS THE PROGRAM AS |F FROM
THE LU SPECIFIED.

NOTE: only system level commands are
available from MESSS.

5-17 R5.17

5.18 Get Program Name -- PNAME

FORTRAN example:

program pnamecall
integer prog(3)

call pname (prog)
write (1,'(6a)') prog
end

Pascal example:

program pnamecall (input, output);
type bhuffer = packed array [l..6] of char;
var prog : buffer;

procedure pname (prog: buffer);
external;

begin
pname (prog);
writeln (prog)
end.

References: Prog Ref Manual
T5-18

" GET PROGRAM NAME

PNAME (prog)

prog - THREE WORD INTEGER BUFFER
RETURNS PROGRAM'S CLONED NAME

5—-18 R5.18

5.19 Get System Time -- FTIME

FORTRAN example:

program ftimecall
integer bufr(15)

call ftime(bufr)

write (1,'(30a)') bufr
end

Pascal example:

program ftimecall (input, output);
type buffer = packed array [l..30] of char;
var bufr : buffer;

. procedure ftime (bufr: buffer);
external;

begin
ftime (bufr);
writeln (bufr)
end.

References: Prog Ref Manual
T5-19

GET SYSTEM TIME

FTIME (bufr)

bufr - 15 WORD INTEGER BUFFER
RETURNS A STRING IN THE

FORM:

2:35 PM WED., 20 JUL., 1983

5-19 RS.19

5.20 Send Logging Message -- LOGIT (VC+)

FORTRAN example:

program logitcall

integer string(40), strln
data string/'LOGGING MESSAGE'/, strin/40/

call logit(string,strln)
end

Pascal example:

program logitcall (input, output);

- type buffer = packed array [1..80] of char;
int = -32768..32767;

var string : buffer;
strln : int;

procedure logit (string: buffer, strln: int);
external; '

bégin
string := 'LOGGING MESSAGE';
strln := 40;

logit (string, strln)
end. :

References: Prog Ref Manual
T5-20

SEND
LOGGING MESSAGE (VC+)

LOGIT (string, strln)

string — INTEGER BUFFER
strin — NUMBER OF WORDS IN STRING
(CHARACTERS,/2)

5-20 R5.20

5.21 Other System Subroutines

NOTE: This is only a small portion of the system subroutines
available. See the references noted at the bottom of the
page for more information.

References: Relocatable Libraries Ref Manual, Prog Ref Manual
' T5-21

OTHER SYSTEM
SUBROUTINES

=

Loglu — get -LU of scheduling terminal
Casefold — convert lower to upper case
DeéimalToInt — convert ASCII to integer
IntToDecimal — convert integer to ASCII
ElapsedTime — milliseconds since ResetTimer
ResetTimer — resets elapsed time counter

GetSN - get a unique session number (VC+)
CLgOn - | programmatic legon (VC+)

CLgOF — programmatic lcgoff (VC+)

5-21 RS.21

9,
S g
o

PROGRAM
SCHEDULING

CHAPTER ©

Table of Contents

'Chapter 6

PROGRAM SCHEDULING

CJ.Oning ¢ & o & o o o o o o * o o o e o o6 o 6 o o & o o e o o 6-1
ID _Segment DiSpoSitiO ® 6 o o o o o o o o o o 6 ° o o o o o 6-2
Finding the Program] . . o, o . . . 6-3
Concurrent Programs ® 6 o o o ¢ o o 4 o o o o * & o o o o o o 6-4
Prograﬂ\ SuspenSion ® e o & o o o o o e o o & o o 6 e o o e o 6-5
Program Termination « ¢ ¢ o ¢ ¢ o o ¢ o o o o o o o o o o o o 6-6
Time SChedul ing ® & 6 6 o 6 6 o o6 o o o o & o6 o o o b o o o o 6-7
PROGRAMMATIC SCHEDULTING 6-8
Immediate SChedul ing - EXEC 9' 10 e e o o o o o & o o s o o 6-9
Queued Scheduling == EXEC 23, 24 & ¢ ¢ o o ¢ o o o s o o« o« o« 6=10
Program Terminatlon - EXEC 6 ® o o o o6 o o o o o o o o s o o 6-11
Program SuSpenSion - EXEC 7 e e © o o o ©® o o o e o o o o o 6-12
Time SChedul ing - EXEC 12 ® 6 o & o 6 o o6 o & o o s o o o o 6-13
Interval SCheduling -=- EXEC 12 ® o 6 e o o o o o o6 o o o o o 6-14

T IME FUNCTTIONS 6-15
Time Retr ieval - EXEC ll ® ® ® * ® * . . * ® ® 6-16
Se tting SyStem Time - SETTM e o o & o o o o o & & © o o o o 6-17

3.

4.

MODULE OBJECTIVES

Understand the process that the RU command goes through' in
finding and running a program.

Be able to use interactive and progreammatic commands to
schedule, suspend, resume, and terminate a program.

‘Di fferentiate between immediate and queued scheduling with and

without wait.

‘Know how to use time scheduling.

ii

6-10
6"’2.

6-40
6_50

SELF-EVALUATION QUESTIONS

Under what circumstances are clone names produced?

A program is run interactively and it's ID segment remains in
existance after the program terminates. What can be said
about the history of the ID. segment? What can be done
(interactively) to destroy the ID segment?

George has a program file called BOZO.RUN::GEORGE. Name two
additional file descriptors under which the CI command

"ru,bozo"” will work properly. Is there any way in which the

previous CI command will work properly if the file descriptor
is BOZO.RUN::MARTHA?

What effect does the BR command have on a user program?

What 1is the maximum interval at which a program can be
rescheduled using the AT command?

Which EXEC calls can you use to schedule a child program if
you expect to receive parameters back from the child?

What 1is the difference between queued and non-queued

~ schedul ing?

6-110

6-120

What happens to the parent program if a child 1is scheduled
with EXEC 9 and the child happens to be busy?

Under what conditions (using EXEC scheduling) can a parent
program terminate before the child is run?

What does it mean to terminate "serially reuseable"? Under

what circumstances would this be no different than normal
termination?

What does it mean to terminate "saving resources"? What
g

happens to the program saving resources if another program
needs it's partition?

When a program is suspended, it is normally resumed using the
GO command from the terminal. Can you think of any way to
resume the program programmatically? Hint: review the system
subroutines from last chapter.

iii

6.1 Cloning

A clone name is generated any time a second copy of the program
needs to be run. In a WVC+ session environment, the session number
is implicitely included as part of the program name. Therefore,
Programs may have the same name if they are run from two different

sessions,

User's Manual
T6-1

CLONING
CI> ru prog

PROGRAM NAME:

PROG

PRO.A

PRO.B

R6.1

6.2 ID Segment Disposition

If an ID segment was created by an RP command, it is not removed
upon termination of the program. :

If the ID segment was created implicitly with the RU command, it is
removed upon termination of the program.,

User's Manual
T6-2

ID SEGMENT
DISPOSITION

CI> ru prog

L
HAS ID @

SEGMENT?

RU@NG
NOW? @)

(™

N

CREATE

ID SEGMENT
AND

N
2N (CLONE) NAME

U R
y)

o < REMOVE ID
* SEGMENT

6-2

6.3 Finding the Program
A user can specify no working directory by using the command:
CI>wd O

This is useful if you are dealing with FMGR files from Cl. If you
run a program from CI, the FMGR cartridges are searched first for
the program file.

User's Manual
T6-3

FINDING
THE PROGRAM

- CI>ru prog
WITH WORKING DIRECTORY:

1. Search ID segment list

2. Search for prog in
working directory

3. Search for prog.run
in working directory

" 4. Search for prog.run
in directory /PROGRAMS

WITHOUT WORKING DIRECTORY: (WD O0)

1. Search ID segment list

2. Search for prog in
FMGR cartridge list

3. Search for prog.run
in directory /PROGRAMS

6-3 . | R6.3

6.4 Concurrent Programs

‘A user may have any number of concurrent programs attached to his
session. This is only limited to the maximum number of ID segments

allocated in the system (set at system generation time),

User's Manual
T6-4

CONCURRENT
PROGRAMS

§CI> Xq prog

NOTE:
Both may use

N
CI> Z" "S'RUN
PROGRAM
I I
| I \ ‘
TERMINATE

PROGRAM

6—4

6.5 Program Suspension

'The BR command only sets the break flag in the program's 1ID
segment. It 1is up to the user program to check the break flag,
otherwise the BR command will have no effect.

The break flag is checked by use of the IFBRK function. This
function is described in the Programmer's Reference Manual.

User's Manual
T6-5

PROGRAM
SUSPENSION

CI> ss prog
CI> go prog
CI> br prog
SUSPEND,/WAIT
LIST

SEGMENT

ID éﬂgaa

AV

EXECUTE STATE

RU COMMAND

DORMANT
PROGRAM
LIST

SCHEDULED

PROGRAM
LIST

R6.5

6.6 Program Termination

If an 1ID segment has been created using the RP command, the ID
segment can be removed using the third parameter to the OF command:

CI> of prog2 id

User's Manual
T6~-6

PROGRAM
TERMINATION

CI> ru progl (implicitly RP'ed)
CI> rp proge

~ CI> ru prog?2

CI> of progl h

CI> of prog2 id ~

SUSPEND /WAIT
LIST

iy

EXECUTE STATE

DORMANT
PROGRAM

LIST

CI> of prog2 — o
>RU /COMMAND ﬁ

———-:; SCHEDULED
PROGRAM

LIST

6.7 Time Scheduling
<time> ~-- Is in 24 hour format unless "am” or "pm" is specified.

<intvl> -- Is in the range 0 to 4095. A maximum of 24 hours may be
specified for <intvl>, Greater intervals will be reduced modulo 24
so that 27 hours results in an interval of 3 hours.

User's Manual
T6-7

TIME
SCHEDULING

CI> at <time> prog

CI> at 1:30:00 pm afternoonlog
CI> at 13:30 afternoonlog

CI> at 9 morninglog

CI> at <time> <intvl> prog

ClI> at 1:00 pm 1 min timer
Cl> at 13 60 sec timer

" CI> at 1 27 hour slowtimer
CI> at 10:01 am 150 mil fasttimer

6-7

6.8 PROGRAMMATIC SCHEDULTING

T6-8

PROGRAMMATIC
SCHEDULING

6-8

6.9 Immedlate Scheduling -- EXEC 9, 10

Note:
The program must be RPed before for programmatic scheduling
to work. The EXEC system has no file handling
capabilities,

FORTRAN example:

program Immed_sched

integer prog(3)
data prog/‘'WH'/

call exec(9,proq)
end

Pascal example:

program Immed_sched (input, output);

type buffer = packed array[l..6] of char;
int = -32768..32767;

var prog : buffer;

Procedure exec (ecode: int; prog: buffer);
external;

begin
prog := 'WH';
exec (9, prog)
end.

