HEWLETT
() Priveed

RTE-6/VM

Cl User’s Manual

Data Systems Division
11000 Wolfe Road
Cupertino, CA 95014-9974

Part No. 92084~-90036 Printed in U.S. A. January 1985
EO185

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not
be liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that
1s not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced or translated to another language
without the prior written consent of Hewlett-Packard Company.

i1

Copyright © 19831985 by HEWLETT-PACKARD COMPANY

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

Printing History

The Printing History below identifies the Edition of this Manual and any Updates that are included.
Periodically, Update packages are distributed which contain replacement pages to be merged into the
manual, including an updated copy of this Printing History page. Also, the update may contain write-in
instructions.

Each reprinting of this manual will incorporate all past Updates, however, no new information will be
added. Thus, the reprinted copy will be identical in content to prior printings of the same edition with its
user-inserted update information. New editions of this manual will contain new information, as well as
all Updates.

To determine what manual edition and update is compatible with your current software revision code,
refer to the appropriate Software Numbering Catalog, Software Product Catalog, or Diagnostic
Configurator Manual.

First Edition. Dec 1983.
Second Edition. Jan 198S. oo

JAN 85
iii

Preface

This manual tells you how to use the RTE-6/VM Command Interpreter (CI) and
the CI file system. It also describes the FMP subroutines and certain
utilities used in the CI file system environment. Descriptions of other
utilities and subroutines that can be used in the CI environment are given
in manuals shown below.

EDIT/1000 User’s Manual 92074-90001
Symbolic Debug/1000 User’s Manual 92860-90001
Macro/1000 Reference Manual 92059-90001
RTE-6/VM LINK User’s Manual 92084-90038
RTE-A & RTE-6/VM Relocatable Libraries Manual 92077-90037
RTE-6/VM Utilities Manual (TF) 92084-90007

There are four sections in this manual: an introduction section giving an
overview of the CI file system environment, a section providing information
for the display terminal users (Chapters 2 through 5), a section describing
the FMP calls for programmers using the CI files, and a section describing
the CI file system utilities. Error messages and error codes that may be
encountered in the CI file system are given in Appendix A. Appendix B
contains descriptions of exception conditions in the CI file environment.

This manual is for the first time users of RTE-6/VM and the CI file system.
If you are such a user, go through the manual in the order in which the
information is presented. However, if you are familiar with the FMGR file
system and with the RTE-6/VM Operating System, skip to the chapter of
interest.

Chapter 1 Introduces the CI file system and CI.

Chapter 2 Shows how to use the CI system commands.

Chapter 3 Shows how to use the CI file manipulating commands.

Chapter L Shows how to use the CI program control commands.

Chapter 5 Contains the CI command descriptions in alphabetical order.
Chapter 6 Describes the CI FMP subroutines.

Chapter 7 Describes the CI file system utilities.

Appendix A Contains the error codes and error messages.

Appendix B Explains the unusual conditions that may occur.

Appendix C Describes the FMP call conversion from the FMGR to the CI file
system.

Table of Contents

Chapter 1
Cl File System Introduction

The RTE-6/VM File Systems.
The Command Interpreter.
Introduction to CI Files .
Manual Conventions .

Chapter 2
System Commands

Getting Help . .
Using the Command Stack
Obtaining System Status.
Displaying Program Status.
Displaying Memory Usage.
Displaying I/O Configuration .
Controlling Devices. .
Changing I/O Device Attr1butes .
How to Up a Device . .
How to Change Time-Out Values
Displaying System Time .

Unlocking a Shareable EMA Partltlon.

Executing a Command File .
Positional Variables .
User-Defined Variables .
Predefined Variables .
Nesting Command Files.
Quoting. . .
Multiple Commands Per L1ne .
Return Status. . .
Execution Control Structures .
Time-Out/Logoff Function .

Chapter 3
Manipulating Files

File Properties.
File Names . .
File Descriptors .
Directories.
Subdirectories . .
File Type Extension.
File Type.
File Size.
Record Length.
File Ownership .
Protection .
Time Stamps.
File Masks .
Destination Masks.

I/0 Devices Referenced as Flles.

Directory Listings .

[AS IR AN\ V]

[ASINAS AV I AV B VT A A B VT A A A A AL B LT\ AL AV B b

Wwwwwww
]

WWWWWWWWW
]
BRPRRPEPRPRRPR

1 1 I 1]]]] 1
PRORORPRODRNRODBRERRRPBRRERRBERPER

FWWwPRPRRFPOO~N~NONONWVM P WREOoONNV

WO~NWNhPRPPOOUOUVZTWEER

vii

Listing Files.
Copying Files.
Renaming Files .
Moving Files . e e e e
Spooling Files
Purging Files. « . v o o 0 v 000 e e e e e
Unpurging Files. v ¢« v v v v v o v e v 4 0 e e
Creating Empty Files .
Changing File Protection .
Manipulating Directories . . .
Creating a Directory . . .
Creating a Subdirectory. .
Displaying/Changing Working D1rectory
Displaying Directory Owmer . e
Changing Directory Owner .
Moving Directories .
Purging Directories. .
Displaying/Changing D1rectory Protectlon .
Finding a File . . . e e e e e
Default Search Sequence
Defining UDSPs .
Manipulating Volumes . .
Mounting/Dismounting Volumes .
Listing Volumes.
Initializing Volumes . .
Data Transfer to and from Dev1ces
FMGR Files .
DS File Access (DS Only)
Specifying Remote Files.
Remote File Access . .
DS File Access Con51derat10ns
Remote File Access Limitations .

[U
EFEEWWWWWWWWWWWWWWWWRRNMNRNRNDNDANNDNDNDRNDNDN

(R R R L R
AANVTVNTEWPODNDNRPRPOOOWOVWOYOOOO~NONO\WTEEFWWMND O

WWwwbwwbwwuwwwwuwwwwwwwwwwwwwuwwwuwwwwww
]

= O\ OO0~

Chapter 4
Controlling Programs
Introduction . .
Program Ident1f1cat1on .
Program Priorities .
Running a Program.
Program Execution. . .
Running Programs w1th Wa1t .
Running Programs without Wait.
Time Scheduling Programs .
Restoring Programs .
Removing Programs.
Break Program Execution.
Suspending Program .
Resuming Execution . . .
Changing Program Pr10r1t1es .
Changing Memory Requirements .
Assigning Partitions . . .
Changing Virtual Memory Area .

R
MPOWVWWOYVOVYOOO~NVTI EFEWND R

J:'J:'J:'J:'J:'J:’J:’JF’J:’J:’J:’J:’J:’J:’

FEE
PR

viii

Chapter 5
Ci Command Descriptions

Introduction .

AG (Modify Part1t1on Pr1or1ty Aging)
AS (Assign Partition).

BL (Examine or Modify Buffer L1m1ts)
BR (Break Program Execution) .

CL (List Mounted Discs).

CN (Control Device).

CO (Copy Files).

CR (Create File) .

CRDIR (Create D1rectory/Subdirectory)
CU (CPU Utilization) . .

DC (Dismount Disc Volume).

DL (Directory List).

DN (Down a Device or I/0 Controller)
ECHO (Display Parameters at Terminal).
EQ (Displays I/O Controller Status).
EQ (Buffering) e e e .

EX (Exit).

GO (Resume Suspended Program)

HE (Help). .

IF-THEN-ELSE-FI (Control Structure)

IN (Initialize Disc Volume). .

IS (Compare Strings or Numbers).

IT (Interval Timer).

LI (List Files).

LU (Display/Modify Dev1ce A551gnment)
MC (Mount Disc Volume) . e e e
MO (Move Files).

OF (Stop/Remove Program)

ON (Schedule Program). .

OWNER (Display/Change Owner)

PATH (Display/Modify UDSP) .

PR (Change Program Priority) .

PROT (Display/Change Protection)

PU (Purge Files) . . e e e

QU (Timeslice Quantum)

RETURN (Return from Command F1le)

RN (Rename File, Directory, or Subdirectory)
RP (Restore Program File). e e e e e
RU (Run Program) . .

SET (Display/Define Variables)

SL (Display Session LU Informatlon).
SS (Suspend Program) . .

ST (Display Program Status)

SZ (Display or Modify Program Size)

TI (Display Time).

TM (Display or Set System Clock)

TO (Display or Modify Device Time- Out)
TR (Transfer to Command File). .

RS RS RG RG RO RV, RC, R, RN)]
]

SR R R R A R R R R A R R R A R A e A A A A R A A A A A R A AN A AT RS A A A A A
1
VI e P P EPWWWWWWWRRRRONNODRONNRDRONRNONNDNRONDRBREREBRRRPERR

1
wWwwmMn ke

POOVONINNOAUMMUVMWNDRPOOYONAVMTPOVOVONT0MEFWNDRPRPOOVOVVOVYOVYOONWNDNDMONW & &

ix

UL (Unlock Shareable EMA Partition).

UNPU (Unpurge Files) .

UNSET (Delete User- Deflned Varlable)

UP (Up a Device) . .

UR (Release Reserved Part1t1on)

VS (Display or Modify VMA Size).

WD (Display or Change Working D1rectory)
WH (System Status Reporting) .
WHILE-DO-DONE (Control Structure)

WHOSD (Report User of Directory or Volume)

WS (Display or Modify VMA Working Set Size).

XQ (Run Program Without Wait).

?/HE (Help). .

/ (Display Command Stack)

/n/ (Change Command Stack D1sp1ay Slze)

Chapter 6
FMP Calls
FMP Calling Sequence and Parameters.
Data Control Block (DCB)
File Descriptors .
Character Strings.
File Descriptors in Pascal .
File Descriptors in Macro.
Error Returns.
Transferring Data to and from F11es
Descriptions of FMP Routines .
Calc Dest Name
DchOpen.
FattenMask .
FmpAccessTime.
FmpAppend.
FmpBitBucket .
FmpBuildHierarch .
FmpBuildName .
FmpBuildPath .
FmpCloneName .
FmpClose .
FmpControl .
FmpCopy. .
FmpCreateDir .
FmpCreateTime.
FmpDevice.
FmpDismount.
FmpEndMask . e e
FmpEof
FmpError . e e e e
FmpExpandSize.
FmpFileName.
FmpHierarchName.
FmpInfo. e e e e e e e
FmpInitMask.

AN O\ O\
]

[xWe AW e W e AW e W e We W e We We We We We We e We W We We We W W6 We We We W We
1

U‘l\ﬂ\ﬂ\ﬂ\ﬂ\ﬂ\ﬂ\ﬂ\ﬂ\ﬂ\ﬂ\ﬂ\ﬂ\?\ﬂ
]]]]]
[AN AR AN AN AR AR A, R, B RV, RV, R, AV RS
AWMNDNDRPOWO OV

1 O R R R
WWwwWwwwwWww NP RPRRPRRRPRPREPREREPRE T L

EFWLWWNHONPRPRPROOWODYOYONOANVMIVIENMN RPOYOOOITOAAMNMD OOV ODAVIWMNDN

FmpInteractive .
FmploOptions .
FmpIoStatus.
FmpLastFileName.
FmpList.

FmpLu.
FmpMaskName.
FmpMount .
FmpNextMask.
FmpOpen.

C Option .

D Option .

F Option .

Q Option .

S Option .

T Option .

U Optien .

X Option .

n Option .
FmpOpenFiles . .
FmpOpenScratch .
FmpOwner .
FmpPackSize.
FmpParseName .
FmpParsePath .
FmpPosition.
FmpPost.
FmpProtection.
FmpPurge .
FmpRead. .
FmpReadString.
FmpRecordCount .
FmpRecordLen .
FmpRename. .
FmpReportError .
FmpRewind.
FmpRpProgram .
FmpRunProgram.
FmpRwBits.
FmpSetDcbInfo.
FmpSetDirInfo.
FmpSetEof. .
FmpSetIoOptions.
FmpSetOwner.
FmpSetPosition .

FmpSetProtection .

FmpSetWord .

FmpSetWorkingDir .

FmpShortName .
FmpSize. .
FmpStandardName

| [1 | [1
NNNNNNN ARSIV VIVVIUWVN el w
VMEFWNDNRPOOVOVOENOAAAVMIWUNDNNRPOWVONOAAAVMIEZNOVOYO NV EEEEZTWER OOV OO~ ONGNUIW

xi

FmpTruncate.

FmpUdspEntry .

FmpUdspInfo.

FmpUniqueName.

FmpUnPurge .

FmpUpdateTime.

FmpWorkingDir.

FmpWrite . .

FmpWriteString .

MaskMatchLevel .

MaskOldFile.

MaskOpenId .

MaskSecurity .

WildCardMask . .
Using the FMP Routines w1th DS . .
Special Purpose DS Communication Rout1nes

DsCloseCon .

DsDcbWord.

DsDiscInfo .

DsDiscRead .

DsFstat. .

DsNodeNumber .

DsOpenCon.

DsSetDcbWord . . .
Example Programs for FMP Rout1nes

Read/Write Example .

Mask Example . .

Advanced FMP Example .

Chapter 7
File System Utilities

xii

FSCON File System Conversion .

Requirements for Successful Conver51on .

Operating Instructions .
File Renaming. .
Converted CI D1rectory Entr1es .
Error Messages . .
FPACK File System Pack .
Operating Instructions .
Moving Directories .
Moving Files .

FREES (Report Disc Free Space)
Operating Instructions .
Examples .

FOWN (Report File Space by Owner)
Operating Instructions . .
Examples .

FVERI (File System Ver1f1cat10n)

- Operating Instructions .
Error Messages .
Error Recovery .

NNNNNSNNNSN

NNNANANNNNN

[W e AW e We We We We W e We We We W We We W We We e We We We We W W 0o We N6 N
]

VOVOVOORDPODODODOPOPOODDOODOOOOONTINN NN

WNOOOWOYWRNTOAAAUNETWWNNEPE OOV ~NN WM

!]
Wwr e e

] I]]] 1]]]
RRRPRPRRPRPRBE

OV EFWNRFRPOOOOOVIVIUN W

Appendix A
Error Messages and Codes
Error Formats.
Error Messages .
Error Codes.
FMP Error Codes.

Appendix B
Exception Condition Handling
Unusual File Access Errors .
Non-Standard File Names.
File Not Found .

Directory Name and FMGR Cartr1dge Reference.

Unable to Open File or Create Directory.
OWNER, PROT or WD Command Failures .
Disc Volume Full .
Disc Volume Dismounted .
Parity Errors.
Power-Fail .

Appendix C
Converting FMGR File Calls
General Considerations .
File and Directory Names .
Namr Calls and Strings .
Open and Openf Calls .
READF and WRITF Calls.
CLOSE Calls. .
CREAT and CRETS Calls.
APOSN, LOCF and POSNT Calls
PURGE and NAMF Calls .
Extended Calls .
Other Calls.
Accessing FMGR Files .
Standard Type Extensions .

mmmmmqummmm

OOO(I)OOO

aaaaa a’
P RRE R e

1
VIV EFWWMNDNN R

] «
FWWMNMDNOOO~NAAETNRFK

xiii

Figure 3-1.

Figure 6-1.
Figure 6-2.

Table

Table
Table

Table

Table

Table
Table
Table
Table
Table
Table

xiv

lllustrations

Sample CI File Organization 3-7
Logical Transfer Between Disc File and Buffers. 6-10
Data Transfer with Type 1 Files 6-11

Tables

RTE-6/VM File Systems Comparison. « « « «. . . . 1-3
General User System Commands. . 2-1
System Manager Commands . . 2-3
File Manipulating Commands. 3-2
Program Control Commands. + « &+ « &+ « + « + » « « . 4-2
File Manipulation FMP Routines. 6-11
Directory Access FMP Routines 6-13
Masking FMP Routines. + . « « . . « . . 6-1h4
Device FMPRoutines « « « « v ¢ v « « « « . 6-1Y4
Parsing FMP Routines. 6-15
Utility FMPRoutines. « 6-15

Chapter 1
Cl File System Introduction

This manual is the primary reference source for display terminal users and
programmers in a file system environment managed by the Command Interpreter
(CI) program. The CI file system allows efficient and more logical use of
disc space. It also facilitates organization of files with a hierarchical
directory structure.

This chapter provides a brief comparison between the CI and FMGR file
systems. It describes the features of the CI program and introduces the
basic characteristics of CI files. Also included in this chapter are
conventions and terms used throughout this manual.

The RTE-6/VM File Systems

Normal interface +to the operating system is through one of two programs,
FMGR or CI. Each of these programs provides two basic capabilities:

1. Interface to the operating system. This includes obtaining system
status, modifying system parameters, running other programs, and
controlling input/output devices.

2. Interface to the file system. This includes creating, purging, and
transferring files and obtaining status information.

In system interfacing, the FMGR and CI programs are basically identical
except for a few differences in command syntax or function. For example,
the FMGR system break mode commands can be entered in CI without the SY
prefix. File system interface is different between the two programs. An
overview of the CI file system is given in this chapter. Refer to the
RTE-6/VM Terminal User’s Reference for a full description of the FMGR file
system.

The FMGR file system divides a disc into fixed-size cartridges that are
identified with either negative LU numbers or positive cartridge reference
numbers (CRN). The CRN can also be a two-character string. Each cartridge
has a cartridge directory containing pertinent information on all files
stored on that cartridge.

1-1

CI File System Introduction

The CI file system divides the disc into large areas of free blocks. These
areas are identified by LU numbers and are called disc volumes. Files in
each disc volume are managed by directories and subdirectories which
maintain information on what files exist and where they are located on the
disc. There is one directory in each disc volume that contains the names of
all unique directories in the disc volume. This directory is called the
root directory and the directories included in the root directory are called
global directories. Directories that are included in other directories are
called subdirectories.

Comparison of the characteristics of the two file systems is given in
Table 1-1.

During user accounts installation, either FMGR or CI can be specified as the
primary program to be used for accessing all relevant system functions. The
primary program is defined as the program scheduled at log on. Each program
can also be selected to run automatically at log on. The primary program
setup procedure is described in the RTE-6/VM System Manager’s Reference
Manual.

1-2

CI File System Introduction

Table 1-1.

RTE-6/VM File Systems Comparison

FMGR File System

CI File System

File name 1-6 characters 1-16 characters

Cartridge/ 1-2 characters or numeric 1-16 characters in

directory cartridge names directory names

File Security code used Protection hased on dir.

Security for file protection (and file) owmership

File Defines the structure File type extensions

Types of the files describe the contents of
the files

File None Mask qualifier and

Mask special characters in
file name

File Size Extendible (except type 6) Extendible (except type
6)

Time None Create, access, update

Stamps times handled by the
file system

Sub- None Subdirectories within

directories directories and other
subdirectories

File None Operator recoverable

Recovery immediately after purge

Spooling Can be done interactively Through FMGR

and programmatically
Incremental None Done in conjunction with
Backup TF utility

1-3

CI File System Introduction

The Command Interpreter

The Command Interpreter (CI) is a friendly user interface program. It may
be scheduled at 1log on or from FMGR or other user programs in the session
environment. When executed, CI displays the prompt

Cl.nn>

and is ready to accept commands. The actual prompt displayed is based on
the name of the CI clone being run. Normally, nn is the session LU number.
The commands and the required parameters can be entered in the command
string in either uppercase or lowercase letters. Blank characters and
commas can be used as the command string delimiters. Throughout this
manual, the blank is used as the command string delimiter. However, if
there are parameters omitted from the middle of a string, commas must be
used as place holders. Following are examples of CI command entries. Note
that the user entries are underlined.

CI.65> edit (runs the Editor program)

CI.65> WH (displays system status)

CI.65> co report.txt data (copies REPORT.TXT into new file DATA)
CI.65> d1 /jones/ (displays all files in directory JONES)
CI.65> bl,,700 (modify upper buffer limit)

Interactive operations available through CI include the following functions:

System Status Check
System Control

File Manipulation
Program Control

The Command Interpreter provides commands that start and stop programs and
commands that change the way a program executes. Commands are available for
creation of directories and subdirectories that are used in file management.
Files can be created, copied, stored in a directory or subdirectory, purged,
and renamed. You can control access to files and manipulate a group of
files with a single command using the file mask feature. Time stamps are
maintained for all files to keep track of date of creation, access, and
updates. Various system information can be displayed on the terminal
screen, e.g., program status, input/output device status, etc. System
behavior can be controlled through the system commands. These features are
described in Chapters 2 through 5.

1-4

CI File System Introduction

Spooling is not available in CI. If you must use the spooling system, store
your files on an FMGR disc cartridge (following the FMGR namr convention)
and then run FMGR to use the spooling system. An alternative is to use a
combination of CI and FMGR commands, described in the Spool Files section in
Chapter 3.

CI provides another 1level of commands for the System Manager. In addition
to all the interactive capabilities, the System Manager is allowed the
following:

A. Set up the session to run in the CI environment.

B. Change the properties of any program. Applies to all program control
commands .

C. Override file protection. Applies to all file manipulating commands.

D. Modify system attributes such as the system clock. Applies to all
system control commands.

E. Re-initialize discs.

Certain commands are subject to the RTE-6/VM wuser capability level
restrictions. If you do not have the proper capability level, entering any
of these commands will result in a capability error. To change your
capability level, see your System Manager. For more information on command
capability levels, refer to the RTE-6/VM System Manager’s Reference and the
Terminal User’s Reference manuals.

CI also provides special features designed for the convenience of the users:
command stack, command files, program execution control, multiple commands
entry, and quoting (string passing).

The command stack allows users to repeat commands without retyping or to
modify commands before repeating them. A command stack file is used to save
the stack contents for subsequent sessions. This method enables a truly
distinct working session environment where a user can pick up where he left
off in the prior session.

The command file (also known as the +transfer file) is used to minimize user
interface; it allows a series of commands to be entered from a file instead
of being entered one by one at a terminal. Associated with the transfer
file command are positional variables and program/command execution control
features. Positional variables are used in transfer files and CI command
strings for value passing. Conditional branching commands (IF-THEN-ELSE-FI
and WHILE-DO-DONE) are also allowed in transfer files for use in controlling
program or command execution. These features are particularly useful in
program development.

CI allows multiple commands in a single entry and the use of quotes for

value passing. These and the features mentioned above are further described
in Chapter 2.

1-5

CI File System Introduction

Introduction to Cl Files

Files are identified by file names that can have up to 16 characters.
Additional information is added to the file name to describe the associated
properties. The file name includes a file type extension that further
describes the type of information contained in the file. The file name and
the associated attributes that identify a file are considered a file
descriptor. Colons, dots, and slashes are delimiters in file descriptors.
Following are the various forms of file specification.

proga (file name with blank file type extension)
prog.rel (file name)

userManualchapll. text (file name)

progb.rel::directory (file descriptor)

/directory/progb.rel (file descriptor)

/directory/subdirectory/chapter6:::4:609 (file descriptor)

In the CI file system, files can be grouped under unique directories or
subdirectories. Subdirectories can be nested within other subdirectories.
Thus a hierarchical file structure can be established.

File protection is based on directory ownership. You become the owner of
the directories or subdirectories created by you. Ownership can be changed
by either the owner or the System Manager. The owner of a directory or
subdirectory can restrict file access on that directory (or subdirectory)
for other general users.

Time stamping of all files is automatic in the CI environment. The CI file
system maintains three time stamps, time of creation, time of last access,
and time of last update. The time stamps can be used to search, to access,
and to purge files using the file mask feature.

CI files can be specified as a group, determined by a file mask. The file
mask includes a field appended to the filename parameter in the file
descriptor. This field is called the mask qualifier that determines the
grouping of files. For example, you can use the mask qualifier in a file
listing command (DL) to tell the file system to search everywhere in the
system and not follow the hierarchical directory structure or to search for
files created at a certain date.

If your system has the optional DS/1000 Distributed System, you can access
files on other systems in the network using the CI DS transparency feature.
Remote file access is described in Chapter 3.

The file name, file type extension, file descriptor, file type, directory,
file mask, and other file properties are described in detail in Chapter 3.

CI File System Introduction

Manual Conventions

The command syntax and other conventions used throughout this manual are
described in the following paragraphs. Sample terminal displays include
both wuser inputs and program prompts and messages. User inputs are
underlined. Comments are given in parentheses. For example,

CI.65> d1 /derick/casey/@.@ (List all files in subdirectory
CASEY under directory DERICK)

The command syntax conventions are as follows.
Uppercase Capital letters indicate the exact characters required.
characters However, CI will accept lowercase input. For example, the
command syntax for the ON command is:
ON[prog[NO parm*5]]

and the actual sample entry can be:

CI.65> on testprogram no a bce g

(] Square brackets are used to show optional parameters. If
additional parameters follow an omitted parameter, commas
must be used as place holders.

/ Alternate choices are separated by a slash. For example,
"dest file/lu" indicates that either a destination file or
an LU number can be entered. Note that the slash is also
used in the command string to designate directories and
subdirectories.

, or blank Delimiters between commands and parameters are commas or
blanks. Blank spaces are used throughout this manual in
all syntax strings.

lowercase Lowercase letters represent variables supplied by the user.
and In case of a long descriptive phrase, the variable
<> may be enclosed in angle brackets for clarity, e.g.,

<directory name>.

1-7

CI File System Introduction

There are certain terms wused in all syntax strings +that have standard
meanings throughout this manual. The most common terms are described below.

prog

1u

file

filename

mask

file/1lu
prog/file

parm
parm*2

parm*n

1-8

Program name; up to five characters can be used. Examples
of program names:

A

PROGA
ADVEN
TIMER

Logical unit number in the range of 0 to 255. It refers to
a physical input/output (I/0) device. LU 1 is usually the
user terminal, exceptions are noted throughout this manual,
e.g., in the TO command description in Chapter 2. LU O is
the "bit-bucket”, a non-existent device to which unwanted
data can be dumped.

File descriptor which includes parameters that describe
various properties of the file, e.g., search path, file
type, size, and record length. It can be accepted in any
of the following formats:

Standard: /dir/subdir/filename.typex.qual:::type:size:rlen
Combined: subdir/filename.typex.qual::dir:type:size:rlen
FMGR: filename:sc:crn:type:size:rlen

Refer to Chapters 3 and 6 for a full description of the
file descriptor.

A file descriptor parameter. In the CI file system, it can
have up to 16 characters followed by the file type
extension (typex) and the qualifier parameter (qual) with a
period as the delimiter.

Mask field. May be the wildcard characters in the filename
parameter (- and @) or a mask qualifier appended to the
typex parameter. Refer to Chapter 3 for details.

Either a file descriptor or a logical unit number may be
specified. A mask may be used in the file descriptor.

Either a program name or a file descriptor may be
specified.

One parameter is allowed.
Two to n parameters are allowed. Unspecified parameters

may default to zero or zero-length strings depending on
the application.

Chapter 2
System Commands

This chapter discusses system commands that you may need in the CI
environment. These are system commands provided to display system status
and help information, and to control certain system operations. A summary
of these commands are given in Table 2-1. Commands that affect system
processes and control system operations are reserved for the System Manager.
These commands are listed in Table 2-2.

This chapter shows you how to use the CI system commands in obtaining system
status information and controlling system operations. Usage of file
manipulating and program control commands are given in Chapters 3 and U,
respectively. If you are familiar with FMGR and the RTE-6/VM Operating
System, you need only to learn those commands specific to CI, for example,
ECHO, RETURN, SET, etc. Then you can skip to Chapter 3 for the CI file
system information.

Table 2-1. General User System Commands

Command Task
? (or HE) Display help summary
? command or HE command Display command description
/[n] Display command stack
/n/ Set command stack display size
BL Display buffer limits
CN lu[function[parm*4]] Control 1/0 device
ECHO[parm] Display command parameters
EQ Display EQT information
EX Exit CI
OF prog[1ID] Terminate program
PR prog[priority] Display/change program priority
RETURN[,returnl-5[,return_s]] Return value(s) and/or string

2-1

System Commands

Table 2-1. General User System Commands (Continued)

Command

Task

SET[variable = string]

Define/display variable

SL Display LU information

ST Display program status

Sz Display/modify program size
TI Display system time

™ Display formatted system time
TO Display device time-out

TR file[parm*9]

Transfer to command file

UL label

Unlock shareable EMA partition

UNSET variable

Delete a variable

UP eqt Up a device
UR Release reserved partition
Vs Display VMA size
WH[parm] System status report
AL All programs
PA Memory partitions
SM
FR
PL

WHOSD DIRECTORY/1lu

Display directory/volume status

WS

Display working set size

‘2-2

Table 2-2.

System Commands

System Manager Commands

Command

Task

AG[number/OF]

Modify partition aging

BL[lower[upper]]

Modify buffer limits

TM year date hour min sec

Modify system time

TO eqt[interval]

Sets device time-out

UL label

Unlock any shareable EMA partition

UP eqt

Up any device

UR partition

Release any reserved partition

VS progl lastpg]

Modify VMA size

WS progl wrksz]

Modify any working set size

2-3

System Commands

Getting Help

The CI program provides an on-line help summary and a quick reference guide.
The help summary, or a brief explanation of any command or item listed in
the summary, can be displayed with the HELP command.

The help command can be entered as ?, 7?7, or HELP. This gives a list of the
commands by their command mnemonics and other useful items such as a
description of file mask, file descriptor, etc. For example, following is
the response from a ? command:

Cr.es ?
Commands: (use ? <command> for help on <command>)
directory ::HELP

77 AG AS BL BR
Cl CcL CN co CR
CRDIR cuU DC DL DN
ECHO EQ ERROR EX FOWN
FPACK FREES FVERI GO0 HE
IF IN IS IT LI

L INDX LINK LU MACRO MASK
MC MERGE MO OF ON
OWNER PATH PR PRINT PROT
PU Qu RN RP RU
SET SL ss ST sZ
TI ™ TO TR uL
UNPU UNSET uP UR VS
WD WH WHILE WHOSD WS
Xa

cl.e5>

To get information about a command, enter the command name after +the help
command. For example, to get information about the OF command, entering
"? of" will display a brief explanation of the command and command syntax.

CI.65> ? of

OF -- "Off" a program and optionally remove its ID segment

Usage: OF[programName[ID]]

program Name has up to 5 characters; its session identifier is optional.

ID is an optional keyword used to release a previously RP’d program’s
ID segment.

More...(’a’ to abort)

2-4

System Commands

In addition to commands and explanations, other information is available
with the help command. This includes items such as file descriptor, file
mask, and file type extension.

It is possible to add items to this list. The help command works by listing
a file contained in a directory called HELP. You select the file it lists
when you ask for help on a particular command. By entering the help command
without any parameter, you are displaying the contents of a directory called
HELP. By adding files to this directory, you can increase the number of
items listed in the help summary.

Using the Command Stack

As command lines are entered at the terminal keyboard, they are saved in a
stack for reference or reuse. The number of command entries in the stack
varies depending on the length of the entries. A minimum of 25 entries will
be saved; however, the average will be approximately 100 commands.

If the stack is full, the oldest commands in the stack are removed to make
room for new commands. Duplicate commands are not saved in the stack.
Commands entered from a command file are not saved in the stack. Command
lines in the stack can be edited and reentered, or simply reentered without
retyping.

Commands in the stack can be saved in a file. By default, a file called
CI.STK on the working directory is used. (CI uses CI.STK on the working
directory when you log on.) Another file can be created or selected to hold
the command stack. Refer to the command stack and the WD command

descriptions in Chapter 5 for details on manipulating the command stack
file.

If you do not want to save your command stack in a file or do not want the
file updated, set the predefined variable $SAVE STACK to FALSE. Refer to
the Predefined Variables section for details.

To display the command stack, enter a slash:

CcI> / (A screenful of commands, defaulting
---Commands--- to 20, is displayed. Refer to the
wd /mine/myprograms /n/ command description in Chapter 5
dl for changing default.)

li syslog

pu syslog

ru print report.txt

2-5

System Commands

co 8 reporti.sale
co 8 report2.sale
co 8 report3.sale
co 8 reportd.sale
co 8 reportS.sale

co reportS.sale 4
prot reporiS.sale rw/

Note that the cursor is at the bottom of the stack. Pressing the return key
will return to CI. A new command can be entered. The cursor can be moved
to any line using the terminal cursor control keys. The line can be edited
using the local editing keys of the terminal. When the carriage return key
is pressed, the 1line is entered as if it were typed from the terminal
keyboard.

You can recall just the last command with the cursor positioned on the
command line. This is done with two slashes. For example:

c1> //
---Commands---
prot reportS.sale rw/

In this example, pressing the carriage return key will repeat the last
command. To display the stack with the cursor positioned on the second to
the last line, enter three slashes. The number of lines backward from the
last line can be specified with the corresponding number of slashes after
the command stack command (the first slash).

A slash followed by a number can be entered. In this case, a screenful of
commands is displayed beginning with the line number specified (backward
from the last line). The cursor is positioned on the line specified.

At this point, either enter the command or use the terminal editing keys to
change the entry. Pressing the carriage return key will enter the command
line. If you do mnot wish to enter this 1line, you can enter a slash to
repeat the whole command stack or move the cursor to a blank line and press
the return key to return to the CI prompt.

You can change the command stack display size by entering a slash followed
by the display size desired followed by another slash. For example, the
following command changes the command stack display size to 15 lines:

c1> [15/

2-6

System Commands

Obtaining System Status

The following system status can be displayed on your terminal screen with
the appropriate CI commands. How to use these commands to get the desired
information is explained in this section. Note that these are the most
common commands. A full description of the status command WH is given in
Chapter 5.

Status of your programs
Status of all programs

Status of system memory usage
Status of system devices

Displaying Program Status

One of the most useful display is a listing of your programs’ status. To
display the status of your programs, use the WH command as shown in the
following example.

CI.65> wh
10:49:44:420
PRGRM T PRIODR PT SZ DO.SC.IO.WT.ME.DS.OP. .PRG CNTR. .NEXT TIME.
#»#PRDG2 6 00090 5 18 » » » » 3. CI.65 » * » » » P:45031
Cl.e56 00051 17 32 3,WHZAT P21171
WHZAT 1 00002 O e o 1, P:61647
ALL LU’S 0K

ALL EQT’S OK
LOCKED LU’S (PROG NAME) 67(EDI67), 73(EDI73), 76(EDI76),

- - - — - > = - = — o —n S = - - A - o -

10:49:45: 60

In this example, there are three programs in memory. The display shows the
status of the three programs. Their names are listed in the left-most
column. Note that one of them is the WHZAT program which is run when the WH
command is entered. This program is often abbreviated to WH. The other two
are the command interpreter CI, and a program called PROG2. CI is waiting
for WH to finish. PROG2 is running at priority 90, but since WH is running
at a higher priority, WH preempts PROG2 while it 1is printing its
information. The status column shows what the programs are doing. The
common conditions are shown in the following example. The information in
the other columns is explained fully in the WH command description in the
RTE-6/VM Utility Programs Reference Manual.

2-7

System Commands

To display the status of all programs, enter:
CI.65> wh al

A sample display is shown below.

10:51: 5:760
PRGRM T PRIOR PT SZ DO.SC.ID.WT.ME.DS.CP. PRG CNTR. .NEXT TIME.
##FMGES 3 00052 5 18 » » » » 3,CI.65 # » » » » P:45031
Cl.e5 6 00051 17 32 3,WHZAT P:21171
WHZAT 1 00002 0 . . 1, c e s s e e« . . P:61647
#2FMGS4 3 00052 8 18 » » » & 3, EDIS4 » » » » » P:45031
EDIS4 6 00051 10 32 . 2,EQ: 13,AV:2,5T:002 P:23532
#*FMG76 3 00052 20 18 » » # & 3 EDI76 » * » » » P:45031
EDI76 6 00051 16 32 . 2,EQ: 35,AV:2,5T:000 P:23532
##FMG73 3 00052 18 18 » » # » 3, ,RUN73 » » » » » P:45031
RUN73 4 00075 19 18 . 2,EQ: 32,AV:2,5T:002 P:44573
»xFMGE7 3 00052 11 18 * » » » 3, EDIG7 » » # » « P:45031
EDI67 6 00051 12 32 . . . 2,EQ: 26,AV:2,5T:000 P:23532
SPOUT 1 00011 O 3,CL 046 . P:41706
UPLIN 1 00003 O 0, e e s e P:00000 10:51: 8: 80
GRPM 1 00004 O . 3,CL 060 . P:51050
RTRY 1 00020 O 3,CL 089 . P:55325
LUMAP 2 00030 4 6 . 3,CL 045 . . P:36045
LOGON 3 00049 23 12 . 3,CL o0Oe2 . P:40535
LGOFF 3 00053 14 10 . 3,CL 063 . P:37227
RPN 3 00005 26 4 . 3,CL 061 . . P:36032
RSM 3 00020 22 4 . 3,6L 057 P:42025
RFAM 3 00030 25 10 . 3,CL 049 P:551535WP
EXECM 3 00030 7 4 . 3,CL 052 . P:41525
OPERM 3 00030 6 3. 3,CL 054 . . P:37464
PTOPM 3 00030 S8 8 . 3,CL 050 . P:37601
EXECW 3 00030 1S 9. 3,CL 051 . . P:37706
DLIST 3 00030 6 4 . 3,CL 0S3 . P:42053SWP
aCLlM 3 00028 S5 3. 3,CL 065 . P : 360265P
INCNV 3 00020 3 3. 3,CL 056 . P:37303SWP
OTCNV 3 00020 4 3. . 3,CL 055 P:372479WP
CI.71 6 00051 13 32 . 2,EQ: 30,AV:2,ST:002 P:42235
ALL LU’S OK

ALL EQT’S OK
LOCKED LU’S (PROG NAME) 67(EDIG?7), 76(EDI76),

10:51: 8:370

2-8

System Commands

This display is similar to the previous example, except that it includes
other programs, either system programs or programs belonging to other users.
Programs are grouped by owner; those at the bottom of the 1list are system
programs or subroutines.

The status column in this example includes several categories. These are
briefly explained below.

Status Meaning

scheduled The program is scheduled to run or executing.
waiting for WH The program (CI) is waiting for WH to finish.
dormant The program is not running.

dormant - saving resources The program is still in memory but not
running, waiting for directives.

class susp on class #xx The program is suspended waiting on a class
number, usually waiting for I/0.

Displaying Memory Usage

How the operating

can use this

status, enter the following:

System Commands

system uses memory is indicated by the partition status,
Use the WH command to display what programs are in which partitions. You
information to tell if you have enough memory in your system
for all of the programs that you want to run. To display the partition

D.RTR 1
<NONE>
<NONE>
LUMAP 294
FMGES 170
OPERM 294
EXECM 26192
FMG54 2854
PTOPM 1578
EDIS4 51
FMGe7 1374
EDIG7 51
. CI. 7 51
LGOFF 137
EXECW 292
<NONE>
Cl.65 51
FMG73 76
RUN73 75
FMG76 52
<NONE>
RSM 282
LOGON 129
<NONE>
LUQUE 25
RPN 85

50 PAGES, MOTHER 200 PAGES
MAX. PART. SIZE GUARANTEED AVAILABLE - DUE TO SHAREABLE EMA
50 PAGES, MOTHER 200 PAGES

CI.65> wh pa
10:51:48:550
PTN# SIZE PAGES
1R 32 65- 9%
2M 200 a97- 29
35 32 97- 128
45 32 129- 160
5S 32 161- 192
6s 32 193- 224
75 32 225- 256
8s 20 257- 276
9s 20 277- 29%
10 32 297- 328
11 32 329- 360
12 32 361- 392
13 32 393- 424
14 32 425- 456
15 32 457- 488
16 32 489- 520
17 32 521- 552
18 32 553- 654
i9 32 585- 616
20 50 617- 666
21M 50 6e67- 716
22S 25 667- 631
23S 25 ©692- 716
24M 51 717- 767
25S 26 717- 742
265 25 743- 767
27-50 <UNDEFINED>
MAXIMUM PARTITION SIZE AVAILABLE
RT 50 PAGES, BG
RT 50 PAGES, BG
10:51:50:810
CI.65> _

2-10

System Commands

Displaying 1/0 Configuration

Systems differ widely in the number and types of peripherals, such as disecs,
printers and tape drives. The input/output (I/0) configuration of a system
is the way that these devices are connected to the system and identified.
The operating system identifies each device by a logical unit (LU) number or
an Equipment Table entry (EQT) number. The LU or EQT number for a
particular device can be used to specify that device. The I/0 configuration
information can be displayed with the LUPRN utility or the SL command. The
SL command displays an abbreviated status of all session devices or seleted
devices. The LUPRN utility displays a more detailed status of the system
devices.

The LUPRN utility displays, on your terminal screen, a 1listing of what
devices are on your system. For each LU, LUPRN shows the type of device
attached to that LU, a select code identifying what I/0 card the device is
attached to, the subchannels associated with that device, and the device
status. Refer to the RTE-6/VM Utility Programs Reference Manual for more
detail about LUPRN.

