(bﬁ HEWLETT

PACKARD

- RTE—A PROGRAMMER
&
SYSTEM MANAGER

VOLUME I

e doto systems
troining center

STUDENT WORKBOOK

22999-90546 - | FEB. 1984

© Copyright. All rights reserved. No part of this work may be reproduced or copied in any form or by any means — graphic, |

electronic, or mechanicsl, inciuding photocopying, recording, taping, or information and retrievai systema — without written permis-
sion of Hewlett-Packard Company.

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

-

THE SYSTEM
MANAGER'S JOB

CHAPTER 13

Table of Contents

Chapter 13 .. =

THE SYSTEM MANAGER'S JOB

ReSponSibilitieS Of a System Manager e 6 o o o o & o o o o o 13"‘1
Planning your SYStem @ & & 4 o & o e ° * e o & o o * 6 e e o 13"2
Generating the SyStem ® & o o o 2 e o e e o e o e o o o e e o 13"3
Installing the System ¢ ® o o o o ¢ ¢ o o 6 6 ¢ o 6 o o o e e 13-4
Maintaining the System & & & o s e+ o 46 e e o o o e o o o e o 13-5

1.

2.

MODULE OBJECTIVES

Be able to describe the various functions of the System

Manager.,

Learn what will be covered in
the course.

ii

the system management portion of

SELF-EVALUATION QUESTIONS

13-1., List four responsibilities of the System Manager and the
duties required with each function.

13-2. What is a primary system?

iii

13.1 Responsibilities of a System Manager

The System Manager is a superuser and thus has full system
capability, including read/write access to any directory or file on
the system. There may be more than one superuser on the system.
These will be people who have an in-depth ~understanding of the
system operation. Typically, only the System Manager will be
performing the functions listed.

Planning -— Deciding what the new system will be like.

Generation -= Creating the new system.

Installation

Getting the new system running.

Maintenance -- Keeping the system usable.

T13-1

. RESPONSIBILITIES OF A

- SYSTEM MANAGER

1. PLANNING
2. GENERATION
3. INSTALLATION

4. MAINTENANCE

13-1

13.2 Planning your system

These things must be taken into account to insure that the system
meets the needs of the users and the applications running.

T13-~2

PLANNING YOUR SYSTEM

* Who will be using your system?
~ Will it be a multiuser system?

+ What type of applications will
be run” on your system?

* What system resources_and
peripherals will be required?

13-2 R13.2

13.3 Generating the System

The generation process creates a system which is customized for
your application,

The primary system is one supplied by HP as part of the software
product. It is a generic operating system that includes most
common peripherals and a standard disc layout. The primary allows
You to start using your computer right away and provides a starting
point from which to create your customized system.

T13-3

GENERATING THE SYSTEM

" An RTE—A system is "generated" by
- using the generator program RTAGN.

The System Manager can generate
the system on:

* an existing operating system
* the primary system

The primary system is a pre—generated
system with:

* system utilities
+ most supported |/0O devices

13-3 R133

13.4 Installing the System
BOOTEX -- A memory based system that has the sole responsibility of
loading and initializing a disc based operating system.

Boot Command File -- Contains commands for the BOOTEX system to
initialize the disc based system.

Welcome File == A CI command file that 1is run by the RTE-A
operating system to mount volumes, initialize devices, etc.

System Utilities -- These include the copy of CI that wusers will
share (VC+) and commonly used programs (eg. WH).

T13-4

INSTALLING THE SYSTEM

AFTER THE NEW RTE—-A SYSTEM HAS
BEEN GENERATED, YOU WILL NEED TO:

Install the boot extension area (BOOTEX)
Prepare the boot command file
Prepare the welcome file

. Load system utility programs

BOOT UP
THE NEW SYSTEM

13-4 R13.4

13.5 Maintaining the System

T13-5

MAINTAINING THE SYSTEM

AS THE SYSTEM IS BEING USED, YOU
MIGHT NEED TO:

Alter user accounts
save/restore disc LUs and files

Alter system parameters
Add updated software

Answer questions pertaining
to system operation

Act as Hewlett Packard's contact
at the installation

13-5 R135

SYSTEM DESIGN
AND PLANNING

CHAPTER 14

Table of

Chapter 14
SYSTEM DESIGN AND PLANNING

S YSTEM
Physical Memory Map . . .

DESIGN CON

Logical Memory Map of the System

Dynamic Mapping System
System Modules . . ¢ ¢ o o o o o
Requi!‘ed System Modules e o o o o
$SYSA [) * * * L L * [] * [] [] * L *
System Tables e o o o o o o o o o
I/o Tables * L * [] * [] L * L * []
I/O Drivers o« o« o o o o o o o o o

I /0 PLANNING
I/0 Priority - 20 Slot Box . . .
I/0 Priority - Microsystems . . .
I/0 Select Codes .+ « o o o o o
I/0 Configuration Worksheet . , .
DISsC
File System Configurations
Disc Allocation Units . .
Disc Summary . « « o o &
Physical Disc Structure .
Surface Mode
Cyllnder Mode
CS80 Disc Conflguratlon .
CS80 Disc Driver Parameters
CS80 CTD Driver Parameters
Example 7908 Configuration
Non-CS80 Disc Configuration
Example 7906 Configuration
Example 7925 Configuration . .
Example Floppy Disc Configuratioe

* o o o o o
Il o ¢ ¢ o ¢ ¢ o ¢ o o
Lo

o Tle o ¢ ¢ ¢ ¢ ¢ ¢ ¢ o

i
n

\Y

Contents

0
=
v

"

CONFIGURATIO N

L
L
L
L
L
L
e
L
L
L

o

e o o Do o o ¢ 0 ¢ o ¢ o o

"

ooogoooooooooo

e o ¢ o o o o o o N

o o o (D e o o ¢ o o

o

o o o Me o o ¢ ¢ 0 ¢ o o o

"

o o o (N e ¢ o ¢ ¢ ¢ o o o o

14-1

14-2

14-3

14-4

14-5

14-6

14-7

14-8

14-9
14-10
14-11
14-12
14-13
14-14
14-15
14-16
14-17
14-18
14-19
14-20
14-21
14-22
14-23
14-24
14-25
14-26
14-27
14-28
14-29
14-30

2.

3.

MODULE OBJECTIVES

Describe the components of physical memory and logical svstem
memory. Be able to describe the relationship between logical
and physical memory.

Be able to make effective system planning decisions: I/0
layout, what modules to include and why.

Be able to describe the system tables.

"Explain why the disc layout would be modified; be able to £ill

out the disc configuration worksheets for both CS80 and non
CS80 discs. '

ii

14-1.

14"2.
14-30
1 4—4.

14-5,

14-6.

SELF-EVALUATION QUESTIONS

What is the difference between reserved and dynamic memory
partitions?

What is a driver partition?

Which modules are required in every system?

What is an RPL file?

How many of each of the following tables are in the system?

LUT
DvT
IFT
INT

Define the following disc configuration concepts?

Surface mode
Cylinder mode
Physical disc block
Logical disc sector
Block addressing

iii

14.1 SYSTEM DESIGN CONCEPTS

Tl4-1

SYSTEM
DESIGN
CONCEPTS

14.2 Physical Memory Map

System Base Page - Contains the A- and B-Registers, interrupt trap
cells, links to other memory locations and temporary storage for
the VCP/loader ROM.

System Modules - The area of memory reserved for the operating
system the device and interface drivers which do not support driver
partitioning.

Driver Partition - Each partition contains 1 or more drivers which
will be mapped into the system as needed. Reep >3 uni_orrnui{t

System Tables - Tables containing data used by the system, such as
I/0 configuration, Program ID segments, etc.

System Common Partition - Mapped into the user logical map when a
Program accesses system common.

System Message Block - A data structure which contains system
messages.

System Available Memory - A block of physical memory used for
buffered 1/0, class I/0 and program-to-program communication. SAM
may be up to 32K words.

R

Reserved User Partitions - Blocks of physical memory reserved for
pPrograms which are assigned to run in a specific partition.

Dynamic Partition Areas - Physical memory which is allocated for
programs on demand.

References: Systenm Design Manual
T14-2

PHYSICAL MEMORY MAP

HIGHEST
DYNAMIC ADDRESS
PARTITION
AREA
RESERVED

USER PARTITION #n

RESERVED
USER PARTITION #1

SYSTEM AVAILABLE MEMORY
(SAM)

SYSTEM MESSAGE BLOCK

SYSTEM COMMON

SYSTEM TABLES

DRIVER PARTITION #n

DRIVER PARTITION #1

SYSTEM MODULES

SYSTEM BASE PAGE ADDRESS 0

14-2 R14.2

14.3 Logical Memory Map of the System

*EWivileged Drivers - Drivers whose interrupts are not processed by
the RTE-A operating system.

The only standard RTE-A driver which is not partitionable is ID. 43,
the powerfail driver.

Driver Partition - A contiguous set of pages 1in the system logical
memory map. The size of this partition is the same as the size of
the largest driver partition (defined at generation time).

References: System Design Manual
T14-3

LOGICAL MEMORY MAP

PHYSICAL
MEMORY
HIGHER
MEMORY SYSTEM
TABLES
" | DRIVER

// PARTITION 41

LOGICAL /

MEMORY -
SYSTEM / DRIVER
TABLES / PARTITION #2
DRIVER | DRIVER

PARTITION | PARTITION #1

PRIVILEGED & PRIVILEGED &

| NON—PARTITIONED
DRIVERS

SYSTEM
MODULES

SYSTEM
BASE PAGE

ADDRESS 0

14-3

NON-PARTITIONED
DRIVERS

SYSTEM
MODULES

SYSTEM
BASE PAGE

R14.3

14.4 Dynamic Mapping System

The dynamic mapping system consists of 32 sets of map registers,
with 32 registers in each set,

Working Map Register - A special purpose register which holds the
map set number which is currently active. The EXECUTE map is used
for instruction fetches. 1In the CDS (VC+) environment this map
number also determines which map (data map = code map - 1) is used
for program data. The DATAl and DATA2 maps are used to access data
in other map sets, (For example - to allow a user program to
access data in the system map).

Port Map Sets (8-31) - Used individually by each select code (octal
20 through 47). There is a port map for each interface card, thus
providing 24 channels of concurrent DMA.

Port map number = select code - 8

————

References: System Design Manual :
T14-4

DYNAMIC MAPPING SYSTEM

WORKING MAP REGISTER

- DATA2 | DATA1 | EXECUTE

sl

I/0 PORT MAPS |31

L

- MAP SETS
|
|
|
|
|
|
/

I
I
I
I
I
I
/

_______A

8
S AUXILLIARY MAP |7
] DS1000/IV MAP |6
RESERVED 5

4

3

: SAM
CDS PROGRAM CODE

CDS. PROGRAM DATA
or 2

NON-CDS PROGRAM
SYSTEM MESSAGES BLOCK | 1

OPERATING SYSTEM | 0

14—4 R14.4

14.5 System Modules

RTE-A is a modular system; the system is built only with those
pieces needed for your application. The system modules "tree"
shows all the RTE-A system modules, indicating which modules
require other modules in order to operate. The modules in the box

at the right are required. For the pgg%zgg_gggglgpment environment
it is usually a good idea to include all modules in the system.

CDSFH and SPOOL are available only with the VC+ option.

References: System Design Manual
T14-5

SAM

SYSTEM MODULES

CLASS

SAM

| STRING

——

or

SAM
SCHED

STRING

SAM

STAT

XCMND

—1SYCOM

OPMSG

ID.43

D

MEME
LOAD

TIME

LOCK

VCTR

EXEC

RTIOA
IOMOD
RPLxx
driver

$SYSA

MSGS

ERLOG

PERR

[CDSFH

(VC+)

SPOOL

(VC+)

14-5

__w.___J
mucet (e u‘u.“ﬂ-q

R14.5

14.6 Required System Modules

VCTR - Contains system entry points, #FIf all system references are
resolved in the VCTR module, then the program is transportable.

RPLxxu@;ifhis file defines software replacements for microcoded
instructions. The particular RPL file used is based on the type of
processor and the features used in your system. This can be found
in the reference maunal.

EXEC - Routes all EXEC calls and processes EXEC 6, 7, and 29.

RTIOA - Handles all normal 1I/0 requests (EXEC 1, 2, 3, 13),
although IOMOD must also be present to actually perform the I/O.

IOMOD - contains subroutines for 1I/0 and is the real time clock
manager.

$5YSA - This is the dummy library - more later.

References: System Design Manual
T14-6

REQUIRED
SYSTEM MODULES

RPLxx

14,7 $sysa

The dummy module may:

- Issue an error message
- Implement a NOP instead of the subroutine
- Abort the program with an illegal request

The action taken by a particular dummy module when invoked is
described in the System Design Manual (chapter on Operating System
Modules) .

The name of the dummy module in $SYSA uses the first three
characters of the real module followed by two periods.

At load time:
In each of the real modules, the entry point $$xxx will exist,
where xxx are the first three characters of the name of the
real module. This entry point will not exist in the dummy
module.

At run-time:

The entry point $.xxx (where xxx are the first three characters
of the real module name) will be set to 0 in the real module
and will be set to -1 in the dummy module.

Note: An entry point is a location in a module which is accessible
to external routines.

References: System Design Manual

T14-7

$SYSA

RESOLVES REFERENCES TO MODULES
‘WHICH HAVE BEEN OMITTED.

REAL MODULE = TIME
ENTRY POINT = $$TIM
ENTRY POINT $.TIM = O

DUMMY MODULE = TIM..
NO ENTRY POINT $$TIM

ENTRY POINT $.TIM = -1

thie tefl Sys’o—
A “edu([Y asd
R foreleof

14-7 R14.7

14.8 System Tables

System tables -~ In order to provide flexibility, and at the same
time minimize system memory requirements, variable 1length tables
are used to configure the operating system. The length of the
tables or the number of tables is determined at generation time.
The interface tables and device tables are 8 words and 25 words,
respectively, but there may be extensions to these tables defined

at generation time,

References: System Design Manual
T14-8

‘a

SYSTEM TABLES

TABLE NAME

#WORDS

SWAP DESCRIPTOR TABLE
'SHAREABLE EMA TABLE

MEMORY DESCRIPTOR TABLE
ID SEGMENTS

RESOURCE NUMBER TABLE
CLASS NUMBER TABLE
INTERRUPT TABLE

LOGICAL UNIT TABLE
INTERFACE TABLES

DEVICE TABLES

SHARED PROGRAMS TABLE
MULTI-USER TABLE

3 per descriptor

5 per entry

4 per reserved
7 per dynamic

43 per ID segment

1 per resource #

2 per class #

1 per select code

1 per logical unit

8+ per interface card
25- per device (LU)
5 per shared program

20 per user

14-8

R14.8

14.9 I/0 Tables

There is gne LU table (LUT) in the system which contains an entry
for each LU number. The length of this table corresponds to the
highest LU numkter in the system.

There is one device table (DVT) per LU. This is a fixed length
table, although there is a corresponding driver parameter area and
driver extension area which vary in length according to the driver
specifications.

There is o i . This 1is a fixed
length table with a corresponding interface extension area which
varies according to the drive specifications. Several DVTs may be
linked to one IFT, just as several devices may be connected to one
interface card.

There is one interrupt table (INT) in the system, which contains an
entry for each select code. The length of this table corresponds
to the highest select code in the system.

References: System Design Manual
T14-9

[

1/0 TABLES

LU#
1
| LUT
MAX
LUs \!
IFT
DVT >
e
SELECT
CODE
V
, INTEREUPTS L 1/0
o BOARD

INT

SC's

14-9 R14.9

14.10 I/0 Drivers

An I/0 request is usually processed by 2 drivers - the device
driver and the interface driver. The device driver is associated
with a particular device (like a printer or a terminal). It
formats the request for that specific device and passes the request
on to the interface driver. The interface driver then converts the
request into the actual I/0 transfer (or transfers).

References: System Design Manual
Tl4-~-10

|

[/0 DRIVERS

REQUEST

_ (DEVICE DRIVER

DVT

IFT

INTERFACE ~/\

DRIVER

1/0
BOARD

DEVICE

14-10 R14.10

14,11 I1/0 PLANNING

Tl4-11

/0 PLANNING

DECIDE WHAT I/0 DEVICES
AND INTERFACES ARE

- REQUIRED. Eﬂ
| oo
| oo o

3830 [ges
0050 | Baal
DESIGN IN EXTRAS

FOR FUTURE
XPANSION.

\

14.11 R14.11

14,12 I/0 Priority - 20 Slot Box:

Priority of I/0 cards is determined by the order of the cards in
the backplane.

References: A600/A700/A900 Installation and Service Manuals
T14-12

I/O PRIORITY
— slot box

A600,/A700 TN

1/0 BOARDS<— J '

PROCESSOR
MEMORY CONTROLLER ——
MEMORY BOARDS

= T

1/0 BOARDS<— _JQ

MEMORY BOARDS

MEMORY CONTROLLER —
PROCESSOR —

HIGHEST PRIORITY 1/0 BOARD ——

14.12 R14.12

14.13 I/0 Priority - Microsystems

The two bottom slots are reserved for the battery backup and 25 Khz
modules and cannot be used for anything else. The battery backup
takes the space of 3 slots, therefore, if it is used, the 2 slots

directly above it can no longer be used for I/0 cards.

Refernces: Model 6 Instl & Serv, Micro 26/27/29 Instl & Serv Manuals

T1l4-13

1/0 PRIORITY MICROSYSTEM:S

A600 MODEL 6+

C
1
-
|

l
-
—
r

3 | = MEMORY BOARDS
] |- MEMORY CONTROLLER
1 | — PROCESSOR
] 1/0 BOARDS
)]
() -
@1
|

~__A600/A700 MICRO 1000

1/0 BOARDS)) : !
|] , — ,] MEMORY BOARDS
- | - | - MEMORY CONTR.
L | | J
— , n —] PROCESSOR
1/0 OR I] ————)
B/A'I'I'E_RY BACKUP [. . /O] 1/0 BOARDS
BATTERY BACKUP -4 [] —] | - 25 KHZ (opt.)
(opt.) ruorel (o
$atfer) tacd vp
A900 MICRO 1000 HIGHEST
S PRIORITY
1/0 BOARDS . | _ am | - DR
)]] -]
C | - l } PROCESSOR
1] L | :
V| = l - 1 | - MEMORY CONTR.
go OR [. C] | - MEMORY BOARD
ATTERY BACKUP || O G | - 1/0 BOARD
BATTERY BACKUP -+ [—] [| - 25 KHZ (opt.)
(opt.)

14—-13X R1413

14.14 ‘'I/0 Select Codes

Select code - is manually set on each I/0 board. The select code
provides the means by which cards in the backplane are addressed.

The select code must be between 20B and 47B.

If a device using a select code is privileged, all devices using
the select codes in the same group of four must also be privileged.
These groups of four are:

20B-23B 34B-37B
[243—273 40B-43B
30B-33B . 44B-47B

Some standard conventions used for select codes:

20 = VCP asynchronous interface card
22 = PROM storage card
24 = VCP DS/1000-1V (HDLC) card
27 = boot disc (HPIB)
VCP - when this switch 1is closed (down) the device (usually a

terminal) acts as the "virtual control panel®™ for the system.

Card dependent - The requirements for this switch are explained in
the appropriate interface card manual. For example, HPIB cards use
this switch to specify fast or slow transfer mode.

Note: The system requires a hard reset (that is, hitting the reset

switch or cycling power) to acknowledge a change in select
code,

References: System Gen. & Install. Manual, I/0 installation manuals

T1l4-14

/0 SELECT CODES

1/0 BOARD
OPEN 1
T4 TATTF %
VCP -
CARD ____ | ’t———‘SELECT CODE

'DEPENDENT

14-14

R14.14

14.15 I/0 Configuration Worksheet

Some interfaces cards allow only one device to be attached to them.
An ASIC card, for example, only supports one terminal. Other
interface cards may have more than one device attached to them.

The HPIB card supports multiple devices. Each device on the HPIB
is assigned a unique address which the card uses to communicate
with it. There may be up to 8 devices such as discs, printers, and
mag tapes an an HPIB line, These must be assigned addresses
between 0 and 7. Typically, vyou should not put printers on the
same HPIB as your discs, as this will slow them down. There may be
up to 32 instrument devices on an HPIB line, with assigned
addresses between 0 and 31. Instruments may not be used on the
same HPIB line as non-instrument devices. HPIB addresses are
usually assigned by setting switches on the device. The HPIB
address which will be associated with a specific LU is set up at
generation time.

Up to 8 terminals (or other supported devices) may be connected to
one terminal multiplexer interface card. Each terminal has a port
number between 0 and 7. The port number which will be associated
with a particular LU is set up when the LU is initialized.

References: System Generation and Installation Manual
: T14-15

'1/0 CONFIGURATION
WORKSHEET

LOGICAL SELECT HPIB
DEVICE INTERFACE UNIT CODE ADDRESS

262X

termina| ASIC 1 20B ——
2631

printer HPIB 6 258 6

14-15 R14.15

14.16 DISsSC CONFIGURATION

The system manager can, at generation time, define the size and
bounds of the disc LUs in the system,

T14-16

DISC
CONFIGURATION

14.17 File System Considerations

Under the RTE-A hierarchical file system it is generally best to

have a small number of large disc Lus. Some subsystems or
applications may require FMGR LUs. These are typically smaller
LUs.

Advantages of larger LUs:
More room for files and subdirectories under 1 global directory.
Do not need to pack disc as often.
Easier to find space for very large files.
Advantages of smaller LUs:
could restrict users to specific LUs.
faster physical backup of individual LU.
smaller amount of disé space can be allocated to required FMGR

LUs.

[Tt is woT possible to create only one LU on your disc from another
configuration if you only have one bootable disc. When you change
the boundaries of a disc LU in a generation, all data on that LU
will be lost when the system is bootediJ,

References: System Generation and Installation Manual

T14-17

FILE SYSTEM
CONSIDERATIONS

16 16
17 | 17
18 |
s 18
20 > 22
22

23 23
29 29
J XR

16 N

17 16

18

14.18 Disc Allocation Units

The bit map is an area of disc space which has one bit for each
allocation unit on the disc. When a user requests a file to be
created, the bit map is searched by the file system for a
contiguous group of free allocation units sufficiently large to
satisfy the request,

Since the bit map has a fixed size allowing 128K allocation units
per disc volume (LU), the size of the allocation unit is a function
of the size of the LU. The size of the disc allocation unit is

always a power of 2, i.e., 1, 2, 4, 8, 16, etc.

For example: The 7933 disc is 404 Mbytes or about 1540 K blocks.
If the 7933 were configured to be one disc volume:

1540 K blocks / (128 K allocation units) = 12 blks/allocation unit

Rounded to the next power of 2, the disc allocation wunit would be R
16 blocks. Thus disc space i ulti Z{;&
of 16 blogks. If there were a 1large number of very small files,

some disc space would be wasted. Thus, depending on the
application, it may be desirable to configure the disc into several
volumes,

References: System Design Manual
T14-18

I

DISC ALLOCATION UNITS

<>

S8 BIT MAP

&F

"BIT MAP = 128K bits

1 _bit per allocation unit

" ALLOCATION UNIT = smallest amount of

disc space allocated
at one time.

BLOCK = 256 bytes

VOLUME SIZE ALLOCATION UNIT
up to 128K blocks 1 Dblocks

(33.5 Mbytes) (256 bytes)
up to 256K blocks & blocks

(67 Mbytes) | (512 bytes)
up to 512K blocks 4 blocks

(134 Mbytes) (1024 bytes)

14-18 R14.18

14.19 Disc Summary

The discs listed are all functionally compatible with the A-series,
although not all are qualified for wuse on an A-series system. You
should consult a current configuration quide to determine which
discs are available and supported for use on an RTE-A system,
Following is a summary of the capacity of the discs. This is only
for your reference during class. For ordering or configuration
consult the appropriate configuration guide or disc manual.

Disc capacity
7908 16.5 Mbyte
7911 28.1 Mbyte
7912 65.6 Mbyte
7914 132.1 Mbyte
7933 404 Mbyte
7935 404 Mbyte
2480 10 Mbyte hard disc

+ 270 Kbyte microfloppy

51/4 or 3 1/2 inch \ 270 Kbyte (single)
floppy (9121, 9133) / 540 Kbyte (dual)

8 inch floppy (9895) 1.15 Mbyte (single)
2.3 Mbyte (dual)

Winchester

9133A,9134A 5 Mbyte

9133B,9134B 10 Mbyte
7906H 19.6 Mbyte + 9.8 Mbyte removable
7920H 50 Mbyte + 50 Mbyte removable
792 5H 120 Mbyte + 120 Mbyte removable’

References: HP 1000 Computer Systems Peripheral Selection Guide
T14-19

DISC SUMMARY

|MODEL# TYPE NOTES
7908 CS80 integrated CTD
7911 CS80 integrated CTD
7912 CS80 integrated CTD
7914 CS80 integrated CTD
7933 CS80
79395 CS80
2480 | nted e
9121 | Certiopey
9133 | rinchete
9134 | mini-winchester | not configurable by user
0895 | dua/enele
7906H ICD not qualified
7910 ICD obsolete, not qualified
7920H ICD not qualified
7925H ICD not qualified

14-19 R14.19

14,20 Physical Disc Structure

A logical disc sector is the unit addressed by the EXEC call to the
driver. A physical disc block is the smallest physical unit on the
disc which can be addressed. Because a physical block is equal to
2 logical sectors, only even-numbered sectors can be addressed.

References: System Generation and Installation Manual

T14-20

PHYSICAL DISC STRUCTURE
T

TRACK 2
TRACK 1
TRACK O

SURFACE O

SURFACE 1
SURFACE 2

SURFACE 3

CYLINDER =<1

"FILE SYSTEM LOGICAL DISC SECTORS

128 bytes 128 bytes

256 bytes

PHYSICAL DISC BLOCKS

14-20 R14.20

14.21 Sur face Mode

Surface mode configuration is applicable only to non-CS80 discs.

A track is an area containing a number of contiguous disc blocks.
On non-CS80 discs, a track is the area contained in one cylinder,
on one surface, '

In surface mode, each disc LU is made up of tracks that are all on
one disc surface, and tracks are accessed in serial order on that
surface. An LU may NOT cross a surface boundary.

References: System Generation and Installation Manual

T1l4-21

SURFACE MODE
&

CYLINDER O 1 2 3

1 O>@>®> @'.‘.‘.SURF_ACE 0

HEAD O T
] O_> O_> C>_> O SURFACE 1
HEAD 1 |
] SURFACE 2
HEAD 2 T
—_— SURFACE 3

HEAD 3

14-21 R14.21

14,22 Cylinder Mode

In cylinder mode, tracks are arranged in groups of cylinders. A
disc cylinder includes all tracks with a given track number on all
surfaces of the disc.

rFor non-CS80 discs, all

tracks in a given cylinder must be
contained within one LU,

There is no restriction for CSs80 disc§J

References: System Generation and Installation Manual

Tl4-22

CYLINDER MODE

CYLINDER O 1 2 3 ...
] D (® (@ ---SURFACE 0
. UMN
— ® |G SURFACE 1
HEAD 1
V| WV
| L ® @ SURFACE 2
HEAD 2 i o
I &45 SURFACE 3
HEAD 3

14-22 R14.22

14,23 CS80 Disc Configuration

(The CS80 discs have an area reserved.for spares, so no spare tracks
are allocateq;J CS80 discs do not really have tracks - each block

is addressed by a 3-word address. The driver maps the

track and

sector into a block address. Thus, accessing CS80 disc through the

driver is similar to accessing a non-CS80 disc.

References: System Gen. & Instl. Manual, disc manuals
T14-23

|

CS80 DISC CONFIGURATION

* CYLINDER MODE ONLY
* BLOCK ADDRESSING

* NO SPARES NEEDED

* DISC CACHE FOR CTD

14-23 R14.23

14.24 CS80 Disc Driver Parameters

Configuring a disc 1into the desired LU involves setting driver
parameters in the DVI for each LU, The device driver for Cs80
discs and CTDs is DD, 33.

Unit/Volume number - The disc driver unit number (upper 8 bits) is
a number that indentifies the drive to the disc controller. For
currently supported CS80 discs this is always zero. On currently
supported CS80 discs, the volume number (lower 8 bits) is always
zero.

Starting block address - This is a three-word block address and can
be anywhere on the disc as long as the LUs do not overlap.

Number of blocks per track for LU - This defines the "track" on the
CS80 disc.

Size of LU in blocks =

number tracks for LU * number blocks per track

References: System Gen. & Instl Manual, disc manuals

T14-24

CS80 DISC DRIVER PARAMETERS

DP 1
DP 2

DP 3
DP 4

"DP 5

DP 6

DP 7

DP 8

HP—-IB ADDRESS

DISC DRIVER UNIT, VOLUME
NUMBERS

MS WORD ™ STARTING BLOCK

> NUMBER
(3 WORDS)

LS WORD _~

NUMBER OF TRACKS FOR LU

NUMBER OF BLOCKS/TRACK
FOR LU

0 (RESERVED)

14-24 | R14.24

14. 25 CS80 CTD Driver Parameters

The disc cache must be 256 blocks. The driver depends on this
number, so any less will not work. Any more than 256 blocks will

be wasted.

The CTD unit (upper 8 bits) and volume (lower 8 bits) humbers are 1
and 0, respectively, for currently supported CS80 discs.

The disc cache unit and volume number refers to the disc unit where
the cache area is to be 1located. For currently supported disc
these are both zero. The volume number is the lower 8 bits; unit
number is the next 7 bits., The ¢ bit (bit 15) must always be set.

References: System Gen. & Instl. Manual, disc manuals
T14-25

|

CS80 CTD DRIVER PARAMETERS

DP 1 HPIB address

DP 2 CTD unit, volume number

DP 3 Cbit (bit 15) disc cache
unit, volume #s

DP 4 MS word) starting block
address of disc
cache (2 words)

DP 5 LS word

DP 6 0 | address of first
DP 7 0 cache block

DP 8 0 (reserved)

14-25

14,26 Example 7908 Configuration

In this example there is actually 286 blocks allocated for the disc
cache. This 1is just the amount left over after configuring the
desired LUs. The extra 30 blocks could not be added to the last LU
since it is less than 1 track. This becomes wasted disc space.

References: System Generation and Installation Manual
T14-26

HOTY 1Y

—

sMo01d 9%¢ < qd LSAN dHIVO 0sSI1d LD

(1oVIL/SAD0Td X gyovdl) + X1d 19VLS SNOIATId =y1d LIVLS

o oZh\ =
NTA S

0 ol olo}| O o 8dd
0 o 84 ol ae | oo / Aoval
0 0 240 gy | oy | 8% (8% | ¥ syoo01d Add
0 0 9dd c1z | ¥12 | 008 | ¥iC 00¥ SOVilL 9d4d
2484 2L.8S¥ Th«éu 00267 0 S1 ¢dd
yOV¥9 mm%%w %%m g1 ¢dd * \ﬁ
0 TIVLS mﬂ ¥dd 0 0 0 0 0 125074 ¥ydd
0 o lo}| O o | 1avis | SN edd
00000 ¢
00000t | A/0 AHOVD JSIA D edd TROTOA
goo¥ 70A/1INN GLD 2dd 0 ol o0 | O 0 ‘LINN 2dd
0 Jqav gidH 1dd)} 0 o l0}|O 0 Jqav gIdH 1dd
44 n1 aLo 0oz | 61 g1 | LT | 91 N1 JS1d

omsc SNO0T1d TVIOL IR
- NOILVYNDIANOD womp TIdNVXE

14,27 Non-CS80 pisc Configuration -'Driver Parameters

Configuring a disc into the desired LU involves setting driver
Parameters in the DVT for each LU in order to define the necessary
track map information, The device driver for non-Cs80 discs is
DD. 30

Number of Spares for Lu = Typically, 2% of each LU js allocated for
Spares, .

Number of tracks for Ly - Total number of tracks on all sur faces,
not including spares, ' '

Number of blocks Per track - Fixeqd value for each disc. See RTE-A
Generation and Installation manual. :

Number of surfaces for LU - 3 surface if ip surface mode; total
surfaces on disc drive if in cylinder mode, This is how the driver
tells if the disc is in surface or cylinder mode.

You cannot yse both surface and cylinder mode on the same disc
drive, Remember, in surface mode, an Ly may not cross g sur face
boundary and in cylinder mode all tracks within a given cylinder
must be containeg within one Lu,

Surface mode is the only mode Supported for bootup on the 7906.

Cylinder mode is the only mode Supported for bootup on the 7920,
7925 ang 2480,

eferences: System Gen, & Instl, Manual, disc manuals
T1l4-27

. NON-CS80 DISC CONFIGURATION

N OO W N e

DRIVER PARAMETERS

HP-IB ADDRESS

DISC DRIVE UNIT NUMBER
STARTING HEAD FOR LU
STARTING CYLINDER FOR LU

NUMBER OF SPARES FOR LU
NUMBER OF TRACKS FOR LU

NUMBER OF BLOCKS PER
TRACK FOR DISC

NUMBER OF SURFACES FOR LU

1 4—2‘7 R14.27

14.28 Example 7906 Configuration

A surface mode configuration is shown. Because the upper platter
is removable, surface mode is usually best for the 7906.

References: System Generation and Installation Manual
T14-28

EXAMPLE 7906 CONFIGURATION
7906 DISC CONFIGURATION WORKSHEET

CYLINDERS: 0 100 200 300 410
LU 12: 406 tracks + 5 spares
HEAD 0 K .' | j >
| LU 13: 406 tracks + 5 sipares
HEAD 1 K- | | | >
LU 14: 406 tracks + 5 spares
HEAD 2 K : | : v
LU 15: 406 tracks + 5 spares
HEAD 3 K ! ; :)
DISC LU 12 | 13 14 | 15
DP1 HPIB ADDR 1 1 1 1
DP2 UNIT NUMBER 0 0 0 0
DP3 START HEAD 0 1 2 3
4DP4 START CYLINDER | O 0 0 0
DP5 SPARES 3) 3) 3) 3)
DP6 TRACKS 406 | 406 | 406 | 406
DP7 BLOCKS/TRACK 48 | 48 | 48 | 48
DP8 SURFACES 1 1 1 1

14-28 R14.28

14,29 Example 7925 Configuration

A cylinder mode configuration is shown.

References: System Generation and Installation Manual

T14-29

HeZY LY

6 6 | 6 | 6|6 |6 6 | 6| 6 SHIVAINS 8dd
MOVAL

$9 | %9 | %9 |#9 |¥9 | ¥9 | ¥9 | ¥9 | ¥9 /SA00Td 4dd

$201F20TH20T P20 FE0Y 675 6VS |6VS |6VS SMOVAL odd

rp 1Tl | |TIT| 6 | 6 | 6 |6 SHIVAS cdd
| JAANITAD

g0. |€6c| 8L |€9¢€|8¥2 |98T |¥2T|<c9 | O LYVLS ¥dd

0 ololo|O0O|O]|jO]|O0O] O aQvdH LYVLS €dd

0 ol olo|lo0o]| 0| 0|0]|O0 |JIENIN LINQ cdd

G 2l gleg|e|e|e|c|ec daav didH 1dd

gt | 21|l 9t|cr| 1| €1 | cT| 11| O N7 JSI1d

NOLLVINOIINOD G264 TTdNVXA

14.30 Example Floppy Disc Configuration

This example shows the configuration of a flexible mini-disc (5 1/4
inch). Configuration of 8 inch and 3 1/2 inch floppies is
essentially the same. Floppies can only be configured in cylinder
mode. Because of their size and because they are removable, it
does not make sense to define more -than one ‘LU per disc.

Floppy discs have an area reserved for spares, No spares are
allocated in the driver parameters.

References: System Gen. & Instl. Manual, discvmanuals

T1l4-30

EXAMPLE FLOPPY DISC
CONFIGURATION (9895)
CYLINDER MODE ONLY

DISC CONFIGURATION WORKSHEET
FLEXIBLE MINI |

CYLINDERS:
0 69 0 69

HEAD 0 |[44 HEAD O|[& ||4

TRACKS | |used TRACKS | [

HEAD 1 HEAD 1|

- UNIT #0 UNIT #1
| TOTAL TRACKS: 140

DISC LU 20 | 21

DP1 HPIB ADDR
DP2 UNIT NUMBER

DP3 START HEAD
DP4 START

o OO OWN
o OO =N

CYLINDER
DP5 SPARES
DP6 TRACKS 65 | 65
DP7 BLOCKS/ 16 | 16
TRACK |

DP8 SURFACES 2 2

14-30 R14.30

SYSTEM GENERATION

CHAPTER 15

Table of Contents

Chapter 15
SYSTEM GENERATION

Review of Physical Memory © o o o o o o e o o o 15-1
The System Generation Process o o o o o o o o 15=2
RTAGN Generator Program © o e e o o o o o o 15=3
INITIALIZATTION PHASE 15-4

S YSTEM RELOCATION PHASE 15-5
System Relocation Phase Commands e o o o o o o 15-6
System Relocation Example o« . o o o o o . . . e o e o o o o o 15-7
DRIVER PARTITTION PHASE 15-8
Driver Page Alignment Example « & & & 4 4 4 4 4 4 e 4 o o . 15-9
Driver Partition Example e o o o o o o o« 15-10
TABTLE GENERATION PHASE 15-11
IFT Command ® & & o 6 o o o o o o6 6 o e e o e o o e o o o o 15-12
DVT Command e & o o o o ¢ o o o o ® & o o o ¢ o o o o e e o 15-13
Default Files e o o o o o o o .o @ & o 2 o & ° o6 ¢ e o e o o 15-14
IFT/DVT Worksheet . . o« . v & o o o . . * ¢ o o o o s o o o 15-15
IFT/DW Examples ® ® o & o 6 e o o o & o 6 6 e e o e e o o 15_16
Node LiStS ® & ° e o o o o o e o e o o e o e o o e o o o o 15-17
Interrupt Table, ® e o o o o o s s e e o o 15-18
Node List and Interrupt Table Example ¢ 4 ¢ . . . 15-19
MEMORY ALLOCATION PHASE 15-20
Memory Allocation Phase Commands ©* o o o o o s & 15-21
Memory Allocation Phase Example e o o e o o o 15=-22

l.

2.

3.

MODULE OBJECTIVES

Be able to run the RTAGN program.

Be able to prepare a generation answer file - what are the
tradeoffs, how to choose gen parameters, what parameters can be
adjusted later.

Be able to add I/O devices to the generation answer file.

ii

1 5-10

15-20

1 5-30

15-4,

15-5,

1 5-60

15-7.

15-80

SELF-EVALUATIONAgyESTIONS

What are the outputs of the RTAGN program?
What are the five phases of the generation?

Which initialization command causes links to be put on the
system base page?

What do the following commands do?
RE

SE
ALIGN

What tables are defined during the table generation phase?
Which LUs must be assigned to a node list?

List four other tables for which space 1is allocated at
generation time.

Why are so many END statements required in the generation
answer file?

iii

15.1 Review of Physical Memory

The system generation basically builds

an image of physical memory
for your system.

References: System Design Manual
T15-1

I

REVIEW OF PHYSICAL MEMORY

DYNAMIC HIGHEST
PARTITION ADDRESS
3 AREA
| RESERVED
| USER PARTITION #n @
3 RESERVED
USER PARTITION #° I“:‘;_

. SYSTEM AVAILABLE MEMORY | [syt
~ (SAM)

SYSTEM MESSAGE BLOCK

SYSTEM COMMON

SYSTEM TABLES

DRIVER PARTITION #n

DRIVER PARTITION i1

SYSTEM MODULES

SYSTEM BASE PAGE

ADDRESS 0

15-1 R15.1

15.2 The System Generation Process

RTAGN - The RTE-A generator program uses the system relocatables
and a user-prepared answer file to create the list, system and snap
files.

List file - Provides documentation of what is in the system and
where the modules are located. Also, the list file indicates where
any errors occurred and describes them.

System file =~ Type 1 file that contains a memory image of the
operating system.

Snap file - The snapshot file contains the value of system entry
points, system-library names and other system information such as
system checksums and system common checksum. This is used by the
loader to load programs on-line.

INSTL - Installs a Boot extension for a disc-based system.

BUILD - Merges the system file with program files to create a type
1l bootable system file.

References: System Generation and Installation Manual

T15-2

THE SYSTEM
GENERATION PROCESS

RELOCAT—
ANSWER
ABLE
FILES FILE

Crmaan)

¥, J v

LIST SYSTEM SNAP
FILE FILE FILE

- BO()TABLE
SYSTEM
DISC— :
BASED LE

SYSTEM
MEMORY
BASED
MEDIA
15-2

15.3 RTAGN Generator Program

Answer file - (or command file) contains commands used by the
generator to generate the operating system.

List file -~ output by generator; shows commands, comments, module
bounds, entry points and generation errors. Error messages are

indicated by:

** error **
System file - type 1 file that contains a memory image of the
operating system.
Snap file -- The snapshot file contains the value of system entry
points, system library names and other system information such as
system checksums and system common checksum. This is used by the

loader to load programs on-line.

Initialization phase - define whether current page or base page
linking is used.

System relocation phase - relocate system modules and
non-partitioned and privileged drivers.

Driver partition phase - relocate drivers in partitions.

Table generation phase - Define LUs for I/0 devices, set wup
required I/0 tables.

Memory allocation phase - define various system tables and other
memory to be allocated.

References: System Generation and Installation Manual

T15-3

Nl oL51 .
stem> <snap~

| CI> rtagn <answer”> <list> <8Y

15-3

PHASE ?2?
A ling Word jig Created Y the 9denerator Wheneyep 4 Ohe-worg memor
Feference instruction references a location which i1s not on the
Same p de as the instruction. Th is heedeg becayse the memory
Feference instruction only allows t its the 4 dress,
additional bi indicat wWhether the addresg ls on € Current or
ase page,
If Surrent Rage ;inking is Usedq, there may sti; be Some 1inks
denerateq On the bage Page,
Using base Page linking will reduce the Overal} Systenm Size, but
there jg 4 fixeq amount ¢ Space on the bage Page available for
linkg,
‘€nceg;

SYSTEM RELOCATION

PHASE

>

\

NON—PARTITIONED

AND PRIVILEGED DRIVER
RELOCATABLES SYSTEM MODULES

15-5

PHYSICAL
MEMORY

>

(

SYSTEM
MODULES

R15.5

15.6 System Relocation Phase Commands

These commands are used in the system relocation phase. They can
also be used during other parts of the generation as indicated
elsewhere. To specify the command, you can give the entire command
or just the first two letters.

RElocate - Relocaﬁe a module as part of the op system.

SEarch - Search a library to resolve external references.

MSearch - Search a library multiple times.

LOcc - Set relocation address.

BLocc - set base page relocation address (use to reserve an
area on the base page).

DIsplay= - Display undefined externals.

LEntries - Turn on or off listing of module entry points.

ALign - Set relocation address to next page . boundary
(typically only used in driver partition phase).

ENd - Indicates end of phase.

References: System Generation and Installation Manual
- T15-6

SYSTEM RELOCATION
PHASE COMMANDS

RELOCATE, file [, module name]
SEARCH, file [, module name]
MSEARCH, file
LOCC, address
BLOCC, address
DISPLAY
~ LENTRIES [, ON/OFF]
ALIGN
END

15-6 R15.6

15.7 System Relocation Example

$VCTR must be relocated first for program transportability. The
oFfher modules may be relocated in any order. The RPL file used
depends on your hardware and options - see manual. Other required
system modules must be relocated in this phase. $SYSA should
always be searched in case a module was left out. $SYSLB contains
routines used by system modules.

$SPOOL and $CDSFH are provided only with the VC+ (92078) option.

References: System Gen. & Instl. Manual, primary answer file
T15-7

SYSTEM RELOCATION

PHASE EXAMPL

*
*

RE,
RE,
RE,
RE,
RE,
RE,
RE,
RE,
RE,
RE,
RE,
RE,
RE,
RE,
RE,
RE,
RE,
RE,
RE,
RE,
RE,
x

MS,
SE,

x
END
%

*

%SPOOL
ZEXEC

ZMEMRY
7%CDSFH

%RPL73
7%SAM
Z%TIME
%SCHED
%STRNG
%LOCK

%ERLOG
%0PMSG

Z%XCMND

%SYCOM
%BSTAT

%|_.OAD
ZRTIOA

7%|OMOD

%PERR

Z%CLASS
%ID.43

$SYSA
$SYSLB

15-7

E

e 57

’///#;&?&Qﬁkénd,
RE, ZVCTR -

R15.7

15.8 DRIVER PARTITION PHASE .

Any number of drivers can be relocated into qpne driver partition as
long as it does not exc ages. The Fgize of the driver

iti in logical system memor is ize argest
driver partition created. 1In general it is recommended that you
relocate only one driver per partition in order to keep the size of
the system driver partition small.

%

References: System Generation and Installation Manual
T15-8

DRIVER PARTITION
PHASE

P;HYSICAL MEMORIY
I |

3 DRIVER
DRIVER D
! PARTITION #N | oo/
LOGICAL ! .
 SYSTEM |
, MEMORY | | DRIVER C
| I DRIVER {——— | DRIVER B
| PARTITION #2 —
DRIVER B DRIVER
PARTITION PARTITION #1 N
T \—"{ bRVER
I | | |
| | ! | |
3 COMMANDS:
same as the System;
; Relocation Phase
15-8 R15.8

15.9 Driver Page Alignment Example

The ALIGN command is useful in this phase. Partition 1 would
create many more links (potentially base page links) than Partition
2, even though it uses more memory.

References: System Generation and Installation Manual
T15-9

DRIVER PAGE ALIGNMENT
EXAMPLE

x

- *DRIVER PARTITION 1

RE A
RE, B
RE, C
END

PAGE

¥

*DRIVER PARTITION 2
*

RE, A
ALIGN
RE, B
ALIGN
RE,C
END

%*

PAGE

15-9

BOUNDARY
~_

BOUNDARY

N

477 /////

DRIVER C

> DRIVER B ¢

DRIVER A

— /

S
DRIVER C

DRIVER B
r//////?

DRIVER A)

R15.9

15.10 Driver Partition Phase Example

Each driver partition |is terminated with an END command. The
driver partition phase is terminated with another END.

In this example, the system driver partition is at least as large
as the largest driver (%DDCl12). Therefore it makes sense to fill
up the other partitions with more than one driver until they are
about the same size. The System Generation and Installation Manual
has a table of approximate driver sizes.

References: System Gen. & Instl. Manual, primary answer file
T15-10

DRIVER PARTITION
PHASE EXAMPLE

* Driver Partition Phase

b

RE, %ZDD.33::MS
RE, %ZID.52::MS
END

*
RE, Z%ID.66::MS
RE, %ID.00::MS
END

b

RE, %ID.37::MS
RE, %ZDD.30::MS
END

%*
RE, %IDM0O::MS
RE, %DD.23::MS
END

b 3

RE, %ZDD.00::MS
ALIGN

RE, %ZID.27::MS
RE, %ID.50::MS
END

*
RE, %DD.12::MS
RE, %ZADV0O0::A2
RE, %ZDD.20::MS
END

b
RE, %ZDDC12::MS
END

b
* end driver partition
END

15-10 R15.10

|

15.11 TABULE GENERATION PHASE : .

IFT - Interface table

DVT - Device table

INT - Interrupt table

The iFT/DVT creation is terminated by two END statements - one to

end the IFT creation and one to end the DVT creation., The node
l1ist and INT table part are each terminated with an END.

Both the DVI and NODE commands allow the use of a dash (=) to
indicate that the command is continued on the next line. The dash
is typed immediately following the comma separator between
parameters, but never in the middle of a parameter.

References: System Generation and Installation Manual
T15-11

TABLE GENERATION
 PHASE

IFT for each interface

DVT for each device
SYSTEM TABLES NODE lists

INTERRUPT TABLE

COMMANDS: [FT....
DVT,...

IFT,...
DVT,...
DVT,...

END
END
%k
NODE,...
END
%k
INT
END
15~-11 R15.11

L

15.12 IFT Command

Default File - File which cdntains default IFT entries for the
interface.

Entfy Point - Entry point of the corresponding interface driver.
Select Code - Between 20B and 47B.

Queuing - FI (first in, first out) or PR (priority) queuing of
devices on IFT,

Table Extension - The IFT extension area is wused for temporary
storage by the driver. If this area is not made large enough, the
system will not operate properly! The requirements are defined by
the driver - see the System Generation and Installation Manual.

Interface Type - A value which defines what type of interface card
the IFT references (i.e., HP-IB, asynchronous, etc.) Used by some
utility programs to determine what type of interface the LU uses.

None of these parameters can be altered on line.

Some of these parameters do not need to be specified. The
generator will use default values for QU, TX and IT if none are
specified. If no entry point is specified, then the generator will
use the NAM record of the default file for the entry point.

References: System Generation and Installation Manual
: T15-12

IFT' COMMAND

IFT, default file,

E entry point,

SC: select code,
QU: queuing,

TX: table extension,

IT: interface type

15-12 R15.12

15.13 DVT Command
Default file - File containing default DVT entries for device.

Model Number - Model number of device, wused for determining what
values from the default file will be used.

LU - Between 1 and 255, between 1 and 63 for discs.

Entry Point - Entry point of device driver. 1If none is specified
then requests will go directly to the interface driver.

Timeout - Timeout'for device in 10's of milliseconds (0-255) .

Buffering - Indicates whether a device is buffered (BU) or not
(UN) and size of buffer limits (in multiples of 16).

Device type - Value which indicates what class of device the DVT
points to (i.e., printer, disc, etc.) Used by some utility programs
to determine if and how to talk to the LU. (0-77 octal).

Table extension and Parameter area - areas used by the driver for

data storage; requirements are defined by driver. See reference
“manual for the size needed. If incorrect values are used, system
will not operate correctly! Table extension is 0-511, driver

parameter area is 0-127.

DP - Specifies parameters to be entered at generation time, when

applicable for the specific driver. The first parameter specifies
which DVT parameter to start entering; subsequent parameters are
values to be entered. See Generation and . Installation manual

and/or the Driver Reference Manual for requirements.

Queuing - FI (first in, first out) or PR (priority) queuing of
requests on DVI. Programs with priority of 40 or less will use
priority queuing anyway.

Priority - priority (between 0 and 63) of device on IFT

TO can be changed on-line with CI. BU can be changed via FMGR.

A dash (-) indicates a continuation to the next line. It can only
be used following a parameter and all its subparameters.