Prog Ref Manual
" T6-9

IMMEDIATE SCHEDULING

EXEC (ecode, prog, param®*5)

ecode — 9 SCHEDULE WITH WAIT
10 SCHEDULE WITHOUT WAIT
- prog — PROGRAM NAME. — must be caps

param*S - UP T0 5 PARAMETERS THAT MAY
BE PASSED TO THE SON OR

RETURNED FRCM THE SON

EXEC 9
waitl.ing

parameter
peassing \TT

CHILD

PARENT
PROGRAM

PROGRAM
EXEC 10
J

— PARENT PROGRAM

l — parameters
CHILD

PROGRAM
6—-9

6.10 Queued Scheduling -- EXEC 23, 24

FORTRAN example:

program Queue_sched

integer prog(3)
data prog/'WH'/

call exec(23,progq)
end

Pascal example:

pfogram Queue_sched (input, output);

type buffer = packed array[l..§)] of char;
int = -32768..32767;

var prog : buffer;

procedure exec (ecode: int; prog: buffer);
external;

begin
prog := 'WH';
exec (23, prog)
end.

Prog Ref Manual
T6~-10

|

UEULED
SCHEDULING

EXEC (ecode, prog, param?*5)

ecode — 23 SCHEDULE WITH WAIT
24 SCHEDULE WITHOUT WAIT

schedule
request
program queued
busy? —/scheduling
EXEC (Y
23,24 EXEC
9,10
wait in
queue
schedule
program
-
=

\} 6-10 R8.10

6.11 Program Termination -- EXEC 6

FORTRAN example:

program Termination

integer prog(3)
data prog/'wWH'/

call exec(l0,prog)
call exec(6,prog,3)
end

Pascal example:

Program Termination (input, output);

type buffer = packed array[l..6] of char;
int = -32768..32767;

var prog : buffer;

Procedure sched (ecode: int; prog: buffer); $ alias 'exec' $
external;

procedure term (ecode: int; prog: buffer, type: int); $ alias 'exec'
external;

begin
prog := 'WH';
sched (10, prog);
term (6, prog, 3)
end.

Prog Ref Manual
T6-11

PROGRAM
TERMINATION

EXEC (6, prog, type)

Prog — O FOR CALLING PROGRAM OR
PROGRAM NAME OF A CHILD

type — TYPE OF TERMINATION:

0 NORMAL TERMINATION

1 SAVE RESOURCES

—1 SERIALLY REUSABLE

2 NORMAL TERMINATION
REMOVE FROM TIME LIST

3 NORMAL TERMINATION
REMOVE FROM TIME LIST
REMOVE ID SEGMENT

6—-11 R6.11

6.12 Program Suspension -- EXEC 7

FORTRAN example:
program Suspension

call exec(7)
end

Pascal example:

Program Suspension (input, output);
type int = -32768..32767;

procedure exec (ecode: int);
external;

begin
exec (7)
end.

Prog Ref Manual
T6-12

PROGRAM
SUSPENSION

EXEC (7)

same as.:
CI> ss prog
FORTRAN "PAUSE" STATEMENT

continued with:

- CI> go prog

6-12

6.13 Time Scheduling -- EXEC 12

FORTRAN example:
program Time_sched

integer prog(3)
data prog/'WH'/

call exec(l2,prog,1,0,14,30,0,0) lat 2:30 pm
end

Pascal example:

program Time_sched (input, output);

type buffer = packed array[l..6] of char;
int = -32768..32767;

var prog : buffer;

procedure exec (ecode: int; prog: buffer; units, intvl,
hour, min, sec, msec: int);
external;

begin

prog := ‘WH';

sched (12, prog, 1, 0, 14, 30, 0, 0) {at 2:30 pm}
end.

Prog Ref Manual
T6-13

TIME SCHEDULING

EXEC (12, prog, 1, 0, hour,
min, sec, msec)

prog— PROGRAM NAME

hour -

min | TIME AT WHICH TO START
sec [THE PROGRAM

msecC _

8-13

R6.13

6.14 Interval Scheduling =~ EXEC 12

FORTRAN example:

program Intvl_ sched

integer prog(3)
data prog/'WH'/

call exec(l2,prog,3,10,14,30,0,0) lat 2:30 pm ...
call exec(12,prog,3,10,-10) 110 min from now
end l... then every 10 min

Pascal example:

program Intvl_sched (input, output);

type buffer = packed array[l..6] of char;
int = -32768..32767;

var prog : buffer;

procedure exec (ecode: int; prog: buffer; units, intvl,
hour, min, sec, msec: int);
external;

begin

prog := 'WH';

sched (12, prog, 3, 10, 14, 30, 0, 0) {at 2:30 pm ...}

sched (12, prog, 3, 10, =10, 0, 0, 0) {10 min from now ...}
end. {... then every 10 min} -

Prog Ref Manual
T6-14

INTERVAL SCHEDULING

EXEC (12, prog, units, interval,
hour, min, sec, msec)

pProg— PROGRAM NAME

units— 0 REMOVE FROM TIME LIST
1 TENS OF MILLISECONDS
2 SECONDS

3 MINUTES
4 HOURS

interval— 0 TO 4095
THE INTERVAL OF "units"
AFTER WHICH THE PROGRAM

WILL BE REPEATED.
O INDICATES NO REPEAT

hour -

min | TIME AT WHICH TC START
sec THE PROGRAM

msec J

—hour NUMBER OF "units" TO DELAY

STARTING THE PROGRAM. min,
sec, msec NOT SPECIFIED

6-14 R6.14

6.15 TIME FUNCTIONS

T6-15

TIME
FUNCTIONS

6-15

6.16 Time Retrieval -- EXEC 11

FORTRAN example:

program Time_retrieval

integer time(5), year

call exec (11,time,year)
write (1,'(i5)') year
doi=5,1,-1

write (1,'(i5)') time(i)
end do
end

Pascal example:

program Time_retrieval

type int = -32768..32767;
int_array = array [l1..5] of int;

var time : int_array;
year, i : int;

procedure exec (ecode: int; time: int_array; year: int);
external;

begin
exec (l1l, time, year);
writeln (year);
for i := 5 downto 1 do
writeln (time[i])
end,

Prog Ref Manual
- T6-16

" TIME RETRIEVAL

EXEC (11,time, year)

time (1)
time (2)
time (3)
time (4)
time (5)

year —

TENS OF MILLISECONDS
SECONDS

MINUTES

HOURS

DAY OF THE YEAR

OPTIONAL PARAMETER

6-16

R6.16

6.17 Setting System Time -- SETTM

FORTRAN example:

Program Set_ time

c set time to 2:30 pm, April 1, 1984
call settm (14,30,0,4,1,84)
end

Pascal example:

Program Set_time
type int = -32768..32767;

procedure settm (hr, min, sec, mo, day, yr: int);
external;

begin
{set time to 2:30 pm, April 1, 1984}
settm (14, 30, 0, 4, 1, 84);

end

Prog Ref Manual
T6-17

SETTING SYSTEM TIME

error = SETTM (hr, min, sec,
mo, day, yr)

error.

hr

- min
sec
mo
day

yr

O NO ERRORS

— 1 ILLEGAL PARAMETER
TIME NOT CHANGED

0 to
0 to
0 to
1 to
1 to

1976 to 2144

23
99
99
12
31

6-17

R6.17

SETTING SYSTEM TIME

error = SETTM (hr, min, sec,

error: .
— 1 ILLEGAL PARAMETER

hr

- min
sec
mo
day

yr

mo, day, yr)

O NO ERRORS

TIME NOT CHANGED

0 to
0 to
0 to
1 to
1 to

23
99
99
12
31

1976 to 2144

6-17 R6.17

PROGRAM
COMMUNICATION

CHAPTER 7

Chapter
Program

Communication Considerations

Communication Methods
PASSING

Passing
Passing
Passing
Passing
Passing
Passing
Passing
Passing

Parent-Child Communication . ,
Pascal Example - Parent . .
Pascal Example - Child . .

Program

Communication Review
S YSTEM COMMON ARE
Accessing System Common Area .
System Common Example - FORTRAN

Table of

7
Communication

INFORMAT
Information Interactivel
Parameters - RMPAR , .
Parameters - FORTRAN 77
Parameters Pascal . . .
Strings - EXEC 14/GETST
Strings - FORTRAN 77 .
Strings - Pascal ., . .
Information Programmatic

K oe o

Termination . . .

De o 0o 0o 0 Me ¢ 0 o o o

~J e

1

Contents
ON
ly . .

U
[

\I\I\I\ITI\I\I\I\I
SNSond W

11
O

7

N
111
=t et ot
NH-HO

7-13
7-14
7-15
7-16
7-17
7-18
7-19

2.

3.

MODULE OBJECTIVES

Ability to explain the methods available for program

communication under RTE-A when passing information and when
sharing data.

Ability to use the routines that are available for parameter
passing for interactive communication.

Ability to wunderstand and use communication techniques of
Parent-Child programs -- sending and receiving parameters.

‘Ability to use one method -- System Common Area -- while being

aware of different methods for using shared data.

ii

7-90

7-1 0.

SELF-EVALUATION QUESTIONS

What are the differences between scheduling with WAIT and
without WAIT with reference to parameter passing?

How does a parent program send parameters to a child program?

What are the different ways a child can return information to
the parent program?

Can parameters be passed to a program via an EXEC 6?

What routine is used to pick up parameter values passed in
the run command? In FORTRAN? In Pascal?

What is the difference between an EXEC 14 call and the GETST
subroutine?

How does a user specify that the program should use System
Common Area?

When would you use labeled system common area as opposed to
blank SCA?

What are System Common Area limitations and restrictions when
used for shared data?

What methods were discussed in this chépter for passing

information for shared data from program to program and from
CI to program?

iii

7.1 Communication Considerations

‘When selecting the appropriate communication routines, the
programmer must consider the following: the kind of transfer --
interactive, or from program to program, the method of
synchronization of programs, the amount of information being
transferred, Next, the programmer must concern himself/herself
with such questions as: what resources are available -- SAM, class
numbers and resource numbers (see chapters 8,12). Can the programs
be swapped? Furthermore, the programmer must analyze the methods
for sharing data before he/she finally chooses communication
routines best suited for his/her application.

This chapter will cover interactive program communication and one
method of passing small amounts of information between parent and
child programs. Note that program to device I/O communication has
been partially discussed in Chapter 5 with EXEC calls. This
chapter also explains the first method of sharing data - system
common area, The topic of data will be discussed again in later
chapters.

T7-1

COMMUNICATION
CONSIDERATIONS

* amount of information in transfer

* synchronization of transfer

* swappability of communicating programs
* resources available

* shori'ng data

7.2 Communication Methods

There are many ways to communicate among programs. One method,
Parameter Passing, will be described in this chapter and is useful
for a small number of parameters passed interactively, or small
arrays of data passed between certain programs (i.e.,
Parent-Child).

Class I/0, or mailbox I/O, passes information between programs and

aids in synchronizing program communication. It will be discussed
in the next Chapter.