Following are examples using the SL command to display device information.
To display information about LU 6.

CI.65> sl 6
SLU # 6°LU # 6 =E 6

The display shows the session and system LU numbers, the EQT number, and
device status if the device was down (inoperative or off-line).

To display all devices:

CI.65> sl

SLU 1=LU #65=E 17

SLU 2=lU # 2=E 1

SLU 3=LU # 3=E 2

SLU 4=LU #145 =E 17 S 1
SLU 6sLlU # 6=E 6
SLU 8=LU # 8=E 8
SLU 20=LU #20 =E 251
SLU 23=lU #23=E 254
SLU 26=LU # 26 =E 257
SLU 36=LU #36 =E 2 517
SLU 47=LU # 47 = E 2 S28
CI.65>

2-11

System Commands

To display I/0 information using the LUPRN utility:

CI.65> luprn

SLU LU EQT,sc SCD Flags AV T.out

2-12

RTE-6 System Device
RTE-6 System rev =
9:54 AM FRI., 1 MAR., 1985...
Time Base (11B) Priv. Fence SC (none)

73 13 21B BPS
2 1 12B D
3 2,10 13BD
108 13,1 21B BPS
109 13,2 21B BPS
6 6 20B B
7 7,1 30B PS
8 8 1SB B S
9 9 25B B S
10 1,4 12B D
1 1,5 12B D
12 1,6 12BD
15 1,9 12BD
17 1,10 12B D
24 10 24BD S
30 2,2 13BD
48 1,13 12BD
4 4 17B PS
5 6§ 17B PS
3 2,10 13BD

2 327.67

2 327.67
2 327.67

5.00
5.00

60.00

2440

Stats Driver
2B
120B
100B
2B
2B
131B
.02

DP

44
50

4
53
53
50

Configuration
LUPRN’s rev =
Sorted by Session LU
Partitions (35) Memory size (1024K)

2440

Device Name

8-CH MUX (DDVO0S)
7905/6/20/25 DSK
7905/6/20/25 DSK
Left CTU @ LU 80
Right CTU® LU 80
2608A Printer
DS1000 to 1000
9TK Mag Tape #0
9TK Mag Tape #0
7905/6/20/25 DSK
7905/6/20/25 DSK
7905/6/20/25 DSK
7905/6/20/25 DSK
7905/6/20/25 DSK
CS-80 Tape Drive
7905/6/20/25 DSK
7905/6/20/25 DSK
HDLC/BiSync card
HDLC/BiSync card
7905/6/20/25 DSK

DP=Driver Partition page ($=SDA), SLU=Session LU
(T.out is in seconds)

LU # with a
D means the
LU is down.

EQT availability:
1=down, 2=busy,
3=waiting DCPC

EQT Flags:
D=DCPC, B=Buffered, T=Timed-out
P=Driver handles Powerfail
S=Driver handles Timeout

System Commands

Controlling Devices

There may be times when you need to control the operations of an I/O device
from the terminal, such as rewind tape, eject paper, etc. The system
performs these operations in response to the device control requests., To
control devices interactively, the CN command is used to send the control
requests. This is done by entering the CN command with the proper command
parameter. The common functions and the command parameters required are
listed below.

Function Command Parameter
Reset device 0 (zero)
Top-of-Form {paper feed) TO
Rewind tape RW
Write End-of-File EO
Forward one file FF
Backward one file BF
Forward one record FR
Backward one record BR

The following examples illustrate some typical device control requests. In
these examples, the printer is LU 6 and the magnetic tape drive is LU 8.
For some common devices such as tape drives and printers, the parameters may
be omitted for the most common operations. For example, if CI recognizes an
LU as a tape drive or printer, it will assume that the command without any
control parameter is rewinding tape or ejecting paper, respectively.

CI.65> cn 6 Eject paper on printer

CI.65> cn 8 Rewind tape drive on LU 8

CI.65> cn 8 ff Advance tape to the next file
CI.65> cn 8 bf Rewind tape to the previous file
CI.65> cn 8 fr Advance tape to the next record
CI.65> cn 8 br Rewind tape to the previous record

In each RTE computer system, there are many different types of devices that
are each controlled by a software interface module called a device driver.
There may be additional parameters needed for controlling a peripheral
device. Refer to the appropriate driver reference manual for details.

2-13

System Commands

Various other I/0 control requests can be issued with the CN command. For
example, the following example sets up multiplexer ports.

CI.65> cn 1 30b 152331b

In this case, the numbers are octal parameters required for the multiplexer,
specified in the multiplexer documentation. This entry sets up LU1 as a
9600 baud terminal on port 1 with the standard options. Other control
requests are described in the CN command description in the RTE-6/VM
Terminal User’s Reference Manual.

Changing 1/0 Device Attributes

The CI program provides several commands that modify I/0 operations. The
operating system maintains a set of attributes for each device. The common
attributes include the operational status of the device and the waiting
period to complete an I/0 request. Most of the attributes are set up when
the system is created; details are contained in the RTE-6/VM System
Manager’s Reference Manual. Some of the attributes can be modified with CI
commands if necessary. Modifications made with CI commands remain in effect
until the system is rebooted or another modification is made to the same
device. These CI commands are described in the following subsections.

In addition to the attributes mentioned above, there are other attributes
which can be changed in special situations. These attributes are the device
HP-IB address, device priority (not to be confused with program priority),
and the driver parameters specified at generation time. These <can only be
done by the System Manager.

How to Up a Device

One of the most important attributes of a device is whether it is working or
not. The operating system maintains the device status, whether a device is
"up" (working) or "dowm" (not working). All devices are initially assumed
to be working; when the operating system finds out that a device is not
working, it suspends I/O operations to the device until the situation has
been corrected. The command to notify the system that a particular device
has been fixed is the UP command. For example, to notify the system that
the magnetic tape unit (LU 8, EQT 8) is operational, enter:

CI.65> up 8 (The EQT number, not the LU number, is used.)

2-14

System Commands

This allows I/0 requests to go to the device. If the original problem
reoccurs, that device will go down again. This happens for various reasons.
A device may be inadvertently taken off-line, effectively disconnected from
the system. Tape drives go off-line because most tape save/restore
utilities put the tape drive off-line when they are finished, to allow
removal of the tape and to prevent another user from using the tape drive.
Printers are taken off-line for manual form feeds. Whenever a device is
off-line and you need to access it, you must place it on-line and up the
device before using it. Otherwise the device will not be able to complete
the control request and the operating system will mark the device as dowm.

When the operating system detects a downed device, a message is displayed:

CI.65> cn 4
IODNR L* 4 E 14 G ###«

This indicates +that the device will be unavailable until the problem is
fixed. Note that only the first request to a down device gets this message.
Subsequently, all I/O control requests to that device will be placed on
hold. It can be mysterious +to have programs waiting to access a down
device, because the programs will seem to be waiting for no reason. Either
the WH or LU command can be used to find out if there are any down devices
in the system. To bring up your terminal, use the EQT number for that
terminal and not LU 1.

How to Change Time-QOut Values

In most cases there is something wrong if an I/O operation takes too long.
A disc or printer should always respond within 1 second; any disc I/0
operation that has not been completed in 5 seconds usually means that a
problem has occurred. The operating system detects when this condition
occurs through a mechanism called a time-out.

Each device has a time-out value associated with it. This 1is a device
attribute that tells the system how long it should wait for a response from
the device. When the system starts an I/0 operation, it also starts a
timer. If +this timer goes off before the operation completes, then some
appropriate action is taken. This action varies from device to device; it
is determined by the driver. Usually the device is noted as being down,
awaiting user intervention.

Time-out values can be specified either during system generation or with the
TO command. They are specified in units of 1/100th of a second. A time-out
value of 100 means one second. This wunit is chosen to match the resolution
of the time base generator. The associated EQT number of an LU is required
to specify the time-out value.

2-15

System Commands

To set the time-out on LU 8 (EQT 8) to 10 seconds, enter the following:

CI.65> to 8 1000

This sets the device with an EQT number of 8 (by normal convention a
magnetic tape unit) time-out value to 10 seconds.

There are two other useful forms of the TO command. Specifying a time-out
of zero really requests an infinite time-out. This is useful for devices
where there is no limit to how long it might take I/0 to complete. The most
common example is a terminal; there is no particular time limit for entering
commands, so it is reasonable to set terminal time-out values to zero.

Giving the TO command with an EQT number but without any time-out parameter
will display the time-out value currently in effect for that device. To
display the time-out value for your terminal, use the system EQT number for
the terminal and not LU 1.

Displaying System Time
The current system time can be displayed with the TM command. Although this
command is also used to reset the system time, it is typically used only by

the System Manager or installer for this purpose.

To display the current system time, enter:

CI.65> tm
Thu Nov 17, 1983 10:55:34 am
CI.65>
It is important to maintain the correct system time. Otherwise, features

such as time scheduling programs and time stamping files cannot be used
effectively.

Unlocking a Shareable EMA Partition

The UL command is a wuseful tool for situations that can occur when a
shareable EMA program aborts or ends without unlocking the shareable EMA
partition. This partition left in memory remains locked until released by
the UL command. For example, to unlock a shareable EMA partition labeled
D12, enter the following:

CI.65> ul d12

You should wuse the UL command only when you know that no other program
requires the shareable EMA partition.

2-16

System Commands

Executing a Command File

To execute a series of commands without operator intervention, a command
file can be created, using the EDIT program. This file contains all the
commands to be executed in the desired sequence. To execute commands
contained in this file, the TR command is entered specifying the command
file desired. At the end of the command sequence, the system returns to the
interactive mode.

The following is the content of a sample command file called REPORT.CMD on
the working directory.

co report0l::src datafilel::data
co report02::src datafile2::data

co report30::src datafile30::data
pu reportOl::src ok
pu report02::src ok

pu report30::src ok
pu /src ok

To execute these commands, enter:
CI.65> tr,report.cmd

co report0Ol::src datafilel::data
Copying REPORTO1::SRC to DATAFILE1l::DATA ... [ok]

pu reportOl::src ok
Purging REPORTO1::SRC

CI.65>

Positional Variables

Positional variables are defined in the CI runstring or in the TR command.
The variable names are $1 through $9, where the number following the dollar
sign indicates the position of the variable in the CI or TR command string.
For example, to set up the positional variables:

CI.65> ru,ci,manual.cmd,uml,um?,um3,umk,um5,umé6,A,B,C

or
CI.65> tr,manual.cmd,uml,um?2,um3,umd,um5,umé,A,B,C

Positional variables can be separated by blanks or commas; however, commas
must be used if you specify positional variables that are not consecutive.

2-17

System Commands

For example, if you transfer to a command file and want to specify values
for only $1 and $4, the runstring would be as follows:

CI.65> tr myfile.cmd progl,,,progh

The three commas are required to ensure that the value of positional
variable $4 is progh.

You can specify any string (for example, a number or a valid file
descriptor) for the positional variables; unspecified positional variables
are set to null. If you specify more than O variables, only the first 9
values are used and the extra values are ignored. The command string
containing the positional variables can be a maximum of 256 characters,
including delimiters. Positional variable cannot be deleted.

The values of positional variables are 1local. If they are set in a CI
runstring, the values are used until that session of CI terminates. If the
positional variables are set in a TR command string, their values are valid
until you exit from the command file. Before executing a TR command, CI
saves the current values of $1 through $9. While executing the command
file, the values specified in the TR command string are used in the variable
substitutions. When the command file is exited, the original values of $1
through $9 are restored.

A command file must be specified when you set the positional variables;

however, LU 1 (your terminal) can be entered instead of a command file name.
For example, you can specify values for the positional variables as follows:

CI.65> tr 1 myprogl myprog2 myprog3 myprogl myprogs

You then can use the positional variables in other CI commands; for example,
LI $1 would list file MYPROG1 at the terminal.

Concatenation of variables is allowed. For example;

CI.65> tr 1R TE (3 parameters set up)
CI.65> co $1$2$3AnswerFile SpoolA (Copies file RTEAnswerFile)

User-Defined Variables

The SET command allows users to define variables, and the UNSET command to
delete the user-defined variables. User-defined variables are global; they
can be used in CI command strings and at different levels of nesting command
files. A user-defined variable is referenced by preceding the name with a a
dollar sign ($). For example, if the value of variable name is set to RTE
as shown below,

CI.65> SET name = RTE-6/VMPrimarySys

2-18

System Commands

then the user-defined variable $name can be used in other CI commands and in
any command file to represent the value RTE-6/VM_PrimarySys.

When referencing a user-defined variable, CI determines the end of the
variable name to be the first character that is not valid for a variable
name (valid characters are letters, digits, and underscores). For example,
in the following command, the period indicates the end of the user-defined
variable name:

CI.65> echo $file.ftn

This allows you to define similar variable names such as $FILE, $FILENAME,
and $FILENAMEL.

concatenation of user-defined variables is allowed. For example:

CI.65> set file = programl (Define file name,

CI.65> set ext = .ftn file type extension,

CI.65> set dir = ::mydir and directory.)

CI.65> ftnTx $file$ext$dir (Compile PROGRAM1.FTN::MYDIR)

Another example of concatenation is as follows:

CI.65> set dir = /system (Define a directory.)
CI.65> 1li $dir/answers (List file /SYSTEM/ANSWERS.)

Note that the slash (/) entered after user-defined variable ¢$DIR is
necessary. If you omit the slash, CI determines the variable name to be
$DIRANSWERS because the blank after ANSWERS is the first invalid character
for a variable name.

To concatenate two words, use the single character quote (backslash,
described in the Quoting section below). For example, variable NAME is set

up as user,

CI.65> set name = user

CI.65> 1i $name\2 (list file user2)
CI.65> 1i gname\3 (1ist file user3)
CI.65> 1i $name\prog (list file userprog)

Note that the character after the backslash is not changed to uppercase by
CI. So if you need to enter a string such as Pref, you must type P instead
of p.

You should delete unneeded user-defined variables. CI uses its free space
to save variable names and values. If too many variables are defined, CI
runs out of space and returns an error. This may effect user-defined and
predefined variables. For example, CI may not have enough space to redefine
variable $WD if the new working directory name is large, and there is little
free space left.

2-19

System Commands

Predefined Variables

There are predefined variables in each CI session. The values are the
default values used by CI. However, you can use the SET command to modify
the variable values. The SET and ECHO commands can be used to display the
values of predefined variables. You cannot delete these variables.

The predefined variables are listed and described as follows:

$AUTO_LOGOFF

Allows for automatic logoff if session is inactive. CI initializes
$AUTO_LOGOFF to zero, which means automatic logoff is not in effect.
If you set $AUTO_LOGOFF to a nonzero value, CI times out after that
many terminal time-outs. If CI is the only active program, after four
CI time-outs, an EX command is executed to terminate the session.

$L0OG

A flag indicating if commands executed in a command file are logged to
the terminal. CI initializes this variable to OF, which means that
commands are not displayed at the terminal. To display commands at
the terminal, set the value to ON.

$0PSY
The ID number of your operating system.
$PROMPT

The prompt that 1is displayed when CI is waiting for input. CI
initializes this variable based on the name of the CI program and your
session number.

$RETURN1 - $RETURNS
Five integer values (ASCII representation) returned from execution of
the last command. CI updates the values as commands are executed.
These variables can be set to values between -32768 and 32767,
inclusive.

$RETURN S

An 80 character string returned from execution of the last command.
CI updates the value as commands are executed.

2-20

System Commands

$RU_FIRST

Flag indicating whether RU or TR is to be assumed if you only enter a
file name in response to a CI prompt or as a line in a command file.
CI initializes this variable to TRUE, which means CI first attempts to
execute a RU command for the specified name. Set this value to FALSE
if you want CI to assume that the file name entered is the name of a
command file. You should set the variable to FALSE if you will be
executing more command files than program files.

$SAVE_STACK

$SE

Flag indicating if the command stack is saved when you exit CI or when
the command stack file is changed with the WD command. CI initializes
this variable to TRUE, which means the stack should be saved when CI
exits. Set the value to FALSE if you do not want the stack saved.

SSION

Number of your current session. CI initializes this variable to your
session number and updates the value after execution of every CI
command.

$WD

The fo

CI.
WAI

The fo

Name of the current working directory. CI updates this variable after
execution of each WD command.

llowing example changes the value of $PROMPT:
65> set prompt = waiting:

TING:

llowing example displays the value of $OPSY:

CI.65> echo $opsy

-17
Nesting Command Files
Command files can be nested by using the TR command, implicitly or
explicitly, in a command file. Before CI transfers control to a new command
file, the positional variables ($1 through $9) are saved. Upon returning
from a lower level of command file, these values are restored.

2-21

System Commands

Quoting

There are two methods of quoting available to allow characters to pass
unaltered to the destination program, command file, or CI command. A single
character is quoted by preceding it with a backslash (\). A string is
quoted by enclosing it in grave accents (7).

If you do not quote a character or a string, CI shifts it to uppercase,
replaces each contiguous group of blanks with a comma, and performs variable
substitution before executing the command.

To include a grave accent in a quoted string, enter a second grave accent
with the accent you want passed as part of the string.

Some examples of quoting are as follows:

CI.65> echo ‘Hello. How are you?" (Displays string unaltered by CI.)
Hello. How are you?

CI.65> ru,savename, jane\ doe (Passes a blank in command string.)

~

CI1.65> echo "This is a grave accent (). (Passes a grave accent as
This is a grave accent (). part of the quoted string.)

Multiple Commands Per Line

You can enter more than one CI command per input line by separating the
commands with semicolons (;). Blanks immediately before or after a
semicolon are ignored. A semicolon enclosed in quotes loses its effect as
the command separator.
Examples:
CI.65> wh;dl
Executes the WH program followed immediately by DL.

CI.65> ftn7x test.ftn 0 - ; link test.rel ; test

Compiles, links, and runs program TEST.

2-22

System Commands

Return Status

Most commands, programs, and command files can return status to CI +to
indicate success or failure of execution. CI interprets an internal status
returned by commands.

Programs and command files can return five integer values and a string to
CI. The first of these integers is used for status. The rest of the values
are additional information for the user. A status of zero indicates
success; anything else indicates failure. The five integers are then made
available to the user in the string variables $RETURN1 through $RETURNS.
The returned string is saved in variable $RETURN S.

Programs pass CI the five integer values through the system routine PRTN,
and the string via an EXEC 14 call. Command files return these values using
the CI RETURN command. See the RETURN command description for further
details.

The return status is used by CI’s execution control structures discussed
later in this chapter. Note that the control commands IF-THEN-ELSE-FI,
WHILE-DO-DONE, and the SET and ECHO commands do not alter the return
variables. This is to assure that the user will be able to access these
values before they are modified.

The AG, BL, CU, DN, EQ, IT, LU, OF, ON, PR, QU, ST, SZ, TI, TO, UL, UR, VW,
and WS commands do not return status to CI; therefore, $RETURN1 will always
equal zero after any of these commands are executed.

Execution Control Structures

A powerful feature available in command files is the IF-THEN-ELSE-FI and
WHILE-DO-DONE control structures. These provide a means for decision making
during execution of the command file. Chapter 5 contains detailed
information on these control structures.

The following statements compile TEST. If no errors or warnings occur when
TEST is compiled, TEST will be 1linked. Otherwise, EDIT will be run on
TEST.FIN to allow you to fix the errors.

IF ftn7x test.ftn 0 -
THEN link test.lod
ELSE edit test.ftn
FI

2-23

System Commands

In the following example, the file SOME FILE will be printed 5 times. The
IS command compares the value of $COUNT and 2zero; as long as $COUNT is
greater than 0, +the WHILE loop continues executing. CALC is a simple
program that accepts two ASCII representations of integers, converts them to
integers and performs the specified operation. The result, in ASCII form,
is returned to $RETURN_S.

set count = §
WHILE is $count gt O
DO calc $count -~ 1
set count = $RETURN_ S
print some_file
DONE

Time-Out/Logoff Function

To eliminate inactive sessions on a system, CI has the ability to log off a
user. The variable $AUTO LOGOFF can be defined to tell CI how many device
time-outs can occur at the user’s terminal before CI times out. Each time
CI times out a warning message will be displayed on the terminal. After the
fourth CI time-out, CI executes an EX command.

The following example begins the CI time-out process after CI waits 15
minutes for input. First, you set the terminal time-out to 30000 (see the
TO command) and set the $AUTO LOGOFF variable to 3. In this example, CI
terminates after 60 minutes.

CI.65> to 113 30000
CI.65> set auto logoff = 3
CI.65>

Waiting for input...
Going...

Going...

Gone!

Finished

2-2u4

Chapter 3
Manipulating Files

This chapter shows how to wuse the CI commands to manipulate files,
directories, and subdirectories. Before using these commands, you should be
familiar with the CI file properties and features such as file masking and
command stack. This information is important if you want to take full
advantage of the file system. The CI file properties and features are also

described in this chapter. A summary of file manipulating commands is given
in Table 3-1.

File Properties

Each file has certain associated properties: some describe the way that
information is organized in the file and others contain such information as
location, ownership, protection, and time stamps. These are listed below
and described in the following paragraphs.

file name
directory
subdirectory

file type extension
file type

file size

record length

owner

protection

time stamps

File Names

Each file has a name to distinguish it from other files. A file name can
have up to 16 characters. File names should contain only letters and
numbers, e.g., NOTES or TEST23. Use of punctuation characters should be
avoided. However, some files created for use with the FMGR program may
contain punctuation characters in the file names. These files can be
managed by CI. Capitalization of file names is optional; CI allows entry of
either uppercase or lowercase letters. CI always shifts the input to
uppercase. File names must not start with a number, because the first

letter is used to distinguish between file names and logical unit (LU)
numbers that represent 1/0 devices.

3-1

Manipulating Files

Table 3-1.

File Manipulating Commands

Command

Task

CL

List mounted disc volumes

CO <src file> <dest file>[parm]

Copy file

CR file

Create file

CRDIR <directory name>[1lu]

Create directory

DC 1lu

Dismount disc volume

DL mask

Display directory contents

IN lu [blocks[ok]]

Initialize disc volume

LI file

List file

MC lu

Mount disc volume

MO <src file/lu> <dest file/lu>

Move file

OWNER directory[newOuner]

Display/reassign directory owmer

PATH[-E]

Display current UDSP information

PATH[-E[-N:n]] udspnum
[dirnamel[dirname2[...]]

Display/define specified UDSP
or UDSP entry

PATH[-E] -F,file/lu

Display/define UDSP using
commands from specified file/lu

PROT file

Display/modify file protection

PU file[ok]

Purge file

PU <directory name>

Purge directory

RN file <new name>

Rename file

RN <o0ld dir> <new dir>

Rename directory

UNPU file

Unpurge file

WD[directory name[file/+s]]

Display/set up working directory

WHOSD <directory name>/lu

Display session using directory
or disc LU as part of a UDSP

3-2

Manipulating Files

The file name includes a file +type extension that shows what type of
information is in the file. It is separated from the file name by a period
and may contain up to four characters. Thus, the full file name can be up
to 21 characters. For example, a file name may be:

currentmanualchl. text

Blank file type extensions are allowed; the period can be omitted if the
file type extension is blank. Standard file extensions should be used when
files contain standard information. For example, 2all executable program
files should have file extension RUN, relocatable files should have REL,
etc. The standard file type extensions are given later in this chapter. To
access a file with a file type extension in the file name, the file type
extension must be specified.

File Descriptors

A file descriptor is a term used to specify a file using any or all of the
optional parameters, including subdirectories and directory. The file
attributes specified by these parameters include file size, types, and
record length. Colons are used to separate parameters and slashes are used
to separate subdirectories, directory, and file name. The formats of the
file descriptor are shown below:

filename::directory:type:size:<record length>
or
/directory/subdirectory/filename:::type:size:<record length>

Note that the filename parameter includes the file type extension. Default
parameters must have a colon as a place holder when followed by another
parameter. The maximum length of the file descriptor is 63 characters
including delimiters. File descriptors with more than 63 characters are
inaccessible. However, it is possible to create files with file descriptors
longer than 63 characters by using working directories or by renaming
directories. It 1is recommended that file descriptors be kept within the
range of 30 to 40 characters.

The first form of the file descriptor can be used in accessing FMGR files as
long as the rules for FMGR file descriptors are observed. Use six-character
file names without any illegal characters and substitute a positive CRN or a
negative LU for the directory parameter.

3-3

Manipulating Files

The following are some examples of file descriptors. In these examples, the
file names in the user entries are shown in uppercase letters for clarity
only. Directories and subdirectories in comments are shown in uppercase
letters similar to that shown in the text throughout this manual.

MANUAL . TXT: :op: 4 (type U4, text file on directory OP)
/op/output/OUTLINE.TXT:::4 (type 4, text file on subdirectory
OUTPUT in directory OP)
EDIT.RUN: : programs (file in directory PROGRAMS)
PROGRAMERRS: : :3:356 (type 3, text file in working directory
with a size of 356 blocks)
/new/pascal.dir (subdirectory PASCAL in directory NEW)
/new (directory NEW)
/jones/@.8@ (all files in directory JONES)
The filename parameter in the file descriptor may contain a mask qualifier
that can be used in multiple file access. In addition, two wildcard
characters, "€" and "-" can be used in the filename parameter. Refer to the

File Masks paragraph in this chapter for details.

Directories

Directories maintain information about files: file names, file type
extensions, all the optional properties defined, and where to locate files.
Each file must be in a directory. There can be many directories and even

subdirectories that are imbedded inside directories. Duplicate file names
may exist in different directories. Directories can be specified in the
following ways:

::<directory name>
or
/<directory name>

Directories are identified by name. Each directory has a name of up to 16
characters, subject to the same rules as file names. A directory name is
specified with a file name in order to identify the file (but it can be
omitted). In the first form shown above, the directory name 1is separated
from the file name by two colons. This form is generally used with FMGR
files and the CI file system may display this form for compatibility with
FMGR files. The two colons are used by FMGR files to define an optional

file security code, for example, FILE:SC:CRN. The second form is wused in
the CI file system. Such a file structure may contain directories that have
within each directory nested subdirectories. This form of specifying files

is used to indicate the search path for the files in the CI file structure.

3-4

Manipulating Files

If the directory name is omitted in a file name, a default directory called
the Working Directory (WD) is used. It can be defined or changed with a WD
command. The working directory, once defined, will remain in effect until
changed by another WD command. You may display the name of +the working
directory by using the WD command without any parameter.

Certain programs have a special feature that enables users to schedule other

programs without the directory name. If the directory is omitted in the
program runstring, standard directories set up by the system will be
searched. For example, in executing the run command, CI will search a

directory named PROGRAMS for programs specified without a directory. The
standard default directory search sequence used by CI is described later in
this chapter.

Subdirectories

In addition to containing information about files, directories can contain
other directories. Directories which are contained in another directory are
known as subdirectories. Subdirectories can include other subdirectories
and there can be many levels of subdirectories. Unlike directories,
subdirectories can have the same name as long as all names within a
directory are unique.

Subdirectories have the same properties as directories. Throughout this
manual, references to directories also apply to subdirectories unless
otherwise indicated.

When specifying files which are in subdirectories, the hierarchical format
is used, with the subdirectory in front of the file name, separated by
slashes. For example, if a file named MANUAL.TXT is in directory DIR, it is
specified as:

/dir/manual.txt
If this file is moved to the subdirectory SUBDIR, it would be specified as:
/dir/subdir/manual.txt
The first form is used when there are no subdirectories. The second form is
used to specify a search path in a hierarchical file structure where there
may be many levels of subdirectories. There 1is no limit to how many levels
of subdirectories can be nested ingide other directories. However, there is

a limit to the length of the file descriptor, a maximum of 63 characters
including delimiters.

3-5

Manipulating Files

In a sample hierarchical file structure, shown in Figure 3-1, to specify a
file named DRAWCKTAA.REL in subdirectory SUBROUTINES:

/programs/applications/graphics/subroutines/drawcktaa.rel

There may also be a file with the same name in subdirectory APPLICATIONS.
To specify this file:

/programs/applications/drawcktaa.rel

The CI file structure provides a search path so that the search time may be
minimized and duplicate file names in different directories or
subdirectories are possible.

In the CI file specification, it is easy to confuse subdirectories with
directories and thus specify the wrong search path. The point to remember
is that a leading slash is needed to specify a directory; without the slash,
the name is taken to be a subdirectory. For example,

/system/archive/file.txt:::3

specifies that FILE.TXT is located in subdirectory ARCHIVE of directory
SYSTEM while

system/archive/file.txt:::3

which is the same descriptor less the leading slash has a completely
different meaning from the first. It specifies that FILE.TXT is in
subdirectory ARCHIVE of subdirectory SYSTEM. Since the directory is not
specified, the working directory is assumed, meaning that SYSTEM is a
subdirectory of the working directory.

Manipulating Files

DIRECTORY DIRECTORY DIRECTORY
SYSPROGRAMS PROGRAMS HELP
A\
SUBDIRECTORY SUBDIRECTORY SUBDIRECTORY
DOCUMENTATION APPLICATIONS TESTPROGRAMS
|
FILE SUBDIRECTORY SUBDIRECTORY
PROJECTLOG GRAPHICS MEASCONTROL
\ 1
SUBDIRECTORY SUBDIRECTORY FILE
SUBROUTINES SUBROUTINES DATALOG
FILE FILE FILE
DRAWCKTAA.REL CLEARSCREEN SYSTEMLOG
Figure 3-1. Sample CI File Organization

Manipulating Files

File Type Extension

The file name 1is supplemented by a secondary name called a file type
extension. The file type extension is used to indicate the type of
information in the file: text, binary data, etc. It consists of a period
and up to four characters appended to +the file name. For example, in the
filename parameter EDIT.RUN, the file type extension is RUN. Blank type
extensions are allowed; the period can be omitted if the type type extension
is blank. When specifying a file, the file type extension must be included
if one exists. For example, if the file name is RPORT.TXT, you must include
the file type extension. If you enter only RPORT, you are implying a blank
file type extension that will not match RPORT.TXT. An exception is that
various programs and program commands assume different default file type
extensions. For example, the CI program RU command uses the default file
type extension of RUN for programs scheduled without file type extension.
Refer to the respective manuals describing the programs for any default file
type extensions (e.g., EDIT, Debug/1000, etc.)

Standard type extensions should be used when files contain standard
information. For example, all executable program files should have type
extension RUN and all CI transfer files should have file type extension CMD.
The standard file type extensions are listed below.

.cmd CI command file

.dat data file

.dbg debug file

.dir directory or subdirectory entry
.ftn FORTRAN source file

.1id library of relocatables

.lod relocatable loader command file
.1st listing

.mac Macro source file

.map loader map listing

.pas Pascal source file

.rel relocatable (binary) file

.run program file

.snp system snapshot file

.stk command stack file

Ltxt text file

3-8

Manipulating Files

File Type

Each file descriptor has a file type parameter that indicates how the
information in the file is organized. The file type is a number, and is not
to be confused with a file type extension. There are standard RTE file
types defined with the following characteristics:

Type 0 file is the term wused in accessing devices with file calls.
There is no disc file or directory entry for a type 0 file, and they do
not have the other properties listed in this section. A type 0 file is
an I/0 device.

Type 1 files are random access files which do not have any structure
information in them. These files contain fixed record lengths
(128 words). They can be read and written very quickly.

Type 2 files are fixed-length record, random access files. The record
length 1is defined when the file is created. They are usually user
created large data files.

Type 3 and above files are variable-length record, sequential files that
are suitable for use as text files. There is no difference in the
handling of file types 3, 4, and 7. By convention, type 5 is used for
the Compiler or Assembler relocatable output files, type 6 is for
program files that are memory-images of executable programs, and type T
is for the Compiler or Assembler absolute binary output files. Type 6
files are treated in the same way as type 1 files. Type 4 is
recommended for text files. Type 3 is for general purpose files and can
be used for text. This is the default file type when files are created
with the CR command. Type 8 and above files are user defined.

File type is important when files are accessed programmatically.

Substituting a random-access file for a sequential file or vice versa will
cause problems.

File type is specified after the directory name, separated by a colon. For
example, you could create a type 1 file with the following:

CI.65> cr file.dat::system:1

If the subdirectory and directory are specified before the file name, the
file type is preceded by three colons. For example:

CI.65> cr /system/subdir/file.dat:::1

The directory name has been moved to the front in this case, but colons are
required as place holders. When creating a file in the working directory,
place holders are also required if the file type is specified. For example:

C1.65> cr subdir/file.dat:::1

3-9

Manipulating Files

If the file type is omitted, as in creating files with the CR cbmmand, the
default is type 3. However, some programs may have a different file type
default. For example, the default file type for the EDIT program is type U.

File Size

The file size parameter in the file descriptor specifies how many blocks of
disc space the file needs. One block is 128 words (256 bytes or
characters). One printed page takes about 10 blocks of disc space. You can
specify how big a file should be when you create it. If size is unspecified
and there is no information about the file, the file system chooses a size
of 24 blocks. If the contents of the file are known, such as when creating
a file with the CO command, the exact size of the file is used.

The size of a file is specified in the file descriptor after the file type
parameter, separated by a colon. You can specify the initial size of a file
when you create it. For example, to create a file of 100 blocks, enter the
following:

CI.65> cr bigger.dat::system::100

To specify both size and type, enter the following:

CI.65> cr macro.err::system:1:100 (create a type 1 file, 100 blocks in
length, called MACRO.ERR in directory
SYSTEM)

In most cases the file system increases the file size to accommodate more
data as needed through a process called extending the file. Extents are
always created by the file system at least as big as the original file size,
because there are performance advantages to having fewer, larger extents.
This is true for all except type 6 and some type 1 files which are memory
images of programs of the RTE system. Such files are not extended.

Files larger than 16383 blocks are rounded off to multiples of 128 blocks.
Files can be as large as any disc available in your system. Files larger
than 32767 blocks must be created by specifying the size as a negative
number of 128 block ‘“chunks" of the file. For example, a 50000 block file
would be specified by a size of -50000/128 = -391, rounding to nearest
larger number in absolute value. Large files are usually created by
programs and rarely by the user. Be aware that the file size parameter
larger than 32767 blocks will be accepted but the desired file size will not
be created. For example, the entry "“cr file::::36214" creates a file with
13110 blocks.

If the file size is not specified when creating a new file, a default size

of 24 blocks is used. Files that increase 1in size will automatically be
extended as required by the file system.

3-10

Manipulating Files

Record Length

Record length is the last parameter in the file descriptor. It is used
mostly for fixed-length type 2 files. It is specified in units of words.
For example, the following creates a type 2 file of 100 blocks with 64-word
records:

CI.65> cr file.dat::system:2:100:64

This field is also used in type 3 and above files. The file system uses the
value of the longest record in the record length field. This value appears
in messages displayed by the file system utilities to indicate the longest
record. Any other value specified by the user in type 3 and above files
will be ignored.

File Ownership

Ownership of files is determined by the owner of the directory containing
the files. All files in a directory are considered owned by the directory
owner. The owner can change the protection status of files in that
directory, which defines the read/write access allowed for the owner and
general users.

The owner of the directory (and no other users) can also reassign the
directory ownership. The owner of a directory is the user who created it.
The same is true for subdirectories. However, the owner of a subdirectory
can be different from the owner of +the directory that contains the
subdirectory. More information about ownership, directories, and
subdirectories is given in the paragraphs under the Manipulating Directories
section in this chapter.

Protection

File protection is a security measure in the CI file system and is defined
when a file is created or copied into a directory. It is specified in terms
of read or write access allowed. It can be specified differently for owners
and -general users. The default protection is to allow the owner both read
and write accesses and read access only for other general users.

Each file created assumes the protection status defined for the directory
where the file resides. A copied file assumes the protection status defined
for the original file. If there is no protection status for a file to be
copied, the copied file assumes the protection of the directory where the
file is copied into.

3-11

Manipulating Files

Protection can be specified on a file-by-file basis. It is specified by
indicating what operations should be allowed for the file owner, and what
operations should be allowed for the general wusers. The available
operations are reading and writing the file. You can specify protection in
any combination of read and write for the owner and for the general users.

Directories also have protection information. The protection status of a
directory applies to any file to be created in that directory. For example,
if a directory allows read and write access for the owner and read only for
others, all files created in that directory also have the same protection
status until changed by the PROT command.

Read and write protection for a directory is slightly different from that
for a file. Write protected directories (only read access specified) will
prevent the general users from changing information in the directory through
CI commands. This means that they cannot create, purge, or rename files in
the directory. Read-protected directories will prevent the general users
from finding out the contents of those directories.

Time Stamps

Time stamps are maintained for all files in the CI file system. The time
stamps include the time of creation, time of last access, and time of last
change. Times reflect both time of day and date, with a one-second
resolution. Time stamps are not maintained for directories.

Time stamps are changed automatically by the system; users can only examine
them with the DL command. The following examples illustrate the use of time
stamps.

Examples:
CI.65> dl <file descriptor> a Examine time last acceséed
CI.65> dl <file descriptor> ¢ Examine time created
CI.65> dl <file descriptor> u Examine time last updated
CI.65> dl <file descriptor> uac Display all three time stamps

3-12

Manipulating Files

Creation time is set when the file is created. Update time is set whenever
a file 1is closed after being changed. Closing a file refers to when a
program finishes using the file. If a program has a file in use for a long
time without closing it, the update time will not necessarily be accurate.
Update time is used to tell if the file has been changed. By comparing
update times, it is possible to tell whether an output file reflects all
changes made to an input file. Access time is set whenever a file is
opened; files are opened whenever a program needs to access the information
in them. Examining the file protection information does not affect the data
in a file, so it does not count as an access. Access time is also changed
whenever update time is changed.

When a file is created by copying an existing file, the create and last
access times are changed to the time of copying. The last update time,
however, will remain the same as the existing file. This is done for
preserving the revision history of the file.

File Masks

Access to multiple files can be simplified by a file mask feature. Files
can be specified using one or more fields in the file descriptor, ignoring
the other fields. The characters in the file name field can also be masked
to access a group of related files. Several different files can be
specified with a single entry. For example, The daily entries of a system
log can be accessed by masking the date code in the file names. All files

shown below can be accessed by specifying "syslog------ .

SYSL0G010181
SYSLOG010281

SYSL0G123081
SYSLOG123181
The dash (-) is wused to maék one character position, except a blank

character. The @ character is used to mask any and all characters. The
files shown above can also be accessed with another single entry:

SYSLOG@

3-13

Manipulating Files

Some file related commands can refer to a number of files using one file
descriptor with the aid of a file mask. The file mask feature uses all the
fields in the file descriptor plus a special mask qualifier field. The
fields used in this manner can be any or all of the following: -

file name (including file type extension)
mask qualifier appended to file name
directory
subdirectory

file type

file type extension
file size

file record length
time stamps

The mask characters, "-" and "@" can be used only in the file name and file
type extension fields; they have no special meaning in any other fields,
including directory and subdirectory. The dash masks a single character
position and the € character masks zero or more characters.

The mask qualifier field is a string of characters appended to the file name
after the file type extension. It is separated from the file name by a
period. Special characters are used in the qualifier field to facilitate
finding the desired files. These characters are:

b match only those files that need to be backed up. (Refer to the TF
utility description in the RTE-6/VM Utility Programs Manual).

d a search directive. If any directory matches a mask, then all files
in that directory match, regardless of other characteristics.

e a search directive. Search all mounted disc volumes in the system,
including the FMGR file system disc cartridges. (This can take a
long time, depending on the size, contents, and the number of
volumes.)

n do not match directories. Useful mostly for copying. Overrides the
d qualifier.

o match only open files.

p match only purged files.

s a search directive. Search from the specified directory down through
any subdirectories in that directory, applying the mask to those
files throughout the search path.

t match only temporary files.

X match only files with extents (not applied to FMGR files).

3-14

Manipulating Files

Any of the time stamps can be used as the mask qualifier. Time stamps can
be specified as an option in commands that use the file mask feature. Time
stamps can also be specified as a range. The format is

[e/a/u] [xxxxxx . xxxxxx] [-] [xxxxxx . xxxxxx]

where the xxxxxx.xxxxxx is a date and time in the format YYMMDD.HHMMSS;
830529.120000 is noon May 29, 1983. Only one choice among c/a/u is allowed

(create, access, or update). The default is last update time. The dash
character "-" is not a mask character when used in the qualifier field. It
is used to specify a range of dates. If "-" is not used, the specification

is for files which match that date/time.
For example: c780416.121108-810611.141411

This entry specifies files created between April 16, 1978 12:11:08 and June
11, 1981 14:14:11. The time can be specified with as few digits as desired.
Thus a81-83 would mean files last accessed during or after 1981 and before
or during 1983.