Some parameters do not need to be specified. The generator will
use default values for TO, BU, DT, TX, DX, QU and PR if none are
specified. If model number, entry point or driver parameters are
not specified, none will be used.

References: System Generation and Installation Manual
T15-13

DVT COMMAND

DVT, default file,

M model #:subchannel,

LU:

Iua,

E entry point,

TO:

BL:
: upper limit,

DT:
TX:
DX:
DP:
QU:
PR:

timeout,_

buffering: lower limit:

device type,

table extension,
parameter area,

start pram#:value:value...,
queuing,

priority

(continuation)

15-13 R15.13

15.14 Default Files
For most drivers the default file is the driver relocatable file.
See the reference manual for default file contents.

The user can create a default file with IFT or DVT paramaters using
the.macroassembler, MACRO/1000.

References: System Generation and Installation Manual
- T15-14

DEFAULT FILES

GEN HP SUPPLIED USER
ANSWER DEFAULT FILE DEFAULT
FILE (DRIVER) FILE

o g

IFT PARAMETERS
DVT PARAMETERS

FOR MOST INTERFACES YOU NEED ONLY

DEFAULT FILE
SELECT CODE

FOR MOST DEVICES YOU NEED ONLY

DEFAULT FILE NAME
MODEL NUMBER
LU

15-14 R15.14

15.15 IFT/DVT Worksheet

The IFT/DVT worksheet is useful for determining what commands to
enter during the table generation phase. In most cases you will
not.need to enter all the parameters for the IFT or DVT commands.
Typically, the values in the default file will be used - indicate
this on the worksheet. Sometimes, the generator defaults will be
used. . For your application, your may want to override particular
values in the default files. For example, if you are going to use
a disc configuration which is different from that in the default
file, you would specify your own DP values in the generator answer
file (remember the disc configuration section). '

The System Generation and Installation Manual has an appendix which
shows the default file values for all devices. It also shows
standard entries for the answer file for these devices, when the
default files are used. Another appendix describes the driver
parameters for disc devices., You may also need to consult the
Driver Reference Manual to find what values to enter into the
driver parameter area for other devices. In addition, the primary
answer file is an excellent reference for examples of table entries
for most supported devices. The primary answer file is in an
appendix of the System Generation and Installation Manual and is
provided on your primary system.

References: System Generation and Installation Manual
T15-15

IFT/DVT WORKSHE

INTERFACE NAME :

LT

1/0 SLOT #:

IFT, - ,SC: ,QU: JIT:
~ Interface ~ Select Entry Queuing Table ~ Interface
Driver Namr Code Point Extension Type
(D'efault file)
Device Name:
Device Driver:
Defaults File:
Model Number: M M M M M
Logical Unit: LU: LU: LU: LU LU
Device Type: DT: DT: DT: DT: DT:
Device Priority: | PR: PR: PR: PR: PR:
Time Out: TO: TO: TO: TO: TO:
Buffer Limits: BL: : : BL: : : BL: : : BL: : : BL: : :
Table Extension] TX: TX: TX: TX: TX:
Driver Extent: DX: DX: DX: DX: DX:
Driver Prams: _
start # DP:1 DP:1 DP:1 DP:1 DP:1
1 : : : : :
2
3
4
5 : : : : :
start # DP:6 DP:6 DP:6 DP:6 DP:6
6 : : : : :
7
8
9
10 : : : : :
slziiart # DP:11 | DP:11 DP:11 DP:11 DP:11
11 : : : : :
13
lg : : : :
1! : : : : :
Queuin U: U: U: U: U:
Nogo Q Q Q Q Q
Node 2
Node 3
15-15 R15.15

15.16 IFT/DVT Examples

Parameters specified in answer file will override those in default
file, thus you can specify your own parameters where desired and
use the default file values for other parameters. Note that in
these examples, the default file is always specified, although
sometimes the default parameters are overridden.

The first device is a terminal in the non-VC+ environment. The
driver parameters are used to enable CI as the primary program and
CM as the secondary program at gen time. (This could also be done
online with a CN command).

For the 7908 disc, the default file contains the standard disc

configuration. The subchannels with the model number are used to
differentiate the areas of the disc for different LUs. DP:1:0
designates an HPIB address of 0 for the disc drive.

The printers are configured using the parameters from the default
files. DP:1:2 designates an HPIB address of 2 for the 2608sS.
DP:1: 6 designates an HPIB address of 6 for the 2631B.

Note that for both of the HPIB examples, there are multiple DVTs
for one IFT, since there will be multiple devices connected to one
HPIB interface card.

References: System Gen. & Instl. Manual, primary answer file
T15-16

IFT/DVT EXAMPLES

*

* ASIC FOR 26XX SYSTEM CONSOLE
*
IFT,%ID.00, SC:20B
*
DVT,%DD.00,M26XX,LU:1,QU:F1,—
DP:5:Cl1:20040B:20040B:0—
DP:9:CM:20040B:20040B:CM
*
*+ HPIB #1 DISC CONTROLLER
 IFT, %ID.37,SC:278B
*
| * 7908 DISC WITH CTD — HPIB ADDR 0
DVT ZDD.33,M7908 _LF:0,LU:16,DP:1:0
DVT %DD.33,M7908 _LF:1,LU:17,DP:1:0
DVT Z%DD. 33 M7908 _LF:2,LU: 18,DP:1:0
DVT %DD.33,M7908__LF:3,LU:19,DP:1:0
DVT %DD.33,M7908 _LF: 4,LU :20,DP:1:0

DVT, %DD.SS.MTAPE,LU:24,DP:1 :0

'IFT %1D.37,SC:258

2608S LINEPRINT ER HPIB ADDR 2
DVT %DDC12,,LU:85,DP:1:2

* 26318 LINEPRINTER HP

DVT, %DD.12,,LU:6,DP:1:6

*
END
END
E

15-16

R18.18

15.17 Node Lists

A node list tells the system that when one LU on a node is busy,
the others can not be accessed because they use the same
controller. There is a place on the IFT/DVT worksheet to indicate
nodes. The appendix of the generation manual contains a table of
standard IFT/DVT entries for the answer file. This table indicates
which devices would go on the same node list. A dash (=) can be
used after a comma to continue a node list on the following line.

References: System Generation and Installation Manual
T15-17

NODE LISTS

<

a LU 17

~v

A NODE LIST CONTAINS LUs WHICH
USE THE SAME PHYSICAL CONTROLLER.

. Mc"u Ut b /ow
COMMAND: S T L

NODE, lul, lu2,....]lu n
END

15-17 R15.17

15.18 Interrupt Table

On interrupt, a location in memory called the trap cell, which
corresponds to the interrupting select code, will be executed.
This location normally contains a JSB to $CIC (central interrupt
handler). The interrupt handler will eventually access the
corresponding location in the Interrupt table. For a privileged

int i . This entry point is
specified with the INT command.
. %uahﬂy PRV NS [P /N, 2

References: System Gen. & Instl. Manual, System Design Manual
T15-18

INTERRUPT TABLE

Memory
Location
Trap Cells

20B JSB,$CIC | ——>
21B JSB,$CIC | ————>
22B JSB,$CIC | ———>
23B JSB,$CIC | ——>

2413 JSB,PIL.XX | —

7\,

SPECIFIED IN

IFT A address

IFT B address

IFT C address

IFT D address

0

AUTOMATICALLY
SET UP
BY RTAGN

Privileged Driver
with entry point
PLXX

INTERRUPT TABLE

GENERATION

COMMANDS:

INT, select code, entry point

END

15-18

R15.18

15.19 Node List and Interrupt Table Exémple

This example shows most of the devices which will require a node
list, If you are unsure as to whether device LUs should go in a
node list, consult the generation manual. You could also use the
primary answer file for examples.

In this example all the interrupt table entries are generated
automatically by the generator.

References: System Gen. & Instl. Manual, primary answer file
T15-19

NODE LIST AND
INTERRUPT TABLE EXAMPLE

: DEFINE NODE LIST

* 264X SYSTEM CONSOLE WITH TWO TAPE DRIVES
.II\IODE,I,64,65

* 2635 AUXILIARY CONSOLE /PRINTER
.l.\IODE,66,67 |

* TWO 8" FLEXIBLE DISCS
.l.\IODE 10,11

* FOUR 7906 LU'S
FODE,12,13,14,15

* FOUR 7910 LU'S
.ll\IODE,40,41,42,43

* THIRTEEN 7908/11/12 14/33/35 AND CTD
yODE,16,17,18,19,20,22, 3,24,29,30,31,34,35

* TWO 3.5" OR 5.25" FLEXIBLE DISCS
.l.\IODE,32,33

* FOUR 5.25" FIXED DISC LU'S (9134 FOUR VOL.)
.ll\IODE,48,49,50,51

* THREE 5.25" FIXED DISC LU'S (9134 A/B SINGLE VOL.)
| ‘II\IODE,52,53,54

- * FOUR 248X INTEGRATED DISC LU'S

.ll\IODE,36,37,38,39
PND, NODE LIST
‘E'ZND, INTERRUPT TABLE

15-19 R15.19

15.20 MEMORY ALLOCATION PHASE

The commands which define system tables will allocate table space.
Nothing is put in these tables at generation time.

References: System Generation and Installation Manual
T15-20

MEMORY ALLOCATION PHASE

PHYSICAL MEMORY

SAM ' _% SYSTEM AVAILABLE MEMORY

SPOOL BUFFER LIMITS (SAM)

SYSTEM MESSAGE BLOCK —> | SYSTEM MESSAGE BLOCK

LABELED COMMON

UNLABELED COMMON } > SYSTEM COMMON

CLASS NUMBERS i SYSTEM TABLES

RESOURCE NUMBERS |__—>

ID SEGMENTS , :

SHARED PROGRAMS ! !

USERS . ! I
ALSO:

BACKGROUND PROGRAM PRIORITY
QUANTUM TIMESLICE VALUE

SYSTEM MEMORY BLOCK (Ds 1000-1V)
DEFAULT LIBRARIES

15—-20 R15.20

15,21 Memory Allocation Phase Commands

Commands must be given in the order indicated. The generation
manual contains detailed information on the commands including
suggested formulas for allocating table space and how much memory
the tables use.

CLAS, RESN, ID, and RS - these allocate table space and can only be
adjusted_at gen time. :

SAM - the size of SAM can he increased at bootup time.

SL - Spool buffer limits can only be set at gen time. This command
must always be entered, but for non-VC+ systems enter 0 as the
upper and lower limits.

BG - Background program priority limits, QU - Quantum timeslice and
timeslice priority limit; can be changed at bootup time.

SP - For non-VC+ systems, set the number of shared programs to 0.

MB - System memory blocks are used by pS. Refer to the DS-1000/IV
manual set for more information. ‘

US - For non-VC+ systems, set to 0. For VC+ systems, be sure this
includes programmatic and background sessions (i.e., for DS).

Immediately after the US command is 1labeled system common
relocation. The commands available here are the same as the system
relocation phase. An END terminates labeled common relocation.
Only non-CDS modules can be relocated into system common.

CoM - Allocates memory space to unlabeled common. At bootup it is
blank and must be initialized by the first program that uses it.

The system message block is relocated into physical memory and has
its own map. It is not in system logical memory.

LIB - specifies default 1library files to be searched whenever a
program is loaded by LINK. Typical default libraries are: SFNDLB
(non-DS systems) or $FDSLB (DS systems) for FORTRAN programs, $PLIB
(PASCAL.LIB) and $SHSLB (PASCAL_SHS.LIB), for PASCAL programs,
$BIGLB, the system library which contains several other libraries.
These might have different names on your system.

The END command is used to terminate jabeled common relocation,
system message module relocation, and library specification.

References: System Generation and Installation Manual
T15-21

MEMORY ALLOCATION PHASE
COMMANDS

' CLAS, class numbers
RESN, resource numbers
ID, id segments

RS, #reserved partitions
& bad memory pages

- SAM, minimum size of SAM
SL, lower buffer limit, upper buffer limit
BG, priority boundary
QU, quantum, time-slice fence
SP, shared programs
- MB, size of system memory block
- US, # of concurrent users
RE, module (labeled common)
END
COM, minimum size of unlabeled common
- RE, system message block
END
LIB, library file
END

15-21 R18.21

15.22 Memory Allocation Phase Example

This example is for a VC+ system. For non-VC+, the parameters for
SL, SP, and US should be set to 0.

References: System Gen. & Instl. Manual, primary answer file
T15-22

MEMORY ALLOCATION
. PHASE EXAMPILE

: VC+SYSTEM

CLAS,40
RESN,20
ID,40

RS,0
SAM,2048
S5L,200,1048
BG,30
QU,300,50
SP,1
MB,500
US,5

*

END,,,,LABLED COMMON RELOCATION
COM,10

RE, 7ZMSGS

END

n |

LIB,$FNDLB
LIB,$BIGLB
aI!JIB,$PLIB

END
*

-15-22 _ R15.22

L

DISC BASED
INSTALLATION

CHAPTER 16

Table of Contents

Chapter 16
DISC BASED INSTALLATION

Disc Based Installation Process . . e o o o o o o o o 16-1

BOOt ProceSS v Y e o . e o . . . o o e . e o . . o . o . . . 16—2
CREATING A B OOTEX A REA 16-3
The INSTL Program o . o . . o o . o . e o . o o e o . . o . o 16—4
Running INSTL - Same Disc Configuration . « « ¢ « ¢ ¢ o ¢ o » 16-5
Running INSTL - New Disc Configuration . « o« o o o ¢ o ¢ o & 16-6
T HE BOOT COMMAND F ILE 16-7
Boot Command File — Non-VC+ EXample « « o o« o o o o o o o o o 16-8
Boot Command File — VC+ Example « o« ¢ ¢ ¢ o o ¢ o o o o o o o 16-9

T HE WELCOME F ILE 16-10

Welcome File — Non-VC+ EXample =« o« o o o o o o o o o o o o 16-11
welcome File - VC+ Example [. o 16-12
System Utilities and Directories . « « o o o ¢ o o o o o & 16-13
S YSTEM BOOTUP & INITIALIZATION 16-14
Disc Boot Command String ExampleS « « « o« o o o o ¢ o o o » 16-15
Load or Transport Other Programs =« « o« o ¢ o o ¢ o o ¢ o o 16-16
User AccountsS (VC+) o o o o o o o ¢ o o o o o o o o o o o o 16-17
Creating a User Account (VC+) o« o o o o o o o o o o o ¢ o o 16-18
Modifying a User Account (VC+) .« o o ¢ o o o o o o o o o o 16-19
Initialize SpOOl System (VC+) e e e e o o o o o o o & o o o 16-20
DS Transparency Software Installation . . « ¢ o o o ¢ o o & 16-21
SyStem Verification and BaCRup e e o o o o o o o o o o o o 16—22

1.

2.

3.

MODULE OBJECTIVES

Be able to use INSTL and know when to use it.

Understand what BOOTEX is and why it is needed, be able to
prepare a boot command file and boot the system.

Create a system WELCOME file.

Execute start-up procedures: USERS program, install system
utilities, initalize spool system.

ii

16"1.

16-2.
16-3.
16-4.
16-5.

16-6.

SELF-EVALUATION QUESTIONS

what files are required on the boot disc LU in order to boot

the system?

When do you need to use INSTL to install a new BOOTEX?
what does the boot command file do?
what does the welcome file do?

How would you boot from a cS80 disc at HPIB address 3,
select code 27 with a boot command file called BOOTME?

What program is used to create user accounts?

iii

16.1 Disc Based Installation Process

The required items for disc-based installation are:

system file (on bootable disc LU)

snap file (on bootable disc LU)

type 6 program files

boot command file (optional) (on bootable disc LU)
welcome file (optional)phﬁ’u»bw ,kﬂnuhf/;hcz

The steps in the installation procedure are:

prepare the boot LU by creating a BOOTEX area, if necessary
install the BOOTEX, if necessary

make the system and snap files available on the boot LU
prepare the boot command file

prepare the welcome file

create the required directories and program files

boot and initialize the system

verify operation and backup the new system

References: System Generation and Installation Manual
T16-1

| DISC—-BASED |
INSTALLATION PROCESS

>

SYSTEM FILE ——> INSTL ~_
SNAP FILE N BOOTEX |
BOOTABLE
DISC LU

AN

V4
—>
,—%U
BOOT COMMAND FILE /

DIRECTORIES > .
PROGRAM FILES >
START UP PROGRAM > __/
WELCOME FILE >
USERS(VC+) > _/
OTHER SYSTEM S \
PROGRAMS 7| LINK 4 __/
SP (VC+) > N

BACKU1£><L l ’

16—1 R16.1

16.2 Boot Process

The boot ROM loader brings the bootstrap extension, BOOTEX, into
memory. BOOTEX 1is a system which contains a boot program. The
boot loader passes a string to BOOTEX which contains the name of
the boot command file as specified in the VCP command string.

BOOTEX modifies the system file by setting up ID segments for the
RPed programs and some other system tables. The modified system
file is then loaded into memory and the start-up program is
executed.

References: System Generation and Installation Manual
T16-2

BOOT PROCESS

BOOT LOADER PUTS
BOOTEX INTO MEMORY.

BOOT LOADER PASSES NAME OF
BOOT CMD FILE TO BOOTEX

(|

BOOTEX MODIFIES SYSTEM FILE

(|

SYSTEM IS LOADED INTO MEMORY

STARTUP PROGRAM EXECUTES
WITH WELCOME FILE

16-2 | ~ R16.4

16.3 CREATING A BOOTEHX AREA

The LU you boot from must be located at cylinder 0, sector 0 of one
of the disc surfaces., For CS80 discs, there will be only one such
LU; 7906 discs with removable platters have several. The correct
LU is typically the one with the lowest number (in the Primary
answer file).

On a CI volume, the 512 block area reserved for BOOTEX cannot be
accessed as a CI file and does not appear in any directory. Once
the space is created, it will remain there until the LU is
re-initialized. Note: IN destroys all the data on the discl

The FMGR IN command_gg;gmg;igg;lx_nxaahes a 512 block BOOTEX file
at the beginning of the LU. This is a type 1 file with security

of =32767 The BOOTEX file will remain on the LU unless it is
purged or the LU is re-initialized as a CI volume. For a
description of the FMGR IN command see the RTE-A Utilities Manual.

References: System Gen. & Instl M%nual, Utilities Manual
T16-3

CREATING A BOOTEX AREA

FOR A CI VOLUME:

CI> IN <lu> 512
Re-initialize valid directory [N]? Y
Initializing disc

FOR A FMGR LU:

| FMGR: IN, <msec>,<old crn>,
<new crn>,<label>,
[<opt. prams>] |

FMGR 060 DO YOU REALLY WANT
TO PURGE DISC? (YES OR NO) YES

16-3 R16.3

16.4 The INSTL Program

when BOOTEX is loaded into memory, it ne
was on. The INSTL program puts the required information about the

can find it. INSTL retrieves
for the boot LU and places them in a table
entry points

disc LU where BOOTEX

parameters 1 through 8

within the BOOTEX file.

The SNAP file provides the

which allow INSTL to find this information.

References: System Gen.

& Instl Manual, Utilites Manual
T16-4

eds to know what disc LU it

THE INSTL PROGRAM

CI>INSTL <snap> <system> <boot dest> <lu> <boot source>

SOURCE
SNAP BOOTEX
FILE
SYSTEM ~ U
FILE :
LT T p— -:'_ INSTL
VT) v
I .)
Physical DESTINATION
description BOOTEX
of boot
disc LU
DISC
| > | 1w
1 INFO
|
16—4

R16.6

16.5 Running INSTL - Same Disc Configuration

In these examples, the boot LU, 16, in the target system is the
same as LU 16 in the host system

To run INSTL, you always need a source BOOTEX. This could be a
previously installed BOOTEX on a FMGR cartridge or a BOOTEX file
provided with the RTE-A master software. In these examples,
bootex::master is a previously installed BOOTEX file.

CI volume example:
Newsys is a directory cohtaining the system and snap files. Since

the BOOTEX area 1is not a file, a '0' for destination file causes
the BOOTEX to be installed at the beginning of the specified LU.

FMGR example:

The BOOTEX on a FMGR cartridge is accessible as a file, so it is
specified as the destination file.

Once you have installed BOOTEX on the boot media, it is not
necessary to re-install BOOTEX for new generations, unless the disc
configuration or LU assignment of the boot LU changesl

References: System Gen. & Instl Manual, Utilites Manual
T16-5

RUNNING INSTL

— same disc configuration

>
=0

FOR A CI VOLUME:

CI> wd /newsys
CI> instl

Enter snap file, system file, destination file, lu, and source file
shap.snp,prmsys.sys,0,16,bootex::master

INSTL end. Your boot extension has been installed at
boot block 0, on LU 16

CI>

FOR A FMGR CARTRIDGE:

CI> instl

Enter snap file, system file, destination file, lu, and source file
snap::16,prmsys::16,bootex:—32767:16, 1 6,bootex::master

INSTL end. BOOTEX:—32767:16:1:512 is your boot extension file.
warning: boot file must be at cylinder O sector 0
Cl>

16-5 R16.7

|

16.6 Running INSTL - New Disc Configuration

In these examples, the area described by LU 16 in the host system
is LU 14 in the target system. Bootex::master is a previously
installed BOOTEX file.

NOTE: In order to boot from .a disc LU, it must cover the same
physical area in the target system as in the host system. When a
disc LU is re-configured to cover a different area, all data on the
disc is effectively lost.

CI example:

Newsys is a directory containing the system and snap files. Since
the target LU is not the same as the current LU, there is no way to
access the BOOTEX area. Thus the destination is a file called
bootex::newsys. We then use a program called FPUT, which puts the
BOOTEX into the reserved area. The offset parameter indicates
where on the LU to put the file. It also indicates the bootable
file number as given in the boot command string (discussed later).
An offset of O starts the file at block 0; an offset of 1 starts
the file at block 256, etc.

FMGR example:

Here we can directly reference the BOOTEX file on LU 16.

References: System Gen. & Instl Manual, Utilites Manual
T16-6

RUNNING INSTL

— new disc configuration

>
=
FOR A CI VOLUME:

Cl> wd /newsys

CI> INSTL

Enter snap file, system file, destination file, lu, and source file
Snap.snp,prmsys.sys,bootex, 14,bootex::master

INSTL end. BOOTEX::NEWSYS:1:512 is your boot extension file.
warning: boot file must be at cylinder O sector 0

CI> fput
Usage: RU,FPUT,filename,lu, offset

CI> fput bootex::newsys 16 0
CI>

FOR A FMGR CARTRIDGE:

CI> instl

Enter snap file, system file, destination file, lu, and source file
-snap::15,prmsys::16,bootex:—32767:1 6,14,bootex::master

INSTL end. BOOTEX:—32767:16:1:512 is your boot extension file
warning: boot file must be at cylinder O sector 0

CI>

16—-6 R16.8

|

16.7 T HE BOOT COMMAND FILE .

The boot command file is a file passed to the BOOTEX program which
controls the boot process. It specifes the system and snap files
and indicates how the system file should be modified for execution.
The default names for the boot command file are: BOOT.CMD::SYSTEM
for a CI volume and SYSTEM for a FMGR cartridge. BOOTEX will
prompt for commands interactively if no file is specified and the

default file is not found. BOOTEX commands are described in the
reference manual.

References: System Generation and Installation Manual
Tl6-7

THE BOOT COMMAND FILE

REQUIRED:
SPECIFY SYSTEM
“AND SNAP FILES

REQUIRED:
RP PROGRAMS
REQUIRED: SET SIZE, PRIORITY
MOUNT LU's SFECIFY STARTUP

INCREASE
- SAM

\ SPECIFY
BOOT MEMORY SIZE
COMMAND

FILE
VMA SCRATCH
CARTRIDGE

SPECIFY

N SWAP FILE

N\

CEANGE BACKGROUND
& TIMESLICE PRIORITY
TIMESLICE QUANTUM

DEFINE RESERVED
 PARTITIONS
ASSIGN PROGRAMS

SPECIFY
BAD MEMORY
PAGES

16-7 -R16.9

16.8 Boot Command File - Non-VC+ Example

In this example, the boot LU is a FMGR cartridge.
Some Bootex commands:

EC - echo commands

SN - specifies snap file

SY - specifies system file

RP - restore program (create ID segment)

ST - indicates that previously RPed program is startup program
SW - specifies swap file

AS - assign to reserve partition (creates partition)

END - end of boot commands

The system and snap files must be specified first. You must mount
the LUs which contain the welcome file and any of the programs
which are RPed here. The boot LU is automatically mounted. DRTR
must be RPed as D.RTR. The ST command following an RP command
makes a program the startup program. An additional copy of CI must
be RPed for the startup program, because .when CI is the startup
program, it will release its ID segment when it exits. The second
parameter of the ST command indicates the name of the welcome file
which will be passed to the startup CI as follows:

sT,,n ==> WELCOMEn.CMD: :SYSTEM
Thus the welcome file here is WELCOMEl.CMD: : SYSTEM

The SW command will create the swap file if it does not already
exist. The swap file is where executing programs are saved when
they are swapped out of memory. In the example, a file of size
3000 would be created if it did not exist. If no size |is
specified, Bootex calculates the default size as follows:

32K words x # of ID segments in system
This is often much larger then you would really need.

The disc directory program, D.RTR, is being assigned to a reserved
partition so that it will never be swapped out of memory. This
will increase 1its performance. Note that 1in order to assign a
program to a reserved partition here, there must be sufficient
reserved partition table space (allocated at generation time) .

References: System Generation and Installation Manual
T16-8

BOOT COMMAND FILE

non—-VC+ example
EC
*

*

SY,PRMSYS
SN,SNAP
*

MC,-18
l\lC,—lQ

*
*

RP,DRTR::PROGRAMS,D.RTR
*

RP,CI::PROGRAMS,CI

*

RP,CI::PROGRAMS,CM

*

RP,CI::PROGRAMS,START
ST,, 1
*

*

END
*

*
SW,SWAP:SW:3000
*

,{}S,D.RTR
END

L

16-8 R16.10

16.9 Boot Command File - VC+ Example

In this example the boot LU is a CI volume.

The main difference here is that we only need to RP one copy of CI.
This is the startup copy of CI which will go away (release its 1ID
segment) when it exits (typically at the end of the welcome file).

The PROMT program will be RPed in the welcome file. This will take
care of scheduling CM, and LOGON as required. CI will typically be
scheduled by LOGON, when each user 1logs on at a terminal. The
welcome file here will be WELCOME2.CMD: : SYSTEM.

References: System Generation and Installation Manual
T16-9

BOOT COMMAND FILE
VC+ EXAMPLE

EC
%*
%*

SY,PRMSYS.SYS
SN,SNAP.SNP
%x

MC,-18
MC,-19
%x

%x
%x

RP,DRTR::PROGRAMS,D.RTR
%x

RP,CI::PROGRAMS
*ST,,Z

END
%x

%*

SW,SWAP.SWP::SYSTEM::3000
. |
AS,D.RTR

%x

END

16—-9 R16.11

16.10 T HE WELCOME FILE .

The welcome file is merely a transfer file which is executed by the
startup CI. Note that you can mount disc LUs and RP programs here
as well as in the boot command file. In the boot command file you
must at least mount the LUs and RP the programs you need to run the
startup programe. Typically, the welcome file would mount the other
LUs and RP any other programs as required.

Remember, the primary program is scheduled by the driver when an
unexpected interrupt is received from the terminal (i.e., a key is
struck) . The secondary progam is scheduled if the primary program
is busy.

References: System Generation and Installation Manual
T16-10

THE WELCOME FILE

ENABLE PRIMARY
AND SECONDARY PROGRAMS

TO TERMINALS
INITIALIZE
RP OTHER PROGRAMS DEVICES
(PROMT IF VC+) (eg.mux)

WELCOME
FILE
WELCOMEn.CMD
::SYSTEM
MOUNT OUTPUT MESSAGE
DISC LU's TO USERS' TERMINALS

16—-10

R16.12

16.11 Welcome File - Non-VC+ Example

In the non-VC+ environment, you must RP CIl with different names to
serve as the primary and secondary programs at different terminals.
This is because the driver, in order to schedule a program on
interrupt, requires that there be an ID segment for the program and
that the program is not busy. To insure that the program is not
busy when we get an asynchronous interrupt, there must be multiple
copies of the program RPed. The CN command is a control request to
the driver - this is equivalent to an EXEC 3 control regquest. The
format of the CN command is:

CI> cn <lu> <function> <prams>
For terminal drivers:
208 = schedule primary program on interrupt

schedule secondary program on interrupt
praml = name of program to be scheduled

The command:

cnl 40b ¢m,,,CM
will cause the value 'CM' to be passed to the program when it is
scheduled by the driver. This tells it that it is really the CM

program. That 1is, it should process one command and then exit.
(Remember, CM is really just CI in disguise).

References: System Gen. & Instl Manual, Driver Reference Manual
Tl6-11 '

WELCOME FILE
NON-VC+ EXAMPLE

wd /programs
*

mc 22
mc 23

mc 29
*

* Enabling terminals
* .

'en 1 20b CI
cn 1 40b CM,,,.CM
*

rp CI ci68
rp CI cm68
rp CI ci66
rp CI cm66
*

cn 68 20b ciB8

cn 68 40b cmé68,,,CM
cn 66 20b ci66

cn 66 40b cm66,,,CM
* \

* Send message to terminals
*

co mess.txt::system 1
co mess.txt::system 68
co mess.txt::system 66
*

eéx

16—-11 R16.13

L

16.12 Welcome File - VC+ Example

It is not necessary to RP additional A copies of CI or even to
schedule secondary programs. PROMT, when enabled as the primary
program, will handle the scheduling of LOGON and CM. LOGON will
(typically) schedule CI. Note PROMT looks for the program:

CI.RUN:: PROGRAMS

PROMT is never busy because it will schedule the appropriate
program and then exit.

The control request 30B initializes the MUX ports. This sets the
baud rate, the port number and some handshake information.

References: System Gen. & Instl Manual, Driver Reference Manual
T16-12

WELCOME FILE
VC+ EXAMPLE

| :rd /programs

me 22
mc 23
‘Ilnc 29

cn PROMT

: Enable terminals
cn 1 20b PROMT

: Enable muxs

cn 71 30b 142330b
cn 72 30b 152331b
cn 73 30b 152332b
cn 74 30b 152333b
cn 75 30b 152334b
cn 76 30b 152335b
cn 77 30b 152336b
cn 78 30b 152337b

cn 71 20b PROMT
cn 72 20b PROMT
cn 73 20b PROMT
cn 74 20b PROMT
cn 75 20b PROMT
cn 76 20b PROMT
cn 77 20b PROMT
-cn 78 20b PROMT

L
€x

16~12 R16.14

i

16.13 gystem Utilities and Directories

The directory /SCRAICH is also useful. It should have p/w access
for all users, .

The programs shown must be available for the target system prior to
bootup. They can either be loaded or transported. Typically, a
program will be transportable if it does not use system common.

Reload or transport ?

If your new system uses the same RPLs as your old system, then you
can transport programs. If the RPLs for new system vary from your
current system only in the use of CDS then you will not need to
reload programs, except for CI, which is available in both CDS and
non-CDS. CDS programs will not run in a non-CDS system. For any
other situation where you change RPLs, system programs should be
reloaded.

The first time you run a program under a new system with different
RPLs, the system will print a message:

changed RPL checksum <program>

When you run the program again, it will run and the message will
not be printed.

A program can be loaded for use on a different system then the
current one by specifying the target snap file when LINK is run (SN
command) .

There are many intrinsics of the RTE-A that expect the disc
directory program to be called "D.RTR". Since this is not a legal
file name, the program file is called "DRTR.RUN"., It is always
RPed as "D.RTR".

References: System Generation and Installation Manual
_ T16-13

SYSTEM UTILITIES
AND DIRECTORIES

REQUIRED DIRECTORIES
[/SYSTEM

/PROGRAMS
/LIBRARIES
/HELP

4

SYSTEM PROGRAMS REQUIRED
AT BOOTUP

CI

{ DRTR (D.RTR)
DL

LINK

\PROMT (VC+)

16-13 R16.15

16.14 SYSTEM BOOTUP & INITIALIZATION

T16-14

~ SYSTEM BOOTUP
AND
INITIALIZATION

16—14

16.15 Disc Boot Command String Examples

The disc boot command string is entered at the VCP terminal. The
$BDC command is used to boot an HPIB disc. The $BDI command is
used when booting from a 2480 integrated disc (either the hard disc

or the microfloppy).

After the system has been checked for proper operation, Yyou may
configure the BOOT SELECT switches on the processor or frontplane
for automatic bootup.

References: Sys. Gen. & Instl Man%al, A600/A700/A900 Comp. Ref. Manual
Tl6-15

DISC BOOT COMMAND STRING
EXAMPILES

Aqa‘:kwpff l

%BDCOO0O27SYSTEM

/} /% /%
bootuI T T

File name

from boot command
HP-IB file for disc-
disc | based system

disc HP-IB select code of disc's
address HP-IB interface card

unit or head number

% BDIO032SYSTEM
N /

/]\ /% N [\
bootup |
Filename
from 248x boot command
Integrated file for disc—
disc based system
dri | |
adg?;ess disc interface card

select code

unit number

16—-15 R18.17

_ |

16.16 Load or Transport Other Programs

-

It may be desirable to make these programs available for the target
system prior to bootup.

T16-16

LOAD OR TRANSPORT
OTHER SYSTEM PROGRAMS

for VC+
EDIT SP
WH - OUTPT
I0 SMP
FMGR | SPGET
TF LOGON
USERS

PLUS

OTHER UTILITIES
COMPILERS |
APPLICATION PROGRAMS

16-—-16

RRE.X#

16.17 User Accounts (VC+)

The directory ::USERS contains all the information used to describe
the user accounts on the system. LOGONPROMPT is a text file
containing the logonprompt. Tis can be changed by using EDIT.
Only the first 16 characters of the file will be used. There is a
file per user (file name = logon name) which contains a complete
description of the user account information.

If you boot a W+ system for the first time with no user accounts
information on the system, CI will be scheduled without the need to
logon. The USERS program will set up : :USERS with everything
needed to run in multi-user environment. ‘

References: System Generation and Installation Manual

T16-17

USER ACCOUNTS (VC+)

CI> dl ::users
directory :: users

ANYBODY) (JANE)

LOGONPROMPT MANAGERi MASTERACCOUNT

"Please log in:" LOGON NAMES
| OF ALL USERS

USER ACCOUNT
INFORMATION

16-17 R16.19

16.18 Creating a User Account (VC+)

USERS is an interactive program wused to create or modify user
accounts. it prompts you for user information, giving default
values in [brackets] where applicable. This example shows the
creation of an account which is not the first.

Note that in this example, most of the entries were defaulted. The
default LU of 0 for working directory indicates the first CI volume
in the cartridge list.

The creation of the first account is slightly different. For the
first account, you will specify which LU ::USERS will go on and the
logon prompt. The superuser flag is always set for the first user.

To create a user account, you need read/write access to the users
directory. Creating accounts is typically done only by a
superuser. A non-superuser cannot create a superuser account.

References: System Generation and Installation Manual
T16-18

CREATING
A USER ACCOUNT (VC+)

CI>users

This program creates or raodifies user
accounts. Use carriage return to take
the choice in [brackets|. Use <CNTL-D>
to quit early.

Creating a user

Enter your logon name: CUTHBERT
Enter your real name: Cuthbert Q Divine
Enter your password: WOLF

- Set superuser flag? (Yes or No)[No]

Enter your working directory:
[::CUTHBE RT]

Enter your start—up command:
" [RU CI.LRUN::PROGRAMS]

RU CI HI::CUTHBERT

Create Directory ::CUTHBERT ? [YES]
What LU should the directory go on?
0 29

Created user CUTHBERT

16-18 R16.20.

|

16.19 ° Modifying a User Account (VC+)

Running USERS with an account name causes the account to be
modified. The program will indicate the existing values as the
defaults in brackets and prompt for new values. You need only
enter new values for those entries that are to be changed. Note
that there is no way to see the existing password.

To modify an existing account, you need read/write access to the
MASTERACCOUNT file and the account file.

References: System Generation and Installation Manual
T16-19

MODIFYING
A USER ACCOUNT (VC+)

CI> users CUTHBERT

This program creates or modifies user accounts.
Use carriage return to take the choice in
[brackets] - Use <CNTL-D> to quit early.

Modifying user CUTHBERT

Your current logon name is CUTHBERT
Enter your new logon name: [CUTHBERT] WOLF
Your current real name is Cuthbert Q Divine

Enter your new real name: [Cuthbert Q Diviné] —
Enter your password: [cr] __

Change password to no password (Yes or No) [Yes]
Set superuser flag? (Yes or No)[NO|] YES

Created user WOLF

TO DELETE A USER ACCOUNT

CI> pu wolf::users

16-19 R18.21

16.20 Initialize Spool System (VC+)

The command SP IN sets up the SPOOLINFO file and allocates resource
and class numbers.

' The second command turns on error logging and specifies the file to
which the errors will be logged. To turn error logging off, use:

CI> sp lo of

You may want to put these commands in the welcome file since it
must be done whenever the system is rebooted.

References: System Generation and Installation Manual
T16-20

INITIALIZE
SPOOL SYSTEM (VC+)

CI> sp in

CI> sp log on errors::log

D

16-20

16.21 DS Transparency Software Installation

The DS transparency software allows access to files on other RTE-A
systems connected via the DS/1000-IV network. Installation of the
DS network is described 1in the DS manuals. The DS transparency
software installation follows the DS network installation.

DSRTR and TRFAS are DS monitors provided with the RTE-A software.
DINIT is a DS initialization program.

References: System Gen. & Instl Manual, DS/1000-IV Manuals
o T16-21

DS TRANSPARENCY
SOFTWARE INSTALLATION

* IF YOU HAVE THE DS,/1000-IV
PRODUCT

— LOAD DSRTR AND TRFAS ON
YOUR SYSTEM

— RP DSRTR AND TRFAS

— EDIT THE DINIT COMMAND

FILE SO THAT TRFAS IS
SCHEDULED BY DINIT

— INITIALIZE DS BY RUNNING DINIT

— VERIFY THAT DS TRANSPARENCY
IS SET UP -

16-21 R16.23

16.22 System Verification and Backup

After everything is loaded and jnitialized, you should check for
proper operation.

The FTEST program functionally tests each peripheral device on the
system.

References: System Gen. & Instl Manual, Primary System Install. Manual
T16-22

" SYSTEM VERIFICATION
& BACKUP

BACKUP 8 @

16—-22 R16.24

MEMORY BASED
SYSTEM INSTALLATION

CHAPTER 17

Chapter

Table of Contents

17

MEMORY BASED SYSTEM INSTALLATION

WHAT

Is A MEMORY BAS

Boot Medla L L L L L L L L L] L] L] L] L L
Memory Based System Examples . « . o «
Memory Based Installation Process . . .

B UIL
BUILD
BUILD -
Build -
Build -
I NST

D - PHASE 1
Phase 2 L L L L L d L L L L d L] L] L
Phase 3 L L L L] L L d L d L L L] L] L]

Automatic Partition Example . .

Manual Partition Example U51ng vc+

ALLATTION AND

Installation on CTD and Mag Tape . . .
Installation on Disc ¢ ¢ ¢ o o o o o o
DS/1000-IV Installation and Bootup Process
Boot Command String . « ¢ ¢ o o o o o o
Bootup EXxamples « o« o o ¢ o o o o o o o
System Verification and Backup .+ . . .

BOOTU

. . [4 L] L] L] .o. []

17-1
17-2
17-3
17-4
17-5
17-6
17-7
17-8
17-9

17-10

17-11

17-12

17-13

17-14

17-15

17-16

1,

2.

3.

4.

Understand what
considerations are for memory based systems.

a

MODULE OBJECTIVES

memory based

system is and

what the

Be able to generate and install a memory based system.

Be able to run BUILD,

Be able

PROM,

DS/1000.

to install and boot from

ii

various media -

CTD, disc,

17-1.

17-20

17_30

1 7-40

SELF-EVALUATION QUESTIONS

How are programs loaded into memory from disc when you are
running a memory based system?

Indicate the utilities required to install a memory based
system on the following media: '

CTD
Magtape
Disc
DS1000/1IV
PROM

What are the outputs of the build program?

Which VCP command is used to boot from the following media?

Magtape
CTD

Di sc
DS-1000/1V
PROM

iii

17.1 WHAT IS A MEMORY B ASED S YSTEM

All programs reside in reserved partitions in memory.

Non-CDsS

Program segment overlays are not allowed. If you have the
option, CDS segmented programs are allowed as long as all

segments can reside in memory at the same time.

References: System Generation and Installation Manual

T17-1

17.1 WHAT IS8 A MEMORY BASED S YSTEM .

All_ programs reside in reserved partitions _in Memozy. Non-CDS
program segment overlays are not allowed. 1If you have the VC+
option, CDS segmented programs are allowed as long as all the
segments can reside in memory at the same time.

References: System Generation and Installation Manual
T17-1

WHAT IS A
MEMORY BASED
SYSTEM?

I'H'JD

, ﬁugunu
]nuuumm
Lnanapphy

Qaanoon)pl~
gaoooopg
oot

uuuuuy
—

PROGRAM

SWAPPING
PROGRAM
OVERLAYS

ALL PROGRAMS MUST RESIDE IN MEMORY

17-1 R17.1

17.2 Boot Media

Magnetic Tape

Cartridge tape (CTD)

Disc

DS/1000-1V (from a remote disc based system)

PROM module

References: System Generation and Installation Manual
T17-2

BOOT MEDIA

MAG
TAPE

000000

I

ANnmnNnrPMmM

uuauuu

E/lgg%
0inoonoa
—0(000000

000 oooa T
mﬁmmacca*
[0oooo

|

/

Q00000
000000
000004

000000

T

ROM

R17.2

17-2

17.3 Memory Based System Examples

ARSTR - Physical restore utility

PBV - Verifies a pushbutton backup or restore

FORMT - Disc format utility

(These utilities are discussed in the next chapter).

Measurement and control applications

T17-3

MEMORY BASED SYSTEM
 EXAMPLES -

PHYSICAL :
() BACKUP
| UTILITIES 7
I .
1

17.4 Memory Based Installation Process

The required items for memory based installation are:

system file
snap file
program files (type 6)

The steps in the installation process are:

* Merge the system file and the program files with the BUILD
program. ‘

* 1Install the merged system file on the bootable medium.

* Bootup the target system.

* Verify operation and backup the system.

NOTE: There is no supported PROM installation procedure. The user
must supply a program to translate the type 1 system file to
the appropriate format for the PROM burner and PROMs used.
Refer to the RTE-L/XL PROM User's Guide (92070-90030) for
additional information.

References: System Generation and Installation Manual
T17-4

MEMORY BASED
INSTALLATION PROCESS

SNAP FILE PR(()GRAM F)'ILES SYSTEM FILE
TYPE 6
Ny U [\//

BUILD

. MERGED(TYSP%S;I%EM FILE
N N
CO

user
CO supplied
utility

T T

CTD DISC DS/1000 MAG TAPE PROM

17-4

17. B UI LD - PHASE 1

The BUILD program combines the system file with all the type 6
program files that will run in the target system. No programs can
be loaded from the. disc in a memory based system, so all required
programs must be 1loaded in this way. BUILD can be run
interactively or with a command file. When run interactively,
BUILD will prompt the user for all inputs.

Command - file from which commands are taken. This looks exactly
like the inputs you would enter if running interactively.

List - Shows user inputs and any messages output by BUILD.

Output.— The type 1 (memory image) merged system file. This is a
bootable system image.

Snap - Snapshot file output by generator.

System - System file output by generator or the output file of a
previous run of BUILD. BUILD does not modify this file.

OP1 - Specifies what exit path to take on errors when input is from
a command file:

/A - abort
/E - exit
/C - continue

The build program has 3 phases.

References: System Generation and Installation Manual
' T17-5

BUILD—-PHASE 1

CI> build <command> <list> <output> <snap>
| <system> <opt 1>

Phase 1: check for runstring information
— prompt for any file not specified.

17-5 R17.3

17.6 BUILD - Phase 2

All programs in a memory based system must reside in reserved
partitions.

Automatic partitioning - The memory partitions are automatically
built as each program is merged. The size of the partition is the
size of the program.

Manual partitioning - The user first defines the size of all the
partitions in the system and can then explicitly assign programs to
partitions. This is useful if you want to leave bad pages of
memory unused.

References: System Generation and Installation Manual

T17-6

BUILD—-PHASE 2

— SPECIFY MEMORY SIZE

— SELECT AUTOMATIC OR
MANUAL RESERVED
PARTITION DEFINITION

— IF MANUAL PARTITIONING,
DEFINE SIZE OF EACH

PARTITION.

17—-6 R17.c

17.7 - BUILD - Phase 3

The RP command is used to build an ID segment for each program and
to load it into the merged system file.

Note: You cannot size a VMA or EMA program with BUILD. Such
programs must be correctly sized when loaded.

If manual partitioning 1is |used, a partition number can be

specified. If none is specified, then BUILD loads the program into
the smallest unused partition which will hold it. :

VC+ option:

Build will assign appropriate partitions for code and data if the
program is a CDS program. If a program is a shareable program,
then BUILD will create one code partition and one data partition
when the program is RPed. Additional copies of the program will be
given a data partition and will share the same code partition.

References: System Generation and Installation Manual
T17-7

BUILD—PHASE 3

— RESET SYSTEM SECURITY CODE
(for FMGR)

— BUILD ID SEGMENT, MERGE
PROGRAM INTO SYSTEM,
ASSIGN TO PARTITION

— SET PRIORITY
— SET SIZE

— SPECIFY WHICH PARTITION
(IF MANUAL PARTITIONING)

— INDICATE STARTUP PROGRAM

— DISPLAY PARTITION TABLE

17-7

R17.7

17.8 Build - Automatic Partition Example

In this example BUILD was run interactively. The inputs
outputs shown appear in the list file.

Commands:

RP - create ID segment for program

ST - indicates previously RPed program is startup program
PT - display partition table

/E - exit

Partitions are created as each program is RPed.

References: System Generation and Installation Manual

T17-8

and

BUILD—-AUTOMATIC
PARTITIONING

EXAMPLE
CI> build 1 ex1.Ist ex1.sys snap prmsys

Do you want automatic partition construction
(YES/NO) ? YES

Physical memory size in K words {nnn) ? 128

76 pages of memory remaining.
280 memory descriptors remain undefined.

| BUILD: RP,MASTR.RUN

66 pages of memory remaining.
BUILD: ST

BUILD: RP,CTRL1.RUN

39 pages of memory remaining.
BUILD: RP,CTRL2,RUN

12 pages of memory remaining

BUILD: PT

prtn num low page length occupant
1 52 10 MASTR (data)
2 62 27 CTRL1 (data
3 89 27 CTRL2 (data

BUILD: /E

BUILD completed.
Bootable system image in file /LN/EX1.5YS:::1:928:128

17-8 ‘ R17.8

17.9 Build - Manual Partition Example Using VC+

This example shows the command file for build where the partitions
are manually defined. There are 4 partitions which will contain
programs and one which has bad memory. This example uses the VC+
option. CTRL.RUN is a shareable CDS program. Thus there is one
partition for the shared code and one data partition for each copy
of the program.

References: System Generation and Installation Manual
T17-9

BUILD-MANUAL
PARTITIONING

EXAMPLE (using VC+)

ClI>build ex2.cmd ex2.Ist ex2.sys snap prmsys
CI> Ii ex2.emd

NO, manual partitioning
128, memory size

10, define partitions

2, bad pages of memory
32,
16,

- 186,
RP,MASTR.RUN,,
ST,
RP,CTRL.RUN,CTRL1
'RP,CTRL.RUN,CTRL2

PT
/E
The PT command ‘would show:
Partition # Low Page Length. Occupant
-1 52 10 MASTR (dOtO)
2 62 2 <none> X
3 64 32 CTRL1 CTRL2 Ehgrs
4 96 16 CTRL1 (dOtO)
5 112 16 CTRL2 (data)

17-9 R17.9

17.10 INSTALLATTION AND BOOTUP

T17-10

INSTALLATION
AND
BOOTUP

111111

17.11 Installation on CTD and Mag Tape

CSYS (copy system) copies a type 1 memory image file from a Cs/80
disc to a CTD, allowing the system to be directly booted from tape.
NOTE: CSYS does not acknowledge the BR command. Once started, it
continues to completion or until aborted by an error. The file
number determines the starting block for the file on tape. This
also corresponds to the file number specified in the boot command
string (discussed later). File number 0 starts at block 0, file 1
starts at block 256, etc. (1 block = 128 words).

References: System Gen. & Instl Manual, Utilities Manual
T17-11

INSTALLATION ON CTD
AND MAG TAPE

CTD
- CI> CSYS |
RU,CSYS, SYSTEM FILE, <TAPE LU>, FILE NO.

CI> CSYS merged.sys 24 0

- CSYS COMPLETED 1024 BLOCKS
WRITTEN TO TAPE

‘MAG TAPE
CI> co merged.sys 8

copying merged.sys to 8. . . [ok]
Cl>

17-11 R17.11

17.12 Installation on Disc

To' be directly bootable from the disec, the system must be on an LU
that starts at physical cylinder 0 and sector 0 of the disc drive.
Although the first file on the disc is normally used for bootup,
the VCP allows bootup from other files. The bootup file |is
described to the VCP by its physical 1location on the disc.
Bootable file 0 begins at cylinder 0, sector 0; bootable file 1
begins 256 blocks further in on the disc, etc.

To boot directly from a CI volume, FPUT is used to place the system
file in the reserved area at the start of the disc LU, (Remember
the 1IN command ?). The offset parameter is equivalent to the
bootable file number. That 1is, an offset of 0 starts at block 0;
an offset of 1 starts at block 256, etc.

To boot from a FMGR cartridge, the system file need only be copied
onto the cartridge such that it starts at an integral multiple of
256 blocks and the exact location is known. The easiest way to do
this is to use a cartridge which has been cleared of all files
except BOOTEX (512 blocks). Then create additional bootable files
in multiples of 256 blocks, as required.

Alternately, you could boot your memory based system using an
installed BOOTEX by passing the type 1 system file to BOOTEX in the
VCP command.

References: System Gen. & Instl Manual, Utilities Manual
T17-12

INSTALLATION ON DISC

For direct boot from a CI volume

CI> fput

USAGE: RU, fput, filename, Iu,[offset]
Cl> fput merged.sys 16 0

Cl>

For direct boot from a FMGR cartridge.