Sharing of data can be accomplished through various techniques.
One, shareable EMA involves sharing an entire partition and is
presented in Chapter 11. Another, files, allows multiple to be
shared by many programs. System Common Area is the method that
will be described in this chapter.

T7-2

COMMUNICATION METHODS

PASSING INFORMATION

J J
- PASSING PARAMETERS CLASS 1/0
. PRIN '
PARENT | \ N CHILD PRO?RAM EXEC I PROG;AM
RMPAR 7
| BOX | (EXEC T
SHARING DATA
- SHAREABLE EMA FILES
partitions ¢ Prosa
P P ProgB-> £
1<>5<>2 &—ProgC
A
\P/
3 NV

SYSTEM COMMON AREA

Program
2

Program

y
|: System
Common |€—

Memory

7-2

7.3 PASSING INFORMATTION
There are many ways to pass values 1in programs. 1In this course we

will be describing passing information from programs to other
programs, programs to devices, and CI to programs.

T7-3

PASSING INFORMATION

Values may be passed to:

* Subroutines

CALL SUBR (I,J,K)
SUBR (I,J,K : INTEGER);

* Programs when run

Cl> PROG.RUN 1 2 3 4

* Programs from other programs

7-3 R7.3

7.4 Passing Information Interactively

The routines used when passing parameters interactively depend upon
the amount of data to be transferred. Up to five integer values or
pairs of ASCII characters can be passed interactively to a program
and retrieved by a call to RMPAR. Parameter strings may be passed
to a program and be retrieved by GETST. The entire runstring may
be retrieved by an EXEC 14 call.

T7-4

- PASSING INFORMATION
INTERACTIVELY

HOW MUCH DATA IS TO BE TRANSFERRED?

* Up to 5 integer values cor pairs
of ASCII characters

* Parameter string

* Runstring

7-4

7.5 Passing Parameters - RMPAR

RMPAR 18 a general purpose request. It recovers parameters which
have been passed to the calling program and which were stored in
temporary words of the ID segment, These parameters may have
originated by operator run commands (interactive), program
scheduling request or by some drivers.

Only integer or pairs of ASCII characters can be passed with RMPAR.
The size of the array for RMPAR must be 5, Also, it is very
important that the first executable statement in the program be
RMPAR since other system routines use this area of the ID segment
and therefore the data stored there may change.

Notice, that from CI a program can only receive data interactively.
It cannot send parameters back to CI. With FMGR, however, a
program can send back information to FMGR with the routine PRTN.
RMPAR can also be used to retrieve five parameters from the GO
command if it has been suspended (EXEC 7).

References: Programmer's reference Manual
T7-5

RMPAR

UP TO 5 VALUES INCLUDED AS
PARAMETERS IN THE RU COMMAND

Ci> RU,LISTR.RUN,6,TE,XT,F4 —

PROG's
ID SEGMENT

TE

F4

PROGRAM PROG
INTEGER PARM (5)
CALL RMPAR (PARM)

Vv

7-5 R7.8

7.6 Passing Parameters - FORTRAN 77

RMPAR may be easily called from FORTRAN, however, FORTRAN also
provides a routine FPARM which will copy the parameters 1into
character variables, array elements or substrings for you. It must
be the first executable statement. The first time FPARM is called
it makes an EXEC 14 call (next slide) to get the runstring and to
store it into an internal buffer.

Subsequent FPARM calls access this internal buffer. Thus multiple
calls to FPARM may be made, while only one RMPAR call is possible.
(Notice, that a call to EXEC 14 or GETST after a call to FPARM will
‘not return the runstring, and that FPARM will not work after an
explicit call to EXEC 14 or GETST since the runstring would already

by consumed.)
Syntax:
Call FPARM (vl,...,vn)

where:

vl..vn are character, character array, or string variables
and are positioned to the parameter location in the
runstring.

NOTE: CI takes blank or commas as variable separaters and shifts
all characters to upper case.

References: FORTRAN 77 Reference Manual
T7~6

PASSING PARAMETERS -
FORTRAN 77

- FPARM - TO COPY RUNSTRING PARAMETERS

PROGRAM param
CHARACTER*10 str,str1,str2
CALL FPARM (str,str1,str2)
WRITE (1,%) str,str1,str2
END

CI> param.run here there everywhere
HERE THERE EVERYWHERE

CI> param.run 1 2 3 4
1 2 3

7.7 Passing Parameters Pascal

Pascal provides a library, Pas.NumericParms, which returns RMPAR
‘Parameters., It is provided since Pascal run-time startup code
makes the values of the parameters stored in the 1ID segment
unreliable. For integer parameters, the routine takes one VAR
parameter, a 5-element array of one-word integers, and returns
RMPAR parameters. For character parameters, it is better to use
Pas.Parameters as will be shown 1later. Pas.NumericParms should
only be used to pick up the initial parameters, thus a program
terminating serially reusable should use RMPAR directly. As will
be shown, RMPAR, not Pas.NumericParms, can be used for parent-child

communication.

References: Pascal/1000 Reference Manual
T7-7

PASSING PARAMETERS
PASCAL

Pas.NumericParms — RETURNS RMPAR
PARAMETERS

PROGRAM param(INPUT,OUTPUT);
TYPE int = —-32768..32767;
index = 1..10;
parms = PACKED ARRAY [1..5] OF int;
VAR i : index;
p : parms;
PROCEDURE Pascal Rmpar $ALIAS 'Pas.NumericParms'$
(VAR p : parms);
EXTERNAL;
BEGIN
Pascal _Rmpar(p);
WRITE (‘'The parameters are: ‘);
FORi:=1 to 5§ DO
WRITE(p [il :3);
WRITELN;
END.

CI> param.run 1 1 2 3
the parameters are: 1 1 2 3

CI> param.run 1 1 5 6 7
the parameters are: 1 1 &5 6 7

7-7 R7.7

7.8 Passing Strings - EXEC 14/GETST

The EXEC 14 will retrieve the command that scheduled the program:
CALL EXEC (14,1,BUFR, BUFLN)

indicator to retrieve the runstring-~+ | |
array to receive the runstring----—-————eee-o + |
number of words or negative number of characters--+

FORTRAN Example: -

PROGRAM GRSTR
INTEGER IBUF(35)
C Retrieve the runstring via EXEC 14. Specify
C the maximum number of words to be retrieved.
CALL EXEC (14,1,IBUF, 35)
CALL ABREG (IA,IB)

ILOG = IB
C Print the runstring, using the actual
C number of words retrieved.

WRITE(1,*) 'THE RUNSTRING IS: '
-WRITE(1,' (35A2)') (IBUF(J),J=1, ILOG)
END ’

CI> GRSTR.RUN This is a string
THE RUNSTRING IS:
RU, GRSTR, THIS, IS,A, STRING
cI>

Calls to EXEC 14 from Pascal may be made. Not advised for
interactive use.

A call to GETST will retrieve the parameter string part of the
command that scheduled the program.

CALL GETST (BUFR,BUFLN, TLOG)

array to receive the parameters string--+ | |
positive # of words or negative § of characters--+ |
number of words or characters actually retrieved————————- +

Again, both of these routines should be the first executable
statement in the program.

References: Programmer's Reference Manual
T7-8

PASSING STRINGS

STRINGS OF CHARACTERS MAY BE
PASSED TO A PROGRAM —

EXEC 14 -

RETRIEVE THE &
"RUNSTRING"

P

[)

CI> RU GRSTR THIS IS A STRING
L J

e

GETST -

RETRIEVE THE <
"PARAMETER STRING"

7-8 R7.8

7.9 Passing Strings - FORTRAN 77

From FORTRAN, GETST and EXEC 14 may by called. The FORTRAN
libraries RCPAR and RHPAR may be used if desired. They return the
specific parameter desired (as FPARM, although only one parmeter at
a time may be retrieved). 1If the parameter number 1is 0, the
program name will be retrieved.

For Example: PROGRAM RCP

CHARACTER FILE1*20
CALL RCPAR(0,FILEl)
WRITE(1,*) FILE1l
END

cI> RCP.RUN 1 2 3
RCP.RUN

cI>

References: Programmer's Reference Manual
T7-9

PASSING STRINGS —
FORTRAN 77

PROGRAM GPSTR
INTEGER IBUF(35)

Retrieve the runstring via GETST. Specify
the maximum number of words to be retrieved.

CALL GETST (IBUF,35,ILOG)

Print the runstring, using the actual number
of words retrieved.

WRITE(1,%) 'THE PARAMETER STEING IS: '
WRITE (1,'(35A2)) (IBUF(J),J=1,ILOG)

END

aQaaQQa aQaan

Q

CI> GPSTR.RUN This is a string
.THE PARAMETER STRING IS:
THIS,IS,A,STRING

CI>

7-9 R7.9

7.10 Passing Strings - Pascal

In Pascal, EXEC 14 and GETST may be called. To insure the Pascal
initialization code will not change the ID segment information, the
programmer may use the RUN_STRING 0 option to turn off Pascal

- initialization code. This method is NOT recommended because the
standard Pascal I/0 system will not work. Thus, either
Pas.NumericParms or Pas.Parameters is provided by Pascal and is the
recommended method. Pas.NumericParms picks up 5 integer or pairs
of ASCII data (RMPAR) and Pas.Parameters picks up character strings
(EXEC14).

Pascal GETST Example:

$run_string 0$
PROGRAM GETPAS:
TYPE
IBUFFY = PACKED ARRAY[1..70] OF CHAR;
INT = -32768..32767;
VAR IBUF : IBUFFY;
1
ILEN,ILOG : INT;
OUT : TEXT;
PROCEDURE GET STRING $ALIAS 'GETST'S
(VAR IBUF : IBUFFY;
ILEN : INT;
VAR ILOG : INT);
EXTERNAL;
BEGIN
get string (ibuf, -70, ilog);
REWRITE (OUT, '1');
WRITELN(OUT, ibuf);
END.

CI> GETPAS.RUN HI THERE CUTEY PIE HOW ARE YOU?
HI,THERE,CUTEY,PIE,HOW,ARE,YOU?
ci> '

Other system routines that are provided for sending and retrieving
and manipulating information are:

PARSE - parse input buffer from ASCII representation
INPRS - inverse parse - parse back to ASCII

LOGLU - get logical unit of invoking terminal

MESSS - message processor interface

LOGIT - send logging message

PNAME - retrieve program name

IDGET - retrieve program ID segment address

References: Pascal/1000 Reference Manual
T7-10

" PASSING STRINGS —

PASCAL
- PROGRAM pas;
TYPE |
index = 1..10;

int = —-32768..32767;
parms = PACKED ARRAY [1..80] OF CHAR;
VAR
out : TEXT;
p : parms;
i, length, position : int;
FUNCTION Pascal _Parms $ALIAS 'Pas.Parameters'$
(position : int;
VAR p : parms;
length : int) : int;
EXTERNAL;
BEGIN
position :=—1; (*-1 gives the entire runstring®
length :=80; |
- i :=Pascal _Parms(position,p,length);
REWRITEéout,' 1');
gRITELN out,'the parameters are: ',p);
ND.