The time stamps in the file system begin on Jan 1, 1970. Dates specified in
years between 00 and 37 (inclusive) will be interpreted as being the year
2000 through 2037. Time stamps only extend through the year 2037.

Appropriate default values for each field are defined. If the name is not
specified, all names match. The same is true for type, size, and record
length. If the qualifier is not specified, all files qualify except purged
files. (Note that if p is specified, then only purged files qualify.) If
the file type extension is not specified then only files with blank type
extensions match. If the directory and subdirectory are not specified then
only the working directory is used. The directory and subdirectory
specification has precedence over the e option (if both are specified then
only the specified directory is searched).

There are several special cases in specifying directories using file masks.
If the mask ends with a / as in /foo/joe/, this is interpreted to be
equivalent to /foo/joe/€.@ (default name and file type extension). This
mask directs the file system to search for all files with any name and file
type extension in subdirectory JOE of global directory FO00. A global
directory is one that is unique throughout the disc volume in the CI file
system; it cannot be included in any other directory as a subdirectory.

The trailing / is a way of referring to the contents of a directory rather
than to the directory itself. To refer to the files in directory F0O, the
proper mask is /foo/. Thus to list +the files in directory F0O, the command
is:

CI.65> d1 /foo/

3-15

Manipulating Files

Note that /FOO will not list the files in directory FOO. Alternate means of
listing the files of directory FO0O:

CI.65> dl ::foo
CI.65> dl 8.8::foo
CI.65> dl /foo/8.@
If the file name in a mask ends with the wild card character (@) and the

file type extension is not specified, then a wild card file type extension
is assumed. For example:

filel® is the same as filel@.@

Files with a null file type extension can be specified with a trailing dot
as follows:

file2@.
If the mask ends with DIR as in /foo/joe.dir, this means to match only
subdirectory JOE in global directory FOO. The DIR file type extension is
needed in all contexts where either a file or directory can be given; it may
be omitted where only directories are allowed.
Examples of mask qualifiers:

u82- (updated during or since 1982)

u82-83 (updated during 1982 or 1983)

Examples using the whole mask:

e (equivalent to ’@.8°, specifies all files on the working
directory)

/foo/ (equivalent to /foo/@.8, specifies all files on directory
FO0O0)

/foo/8. (specifies all files on directory FOO with a blank file type
extension)

@.ftn.euB2 (search everywhere for all FORTRAN source files last updated
during 1982)

/games/backgammon/source/@.€ (all files on subdirectory SOURCE of
subdirectory BACKGAMMON on directory GAMES)

@.dir (all subdirectories on the working directory)

@.€.x:::4 (type U files with extents on the working directory)

3-16

Manipulating Files

Other Examples:

dl,@.txt (display files in the working directory with file type
extension TXT)

dl,a@.8.c83 (display files in the working directory which start with a,
created during 1983)

dl,/joe/@.8.5c80-83 (display files in directory JOE created during the
period between 1980 and and 1983. Also, the s qualifier
directs a search of any subdirectories of directory JOE
for similar files)

Destination Masks

Several commands (COpy, MOve, ReName) may use a destination file mask in
addition to a source file mask to give the command a framework for the
destination file name. For example, the command "RN @.src @.ftn" will
rename all of the files on the current directory which have file type
extension SRC to have file type extension FIN. In general, if a name or a
file type extension is specified in the destination mask, it will be used
for the destination file name or file type extension. If either is
defaulted using the @ character, then the name or file type extension of the
source file will be used.

The @ character must mask a complete name or file type extension. Thus the
command "RN %€.rel @.rel” will NOT remove the "%" from the front of the
files with type extension ''rel". In the case of the DIR file type
extension, it cannot be changed in the destination file descriptor. If the
source file type extension is DIR, then the destination type extension will
be DIR, regardless of the destination mask type extension.

The destination mask has the same rules as the source mask for implicit "@".
Thus /sources/ is equivalent to /sources/8.€. This will result in the
default name and file type extension.

For the type and record length fields, the values from the source file will
always be used, even if a value was specified in the destination mask. For
the security code and file size fields, any value used in the destination
mask will override that of the source. The following paragraph describes
how the destination directory path is generated.

The destination directory path comes from both the destination mask and the
source file directory path. The beginning of the destination directory path
comes from the destination mask. Next the source directory path, LESS the
directory path in the SOURCE MASK, is appended.

3-17

Manipulating Files

The following examples illustrate destination masks used with the CO
command.

To copy all files in subdirectory /PROGRAM/DOCUMENTS into subdirectory
/MANUAL /DOCUMENTS :

CI.65> co /programs/documents/@ /manual/documents/@

The destination subdirectory must exist prior to executing the copy command.
This could also have been accomplished using the following command:

CI.65> co /program/documents.dir.d /manual/@

The “.d" in the source mask specifies all files in the directory /DOCUMENTS.
Both forms are identical except that in the second form, the subdirectory
will be created if it does not exist.

If these files are to be copied to a subdirectory called /MANUAL/CHAPTERS,
changing the subdirectory name at the destination, enter the following:

CI.65> co /program/documents/@ /manual/chapters/

Subdirectory /MANUAL/CHAPTERS must be an existing subdirectory for the
command to work. An alternate form is:

CI.65> co /program/documents.dir /manual/chapters.dir

The destination subdirectory in this example will be created if it does not
exist. More examples are shown below.

CI.65> mo main.txt subroutine.ftn (Move MAIN.TXT into SUBROUTINE.FTN)

CI.65> co main.lst @.temp (Copy MAIN.LST into MAIN.TMP)
CI.65> rn_/program /pgm (Rename directory PROGRAM to PGM)
CI.65> co /pgm.dir /new/@ (Create subdirectory PGM on directory

NEW with all files and subdirectories
that are in directory PGM)

3-18

Manipulating Files

I/0 Devices Referenced as Files

In addition to identifying a file, the file name can be a number that
identifies an I/O device. This number is a logical unit (LU) number which
is assigned at generation time to all devices in the system. The LU numbers
for devices such as terminals and printers can be used in most cases where a
file name appears. As an example of using LU numbers to indicate I/O
devices, try using the CO command to copy a file. Your terminal is always
LU 1, so you could display a file to your terminal as follows:

CI.65> co welcome.txt::system 1

Use of LUs is further described under the heading "Data Transfer To and From
Devices" in this chapter.

Directory Listings

One of the most useful file operations is getting a listing of what files
are in a directory. This shows the files available to you.

The directory list command is DL. Entering the DL command without any
parameters returns a list of file names in your working directory. These
will be sorted in alphabetical order.

Example: To list all files in the working directory:

CI.65> dl
directory ::SMITH
A.B D.E TEMP.FIN TWENTY .FTN

In the sample display shown above, the working directory is SMITH which
contains the four files listed. Note that files A and D have uninformative
names and non-standard file +type extensions. These names are not
recommended for important data.

DL can also be used to get a list of the files contained in some other
directory simply by specifying the name of the directory. There are several
ways to list +the contents of a directory and these are shown in the
following examples.

To list all files in directory named JONES:

CI.65> dl ::jones (recommended for FMGR files)
CI.65> dl @.8:: jones
CI.65> dl /jones/ (recommended for CI files)

CI.65> dl /jones/@.@

3-19

Manipulating Files

To list all files in subdirectory SUBDIR which is in global directory JONES:

CI.65> dl /jones/subdir/
CI.65> dl /jones/subdir/@.@

This gives the names of the files contained in those directories. The
trailing slash must be given to the directory or subdirectory of interest to
get the desired effect. The use of the slash is a feature of masking file
specification previously described in this chapter.

Listing Files

The LI command 1lists the contents of a file to your terminal for
examination. You can use a file mask to list a group of files.

To list file /SYSTEM/WELCOME.CMD:

CI.65> li /system/welcome.cmd

In this example, the file is displayed on the terminal screen in blocks of
lines ending with the following message:

More...(’a’ to abort)

You can then select one of the following actions:

Action Enter

sc
abort the list command a (no carriage return needed)
display remainder of file carriage return

display next block of lines any key other than "a" or carriage return
The abort character "a' can be either uppercase or lowercase. Once it is
entered, the listing will stop and the CI.65> prompt is displayed.

Several other commands use this method of display, pausing after a screenful
of lines to let you read what has been displayed with the same choices for
abort or continuation. If you are using a printing terminal, you may send
the command output +to a file, then use the CO command to copy the file to
the printing terminal without stopping.

If you enter a file mask, you are prompted as follows before each file is
listed:

Next file: filedescriptor List? (Yes, No, Abort) [Y]?

3-20

Manipulating Files

You then can select one of the following actions:

Action Enter

Don’t list this file n (no carriage return needed)
Abort the LI command a (no carriage return needed)
Display the next file any key other than "n" or "a"

The no list character "n" can be either uppercase or lowercase. It causes
LI to skip to the next file.

The abort character "a" can be either uppercase or lowercase. After the
abort character is entered, the LI command stops and the CI prompt is
displayed.

The LI command will list the data in octal if the data cannot be displayed
as ASCII characters. It also allows display of a range of lines in the file.

Following are examples of the LI command.
To list lines 15 through 39 of file BIOSIN.YL:

CI.65> li biosin.yl,,15 39 (note the use of two commas as a place
holder)

To display binary information:

CI.65> 1li test.rel b

To list all files with type extension .FTN:

CI.65> 1i &.ftn

3-21

Manipulating Files

Copying Files
The CO command is a general purpose command for copying files. It can be
used to make a copy of any type of file. It also can be used to copy files
to or from I/0 devices.

To copy FILE1l.TXT to NEWFILEl1.TXT, enter:

CI.65> co FILE1l.TXT newFILEl.TXT

The source file 1is given first, followed by the destination file. The
source file descriptor can be masked to include a number of files. The
destination file must not exist in this case; CO will not overwrite files
unless directed by a replace duplicate (D) option.

The CO command creates the destination file with the same attributes as
those associated with the source file. Some attributes in the destination
file can be specifed in the file descriptor (security code in FMGR files and
file size). There is a set of optional command parameters to control the
copying process. These are options provided to control the way data will be
transferred; these are most useful when transferring data to or from an I/0
device. For more information on the CO command options, refer to +the CO
command description in Chapter 5 of this manual. Following are more
examples of file copying entries.

To copy /SYS/REPORT1 to working directory:

CI.65> co /sys/reportl reportl

Note that the destination file uses the default working directory and is not
defaulted to the source file directory. To copy a file to an existing file
on the working directory:

CI.65> co filel masterfile d (d is the replace duplicate option; the
current masterfile is to be purged if it
exists.)

To copy a file to magnetic tape (LU 8):
CI.65> co file 8
To copy a file to the terminal screen (LU 1):

CI.65> co file 1

3-22

Manipulating Files

Renaming Files

The RN command is used to change the name of a file (or files with the use
of a file mask). It can also change the file type extension. You must have
write access to the directory containing files to be renamed. To change the
name FILE1.TXT to NEWFILE1l.TXT, enter the following:

CI.65> rn filel.txt newfilel.txt

In this example, the file FILE1.TXT will no longer exist after this
operation. The new file name cannot be an existing file in this case.
Refer to the RN command description in Chapter 5 for details.

Moving Files

The MO command is used to move files from one directory to another. For
example, to move file FILE1.TXT::SMITH to FILE1l.TXT::JONES, you could copy
the file to the new destination and then purge the original file. However,
if FILEl were an enormous file this would take a long time, not to mention
the fact that there would have to be enough disc space for both copies.

You can use the MO command to move the file provided that the different
directories both refer to disc space on the same LU. It is not always easy
to tell if two directories are on the same LU; the MO command will find out
if you ask it to move the file from one directory to another. The
directories must be on the same LU. The "move" goes extremely fast, because
the file data is not moved or copied. Only the directory information is
changed. This is a useful technique for moving a file into or out of a
subdirectory.

CI.65> mo /smith/filel.txt /jones/filel.txt

If the directories are not on the same LU, an error message is displayed and
you must use the CO command to move the file.

3-23

Manipulating Files

Spooling Files

Spooling can be done with the CO or LI command in conjunction with the FMGR
spool setup command sequence. Ensure that the spool system has been set up,
then enter the following sequence of commands.

CI.65> fmgr
:51,6,,.6

1ex

CI.65> co,<file to be spooled>,6

CI.65> fmgr

:cs,6

iex

CI.65> _ (The file is now spooled out to LU 6.)

Purging Files

The PU command is wused to purge a file, removing it from the directory. A
group of files can be purged by means of the file mask. You must have write
access to the directory containing the files to be purged.

To remove FILE1.TXT, enter the following:

CI.65> pu filel.txt
Purging FILE1.TXT ... [ok]

This removes FILE1l.TXT from the working directory. The disc space that
FILE1.TXT occupied is now available for use by another file, but the data is
still unaffected. The PU command does not destroy the contents of a file it
removes. It leaves enough information so that as long as the disc area
occupied by the purged file has not been overwritten, the file can be
recovered with the UNPU command. This is very wuseful for cases when you
inadvertently purge the wrong file.

You may purge a number of files using the file mask feature. If the
optional OK parameter is not specified, a prompt is displayed for each file
to be purged and a Yes response is required to purge the file.

For example:

CI.65> pu file-.txt
Purging FILE2.TXT:::4:24 (Yes, No, Abort ? [Y])

Y
Purging FILE3.TXT:::4:24 (Yes, No, Abort ? [Y]) ¥

3-24

Manipulating Files

If the OK parameter is specified, the prompt is suppressed and the message
indicating the file is being purged will be displayed. For example:

CI.65> pu fil-.txt ok

Purging FILA.TXT:::4:24 ... [ok]
Purging FILB.TXT:::4:24 ... [ok]
Purging FILC.TXT:::4:24 ... [ok]

Be sure that the directories containing important files are write-protected.
The PU command only checks the directory protection.

Unpurging Files

The UNPU command is used to restore a purged file (or files), wusually
immediately after the error occurs. It is effective as long as the purged
file has not been overwritten.

To restore file FILE1.TXT that was purged earlier, enter:

CI.65> unpu filel.txt

There is no particular 1limit to the length of time that a purged file will
remain recoverable. It depends on such random factors as the number of
files being created and the position of the file on the disc and in the
directory. Unpurging should be used immediately after an erroneous purge
command. If the command returns an error message indicating that the file
is irrecoverable, the file has been destroyed.

In program development, there may be several purged files with the same
name. This can happen through sequences of create and purge operations, but
it is relatively uncommon. In this case you can unpurge all of the files by
successively unpurging one and renaming it to recover files of the same
name.

3-25

Manipulating Files

Creating Empty Files
Empty files can be created with the CR command. However, most files are
normally created by EDIT or other programs. The file space specified for
these files 1is filled as soon as each file is created. The CR command
cannot be used to overwrite an existing file.
To create a file called FILE1l.TXT:

CI.65> cr filel.txt

You can specify various file attributes: type, size, and record length. The
following examples illustrate creating empty files with these attributes.

CI.65> cr file.dat::system:1 (create type 1 file)

CI.65> cr /system/subdir/file.txt:::1 (create type 1 file within a
subdirectory)

CI.65> cr file.mnl:::1 (create type 1 file in working
directory)

CI.65> cr /system/bigger.dat:::100 (create file of 100 blocks)

Changing File Protection

The protection status of files can be displayed with the PROT command.
Protection status of a file can only be changed by the owner of the
directory containing the file.

To display the protection status of a file in the working directory:
CI.65> prot file.txt

directory ::DOUG
name prot

FILE.TXT rw/r (file is write protected from general users)
The protection status is given in abbreviations, W for write access and R

for read access. The owner status is given first, followed by a slash and
then the general user status.

3-26

Manipulating Files

Most files are usually assigned read access for general users and read and
write access for owners. To reassign the protection status, refer to the
following examples.

CI.65> prot report rw/ (read and write allowed for owner only)

CI.65> prot receipts rw/r (read/write for owner;read for others)

CI.65> prot testdata.txt r/r (read only for owner and others)

CI.65> prot memo rw/rw (read/write for everyone)

To change the protection for all files in a directory, follow the example
shown below.

CI.65> prot /data/ rw/rw (read/write access to everyone for all
existing files in directory DATA)

In this example, all existing files in directory DATA are allowed both read
and write access. Note that the protection for directory DATA has not
changed. All files to be created in that directory still follow the
directory protection status.

Manipulating Directories

Directories can be thought of as system files that only the operating system
is concerned with. Each directory contains information about the files which
are in the directory, although the data in the file itself is not in the
directory. File data is kept elsewhere on the disc volume. (Volumes are
described separately in this chapter.) Directories have an initial size;
they are automatically extended to hold more files as necessary. When files
are purged, the directories are not truncated; the purged entries are reused
when new files are added.

Subdirectories can appear in other directories in much the same way that any
other file does. Directory and subdirectory names always have type
extension DIR to distinguish them as directories; no other file can have a
type extension of DIR. There is usually no need to specify the DIR type
extension when dealing with directories because it is implied by the way the
name is used. For example, the DIR type extension is not needed in the name
/MAIN/SUBDIR/FILE, nor is it needed in the WD (working directory) command.
(The entry /MAIN.DIR/SUBDIR.DIR is not valid; the file type extension DIR
cannot be used in front of a slash.) Note that the file type extension and
the delimiter (.DIR) is appended by the file system to the filename
parameter which affects the 63 characters limit of the file descriptor. For
example, entering /GLOB/SUB/SUB1/SUB2/FILE.TXT includes the implied ".DIR"
for each of the subdirectories and the directory, adding 16 characters to
the string.

3-27

Manipulating Files

Operations involving directories include directory creation, changing
working directory, listing directories, renaming directories, purging
directories, and examining and changing directory owner. These operations
are discussed in the following sections.

Creating a Directory

Directories are created with the CRDIR command. To create directory SYSTEM,
enter the following:

CI.65> crdir /system

This entry would create a global directory SYSTEM on the same disc volume as
the working directory. If there is no working directory or if you want to
place SYSTEM on a different disc volume, enter the following:

CI.65> crdir /system 12

This would create directory SYSTEM on disc volume LU 12. To find out what
disc volumes are available, use the CL command. In this example, since you
entered the command, you become the owner of directory SYSTEM. Other users
are not allowed to create another directory of the same name. This
directory is a global directory with the initial default protection status.
Global directories have the following default protection status:

WR/R - write and read allowed for owner and read only for other users.
All subsequent files managed in directory SYSTEM will have the same
protection status unless changed by the PROT command, either for the
directory or individual files.
Note that the entry "crdir system' does not create a directory; instead, it
creates a subdirectory called SYSTEM in the current working directory.
Refer to the following paragraph for creation of subdirectories.

Creating a Subdirectory

Creating a subdirectory is similar to creating a directory. To create a
subdirectory of directory SYSTEM called SUBDIR, enter the following:

CI.65> crdir /system/subdir

This would create the subdirectory SUBDIR in global directory SYSTEM. Note
that the DIR type extension is not necessary. The subdirectory protection
will be set to that of the directory it is being created in. If this is a
global directory, then protection will be set to RW/R. The user who creates
the subdirectory becomes its owner, even if it 1is a subdirectory of a
directory the user does not own (but has write access).

3-28

Manipulating Files

The difference between specifying subdirectories and directories at the

beginning of a file descriptor is that a leading slash is used for a

directory while none is used for a subdirectory. For example:
/director/subl/sub2/file.txt

sub3/subl/file2.txt

Displaying/Changing Working Directory

The working directory will be searched first by the file system when
searching for files. It is the directory used if a file is specified
without any directory name. The working directory can be a subdirectory.

To examine the name of the working directory, use the WD command without any
parameter. For example:

CI.65> wd
Working directory is ::DOUG

To set up a working directory or to reassign another directory as the

working directory, enter the WD command with the name of the directory (or
subdirectory). For example:

CI.65> wd games (GAMES, a subdirectory in the current working
directory, becomes the working directory)

CI.65> wd /games/rules (subdirectory RULES is a working directory)

If there is no need for any working directory, specify 0 as follows:

CI.65> wd 0
The effect of this command is that the first FMGR disc on the cartridge list
will be used if the directory or CRN (in FMGR files) is omitted.
Displaying Directory Owner
The owner of a directory can be displayed with the OWNER command. This can
be done by any users of the system. To display the owner of directory named

SYSTEM, enter the following:

CI.65> owner /system
Owner of /SYSTEM is DOUG

3-29

Manipulating Files

Changing Directory Owner
The owmer of a directory can be changed with the OWNER command. This can
only be done by the current owner. Assuming that you created directory

SYSTEM, to change its owner to JONES, enter the following:

CI.65> owner /system jones

Use this command with caution. Once the ownership is changed, you are no
longer the owner and thus may not enjoy the same protection status. You may
not be able to write (or read/write) into the directory and you cannot
revert +the ownership. From +this point on, only JONES can change the
ownership. The subdirectories within directory SYSTEM are not affected.

Moving Directories

The names of directories can be changed by <the MO command which is
especially powerful in manipulating directories. It can be used to move all
files in one directory to another. For example, to change subdirectory
/SYSTEM/SUBDIR into a new global directory NEWDIR, enter the following:

CI.65> mo /system/subdir.dir /newdir (move SUBDIR into the global
directory table and rename it
to NEWDIR)

This changes the way you refer to all of the files in the directory as well;
they must be preceded by /NEWDIR instead of /SYSTEM/SUBDIR. Directories do
not have to be empty to be moved.

Purging Directories
Directories and subdirectories can only be purged by the owner when they are
empty. All files must be purged or moved to another directory before
purging the directory. Directories cannot be unpurged.
To purge a directory named GAMES:

CI.65> pu /games

Note that the form ::GAMES cannot be used because this is interpreted by PU
as all files in directory GAMES. It will proceed to purge them if there are
files in directory GAMES. If not, the message "Directory is empty ::GAMES"
is displayed. You must precede the directory specification with a slash.

To purge a subdirectory called SUB.DIR under directory SYSTEM:

CI.65> pu /system/sub.dir

3-30

Manipulating Files

Dispiaying/Changing Directory Protection
The protection status of a directory or subdirectory can be displayed with
the PROT command. Only the owner can change the protection status of a

directory or subdirectory.

Following are examples of displaying protection status.

CI.65> prot /system (for directory SYSTEM)
CI.65> prot /system/ (for all files in directory SYSTEM)
CI.65> prot /system/data.dir (for subdirectory DATA)
CI.65> prot /system/data/ (for all files in subdirectory DATA)

To change the protection for a directory (SYSTEM):

CI.65> prot /system rw/rw (read/write access for everyone)

To change the protection for a subdirectory (DATA):

CI.65> prot /system/data.dir rw/ (read/write access for owner only;
read/write protected from others)

Finding a File

When you enter a file-referencing CI command, CI checks if a directory was
specified. If you supply directory information, CI searches that directory
for the file and returns an error if the file is not found.

If you do not supply directory information, CI attempts to locate the file.
For all file-referencing commands except RU and TR, CI searches your current
working directory or all mounted FMGR cartridges if you do not have a
working directory. An error is returned if the file is not found.

When searching for files specified in the RU and TR commands, CI follows
special default search sequences. By defining User-Definable Directory
Search Paths (UDSP) #1 and #2, you can change the default search sequences
for the RU and TR commands, respectively.

3-31

Manipulating Files

Default Search Sequence

If you do not include directory information with a RU or TR command (implied
or explicit), the followingsearch sequence is used to locate the file:

- The current working directory is searched. If the file is not found, a
default type extension of .RUN or .CMD is assumed and the working
directory is searched again.

- If you do not bhave a working directory, all mounted FMGR cartridges are
searched.

- If the file is still not found, global directory PROGRAMS or CMDFILES is
searched, using the .RUN or .CMD default file type extension,
respectively.

Defining UDSPs

User-Definable Directory Search Paths (UDSP) allow you to change the default
search sequence used to find command and program files. The RU command uses
UDSP #1 and the TR command uses UDSP #2.

For example, suppose you want CI to search the following directories when
searching for a command file:

1. Current working directory

2. /JONES/UTILITIES/CMDS

3. /CMDFILES

The following PATH defines UDSP #2 to use this search sequence:

CI.65> path 2 . /jones/utilities/cmds /cmdfiles

The period (.) indicates that your working directory at the time the TR
command is entered is to be searched for the file.

To display the contents of UDSP #2, enter the following:
CI.65> path 2
UDSP #2: /JONES/STUFF [current WD]

/JONES /UTILITIES/CMDS
/CMDFILES

The first directory displayed, /JONES/STUFF, is the name the working
directory when you entered the PATH command to display UDSP #2.

3-32

Manipulating Files

UDSP #1, which is used by the RU command, can be defined to a different
search pattern. Assume you want the RU command to use the following search
sequence:

1. /MINE/PROGRAMS

2. Current working directory

3. /MINE/MORE/PROG

4. /PROGRAMS

The following PATH command sets UDSP #1 to this sequence:

CI.65> path 1 /mine/programs . /mine/more/programs

Refer to the description of the PATH command in Chapter 5 for more details.

Manipulating Volumes

This section describes what disc volumes are and how they are used. It is a
more advanced topic which can be skipped by first time users.

A volume is a self-contained section of a disc. Each volume is independent
of any other volume; files or directories never cross volumes. Each
physical disc drive consists of one or more volumes; volumes never cross
physical drives. Each volume is identified by a 1logical (LU) number.
Volumes are always identified by their disc LU number. The unit range of
volume LU numbers is 1 to 63.

Each volume contains a unique set of information about what files are
included. This information includes the names of all the global directories
on the disc, as well as a table that tells which disc blocks have been
allocated to files. This table is called a bit map, because the table is
composed of bits rather than addresses or values.

Common operations performed are: mounting a volume, dismounting a volume,

and 1listing contents of a volume. An operation that is not commonly
performed is initializing a volume, making it ready for system use.

3-33

Manipulating Files

Mounting/Dismounting Volumes

Mounting a volume makes that volume and all the files on it available to the
operating system. Dismounting a volume removes that volume and makes the
files on it inaccessible to the system. These operations are not performed
frequently except with removable media such as floppy discs, where discs
must be mounted after they are installed and dismounted before they are
removed.

To mount a volume, enter:
CI.65> mc <LU>

For example, to mount a volume with disc LU number 12:
CI.65> mc 12

Mounting a volume will initialize it if <there is no valid data on the
volume. Initializing a volume sets up information needed by the operating
system, including the list of directories and +the bit map for keeping track
of space use.

When you mount a volume there is a chance that directory names on the volume
Just mounted will conflict with directory names on already mounted volumes.
In such cases the duplicate directories are ignored, and +the names of
duplicate directories are displayed. If you need the new directories, you
can rename the duplicate directories already mounted, +then dismount and
remount the volume.

To dismount a volume, enter:
CI.65> dc 1lu

For example, to dismount volume LU 12:
CI.65> dc 12

When you dismount a volume there should not be any open files, working
directories, or restored programs on that disc volume. If you try to
dismount a volume with one or more of the conditions mentioned, you will get
an error message each time an error is encountered and the dismount command
will be aborted. The DC command will show only one error at a time which
means that you must repeat the command until all the errors are found. You
must identify and correct all the errors separately before the dismount
command can be completed. The following commands can be used to check for
conditions that can prevent dismounting a disc LU.

3-34

Manipulating Files

WH, AL (Check all RP’d programs.)

DL 1u o (Check opened files. This will list all files on the disc
volume which can take a 1long time if there is a 1large
number of directories and files.)

WD 0O (Remove working directory. This command must be wused for
every user having a working directory on that LU in a
multiuser environment.)

WHOSD (Check for any session accessing the specified directory or
a directory on the specified LU as part of a User-Definable
Directory Search Path (UDSP).)

Listing Volumes

The CL command is used to list the volumes that are currently mounted. The
CL command has no parameters. It gives a list of two types of volumes:
those mounted as described previously and those mounted as FMGR cartridges
as discussed under the heading "FMGR Files" in this chapter. The unmounted
volumes are not listed; use the IO command (described in Chapters 2 and 5)
to find the LU number of unmounted volumes.

CI.65> cl
File System Disc LUs: 19 17
FMGR Disc LUs (CRN): 16(16) 20(A2)

Initializing Volumes

Initializing a volume prepares it for first time system use. The IN command
can be used but this function is done automatically by the MC command. The
IN command can be used to remove all the data on a volume without having to
purge all the files. 1Initializing a disc volume permanently destroys any
existing files, so be certain that the files on that LU are no longer
needed. This command may only be used by the System Manager.

For example, to remove all data on volume 12 without dismounting it, the
following entry can be used:

CI.65> in 12
Re-initialize valid directory [N]? y
Initializing Disc

CI.65>

3-35

Manipulating Files

Data Transfer to and from Devices

Data can be sent to and from an I/O device instead of a file. This can be
done by replacing the file descriptor with the LU number of the I/0 device.
Devices that can be used include printers, terminals, magnetic tape units,
and HP-IB devices. This method of data transfer should never be used with
discs and Distributed System (DS) network links.

The CI commands that transfer data to or from files are CO and LI. Other CI
file commands that do not deal with the data in files cannot be used. For
example, the RN and PU commands do not deal with the data in the files, so
they cannot be used with LU numbers.

The CO command can include an LU as either the source or destination LU, or
both. When an I/0 device is specified as a source, the CO command moves
data until the device sends an end-of-file mark. On a magnetic tape there
is an end-of-file mark; on a terminal, enter a control-D character to end
the input. This character is entered by pressing the letter D and the
control key (CNTL) at the same time. After entering the CO command and
specifying your terminal as the source device (LU 1), all inputs are
interpreted as data until ycu enter the control-D character.

CI.65> co 1 newfile.txt

The CO command will put everything you type into the file, even if you are
trying to enter a command. The only easy way to get out of this is with a
control-D, so remember to use control-D when you are using commands that
read from the terminal.

The CO command is also used to send data to an I/O device. The file mask
feature can be used to send several source files with each CO command.
These will be sent to the device a file at a time, so they will be written
sequentially. Note that both the source and destination parameters in the
CO command can be LU numbers representing different I/0 devices. You may
even copy from the terminal keyboard to the display by entering:

CI.65> co 11
(Enter CNTL-D to terminate input)

The LI command can also be used to list information from an I/0 device. The
same rules apply as when you use the CO command with I/0 devices.

3-36

Manipulating Files

The file system does some special processing depending on what type of
device you are using. Some devices must be used by one user at a time to
get good results; for example, it would not do to have line printers or
magnetic tapes with output from several different programs being
interleaved. The system locks the LU to the program using it to prevent
access by other programs. If another program already has the LU locked,
then the second program will wait until the LU becomes available. Terminals
are not locked so that messages can still get through to them.

Other special processing involves making sure that the data is transferred
to or from the LU in the proper format. The system recognizes printers,
magnetic tapes and terminals, and does special processing required for them.
For most devices, data transfer is not a problem. If you have special
devices, then a special program must be written for computer-device
interface. This type of program is called a device driver. Refer +to the
Driver Design Manual for details.

In addition to the CI commands, most programs that use files will accept an
I1/0 device LU number as a file. For example, EDIT can list part of a file
to an I/0 device. However, there are times when a program expects a disc
file and in this case, a logical unit number will not be accepted. This may
occur because the program wants to be able to read the data twice, or
because it wants to be able to refer to the directory information for the
file. I/0 devices do not have file directory information.

FMGR Files

The following paragraphs present an overview of how FMGR files are handled
by CI. CI file commands can be used to a limited extent for FMGR files.
For example, with the proper parameters, DL can be used to list a FMGR disc
and/or CI directory, and CO will copy files to and from a FMGR disc
directory. Other commands that can be used with FMGR are MC, DC, CL, LI,
PU, and RN. It 1is not possible to set your working directory to be a FMGR
directory, but you can set it to zero:

CI.65> wd 0
This indicates that you have NO working directory. When you have no working
directory, the file system will search for a file specified with no
directory name by searching all of the FMGR cartridges in the order they are
mounted (as reported by CL).
Although CI can handle FMGR files, note the following cases:

1. Names with slashes are unusable.

2. Names starting with dots or ending with dots are not acceptable.
However, a single dot in character position 2, 3, U4, or 5 is acceptable.

3-37

Manipulating Files

3. The at sign (@) is interpreted as a wild card character in CI commands
although a FMGR file name containing the at sign will eventually be
selected.

For these files, it is recommended +that their names be changed. - Otherwise,
only FMGR can be used to access them. If CI commands are used for FMGR
files, they must observe the FMGR restrictions given here. For example, you
cannot change the protection status of an FMGR file with the CI PROT
command. In addition, FMGR is the only program that can initialize or pack
an FMGR directory.

If you are interested in working extensively with FMGR files, refer to the
FMGR description contained in the RTE-6/VM Terminal User’s Reference Manual.

DS File Access (DS Only)

Systems which use the DS/1000-IV Distributed System Network can access files
located on other RTE systems within the DS network. This includes FMGR
files located on other systems connected to your system. The same
operations used to access files on any 1local system can be used to access
files in the DS network. The term local system (or local node) means your
system and the term remote system (or remote node) means any other system
connected to your system via the DS network. If your system does not use
the DS/1000-IV Distributed System Network, skip the following paragraphs.

Specifying Remote Files

The DS transparency software is used +to access files at remote systems.
Files in a remote system can be listed and copied to and from your system;
directories at a remote system can also be listed to your system. Wildcard
characters can be used in the filename parameter and file masks can be used
in the file descriptor. You can specify a remote file as an input to
programs such as LINK, EDIT, or other utility programs.

To specify a file located in a remote system, the node number or name of the
remote system is included in the file name. Each system has a node number;
these numbers are explained in the DS manuals. Each system can also be
assigned a node name and these names are kept in a file called NODENAMES in
the SYSTEM directory. This file is used to associate node names with node
numbers. The DS software uses it to build a table of names for node
numbers.

The NODENAMES file contains entries of the form:
* <comment>

or
node# nodename

3-38

Manipulating Files

As an example:

*Test System 1 (Comment line)

1 SYS1
*Test System 2
2 SYSs2

* Central Systems
3 Centrall
4 Central2

Specify the node number (or name) by appending it to the file descriptor,
separated by a ’>’ sign, for example:

/Directory/File>sysl
or
File::Directory>sysl

This specifies a file located at the node named SYS1. The > sign must
follow all other file information, including type, size and record length.
The directory is not required but it is recommended in order to exclude
files with identical names.

Note that the nodename delimiter is the > sign and it is a valid FMGR file
name character. Any FMGR file name with the > sign anywhere except as the
first character cannot be accessed. For example, the name >FILE can be used
in a file specification but not A>FILE. The latter will be interpreted as
file A in the remote system named FILE.

Remote File Access

If the remote system operates in the CI environment, the appropriate account
log-on entry may be included in the remote file specification. The account
name and password, if one is required, are specified within square brackets,
e.g., [USER]. The trailing bracket is optional but is recommended for
clarity. The account delimiter ([) cannot be used in a FMGR file name

except as the first character. To specify a file at node 27 in the DS
environment:

/directory/file[user]>27
or

/directory/file>27[user]

If the USER account has a password, you must enter the password using a
slash as a delimiter:

/directory/file[User/Password]>27

3-39

Manipulating Files

Note that the password will be displayed on your terminal screen. If you
enter the wrong password or log-on without it, an error message will be
displayed:

Incorrect password

Upon successful log-on, you can access all files available in that account
and under the same restrictions applicable to that account. You will remain
logged on during the time that the file is open; you will be logged off at
the remote node when the file is closed.

Files within the DS network can be transferred to and from any two nodes,
local-remote or remote-remote. When transferring files from one remote
system to another, two log-on entries and two nodes are required for the
source and destination system. The node specification for a 1local system
may be omitted. File masks can be used.

CI.65> co /mydir/@.ftn>systemA[UserA] /dir/@>systemB[UserB]

This example copies all FORTRAN source files from a directory in SYSTEMA to
a directory in SYSTEMB. This sample entry is valid as long the systems
specified (and your system) are actively connected in the DS network and the
file system access rules are observed. If you are at either SYSTEMA or
SYSTEMB, the local node name can be omitted:

CI.65> co /mydir/@.ftn /dir/@>systemB[UserB]

DS File Access Considerations

In accessing remote files through the DS network, keep in mind the following
considerations.

FMGR files are accessible unless the file name contains one or more
characters which have special meaning, such as a > or |[. The DS
transparency software operates from CI and other programs that use the CI
file system. If your system operates strictly with FMGR, then refer to the
DS manuals for all DS operationms.

It is legal and useful to specify the local system in the node
specification. For example, this allows you to move a file from another
account on your local system. If an account name is specified without a
node, the local system is assumed.

Some file names may begin with a greater-than sign (>). For example, the
entry "dl /dir/>27" does not specify a remote file. To specify a remote
file, use:

CI.65> dl /dir/@>27

3-ko

Manipulating Files

While remote files are being accessed, system failure such as power-fail may
occur. If that occurs, note the following:

1. If the remote system is down, requests to it will time out. This will
cause an error return from the FMP call making the request.

2. If the remote system goes dowm and comes back up immediately, files that
were open on that system will no longer be open, though it may appear
that they are open at the local end. Accesses to such files will also
get errors. These files must be closed, using the CLOSE utility
described below.

3. If the local system goes down, its files will be left open at the remote
system. The DS transparency software will not be able to close these
files. The recommended way to close these files is to use <the CLOSE
utility described below.

To close open files while accessing remote files:

CI.65> close /directory/file (at local node)
or
CI.65> close /directory/file>node (at local or remote node)
This sample entry closes a file if it is open to the DS transparency monitor

TRFAS. You must specify a 1log-on name for the 1local file if one was
supplied when it was opened, even if the file is in your local node.

Remote File Access Limitations

There are cases where CI file manipulation commands cannot be used on a
remote system. The most common cases are:

1. Cannot use the default working directory at a remote system.

2. Cannot run a program contained in a remote file. (Although you can copy
the file to the local system and then run the program.)

3. Cannot mount or dismount volumes at remote systems.
. Cannot examine or change ownership of directories at remote system.

5. Cannot access I/0 devices (such as terminals or printers) at a remote
system.

3-11

Chapter 4
Controlling Programs

Introduction

This chapter explains how to use the CI commands for controlling programs.
You can manipulate programs in several ways: restore them into system
tables, remove them from system tables, stop programs momentarily or
completely, resume execution of a suspended program, and modify the memory
requirements.

Examples are given to illustrate the usage of the program control commands.
In these examples, user inputs are underlined and variables are shown within
angle brackets.

A brief summary of the program control commands is shown in Table L-1.
Refer to Chapter 5 or the RTE-6/VM Terminal User’s Reference Manual for a
full explanation of these commands.

Program ldentification

There are many different programs provided with RTE-6/VM to support a
variety of tasks. These programs can be run from CI. Programs are
scheduled by name, along with a program runstring that may include program
parameters. The program name consists of up to five characters and it must
begin with a letter. If a program file with a file name of more than five
characters is specified in the run command, only the first five characters
are used as the program name.

The RTE system manages execution of programs by means of identification (ID)
segments. Before a program can be executed, it must be assigned an 1ID
segment. The ID segment identifies the program and the location of its
associated program file. It also maintains information such as program
size, status and priority. The ID segment may be released at the end of
program execution or can be established permanently with the RP command and
removed with the OF command.

Controlling Programs

Table 4-1. Program Control Commands

Command Task
AS prog <part #> Assign partition
BR[prog] Break program execution
GO[prog[parm*5]] Resume suspended program
IT prog|[res[mpt[hr m sec ms]]] Set execution time
OF [prog[ID]] Remove program
ON[prog[NOW[parm*5]]] Schedule a program
PR prog[priority] Display/modify program pri.
RP file[prog] Restore program
[RU]prog[parm*5] Run program with wait
SS[prog] Suspend program
ST[prog/part #/0] Display program/part status
SZ prog| size[mseg size]] Display/Specify program size
VS prog[lastpg] Display/modify virtual EMA size
WS prog| wfksz] Display/modify VMA working set size
XQ prog|[parm*5] Run program without wait

Program Priorities

Each program has an assigned priority. When you schedule a program for
execution, the system may not execute your program immediately depending on
the priority of your program in relation to that of other scheduled
programs.

Priority is an attribute assigned to all programs to indicate their
importance. Program priority is in the range of 1 to 32767, lower numbers
indicating higher priorities. If two programs are scheduled to run at the
same time, the higher priority program will be run first. In addition,
programs with equal priorities may be timesliced to appear to run
concurrently. Program priorities can be changed interactively as explained
later in this chapter.

-2

Controlling Programs

Running a Program

A program may be 1run from CI by using the RU command. For example, to run
the editor program (EDIT), you would enter:

CI1.65> ru edit

In CI, RU is an implied command, meaning that it is not necessary in the
command runstring. Therefore, the editor may also be run by entering:

CI.65> edit
CI will assume that the RU command was intended anytime a non-CI command is

entered. The remaining examples in this manual will use the implied RU
command.