CI> co merged.sys boot2::16
copying MERGED.SYS to BCOT 2::16. . .[ok]

CI>

Or using an installed BOOTEX.
- No installation required
Merged system file must be on bootable LU

17-12 R17.12

17.13 DS/1000-IV Installation and Bootup Process

To boot over DS, the DS program PROGL must be available at a node
which connects directly to a DS interface card at the target
system. This is the card whose select code is given in the boot
command string (shown later). PROGL cooperates with the VCP at the
target system.

You can boot from a neighboring node without using the routine
4DNFL. The file number specified at boot time is converted to the
file descriptor by PROGL. On an RTE-6/VM system, this must be on a
cartridge under the account MANAGER. SYS. On an RTE-A system, it
must be on a FMGR cartridge. No cartridge reference can be
specified, so the file should be on the top cartridge.

You can write your own subroutine called #DNFL and load it with
PROGL. This allows you to translate the file number into any file
descriptor and to boot from any node in the network.

References: System Gen. & Instl Manual, DS/1000-IV Manuals
T17-13 ‘

DS/lOOO IV INS'J ALLATION
-~ & BOOTUP PROCESS

PROGL at neighboring node

file #—>file descrlptor 9torget VCP

nnnnn Pnnnnn:0:0
Neighboring
éa Node

PROGL at neighboring riode

file # file descriptor target VCP -
nnnnn <any> —\/ /_)

#DNFL System | @NY node
file in network

17-13

R17.13

17.14 Boot Command String

DC = disc or CTD

DI = 248x integrated disc
MT = mag tape

DS = DS/1000-1IV

"RM = PROM module

File # -

DC or DI - bootable file §, starts at 0, 256 block chunks
DS - corresponds to file name on remote system
otherwise 0 '

Bus or drive address - HPIB bus address for DC or MT, drive address
for DI (0 for fixed disc, 3 for microfloppy), otherwise 0.
Defaults are: »

‘DC 2
DI O
MT 4
Unit #

- unit number for discs, 1 for CTD, 0O otherwise. Default is
0. ' '

Select code = select code of interface card. Defaults are:

DC 27
DI 32
DS 24 -
MT 27
RM 22

File name - for disc only (DC or DI), type 1 bootable system file
(or boot command file for disc based systems) .

Default file names are:

- SYSTEM if boot LU is a FMGR cartridge
BOOT.CMD: : SYSTEM if boot LU is a CI volume

References: Sys. Gen. & Instl Manuala A600/A700/A900 Comp. Ref Manual
T17-1

BOOT COMMAND STRING

DC|
Dl -

-~ Z%B [MT| ff b u sc NAME
DS N AN AN AN N
._RM_J |

File #

Bus or —

Drive addr

Unit #

File Norhe.

Select code of
interface card.

17-14 | R17.14

17.15 Bootup Examples

References: Sys. Gen.& Instl. Marit;alg A600/A700/A900 Comp. Ref. Manual
‘ T17-1 :)

'~ BOOTUP EXAMPLES

%BDC27

%BDS330024
%BMT04027

%BRM

boot from the 2nd
file on CTD @

SC = 27 HPIB
address = 0

Using BOOTEX boot
the system file
MERGED.SYS::SYSTEM
on disc @ SC = 27
HPIB address = 0

17-15 R17.15

17.16 System Verification and Backup

There are no standard tests for verfying a memory based system.
You should run your application programs to see that they operate

propgrly.

References: System Generation and Installation Manual
T17-16

'SYSTEM VERIFICATION
' AND BACI&UP

~ RUN APPLICATION PROGRAMS

N—ee

NG

AN

o)

- SYSTEM BACKUP
AND MAINTENANCE

CHAPTER 18

Table of Contents

Chapter 18

SYSTEM BACKUP AND MAINTENANCE

DISC BACKUP _ _ 18-1
File Backup vs. Physical BACKUP ¢ o o o o o o o o o o o o o o 18-2-
Backup Util ities [) [] [) .. [] .‘ [) [) [] [) [] [) [) [) [] [) [) [] [) [) [) [) 18-3

FILE BACKUP - 18-4

TF - Tape Filer o o o ¢ o ¢ o o o o o o o o & 2 ¢ e o o o o o 18-5
TF Copy Command e o o o o o © o o o o o o o s o o & 0 e« o o o 18-6
Other TF Commands e o o6 & o o o ® o o o o o o o o 0 e o o o o 18-7
ownership of Restored Directories . « o« ¢ o o o ¢ o o o o o o 18-8
TF - Incremental BACKUP ¢ o o o o o o o o o & o o ¢ ¢ e o o o 18-9
BaCkup Bit e o o © o © o o o o o o o o o o o o e o o o o o 18-10
Increlﬂental &Ckup Procedure e o o © © o o o o o o o o o o 18-11
System-wide Backup & RESLOTE ¢ o o o o o o o o o o o o o o 18-12
Fc - File copy [] [] L] L [] [] L . @ L L L L L [] L [] [] [] [] [] L [] 18-13
Fc Copy Command e o © o o © o o o o o o o o o ‘e e e o e o o 18-14
PHYSICAL BACKUP ' ' 18-15
A SAVE and ARSTR [] [] L] L] L] L] L] [] L L L L] L L [] L] [] L] [] L] L] L] 18-1 6
A SAVE commands [] L] L] [] L] L L] L] L] L] L] L] [] [] [] L] [] [] L L L] L] 18-1 7
ARSTR Commands e o o6 o o o o o.9 8 o e o o o o o s o o 0 . 18-18
Pushbutton &Ckup and ReStOre o« o ¢ ¢ ¢ o o o o o o o o ¢ o 18-19
System mckup Strategy [] [] L] [] L . L] L [] L] L] [] L] [] [] L] [] L] 18-20
DISC FORMATTING OPERATIONS 18-21
Disc Format Utilities [] L] [] [] L] [] [] L] L []] [] [] [] L] L] [] [] [] 18-22
FORMC - CS8° Discs [] L] [] [] [] [] L] [] L] L] [] L] [] [] L] [] L] [] L] L] 18-23
FORMF - Floppy Disc, 2480 and Winchester DisSC o« ¢ o o o o o 18-24
FORMT - 7906' 7920, 7925 Discs e o © © © o o o o o o o o o 18-25
OTHER USEFUL UTILITTIES 18-26
v°1ume Free Space - FREES e 6 6 6 ® e o o e o o o o o o o 18-27
v°1ume PaCking - FPACK e 6 © 6 o o o o o o o o o o o o o . 18-28
File SYS'tem Verification - FVERI e o o o o o o o o o o o o 18-29
File System Conversion - FSCON ¢ o o o 6 o ¢ o o o o o o o 18-30
S OFTWARE UPDATES 18-31
Primary System L] L L] L L] [] [] L] L] L] [] [] o o [] [] L] L] L] [] L] L] 18-32
Update %tions [] [] [] [] [] L] [] [] [] L] L] L] L] [] [] L] L] [] L] L] L L] 18-33
Update Procedure e o o o,06 o o o o o o o o s o o o o o e o 18"34
Diagnostics e o o6 6 o 6 o o o o o o o 0o o o o ‘e @ © o o o o 18-35

l.

2.

3,

4.

5.

MODULE OBJECTIVES

Be able to determine a backup schedule for a system, making use
of both physical and file backup.

Be able to perform file backup and incremental backup of
s ystem .

‘Be able to perform physical backup of systen.

Be able to use the format utilities to maintain discs.

Be able to update system software.

ii

18-1.

18-20

18-30
18-40

18-5.
18-6.

18-7.

SELF-EVALUATION QUESTIONS

Indicate whéther the following features are describing file
backup or physical backup:

selectively backup individual files

online or offline

faster for very full disc LUs

saves file features such as directories, ownership

Give 1 advantage and 1 disadvantage of incremental backup.

what is the largest area of the disc which can be backed-up
at one time by ASAVE? What is the smallest area?

TRUE or FALSE: It is better not to verify backup tapes so
that the backup procedure will take less time.

what kinds of media need to be formatted before use?
Give 2 differences between TF and FC.

what document describes update information as well as
current revision codes for software?

iii

18.1 DISC BACKUP

A backup is a copy of all or part of a disc onto another medium.
The following media can be used for backup:

CTD ,
Magnetic Tape

flexible disc
hard disc (not really a backup media, but could be used)

A backup is done when there is information on the disc that cannot
be recovered in a timely or cost-effective manner.

References: Utilities Manual
_ _ T18-1

- DISC BACKUP
What Is a backup?

Why bdckup?

To recover data lost
due to system failure
or operator error.

18-1 R18.1

18.2 - File Backup vs. Physical Backup

File béckup utilities save data on the disc on a per file basis.
File structure and attributes are saved.

Physical backup saves the physical image of data on the disc,
independent of the file system.

A typical backup scheme would.make use of both file backup and
physical backup.

References: Utilities Manual
: T18-2

FILE I%ACKUP
PHYSICAL BACKUP

FILE
BACKUP

'SELECTIVELY BACKUP &

RESTORE INDIVIDUAL
FILES OR GROUPS OF

FILES

1S FASTER FOR A SMALL
NUMBER OF FILES

PERFORMED ONLINE
ONLY

PHYSICAL
BACKUP

BACKUP & RESTORE
ENTIRE DISC LU
OR DISC UNIT

IS FASTER FOR VERY

" FULL DISC LUs

PERFORMED ONLINE
OR OFFLINE

REQUIRED TO RESTORE
SYSTEM DISC

R18.2

18.3 Backup Utilities

TF - Tape filer - can back up CI volumes; can backup FMGR
cartridges (with some restrictions).

FC - File copy - FMGR cartridges only.

CI COpy command - for disc to disc. Note: no verify option.
Pushbutton - for CS80 discs with integrated cartridge tape drive.
PBV - Pushbutton verify. -

ASAVE /ARSTR - A-series physical save and restore.

COPYL - copies any disc to a 1like disc. Typically used only by HP
Customer Engineer.

References: Utilities Manual
: T18-3

e,

" BACKUP UTILITIES

FILE BACKUP | %FC?V @

PHYSICAL PUSHBUTTON/PBY B
- BACKUP ASAVE/ARSTR Q\ e ~E)

18,4 FILE BACKUP

References: Utilities Manual
_ T18-4

~ FILE
BACKUP

%
18.5 TF - Tape PFiler

Masked béckup —- full file masking features for selecting source
files and renaming destination files.

« Incremental backup -- select only those files that have been
changed since the last incremental backup.

¥Verify -- direct comparison of tape and disc data after copy has
been completed.

tAppend to tape -- files may be appended to an existing TF format
tape.

(Mmsked restore —- full file masking features for selecting tape
files and renaming the restored copy.

¥ RTE-A / UNIX formats -- files may be backed up or restored from
UNIX TAR (Tape ARchive) format.

¥ TF runstring -- tf may be run with a single command in the
runstring or may be executed interactively (ex command to exit).

References: Utilities Manual
T18-5

TF — TAPE FILER

MASKED INCREMENTAL
BACKUP BACKUP

\ / . RTEfA
— \>(2 .gggMATS

VERIFY APPEND
TO TAPE

MASKED UPDATE
RESTORE RESTORE

. RTE—-A AN / |
. UNIX >
FORMATS |
| VERIFY

CI> tf <command>
CI> tf
tf: <command>

tf: <command>
tf: ex

18-5 | | R18.5

18.6 TF Copy Command

<source> -- may be a file mask or a tape LU (LU 8 is often the mag
tape drive, LU 24 the CTD for a CS80 disc).
<destination> -- may be a destination mask or a tape LU (must be
opposite device from <source>).
<options> -- multiple options may be selected if appropriate:

a -- append files to tape

b -- suppress listing listing filenames as they are copied

c -- clear backup bit after verifying copy to tape

d -- replace duplicate files on disc

k -- keep tape on line when finished

u -- update: replace duplicate files, but only with newer

version
-- verify copy
UNIX compatibility 1
-- yes: supresses prompting before overwriting or appendling
tape

e N <
|
|

References: Utilities Manual
T18-6

"TF COPY COMMAND

TF: CO <source><destination> <options>

DISC TO TAPE:

TF: co spot.fun 8 q
TF: co @.fth 24 v

TAPE TO DISC:
TF: co 8,,v
TF: co 24 §spot.@3 /henry/@

MULTIPLE MASKS:

TF: co {/mine/@.@.s /yours/@.@.s} 8 avk
TF : co 24 §{@.pas @.ftn? /sources/@ d

REMOTE ACCESS:

TF: co /elmer/@>2[user] 24
TF: co 8 @.@>1[manager] k

18-6 R18.8

18.7 other TF Commands

Title -- puts a title at the beginning of the tape. Up to 80
characters may be used. :
Group -- begins a group of copy commands. No copying is done until
after the group has been ended. Any number of copy commands mey be
included in the group. If a file has been selected by more than
one copy command, duplicate copies will be made.

eg -- end the group of copy commands. Copying is started
- immediately.

1h -- lists the tape header. The tape LU must be specified here.

dl -- directory list. Works the same as the CI cbmmand with the
additional feature that tape directories may also be listed.

11 - specify list file
tr - transfer to command file

de

define defaults
ag - abort group copy

ex - exit

References: Utilities Manual
© T18-=7

OTHER TF COMMANDS

TF: title project backup

TF: group

TF: co £@.pas @.ftn3 24 vy
TF: co {@.rel @.txt3 24 by
TF: eg

Copymg AREA PAS

Cop.ying Z0OO.FTN
TF: |h 24

Tape format: TF

Title: project backup

Date: Tue July 19,1983 3:15:21pm
Capacity: 16287 Kilobytes

Used: 114 Kilobytes

TF: dl 24
AREA.PAS

Z00.TXT

18-7 R18.7

18.8 Ownership of Restored Directories

TF will also create the required directories as part of the restore

if they do not all ready exist.

References: Utilities Manual
_ T18-8

~ OWNERSHIP OF
RESTORED DIRECTORIES

GENERAL USER:

DIRECTORIES ARE OWNED
BY USER DOING RESTORE

SUPER USER:

DIRECTORIES ARE OWNED
BY THEIR ORIGINAL OWNER

DIRECTORIES ARE RESTORED
TO THEIR ORIGINAL LU WHEN
POSSIBLE.

18-8 ‘ R18.8

18.9 TF ~ In¢remental Backup

An incremental backup would typically be done by appending delta
backups. onto the same tape as the full backup. The next full
backup would start on a new tape. Alternately, you could do a full
backup on one tape and one or more delta backups on additional
tapes (depending on the size of your delta backup). These two
methods are basically the same but require slightly different
procedures to restore. _

Advantages of incremental backup:

* Higher system availability since average (delta) backup time is
faster. _

* Less tape used on the average.

* Fewer tapes used since backups can be appended onto the same
tape.

Multiple versions of files can be accessed more conveniently
(archiving) . S

Disadvantages:
* Takes longer to restore.

* Procedures are more difficult to understand.

This procedure is not applicable to FMGR files.

References: Utilities Manual
‘ T18-9

TF INCREMENTAL

" FULL BACKUP

PERIODICALLY
BACKUP ALL FILES

DELTA BACKUP

~ MORE FREQUENTLY
BACKUP ALL FILES
THAT HAVE CHANGED

file1

BACKUP

file4

file1

- SINCE LAST BACKUP

- TO RESTORE

file2

| | file3

file5

L
B ()}

file2

file4

file3

fileS

S(0)—

1. RESTORE MOST RECENT FULL BACKUP

2. RESTORE ALL SUBSEQUENT DELTA BACKUPS

18-9

18.10 Backup Bit

A bit associated with each file dn a CI volume which indicates it
needs to be backed up. This is useful for file backup only. There

is no backup bit for FMGR files.

References: Utilities Manual .
- T18-10

BACKUP BIT

ASSOCIATED WITH A FILE ()R DIRECTORY

SET WHEN FILE:
— IS CREATED

— IS CHANGED

- — IS MOVED TO ANOTHER
\ - DIRECTORY

— NAME, TYPE EXTENSION,
OWNER OR PROTECTION
BITS ARE CHANGED.

CLEARED WHEN:

— FILE COPIED TO TAPE BY
w TF WITH THE "C" OPTION
SPECIFIED.

18-10 " R18.10

18.11 Incrémental Backup Procedure:

This example shows an incremental backup of everything under ‘the
global directory /leslie. The C option clears the backup bit and
always does a verify. The A option appends the backup onto the
tape all ready containing a backup. The same source mask must be
used every time the incremental backup is done or the results may
be confusing. ‘

In the example showﬁ, TF will autématically replace duplicate files
from the delta backup if the files were created since the restore
procedure began. '

Note: if the incremental backup is not done by appending delta
backups on the same tape, then a CO command is needed for each
tape. Also the D (replace duplicate files) option must be
specified for the delta backups.

References: Utilities Manual ‘
S " T18-11

INCREMENTAL BACKUP
 PROCEDURE

WEEKLY
CI> tf co /leslie.dir 8 c

DAILY |
CI> tf co /lesliedir.b 8 ac

TO RESTORE:
CI> tf co 8

18.12 System-wide Backup & Restore

tf co /@.e <tape> v => copy all non-FMGR files
tf co e.e.e <tape> v => copy all files including FMGR
tf co /e.@ <tape> ¢ => full backup of all non-FMGR files,

- clearing backup bit ' '
tf co /@.8.b <tape> ac => copy all files whose backup bit is set,
: clearing backup bit

tf co <tape> =) restores all the above examples

Note: Problems may arise if the FMGR file or cartridge names
contain certain restricted characters. If so, you can use FC for
FMGR file backup.

For successful system backup:

* Keep'system time accuratel

* Use transfer files for backup and restore to avoid errorsl

* Only one person should clear the backup bit for a given set of
filesl

* Keep users from accessing files during system backup!

* Always verify backups and restores!

References: Utilities Manual
: T18-12

SYSTEM—-WIDE
FILE BACKUP PROCEDURE

BACKUP |
CI> tf co /@.@ <tape> v
CI> tfco @.@.e <tape> v

INCREMENTAL BACKUP

CI> tf co /@.@ <tape> ¢
~CI> tfco /@.@.b <tape> ac

RESTORE |
CI> tf co <tape>

18-12 | R18.12

18.13 FC - File Copy

Copies FMGR files to and from FMGR cartidges only. FC is used to
copy update software supplied on mag tape or CTD.. It could also be
used to copy files to and fron RTE-6/VM and RTE-IVB systems.:

FC'hés a command set similar to TF, except that it does not allow
file masking (except use of dashes for wildcard characters).
Some commonly used FC commands:

CO - copy files
'DE - set default parameters

GR - begin group copy

EG - end group copy

AG - abort group copy

LL - specify list file '
DL - directory list of files on disc or tape
LH - list header on tape

TI - specify title to be used on tape

TR - transfer to command file

EX - exit

?2 = help

References: Utilities Manual
' : T18-13

FC — FILE COPY

Y-,
)

Cl> fc <command>
Cl> fc

FC: <command>
FC: <command>
FC: ex

SOME FC COMMANDS

- Cco
DE
GR / EG/ AG
LL |
DL

LH

T

TR
EX
2

18-13 o R18.13

18.14 FC Copy Command

<source5 - file or files to be copied. Can also be a tape LU or

FMGR cartridge. A list of names can be enclosed 1in braces.
wildcard characters (dashes) can be used.

<destination> - Tapé LU, FMGR cartridge or a filename.
<options> - some commonly used options are:

suppress listing of files copied
clear destination cartridge
replace duplicate files
Eliminate extents

purge source files after copy
verify copy

<mmuOw

Multiple options may be used.

References: Utilities Manual
T18-14

- FC COPY COMMAND

FC: co <source><dest><options><file1><file2><msc>

'EXAMPLES:

FC: CO ::VvB -8 v

~ FC: CO {games,teams}::VB —24
FC: CO §:WS,::SS} -8 v

FC: CO —8 LN v

FC: CO —24{copy,me2} ::cr d
FC: CO —8 §::A2,::A33 v

18—-14 Ri8.14

18.15 PHYS ICAL BACKUP : .

'You must have some form of physical backup or copy of your boot
disc LU. A physical backup on a disc or floppy would be a bootable
system. A physical backup on magtape or CTD would have to be
downloaded to the disc before it can be booted. This could be done
in one of the following ways:

* Download with the pushbutton restore feature of CS80 discs.

* Boot a memory based system which contains ARTSR, the physical
restore utility, then restore the tape to disc. -

To be-useful, this physical backup must be able to restore enough
of the system to boot up, run CI and bring other programs and files
onto the system.

Re ferences: Utilities Manual.
' : T18-15

PHYSICAL BACKUP
A PHYSICAL BACKUP IS:

A COPY OF YOUR SYSTEM ON
A BOOTABLE MEDIA

OR

A COPY OF YOUR SYSTEM ON
A MEDIA WHICH CAN BE

DOWNLOADED TO THE SYSTEM
DISC WITH AN OFFLINE
UTILITY | |

THE PHYSICAL BACKUP MUST
CONTAIN THE FOLLOWING:

bootable BOOTEX Cl

-~ snap file_ DRTR
system file . DL
boot command file 1F
welcome file ~LINK
swap file PROMT (for VC+

/programs and /system FORMC or FORM

- 18-15 R18.18

18.16 ASAVE and ARSTR

ASAVE is the A-series physical backup utility and ARSTR is the

corresponding restore utility. Typically, ASAVE would be used

online to backup the disc. For system restoration, ARSTR would be
~ used offline, It could also be used online to restore the rest of
" the disc.

ARTSR can only restore a tape to a disc with the same number of
blocks per track that it was saved from.

ASAVE and ARSTR can be run interactively or all commands can be
included in the runstring.

To run ARSTR offline, you must prepare a bootable memory based
system which contains the ARSTR program. This system must Dbe
available on some media other than your system disc. This memory
based system is part of the physical backupl RTE-A systems on
magnetic tape include a bootable memory-based ARSTR system.

References: Utilitiés Manual
‘ © T18-16

- l | |

ASAVE & ARSTR
—) —

— ONLINE OR OFFLINE

— SAVE LU, GROUP OF LUs, ENTIRE DISC
— MULTI-TAPE BACKUPS

— VERIFICATION

CI> asave <commands>
CI> asave

~ ASAVE: <command>

ASAVE: ex

CI> arstr <commands>
CI> arstr

ARSTR: <command>
ARSTR: ex

18-16

R18.18

18.17 ASAVE Commands

Some ASAVE commands:

TA = assigns tape LU _

TI = specify title to be included in tape header

SA = save the specified LU(s) to tape; The VE option verifies;
The UN option will back up all LUs on the disc unit.

RW = rewind

In the first part of the example, one disc LU is backed up and
verified. A header is included with the file on tape which
contains: the format, date, time, file §, tape %, LU, title and
other information.

The second part of the example will backup all the LUs on the disc
unit which contains LU 16 and verify. Each LU will be saved in a
seperate file on the tape with its own header information.

Referencés:,Utilities Manual
_ . T18-17

ASAVE COMMANDS

ASAVE: ta 24

Tape LU = 24

ASAVE: ti SYSTEM BACKUP
Title = SYSTEM BACKUP
ASAVE: sa 12 ve

Disc LU(s) to be saved:

12
Created using: ASAVE

Verifying tape

ASAVE: ti ENTIRE SYSTEIM BACKUP
Title = ENTIRE SYSTEM BACKUP

ASAVE: sa 16 un ve

Disc LU(s) to be saved:
16
17
18
19
20
Created using ASAVE

Verifying tape

ASAVE: rw
ASAVE: ex
18-17 | R18.17

18.18 ARSTR Commands

Most of the ARSTR commands are the same as ASAVE. ©Some ARSTR
commands:

* TA = Assign tape LU
* LH = Display tape header for file number specified

* RE = Restore file(s) to LU(s) (file#:LU); The VE option verifies
the restores. The UN option restores the entire unit
starting with the file # specified.

In the first part of the example, the file header is listed for the
first file on the tape. Then the first file is restored to LU-12
and verified. '

The second part of the example will restore the entire disc unit
(saved in the ASAVE example) starting with file 2. When the UN
option is specified, ARSTR will only restore the specified save
file and any subsequent files if they were from the same disc unit
and were saved in the same save operation.

References: Utilities Manual
T18-18

ARSTR COMMANDS

ARSTR: ta 24
Tape Lu = 24
ARSTR: Ih 1
Created using: ASAVE

Title: SYSTEM BACKUP
ARSTR: re 1:12 ve
Created using: ASAVE

Title: SYSTEM BACKUP
Restore of file 1 to disc LU 12 complete.
Verifying restores from tape.
ARSTR: re 2 un ve

Created using: ASAVE

Title:ENTIRE SYSTEM BACKUP
Restore of file 2 to disc LU 15 complete

Created ysing: ASAVE

Restore of file 2 to disc LU 16 complete.
Verifying restores from tape.

ARSTR: rw
ARSTR: ex

18-18 : R18.18

18.19 Pushbutton Backup and Restore

Pushbutton backup and restore can be done only on CS80 discs with
integrated Cartridge tape drives. This operation uses only the
disc drive, not the system. The disc will not be accessible to the
system while either operation is in progress.

To backup or restore:

Remove the front panel over the CTD unit

Insert the CTD and wait for it to load

Push either the appropriate save or restore switch and release
when the busy light begins flashing, push the switch again
(must be while the light is still flashing)

The A-series backup utilities will always put an EOF (end of file)
at the start of the tape, so that these cannot accidentally be used
for a pushbutton restore.

If you are using the primary disc configuration:

An entire 7908 can be saved on a 150 ft. tape. A 7911 or 7912 can
be saved on a 600 ft. tape. A 7914 requires two 600 ft. tapes.

PBV can only be run offline. The example shows how to run PBV
using the memory-based PBV system provided with your software. The
system is provided as the first file on a CTD tape, so to boot it
you would type the following at the VCP: ‘

VCP> $bdcOblsc

(Remember what busc is ?). COMND is the program included in the
system to schedule other programs. It is similar to FMGR and
requires commas as delimiters. -

The PBV memory based system comes with a number of disc and CTD LUs
all ready gen'ed in. If these do not match your system LUs, you
will need to build your own PBV memory based system.

The type of the source LU (disc or tape) is wused to determine
whether a save or restore is being verified. This is to determine
how much of the disc or tape to verify. '

References: Utilities Manual, CS80 Disc manuals
R T18-19

PUSHBUTTON BACKUP
" "7TAND RESTORE

RESTORE

S N °] -;é\f- o
PN <
RESTORE—SAVE™ —RESTORE—SAVE"

BACKUP

e (=

O ° ° O 3¢ °
ez i A e ekl e

RESTORE SAVE RESTORE SAVE |

'PUSHBUTTON VERIFY (OFFLINE)

 comnd: ru,pbv,<source lu>,<destination lu>

R18.19

18.20 System Backup Strategy

Some keys to successful backup:
Stick to your backup schedule
Backup when there are no other users on system
Label tapes with date, time, contents and type of backup
Store backups in a safe place
Keep system time accurate
Use transfer files

Always verify your backups !

References: Utilities Manual
T18-20

SYSTEM BACKUP STRATEGY

* AT RE—GENERATION m
RE—-BUILD MEMORY BASED ARSTR OR PBYV

o AFTER BOOTUP |
- BACKUP SYSTEM AND THE BOOTEX FILE
USING ASAVE OR PUSHBUTTON SAVE

* CHOOSE A BACKUP METHOD BASED ON
| YOUR NEEDS

* CHOOSE A BACKUP SCHEDULE BASED
- ON SENSITIVITY TO DATA LOSS

* TO RESTORE FROM BACKUP

RESTORE SYSTEM FROM PHYSICAL
BACKUP (IF NEEDED)

RESTORE MOST RECENT TOTAL BACKUP

RESTORE INTERMEDIATE OR
INCREMENTAL BACKUPS

18-20 | R18.20

18.21 “DISC FORMATTING OPERATIONS .

Verify - Non-destructive operation to determine if the data on the
disc is internally consistent and to identify bad blocks or tracks.

Spare - Mark bad blocks or tracks and map to spare blocks or
tracks, ‘

Format or Reformat - On a hard disc - allows a user to clear all
accumulated bad tracks. on floppy or CTD - initializes media for
use and spares bad blocks.

Initialize - Clean up spare track pool and prepare LU for use by
sparing any bad tracks.

References: Utilities Manual
‘ T18-21

DISC FORMATTING OPERATIONS

VERIFY
SPARE
FORMAT

REFORMAT

INITIALIZE

18-21 ' R18.21

18.22 Disc Format Utilities

an memory based system. FORMC and FORMF should be

FORMT comes as
Generally, FORMT

available on the physical backup of the system.
would only be used for 7906/7920/7925.

References: Utilities Manual
_ T18-22

DISC FORMAT UTILITIES

FORMC | ONLINE | CS80 DISC & CTD ‘Q%IEEY
\ ~ | FORMAT
| | 9121/ B
| | 9133 A/B
\ | 9134 A7B | grRieL
FORMF | ONLINE 98955 MA
| 2480
MODEL 6+ BUILT-
| IN FLOPPY
9121~ VERIFY
9133A <]' FORMAT
| FORMT | OFFLINE | 91344
| ~ VERIFY
7906
7920 ¢ REFORMAT
7925 _ INTTIALIZE

18-22 | R18.22

18,23 FORMC -~ CS80 Discs

FORMC is for online use only. If offline formatting is required,
use the CS80 disc exerciser. : :

Bad blocks are not very common on a CS80 disc since the media is
sealed. Typically there is no reason for the user to format the
disc. To spare blocks, you would specify the bad track. FORMC
will spare any bad blocks that it finds.

CTDs must be formatted before use unless preformatted CTDs are
purchased. Bad blocks on the CTD are spared as part of the format
operation., '

References: Utilities Manual
T18-23

FORMC
CS80 DISCS

CI> formc <list lu> ve <media lu> <start> <number>
CI> forme <list lu> fo <media lu> <interleave>
CI> forme <list lu> sp <media lu> <track>

DISC

VERIFY TO DETERMINE BAD TRACKS

SPARE BAD BLOCKS — SPARES
ALLOCATED BY DISC

CTD's
FORMAT BEFORE USE
FORMATTING SPARES BAD BLOCKS

18-23 R18.23

18.24 FORMF - Floppy Disc, 2480 and Winchester Pisc

Since the floppy discs have exposed surfaces, bad blocks may occur.
The formatting process will spare bad blocks = as they are found.
The amount of space available for spares is the reserved track area
on the floppy (remember disc configuration ?). 1If the amount of
spares needed exceeds this area, then the disc must be replaced.

The other discs are sealed, so bad blocks are uncommon.

References: Utilities Manual
T18-24

FORMF
FLOPPY DISCS, 2480 & WINCHESTER DISC

Cl>formf ve <disc lu>
Cl>formf fo <disc lu> <interleave>

FLOPPIES
FORMAT BEFORE USE

VERIFY TO DETERMINE IF THERE
'ARE BAD TRACKS

FORMATTING SPARES BAD BLOCKS

2480/9133 & 9134 WINCHESTER

VERIFY TO DETERMINE IF THERE
ARE BAD TRACKS

FORMATTING "SPARES" BAD BLOCKS

18—-24 R18.24

18.25 FORMT - 7906, 7920, 7925 Discs

Since these discs have removable platters, bad blocks are more
likely to occur than for sealed discs. Like the. CS80's, there is
typically no reason for the user to reformat the disc. If done,
the initialize must be done after the reformat.

There is a bootable FORMT system on the primary system, in a file
called FORMT::16. To boot:

VCP> sbdc27formt

References: Utilities Manual
T18-25

- FORMT
7906, 7920, 7925 DISCS

ru,formt, <list lu> ve <d'sc lu>
- ru,formt, <list lu> sp <disc lu> <track>
ru,formt, <list lu> re <disc lu>

~ru,formt, <list lu> in <disc lu>

VERIFY TO DETERMINE BAD TRACKS
SPARE BAD TRACKS

18-25 R18.25

18.26 OTHER USEFUL UTILITTIES

_ T18-26

OTHER USEFUL
UTILITIES

18-26 ‘

18.27 Volume Free Space -- FREES
Free space § -- gives an indication of how full the volume is.

targest free space % -- gives an indication of how fragmented the
free space is. The lower this percentage is, the more effective
will be a volume pack.

FREES cannot be used for FMGR cartridges.

References: System Generation and Installation Manual
T18-27

- VOLUME FREE SPACE
FREES
Cl> frees 22
Total blocks: 45072

Free blocks: 37054

Free space is 82% of total space

Largest free space: 36975

Largest free space is 99% of
total free space

18-27 R18.27

18.28 Volume Packing -- FPACK

For CI volumes only. For FMGR cartridges, run FMGR and use the PK
command..

1. FPACK scans the entire volume to determine the location of all
free space and files that might be copied to another location.

2. Files in the highest address spaces are moved into holes in the
lowest address spaces on a first fit basis. The file (and all
extents) must fit into a hole in a lower address space or else

it is not moved. ‘ '

3. The names of the last 10 files on the disc is printed on the
terminal (e.g., X, E, D, F, «...)e. These are the files that
must be removed or purged in order to increase the size of the
largest free space on the volume.

File "X" --‘not moved for one of the following reasons:

1. Directories are never moved by FPACK.

2. Open files are not moved.

3. Active run files (type 6) are not moved.

4. The system swap file is never moved by FPACK.

VC+ NOTE:

The user running FPACK must have read/write access to the file
and the directory containing the file in order for FPACK to
copy it.

References: Utilities Manual
: _ T18-28

VOLUME PACKING
FPACK

CI>fpack 22

LOW ADDRESS ——

A A
B B
Z G
AN
C | C
<—\ F
ﬁ D
D ©2KS E
- |o—
F|@O—
| X X
3 G @
HIGH ADDRESS——-
i | 18-28
——

18,29 File System Ve{ification - FVERI

FVERI scans the directories and "table structures of a hierarchical
file system disc and reports any inconsistencies. If any
inconsistencies are found, they are reported with an appropriate
message and a number indicating the severity of the problem. For
FVERI to give accurate results, no one should access the disc while
it is running. FVERI will not verify FMGR cartridges.

FVERI can be used after a system crash to verify the file system is
intact. It can also be run from time to time to check the
integrity of the file system.

Recovery: Minor errors (low numbers) can be ignored or corrected by
copying the affected files to another disc or tape, purging them
and restoring them. For severe errors, the entire disc volume
should be backed up, initialized and restored. '

Re ferences: Utilities Manual
T18-29

FILE SYSTEM
VERIFIC ATION
FVERI

CI> fveri 22
Verifying LU 22

ERROR MESSAGES

less severe (0) description
(1) description

% (8) description

more severe (9) description
18-29 | ' R18.20

18.30 File System Conversion - FSCON

Before doing the conversion, FSCON will check for the following
requirements:

1. Must be sufficient free space at the end of the old cartridge
to create the new directory and free space table. If this is a
problem, try packing the FMGR cartridge (using the FMGR PK
command) . : ‘

2. Total size of the cartridge cannot exceed 128K blocks.

3. Disc must be dismounted before conversion - no open files,
active type 6 or swap files.

Since the period and slash are illegal characters for filenames
under the hierarchical file system, filenames with these will be
changed. The cartridge reference designation becomes the new
directory name. '

References: Utilities Manual
- T18-30

FSCON

FILE SYSTEM CONVERSION

(&

Cl> dc <lu>
Cl> fscon <lu>

FI.LE::CR ———> FI~LE::CR
/PROG::CR —— | PROG::CR

TIMESTAMPS <— CURRENT TIME
PROTECTION <— RW/RW
BACKUP BIT <&— SET

- TYPE EXTENSION <— BLANK

18-30

R18.30

18.31 S OFTWARE UPDATES

T18-31

SOFTWARE
UPDATES

18—31

18.32 Primary System

The primary is a part of the software product., It allows you to
start using your new system right away and also provides a starting
point from which to create your customized systems.

i rerences: Primary System Installation Manual
T18-32

FILE SYSTEM
VERIFICATION

FVERI

CI> fveri 22
Verifying LU 22

ERROR MESSAGES

less severe (0) descriptio-n
(1) description

\% (8) description

more severe (9) description
18-29 R18.29

18.31 S OFTWARE UPDATES

T18-31

FSCON
FILE SYSTEM CONVERSION

(]

CI> dc <lu>
CI> fscon <lu>

FI.LE::CR ———— FI~[E::CR
/PROG::CR ——> | PROG::CR

TIMESTAMPS <— CURRENT TIME
PROTECTION <— RW/RW

- BACKUP BIT <— SET

TYPE EXTENSION <— BLANK

18-30 R18.30

18.32 Primary System

The primary is a part of the software product. It allows you to
start using your new system right away and also provides a starting
point from which to create your customized systems.

References: Primary System Installation Manual
T18-32

SOFTWARE
UPDATES

18-31

W
“won .
y
i

PRIMARY SYSTEM

A PREGENERATED SYSTEM WITH
* System Utilities
* Most supported 1/0 devices

PUSHBUTTON BACKUP FORMAT
BOOTABLE PBV SYSTEM

D MOUNTABLE FMGR CARTRIDGES
BOOTABLE FMGR CARTRIDGE

51/4 31/2

MOUNTABLE FMGR CARTRIDGES
BOOTABLE FCO SYSTEM

ASAVE FORMAT
_‘ - BOOTABLE ARSTR SYSTEM

BOOTABLE SYSTEM ON HARD DISC

18-32 R18.32

18.33 Update Options

VCP bootable means that these files.are loaded directly from tape
into memory, then executed by following the instructions in the

appropriate diagnostic manual.

Note that updates software does not typically include a primary
system.

References: Software Update Notice
T18-33

MEDIA
OPTION FORMAT

FC
one product
per tape

FC

multiple products
per tape

(diagnostics)

UPDATE OPTIONS

CONTAINS ALL

| FILES OF
UPDATED

PRODUCTS

-
VCP bootable 7 IF 1 OR MORE

FILES ON A
MEDIA PART

¢ CHANGE, THEN
ALL FILES ON
THAT MEDIA

~Mountable
@D FMGR cartridges |

8ll /
5 1/4"
3 1/2"

18-33

PART ARE
INCLUDED

R18.33

18,34 Update Procedure

Regenerate system only if any of the files used in the system
generation have changed. To update programs, you must reload them
using LINK, not Jjust transport. When updating, check revision
codes against those in the Software Update Notice (SUN). The SUN
is distributed periodically to customers who have support services
(see next chapter).

References: Software Update Notice
T18-34

UPDATE PROCEDURE

«+ READ SUN TO BE INFORMED ABOUT
FIXES INCLUDED WITH YOUR UPDATE
OR CHANGES REQU\RED IN YOUR

SYSTEM

+ BACKUP CURRENT SYSTEM — VERIFY
BACKUP

« COPY UPDATED FILES TO DISC, VERIFY
TRANSFER, PURGE OLD FILES

+ REGENERATE SYSTEM AND CHECK
REVISION CODES

+ RELOAD UPDATED PROGRAMS AND
CHECK REVISION CODES

+ BOOT NEW SYSTEM AND VERIFY
SYSTEM OPERATION

«+ BACKUP UPDATED SYSTEM

18-34

R18.

18,35 Diagnostics

These diagnostics pPackages are part of the standard RTE-A Product,

T18-35

DIAGNOSTICS

c4612A DIAGNOSTIC PACKAGE

CHECKS OUT:
CPU

MEMORY
MOST STANDARD INTERFACES

MEASUREMENT & CONTROL
INTERFACES

24398A DIAGNOSTICS PACKAGE
CHECKS OUT:
CS80 DISCS
/7906H, 7910H
MAG TAPE UNIT

- 18--35 R18.35

SUPPORT SERVICES

CHAPTER 19

Table df Contents

Chapter 19
S UPPORT SERVICES

Field Services .« o« o o o o

[) L] [) L] L] [) L] L] L] L] L] L] L] L] [) L] [) 19_1
Hardware Support Services . « o« o o o o o o ¢ o o o o o o o o 19-2
Software Support Services . o« « o ¢ ¢ o ¢ ¢ o ¢ o o o o o o o 19-3
Bug Process L] [) L] * L L * L] L * L] * L] L L] * L] L] L] [) * L] * * [) 19-4

xix

MODULES OBJECTIVES

l. To become aware of the many support services offered.

2. Know the procedure of bug reporting and where

to turn for
updated software materials and information,

ii

SELF-EVALUATION QUESTIONS

19-1, What is the difference between the basic and standard
maintenance services?

19-2. Match the following features with the software support
service which provide them:

Software Status Bulletin A, CSS
On-site SE assistance B. SSS
Manual updates C. SNS
Software/Firmware updates D. MUS
Software Update Notice

PICS

iii

19.1 Field Services

Site planning service - A site planning specialist advises the
customer on all technical matters relating to site planning,
preparation and installation. .

Site environmental survey - Prior to system installation, it serves
to verify that the changes recommended during the site planning
visit were completed.

Generally, installation is included with system products.

Ti9-1

FIELD SERVICES

TRAINING

SITE PLANNING & ENVIRONMENT SURVEY

INSTALLATION SERVICE

HARDWARE
SUPPORT
SERVICES

SOFTWARE
SUPPORT
SERVICES

R19.1

19.2 Hardware Support Services

There are 2 types of system maintenance services: standard and
basic. The standard service provides same-day response and rapid
repair of a failed system. The basic service is a lower cost
service with next-day response time being its major feature.

Both services provide the following features:

* Account-assigned Customer engineer

* Regularly scheduled preventive maintenance

* Engineering changes (when required to fix problems)

* Work to completion

* Add-on installation for additional system equipment

* Site environmental survey

* BMMC - Basic monthly maintenance charge

* SMMC - Standard monthly maintenance charge

Assembly repair/exchange service - For customers not receiving

maintenance service, this service replaces the customer's defective
assembly with a refurbished one.

T19-2

HARDWARE
SUPPORT SERVICES

|BASIC SYSTEM STANDARD
MAINTENANCE SYSTEM
, MAINTENANCE
BMMC | SMMC
ASSEMBLY
REPAIR /EXCHANGE
SERVICE

19-2

R18.2

19.3 Software Support Services

CSsS

Customer Support Service

SE - Systems Engineer

PICS - Phone-in Consulting Service
s8s - Software Subscription Service
SNS - Software Notification Service
MUS - Manual Update Service

The Communicator magazine describes application tips and
suggestions for the use of HP software. The software Status
Bulletin (SSB) contains information on software bugs and their
interim programming solutions.

The Software Update Notice (SUN) includes the following:

* Describes the changes which have occurred in the present update
cycle.

* Describes how to incorporate the changes into your system.
Changes include:
- enhancements to software
- bug fixes to software
- software status changes (active - mature - obsolete)
- bug fixes to manuals
- firmware revisions
Current revision code of all software

Consulting services are also available.

T19-3

SOFTWARE
SUPPORT SERVICES

CSS

ACCOUNT ASSIGNED SE
ON—SITE SE ASSISTANCE |
PHONE—IN CONSULTING SERVICE M

SN

SOFTWARE /FIRMWARE UPDATES
SOFTWARE PROBLEM REPORTING

COMMUNICATOR SPJS

SOFTWARE STATUS BULLETIN
SOFTWARE UPDATE NOTICE:

MUS

MANUAL UPDATES

19-3 R19.3

19.4 Bug Process

For software not operating according to specifications of the data
sheet or manuals:
* Isolate the problem to a repeatable set of circumstances
* Report the bug to your field office:
- (CSS/SSS customers: Fill out a service request form (SR).
- CSS customers only: call your PICS number.

- - an—CSS/SSS customers: purchase SE consulting to help resolve
discrepancies,

T19-4

BUG PROCESS

USER PROBLEM/ENHANCEMENT

S Reporting and Notification
; — l|dg|nt'ify probt|>|ern <_
—>|. — Isolate problem
— Check SSBs

Lo

communicate Consulting| |PICS| |acknowledgements
fix to customer and classification

— N\

_

SEO

1.acknowledgement

2.final classification
with priority number

SSBS(every 15 days)/
Cumulative quarterly/SUN % / /
| Software, Firmware Verification
Manual updates SRs forms
N\

19-4 R19.4

Appendix A

Lab Problems

| I |
: Lab Problems [APPENDIX A N

I |
+ AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

The fol}owingvpages are copies of the lab problem files exactly as
they exist on the lab tape. We have included them here s¢ that you
may easily duplicate them and pass them out to the class as you
complete each chapter of the course. .

Chapter 1 - Labs

.. Yyou will be introduced to the hardware of the A-Series

processors including: 1/0 cards, processor poards, Mmemory
cards, power-on and reset switches, and boot-up procedures.

Log-on the »system using the account specified py the
instructor. When you log-on, a session is created for you with

a session number equal to your terminal LU number. TyPe the WH
command to determine your terminal LU:

cIi> wh

The WH command is actually an implied run for the WH program.

you could have typed the RU command to run the program as
follows. Try it:

CI> ru wh

Now type in the RU,WH command using commas as delimiters and
adding a parameter to the WH program:

c1> ru,wh,pa

The PA parameter tells WH to 1ist the memory partitions in the
system, their size, occupant and status. The last partition
1isted will be at the vgop" end of memory. The "Page range"
information for this partition will tell you how much memory is
in the system. add one to the last page number and multiply by
1024 to get the number of words of memory. Multiply this by

two to obtain the number of bytes. How much memory ijg in your
system?

The CI program contains an on-line help feature which provides
a short summary of any CI command and more. Enter the ?
command to optain a list of all the commands for which help is
available:

Ci> ?

Now try the dl command to look at the contents of the directory

 /help/

ci> 4dl /help/

Are the above two commands. related? How do you think the ?
above command works?

Chapter 1 - Labs

Use the LI command to list the help file for the DL command to
your terminal:

CI> 1i /help/dl

Note that the file is printed to your terminal one page at a
time. 1In order to see one more page of fthe listing hit any key

except the "a™ key (which causes the listing to be aborted) or
the carriage return key (which causes the remainder of the file
to be listed to the terminal) .,

Now enter the following command:

Ci> 2 dl

How does this command relate to the L7 command? The System
Manager (or any super-user) is allowed to add files to the

/help/ directory. Could the System Manacer add a help file for
local restaurants?

Display your command stack using the / command:

C1> /

Use the terminal cursor keys to edit your command stack at the
"1i /help/dl" command so that the help file for the LI command
is listed to your terminal. Use the "//" command to repeat
your last list command. Now look at the command stack again
using "/".. Note that the repeated command is listed only once.
Also note that the "/" commands are not listed at all. what
happens when you enter five slashes:

CI1> /////

Using your terminal LU determined in exercise 2, use the copy
command to copy the LI help file to your terminal:

CI> co /help/1i <LU>
Now try using LU 1 with the copy command:

CI> co /help/1li 1
LU 1 always refers to your terminal when you are using the
system interactively or programmatically. This allows you to

run the same commands from any terminal without having to
determine it's LU.

Chapter 1 - Labs

RP the program DL and call it MINE:

CI> rp dl mine

Now use the WH command to see your RPed program. The WH
command shows all of the ID segments attached to your session.
Notice that an ID segment for WH is also in the listing. Where
did this come from? What happens when you run the program
MINE? Every one else is doing this now also. Whose copy are
you running? How is it that everyone can have a program RPed
by the name MINE?

Use of the OF command to get rid of the ID segment for MINE:

CI> of mine id Use WH to verify that it is gone.

OPTIONAL

When you run WH, their will always be an ID segment in the list
for the program WH. The ID segment 1is removed after WH
completes because it was RPed implicitely by running the

‘program. How can you verify that there is really no permanent

ID segment in your session for WH?

Use the OF command to remove the ID segment for your copy of
CI:

Ci> of ci id

Bye.

Chapter 2 - Labs

REQUIRED

Your RTE-A system contains an on-line course called HELLO that
will teach you about many of the commands and utilities
available to you. The course is self-paced and you may decide

to work through the various topics as you learn about them in
class.

Before running the course, you will need to copy some files
into your working directory. Use the WD command to make sure
you are currently using your own logon working directory, then
type in the following command:

CI> co /hello/labfiles/ @

This need only be done the before the first time you run the
HELLO program. The course may now be run by entering:

CI> hello

HELLO is menu driven and you need only select the appropriate
topic to enter the course at any point in it's sequence. You
should now run the course as shown above and work through the
first topic on the main menu, "Getting Started with HELLO".
After completing this topic, go on to problem 2.

In order to familiarize yourself with EDIT/1000, run HELLO and
select the topic "Developing Programs", and from that menu
select "Edit". Work through the first two topics, "“Getting
Started with EDIT" and "Six Easy Commands to Edit Any File".

You will have a chance to work through more topics during lab
4.

Using the editor, type in the samplé Pascal or FORTRAN program
supplied in this chapter. Compile the program, 1link the
relocatable file, and run the program,

Chapter 2 -~ Labs

The RP (Restore program) command creates an ID segment in
memory for a program. Use the on-line help feature to learn
more about this command: ’

Ci> ? «rp

RP your program. Run WH. What state is the program in? Off
the program with the following command:

CI> of <program>

Run WH. Why is the program still listed? Use the on-line help
to learn about the OF command. Now off the program soO that
it's ID segment goes away.

RP your prodgram twice using two different program names. Use
WH to observe the two copies of the program. How would you
select one of these copies to run? The two program names you
selected are called "clone" names. Can you run the original
(program file) with the two clones in the system? Can you off
the programs from another terminal?

Use help to see what options are available for WH. You should
look at the first 2 options, Don't expect to understand all
the information here - it will be presented later in the
course. Use WH to answer the following questions:

option:
How many programs are currently active? AC
How many users are on the system ? SE
How much memory is in the system ? PA
what is the value of the time-slice fence? ST
How many dynamic memory partitions are available? ST

Run your program. While the program is waiting for input, run
WH,AL from another terminal. What programs are 1in your
session? What state are they in? What are their priorities?
Are they real-time or background programs?

Chapter 2 - Labs

OPTIONAL

You can set the priority at which your program runs in a
statement in the source program. You may want to consult the
language reference manual to learn how to do this. Their are
two other ways to change the program's priority. Use the help
command for PR (priority) to learn one way. The other way is
with link. Type:

CI> link

to enter LINK interactively. Type "?" to get a list of the
link commands. Note that there is no "? <command>" facility as
with CI. Now type:

link: re area.rel

to re-link your relocatable file for program AREA. Change it's
priority and then end your LINK session:

link: pr 60
link: en

Run the program again and verify that you've changed your
program's priority.

Run HELLO and work through the topics under "“Introduction to
RTE-A". This will give you a bit of an introduction to the
next two chapters in the course.

Chapter 3 - Labs

REQUIRED

When you logged on, your working directory was automatically
set for you. What is it's name?