'CI> Pas.run THIS IS FUN
the parameters are: RU,PAS.RUN,THIS,IS,FUI

CI>

7—10 R7.10

7.11 Passing Information Programmatically

The EXEC 9,10,23 and 24 calls allow a program to schedule another
program. The scheduler is called the parent and the program which
is scheduled is called the child., As a review:

EXEC 9 - immediate schedule, wait for completion
EXEC 10 - immediate schedule, no wait

EXEC 23 - queue schedule, wait

EXEC 24 - queue schedule, no wait

Schedule with wait implies the parent waits for the child to
complete before resuming execution. The child can return
information to the parent. Schedule without wait implies that the
parent does not wait for the child to complete. Thus the parent
will continue and will compete for execution time with the child on
a priority basis and the child will not be able to send information
back to the parent.

T7-11

PASSING INFORMATION
PROGRAMMATICALLY

PARENT J parent can pass information

CHILD to its child

| ————0R-——-—
PARENT \|, ~ parent can pass information
CHILD to its child
—AND~-
the child can pass information
back to its parent

7-11

R7.11

7.12 Parent-Child Communication

The parent can send information to the child via EXEC scheduling
calls. '

CALL EXEC (ECODE,NAME, PRAM, PRAM2, PRAM3, PRAM4, PRAMS, BUFR, BUFLN)
- |1 |

-9,10,23,24---+ | e e e Vommmmmmme e + +—m=y-————t

| PRAM]1 to PRAMS5 are An array of data

array name of program-+ optional parameters can be passed to
to be scheduled whose values are the child via

passed to the child. BUFR. The child

The child uses RMPAR can use EXEC 14
to retrieve the value. or GETST to re-
trieve the data.

If the parent schedules the child with wait, the <child can return
information to the parent as follows:

Via PRTN and RMPAR
- child calls PRTN to pass 5 values back to 'waiting' parent.
=~ PpParent retrieves the values with a RMPAR call.

Via EXEC 14

- child wuses EXEC 14 call to pass a buffer of data back to
"waiting" parent.

— bparent retrieves the buffer with another EXEC 14 call.

References: Programmer's Reference Manual
T7-12

PARENT
Ry COMMUNICATION

CHILD

PARENT WITH WAIT Pz

—input a set of values

—~schedule child to sort
and delete duplicate
values

—print sorted values

NN

RMPAR/EXEC14 EXEC call

\\\

PRTN/EXEC1 4 RMPAR/EXEC1 4

sort volues and
delete duplicate values

CHILD

7-12 R7.12

7.13 Pascal Example - Parent

Program mom (input,output);
TYPE
int = -32768..32767;
typl00 = array[l..100] of int;

typ6 = packed array[l..6] of char;
.- ptype = packed array [l..5] of int;
VAR '
- child typé6;

tdata : typlo00;
i,ivals,a,b,w,x,y,z : int;
parms : ptype;
PROCEDURE exec23 $alias 'xluex' $
(ecode:int ; child:typ6 ; lu,w,x,y,z:int ; msg:typl00; len:int);
external;
PROCEDURE rmpar $ alias 'rmpar' $
(var parms: ptype); external;
PROCEDURE execl4 $ alias 'exec' $
(ecode,rcode:int ; var tdata:typl00 ; var ivals:int); external;
PROCEDURE abreg $ alias 'abreg' $
(var a,b:int); external;
BEGIN

{ INPUT DATA FROM THE TERMINAL }
writeln ('How many integer values do you wish'to input: ');
read (ivals);
writeln ('Input ', ivals, ' values: ');
for i :=1 to ivals do
read (tdatali]);

" { SCHEDULE THE CHILD PROGRAM WITH WAIT }
child := 'sonpg ';
exec23(23,child,ivals,w,x,y,z,tdata,ivals);

{ LET SON SORT VALUES AND RETURN TO MOM NEW NUMBER OF VALUES }
rmpar (parms);
ivals := parms[1];

writeln(ivals);

{ RETRIVE SORTED DATA FROM THE CHILD }
execl4(l14,1,tdata,ivals);
abreg (a, b);
if a = 0 then begin

for i := 1 to ivals do

writeln (tdata[i]);
end else writeln ('no sorted data received from child');
END,

T7-13

aa QA aan

THE PARENT

program mom
integer nson(3), tdata(100), parm(5)
data nson/6HSONPG

g INPUT DATA FROM TERMINAL
read (1.9 ivals, (tdata(i),i=1,ivals)
SCHEDULE SON WITH WAIT
Call exec(23,nsonl,ivals,j,k,l,m].tldata‘,rivalg)
TO SON EXEC 14 —>
TO SON RMPAR N

(@

LET SON SORT VALUES AND RETURN TO MOM NEW
NUMBER OF VALUES

o——FROM SON PRTN &
Call rmpar(parm))
ivals=parm(1)

C
C RETRIEVE THE SORTED DATA
C ——FROM SON EXEC 14 <—
Call exec(14,1,tdata,ivals)
Call abreg (ia,ib)
if (ia .eq. 0) then
write (1,50)tdata(j),j=1,iveals)

50 format (10(10(i5,1x)/))

else

write (1,'(" No sorted data received from son'))
end if

end

7-13 R7.13

7.14 Pascal Example - Child

$run_string 0$
Program sonpgqg;
TYPE
int = -32768..32767;
ptype = packed array[l..5] of int;
typl00 = array[l1..100] of int;
VAR
i, ivals, a, b : int;
parms : ptype;
tdata : typl00;
out : text;

PROCEDURE rmpar $ alias 'rmpar' $ (var parms:ptype); external;
PROCEDURE prtn $ alias 'prtn' $
(var parms:ptype); external;
PROCEDURE execl4 Salias 'exec' $
(ecode:int ; rcode:int ; var tdata:typl00 ; var ivals:int);
external;
-PROCEDURE abreg $ alias 'abreg' $
(var a,b : 1int); external;
BEGIN

{ RETRIEVE THE NUMBER OF VALUES TO BE SORTED }
rmpar (parms) ;
ivals := parms[1];
rewrite(out,'1');

{ PICK UP THE ARRAY OF DATA VALUES }
execld4 (14,1,tdata,ivals);
abreg(a,b);
if a = 0 then begin

{ SORT THE VALUES, DELETE DUPLICATE VALUES }
execld4(14,2,tdata,ivals);
abreg(a,b);
if a = 0 then begin

{ RETURN THE SORTED VALUES TO THE MOM }

parms(l] := ivals;
prtn (parms);

end else
writeln(out, 'No mom found to accept results');

end else
writeln(out,'No data buffer from mom found');
END.

T7-14

ololyiele olololole;

Q aQaaat

ololoiole]

THE CHILD

rogram sonp
{)nteger valuesflOO), parm(5)

RETRIEVE THE NUMBER OF VALUES TO BE SORTED

> FROM MOM EXEC 23

call rmpar(parm) €
nvals = parm(1)

PICK UP THE ARRAY OF DATA VALUES

> FROM MOM EXEC 23

.
call exec (14,1,values,nva1;|)
call abreg (ia,ib

if (ia .eq. 0) then

SORT THE VALUES, DELETING DUPLICATE VALUES

(Values will then contain the sorted data,
nvals will contain the new number of values)

4

N\

“TO MOM EXEC 14

call exec (14,2,\;alues,nva1:;)
call abreg (ia,ib)
if (ia .eq. 0) then

RETURN THE SORTED VALUES TO THE MOM

BACK TO MOM'S RMPAR

4
N

parm(1) = nvals
call prtn(parm)

else -
write (1,'('No mom found to accept results")

else |
write (1,'("No data buffer from mom found")

end if |

end if

end

7-14 R7.14

7.15 Program Termination

A parent can terminate 1itself or a child with an EXEC 6 call.
Parameters may be stored in a program's ID segment when terminated
with an EXEC 6 call. If its 1ID segment is not cleared, the
parameters PRAM1 and PRAM5 are passed back to the program when it
is next scheduled. They can be picked up by RMPAR when the program
executes next. Thus, a program in the timelist can pass parameters
to itself. Parameters cannot be passed to a child terminated by an
EXEC 6 call. :

T7-15

PROGRAM TERMINATION

PARENTT EXEC6 —[CHILD
T EXEC6

CALL EXEC(6,PROG,TYFE,P1,...,P5)

ITSELF — O /

CHILD — PROGRAM NAME

O NORMAL TERMINATION
~1 SERIALLY REUSABLE
1 SAVING RESOURCES
2 REMOVE TIME LIST
3 REMOVE TIME LIST AND
REMOVE ID SEGMENT

IF TERMINATE SELF,
VALUES STORED IN ID SEGMENT

7-15 R7.15

7.16

Communication Review

The following is a summary of the key points of parameter passing
and Parent to Child communication.

*

Parmeters can be passed from CI to a program by:

-== RMPAR - up to five values

*

FORTRAN can use RMPAR or the FORTRAN libraries FPARM,
RHPAR, and RCPAR.

Pascal should wuse Pascal library Pas.NumericParms since

calling RMPAR for interactive communication is not
supported.

-= GETST/EXEC 14 - parameter string/ entire runstring passage

*

FORTRAN can use GETST/EXEC 14 directly or a combination of
FPARM, RCPAR, and RHPAR routines.

Pascal should use Pas.Parameters. GETST/EXEC 14 can be
used directly, although this is not recommended.

For Parent to Child communication:

—-- A combination of EXEC 14/GETST and RMPAR/PRTN and parameters
in the EXEC scheduling calls (i.e., 9,10,23,24) are used from
FORTRAN and Pascal.

Of the many methods of sharing large amounts of data, System Common
Area will be discussed now.

T7-16

COMMUNICATION REVIEW

PASSING INFORMATION

Parameter passing — RMPAR
EXEC 14
GETST
PRTN
CLASS 1/0

SHARING DATA

Shareable EMA
Files

System COMMON Area

' 7-16 ‘ R7.18

7.17 SYSTEM COMMON AREA

System Common Area is an area in memory used to share data. It can
be shared by two or more programs. Blank common can be used by any
program by using the SC link option when 1loading. Labeled Common
can only be accessed by specifying the correct entry point to
access the data. Labeled common is set up at generation time only,
and many subsystems use this area. A drawback in using System
. Common Area is that whenever the size or content of system common
area is changed by the generator, all programs that access the area
should be reloaded and checked to see if they need modification.
Also, shareable EMA can be larger and there can be more shareable
EMA partitions as compared with only one System Common Area.
(System Common Area should not be confused with FORTRAN common
which is for communication within one program.)

References: System Design and Programmer's Reference Manuals
T7-17

SYSTEM COMMON AREA

- * External to the program

* Always resident in memory

* Set aside at system generation

* Shared by all programs that need it

User
Program
Areda {
/|Blank
— / Labeled
/
System R
Area '
i System
COMMON
Area

7-17 R7.17

7.18 Accessing System Common Area

To access System Common Area, link the program with the SC option.
Both mains and subroutines can access the System Common Area and so
can any other programs that have been loaded to access System
Common Area.