As you run the editor program, you may want to specify a file to be edited.
The editor has been written to accept a filename parameter in the runstring.
For example:

CI.65> edit,prog.ftn

Program EDIT will also accept, as a second parameter, a command to be
entered after opening the file. The entry

CI.65> edit prog.ftn s

will run the editor, open file PROG.FTN, and execute the editor S command
(enter screen mode).

Parameters are accepted by other programs such as LINK, FINTX, and Macro.
These are described in their respective manuals. User programs may be
written to accept up to five parameters from the runstring or one long
character string up to 80 characters including delimiters. This facility is
described in the RTE-6/VM Programmer’s Reference Manual.

4-3

Controlling Programs

Program Execution

Upon receipt of a RU command, the system will search for an existing ID
segment for the program specified or create one for that program. Then the
program is scheduled to run by having its ID segment placed in a list of
programs ready to execute. The system will dispatch programs from this list
in order of their priority.

Program CI will be suspended to allow interaction between the program and
the user’s terminal. When the program terminates, CI will again issue its
prompt and accept commands. This cycle is known as "run with wait”.

Sometimes it is desirable to allow a program to run while continuing CI
interaction. This may be the case for lengthy programs that require no user
interaction. The XQ command will schedule a program to run and return
control to CI. 1Its use is described in the following section.

Running Programs with Wait
To start a program with wait, enter the program name after the CI prompt.
CI.65> edit

Program CI first checks that this is not a CI command. If the program name
is the same as a CI command, precede the program name with CI run command
RU. For example, to run a program called OWNER, enter:

CI.65> ru owner

If the program has been restored (i.e., has been assigned an ID segment), CI
will execute it. After the program terminates, it remains restored. If the
program has not been restored, CI will restore it, execute it, and release
its program ID segment at completion.

Special processing occurs when a program file needs to be restored. When CI
looks for a program file, it uses the name and directory specified. If only
the program name is specified, CI first searches for a restored program,
next for a file in the working directory, and then for a file in a system
global directory called PROGRAMS. The following example illustrates how CI
searches for programs.

When the command EDIT is entered, it is examined by CI and interpreted as a

program since it is not a command. CI searches for an ID segment restored
for EDIT. If one is found, CI will run EDIT using that ID segment.

4-4

Controlling Programs

If there 1is no restored EDIT, CI scans the working directory for a file
named EDIT or EDIT.RUN. If one is found, CI allocates an ID segment for
that program file and executes it. If EDIT is still not found, CI searches
for EDIT.RUN in directory PROGRAMS.

If there is no working directory (such as after a "wd 0" command), CI scans
all FMGR cartridges in the same way FMGR searches for files. If
unsuccessful, CI then searches for /PROGRAMS/EDIT.RUN.

The above program search sequences apply to the RU, XQ, IT and RP commands,
as well as to scheduling operations done by other system programs such as
EDIT. The program search sequence does not apply to other CI commands. For
example, entering "1li edit.run” will not find EDIT.RUN unless it is in the
working directory. You must specify the directory (or FMGR cartridge) where
EDIT.RUN resides.

Specifying the directory/subdirectories allows CI to skip the search
sequence and proceed directly to the file. Entering /DIRNAME/EDIT will
allow CI to find EDIT quickly in directory DIRNAME.

One way to make use of the program search sequence is in program
development. Since your working directory is searched first, you can have
your own version of any program in the working directory, leaving the
unmodified version in directory PROGRAMS where it 1is accessible to other
users.

Program CI can handle cases where there are two or more programs scheduled
with +the same name. This might happen because of several situations:
several copies of a program may be running at the same time (e.g., EDIT may
be run by several users); shortening of two different file names may lead to
the same 5-character program names (e.g., DATALATCH.RUN and DATALOGGER.RUN).
CI handles these situations by changing the names of the duplicate programs,
replacing characters four and five of the program name with a .A, .B, .C,
etc. For example, the second copy of EDIT becomes EDI.A, the third copy
EDI.B, the fourth copy EDI.C, and sc on. This process is known as “cloning
a program”. In a multiuser environment, programs are also identified by a
session number. The session number is described in Chapter 2 of the
RTE-6/VM Terminal User’s Reference Manual.

Running Programs without Wait
To run programs without wait, the XQ command is used. The XQ command starts
the program specified and returns control to you, indicated by the CI

program prompt. For example:

CI.65> xq prog (scheduling prog without wait)
CI.65> _ (prog executing; CI back in interpretive mode)

4-5

Controlling Programs

The XQ command is NOT recommended for wuse with interactive programs. It is
best used for programs which take a long time +to run, and which will not
require any user intervention.

You can run several programs at the same time using the XQ command. This
command works the same way as the run command, including restoring the
program and changing the name if necessary. If you start a program with XQ
and that program is already running, a message will be displayed to report
that the program is busy. CI returns to the interactive state with the
CI.65> prompt. To run a program without wait:

CI.65> xq /testdata/subharmonics.run
CI.65>

Any errors reported during the program execution will be displayed at the
terminal as well as any completion message. The WH command can be used to
check the status of the program scheduled with the XQ command. Refer to
Chapters 2 or the RTE-6/VM Utility Programs Manual for a full description of
the WH command.

Time Scheduling Programs

To schedule a program to start at a later time (up to 24 hours), the IT
(execute time) command is wused. The IT command runs a program at a
particular time based on the processor time-of-day clock after being
scheduled by the ON command. It operates in the same way as the XQ command,
except for the time delay. For example, to run program CLOCK with
parameters a, b and ¢ at noon:,

CI.65> it clock,,12
CI.65> on clock a b ¢
CI.65>

At 12:00, program CLOCK will run once. The IT command handles ID segments
and program naming in the same way as in the RU and XQ commands.

The time can be specified in 24-hour format; 1:30 pm is 13,30. Seconds and
milliseconds are optional. The maximum time delay is 24 hours. If at 4:05
pm you specify the program start time as U4 pm, the program will run at 4:00
pm tomorrow, rather than running immediately.

You can also use IT to start a program and subsequently run that program
repeatedly at some time interval. To run program CLOCK at one-hour
intervals in the above example:

CI.65> it clock 4 1 12 30
CI.65> on clock a b ¢

4-6

Controlling Programs

The time interval for repeated execution can be specified as hours, minutes,
seconds, or tens of milliseconds, the first parameter is 4, 3, 2, and 1
respectively. The next parameter is a multiplier, e.g., one hour would be
specified as "4 1" and 30 minutes, "3 30".

To remove program CLOCK from the time list, enter the following:
CI.65> it clock

The IT command syntax is shown in Chapter 5. Refer to the RTE-6/VM Terminal
User’s Manual for a complete description of the IT and ON commands.

Restoring Programs

Restoring a program is a process that assigns to the program file an ID
segment in a system table that keeps track of programs to be executed. The
ID segment contains information necessary to run the program: the
5-character program name, its location on disc, scheduled run time,
priority, partition assignments, and other information required by the
operating system. CI commands that affect these program attributes cannot
be used until the program has been restored.

A program can be restored in one of two ways. The most common way is an
implicit restoration through the use of a RU, XQ, or IT command where no ID
segment has been allocated for that program. The ID segment 1is released
upon program termination. A second way is to explicitly restore a program
with the RP command. The program will be allocated an ID segment but will
not be scheduled for execution. The 1ID segment is permanently assigned
until removed with the OF command.

For example, to restore program TEST.RUN, enter:

CI.65> rp test.run

The program can now be run using the RU, XQ, or IT command and the ID
segment will remain allocated upon program termination.

If a second user tries to run a program restored with the RP command, an
error message will be issued indicating that the program is busy. The
second user may wait for the program to finish or may use a second parameter
in the RP command to create another ID segment with a new program name:

CI.65> rp test.run test2

The second user may now use the RU, XQ, or IT command with program TEST2.
Note that the second program name must be five characters or 1less., This
method is not required for programs that were previously restored implicitly
because the system will automatically create a new name in this case
(described in the Running Programs With Wait section). RP’d programs that
are not running will be OF’d when the user logs off.

4-7

Controlling Programs

Removing Programs

The OF command is used to remove a program. To remove a program restored by
the RU, XQ, or IT command, enter:

CI.65> of <program name>

If the program was not restored with RP, then its ID segment will be
released. If the program was restored with the RP command, only the
execution is , terminated. The program ID segment remains intact. To free
the ID segment of this program, the second parameter, ID, is needed. For
example, to remove the ID segment of program TOWER that was restored with
the RP command:

CI.65> of tower id

The OF command (with or without the ID parameter) stops an executing program
abruptly. Stopping a program in this way terminates +the program execution
without performing the normal clean-up operations. This command is normally
used to stop a program in trouble. Any I1/0 operation in progress is
terminated (any system resources used are returned). Data being written to
a file is not posted, possibly leaving the file in an abnormal state.

Break Program Execution

To stop a program in an orderly manner rather than abruptly as with the OF
command, the BR command can be used. This command can be entered when you
do not want to wait for a program to finish. If the program was scheduled
with wait (RU command), you must first interrupt the system and obtain the
break mode prompt. If the program was scheduled without wait (XQ or IT
command), the BR command can be issued from CI. This command can be entered
with or without a program name. For example:

CI.65> test?2

<press any key>

S=65 COMMAND?br test?2
CI.65> _

The program name must be the same name as reported by the WH command because
CI may have made up the name to avoid having duplicate names. The BR
command can be used without the program name to break the program most
recently run without wait. Refer to Chapter 4 of the RTE-6/VM Terminal
User’s Reference for details.

For this command to work, a program must acknowledge the break bit in the ID
segment using the system call IFBRK (refer to the Programmer’s Reference
Manual). This is implemented in all system programs but not necessarily in
user programs. If BR does not halt the program, you must wait till the
program finishes or use the OF command.

4-8

Controlling Programs

Suspending Program

Another method of stopping an executing program is to suspend the program
with the SS command. This command does not adversely affect the program or
open file status; it simply suspends execution. The SS command is used the
same way as the OF or BR command. However, the suspended program can be
restarted with the GO command or terminated with the OF command.

The SS command will not interrupt any I/0 operation in progress. It will
wait until the I/0 operation is finished. Sometimes this may take a long
time and there will not be any message while CI is waiting.

Resuming Execution

Suspended programs can be restarted with a GO command. It is used the same
way as the OF, BR and SS commands. The suspended program will be restarted
at the point of suspension. For example:

CI.65> xq test2
CI.65> ss test?2

CI.65> go test2

Normally, the GO command can be entered without any program name to resume
the currently suspended program. The System Manager can resume programs of
other system users by specifying the name of the suspended program.

Changing Program Priorities

All programs running under RTE-6/VM have a priority number which is recorded
in the respective program ID segments. The priority number can be assigned
when the program is written or when it is linked. It may also be changed
dynamically with the PR command as shown below.

The priority number may be in the range of 1 to 32767, with smaller numbers
representing higher priorities. Typical values for user application
software would be in the range of 50 to 200. Higher priority real-time and
system programs may be in the range of 1 to U40.

Controlling Programs

A primary task of the operating system is to run the highest priority
executable user program followed by the next highest and so on. When there
are programs of the same priority, a technique called “timeslicing” is used.
Programs of the same priority share the processor by having small intervals
(or slices) of time allocated to them by the operating system in a round
robin fashion. Timeslicing need not be implemented for all programs. A
value called the timeslice fence is established at system generation time to
set the priority below which timeslicing will be implemented.

If a user program has an unduly long elapsed running time in a busy system,
or if it does not run at all, then its priority may be too low. On the
other hand, if it runs to the exclusion of other user programs, then its
priority may be too high.

To change the priority of a program, use the PR command. For example:

CI.65> pr test2 50

Program priorities should be handled with caution. If you have a program
with a very high priority, it may run continuously and prevent other
programs from executing indefinitely.

Changing Memory Requirements

Some programs may require dynamic memory allocation as is the case with
reentrant routines or Pascal recursive procedures and dynamic data
structures. Memory requirements may vary depending on input parameters or
data given to the program. The operating system will not be aware of these
factors and may not allocate enough memory to the program unless explicitly
instructed to do so. You can change the amount of memory allocated to a
program in two ways. One way is to use LINK to make sure the program will
get extra memory every time it runs. This is described in the LINK manual.
The other way is with the SZ command. This command is used after the
program has been restored but before running it. For example, to change the
memory allocation of DATALOGGER to 20 pages:

CI.65> rp datalogger
CI.65> sz datal 20 (Note the S5-character program name)

Now DATALOGGER will have 20 pages. The new memory partition allocation
remains in effect as long as DATALOGGER is restored. If it is removed, it
will revert to that defined by LINK. The SZ command cannot be used for a
program that is executing.

If a program uses EMA, the SZ command modifies the EMA data space only (in
the range of 2 to 1022 pages). For example:

CI.65> rp emapr
CI.65> sz emapr 300 (changes the EMA space of EMAPR to 300 pages)

4-10

Controlling Programs

The size of a program can be displayed with the SZ command. This is done by
entering the SZ command without parameters. For example:

CI.65> sz groge.
65211 32 32

‘ I———— minimum required partition size in pages
program size

address (last word 1) of the program

Assigning Partitions

The system memory is divided at ©bootup time into dynamic and reserved
partitions. Normally, when a program is run, it is assigned memory as
required from the dynamic memory. Reserved partitions are partitions of
fixed sizes that can be reserved for specific programs. You can assign a
reserved memory partition to a program with the AS command. The reserved
partitions available can be checked with the WH,PA command.

For example, to assign PROGA to partition 1 which was previously created in
the system, enter:

CI.65> as proga 1
Program PROGA must be restored and must not be running.
When it is no longer necessary for a program to run in a reserved partition,
you can remove the designation by using the AS command again, assigning the
program to partition 0. There is never a partition zero; this number is

used to remove the assignment. For example, to reassign PROGA to run in
dynamic memory, enter:

CI.65> as proga 0

4-11

Controlling Programs

Changing Virtual Memory Area

VMA programs are those that utilize an RTE feature which enables execution
of programs requiring a very large amount of data storage. The data for a
VMA program is contained in an area on disc called the Virtual Memory Area
(VWMA). The portion of data being processed is moved from disc to an area in
memory called the Working Set (WS) so data is being transferred between VMA
and WS as necessary during program execution.

The WS size and the VMA space (VS) are defined using LINK, from 2 to 1022
pages of WS and up to 65535 pages of VS. These can be changed with the WS
or VS commands respectively.

It may be desirable to change the size of WS and VS with LINK, because this
changes it permanently. The other way to do this is with CI commands after
restoring the program. The WS and VS command can also be used to find out
the area defined. For example:

CI.65> rp datalogger

CI.65> ws datal (displays working set area)
20

CI.65> vs datal (displays virtual EMA area)
3000

To change the WS and VS areas of a program:

CI.65> ws datal U5 (change working set size to U5 pages)

CI.65> vs datal 2500 (change VS size to 2500 pages)

The change made with the WS or VS command is effective as long as the
program ID segment is in memory; when the program ID segment is released,
the size will revert to that defined at program 1link +time. Refer to
Chapter 5 for more information on the WS and VS commands.

4-12

Controlling Programs

Chapter 5
Cl Command Descriptions

Introduction

This chapter contains descriptions of all CI commands. The commands are
described in alphabetical order. A tutorial of most of these commands as
well as a command summary has been given in previous chapters. Commands or
capabilities that are specific to the System Manager are indicated as
"superuser"”.

AG (Modify Partition Priority Aging)

Purpose: Modifies the rate a partition’s priority number is increased and
turns on or off partition priority aging.

Syntax: AG numb/of
number Number of 10-millisecond intervals to be used as the
aging rate. This value must be in the range of 10 and
32767.
of Turns off partition priority aging.
Description:

Partition aging is a feature that allows high-priority suspended (state 3)
programs to be swapped out, replaced by lower priority programs. Details of
the AG command are given in the RTE-6/VM Terminal User’s Manual, Chapter 4.
Increasing the priority number of a program lowers the program priority.

Examples:
CI.65> ag 100 (Increase the partition priority number by two
every second.)
CI.65> ag of (Turn off all partition priority aging.)

CI Command Descriptions

AS (Assign Partition)

Purpose: Assigns a program to a reserved partition.
Syntax: AS prog <part #>

prog Program name, up to five characters, session identifier
optional.

part # A number that identifies the partition +to which the
named program will be assigned.

Partition number = 0 removes the current assignment.
Description:

The AS command is identical to the SYSTEM AS command. Refer to Chapter U4 of
the RTE-6/VM Terminal User’s Reference Manual for a complete description.

Examples:
CI.65> as test2 2 (assigns program TEST2 to reserved partition 2)

CI.65> as test O {program test to run in any partition)

5-2

CI Command Descriptions

BL (Examine or Modify Buffer Limits)

Purpose: Allows the general user to examine the current buffer limits and
a System Manager to change the current buffer limits.

Syntax: BL[lower limit[upper limit]]

lower limit

upper limit

Description:

Used by the System Manager only; specified in number
of words. If upper limit is changed and lower limit
is not specified, it defaults to 1.

Used by the System Manager only; specified in number
of words. If lower limit is changed and upper limit
is not specified, it remains the same as the
existing upper buffer limit.

The BL command is identical to the SYSTEM BL command. Refer to the RTE-6/VM
Terminal User’s Reference Manual for a complete description.

Examples:

CI.65> bl
100 400

CI.65> bl 200 500

(Displays lower and upper buffer limits)

(Change buffer limits)

BR (Break Program Execution)

Purpose: Sets a flag which may be interrogated by a program.

Syntax: BR[prog]

prog Program name, up to five characters.

Defaults to the last scheduled program.

Description:

The BR command is identical to the SYSTEM BR command. Refer to the RTE-6/VM
Terminal User’s Reference Manual for a complete description.

5-3

CI Command Descriptions

CL (List Mounted Discs)

Purpose: Displays all mounted disc volumes.

Syntax: CL

Description:

The CLL command is used to show the mounted disc volumes by their logical
unit numbers. It 1lists separately all LUs mounted as file system LUs and

all LUs mounted as FMGR LUs. For the FMGR system discs, the LUs and the
associated CRNs are listed in the FMGR search order.

Examples:
CI.65> cl
File System Disc LUs: 54 56
FMGR Disc LUs (CRN): 27(DB) 45(TY) 46 (PM) 30(XX)
61(S0) 59(GR)

CN (Control Device)

Purpose: Controls peripheral devices.
Syntax: CN lu function[parm*y]
1u Logical unit of device to receive the control request.
function The control function code (0-63B) as defined in the
function field of CNTWD (listed for each driver in the
appropriate driver reference manual), or a two-character

mnemonic code from the following:

Mnemonic Equivalent Octal Parm 1-4

Code Function Code Definition Action

TO 11B # lines Issue top-of-form or

on page line spacing on printer

RW Y None Rewind cassette tape
EO 1 None Write end-of-file

FF 13B None Forward space file

BF 14B None Backward space file

FR 3 None Forward space record
BR 2 None Backward space record

parm™y

Examples:

CI.65> cn,U,rw

CI Command Descriptions

For magnetic tapes and cassette tapes, the function
parameter defaults to rewind tape, for printers, form
feed.

Optional parameters that specify additional device
details as appropriate for a given driver. Specific
meanings for each parameter may be found in the
appropriate driver reference manual for each driver.

(rewinds the tape in cassette tape unit, LU U4)

CI.65> ¢n,6,t0,-1 (causes a top-of-form, page feed, on printer LU 6)

Refer to the appropriate driver reference manual for full information on the
control requests that can be issued for each driver.

CO (Copy Files)

Purpose:

Syntax:

Copies one or more files between directories and or I/0 devices.

CO <filel/lu> <file2/lu>[parm]

filel/lu The source file descriptor or the LU number of an I/0

file2/1u

parm

oQw»

U=

device. (Refer to the CR command syntax description for
the definition of file descriptor.) May bYe masked to
operate on more than one file. (Refer to the File Mask
section in Chapter 3 for the mask syntax.)

The destination file descriptor or the LU number of an
I/0 device. May be masked to allow the system to
generate destination names (refer to File Masks
description in Chapter 3). When copying from a device,
the default file type is type 6; different file type
desired must be specified.

The following characters indicate particular actions to
be taken. Defaults to A. These include:

ASCII records, no checksum.

Binary absolute.

Clear backup bit.

Replace duplicates; existing file with the
same name will be replaced.

No carriage control in source

Purge source after copying.

5-5

CI Command Descriptions

Description:

The CO command can be used to copy a group of files from one directory to
another. Masking the filel parameter allows matches of a number of files.
If a wildcard character is used in the name field of filel, an appropriate
destination mask must be used to default destination file names.

The file mask is a very powerful tool but complicated; it should be used
with caution. For example, you can copy all type 6 files on several
different directories to a particular directory. That directory can be a
global directory or a subdirectory. An implicit "d" qualifier is used
whenever copying with a wildcard mask. This means that if any directory
matches the mask, then all files in that directory will also be copied.
This can be overridden with the mask qualifier "“n"”. Qualifier n is
particularly useful with time qualified copies since directory time stamps
are not maintained. Note that the d qualifier is automatically appended to
the unspecified mask and will appear in error messages. For example:

CI.65> co /global/@.ftn /new/@.ftn
No such directory &.FTN.D::GLOBAL (d appended to file name)

When copying a file from one directory to another, the creation and access
times will be that of the copying process. However, the update time of the
new file will be that of the current file to maintain a history of the
latest revision date.

The file type of the destination file is the same as the source file if
unspecified. If +the destination file size is unspecified, a size will be
selected to eliminate extents. The protection of the destination file will
be the same as the source file if the source is not an LU or a FMGR disc
cartridge. Otherwise, it will have the protection of the directory into
which it is copied.

Examples:

CI.65> co @.src.e /backup/archive/source/@.@

This example copies all files with file type extension .SRC on all
accessible directories to subdirectory SOURCE of subdirectory
ARCHIVE of directory BACKUP. Their names and file type extensions
will be unchanged.

CI.65> co @.rel 8 b

This example copies all files with type extension REL on the
working directory to LU 8. Note that this example shows that CO
can be used to copy to an I/0O device. The preferred method is to
use the TF utility for this type of copying.

CI Command Descriptions

CI.65> co 8 /programs/program.run:::6:1000

When copying from a device (such as a tape unit), the default file
size is 24 blocks. If the file is 1longer and extents are not
desirable (i.e., type 6 files), a longer file size must be
explicitly specified. After copying, the file will be truncated to
its actual size.

CI.65> co @.dir.d sub/@.€ (SUB.DIR is in the working directory)

This command will find subdirectory SUB in the working directory
and copy it into subdirectory SUB, creating file SUB/SUB.DIR. Then
following the d directive, all files in subdirectory SUB will be
copied, including SUB/SUB.DIR. This will continue until the string
reaches 63 characters. To avoid this unpleasant effect, either do
not copy from a directory into it’s own subdirectory or use the n
qualifier to disqualify copy subdirectories.

CR (Create File)

Purpose:

Syntax:

Stan
Comb

FMGR

Creates a disc file.
CR <file descriptor>
For Remote Access (DS Only):
CR filedescriptor[user]>node
filedescriptor File descriptor; up to 63 characters. Can be
any of the following:
dard /dir/[subdir/]filename.typex:::[type[:size[:rlen]]]
ined [subdir/]filename.typex::dir[:type[:size[:rlen]]]]
filename: [sc]:dir/crm[:type[:size[:rlen]]]]]
where:

dir Specifies the unique (global) directory for the
file. The directory name can be up to 16
characters long, not <counting delimiters
(slashes). If omitted, the working directory is
used.

5-1

5-8

subdir

filename

typex

type

CI Command Descriptions

Specifies one or more subdirectories for the

file, separated by slashes /). Each
subdirectory can be up to 16 characters long not
counting delimiters. Any number of

subdirectories can be specified with the limit
of 63 characters for the full file descriptor.

Specifies the name of the file; can be up to 16
characters. Mask characters (@ and -) can be
used to specify a group of files; € masks any
one or more characters and the dash (-) masks
one character position for any character except
a blank. Only the first 6 characters are valid
for FMGR files; other characters, the type
extension, and qualifier options are ignored.

A file type extension field appended to filename
with a period as the delimiter; can be up to
four characters used to describe the type of
information in the file. The @ and dash (-)
mask characters can be used in the typex field.
Standard file type extensions are:

.cmd command file

.dat data file

.dbg debug file

.dir directory or subdirectory entry
.ftn FORTRAN source file

.1iv indexed library of relocatables
.lod LINK loader command file

.1st listing

.mac Macro source file

.map loader map listing

.pas Pascal source file

.rel relocatable (binary) file
.Tun program file

.snp system snapshot file

.stk command stack file

.txt text file

A number used to indicate how the file is
organized. Standard types are:

Type 1 files are random access files which do
not have any structure information in them.
They can be read and written very quickly, but
they are not suitable for use as text files.
Fixed length records are 128 words long.

CI Command Descriptions

2 Type 2 files are fixed-length record, random
access files. The record length is defined when
the file is created. They are not suitable for
use as text files.

3-7 Type 3 and above files are variable length
record, sequential files. They are suitable for
use as text files. There is no difference in
the handling of file types 3 and above. By
convention, types 5, 6 and T are used for
relocatable object, executable program and
absolute binary files, respectively.

If type is not specified, 3 1is used. Types
greater than 7 are user defined.

size Specifies the file size in number of blocks.
Default is 24 blocks.

rlen Specifies the record length in type 2 files in
number of words.

user Optional parameter used in Distributed Systems
to specify the user account under which this
file exists.

node Optional parameter used in Distributed Systems
to indicate the node where the file resides.

crn Used in the FMGR compatible format only; can be
a positive number (cartridge reference number
CRN), or a negative LU number, or two
characters.

Description:
The CR command creates an empty file. The minimum information which must be
specified is the name. The remaining parameters can be defaulted. Default

values are:

file type extension: blank

directory: working directory
type: 3
size: 24 blocks

To create a file, you must have write access to the directory where the file
will reside. The owner of this file is the owmer of the directory. The
protection status of this file is the same as that for the directory it is
on. This allows you to write into a file or create a file on another
directory that you have write access. Only the owner of the directory can
alter the protection status of the file thus created.

5-9

CI Command Descriptions

Examples:

CI.65> cr /applications/documentation/compiler

This example creates an empty file called compiler with the
following attributes: blank type extension, size = 24, type = 3, on
subdirectory DOCUMENTATION on global directory APPLICATIONS.

CI.65> cr /joe/notes.txt:::4:10

This example creates file NOTES.TXT with the following attributes:
file type U4, size = 10 blocks, on directory JOE.

CI.65> cr data.dat:::2:5:18

This example creates file DATA.DAT as a type 2 file with 5 blocks
and a record length of 18 words in the working directory.’

CI.65> cr notes/project.txt

This example creates file PROJECT.TXT on subdirectory NOTES on the
current working directory. The default attributes are used:
type 3, 24 blocks.

CRDIR (Create Directory/Subdirectory)

Purpose: Creates a global directory or a subdirectory.
Syntax: CRDIR directory(1lu]

directory A character string that identifies the directory.
It can be up to 63 characters and can be either a
global directory or a subdirectory. The directory
in which a subdirectory is created must already
exist.

The name can include an optional size subparameter
specified in number of blocks as follows:

<directory>::::<size>
(/jones::::24)

Default size is equal to the track size of the disc
used, typically 48 or 64 blocks for hard discs and
30 or 16 for flexible disc. Directory size is
extended as needed.

5-10

CI Command Descriptions

1u Specifies where to place a global directory. It
must be a mounted disc volume. If set to zero, the
disc volume of the working directory is used. This
parameter is ignored for subdirectories, which go
on the same volume as the directory in which it
resides.

Description:

The CRDIR command creates a directory or a subdirectory. A subdirectory can
be created within a subdirectory. There is no limit to the level of
subdirectory nesting except for the 63 character 1limit to any file
descriptor.

If the optional disc volume parameter is omitted and there is no working
directory, the lowest numbered disc volume is used.

The size of the directory can be specified in the same way as in a file
creation. There are four directory entries per block, and two directory
entries used for internal information. Thus if a size of four blocks were
specified, the directory could hold 14 file entries (extents require
additional entries) before the directory had to be extended. As is the case
with files, extents slow directory search performance. The created size is
not a limit on the number of entries in a directory. Some programs assume
that directories contain no more than 32767 files.

If a directory is created with the same name as an FMGR CRN, the FMGR disc
cartridge cannot be accessed by any CI command unless the working directory
is set to 0.

Examples:

crdir jones (Create subdirectory JONES in the working directory.)

crdir jones::::12 (Create subdirectory JONES in the working directory
with 12 blocks.)

crdir smith/jones (Create subdirectory JONES on subdirectory SMITH in
the working directory.)

crdir /smith/jones (Create subdirectory JONES, in global directory

SMITH.)

crdir jones::smith (Create subdirectory JONES in global directory
SMITH.)

crdir ::HP (Create global directory HP on the same LU as the

working directory.)

crdir /HU (Create global directory HU on the same LU as the
working directory.)

5-11

CI Command Descriptions

CU (CPU Utilization)

Purpose: Displays a bar graph of CPU display registers showing the
percentage of CPU utilization.

Syntax: CU on/off
on Turns display on.
off Turns display off.
Description:

The CU command is identical to the SYSTEM CU command. Refer to the RTE-6/VM
Terminal User’s Reference Manual for a complete description.

DC (Dismount Disc Volume)

Purpose: Dismounts a disc volume.
Syntax: DC 1lu

1u The positive LU number of +the disc volume to be
dismounted.

Description:

The DC command dismounts a disc volume, making the global directories on
that disc inaccessible. If there are any open files, working directories,
or active type 6 files (or the swap file), an error message will be
displayed and the LU specified will not be dismounted. The first problem
encountered will cause the error message. If there are more problems, it
may take several tries to discover and correct all of them.

For SYSTEM digc volumes, use the SYSTEM DC command because it provides more
information when there are active programs. If the dismount fails on a FMGR
disc cartridge, the disc will remain mounted but will move to the bottom of
the volume 1list.

5-12

CI Command Descriptions

DL (Directory List)

Purpose:

Syntax:

Lists files in a directory.

DL[mask[options[<output file/lu>[msc]]]]

mask

options

A field specifying the names of files matching the mask
to be displayed. Default is all files in the working
directory.

The file mask field can include any or all of the file
descriptor parameters and a mask qualifier appended to
the filename parameter. Refer to the File Mask section
in Chapter 3 for the file mask syntax description.

Parameters that specify what particular information

from the directory will be displayed. They can be
listed without any delimiters and may be in any order.

Time last accessed displayed in following format:
Wed Jun 30, 1982 9:55:48 am

files that have not been backed up to be marked with
asterisk (*).

Creation time displayed in same format as option a.
File type extension (for sorting only).

File type.

Location of file; displays the block address and LU of
the main file entry. The first block on disc is
address 0.

Main file size in blocks, excluding extents.

Number of records.

Mark open files by displaying the name of the program
that has the file open next to that file. If there are
no open files, this field will not be displayed.
Protection on file displayed in following form:

owner/other (rw/r); read and write abbreviated to first
letter.

5-13

CI Command Descriptions

R Record length; gives length of longest record in the
file in words.

S Size; total number of blocks used by file, including
extents.

T Temporary file marked with asterisk (*).

U Time last updated displayed in same format as option a.
W Words in file, up to EOF.

X File with extents to be marked with an asterisk (*).

Y Security code (FMGR files only).

A useful subset of the above (fimsxp).

! All of the above.

+ Ascending sort by item specified.

- Descending sort by item specified.

output file/lu An optional file or LU where the DL output is to be

stored.

msc The master security code for the system; used only for
FMGR files and only needed if the Y (or !) option is
specified.

Description:

The DL command displays a list of the files which match the specified mask
in a directory or subdirectory. The display format is as many names as
possible per row if no options are specified. If any display option is
specified, the format will require one 1line per file. If several options
are specified, multiple lines per file may be required.

The display is normally sorted by name. Sorting can be by means of the two
sorting options, "+" for ascending order and "-" for descending order sort.
Preceding an option specifier with "+ will cause the list of files to be

sorted with the lowest value first, "-" will cause the reverse. If either
"+" or "-" 1is specified and not followed by an option specifier, then the
names are ascending or descending sorted. The default is an ascending sort

by name. The number of files which can be sorted depends on the amount of
free memory the program has.

If there are too many files, as many as possible will be sorted and
displayed, then another list of files will be sorted and displayed until all
the files have been displayed. Sizing the DL program scheduled by CI to a
larger size will increase the number of files that can be sorted at one
time.

5-14

CI Command Descriptions

Some of the information in the directory is dynamic and may not always be
accurate, particularly if a file is open or if the last program which
accessed that file failed to close the file. This information includes
access time, total size, time last updated and words in file. These fields
can be specified with the options a, s, u, and w respectively. Note that
for FMGR files, only the options f,l,m,o,r and y will be displayed; other
fields are not maintained in the directory for FMGR files.

The E option is used only for sorting because the file type extension is
always displayed. If specified with the + or - option, the files are sorted
by type extension and file name The E option is ignored if specified without
a + or -.

For FMGR files, the master security code parameter is needed only if the
y option is specified. If an incorrect master security code is entered,

none of the security codes will be displayed. Note that if the master
security code is zero, then any value (or no value) can be entered for the
msc parameter. If necessary, see your System Manager for the system

security code.

Examples:

CI.65> dl (display all files in the working directory)

CI.65> dl @.dir (display all subdirectories on the working
directory)

CI.65> dl,al..c83,-s (display files which start with a, and were
created during 1983, sorted in descending
order by size)

CI.65> dl /program/ (display all files in directory PROGRAM)

CI.65> dl /joe/foo (display file FOO in directory JOE)

CI.65> dl @.txt +s (display files with file type extension TXT on

the working directory, displaying the size in
number of blocks sorted in ascending order)

CI.65> dl /joe/f@.8.scB0-83 (display files in directory JOE that start
with f, have any file type extension, and were
created during 1980 through 1983. The s
option in the mask qualifier directs a search
of all subdirectories of directory JOE for
similar files)

CI.65> dl /joe/@.dir (display all subdirectories in JOE)

CI.65> d1,8::sc y,,hp (display all files on CRN SC with their
security codes; msc is HP)

5-15

The

CI Command Descriptions

CI.65> dl,,!

directory DEMO
name ex ba tmp prot type msize blks words recs rlen addr/lu

COPY.REL * rw/r 5 86 86 6312 127 128 8390/38
create time Wed Jan 12, 1983 9:16:13 am
access time Wed Jan 12, 1983 9:47:09 am
update time Wed Jan 12, 1983 9:39:47 am

COPY.SRC * » /T Y 92 184 13418 820 38 7908/38
create time Wed Jan 12, 1983 9:00:33 am
access time Wed Jan 12, 1983 9:44:29 am
update time Wed Jan 12, 1983 9:30:35 am

above example gives a complete directory 1listing of the working

directory with two files. The display columns of those shown above and
those in the O and Y options are: :

5-16

ex - extent; * indicates file has extents (x option)

ba - backup; * indicates file needs to be backed up (b option)
tmp - temporary; * indicates file is a temporary file (t option)
prot - protection; shows file access for owner/other (p option)
type - file type (f option)

msize - size of main file (m option)

blks - size of file in blocks (both main and extents) (s option)
words - number of words up to the end-of-file mark (w option)

recs - number of records in the file (n option)

rlen - length of longest record in file (r option)

addr/lu - block address and LU of beginning of file (1 option)

open - name of program (if any) accessing the file (o option)

sc - security code; displayed only for FMGR files (y option)

CI.65> dl @ -1*m
directory DEMO
name ex prot type msize blks words recs addr/lu

COPY .REL rw/r 5 86 86 6312 127 8390/38
COPY.SRC * ru/r N 92 184 13418 820 7908/38

CI Command Descriptions

CI.65> dl &fdlx::db !
directory ::DB
name sc type msize rlen addr/lu

&FDLX 0 131 0 h830/27

This example demonstrates the limited directory information available for
FMGR files.

DN (Down a Device or I/0 Controller)

Purpose: Declares a device or I/0 controller down (i.e., unavailable for
use by the RTE system).

Syntax: DN,,1u or
DN,eqt
1u Specifies the system LU of the device to be declared
dowm.
eqt Specifies the Equipment Table (EQT) entry number of

the I/0 controller to be declared down.

Description:

Downed device (or I/O controller) can be made available by the UP command.
The EQT and LU number can be displayed with the LU command under CI. The DN
command is identical to the SYSTEM DN command. Refer to the RTE-6/VM
Terminal User’s Reference Manual for a complete description.

Examples:
CI.65> dn,,6 (Declares LU 6 down)
CI.65> dn,28 (Declares EQT 28 down)

5-17

CI Command Descriptions

ECHO (Display Parameters at Terminal)

Purpose: Displays parameters, separated by commas, at the terminal.
Syntax: ECHO[parameters]

parameters One or more parameters separated by blanks or
commas. Positional, user-defined, and predefined
variables can be included in the string. If this
parameter is omitted, a blank line is displayed.

Description:

The ECHO command displays the specified string after CI has shifted the
input to uppercase, put commas between the parameters in the string,
performed variable substitution, and removed CI quotes (grave accents and
backslashes). You can use CI quotes to keep CI from altering any parameters
in the input string.

Positional, user-defined, and predefined variables are referenced by
including a dollar sign ($) before the variable name. If you want to
examine the value of only one variable, you can use the ECHO command instead
of the SET command.

Examples:
CI.65> echo ru edit test.ftn (Display specified string.)
RU,EDIT,TEST.FTN (String is uppercase and
commas separate parameters.)
CI.65> echo $session (Displays value of $SESSION.
65 (Session number is 65.)
CI.65> wd /mine/temp (Set working directory.)
CI.65> echo "Your working directory is “$wd (Display message indicating
Your working directory is /MINE/TEMP your current working directory.)

5-18

CI Command Descriptions

EQ (Displays I1/0 Contfoller Status)

Purpose: Displays a description and the status of an I/0 controller, as
recorded in the Equipment Table (EQT) entry.

Syntax: EQ eqt

eqt Specifies the EQT entry number of an I/0O controller.
Description:
The EQT number can be displayed with the LU command under CI. The EQ

command is identical to the SYSTEM EQ command. Refer to the RTE-6/VM
Terminal User’s Reference Manual for a complete description.

EQ (Buffering)

Purpose: Changes the automatic buffering designation for a particular I/O

controller.
Syntax: EQ eqt un/bu
eqt Specifies the Equipment Table (EQT) entry number of
the I/0 controller.
un Turns off (unbuffer) buffering.
bu Turns on buffering.
Description:

The EQ command is identical to the SYSTEM EQ command. Refer to the RTE-6/VM
Terminal User’s Reference Manual for a complete description.

EX (Exit)

Purpose: Terminates the Command Interpreter program.
Syntax: EX

Description:

The EX command is identical to the SYSTEM EX command. Refer to the RTE-6/VM
Terminal User’s Reference Manual for a complete description.

5-19

CI Command Descriptions

GO (Resume Suspended Program)

Purpose: Resumes execution of a suspended program.

Syntax: GO[prog[parm*5]]

prog

Name of the suspended program.

parm*5 Parameters to be passed to the program only if the

Description:

program has suspended itself.

The GO command is identical to the SYSTEM GO command. Refer to the RTE-6/VM
Terminal User’s Reference Manual for a complete description.

HE (Help)

Purpose: Provides

explanation of an error and guidance in possible

corrective action.

Syntax: HE[keyword[1lu]]

keyword

1u

Description:

A select group of eight or less characters identifying
the error for which an explanation is requested. All
keywords and the corresponding explanations are
contained in a disc resident HELP file. Default is
the last error occurred in that session.

LU of the device where the explanation is to be sent.
Default is the session user’s terminal.

The HE command is identical to the SYSTEM HE command. Refer to the RTE-6/VM
Terminal User’s Reference Manual for a complete description.

5-20

CI Command Descriptions

IF-THEN-ELSE-FI (Control Structure)

Purpose: Allows decision making in a command file.

Syntax: IF command-listl
THEN command-list2
[ELSE command-list3]
FI

command-list A list of commands either one command per line or
multiple commands ©per line separated by
semicolons. A command-list can be null.

Description:

The IF-THEN-ELSE-FI control structure allows you to control execution of a
command file. The control structure can be entered interactively, but is
more useful in a command file. The ELSE branch is optional.

The return status of the last command in the command-list for IF determines
which branch of the IF structure is executed. If the return status is zero
(the command was successful), then CI executes the THEN branch. If the
return status is non-zero (the command was unsuccessful), then CI executes
the ELSE branch, if one exists, or FI, which terminates the IF control
structure.