Use the DL command to list all the files and subdirectories
under the directory /LAB/TREE. Make a drawing of 1it's tree

structure. You may find it easier if you change your working
directory to /LAB/TREE.

Change your working directory back to your logon directory.
Create a subdirectory called LAB3. Every one else is creating
this subdirectory also -- how are all the LAB3s distinct from
each other? Copy the lowest file in the TREE structure from
question 2 into your new sub- directory.

Create a sub-subdirectory under LAB3 and call it DOWN_UNDER.
Change your working directory to LAB3. Move the file in LAB3
to DOWN_UNDER. Verify that the file no longer exists in LAB3.
Now change your working directory to DOWN_UNDER. Move the file
back to LAB3. Now move the file to directory /OVER_THERE.

~ what problems have you encountered? Can you "move" this file

using one command so that it no longer resides in LAB3? Hint:
check the CO command options.

Who owns your logon working directory? Who owns the two sub-
directories you just created? How did this ownership get set?
What is the protection on these directories? Who owns
directory /LAB/VAULT and what is it's protection? How can this
user access the files in this directory? Change the ownership
on DOWN UNDER to your neighbor. What must you do to get that
ownership back?

Use the DL command to explore the files in your directory. Use
the option "!" after the DL command. What additional
information does this give you? You may want to read the help

file for DL or the User's Manual to find out what all the
information refers to.

Chapter 3 - Labs

7. On which LU 1is vyour working directory? Create a global
directory on a different LU. Make it your working directory.
Copy all files under directory /LAB/QUALIFIER to your working
directory. Purge all files in your working directory whose
last update was before October 1, 1932. ™"Backup" all files
whose last update was after March 1, 1983. Simulate a backup
by copying to LU 1:

CI> co <filemask> 1

You made a mistake by purging one of your FORTRAN source files.
I can't remember the exact name but it had an "XX" in it.
Restore it using one command (no peeking!) At this point your
directory should contain only files with "YES" (or some
variation) in their names, and all +files that were purged
contain "NO" (or some variation) in their names. Verify this.

Use the DL command with the option that 1lists only purged
files.

8. Make sure your working directory is still the one created in
problem 7. Create a subdirectory. Using a file mask, copy all
files in your directory to the subdirectory (Hint: remember the
CO command will be recursive unless the appropriate mask

qualifier is specified). Did your purged files also get
copied? Create a subdirectory another 1level down. Copy all
files again to this subdirectory. Purce your global directory

and all of it's files. What is the fewest number of keystrokes
with which this can be accomplished?

9. Reset your working directory. Obtain a directory list for
/LAB/LOCALUSER from the remote system (use ds transparency).
Copy the smallest file to your working cirectory.

10. Copy all files in directory /LAB/LOCALUSER on your system to

your working directory. If you heve trouble, 1list the
directory of /LAB/LOCALUSER.

11. Start spooling for the printer:
CI> sp on 6 *** assuming the printer LU is 6 ***

Copy /HELP/CL to the printer. Why isn't the file being
printed? What must you do to print it? Every on else is doing
this now also -- whose copy will get printed first? Does
priority affect this order? What if Yyou were a superuser?

|

Chapter 3 - Labs

12. Start spoling for the printer using a file in your working
directory:
CI> sp on 6 myfile
Copy /HELP/EX to the printer. Stop spooling for the printer.
Where is the data now? How can you get it to print?
13. Turn off all LU redirection from previous problems. Redirect
" printer output to your terminal. Now copy /HELP/CL to the
printer. Will your classmate's printer output also show up on
your terminal?
OPTIONAL
14. Turn off all LU redirection from previous problems. Determine
what LU redirection is currently set up on the system. Try to
. create a redirection loop:
6 => 8 8 => 24 24 => 6
What happens when you send data to LU 62 Can you redirect data
from your terminal to someone else's? Can you redirect data
from someone else's terminal to yours?
15. Since class started today, all system errors have been logged

to /LOG/ERRORS. Create an error by entering:

CI> ci 24
*** wait for the device to time out ***
CM> of ci..a

Now list the error 1log file. Is your error message there?
What other types of entries do you £find?

Chapter 4 - Labs

REQUIRED

Run the HELLO program again and this time work through the
topic "Line Edits". This can be found by jumping down through
the menu topics "Program Development" ard then "Edit".

Compile your simple program with the corpiler option that gives
you a mixed 1listing; create a 1list file by specifying (or
defaulting "~-") the second parameter to the compiler. Spool
this file to the printer using the spocl LI command. Now use
the compiler options that give you relocatable addresses,
symbol table, and a cross- reference takle; once again spooling
the file to the printer. Run LINK on your .REL file and create
a load map. Compare the relocatable addresses in the load map

with those from your previous source listing., The list file is
read as follows:

(the following are system modules included with your program:)

PAS.READSEQUENT PAS.WRITELINE PAS.PUT PAS.SETUPFILE

PAS.CLOSEFILE PAS.DOUBLE2ASCII PAS.REAL2ASCII PAS.RESETFILE

.DMP .DDI «4ZRO .FLUN
(the load map columns describe...)
(module name abs address size revision number)
AREA 2000 655. 830401.1219
PAS.READSEQUENT 3217 268. 92833-16005 REV.2326 830404
.FLUN 32436 14. 24998-1X197 REV.2001 750701
Main 2000 - 32453 12588. words
(abs address range total size in words)

Notice how big your "little" program is, Compare this with the
number of words generated by the compiler. The difference is
the space that all of the system routines use. You will learn
how to save some of this overhead 1in the next chapter of the

course. Save these listings to compare with ones from the next
lab.

Chapter 4 - Labs

Now compile the program with the Debug compiler option (sorry,
not yet available for Pascal). Link the program (don't forget
to specify "DE" while running LINK interactively. Run the

program from Debug and try out some of the commands you've
learned about.

Copy your source program to another file and call it
CIRCLE.<ext> Change the program into a subroutine that could be
called from a main program (that you will write). A Pascal
program will look like:

$subprogram
program area (input, output);
procedure circle;
. {same}
end; 4
. {comment brackets must follow the period (bug) }

A FORTRAN program will look like:

subroutine circle

: {same}

end

Compile your subroutine using the appropriate compiler. Now
rewrite your AREA program SO that it calls the circle
subroutine after sending a message to the user such as "begin
program", Do not attempt to send any parameters to the
subroutine. Parameter passing will be addressed at a later
time. Compile your program. When you run LINK you will have
to relocate your subroutine with the main program using the RE
command. When you EN, there should be no unresolved external
references. Run the program.

Write a subroutine that computes the area of a square similar
to the CIRCLE routine above. Also write a subroutine that
computes the area of a triangle (1/2 base * height). Have your
AREA program prompt the user to select the figure for which to
compute the area then jump to the appropriate subroutine. Once
again, do not pass any parameters to the subroutine. Make the
subroutines prompt for the radius, length, etc. (It will be
necessary to have parameter-less subroutines in one of the
following labs.) Compile all these. When you link the main
program you will have to relocate all of the above subroutine
_RFL files to resolve the external references. Confirm that it
runs.

Chapter 4 -~ Labs

OPTIONAL

Make a library out of the above subroutines as shown in class.
Link your program again but this time search the library with
the SE command. Confirm that the program runs properly.

Make a command file to compile all subroutines and the program,
build the 1library and 1link everything together. Use the TR
command to transfer control to the command file. Now run CI

with the command file as a parameter to accomplish the same
result.

Change the command file to use §$ parameters for all the

"variable" names so you could use it for some other set of
programs. Try it.

Chapter 5 - Labs

REQUIRED

Rewrite your main program AREA using EXEC calls 1 and 2.

Now use REIO to buffer the input.

Use the Programmer's Reference Manual to 1learn how to use
LOGLU. In your main program, inquire the LU of the terminal

and use XLUEX (or XREIO) to communicate with the actual LU of
the terminal (instead of LU 1).

Modify your program again to inquire the program's cloned name

using PNAME and to get the current time using FTIME. Make a
call to LOGIT so that each time the program is run, a message
is sent to the spooling log file in the form:

<{prog name> run at <time> from LU <lu number>
You will also have to use subroutine KCVT which converts the

integer LU into ascii representation. You will find a
description of KCVT in the Programmer's Reference Manual.

OPTIONAL

Write a program that prompts for the LU of an output device.
Then have the program read input from the terminal and write to
the output device using XLUEX. Run the program and specify the
printer as the output device. Now redirect the printer LU to
your terminal and try the program again. Observe redirection.
Now modify your program to set the bit in the CNTWD to override
LU redirection and try the above procedure again.

- Write a program that will continuously display the current time

and terminal LU in the upper right corner of the screen
display. The program should write the appropriate characters to
your terminal, then go into a timing loop (eg. 1000 iterations
of a do nothing 1loop) so it doesn't completely hog the
terminal. The time/LU display should not interfere with the
normal use of the terminal. 1In fact, this will not always be
the case since cursor positioning/sensing may sometimes
interleave with keystrokes. You will need to know the
following about programmatic cursor positioning:

A-14

Chapter 5 - Labs

* Screen relative addressing - to move the cursor to any
position on the visible screen (row 0-23, column 0-79), have
your program write the following:

<esc>&a<column number>c<row number>y

where <esc> represents the ESC (escape) key. To insert the
<esc> into your program, turn on "Display Functions™ (one of
your soft-keys) and hit the ESC key. Turn off "Display
Functions" before hitting any other keys.

You will also want to return the cursor to it's original
position after writeing the time and LU number. To do this you
will need to sense the cursor's current position before moving
it to the upper right corner of the screen.

* Cursor Sensing - to sense the screen relative position of the
cursor, have your program write the fcllowing:

<esc>'

This is the ESC key followed by a single quote. The terminal

will send a position back to your prodgram (you will need a
read statement) in the following form:

<esc>&a020c005Y
This requires an eleven character buffer. Notice that you

may rewrite this buffer exactly as received to reposition the
cursor,

Chapter 6 - Labs

REQUIRED

Make a copy of your "AREA" program in your working directory
and name it "LINK.RUN". Now try executing LINK. Rename your
program to LINK (no type extension). Execute LINK again, Is
there any other directory in which you could put your program
and have it override LINK in the /PROGRAMS directory?

Run a copy of CI by typing:

CI> ci

Now execute the WH command and observe the clone name (which CI
also uses for your prompt). Run another copy of CI and observe
the next clone name. Check with your neighbor to observe the
name under which his copy of CI was cloned. Can you explain
this? Use the OF command to terminate each cloned copy of CI.
Now use the XQ command to run a copy of CI, Hit the return key
a few times. Can you explain this? Now use the SS command to
suspend CI, then use the EX command to exit the cloned copy.
Use WH to see what's happening. You may use the GO command to
resume CI. Use the AT command to schedule CI to run in a
minute or so. Before it runs, use WH to see it's status, then
suspend the original copy of CI and wait for the cloned copy to

run. Now schedule WH to run every 15 seconds and observe the
behavior.

Change your circle, square and triangle subroutines into
programs. Now modify your AREA program to schedule (with wait)
the circle, square and triangle programs rather than making
subroutine calls. The program names you use with the EXEC
calls should be upper case. This is where it is important that
your subroutines do not expect parameters. You will learn how
to pass parameters to your child programs in the next chapter.
Remember to RP your child programs before trying to run the
main.

Use the Programmer's Reference Manual to learn about the system
subroutine IFBRK. Use this in your programs to detect a BR
command from the terminal and have your program print a message
such as "break detected, terminating now", then have your
program call EXEC 6.

Chapter 6 -~ Labs

OPTIONAL

Use EXEC 11 to record the start time and end time for your
program and then print the elapsed time upon termination.

Schedule your time/LU display program
the AT command so that it runs every
pProgram so that it reschedules itself
each of these methods work equally as

(from the last lab) using
second, Now modify your
for one second later. Do
well?

Chapter 7 - Labs

REQUIRED

Write two programs which communicate with each other via a word
in System Common Area.

Program 1 - Enter a loop. Request an integer value from the

operator and store it in the System Common Area. When 555 is
entered, the program should terminate.

Program 2 - Enter a loop. Print the value it finds in System
Common Area on a terminal. On 555 the program terminates.

- Use two different terminals, be careful of others using
System Common Area to do this exercise (i.e., multi-user
environment programs may use blank SCA).

Write a program that prints a message on a device. The device
should be specified in the program runstring. Use the RMPAR
method (or language equivalents) to do this lab.

Modify (2) above to also accept a message in the runstring, and

print it out to the device specified at run-time. Notice how
CI inserts commas automatically and packs blanks together.

Modify your "area" program to allow parent-child communication
between the parent program-area and the three children
programs-circle, square, triangle (i.e., schedule with wait).
(The parent should prompt which child to schedule and what
message the child is to print out.) This prompt can be done
with standard language writes. The parent should pick up the
parameter string and LU where it will be printed, and pass the
the LU and the string to whichever <child is scheduled. The
child should write out the message to the LU passed from the
parent and then send the computed area back to the parent along
with a message telling the parent which area has been computed.

The parent will then print out the message followed by the
area.

Notice, in Pascal, in this 1lab, the child cannot have the
standard INPUT and OUTPUT in the program heading and must have
Srun_string 0$ option (i.e., instead of program test (OUTPUT);
use rewrite(output, '1');). The schedule request can have
"RU,CHILD,1,1" in the passed buffer and the child can then use
standard INPUT and OUTPUT in the program header, but this makes
it more difficult to also retrieve the message required for
this lab. The child program name needs to be in capital letters
and any character strings passed via EXEC, GETST etc. needs to
be packed array of characters. Remember, Pacsal integers are

two-word integers, while FORTRAN integers are one-word
integers.

Chapter 8 - Labs

REQUIRED

Write two programs (a Parent and a Child). The Parent should:

- Go into a loop, prompting the user for a string of characters
and placing the string in a "mailbox".

- Terminate the loop when the string "XX" is entered.

- then, schedule the Child.

The Child should then retrieve and print the strings,
terminating after all the strings have been retrieved and
pPrinted. USE CLRQ.

Modify the programs you wrote for (1) so that the Child is
scheduled after the first string of characters is entered,
rather than waiting until an "xx" (the last string) is entered.

Modify one of your parent-child programs from "area" program
(i.e., Parent = area, Child = circle, triangle, or square) .
The parent should:

- Use CLRQ to assign class ownership.

- Prompt the user to enter a string of characters.

- Place the string in the "mailbox".

- Schedule the child to retrieve and print the string to the
specified LU.

Write the parent program to schedule the child "without wait"
and assign the child class ownership. Since it is scheduled
without wait, the child will have to print out the area itself
and will not be able to send back a message to the parent.

OPTIONAL

In (2) if the Child "hangs up" for some reason (the printer is
down perhaps), the Parent could end up having many buffers in
SAM, all waiting to be retrieved by the Child. Arrange your
programs so that there will be a maximum of four buffers in SAM
at any one time. (Perhaps use a second class number and let
the Child tell the Parent when a buffer is consumed. This way

the Parent can keep a running count of the number of buffers in
SAM.)

Write a program which prompts you for a string of characters.
Let the program repeatedly print a messagye on the line printer
until you respond with your input. Use Class Get option bits!

Chapter 9 - Labs

REQUIRED

Write a program that will create a type 2 file with:

length - 5 blocks
record length - 1 word.

The program should store the value 1 into the first record, the

value 2 into the second record, and so on. Compile, load and
run the program. After the program terminates, use the LI
command to verify the operation of your program. Notice, in

Pascal, use STRDSC for file descriptor, option string, etc,
which are declared as packed array of char.

Write a program designed to modify the file created 1in 9-1.
The program will:

- open the file (update mode)

- store the value 7777 into the first record
-~ terminate

Use LI to check programs operation.

Modify the ‘area' program (i.e., question 4 of Lab 7 or
question 3 of Lab 8) to RP the child programs. The parent
should use FMPRPPROGRAM to programmatically RP the children -
square, triangle, and circle. Notice that FMP upshifts
characters, and so the children should be RPed in uppercase.

Write a program to copy a file to apother file using using two

different methods (i.e., use FMPCOPY, and seguence of FMP reads
and writes).

OPTIONAL

Write a program to determine the parent directory of your
working directory and set your directory to this directory.
(Use FMPWORKINGDIR, FMPHIERARCHNAME, and SETWORKINGDIR....).

Extend the program from question 5 to accept a parameter which
indicates the number of levels up in the tree structure and set
that directory to your working directory. A '-1' indicates that
your global directory should be set as your working directory.

Chapter 10 - Labs

REQUIRED

Write a simple CDS program which pauses, When the program
suspends, use WH,PA to see the partition it uses. Identify
both the code and data partition.

Make the above program shared and invoke the program multiple
times. Again, use WH,PA to examine the partitions used. Make
sure only one copy of the code partition is present.

OPTIONAL

Write a program similar to your ‘'area' program (Chapter 6
version). Make the three children program segments instead of
Sseparate programs. Use NON-CDS segmentation (i.e., SEGLD,
SEGRT, or Pas.SegmentLoad). The child should only write out
the area, not send any information back to the parent nor
receive any from the parent.

How would default CDS segmentation create code segments for the
following modules?

a. RE A.REL 15 b. 15
RE B.REL 12 17
RE C.REL 5 15
RE D.REL 27 7
RE E.REL 5 10

RE F.REL 12

How could you reorder these modules manually to create fewer,
but larger segments? :

Chapter 11 - Labs

REQUIRED

Note: All soutce and relocatable code mentioned in the following

l.

labs are contained in /lab/problem/XXXXXX.

The file VM1l.FTN contains the source code of a program that
reads in 16384 real values from a type 1 file called RNDFIL and

prints out the average. Make a copy of the program and compile
it. Does it compile?

Correct your copy of the program and run it.
Modify the program so that the values are stored in VMA.

The file VM112.FTN contains the source code of a program which
will compute the standard deviation of the EMA array of your
program in problem 1.

Make a copy of the program; compile and load with large enough
Shareable EMA partition. Modify your program from problem 1,
so that both programs access the data from Shareable EMA.

Make a copy, compile, and load the VMA program in VM113.REL,

specifying a working set size of 6 pages. Relocate ETIME.REL
after VM113.REL. Run the program.

The program processes a very large array in sequential order
and reports system time before and after the processing.

Increase the size of the Working Set. Run the program and
explain why the times are different.

Write Parent - Child programs using Shareable EMA. The child
should calculate all the prime numbers between 1 and 1000 (use
MOD) and store the values in Shareable EMA. The parent should
print out the results it retrieves from shareable EMA. The
parent should schedule the child WITH wait.

OPTIONAL

5.

Write a Pascal program using VMAIO. Notice the variable types
needed to make the call.

Chapter 12 - Labs

REQUIRED

l. Write a program which has exclusive access to the line printer
by using an LU lock. Have the program pause before unlocking

the printeér. While the program is suspended, try to 1list a
file to the printer.

2. Write two programs which will compete for use of the line
printer.

- Program 1 should write the message "I'M PROGRAM 1" 25 times
on the printer.

- Program 2 should write the message "I'M PROGRAM 2" 25 times
on the printer.

- Program 1 should schedule program 2 without wait before
starting to print its message. This way, the two programs
will be competing for the same resource.

Modify the pfograms to use a Resource Number so that the output
will alternate between 5 lines from procram 1 and 5 lines from
program 2.

Some suggestions:

~ Use an unbuffered line printer.

- After a program unlocks the RN, have the program output a
message to the printer. (Perhaps print "“PROGRAM x's TURN

OVER".)
- Which program should deallocate the RN?

3. Write 2 programs, a parent and a child. Write the parent so
that it schedules the child, passing it zn arbitrary parameter.
The child should then write a buffer "child active" to LU 1
using EXEC write. Verify that this part is running correctly.

Now, add the following functions:

In the parent: - Lock LU 1 using LURQ.
- Pass the KEYNUM parameter to the child.

In the child: - Use the KEYNUM parameter passed by the parent
to unlock the LU so it can print it's message.
- Terminate the child.
Run the parent and see if indeed the child can write through
the LU lock owned by the parent.

A-23

|

Chapter 12 - Labs

4. Mbdify the Parent - Child program from Chapter 11 (Shareable
EMA) to schedule the <c¢hild WITHOUT wait. The parent should
calculate the prime numbers and the child should print them
out. Use resource numbers to coordinate access to Shareable
EMA partition.

OPTIONAL

5. Write a program which prompts the operator for an LU number and

then writes whether the LU is up or down. Put the line printer
down to verify your program works.

Chapter 14 - Labs

REQUIRED

Configure a 7912 disc with a CTD for 3 FMGR LUsS of about equal
size and 3 CI volumes of about equal size. The boot LU should
be an FMGR LU. The existing configuration is that of the
primary and there is only one disc on the system. What is the

disc allocation unit for the CI volumes? The 7912 has 256256
blocks.

A 7933 disc should be configured for a FMGR LU to be the boot
LU and the rest should be CI volumes. This application will
use a large number of very small files, thus the disc
allocation unit should be no greater than 2 blocks. (Make as
few LUs as possible). The boot LU for the new configuration
will be the same as that of the existing configuration (the
primary). The 7933 has 1,579,916 blocks.

HP has just announced support of a new (mythical) flexible
disc, the HP12345, but there is no default file for it yet,
Configure it for your system. The specifications are:

- 120 tracks total, 8 reserved for spares
- 16 blocks/track

OPTIONAL

Configure a 7925 disc into 4 CI volumes of about equal size.
We are not booting from this disc. Will you use surface or
cylinder mode? Why? The 7925 has 9 surfaces, 823 cylinders
and 64 blocks/track.

Configure a 7920 disc in surface mode for CI volumes. How big
is each LU in blocks? Are there any advantages to configuring
this disc in surface mode? The. 7920 has 5 surfaces, 823
cylinders, and 48 blocks per track.

Chapter 14 - Labs

CS80 DISC WORKSHEET

LU Number

+
|
|
|
|
|
|
|
|

Disc Driver
Parameters

DP1 HPIB addr
DP2 unit & vol #
DP3 \ start
DP4 > block

DP5 / number
DP6 tracks

DP7 sect/track
DP8 reserved

t—_— -+ — +
—— .+ — +
—_— - ——+ — +

+t———

LU Number
Disc Driver = = teecemmmmetemmmmee e
Parameters
DP1 HPIB addr
DP2 unit & vol #
DP3 \ start
DP4 > block
DP5 / number
DP6 tracks
DP7 sect/track

DP8 reserved

+——————+— 4+
f—————+ — +
+——————+— +

LU Number
CTD Driver = = tecccmmmmtemeeeeee e meemm
Parameters
DP1 HPIB addr
DP2 CTD U/V #
DP3 cache U/V #
DP4 \ disc cache
DP5 / block
DP6 disc cache
DP7 block

DP8 reserved

—————— — + — +
+———— + — +
t—— -+ — 4+

———————+ — +

t—— - —+ — +

Chapter 14 - Labs

FLEXIBLE MINI-DISC CONFIGURATION WORKSHEET

Cylinders:

+
DP1 HPIB addr |
DP2 unit number |
DP3 start head |
|
l
I
I
I

DP4 start cyl
DP5 spares
DP6 tracks

DP7 blks/track
DP8 surfaces

s
—

Driver Parms:
start #
1 HPIB addr
2 unit number
3 start head
4 start cyl
5 spares

6 tracks
7 sect/track
8 surfaces

Driver Parms:

start #

1 HPIB addr

2 unit number
3 start head
4 start cyl

5 spares
start #

6 tracks

7 sect/track
8 surfaces

Chapter 14 - Labs

NON-CS80 DISC WORKSHEET

—

+

+ e e e ——— — ——— — ——

+

F————————_—-———

+

+ e e ——— ——— i ——

+

+—_——

+

+——

+

+ e e — — — — —— ———

1
]
|
i
1
|
i
i
+

|
|
|
\
|
|
1
1
+

Chapter 15 - Labs

REQUIRED

In the driver relocatable files, the GEN records start at
record 2. List the first few lines of the relocatable file
¥DDC12. What are the default DVT parameters specified in this
file? Do the same for %ID.0O. What are the default IFT
parameters specified? List the first few lines of $DD.00. The

- parameters following a specific model number are used only if

that model number 1is specified in the generation answer file,
What are the default DVT parameters for a 2621 terminal?

- Copy the file /LAB/GENLAB/ANS]1 to your directory. This is a

generation answer file for non-VC+ which is similar to the
primary system and to the system vyou are running on. Make the
following changes to the answer file:

- remove the 2635 console/printer at LU 66 and 67.

- add a 262x terminal at LU 66 wusing an async card at select
code 33B,

- add an HPIB card with both a 2608S lineprinter (LU 85, HPIB
address 2) and a 2631 printer (LU 6, HPIB address 6) , use
select code 30B; add any drivers you need for these printers.

- add the pascal library SPLIB as a default library

Run the generator until there are no errors. Don't attempt to
install your system - this is the next lab. (Hint: make sure
the cartridges containing the system relocatables are mounted) .

Using this answer file, create an answer file for a VC+ system.
Run the generator until there are no =rrors in your answer

file. Don't attempt to install your system - this is the next
lab.

Chapter 15 - Labs

OPTIONAL

Copy the file /LAB/GENLAB/ANS2 to your directory. This is a
generation answer file which is similar to the primary answer
file for a non-VC+ system. Unfortunately, one of your former
colleagues (who has since left to join a startup company) has
already attempted to modify the answer file and has 1left it
with several errors. Run RTAGN to find the errors and fix them.
(Hint: Are the cartridge reference designations correct for
your system? You may wish to remove DS from the answer file).

DO NOT RECONFIGURE THE SYSTEM DISC 1IN ANY OF YOUR SYSTEMS !

Chapter 16 - Labs

REQUIRED

Logon as MANAGER and run USERS to make yourself a superuser and

- give yourself a hello file. Create an additional account for

yourself using your last name. Use the same working directory
and give this account a password. Logon under these accounts
to verify. Remove the account which you just created.

Your instructor will give you the boot command string for your
system. What are the HPIB address and select code for the
system disc? What 1is the name of the boot command file? The
welcome file? The system and snap files? What volumes will be

mounted? What startup program will be run? How could you tell
this is a VC+ system?

Create a boot command file and welcome file for the non-VC+
system which you created in the previous lab. (Your system
will have 2 versions of CI available. 'the VC+ version will be
called CI.RUN::PROGRAMS. The non-vC+ version is probably
called CINCD.RUN::PROGRAMS - check with your instructor). Put
the necessary files on the boot LU. Are the required programs
and directories available to the new system? You don't need to
run INSTL, since you haven't changed the disc configuration.
Bootup your new system and verify operat:on.

Repeat the above procedure for the vVC+ system that you created
in the previous lab. After booting the system, initialize the
spool system. Verify your new system.

Chapter 17 - Labs

REQUIRED

Use your non-VC+ system to build a 128 K memory based system.
Include CI (non-CDS), D.RTR, WH and a small program that you
have written (AREA from the first day would be fine). Put your
merged system file on LU 16 and boot the system using the

existing BOOTEX - don't modify BOOTEX. Verify operation of the
system. What commands can be used from CI?

Using your VC+ system, build a memory based system.

Include
the CI (cps), D.RTR, WH and one of your programs. Make CI a
shared program and RP two copies. Boot and verify your system.
OPTIONAL
3.

Install one of your memory based system on either magnetic tape
or CTD. Boot and verify the system.

Chapter 18 - Labs

REQUIRED

Create a subdirectory called TFLAB under your global directory.
Copy all the files under /LAB/TFLAB to this subdirectory. Use
TF to backup all the files in this subdirectory to tape.
(Hint: use the K option to keep the tape online throughout this

‘lab). Now restore the files to the same place. Restore the

files again into a new subdirectory called MORETF without

Ccreating it first, and without creating an additional
subdirectory TFLAB.

Create a subdirectory under your global clirectory called DELTA.
Copy all the files under /LAB/DELTA to this subdirectory. Are
the backup bits set on these files? Do a full backup of your
subdirectory DELTA wusing TF and clearing the backup bit.

(Hint: use the K option to keep the tape online throughout this
lab).

Now, do the following:

Edit FILEl and do an immediate ER
List FILE2
Copy FILE3 into FILE4

Edit FILES and change its contents
Rename FILE6 to NEWFILE

Which files have the backup bit set? Do an incremental backup
of this subdirectory on the same tape as your full backup.

Purge your subdirectory DELTA and all the files in it. Restore

the files from your backup. Are the backup bits set for these
files?

Use FC to copy to tape all the files on LU 16 which begin with
the character "g%".

(If LU 23 is empty, do this exercise with LU 22). What is the
size of LU 23 1in blocks? How much of this 1is free space?
Which CI volume has the largest block of free space? Pack LU
23. (The disc should only be packed by one student at a time).
What is the largest free space on LU 23 now? Has the total

free space changed? Why? Which files should be moved to

increase the largest free space?

Verify the LU which contains your gloabl directory. If you do
this while others are accessing the disc, you will probably see
errors. Did any errors occur? How would you fix them?

Chapter 18 - Labs

FREES and FPACK are not used for FMGR LUs. To do these
functions on a FMGR LU you will need to use FMGR commands.
Read in the Utilities Manual about the FMGR commands: DL, CL
and PK. Run FMGR. Do a CL command. What information does it
give you? Do a DL command on lu l6. How large is LU 16 in

" blocks? How much of that is available? To make more space

available on the LU, the PK command can be used, however, DO
NOT try this command now - it shouldn't be used while others
are accessing the disc!

OPTIONAL

7.

Use ASAVE to backup LU 20. Do not lock the disc (so that
others can still access it). A .

- Appendix B

Lab Solutions

Chapter 1 - Lab Solutions

Hardware introduction

Check with your instructor to verify the amount of memory in your
system. '

The "?" command is identical to typing "dl /help/". When the "2"
command is issued, CI performs a sequence of subroutine calls that are

similar to that the DL program uses to access the SELP directory
contents.

The "? 41" command is identical to typing "li /help/dl". A super-user
need only add a file to the ,HELP directory to provide on-line help for
any subject. To add a help file for restaurants, the system manager
would add a file called /help/restaurants, hen any user could type "?
restaurants" to get help at lunch time.

One slash displays a list of the previous 12 commands. Two slashes

display only the last command. Three slashes, the last two commands;
four, the last three commands; five, the last Ffour, etc.

If the Wi command returned a line such as:
Session 71 User GEORGE

then your terminal LU would be 71. The following two commands would
then be identical:

CI> co /help/1li 71
CI> co /help/1i 1

When you run the WH program, it is implicitely RPed and will show up as
having an 1D segment attachad to your session. The program MINE is
attached to your session and can have the same name as a program
attached to anyone else's session. CI differentiates them by session
number so that you run only your copy of MINE.

8.

Chapter 1 - Lab Solutions

You can explicitely RP the program WH under a different name. For
example:

CI> rp wh check

Now when you run CHECK, you will get a Wi listing but WH will not be
present. You could also use the command:

CI> wh al

from another temminal to verify that no ID segment for WH is attached to
your session.

When you OF your own copy of CI, and there are no more programs in your
session and you will be automatically logged off. Notice that- this is
different than using the EX cammand since you are avoiding the
temination processing that EX does.

Chapter 2 - Lab Solutions

Run the HELLO program
Run the HELLO program

See /LAB/SOLUTION/LAB2/S3.PAS or S3.FIN for the source file. Compile
the sourcé file with one of the cammands:

- CI> pascal area.pas 1 -
CI> ftn7x area.ftn 1 -

Link the relocatable file with the command:
CI> link area.rel

Run the program with the command:
CI> area

RP your program with the command:

CI> rp area

The OF command aborts a program's execution but does not remove an ID

segment that has been explicitely RPed. To remove the ID segment, you
must use the command:

CI> of area id

You can create two separate ID segments for the same program by using
two distinct clone names when RPing. For example:

CI> rp area namel
CI> rp area name2

Now you can run either copy simply by specifying the name of the program
you want to run:

CI> namel

CI> name2
CI> area

The last cammand will run your original copy of the area program; it
knows nothing of the cloned copies in the system. Only super-users can
off programs in your session. Even if you loc on from another terminal

using the same account name, you will not be able to off the programs in
your first session,

5.

6.

7.

Chapter 2 - Lab Solutions

Ci> wh ac

Most sessions will have one or two active programs. The System Session
will have many active programs, most of which are associated with the
DS/1000 network which links your camputer with others.

CI> wh se

All of the sessions except the System- Session will be associated with a
user on the system.

CI> wh pa
The amount of memory should be the same as in‘Labl, question 2.
CIi> wh st

The wvalue of the time-slice fence and the number of dynamic memory
partitions cna be read directly form the output of this cammand.

CI> wh al

There are probably two programs in your session: CI and AREA. AREA will
be class suspended (waiting for your input) and CI will be waiting for
AREA to camplete. CI is usually priority 51 and AREA (unless otherwise
specified) will be 99. These are both likely to be background programs
as long as the "background fence priority" (use wh,st) is lower than
either of the program priorities.

Set program priority using LINK.

Run the HELLO program.

Chapter 2 - Lab Solutions

{ /LAB/SOLUTION/LAB2/S3.PAS
}

program area (input, output);

var radius, area : real;

begin

writeln ('area of circle program');

repeat

writeln (‘radius:

read (radius);

')

area := 3,14159 * radius * radius;

if radius > 0

then writeln ('area =', area:4:2)
else writeln ('finished')

until radius <= 0
end,

B-5

Chapter 2 - Lab Solutions

C /LAB/SOLUTION/LAB2/S3.FTN

c

program area
real radius, area

write (1,'("area of circle program") ')
radius = 1
do while (radius .GT. 0)
write (1,'("radius _")"')
read (1,*) radius
area = 3.14159 * radius * radius
if (radius .GT. 0) then

write (1,'("area = " F4.2)') area
else
write (1,'("finished")')
end if
end do

end

Chapter 3 - Lab Solutions

1. Your working directory name is likely to be the same as your logon name.
The name is specified by the system manager when he creates your
account. -

ISN'T THIS XCITING

LOOKING AT MY TREE

3. All of the LAB3 directories are distinct because they each have a

different parent directory, namely your logon working directory. Use
the following copy command:

CI> co /lab/tree/this/at/structure/way/aown/here lab3/here
4. You should have used the following sequence cf cammands

CI> crdir lab3/downunder

CI> wd 1lab3
CI> mo here downunder/here
CIi> dl 1lab3

CI> wd downunder

CI> mo here /george/lab3/here

CI> mo /george/lab3/here overthere/here
CI> co /george/lab3/here overthere/here p

You will have trouble with the last command if sameone else has already
copied the file into directory /OVERTHERE 3ince the copy command will
not overwrite an existing file.

Chapter 3 - Lab Solutions

You can use the OWNER cammand to determine who owns a directory:

CI> owner /george
er of /GEORGE is GEORGE

You will find that the owner is your logon name. Sub-directories are
owned by the creator (note lower-case "c"), so you will find that you
are also the owner of the sub-directories you've created. Protection
can be found with the PROT cammand:

CI> prot /george

"and you will find that your logon directory has protection of "rw/r"

meaning that you can read or write your own files but other users can
only read them. Files and sub-directories take on the protection
attributes of their parent directory when they are created.

The owner of /LAB/VAULT is the owner of the directory /LAB which is
MANAGER. You will find that the file /LAB/VAULT is read/write protected
for both the owner and other users. If the owner is a general user, he
must change this protection in order to read or write to the file. If
the owner is a super-user, then protection has no consequence.

If you change the ownership of a directory to your neighbor, you will
not be able to access the directory or get the ownership back again.
Your neighbor must use the OWNER command to give it back to you.

The "!" option to the DL command gives you the following information:
name ex ba tmp sc prot type msize blks words recs rlen addr
The headers indicate:

ex Extent; * means the file has extents

ba Backup; * means the file hasn't been backed up
since its last change

tmp Temporary; * means the file is a temporary file

sc Security code; always 0 except for FMGR files

msize Size of main file in blocks

blks Total number of blocks in main and extents

words Number of words, up to the end-of-file mark

recs Number of records in the file

addr Block address of beginning of file

Also listed are the create time, access time and update time.

Chapter 4 - Lab Solutions

1. CI> hello

2. Pascal compiler options:

$ MIX ON $ {mixed listing}
S TABLES ON $ {relocatable addresises and symbol table}
$ XREF S {cross-reference listing}

Then use the runstring:

CI> pascal area.pas - -

FORTRAN campiler options:
FTN7X ,M Imixed listing

FTU7X ,MOTC !mixed listing, relocatable addresses,
!symbol table, and cross-refarence listing

Then use the runstring:

CI> ftn7x area.ftn - -

3. FORTRAN campiler options:
FTN7X,S
"When running link:
link: re,area.rel
link: de
link: en

4. See /LAB/SOLUTION/LAB4/S4.PAS or S4.FTN

5. See /LAB/SOLUTION/LAB4/S5.PAS or S5.FTN

6.

Chapter 4 - Lab Solutions

Make a library in the following manner:

CI> merge 1 temp.rel

Enter filename circle.rel
Enter filename square.rel
Enter filename triangle.rel
Enter filename

Merge Stop

CI> lindx temp.rel area.lib
Sorting entries

CIRCLE

SQUARE

TRIANGLE

CI> link

link: re area.rel
link: se area.lib
link: en

CI>

The merge cammand will require an input file containing the names of the
relocatable subroutine files (the same ones you had to type in manually
in the last problem). The file is called AREA.MRG and looks like:

circle.rel
square.rel
triangle.rel

The command file is located in /LAB/SOLUTION/LAB4/S7.CMD and you can
create your .RUN file by executing:

CI> ci s7.and

The command file is located in /LAB/SOLUTION/LAB4/S8.CMD and you can
create your .RUN file by executing:

CI> ci s8.and area circle square triangle

B-10

Chapter 4 - Lab Solutions

{ /LAB/SOLUTION/LAB4/S4.PAS
}
File AREA.PAS:

program area (input, output);

procedure circle;
external;

begin
writeln ('area program');
circle

end.

File CIRCLE.PAS:

$subprogram
program area (input, output);
procedure circle;

var radius, area : real;

begin
repeat
writeln ('radius: ');
read (radius); -
area := 3,14159 * radius * radius;
if radius > 0)
' then writeln (‘area =', area:4:2)
else writeln ('finished')
“until radius <= 0
end;
. {}

B-11

Chapter 4 - Lab Solutions

C /LAB/SOLUTION/LAB4/S4.FTN
o

File AREA,FTN:
program area

write (1,'("area program")')
call circle
end

File CIRCLE,FTN:
subroutine circle

real radius, area

radius = 1
do while (radius .GT. 0)
write (1,'("radius ")'")
read (1,*) radius
area = 3,14159 * radius * radius
if (radius .GT. 0) then
write (1,"'("area = " F4.2)') area
else
write (1,'("finished")')
end if
end do
end

B-12

Chapter 4 - Lab Solutions

{ /LAB/SOLUTION/LAB4/SS.PAS
;ile AREA,PAS:

program area (input, output);
var selection : integer;

procedure circle;
external;

procedure square;
external;

procedure triangle;
external;

begin
writeln ('area program');
repeat
writeln ('select one:');
writeln ('0 = finished, 1 = circle, 2 = square, 3 = triangle');
read (selection);
case selection of

0 : writeln ('finished');
1 : circle;
2 : square;
3 : triargle
erd;
until selection = 0

end.

File CIRCLE.PAS:

Ssubprogram

program area (input, output);
procedure circle;

var radius, area : real;

begin
writeln ('radius: ');
read (radius);
area := 3,14159 * radius * radius;
if radius > 0
then writeln ('area =', area:4:2)
else writeln ('invalid data')
end;
.

B-13

|

Chapter 4 - Lab Solutions

File SQUARE.PAS:

$subprogram
program area (input, output);
procedure square;

var side, area : real;

begin
writeln ('side: _');
read (side);
area := side * side;
if side > O
then writeln ('area =', area:4:2)
else writeln (*invalid data')
erd;
. {}

File TRIANGLE.PAS:

$subprogram
program area (input, output);
procedure triangle;

var base, height, area : real;

begin
writeln ('base: _');
read (base);
writeln ('height: ');
read (height);
area := 0.5 * base * height;
if (base > 0) and (height > 0)
then writeln ('area =', area:4:2)
else writeln ('invalid data')
end
{

—rne

B-14

Chapter 4 - Lab Solutions

C /LAB/SOLUTION/LAB4/S5.FTN
C
File AREA.FTN:

program area

integer selection

write (1,'("area program")')

selection = -1

do while (selection .NE. 0)
write(l,'("select one:™)')
write(1,"'(

+ "0 = finished, 1 = circle, 2 = square, 3 = triangle")')
read (1,*) selection
if (selection .EQ. 0) write (1,'(“"finished")')
if (selection .EQ. 1) call circle
if (selection .EQ. 2) call square
if (selection .EQ. 3) call triangle

end do

end

File CIRCLE.FTN:
subroutine circle
real radius, area

write (1,' ("radius: "))
read (1,*) radius
area = 3,14159 * radius * radius
if (radius .GT. 0) then
write (1,'("area =", f4.2)') area
else
write (1,'("invalid data"™)')
end if

end

B-15

Chapter 4 - Lab Solutions

File SQUARE.FTN:
subroutine square

real side, area

write (1,'("side: _™)"')
read (1,*) side
area = side * side
if (side .GT. 0) then
write (1,'("area =", f4.2)') area
else
write (1,'("invalid data")')
end if
end

File TRIANGLE.FTN:
subroutine triangle
real base, height, area

write (1,'("base: ")')

read (1,*) base

write (1,'("height: ")')

read (1,*) height

area = 0.5 * base * height

if ((base .GT. 0) .AND. (height .GT. 0)) then
write (1,'("area =", f4.2)') area

else
write (1,'("invalid data")')

erd if

end

B-16

Chapter 4 - Lab Solutions

* /LAB/SOLUTION/LAB4/S7.CMD

*

* compile all programs

* note: these could also be Pascal campiler runstrings

*

ftn7x area.ftn - -

ftn7x circle.ftn - -

ftn7x square.ftn - -

ftn7x triangle.ftn - -

*

* merge the relocatable subroutine files

* note: this requires file AREA.MRG to contain the names
* of the relocatable subroutine files
*

xerge area.mrg tamp.rel

*

* index the references and create a library
*

lindx temp.rel area.lib
pu temp.rel
*

* link the main program with the library files
*

link area.rel area.lib

* /LAR/SOLUTION/LAB4/S8.CMD

*

* campile all programs

* note: these could also be Pascal campiler rurstrings
*

ftn7x $1.ftn
ftn7x S$2.ftn
ftn7x $3.ftn
ftn7x $4.ftn
*

* merge the relocatable subroutine files

* note: this requires file <$1>.MRG to contain the names
* of the relocatable subroutine files
*

merge $l.mrg temp.rel
. .

* index the references and create a libhrary
*

lindx temp.rel $1.lib
pu temp.rel
*

* link the main program with the library files
*

link S$l.rel S$1.1ib

B-17

Chapter 4 - Lab Solutions

B-18

Chapter 5 - Lab Solutions

See /LAB/SOLUTION/LABS/S1.PAS AND S1.FTN
See /LAB/SOLUTION/LABS5/S2.PAS AND S2.FTN
See /LAB/SOLUTION/LABS/S3.PAS AND S3.FTN
See /LAB/SOLUTION/LABS5/S4.PAS AND S4.FTN

See /LAB/SOLUTION/LAB5/S5.PAS AND S5.FTN

B-19

Cc

Chapter 5 - Lab Solutions

/LAB/SOLUTION/LAB5/S1 .FTN

File AREA,.FTN:

program area

integer cntwd, selection, header(6), prompt(6), list(25),
finished(4)
data header/'area program'/, prampt/'select one:'/,

list/'0 = finished, 1 = circle, 2 = square, 3 = triangle'/,
finished/'finished'/

+

+
+

cntwd = 1
call exec (2, cntwd, header, 6)
selection = =1
do while (selection .NE. 2h0)

cntwd, prompt, 6)
cntwd, list, 25)
cntwd, selection, 1)

end
erd

call exec (2,
call exec (2,
call exec (1,
if (selection
if (selection
if (selection
if (selection
do

-EQ.
+EQ.
-EQ.
-EQ.

2h0)
2hl)
2h2)
2h3)

call exec (2, cntwd, finished, 4)
call circle

call square

call triargle

B-20

Chapter 5 - Lab Solutions

{ /LAB/SOLUTION/LABS/S1.PAS }
{ File AREA.PAS: }

program area (input, output);
const ec = 256; {echo bit}

type int = -32768..32767;
word = packed array [l..2] of char;
buffer = packed array [l1..80] of char;

var cntwd : int;

selection : word;
bufr : buffer;

procedure circle;
external;

procedure square;
external;

procedure triangle;
external;

procedure execwrite (ecode, cntwd: int; bufr: buffer; bufln: int);
Salias 'exec'S external;

procedure execread (ecode, cntwd: int; selection: word; bufln: int);
$alias 'exec'S external;

begin :
cntwd := 1 + ec; {set to lu of terminal}
bufr := 'area program';
execwrite (2, cntwd, bufr, 6);
repeat
bufr := 'select one:';
execwrite (2, cntwd, bufr, 6);
bufr := '0 = finished, 1 = circle, 2 = square, 3 = triangle';
execwrite (2, cntwd, bufr, 25);
execread (1, cntwd, selection, 1);
bufr := 'finished';
{note following changes because exec reads char, not integer}
if selection = '0' then execwrite (2, cntwd, bufr, 4):
if selection = then circle;
if selection = '2' then square;
if selection = '3' then triangle
until selection = '0'

|
[

end.

B~21

Chapter 5 - Lab Solutions

c /LAB/SOLUTION/LAB5/S2,FTN
c File AREA,FTN:
program area
integer cntwd, selection, header(6), prampt(é), list(25),

+ finished (4)
data header/'area program'/, pramnpt/'select one:'/,

+ list/'0 = finished, 1 = circle, 2 = square, 3 = triangle'/,
+ finished/'finished'/
cntwd = 1

call exec (2, cntwd, header, 6)
selection = -1
do while (selection .NE. 2h0)
call exec (2, cntwd, prompt, 6)
call exec (2, cntwd, list, 25)
call reio (1, cntwd, selection, 1)
if (selection .EQ. 2h0) call exec (2, cntwd, finished, 4)
if (selection .EQ. 2hl) call circle
if (selection .FQ. 2h2) call square

if (selection .EQ. 2h3) call triangle
end do

end

B-22

Chapter 5 - Lab Solutions

{ /LAB/SOLUTION/LAB5/S2.PAS }
{ File AREA.PAS: }
program area (input, output);

const ec

256; {echo bit}

type int = -32768..32767;
word = packed array [l..2] of char;
buffer = packed array [1..80] of char;

var cntwd : int;
selection : word;
bufr : buffer;

procedure circle;
external;

procedure square;
external;

procedure triangle;
external; _

procedure execwrite (ecode, cntwd: int; bufr: buffer; bufln: int);
Salias 'exec'$ external;

procedure execread (ecode, cntwd: int; selection: word; bufln: int);
Salias 'reio'$ external;

begin

cntwd := 1 + ec; {set to lu of terminal}

bufr := 'area program';

execwrite (2, cntwd, bufr, 6);

repeat
bufr := 'select one:';
execwrite (2, cntwd, bufr, 6);
bufr := '0 = finished, 1 = circle, 2 = square, 3 = triangle';
execwrite (2, cntwd, bufr, 25);
execread (1, cntwd, selection, 1);
bufr := 'finished';
{note following changes because exec reads char, not integer}
if selection '0' then execwrite (2, cntwd, bufr, 4);
if selection = '1' then circle;
if selection = '2' then square;
if selection = '3' then triangle

until selection 0’

end.

B-23

Chapter 5 - Lab Solutions

c /LAB/SOLUTION/LABS/S3.FTN
c File AREA.FTN:

program area

integer cntwd(2), selection, header(6), prampt(6), list(25),

+ finished(4), dummy

data header/'area program'/, prampt/'select one:'/,

+ list/'0 = finished, 1 = circle, 2 = square, 3 = triangle'/,
+ finished/!'finished'/

dummy = loglu (cntwd(1l))

cntwd(2) = 0

call .xluex (2, cntwd, header, 6)

selection = -1

do while (selection .NWE. 2h0)
call xluex (2, cntwd, prompt, 6)
call xluex (2, cntwd, list, 25)
call xreio (1, cntwd, selection, 1)
if (selection .EQ. 2h0) call xluex (2, cntwd, finished, 4)
if (selection .EQ. 2hl) call circle
if (selection .EQ. 2h2) call square

if (selection .EQ. 2h3) call triangle
end do

end

B-24

Chapter 5 - Lab Solutions

{ /LAB/SOLUTION/LABS5/S3.PAS }
{ File AREA.PAS: }
program area (input, output);
const ec = 256; {echo bit}
type int = -32768..32767;

int2 = array [1..2] of int;

word = packed array [l..2] of char;
buffer = packed array [1..80] of char;

var lu, dummy : int;
cntwd : int2;
selection : word;
bufr : buffer;

procedure circle;
external;

procedure square;
external;

procedure triangle;

. external;

procedure execwrite (ecode: int; cntwd: int2; bufr: buffer; bufln: int);
Salias 'xluex'$ external;

procedure execread (ecode: int; cntwd: int2; selection: word; bufln: int);
Salias 'xreio'$ external;

function loglu (lu: int) : int;
external;

B-25

Chapter 5 - Lab Solutions

begin
dummy := loglu (lu); {get real lu of terminal}
cntwd[1l] := lu; {set to lu of terminal}
cntwd[2] := ec; {set echo bit}

bufr := 'area program';

execwrite (2, cntwd, bufr, 6);

repeat
bufr := 'select one:';
execwrite (2, cntwd, bufr, 6);
bufr := '0 = finished, 1 = circle, 2 = square, 3 = triangle';
execwrite (2, cntwd, bufr, 25);
execread (1, cntwd, selection, 1);
bufr := 'finished';
{note following changes because exec reads char, not integer}
if selection = '0' then execwrite (2, cntwd, bufr, 4);
if selection = '1' then circle;
if selection = '2' then square;
if selection = '3' then triangle

until selection = '0'

erd.