"For FORTRAN, the blank local common block which is set up for
communication within the program's modules now accesses the System
Common Area (because of SC loader command) .

If Pascal is to access the System Common Area, the program must be
linked with the sC option,)and the programmer must use the Pascal
libraries:

Pas.BlankComl (&2) & Pas.BlankSize for Blank Common access
and

Pas.LabelComl (&2) & Pas.LabelSize for Labeled Common access

References: Link Manual
T7-18

- ACCESSING
SYSTEM COMMON AREA

CI> link

link Rev.2326 Use ? for helg:

link: sc ¢ ystem Common Area
link: re lin.rel

MAIN SUBR

link: en
LOGLU $CVTi $CVT3 .FION .UFMP PAU.E ERO.E
Load Map:

MAIN 6000 11.

SUBR 6013 8.

LOGLU 6023 20. 92077—1X205 REV.2326 <830718.1751>
CVT1 6046 7. 92071-1X321 REV.2041 800530
CVI3 6056 46. 92071-1X322 REV. 2041 800530

JFION 6134 24. 24998—1X355 REV. 2326 830406

JUFMP 6164 15. 24998—1X296 REV. 2326 830406

PAU.E 6203 1. 24998—-1X254 REV. 2001 750701

ERO.E 6204 1. 24988-1X249 REV. 2001 750701

Main 6000—-6204 133. words
Program MAIN.RUN:::6:17 ready; 2 pages
Runnable only on an RTE—-A system

SUBR 1
USER 1 |HaNT _ ~~ "L
SUBR 2 —
USER 2 | ANz~~~ ~H
SYSTEM | |SYSTEM ~] ¢

| COMMON AREA_ |

MEMORY

7-18 R7.18

7.19 System Common Example - Pascal

$HEAP 1$

Program SystemCommonOne (input, output);

type
int = -32768 .. 32767;
com = array [l..5] of int;

comptr = “com;

var
i, sizeblank : int;
systempointer : comptr;

function common_blank $ alias 'Pas.BlankComl' $
:- comptr; external;

function blank_size $ alias 'Pas.BlankSize' $
: int; external;

begin

sizeblank := blank_size;
if sizeblank <> 0 then begin
systempointer := common_blank;
writeln ('Input five INTEGERS!!!');
for i := 1 to 5 do
read (systempointer”[i]);
end else writeln ('This program has no access to system common');

end.

T7-19

O OO0 -

ololo

OO0 O OO0

program sycom/
DECLARE BLANK SYSTEM COMMON AREA
common //inum

write 1,# 'input an integer value'
read(1,*) inum

VALUE NUM IS IN SYSTEM COMMON AREA

end

program sycom?2

DECLARE BLANK SYSTEM COMMON AREA
common //ibér

write(1,%x) 'the number from sycom1 is ', (iber)

VALUE BER IS PICK UP FROM SYSTEM COMMON AREA

end

7-19 R7.19

SHEAP 1%
Program SystemCommonTwo (input, output);

type
int = -32768 .. 32767;
com = array [l..5] of int;
comptr = “com;

var
1, sizeblank : int;
systempointer : comptr;

function common_blank $ alias 'Pas.BlankComl' $
¢ comptr; external;

function blank size $ alias 'Pas.BlankSize' $
¢ int; External;

begin

sizeblank := blank_size;
if sizeblank <> 0 then begin

systempointer := common blank;
writeln ('The output from SYS1.PAS is: ');
for i := 1 to 5 do
write (systempointer~[i]);
end else writeln ('This pProgram has no access to system common');

end.,

T7-20

CLASS 1/0

CHAPTER 8

Table of Contents

Chapter 8
CLASS 1I/0

cLaAass I/0

PROG - PROG C

Mailbox I/0 ¢ ¢« ¢ ¢ o o &

Data Transfers Thru SAM .,

Manufacturers and Consumer
Completed Class Queue . .

A Sample Program . . « o

ANLYZ.... e o L]

Allocating a Class Number

EXEC 20/EXEC 21 . « « « o

Clean—Up e o e o o ¢ o o

Example - The Manufacturer
The Consumer .« « o+ « o o o
Another Way to Program Our Exa
And The Consumer Version 2

Class Buffer Rethreading .
CLASS I1/0 FOR DEVI C E
CLASS I/0 for Input - EXEC 17 . . .

CLASS I/0 for Output - EXEC 18 . .

CLASS I/0 for Write/Read - EXEC 20
Class Get Revisited . « ¢« ¢« ¢ o &

variations with CLASS I/0 « « « &

What Are We Waiting For?

CIASS I/0 - A Summary of Features

CLASS I/0 Vs, Other I/O0 « o« o « &

TERMINAL HANDLTERS

A Simple Example . . e o o o
PROGRAM-T O-PROGRAM COMMUNICATION - LABS

M

o o o o o o N o O

e o © o 6 © o o o o o Z

o
o

e o o o o 0 o 0 o 0o 0 0 o

e ¢ T e e o o o 0 s 0o e 0 ¢ X
e & o o o o © o © o o o o o M

L
L
X
L

e o (e ¢ o6 ¢ 0o o o o 0o o o o o o (N

DL e o o o o o

E

® o Pe e o o o 8 o 6 e o o ¢ 6 s 0 0% o e 0 s oD

o o Xeoe o o o o0 0o 06 Oe o o ¢ o ¢ 0 ¢ 0o ¢ ¢ ¢ o o 3

] L] L] L] L] * L]] L] L] *]] L] -

e o e o o

e © o o o o o o o o o o o ¢ O

o o [e o o o o o o o

[] L] L] L] L] * L] L] L] * * L] L] L] z

e o [Tle o o o ¢ o o o

oooooooooloooooooco
WOOJAUTd WN -

8
8
8

ol
I I B |
-
WO

8-14

©

o 00
ol
=t =
o~JoA u»n

©

8-19
8-20
8-21
8-22
8-23
8-24
8-25
8-26
8-27
8-28

4.

MODULE OBJECTIVES

Describe the various methods of program to program
communication,

Understand the advantages and disadvantages of using CLASS I/0
for program-to-program communication.,

Discuss CLASS 1I/0 operations - two call procedure and Class
number usage.

Understand the advantages of using Class 1/0 for program to
device communication,

8_10

8-2.

8-30

8-40
8-5.

8-16.

SELF-EVALUATION QUESTIONS

What are the various methods discussed in this course,of
program-to-program communication?

Where does a Class Write/Read call create the data buffer?

How does the receiving program retrieve the data after a
class Write/Read?

What are Class Numbers used for?

What is the difference between the two methods of allocating
numbers and which method is preferred?

What must occur for every CLASS I/0 request call, in order to
complete the operation?

What happens when a Class request is made and there are no
Class numbers available? No buffers in the complete class
queue? Not enough SAM available?

When is a Class number deallocated by default?

Why should ownership of Class numbers be assigned?

How can a CLASS I/0 buffer be "consumed® more than once?

What are the three functions of CLRQ?

What is rethreading?

How is the Completed Class Queue ordered?

Why is CLASS I/O considered a "“double call"™ process? How
does the process flow?

What are the advantages of CLASS 1I/0 over other
program—-to-program and other program to device
communications?

Must all I/O request to the device use the same Class number?

ii

8.1

CLASS

I1/0

T8-1

CLASS 1/0

* PROGRAM TO PROGRAM
COMMUNICATION

* 1/0 FOR DEVICES

8.2 PROG - PROG COMMUNTICATION .

Program-to-program communication can be implemented via CLASS 1/0.
CLASS I/0 is itself implemented by a special set of EXEC 1I/0 and
system library calls. It provides programs with extra I/0 and
program communication capabilities such as:

For program—-to-program:
Mailbox I/0 - allows cooperating programs to communicate via

controlled access to a buffer and synchronizes the
data transfers.

For I/0 to devices:

I/0 Without wWait - Allows programs to continue executing
concurrently with its own I/0 operation to a
device.

Some considerations when choosing CLASS I/0 are: Is the program
swappable? Will the program go into I/O suspend? How much data is
to be transferred (buffers)? 1Is synchronization required? How
much SAM is available?

References: Programmer's Reference Manual
T8-2

PROGRAM TO PROGRAM
COMMUNICATION

+ RMPAR/PRTN

x EXEC 14/GETST

* SYSTEM COMMON AREA
* SHAREABLE EMA

% FILES

*x CLASS 1/0

MAIL BOX I/0 > SYNCHRONIZATION

8.3 Mailbox I/0

Mailbox 1I/0 prevents communicating programs from processing
incomplete or non-updated data. One program can send multiple data
buffers to another even though the other program has not accepted
any of them yet. Also, a program can suspend if it asks for data
that has not been sent or that is not yet valid. Multiple programs
can access the same data buffers if they all know the same 'key' or
class number. This is the mailbox address or mail key. CLASS I/O
uses SAM for its data buffer.

T8-3

MAILBOX 1/0

- Any number of programs can communicate
and share data

Can send multiple data buffers before
accepting any data buffers

A program requesting a data buffer before
one is available, is suspended by RTE until
a buffer is available

A special key controls access to data buffers

Size of data buffers is limited only by
the size of SAM

8.4 Data Transfers Thru SAM

CLASS I/0 uses SAM to pass data between programs. By placing the
data buffers in SAM, the program can be swapped out if necessary
(i.e., the data buffer is not in the program user space) . -

Multiple data buffers may be placed in SAM and synchronously
retrieved by other programs if they have the correct class number,
which may be passed via the System Common Area, or the EXEC
scheduling call.

Because SAM limits the buffer size and the number of buffers, care
must be taken not to use up all of SAM. Class numbers (1-255)
which are set up at generation are another resource for Class 1/0.

DATA TRANSFERS THRU SAM

2. PROGB

""gets" the data
to complete
the transfer

PROGA

DATA

PROGB

DATA

A\

SAM

DATA

N

RTE

PHYSICAL MEMORY

1. PROGA transfers
data to PROGB
by "dropping" the
data in SAM

8.5 Manufacturers and Consumers

A program initiates a program-to-program data transfer with an EXEC
20 (LU=0). This call manufactures a buffer in SAM and fills it
with data from the calling program, while the other program
retrieves the data and consumes the buffer in SAM by calling EXEC
21 - a Class Get., Thus, every CLASS I/O operation is a dual call,
an initiation request and a completion request. The programs can
execute independently of the data transfers, which are handled by
RTE. When generating RTE, the number of class numbers to be used
in the system is specified. Class numbers are used to protect the
CLASS 1/0 data buffers in SAM in the following ways. One, when a
program uses CLASS I/0 for program-—to-program communication it must
request a class number from RTE and make the Class Write/Read
request specify the class number, Two, the program retrieving the
data must make a Class Get call specifying the appropriate Class
number. (The automatic teller machines have a card and a secret
number for communication protection between the customer and the
bank account as an example.)