CI determines the end of a command-list to be the CI command before the next
expected control structure command. For example, the command-list for IF
ends when CI reach THEN.

An IF-THEN-ELSE-FI control structure can be nested in either another
IF-THEN-ELSE-FI or a WHILE-DO-DONE control structure.

FI is required to end the IF-THEN-ELSE-FI control structure. If you do not
include FI, CI does not recognize the control structure as being finished
and continues to process succeeding commands as though the commands were
part of the THEN or ELSE command-list. Therefore, if an IF-THEN-ELSE-FI
control structure has just been executed and CI is not executing commands
that should be executed, check that you entered an FI command to terminate
the control structure.

Examples:
The following interactive IF-THEN-ELSE-FI control structure copies file
TEST, if it exists, to another directory or creates file TEST if it does not

exist:

CI.65> if dl test; then co text /junk/@; else edit test; fi

5-21

CI Command Descriptions

The following command file compiles a FORTRAN source file. If successful, a
library is created from the relocatable and the intermediate files created
during the merging and indexing of the library are purged.

IF ftn7x general stuff.ftn - -
THEN
* Merge general stuff
pu general stuff.merg
merge general stuff.cmd general stuff.merg
*

* Index the merged file
lindx general stuff.merg general stuff.lib
*

* Clean up

pu general stuff.merg

pu general stuff.lst

pu general stuff.rel
FI

IN (Initialize Disc Volume)
Purpose: Prepares a blank disc volume for use in the system.
Syntax: IN lu[block|[OK]]
1u The LU number of the disc volume to be initialized.
block Specifies the number of blocks at the beginning of
the disc to be reserved. These blocks will not be

used by the file system and can be set aside for
user software. Default is no reserved space.

OK Optional parameter that suppresses the user prompt,
indicating that the command should be executed as
entered.

Description:

This command is used to clear a disc volume, eliminating all its files.
Before reinitializing a disc volume with files on it, a prompt will be
displayed to verify intent. A yes entry must be received to start the
process. The OK parameter can be used to suppress this prompt. After
initializing the disc volume, it will be mounted to the file system.

Only a System Manager may initialize a disc volume.
To initialize a disc volume for use with FMGR files, you must run FMGR and

use the SYSTEM IN command. Refer to the FMGR description in the RTE-6/VM
Terminal User’s Reference for details.

5-22

CI Command Descriptions

IS (Compare Strings or Numbers)

Purpose: Compares two character strings or numbers.

Syntax: IS stringl <rel operator> string2[option]

stringl A numeric or character string.
rel operator Relational operator indicating the relation
being tested. The two sets of operators

recognized are as follows:

or EQ Equal to
<> or NE Not equal to

< or LT Less than

<= or LE Less than or equal to

> or GT Greater than

>= or GE Greater than or equal to
string?2 A numeric or character string.
option Specifies special comparison instructions.

The possible values are as follows:

-i Integer comparison. A suffix of B
following stringl or string2 in either
upper or lowercase indicates an octal
value. A leading - sign is accepted for
decimal values.

-a Do not fold alphabetic characters before
comparison.

Description:

IS compares two strings either with an ASCII comparison or as integers after
converting both strings to integers.

The ASCII comparison is normally performed with alphabetic characters folded
to uppercase. In an ASCII comparison, a shorter string is extended with
blanks before the comparison is made.

IS is most useful when used in either the IF-THEN-ELSE-FI or WHILE-DO-DONE
control structures.

5-23

CI Command Descriptions

IS returns the following status values in $RETURN1:

Relational operator missing or invalid

Non-digit appears with -i option in effect

0 Relation is true
1 Relation is false
2
3 Option not recognized
4
Examples:

CI.65> is 1024 eq 2000B -i (The two strings are compared as integers.)

CI.65> echo $returnl (Display the result.)

0

(The two numbers are equal.)

IF is $wd ne /system/test (IS compares $WD with a specified working
THEN wd /system/test directory; $WD is changed if the comparison

FI

is TRUE.)

IT (Interval Timer)

Purpose: Sets execution time and interval of repetition when a program is
scheduled with the ON command. Places a program into the time

list.

Syntax: IT program

res mpt[hr[min[sec[ms}]]]

To take a program out of the time list:

IT program
program

res

mpt

hr min sec ms

Description:

Name of the program to be placed in the time list.

Time interval resolution:

1 tens of milliseconds
2 seconds

3 minutes

4 hours

Multiplier used in conjunction with time interval
resolution value. Can be in the range of 0 to 4095.
If 0 is specified, the program runs only once.

Optional parameters setting the initial time in terms
of hour, minute, second, and tens of milliseconds.
Default for any parameter is zero (0).

The IT command is identical to the SYSTEM IT command. Refer to the RTE-6/VM
Terminal User’s Reference Manual for a complete description.

5-2

CI Command Descriptions

LI (List Files)

Purpose: Lists a file or a group of files to a device.
Syntax: LI mask[format[linel{ line2]]]

mask Specifies a file mask. Refer to the DL command in
Chapter 5 for the file mask description.

format Specifies text (ASCII) or binary (octal) output. The
values for this parameter are as follows:

A ASCII
B octal

If omitted, type 3 and 4 files are listed in ASCII.
All other files are listed in octal.

linel Specifies start line. Defaults to beginning of file.

line2 Specifies stop line. If omitted, only linel is listed.
If both are omitted, the whole file is listed.

Description:

If both linel and line2 are omitted, the entire file is listed, a screenful
(21 lines) at a time. After each screenful, you are prompted for further
action. The following options are available:

Action Enter

List the screenful of lines Space bar
(21 lines plus the last line of the current display)

List the remainder of file Carriage return
Abort listing a

If you enter a file mask, you are prompted as follows before each file is
listed:

Action Enter
Do not list this file n (no carriage return needed)
Abort the list command a (no carriage return needed)
Display the next file Any character other than “n" or "a"

5-25

CI Command Descriptions

The no list character "n" can be either uppercase or lowercase. It causes
LI to skip to the next file.

The abort character "a" can be either uppercase or lowercase. After it is
entered, the LI command stops and the CI prompt is displayed.

Example:

CI.65> 1li /mary/csort.ftn a 1 5
Program CSORT

Parameter (name bound = 5)
Character*12 name(name_bound),name_temp
DO i=1,name_bound

tm[month day year hr:min[sec|[pm] (change system time)

LU (Display/Modify Device Assignment)

Purpose: Displays information associated with a device specified by its LU
number. Selected status can be modified by the System Manager
using this command.

Syntax: LU lu[eqt{ subchannel]]

1u Specifies +the system LU for which information or
reassignment is desired.

eqt Used by the System Manager only. Assigns the EQT
entry number to the LU specified. If 0 is specified,
LU becomes the bit bucket.

subchannel Used by the System Manager only. Assigns subchannel
number (0 to 63) to specified LU.

Description:

The LU command is identical to the SYSTEM LU command. Refer to the RTE-6/VM
Terminal User’s Reference Manual for a complete description.

5-26

CI Command Descriptions

MC (Mount Disc Volume)

Purpose: Mounts a disc volume and makes its contents available to the
system.

Syntax: MC 1u

lu The LU number of the disc volume to be mounted. Must be a
positive number.

Description:

The MC command mounts a disc volume +to the file system making it accessible
to users of the file system.

If the disc volume has a valid FMP or FMGR directory, the volume is mounted.
If the disc volume does not have a valid FMP or FMGR directory, you are
prompted to confirm that the volume should be initialized. This is to avoid
accidental corruption of volumes that are not of FMP or FMGR types (special
backup utility volumes, for example).

The MC command does not place reserved blocks at the beginning of the
volume. Use the IN command if reserved blocks are required.

There is no significance to the order in which disc volumes are mounted,
unless there are duplicate global directory names on two or more volumes.
If a global directory on the newly mounted disc volume has the same name as
a previously mounted global directory, +the new directory is inaccessible.
You need to rename the previously mounted directory, then dismount the new
disc volume and remount it. Now the new directory can be accessed.

This command should NOT be used to mount FMGR cartridges. Use the FMGR MC

and DC commands to manage FMGR cartridges. Refer to the RTE-6/VM Terminal
User’s Reference Manual for details.

MO (Move Files)

Purpose: Move files from one directory to another, on a given disc volume.
Also renames files. File mask can be used to move a group of
related files.

Syntax: MO filel file2
filel The source file descriptor. (Refer to CR command

syntax description for the definition of file
descriptor.) May be masked to move a group of files.

5-27

CI Command Descriptions

(Refer to the File Mask description in the DL command
section in this chapter for the mask syntax.)

file2 The destination file descriptor. The file name may
be defaulted to that of the source file name. May be
masked to allow the system to generate destination
names.

Description:

The MO command can be used to move a group of files from one directory to
another. Masking the filel parameter allows matches of a number of files.
If a wildcard character is used in the filename field of filel, an
appropriate destination mask must be used +to default the destination file
names.

Note that this command is very similar to the CO command. It uses the same
syntax and performs nearly the same operation, but with the following
important differences.

1. Files are MOVED, not COPIED. This means that after the MO command a
file will no longer be where it used to be.

2. The file contents are not moved, only the directory entry is moved.
This is much faster, particularly for large files. This is also more
reliable since the data is not altered.

3. Files cannot be moved across disc volumes. This is because the data is
not moved, and the data must be on the same volume as the directory
entry. If you wish to move files across volumes, the CO command can be
used with the ’p’ option (purge source after copy) to move the files.

Examples:

CI.65> mo €.8.a-8306 /backup/archive/@.8@

This example moves all files which have not been accessed since
June 1983 into the archive subdirectory of the backup directory.

CI.65> mo /myglobal/mysubdirectory.dir /mynewglobal

This example causes the subdirectory to become a global
directory. A file which formerly had the name
* /myglobal/mysubdirectory/myfile’ now has the name
* /mynewglobal/myfile’. The file data has not changed, nor has the
directory data in ’mynewglobal’.

5-28

CI Command Descriptions

OF (Stop/Remove Program)

Purpose: Stops a scheduled program or releases a program 1D segment.
Syntax: OF[prog[parm]]

prog Program name, up to five characters, session identifier
optional.

parm An optional parameter used to specify action +to be taken.
Possible values are:

0 - remove from time list (default)

1 - terminate immediately; release disc tracks

8

terminate immediately and remove ID segment
ID - same as 8
Description:
The System Manager can use this command to remove any program if the need
arises. General users can only remove non-system programs in their own

session. This command is identical to the SYSTEM OF command. Refer to the
RTE-6/VM Terminal User’s Reference Manual for a complete description.

ON (Schedule Program)

Purpose: Schedules a program for execution. Up to five parameters and the
command string may be passed to the program.

Syntax: ON[program[NO[parm*5]]]

program Specifies the name of a program to be scheduled.

NO(W) Schedules immediately a program that is normally
scheduled by the system clock. If the program is placed
in the time 1list, but not scheduled for immediate
execution, this parameter and its preceding comma are

omitted. It may be entered as NOW.

parm*5 Up to five parameters may be passed to the program when
it is scheduled.

5-29

CI Command Descriptions

Description:

The ON command is identical to the SYSTEM ON command. Refer to the RTE-6/VM
Terminal User’s Reference Manual for a complete description.

OWNER (Display/Change Owner)

Purpose: Displays or changes the owner of a directory or a subdirectory.
Syntax: OWNER directory[newOwner]

directory The name of the directory or subdirectory. No
wildcard characters allowed.

newOwner The name of the new owner. Needed only if a change
is required. If omitted, the owner of the
directory or subdirectory specified is displayed.

Description:

This command assigns or displays ownership of the named directory. Only the
current owner of the directory <can assign ownership. Ownership is
associated with directories (including subdirectories), and cannot be
specified on individual files. The directory cannot be on a remote system
(if DS is used) or specified with an account.

When the owner is changed, the current user is no longer the owner of that
directory, thus unable to change the owner back. This change can also make
all subdirectories of this directory inaccessible to the original owner.
Note that the ownership of subdirectories is not changed when the ownership
of the directory they are in is changed.

Ownership is maintained through owner numbers, rather than owner names, so
ownership remains correct even if the user’s log-on name is changed with the
ACCTS program. Note that if a removable disc is moved to another system
with different user accounts, ownership will not be correct.

The newowner parameter must be a name which is usable for log on. That is,
there must be a user with an account with that name on the system.

5-30

CI Command Descriptions

PATH (Display/Modify UDSP)

Purpose: Allows you to display or modify a User-Definable Directory Search
Path (UDSP).

Syntax: PATH[-E]
PATH[-E][-N:n] udspnum|[dirnamel[dirname2[...[dirnameN]...]]]

PATH[-E] -F,file/lu

-E Turn off echo; non-error messages are not
displayed.
-N:n Display or modify the specified entry. Set n

equal to 1 for TUDSP #0 (home directory);
otherwise, set n to a value between 1 and the UDSP
depth.

udspnum Specifieg the UDSP number. The values for udspnum
are as follows:

0 Home directory.

n UDSP number between one and the number of
UDSPs defined for this session (maximum is
eight).

-A All UDSPs defined for current session.

dirname Specifies the directory name. The following
special characters can be used:

Use the working directory that is current
when the UDSP is referenced.

! Delete this UDSP or entry; this character

must be the only dirname in the command
line.

-F,file/1u Indicates that the commands will be input from
the specified file or LU.

5-31

CI Command Descriptions

Description:

The first format of the PATH command displays current UDSP information: the
total number of UDSPs defined for the session, the depth (number or entries
per UDSP), and the next available UDSP,

The second format displays or defines a specific UDSP or a specific entry of
a UDSP.

The third format indicates that the specified file or LU contains commands
to define or display the UDSPs. Specifying the -E parameter inhibits
echoing of commands from the specified file. The file or LU can contain one
or more command lines. The syntax for a command line is as follows:

[-N:n Judspnum{ dirnamel{ dirname2[...[dirnameN]...]]]

A unique set of UDSPs is associated with your session. The number of UDSPs
and the depth (number of entries) for each UDSP are set when your user
account 1is created or modified. You can have from =zero through eight
separate UDSPs; each UDSP has the same depth.

At logon, all UDSPs are undefined. You must issue a separate PATH command
for each UDSP you want to define. The UDSPs created by the PATH command are
valid only for the current session. By placing PATH commands in your HELLO
file, you ensure that the UDSPs are defined the same each time you log on.

Although eight UDSPs are available; the first three have the following
special meanings:

UDSP #0 Represents the home directory and has a predefined depth of one.

UDSP #1 Used by the RU command. Whenever you enter an RU command,
implied or explicit, without specifying any directory
information, the search path defined for UDSP #1 is wused. If
you do not define UDSP #1, the default search sequence is used.
It is recommended that /PROGRAMS always be the last entry in the
search path.

UDSP #2 Used by the TR command. Whenever you enter a TR command,
implied or explicit, without specifying any directory
information, the search path defined for UDSP #2 is wused. If
you do not define UDSP #2, the default search sequence is used.
It is recommended that /CMDFILES always be the last entry in the
search path.

UDSPs #3 through #8 can be used for your application programs. See the
description of FmpOpen in the RTE-A Programmer’s Reference Manual.

5-32

CI Command Descriptions

Only CI hierarchical directories can be entered as part of a UDSP; FMGR
cartridges cannot be specified. However, if a period (.) is defined as a
UDSP entry and the working directory is set to zero before the UDSP is
referenced, all mounted FMGR cartridges are searched.

PATH returns the following values in the five $RETURN variables:

$RETURN1 If zero, the command was successful; otherwise, an FMP error
code is returned.

$RETURN2 Number of UDSPs defined for this account

$RETURN3 Depth value

$RETURNY Next available UDSP (first UDSP that is undefined)
$RETURNS Zero (not used)

The name of the directory is returned in $RETURN_S when a specific entry
(-N:n option) or the home directory (PATH 0) is requested.

Examples:

Display current UDSP information:

CI.65> path

Display UDSP #1:

CI.65> path 1

Display all UDSPs:

CI.65> path -a

Set home directory to /MINE:

CI.65> path 0 /mine

Set UDSP #2 to the following:
(1) current working directory
(2) /MINE/CMDFILES
(3) /CMDFILES

CI.65> path 2 . /mine/cmdfiles /cmdfiles

5-33

CI Command Descriptions

Read PATH commands from file SETPATH.CMD without echoing messages:

CI.65> path -e f- setpath.cmd

where SETPATH.CMD contains the following command lines to set UDSPs #0, #1,
and #2:

0 /mine

1 . /mine/progs /programs
2 . /mine/cmds /emdfiles

Display the third éntry of UDSP #1:

CI.65> path -n:3 1

Set the first entry of UDSP #2:

CI.65> path -n:1 2 /groups/cmds

Delete all entries of UDSP #3:

CI.65> path 3 !

Delete the second entry of UDSP #k:

CI.65> path -n:2 4 !

Return the contents of the second entry of UDSP #3 in $RETURN_S without
echoing the name to the terminal:

CI.65> path -e -n:2 3

Return the name of the home directory without echoing it and then set the
working directory to the home directory:

CI.6S> Bath -e 0
CI.65> wd $return s +s

5-34

Cl1 Command Descriptions

PR (Change Program Priority)

Purpose: Change priority of a restored program. It can also be used to
display the priority of a program.

Syntax: PR prog priority

prog Program name, up to five characters, session identifier
optional.

priority Range is between 1 and 32767.
Description:

The PR command is identical to the SYSTEM PR command. Refer to the RTE-6/VM
Terminal User’s Reference Manual for a complete description.

5-35

CI Command Descriptions

PROT (Display/Change Protection)

Purpose: Displays or changes the protection status of a file or directory.

Syntax: PROT mask|[owner/users]

mask A file mask that includes all fields of the file
descriptor and a qualifier.

Refer to the File Masks section in Chapter 3 for a
full description of the file mask.

owner/users Specifies access allowed for owner and other users.
Abbreviations used for read and write access, r for

read and w for write access. The slash is a
required delimiter. Any combination can be
specified.

If omitted, the current protection status is
displayed.

Description:

If new protection is not specified, +this command displays the current
protection on files which match the mask. If new protection is specified
then all files which match the mask will have their protection changed to
the new protection.

To change protection on a file the user must be the owner of the directory
on which the file resides. Following are typical combinations of file
protection status:

rw/ru Everyone has access to this file.

rv/r Owner has full access; others read only

r/ No one can write, only the owner can read.

jrw The owner cannot access this file, others can.

/ No one can read or write. Note that in this mode

only superusers can access this file.
Examples:

CI.65> prot xyz.dat rw/rw

CI.65> prot /dir/secret.dir rw/

5-36

CI Command Descriptions

PU (Purge Files)

Purpose: Purge files.
Syntax: PU mask[OK]

mask A file mask that may include all fields of the file
descriptor and a qualifier.

Refer to the File Masks section in Chapter 3 for a full
description of the file mask.

OK Optional parameter indicating +that the purge is as
intended and the files specified will be purged without
further user intervention.

If omitted and a file mask is used, a prompt is
displayed for each file to be purged:

Purging <file descriptor> (Yes, No, Abort, stop asking) ? (Y]
Enter: y or <cr> to purge the file
n to skip this file
a to abort the purge operation

s to stop asking and purge the rest of the
files matching the mask.

Description:

Wildcard purge uses the file mask feature to specify a group of files to be
purged. It is a powerful capability but should be used with great care. If
a wildcard purge is specified there are two possible checks which will be
made. If the OK parameter is specified, it is assumed that the entry is
correct and the purge will be performed on all files that match the mask
specified. Their names will be displayed on the log device as they are
purged. If the OK parameter is not specified, this command switches to an
interactive mode. A prompt is displayed for each file to allow you to step
through the files, purging the selected files. A carriage return will purge
a file and another prompt is displayed for the next file. The command can
be terminated by entering the letter a (abort). If the input device is not

an interactive device and OK is not specified, wildcard purges will not be
executed.

5-37

CI Command Descriptions

FMGR files with a security code must be purged individually with the
security code specified.

If no mask is specified, no files will be purged. To purge a file, you must
have write access to the directory containing the files. The file must not
be an active type 6 file, the system swap file, an opened file, or a
directory containing files.

The mask can be a single file which will be purged with the following
message displayed:

Purging <file descriptor>

The PU command can be used to purge an empty directory. If any of the
conditions previously mentioned exists, an error message will be displayed.
Note that purging a global directory is done by "PU /GLOBAL". The command
"PU ::GLOBAL" will purge all files on directory GLOBAL but not the
directory. Note <that in this case, the form /GLOBAL/ is not the same as
: tGLOBAL and will not produce the desired results.

Examples:
CI.65> pu /dir/file (purge FILE in directory DIR)
CI.65> pu @.tmp ok (purge all files in working directory
with file type extension .TMP)
CI.65> pu /dirname/ (purge all files in directory DIRNAME)
CI.65> pu /dirname (purge directory DIRNAME)
CI.65> pu /dirname/sub.dir (purge subdirectory SUBDIR. Note that

the file type extension DIR is required
here to avoid confusion with files
named SUB.)

5-38

CI Command Descriptions

QU (Timeslice Quantum)

Purpose: Displays examination of the current system timeslice quantum and
the program priority level at which +timeslicing begins. The
System Manager may change the timeslice parameters with this

command.
Syntax: QU[quantum[limit]]
quantum Specifies the new system slice quantum; value must be
in the range Dbetween 0 and 32767 milliseconds.
Default is 1500.
limit Specifies the priority level at which timeslicing
begins; default is 50. All programs of equal or lower
priority (higher priority number) will be timesliced.
Description:

The QU command is identical to the SYSTEM QU command. Refer to the RTE-6/VM
Terminal User’s Reference Manual for a complete description.

RETURN (Return from Command File)

Purpose: Returns to
interactive

the previous level of command file nesting or to the
mode.

Syntax: RETURN[,returnl|,return2[,return3|[,returnk[,return5[,return_s]]]]]]

returnl

Integer return status indicating success or
failure of command file. A value of zero
indicates success; a nonzero value indicates
failure. If omitted, returnl is set to zero.

return2 - 5 Four integer values made available to return

return_s

additional status information. Each omitted
parameter is set to zero.

A string of up to 80 characters. If omitted,
return_s is set to null.

5-39

CI Command Descriptions

Description:

The RETURN command allows exiting from a command file at any point. (Note
that LU 1 (your terminal) is treated as a command file.) If RETURN is
entered interactively when a parent program is waiting, CI returns to the
parent program. If RETURN is entered interactively and a parent program is
not waiting, the command is ignored.

All the parameters for the RETURN command are position dependent; therefore,
you must include commas to mark the positions of any omitted parameters.

The values returned are available in the predefined variables $RETURN1
through $RETURN5, and $RETURN_S.

You can include a RETURN command anywhere in IF-THEN-ELSE-FI or
WHILE-DO-DONE control structures.

CI always executes a RETURN command when the end of a command file is
reached, whether or not you included the command at the end of the file.

Examples:

The following command exits a command file and specifies 5 integer values
and a string:

return,0,2,3,4,5, Command file successful"
The following command exits a command file using the default return values:
return

The following command exits a command file returning a value in only the
variable $RETURN S:

return,,,,,, Successful completion”

5-40

CI Command Descriptions

RN (Rename File, Directory, or Subdirectory)

Purpose: Renames a file, a directory, or a subdirectory.
rn foo Syntax: RN file newName

file The existing name; a mask can be used (refer to the
File Mask description in Chapter 3)

newName A destination mask can be used.

Description:
The RN command will change the name, file type extension, or any combination
of the above of namel to those for name2. The new name must not already
exist on the directory. You must have write access to the directory.
Directories and subdirectories can be renamed. Renaming can also be done
using masks for the source and destination names. This command does not
move files into a different directory. If the directory field of the
destination file name is blank, the source directory will be used. If
source and destination directories are different, an error message will be
displayed. In this case, use the MO command.
Examples:
(1) Rename file FOO on the working directory to JOE:

CI.65> rn foo Jjoe
(2) Change the file type extension of FOO from TXT to FTN:

CI.65> rn foo.txt foo.ftn

(3) Change all files with file type extension SRC to type extension FTN:

CI.65> rn @.src @.ftn

5-41

CI Command Descriptions

RP (Restore Program File)

Purpose: Establishes a permanent program ID segment.
Syntax: RP file[prog]

file File descriptor of the type 6 program file to be
restored. The first five characters of the file name
are used as the program name, unless the optional
parameter is specified.

prog New program name to be used instead of file name, up to
five characters.

Description:

The RP command sets up an ID segment for the type 6 program file specified.
This restores the program ID segment, making it available for use by program
control commands and subroutines that require a restored program, e.g., the
WS, VS, SZ command. If newname is not specified, it will be derived from
the file name. Refer to the RU command description for details on searching
for the correct file to restore.

The RP’4d program remains associated with the session that RP’d it and will
be removed when the user logs off.

5-42

CI Command Descriptions

RU (Run Program)

Purpose: Immediately schedules a program for execution and waits for its
completion.

Syntax: [RU]prog/file[parm*5]

RU An optional parameter that is only required if the
program name is two characters that can be interpreted
as a CI command or if the prog/file parameter may be
confused with a command file (refer to section on TR
command and predefined variables).

prog/file A 5-character program name or a file descriptor that
identifies a type 6 file. Including the optional
"+IH" in the program name (for example, PROG1:IH)
inhibits cloning of the program.

parm*5 Parameters to be passed to the program. The maximum
run string length, including the implied RU and
delimiters, is 256 characters. This may be five
parameters or one long character string.

Description:

If the program is not restored, CI restores it, then frees the program ID
segment after it finishes running. CI will modify the program name if
necessary to make it unique when it restores the program. The last
character will be changed to A, B, etc.

It is recommended that you always use the .RUN file type extension in the
program file name.

If you will be executing more program files than command files, you should
set the predefined variable $RU FIRST to TRUE. When $RU FIRST is set to
TRUE, CI assumes that any file name entered without a CI command or file
type extension is a program file and immediately attempts to execute the
file as a program.

When you enter an implied or explicit RU command, the following procedure is
used to find the program file:

1. If a directory is specified, this directory is searched for the file.
If the file is found, it is restored. If the file is not found and a
file type extension was not specified, .RUN is assumed and the directory
is searched again. If the file is still not found, an error is
returned.

5-43

2.

CI Command Descriptions

If no directory information is given, the following occurs:

a.

If a program with the specified or assigned name is already restored
and is clonable, this program is cloned. If the program cannot be
cloned, and is dormant, then the original program is used.

If the program has not been restored, a search is made for the
program file. If User-Definable Directory Search Path (UDSP) number
one is defined, a default file type extension of .RUN is assumed and
the search path defined by UDSP #1 is used to find the file. If the
file is not found, an error is returned. (Refer to chapter 3 for a
description of UDSPs.)

If UDSP #1 is not defined, the following default search sequence is
used:

- The current working directory is searched. If the file 1is not
found, a default file type extension of .RUN is assumed and the
working directory is searched again.

- If you do not have a working directory, all mounted FMGR
cartridges are searched.

- If the file is still not found, global directory PROGRAMS is
searched, using the .RUN default file type extension. If the
file is not found, an error is returned.

For example, the search sequence for program EDIT specified in "RU,EDIT" if
a working directory exists and UDSP #1 is undefined is as follows:

1.
2.
3.
h.

Search for a restored (RP’d) EDIT.

Search for EDIT in working directory.

Search for EDIT.RUN in working directory.

Search for EDIT.RUN in directory PROGRAMS.

If there is no working directory, the search sequence is:

1.
2.

3.

Search for a restored (RP’d) EDIT.

Search for EDIT in FMGR disc cartridges.

Search for EDIT.RUN in directory PROGRAMS.

Parameters passed to the program can be either integer binary or ASCII. If
an ASCII string is specified for a program that uses RMPAR, the string is
parsed into two-character words that are each passed as separate parameters
up to the maximum of five.

5-1

CI Command Descriptions

SET (Display/Define Variables)

Purpose: Displays all positional, user-defined, and predefined variables,
or defines a user-defined or predefined variable.

Syntax: SET[variable = string]

variable A string of up to 16 letters, digits, and
underscores, not starting with a digit.

string A string of up to 80 characters.
Description:

CI provides variables that you can define (positional and predefined

variables) and, also, allows you to create variables. The SET command
displays these variables, defines user-defined variables, and modifies the
predefined variables. Positional variables cannot be defined with the SET
command.

If a variable is not specified, all positional, user-defined, and predefined
variables are displayed.

Examples:

CI.65> set filename = /mine/stuff/my progs/test.ftn

CI.65> set auto logoff = 3

CI.65> set greeting = "How are you today?"

CI.65> set (Displays all variables.)

SL (Display Session LU Information)

Purpose: Displays the corresponding system LU, Equipment Table (EQT) entry
number and subchannel number for either a specified session LU or
all session LUs.

Syntax: SL[1lu]
1u Specifies the session LU for which information is desired;

default is to 1list information for all session LUs
accessible to the user.

CI Command Descriptions

Description:
The session LU information is always displayed on the user terminal. The SL

command is identical to +the SYSTEM SL command. Refer to the RTE-6/VM
Terminal User’s Reference Manual for a complete description.

SS (Suspend Program)

Purpose: Suspends an active program.

Syntax: SS[prog]

prog Name of an active program, session identifier
optional.
Description:
The SS command places the program in operator suspend state. This is done

immediately if the program is scheduled or executing. If the program is
currently suspended for any reason other than an operator suspend, or if the
program is dormant, the SS command is illegal.

The SS command is similar to the EXEC T program suspend call. Execution of
programs suspended with the SS command may be resumed with the GO command or
aborted with the OF command.

If prog is not specified and the session startup program (CI or FMGR) has
scheduled another program, this command is executed on the scheduled program
unless it, in turn, has scheduled a program. The search continues down the
program scheduling chain and the SS command is executed on the last program.
The only exception is if the last program is a protected system program, the
program that scheduled it will be suspended.

The System Manager can suspend any program in the system. The general user
can suspend only programs scheduled within that session.

Example:

CI.65> ss timer (Suspends program TIMER)

5-L46

CI Command Descriptions

ST (Display Program Status)

Purpose: Displays the status of a program. Information requested can be
program priority, current list, time values, or the partition
number of the program currently executing. A special case is to
display the name of the program occupying a specified partition.

Syntax: ST[program/partition #/0]
program Specifies the name of the program whose status is to

be displayed.

partition # Specifies the number of a partition (1 to 64) to
display the program occupying that partition. If the
partition is empty, 0 is displayed. If an undefined
partition number is entered, an error message 'NO
SUCH PROG" is displayed.

0 Entering zero (0) displays the name of currently
executing program and its partition number. If there
is no program executing, 0 is displayed.

Examples:

CI.65> ST 0

SZ (Display or Modify Program Size)

Purpose:

Syntax:

Displays program size information of a restored program or
modifies the program size requirements.

SZ prog[size[msegSize]]

prog Program name, up to five characters, session identifier
optional.

size Program size in pages for non-VMA programs or the EMA
size for EMA programs, not including PTE. Range is
2 < size < 1022 for EMA size.

msegSize New MSEG size for EMA programs. Range is 1 < MSEG
size < 30.

5-47

CI Command Descriptions

Description:

This command changes the amount of memory which the specified program can
use when it runs. The program must be restored with the RP command and must
be dormant.

Increasing program size will help programs that use memory at the end of
their partition for buffer or table space. Such programs include EDIT,
LINK, Macro, and CI. To change the size permanently, use the LINK program.

This command is identical +to the SYSTEM SZ command. Refer to the RTE-6/VM
Terminal User’s Reference Manual for a complete description.

Tl (Display Time)

Purpose: Displays the system real-time clock.
Syntax: TI

Description:

The current system time is displayed in the following format: year,
day (Julian), hour (24-hour format), minutes, and seconds.

Example:

CI.65> ti
1983 285 18 45 48

5-L8

CI Command Descriptions

TM (Display or Set System Clock)

Purpose: Displays or sets the system clock.

Syntax: TM[month day year hr:min[:sec[pm]] (change system time)

month Jan to Dec

day 1to31

year 1976 to 2144
hr 0 to 23

min 0 to 59

sec 0 to 59

pm defaults to am

Description:

This command displays the system clock in the format shown in the following
example:

Mon Sep 27, 1982 11:37:13 am
Only the System Manager can set the time. Parameters can be entered as they
would be printed; time can be specified in 2U-hour format if desired, with
or without seconds.
Resetting the time affects programs in the time list but not programs set to

run after a particular length of time. It also affects the time stamping of
files, so use this command with caution.

TO (Display or Modify Device Time-Out)
Purpose: Displays or sets time-out limit for a device.
Syntax: TO eqt[interval]
eqt EQT number of device.
interval Number of 10ms intervals to be used as the time-out
value for device EQT. Value can be in the range of

0 < interval < 32767.

If interval=0, time-out 1limit does not apply to
this device.

5-u49

CI Command Descriptions

Description:
The time-out value is displayed in the form:

TO # eqt = interval
or:
INPUT ERROR (indicates given EQT number does not exist or value entered
was illegal)

The time base generator (TBG) generates an interrupt every 10 milliseconds.
When a program sends an unbuffered I/0 request to a device, the system puts
the program into I/0O suspension and begins counting the number of TBG
interrupts. When the request is fulfilled, the program resumes execution.
If, however, the number of TBG interrupts exceeds the time-out value
defined, the program is put into a downed device wait state and the device
may be set down. This prevents an off-line or down device from causing a
program to remain I/0 suspended indefinitely. When the program goes into
this wait state it can be swapped out to the disc and another program can
begin execution. When the device is once again available to the system, the
original program can resume execution after the device has been UP’d.

If you set a time-out value too low for a device, that device may appear to
be failing, when in fact it is performing properly. If the driver times the

device out before it can respond to a request, the device will appear to be
down.

To calculate the interval parameter, multiply the desired time-out value (in
seconds) by 100.

When the system is rebooted, time-out values revert to those set at system
generation time.

Examples:
To display time-out value:

CI.65> to 6
TO # 6 = 500 (5 second time-out)

To modify EQT 6 time-out to 10 seconds:

CI.65> to 6 1000
TO # 6 = 1000 (new value displayed)

2-50

CI Command Descriptions

TR (Transfer to Command File)

Purpose: Transfers control to a command file.
Syntax: [TR }file[parm*9]

TR An optional parameter that is only required if
the command file name is two characters that
can be interpreted as a CI command, or if the
file parameter can be confused with a program
file (see sections on the RU command and
predefined variables).

file Specifies the file containing the commands.
Refer to the CR command for a definition of a
file descriptor.

parm*9 One to nine parameters that are used to replace
occurrences of the postional variables $1
through $§9 in the command file. Defaults to
zero-length strings.

Description:

A command file (also known as a transfer file) contains a sequence of CI
commands. The commands are executed as if you had entered them from the
terminal. Command files are useful for executing command sequences
repeatedly.

Command files can be nested by using the TR command in the command file.
Control is returned to either the terminal or the command file depending on
whether the TR command was issued from the terminal or another command file.

Positional variables $1 through $9 can be used in command files. A
parameter in the runstring is substituted wherever the corresponding
positional variable appears in the command file. Positional variables can

be concatenated with characters in the command file.

It is recommended that you always use the .CMD file type extension in the
command file name.

If you will be executing more command files than program files, you should
.~ set the predefined variable $RU FIRST to FALSE. When $RU FIRST is set to
FALSE, CI assumes that any file name entered without a CI command or file
type extension is a command file and immediately attempts to execute the
file as a command file.

5-51

CI Command Descriptions

When you enter an implied or explicit TR command, the following procedure is
used to find the command file:

1.

For
comm
sear

1.
2.

3.
If t

1.
2.

5-52

If a directory is specified, this directory is searched for the file.

If the file is found, it is executed. If the file is not found and a
file type extension was not specified, .CMD is assumed and the directory
is searched again. If the file still is not found, an error is
returned.

If no directory information is given, the following occurs:

a. The TR command checks User-Definable Directory Search Path (UDSP)
number 2. If defined, the search path specified by UDSP #2 is used
to find the file. If a file type extension is not specified, .CMD
is assumed. If the file is not found, an error is returned.

b. If UDSP #2 is not defined, the following default search sequence is
used:

- The current working directory is searched. If the file 1is not
found, a default file type extension of .CMD is assumed and the
working directory is searched again.

- If you do not have a working directory, all mounted FMGR
cartridges are searched.

- If the file is still not found, global directory CMDFILES is
searched, using the .CMD default file type extension. If the
file is not found, an error is returned.

example, if MYCMD is the name of +the command file specified in the TR
and, a working directory exists, and UDSP #2 is wundefined, the default
ch sequence is as follows:

Search for MYCMD in working directory.
Search for MYCMD.CMD in working directory.
Search for MYCMD.CMD in directory /CMDFILES.

here is no working directory, the search sequence is as follows:

Search for MYCMD in FMGR cartridges.
Search for MYCMD.CMD in directory /CMDFILES.

CI Command Descriptions

Examples:

In the following example, COMP.CMD, a command file that compiles, links,
restores, and sizes program TESTL and then removes its ID segment, is
executed:

CI.65> tr comp.cmd

where COMP.CMD contains the following commands:

ftnTx testh.ftn testl.lst -
link testl.rel

rp testh

sz testh 28

testh

of testl id

The following example shows executing a command file that wuses positional
variables:

CI.65> comp?2 testh 28

where file COMP2.CMD contains the following commands:

ftn7x $1.ftn $1.1st -
link $1.rel

rp $1

sz $1 $2

$1

of $1 id

By specifying a different file name and program size in the TR command, this
command file can be used with any FORTRAN program and program size.

5-53

CI Command Descriptions

UL (Unlock Shareable EMA Partition)

Purpose: Unlocks a shareable EMA partition so that it can be used by other
programs.

Syntax: UL label

label A name that identifies a shareable EMA partition
label, up to five characters.

Description:

This command is used to unlock a shared EMA partition. The partition is
unavailable to other programs when <the program that wused the partition
aborted. The UL command allows the user to release the partition. This
command is identical to the SYSTEM UL command. Refer +to the RTE-6/VM
Terminal User’s Reference Manual for a complete description.

Example:

CI.65> ul carea

UNPU (Unpurge Files)

Purpose: Recover purged files.
Syntax: UNPU mask

mask A file mask that specifies what files to unpurge. Refer
to the File Masks section in Chapter 3 for a full
description of file mask.

Description:

UNPU will restore a purged file to active status. This can be done only if
the directory entry of the specified file has not been reclaimed by the file
system and the disc space of the file has also not been reclaimed. There
are no guarantees as to how long these conditions may last. If there are
multiple purged files with the same name, the one recovered will be
indeterminate. In this case the file can be unpurged and renamed, then the
next copy of the file with the same name can be unpurged until all copies
have been unpurged.

FMGR files and directories cannot be unpurged. Files recovered with the

UNPU command retain the same attributes in effect when they were purged,
including the time stamps.

5-54

CI Command Descriptions

UNSET (Delete User-Defined Variable)

Purpose: Deletes a user-defined variable.
Syntax: UNSET variable

variable String of up to 16 letters, digits, and underscores,
not starting with a digit. The variable must exist.

Description:

The UNSET command deletes a variable that you defined earlier in the
session. Deleting unneeded user-defined variables frees space that CI can
use for defining other variables. You cannot wuse the UNSET command to
delete positional and predefined variables.

Examples:

The following command removes user-defined variable $TEST NAME:

CI.65> unset test name

The following command attempts to delete predefined variable $SESSION, which
causes an error to occur:

CI.65> unset session
Cannot unset SESSION

UP (Up a Device)

Purpose: Notifies the system that a specified device is available.
Syntax: UP eqt

eqt The EQT number of the device.
Description:
The system downs a device when an error such as a time-out occurs. The EQT
remains unavailable until the UP command is given with that EQT number.
When a device is UP’d, any pending requests are retried. It is not an error

to up a device that is not down.

This command is identical to the SYSTEM UP command. Refer to the RTE-6/VM
Terminal User’s Reference Manual for more information.

5-55

CI Command Descriptions

UR (Release Reserved Partition)

Purpose: Releases a partition previously reserved during system generation
or reconfiguration.

Syntax: UR partition

partition Specifies the number of the partition to be released.
The number can be in the range of 1 to 64 depending
upon the system configuration.

Description:

This command is identical +to the SYSTEM UR command. Refer to the RTE-6/VM
Terminal User’s Reference Manual for a complete description.

VS (Display or Modify VMA Size)

Purpose: Displays the VMA size or changes the VMA size requirements of a
restored program.

Syntax: VS progl[lastpg]
prog Program name, up to five characters.

lastpg Specifies the last page of VMA; range is
31 < vsSize < 65535. Note that the actual VMA size
will be one page greater than the value entered. For
example, if the last page specified is 53, then Sk
pages of VMA will be allocated. The default value of
lastpg is 8191 pages.