[T I |

B-26

Chapter 5 - Lab Solutions

/LAB/SOLUTION/LAB5/S4 .FTN
File AREA,FTN:

program area

integer cntwd(2), selection, header(6), promp:=(6), list(25),

+ finished (4), dummy, prog(3), time(1l5), lu, buffer(28)
data header/'area program'/, prampt/'select one:'/,

+ list/'0 = finished, 1 = circle, 2 = square, 3 = triangle'/,
+ finished/'finished'/

call pname (prog) lget program name
call ftime (time) !get current time

buffer(l) = prog(l) !put program name in buffer

buffer(2) = prog(2)

buffer(3) = prog(3)

buffer(4) = 2hru thollerith notation must be used here

buffer(5) = 2hn lassign one word at a time...

buffer(6) = 2hat tho, hum

buffer(7) = 2h

doi=1, 15 Iput time in buffer
buffer(i+7) = time(i)

end do

buffer(23) = 2h £

buffer(24) = 2hro

buffer(25) = 2hm

buffer(26) = 2hLU

buffer(27) = 2h

dummy = loglu (lu) !get 1u number

buffer(28) = kcvt (lu) !convert number to ascii
call logit (buffer, 28)

dummy = loglu (cntwd (1))

cntwd(2) = 0
call xluex (2, cntwd, header, 6)
selection = -1

do while (selection .NE. 2h0)
call xluex (2, cntwd, prompt, 6)
call xluex (2, cntwd, list, 25)
call xreio (1, cntwd, selection, 1)
if (selection .EQ. 2h0) call xluex (2, crtwd, finished, 4)
if (selection .EQ. 2hl) call circle
if (selection .EQ. 2h2) call square
if (selection .EQ. 2h3) call triangle

erd do
end

B-27

Chapter 5 - Lab Solutions

{ /LAB/SOLUTION/LABS/S4.PAS }
{ File AREA.PAS: }

program area (input, output);

const ec = 256; {echo bit}

type int = -32768..32767;
int2 = array [1..2] of int;
word = packed array ([l..2] of char;
name = packed array [l..6] of char;

tbuff = packed array [l..30] of char;
buffer = packed array [l..80] of char;

var i, lu, dummy : int;
cntwd : int2;
asciilu, selection : word;
prog : name;

time : thuff;

bufr : buffer;

procedure circle;
external;
procedure square;
external;
procedure triangle;
external;
procedure execwrite (ecode: int; cntwd: int2; bufr: buffer; bufln: int);
Salias 'xluex'$ external;
procedure execread (ecode: int; cntwd: int2; selection: word; bufln: int);
Salias 'xreio'$ external;
function loglu (lu: int) : int;
external;
procedure pname (progd: name);
external;
procedure ftime (time: tbuff);
external;
function kcvt (lu: int) : word;
external;
procedure logit (bufr: buffer; len: int);
external;

B-28

Chapter 5 -~ Lab Solutions

begin
pname (proq); " {get program name}
ftime (time); . {get current time}
bufr := prog; {put program name in buffer, with blank fill}
bufr[7] := 'r'; {enter the rest of the characters}
bufr[8] := 'u'; {... one character at a time!!!}
bufr(9] := 'n'; { ugh }
bufr(ll] := 'a';
bufr[12] := 't'; :
for i := 1 to 30 do {put time in buffer}
bufr(i+13] := time[i]; ,
bufr{47] := 'f';
bufr[48] := 'r';
bufr[49] := 'o';
bufr [50] := 'm';
bufr([52] := 'L';
bufr[53] := 'U';
dummy := loglu (1lu); {get lu of terminall
asciilu := kecvt (lu); {convert it to ascii}
‘bufr[55] := asciilul[l];

bufr[56] := asciilu[2];
logit (bufr, 40);

dummy := loglu (lu); {get real lu of terninal}
cntwd[1l] := lu; {set to lu of terminal}
cntwd([2] := ec; "{set echo bit}

bufr := 'area program';

exeewrite (2, cntwd, bufr, 6);

repeat
bufr := 'select one:';
execwrite (2, cntwd, bufr, 6);
bufr := '0 = finished, 1 = circle, 2 = square, 3 = triangle';
execwrite (2, cntwd, bufr, 25);
execread (1, cntwd, selection, 1);
bufr := '"finished'; :
{note following changes because exec reads char, not integer}
if selection '0' then execwrite (2, cntwd, oufr, 4);
if selection = '1' then circle;
if selection = '2' then square;
if selection '3' then triangle

until selection = '0'

end.

B-29

Chapter 5 - Lab Solutions

c /LAB/SOLUTION/LAB5/S5.FTN

program out

integer cntwd(2), buffer(40), redirection
data redirection /0/ !set to 100000b to override redirection

write (1, '("output LU = _")')

read (1,*) cntwd(l)

cntwd(l) = cntwd(l) + redirection

write (1, '("write to LU " i2 " ..."™)') cntwd(l)
cntwd(2) = 0

read (1, '(80a)') buffer

call xluex (2, cntwd, buffer, 40)

end

B-30

Chapter 5 - Lab Solutions

{ /LAB/SOLUTION/LAB5/S5.PAS }

program out (input, output);

const redirection = 0; {set to -32768 to override redirection}

type int = -32768..32767;
' int2 = array [1..2] of int;
buffer = packed array [1..80] of char;

var cntwd : int2;
bufr : buffer;

procedure xluex (ecode: int; cntwd: int2; bufr: buffer; bufln:
external;

begin
writeln (‘output LU = ');

readln (cntwd[1]);
cntwd[1l] := cntwd[l] + redirection;
cntwd[2] := 0; '
writeln ('write to LU ', cntwd[1l]:2, °' eee');
cntwd[2] := O;
readln (bufr);
xluex (2, cntwd, bufr, 40)
erd.

B-31

int);

Chapter 6 - Lab Solutions

When the command to execute LINK is given, the working directory is
searched first. Since you now have a program named LINK.RUN in your
working directory, this is found first and executed. You could also put
the file in a FMCR directory and set your working directory to 0. Now
when you issue the RO command, the FMGR cartridges will be searched
first and your surrogate LINK will be found.

Each program name is associated with it's respective session,
transparently to the user. When you and your neighbor both run the same
named program, each of you create an ID segment by the same name bhut
attached to different sessions. You can see this by running WH,AL to
observe everyone's session.

When you XQ CI, both CI and CI..A are running at the same time and
contend for your terminal. Each time you hit the return key, the other
copy of CI takes over and issues it's prompt. This way the two copies
share your terminal. This, of course, is not very practical and you

will generally want to XQ programs that do not interact with your
temminal.

See /LAB/SOLUTION/LAB6/S3.PAS and 53.FTN

See /LAB/SOLUTION/LABS/S4.PAS and S4.FTN

B-32

oNPNe!

Chapter 6 - Lab Solutions

/LAB/SOLUTION/LAB6/S3.FTN

File AREA.FTN:

brogram area

integer selection, circle(3), square(3), triangle(3)
data circle/'CIRCL'/, square/'SQUAR'/, triangle/'TRIAN'/

write (1,'("area program")')
selection = -1
do while (selection .NE. 0)
write(l,'("select one:")"')
write(l,'(
+ "0 = finished, 1 = circle, 2 = square, 3 = triangle")')
read (1,*) selection
if (selection .FQ. 0) write (1,' ("finished™) ')
if (selection .EQ. 1)
+ call exec (9, circle)
if (selection .EQ. 2)
+ call exec (9, square)
if (selection .EQ. 3)
+ call exec (9, triangle)
end do
end

File CIRCLE.FTN:
program circle
real radius, area

write (1,'("radius: "™)')
read (1,*) radius
area = 3,14159 * radius * radius
if (radius .GT. 0) then
write (1,'("area =", f4.2)') area
else
write (1,'("invalid data")')
end if

end

B~-33

Chapter 6 - Lab Solutions

File SQUARE.FTN:
program square
real side, area

write (1,'("side: ")"')
read (1,*) side
area = side * side
if (side .GT. 0) then
write (1,'("area =", £4.2)') area
else
write (1,'("invalid data")')
erd if
end

File TRIANGLE.FTN:
program triangle
real base, height, area

write (1,'("base: ")')

read (1,*) base

write (1,'("height: ")')

read (1,*) height

area = 0.5 * base * height

if ((base .GT. 0) .AND. (height .GT. 0)) then
write (1,'("area =", f4.2)') area

else
write (1,'("invalid data")')

end if.

end

B-34

Chapter 6 - Lab Solutions

{ /LAB/SOLUTION/LAB6/S3.PAS }
{ File AREA.PAS: }

program area (input, output);

type int = -32768..32767;
progname = packed array [l..6] of char;

var selection : integer;
circle,
square,
triangle : progname;

procedure exec (ecode: int; prog: progname);
external;

begin
circle := 'CIRCL';
square := 'SQUAR';
triangle := 'TRIAN';

writeln ('area program');
repeat .
writeln ('select one:'):
writeln ('0 = finished, 1 = circle, 2 = squars, 3 = triangle');
read (selection);
case selection of
0 : writeln ('finished');
1 : exec (9, circle);
2 : exec (9, square);
3 : exec (9, triangle);
end;
until selection = 0
erd.

{ File CIRCLE.PAS: }
program circle (input, output);
var radius, area : real;

. begin
writeln ('radius: ');
read (radius); -
area := 3.14159 * radius * radius;
if radius > 0 |
then writeln ('area =', area:4:2)

else writeln ('invalid data')
erd.

B-35

|

Chapter 6 - Lab Solutions

{ File SQUARE.PAS: }
program square (input, output);
var side, area : real;

begin
writeln ('side: _');
read (side);
area := side * side;
if side > 0
then writeln ('area =', area:4:2)
else writeln ('invalid data')
end.

{ File TRIANGLE.PAS: }
program traingle (input, output);
var base, height, area : real;

begin
writeln ('base: _');
read (base);
writeln ('height: _');
read (height);
~area := 0.5 * base * height;
if (base > 0) and (height > 0)
then writeln ('area =', area:4:2)
else writeln ('invalid data')
erd.

B-36

oXeNe]

Chapter 6 - Lab Solutions

/LAB/SOLUTION/LAB6/S4 .FTN
File AREA,.FTN:

program area

integer selection, circle(3), square(3), triangle(3)
data circle/'CIRCL'/, square/'SQUAR'/, triangle/' TRIAN'/

write (1,'("area program")')
selection = -1
do while (selection .NE. 0)
if (ifbrk) call exec (6)
write(l,"'("select one:™)')
write(l,'(
+ "0 = finished, 1 = circle, 2 = square, 3 = triangle")')
read (1,*) selection
if (selection .EQ. 0) write (1,' ("finished") ")
if (selection .EQ. 1)
+ call exec (9, circle)
if (selection .EQ. 2)
+ call exec (9, square)
if (selection .EQ. 3)
+ call exec (9, triangle)
end do
end

File CIRCLE.FTN:
program circle
real radius, area

if (ifbrk) call exec (6)
write (1,'("radius: ™))
read (1,*) radius
area = 3,14159 * radius * radius
if (radius .G7. 0) then
write (1,'("area =", f4.2)') area
else
write (1,'("invalid data")')
end if
end

B-37

Chapter 6 - Lab Solutions

C File SQUARE.FTN:

program square
real side, area

if (ifbrk) call exec (6)
write (1,'("side: _™)')
read (1,*) side
area = side * side
if (side .GT. 0) then
write (1,'("area =", f4.2)') area
else
write (1,'("invalid data")')
end if
end

C File TRIANGLE.FTI:
program triangle
real base, height, area

if (ifbrk) call exec (6)

write (1,'("base: ")')

read (1,*) base

write (1,'("height: ")')

read (1,*) height

area = 0.5 * base * height

if ((base .GT. 0) .AMD. (height .GT. 0)) then
write (1,'("area =", f4.2)') area

else
write (1,'("invalid data™)')

end if

end

3-38

Chapter 6 - Lab Solutions

{ /LAB/SOLUTION/LAB6/S4.PAS }
{ File AREA.PAS: }
program area (input, output);

type int = -32768..32767;
progname = packed array [1..6] of char;

var selection : integer;
circle,
square,
triangle : progname;

procedure exec (ecode: int; prog: progname);
external:; .
procedure halt (ecode: int);
$alias 'exec'S external;
function ifbrk : boolean;
external;

begin
" circle := 'CIRCL';
square := 'SQUAR';
triangle := ‘'TRIAN';

writeln ('area program');
repeat _
if ifbrk then halt (6);
writeln (!select one:'); :
writeln ('0 = finished, 1 = circle, 2 = square, 3 = triangle');
read (selection);
case selection of

0 : writeln ('finished');
1 : exec (9, circle);
2 : exec (9, square);
3 : exec (9, triangle);
end;

until selection = 0

~end.

B-39

Chapter 6 - Lab Solutions

{ File CIRCLE.PAS: }
program circle;

var radius, area : real;
inp, out : text;

begin
. reset (inp, '1');
rewrite (out, 'l');
if ifbrk then halt (6);
writeln (out, ‘'radius: _');
read (inp, radius);
area := 3.14159 * radius * radius;
if radius > 0
then writeln (out, 'area =', area:4:2)
else writeln (out, 'invalid data')
end.

{ File SQUARE.PAS: }
program square;

var side, area : real;
inp, out : text;

begin
reset (inp, '1l');
rewrite (out, 'l');
if ifbrk then halt (6);
writeln (out, ‘'side: _');
read (inp, side);
area := side * side;
if side > 0O
then writeln (out, 'area =', area:4:2)
else writeln (out, 'invalid data')
end.

{ File TRIANGLE.PAS: }

program traingle;

var base, height, area : real;
inp, out : text;

begin
reset (inp, '1');
rewrite (out, '1');
if ifbrk then halt (6);

B-40

Chapter 6 - Lab Solutions

writeln (out, 'base: ')

read (inp, base);

writeln (out, 'height: ');

real (inp, height);

area := 0.5 * base * height;

if (base > 0) and (height > 0)
then writeln (out, 'area =', area:4:2)
else writeln (out, 'invalid data')

end.

B-41

Chapter 7 - Lab Solutions

FTN7X,L
C
C /lab/solution/lab7/sla.ftn
C
C This is a program which stores values in system
C Common area., Link program with SC cammand,
C
C

PROGRAM COOMON1
C ,

COMMON //NUMBER
C
C INITIALIZE THE ARRAY
C

NUMBER = 0O
C

DO WHILE (NUMBER .MNE. 555)

WRITE(1,*) 'Please enter a number ?'
READ(1,*)NUMBER

END DO
C
cC
50 END

B-42

Chapter 7 - Lab Solutions

FTN7X,L

c

c /LAB/SOLUTION/LAB7/S1B.FTN

c

C This is a program which receives the values

C fram the System Common area. Link program with SC command.
c

PROGRAM COMON2
COMMON //NUMBER

C
C PRINT OUT THE ARRAY
C
DO WHILE (NUMBER .NE. 555)
WRITE(1,*) 'THE NUMBER IS : ', (NTMBER)
END DO
C
C
50 END

B-43

Chapter 7 - Lab Solutions

/lab/solution/lab7/sla.pas
This program stores values in System Common Area.
Link program with SC cammand.

}

PROGRAM coml (input,output);

TYPE
int = -32768..32767;

camptr = “int;

VAR
system ptr : camptr;
sizeblank : int;

FUNCTION common blank $ ALIAS 'Pas.BlankComl' $: camptr; EXTERNAL;

FUNCTION blank_size $ ALIAS 'Pas.BlankSize' $: int; EXTERNAL;
BEGIN
sizeblank := blank_size;
IF sizeblank <> 0 THEN
BEGIN
system ptr := common_blank;
WHILE (system ptr® <> 555) DO
BEGIN
writeln('Please enter a mumber : ');
read (system ptr”); -
END;
END ELSE writeln('This program has no access to System Common! !');
END.

B-44

Chapter 7 - Lab Solutions

{ /lab/solution/lab7/slb.pas

This program receives values from the System Common area.
Link with the SC command.

PROGRAM CQOM2;

TYPE
int = -32768..32767;
comptr = “int;

VAR
system ptr : comptr;
sizeblank : int;
out : text;

FUNCTION common blank $ ALIAS 'Pas.BlankComl' $: comptr; EXTERMAL;
FUNCTION blank size $ ALIAS 'Pas.BlankSize' $: int; EXTERNAL;

BEGIN
rewrite(out,'l');
sizeblank := blank size;
IF sizeblank <> 0 THEN
BEGIN
system ptr := common blank;
WHILE (system ptr® <> 555) DO
BEGIN
writeln(out,'The number is : ',system ptr®);
END;
END ELSE writeln(out,'This program has no access to System Common!!');
END.

B-45

Chapter 7 - Lab Solutions

FIN7X,L
C /lab/solution/lab7/s2.£tn
C
C This program prints a message to a device which is
C specified at run-time.
C
C
C
PROGRAM msgs
C
IMPLICIT INTEGER(A-Z)
DIMENSION PARM(5)
C
C
CALL RMPAR(PARM)
ILU = PARM(1)
C
WRITE(ILU,*) "THIS IS THE MESSAGE TO BE PRINTED OUT'
C

END

B-46

Chapter 7 - Lab Solutions

{ /lab/solution/lab7/s2 .pas

This program prints a message to a device which is specified

at run-time in the program runstring.

PROGRAM MSGS;

TYPE
int = -32768..32767; .
ptype = packed array [1..5] of int;
conv_type = packed array [1..6] of char;

VAR
out : conv_type;

pam : ptype;
lu : text;

PROCEDURE PARAMS $ ALIAS 'PAS.NUMERICPARMS' S
(VAR parm : ptype); EXTERNAL;

PROCEDURE ONUMD (num : int; buffer : conv_type); IXTERNAL;
BEGIN

params (parm) ; .

cnund (pamm([1] ,out);

rewrite(lu,out);

write(lu,'The message is: YOU''VE FINALLY GOT THE PROGRAM

END.

B-47

TO WORK!!'")

Chapter 7 - Lab Solutions

FTN7X,L
C /lab/solution/lab7/s3.ftn
C
C This program accepts a message and also the print LU
C fram the run-string.
C
C
PROGRAM meslu
C
IMPLICIT INTEGER(A-Z)
DIMENSIOM PARM(5), BUFR(40)
C
C
CALL RMPAR(PARM)
ILU = PARM(1)
CALL GETST (BUFR,40,TLOG)
C
WRITE(ILU,' (40A2)') (BUFR(I) ,I=2,TLOG)
C

END

B-48

Chapter 8 - Lab Solutions

ftn7x,1

C

C /lab/solution/lab8/s3s. ftn

C ‘

C This child program recieves a message from the parent via
C class 1/0.

C

program SQUARE

integer pam(5S), message (25)
real side, area

call rmpar(parm)
lu = parm(l)
iclas = pamm(2)

call exec(21,iclas,message,-50)

write (1,'("side:._")')
read (1,*) side
area = side * side
if (side .GT. 0) then
write (lu,' ("The message sent fram above is : ",50a)') message

write (lu,'("area = ",f4.2)') area
else
write (lu,'("invalid data")')
end if
end
B-49

Chapter 8 - Lab Solutions

ftn7x,1

C

C /lab/solution/lab7/s4c.ftn

C

C This is the circle program. It calculates the area and passes
C it back to the parent program.

C

program S4C

integer pam(5), buf fer (25) , message(15)
real radius, area(3)
data message/'The area of the circle is @ v/

call rmpar(parm)
lu = parm(l)
call exec(l4,1,buffer,-50)
write(lu,5)buffer
5 format (' The message sent from above is ¢+ ', 50a)

write (1,'("radius: _")')
read (1,*) radius
area = 3.14159 * radius * radius
if (radius .LT. 0) then

write (1,'("invalid data")')
end if

call exec(l4,2,message,~30)
call prtn(area)

end

B-50

Chapter 8 - Lab Solutions

ftn7x,1

- C
C /lab/solution/lab7/s4m.ftn
C
C This is the parent program which schedules ths programs
C circle, triangle, and square. This parent writes out the area.
cC

program parent

implicit integer (a-z)

real area

integer message(25),buffer(lS),circle(3),squace(3),triangle(3),parm(S)
data circle/'s4ac'/, square/'S4S'/, triangle/'34T'/

write (1,'("area program™)')
selection = -1
do while (selection .NE. 0)
write(l,' ("select one:")')
write(1,'(_
+ "0 = finished, 1 = circle, 2 = square, 3 = triangle")')
read (1,*) selection

if (selection .EQ. 0) then
write(l,' ("finished™)')
else
write(l,' ("Enter a message : ")')
, read (1,5) message
5 format (50a)
write(l,' ("Enter LU to be printed at : ")')
read(l,*) lu

endif
if (selection .EQ. 1)

+ call exec (9, circle, 1lu, 6, 0, 0, 0, message, -50)
if (selection .RQ. 2) .

+ call exec (9, square, lu, 0, 0, O, 0, message, -50)
if (selection .EQ. 3) ’

+ call exec (9, triangle, lu, 0, 0, 0, O, message, -50)

if (selection .NE. 0) then
call rmpar (area)
call exec(14,1,buffer,-39)
write(1,10) buffer

10 format (30a)
‘ write(1,20) area
20 fomat (£7.4)
endif
end do
end

B-51

|

Chapter 8 - Lab Solutions

ftn7x,1

C .

C - /lab/solution/lab7/sé4s.ftn

C

C This is the square program which calculates the area of
C a square and passes it back to the parent.

C

program s4s

integer parm(5), buffer(25), message (15)
real side, area
data message/'The area of the square is : '/

call rmpar (parm)
lu = pam(l)
call exec(14,1,buffer,-50)
write(lu,5) buffer
5 format ('The message sent from above is : ',50a)

write (1,'("side: ")')
read (1,*) side
area = side * side
if (side .LT. 0) then
write (1,'("invalid data")')
end if

call exec(l4,2,message,-30)
call prtn(area)

end

Chapter 8 - Lab Solutions

ftn7x,1

C

C /lab/solution/lab7/s4t.ftn

C

C This is the triangle program. It calculates the area of a
C triangle and passes it back to the parent.

C

program S4T

integer pam(5), buffer(25), message (15)
real base, height, area
data message/'The area of the triangle is : '/

call rmpar (parm)
lu = pamm(l)
call exec(14,1,huffer,-50)
write(lu,5)buffer
5 format ('The message sent from above is : ',50a)

write (1,' ("base: _")")

read (1,*) base

write (1,'("height: "™)')

read (1,*) height

area = 0.5 * base * height

if ((base .LT. 0) .AND. (height .LT, 0)) then
write (1,'("invalid data")')

end if

call exec(l4,2,message,-30)
call prtn(area)

ernd

B-53

Chapter 8 - Lab Solutions

{ /lab/solution/lab7/s4c.pas

This child program first prints out a message sent from the parent
and then calculates the area of a circle. The area is passed back

to the parent, so that the parent program can print it out.

$run string 0$
program S4C ;

type
. int = -=32768..32767;
ptype = packed array [1..5] of int;
buftype = packed array [l..50] of char;
outtype = packed array [l..6] of char;
var
message,
buffer : buftype;
where : outtype;
pram ! ptype;
outer,

inp, out : text;

radius, area : real;

lu, hufln : int;
procedure rmpar (VAR pram : ptype); external;
procedure prtn (VAR area : real); external;

procedure cnund (num : int; buffer : outtype); external;

procedure execl4 Salias texec'S (ecode,rcode : int; var bufr
var len : int); external;

begin
\ rmpar (pram) ;
lu := pram[1l];

bufln := =50;
execl4 (14,1 ,buffer,bufln);

cnurd (1lu,where) ;
rewrite(out,where);

}

buftype;

writeln(out,'The buffer passed from the parent is : ', buffer);

rewrite(outer,'l');
reset(inp,'1');

writeln (outer,'radius: ');

read (inp,radius);
area := 3.14159 * radius * radius;

B-54

Chapter 8 -~ Lab Solutions

if radius > 0
then writeln (outer,'area =', area:4:2)
else writeln (outer,'invalid data');

message := 'The area of the circle is : ';
bufln := -30;
execl4 (14,2,message,bufln);

prtn(area);

end.

B-55

Chapter 8 - Lab Solutions

{ /lab/solution/lab7/s4m.pas

This parent program schedules the child programs triangle, square,
and circle. This program sends a message and a specified LU to the
child. The child sends back the area and the parent prints it out. }

program s4m (input, output);

tyve
int = -32768..32767;

progname = packed array [l..6] of char;

buftype = packed array [1l..30] of char;

msgtype = packed array [l..50] of char;
var

square,

circle,

triangle : progname;

area : real;

selection : integer;

bufr ¢ buftype;

message : msgtype;

lu, bufln : int;

procedure exec? $ alias 'exec' $ (icode : int; prog : progname; lu,dumzZ,
dum3,dumd4 ,dum5 : int; var message : msgtype; len : int) ; external;

procedure rmpar (area : real); external;

procedure execl4 $ alias ‘exec' § (icode, rcode : int; var bufr : buftype;
var len : int); external;

begin
circle := 'S4C';
square := 'S45';
triangle := 'S4T';

writeln ('area program');

repeat
writeln ('select one:');
writeln ('0 = finished, 1 = circle, 2 = square, 3 = triangle');
read (selection);

if (selection <> 0) then
begin
writeln('Enter a message to be printed by the child : ');
read (message) ;
writeln('Enter lu number to print the message at : ');
read (lu) ;
end;

B-56

erd.

Chapter 8 - Lab Solutions

case selection of

writeln ('finished');

execd (9, circle, lu, 0, 0, 0, 0, message, -50);
exec9 (9, square, lu, 0, 0, 0, 0, massage, -50);
exec9 (9, triangle, lu, 0, 0, 0, 0, message, -50);

we W NH O
s oo se oo

end

if (selection <> 0) then
begin
rmpar (area) ;
bufln := -30;
execl4(14,1,bufr,bufln);
writeln(bufr,area);
erd;

until selection = 0;

B-57

Chapter 8 - Lab Solutions

{ /lab/solution/lab7/s4s.pas

This child program first prints out a message sent from the parent
and then calculates the area of a square. The area is passed back
to the parent, so that the parent program can print it out.

$run string 0%
program S4S ;

type

int = -32768..32767;

ptype = packed array [1l..5] of int;

buftype = packed array [1..50] of char;

outtype = packed array [l..6] of char;
var

message,

bufr : buftype;

where : outtype;

pram : ptype;

outer,

inp, out ¢ text;

side, area : real;

lu, bufln : int;

procedure mpar (VAR pram : ptype); external;
procedure prtn (area : real); external;
procedure cnumd (num : int; buffer : outtype); external;

procedure execl4 $alias texec'S (ecode,rcode : int; var bufr : buftype;
var len : int); external;

begin

rmpar (pram) ;
1lu := pram[l];

bufln := -50;

execl4 (14,1 ,bufr,bufln);
cnurnd (1u, where) ;
rewrite(out,where);

writeln(out,'The buffer passed fram parent is : ',bufr);

rewrite(outer,'l');
reset(inp,'l");

writeln (outer,'side: _');

B-58

end.

Chapter 8 - Lab Solutions

read (inp,side);
area := side * side;

if side > 0
then writeln (outer,'area =', area:4:2)
else writeln (outer,'invalid data');

message := 'The area of the square is : ';
bufln := -30;
execl4 (14,2,message,bufln);

prtn(area);

B-59

Chapter 8 - Lab Solutions

{ /lab/solution/lab7/s4t.pas

This child program first prints out a message sent from the parent
and then calculates the area of a triangle. The area is passed back
to the parent, so that the parent program can print it out.

$run_string 0%
program S4T ;

type
int = -32768..32767;
ptype = packed array [l..5] of int;

buftype = packed array [l..50] of char;

outtype = packed array [l..6] of char;
var

message,

buffer : buftyve;

where : outtype;

pram : ptype;

outer,

inp, out : text;
base, height, area : real;
lu, bufln : int;

procedure rmmpar (VAR pram : ptype); external;
procedure prtn (VAR area : real); external;
procedure cnumd (num : int; buffer : outtype); external;

procedure execl4 $alias 'exec'$ (ecode,rcode : int; var bufr : buftype;
var len : int); external;

begin
rmpar (pram) ;
lu := pram[l];

bufln := =50;
execl4 (14,1 ,buffer,bufln);

cnumd (lu,where) ;
rewrite(out,where);

writeln(out, 'The buffer passéd from the parent is : ',buffer);

rewrite(outer,'l');
reset(imp,'l');

writeln (outer,'base: ');

read (inp,base);
writeln (outer,'height: ');

B-60

erd.

Chapter 8 - Lab Solutions

read (inp,height);
area := 0.5 * base * height;

if (base > 0) and (height > 0)
then writeln (outer,'area =', area:4:2)
else writeln (outer,'invalid data');
message := 'The area of the triangle is : ',
bufln := -30;
execl4 (14,2 ,message,bufln);

prtn(area);

B-61

Chapter 8 - Lab Solutions

FTN7X,L

o /LAB/SOLUTION/LABR8/S1A.FTN

o

C This parent program places values into SAM via class 1/0
C

PROGRAM PARENT
DIMENSION IBUF(20), ISON(3)
DATA ISON/6HCHILD /

C**

Cc* Initial some variables *
C**

J=1
ISIZE = 20
ICLAS = 0

C**

C* Give user prompt to user *
C**

WRITE (1,100)

100 FORMAT(/"ENTER MESSAGE OF 40 CHAR OR LESS. ENTER XX ",
+"TO0 TERMINATE.")

C***

c* Start loop to receive and send messages *
C***

200 WRITE (1,'(/"MESSAGE ",I3," :> _™") J

C***

C* Clear user array to ready it for next read *
C***

DO 400, I = 1,20
IBUF(I) 2H
400 CONTINUE

C***

c* Read message into user's array *
C***

ICODE = 1

CALL EXEC(ICODE+100000B,1+4OOB,IBUF,ISIZE,*lOOO)
C
C Call ABRHG, so that IB will contain the actual size of the huffer
C

CALL ABREG(IA, IB)

C***

B-62

Chapter 8 - Lab Solutions

C* Allocate class ownership *
C***

IFOIC = 1
CALL CLRQ (IFUNC,ICLAS)

500 IF (IBUF (1) .NE. 2HXX) THEN

J = J+l

ICODE = 20

CALL EXEC(ICODE+IOOOOOB,0,IBUF,IB,N,M,ICLAS,*IOOO)
600 GOTO 200

C***

C* Schedule son assigning him class ownership *
C***

ELST
IFUNC = 1
CALL CLRQ (IFUNC,ICLAS,ISON)
ICODE=10
CALL EXEC(ICODE+100000B,ISON,ICLAS,J,ISIZE,*1000)
END IF

STOP

C**

C* Error messages *
C**

1000 CALL ABRRG (IA,IB)
WRITE (1,1100) ICODE,IA,IB

1100 FORMAT(/"ERROR. IN EXEC CALL",I3," ERROR ",A2," NUMBER ",A3)
END

B-63

Chapter 8 - Lab Solutions

FTN7X,L

C /LAB/SOLUTION/LABS/SlB.FTH

C

C This child program retrieves values from SAM.
C

PROGRAM CHILD
DIMENSION IBUF(20), IPM(5)

C**

Cc* Get parameters passed by PARENT *
C**

CALL RMPAR(IPHM)
ICLAS=IPM(1)
INUM=IPM(2)
ISIZE=IPM(3)

C**

C* Get buffer and output to user *
C**

DO 1000 I = 1,INUM-1
CALL EXEC(21+100000B,ICLAS,IBUF,ISIZE,*QOOO)
CALIL ABREG (IA, IB)
WRITE(1,'(20a2)') (IBUF(J),J=1,IB)
C
1000 OONTINUE
STOP

C**

C* Error message *
C**

9000 CALL ABREG(IA,IB)
WRITE(1,9100) 1A, IB
9100 FORMAT(/"ERROR IN EXEC, ERROR ",A2," NUMBER ",A3)

END
{
/labh/solution/lab8/sla.pas
This parent program stores values in SaM via Class I/0
}
PROGRAM parent (INPUT,OUTPUT);
TYPE

int = -32768..32767;

stype = packed array [l..6] of char;
btype = packed array [1..50] of char;
rtype = packed array [1..12] of char;

B-64

Chapter 8 - Lab Solutions

VAR
ibuf : btype;
ison : styne;
runstr : rtype;
J, isize, iclas, icode, ifunc : int;

PROCEDURE EXEC 20 $ALIAS 'EXEC'S

(icode,icnwd : int; ibuf : btype; isize,iopl,iop2,iclas : int);
EXTERNAL;

PROCEDURE CLRQ SALIAS 'CLRQ'S
(ifunc, iclas : int); EXTERNAL;

PROCEDURE EXEC 9 $ALIAS 'EXEC'S

(icode : int; ison : stype; iclas,duml,dum2,dum3,dumd : int;
runst : rtype; runlen : int); EXTERNAL;

BEGIN
runstr := 'ru,CHIID,1,1';
ison := 'CHILD';

isize :
iclas :
ifunc :
J=1;

-50;

= o
~e we

clrq(ifunc,iclas);

writeln;

writeln('Enter message of 50 char or less. Enter XX to terminate.');
writeln;

REPEAT
writeln('Message #',j:3,' ')
read(ibuf);
J = j+1;
icode := 20;
exec 20(icode,0,ibuf,isize,0,0,iclas);
UNTIL (ibuf = 'XX');

icode := 9;

exeq_9(icode,ison,iclas,0,0,0,0,runstr,;12);
END.

B-65

Chapter 8 - Lab Solutions

{ /lab/solution/lab8/slb.pas
This child program retrieves the values fron the SAM buffer. }

PROGRAM child@ (input,output);

TYPE
int = -32768..32767;
btype = packed array [1..50] of char;
ntype = array [1..5] of int;
VAR
ibufr : btype;
oram : ptype;

iclas, isize, icode : int;

PROCEDURE EXEC_Zl SALLIAS 'EXEC'S
(ICODE,ICLAS : int; IBUFR : btype; ISIZE : int); EXTERNAL;
{ Exec 21 call - class get } '

PROCEDURE PARAMS SALLIAS 'pPas.NunericParms'3
(VAR PRAM : ptype); EXTERNAL;
{ pick up the parameters sent from the 'parent' program }

BEGIN
params (pram) ;
iclas := pranll]; { pram[l] contains the class number }
isize := -50;
icode := 21;
{ GET THE DATA FROM SAM AND PUT IT IN 'IBUFR' }
exec_?l(icode,iclas,ibufr,isize);
IF (ibufr = 'XX'")
THEN write('There were no messages sent from the parent !!');
WHILE (ibufr <> 'X¥X') DO
BE-IN
{ PRIVT THE DATA }
write('The huffer passed from the parent is : D
writeln(ibufr);
exeq_2l(icode,iclas,ibufr,isize);
END;
{}
END.

B-65

Chapter 8 - Lab Solutions

FTN7X, L

C

C /LAB/SOLUTION/LABS/S2A.FTN

C

C This parent program places values in SAM via class I/0. The son
C is scheduled after the first buffer in placed in SAM, instead of
C waiting for the parent to finish.

C

PROGRAM PARENT
DIMENSION IBUF(20), ISON(3)
DATA ISON/6HCHILD /

c**

C* Initial some variables *
c**

J =1

ISIZE = 20
IFIING = 1
ICLAS = 0

CALL CLRQ (IFUNC,ICLAS, ISON)

c**

Cc* Give user prompt to user *
c**

WRITF(1,100) A
100 FORMAT(/"ENTER MESSAGE OF 40 CHAR OR LESS. ENTFR XX ",
+"TO TERMINATE.")

c***

C* Start loop to receive and send messages *
c***

200 WRITE(1,'(/"MESSAGE",I2," :> M"Y Ja

c**

Cc* Clear buffer to ready it for new message *
c**

DO 400, 1=1,20
IBUF (I)=2H
400 CONTINUE

c**

Cc* Read the user's message into a user array *
c**

ICODE=1
CALL FXFEC(ICODE+1000N03,1+4003,I3UF, ISIZE,*1000)

(@]

B-h7

|

Chapter 8 - Lab Solutions

C Call ABRP:, so that IB can contain tne actual size of the buffer
C
CALL ABREG (IA, 1IB)

C**

C* Pass bhuffer to SAM *
C**

500 ICODE=20
CALI, EXEC (ICODE+1000008B,0,IBUY,IB,N,M,ICLAS,*1000)

C**

Cc* I1f first message then schedule son *
C**

600 IF (J .NE. 1) GOTO 700
ICODE=10
CALL EXEC(ICODE+100000B,ISON,ICLAS,ISIZE,*1000)

C**

Cc* Terminate program if XX is received *
C**

700 IF (IBUF(l) .EQ. 2HXX) STOP
J = J+l
80N GOTO 200

C**

C* Error messages *
C**

1000 CALL ABRIG(IA,IB)
WRITE(1,1100) ICODE,IA,IB

1100 FORMAT(/"ERROR IN EXEC CALL",I3," ERROR ",A2," NUMBER ",A3)
END

Chapter 8 - Lab Solutions

FTN7X,L

C

C /LAB/SOLUTION/LAB8/SZB.FTN

C

C This child program retrieves buffers from SaM. The child is
C scheduled after the first buffer is inputted.

C

PROGRAM CHILD
DIMEMSION IBUF(20), IPM(5)

C***

C* Get parameters passed by PARENT *
C***

CALL RMPAR(IPM)
ICLAS=IPM(1)
ISTIZE=1PM(2)

C***

C* Get buffer from SAM *
C***

CALL EXEC(21+lOOOOOB,ICLAS+ZOOOOB,IBUF}ISIZE,*9000)

DO WHILE (IBUF(l) .NE. 2HXX)

C***

C* Output buffer *
C***

WRITE (1,'("THE MESSAGE PASSED FROM THE PARENT IS:"™")
WRITE (1,'(/20A2)') (IBUF(J), J=1,ISIZE)

DO 400, I = 1,20
IBUF(I) = 24
400 CONTINUE

CALL EXEC(21+lOOOOOB,ICLAS+ZOOOOB,IBUF,ISIZE,*QOOU)
END DO

c**

C* Do an extra GET to clean up the class number*
C**

CALL EXEC(21+100000B,ICLAS, IBUF,ISIZE,*9000)
STOP

C***

C* Error messaqge *
C***

3-69

|

Chapter 8 - Lab Solutions

9000 CALL ABREG(IA,IB)
WRITE(1,9100) IA,IB

- 9100 FORMAT(/"ERROR IN EXEC, ERROR ",AZ," NUMBER ",A3)
END

B-70

Chapter 8 - Lab Solutions

FTN7X,L

C

C /ULAB/SOLUTINN/LABS/S2B.FTN

C

C This child program retrieves buffers from SAM. The child is
C scheduled after the first buffer is inputted.

C

PROGRAM CHILD
DIMENSION IBUF(20), IPM(5)

C***

Cc* Get parameters passed by PARENT *
C***

CALL RMPAR(IPM)
ICLAS=1IPM(1)
ISIZE=IPM(2)

C***

C* Get buffer from SaM *
C***

CALL EXEC(21+lOOOOOB,ICLAS+ZOOOOB,IBUF,ISIZE,*9000)

DO WHILE (IBUF(l) .NE. 2HYX)

C***

C* Output bhuffer *

c***

WRITE (1,'("THE MESSAGE PASSED FROM THE PARENT IS : ")')
WRITE (1,'(/20A2)"') (IBUF(J), J=1,ISIZE)

DO 400, I = 1,20
IBUF(I) = 2H
400 CONTINUE

CALL EXEC(21+IOOOOOB,ICLAS+ZOOOOB,IBUF,ISIZE,*9000)
END PO

C**

c* Do an extra CET to clean un the class number*
C**

CALL EXEC(21+100000B,ICLAS,IBUF,ISIZE,*9000)
STOP

C***

c* Error message *
C***

B-71

|

Chapter 8 - Lab Solutions

9000 CALL ABREG(IA,IB)
WRITE(1,9100) IA,IB
9100 FORMAT(/"ERROR IN FXEC, ERROR ",A2," NUMBER ",A3)

END

B-72

Chapter 8 - Lab Solutions

ftn7x,1
/lab/solution/lab8/s3a.ftn
This program uses class numbers to pass a message to the square
program.,

OO0

program parent

implicit integer (a-z)
integer message (25),square(3)
data square/'SQUARE'/

iclas = 0
ifunc = 1
call clrg (ifunc,iclas)

write(l,'("Enter a message : ") ')
read (1,5) message
5 format (50a)
write(l,'("Enter lu to be printed at : ")
read (1,*) 1lu

call exec(20 + 100000B, 0, message, -50, n, n, iclas, *1000)
ifunc =1
call clrg(ifunc,iclas,square)
call exec (9, square, lu, iclas)
stop
1000 call abreg(ia,ib)
write(1,1100) icode,ia,ib
1100 format('Error in SQUARE, Call ',I3,' Error ',2a2)

end

B-73

Chapter 8 - Lab Solutions

ftn7x,1

cC

C /lab/solution/lab8/s3s.ftn

cC .

C This child program recieves a message from the parent via
C class 1/0.

C

program SQUARE.

integer parm(5), message(25)
real side, area

c¢all rmpar (parm)
lu = pam(1)
iclas = parm(2).

call exec(2l,iclas,message,-50)

write (1,'("side: ™")
read (1,*) side
area = side * side
if (side .GT. 0) then
write (lu,'("The message sent from above is

write (lu,'("area = ",f4.2)') area
else v
write (lu,'("invalid data")')
end if
end
B-74

:+ ",50a)') message

Chapter 8 - Lab Solutions

/lab/solution/lab8/s2a.pas

This parent program stored values in SAM via Class 1/0.

PROGRAM parent (INPUT,OQUTPUT) ;

TYPE
int = -32768..32767;
stype = packed array [l..6] of char;
btype = packed array [1..50] of char;
rtype = packed array [1..12] of char;
VAR

ibuf : btype;

ison : stype;

runstr : rtype;

j, isize, iclas, icode, ifunc : int;

PROCEDURE EXEC 20 $ALIAS 'EXEC'S
(icode,icrwd : int; ibuf : btype; isize,iopl,iop2,iclas : int);
EXTERNAL;

PROCEDURE SETOWN SALIAS 'CLRQ'S
(ifunc, iclas : int; ison : stype); EXTERMAL:

PROCEDURE EXEQ_lO SALIAS 'EXEC'S
(icode : int; ison : stype; iclas,duml ,dumZ ,dum3,dum4 : int;
runst : rtype; runlen : int); EXTERNAL;

BEGIN
runstr := 'ru,CHILD,1,1';
ison := 'CHILD ';

isize :
iclas :
ifunc :
j o= 1;

=50;

o
— O

~e we

setown (ifunc,iclas,ison);

writeln;

writeln('Enter message of 50 char or less. Fnter XX to terminate.');
writeln;

REPEAT
writeln('Message #',j:3,' > ");
readln(ibuf);
icode := 20 ;
exec 20 (icode,0,ibuf,isize,0,0,iclas);
IF j =1 THUEN

B-75

|

Chapter 8 - Lab Solutions

BEGIN
icode := 10; »
exeq_lO(icode,ison,iclas;0,0,0,0,tunstr,—12);

END;
Je=3+ 1
UNTIL (ibuf = 'XX');
END. ,
PROGRAM child (input,output);
CONST
sc bit = 8192;
TYPE :
int = -32768..32767; ,
btype = packed array [l..50] of char;
ptype = array [1..5] of int;
VAR
ibufr : btype;
pran : otype;

iclas, isize, icode : int;

PROCEDURE EXEC 21 $SALIAS 'EXEC'S

(ICODE, ICLAS : int; IBUFR : btype; ISIZE : int); EXTERNAL;
{ Bxec 21 call - class get }

PROCEDURE PARAMS SATIAS 'pPas. NumericParms'$
(VAR PRAM : ptype); EXTERNAL;
{ Pick up the parameters sent from the ‘parent' program }

PROCEMURE CLRQ (ifunc,iclas : int); EXTERNAL;

BEGIN
params (pram) ; { pram[l] contains the class number }
iclas := pram[l] + sc bit;
isize := -50;
icode := 21;

{ GET THE DATA FROM SAM AMD PUT IT IN 'IBUFR' }
exeq_Zl(icode,iclas,ibufr,isize);

IF (ibufr = 'XX') _
THEN writeln('There were no messages sent from the parent !!');

WHILE (ibufr <> 'XX') DO
BEGIN
{ PRINT THE DATA }
write('The buffer passed from the parent is ¢ ')
writeln(ibufr);

3-76

Chapter 8 - Lab Solutions -

exec 21(icode,iclas,ibufr,isize);
END;
clrqg(2,iclas);

END.

B-77

Chapter 8 - Lab Solutions

{ /lab/solution/lab8/s3m.pas
This parent program uses Class I/0 to send messages to the child

program - the 'square' program. The child tnen computes the area
of lhe square and prints it out.

program s3m (input, output);

type
int = -32768..32767;
progname = packed array [l..6] of char;
msgtype = packed array [1..50] of char;

var
selection : integer;
square : progname;
message : msgtype;
func,

lu,class : int;

procedure exec9 $alias 'exec'$ (icode: int; prog: progname; lu,class : int);
external;

procedure exec20 $ alias 'exec' $ (icode, dum : int; message : msgtype; len,
duml, dum2, class : int); external;

procedure clra (func, class : int; name : progname); external;

begin
square := 'S38';

class := 0;
func := 1;
clrg (func,class,'S38');

writeln ('area program');

writeln('Enter a message to be printed by the child : ');
read (message) ;

writeln('Enter lu number to print the message at : B
read (lu) ;

exec20 (20,0,message,-50,0,0,class);
clrq(func,class,square) ;

exec9 (9, square, lu, class);
end.

B-78

Chapter 8 - Lab Solutions

{ /lab/solution/lab8/s3s.pas
This child program is sent a message fram the parsnt using Class 1/0.
The child then calculates the area of a square and prints it out.

program S3S ;

type -
int = -32768..32767;
ptype = packed array [l..5] of int;
msgtype = packed array [l..50] of char;

Outtype = packed array [l..6] of char;
var

message ¢ msgtype;

where : outtype;

pram : Dtype;

outer,

inp, out : text;
side, area : real;
lu, class : int;

procedure rmpar (VAR pram : ptype); external;
procedure cnumd (num : int; buffer : outtype); external;

procedure exec2l Salias 'exec'$ (icode, class : int; inessage : msgtype;
len : int); external;
begin '
rmpar (pram) ;
lu := pram[l];
class := pram[2];

exec21(21,class,message,-50) ;

cnumd (lu,where) ;
rewrite(out,where);

rewrite(outer,'l');
reset(inp,'l');

writeln (outer,'side: ')y
read (inp,side);
area := side * side;
if side > 0 then
begin
writeln (out,'The message sent from above is : ' ,message) ;
writeln (outer,'area =', area:4:2);
end;
if side < 0 then writeln (outer,'invalid data');

end.

B-79

|

}

Chapter 8 - Lab Solutions

FIN7X,L
C
C /LAB/SOLUTION/LAB8/S4A.FTN

C
- PROGRAM PARENT

DIMENSION IBUF (20),ISON(3)

DATA ISON /6HCHILD /,J/0/

Allocate two class numbers assign ownership to the father
then schedule the son.

OO0

IFUNC = 1

CALL CLRQ (IFUNC,ICLASL)

CALL CLRQ (IFUNC,ICLAS2)

ICODE=24

CALI EXEC (ICODE+100000B,ISON,ICLAS],ICLAS2,*1000)

Prompt for the A buffer

WRITE (1,100)
00 FORMAT('ENTER A MESSAGE OF 40 CHARACTERS OR LESS. XX TO END')

P00

a

Read the user buffer, pick up the transmission log
ICODE=1
CALL EXEC(ICODE+100000B,1+400B,IBUF,20,*1000)
CALL ABREG(IA,IB)
C pass the buiffer to SAM
ICODE=20 :
CALL EXEC(ICODE+100000B,0,IBUF,IB,N,N,ICLASL,*1000)
J=J+1 '
C Check for XX to end
IF (IBUF(1l) .EQ. 2HXX) GOTO 10
C Check for four buffers in SAM
IF(J .LT.4) GOTO 5
C Four in SAM already, suspend until son says he's consumed one
ICODE = 21
CALI EXEC(ICODE+100000B,ICLAS2+20000B,I,1,*1000)
J=J-1
GO TO 5

C Ready to end, be sure all messages received

B-80

Chapter 8 - Lab Solutions

10 DO WHILE (J.NE.OQ)

ICODE = 21
CALL EXEC(ICODE+100000B, ICLAS2+20000B,1,1,*1000)
J=J -1
END DO
STOP
C Handle EXEC errors

1000 CALL ABREG(IA,IB)
WRITE(1,200) ICODE,IA,IB

200 FORMAT('ERROR IN L174A, CALL',I3, ' ERROR ',2A2)
END

B-81

Chapter 8 - Lab Solutions

FTN7X,L

C

C /LAB/SOLUTION/LABB/S4B.FTN
C

PROGRAM CHILD
DIMENSION IBUF (20) ,IPRAM(5)

C . Pick up class numbers with RMPAR

CALI. RMPAR(IPRAM)
ICL1 = IPRAM(1)
ICL2 = IPRAM(2)
C Pick up a buffer from the father, let father know he got it

10 ICODE = 21
CALL EXEC(ICODE+100000B,ICL1+200008,IBUF,20,*1000)
CALL ABRES(IA,IB)
ICODE=20
CALL EXEC(ICODE+100000B,0,I,1,MN,N,ICL2,*1000)

C Check for the last buffer, print the buffer
IF (IBUF(1l) .EQ. 2HXX) GO TO 20

WRITE(1,100) (IBUF(I),I=1,IB)
100 FORMAT(' MESSAGE FROM PARENT IS ',20A2)

C Go get the next buffer
GO TO 10
C Cot the last buffer, so end.
20 STOP
C EXEC error reporting section

1000 CALL ABREG(IA,IB)
WRITE(1,200) ICODE,IA,IB

200 FORMAT('L174B EXEC ERROR CALL',I3,' FRROR ',2A2)
END

B-82

Chapter 8 - Lab Solutions

/lab/solution/lab8/sd4a.pas

PROGRAM parent (input,output) ;

CONST
: sc_bit'= 8192;

TYPE
int = =-32768..32767;
stype = packed array [l..6] of char;
btype = packed array [l..50] of char;
rtype = packed array [l..12] of char;

VAR

ibuf : btype;

ison : stype;

runstr : rtype;

i, j, isize, clasl, clas2, icode, ifunc : int;

PROCEDURE EXEC__ZO SALIAS 'EXEC'S
(icode,icmd : int; ibuf : btype; isize,iopl,iop2,clasl : int);
EXTERNAL;

PROCEDURE EXEC 21 SALIAS '"EXEC'S
(icode, clas2 : int; i : int; len : int); EXTERNAL;

PROCEDURE CLRQ S$ALIAS 'CLRQ'S
(ifunc, clasl : int); EXTERMNAL;

PROCEDURE EXEC_24 SALIAS 'EXEC'S
(icode : int; ison : stype; clasl,clas? : int); EXTERNAL;

BEGIN .
runstr := 'ru CHILD 1 1';
ison := 'CHILD';

isize := -50;
clasl := 0;
clas2 := 0;
ifunc := 1;

3 =05

clrg(ifunc,clasl);
clrg(ifunc,clas2);

icode := 24;
exec 24(icode,ison,clasl,clas2);

writeln;

writeln('Enter message of 50 char or less. Enter XX to end !');
writeln;

B-83

END.