T8-5

MANUFACTURE RS

and

CONSUMERS

~INITIATED BY EXEC 20 (*CLASS WRITE/READ)

— MANUFACTURES A BUFFER IN SAM
— FILLS BUFFER WITH DATA FROM PROGRAM

COMPLETED BY EXEC 21 (*CLASS GETx)

— CONSUMES DATA IN SAM BUFFER
— RELEASES SAM BUFFER

—> EVERY CLASS I/0 TRANSFER IS A

DOUBLE CALL

—> EVERY CLASS 1/0 TRANSFER USES

CLASS NUMBERS

8-5 R8.5

8.6 Completed Class Queue

RTE keeps a list in SAM of the data buffers which were manufactured
by a Class call and are waiting to be consumed by a Class Get.
These lists are called Completed Class Queues and are 1linked off
the appropriate Class number with which they were called (i.e.,
manufactured) . A program must specify the proper class number to
access the buffers linked off that Class number. The buffer in SAM
is called the class buffer. It has two parts: the control
information, which specifies the class call, and the data buffer
which contains the data being transferred. Class numbers can be
allocated by CLRQ or by the CLASS 1I/0 request call itself. The
Completed Class Queue linking is ordered in the FIFO method.

T8-6

COMPLETED CLASS QUEUE

CLASS BUFFERS

CLASS TABLE
0
—1 > | CONTROL
DATA
> N N > | CONTROL
0 DATA DATA DATA

~—

COMPLETED CIASS QUEUES

EACH CLASS BUFFER HAS TWO PARTS -
CONTROL INFORMATION

CLASS NUMBER
SIZE. OF DATA AREA
ADDITIONAL INFORMATION

DATA BUFFER

8-6 R8.8

8.7 A SBample Program

No Text

T8-7

‘A SAMPLE PROBLEM

Suppose you are conducting an experiment which
will produce 20 data values every minute for 10
minutes. You might design two programs to input
and analyze each set of 20 values.

- Program DATIN is to be scheduled when
the experiment begins —

N
7/

Al %4

Input a set of 20 values

N

-
Drop the 20 values
in a ""'mailbox"

ore

Yes Data
?

No

Schedule ANLYZ to retrieve
the data and analyze it

V.
(DONE)

8-7 R8.7

8.8 ANLYZ

No Text

T8-8

Program ANLYZ will be scheduled by DATIN after
all of the data sets have been input and dropped
in the mailbox. ANLYZ will then retrieve and

analyze each set of data values.

(ANLYZ)

N
7
Vv

Get a set of values
from the mailbox

4
Analyze and print
the data

More

Data
?

No

Yes

R8.8

8.9 Allocating a Class Number

Allocating a class number can be done in two ways. The preferred
method is with the CLRQ subroutine. CLRQ allows the Class number
to be allocated and assigned an owner. The CLRQ routine is
important since if the program aborts or terminates without making
a Class Get (i.e., releasing the Class number or SAM buffers used) ,
the Class number could be 1lost to the system along with the SAM
buffer. Potentially, no Class numbers would be available 1in the
system, or all of SAM could be used up and lost. However, if CLRQ
is used (i.e., class ownership is known), RTE will automatically
deallocate the Class number and return the data buffers to SAM if
the owning program aborts or terminates without "cleaning up".

FUNC is the Class Management control function which, when set to 1,
will:

l. assign ownership to the program name in PARM]1,

2. will not assign ownership if PARM1=0, and

3. will assign class ownership to the calling program if there is
no PARM] parameter given (default).

CLASS now contains the Class number returned by RTE. Now, CLASS
can be sent to other programs to tell the program what Class number
to use when retrieving data from the Completed Class Queue. The
calling program can do additional Class WRITE/READs on the already
allocated Class number also.

The alternative method, which does not allow automatic clean up and
does not provide for assigning ownership, 1is with the EXEC 20 (&
17, 18, 19) calls, 1If the Class parameter has a value of zero, RTE
will return a Class number into CLASS. CLASS can then be used as
stated above. The only means for deallocating the Class number and
buffer is when a Class Get is made and there are no more buffers on
the Completed Class Queue and no pending requests for that Class
number, unless some option bits are set. The dis-advantages of
this method are that all the Class numbers (and SAM) could be used
and not deallocated. This could crash the system.,

T8-9

" ALLOCATING A CLASS NUMBER

* ALLOCATE AND ASSIGN OWNERSHIP

CLRQ(FUNC,CLASS [,PARMi])

1=class ownership J/

assigned
program name,
0,defaulted

* ALLOCATE ONLY

CLASS=0
EXEC(20,0,BUFR,BUFLN,P1,P2,CLASS)

RTE returns allocated | f l
class number

* [F THE PROGRAM ABORTS OR IS
TERMINATED WITHOUT EXPLICITLY
DEALLOCATING THE CLAS'S NUMBER

CLRQ - class number released for
clean—up

EXEC 20 — class number NOT released
for clean—up

8-9 R8.9

8.10 EXEC 20/EXEC 21

EXEC 20 - Write/Read - manufactures a buffer in SAM, fills it with
data from the program and links it to the appropriate Completed
Class Queue for program—to-program.

The control word (CNTWD) is set to zero for’ program-to-program
communication. The control word contains device driver information
and the LU of the device, thus for program-to-program we set the LU
to zero.

CLASS Is the Class number.

UV is a wuser-defined variable retrieved by the Class Get and used
in rethreading as the old Class number.

KEY is the key number for a 1locked LU (See Chapter 12, i.e., two
programs can share a locked LU). PARM]l and PARM2 are optional
parameters that can be retrieved by the Class Get.

EXEC 21 - Class Get consumes one buffer in the Completed Class
Queue off the specified Class number. The completed class queue is
ordered by FIFO and thus the EXEC 21 "gets" the first buffer in the
queue. It is therefore important that the programmer knows what
he/she is getting. CLASS is the previously allocated Class number.
RTN1 and RTN2 are the optional parameters which were passed when
the buffer was manufactured. RTN3 tells how the buffer was
manufactured (i.e., 1=R,W/R 2=W 3=C). The Class Get completes
the data transfer. It is the second <call of the "double call",
This calling sequence synchronizes the data access. The receiving
Program will not be able to do the Class Get call if there is no
buffer in the Completed Class Queue to get.

T8-10

EXEC 20/EXEC 21

EXEC 20 cLASS WRITE/READ

CLASS TABLE

——>| CONTROL \%_— MANUFACTURED
DATA e’

EXEC(ZO,CN'{EVD BUFR,BUFLN, l'z'l ,P2,CLASS,UV,KEY)

0 indicates program to program
communication

EXEC 21 cuAss GET

CLASS TABLE

-~} 5! CONTROL i=——— CONSUMED
: ! DATA | |
. L

EXEC(21,CLASS, BUFR BUFLN, Rl R2, R3 ,UV)

HOW BUFFER WAS MANUFACTURED

8-10 R8.10

8.11 Clean-Up

CLRQ has functions other than allocating Class numbers. If FUNC=2
then the class requests on that Class number will be flushed and
the Class number deallocated. 1If FUNC=3, then all class requests
to a particular device (LU) will be flushed, but the Class number
is not deallocated.

Clean up can also occur by making a Class Get call if certain
specifications are met. If there are no pending requests (for
device I/0) and no buffers in the Completed Class Queue, the Class
nunber will be deallocated with the Class Get call. (Remember, if
CLRQ was used to allocate the Class number then, if the program
fails to do a Class Get or aborts, the Class number will be
deallocated and all buffers cleaned up.) If CLASS parameter has bit
13 set in the Class Get call then the Class number will not be
returned to the system when the last buffer is consumed. -

T8~-11

CLEAN-UP

CLRQ (1,CLASS) ——> ALLOCATE AND
a ASSIGN OWNERSHIP

CLRQ (2,CLASS) —> flush class requests,

deallocate class number

CLRQ (3,CLASS,LU) —> fiush class requests on

specified LU number

Class GET

deallocctes class number,
if last buffer

—>
—> no deallocation if set
bit 13 of CLASS

8-11 R8.11

8.12 Example - The Manufacturer

The next four slides show the solution to the example problem.
Both solutions use CLRQ and assign ownership to either the calling
program or the Child program. Recall EXEC 10 and RMPAR.

program datin (input,output);
type int = =32768..32767;
protype = packed array [l1..6] of char;
valuetype = packed array [l..40] of char;
var a,b,i,func,class,len,error: int;
progname: protype;
numbers: valuetype;
procedure readex $ alias 'exec' $
(ecode, cntwd : int; var numbers : valuetype; length : int);
external; .
procedure clrqgone $ alias 'clrq' $
(func, class : int; progname : protype);
external;
procedure clrq $§ alias 'clrq' §$
(func, class : int);
external;
procedure schedule $ alias 'exec' $
(ecode : int; progname : protype; class : int);
external;
procedure abreg $ alias 'abreg' $
(var a, b : int);
external;
procedure classio $alias 'exec'$
(ecode,lu: int; numbers: valuetype; len,pl,p2: int;
class: int); external;
begin
{ ASSIGN CLASS NUMBER OWNERSHIP TO DATIN }
class := 0;
func := 1;
clrq(func,class);
{ INPUT THE 10 SETS OF 20 VALUES }
writeln ('Input two sets of twenty values: ');
for i := 1 to 10 do begin
readex (1, 257, numbers, -40);
abreg (a, b);
{ DROP IT IN THE MAILBOX }
classio (20, 0, numbers, b, 0, 0, class);
end;
{ SCHEDULE ANALYSIS PROGRAM AND ASSIGN IT CLASS OWNERSHIP }
progname := 'ANLYZ ';
clrqgone (func, class, progname);
schedule (10, progname, class);
end.

T8-12

EXAMPLE OF PROGRAM TO PROGRAM
COMMUNICATION

THE MANUFACTURER . . .

PROGRAM DATIN

INTEGER DATA(20), SPROG(3), EC
DATA SPROG/BHANLYZ /
DATA EC/400B/

OO

Assign class number ownership tc DATIN

IFUNC=1
ICLAS=0
CALL CLRQ (IFUNC,ICLAS)

Input the 10 sets of 20 values.
DO 201 = 1,10

CALL EXEC (1,1+EC,DATA,20)
CALL ABREG (iA,IB)

O OO0

Drop in the mailbox.

CALL EXEC (20,0,DATA,IB,K,L,ICLAS)
CONTINUE

o

After the data is in the mailbox, schedule the
analysis program assigning it the class ownership.