Description:

The virtual space is the disc area used for paging data that would not fit
in memory. Increasing this space may allow the program to process more
data. Decreasing it will cut down on disc space required to run the
program. The program must be dormant when this command is given. It must
have been linked as a VMA program.

This command is identical +to the SYSTEM VS command. Refer to the RTE-6/VM
Terminal User’s Reference Manual for a complete description.

Examples:

CI.65> vs testh 199 (set VMA size to 200 pages)

5-56

CI Command Descriptions

WD (Display or Change Working Directory)
Purpose: Displays or changes the working directory.
Syntax: WD[directory name[file/+s]]

directory name The name of the new working directory. May be
a subdirectory.

file The command stack file associated with the new
working directory (.STK extension recommended).
All subsequent posting of command stack
contents will be to this file until another
file is designated with another WD command.

+s Causes posting of the contents of the command
stack to either the file associated with the
working directory or cleared if the file does
not exist.

Description:

This command sets up the working directory which will be wused when no
directory is specified in a file name. It is searched first by the file
system in the file search path. The new working directory can be a
subdirectory.

The WD command changes the working directory associated with a session.
Ownership, read, or write access to the working directory is not required,
However, setting the working directory to a read or write protected
directory may cause programs such as EDIT problems when these programs try
to create scratch files.

The working directory cannot be defined as a FMGR cartridge, but it can be
set to zero. This causes all FMGR cartridges to be searched when a
directory is not specified in a file referencing CI command.

The second parameter provides the option of manipulating +the command stack
files. It allows posting of the contents of the command stack to a file on
a particular directory so that the same commands can be used 1later. If a
new command stack file is requested via a WD command, the command stack in
memory is posted to the current command stack file if one exists, and the
new file is opened and the command stack rewritten with the contents of the
new file. If the new file does not exist, the stack is cleared. It will be
created at log off or when another file is requested. Refer to the examples
shown below for details.

5-57

CI Command Descriptions

Examples:

The following commands are entered in sequence with the following
assumptions: working directory is DEBBIE with the associated command stack
file CI.STK.

CI.65> wd,,+s (Command stack contents posted to
/DEBBIE/CI.STK)

CI.65> wd /tsmas ts.stk (New working directory is TSMAS. Command
stack contents ©posted to /DEBBIE/CI.STK.
Contents of /TSMAS/TS.STK are written into
command stack. If TS.STK does not exist, the
command stack is cleared and TS.STK will be
created at log-off or when the next WD command
with the command stack option is executed.)

C1.65> wd /debbie +s (Working directory is changed to DEBBIE.
Command stack contents are posted to
JTSMAS/TS.STK; if it does not exist, it is
created. Contents of CI.STK are written into
the command stack.)

WH (System Status Reporting)

Purpose: Runs the system status program WH for a report of system
information.

Syntax: WH[parm]

parm Specify the information to be displayed:
AL all programs
PA memory partitions
SM all system programs

PR/PL all ID segments

The information produced from these run strings is described in the WHZAT
utility program description given in the RTE-6/VM Utilities Manual.

5-58

CI Command Descriptions

WHILE-DO-DONE (Control Structure)

Purpose: Allows repeated execution of a group of commands. WHILE-DO-DONE
can be used only in a command file.

Syntax: WHILE command-listl
DO command-list2
DONE

command-list A list of commands either one command per line or
multiple commands per line separated by commas. A
command-list can be null.

Description:

The WHILE-DO-DONE control structure allows you to control execution of a
command file.

The return status of the 1last command in the command-list for WHILE
determines if the command-list for DO is executed. If the return status is
zero (the command was successful), then CI executes the DO branch. If the
return status is non-zero (the command was unsuccessful), then CI executes
the DONE, which terminates the WHILE control structure.

CI determines the end of a command-list to be the CI command before the next
expected control structure command. For example, the command-list for WHILE
ends when CI reach DO.

A WHILE-DO-DONE control structure can be nested in either another
WHILE-DO-DONE or an IF-THEN-ELSE-FI control structure.

DONE is required to end the WHILE-DO-DONE control structure. If you do not
include DONE, CI does not recognize the control structure as being finished
and continues to process succeeding commands as though the commands were
part of the DO command-list. Therefore, if a WHILE-DO-DONE control
structure has just been executed and CI is not executing commands that
should be executed, check that you entered a DONE command to terminate the
control structure.

5-59

CI Command Descriptions

Examples:

The following command file compiles a program and, if the compilation is
errorless, links the program. The WHILE loop is repeated eight times, once
for each file TEST FILE1.FIN through TEST FILE8.FIN. Program CALC performs

the specified math operation on the two integers and returns the result in
variable $RETURN S.

set count = 0
WHILE IS $count 1t 8 -i
DO

Increment counter and
retrieve result from $RETURN S

* % % %

calc $count + 1
set count = $return_s
»

* Compile and link file if no errors
»

if ftnTx test_file$count.ftn 0 -
then link test file$count.rel

else echo $returnl “errors in test_file "$count
fi
DONE

WHOSD (Report User of Directory or Volume)

Purpose: Reports the session that is using a specified directory or
directory on a specified volume as a working directory or as part
of a UDSP.

Syntax: WHOSD directory/lu

directory Specifies the directory to be checked.
1u Specifies disc LU of CI volume to be checked.

Description:

You cannot purge a directory being used as a working directory or as part of

a User-Definable Directory Search Path (USDP). Also, you cannot dismount

the volume on which it resides. You can use the WHOSD command to return

information on which session is using the directory or LU.

An error is returned if you attempt to purge the directory or dismount the
volume containing the directory. :

5-60

CI Command Descriptions

Examples:

CI.65> whosd /programs (Scan for all sessions using /PROGRAMS as a
working directory or as part of a UDSP.)

CI.65> whosd 65 (Scan for all sessions using a directory on LU 65
as a working directory or as part of a UDSP.)

WS (Display or Modify VMA Working Set Size)

Purpose: Displays the VMA working set size or modifies the working set size
requirements of a restored program.

Syntax: WS prog[wrksz]

Prog Program name, up to five characters, session identifier
optional.
wrksz Working set size in pages (not including PTE). Range

is 2 < wsSize < 1022. Default is 31 pages.
Description:

The working set is a number of pages in a VMA user’s partition which is used
to hold a portion of the virtual memory space, including the page currently
being accessed. Increasing the working set will generally improve
performance, at a cost of more memory for running the program. The program
must be dormant when this command is used. This command only works for VMA
programs. For EMA programs, use the SZ command.

This command is identical to the SYSTEM WS command. Refer to the RTE-6/VM
Terminal User’s Reference Manual for more information.

5-61

CI Command Descriptions

XQ (Run Program Without Wait)

Purpose: Immediately schedules a program for execution.
Syntax: XQ prog/file[parm*5]
prog/file Program name, up to five characters, or a file
descriptor that identifies a type 6 program file to

be executed.

parm*5 Parameters to be passed to the program. The total
runstring has a limit of 80 characters.

Description:
The XQ command performs a "schedule without wait" operation. All other

actions, i.e., comments and error handling, are identical to that of the RU
command.

2/HE (Help)

Purpose: Display a summary of CI commands or a brief description of a
command or item on the summary display.

Syntax: ?/HE[command]
Description:

This command provides a quick reference of CI commands and utility programs.
The form "?" without any parameters gives a directory list of directory HELP
to display a summary of files available. Entering "? <command>" 1list a
file called /HELP/<command>, e.g., "? owner' lists file /HELP/OWNER". If
there is no file by the name specified, a message is displayed. You can add
files to the HELP directory to provide a quick reference of selected topics.

5-62

CI Command Descriptions

/ (Display Command Stack)

Purpose: Displays the command stack to allow selection of a previously
entered command for execution.

Syntax: /[n]

n is a command line count that specifies the number of command
lines from the last command entered. Then up to 20 of the
most current commands are displayed beginning with the
command line specified. The cursor is positioned at the top
of the display.

Description:

The command stack holds between 25 and 200 lines; the actual number depends
on the 1length of each line. Most command stacks hold approximately 100
lines. Duplicate commands and commands entered from a command file are not
saved. When this command is executed, up to 20 lines of the command stack
are displayed. The slash command is not saved in the command stack.

Command stacks can be saved in files. At logon, a file called CI.STK is
searched for on the working directory or in the FMGR disc cartridges if
there is no working directory. If the command stack file is found, it is
opened and its contents used to initialize the command stack. If it does
not exist, the command stack remains cleared. In this case, the default
file CI.STK is created and the contents of the command stack posted there at
logoff.

The file associated with the command stack can be changed to any file. The
name of this file is designated with the WD command and it can be in any
directory accessible to the session user. Refer to the WD command
description for details on changing and posting command stack files.

At logoff, if there is an open command stack file, the contents of the stack
are posted to the file and the file is closed. If the file does not exist,
it is created on the working directory or the top cartridge on the FMGR
cartridge list. The contents of the stack is posted to this file which is
then closed. If a command stack file had not been specified, file CI.STK is
used. If you do not want to either save your command stack in a file or
have the current file updated, set the predefined variable $SAVE_STACK to
FALSE.

5-63

CI Command Descriptions

Examples:
Assume that the command stack contains the following:

tr,transferfile.cmd
wh us

who

dl ::users

? dl

dl ::system

dl

hello

?

?7 ex

dl

ru dl

ss spot.run

g0 spot.run

br spot.run

tm

wh

io 6

up 6

luprn

wh al

? wh

? pu

pu spot.lst

pu spot.dbg

wh pa

edit testprog.ftn
co testprog.ftn backup.ftn
1i testprog.ftn

5-64

CI Command Descriptions

To display the last 20 commands:

CI> /
-~--Commands -~-
? ex

dl

ru dl

ss spot.run

go spot.run

br spot.run

tm

wh

sl 6

up 6

luprn

wh al

? wh

? pu

pu spot.lst

pu spot.dbg

wh pa

edit testprog.ftn
co testprog.ftn backup.ftn
1i testprog.ftn

Note that the cursor is at +the bottom of +the stack at a blank 1line.
Pressing the return key will return to CI without any further action. Or
the cursor can be moved up to select any command line. The terminal editing
keys can be used to make changes and the command can be entered by pressing
the return key. :

5-65

CI Command Descriptions

To display 20 lines beginning at command line 25 from the last command:

c1> /25
---Commands---
?2dl

dl ::system
dl

hello

?

? ex

dl

ru dl

ss spot.run
go spot.run
br spot.run
tm

wh

sl 6

up 6

luprn

wh al

? wh

? pu

pu spot.lst

Note that the cursor is positioned at the top of the stack. If n is less
than 20, then the number of lines specified will be displayed. For example:

cI> /9
---Commands---

wh al

? wh

? pu

pu spot.lst

pu spot.dbg

wh pa

edit testprog.ftn
co testprog.ftn backup.ftn
1li testprog.ftn

/n/ (Change Command Stack Display Size)
Purpose: Changes the size of the command stack display.
Syntax: /n/

n Specifies the number of command lines to be displayed when
the / command is entered.

5-66

CI Command Descriptions

Description:

When you logon, the command stack display size is initialized to 20 lines.
You can use this command to change the default command stack display size.

If you enter /0/, the zero is ignored and the command stack display size is
set to 20.

Example:
Assume that the command stack contains the following command lines:

tr,transferfile.cmd
wh us

who

dl ::users
7 dl

dl ::system
dl

hello

?

? ex

dl

ru dl

gs spot.run
go spot.run
br spot.run
tm

wh

sl 6

up 6

luprn

To change the display size to T lines and then display the last 7 lines,
enter the following:

c1> /1/

CI> /
---Commands---
go spot.run
br spot.run
tm

wh

sl 6

up 6

luprn

5-67

Chapter 6
FMP Calls

The File Management Package (FMP) for the CI file system is a set of
subroutines that manage disc files. FMP calls from a program can open,
close, position, read from and write to files, and perform a number of
sophisticated file manipulation tasks.

FMP can be called from FORTRAN, Pascal, Macro or other languages that
support subroutine calls. Details for passing parameters in Pascal and
Macro are given in the Character Strings section of this manual.

The FMP calls used in the CI file system are analogous to the FMGR FMP calls
described in the RTE-6/VM Programmer’s Reference Manual. Appendix C of this
manual is a guide to converting FMGR FMP calls to FMP calls for use in the
CI file system environment.

All FMP calls mentioned in this chapter and in Appendix C refer to those
used in the CI file system environment. These are referred to as CI FMP
calls. The FMP calls described in the RTE-6/VM Programmer’s Reference
Manual are referred to as FMGR FMP calls. Note that most of the FMP calls
described in this chapter can be used to access files in the FMGR file
system, observing the restrictions imposed by the differences in naming
conventions and file system properties as described in Chapter 1.

The most common usage of FMP calls is to create or purge files and to read
or write data at various locations in the files. The FMP calls provided for
these basic tasks are described under the Basic FMP Subroutines section of
this chapter. These calls can be used in the FMGR file system as long as
the FMGR file system conventions are followed. There are other special
purpose FMP calls grouped under the following categories: CI file system
calls, utility calls, and Distributed System (DS) calls.

The first category of special purpose calls consists of subroutines used
primarily in the CI file system environment. These calls are used to create
or manipulate the hierarchical directories as well as handling time stamps,
file mask, and other CI file properties. Some of these calls can be used in
the FMGR file system environment. These calls are described in the CI File
System FMP Calls section of this chapter.

The utility calls are subroutines that perform a variety of functions, e.g.,
copy data, error handling, device control, and mount or dismount disc
volumes or disc cartridges (FMGR). Most of these calls can be used in both
FMGR and CI file systems. These calls are described in the Utility FMP
Calls section of this chapter.

The FMP calls used in the optional DS environment are described in the DS
Communication Subroutines section of this chapter.

6-1

FMP Subroutines

FMP Calling Sequence and Parameters

All parameters are required in every FMP call; there are no optional

parameters. This simplifies programming, and minimizes FMP call coding
differences between languages. Most of the FMP routines can be called as
integer functions as well as subroutines. When called as functions, they

return values to program variables. When called as subroutines, the
function value is returned in the A-Register. In FORTRAN, FMP subroutines
called as integer functions must be declared as integers. The FMP routine
names are shown in upper and lower case letters throughout this manual to
make it easier to identify their functions, but they can be specified in
either case in user programs.

The FMP parameters common +to most calls, such as the Data Control Block
(DCB), file descriptor, character string handling, and error code are
described in the following paragraphs.

Data Control Block (DCB)

A Data Control Block (DCB) is an integer array, defined by the calling
program, that FMP uses to keep information about a file open to the program.
A program may have several files open at once, and there must be a DCB for
every open file, so the program should define several arrays to contain the
DCBs. The FmpOpen subroutine sets up the DCB contents. Once a file is
open, FMP refers to the DCB for file information.

The DCB array must be defined as a minimum of 1Ll4 words in length. Its
contents are maintained entirely by FMP and must not be modified by the user
program.

The first 16 words of the DCB contain file control information used by the
FMP routines. The remaining words are used as a buffer to minimize the
number of data transfers to disc. The smallest buffer permitted is one
128-word block. Larger DCB buffers must be a multiple of 128 words (128,
256, 384, and so on), up to a maximum of 12T blocks. The buffer size is
independent of the file; a file created with a DCB buffer of 12T blocks can
later be accessed with a DCB buffer of 128 words. The buffer only serves to
reduce the number of disc accesses. File types 0 and 1 do not require
buffers, so a DCB of only 16 words can be used.

6-2

FMP Subroutines

File Descriptors

Files are specified by file descriptors which contain a file name, a file
type extension, a directory and optional parameters such as subdirectory,
file type, size, and record length. There are three file descriptor
formats: standard, mixed, and FMGR compatible as shown below.

1. /dir/sub/filename.typex.qual:::type:size:rlen[user]>node
2. sub/filename.typex.qual::dir:type:size:rlen[user]>node
3. filename:sc:crn:type:size:rlen[user]>node

Where:

dir - A global directory name of up to 16 characters. The name must conform
to the file name convention. In the standard and mixed formats, the
delimiters (slashes) are required. If +the leading slash is omitted,
the first entry is assumed to be a subdirectory. In the FMGR
compatible format, a subdirectory may be specified in the DIR parameter
field. This parameter is optional when creating a file descriptor;
defaults to the working directory.

sub -One or more subdirectory names of up to 16 characters each. The rules
for directories apply to subdirectories. In the standard or mixed
format, each subdirectory name is followed by a slash (/). 1In the
standard format +two or more subdirectories may follow the directory

entry. As many subdirectories as necessary may appear, with the
limitation that the entire file descriptor cannot be longer than 63
characters. This parameter is optional when creating a file
descriptor.

filename - A CI file name of up to 16 characters. It must conform to the
naming conventions described in Chapter 3. It can also be an FMGR file
name, conforming to the FMGR file system rules.

typex - File type extension. It is a field appended to filename with the
period as a delimiter; can contain one to four characters; it is used
to describe the type of information in the file. Refer to Chapter 3
for the RTE standard file type extensions. This parameter is optional
when creating a file descriptor; defaults to a null file type
extension.

qual - (Optional) Mask qualifier, separated from the type extension by a
period. Mask qualifiers are described in Chapter 3 of this manual.

6-3

FMP Subroutines

type - (Optional) The RTE file types are:
0 I/O device (non-disc file); variable length records.
1 Random access file; fixed length 128-word records.
2 Random access file; fixed length user-defined records.

3 Sequential access file; variable length records; can be ASCII or
binary.

4 ASCII text file; similar to type 3 file.
5 Relocatable binary file; similar to type 3 file.

6 Memory-image program file; similar to type 3 file, but accessed as
a type 1 file.

7 Absolute binary program file; similar to type 3 file.

8 and above: User-defined file types, accessed as type 3 files. Any
special processing based on file type must be supplied by the
application program.

size - (Optional) The number of 128-word blocks in the file.

rlen - (Optional) For type 2 (fixed length) files, specifies the length
of the records in the file.

user - Used only with the optional DS network. The user account name under
which the file exists; delimited by square brackets. The full form is:

<user name>.<group>/<pass word>

node - Used only with the optional DS/1000 product. Number of the DS node
where the file resides; preceded by a right angle bracket (>).

sc - (Optional) Security code used for FMGR files only. It can be a
positive integer, a negative integer, or +two ASCII characters. A
positive integer other than zero (or two ASCII characters) provides
write protection. A negative integer provides read and write
protection.

crn - (Optional) A positive cartridge reference number, the negative
logical unit number, or two ASCII characters; specifies the disc
cartridge where the file is located. Used only in the FMGR compatible
format.

6-4

FMP Subroutines

When creating a file descriptor, all parameters except filename are
optional. However, in accessing existing CI files, the correct
directory/subdirectory path and the file type extension must be specified.
Otherwise, the file may not be found.

Optional parameters can be omitted if not required, but place holders must
be used if the omitted parameter is between specified parameters. For
example,

1. ProgramDesc.txt[user.tp]>111

2. /pubs/ProgramDesc.txt::::24

3. /pubs/manual/Chapter@..x

The first example is in the FMGR compatible format; it specifies the file
name with a type extension, defaults the security code (none), the
directory/crn, and type, omits the size and record length, and specifies the
DS parameters. The second example uses the standard format; it uses a place
holder for the default file type and specifies a size of 24 blocks. The
third example is also in the standard format and it uses a mask qualifier to
specify a search directive; the second period is a place holder for the
default (null) type extension.

Character Strings

The FMP calls pass filenames as character strings. This eliminates the need
to count characters or treat characters as integers. The character strings
are stored in the FORTRAN 77 character string format, which is described in
the FORTRAN 77 Reference Manual.

The FMP routines are coded in FORTRAN 77, so the character strings are
treated as fixed-length strings, and are padded or truncated from right to
left to fit target strings. Zero-length strings are not permitted, so null
strings are filled with blanks.

Note that nulls in a string (integer value of zero) are not treated as
blanks but are treated as non-blank ASCII characters. Character strings are
not always initialized to blanks but are initialized to nulls instead.
Therefore, it is important for you to insure that strings are initialized to
blanks. You can wuse a data statement or blank fill the buffer before the
EXEC(14) call. For example, in the call SplitString(CBUFF,CPARM,CFUFF),
blank fill the buffer with the following:

CBUFF=’ °
Compilers (such as Pascal) or assemblers that do not use the FORTRAN 77

character string format must create a file descriptor in a format that the
program can manage and that FMP can use.

6-5

FMP Subroutines

File Descriptors in Pascal

Pascal supports a variable 1length character string format that can
communicate with FMP routines when used with the Pascal FIXED STRING
compiler option. The Pascal character string format is not dIrectly
compatiable with the FORTRAN 77 character string format. The Pascal PACKED
ARRAY OF CHAR is not compatible with the FORTRAN 77 character string format.

The FIXED STRING compiler option indicates that string parameters of
procedures or functions declared EXTERNAL should be converted from the
Pascal variable length character string format to the FORTRAN 77 character
string format before being passed.

The current length of the Pascal variable length character string is used as
the maximum length of the FORTRAN 77 character string that is passed to the
EXTERNAL routine.

Strings that are passed from your program to FMP should have a current
length that indicates to FMP the part of the string FMP wants. The current
length can include trailing blanks but should not include uninitialized
areas of the string.

Strings that FMP sets to an initial value and passes back to your program
should have a current length large enough to hold the number of characters
expected from FMP (usually a maximum of 63 characters). The length must be
greater than zero; FMP truncates or blank pads as necessary. The contents
of the string within the current length do not need to be initialized.

Strings that your program passes to FMP and that FMP modifies and returns
should have a current length large enough to hold the number of characters
expected from FMP. The strings must be blank padded from the end of the
data being passed to FMP, out to the current length.

The following Pascal program uses FIXED STRING to call FMP routines. Note
that while a constant is used as the file name to the FmpOpen call, any
Pascal string variable or expression with a length less than or equal to the
length of the string type PATH could be used. Also, note that anywhere FMP
expects a FORTRAN 77 character string parameter, a Pascal string type must
be specified in the EXTERNAL declaration and the FIXED STRING compiler
option must be in the ON state.

PROGRAM fmpexample;

CONST
max_file path = 6l;
dcb words 1hlh;

welcome file > /SYSTEM/WELCOME .CMD" ;

TYPE
INT = -32768..32767T;

6-6

FMP Subroutines

PATH
DCB

STRING [max_file path];
ARRAY [1..dcb_words] OF INT;

VAR
error_number: INT;
error_message: PATH;
file dcb: DCB;
terminal: TEXT;

$FIXED STRING ON$

PROCEDURE FmpOpen
(VAR dcb: DCB;
VAR err: INT;
name: PATH;
opts: PATH;
bufs: INT); EXTERNAL

PROCEDURE FmpError
(err: INT;
VAR mess: PATH); EXTERNAL

$FIXED STRING OFF$

BEGIN
rewrite (terminal, ’1’, ’NOCCTL’);

FmpOpen (file_dcb, error number, welcome_file, ’RbS’, 1);

{Check for error on open. If error occurred, make the current)
{length long enough to hold the message, get the error message)
{from FMP, trim blank padding, and display the message on the }
{terminal. }

IF error_number < 0 THEN BEGIN

setstrlen (error_message, strmax (error_message));

FmpError (error_pumber, error_message);

error_message := strrtrim (error_message);

writeln (terminal, welcome_file, ’(’, error message, ’)’);
END ’
ELSE BEGIN

END;
END.

6-7

FMP Subroutines

File Descriptors in Macro

This section describes how to call the StrDsc subroutine from a Macro
program to convert character string file descriptors to a format that can be
processed by the program and used by FMP.

All FMP calls that take a character string will require the caller to pass a
file descriptor. FORTRAN 77 does this automatically, but Macro users must
set up and pass their own filedescriptors. Note that these FMP calls do not
work when a buffer of characters is passed as a parameter when a string is
expected.

The StrDsc subroutine returns a two-word descriptor that describes a
character buffer of a specified length, beginning at a specified character
position. The characters in the buffer are numbered from 1 to the number of
characters. The resulting two-word descriptor can be passed as an input or
output parameter anywhere a FORTRAN 77 character string parameter is
regquired. The string is transferred to and from the buffer described by the
two-word descriptor. StrDsc is described in the Relocatable Libraries
Reference Manual - RTE-A . RTE-6/VM.

The following example opens a file with a known name and
options string:

ext FmpOpen, StrDsc

Create a filedescriptor for the name

jsb StrDsc
def *+U4

def nbuffer
def =dl1

def =d19

dst filename

* And the options string

Jjsb StrDsc
def *+4
def obuffer
def =d1

def =43

dst options

*

Open the file

jsb FmpOpen
def *+6
def dcb
def err

FMP Subroutines

def filename
def options
def =d1

o 0.

»

* Constants and data

»

nbuffer asc 10,WELCOME.CMD: :SYSTEM
obuffer asc 2,ROS

filename bss 2

options bss 2

dcdb bss 1LY

Note that

jsb FmpOpen

def *+6

def dcb

def err

def nbuffer 3 wrong!

def obuffer ; also wrong!
def =di1

does not work with nbuffer and obuffer declared as above.

Error Returns

Errors can occur on FMP calls; for example, it is an error to try to open a
non-existent file. The error is returned as a negative value, either as the
function return value or in an error parameter. The error value can be
passed to an error processing or reporting subroutine in your program. The
error return values are listed in Appendix A. The FMP routines must be
declared as integer functions in FORTRAN to receive the correct error code
as the function return value.

6-9

FMP Subroutines

Transferring Data to and from Files

In addition to the Data Control Block, a user buffer must be defined in the
calling program for transferring individual records to and from files.
Records to be sent to files must be stored in the user buffer before a write
call. Records read from files are returned to the user buffer. The
relationship between the user buffer, the Data Control Block buffer and a
disc file is illustrated in Figure 6-1.

Each call that reads or writes a record transfers one record between the
user buffer and the Data Control Block buffer. Such transfers within memory
are known as logical reads or writes.

A physical read or write transfers a block of data between the disc file and
the Data Control Block buffer. A physical write is performed automatically
when the DCB buffer is full, when a file is closed, or when a request for a
physical write is made with the FmpPost call.

On a read request, a block of data is physically read into the DCB buffer
from the disc only if the entire requested record is not already in the
buffer. If a needed record is not already within the DCB buffer, (see
record 7 in Figure 6-1), then FMP performs physical reads or writes of
blocks until the entire record has been transferred.

For type 1 file accesses, the intermediate transfer to the DCB buffer is
omitted and each 128-word record is transferred directly between the user
buffer and the file as shown in Figure 6-2. Such accesses are faster than
transfers through the DCB buffer.

Non-disc (type 0) file reads and writes also bypass the DCB buffer. Records
in type O files are written or read directly to or from the device
identified as a type 0 file. Words, rather than records, are the units of
type 0 transfers, to accommodate the record lengths of various devices.

6-10

FMP Subroutines

MEMORY . DISC
128-word DCB Buffer . File
(First 8 words)

Record 1
20-word Record 2
User Buffer

Record 3

1 Record |«——> .
Logical| Record 4 |«————>]| 128-word

read/write Physical block
Record 5 read/write
Record 6
Record T

Figure 6-1. Logical Transfer Between Disc File and Buffers

MEMORY . DISC

User Buffer . Type 1 File

1 Record = 128 Words | «————»| 1 Block = 128 Words

Figure 6-2. Data Transfers with Type 1 Files

6-11

FMP Subroutines

Descriptions of FMP Routines

This section contains descriptions of all FMP routines; the routines are
listed alphabetically. Tables 6-1 through 6-6 present functional groupings
of the routines.

Table 6-1. File Manipulation FMP Routines

FMP ROUTINE PURPOSE

FmpOpen Opens a file for access
FmpOpenScratch Opens file on scratch directory
FmpClose Closes a file to end access

FmpRead Reads from a file

FmpReadString Reads a character string from a file
FmpWrite Writes to a file

FmpWriteString Writes a character string to a file
FmpPosition Returns the current file position
FmpRewind Sets file position to the first word of the file
FmpSetPosition Changes the file position

FmpSetWord Changes the file position

FmpAppend Positions a file to the EOF mark
FmpSetEof Sets EOF mark at the current position
FmpPost Posts data to the file

FmpTruncate Truncates the file

FmpSetDcbInfo Changes information in the DCB
DcbOpen Indicates if a DCB is open

6-12

FMP Subroutines

Table 6-2. Directory Access FMP Routines
FMP ROUTINE PURPOSE
FmpCreateDir Creates a directory
FmpWorkingDir Returns the working directory
FmpSetWorkingDir Changes the working directory
FmpInfo Returns the directory information for the file
FmpSetDirInfo Changes information in a directory
FmpMount Mcunts a volume
FmpDismount Dismounts a volume
FmpFileName Returns the full path name of a file
FmpOpenFiles Indicates which files in a directory are open
FmpOwner Returns the name of the directory owner
FmpSetOwner Changes the name of the directory owner
FmpCreateTime Returns the time that the file was created
FmpAccessTime Returns the time of the last access
FmpUpdateTime Returns the time of the last update
FmpRecordCount Returns the number of records in the file
FmpRecordLen Returns the length of the longest record in the file
FmpProtection Returns the access available to file or directory

FmpSetProtection Changes

FmpEof
FmpSize
FmpRename
FmpPurge
FmpUnPurge

FmpUdspInfo
FmpUdspEntry

Returns
Returns

Changes

Returns
Returns

Purges a file
Restores a purged file

the access to a file or directory
the position of the EOF mark
the physical size of the file

the file name

current UDSP information for the session
the directory name in specified UDSP entry

6-13

FMP Subroutines

Table 6-3. Masking FMP Routines

FMP ROUTINE

PURPOSE

FmpInitMask
FmpNextMask

FmpMaskName
FmpEndMask

WildCardMask
FattenMask
MaskOldFile
MaskMatchLevel

MaskOpenld

MaskSecurity

Calc Dest Name

Initializes data structures for the FMP mask calls

Returns the directory entry for the next file
matching

Builds a full name for a file matching the mask

Closes the files associated with a mask search

Checks for wildcard characters in a mask

Modifies the mask

Determines if a specified file is an FMGR file
Returns the directory level of the last file matched

Returns the D.RTR open flag of the last file
returned by FmpNextMask

Returns the security code of the last file returned
by FmpNextMask

Creates a destination file name from a file name,
match level, and destination mask

Table 6-4. Device FMP Routines

FMP ROUTINE

PURPOSE

FmpBitBucket
FmpDevice
FmpInteractive
FmpIoOptions
FmpSetIoOptions
FmpIoStatus

FmpControl
FmpLu

Determines whether type 0 file is LU 0

Indicates whether a DCB is associated with a device
file

Indicates whether a DCB is associated with an
interactive device

Returns the I/0 options word
Changes the I/0 options word

Returns the A- and B-Register values of last I/O
request

Issues a control request to an LU

Returns the LU of the file or device

6-14

FMP Subroutines

Table 6-5. Parsing FMP Routines

FMP ROUTINE

PURPOSE

FmpBuildHierarch

FmpBuildName
FmpBuildPath

FmpHierarchName
FmpStandardName

FmpLastFileName

FmpParseName
FmpParsePath

FmpShortName

FmpUniqueName

Builds a file descriptor in hierarchical format
from its component fields

Builds a file descriptor from its component fields
Builds a file descriptor that includes hierarchical
directory information and file masks from its
component fields

Converts a file descriptor to hierarchical format
Converts a file descriptor to the standard format

Returns the last file name in a path

Parses a file descriptor into its component fields
Parses a file descriptor that includes hierarchical
directory information and file masks into its
component fields.

Returns the shortened version of a file descriptor

Creates and returns a unique file name

Table 6-6. Utility FMP Routines

FMP ROUTINE

PURPOSE

DcbOpen

FmpCopy
FmpList

FmpError
FmpReportError

FmpExpandSize
FmpPackSize

FmpCloneName
FmpRpProgram
FmpRunProgram

FmpRwBits

Indicates whether a DCB is open

Copies a file to another file
Lists a file to a specified LU

Returns an error message for an FMP error code
Prints an error message for an FMP error on LU 1

Unpacks file size word to double integer
Packs double integer file size into one word

Generates program clone names
Restores a program
Schedules a program

Checks a string for the letters R and W

6-15

FMP Subroutines

Calc__Dest__Name
Calc Dest Name generates a full destination file name.
call Calc_Dest Name(sourcename,matchlevel,destmask,destname)
character*(*) sourcename, destmask, destname
integer matchlevel
sourcename
A character string that returns a full source file descriptor.

matchlevel

An integer that specifies the number of the directory level in which
the last file was matched as returned by MaskMatchLevel.

destmask
A character string that specifies the destination mask.
destname
A character string that returns the full destination file descriptor.

Calc Dest Name uses a file name, its matchlevel (returned by the
MaskMatchLevel routine), and a destination mask, and generates a full

destination file name. If the destination mask contains an "@" in the
filename or file type extension fields, then the sourcename values of those
fields are used. The Command Interpreter (CI) CO and MO commands use

Calc_Dest_Name generated destination names.

DcbOpen

DcbOpen returns an integer value that indicates whether or not the specified
DCB is open.

error = DcbOpen(dcb,error)
integer dcb(*), error

dcb
An integer array containing the DCB for the file.
error
An integer indicating the status of the DCB. If the DCB is open,

error is set to zero. If the DCB is not open, error is set +to a
negative error code.

6-16

FMP Subroutines

FattenMask

FattenMask modifies +the mask parameter by adding the character "€" to the
name or file type extension if it is implied by the mask.

call FattenMask(mask,how)
character®*(*) mask
integer how
mask
A character string specifying the mask to be modified.
how
An integer specifying how the mask is to be modified. If bit 0 is
set, a "D" is appended to the qualifier. If bit 1 is set and the mask
is blank, "8" is not inserted in either the name or file type
extension.
If the name field of mask is blank, the "@" character replaces the blank.
If the name field ends with "@" and the file type extension is omitted, then
a file type extension of ".8" is inserted. If the mask is a global
directory in the form /global, the file type extension .DIR is appended
because it is the only file type extension possible for a global directory.
The overall purpose of this call is to make implied constructs such as /DIR/
explicit, by converting them to the fuller /DIR/8.€.D described in the last
paragraph.
FmpAccessTime

FmpAccessTime returns the time of last access for the named file. The file
does not have to be open, and it is not opened to read the access time.

error = FmpAccessTime(filedescriptor,time)
character*(*) filedescriptor
integer*} time
filedescriptor
A character string that specifies the name of the file.

time

A double integer that returns the time of the 1last access expressed
as the number of of seconds since Jan 1, 1970.

6-17

FMP Subroutines

The access time is changed when a file is opened. It is not affected by
calls which do not open the file, such as FmpRead or FmpClose. Access time
is generally wused to check activity on a file; inactive files +that have
outlived their usefulness, are often purged to make room for other files.

Routines are available to convert the returned time to an ASCII string.
Usually, however, the returned time is compared to other times in the same
format, so it may not be necessary to convert the returned time.

FmpAppend

FmpAppend positions a file of type 3 or above to the end-of-file mark to
prepare for adding records to the file.

error = FmpAppend(dcb,error)
integer dcb(*), error

dcb
An integer array containing the DCB for the file.
error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

The file must be open for write access, and must be a type 3 or above file;
FmpAppend has no effect on device files, or type 1 and 2 files. FMGR files
must be open write and read access.

The effect of FmpAppend is the same as calling FmpEof and using the returned

value in an FmpSetPosition call to position the file to the EOF. FmpAppend
removes one step from the process.

6-18

FMP Subroutines

FmpBitBucket

FmpBitBucket determines if the type 0 file associated with the specified DCB
is LU 0 (the bit bucket).

bool = FmpBitBucket(deb)
logical bool
integer*2 dcb(*)
deb
An integer array containing the DCB for the type 0 file.

bool

A flag that is set to TRUE (-1) if the DCB is open and associated with
a type 2ero file, and the device is LU 0; otherwise, bool is set to
FALSE (0).
FmpBuildHierarch
FmpBuildHierarch constructs a file descriptor in the hierarchical format.
call FmpBuildHierarch(filedescriptor,dirpath,name,typex,qual,
sc,type,size,rl,ds)
character*(*) filedescriptor, dirpath, name, typex, qual, ds
integer sc¢, type, size, rl
filedescriptor
A 63-character string that returns the file descriptor.

dirpath

A character string specifying the directory/subdirectory path.
Dirpath can be a maximum of 63 characters.

name

A character string specifying the filename. Name can be a maximum of
63 characters.

typex

A character string specifying the file type extension. Typex can be a
ma:zimum of 4 characters.

6-19

FMP Subroutines

qual

A character string specifying the mask qualifier. Qual can be a
maximum of 4O characters.

sc
An integer that specifies the security code of an FMGR file.
type
An integer that specifies the file type.
size
An integer that specifies the size of the file in blocks.
rl
An integer that specifies record length.
ds

A character string that specifies the DS node name, a user name, or
both. Ds can be a maximum of 63 characters.

Dirpath must conform to the following conventions:

- The global directory and each subdirectory name be followed by a slash
(/).

- Dirpath must begin with a slash except in the following cases:

- If the filedescriptor is specified relative to the working directory
and one or more subdirectories are specified, dirpath must begin with
the name of the highest-level subdirectory (for example,
SUBDIR1/SUBDIR2).

- If the filedescriptor is specified relative to the working directory
and no subdirectories are specified, dirpath must be blank.

If any of the component fields are zero or blank, the corresponding field in
the filedescriptor parameter is left empty, with any necessary place
holders. All delimiters except +those in the DS field are automatically
ingserted. The DS delimiters must be included in the DS parameter string.
Trailing fields that are zero or blank are omitted without placeholders.
There is no error detection for +the component fields, so illegal parameters
generate an illegal file descriptor.

6-20

FMP Subroutines

FmpBuildName

FmpBuildName creates a file descriptor from its component fields. It is the
inverse of FmpParseName. Its call sequence is the same as FmpParseName, but

the component fields are specified, and the file descriptor is returned.
call FmpBuildName(filedescriptor,name,typex,sc,dir,type,size,rl,ds)
character*(*) filedescriptor, name, typex, dir, ds
integer sc, type, size, rl
filedescriptor

A 63-character string that returns the file descriptor.

name

A character string that specifies the filename. Name can be a maximum

of 63 characters.

typex

A character string that specifies the file type extension. Typex can

be a maximum of 4 characters.
sc

An integer that specifies the security code of an FMGR file.
dir

A character string that specifies the directory name. Dir can
maximum of 16 characters.

type

An integer that specifies the file type.
size

An integer that specifies the size of the file in blocks,
rl

An integer that specifies record length.

ds

be a

A character string that specifies the DS node name, a user name, or

both. It can be a maximum of 63 characters.

6-21

FMP Subroutines

If any of the component fields are zero or blank, the corresponding field in
the filedescriptor parameter is left empty, with any necessary place
holders. All delimiters except those in the DS field are automatically
inserted. The DS delimiters must be included in the DS parameter string.
Trailing fields that are =zero or blank are omitted without placeholders.
There is no error detection for the component fields, so illegal parameters
generate an illegal file descriptor.

FmpBuildName example:
Assume that name = SANJOSE and dir = CITIES.
call FmpBuildName(fdesc,name,’txt’,0,dir,4,24,0,>)

Fdesc returns SANJOSE.TXT::CITIES:k:2k.

FmpBuildPath

FmpBuildPath constructs a file descriptor from its component fields. It is
similar to FmpBuildName, except that it more conveniently constructs file
descriptors that contain hierarchical directory information, and it permits
creation of file descriptors that contain a file mask qualifier. It is also
similar to FmpBuildHierarch except that it creates file descriptors in the
standard format, described in the FmpStandardName section.

call FmpBuildPath(filedescriptor,dirpath,name,typex,qual,
sc,type,size,rl,ds)
character*(*) filedescriptor, dirpath, name, typex, qual, ds
integer sc, type, size, rl
filedescriptor
A 63-character string that returns the file descriptor.

dirpath

A character string that specifies the directory/subdirectory path.
Dirpath can be a maximum of 63 characters.

name

A character string that specifies the filename. Name can be a maximum
of 63 characters.

typex

A character string that specifies the file type extension. Typex can
be a maximum of L4 characters.

6-22

FMP Subroutines

qual

A character string that specifies the mask qualifier. Qual can be a
maximum of 40 characters.

sc
An integer that specifies the security code of an FMGR file.
type

An integer that specifies the file type.

size
An integer that specifies the size of the file in blocks.
rl
An integer that specifies record length.

ds

A character string that specifies the DS node name, a user name, or
both. Ds can be a maximum of 63 characters.

Dirpath must conform to the following conventions:

~ The global directory and each subdirectory name must be followed by a
slash (/).