Chapter 8 -~ Lab Solutions

REPEAT

REPEAT
writeln('Message is > ');
read(ibuf);
icode := 20 ;
exec 20(icode,0,ibuf,isize,0,0,clasl);
j i= 341

UNTIL ((j = 4) OR (ibuf = 'XX'"));

IF (j = 4) THEN
BEGIN
icocde := 21 ;
exec 21 (icode,clas2+sc bit,i,l);
J = 3-1;
END;
UNTIL (ibuf = 'XX');

B-84

Chapter 8 - Lab Solutions

/lab/solution/l1ab8/s4b.pas

}

$run string 0%
PROGRAM CHILD ;

CONST
sc_bit = 8192;
TYPE
int = -32768..32767;
btype = packed array [l..50] of char;
ptype = array [l..5] of int;
VAR

ibufr : btype;

pram : ptype; .
i, clasl, clas2, isize, icode : int;
out : text;

PROCEDURE EXEC 21 SALIAS 'EXEC'S

(ICODE,clasl : int; IBUFR : btype; ISIZE : int); EXTERNAL;
{ Exec 21 call - class get }

PROCEDURE EXEC 20 SALIAS 'EXEC'S
(icode,icrwd :int; i :
EXTERMAL;

int; len,iopl,iop2,clas2 : int);

PROCEDURE PARAMS SALIAS 'Pas.NumericPamms'$
(VAR PRAM : ptype); EXTERNAL;

{ Pick up the parameters sent from the 'parent' program }

PROCEDURE CLRQ (ifunc,clasl : int); EXTERNAL;

BEGIN
params (pram) ; { pram[l] contains the class number }
clasl := pram[l] + sc_bit;
clas2 := pram{2];
isize := -50;

rewrite(out,'1l');

{ PICK UP BUé‘FER FROM THE PARENT, LET PARENT KNOW HE GOT IT }
icode := 21;

exec 2l(icode,clasl,ibufr,isize);

icode := 20;

exec 20(icode,0,1,1,0,0,clas2);

IF (ibufr = 'XX')
THEN writeln(out,'There were no messages sent fram the parent !!');

B-85

END.

Chapter 8 - Lab Solutions

WHILE (ibufr < 'XX') DO
BHGIN

{ PRINT THE DATA }

write(out,'The buffer passed from the parent is
writeln(out,ibufr);

icode := 21;

exec 21(icode,clasl,ibufr,isize);

= " jicode := 20;

exeq_20(icode,O,i,l,0,0,clasZ);

')

14

Chapter 8 - Lab Solutions

FTN7X,L
o /lab/solution/lab8/s5.£ftn
C

PROGRAM S5

DIMENSION IBUF (20)

C ***
C * This program will prampt the user for a string of *
C * characters and print a message on the line printer*
C * until the user responds, *
C ***
C Prampt user
C .
WRITE (1,*) 'ENTER SOME RESPONSE TO STOP PRINTER!'
C Allocate class ownership
C
ICLAS = 0
IFUNC = 1
CALL CLRQ (IFUNC,ICLAS)
C Read reply into SAM buffer
C
ICODE=17
CALL EXEC(ICODE+100000B,1+400B,IBUF,ZO,N,M,ICLAS,*IOOO)
C Try to get buffer read in with no wait
C

150 ICODE=21
200 CALL EXEC (ICODE+100000B,ICLAS+100000B,IBUF,20,*1000)

C If buffer was present for Class Get jump out of loop

250 CALL ABREG (IA,IB)
DO WHILE (IA .LT. 0)

C Give message through LINE PRINTER

300 WRITE(6,' (/" PLEASE KILL ME QUICKLY!")')
CALL EXEC (ICODE+100000B,ICLAS+1000008B,IBU%,20,*1000)
CALL ABREG (IA,IB)

END DO

STOP

Error messages

=HOQON

000 CALL ABREG(IA,IB)
WRITE(1,1100) ICODE,IA,IB
1100 FORMAT(/“ERROR IN EXXEC CALL ",I2," ERROR "“,A2," NUMBER ",A2)

B-87

Chapter 8 - Lab Solutions

END
' PROGRAM linep(input,output);
CONST
echo bit = 256;
nw bit = -32768;

TYPE
int = -32768..32767;
btype = packed array [1..20] of char;

VAR
bufr : btype;
a, b, ifunc, iclas, bufln, icode, cntwd : int;
lu : text;

PROCEDURE EXEC 21 $ALIAS 'EXEC'S
(ICODE,ICLAS : int; IBUFR : btype; ISIZE : int); EXTERNAL;

PROCEDURE EXEC 17 S$SALIAS 'EXEC'S
(icode,cntwd : int; bufr : btype; bufln,duml,dum2,iclas : int);
EXTERNAL;

PROCEDURE ABREG (VAR a, b : int); EXTERNAL;

PROCEDURE CLRQ (ifunc,iclas : int); EXTERNAL;

BEGIN
writeln('ENTER SOME RESPONSE TO STOP PRINTER! !') ;

rewrite(lu,'6');
bufln := -20;
iclas

ifunc
clrg(ifunc,iclas);

0
1

e we

icode := 17;
cntwd := 1 + echo bit;
exec 17 (icode,cntwd, bufr,bufln,0,0, iclas);
icode := 21 H
iclas := iclas + nw bit;
exec 21(icode,iclas,bufr bufln);
abreg(a b) ;
WHILE (a < 0) DO
BEGIN
writeln(lu,'PLEASE KILL ME QUICKLY');
exec 21 (icode,iclas,bufr (hufln);
abreg(a,b);
END;
END.

B-88

Chapter 9 - Lab Solutions

FTN7x,L

/LAB/SOLUTION/LARY/S1 . FTN

HONeKP!

PROGRAM CREATE
DIMENSION INCB(144), ISIZE(2), IBUF(1)

C
C This program is designed to create a type 2 file with
C record length = 1 word, and blocks = 5
C hkhkkkhkhkhkkhkhkkhkkhkhkkhkhkhkhkhkhkhkhhkkkhkhhkkhkkkhkkhkkhkkhkkhkkkkkkkk
C ok *
c * Create the file using an FMP call *
C * *
C khkhkhkhkhkhkkhhkkhkhkkhkkhkhhhkkhkkkkkhkkkkkhkkkkkhkhkkhkkkkkhkkkkkk
ISIZE (1) = 5
ISIZE (2) =1
ITYPE = FMPOPEN(IDCB,IERR,'XXTEMP:::2:5:1','wc’',1)
IF (ITYPE .LT. 0) GOTO 1200
C
C Write each value to each record
C

200 J=ISIZE(1l)*128/ISIZE(2)
300 DO 1000 I=1,J

IRUF(1)=1
C hhkhkhkhkhkkkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkkhkhkkhkhkhhkhkhhkhkhhhkhhhkhkhkkkk
C * *
C * Write to the file using an FMP Call *
C * *
C AR AKRKAARKRAAKARRRARRKRA AR ARk Ak hkhkAhkhkhhkhkAkhkhkhhhkhkhkhhk
LENGTH = FMPWRITE(IDCB,IERR, IBUF,2)
IF (LEMGTH .LT. 0) GOTO 1200
1000 QONTINUE
c
C Give user message that the process is complete
c
WRITE(l,*) 'THE FILE HAS BEEN CREATED AND WRITTEN TO !!'
C khkkhkkkhkhkhkkhkhkhkhkhkhhhhkhkhkkkhkhkhkhkkhkhhhkhkhkhkkhkdhhkhkhkhkkk
C * , *
C * Close the file using an FMP call *
C * *
C khkkkhkkhkhkhkhkhkkkhkkkhkhkkhkhkkkhkhkkhkkkkkhkhhkkhkkhkkihkkkkkkkk
IERROR = FMPCLOSE (IDCB, IERR)
STOP
cC
C Error in creating the file
c
1200 CALL FMPREPORTERROR(IERR,'XXTEMP')

IERROR = FMPCLOSE(IDCB,IERR)
END

B-39

Chapter 9 - Lab Solutions

/lab/solution/lab%/sl.pas

1
' PROGRAM create (INPUT,OUTPUT) ;

TYPE
int = -32768,.32767;
filetype = packed array [l..64] of char;
optiontype = packed array [l..2] of char;
dcbtype = array [l..144] of int;
sizetype = array [l..2] of int;

VAR
: dcb : dcbtype;

size : sizetype;

num, len, error, err, recnum, count : int;
filename : filetype;

option : optiontype;

opts, filedesc : integer;

FUNCTION strdsc (filenamr : filetype; startchar, nchars : int): integer;

EXTERNAL;

FUNCTION optdsc $ ALIAS 'strdsc' $
(option : optiontype; startchar, nchars : int): integer;
EXTERNAL;

FUNCTION fmpopen (VAR dcb : dcbtype; VAR error: int; name,options :
buffers : int) : int; EXTERNAL;

FUNCTION finpwrite (VAR dcb : dcbtype; VAR error, count, length : int)

EXTERNAL;
FUNCTION fmpclose {(dch : dcbtype; error : int) : int; EXTERNAL;

PROCEDURE fmpreporterror (VAR error : int; VAR filename : integer);

EXTERNAL;

BEGIN
size[l] := 5;
size[2] := 1;

{ Convert 'xxprog' to a FORTRAN compatible character string. }

filename :
filedesc :

'xxprog:s:2:5:1';
strdsc(filename,1,64);

{ Convert the option to a FORTRAN compatible character string. }

option := 'wc';
opts := optdsc(option,l,2);

B-930

Chapter 9. - Lab Solutions

{ Open the 'xxprog' file. '}

IF (fmpopen(dcb,err,filedesc,opts,l) < 0)
THEN fmpreporterror(err,filedesc);
recnum := size[l] * 128 DIV sizel[2];
FOR count := 1 to recnum DO
BEGIN
num := count;
len := 2;
IF (fmpwrite(dch,err,num,len) < 0)
THEN fmpreporterror (err,filedesc);
END;

Writeln('The file ''xxprog'' has been created and written to !!');
error := fmpclose(dcb,err);

END.

Chapter 9 - Lab Solutions

FTN7X,L
C
C /LAB/SOLUTION/LAB9/S2.FTN
C
PROGRAM UPDATE
C
INTEGER IDCB(144), IERR
CHARACTER*64 FNAMF
C

WRITE(1l,*) ' WHAT IS THE NAME OF YOUR FILE? '
READ (1,102) FNAME
102 FORMAT(A64)

C khkhkhkhkhkhkhhkhkkhkhkhkhhhkhkhkhkhhkhhkhkhkhkhkhhkhkhkhhkhkhkhhkhkhkiki
C * Open the file *
C hhkdkkAhhkkhkhkhkhkhkhkhkhkhhkhkhhhkhkhkhkhkhhhkhkhkhkhkhkhkhkhkhhhkhkhk
ITYPE = FMPOPEN(IDCBR,IERR,FNAME, 'wou',1l)
IF (ITYPE .LT., 0) GOTO 90
C AEKKAKKKRAAKAAKAKA A A kA A A AkAhhkAhkAhkhkhkAhkhkAAkhkkhkAk
C * Store 7777B into the first record *
C KAEAKRKRAAA AR AR AR AAA KA A AR A A A ARARAAAA Ak Ak hAAhkkk
NBEWVAL = 7777R
LENGTH = FMPWRITE(IDCB,IERR,}NEWVAL,1)
IF (LENGTH .LT. 0) GOTO 90
C hhkkkhkhkhkhkhkhkhkhkhhkkhkhkhkhkhkhkhkhhkkhhkkkhhkhkhkhkhkkhkkkkk
C * Close the file and terminate *
C hhkdkkhkhkkhkhkhkdkhkhkkhkhkhkhkhkhkkhkkhkhkhkhkhkhkhkhkhkhkkhkkkhkikikikik
IERROR = FMPCLOSE(IDCB,IFERR)
STOP
C KEKAKRAKKKRAAKAAKRAAAR AR Ak kA hhhhkhhkhhkhhkhkhkhkhkhkkkik
C * Error processing *
C AREKRRKKARRAKR AR ARKR A AR A A AR A AARAAAAAARKRAAKRA AKX

90 CALL FMPREPORTERROR (IERR,FMNAME)
IERROR = FMPCLOSE(IDCB,IERR)

END

Chapter 9 - Lab Solutions

{
/lab/solution/lab9/s2.pas
}
PROGRAM update (INPUT,OUTPUT) ;
TYPE
© int = =32768..32767;
filetype = packed array [l..64] of char;
optiontype = packed array [1..3] of char;
dcbtype = array [1..144] of int; .
VAR

dcb : dcbtype;

newval, len, error, err : int;
filename : filetype;

option : optiontype;

opts, filedesc : integer;

FUNCTION strdsc (filenamr : filetype; startchar, nchars : int): integer;
EXTERNAL;

FUNCTION optdsc S ALIAS 'strdsc' $

(option : optiontyve; startchar, nchars : int): integer;
EXTFRNAL;

FUNCTION fmpopen (VAR dcb : dchtype; VAR error: int; name,options : integer;
buffers : int) : int; EXTERNAL;

FUNCTION fmpwrite (VAR dcb : dchtype; VAR error, count, length : int) : int;
EXTERNAL;

FUMCTION fmpclose (dcb : dcbtype; error : int) ¢ int; EXTERNAL;

PROCEDURE fmpreporterror (VAR error : int; VAR filename : integer);
EXTERNAL;

BEGIN

{ TInput the file name. '}

Writeln('what is the name of your file? ');
Read (filename) ;

{ Convert the file to a FORTRAM canpatible character string. }
filedesc := strdsc(filenane,l,64);

{ Convert the option to a FORTRAN compatible character string. }
option := 'woc';

opts := optdsc(option,1,3);

B-93

Chapter 9 - Lab Solutions

{ Open the and update the file. }

END.

IF (£fmpopen(dcb,err,filedesc,opts,l) < 0)
THEN fmpreporterror (err,filedesc);

newval := 4095;

len := 1;

IF (fmpwrite(dcb,err,newval,len) < 0)
THEN fmpreporterror (err,filedesc);

Writeln('Your file has been updated !1!');

error := fmpclose(dcb,err);

B-94

Chapter 9 - Lab Solutions

ftn7x,1

C

C /LAB/SOLUTION/LAB9/S3.FTN

C

C This program uses FMPRPPROGRAM to programmatically schedule the
C children - sguare, triangle, circle.

C

10

program FMPAREA

implicit integer(a-z)

real area

integer message(25) ,buffer(15) ,circle(3) ,square(3),triangle(3) ,parm(5)
integer return(3)

data circle/'SL74C'/, square/'SL74S'/, triangle/'SL74T'/

write (1,'("area program™)?')

selection = -1

do while (selection .NE. 0)
write(l,' ("select one:")')
write(l,"(

+ ") = finished, 1 = circle, 2 = sqguare, 3 = triangle™)')

read (1,*) selection

if (selection .EQ. 0) then
write(l,' ("finished™)')
else
write(l,' ("Enter a message : ")')
read (1,5) message
format (50a)
write(l,' ("Enter LU to be printed at : ™)')
read(1l,*) lu
endif

if (selection .EQ. 1) then
call fmprpprogram('SL74C.RUN',return,’'c' ,error)
call exec (9, circle, lu, 0, 0, 0, 0, message, -50)
endif
if (selection .EQ. 2) then
call fmprpprogram('SL745.RUN',return,'c',error)
call exec (9, square, lu, 0, 0, 0, 0, message, -50)
endif
if (selection .EQ. 3) then
call fmprpprogram ('SL74T.RUM',return,'c’,error)
call exec (9, triangle, lu, 0, 0, 0, 0, message, -50)
endif
if (selection .NE. 0) then
call mmpar(area)
call exec(l4,1,buffer,-30)
write(l,10) buffer
format (30a)
write(l,20) area

3-95

20

end

end do
end

Chanter 9 - Lab Solutions

format (£f7.4)
if

B~96

Chapter 9 - Lab Solutions

{ /lab/solution/1ab9/s3in.pas
’ This marent program uses F'PRPPROGRAM to schedule the child
programs - square, circle, triangle - in lab 7 exercise 4. The
parent sends a message and LU to the child., The parent later
receives a message and the area of the specified child program. }

program s3m (input, output);

type
int = -32768..32767;
progname = packed array [l..5] of char;
buftype = packed array [l1..30] of char;
msgtype = packed array [l..50] of char;
ptype = packed array [l..5] of int;
rpname = packed array [l..7] of char;

var
area : real;
bufr : buftype;
message ¢ msgtype;
pram : ptype;

retname, circle, square, triangle : progname;
option, filename, selection : integer;
bufln, lu, error : int;

procedure exec9 S alias 'exec' $ (icode : int; prog : progname; lu,dum2,
dum3,dum4,dumS : int; VAR message : msgtype; len : int); external;

procedure rmpar (VAR area : real); external;

procedure execld $ alias 'exec' $ (icode, rcode : int; VAR bufr : buftype;
var len : int); external;

function fmprpprogram (var name : integer; retnams : progname;
opt : integer; error : int) : int; external;

function strdsc Salias 'strdsc'$ (str : rpname; first,last : int)
integer; external;

function optdsc Salias 'strdsc'S (opt : char; first,last : int) : integer;
external;

begin
circle := 'S4C';
square := 'S4S';
triangle := 'S4T';
option := optdsc('c',1,1);
writeln ('area program');

repeat

B-97

Chapter 9 - Lab Solutions

writeln ('select one:');
writeln ('0 = finished, 1 = circle, 2 = square, 3 = triangle');
read (selection);
if (selection <> 0) then
begin
writeln('Enter a message to be printed by the child : ');
read (message) ;
writeln('Enter lu number to print the message at : ');
read(lu) ;
end;
case selection of

¢

0 : writeln ('finished');
1 : begin
filename := strdsc('S4C.RUN',1,9);
error := fmprpprogram(filename,retname,option,error);
exec? (9, circle, 1lu, 0, 0, 0, 0, message, -50);
end;
2 : begin
filename := strdsc('S4S.RUM',1,9);
error := fmprpprogram(filename,retname,option,error);
exec9 (9, square, lu, 0, 0, 0, 0, message, -59);
end;
3 : begin
filename := strdsc('S4T.RUN',1,9);
error := fmprpprogram(filename,retname,option,error);
exec9 (9, triangle, lu, 0, 0, 0, 0, message, -50);
end;
end;

if (selection <> 0) then
begin
rmpar (area) ;
bufln := -30;
execl4(14,1,bufr,bufln);
writeln(bufr,area);
end;
until selection = 0

.
14

end,

B-98

Chapter 9 -~ Lab Solutions

FTN7X,L
c
c /LAB/SOLUTION/LABY/S4A.FTN
c
. PROGRAM COPY1
c
IMPLICIT INTEGER(A-2Z)
c
C PROGRAM TO COPY A FILE TO ANOTHER FILE USING 'FMPCOPY'
c
INTBGER BUFFER(528)
CHARACTER FILE1*64, FILE2*64
c
C GET THE SOURCE AND DESTINATION FILE NAMES
c
CALL FPARM(FILEL,FILE2)
c
C MAKE THE COPY IN ONI SUBROUTINE CALL (ASSUME ASCII FILES)
c

IF (FMPCOPY(FILEl,ERRl,FILE2,ERR2,BIJFFER,528,'AD') .GE. 0)

IF (ERR1l .LT. O) CALL FMPREPORTERROR(ERRL,FILEL)
IF (ERR2 .LT. 0) CALL FMPREPORTERROR(ERR2,FILE2)

(@]

sTop
END

B~-99

STOP

Chapter 9 - Lab Solutions

FTN7X,L
C
C /LAB/SOLUTION/LABY/S4 .FTN
C
PROGRAM COPY2
C
IMPLICIT INTEGER(A-Z)
C
C PROGRAM TO COPY A FILE TO ANOTHER FILE USING FMP READS AND WRITES
C
INTEGER DCBL(528), DCB2(528), BUFFER(128)
CHARACTER FILEl1*64, FILE2*64
C .
C GET THE SOURCE AMD DESTIWNATION FILE NAMES
C
CALL FPARM(FILELl,FILE2)
C

C MAKE THE ODPY IN ONE SUBROUTINE CALL (ASSUME ASCII FILES)

IF (FMPOPEN (DCB1,ERR,FILEl,'ROS',4) .LT. 0) GO TO 10
IF (FMPOPFN(DCB2,ERR,FILE2,'W0C',4) .LT. 0) GO TO 20

C
DO WHILE (.TRUE.)
LEY = FMPREAD (NCB1,ERR,RBUFFER, 256)
IF (ERR .LT. O) GO TO 10
IF (LEN .EQ. -1} GO TO 30
IF (FMPWRITE (DCB2,ERR,BUFFER,LEN) .LT. 0) GO TO 20
END DO
C
10 CALL FMPREPORTERROR(ERR,FILEL)
GO TO 30 :
20 CALL FMPREPORTERROR(ERR,FILE2)
30 CALL FMPCLOGSE(DCB1,ERR)
CALL FMPCLOSE(DCBZ2,ERR)
C
5TOP
END

B-100

Chapter 9 - Lab Solutions

/lab/solution/lab9/s4a.pas }
PKOGRAM copyl (INPUT,OUTPUT) ;

TYPE
int = -32768..32767;
buffertype = packed array [1l.,64] of char;
intarray = array [1..528] of int;

VAR
startchar, nchars, result, errl, err2 : int;
filenamr, filel, file2 : buffertype;
filedescl, filedesc2 : integer;
buffer : intarray;

FUNCTION strdsc (filenamr : buffertype; startchar, nchars : int): integer;
EXTERNAL;

FUNCTION fmpcopy(VAR filel : integer; VAR errorl : int; VAR file2 : integer;

VAR error2 : int; copybuffer : intarray; length : int): int;
EXTERNAL;

PROCEDURE fmpreporterror (VAR error : int; VAR filename : integer);
EXTERNAL;

BEGIN

{ Input the source and destination file names. }
writeln('Enter the name of the source file to copy : s
read(filel);
writeln('Enter the name of the destination file : ');
read(file2);

{ Convert the file names to a FORTRAN compatible character string. }

filedescl := strdsc(filel,1,64);
filedesc2 := strdsc(file2,1,64);

{ Copy the source file to the destination file using FMPCOPY. }
result := fmpcopy(filedescl,errl,filedesc2,err2,buffer,528);

{ Error checking. }
IF (result < 0) THEN writeln ('copy failed, error = ', result);
IF (errl < 0) THEN fmpreporterror (errl,filedescl);
IF (err2 < 0) THEN fmpreporterror (err2,filedesc2);

END.

B-101

Chapter 9 - Lab Solutions

/lab/solution/lah9/s4bh.pas

}
PROGRAM copy?2 (INPUT,OUTPUT) ;

TYPE
int = -32768..32767;
buffertype = packed array [l..64] of char;
optiontype = packed array [l..3] of char;
intarray = array [1..528] of int;
barray = array [1l..128] of int;

VAR

I, length, err, error : int;

filel, file2 : buffertype;

optl, opt2, filedescl, filedesc2 : integer;
dcbl, dcb2 : intarray;

buffer : barray;

rosstring, wocstring : optiontype;

FUNCTION strdsc (filenamr : buffertype; startchar, nchars : int): integer;

EXTERNAL;

FUNCTION optdsc § ALIAS 'strdsc' $
(option : optiontype; startchar, nchars : int): integer;
EXTERNAL;

FUNCTION fmpopen (VAR dcb : intarray; VAR error: int; name,options :
buffers : int) : int; EXTERNAL;

FUNCTION fmpread (VAR dcb : intarray; VAR error : int; buffer : barray;

maxlen : int) : int; EXTERNAL;

FUNCTION fmpwrite (VAR dcb : intarray; VAR error : int; buffer : barray;

length : int) : int; EXTERNAL;
FUNCTION fmpclose (dcb : intarray; error : int) : int; EXTERIAL;

PROCEDURE close;
BBEGIN
error :
error :

fmopclose(dcbl ,err) ;
fmpclose(dcb2,err) ;

END;

PROCENDURE fmpreporterror (VAR error : int; VAR filename : integer);
EXTERMAL;

BEGIN

{ Input the source and destination file names. }

B-102

Chapter 9 - Lab Solutions

writeln('Enter the name of the source file to copy : ');
read(filel);

writeln('Enter the name of the destination file : ');
read(file2);

{ Convert the file names to a FORTRAN compatible character string. }

filedescl := strdsc(filel,l,64);
filedesc2 := strdsc(file2,1,64);

{ Convert the options to a FORTRAN compatible character string. }

rosstring := 'ros';
wocstring := 'wc';

optl := optdsc(rosstring,l,3

)
opt2 := optdsc(wocstring,l,2)

H
{ Open the source and the destination files. }

IF (fmpopen(dchbl,err,filedescl,optl,4) < 0)
THEN fmpreporterror(err,filedescl);
IF (fmpopen(dcb2,err,filedesc2,opt2,4) < 0)
THEN fmpreporterror(err,filedesc?);
WHILE (length <> -1) DO
BEGIN
length := fmpread(dchl,err,buffer,256);
IF (length <> -1) THEN
BEGIN
IF (fmpwrite(dcb2,err,buffer,length) < 0)
THEN fmpreporterror (err,filedesc2);
END;
IF (length < 0) AND (length = err)
THEN fmpreporterror (err,filedescl);
END;

close;

END.

B-103

Chapter 9 - Lab Solutions

FTN7X,L
o
o /LAB/SOLUTION/LAB9/S5 . FTN
o
o THIS PROGRAM DETERMINES THE PARENT DIRECTORY OF YOUR WORKING DIRECTORY
o
PROGRAM DIRECT
o
INTEGER ERROR, TRIMLEN, LENGTH, IFOUND(10), NEWLEN
CHARACTER * 64 WD, NEWWD
DATA IFOUND /10*0/
o
C FIRST DETERMINE WHAT YOUR WORKING DIRECTORY IS
o
ERROR = FMPWORKINGDIR (WD)
IF (ERROR .LT. 0) THEN
CALL FMPREPORTERROR (ERROR)
STOP
ENDIF
o

C PARSE THE WORKING DIRECTORY TO DETERMINE WHAT THE PARENT DIRECTORY IS
C

CALL FMPHIERARCHNAME (WD)

LENGTH = TRIMLEN (WD)

I =1

DO J = 1,LENGTH

IF (WD(J:J) .EQ. '/') THEN
IFOUND(I) = J

I=1+1
ENDIF
END DO
I=1
DO WHILE (IFOUND(I) .NE. 0)
I =I+1
END DO
NEWLEN = IFOUND(I-1) -1

MEWWD = WD (1:NEWLEN)

SET THE WORKI!G DIRECTORY TO THE PARFNT DIRECTORY

QN0

ERROR = FMPSETWORKINGDIR (NEWWD)
IF (ERROR .LT. 0) THEN
CALL FMPREPORTERROR (ERROR)
STOP
EMNDIF
END

B-104

Chapter 9 - Lab Solutions

{

}
PROGRAM direct (input,output);
TYPE

/lab/solution/lab9/s5.pas

int = =32768..32767;
intarray = array [1..10] of int;
dirtype = packed array [l..64] of char;
VAR
- error, length, newlen : int;
ifound : intarray;
i, j, wd, newwd : integer;
initdir, newdir : dirtype;
FUNCTION strdsc(dirnam : dirtype; startchar,nchars : int): integer;
FUNCTION fmpworkingdir(dir : integer) : int; EXTERNAL;
FUNCTION fmpsetworkingdir(VAR dir : integer) : int; EXTERNAL;
FUNCTION trimlen(dirstring : integer) : int; FEXTERNAL;
PROCEDURE fmphierarchname(dir : integer); EXTERNAL;
PROCENDURE fmpreporterror (VAR error : int); EXTERNAL;
BEGIN
{ FIRST DETERMINE WHAT YOUR WORKING DIRECTORY IS }
wd := strdsc(initdir,1,64);
error := frpworkingdir(wd);
IF (error < 0) THEN fmpreporterror (error) ;
{ DETERMINE WHAT THE PARENT DIRECTORY IS }

fmphierarchname (wd) ;
length := trimlen(wd);

i =1
FOR j := 1 TO length DO
BEGINM
IF (initdir[j] = '/') THEN
BEGIN
ifound[i] := 3J;
is=1i+1;
END;
END;
i = 1;

WHILE (ifound[i] <> 0) DO
is=1+1;

B-105

EXTERNAL;

Chapter 9 - Lab Solutions

newlen := ifound[i-1] - 1;
FOR j := 1 TO newlen DO
newdir[j] := initdir(j];
{ SET THE WORKI!NG DIRECTORY TO THE PARENT DIRECTORY }
newwd := strdsc(newdir,1,64);
error := fmpsetworkingdir (newwd) ;
IF (error < 0) THEN fmpreporterror (error);
writeln('Your new working directory is now : ',newdir);

END.

B-106

Chapter 9 - Lab Solutions

FTN7X,L
C
C /LAB/SOLUTION/LABY/56.FTH
C
C THIS PROGRAM ACCEPTS A PARAMETER WHICH INDICATES THE NUMBER OF
C LEVELS UP IN THE TREE STRUCTURE AMD SET THAT DIRECTORY TO YOUR
C WORKING DIRECTORY. A '-1' SETS YOUR GLOBAL DIRECTORY TO YOUR
C WORKING DIRECTORY.
C
PROGRAM TREE
C

OO0

PNONP!

QOO0 .

INTEGER ERROR, TRIMLEN, LENGTH, IFOUND(10), NEWLEN
INTBEGER IPAR(5), LEVEL, TIMES
CHARACTER * 64 WD, NEWWD

DATA TFOUND /10*0/
PICK UP THE PARAMETERS PASSED IN THE RUN STRING

CALL RMPAR(IPAR)
LEVEL = IPAR(1)

DETERMINE WHAT YOUR WORKIMG DIRECTORY IS

ERROR = FMPWORKINGDIR (WD)
IF (ERROR .LT. 0) THEN

CALI. FMPREPORTERROR (ERROR)
STOP
ENDIF

PLACE THE WORKING DIRECTORY IN HIERARCHIAL FORM

CALL FMPHIERARCHNAME (WD)
LEMGTH = TRIMLEN (WD)
I=1

DETERMINE WHERE THE SLASUES ARE IN THE WORKING DIRECTORY

Do J = 1,LENCTH
IF (WD(J:J) .EQ. '/') THEN
IFOUND(I) = J
I=I+1
ENDIF
END DO

FIID THE APPROPRIATE WORKING DIRSCTORY VALUE DEPENDING ON [LEVEL.
IF -1 THEN MAKE THE GLOBAL DIRECTORY THE WORKING DIRECTORY

IF (LEVEL .EQ. -1) THEN
NEWLEN = IFOND(2) - 1
NEAYD = WD (1:NEWLEN)

ELSE

B-107

Chapter 9 - Lab Solutions

I=1

DO WHILE (IFOUND(I) .NE. 0)
I=1+1

END DO

DO TIMES = '1,LEVEL
NEWLEN = IFOUND(I-1) - 1
NBENWD = WD (1:NEWLEN)
I=1-1

END DO

END IF
C
C SET THE WORKING DIRECTORY TO THE PARENT DIRECTORY
C
ERROR = FMPSETWORKINGDIR (MEWWD)
IF (ERROR .LT. 0) THEN
CALL FMPREPORTERROR (ERROR)
STOP
ENDIF
END

B-108

Chapter 9 - Lab Solutions

{
/lab/solution/lab9%/s6.pas
}
PROGRA! tree (input,output);
TYPE
int = -32768..32767;
intarray = array [1..10] of int;
dirtype = packed array [1..64] of char;
ptype = array [1..3] of int;
VAR

level, times, error, length, newlen : int;
ifound : intarray;
i, j, wd, newwd : integer;
initdir, newdir : dirtype;
pram : ptype;
FUNCTION strésc(dirnam : dirtype; startchar,nchars : int) : integer; EXTERNAL;
FUNCTION fmpworkingdir(dir : integer) : int; EXTERNAL;
FUNMCTION fmpsetworkingdir (VAR dir : integer) : int; EXTERNAL;
FUNCTION trimlen(dirstring : integer) : int; EXTERNAL;
PROCEDURE param $ ALIAS ‘pas.Numnericbarms' $ (VAR pram : ptype); EXTERNAL;
PROCEDURE fmphierarchname (dir : integer); EXTERMAL;
PROCFNDURE fmpreporterror (VAR error : int); EXTERNAL;

BEGIN

{ PICK UP PARAMETERS PASSED FROM THE PROGRAM RUNSTRING }

param (pram) ;
level := pram(3];

{ FIRST DETERMINE WHAT YOUR WORKING DIRECTORY IS }
wd := strdsc(initdir,l,64);
error := fmpworkingdir(wd);
IF (error < 0) THEN fmpreporterror (error) ;

{ PLACE THE WORKING DIRECTORY IN HIERARCHIAL FORM }
fmphierarchname (wd) ;
length := trimlen(wd);

i:=1;

{ DETERMINE WHERE THE SLASHES ARE IN THE WORKING DIRSCTORY }

B-109

Chapter 9 - Lab Solutions

FOR j := 1 TO length DO

BEGIN
IF (initdir[j] = '/') THEN
BEGIM
ifound[i] := j;
is=1i+1;
END;
END;

{ FIND THE APPROPRIATE WORKING DIRECTORY VALUE NEPENDING ON THE LEVFL. }
{ IF EQUAL TO -1, THEN MAKE THE GLOBAL DIRECTORY THE WORKING DIRECTORY. }

IF (level = ~1) THEN
BEGIN
newlen := ifound{2] - 1;
.FOR j := 1 to newlen DO
newdir(j] := initdir[j}];

END
ELSE IF (level = 0) THEN
BEGIN
newdir := initdir;
writeln('There were no changes made to your directory !');
writeln;
END
ELSE
BEGIN
i = 1;
WHILE (ifound[i] <> 0) DO

i:=14+1;
FOR times := 1 to level DO
BEGIN
newlen := ifound{i-1] - 1;
i:=1-1;
END;
FOR j := 1 TO newlen DO
newdir[j] := initdir[j]l;
END;
{ SET THE WORKING DIRECTORY TO THE PARENT DIRECTORY }
newwd := strdsc(newdir,1,64);
error := fmpsetworkingdir (newwd);
IF (error < 0) THEN fmpreporterror (error);
writeln('Your new working directory is now : ',newdir);

END.

B-110

Chapter 9 - Lab Solutions

dkkhkkhkhkhkhkhhkhhkhkhkhkhhkkhhkkhhkkhkhkhkhkhhkkhkhkhhkkhhkkhkkhkhkhkhkhkkhkkdchhkkhkkhhkhkkhkkkhkkkkkk

* *
* This is the solution set to LA3 Chapter 10 example 4. *
* *

do e Fc d g g g ko ke do dode g g ok g g o K o ke K g g g o K g o de K o g o K K o e o de K o K o o K o do K e e gl g Kk ek ke do ok K ke ke ek Kk ek ok ke ok

I. (DS Segmentation

Al. How would default (DS segmentation create code segments for the
following modules ?

Default Segmentation

Module 1 (A.rel) = 15 pages
Module 2 (B.rel) = 12 pages
Module 3 (C.rel) = 5 pages
Module 4 (D.rel) = 27 pages
Module 5 (E.rel) = 5 pages

The following code segments are created from the above modules :

Code Segment 0 (27 pages) Module 1 + Module 2

Code Segment 1 (5 pages) = Module 3
Code Segment 2 (27 pages) = Module 4
Code Segment 3 (5 pages) = Module 5

A2. How could you reorder the above modules manually to create fewer
segments ?

Manual Segamentation

If we reorder and relocate the modules like this:

Module 1 (A.rel) = 15 pages
Module 2 (B.rel) = 12 pages
Module 3 (D.rel) = 27 pages
Module 4 (C.rel) = 5 pages
Moduie 5 (E.rel) = 5 pages

then we obtain the following segments:

Code Segment 0 (27 pajes)
Code Segment 1 (27 pages)
Code Segment 2 (10 pages)

Module 1 + Module 2
Module 3
Module 4 + Module 5

Je Jc Jo e e e do ok de do e do g e dede de K de g o K o K de o o g ok ok de kK de K e de ke e e K do e e e ke e e gk ke g de e ke ek ke ke kke ke koke ke
J & % Je Jo ke Je A F K Fe o Ko Fe e dode e de do g e g e de e ok ke ok ok e e e o e e e ek ok ke e ok ek ok ke e ok de ok ek ek ke ke ke ek ke ok k ke ke dede dede ke

B-111

Chapter 9 - Lab Solutions

Bl. How would default CDS segmentation create code seqments for the
following modules ?

Default Segmentation

The following code

Module
Module
Module
Module
Module
Module

Code Segment
Code Segment
Code Segment 2 (22 pages)
Code Segment

AN WN -

(A.rel)
(B.xrel)
(C.xel)
(D.rel)
(E.rel)
(F.rel)

U | I { N T 1)

0 (15 pages)
1 (17 pages)

3 (22 pages)

15 pages
17 pages
15 pages
7 pages
10 pages
12 pages

B2. How could you reorder these modules
larger segments ?

Manual Segmentation

If we reorder

then

Module
Module
Module
Module
Module
Module

NUT VN -

(A.rel)
(C.rel)
(D.rel)
(E.rel)
(F.rel)
(R.rel)

and relocate

15 nages
15 pages

7 pages
117 pages
12 pages
17 pages

segments are created fram the above modules :

Module 1
Module 2
Module 3 + Module 4
Module 5 + Module 6

manually to create fewer, but

the modules like this:

we obtain the following segments:

Code Segment 0 (30. nages)
Code Segment 1 (29 pages)
Code Segment 2 (17 pages)

1}

B-112

Module 1 + Module 2
Module 3 + lModule 4 + Module 5
Module 6

Chapter 10 - Lab Solutions

FTN7X,T,
$CDS ON
C /LAB/SOLUTINN/TABLO/S1.FTN
C

PROGRAM cdsprg
C

WRITE(1,*) 'GOCD MORNING, HUMAN !I1?

PAUSE

WRITE(1,*) '"HAVE A NICE DAY !'
C

END
C
C LOOK AT THE PARTITION - 'WH,PA' - WHILE THE PROGRAM IS SUSPENDED.
C THE PARTITON SHOULD LOOK SOMETHING LIKE THE FOLLOWING :
C
C CI> sll0la.run
C GOOD MORNING, HUMAN !!!
C SL101 Suspended.
C O wh,pa
C Ptn§¢ Page Rarmge Size Occupant Status Priority
C - —_—
C 1 56- 57 2 free
C 58- 85 28 C1/75 {shared) 51
C 86- 1N1 16 free
Cc 102- 133 32 D.RTR saving resources 1
C 134- 149 16 C1/77 (data) 51
C 150- 152 3 free
C 153- 155 3 QCLM 28
C 156- 159 4 EXECW 30
C 160- 162 3 PTOPM 30
C 163- 166 4 EXECH1 30
C 167~ 182 16 C1/71 (data) 51
C 183- 194 12 WH/75 5
C 195- 211 17 free
C 212- 227 16 M (data) 2
C 228- 251 24 free
C 252- 254 3 GRPM 4
C 255~ 256 2 QUEUE serial reusable 2
C 257- 262 6 IOMAPR/75 serial reusable 90
C 263- 273 11 LOGON 2
C 274~ 281 8 PROMT saving resources 3
C 282- 297 15 C1/75 (data) 51
C 298~ 304 7 SL.101/75 (data) 99
C 305- 307 3 SL.101/75 (code) 99
C 308- 483 176 free
C 484- 486 3 UPLIN serial reusaple 3
C 487- 511 25 free
C e _— _—

C Thu Apr 7, 1983 7:51 am

B-113

Chapter 10 - Lab Solutions

Look at equivalent FORTRAN solution for wh,pa

{ -
/lab/solution/labl0/sl.pas
output.

}

$CDS.ON

PROGRAM CDSPRG (input,output);

CONGT
exec] = 7;

TYPE
int = -32768..32767;

PROCEDURE suspend $ ALIAS 'EXEC'

BEGIN
writeln('Good Morning !');
suspend(exec_7);
writeln('Have a nice day.
END.

$ (icode : int)

Bye, Bye !!);

B-114

14

EXTERNAL;

FTN7X,L
$CDS ON

C
C
C

C

@

a0 OOQQQONOOONNO000O000000Nn0a0n QOO0 00 O ().()

D wh,pa

Ptng Page Range Size Occupant

1 56~ 57 2 free
58- 85 28 CM
86— 101 16 free
102- 133 32 D.RTR
134~ 149 16 Cr/77
150~ 152 3 free
153- 155 3 QCrLM
156- 159 4 EXECW
160- 162 3 PTOPM
163- 166 4 EXECM
167- 182 16 C1/71
183- 191 9 free
192~ 208 17 DSRTR
209- 211 3 free
212- 227 16 cM
228- 251 24 free
252- 254 3 GPPM
255- 266 2 QUENE
257~ 262 6 IOMAP/75
263- 273 11 LOGO?!
274~ 281 3 PROMT
282- 297 16 C1/75
298- 327 3N free
328- 334 7 SL1.3/75
335- 341 7 SL1.B/75
342- 348 7 SL1.C/75
349~ 355 7 sri.n/75
356- 362 7 SL1.E/75
363- 374 12 WH/75
375- 483 109 free
484- 486 3 UPLIN
427- 493 7 SLiN1/75

Chapter 10 - Lab Solutions

/LAR/SOLUTION/LABLQ/S2.FIN

PROGRA!M (DSPRG

WRITE(1,*) 'GOOD MORNING, HUMAN !!l!

PAUSE

WRITE(1,*) 'HAVE A NICE DAY !'

EMND

LOOK AT THE PARTITION - 'WH,PA' - WHILE THE FROGRAM IS SUSPENDED.
THE PARTITON SHOULD LOOK SOMETHING LIKE THIS

B-115

Status
(shared)
saving
(data)
(data)
saving
(data)
serial
serial
saving
(data)
(data)
(data)
(data)
(data)
(data)
serial
(data)

resources

resources

reusable
reusable

resources

reusable

Chapter 10 -~ Lab Solutions

494~ 496 3 SL1.E/75 (shared)
497- 511 15 free

99

Thu Apr 7, 1983 9:16 am
tn7x,1

/lab/solution/labl0/s3c.ftn

QOO 00

program S3C(5)
real radius, area

write (1,'("radius: ")')
read (1,*) radius
area = 3.,14159 * radius * radius
if (radius .GT. 0) then
write (1,'("area =", f4.2)') area
else
write (1,'("invalid data™)')
end if
call segrt
end

3-115

Chanter 10 - Lab Solutions

ftn7x,1

C /lab/solution/1abl0/s3m.ftn

program seg

integer selection, circle(3), square(3), triangle(3).
data circle/'s3C'/, square/'S3S'/, triangle/'S3T'/

write (1,'("area program™)')
selection = -1
do while (selection .NE, 0)
write(l,'("select one:")")
write(l,"'(
+ ") = finished, 1 = circle, 2 = square, 3 = triangle")’)
read (1,*) selection
if (selection .EQ. 0) write (1,'("finished")')
if (selection .EQ. 1)
+ call seqld (circle,ierr)
if (selection .EQ. 2)
+ call seqgld (square,ierr)
if (selection .REQ. 3)
+ call segld (triangle,ierr)
end do
end

B-117

Chapter 10 - Tab Solutions

ftn7x,1

C

C /lab/solution/lahl0/s3s.ftn
C

program $3S(5)
real side, area

write (1,'("side: ")')
read (1,*) side
area = side * side
if (side .GT. 0) then
write (1,'("area =", £4.2)') area
else
write (1,'("invalid data")')
end if
call seqrt
end

B-118

Chapter 10 - Lab Solutions

ftn7x,1

C

C /lab/solution/labl0/s3t.ftn
c

program S3T(5)
real base, height, area

write (1,'("pbase: ")')

read (1,*) base

write (1,'("height: ")"'")

read (1,*) height

area = 0.5 * base * height

if ((base .GT. 0) .AMD. (height .GT. 0)) then
write (1,'("area =", £f4.2)') area

else
write (1,'("invalid data™) ')

end if

call segrt

end

B-119

Chapter 10 - Lab Solutions

{ ‘ /lab/solution/labl0/s3c.pas

This segment calculates the area of a circle, prints it out, and
returns to the main program. The file 'include' contains all the
variables that are needed by the main program and by its segments.}

$segment$
program S3C ;

Sinclude ‘'include'$

procedure procl;
" begin

rewrite(out,'1l');

reset(inp,'l');

writeln (out,'radius: ');

read (inp,radius); -

area := 3.14159 * radius * radius;

if radius > 0
then writeln (out,‘'area =', area:4:2)
else writeln (out,'invalid data')

end;

B-120

Chapter 10 - Lab Solutions

{ /lab/solution/lahl0/s3m.pas

In this solution, the child programs are segments and not separate
programs. The parent program schedules the segment according to
what the user desires. The file 'include' contains all the
variables that are accessed by the main program and its segments. }

program S34 ;

S$include 'include'$

procedure segload Salias 'Pas.SegmentLoad'S (name : progname); external;
procedure procl; external;

prbcedure proc2; external;

procedure proc3; external;

begin
rewrite(out,'1l');
reset(inp,'1l');

circle := 'S3C';
square := 'S3S';
triangle := 'S3T';

writeln (out,'area program');
repeat
writeln (out,'select one:');
writeln (out,'0 = finished, 1 = circle, 2 = square, 3 = triangle');
read (inp,selection);
case selection of

0 : writeln (out,'finished');

1 : begin
segload(circle);
procl;

end;

2 : begin
segload (square) ;
proc2;

end;

3 : begin
segload(triangle);
proc3;

end;
end;
until selection = 9§
end.