CALL CLRQ (IFUNC,ICLAS,SPROG)
CALL EXEC (10,SPROG,ICLAS)

END

OOOON OO0

O

8-12 R8.12

8.13 The Consumer
Pascal example:

Srun_string 0$
Program Anlyz;

type
int = -32768 .. 32767;
valuetype = packed array [1..40] of char;
ptype = array [l..5] of int;

var
class, a, b, i, j :
buffer : valuetype;
parms : ptype;
out : text;

int;

procedure rmpar $ alias 'rmpar' $
(var parm : ptype);
external;
procedure class_get $ alias 'exec' $
(ecode, class : int; buffer : valuetype; length : int);
external; '
procedure abreqg $ alias 'abreg' $
(var a, b : int); external;

begin
{ RETRIEVE THE CLASS NUMBER }

rmpar (parms);
class := parms([l];
rewrite (out, '1');

{ GET EACH SET OF VALUES AND ANALYZE }

for 1 := 1 to 10 do begin
class_get (21, class, buffer, -40);
abreq (a, b); '
writeln (out, 'The values passed by DATIN are: ');
for j := 1 to b do
write (out, buffer[j]);
writeln(out);
end;

end.

T8-13

THE

QaaQ A

Q QA

CONSUMER . . .

PROGRAM ANLYZ
INTEGER DATA(20),PARM(5)

Retrieve the class number.

CALL RMPAR (PARM)
ICLAS = PARM(1)

Get each set of values and analyze.
DO20I = 1,10

CALL EXEC (21,ICLAS,DATA,20)
CALL ABREG (IA,IB)

WRITE(1,'(20A2)") (DATA(J),J=1,IR
CONTINUE
END

8-13 R8.13

8.14 Another Way to Program Our Example
program datin (input,output);

type int = -32768..32767;
protype = packed array [l1..6] of char;
valuetype = packed array [1..40] of char;
var a,b,i,func,class,len,error: int;
progname: protype;
numbers: valuetype;
procedure readex $ alias 'exec' $
(ecode, cntwd : int; var numbers : valuetype; length : int);
- eXternal; '
procedure clrgone $ alias 'clrq' $
(func, class : int; progname : protype);
external;
procedure schedule $ alias 'exec' $
(ecode : int; progname : protype; class : int);
eXternal;
procedure abreg $ alias 'abreg' $
(var a, b : int);
exXternal;
procedure classio $alias 'exec'$
(ecode,lu: int; numbers: valuetype; len,pl,p2: int;
class: int); external;
begin

{ ASSIGN CLASS NUMBER OWNERSHIP TO ANLYZ }
class := 0;

func := 1;

progname := 'ANLYZ °';

clrqone (func, class, progname);

{ INPUT THE 10 SETS OF 20 VALUES }

writeln ('Input ten sets of twenty values: ');
readex (1, 257, numbers, -40);

abreg (a, b);

{ DROP IT IN THE MAILBOX }

classio (20, 0, numbers, b, 0, 0, class);
{ SCHEDULE THE ANALYSIS PROGRAM }

schedule (10, progname, class);

{ NOW INPUT AND SEND THE REMAINING SETS OF VALUES }
for i := 1 to 9 do begin
readex (1, 257, numbers, -40);
abreg (a, b);
classio (20, 0, numbers, b, 0, 0, class);
end;
end.

T8-14

ANOTHER WAY TO PROGRAM
OUR EXAMPLE

'Why not let DATIN schedule ANLYZ to process the data as
it is input rather than waiting until all of the data has
been received?

PROGRAM DATIN

INTEGER DATA(20), SPROG(3),EC
DATA SPROG/BHANLYZ /
DATA EC/400B/

assign class ownership to anlyz
IFUNC=1

ICLAS=0 -
CALL CLRQ (IFUNC,ICLAS,SPROG)

olole]

Input the first set of 10 values, drop them in
the mailbox, and schedule the analysis program.

olololel

CALL EXEC (1,1+EC,DATA,20)
CALL ABREG (IA,IB)

CALL EXEC (20,0,DATA,IB,K,L,ICLAS)
CALL EXEC (10,SPROG,ICLAS)
Now input and send the remaining sets of values
DO 20 I=1,9 |
Input a set of values.

CALL EXEC (1,1+EC,DATA,20)
CALL ABREG (1A,IB) |

Qaa o a O

Drop in the mailbox.
CALL EXEC (20,0,DATA,IB,K,L,ICLAS)
0 CONTINUE
END

Qv aan

8-14 R8.14

8.15 And The Consumer Version 2
Pascal Example:

$run_string 0$
Program Anlyz;

type
int = -32768 .. 32767;
valuetype = packed array [l..40] of char;
ptype = array [l1..5] of int;
var
class, a, b, i, j : int;
buffer : valuetype;
parms : ptype;
out : text; <
Procedure rmpar $ alias 'rmpar' $
(var parm : ptype);
, external;
Procedure class_get $ alias 'exec' $
(ecode, class : int; buffer : valuetype; length : int
external;
procedure abreg $ alias 'abreg' $
(var a, b : int); external;
begin

{ RETRIEVE THE CLASS NUMBER }
rmpar (parms);
class := parms[l] + 8192;
rewrite (out, '1');

{ GET ONE SET OF NUMBERS, BUT DON'T }
{ DEALLOCATE THE CLASS NUMBERS }

for i := 1 to 10 do begin
class _get (21, class, buffer, -40)i
abreg (a, b); '
writeln (out, 'The values passed by DATIN are: ');
for j := 1 to b do
write (out, buffer[j]);
writeln(out);
end;

{ NOW THAT ALL THE DATA SETS HAVE BEEN ANALYZED, }
{ USE AN EXTRA GET CALL TO DEALLOCATE TIHE CLASS NUMBER }
class := parms([l];
class get (21, class, buffer, -40)
end.

T8-15

... AND THE CONSUMER
VERSION 2

PROGRAM ANLYZ

INTEGER DATA(20),PARM(5),SC
DATA SC /2003%3/

Retrieve the class number.

CALL RMPAR (PARM)
ICLAS = PARM(1)

QaQn

Get each set of values and analyze.
DO301I = 1,10

Get one set of values, but don't
deallocate the class numbers.

CALL EXEC (21,ICLAS + SC,DATA,20)
CALL ABREG (IA,IB)

Qaan Qan

Analyze the set of values.
WRITE (1,'(20A2)) (DATA(J),J=IB)
0 CONTINUE

Now that all the data sets have been analyzed,
use an extra GET call to deallocate the class number.

CALL EXEC (21,ICLAS,DATA,20)
END

Q QAQQLOH QaQAn

8-15 R8.15

8.16 Class Buffer Rethireading

PROGRAM PARNR
INTEGER CLASS,IBUF(10),NUM
C** Belongs to CHILR,
- CLASS=0
CALL CLRQ(1,CLASS, 6HCHILR) _
WRITE(1,' ("ENTER NUMBER OF SETS TO BE ENTERED ") ')
READ(1,*)NUM B
WRITE(l1,*) 'ENTER 10 VALUES'
READ(1,*) (IBUF(I)I=1,10)
CALL EXEC(20,0,IBUF,10,1ID, IE,CLASS)
50 CONTINUE

CALL EXEC(9, 6HCHILR ,CLASS,NUM)
END

PROGRAM CHILR:

INTEGER IPARM(5),CLASS,BUF(10),NUM,CLAS2,BUF2(10)

DATA BUF2/5,5,5,5,5,5,5,5,5,5/

CALL RMPAR (I PARM)

CLASS=IPARM(1)

NUM=IPARM(2)+1
C** Have the system allocate another class number and link BUF2 on
C** this class number.

CLAS2=0

CALL EXEC(20,0,BUF2,10,0,0,CLAS2)
C** Rethread buffer (BUF2) on CLAS2 to class # set up by PARNR(CLASS)

CALL EXEC(20,0,BUF2,0,0,0,CLASS+20000B,CLAS2)

DO 50 L=1,NUM

CALL EXEC(21,CLASS, BUF, 10)

WRITE(1,' ("VALUES PASSED *,10(I5,2X))"') (BUF(I),I=1,10)

50 CONTINUE
END '

Rethreading can save considerable overhead where request
retransmission or broadcasting a request is desired within a
program. It is a way to move «class buffers without having to
allocate more memory or more words. Possible uses include reusing
buffers passed via program-to-program communication, recycling
through buffers, and broadcasting class-buffered messages to
multiple LUs. The UV optional parameter will be set to OCLAS which
is the o0ld class number identifying the Completed Class Queue where
the rethread buffer will be removed. CLASS is the Class number
with the RT bit (bit 13) set, indicating rethreading is desired.

T8-16

CLASS BUFFER RETHREADING

Rethreading means that the next buffer in a
completed class queue is relinked to point to
~ a new class number.

Class Table

Program ' >

PARNR BUF 1

Program > —>

CHILR BUF 2 BUF 3

Program CHILR will rethread its
first buffer on to Program PARNR's
completed class queue.

NV
Class Table
Program S >
PARNR | BUF 1 BUF 2
Program >
- CHILR | Buf 3

8-16 R8.16

8.17 CLASS I/O FOR DEVICE 1I/0

CLASS I/0 also can be used for device I/0 and control. I/0 without
wait means the program can continue executing concurrently with its
own input/output operations. This applies to I/0 control to device
as well. When a CLASS I/0O request is made to a device, it is
associated with a specified Class number as before, except this
time it is queued off the I/0 device table, not the Completed Class
Queue,

This 1list 1is the pending Class request., The request remains
pending until the driver has received and processed it accordingly.
When the driver finishes the operation, the request is then 1linked
off the Completed Class Queue (as with program-to~program
communication) associated with the Class number. Then the second
call of the double call process, the Class Get, is performed to
complete the operation., This technique allows more than one buffer
to be associated with the same Class number and more than one Class
request (of different Class numbers) to be linked off the I/0
device, If the device driver is busy, the class request is linked
off according to program priority. CLASS 1I/0 for device 1I/0
simulates "buffered I/0 devices". The process uses two linked
lists, the device 1I/0 request list (by device), and the Completed
Class Queue (by Class number).

Reference: Programmer's Reference Manual
T8~-17

CLASS 1/0 FOR
" DEVICE 1/0 AND CONTROL

PROGRAM
 REQUEST 1/0

& 1/0 DONE

EXEC 17 CLASS READ

EXEC 18 CLASS WRITE

EXEC 19 CLASS CONTROL
EXEC 20 CLASS WRITE/READ
EXEC 21 CLASS GET

DEVICE

\

e

8-17 o R8.17

g8.18 CLASS 1/0 for Input - EXEC 17

Class Read, Write, and Write/Read requests all have the same call
format and all manufacture one buffer in SAM. The Class Read
request is executed in the following steps:

* A SAM buffer is created with control words and a buffer.

* The device "reads into" the SAM buffer which is 1linked off the
. I/0 device table.

The program can continue execution during this I/0 operation.

* After the device has read in the data, it is 1linked in the
Completed Class Queue off the Class number which was used in
initiating the request (i.e., in the EXEC 17 call).

* The program can now do a Class Get to consume the buffer.

* The data goes in the program's buffer and the SAM buffer is
returned to SAM and Class number deallocated if the previously
mentioned criteria exist., With this method, a read to an
unbuffered, or buffered device can be made without the program

I/0 suspending.
The program can continue execution and can be swapped.