- Dirpath must begin with a slash, except in the foliowing cases:

- If the file descriptor is specified relative to the working
directory and one or more subdirectories are specified, dirpath
must begin with the name of the highest-level subdirectory, as in
SUBDIR1/SUBDIR2/.

- If the file descriptor 1is specified relative to the working
directory and no subdirectories are specified, dirpath must be
blank.

If any of the component fields are zero or blank, the corresponding field in
the filedescriptor parameter is left empty, with any necessary place
holders. All delimiters except those in the ds and dirpath fields are
automatically inserted. The DS and hierarchical directory path delimiters
must be included in the ds and dirpath parameters. Trailing fields that are
zero or blank are omitted without placeholders. There is no error detection
for the specified parameters, so illegal parameters generate an illegal file
descriptor.

6-23

FMP Subroutines

FmpBuildPath is the inverse of FmpParsePath. It has the same calling
sequence, and uses the same parameters, except that the component fields are
specified and a file descriptor is built and returned.
FmpBuildPath example:
Path = /CITIES/CALIFORNIA/, file = €, qual = D.

CALL FmpBuildPath(fdesc,path,file,’TXT’,’D’,0,4,24,0,” *)

Fdesc returns /CITIES/CALIFORNIA/@.TXT.D:::L:24

FmpCloneName
FmpCloneName generates program clone names that can be used by FmpRpProgram.
Call FmpCloneName(name,init)
character*(*) name
logical init
name
A character string that specifies the program name to be cloned. The
specified name is modified by the system and returned to the calling
program.
init

A logical indicating whether the current call is the first call to
FmpCloneName.

Before calling FmpCloneName for the first <time, set the init parameter to
TRUE (-1). When the call is executed, FmpCloneName resets the value to
FALSE (0).

The sequence of names generated by FmpCloneName is as follows (PROG is the
original program name):

PROG, PRO.A, PRO.B, ..., PRO.Z, PROAA, PROAB, ..., PROZZ
FmpCloneName can be called in a loop to generate program names until a name

that does not already exist on the system is found. This name then can be
used in an FmpRpProgram call to RP a program.

6-24

FMP Subroutines

FmpClose
FmpClose closes a file, and removes its entry from the FMP open file table.

error = FmpClose(dcb,error)
integer decb(*), error

dcb
An integer array containing the DCB for the file.
error

An integer that returns a negative code if an error occurs or zero if
No error occurs.

If the program wrote data to the file while it was open, the FmpClose call
sets the time of last update to the system time when the file is closed. It
also sets the backup bit in the directory. FmpClose also sets the
end-of-file pogition in the directory to the file position at the time of
the close, if the DCB specified a sequential file positioned at EOF.

Files should be closed after a program’s access is finished, to make sure
that all writes are posted to the disc, and to unlock files or devices to
make them available to other programs. It is good practice to close files
after access is finished, whether or not write accesses were performed.

FmpControl

FmpControl performs a control request on the LU associated with a device
file DCB.

error = FmpControl(dcb,error,praml,pram2,pram3,praml)
integer dcb(*), error, praml, pram2, pram3, pramk

dcb
An integer array containing the DCB of a device file.
error

An integer that returns a negative code if an error occcurs or zero if
no error occurs.

praml - praml

Integers that can be passed as control request parameters if
required.

6-25

FMP Subroutines

FmpCopy
FmpCopy copies one file to another.
error = FmpCopy(namel,errl,name2,err2,buffer,buflen,options)
character*(*) namel, name2, options
integer buffer(*), buflen, errl, err2
namel
A character string that specifies the source file or logical unit.
errl
An integer that returns errors associated with namel.

name?2

A character string that specifies the destination file or logical
unit.

err2
An integer that returns errors associated with name2.
buffer

An integer buffer that contains the source and destination DCBs and
DCB buffers. Buffer must be a minimum of 288 words in length.

buflen

An integer that specifies the length of the buffer in words. Buflen
must be set to at least 288 words.

options

A character string that specifies the data transfer mode if the source
or destination is a device, as well as manipulation of the source and
destination files. Options can be set to any of the following values:

ASCII

Binary

Clear backup bit on source

Overwrite existing file

Source does not have carriage control
Purge source after copy

vZUoOQwd>

6-26

FMP Subroutines

FmpCopy works for all file types, including type 6 files, and type 1 or 2
files with missing extents. It uses the most efficient copy operation that
works for the given files.

The calling program must specify a work buffer to contain the source and
destination file DCBs and transferred records. The buffer must be at least
large enough to contain two DCBs of 16 words each plus two 128-word (one
block) DCB buffers. The minimum buffer size, thus, is (2 * 16) + (2 * 128)
= 288 words. The larger the buffer is, the faster the copy operation can
execute. Larger buffers must be larger by 256-word increments (2 * 128
words per block).

The A and B options are used only when the source or destination is a device
or a type 3 or 4 file, and the destination is a device. If the destination
is a device or a type 3 or 4 file, and the source is a device, the default
option is A. In all other cases, the default option is B.

If the destination name does not specify a file type, the source file type
is used. If the source is a device and the A option is in effect, the
default destination type is 3, if the B option is in effect, the default
destination type is 6.

If the destination name does not specify a size, the total size of the
source file (the sum of the sizes of the main and all its extents) is used.
As a result, the destination file does not have any extents. If the source
is a device, the default size is 24 blocks.

FmpCopy tests the break flag while copying. If it finds it set, it stops
copying and reports error -235 (Break Detected). If the calling program
uses the break flag, it should use the error indication to detect breaks
when FmpCopy is used.

If either errl or err2 contains an error code, the same error code is

returned in error. If error = 0, then neither errl nor err2 contains an
error code.

FmpCreateDir

FmpCreateDir creates a directory.
error = FmpCreateDir(name,lu)
character*(*) name
integer 1lu

name

A character string specifying the name of the directory to be created.

6-27

FMP Subroutines

1u

An integer specifying the disc LU on which to create the directory.
A global directory is specified by a name beginning with "::" or "/", as in
: :USERS or /USERS. A subdirectory is specified with its parent directory,
separated by "::", as in SUBDIR::USERS or /DIR/SUBDIR/. The parent
directory must already exist.

The calling program can specify a size (::DIRNAME::12), but the file system
should set the directory size automatically. The default size is chosen to
make the most efficient use of the disc on which the directory is created.

Subdirectories will be placed on the same LU as their parent directory.
Global directories will go on the specified logical unit. If logical unit
zero is specified, the global directory will be created on the same logical
unit as the working directory, if any, or on the lowest numbered disc
logical unit on which directories can be created.

FmpCreateTime

FmpCreateTime returns the time of creation for the named file. The file is
not opened in the process.

error = FmpCreateTime(filedescriptor,time)
character*(*) filedescriptor
integer*l time
filedescriptor
A character string that specifies the name of the file.

time

A double integer that returns the time that the file was created,
expressed in seconds since January 1, 1970.

The create time is set when the file is created, and is never changed
afterwards, except by the FmpSetDirInfo routine.

Routines are available to convert the returned time to an ASCII string.

Usually, however, the returned time is compared to other times in the same
format, so the calling program may not have to convert the format.

6-28

FMP Subroutines

FmpDevice

FmpDevice indicates whether the specified DCB is associated with a device
file.

bool = FmpDevice(dcb)
logical bool

integer dcb(*)

dcb

An integer array containing the DCB of the file.

bool

A boolean set to TRUE (-1) if the specified DCB is associated with a
device file. Bool is set to FALSE (0) if the DCB is associated with a
disc file or is not open.

FmpDismount

FmpDismount dismounts a disc volume.

error = FmpDismount(1lu)
integer error, lu

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

1u
An integer that specifies the LU of the disc volume.

Global and subdirectories on the specified LU are made unavailable, and the
disc is removed from the cartridge list.

If there are any open files, RP’d programs, or working directories on the

volume, D.RTR will report an error identifying the first such conflict that
it finds.

6-29

FMP Subroutines

FmpEndMask

FmpEndMask closes the files associated with a mask search.

call FmpEndMask(dirdceb)
integer dirdcb(*)

dirdcb
An integer array initialized by FmpInitMask.
FmpEnd Mask should always be called after a masked search terminates. If it

is not called, directories may be left open to your program after the search
ends.

FmpEof

FmpEof returns the current word position of the end-of-file mark for the
specified file.

error = FmpEof(filedescriptor,eofpos)
integer error

character®*(*) filedescriptor
integer*l eofpos

error

An integer that returns a negative code if an error occurs or zero if
Nno error occurs.

filedescriptor
A character string specifying the name of the file.
eofpos

An integer that returns the word position of the last word in the main
file area, or of the highest numbered extent, if any, plus 1.

The first word in the file is word 0, so if eofpos = 0 for a file of type 3
or above, the file is empty. For type 1 or 2 files, eofpos is the word
position of the last word in the main file area, or of the highest numbered
extent, if any, plus 1.

If +the file is currently open, the returned value may not be accurate
because the program that has it open may have added to the file without
posting its DCB.

6-30

FMP Subroutines

FmpError
FmpError returns a string that describes the error identified by the error
parameter. FmpError should be used to report errors to ensure consistent
error reporting.

call FmpError(error,message)

character*(*) message

integer error

error

An integer that specifies the error code.

message

A character string variable that returns an error message (for
example, NO SUCH FILE or CAN’T PURGE FILE).

The list of possible messages 1is given in Appendix A. The maximum error
description 1length is 30 characters. If there is not a defined error
message for the error identified by the error parameter, a generic error
message in the form "FMP error -xxx" is issued by the system.

The system program D.ERR generates the text of FMP error messages. If an
FMP error occurs and the system cannot find D.ERR, the following message is
generated:

(warning -250) FMP error xxx

The error code -250 indicates that D.ERR was not available and xxx is the
FMP error that occured.

FmpError should be used by programs that need more flexible error processing
than is provided by FmpReportError.

FmpExpandSize

FmpExpandSize unpacks the size word into a double integer value that
specified the number of blocks in the file.

blocks = FmpExpandSize(size)
integer size
integer*4 blocks

blocks

A double integer indicating the number of blocks in the file.

6-31

FMP Subroutines

size
An integer indicating the size of the file, in one word.

If size > 0, then the number is not changed. If size < 0, it is multiplied
by -128.

For FMGR files, the packed size must be divided by 2 if it is positive,
before the call to FmpExpandSize. If the size parameter of an FMGR file is
negative, it works just as an FMP file size.

FmpFileName

FmpFileName returns the full file descriptor of the file associated with the
specified DCB.

error = FmpFileName(dcb,error,filedescriptor)
integer dcb(*), error
character®(*) filedescriptor

dcb
An integer array containing the DCB for the specified file.
error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

filedescriptor

A character string that returns the name of the file associated with
the specified DCB. The file descriptor includes the full directory
path, and file type, size, and (for type 2 files) record length,
returned in decimal ASCII. The size is the total size of the file,
including extents. For remote files, the file descriptor includes the
user name and remote node name.

The normal string assignment rules apply to the returned string, although
FmpFileName never returns a file descriptor longer than 63 characters. The
file descriptor will be truncated to fit in 63 characters, even if it causes
an incorrect name to be returned by truncating part of the file name or the
directory name.

FmpFileName can be used to return the file descriptor of an open file for

use in other calls that need a file descriptor, or for use in error
reporting routines. The DCB must be open when the call is made.

6-32

FMP Subroutines

FmpHierarchName

FmpHierachName converts a file descriptor to the hierarchical format, in
which leading (/DIR/FILE) directory notation, rather than trailing
(FILE: :DIR), is always used.

call FmpHierarchName(filedescriptor)
character*(*) filedescriptor

filedescriptor
A character string containing the file descriptor to be converted.

Hierarchical names are much easier to use in programs that manipulate
hierarchical directory structures. They cannot be used for FMGR files,
however, so programs that must process FMGR files should call
FmpStandardName +to convert names to the FMGR-compatible standard format
before passing the file descriptor to routines such as FmpOpen.

Fmpinfo

FmpInfo returns a copy of the directory entry for the file specified by the
DCB. It allows the calling program to get all of the information in the
directory with minimum delay. This call should not be used unless
absolutely necessary because it is likely to be affected by any future
changes to the directory structure.

error = FmpInfo(dcb,error,info,flag)
integer dcb(*), error, info(32), flag

dcb

An integer array containing the DCB for the file.

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

info
A 32-word integer array into which the directory information directory
information is returned. For FMGR, only the first 16 words are used;

the last 16 words are zeros.

flag

An integer flag indicating the file system required; 0 for FMGR files
and non-zero for FMP files.

6-33

FMP Subroutines

FmpinitMask

FmpInitMask initializes the buffers, pointers, and control constructs used
by FmpNextMask to select file names according to a file mask.

error = FmpInitMask(dirdcb,error,mask,diropenname,dcblen)
integer dirdcb(*), error, dcblen
character*(*) mask, diropenname
dirdcb
A control array to be used only with FmpNextMask.

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

mask
A character string which specifies a set of files. The mask format is:
dirpath/name.typex.qual:sc:dir:type:size:rl
diropenname
The returned character string directory path.
dcblen
The length of dirdecb in words.

Dirdcbhb and diropenname must not be altered between the FmpInitMask call and
the FmpNextMask calls that follow. Dirdcb must be at least 356 words long.

The program example at the end of this chapter shows how FmpInitMask,
FmpNextMask, FmpMaskName, FmpLastFileName, and FmpEndMask are related and
work together.

The fields in the mask qualifier of particular interest <to FmpInitMask are
dir, dirpath, and qual. Using the dir and dirpath information the
appropriate directory is opened in preparation for checking entries. If the
search qualifier (qual) is included, its state is recorded to let
FmpNextMask perform the search in the correct order. For a complete
description of the mask qualifier, refer to the DL command description in
Chapter 5 of this manual.

6-34

FMP Subroutines

Fmpinteractive

FmpInteractive returns a boolean value that reports whether or not the
specified DCB is associated with an interactive device.

bool = FmpInteractive(dcb)
logical bool
integer dcb(*)

bool

A boolean that is set to TRUE (-1) if the specified DCB is associated
with an interactive device. Bool is set +to FALSE (0) if the specified
DCB is not associated with an interactive device.

dcb

An integer array containing the DCB for the file.

FmploOptions

FmpIloOptions returns the 16-bit I/0 option word for the specified DCB.

error = FmpIoOptions(dcb,error,options)
integer dcb(*), error, options

dcb
An integer array containing the DCB for the file.

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

options
An integer that returns the 16-bit I/0 option word.

The upper ten bits of the option word correspond to the upper ten bits of

the CNTWD that is used in EXEC calls. The returned option word is described
in the Standard I/0 chapter of this manual.

The value returned is undefined if the DCB does not represent a device file.

6-35

FMP Subroutines

FmploStatus

FmpIoStatus returns the values in the A- and B-Registers after the last I/0
request.

call FmploStatus(areg,breg)
integer areg, breg

areg

A one-word integer containing the value of the A-Register.

breg

A one-word integer containing the value of the B-Register.
Because it does not specify a DCB, FmploStatus returns the values of the A-
and B-Registers saved after the last FmpRead or FmpWrite I/0 request. The
status information in the registers is guaranteed to be accurate only if
FmpIoStatus is called immediately after the I/O operation that posted status
in the registers.
The value returned is the status and transmission log of a successful
request, or a two-word error return for an unsuccessful request.
Unsuccessful requests are identified by an error code = -1T7.
FmpLastFileName

FmplagtFileName extracts the file name from the passed file descriptor.

call FmpLastFileName(filedescriptor,lastname)
character*(*) filedescriptor, lastname

filedescriptor
A character string that specifies the complete file descriptor.
lastname
The filename, portion of filedescriptor. The filename 1is identified
as the characters between the slash after the directory path (if any)

and the first period or colon.

For example, FmpLastFileName (’SUB/FILE.TXT:::3’,last) returns "FILE".

6-36

FMP Subroutines

FmplList
FmpList lists a file to the specified LU.
error = FmpList(filedescriptor,lu,option,recl,rec?)
character*(®) filedescriptor, option
integer*l4 recl, rec?2
integer error, lu

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

filedescriptor

A character string that specifies the name of the file.
1u

An integer that specifies the output LU.
option

A character string that selects the format of the output. The values
are as follows:

A ASCII output
B Binary output displayed as octal

File types 0, 3, and 4 default to A; other file types default to B.
recl
A double integer that specifies the first record to be listed.
rec2
A double integer that specifies the last record to be listed.
If both recl and rec2 are set to 0, the entire file is listed.

By default, the listing to an interactive device pauses after printing 22
lines. When it pauses, FmpList prompts you for one of three legal responses:

a Abort the listing
<gpace> List another 22 lines
<cr> List the remainder of the file without pausing

If the LU is not interactive, the listing does not pause.

6-37

FMP Subroutines

FmpLu

FmpLu returns the LU of the file or device associated with the specified
DCB.

lu = FmpLu(dcb)
integer deb(*), 1lu

dcb
An integer array containing the DCB for the file.
1u

An integer indicating the LU number of the file or device associated
with the specified DCB.

If the DCB is associated with a type zero file, the value returned in the 1lu
parameter is the number of the device LU. If the DCB is associated with a
disc file, the value returned is the LU of the disc on which the file

resides. If the specified DCB is not open, a -11 (DCB not open error) error
is returned.

FmpMaskName

FmpMaskName builds a full file descriptor from the entry and curpath
parameters returned by a call to FmpNextMask.

call FmpMaskName(dirdcb,newname,entry,curpath)
character*(*) newname, curpath
integer dirdcb(*), entry(32)
dirdcdb
A control array, initialized by FmpInitMask.
newname
A character string that returns the file descriptor.
curpath
A character string directory path returned by FmpNextMask.

entry

A 32-word directory entry returned by FmpNextMask.

6-38

FMP Subroutines

The file descriptor returned to newname includes all of the fields specified
by entry (name, file type extension, full directory specification, type,
size and record length). Null fields are omitted in the file descriptor.

The names generated by FmpMaskName often exceed the 63-character file system
limit, because the names include the type, size and at least four colons.
FmpMount

FmpMount mounts a disc volume.

error = FmpMount(lu,flag,blks)
integer 1lu, flag, blks

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

1u
An integer that specifies the system LU of the disc.
flag

An integer that determines whether to initialize the disc before
mounting it. The values of flag are:

0 Do not initialize before mounting
1 1Initialize if the disc does not have a valid directory
2 1Initialize disc before mounting

blks

An integer that specifies the number of blocks to leave free at the
beginning of the volume. These blocks are never allocated to files or
directories; they are used to contain bootable programs such as BOOTEX
or an off-line utility.

When a volume is mounted, the disc becomes available to <the system, global
directories can be made available, and the disc space can be used by its
owner. An entry is made in the cartridge list to let the system remount the
volume automatically after a system shutdown.

It is an error to mount a disc that is already mounted, or to try to mount a
non-disc LU.

6-39

FMP Subroutines

FmpNextMask

FmpNextMask returns the directory entry for the next file in the directory.
more = FmpNextMask(dirdcb,error,curpath,entry)
logical more
integer dirdcb(*), error, entry(32)
character*(*) curpath

more

A boolean variable that indicates whether the search can continue. It
is set TRUE (-1) if there is another entry to be searched, whether or
not an error occurred. If it is TRUE and an error has occurred, the
current entry is not valid. It is set FALSE (0) if an error occurred
that prevents successful continuation of the current search process.

dirdcdb
A control array, initialized by FmpInitMask.
error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

curpath
The returned character string directory path.
entry
A 32-word array which returns the directory entry for each file found.

For recoverable errors, the cdlling program can determine the response, and
then it can terminate or continue the search.

When the search is complete, error will return a 0 and variable MORE will be
FALSE.

As the search changes directories, curpath is wupdated to reflect the new
path. Curpath can be wused by the calling program when the desired file is
found. Errors reported by FmpNextMask are associated with curpath; they
report errors in accessing the directory in curpath.

FmpNextMask tests the program’s break flag (IFBRK) and if set, it returns
error -235 (Break Detected). Thus, if your program also calls IFBRK, the
break flag may have been cleared by FmpNextMask.

FmpEndMask should be called after a mask search terminates. If FmpEndMask

is not called, directories may be left open to your program after the search
ends.

6-40

FMP Subroutines

FmpOpen

FmpOpen opens the named file with the specified options. Files must be
opened before any operation that accesses their contents can be performed.
Once opened, a file can be accessed until it is closed by FmpClose. When a

file is opened, it is positioned to the first word in the file, at record
number 1.

type = FmpOpen(dcb,error,filedescriptor,options,buffers)
integer dcb(*), error, buffers
character*(*) filedescriptor, options

type

A non-negative integer that returns the type of the opened file. If
an error occurs, type returns a negative error code.

dcb

An integer array to contain the DCB for the file. The array must be
at least 16 words long to contain file control information. For
access to type 0 or 1 files, this minimum size is all that is
required. For access to other type files, at least one DCB buffer of
128 words should also be allocated in DCB.

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

filedescriptor

A character string that specifies the name of the file.

options

A character string that selects options for opening the file. The
options are selected by the letters in the following list:

Access mode:

R Open for reading

W Open for writing
File Existence:

(o Create a new file

O Open an existing file

6-41

FMP Subroutines

Miscellaneous:
D File descriptor specifies a directory
F Force type to 1 for nonbuffered access
Q Open file quickly, do not record access time
S Open a shared file
T File is temporary
U Open in update mode
X Access extents in type 1 or 2 file
n Use UDSP #n when searching for the file (n = 0,...,8)

The options can be specified in any order, and in uppercase or
lowercase characters. Any combination of options is legal, but the
options should be grouped by type for readability.

buffers

An integer between 1 and 127 that specifies the size of the DCB
buffer, expressed as the number of 128-word buffers in the user array
DCB, in addition to the 16-word file control information area. The
larger the DCB buffer, the faster sequential file accesses can
execute. The user array DCB must contain at least as many 128-word
buffers as the parameter buffers indicates, or the file system may
overwrite your program. The entire DCB buffer is used unless it is
larger than the size of the accessed file or extent. Type 0 and 1
files (including files forced to type 1) do not use the DCB buffers,
so the DCB need only have room for 16 words of file control
information.

If the file being opened is on a FMGR cartridge, the file descriptor must be
in the file::dir format.

FmpOpen updates the time of last access, unless the Q option is selected.
FmpOpen sets the time of creation and time of last update for files that it
creates.

The DCB specified in the call is closed before it is used for the file to be
opened, even if it had last been used for the same file. Re-opening a file
(to change the access options, for example) momentarily closes the file.

If the file descriptor specifies an LU number, FmpOpen assigns a DCB to the
specified device. The device 1is referred to as a type 0 file, even though
no real file exists on disc.

If the device is opened exclusively, the LU is locked unless the device is
interactive. FmpOpen sets flags and option bits in the DCB according to the
device type (that is, terminals are opened for read and write access, but
line printers are open for write access only). The I/O options can be
changed with the FmpSetIoOptions routine. An example of FmpOpen is as
follows:

type = FmpOpen{dcb,error, *DATABASE.DB’, ’rwso’,8)

6-42

FMP Subroutines

This call opens the existing file DATABASE.DB for shared read and write
access, with a DCB buffer 1024 words (8 * 128) in length. The file must
exist, because the create option is not selected. Your programs must
coordinate shared write access.

Some examples of option combinations are:
To open an existing file for shared read access, specify ROS.

To create a new file for exclusive write access, specify WC. The O option
can be specified at the same time as the C option for output files to
create a new file if the specified file does not exist, or to overwrite an
existing file. As a result, the C option should be wused only for output
files, not for sequential read files, because it can overwrite the file
when it opens it. Note that because creating a file implies write access
to the file, the W option always must be specified with the C option.

To create a temporary write/read scratch file, specify WRCT.

The calling program must have access privileges to all files that it tries
to open. An error is generated if a program tries to access a file in a
way that is not specified by the open request options, such as writing to
a file that is opened only for reading. Changing the protection for a
file after it is open to one or more programs has no effect on their
access to the file.

C Option

The C option creates a file. The W option also must be specified because
creating a file implies write access. If you do not specify the W option,
error -203 (Did not ask to write) is returned.

FmpOpen can be used to create any type of file. The filedescriptor
parameter must specify the filename, type, directory, and all other file
information. To create a file of type 2, with 200 blocks of records that
are 10 words in length, the following filedescriptor is used:

FILE.DAT: :DIRECTORY:2:200:10

FmpBuildName or FmpBuildPath can be called to create a file descriptor from
a file name and integer file information.

NOTE

If the O option is specified and the file already
exists, all of the information after the directory is
ignored, the existing file is opened and, for a variable
length record file, the EOF mark 1is placed at the
begimning of the file to make the file empty. The type
of the existing file is unchanged; it is returned as a
function value.

6-43

FMP Subroutines

If only the file name and directory are specified, the file system will
default to type 3, with a length of 2k blocks.

Files larger than 32767 (16383 blocks) sectors are created by specifying the
size as a negative number of 128-block ‘"chunks." A file of 128000 blocks is
specified with a size of -1000. Positive numbers larger than 32767 are
meaningless, but do not cause an error.

If a size of -1 is specified when creating an FMGR file, the rest of the
space on the FMGR cartridge is used, up to a maximum of 16383 blocks.

D Option

The D option lets the filedescriptor parameter specify a directory rather
than a file. It is used by programs that scan directories. Directories are
usually read as type 2 files with 32-word records. Directories cannot be
opened for write access.

F Option

The F option forces a file to type 1 for nonbuffered access, which ignores
record marks. This option does not change the file type or extents of the
file. The type parameter of FmpOpen returns the correct file type
regardless of whether the F option is specified for the file.

Type 1 access is faster because a block of data is transferred directly from
the disc to the user buffer (IBUF); the DCB buffer is bypassed. The calling
program is responsible for calculating record length and accessing entire
records.

An error occurs if you specify the F option for a device file.
Q Option
The Q option opens a file quickly, without recording the access time. This

is useful when a file is opened repeatedly, which makes the access time
unimportant. It is also used when the system time is not set.

S Option
The S option opens a file for shared access. By default, files are opened
exclusively; no other program can access the file as long as it is opened

exclusively to another program.

If a file is opened for reading only, it should be opened for shared access
to let other programs read from the file at the same time.

No program can exclusively open a file that is already opened for shared
access.

6-L4

FMP Subroutines

T Option

The T option creates temporary files. These files are flagged as temporary
files in the directory, and should be purged by the calling program when no
longer needed.

FMP automatically purges temporary files if a calling program creates and
opens exclusively a temporary file, and terminates without closing the
temporary file. The temporary file is purged the next time FMP scans its
internal file table; for example, FMP scans its internal file table when a
program accesses a file for the first time.

Temporary files that are closed by FmpClose are not automatically purged.
You can make a temporary file permanent by opening the file without
specifying the T option.

You can use the temporary flag to cleanup after a system failure by using
the masking T option with the PU command (PU €.8.T).

The T option is ignored for FMGR files.
U Option

The U option reads the block containing the record to be updated into the
DCB before the record is modified. This prevents existing records in the
block from being destroyed.

Update mode is automatically in effect when a type 2 file is opened for
write access. The U option must be specified in all other circumstances;
for example, modifying a record in the middle of a sequential file.

Update mode is not related to the time of last update found in other FMP
routines.

X Option

All file types can be extended to allocate additional disc space when the
file becomes full. The X option is not required for sequential files,
because they are automatically extended, but it is necessary for random
access (type 1, 2 or 6) files, so that they can be extended when the last
record of the existing file is filled. Some programs cannot automatically
access extents for type 1 and 2 files; the X option lets them access the
extents. Type 6 files are program files, so they should not be extended.

n Option

The number n specifies the number of the User-Definable Directory Search
Path (UDSP) to be used in searching for the file. N can be set to a value
from zero through 8, inclusive.

6-U5

FMP Subroutines

The n option is ignored if directory information is included in the file
descriptor; FmpOpen seaches only the directory specified in the file
descriptor.

If the file descriptor does not include directory information, FmpOpen
searches each directory in the specified UDSP until the file is found. If
the file is not found, a -6 (No such file) error is returned.

If the UDSP specified with the n option does not exist, a -247 (UDSP not
defined) error is returned.

Refer to the PATH command in Chapter 5 of this manual for more information
on UDSPs.

FmpOpenFiles

FmpOpenFiles finds open files in a directory.

error = FmpOpenFiles(dcb,error,loc,flag)
integer dcb(*), error, loc, flag

decb
An integer array containing the DCB for the file.
error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

loc

An integer that returns the directory position of an open file. The
calling program initializes it to zero to indicate that this is the
first call. Each time this routine is called, the location and flag
value for one file are returned in the loc and flag parameters.

flag

An integer that returns the ID segment number of the program that
opened the file (in bits 0-7) and the exclusive open bit (in bit 15).

The location is returned as a record number in a type 2 file (the
directory). Loc =1 is the first 32-word entry in the file, the directory
header. The flag contains contains the ID segment number of the program
that opened the file in bits 0-7, and the exclusive open bit in bit 15.

Locations are returned in ascending order. Only one flag is returned per
file, so there is no way to tell how many programs are sharing an open file.
When all of the open files in the directory have been reported, 1loc is
returned as -1,

6-46

FMP Subroutines

FmpOpenScratch

FmpOpenScratch is an interface to the FmpOpen routine. FmpOpenScratch
standardizes the search path used in the creation of scratch files.

type = FmpOpenScratch(dcb,error,filedescriptor,options,buffers,
nameused)

integer dcb(*), error, buffers
character*(*) filedescriptor, options, nameused

type

A non-negative integer that returns the type of the opened file. If
an error occurs, type returns a negative error code.

dcb
An integer array to contain the DCB for the file. The array must be
at least 16 words long to contain file control information. For
access to type 0 or 1 files, this minimum size is all that is
required. For access to other type files, at least one DCB buffer of
128 words should also be allocated in DCB.

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

filedescriptor
A character string specifying the name of the file.
options
A character string that selects options for opening the file. Options
are the same as the options for FmpOpen with the addition of the
following option:
Z Use file name as prefix for FmpUniqueName
The options can be specified in any order, and in uppercase or

lowercase characters. Any combination of options is legal, but the
options should be grouped by type for readability.

6-47

FMP Subroutines

buffers

An integer between 1 and 127 that specifies the size of the DCB
buffer, expressed as the number of 128-word buffers in the user array
DCB, in additicn to the 16-word file control information area. The
larger the DCB buffer, the faster sequential file accesses can
execute. The user array DCB must contain at least as many 128-word
buffers as the parameter buffers indicates, or the file system may
overurite your program. The entire DCB buffer is used unless it is
larger than the size of the accessed file or extent. Type 0 and 1
files (including files forced to type 1) do not use the DCB buffers,
so the DCB need only have room for 16 words of file control
information.

nameused

A character string in which the name of the scratch file that was
opened is returned.

If a directory 1is specified in the filedescriptor parameter, then
FmpOpenScratch calls FmpOpen using that directory. If no directory is
given, FmpOpenScratch calls FmpOpen one or more times using the standard
sequence to find a scratch directory. FmpOpenScratch:

1. Tries the directory /SCRATCH/ first. If an error occurs (such as ’no
such directory’), then it

2. Tries FMGR cartridge specified by entry point $SCRN. This entry point
contains a FMGR disc LU defined at boot-up to be used as a scratch
cartridge. The BOOTEX command, SC, sets the value of $SCRN. If any
error occurs (such as ’cartridge full’), then it

3. Tries the default directory (’ ’). FmpOpen then uses either the calling
programs working directory or, if there is no working directory, the
first available FMGR cartridge.

With the exception of the 2 cocption and the nameused parameter, the
parameters for FmpOpenScratch are identical to FmpOpen parameters.

The Z option causes the routine to take the file name from the file
descriptor given, and use it as a prefix to generate a unique name using the
FmpUniqueName routine (refer to the description of this routine documented
later in this chapter). For example, if the file descriptor is
>TEST:::4:5°, with the Z option in the options parameter, FmpOpenScratch
will call FmpUniqueName with the name ’TEST’ as the prefix. The unique name
that results will be used in the FmpOpen call.

6-48

FMP Subroutines

FmpOpenScratch calls FmpFileName which builds the actual file descriptor.
The file descriptor is returned in the nameused parameter. (For details
refer to the description of FmpFileName.) Note that FmpOpenScratch uses this
parameter to build the file descriptor that it wuses in the FmpOpen call;
therefore, the size of the variable passed should equal the size of the
maximum file descriptor allowed (63 characters).

All parameters except nameused are passed by the FmpOpenScratch routine to
FmpOpen. The FmpOpen routine returns any values directly to the routine
calling FmpOpenScratch. The value of the FmpOpenScratch function is either
the file type (if no error occurs), or the error (as returned by FmpOpen).
This calling sequence is identical to the FmpOpen calling sequence.
Therefore, you should be able to use this routine as a direct replacement
for the FmpOpen call in situations where the scratch directory is used.
FmpOwner

FmpOumer returns the name of the owner of the specified directory.

error = FmpOwner(dir,owner)
character*(*) dir, owner

dir
A character string that specifies the name of the directory.
owner

A character string that returns the log-on name of the wuser who owns
this directory.

FmpPackSize
FmpPackSize packs the double integer file size into a single word.
gsize = FmpPackSize(doublesize)
integer size
integer*h4 doublesize
size
An integer that returns the file size in one word.

doublesize

A double integer specifying the file size.

6-49

FMP Subroutines

If doublesize is less than 32767, there is no change. If doublesize is
greater than 32767, it is rounded up to the nearest multiple of 128 and
divided by 128, and the sign is changed. No overflow check is made. Refer
to the FmpExpandSize routine for a description of special considerations for
FMGR size parameters.
Because of overflow problems and rounding errors,

Size = FmpPackSize(FmpExpandSize(size))
is an identity for all values of size, but

Doublesize = FmpExpandSize(FmpPackSize(doublesize))

is not always an identity.

FmpParseName

FmpParseName parses the specified file descriptor into its component fields.
It is similar to FmpParsePath.

call FmpParseName(filedescriptor,name,typex,sc,dir,type,size,rl,ds)
character*(*) filedescriptor, name, typex, dir, ds
integer sc, type, size, rl
filedescriptor
A 63-character string that specifies the file descriptor to be parsed.

name

A character string that returns the file name. Name can be up to 16
characters in length.

typex

A character string that returns the file type extension. Typex can be
up to 4 characters in length.

sc
An integer that returns the security code.
dir

A character string that returns the directory name. Dir can be up to
16 characters in length.

6-50

FMP Subroutines

type

An integer that returns the FMP file type.
size

An integer that returns file size in blocks.
rl

An integer that returns the record length.
ds

A character string that returns the DS node name, user account name,
or both. Ds can be up to 63 characters in length. Refer to the DS
File Access section in Chapter 3 of this manual for a description of
the DS node name and user account name.

FmpParseName should be used to upgrade programs designed to manipulate FMGR
files, or in new programs when the hierarchical and file masking features of
FmpParsePath are not required. The differences between FmpParseName and
FmpParsePath are described in the FmpParsePath section of this chapter.

FmpParseName converts the character string input fields of the
filedescriptor parameter into integers when necessary, as for the type and
size fields. When characters appear in numeric fields, they are returned as
packed ASCII. For example, if the security code in the filedescriptor
parameter is "DH," the returned sc parameter is 1T480. Character fields are
returned just as they appear in filedescriptor. Numeric fields omitted in
the filedescriptor parameter are returned as zeroes; omitted character
fields are returned as blanks. No error checking is made on filedescriptor
or the returned parameters.

For example, assume that fdesc = SANJOSE.TXT::CITIES:4:24,
CALL FmpParseName(fdesc,file,ext,sc,dir,type,size,reclen,ds)

File = SANJOSE, ext = TXT, sc = 0, dir returns CITIES, type = U4, size = 2U,
reclen = 0, and DS is blank.

FmpParseName is not designed to parse file descriptors with hierarchical
directory paths (that is the function of FmpParsePath), but it can parse
them, with the following limitations.

When a leading directory and subdirectories are specified, <the directory
name is returned to dir, and the first 16 characters of the rest of the
directcry path and file name is returned in the name parameter. For
example:

6-51

FMP Subroutines

If fdesc = /CITIES/CALIFORNIA/SANJOSE.TXT:::4:24
CALL FmpParseName(fdesc,name,ext,sc,dir,type,size,reclen,ds)
Name returns CALIFORNIA/SANJO, ext returns TXT, sc = 0, dir returns CITIES,
type = Y4, size = 24, reclen = 0, and ds = " "
FmpParsePath
FmpParsePath parses the specified file descriptor into its component fields.
It is similar to FmpParseName, except that it parses hierarchical directory
paths in a way that is more convenient for you to use programatically, and
parses file descriptors that contain a mask qualifier field.
call FmpParsePath(filedescriptor,dirpath,name,typex,qual,
sc,type,size,rl,ds)
character*(*) filedescriptor, dirpath, name, typex, qual, ds
integer sc, type, size, rl
filedescriptor
A 63-character string that specifies the file descriptor to be parsed.
dirpath
A character string that returns the hierarchical directory path.
name
A character string that returns the file name. Name can be a maximum
of 16 characters. Name does not return any part of the hierarchical
directory information.

typex

A character string that returns the file type extension. Typex can be
a maximum of 4 characters.

qual

A character string mask qualifier. Qual can be a maximum of 40
characters.

sSC

An integer that returns the security code.

6-52

FMP Subroutines

dir

A character string that returns the directory name. Dir can be a
maximum of 16 characters.

type

An integer that returns the FMP file type.
size

An integer that returns file size in blocks.
rl

An integer that returns the record length.
ds

A character string that returns the DS node name, user account name,
or both. Ds can be a maximum of 63 characters. Refer to the DS File
Access section in Chapter 3 of this manual for a description of the DS
node name and user account name.

FmpParsePath should be used when writing new programs that will use the
hierarchical file system features, and must be used if file masking is
required. Refer to the DL command description in Chapter 5 and to the FMP
mask routines described in this chapter for more information about file
masking.

The hierarchical directory path (returned in dirpath) is defined as
everything that appears to the left of the first character of the file name.
All of the directory information in the filedescriptor parameter is combined
and returned in dirpath. If filedescriptor uses the trailing directory
notation, as in FILE::GLB, FmpParsePath converts filedescriptor to the
leading (hierarchical) notation, as in /GLB/FILE, and returns the directory
path in dirpath.

Qual permits FmpParsePath +to correctly parse file descriptors that contain
masks. Mask qualifiers are described in the DL command description in
Chapter 5.

FmpParsePath differs from FmpParseName in two main ways:

- FmpParsePath parses file descriptors with file masks as well as regular
file names, and includes the qual parameter to return the mask qualifier
field.

6-53

FMP Subroutines

- FmpParsePath parses hierarchical directory path information in a way
that is more convenient for you to use programatically. All of the
directory information in the filedescriptor parameter is returned in
dirpath, never in the name parameter as with FmpParseName.

The following examples illustrate these differences:

Input FmpParsePath Output FmpParseName Output

Filedescriptor dirpath name typex dir name typex
/GLB/SUB/FILE.FTN /GLB/SUB/ FILE .FTN GLB SUB/FILE .FIN
SUB/FILE.FTIN: :GLB /GLB/SUB/ FILE .FTN GLB SUB/FILE FIN
/GLB/SUB.DIR /GLB/ SUB .DIR GLB SUB .DIR
/GLB.DIR / GLB .DIR GLB blank blank
/GLB/ /GLB/ blank blank GLB blank blank
::GLB /GLB/ blank blank GLB blank blank
S1/S2/FILE.REL s1/s2/ FILE .REL blank S1/S2/FILE .REL
FILE.REL blank FILE .REL blank FILE .REL

The following is an example of how FmpParsePath parses a full file
descriptor:

Filedesc = CALIFORNIA/SANJOSE.TXT.T:23:CITIES:2:24:32[PLANNER]>SYS3
CALL FmpParsePath(filedesc,path,name,extn,qual,sc,type,size,rl,ds)

Path
type

/CITIES/CALIFORNIA/, name = SANJOSE, extn = TXT, qual =T, sc = 23,
2, size = 24, rl = 32, and ds = [PLANNER]>SYS3.

FmpPosition

FmpPosition returns the current record number and reports the internal file
position in a format that can be used later by FmpSetPosition.

error = FmpPosition(dcb,error,record,position)
integer dcb(*), error
integer*l record, position
record
A double integer that returns the current record number.
dcb
An integer array containing the DCB for the file.

error

An integer that returns a negative code if an errror occurs or zero if
no error occurs.

6-5u

FMP Subroutines

position
A double integer that returns the current internal file position.

Refer to the FmpSetPosition section of this chapter for a description of how
the current record and internal file position are used to change the file
position.

Each record in a file is numbered. The first is number one, and the others
are numbered consecutively. As the file is read or as information is
written to it, the current position is incremented. It is also changed by
the FmpSetPosition and FmpRewind routines.