Chapter 10 - Lab Solutions

{ /labh/solution/1abl0/s3s.pas

This segment calculates the area of a square, prints it out, and
returns to the main program. The file 'include' contains all the
variables that are needed by the main nrogram and by its segments. }

$segment$
program S3S;

Sinclude ‘include'S

procedure proc?Z;
begin
rewrite(out,'l');
reset(inp,'l');
writeln (out,'side: ');
read (inp,side);
area := side * side;
if side > 0O
then writeln (out,'area =', area:4:2)
else writeln (out,'invalid data')
end; ‘

B-122

Chapter 10 - Lab Solutions

{ /lab/solution/labl0/s3t.pas

This segment calculates the area of a triangle, prints it out, and
returns to the main program. The file 'include' contains all the
variables that are needed by the main proyram and by its seyments. }

S$segment$
program S3T ;

$include 'include'S

procedure proc3;
begin
rewrite(out,'l');
reset(inp,'l');
writeln (out,'base: ');
read (inn,base); -
writeln (out,'height: ');
read (inp,height);
area := 0.5 * hase * height;
if (base > 0) and (height > 0)
then writeln (out,'area =', area:4:2)
else writeln (out,'invalid data')
end;

B-123

Chapter 11 - Lab Solutions

FTN7X,L
SEMA /BIG/
C .
C /LAB/SOLUTION/LABL]1/S1A.FTN
c

PROGRAM EMAX1

C**

C* [AB 11-1 - This program will find the average of an *
C* array of elements in EMA *
C* *
C* The labeled COMMOM statement defines the FEMA variables, *
Cc* These variables are manipulated just like any other *
Cc* variable. *

C**

COMMON /BIG/ RVAL(15384)
DIMENSION IDCB(144),RBUF(65)

suM =0
ITYPE = FMPOPEN(INCB,IERR,'/LAB/PROBLEM/RNDFIL','RO',1)
IENUM = 1

IF (IERR .LT. 0) GOTO 9000

C***

Cc* Loop to store values from disc file into EMA *
C***

DO 20 I=1,256
IFACTR = (I-1l) * 64
LENGTH = FMPREAD (IDCB,IERR,RBUF,130)
IENUM = 2
IF (IERR .LT. 0) GOTO 2000

C***

C* Buffer holds 64 real values{(128 WORDS). Assign these *

C* values to the appropriate rval elements *
C***

DO 10 J=1,64
K = TFACTR + J
RVAL (K) = RBUF(J)
10 CONTINUE
20 COMTINUE
IERR = FMPCLOSE(IDCB,IERR)
IENUM = 3
IF (IERR .LT. 0) GOTO 9000

C***

Cc* Find and print the average of all values in rval *
C***

B-124

Chanter 11 - Lab Solutions

DO 30 I=1,16384
SUM = SUM + RVAL(I)
30 OONTINUE
AVG = SUM / 16384.
WRITE(1,'(/"THEL AVERAGE IS : ",F15.5/)") avVG
STOP

Chhhkkkhdhhdhdhhkhhkhkhhkkhkkkhkhkkhkhkhhkhhkhkhkhkkkkhkkkhkhkhkhkkhkkdkkkhkkkkkkikkdkkxk

C* Handle FMP call errors *
C***

9000 WRITE(1,9100) IERR,IENUM
9100 FORMAT(/"ENCOUNTERED ERROR #",I14," IN FMP CALL #",I1)
END

B-125

Chapter 11 - Lab Solutions

FTN7X,L
SEMA /BIG/
C
C /LAB/SOLUTION/LABL1/S1B.FTN
C
PROGRAM VMAX1

Chhkhkkhhkhhhhhhhkhhkhkhhhhkhhhkhhhkhkhhhkhhhkhhkhkhhhkhkhhhkhkhhkhhhhkkhkhkhkhhkhkkhk

Cc* LAB 11-1 - This program will find the average of an *
C* ‘array of elements in EMA *
C* ’ *
C* The labeled COMMON statement defines the EMA variables. *
C* These variables are manipulated just like any other *
C* variable. The values are stored in VMA if you load the *
C* the program with the VM LINK command. *
C* *

Chhkhkhkhhkhkhhhkhhhhhhhhhhhhkhhkhkhhhkhkhhkhkhkhhkhhkhhkhkhhkhkhhhhhhhhhkkhkhhkkhkk

COMMON /BIG/ RVAL(16384)
DIMENSION IDCB(144),RBUF(65)

SUM =0
ITYPE = FMPOPEN(IDCB,IERR,"'/LAB/PROBLEM/RNDFIL','RO',1)
IENUM = 1

IF (IERR .LT. 0) GOTO 9000

Chkkdededek dedkdod ke dod dedk g doded o de e dodode dode ded e ok de e e ok ok ok e e ok ke ok Kk ok Kk ok ko ok ok ok e ke ok ook ok

c* Loop to store values fram disc file into EMA *
C***

DO 20 I=1,256
IFACTR = (I-1) * 64
LENGTH = FMPREAD (IDCB,IERR,RBUF,130)
IENUM = 2
IF (IERR .LT. 0) GOTO 9000

C***

C* Buffer holds 64 real values(128 WORDS). Assign these *

Cc* values to the appropriate rval elements *
C***k*****************

DO 10 J=1,64
K = IFACTR + J
RVAL (K) = RBUF(J)
10 CONTINUE
20 CONTINUE
IERR = FMPCLOSE(IDCB, IERR)
IENUM = 3
IF (IERR .LT. 0) GOTO 9000

C***

B-126

Chapter 11 - Lab Solutions

Cc* Find and print the average of all values in rval *
C***

DO 39 I=1,16384
SUM = SUM + RVAL(I)
30 QONTINUE
AVG = SUM / 16384,
WRITE(1,' (/"THE AVERAGE IS : ",F15.5/)') AVG
STOP

C***

C* Handle FMP call errors *
C***

9000 WRITE(1,9100) IERR,IENUM

91090 EORblAT(/"EbCOULJT“RED ERROR #",I4," IN FMP CALL #",Il)
END

B-127

Chapter 11 - Lab Solutions

FTM7X,L
SEMA /BIG/

/LAB/SOLUTION/LABRL11/S2.FTH

PROGRAM EMA?2

hkdhkhhkkhkkhkkkhkkkhkhkhkhkkhkhkhkhkkhhkhkkkkkhkhkkkkkhkkkkkkhkkk
* This program will share the EMA space BIC with *
* other programs and calculate the standard *
* deviation of the array RVAL. Link with SH. *
kAR kARARARkkhhhhkkkhkhhkhkhkhhhkhhhkhhkhkhkhhkhhhhkhhhi

COMMON /BIG/ RVAL (16384)

QOO0 000

QA

SUM = 0.0
SUMSQ = 0.0

Find average of array elements

a0

DO S50 I =1,16384
50 SUM = SUM + RVAL(I)
AVC = SUM / FLOAT(16384)

C
C Find the standard deviation
C
DO 60 I =1,16384
DEV = RVAL(I) - AVG
60 SUMSQ = SUMSQ + DEV**2
STDDEV = SQRT (SUMSQ)
C

WRITE (1,'(/" THE AVERAGE = ",F10.5)') AVG

WRITE (1,'(/" THE STANDARD DEVIATION = ",F10.5)') STNDEV
CALL ULEMA

END

B-128

Chapter 11 - Lab Solutions

FTN7X,L
SEMA /BIG/
C
C /LAB/SOLUTION/LAB11/S2A.FTH
C
PROGRAM EMAX2

C**ﬂ***********

C* LAB 11-2 - This program will find the average of an *
C* array of elements in EMA *
C* *
C* The labeled COMMON statement defines the EMA variables. *
C* Link with large SHEMA program. Notice that this program *

*

C* uses LKEMA.
C**

COMMON /BIG/ RVAL(16384)
DIMEISION IDCB(144) ,RBUF (65)

StM =0

CALL LKEMA

ITYPC = FMPNPEM(IDCB,IERR,'/LAB/PROBLFM/RNDFIL', 'RO',1)
IENUM = 1

IF (IERR .LT. 0) GOTO 9000

C***

c* Loop to store values from disc file into EMA *
C***

DO 20 I=1,256

IFACTR = (I-1) * 64
LENGTH = FIMPREAD (IDCB, IERR,RBUF,130)
IENUM = 2

IF (IERR .LT. 0) GOTO 9000

C***

C* Buffer holds 64 real values(128 WORDS). Assign these *

Cc* values to the appropriate rval elements *
C***

DO 10 J=1,64
K = IFACTR + J
RVAL (K) = RBOUF(J)
10 COMTINUE
20 COMTINUE
IERR = FMPCLOSE(INCR,IERR)
IENUM = 3
IF (IERR .LT. 0) GOTO 9000

C***
c* Find and print the average of all values in rval *

B-129

Chapter 11 - Lab Solutions

C***

DO 30 I=1,16384
SUM = SUM + RVAL(I)
30 CONTIMUE
AVG = SUM / 16384.
WRITE(1l,'(/"THE AVERAGE IS : ",F15.5/)') AV:
STOP »

C***

C* Handle FMP call errors *
C***

9000 WRITE(1,9100) IERR,IENIM
9100 FORMAT(/"ENCOUNTERED ERROR #",I14," IN FMP CALL #",Il)
END

5-130

Chapter 11 - Lab Solutions

FTN7X,L
SEMA /BIG/

C

C /LAB/SOLUTION/LABL1/S3.FTN
C

ek e e ek ok ok e ook e e Ak ek ek ke ok ok ek e ke e e ok ke ok K o e e ok e e ok % % ok % A ok ok ok ok

This program will initialize a VMA/EMA array, and
print out the time the operation took. To incrzase
the working set, use the WS link command. Ry
increasing the working set, less pages will have
to be swapped to disc and thus the program may
run faster,

de e e de e de e de e dede e ode dedede ke dede ded ke ddd d ok dedekddkdkkkhkokhkkhkhkhkhkhkdhkhkdhdkkhkkkkk

* *
* *
* *
* *
* *
* *
*

PROGR2M EMAEX3

khkhhkhkhkhkhhhkhkhkhkhkhhkhkkhkhhhkhkkhhhhhhkkkhhki

* Define the VMA/EMA array *

khhkhkhkhhkhkhkhkhhhkhkhkhkhhkhkhhhkkkhkhhhhhkhhkkk

Qoo

COMMON /BIG/ I(1024,1024)

TIME=ETIME (-10)
DO 10 M=1,100
DO 10 N=1,1024
I(N,M)=n
10 OMITINUE
WRITE(1,33) ETIME(10)

33 FORMAT("TIME IN SECOMNDS =",F10.3)
END

B-131

Chapter 11 - Lab Solutions

/lab/solution/labll/s4.pas
SHEAP 2S
program vmain (input,output);
type

int = =-32768 .. 32767;

num = 1 .. 100;

matrix = array [num, num] of int;
ptr = “matrix;

double = array [1..2] of int;

var
ile, { LENGTH OF TRANSKFER }
icode : int; { REQUEST CODE }
icrwd : double; { COWTROL WORD }
ibuff : ptr; { BUFFER }

procadure vmaio
(icode : int; icnwd : double; var inuff: ptr;

ilen : int);
external;
begin
{ CREATE POINTER TO VMA/EMA AREA }

new (ibuff);

icode := 1; { READ }

icwd[l] := 1; { TO TERMINAL }

icowd[2] := 0;

ile := 1000; { 1000 WORDS ONLY BECAUSE OF TSRIMIUAL RBUFFER }

{ READ IN VMA/EMA DATA RYFERENCED BY "IRUF®" }

vmaio (icode, icnwd, ibuff, ile):;
4 I r

icode := 2; { WRITE }
1le = 1009;

lcnwd(l] := 1;
icrwd[2] := 0;

{ WRITE OUT VMA/EMA DATA REFERENCED BY "“IBUFF" }

vmaio (icode, icnwd, ibuff, ile);
end.

Chapter 11 - Lab Solutions

FTH7X,L
SEMA/BIG/
C
C /LAR/SOLITTION/TABLL/S5A . FTIN
C
C THIS PARENT SCHEDULES THE CHILD WITH WAIT AND PRINTS OUT THE
C VALUES IT RETRIEVES FROM SHAREABLE FMA. LINK WITH 'SH' COMMAND,
C
PROGRAM PARENT
C
COMMON /BIG/INUM(1000)
C
INTEGER PNAME (3)
DATA PNAME/6HCHILD /
CALL EXEC(9,PHNAME)
WRITE(1,*) "THE PRIME NUMBERS BETWEEN 1 AND 1000 ARE : '
DO 100, I = 1,1000
IF (IMUM(I) .EQ. 0) GOY0 100
WRITE(1,*) ItIUM(I)
100 CONTINUE
C
EMD

B-133

Chapter 11 - Lab Solutions

ftn7x,1
Sema/big/

/LAB/SOLUTION/LABL1/S5B.FTH

THY. CHILD PROGRAM CALCULATES THE PRIME NUM3ERS BETWEEN 1 AND 1000
AND POTS THE RESULT IN SHAREARBLE EMA. LINK PROGRAM WITH 'SH' COMMAND.

Q0000

program CHILD
implicit integer (a-z)
canmon /big/iarray (1000)

do251 =1, 1000
iarray (i} = i

do 10 § = 2, 1009
if (i .eq. j) go to 25
if (i .1t. j) go to 25
if (mod (i,3j) .eq. 0) then
iarray(i) = 0

go to 25
endif
10 continue
25 continue

end
Sheap 2$

B-134

Chanter 11 - Lab Solutions

{ /LAB/SCLUTION/LABLL/S5A, BT
THIS PAREMT PROGRAM SCHEDULES THE CHILD WITH WAIT AND PRINTS OUT
THE VALUES IT RECEIVES FROM SHAREARLE EMA., LINK WITH 'SC' AND
'S4, label' COMMANDS. }

PROGRAM PARENT (input,output);

TYPE

int = -32768..32767;

big = array [1..1000] of int;

bigntr = “big;

com = record

. biggyptr : bigptr;
end;

canptr = “com;

nane = packed array [l..6] of char;
VAR

i, sizeblank : int;

sizeshared, start, heap stack : integer;
biggy : bigptr; -

commy : comptr;

pname : name;

FUNCTION common blank $ ALIAS 'Pas.BlankCom2' $: comptr; EXTERNAL;
FUMNCTION blank_size $ ALIAS 'Pas.BlankSize' $: int; EXTERNAL;
FUNCTION sharedsize $ ALIAS 'Pas.AlSharedSize' $: integer; FEXTERIAL;

FUNCTION setshared $ ALIAS 'Pas.AlSetShared' S
(start, heap stack : integer) : boolean; EXTERNAL;

PROCEDIRE exec 9 SALIAS 'EXEC'S (icode : int; pname : name); EXTERMAL;

BEGIN
sizeblank := blank size;
if sizeblank <> 0 then
begin
sizeshared := sharadsize;
if sizeshared <> 0 then
begin
comny := common blank;
if (setsharad(0,1050)) then
begin
new (higagy);
commy” .biggyptr := biggy;
pname := 'CHILD';
exec 9(9,pname) ;

B-135

Chapter 11 - Lab 3olutions

writeln('The prime #''s between 1 and 1000 are :');

FOR 1 to 1009 DO

(biggy”[i] <> 0) THEN writeln(biggy”[il]);

iz
IF
end else writeln('Heap stack setup failure !!');

end else writeln('No access to SHEMA !1');
end else writeln('No common available !!'):

END.
Sheap 2$

B-136

Chapter 11 - Lab Solutions

{ /LAB/SOLUTION/LAR11/S5B.PAS

THIS CHILD PROGRAM CALCULATES THE PRIME NUMBERS RETWEEN 1 AND 1000
AND STORE THE REGULTS IN SHAREABLE FMA, SO THAT THE PARENT CAN
RETRIEVE THEM, LINK WITH 'SC' AND 'SH,label' COMMAND. }

PROGRAM CHILD;

TYPE
int = -32768..32767;
big = array [1..1000] of int;
bigptr = “big;
can = record
biggyptr : bigptr;
end;
canptr = “cam;
VAR

i,j,sizeblank : iat;

sizeshared, start, heap stack : integer;
biggy : bigptr;

out : text;

commy : comptr;

FUNCTION common blank $ ALIAS 'Pas.BlankCom2' $: comptr; EXTERNAL;
FUNCTION hlank size $ ALIAS 'Pas.BlankSize' $: int; EXTERNAL;
FUNCTION sharedsize $ ALIAS 'Pas.AlSharedSize' $: integer; EXTERNAL;

FUNCTION setshared $ ALIAS 'Pas.AlSetShared' $
(start, heap stack : integer) : boolean; FEXTERNAL;

BEGIN
rewrite(out,'1');

sizeblank := blank size;
if sizeblank <> 0 " then
begin
sizeshared := sharedsize;
if sizeshared <> 0 then
begin
camnmy := cammon blank;
biggy := commy”.biggyotr;
if (setshared(1051,2100)) then

begin
FOR i := 1 to 1000 DO
BEGIN
j o= 2;
conmy” . biggyptr™[i] := i;

B-137

Chapter 11 - Lab Solutions

WHILE (3 < 1000) AND (i > j) AND (i <> 3J)

BEGIN
if ((i mod j) = 0) then
begin
commy”.biggyptr” [i] := 0;
j = 1000;
end;
j:=3+1;
END;
END;
end else writeln(out,'Heap stack setup failure !!');
end else writeln(out,'No access to SHEMA !!');

end else writeln(out,'No common available !!');

END.

B-138

Chapter 12 - Lab Solutions

FTN7X,L
c
C /lab/solution/labl2/sl.ftn
c
C This program uses an LU lock to the line printer. This enables the
C program to have exclusive access to it; no other program can access it.
C When the program pauses, type in 'WH' to make sure that the LU is locked.
c
PROGRAM TLULOCK
C
OPTION = 40001B
CALT, LURQ (OPTION,6,1,KEYWD)
GO TO 100
c

15 Do 25, I1=1,10 '
WRITE(L,*)'I BAVE EXCLUSIVE ACCESS TO THE PRINTER !!'
25 CONTINUE

c
PAUSE

c
OPTION = O
CALL LURQ (OPTION,6,1,KEYWD)
WRITE(1,*)'WE HAVE COMPLETED SUCCESSFULLLY !!!
WRITE(6,*) '"WE HAVE COMPLETED SUCCESSFULLLY !!'
STOP

c

100 CALL ABRBG(IA,IB)
WRITE(1,*) ('ERROR IS : ',IA,IB)

999 END

B-139

Chapter 12 - Lab 3olutions

{ /lab/solution/labl2/sl.pas

This orogram uses an LU lock to the line printer. This enables the

program to have exclusive access to it; no other program can access it.
When the program pauses, type in 'WH' to make sure that the LU is locked. }

SRECURSIVE OFFS$-
PROGRAM LULOCK ;
CONST
exec? = 7;
no abort = 16384;
no wait = -32768;

int = -32768..32767;

VAR
a,b,1i,option,lu,numlu,keywd : int;
out, outlu : text;

PROCEDURE lurqg(option,liu,numlu,keywd : int); EXTERNAL;
PROCEDURE abreg (VAR a,b : int); EXTERNAL;
PROCEDURE suspend $ ALIAS 'EXEC' $§ (icode : int); EXTERNAL;

PROCENIIRE errorcheck;
SDIRECTS
BEGTMN
abreqg (a,b);
writeln(out,'a is ', A,' B is ', B);
END;

BEGIN
rewrite(out,'1');
rewrite(outlu,'6');

option := 1 + no wait + no_abort;
lu := 6;

nuanlu := 1;
lurg(option,lu,numlu, keywd) ;
errorcheck;

IF (a = 0) THEN
BEGIN
FOR I:= 1 TO 10 DO
writeln(outlu,'I have complete access to the printer

Py
’—
-
~—
~e

suspend (exec7) ;

option := 9;

B-140

Chapter 12 - Lab Solutions
'

lurq(option, lu,numlu, keywd) ;
writeln;

writeln(out,'We have completed successfully !!');
writeln(outlu,'We have completed successfully !!');

END ELSE
writeln(out, 'Unable to lock LU 6 !!');

END.

B-141

Chanpter 12 - Lab Solutions

FTN7X,L

/L.AB/SOLUTION/LAB12/S2A.FTN

This orogram along with PROG2 will compete for the use of the line printer.

OO00n0n

PROGRA!M PROGL
INTEGER PNAME(3)
DATA PNAME/'PROG2'/

C
CALL EXEC(10,PNAME)
5 DO 10 I=1,25
WRITE(6,*) 'I''M PROGRAM 1 !!°
10 CONTINUE
C

END

B-142

Chapter 12 - Lab Solutions

FTN7X, L

C

C /LAB/SOLUTION/LABL12/S2B . FTN
C -

C This program alnng with PROGL will compete for the use of the line printer.
C
PROGRAM PROG2
C _
DO 10 1=1,25
WRITE(6,*)'I'"™M PROGRAM 2 !I!I°
10 CONTINUE :

EMD

B-143

Chapter 12 - Lab Solutions

3
3
>
.

14

/LAB/SOLUTION/LABL2/S2C.FTN

This program competes with PROG4 for the use of the line printer by using
resource numbers. This program allocates the resource number, prints out
five lines and then passes the resource numher to PROG4. PROG4 prints
out five lines and passes the resource number back to PROG3. This
contimies until each program has finished printing out it's messages.

OO RO HONOHORS

PROGRAM PROG3

IMPLICIT INTEGER (A-2Z)
INTEGER PNAME (3)

DATA PNAME/'PROG4'/
DATA ALLOC_GLOBAL/20B/
DATA DEALLOCATE RN/40B/
DATA UNLOCK RN/4/

DATA LOCK RN/1/

DATA NO ABORT/40000B/

o
CALL RNRQ (ALLOC_GLOBAL+NO ABORT,RM,STAT)
GO 10 838
o
CALL EXEC(10,PNAME,RN)
DOI = 1,5
CALL RIRQ(LOCK RN+NO ABORT,R',STAT)
GO TO 883 -
poJ=1,5
WRITE(6,*)'I''M PROGREM 1 !!°
END DO

WRITE(L,*) '"PROGRA!M 1 IS UNLOCKING THE R !!'
CALL RiJRQ (UNTOCK_RW+NO ARDRT,RN,STAT)
GO TO 888

CALL EX®RC(12,0,2,0,-1)
END DO
STOP

(@]

883 WRITE(L,*) 'RNRO ABORT ERROR'
CALL RWRQ (JNLOCK RN,RN,STAT)
CALL RNRQ (DEALLOCATE RMN,RM,STAT)

END

B-144

Chanter 12 - Lab Solutions

{ /lab/solution/labl2/s2a.pas

This program along with PROG2 will compete
for the use of the line printer . }

PROGRAM PROGL (input,output);

CONST
execl) = 10;

TYPE

int = -32768..3276A7;

name = packed array [l..6] of char;
VAR

pname : nane;

i : int;

PROCIDURE exec 10 S ALIAS 'EXET' § (icode : int; pname : name);

BEGIN
pname := 'PRNG2';
exec_10(execl0,pname) ;
FOR i := 1 to 25 DO
writeln('I''m program # 1 !!');
END.

B-145

EXT IRNAL;

Chapter 12 - Lab Solutions

{ /lab/solution/labl2/s2b.pas

This program along with PROGL will compete
for the use of the line printer .

PROGRAM S122F;

TYPE
int = -32768..32757;

VAR
i : int;
out : text;

BEGIN
rewrite(out,'6');

FOR i := 1 to 25 DO

writeln(out,'I''m program # 2 !!');
END.

B~146

Chapter 12 - Lab Solutions

FTN7X, L
/LAB/SOLUTION/LABL2/52D. Pl

This program competes with PROG3 for the use of the line printer oy using
resource numbers. PROG3 allocates the resource number, prints out five
lines and then passes the resource number to PROG4. PROG4 prints out five
lines and passes the resource number back to PROG3. This continues until
each program has finished printing out it's messages. Since PROG4 1s the
last program to use the resource number, it will deallocate the number.

a0 nn

PROGRAM PROG4

IMPLICIT IMTEGER (A-2)
DIMENSION IPARM(5)

DATA DEALLOCATE RN/40B/
DATA UNLOCK RN/4/

DATA LOCK RN/1/

DATA NO_ABORT/40000B/

CAIT, RMPAR(IPARM)
Rl = IPARM(1)
C
WRITE(1,*) 'THE RESOURCE NUMBER IS',RM
noI=1,5
CALL RIRQ(LOCK RN+NO ABORT,RN,STAT)
GO TO 833
C
pnJ=1,5
WRITE(6,%*) *I''M PROGRAM 2 !
END DO
C
WRITE(1,*) "PROGRAM 2 IS UNLOCKIMNG THE R !!!
CALL PNRQ (UWLOCK RNM+NO ABORT,RM,STAT)
GO TO 888 a -
CALL FXEC(12,0,2,0,-1)
END DO
C
CALIL RMRQ (DEALLOACATE RM+NO ABORT,RM,GTAT)
STOP - -
C

8883 WRITE(1,*) 'RNRQ ABORT ERROR'
CALTL RIRQ (UMLOCK RM,RM,STAT)
CALL RIRQ(NSALL.OCATE RM,RN,STAT)

ELD

B-147

Chapter 12 - Lab Solutions

FTN7X,L
C
C /lab/solution/labl2/s3a.ftn
C
PROGRAM parent
c
c
c Daddy is an example of program scheduling using EXEC CALL,
c of locking LU's using LURQ, and of passing keys from
c program to program to share lu locks.
c
c
c
c
c Lock LU 1 with wait.
c
call lurq(l,l,1,key)
c
c write message that the LU is locked
c
write(l,’' (" FATHER HAS LOCKED LU 1')"')
c
c
C Now schedule the son, passing the key # to him/her
c
call exec(9,6HCHILD ,KEY)
c
c Now signal that the father is executing
c
write(l,'(" SON HAS COMPLETED, FATHER IS EXECUTING.™ ')
c
c Now terminate daddy
c

call exec(6)
end

3-148

Chapter 12 - Lab Solutiong

FTN7X,L

C

C /1ab/solution/1ab12/s3b.ftn
C

PROGRAM CHILD
integer parms(5)

c
c
c This program, with program S123A are a demonstration of
c shareable LU locks. S123a passes a KEY.WUM pamm returned
c by the LURQ call, after locking LU-1. 51238 then writes
c through that LU lock by using the KEYNUM pam with an exec
c write,
c
c
c
call mmpar(pams)
c
c Now put the key value in "key"
c
key = pamms(1)
c
c
c
call exec(2,1,29H ****************************,—29,0,0,0,0,keY)
call exec(2,1,29H ******x gon is writing ******,—29,0,0,0,0,key)
call exec(2,1,29H *** through the LU lock ***,—29,0,0,0,0,key)
call exec(2,l,29H *************************‘k**’_29’0’o’l)’o’key)
c
c temminate the son
c
call exec(6,0)
c
c
c

end

B-149

Chapter 12 - Labd Solutions

/lab/solution/labl2/s3a.pas

}
PROGRAM parent;
CONST
exect = 6;
exec9 = 9;
TYPE

int = -32768..32767;
nane = packed array [l..6] of char;

VAR .
option,lu,nunlu,keywd : int;

pname : name;

out s text;

PROCEDURE lurg(option,lu,numlu,keywd : int); EXTERMAL;
PROCENURE exec_6 SALIAS 'EXEC'S (icode : int); EXTERNAL;

PROCEDURE exec 9 SALIAS 'EXEC'S (icode : int; pname : name; key : int)
EXTERNAL;
BEGIN
rewrite(out,'l");
option := 1;
lu := 1;
numlu := 1;
lurq(option,lu,numlu, keywd) ;
writeln(out,'The father has locked LU 1 !!');

pname := 'CHILD';
exec 9 (exec?,pname,keywd) ;

writeln(out,'Son has completed; Father is executing 1Y),
exec_6 (exec6) ;

END.

B-159

14

Chanter 12 - Lab Solutions

/lab/solution/lahl2/s3b.pas
}
PROGRAM CHILD ;

COMST
exec?
exec6

[
NN

-e ws

TYPE
int = -32768..32767;

btype = packed array [l..29] of char;
ptype = array [1l..5] of int;
VAR
prams : ptype;
key s int;

PROCEDURE params SALIAS 'Pas.NumericParms'$ (VAR prams : ptype); EXTERNAL;

PROCEDURE exec 2 SALIAS 'FXEC'S (icode, lu : int; bufr : btype; bufln,optl,
opt2,0ont3,optd ,key : int); EXTERNAL;

PROCENURE exec 6 SALIAS 'EXEC'S (icode : int); EXTERNAL;

BBEGIN
params (prams) ;
key := prams[l];

exec 2 (execzll, Thkhkhkhkhkkhkhkhhkhkkkkhkkkhkkkkkkkkkkkk! ,_29,(\,.0,0 ,Olk‘_y) ;
eer:Z(execz,l,'****** Son is writing ****%x*x' _39,0,0,0,0,key);
exec_2(exec2,l,'**** through the LU lock ****',-29,0,0,0,0,key);
exec:2 (execz ,l ’ Thkkhkhkkhkhkhkhkkhkhkhkkhkhkkhkkdkdkkhkkhkkdkikl ,_29,0 '0 '0 ,0 'key) ;

exec 6 (exec6);

END.

B-151

Chapter 12 - Lab Solutions

ftn7x,1
$ema/big/
C

C /lab/solution/labl2/s4a.ftn
C
program parent
implicit integer (a-z)
INTEGER PNAIME(3)
common /big/iarray (1000)
DATA ©™NAME/6HCHILD /

CALL LKEMA

CNTWD = 21B
CALL RNRQ (CNTWD,RN,STAT)

CALL EXEC(10,PMAME,RN)

do 25 i =1, 1000
iarray(i) = i

do 10 j = 2, 1000
if (i .eq. j) go to 25
if (i .1t. J) go to 25
if (mod (i,j) .eq. 0) then
iarray(i) = 0

go to 25
endif
10 continue
25 contime

CALL RNRQ (4B,RN,STAT)

EMD

B-152

Chapter 12 - Lab Solutions

"FTN7X,L
SEMA/BIG/

/lab/solution/lahl2/s4b.ftn

oo NeNe!

PROGRAM child
IMPLICIT INTEGER(A-Z)
INTHGER PARM(5)
CoMMON /BIG/INUM(1009)

C
CALL RMPAR(PARM)
RN = PARM(1)
CNTWD = 1B
CALL RNR) (CNTWD,RN,STAT)
C WRITE(1,*) 'THE PRIME NUMBERS BETWEEN 1 AMD 1000 ARE

DO 100, I = 1,1000
IF (INUM(I) .EQ. 0) GOTO 100
WRITE(L,*) INUM(I)
100 CONTINUE
C

CNTWD = 44B
CALL RNRQ (CMTWD,RN,STAT)

CALL ULEMA

END

B-153

Chapter 12 - Lab Solutions

{ /lab/solution/labl2/s4a.pas

© This parent program calculates the prime numbers between 1 and 1000
and stores them in an array in Shareable EMA. The parent program
allocates a resource number, so that the array can be accessed.
The child program is scheduled with that resource number. }

Sheap 2$
Srecursive off$
PROGRAM S4A (input,output);

consT
no abort = 16384;
alloc global = 16;
lock rn = 1;
unlock rn = 4;

TYPE
int = -32768..32767;
big = array [1..1000] of int;
bigptr = “big;
cam = record
biggyptr : bigptr;
resource : int;
erd;
comptr = “cam;
name = packed array [l..6] of char;
rtyme = packed array [l..12] of char;
VAR

i, 3, a, b, cntwd, rn, stat, sizeblank : int;
sizeshared, start, heap stack : integer;
biggy : bigptr;

commy : camptr;

pname : name;

runstr : rtype;

FUNCTION common blank $ ALIAS ‘Pas.BlarkCom2' § : comptr; EXTERNAL;
FUNCTION blank_size $ ALIAS 'Pas.BlankSize' $§ : int; EXTERNAL;
FUNICTION sharedsize $ ALIAS 'Pas.AlSharedSize' $: integer; EXTERNAL;
FUNCTION setshared $ ALIAS 'Pas.AlSetShared' $
(start, heap stack : integer) : boolean; EXTERNAL;
PROCEDURE exec 10 $ALIAS 'EXEC'S (icode : int; pname:name; v,X,Y,Z,W : int;
runst : rtype; len : int); external;
PROCFDURE, abreg (VAR a,b : int); EXTERNAL;
PROCEDURE lkema; EXTERNAL;
PROCEDURE rnrqg (cntwd, rn, stat : int); EXTERNAL;
PROCEDURE errorcheck;
Sdirect$
BEGIN
abreg(a,b);
writeln('A = ',a:5,' B = ',b:5);
END;

B~154

Chapter 12 - Lab Solutions

BHGINM
lkema;
cntwd := alloc global + lock rn + no abort;
rnrg(cntwd, rn,stat) ; - -
errorcheck;
writeln('The parent has the resource mumber !');

runstr := 'ru,S4B,1,1°%;
pname := 'S4B';
exec_10(10,pname,0,0,0,0,0,runstr,-10) ;

sizeblank := blank size;
if sizeblank <> 0 then
begin
sizeshared := sharedsize;
if sizeshared <> 0 then
begin
commy := comnon blank;
if (setsnared(0,1050)) then

begin
new (bigyy) ;
comny”.biggyptr := biggy;
comay”.resource := rn;

FOR i :=1 to 1000 DO
BEGIN
jo:= 2;
comny”.biggyptr”[i] := i;

WHILE (j < 1000) AND (i > j) AND (i <> j) DO

BEGIN
if ((i mod j) = 0) then
begin
comny” . biggyptr®[i] := 0;
j := 1000;
end;
Je=3+1
END;

END;
end else writeln('Heap stack setup failure !!');
end else writeln('No access to SHEMA !!');
end else writeln('No common available !!');
writeln('The parent is unlocking the resource number !');
cntwd := unlock rn + no abort;
rnrg(cntwd, rn, stat);
errorcheck;
writeln('The parent is finished 1');
END,

B-155

Chapter 12 - Lab Solutions

{ /lahb/solution/labl2/s4b.pas

This child program receives a resource number from the parent.
With this number, the program is able to access the array and
print out the prime numbers 1 and 1000. }

Sheap 28
Srecursive off$
PROGRAM S4B (input,output);

CONST
lock rn = 1;
unlock rn = 4;
no_abort = 16384;
deallocate rn = 32;

TYPE
int = -32768..32767;
big = array [1l..1000] of int;
bigptr = “big;
can = record
biggyptr : bigotr;
resource : int;
endi

camntr can;

i, j, a, b, cntwd, rn, stat, sizeblank : int;

sizeshared, start, heap stack : integer;

biggy : bigptr;

canmy : comptr;
FUNCTION cammon blank $ ALIAS 'Pas.BlankCom2' $: comptr; EXTERNAL;
FUNCTION blank size $ ALIAS 'Pas.BlankSize' $§ : int; EXTERUAL;
FUMCTION sharedsize $ ALIAS 'Pas.AlSharedSize' $: integer; EXTERNAL;

FUNCTION setshared $ ALIAS 'Pas.AlSetShared' §
(start, heap stack : integer) : boolean; EXTERNAL;

PROCEDURE ulema; EXTERNAL;

PROCEDURE abreg (VAR a,b : int); EXTERNAL;
PROCEDURE rnrq (cntwd, rn, stat : int); EXTFRNAL;
PROCEDURE errorcheck;

Sdirect$S
BEGIN

B-156

Chapter 12 - Lab Solutions

abreg(a,b);
writeln('A = ',a:5,' B = ',b:5);
END;

BEGIN
sizeblank := blank size;
if sizeblank <> 0 ~then
begin

commy := cammon blank;
rn := comny”.resource;
cntwd := lock rn + no abort;
rnrqg(cntwd,rn,stat); —
errorcheck;
writeln('The child has locked the resource number !');

biggy := commny”.biggyntr;
sizeshared := sharedsize;
if sizeshared <> 0 then
begin
if (setshared(1051,2109)) then
begin
FOR i := 1 to 1000 DO
IF (biggy™[i] <> 0)
THEN writeln(bigqgy”[i]);
end else writeln('Heap stack setup failure !!');
end else writeln('No access to SHEMA 1!'); :
end else writeln('No common available !!');

cntwd := unlock rn + deallocate rn + no_abort;

rnrg({cntwd,rn,stat) ;

errorcheck;

writeln('The child has unlocked the resource number and is now exiting !');
ulema;

END.

B-157

Chapter 12 - Lab Solutions

FTH7X,L

C

C /lab/solution/labl2/s5.ftn

C This program will not accept LUs greater than 63.
C Use XLUEX to do so.

C

PROGRAM updown
IMPLICIT INTEGER (A-Z)

WRITE(1,*) 'PLEASE ENTER AN LU NUMBER ?'
READ (1,*)LU

CALL EXEC(13,LU,STATI1)

IF (BTEST(STAT1,14)) THEN

WRITE (1,*)'THE LU IS DOWN !!'
ELSE

WRITE (1,*)'THE LOJ IS UP !!'
ENDIF

END

B-158

Chapter 12 - Lab Solutions

/lab/solution/labl2/s5.pas
This program will not accept LUs greater than 63. (use XLUEX)

PROGRAM updown (input,output) ;

TYPE
int = -32768..32767;

VAR
lu, status : int;

PROCENURE exec 13 § ALIAS 'EXEC' § (icode,lu,status : int); EXTERMAL;

BEGIN

writeln('Please enter an LU number ?');
read(lu);

exec_13(13,1u,status);
writeln('Status is ',status:3);

IF (status > 16384) AND (status < 32767) THEN writeln('The LU is down:!"')
ELSE IF (status >= -16384) AND (status <= -1)
THEN writeln('The LT is down !!'")
ELSE writeln('The LU is up !!");

END.

B-159

DP1
DP2
DP3
DP4
DP5
DP6
DP7

DP8

DP1

DP2

DP3

DP4

DP5

DP6

DP7

DP8

Chapter 14 - Lab Solutions

7912 configuration:

16

HP-IB addr. 0
Unit/vol # 0
ms \ start 0
> blk 0

/

1s / number 0
Tracks 400
Blocks/track 48
reserved 0
CTD

24

HP-IB addr 0
CTD U/V # 400B
Cache U/V # 100000B
\ Start blk 3

> of disc

/ cache 59376
reserved 0
reserved 0
reserved 0

Disc LU

17 18 19

0 0 0

0 0 0

0 0 0

0 0 0
19200 38400 57600
400 400 1377
48 48 48

0 0 0

LU

20 21

0 0

0 0

0 0

1 2
58160 58720
1377 1379
48 48

0 0

disc allocation unit for the CI volumes is 1 block.

B-160

DP1

DP2

DP3

DP4

DP5

DP6

DP7

DP8

DP1

DP2

DP3

DP4

DP5

DP6

DP7

DP8

Chapter 14 - Lab Solutions

7933 configuration:

16
HP-IB addr. 0
Unit/Vol # 0
ms \ start 0
\
> blk 0
/
ls / number 0
Tracks 400
Blocks/track 48
reserved 0

19

5

17 18
0 0
0 0
0 0
0 4
200 17172
419 5419
48 48
0 0

LU

19

8

15144

5419

48

0

The mythical flexible disc configuration:

30
HP-IB addr. 0
Unit number 0
Start head 0
Start Cylinder 0
spares 0
Tracks 112
Blocks/track l6v
Sur faces 2

LU

31

112

16

B-161

20

12
13116
5419
48

0

21

16

11088

5419

48

22

20

6660

5369

48

Chapter 14 - Lab Solutions

4. In order to boot off of the 7925, it must be configured in cylinder
mode. 7925 configuration:

LU

10 11 12 13

DP1 HP-IB addr. 0 0 0 0
DP2 Unit number 0 0 0 0
DP3 Start head 0 0 0 0
DP4 Start Cylinder 0 206 412 618
DP5 spares 37 37 37 33
DP6 Tracks 1817 1817 1817 1808
DP7 Blocks/track 64 64 64 64
DP3 Sﬁrfaces 9 9 9 9

5. 7920 configuration:
LU

10 11 12 13 14

DP1 HP-IB addr. 0 0 0 0 0
DP2 Unit number 0 0 0 0 0
DP3 Start head 0 0 0 0 0
DP4 Start Cylinder 0 0 0 0 0
DP5 spares 16 16 16 16 16
DP6 Tracks 807 807 807 807 807
DP7 Blocks/track 48 48 48 48 48
DP8 Surfaces 1 1 1 1 1

Each LU is 38736 blocks. The only advantage to surface mode is that it is
easier to configure than cylinder mode.

B-162

Chapter

1. The default DVT parameters
Entry point
Driver parameter area
Driver extension area
Device type
t imeout

The default IFT parameters

Entry point
IFT extension area

The default DVT parameters

Device
Driver
Driver
Driver
Driver
Driver
Driver
Driver

Driver
Driver

Driver
Driver
Driver
Driver

type

parameter
parameter
parameter
parameter
parameter
parameter
parameter

parameter
parameter

parameter
parameter
parameter
parameter

rea

[Volie RN RN NN I R VE I SR i o))

10
11
12

The driver

14 - tab Solutions

for ¥DDC12 are:

for

for

DDC12
7

98
12B

500 (5 sec)

$ID.00 are:

1D.00
33

%DD.00 for a 2621 terminal are:

0

12

1

0
104008

MN
D
0

parameters will enable FMGR as the primary program
and COMND as the secondary program.

(These programs were the

equivalents of CI and CM fram the previous revision of RTE-A.
Typically, they would he overridden in the generation answer

file).
2. See file /LAB/SOLUTION/LAB15/S2.ANS
3. See file /LAB/SOLUTION/LAB15/S3.ANS
4., See file /LAB/SOLUTION/LAB15/54.ANS

B-163

Chapter 15 - Lab Solutions

/lab/solution/labl5/s2.ans

RTE-A.2 PRIMARY SYSTEM GENERATION ANSWER FILE

D.K.G REV. 2326 830624.1613

L.E.N Modified for generation lab for RTE-A course 830809

Solution for Lab 15 question 2, file = S2.ANS
Modification of answer file ANS1

Look for *!!* to denote additions or deletions

*

*

*

*

*

*

*

*

*

*

*

* $RPL60 CONTAINS THE A-600 RPL'S WITH NO CDS AND NO DOUBLE PRECISION
* FLOATING POINT.

* SRPL61 CONTAINS THE A-600 RPL'S WITH NO CDS AND DOUBLE PRECISION

* FLOATING POINT.

* SRPL62 CONTAINS THE A-600 PRL'S WITH CDS AND NO DOUBLE PRECISION

* FLOATING POINT.

* 3RPL63 CONTAIN3 THE A-600 RPL'S WITH CDS AND DOUBLE PRECISION

* FLOATING POINT.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

SRPL70 CONTAINS THE A-700 RPL'S WITH NO CDS AND NO HARDWARE FLOATING POINT??
$RPL71 CONTAINS THE A-700 RPL'S WITH MO CDS AND HARDWARE FLOATING POINT.
$RPL72 CONTAINS THE A-700 RPL'S WITH CDS AND NO HARDWARE FLOATING POINT.
$RPL73 CONTAINS THE A-700 RPL'S WITH CDS AND HARDWARE FLOATING POINT.

$RPLY0 CONTAINS THE A-900 RPL'S WITH NO CDS.
%RPL91 CONTAINS THE A-900 RPL'S WITH CDS.

THE CARTRIDGE REFERENCE NUMBERS "MS" AND "A2" HAVE BEEN
USED IN THIS ANSWER FILE FOR GENERATION PURPOSES IN THE
SOFTWARE PRODUCTION ENGINEERING DEPT. THEY MUST BE CHANGED
TO MATCH YOUR CARTRIDGE REFERENCE NUMBERS FOR REGEMERATION.

LINKS,CP
RE,%VCTR::17

* RE,%$SPOOL: :A2
RE,%EXEC::17
RE, $MEMRY::17

* RE,%CDSFH: :A2
RE,%RPL60::17

* RE,%RPL61::17
RE,%RPL62: :A2
RE, %$RPL63::A2
RE,%RPL70::17
RE,%RPL71::17
RE,%RPL72: : A2
RE;%$RPL73::A2
RE,%$RPL90::17
RE,$RPL91: : A2
RE, $SAM: :17

* % % F ¥ * ¥ %

B-164

Chapter 15 - Lab Solutions

RE,%TIME: :17
RE,%SCHED: :17
RE,%STRNG: :17
RE,%LOCK::17
RE,$ERLOG: :17
RE,%0PMSG::17
RE,%XCMND: :17
RE,%SYCOM::17
RE,%STAT::17
RE,%LOAD::17
RE,%RTIOA::17
RE,%I0MOD: :17
RE, %PERR::17
RE, %CLASS::17
RE,%1D.43::17

* RE,%#SPLU: :A2
.MS,S$SYSA.LIB: :LIBRARIES
SE,SSYSLB.LIB: :LIBRARIES
END

*

RE,%DD.33::17
RE,%1ID.52::17
END

*

* RE,%ID.66::A2
RE,%ID.00::17
END

*
RE,%ID.37::17
RE,%DD.30::17
END

*
RE,%IDM00::17
RE,%DD.23::17
END

*
RE,%DD.00::17
ALIGN
RE,%ID.27::17
RE,%ID.50::17
END

*

* RE,%ADV00::22
RE,%DD.20::17
END

*

11 Relocate driver for the 2608S lineprinter
*

RE,3DDC12::17
END
*

B-165

L

Chapter 15 - Lab Solutions

|1 pPelocate driver for 2631 line printer
*

RE,%DD.12::17

END

*

*

* end driver partition
END

*
* BFGIN TABLE GENERATIOM

* CONFIGURE LU TABLES

*

* ASIC FOR 2621A/P SYSTEM QONSOLE WITH VCP
*

IFT,%ID.00::17,5C:20B

*

DVT,%DD.00::17,M26XX,LU:1,QU:FI,-
DP:5:CI:20040B:20040B:0,DP:9:CM:20040B:20040B:CM

DVT,%DD.20::17,M264X:1,LU:64

DVT, %$DD.20::17,M264X:2,LU:65

*

11 ramove 2635A - remove the node list for these LUs also

*

*

* ASIC FOR 2635A AUXILIARY CONSOLE/PRINTER

*

x11* TJFT,%ID.00::17,SC:33B

* 1% DYT,%DD.00::17,M2635:0,LU:66,QU:FI,~

* 1% DP:5:CI :20040B:20040B:0,DP:9:CM:20040B:20040B:CM
*1 1% DYyT,%DD.00::17,M2635:1,LU:67

*

11 add a 262x terminal - this is just like LU 1 except no CTUs
*

x| 1% create an interface table, %ID.00 is the default file, select code 33B
*

IFT,%ID.00::17,SC:33B
*

x| 1* create a device table, %DD.00 is the default file, model number 26XX,
11% LU 66, queuing is FIFO, driver parameters set up CI as the primary
*11*x program and CM as the secondary program

*

DVT,%DD.00::17,M26XX,LU:66,QU:FI,~

DP:5:CI:20040B:20040B:0,DP:9:CM:20040B:20040B:CM
*

*

* ASIC FOR 2645A AUXILIARY CONSOLE WITH DUAL MINI-CARTRIDGE

*

IFT,%ID.00::17,3C:22B

DVT,%DD.00::17,M26XX,LU:68,QU:FI,~
DP:5:CI:20040B:200408B:0,DP:9:CM:20040B:20040B:CM

DVT,%DD.20::17,M264X:1,LU:69

B-166

Chapter 15 - Lab Solutions

DVT,%DD.20::17,M264X:2,LU:70

*
* PARALLEL INTERFACE CARD
*

IFT,%ID.50::17,SC:26B
pvr,,,LU:84,T0:5000,DX:2,DP:1:1:2,DT:45B
%*

* PARALLEL INTERFACE FOR CPU TO CPU COMMUNICATION
%*

IFT,%ID.52::17,5C:21B

%*

pvT,,,LU:83,T0:0,DT:7,DX:0

%*

* HP-IB #1

%*

IFT,%ID.37::17,SC:27B
K]

*HP-IB #1 BUS CONTROLLER LU

%*
pvt,,,LU:9,TO:2000,DT:77B,TX:0,DX:1,DP:1:36B,PR:0
%*

* 7908/40/11/41/12/14/33 DISC WITH COMPATIBLE CARTRIDGE TAPE

* LU 16-20,22,23,29-31,34,35,24 HP-IB ADDRESS 0
*

DVT,3DD.33::17,M7903 LF:0,LU:16,DP:1:0
DVT,%DD.33::17,M7908 LF:1,LU:17,DP:1:0
DVT,%DD.33::17,M7908 LF:2,LU:18,DP:1:0
DVT,%DD.33::17,M7908 LF:3,LU:19,DP:1:0
DVT,%DD.33::17,M7908 | LF:4,LU:20,DP:1:0
DVT,%DD.33::17,M7911 _LF:5,LU:22,DP:1:0
DVT,%DD.33::17,M7912 LF:6,LU:23,DP:1:0
DVT,%DD.33::17,M7912 | LF:7,LU:29,DP:1:0
DVT,%DD.33::17,M7914 LF:8,LU:30,DP:1:0
DvT,%DD.33::17,M7914 LF:9,LU:31,DP:1:0
DVT,%DD.33::17,M7933 LF:10,LU:34,DP:1:0
1,LU:35,DP:1:0

DVT,%DD.33: :17,M7933:LF.1
*

-

* COMPATIBLE CARTRIDGE TAPE CACHE LU 24 HP-IB ADDRESS 0
*

DVT,%DD.33::17 ,MTAPE,LU:24,DP:1:0
*

* 7906H HARD DISC LU 12-15 HP-IB ADDRESS 1

*

DVT,%DD.30::17,M7906:0,LU:12,DP:1:1
DVT,%DD.30::17,M7906:1,LU:13,DP:1:1
DVT,%DD.30::17,M7906:2,L.U:14,DP:1:1

5,DP:1:1

DVT,%DD.30::17,M7906:3,LU:15,
. _

*3.5" OR 5.25" FLEXIBLE DISC LU 32,33 HP-IB ADDRESS 2
*

DVT,%DD.30::17,M7902,LU:32,DP:1:2:0:0:0,DP:5:2:66:16:2,T0:3000

B-167

|

Chapter 15 - Lab Solutions

ovr,%DD.30::17,M7902:0,LU:33,DP:1:2:1:0:0,DP:5:2:66:16:2,T0:3000
*

* 7910H FIXED DISC LU 40-43 HP-IB ADDRESS 3
x

DVT,%DD.30::17,M7910:0,LU:40,D
DVT,%DD.30::17,M7910:1,LU:41,D
DVT,%DD.30::17,M7910:2,LU:42,D

P
P
P
DvT,%DD.30::17,M7910:3,LU:43,DP
*

1:3
1:3
1:3
1:3

* HP-IB TAPE DRIVE LU 8 HP-IB ADDRESS 4
*

DvT,%DD.23::17,M7970E:0,LU:8,DP:1:4,PR:1
*

* 8" FLEXIBLE DISC LU 10,11 HP-IB ADDRESS 5
*

pvr,%DD.30::17,M7902:0,LU:10,DP:1:5,t0:3000,T0:3000
pvt,%DD.30::17,M7902:1,LU:11,DP:1:5,t0:3000,T0: 3000
*

* 5.25" FIXED DISC (9134A/B SINGLE VOL.) LU 52,53,54 HP-IB ADDRESS 6
*

DVT,%DD.30::17,M9134L:0,LU:52,DP:1:6
DvVT,%DD.30::17,M9134L:1,LU:53,DP:1:6
DVT,%DD.30::17,M9134L:2,LU:54,DP:1:6

*

* 5,25" FIXED DISC (91341 FOUR VOL.) LU 48-51 HP-IB ADDRESS 7
x

pvT,%DD.30::17,M9134:0,LU:48,DP
DVT,%DD.30::17,M9134:1,LU:49,DP
DVT,%DD.30::17,M9134:2,LU:50,DP
pvT,%DD.30::17,M9134:3,LU:51,DP
*

:1:7
217
:1:7
:1:7

* 248x INTBGRATED DISC INTLERFACE
*

IFT,%ID.27::17,5C:32B
*

* Hard disc
*

DVT,%GEN27::17,M2480:0,LU:36
DVT,%$GEN27::17,M2480:1,LU:37
DVT,%GEN27::17,M2480:2,LU: 38
*

* Microfloppy
*

DVT,%GEN27::17,M2480:3,LU:39
*
*

* HP-IB #2: INSTRUMENT BUS
*

IF?,%ID.37::17,5C:25B
*

* Hp-IB #2 CONTROLLER

B-168

Chapter 15 - Lab Solutions

*
pvr,,,LU:21,T0:50,DT:778,DX:1,DP:1:36B
*

* FOUR DEVICES
*
pvt,,,lLU:25,T70:500,DT:778,DX:
pvt,,,LU:26,T0:500,DT:778B,DX
pvt,,,LU:27,T0:500,DT:778B,DX
pvtT,,,LU:28,T0:500,DT:778,DX
*

11 add an HP-IB with a 2608s and 2631
*x1 1%
*

11 HP-IB #3 PRINTERS
*

11 create an IFT for the HP-IB card _
*

IFT,%1IN.37::17,SC:30B
*

11 2608S LINE PRINTER LU 85 HPIB ADDR 2

11 the first driver parameter is the HP-IB address
*

DVT,%DDC12::17,,LU:85,DP:1:2
*

1! HPIB LINE PRINTER LU 6 HPIB ADDR 6

11 the first driver parameter is the HPIB address
*

pvT,%DD.12::17,,LU:6,DT:12B,DP:1:6
*

* D.S. LINKS, TWO LUS FOR D.S., TWO FOR LU MAPPING
*

HETWORK LINKS
IFT,%ID.66::A2,EID.66,SC:24B,QU:FI,TX:18

pvT,,,LU:79,DT:66B
pvT,,,LU:80,DT:66B

LU MAPPING

% % ¥ X ¥ ¥ ¥ * *

IFT,%ADV0O0: :A2,EIDV00,SC:31B,QU:FI,TX: 2
DVT,, ,LU:81,EDDV00,TX:0
DVT, ,,LU:82,EDDV00, TX:5

eight MUX LU'S SELECT CODE 23, LU 71-78

FT,%IDM00::17,SC:23B

o % ¥ ¥ ¥ ¥ % F* %

DVT,%DD.00::17,M26XX,LU: 71,QU:FI,DP:1:20004B,~

B-169

l

Chapter 15 - Lab Solution.