What happens if there are no buffers in the Completed Class Queue
when the program does the Class Get?

For example, suppose PROGB wants to input some values from a
terminal into an array. Using CLASS I/0, the program might look
like this:

PROGRAM PROGB

REQUEST INPUT OF DATA ~ CLASS READ

CALL EXEC (17,...)
CONTINUE EXECUTION WHILE RTE DOES THE I/0

RETRIEVE THE DATA THAT WAS INPUT - CLASS GET

00 o0 aaa

CALL EXEC (21,...)

T8-18

CLASS I1/0 FOR INPUT

BEFORE:

SAM |
1 Program request input
CLASS BUFFER & creates buffer
CONTROL |&——DVT
DATA <3 device
inputs data
2 program
continues
AFTER: ‘ CLASS TABLE
PROGRAM
BUFFER N)
— | €—| contRoL |[€
DATA
5 Program gets 4 Cl
~ data from ass buffer goes to completed
~ device class queue

8-18 R8.18

8.19 CLABS I/0 for Output - EXEC 18

The CLASS I/0 for output operation flows as follows:

*

*

The program writes data out to a device by an EXEC 18 call.

The program buffer 1is copied to the SAM buffer and the SaM
buffer is written out to the device.

Again, the program can continue without waiting and when the I/0O
is completed the buffer space will be released to SAM and only
the CNTL words will be linked off the Completed Class Queue.

When the program performs a Class Get, the control words will be
released and possibly the Class number. :

For example, suppose PROGA wants to output a buffer to the line
printer (LU 6). Using CLASS I/0, the program might be structured
like this:

e NoXe) e XeKe] oNoXe]

PROGRAM PROGA

OUTPUT DATA - CLASS WRITE

CALL EXEC (18, ...)

CONTINUE EXECUTION WHILE RTE DOES THE I/0
COMPLETE THE OPERATION - CLASS GET

CALL EXEC (21,...)

T8-19

CLASS 1/0 FOR OUTPUT

BEFORE:

PROGRAM | 1 Program requests
output; creates buffer
BUFFER & outputs to SAM
—1 \
CLASS BUFFER
CONTROL |[&——— DVT
DATA ———3 data
outputs
to device
2 program
continues
AFTER:
CLASS TABLE
A’ .
Z
CONTROL |
5‘ Program cleans
u’) with 4 only CONTROL
class get Buffer goes to completed

class queue

8-19 R8.19

8.20 CLASS I/0 for Write/Read - EXEC 20

The CLASS I/O for Write/Read operation for LU <> 0 (i.e., for I/0
to devices) is as follows:

* The program initially writes data out to a device by the EXEC 20
call (LU = device Logical Unit number).

* The program buffer is placed in the SAM buffer.

* The device "sees" the request as a read and inputs data into the
SAM buffer, overlaying the program's buffer contents already in
the SAM buffer.

* MAgain, the program can continue without waiting and when the

device completes input, the buffer is linked off the completed
class queue.

* When the program performs a Class Get, the data |is copied into
the program's buffer and the SAM buffer is returned to SAM and
_possibly the Class number is deallocated.

Thus, an EXEC 20 call with LU <> 0 is a means for the program to

receive input from a device after the program has first written
into or initialized the same buffer.

T8-20

CLASS I/0 FOR OUTPUT/INPUT

BEFORE:
| SAM »
PROCRAN Al
to i
BUFFER CLASS BUFFER
C— N

I

2 Pro ram
continues

-AFTER:

PROGRAM

BUFFER
—

5 Program 'gets"
data from device

CONTROL |¢<&~—DVT

&\\\\\\\ o
|

CLASS TABLE

N\

CONTROL =

N\

4 entire buffer goes to
completed class queue

8-20 R8.20

LASS 1/0 FOR OUTPUT/INPUT

BEFORE:
SAM
PROGRAM 1 g"g.?;?efp g%r:ﬁgctures
(ol |
BUFFER CLASS BUFFER
— \ CONTROL [¢<—DVT
N 6— 3 Devi d
NN
NN N |
2 Program
continues
AFTER:
d CLASS TABLE
PROGRAM
BUFFER CONTROL
N
e D\
N\

5 Program 'gets"
data from device

4 entire buffer goes to
completed class queue

8-20

R8.20

CLASS GET REVISITED

What order are buffers retrieved in?

EXEC (18,.....) CLASS WRITE
EXEC (19,.....) CLASS CONTROL
EXEC (21,.....) CLASS GET

(EXEC 21,.....) CLASS GET

SAM buffers manufactured by CLASS WRITE/READ——>

retrieved in order CREATED

- SAM buffers manufactured by CLASS READ
CLASS WRITE, CLASS CONTROL >
retrieved in order COMPLETED

8-21

8.22 Variations with CLASS I/0

The default use of CLASS I/O can be changed with option bits in the
CLASS word. Default usage is:

*

class variable contains only a ‘class number (bits 12-0); the
class number is deallocated when the last buffer is consumed; the
buffer in SAM is not recoverable after it is consumed; and the
program will suspend waiting for resources to become available
(i.e., Class numbers, SaM, Complete Class buffers, ...).

CLRQ has two option bits in the FUNC parameter., CLRQs CLASS
parameter is the same as in EXEC 17,18,19,20 requests.

*

Bit 15-(NW) is the no-wait bit. 1If it is set, the program will
not suspend if no class numbers are available when CLRQ request
is made.

Bit 14-(NA) is the no-abort bit. The program will not abort if
an error occurs in the CLRQ request. Registers A and B will
contain ASCII error message.

The CLASS parameter in EXEC 17,18,19,20 calls has 3 option bits.

*

Bit 15-(NW) is the no-wait bit. The program is not suspended if
SAM or a class number is not available.

Bit 14-(SB) is the Save Class Buffer Bit. When it is set, the
data buffer (allocated by a Class Write) is saved for future
processing. * Bit 13-(RT) is the rethread bit. When set, the
request becomes a rethread request rather than a standard call.
The UV parameter needs to be set also.

For Class Gets, three option bits are available:

*

Bit 15-(NW) is another no-wait bit. The calling program is not
suspended if the completed class queue is empty, i.e., there is
no SAM buffer to get.

Bit 14-(SB) 1is the save class buffer bit. When set, the SAM

buffer is saved (i.e., not deallocated by the Class Get) at the
head of the 1list. Thus, on the next Class Get (with same Class
number) the same buffer (same data) is consumed.

Bit 13-(SC) is the Save Class Bit or no-deallocate bit. If it is
set, the class number is not deallocated when there are no
pending class requests and no completed buffers on that class
number.,

T8-22

VARIATIONS WITH CLASS 1/0

CLRQ — FUNC parameter option bits

15 14 13 2 1 0 m
/N

| L Function
no wait | __

no abort

CLASS READ, WRITE, CONTROL, WRITE/READ
— CLASS parameter option bits

15 14 13 12 0
N - D rethread T Class Number
save class buffer
—no wait

CLASS GET — CLASS parameter option bits

15 14 13 12 | 0

ey
/Lsove class Class Number

sove class buffer
no wait

8-22 R8.22

8.23 What Are We Waiting For?

The program will not suspénd for the given situations if bit 15 is
set. The program must then look at the A register and decide what

action to take next.

NOTE: A program will suspend on a Class Get if there is no buffer
S " to get, i.e., no call to a Class Read, Write, Write/Read, or
“Control has been made previously.

This feature allows CLASS I/O0 to be used for "synchronization"
since the program waits for the buffer to be available. When it is
available, RTE "wakes up" the suspended program. The programmer
may wish to avoid "being put to sleep" by using bit 15. Beware
that the program must then return later to get the buffer, i.e., do
its own synchronization.

T8-23

WHAT ARE WE WAITING FOR?

o Program will be suspended for -
* NO AVAILABLE CLASS NUMBERS

* NOT ENOUGH SAM |
* EMPTY COMPLETED CLASS QUEUE

o A '"no wait" CLASS request is told
what is unavailable

14 .w i e '
no walt A-REGISTER
CLRQ —1 if no class number available
R . . -
W —1 if no class number available
CLASS ¢ s |
W/R 2 if not enough SAM currently
CLASS GET —n if empty completed class queue
n = number of pending requests +1,
for that class number

8-23 | RB.23

8. 24 CLASS I/0 - A Summary of Features

Some points to remember about Class I/0:

*

Can be wused for program-to-program communication with EXEC
20(W/R) with LU = 0 and EXEC 21(GET).

Allows for synchronization of data transfer for
program—-to-program communication.

Allows program to be swappable, since the I/0 buffer is in SAM.

The program does not wait for the I/O0 transfer, i.e., no I/0
suspend.

CLASS I/0 1is a "double call". Initiate request with Class
W/R,W,R,C and complete with Class Get.,

CLRQ allows "clean-up". Returns SAM to system and deallocates
Class number.

Option bits may override default conditions.

\T8-24

CLASS 1/0
A SUMMARY OF FEATURES

Programs may use class I/0 for:

* program to program communication
* input/output requests to peripheral devices

* control requests to peripheral devices

All types of class I/0 share these features:

* data transfers are done via buffers in SAM
* CLASS 1/0 is "double call"

* buffers are queued on class numbers,
the "keys" to accessing data

* buffers may be manufactured and consumed
asynchronously

8-24 R8.24

8.25 CLABS I/O Vs. Other I/0

No Text

T8-25

CLASS 1/0 vs. OTHER 1/0

All types of I/0 must specify the:

* LU of the device
~ * buffer containing or receiving the data

* humber of words or characters to be transferred

Various forms of I/0 differ by:

Number of Location of Program Program
EXEC calls buffer used Swappable waits
by driver ? ?

Normal '1/0
(unbuffered)

Automatic
output
buffering

CLASS 1/0

8-25 R8.25

8. 26 TERMINAL HANDLERS EXAMPLE

The program can issue CLASS READs to several terminals without
waiting for completion.

The program (or another program) uses CLASS GETs to retrieve the
inputs from the terminals as they are completed.

T8-26

TERMINAL HANDLERS

EXAMPILE

Suppose operators at several terminals are
entering data which is used to update a
disc file.

DISC FILE

\,//
Since Class |/0 allows input without wait, one

program can easily handle inputs from
several terminals "simultaneously.”

8-26 R8.26

8.27 A Simple Example

Consider a program which will:
* Prompt three terminals for a string of 10 characters.

* Process the input by printing each string on the 1line printer,
along with the LU of the terminal which supplied the string.

T8-27

A SIMPLE EXAM
:PROGRA-M TERMS .

~C INTEGER LUS(3)
DATA LUS/15,18,17/

PLE -

allocate a class number

aQaan

DO 10 I = 1,3
LU = LUS(I%
WRITE (LU 'INPUT 1

Issue 3 prompts and reads.

0 CHARACTERS:'

issue CLASS READ

10 CONTINUE

Retreive inputs.

DO 101 = 1,3
issue CLASS GET

oleole]

print string and LU
20 CONTINUE

8-27

R8.27