DP:5:C1:20040B:20040B:0,DP:9:CM:20040B:20040B:CM
DVT,%DD.00::17 ,M26XX,LU:72,QU:FI,DP:1:20004B,~
DP:5:CI:20040B:20040B:0,DP:9:CM:20040B:20040B:CM
DVT,%DD.00: :17,M26XX,LU:73,QU:FI,DP:1:20004B,-
DP:5:CI:20040B:20040B:0,DP:9:CM: 20040B:20040B:CM
DvVT,%DD.00::17,M26XX,L0U:74,QU:FI,DP:1:20004B, -
DP:5:CI: 2004OB 20040B:0,DP:9:CM: 20040B:20040B: CM
DVT,%DD.00::17,M26XX,LU: 75,QU F1,DP:1:20004B,~
DP:5:CI:20040B:20040B:0,DP:9:CM:20040B:20040B:CM
DVT,%DD.OO::17,M26XX,LU:76,QU:FI,DP:1:20004B,—
DP:5:CI:20040B:20040B:0,DP:9:CM:20040B:20040B:CM
DvVT,%DD.00: :17,M26XX,L0U:77,QU:F1,DP:1:20004B,~
DP:5:CI:20040B:20040B:0,DP:9:CM:20040B:20040B:CM
DVT,%DD.00: :17 ,M26XX,LU:78,QU:FI,DP:1:20004B,~
DP:5:CI:20040B:20040B:0,DP:9:CM: 20040B:20040B:CM
END
*

END
*

* DEFINE NODE LISTS
*

* SYSTEM CONSOLE AND TWO TAPE DRIVES
NODE,1,64,65
*

11 this node was for the 2635 which was removed
* AUXILIARY CONSOLE/PRINTER

11 NODE,66,67
*

* AUXILIARY CONSOLE WITH TWO TAPE DRIVES
NODE, 68,69,70
*

* TWO 8" FLEXIBLE DISCS
NODE, 10,11
*

* FOUR 7906 LU'S
NODE,12,13,14,15
*

* FOUR 7910 LU'S
NODE,40,41,42,43
*

* THIRTEEN 7908/11/12/14 LU'S AND A QOMPATIBLE CARTRIDGE TAPE DRIVE
NODE,16,17,18,19,20,22,23,24,29,30,31,34,35
*

* TWO 3.5" OR 5.25" FLEXIBLE DISCS

*

NODE, 32,33

*

* FOUR 5.25" FIXED DISC LU'S (9134 FOUR VOL.)
*

NODE, 48,49,50,51
*

B-170

Chapter 15 - Lab Solutions

* THREE 5.25" FIXED DISC LU'S (9134A/B SINGLE VOL.)
*

NODE,52,53,54
*

* FOUR 248x INTEGRATED DISC LU'S
*

NODE, 36,37,38,39
*
END,,, ,NODE LIST
*

END, ,,,INTERRUPT TABLE
*

CLAS, 40
RESN, 20
1D,40
RS,0
SAM,6144
sL,0,0
BG,30
QU,300,50
sp,0
MB,500
Us,0

*

* SYSTEM COMMON
*

SABLIB CQONTAINS THE BASIC TRAP‘TABLES (DELETED)
RE,SABLIB::17

DS/1000 HAS BEEN GEN'ED INTO THIS SYSTEM FOR VERIFICATION
OF HARDWARE ONLY. IF PROGRAM DEVELOPMENT CAPABILITY FOR
DS IS DESIRED REPUACE $FMDLB WITH S$FDSLB. $BIGDS IS A
MERGED LIBRARY CONTAINING ENTRY POINTS FROM SEVERAL DS
LIBRARIES

DS/1000 LABELED COMMON AREA

RE,3%RESA::A2
RE, SBIGDS: :A2, #NRVS
RE,SBIGDS: : A2, #RQUA
RE,SBIGDS: :A2,#LEVL
RE,SBIGDS: :A2,DSEQT
MS,SBIGDS: :A2

* % Ok Ok ok % ok ¥ ok % N ¥ N ¥ ¥ ¥ ¥ ¥ ¥

END,,,,LABELED SYSTEM COMMON RELOCATION
coM, 10

*

RE,%$MSGS: :17

END
*

B-171

|

Chapter 15 - Lab Solutions

LIB,SFNDLB.LIB: :LIBRARIES
LIB,$BIGLB.LIB: :LIBRARIES
*

11 add the pascal library as a default library
*

LIB,S$PLIB.LIB: :LIBRARIES
*

*
END

B-172

|

Chapter 15 - Lab Solutions

/lab/solution/labl5/s3.ans

D.K.G
L.E.N:

REV. 2326 830624.1613
Modified for generation lab

Solution for Lab 15 question 3, file
Original answer file = ANS1
w/ VC+

Look for *!!* to denote additions or

SRPL60 CONTAINS
FLOATING POINT.
$RPL61 CONTAINS
FLOATIMNG POINT.
$RPL62 CONTAINS
FLOATING POINT,
%RPL63 CONTAINS
FLOATING POINT,

THE A-600 RPL'S WITH

THE A-600 RPL'S WITH

THE A-600 PRL'S WITH

THE A-600 RPL'S WITH

$RPL70 CONTAINS
3RPL71 CONTAINS
3RPL72 OONTAINS
$RPL73 CONTAINS

THE
THE

THE
THE

A-700
A-700
A-700
A-700

RPL'S
RPL'S
RPL'S
RPL'S

WITH
WITH
WITH
WITH

RPL'S
RPL'S

$RPLI0 CONTAINS
$RPL91 COMTAINS

A-900
2A-900

THE
THE

WITH
WITH

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* THE CARTRIDGE REFERENCE NUMRERS "MS"

* USED IN THIS ANSWER FILE FOR GENERATI
* SOFTWARE PRODUCTIONM ENGINEERING DEPT.
*

*

*

LINKS,CP

RE,%VCTR: :17

11 jnclude spooling module
RE,%SPOOQL: :A2

RE,%EXEC::17

RE,%MEMRY::17

11 include CDS fault handler
RE, 3CDSFH: :A2

11 uyse the CDS RPLs

* RE,%RPL60::17

* RE,%RPL61::17
RE,%RPLG2: :A2

* RE,%RPLL63::A2

* RE,%$RPL70::17

*. RE,%RPI.71::17

* RE,%RPL72::A2

B-173

RTE-A.2 PRIMARY SYSTEM GENERATION ANSWER FILE

for RTE-A course 820809

53.AUS

deletions

NO CDS AMD NO DOUBLE PRECISION
NO CDS AND DOUBLE PRECISION
CDS AND NO DOUBLE PRECISION

CDS AND DOUBLE PRECISION

NO CDS AND NO HARDWARE FLOATING POINT??
NO CDS AND HARDWARE FLOATING POINT.

(DS AND NO HARDWARE FLOATING POINT.
CDS AND HARDWARE FLOATING POINT.

NO CDs.
Ds.

AND "A2" HAVE BEEN
ON PURPOSES IN THE
THEY MUST BE CHANGED

7O MATCH YOUR CARTRIDGE REFERENCE NUMBERS FOR REGENERATION.

Chapter 15 - Lab Solutions

* RE,%RPL73::A2
* RE,%RPL90::17
* RE,%RPL91::A2
RE,$SAM: :17
RE,%TIME: :17
RE,%SCHED: :17
RE, $STRNG: :17
RE,%LOCK: :17
RE,%ERLOG: :17
RE, %0PMSG::17
RE,%$XCMND: :17
RE,%SYCOl1: :17
RE,%STAT: :17
RE,%LOAD::17
RE,%RTIOA::17
RE,%IOMOD: :17
RE,%PERR::17
RE, %CLASS::17
RE,%1ID.43::17

* RE,%#SPLU: :A2
MS,SSYSA.LIB: :LIBRARIES
SE,SSYSLB.LIB::LIBRARIES
END

*

RE,%DD.33::17
RE,%ID.52::17
END

*

* RE,3$ID.66: :A2
RE,%1ID.00::17
END

*

RE,%ID.37::17
RE,%DD.30::17
END

RE,%$IDM00::17
RE,%DD.23::17
END

*
RE,%DD.00::17
ALICN
RE,%ID.27::17
RE,%ID.50::17
END

*

* RE,%ADV00::A2
RE,%DD.20::17
END

*

* Relocate driver for the 2608S lineprinter

B-174

Chapter 15 - Lab Solutions

*

RE,%DDC12::17

END

*

* Relocate driver for 2631 line printer
*

RE,%DD.12::17

END
*

*

end driver partition
ND

BEGIN TABLE GENERATION
QONFIGURE LU TABLES

* % o kT %

*

ASIC FOR 2621A/P SYSTEM CONSOLE WITH VCP

*

IFT,%1D.00::17,SC:20B
*

DVT,%DD.OO::17,M26XX,LU:1,QU:FI,-
DP:5:CI:20040B:20040B:0,DP:9:CM:20040B:20040B:CM

DVT,%DD.20::17,M264X:1,LU: 64

DVT,%DD. 20: :17,M264X:2,LU:65

*

* reamove 2635A - remove the node list for these LUs also
*

*

* ASIC FOR 2635A AUXILIARY CONSOLE/PRINTER
*

* I'T,%ID.00::17,5C:338 :

DVT,%DD.00::17,M2635:0,LU:66,QU:FI ,-
DP:5:CI:20040B:20040B:0,DP:9:CM:20040B:20040B:(M

DVT,%DD.00::17,M2635:1,LU:67

add a 262x terminal - this is just like LU 1 except no CIUs

*
*
*
*
*
*
* create an interface table, %$ID.00 is the default file, select code 33B
.

IFT,%ID.00::17,SC:33B
*

* create a device table, %DD.00 is the default file, model number 26XX,

* LU 66, queuing is FIFO, driver parameters set up CI as the primary

* program and CM as the secondary program
*

DVT,%DD.00::17,M25XX,LU:66,Q1:FI,~
DP:5:CI:20040B:200408:0,DP:9:CM:20040B: 20040B:CM

*
*

* ASIC FOR 2645A AUXILIARY CONSOLE WITH DUAIL, MINI-CARTRIDGE

* .

B=175

|

Chapter 15 - Lab Solutions

IFT,%1ID.00::17,SC:22B

DVT,%DD.00: :17,M26XX,LU:68,QU:FI,-
DP:5:CI:20040B:20040B:0,DP:9:CM:20040B:20040B:CM

DVT,%DD.20::17,M264X:1,LU:69

DVT,%DD.20::17,M264X:2,LU:70

*

* PARALLEL INTERFACE CARD
*

IFT,%ID.50::17,5C:26B
pvT,,,LU:84,T0:5000,DX:2,DP:1:1:2,DT:45B
*

* PARALLEL, INTERFACE FOR CPU TO CPU COMMUNICATION
*

IFT,%ID.52::17,SC:21B

*
pvT,,,LU:83,T0:0,DT:7,DX:0
*

* HP-1B #1
*

IFT,%ID.37::17,5C:27B
*

*Hp-1IB #1 BUS CONTROLLER LU
*

pvT,,,LU:9,TO0:2000,DT:77B,TX:0,DX:1,DP:1:36B,PR:0

7908/40/11/41/12/14/33 DISC WITH COMPATIBLE CARTRIDGE TAPE
LU 16-20,22,23,29-31,34,35,24 HP-IB ADDRESS 0

* * % F % *

DVT,%DD.33::17,M7908 LF
DvT,%DD.33::17, M7908 LF:
L™
LF

:0,LU:16,DP:

:1,L0: DP:
DvT,%DD.33::17, M7908 LU:
DVT,%DD.33::17,! %7908_ :3,L0:
DVT,%DD.33::17,M7908 LF:4,LU0:
DVT,%DD.33::17, M7911 LF:5,LU:2
DVT,%DD.33::17, M7912 LF:6,LU0:2
DVT,%DD.33::17, M7912 LF:7,L0:29,D

P

P:

P:

DVT,%DD.33::17, M79l4 LF:8,L0:30,DP:
P:

DP

0,LU:16
1,L0:17,
2,LU:18,D
:3, 19,D
4,L0:20,DP
2,D
3,D

DVT,%DD.33::17, M79l4 LF:9,L0:31,D
DVT,%DD.33::17 M7933_LF 10,LU:34, 1:0
DVT,%DD.33::17,M7933_LF211,LU:35,DP:1:0
*

* COMPATIBLE CARTRIDGE TAPE CACHE LU 24 HP-IB ADDRESS 0
*

DvT,%DD.33::17,MIAPE,LU:24,DP:1:0
*

* 7906H HARD DISC LU 12-15 HP-IB ADDRESS 1
*

pvT,%DD.30::17,M7906:0,LU:12,DP:

1:1
DVT,%$DD.30::17,M7906:1,L1J:13,DP:1:1

Chapter 15 - Lab Solutions

DVT,%DD.30::17,M7906:2,LU:14,
DVT,%DD.30::17,M7906:3,LU:1
*

*3.5" OR 5.25" FLEXIBLE DISC LU 32,33 HP-IB ADDRESS 2

2,T0:3000

DvVT,%DD.30::17,M7902,LU:32,DP :
3, 16:2,T0:3000

DVT, $DD. 30: :17,M7902:0,LU: 3

*

* 7910H FIXED DISC LU 40-43 HP-IB ADDRESS 3
*

DVT,oDD 30::17,M7910:0,LU:40,DP:1:3
DVT,%DD.30::17,M7910:1,LU:41,DP:1:3
DVT,%DD.30::17,M7910:2,LU:42,DP:1:3
DVT $DD.30::17,M7910:3,LU:43,DP:1:3

* HP-IB TAPE DRIVE LU 8 HP-IB ADDRESS 4
*

DVT,%DD.23::17,M7970E:0,LU:8,DP:1:4,PR:1
*

* 8" FLEXIBLE DISC LU 10,11 HP-IB ADDRESS 5
*

DVT,%DD.30::17,M7902:0,LU:10,DP:1:5
DVT,%DD.30::17,M7902:1,LU:11,DP:1:5
*

,£0:3000,T0:3000
,£0:3000,T0:3000

* 5.25" FIXKED DISC (9134A/B SINGLE VOL.) LU 52,53,54 HP-IB ADDRESS 6
*

DVT,%DD.30::17,M9134L:0,LU:52,DP:1:6
DVT,%DD.30::17,M9134L:1,LU:53,DP:1:6
DVT,%DD.30::17,M9134L:2,LU:54,DP:1:6
*

* 5.25" FIXED DISC (91341 FOUR VOL.) LU 43-51 HP--IB ADDRESS 7
*

DVT,%DD.30::17,M9134:0,LU:48,DP
DVT,%DD.30::17,M9134:1,LU:49,DP
DVT,%DD.30::17,M9134:2,LU:50,DP:
DVT,oDD 30::17,M9134:3,LU:51,DP:

*

* 248x INTIGRATED DISC INTERFACE
*

IFT,%ID.27::17,S8C:32B
*
* Hard disc

*

DVT,%GEN27::17,M2480:0,LU: 36
DVT,3GEN27::17,12480:1,LU:37
DVT,%GEN27::17,M2480:2,LU: 38
*

* Microfloppy

*

DVT,%GEN27::17,M2480:3,LU:39

B-177

Chapter 15 - Lab Solutions

*x

*x

* Hp-IB #2: INSTRUMENT BUS
*

IFT,%ID.37::17,SC:25B
*

* HP-IB #2 CONTROLLER
*

DvT,, ,LU:21,TO:50,DT:77B,DX:1,DP: 1:36B
*

* FOUR DEVICES
*

DVT,,,LU:ZS,TO:500,DT:77B,DX:1,DP:1:1
pvT, ,,LU:26,T0:500,DT:778,DX:1,DP:1:5
DVT,,,LU:27,TO:500,DT:77B,DX:1,DP:1:6
pvT, ,,LU:28,T0:500,DT:778,DX:1,DP:1:7

*x

* add an HP-IB with a 2608s and 2631
*

HP-IB #3 PRINTERS

create an IFT for the HP-IB card

* % % % %

IFT,%1D.37::17,SC:30B
*

* 26035 LINE PRINTER LU 85 HPIR ADDR 2

* the first driver parameter is the HP-IB address
*

DVT,%DDClZ::17,,LU:85,DP:1:2

*

* HPIR LINE PRINTER LU 6 HPIB ADDR 6
* the first driver parameter is the HPIB address

EVT,%DD.IZ::17,,LU:6,DT:12B,DP:1:6
D.S. LINKS, T™WO LUS FOR D.S., TWO FOR LU MAPPING
NETWORK LINKS
IFT,%1ID.66: :A2,EID.66,5C:24B,QU:FI,TX: 18

*

*

*

*

*

*

* pvT,,,LU:79,DT:66B
* pvT,, ,LU:80,DT:66B
*
*
*
*
*
*
*

LU MAPPING
IFT,%ANV00: :A2,EIDVOC,SC: 318,QU: FI, TX:2

pvT,,,LU:81,EDV00,TX:0

B-178

Chapter 15 - Lab Solutions

* pvT,,,LU:82,EDDV00,TX:5
*

* eight MUX LU'S SELECT QODE 23, LU 71-78
*

IFT,%IDM00::17,SC:23B
*

DVT,%DD.00: :17,M26XX,LU: 71,QU:FI,DP:1:200048,-
DP:5:CI:20040B:20040B:0,DP:9:CM:20040B:20040B:CM
DVT,%DD.OO::l7,M26XX,LU:72,QU:rI,DP:1:20004B,—
DP:5:CI:200408:20040B:0,DP:9:CM:20040B:20040B:CM
DVT,%DD.00::17 ,M26XX,LU: 73,QU:FI ,DP:1:200048, -
DP:5:CI:20040B:200408B:0,DP:9:CM:20040B:20040B:CM
DVT,%DD.00: :17,M26XX,LU:74,QU:FI,DP:1:20004B,-
DP:5:CI:20040B:20040B:0,DP:9:CM:20040B:20040B:CM
DVT,%DD.OO::17,M26XX,LU:75,QU:FI,DP:1:20004B,—
DP:5:CI:20040B:200408B:0,DP:9:CM:20040B:20040B:CM
DVT,%DD.OO::17,M26XX,LU:76,QU1FI,DP:l:20004B,-
. DP:5:CI:20040B:20040B:0,DP:9:M:20040B:20040B:CM
DVT,%DD.00::17,M26XX,LU:77,QU:FI,DP:1:20004B,-
DP:5:CI:20040B:200403:0,DP:9:CM:200408:200408:CM
DVT,%DD.00::17 ,M26XX,LU:78,QU:FI,DP:1:200048,-
DP:5:CI:20040B:20040B:0,DP:9:CM:20040B:20040B:CM

FI,
e Qe
e Je
il

END
*

END
*

* DEFINE NODE LISTS
*

* SYSTEM CONSOLE AND TWO TAPE DRIVES
NODE,1,64,65
*

* this node was for the 2635 which was removed
* AUXILIARY CONSOLE/PRINTER

* NODE,66,67

*

* AUXILIARY CONSOLE WITH TWO TAPE DRIVES
NODE, 68,69,70
*

* TWO 8" FLEXIBLE DISCS
NODE,10,11
*

* FOUR 7906 LU'S
NODE,12,13,14,15
*

* FOUR 7910 LI'S
NODE,40,41,42,43
*

* THIRTEEN 7908/11/12/14 1.U'S AND A COMPATIBLE CARTRIDGE TAPE DRIVE
NODE,16,17,18,19,20,22,23,24,29,30,31,34,35
*

* TWC 3.5" OR 5,25" FLEXIBLE DISCS

B-179

Chapter 15 - Lab Solutions

*

NODE, 32,33
*

* FOUR 5.25" FIXED DISC LU'S (9134 FOUR VOL.)

*

NODE, 48,49,50,51
*

* THREE 5.25" FIXED DISC LU'S (9134A/B SINGLE VOL.)
*

MNODE,52,53,54

*

* FOUR 248x INTEGRATED DISC LU'S

*

MODE,36,37,38,39

*
END, ,,,NODE LIST
*

*

END, , , ,INTERRUPT TABLE
*

*

CLAS, 40

RESH, 20

1D,40

RS,0

SAM, 6144

11 put in spool buffer limits

11 you could also use generator defaults by specifying just SL
SL,350,750

BG,30

Qu,300,50

11 a3]low for shared program

Sp,10

MB,500

11 allocate space for the users' table
Us,10

*

SYSTEM COMMON

SABLIB CONTAINS THE BASIC TRAP TABLES (DELETED)

RE, SABLIB: :17

DS/1000 HAS BEEN GEN'ED INTO THIS SYSTE4 FOR VERIFICATION
OF HARDWARE ONLY. IF PROGRAM DEVELOPMENT CAPARILITY FOR
DS IS DESIRED REPLACE SFWDLB WITH SFDSLB. $BIGDS IS A
MERGFD LIBRARY CONTAINING ENTRY POINTS FROM SEVERAL DS
ILIBRARIES

DS/1000 LARELFD COMMON ARFA

S oo % % ¥ %k F % % O F F * *

B-180

Chapter 15 - Lab Solutions

RE,%RESA: :A2
RE,$SBIGDS: :A2,#NRVS
RE,SBIGDS: :A2,#ROUA
RE,SBIGDS: :A2,#LEVL
RE, $BIGDS: :A2,DSEQT
MS,$BIGDS: :A2

* % % * % * %

END, ,, ,LABELED SYSTEM COMMON RELOCATION
CoM, 10 v
*

RE,%MSGS::17
END
*

LIB,S$SFNDLB.LIB: :LIBRARIES
- LIB,$BIGLB.LIB: :LIBRARIES
*

* add the pascal library as a default library
*

LIB,SPLIB.LIB: :LIBRARIES
*

*

END

B-181

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

Chapter 15 - Lab Solutions

/lab/solution/labl5/s4.ans

RTE-A.2 PRIMARY SYSTEM GENERATION ANSWER FILE

D.K.G REV. 2326 830624.1613

l.e.n, modified for RTE-A course 830809 answer file w/errors

Solution for Lab 15, question 4, file = S4.ANS
Original answer file = ANS2

Look for *!!* to denote corrections

$RPL60 CONTAIMS THE A-600 RPL'S WITH NO CDS AND NO DOUBLE PRECISION
FLOATING POINT.

$RPL61 CONTAINS THE A-600 RPL'S WITH NO CDS AND DOUBLE PRECISION
FLOATING POINT.

$RPL62 CONTAINS THE A-600 PRL'S WITH CDS AND NO DOUBLE PRECISION
FLOATING POINT,

%RPL63 CONTAINS THE A-600 RPL'S WITH CDS AND DOUBLE PRECISION
FLOATIMG POINT.

$RPL70 CONTAINS THE A-700 RPL'S WITH NO CDS AND NO HARDWARE FLOATING POINT??
$RPL71 CONTAINS THE A-700 RPL'S WITH NO CDS AND HARDWARE FLOATING POINT.
$RPL72 CONTAINS THE A-700 RPL'S WITH CDS AND NO HARDWARE FLOATING POINT.

Q.

%SRPL73 CONTAINS THE A-700 RPL'S WITH CDS AND HARDWARE FLOATING POINT.

$RPLI0 COMTAINS THE A-900 RPL'S WITH MNO CDS.
%RPLI1 CONTAINS THE A-900 RPL'S WITH CDS.

THE CARTRIDGE REFFRENCE NUMBERS "MS" AND "A2" HAVE BEEN
USED IN THIS AMSWER FILE FOR GENERATION PURPOSES IMN THE
SOFTWARE PRODUCTION ENGINEERING DEPT. THEY MUST BE CHANGED
TO MATCH YOUR CARTRIDGE REFERENCE NUMBERS FOR REGENERATION.

11 The cartridge reference designations in the primary don't match
11 my system and probably don't match the lab system, so I will change
11 tham, On my system the RTE-A relocatables are on cartridge 17 and
*11%x the VC+ relocatables are on cartridge A2, and the libraries are
11 in /LIBRARIES.

*

11 This system is far too big to use base page linking
* | 1% [INKS,BP

LINKS,CP

RE,%VCTR::17

*

RE, $SPOOL: :A2

RE,$FXEC: :17
RE, $MEMRY : :17

*

RE,%CDSFH: :A2

11 the correct RPL file must be gen'ed in
RE,%RPL60::17

*
*
*

RE,%RPL61::17
RE,%RPL62: :A2
RE,%RPL63::A2

B-182

Chapter 15 - Lab Solutions

RE,$RPL70::17
RE,%RPL71::17
RE,%RPL72::A2
RE,%RPL73::A2

RE, 3RPL90::17

* RE,%RPL91::A2
RE,%SAM: :17
RE,3TIME: :17
RE,%SCHED: :17
RE,%STRNG: :17
RE,$LOCK: :17
RE,%ERLOG: :17
RE,%0PMSG: :17

RE, $XCMND: :17
RE,%¥SYCOM::17
RE,%STAT::17
RE,%LOAD::17

RE,%RTIOA: :17
RE,%IOMOD: :17
RE,$PERR::17
RE,%CLASS::17
RE,%1D.43::17

* RE,%#SPLU::A2

11 you must do multiple searches of $SYSA to resolve all
11 undefined externals
*11% GF,SSYSA::17
MS,SSYSA.LIB: :LIBRARIES
SE,SSYSLB.LIB: :LIBRARIES
END

*

RE,%DD.33::17
RE,%ID.52::17

END

*

* * * * *

* RE,%ID.66::A2
RE,%ID.00::17
END :

*
RE,%ID.37::17
RE,%DD.30::17
END

*
RE,%IDM00O::17
END

*
RE,%DD.00::17
ALIGN
RE,%ID.27::17
RE,%ID.50::17

END
*

B-183

L

Chapter 15 - Lab Solutions

RE,%DD.12::17
* RE,%ADV00::A2
RE,%DD.20::17

END
*

RE,%DDC12::17

END

*

11 the mag tape device driver was left out
RE,%DD.23::17

END

*

* end driver partition

*

BEGIN TABLE GENERATION
CONFIGURE LU TABLES

ASIC FOR 2621A/P SYSTEM CONSOLE WITH WVCP

*
*
*
*
*

IFT,%1D.00::17,SC:20B

*

DVT,%DD.00::17,M26XX,LU:1,QU:FI ,~
DP:5:CI:20040B:20040B:0,DP:9:CM:20040B:20040B:CM

DVT,%DD.20::17,M264X:1,LU:64

DVT,%DD.20::17,M264X:2,LU:65

*

* ASIC FOR 2635A AUXILIARY CONSOLE/PRINTER

*

IFT,%ID.00::17,SC:33B

DVT,%DD.00::17,M2635:0,LU:66,QU:FI,~
DP:5:CI:20040B:20040B:0,DP:9:CM:20040B:20040B:CM

DVT,%DD.00::17,M2635:1,LU0:67

*

* ASIC FOR 2645A AUXILIARY CONSOLE WITH DUAL MINT-CARTRIDGE
*

IFT,%ID.00::17,SC:22B

DVT,%DD.00::17 ,M26XX,LU:68,QU:FI ,-
DP:5:CI1:20040B:200408B:0,DP:9:CM:20040B:20040B:CM

DVT,%DD.20::17,M264X:1,LU:69

DVT,%DD.20::17,M264X:2,LU:70

*

* PARALLEL INTERFACE CARD
*

IFT,%1IN.50::17,SC:26B
pvT,,,LU:84,70:5000,DX:2,DP:1:1:2,DT:45B
*

* PARALLEL INTERFACE FOR CPU TO CPU COMMUNICATION
*

IFT,%ID.52::17,SC:218
*

B-184

Chapter 15 - Lab Solutions

DvT,,,L0:83,T0:0,DT:7,DX:0
*

* HP-IB #1
*

IFT,%ID.37::17,SC:27B
*

*HP-IB #1 BUS CONTROLLER LU
¥*

pvt,,,0LU:9,T0:2000,DT:778B,TX:0,0X:1,DP:1:368,PR:0

*
*
* 7908/40/11/41/12/14/33 DISC WITH COMPATIBLE CARTRIDGE TAPE
* LU 16-20,22,23,29-31,34,35,24 HP-IB ADDRESS 0
*
*
DVT,%DD.33::17,M7908 LF:0,LU:16,DP:1:0
DVT, %DD. 33..17,M790% LF:1,LU0:17,DP:1:0
DVT,%DD.33::17, M7908 [F:2,L0:18,DP:1:0
DVT,%DD.33::17, M7908 LF:3,L0:19,DP:1:0
DVT,$DD.33::17,M7908 LF:4,LU:20,DP:1:0
DVT,%DD.33::17,M7911 LF:5,LU:22,DP:1:0
DVT,%DD.33::17, M7912 LF:6,LU:23,DP:1:0
DVT,%DD.33::17, M7912 LF:7,LU0:29,DP:1:0
DVT,%DD.33::17,M7914 LF:8,LU:30,DP:1:0
DVT,%DD.33::17,M7914 LF:9,LU:31,DP:1:0
DVT,%DD.33::17,M7933 LF: 10 LU:34,DP:1:0

P:1:0

DVT,%DD.33::17,M7933:LF:11,LU:35 D
*

* COMPATIBLE CARTRIDGE TAPE CACHE LU 24 HP-IB ADDRESS 0
*

DVT,%DD.33::17,MIAPE,LU:24,DP:1:0
x :

* 7906H HARD DISC LU 12-15 HP-IB ADDRESS 1
*

DvT,%DD.30::17,M7906:0,LU:12,DP:1:1
DVT,%DD.30::17,1M7906:1,LU:13,DP:1:1
DVT,%DD.30::17,M7906:2,LU:14,DP:1:1

LU:15,DP:1:1

pvT,%DD.30::17,M7906:3,
*

*3,5" OR 5.25" FLEXIBLE DISC LU 32,33 HP-IB ADDRESS 2
*
DVT,%DD.30::17,M7902,L0:32,DP:1

:2: 2,T0:3000
DVT %DD.30::17,M7902:0,LU: 33 DP:1:

6:2,T0:3000

}—loo

* 7910H FIXED DISC LU 40-43 HP-IB ADDRESS 3
*

DVT,%DD.30::17,M7910:0,LU:40,DP:1:3
DVT,%DD.30::17,M7910:1,LU:41,DP:1:3
DVT,%DD.30::17,M7910:2,L.U:42,DP:1:3
DVT,%DD.30::17,M7910:3,LU:43,DP:1:3
*

3-185

|

Chapter 15 - Lab Solutions

* HP-IB TAPE DRIVE LU 8 HP-IB ADDRESS 4
*
DvT,%DD,23::17,M7970E:0,LU:8,DP:1:4,PR:1

*

* 8" FLEXIBLE DISC LU 10,11 HP-IB ADDRESS 5

*

DvT,%DD.30::17,M7902:0,LU:10,DP:1:5,
:11,DP:1

: 0:3000,TO:3000
DvT,%DD.30::17,M7902:1,LU:11,D 5,
*

t
t0:3000,T0:3000

* 5.25" FIXED DISC (9134A/B SINGLE VOL.) LU 52,53,54 HP-IB ADDRESS 6
*

DVT,%DD.30::17,M9134L:0,LU:5
DVT,%DD.30::17,M9134L:1,LU:5
DVT,%DD.30::17,M9134L:2,LU:5
*

* 5.25" FIXED DISC (91341 FOUR VOL.) LU 48-51 HP-IB ADDRESS 7
*

DVT,%DD.30::17,M9134:0,LU:48,D
DVT,%DD.30::17,M9134:1,LU:49,D
DVT,%DD.30::17,M9134:2,LU:50,D
DVT,%DD.30::17,M9134:3,LU:51,D
*

oAl e

* 248x INTEGRATED DISC INTERFACE
*

IFT,%$ID.27::17,SC:32B
*

* Hard disc
*

DVT,%GEN27::17,M2480:0,LU:36
DVT,%GEN27::17,M2480:1,LU:37
DVT,%GEN27::17,M2480:2,LU:38
*

* Microfloppy

*

DVT ,%GEN27::17,M2480:3,LU:39
*

* HP-IB #2: INSTRUMENT BUS
*

IFT,%1D.37::17,SC:25B
*

* HP-IB #2 CONTROLLER
*

pvt,,,LU:21,T0:50,DT:77B,DX:1,DP:1:36B
*

* FOUR DEVICES
*

pvt,,,LU:25,T0:500,DT:77B,DX
pvt,,,LU:26,T0:500,DT:77B,DX
pvr,,,LU:27,T0:500,DT:77B,DX
pvr,,,LU:28,T0:500,DT:77B,D
*

ee e¢ oo oo
~Noun

<

B-186

Chapter 15 - Lab Solutions

* HP-IB #3 PRINTERS - SLOW DEVICES
*

IFT,%$ID.37::17,SC:30B
it

* 2608S LINE PRINTER LU 85 HPIB ADDR 2
*

DvT,%DDC12::17,,LU0:85,DP:1:2
*

* HPIB LINE PRINTER LU 6 HPIB ADDR 6
*

- DvT,%DD.12::17,,LU:6,DT:128,DP:1:6
*

* D.S. LINKS, TWO LUS FOR D.S., TWO FOR LU MAPPING
*

* NETWORK LINKS

11 remove DS if you haven't got it 1!

*

* | I*IFT,%$1D.66::A2,EID.66,SC:24B,QU:FI,TX:18
*

*1{*pyT,,,LU:79,DT:66B

* 1 1*DVT,, ,LU:80,DT:66B

*

* LU MAPPING
*

* | I*IFT,%ADV00: :A2,EIDV00,SC:31B,QU:FI,TX:2
*

* .

* 1 1*DyT, , ,LU:82, EDDV0O, TX:5
*

* eight MUX LU'S SELECT CODE 23, LU 71-78

*
IFT,%$IDM00: :17,SC:23B
*

DVT,%DD.00::17,M26XX,LU:71,QU:FI,DP:1:20004B,-
DP:5:C1:20040B:20040B:0,DP:9:CM:20040B:20040B:CM
DVT,%DD.00::17,M26XX,LU:72,QU:FI,DP:1:200048B ,-
DP:5:CI:20040B:20040B:0,DP:9:CM:20040B:20040B:CM
DVT,3%DD.00::17,M26XX,LU:73,QU:FI,DP:1:20004B,~
DP:5:CI:20040B:20040B:0,DP:9:CM:20040B:20040B:CM
DVT,%DD.00: :17,M26XX,LU:74,QU:FI1,DP:1:20004B,-
DP:5:CI1:20040B:20040B:0,DP:9:CM:20040B:20040B:CM
DVT,%DD.00::17,M26XX,LU:75,QU:FI,DP:1:20004B,-
DP:5:CI:20040B:20040B:0,DP:9:CM:20040B:20040B :CM
DVT,%DD.00::17,M26XX,LU:76,QU:FI,DP:1:20004B,-
DP:5:C1:20040B:20040B:0,DP:9:CM:20040B:20040B:CM
DVT,%DD.00::17,M26XX,LU:77,QU:FI,DP:1:20004B,-
DP:5:CI:20040B:20040B:0,DP:9:CM:20040B:20040B:CM
DVT,%DD.00::17,M26XX,LU:78,QU:FI,DP:1:20004B,-
DP:5:CI:20040B:20040B:0,DP:9:CM:20040B:20040B :CM
*
B-187

|

Chapter 15 ~ Lab Solutions

END

*

11 An END command was left out. There are 2 ENDs here - one to end the
11 end the IFT creation and one to end the DVT creation.

END

*

* DEFINE NODE LISTS
*

* SYSTEM CONSOLE AND TWO TAPE DRIVES
NODE,1,64,65
*

* AUXILIARY CONSOLE/PRINTER
NODE, 66,67
*

* AUXILIARY CONSOLE WITH TWO TAPE DRIVES
NODE,68,69,70
*

* TWO 8" FLEXIBLE DISCS
NODE,10,11
*

* FOUR 7906 LU'S
NODE,12,13,14,15
*

* FOUR 7910 LU'S
NODE,40,41,42,43
*

* THIRTEEN 7908/11/12/14 LU'S AND A COMPATIBLE CARTRIDGE TAPE DRIVE
NODE,1l6,17,18,19,20,22,23,24,29,30,31,34,35
*

* TWO 3.5" OR 5.25" FLEXIBLE DISCS
*

NODE, 32,33
*

* FOUR 5.25" FIXED DISC LU'S (9134 FOUR VOL.)
*
NODE,48,49,50,51

*

* THREE 5.25" FIXED DISC LU'S (9134A/B SINGLE VOL.)
*

NODE,52,53,54
*

* FOUR 248x INTEGRATED DISC LU'S
*

NODE,36,37,38,39

*
END,,,,NODE LIST
*

11 Following the node lists is the interrupt table creation. For this
11 gen, all interrupt table entries are automatically created by the
* 11* generator, but we still need to end the interrupt table generation.
11 The END was left out

B-188

Chapter 15 - [ab Solutions

END, ,, , INTERRUPT TABLE
*

CLAS, 40

RESN, 20

1D,40

RS,0

SAM,6144

SL

BG, 30

Qu,300,50

Sp,0

MB,500

11 The USers command was left out. All the commands in this phase for
11 creating table space must always be specified in the same order.
11 The commands relating to WC+ tables are always specified even if its
11 a non-WC+ system (set them to 0).

us,0

*

SYSTEM COMMON
$ABLIB CONTAINS THE BASIC TRAP TABLES (DELETED)

RE,SABLIB::17

*

*

*

*

%*

%*

* DS/1000 HAS BEEN GEN'ED INTO THIS SYSTEM FOR VERIFICATION
* OF HARDWARE ONLY. IF PROGRAM DEVELOPMENT CAPABILITY FOR
* DS IS DESIRED REPLACE $FNDIB WITH SFDSIB. SBIGDS IS A
* MERGED LIBRARY CONTAINING ENTRY POINTS FROM SEVERAL DS
* LIBRARIES

*

* DS/1000 LABELED COMMON AREA

%*

* RE,%RESA::A2

* RE,SBIGDS::A2,#NRVS

* RE,SBIGDS::A2,#RQUA

* :A2,#LEVL

* :A2,DSEQT

* tA2

*

RE,$BIGDS:
RE,$BIGDS:
MS,$BIGDS:
END, , , ,LABELED SYSTEM COMMON RELOCATION
coM,10

*

RE,¥MSGS::17

END

*

LIB,SFNDLB.LIB: :LIBRARIES
LIB,SBIGLB.LIB: :LIBRARIES
*

*
END

B-189

|

Chapter 15 - Lab Solutions

1. To make yourself a superuser and give yourself a hello file:

CI> users cuthbert

This program creates or modifies user accounts.

Use carriage return to take the choice in [brackets].
Use <cntl-D> to quit early.

Modifying user CUTHBERT

Your current logon name is CUTHBERT

Enter your new logon name: [CUTHBERT]
Your current real name is CuthbertQDivine
Enter your real name: [CuthbertQDivine]
Enter your password: [cr]

Set super user flag? (Yes or No) [No] yes
Your working directory is ::CUTHBERT
Enter your working directory: [::CUTHBERT]
Your current startup command is

RU CI.RUN: :PROGRAMS

Enter your startup command: [RU CI.RUN: :PROGRAMS]
RU CI HI::CUTHBERT

Modified user CUTHBERT

c>
To create an additional account:

CI> users

This program creates or modifies user accounts.

Use carriage return to take the choice in [brackets].
Use <cntl-D> to quit early.

Creating a user

Enter your logon name: DIVINE

Enter your real name: ([???] CuthbertQDivine

Enter your password: [cr] cgd

Set super user flag? (Yes or No) [No]

Enter your working directory: [::DIVINE] ::CUTHBERT
Enter your startup command: [RU CI.RUN::PROGRAMS]

Created user DIVINE
CI>
To remove this account:

CI> pu divine::users

B-190

2.

Chapter 15 - Lab Solutions

This solution depends on the boot command string for your classroom
system. The solutions here are for the boot command string:

$bdc27sys78
- HPIB address = 0
select code = 27B

boot command file = SYS78

The welcome file is WELCOMEn.CMD, where n corresponds to the parameter
in the ST command in the boot command file:

ST, <>

The system and snap files are denoted by the SY and SN commands,
respectively, in the boot command file:

SY,<{system file>
SN,<snap file>

The mounted volumes are indicated by the MC commands in both the boot
command file and the welcome file:

MC,<1w>

In the boot command file, the RP for the startup program is followed by
the ST command. The startup program is CI.

RP,CI.RUN: : PROGRAMS
ST, ,<n>

You can tell this is a W+ system, because PROMT is enabled as the
primary program for the temminals.

The boot command file is /LAB/SOLUTION/LAB16/S3.BOOT. The welcome file
is /LAB/SOLUTION/LABl6/S3.CMD. All the required directories and
programs are all ready available on the existing system.

The boot command file is /LAB/SOLUTION/LAB16/S4.BOOT. The welcome file
is /LAB/SOLUTION/LABl6/S4.CMD. To initialize the spool system after
booting:

CI> sp in

B-191

Chapter 15 - Lab Solutions

file /LAB/SOLUTION/LABl6/S3.BOOT
Solution to Lab 16, question 3, Boot command file for non-VC+
l.e.n. <840126.1303>

echo commands
C

*
*
*
*
*
E

*

* DEFINE SYSTEM AND SNAP FILES
SY,Sysl

SN, SNAP1

*

MC,-18
MC"'19
* DEFINE INITIALLY RP'ED PROGRAMS

* The disc directory program must be RPed as D.RTR
*

RP,DRTR: : PROGRAMS,D.RTR

* On my system and probably on the lab systems, the non-CDS version
of CI is called CINCD.RUN::PROGRAMS. On your own system, if it is
a non-VC+ system, it will probably be called CI.RUN::PROGRAMS.

RP the primary program, CI, and the secondary program, CM

* % * % *

RP,CINCD.RUN: : PROGRAMS,CI
*

RP, CINCD. RUN: : PROGRAMS ,CM

* We need an extra copy of CI to be the startup program, because the

* gtartup CI will release its ID segment when it exits. This could be
* called anything.

*
RP,CINCD.RUN: :PROGRAMS, START
*

* The welcome file is WELCOME3.CMD: :SYSTEM
*

ST’ ’3

*

* END RP PHASE

END

*

* If you have enough memory in your system, you might want to assign

* D.RTR to a reserved partition.
%*

*AS,D.RTR
DEFINE SWAP FILE

*
*
* The GWVAP file could be put on the boot lu or in any directory. Make
* sure you create the directory first

*

SW,SWAP: :-16: :2000
END

B-192

Chapter 15 - Lab Solutions

* file /LAB/SOLUTION/LAB16/S3.CMD
* Solution to Lab 16, question 3, welcome file for non-VC+
* l.e.n. <840126,.1303>
*
* To correspond to the boot command file solution this file
* should be called WELCOME3.CMD: :SYSTEM
*
* Enabling Terminals - for every terminal, enable a copy of CI
* as the primary program, and CM as the secondary program. The
* parameter CM tells CI to act like (M.
*
* All terminals except LU 1 are commented out - just remove *
* to include terminal.
*
. * One copy of CI and (M have all ready been RPed
*
cn 1 20b CI
cn 1l 40b am,,,CM
*
*

Enable other async terminals - first we have to RP copies of CI and (M.
* Remember on my system the non-CDS CI is called CINCD

*

rp CINCD ci68

rp CINCD cm68

rp CINCD ci66

rp CINCD am66

*

cn 68 20b ci68

cn 68 40b am68,,,CM

cn 66 20b ci66

cn 66 40b cmé66,, ,CM

*

* Enabling Mux terminals - If I RP a copy of CI and (M for EVERY

* MUX terminal in the system, I will use up lots of ID segments !
* (That's why VC+ is. good to have if you've got lots of termmals)
* This is just an example for 2 MUX terminals.
*
*

RP a copy of CI and M for each terminal
*

*rp cincd ci7l
*rp cincd an7l
*rp cincd ci72
*rp cincd am72
*

* Initialize MUXs and enable primary and secondary plrogi:ams

*

*cn 71 30b 152330b
*cn 71 20b ci71

_*cn 71 40b am71,,,CM
*

*cn 72 30b 152331b

B-193

l

Chapter 15 - Lab Solutions

*cn 72 20b ci72
*cn 72 40b am72,,,0M

*

* Print a welcome message to the system console
*

co "mess.txt::system 1

*

* You must set the system time whenever you re-boot the system.
* Set the time: tm <mon> <day> <year> <hr>:<min>:<sec> <am/pm>
ex

file /LAB/SOLUTION/LABLl6/S4.BOOT

Solution to Lab 16, question 4, Boot command file for WC+
l.e.n. <840126.1303> :

echo commands
C

*
*
*
*
*
E

*

* DEFINE SYSTEM AND SNAP FILES
SY,SYSWC

SN, SNAPVC

*

MC,-19
* DEFINE INITIALLY RP'ED PROGRAMS

* The disc directory program must be RPed as D.RTR
*

RP,DRTR: : PROGRAMS,D. RTR
* We only need one version of CI to be the startup program. PROMT and
* LOGON take care of everything else. Since this CI is the startup, it

* will release its ID segment when it exits.
*

RP,CI: :PROGRAMS,CI
*

* The welcome file is WELCOME4.CMD: :SYSTEM
*

ST, ,4
*

* END RP PHASE
END
*

* If you have enough memory in your system, you might want to assign

* D.RTR to a reserved partition.
*

*AS,D.RTR
* DEFINE SWAP FILE

* The SNAP file could be on the boot lu or in any directory. Make sure
* you create the directory first.

*

SW,SWAP: :-16::2000

*

END

B-194

Chapter 15 - Lab Solutions

file /LAB/SOLUTION/LAB16/S4.CMD
Solution to Lab 16, question 4, welcome file for VC+
l.e.n. <840126.1303>

To correspond to the boot command file solution this file
should be called WELCOME4.CMD::SYSTEM

Enabling terminals for the multiuser enviromment

All terminals except LU 1 are commented out - just remove * to
include temminal '

Promt takes care of the scheduling of LOGON and (M. CI must be called
CI.RUN: : PROGRAMS

* % % % F % X F X ¥ ¥ H X *

rp promt.run::programs
*

* mount additional cartridges

*

mc 22

mc 23

mc 29

*

* Enabling promt as the primary program for all the terminals on
* the system. No secondary program is needed. The CN command will
* timeout if the terminal is not physically connected.

*

¢cn 1 20b promt

cn 68 20b promt

cn 66 20b promt

*

Initialize and enable the MUX terminals - remove the *'s to
include the MUXs

cn 71 30b 152330b
cn 72 30b 152331b
cn 73 30b 152332
cn 74 30b 152333b
cn 75 30b 152334b
cn 76 30b 152335b
cn 77 30b 152336b
cn 78 30b 152337

* % % % F ® % X % ¥ F %

*rp 71 20b promt
*rp 72 20b promt
*rp 73 20b promt
*rp 74 20b promt
*rp 75 20b promt
*rp 76 20b promt
*rp 77 20b promt
*rp 78 20b promt

B-195

|

Chapter 15 - Lab Solutions

* Print a welcome message to the system console
*

Cco "mess.txt::system 1
*

* You must set the system time whenever you re-boot the system.
*

* set the time: tm <mon> <day> <year> <hr>:<min>:<sec> <am/pm>
*

ex
*

B-196

Chapter 17 - Lab Solutions

The file /LAB/SOLUTION/LABl7/S1.CMD is the BUILD command file. To boot
using the existing bootex:

VCP> $bdc27<merged system file>
Most of the CI commands can be used in this memory based version. The
program DL was not built into the system, so you can't use the DL
command, but you can use most of the other CI commands, such as RU, ™
or LI.

The file /LAB/SOLUTION/LAB17/S2.CMD is the BUILD command file. To boot
using the existing bootex:

VCP> %bdc27<merged system filed
To install a ménory based system on CID:
CI> ru csys <merged system file> <tape 1w 0
To boot the system:
VCP> %bdcl27
To install a memory based system on magnetic tape:
CI> co <merged system file> <tape 1w
To boot the system:

VCP> %bmt4027

B-197

Chapter 17 - ILab Solutions

rrere file /LAB/SOLUTION/LABL7/S1.CMD
yes
200
rp,cincd.run: :programs,ci
rp,drtr.run::programs,d.rtr
rp,wh.run: :programs
rp,area.run
pt
/e
reeer file /LAB/SOLUTION/LABl7/S2.CMD
yes
200
rp,ci.run::programs,ci
rp,ci.run::programs,citoo
rp,drtr.run: :programs,d.rtr
rp,wh.run: :programs
rp,area.run
pt
/e

B-198

Chapter 18 - Lab Solutions

1. The "v" option will verify the backup or restore.

CI> wd /myglobal

CI> tf

TF: co tflab/@.@ 24 kv

TF: co 24 @.@ kdv

TF: co 24{tflab/@.@} moretflab/@.@ kv
TF: ex

2. When you copy the files to your DELTA subdirectory, the backup bits will
be set. To do a full backup:

CI> tf
TF: co /myglobal/delta/@.@ 24 ck

After the changes, you can see which files have the backup bits set with
the following: :

CI> dl /myglobal/delta/@.@.b

The backup bits will be set for FILE4, FILES and NEWFILE. To do an
incremental backup:

TF: co /myglobal/delta/@.@.b cak

To restore the files after you have purged them:
TF: co 24 @.Q@ v
After restoring, the backup bits will be set.
3. To copy all files on LU 16 beginning with % :
CI> fc co %—-—-- t:16 -24
4. This information can be obtained by running FREES on 23:
CI> frees 23
and on all the CI volumes:
CI> frees
To pack LU 23:
CI> fpack 23
FPACK will not increase the amount of free space on the disc ~ it merely

rearranges it. The files which should be moved to increase the largest
free space are listed by the FPACK program.

B-199

|

5.

Chapter 18 - Lab Solutions

To verify a disc LU:
CI> fveri <lw

Minor errors (low numbers) can be ignored or the error can probably be
corrected by copying the affected files to another disc or tape, purging
them and restoring them back. In the case of inconsistencies in the free
space table (the bitmap), it may be necessary to back up the entire disc,
reinitialize it and restore it.

The PMGR command shows what FMGR LUs are mounted and the last track
available on the LU (that is, the size). LU 16 on the primary system is
19200 blocks. To determine how much space is available, subtract the
next track (NXTR) from the last track.

CI> asave

ASAVE: ta 24
ASAVE: sa 20 ve nl
ASAVE: ex

B~200

READER COMMENT
SHEET

Manual Name:

(Please Print)

Part Number:

We welcome your evaluation of this publication. Your comments and

- suggestions will help us improve our training materials. Please use additional

pages if necessary.

Is this book technically accurate?

Did it meet your expectations?

Was it complete?

Is it easy to read and use?

Other comments?

FROM:
‘Name

Company
Address

Training Coordinator/Technical Marketing
Hewlett-Packard Co.

11000 Wolfe Road
Cupertino, California 95014