The current record position does not identify an exact byte location in
variable record length files. The internal file position specifies the
current word offset from the first word of the file. The first word of a
file is position zero. The internal position does not depend on actual disc
location of the file, so positions can be used even after a file is moved or
copied. This value is meaningless for device files.

FmpPost

FmpPost posts the data in the DCB buffer into the disc file if the data has
been changed. Other programs can then access the information by reading the
disc file. FmpPost is also used to back up the DCB buffer into the disc
file in case the program is aborted. When the DCB buffer is posted, the
data in the buffer is invalidated, so the next read call reads the disc
file, not the DCB buffer.

error = FmpPost(dcb,error)
integer dcb(*), error

dcdb

An integer array containing the DCB for the file.

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

FmpPost is used to coordinate shared write access to a file. Resource
numbers are often used with FmpPost to coordinate the sharing of write
access. Refer to the RNRQ section of the Resource Management chapter for
more information about resource numbering. Each of a group of cooperating

programs that accesses the shared file should perform the following
sequence:

6-55

FMP Subroutines

Lock the file’s resource number

Access the file

Call FmpPost to post the data in the disc file
Unlock the resource number

FWw N

FmpProtection

FmpProtection returns the access rights of the owner and others to the
specified file or directory.

error = FmpProtection(filedescriptor,owneraccess,othersaccess)
character*(*) filedescriptor, owneraccess, othersaccess

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

filedescriptor
A character string specifying the name of the file.
owneraccess

A character string that returns the access rights of the owner of the
file or directory.

othersaccess

A character string that returns the access rights of all other users
of the file or directory.

The access rights are returned as ASCII "R" for read access, "W' for write
access, or "RW' for both.

The owner of a directory is the user who creates it or is assigned ownership
via the FmpSetOwner routine. The owner of a directory owns all of the files
within it.

FmpPurge

FmpPurge purges the file specified by the file descriptor, marking the
directory entry as purged, to free the disc space allocated to the file.
The file must exist, must not be open, and must not be an RP’d program. The
calling program must have write access to the directory, but not necessarily
write access to the file.

error = FmpPurge(filedescriptor)
character®(*) filedescriptor

6-56

FMP Subroutines

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

filedescriptor
A character string specifying the name of the file.

The file descriptor can specify a directory by specifying it as ::NAME or
/SUB.DIR (note the .DIR file type extension). If the directory contains
anything other than purged files, it cannot be purged.

Purged files can be unpurged with the FmpUnPurge routine, unless their disc
space or directory entry is overwritten.

FmpRead

FmpRead reads data from a file of any type. FmpRead reads the record at the
current file position. The file positioning routines described in this
chapter explain how to change the current file position. The file must be
opened for read access before FmpRead is called.

length = FmpRead(dcb,error,buffer,maxlength)
integer dcb(*), error, buffer(*), maxlength

length

An integer that returns the number of bytes actually read, or a
negative error code. If the call reads more than 32767 bytes, the
return length may be negative even though no error occurs; in such
cases the error variable should be compared to the length return. If
they match, an error has probably occurred.

dcb

An integer array containing the DCB for the file.

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

buffer

An integer array that returns the data being transferred. The buffer
is word-aligned.

6-57

FMP Subroutines

maxlength

A one-word integer that contains the maximum number of bytes to
transfer. Maxlength is treated as an unsigned single integer from 0
to 65534. Values larger than 32767 are expressed as negative numbers
equal to the number of bytes to be transferred minus 65536; for
example, 40000 bytes is expressed as -25534 (40000 - 65536 = -25536).

If an odd number of bytes are transferred, the lower byte of the word
containing the last byte is undefined. The requested transfer length
can be longer or shorter than the actual length of the record, but the
number of bytes read never exceeds the maxlength.

The file position is set to the beginning of the next record even if some of
the data that was read does not fit into the user buffer.

For sequential files (type 3 and above), one variable-length record is
transferred from the current file position. The DCB buffer is used during
the transfer. The record length is maintained with the record; if for some
reason the record-length information is invalid, error -5 is returned.

For type 2 files, one fixed-length record is transferred, using the file
record length, which is always an even number of bytes. The DCB buffer is
used during the transfer. There is no end-of-file mark; if a program tries
to read past the end-of-file, the actual length of the record is returned,
and no error is indicated, but subsequent reads will report an error.

For type 1 files (or files forced to type 1), multiple records may be read,
depending on maxlength. The data is read directly into the wuser buffer,
without using the DCB buffer. Type 1 files are always positioned at a block
boundary, so they behave like files with 128-word records. Type 1 files
behave like type 2 files when the end-of-file mark is encountered.

For type zero (device) files, one record is read. The data is read directly
into the user buffer, without using the DCB buffer. End-of-file is set if
the end-of-file or end-of-medium bits are set in the returned status
following the read. The returned length is -1. The control-D character is
the end-of-file mark for reads from a terminal; zero-length reads are not
treated as the end-of-file. No more than 32767 bytes can be read from type
0 (device) files.

6-58

FMP Subroutines

FmpReadString

FmpReadString is an integer function that allows reading character from a
file.

length = FmpReadString(dcb,error,string)

integer length, dcb(*), error

character*(*) string

length
An integer that returns the positive number of bytes transferred, or a
negative error code. Length cannot be more than 256 because the data
must pass through an internal buffer that is 256 bytes.

dcb
An integer array containing the DCB for the file.

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

string
A character string of up to 256 bytes into which data is transferred.
The string cannot be more than 256 bytes because the data passes
through an internal buffer that is 256 bytes. If string is longer
than 256 bytes, an error code is returned in the error parameter.
FmpReadString is similar to FmpRead, except the data is returned in the
string parameter. The returned length is the length of the record read; it
may be less than the actual length of the string parameter, but never more.
The string is filled with blanks if the record is shorted than the string.
FmpRecordCount
FmpRecordCount returns the number of records in the specified file.
error = FmpRecordCount(filedescriptor,nrecords)
character*(*) filedescriptor

integer*y nrecords

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

6-59

FMP Subroutines

filedescriptor

A character string specifying the name of the file.

nrecords
A double integer that returns the number of records in the file.
For type 1 and 2 files FmpRecordCount returns the maximum number of records
that can fit in the file, not the actual number of records currently in the
file. For type 3 files and above, nrecords is the number of records before
the end-of-file; however, if the file is currently open for writing,

nrecords may not reflect the actual record count because write requests that
have not been posted may not be present in the file.

FmpRecordLen

FmpRecordLen returns the length of the longest record in a file.
error = FmpRecordLen(filedescriptor,len)
character®(*) filedescriptor

integer len

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

filedescriptor
A character string specifying the name of the file.
len
An integer that returns the length of the longest record in the file.
For a type 1 or 2 file, FmpRecordLen returns the fixed record 1length in

words, that was defined when the file was created. For type 3 files and

above, it returns the 1length, in words, of the longest of the variable
length records in the file.

NOTE

The length returned for type 3 or higher files 1is
actually the length of the longest record ever written

to the file, even if that Ilongest record has been
overwritten.

6-60

FMP Subroutines

FmpRename

FmpRename changes the name of the specified file.
error = FmpRename (namel,errl,name2,err?2)
integer errl, err?2

character*(*) namel, name?2

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

namel

A character string specifying the name of the existing file. The file
must be closed.

errl

An integer that returns any error associated with namel.

name?2

A character string specifying the new name for the file.

err?

An integer that returns any error associated with name2.

The file specified by namel must exist, and must not be open. It may,

however, be an active program. Name2 must not already exist in the
directory.

The calling program must have write access to the directory containing the
file to be renamed, and to the directory that will contain the file after
the rename, if it is not the same as the original directory.

FmpRename can change any combination of the file name, its file type
extension, or directory. The security code, type, size, and recordlength
cannot be changed. If they are specified in name2, they are ignored. The
new file name (name2) must specify the desired security code and directory;
they cannot be defaulted to match the security and directory of namel.

6-61

FMP Subroutines

If the directory name is changed, the file directory entry is moved to the
new directory, but the actual file data is not moved. The new directory
must be on the same LU as the original. Namel and name2 can specify
directories as either ::NAME or /NAME.DIR (note the .DIR file type
extension). It is possible to convert subdirectories into global
directories, or vice versa. If the working directory is renamed, it remains
the working directory, but under the new name. Errl returns errors
associated with namel and err2 returns errors associated with name2. If
either errl or err2 contains an error code, the same error code is returned
in error. If error = 0, then neither errl nor err2 contains an error code.

FmpReportError

FmpReportError prints an error message at your terminal (LU 1).
call FmpReportError(error,filedescriptor)
character*(*) filedescriptor
integer error

error

An integer that returns a negative code if an error occurs or zero if
Nno error occurs.

filedescriptor
A character string that specifies the name of the file.

The printed message consists of the message returned by FmpError, followed
by the passed filename; for example:

No such file FILE.EXT: :USER
If it is necessary to print the message somewhere other than on LU 1, you

should use FmpError to retrieve the error text and write the message to the
desired file or device.

FmpRewind
FmpRewind positions the file specified by the DCB to the first word in the
file. For disc files this is equivalent to an FmpSetPosition call with

position set to zero. For device files, a rewind control call is issued.

error = FmpRewind(dcb,error)
integer dcb(*), error

dcdb

An integer array containing the DCB for the file.

6-62

FMP Subroutines

error
An integer that returns a negative code if an error occurs or zero if
no error occurs.

FmpRpProgram

FmpRpProgram tries to restore a program from a type 6 file, creating an ID
segment for the program in the operating system.

error = FmpRpProgram(filedescriptor,rpname,options,error)
character*(*) filedescriptor, rpname, options
integer error

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

filedescriptor
A character string that specifies the name of the type 6 file.

rpname
A character string that either specifies the program name or returns
it: if rpname is specified, the specified name is used; if rpname is
blank, the name assigned by the system is returned. The returned name
is the first five characters of filedescriptor (minus the directory
path and file type extension). Note that a null (integer value of
zero) cannot be used; nulls must be initialized to blanks, refer to
the Character String section of this chapter for details.

options

A character string that contains "C", "P", or both, to select either
of the following options:

C (clone) Create a clone name if the specified or assigned name

already is assigned to an RP’d program. The program is not cloned
if:

- There is a system program with the assigned or specified name.

- There is already a program with <the assigned or specified name,
but it is not RP’d.

- There is no program with that name currently RP’d.

P (permanent) Do not release the ID segment when the program
completes.

6-63

FMP Subroutines

If the program already existed, and cloning could not occur, error -239 is
returned.

If FmpRpProgram needs to clone, it will replace the fourth and fifth
characters of the pregram name with ".A", If that name is also taken, it
will use ".B", and so forth.

If the RPL checksum on the type 6 file does not match the system, the file’s
checksum is changed, and the program is RP’d, but FmpRpProgram returns error
-240 (RPL checksum changed). This error is a warning, and can be displayed
to you or ignored.

FmpRpProgram is used by FmpRunProgram, CI, and most other program scheduling
requests to search for an existing program with the specified or assigned
name. FmpRpProgram searches for the program to be RP’d as follows:

1. If a directory is specified, this directory is searched for the file.
If the file is found, it is RP’d. If the file is not found and a file
type extension was not specified, .RUN is assumed and the directory is
searched again. If the file still is not found, an error is returned.

2. If no directory information is given, the following occurs:

a. If a program with the specified or assigned name is already RP’d and
is dormant, this program is used. If the program is busy and cannot
be cloned, an error is returned.

b. If the program has not been RP’d or is busy but can be cloned, a
gsearch is made for the program (type 6) file. If User-Definable
Directory Search Path (UDSP) number one is defined, a default file
type extension of .RUN is assumed and the search path defined by
UDSP #1 1is used to find the file. If the file is not found, an
error is returned.

c. If UDSP #1 is not defined, the following default search sequence is
used:

- The current working directory is searched. If the file is not
found, a default file type extension of .RUN is assumed and the
working directory is searched again.

- If you do not have a working directory, all FMGR cartridges are
searched.

- If the file is still not found, global directory PROGRAMS is
searched, using the .RUN default file type extension. If the
file is not found, an error is returned.

UDSP #1 can be defined using the CI PATH command. Refer to PATH command
description in Chapter 5 for more information.

6-64

FMP Subroutines

If a working directory exists, programs on a FMGR cartridge cannot be run
unless the directory is specified by PROG::0 or PROG::crn.

FmpRunProgram
FmpRunProgram executes a program.
error = FmpRunProgram(string,prams,runname[,alterstring])
character®(*) string, runname
integer error, prams(5)
logical alterstring

error

An integer that returns a negative code if no error occurs or zero if
an error occurs.

string
A character string that specifies a runstring. If the string does not
begin with RU or XQ, FmpRunProgram inserts RU so the program can
correctly parse the runstring. If XQ is specified, the program is
executed without wait.

prams

An integer array that returns the RMPAR parameters from the program
when it completes. If string specifies XQ, the prams are meaningless.

runname

A character string that returns the true name used to schedule the
program.

alterstring

Optional boolean variable indicating how FmpRunProgram is to handle
the string parameter. The possible values are as follows:

TRUE The string is converted to uppercase and each group of one or
more consecutive blanks is converted to a comma. (default)

FALSE The string is not altered.

If a program with the same name and session ID already exists then an
attempt will be made to create a clone name by replacing the last two
characters with ".A". If that fails ".B" will be tried and so on. It is
usually not necessary to clone a program, because programs are identified by
their name plus their session number. If :IH follows the program name (for
example, RU,PROG:IH), cloning is inhibited.

6-65

FMP Subroutines

The order of search for the program is the same as for FmpRpProgram.

FmpRwBits

FmpRwBits is an integer function that determines whether the returned string
of the FmpProtection routine indicates read or write access availability,
and whether an options 1list for FmpOpen contains read or write access
requests.

rwbits= FmpRwBits(string)
character*(*) string

rwbits

An integer that indicates read or write access availability for the
string returned by FmpProtection, and read or write access requests
for the options 1list of FmpOpen. FmpRwBits returns one of four
values, depending wupon whether or not the string parameter contains
the uppercase letters R or W. The values for rwbits are as follows:

Neither W nor R present
W but not R present

R but not W present

R and W present

wmn ko

string
A character string. String can be a maximum of 256 bytes.

In the string parameter, the R and W can be in any order and other
characters can be present.

FmpSetDcbinfo

FmpSetDcbInfo changes information in the DCB.
error = FmpSetDcbInfo(dcb,error,records,eofpos,reclen)
integer dcb(*), error, reclen
integer*l4 records, eofpos
dcb
An integer array containing the DCB for the file.

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

6-66

FMP Subroutines

records

A double integer that specifies the number of records in the file plus
1.

eofpos
A double integer that specifies the current internal file position.
reclen
An integer that specifies the length, in words, of the longest record.
FmpSetDcbInfo should be called only when a file of type 3 or above that has
been forced to type 1 in the FmpOpen call is copied. The DCB for the copied
file contains information for a +type 1, rather than a type 3 file.
FmpSetDcbInfo can be used to change the DCB information to reflect the fact
that the file 1is really of type 3 or above. The call should be used with

care, and only by users with a detailed knowledge of DCB information.

The records and eofpos parameters correspond to the current record and
internal file position parameters of the FmpSetPosition routine.

Do not read or write any more data from the DCB after wusing this routine;

call FmpClose to close the DCB, then FmpOpen +to re-open it for further
access.

FmpSetDirinfo

FmpSetDirInfo changes file directory information.
error = FmpSetDirInfo(dcb,error,ctime,atime,utime,bbit,prot)
integer dcb(*), err, bbit, prot
integer*h ctime, atime, utime
dcb
An integer array containing the DCB for the file.

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

ctime

A double integer specifying the create time.

atime

A double integer specifying the access time.

6-67

FMP Subroutines

utime
A double integer specifying the update time.
bbit
An integer specifying the backup bit.
prot
An integer specifying the new protection for the file.

The calling program can change the create, access, and update time stamps,
set or reset the backup bit, and change the file protection.

If a supplied parameter is negative, the corresponding value in the
directory entry is not changed.

If the calling program owns the file, it also can set the file protection to
the lower U4 bits of prot. Prot is ignored if the calling program is not the
owner,

Do not read or write any more data from the DCB after using this routine.

FmpSetDirInfo should be called after FmpSetDcbInfo if both are to be called.

FmpSetEof

FmpSetEof sets the end-of-file to the current position in a sequential file,
or issues an end-of-file control request for a device file. It has no
effect on type 1 and 2 files.

error = FmpSetEof(dcb,error)
integer dcb(*), error

dcb
An integer array containing the DCB for the file.
error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

6-68

FMP Subroutines

FmpSetEof is not required in normal operation because the end-of-file is set
automatically following writes to sequential files that are not opened in
the update mode. It should be used only to reset the end-of-file mark in
files opened in the wupdate mode, and for writing to device files which
require an explicit end-of-file control request, such as magnetic tapes. It
does not remove any other EOF marks in the file, so it cannot be used to
expand a file; it can be used only to make the file smaller.

FmpSetloOptions

FmpSetIoOptions changes the I/0 option word for the specified DCB.

error = FmpSetIoOptions(dchb,error,options)
integer dc¢b(*), error, options

dcb
An integer array containing the DCB for the file.
error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

options
An integer that returns the 16-bit I/0 options word.

Once changed, the new options remain in effect until another FmpSetIoOptions
call (or an FmpOpen call). The options word is described in the Standard
I/0 chapter of this manual. All of the options except the Z-bit can be set,
because the FmpSetIoOptions call does not permit a Z buffer to be sent.
The call is ignored if the DCB is not open to a device file.
FmpSetIoOptions should not be called under normal operation; in most cases,
you should allow the file system to set the I/0 option word.
FmpSetOwner

FmpSetOwner changes the owner of a directory to the specified user. You
must be the current owner or a superuser.

error = FmpSetOwner(dir,errl,owner,err?)

character*(*) dir, owner
integer errl, err2

6-69

FMP Subroutines

dir

A character string that specifies the name of the directory whose
owner is being changed.

errl
An integer that returns errors associated with dir.
owner

A character string that specifies the name of new owner of the
directory.

err2
An integer that returns errors associated with owner.
If either errl or err2 contains an error code, the same code is returned in
error. If error = 0, then neither errl nor err2 contains an error code.
FmpSetPosition

FmpSetPosition sets or changes the current file position. The position can
be set either to a record number or to an internal file position.

error = FmpSetPosition(dcb,error,record,position)
integer dcb(*), error
integer*l record, position
dcb
An integer array containing the DCB for the file.

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

record
A double integer that specifies the desired record number.
position

A double integer that specifies the desired internal file position,

6-T70

FMP Subroutines

All files can be positioned to a particular record number. All disc files
can be positioned to an internal file position as returned by an FmpPosition
call. For fixed record length files, the record number and internal file
positions are related by the function ((record number-1) * record size).
For sequential files there is no such correlation because the records are
variable in length.

Positioning sequential and device files by record number is very slow
because it requires starting at the first record and stepping through to the
desired record. Positioning by internal position is much faster for
sequential files, but the position must be at the start of a record because
read and write calls depend upon being at the beginning of a record.
FmpPosition can be called to return the position of the start of a record to
pass it to FmpSetPosition.

If the position parameter is positive, FmpSetPosition interprets it as the
desired internal file position. The passed record number is saved as the
current record number for later use.

If the position parameter is negative, positioning occurs by record. Device
files are always positioned by record number only, regardless of the
internal position value. Double integer variables should be used for the
record number and internal position for device files, because they are often
large numbers.

Although FmpSetPosition is usually called to position a file to a location
already in the file, it can be used to create extents in a file opened for
writing. Positioning a type 1 or 2 file can create an extent, but it can
create a sparse file, which has missing extents between the file and a full
extent. If a read request tries to access a record in one of the missing
extents, an error occurs. Positioning a file of type 3 or above creates an
extent without skipping extents, even if the file is forced to type 1 by the
F option in the FmpOpen call.

FmpSetProtection

FmpSetProctection allows <the owner of a file or directory to change the
access rights to the file or directory.

error = FmpSetProtection(filedescriptor,owneraccess,othersaccess)
character*(*) filedescriptor, owneraccess, othersaccess

filedescriptor
A character string specifying the name of the file.
owneraccess

A character string specifying the access rights of the owner of the
file or directory.

6-T1

FMP Subroutines

othersaccess

A character string specifying the access rights of other users of the
file or directory.

The access rights are specified as ASCII "R" for read access, "W' for write
access, or "'RW" for both. The suggested setting is "RW" for owner, "R" for
others.

When the access rights to a directory are changed, the access rights to
files or subdirectories already in it are not changed, but new files or
subdirectories created in it receive the new access rights.

The owner of a directory is the user who creates it or is assigned ownership
via the FmpSetOwner routine. The owner of a directory owns all the files in
it.

To prevent owners from being locked out of their own directories, owners do
not need write access to a directory to change its protection. A superuser
can change protection on any file or directory. A file’s protection status
can be changed while it is open, because protection status is only checked

when the file is opened. Files that already have the file open are not
affected by the protection change.

FmpSetWord

FmpSetWord positions a disc file to a specified internal position in the
file.

error = FmpSetWord(dcb,error,position,how)
integer dcb(*), error, how
integer*l4 position
dcb
An integer array containing the DCB for the file.

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

position
An integer specifying the desired file position. A positive value

indicates an internal file position. A negative value indicates a
record number.

6-T2

FMP Subroutines

how

An integer that specifies whether the file system should create an
extent to contain the new position if it is outside the existing file
area. How can be set to the following values:

1 Extent creation is not permitted; the usual setting for read
operations which must only access existing file areas.

2 Extent creation is permitted.

FmpSetWord is a special case of the FmpSetPosition routine, and should be
used only to minimize code size. FmpSetPosition is the general purpose
positioning routine, and uses more code space.

FmpSetWord works exactly as FmpSetPosition does when it is called to
position a file by internal file ©position, rather than by record.
FmpSetWord does not update the record number in the DCB, so once it has been
called, positioning by records must not be attempted. It also does not
record the end-of-file position when a position beyond the existing
end-of-file is selected without extent creation enabled. Its only advantage
is that it does not add to the code size of the calling program, because it
is used by FmpRead and FmpWrite, so it is already part of the code.

FmpSetWorkingDir

FmpSetWorkingDir changes or sets the working directory for you. The working
directory can be a global directory or a subdirectory. Setting the working .
directory changes the working directory for all programs in the current
session. It should be used with caution.

error = FmpSetWorkingDir(directory)
character*(*) directory
integer error

directory

An integer that returns a negative code if an error occurs or zero if
no error occurs.

name

A character string that specifies the working directory.
If the name is specified as a zero, then you have no working directory until
another call is made to establish one. This is useful in changing the
search behavior for files when no directory is specified: if there is no

working directory, the FMP calls can search FMGR discs for a specified file.

If name is longer than 63 characters, error -15 is returned.

6-73

FMP Subroutines

FmpShortName

FmpShortName returns the file descriptor for <the file associated with the
specified DCB.

error = FmpShortName(dcb,error,filedescriptor)
character*(*) filedescriptor
integer dcb(*), error
dcb
An integer array containing the DCB for the file.

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

filedescriptor
A character string that returns the name of the file.
The returned file descriptor is not a full file descriptor; it does not
include the file type, size, or record length. FmpShortName is similar to
FmpFileName, described in this chapter, except that it returns a truncated
file descriptor.
FmpSize
FmpSize returns the physical size of the file in blocks.
error = FmpSize(filedescriptor,size)
character*(*) filedescriptor
integer*l size
filedescriptor
A character string specifying the name of the file.
size
A double integer that returns the physical size of the file in blocks.

The physical size of a file is the number of blocks of disc space it
occupies, including extents.

6-7h4

FMP Subroutines

FmpStandardName
FmpStandardName converts a file descriptor to the standard format.

call FmpStandardName(filedescriptor)
character*(*) filedescriptor

filedescriptor
A character string that specifies the name of the file.

The standard format uses the trailing directory notation, as in
FILE.FTN::DIR. If the specified file descriptor includes subdirectories, it
uses the hierarchical format, with a leading directory path, as in
/DIR/SUB/FILE.FTN. If the file descriptor refers to a global directory, it
also uses the hierarchical format, as in /GLB.DIR.

The standard is convenient for users familiar with FMGR files because the
“"::" notation is used whenever the file descriptor does not include a
hierarchical directory structure.

FmpTruncate

FmpTruncate releases some of the disc space allocated to a file. The file
must be opened for writing.

error = FmpTruncate(dcb,error,blocks)
integer dcb(*), error
integer*l blocks

dcb

An integer array containing the DCB for the file.

error

An integer that returns a negative code if an error occurs or zero if
RO error occurs.

blocks

A double integer specifying the minimum number of blocks to which file
is to be truncated.

The file specified by DCB is truncated +to no less than the specified double
integer number of blocks. More blocks than +this may actually remain,
depending on internal considerations. Files will never be truncated to less
than one block. It is the responsibility of the calling program to make
sure that valid data is not truncated. The EOF mark should be in the area
that remains after truncation. You should close file after it is truncated.

6-75

FMP Subroutines

For example, if after performing sequential writes to a variable length
record file (type 3 and above) you want to truncate the space beyond the
current EOF mark, you can use the following (assuming the file is positioned
at EOF mark):

Call FmpPosition (dcb,error,record,position)
if (error.1t.0) ...

blocks = (position + 128)/128

Call FmpTruncate (dcb,error,blocks)

if (error.1t.0) ...
Call FmpClose (dcb,error)

The calculation “"position + 128" includes one word for the EOF mark, and

_ rounds up the position so that all words in the current block are included.
" Dividing by 128 converts the number of words to number of blocks.

FmpUdspEntry

FmpUdspEntry returns the directory name for +the specified entry and
User-Definable Directory Search Path (UDSP).

error = FmpUdspEntry(udspnum,entnum,dirname,error)
integer udspnum, entnum, error
character*(*) dirname
udspnum
An integer that specifies the UDSP number.
entnum
An integer that specifies the entry for the UDSP number.

dirname

A character string that returns the directory name for the specified
entry in the specified UDSP.

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

If the entry is undefined, or if udspnum and entnum are out of bounds with
the definition for the session, error -247 is returned.

6-76

FMP Subroutines

FmpUdspinfo

FmpUdspInfo returns the current User-Definable Directory Search Path (UDSP)
information for your session.

error = FmpUdspInfo(udsps,depth,next,error)
integer error, udsps, depth, next

udsps
An integer that returns the number of UDSPs defined for the current
session.

depth
An integer that returns the UDSP depth defined for the current
session.

next

An integer that returns the next available UDSP. Next is set to zero
if all UDSPs are defined.

error
An integer that returns one of the following values:
0 No error occurred
-1 Not under session control
-2 UDSP tables not set up correctly

FmpUniqueName

FmpUniqueName creates a 16-character file name <that should be unique within
a system that does not contain files from another system.

call FmpUniqueName (prefix,uniquename)
character®(*) prefix, uniquename

prefix
A character string specifying a prefix for the file name.
uniquename

A character string that returns the generated file name.

6-77

FMP Subroutines

The name is created by appending a reading from the system clock to a
user-supplied prefix. The clock reading 1is expressed as a string of hex
digits. A typical uniquename is "TEMPTCL3E20FF21".

If the file may be transferred to an FMGR directory, the prefix should be
chosen to minimize the chance of a duplicate filename when the uniquename is
truncated to six characters.

FmpUnPurge

FmpUnPurge restores a purged file. The file must have existed and been
purged, and its disc space must not have have been allocated to another

file.

error = FmpUnPurge(filedescriptor)
character®(*) filedescriptor

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

filedescriptor
A character string specifying the name of the file to be unpurged.

FmpUnPurge verifies the directory entry for the file and any extents, and
makes sure that none of its disc space has been allocated to any other file.
If it passes both tests, FmpUnPurge reallocates all of its space and
converts its directory entries back to the normal status. The file’s
protection, time stamps, and other attributes are restored exactly as they
were at the time that the file was purged.

Directories cannot be unpurged.

If several purged files have +the same name, it is difficult +to determine
which is to be unpurged. The result of an FmpUnPurge call is not defined.

Files cannot be unpurged if a file already exists with the same name; the
existing file must be renamed first.

FmpUpdateTime

FmpUpdateTime returns the time of the last update for the named file. The
file is not opened in the process.

error = FmpUpdateTime(filedescriptor,time)

character*(*) filedescriptor
integer*l time

6-78

FMP Subroutines

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

filedescriptor
A character string specifying the name of the file.
time

A double integer that returns the time of the last update expressed in
seconds since Jan 1, 1970.

The update time is set when a file is closed, but only if the file was
changed while it was open.

Routines are available to convert the time value to an ASCII string.

Usually, however, the returned time is compared to times in the same format,
so the calling program may not have to convert the format.

FmpWorkingDir

FmpWorkingDir returns the name of your current working directory. The

current working directory can be either a global directory or a
subdirectory.

error = FmpWorkingDir(directory)
character*(*) directory
integer error

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

directory

A character string that returns the name of the current working
directory.

The returned name is in a format suitable for passing to other routines,
such as. FmpSetWorkingDir.

If the name contains more than 63 characters, the name is truncated to 63
characters and an error is returned.

If there is no working directory, then an error is returned and the name is
undefined.

6-79

FMP Subroutines

FmpWrite

FmpWrite writes data to a file of any type. The file must be opened for
write access.

length = FmpWrite(dcb,error,buffer ,maxlength)
integer length, dcb(*), error, buffer(*), maxlength

length

An integer that returns the number of bytes actually transferred, or a
negative error code. If more than 32767 bytes are transferred, the

returned length is a negative number. If this negative number is
equal to the value of the error parameter, an error has probably
occurred.

dcb
An integer array contianing the DCB of the file.
error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

buffer

The name of a word-aligned buffer that contains the data to Ye
transferred.

maxlength

The maximum number of bytes to write; it is interpreted as an unsigned
one-word integer from 0 to 65534. For values larger than 32767, set
maxlength to the desired maximum number of bytes minus 65536; for
example, 40000 bytes is expressed as -25534 (40000 - 65536 = -25536).

FmpWrite writes data at the current position of the file. The file position
can be set by other FMP routines, such as FmpSetPosition and FmpAppend.

For sequential (type 3 or above) files, one record is written. The DCB
buffer is used during the transfer. If the file is not opened in update
mode, the entire record is transferred and an end-of-file mark is written
after it. If the file is opened in update mode, then the length transferred
will be the shorter of the existing and supplied record lengths. No
end-of-file mark is written.

For type 2 files, one record is written, using the shorter of the defined
and supplied record lengths. The DCB buffer is used for the transfer.

6-80

FMP Subroutines

For type 1 files (and files forced to type 1), multiple records may be
written, depending on the supplied record length. The data is transferred
directly from the user buffer to the disc. The return length is rounded up
to an even number if necessary.

For type zero (device) files, one record is transferred. The data is
written directly from the user buffer to the device. No more than 32767
bytes can be transferred with one call.

FmpWriteString

FmpWriteString is similar to FmpWrite, except that the data to be
transferred is supplied in the string parameter.

length = FmpWriteString(dcb,error,string)
integer length, dcb(*), error
character®*(*) string

length

An integer that returns the length of the record written to the file,
or a negative error code. It may be less than the actual string
length, but never longer.

dcb
An integer array containing the DCB for the file.

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

string
A character string of up to 256 bytes from which data is transferred.
String cannot be greater than 256 bytes because the data must pass

through an internal buffer of 256 bytes. If string is longer than
this limit, an error is returned.

6-81

FMP Subroutines

MaskMatchLevel

MaskMatchLevel is an integer function that returns the number of the
directory level in which the last file was matched.

matchlevel = MaskMatchLevel(dirdcb)
integer matchlevel, dirdcb(*)

matchlevel

An integer set to the number of the directory level containing the
last file that was matched.

dircb
An integer arrary initialized by FmpInitMask.
For example, if the search mask is /GLOBAL.DIR.D and matched file is
/GLOBAL/SUBDIR/FILE, then matchlevel returns 2, to indicate that the file is
nested two levels below the global directory. This value can help in

creating new names for copy or rename operations, although Calc Dest Name is
more commonly used for that function.

MaskOldFile

MaskOldFile is a boolean function that checks if the last file returned by
FmpNextMask is a FMGR file.

bool = MaskOldFile(dirdcb)
integer dirdcb(*)
boolean bool

bool

A boolean variable that is set to TRUE if the last file returned by
FmpNextMask is a FMGR file; otherwise, bool is set to FALSE.

dircb

An integer arrary initialized by FmpInitMask.

6-82

FMP Subroutines

MaskOpenid

MaskOpenId is an integer function that returns the D.RTR open flag of the
last file returned by FmpNextMask.

openid = MaskOpenId(dirdcb)
integer openid, dirdcb(*)

openid
An integer that returns the ID number of the file that has the file
open. If the file is not open, openid is set to zero. If the file is
open, the ID number of a program that has the file open is returned in
bits 0-7, and the value of the exclusive bit is returned in bit 15.

dircb
An integer array initialized by FmpInitMask.

The returned program may not be the only program that has the file open.

Refer to the FmpOpenFiles routine description for more information on the
format of the open flag.

MaskSecurity

MaskSecurity is an integer function that returns the security code of the
last file returned by FmpNextMask, if the file is an FMGR file. For FMP
files, it returns zero.

seccode = MaskSecurity(dirdeb)
integer seccode, dirdeb(*)

seccode

An integer that returns the security code of the last file returned by
FmpNextMask, if the file is a FMGR file. For FMP files, seccode is
set to zero.

dirdcdb

An integer array initialized by FmpInitMask.

6-83

FMP Subroutines

WildCardMask

WildCardMask checks the mask for wildcard characters.

wild = WildCardMask(mask)
boolean wild
character®(*) mask

mask
A character string that contains the mask to be checked.
wild

A Yboolean indicating the presence of a wildcard character. Wild

returns one of the following values:
TRUE The mask contains a wildcard character ("@" or "-"), or the
mask qualifier contains any of the search directives ("d",

e", or "s"), or the specified mask can refer to more than
one file for another reason.

FALSE The mask cannot refer to more than one file.

If WildCardMask returns FALSE, there is no need to use the mask search
routines to find a specific file; it is faster to use the specified mask to
open and access the file directly.

Using the FMP Routines with DS

All of the FMP calls that use a filedescriptor parameter can access files
over DS, except FmpRunProgram, FmpSetWorkingDir, and FmpSetOwner because
they perform system functions that should not be performed from a remote
system.

The file descriptor must contain 63 or fewer characters, including the
remote user account name and node specifications. As a result there may be
some files that cannot be accessed over DS because they have a long filename
or directory path that cannot fit with the DS information into the
63-character filedescriptor.

The name-building and parsing routines return the DS field as their last
parameter. The returned DS field contains the DS delimiters. If a file is
located in a remote system, the name returned by FmpFileName includes the
node name.

6-84

FMP Subroutines

Some of the FMP routines do not perform exactly the same over DS as they do
on a single system. The limitations as follows:

o FmpOpen does not use a DCB buffer larger than 8 blocks (1024 words), even
if a larger buffer is specified.

o FmpOpen cannot open an LU at a remote system. It returns an error if
such an attempt is made.

o FmpOpenFiles can only identify the program that has a file open if the
program and the file are on the same system. If a file is open via DS,
FmpOpenFiles reports that it is open, but can not report the name of the
program that has it open, because all files opened via DS are opened by
the TRFAS program.

o Files opened exclusively via DS are honored, except for FMGR files.

Special Purpose DS Communication Routines

The following calls permit your programs to perform special functions, all
with DS transparency. They allow you to establish connections to accounts
at remote systems.

CAUTION

The following routines are internal FMP routines, so
they should be used with some caution. For example, it
is possible to inadvertently close the wrong file by
passing an incorrect connection number.

All of the variables wused by the special purpose routines are single
integers, except as noted.

6-85

FMP Subroutines

DsCloseCon
DsCloseCon closes a connection opened by DsOpenCon.

error = DsCloseCon(conn)
integer error, conn

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

conn

An integer that specifies the connection number.
It is important +to close connections when the DS operations are completed,
because only 63 connections are available, and they are not automatically

released when the calling program terminates or when +the DS operations
complete.

DsDcbWord

DsDcbWord returns the first word of the DCB as it would appear if the file
associated with it was not opened through DS.

error = DsDcbWord(conn,word)
integer conn, word

conn
An integer that specifies the connection number.
word
An integer that returns the first word of the DCB.
DS transparency is implemented by replacing the first word of the DCB with
the negative connection number. A DCB associated with a file over DS is

detected by examining bit 6 of the first word of the DCB, but that practice
is not recommended.

6-86

FMP Subroutines

DsDiscinfo

DsDiscInfo returns the number of tracks and blocks per track of the

specified disc volume on the system associated with the connection number.
error = DsDiscInfo(conn,lu,ntracks,bpert)
integer error, conn, lu, ntracks, bpert

error

An integer that returns a negative code if an error occurs or zero if

no error occurs.
conn
An integer that specifies the connection number.

1u

An integer that specifies the LU of the disc volume about which the

track and blocks per track information is wanted.

ntracks

An integer +that returns the number of tracks for the specified disc

volume.

bpert

An integer <that returns the number of blocks per track of the

specified disc volume.

DsDiscﬁead

DsDiscRead reads the disc on the system specified by the connection number.

error = DsDiscRead(conn,buf,len,track,sector)
integer buf(*), error, conn, len, track, sector

error

An integer that returns a negative code if an error occurs or zero if

no error occurs,
conn

An integer that specifies the connection number.

buf

An integer array that returns data from the disc.

6-87

FMP Subroutines

len

An integer that specifies the amount of data to be read. A maximum of
4096 characters can be read.

track
An integer that specifies the track from which to read.
sector

An integer that specifies the sector from which to read (63 words per
sector).

The first word of the DCB that contains conn must first be set by
DsSetDcbWord.

This routine should be used only by users with a detailed knowledge of DCBs
and their contents.

DsFstat

DsFstat performs an FSTAT call for the system associated with the specified
connection number.

error = DsFstat(conn,buffer,len(,iform[,iop]])
integer buffer(256), error, len, iform, iop

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

conn
An integer that specifies the connection number.
buffer
An integer array that returns the status of the cartridges.
len
An integer that specifies the length of the buffer in words.
The iform and iop parmeters are optional parameters that are used only when
the remote node is an RTE-6/VM system. These parameters are identical to

the iform and iop parameters in the FSTAT call for RTE-6/VM (see the
RTE-6/VM Programmer’s Reference Manual for a description).

6-88

FMP Subroutines

DsNodeNumber

DsNodeNumber returns the node number associated with the specified file.
node = DsNodeNumber(filedescriptor)
character*(*) filedescriptor
integer node

node

An integer that returns the number of the node associated with the
specified file. A zero is returned if the file is not remote.

filedescriptor

A 63-character string that specifies the name of a file.

DsOpenCon

DsOpenCon opens a connection to the remote user account/node specified.
error = DsOpenCon(string,conn)
integer error, conn
character*(*) string

string

A character string that specifies the remote user account name, node
name, or both, along with the required delimiters, as in ">27",
">sYs3", "[USER]", and ">SYS3[USER/PASSWORD]". String must not
contain a filename, only DS information.

conn

An integer that returns the connection number.

error

An integer that returns a negative code if an error occurs or zero if
no error occurs.

The connection number returned by DsOpenCon is used in the other DS
communication routines to identify the connection.

6-89

FMP Subroutines

DsSetDcbWord

DsSetDcbWord changes the first word of the DCB to make the DsDiscRead
routine work.

error = DsSetDcbWord(conn,word)
integer error, conn, word

error

An integer that returns a negative code if an error occurs or a zero
if no error occurs.

conn

An integer that specifies the connection number.
word

An integer that specifies the word to be changed.

This routine should be used only by users with a detailed knowledge of DCBg
and their contents.

Example Programs for FMP Routines

Three sample programs follow. The first program simply demonstrates the use
of the simplest (open, close, read, write) FMP routines. The second shows
how file masking, a somewhat more advanced FMP function, is used. The third
combines many of the FMP routines in a advanced application.

Read/Write Example

The following program copies one file into another, one record at a time.
It illustrates the use of FmpOpen, FmpRead, FmpWrite, and FmpClose, as well
as FmpReportError. '

6-90

FMP Subroutines

ftnTx,s
program copy
implicit integer(a-z)

¢ Program to copy a file to another file.

integer dcbl1(528), dcb2(528), buffer(128)
character filel*30,file2*30

¢ Open the source and destination files;
¢ use big DCB’s to go fast.

call fparm(filel,file?2)
typel = FmpOpen(dcbl,err,filel,’ros’,l)
if (err .1lt. 0) goto 10

type2 = FmpOpen(dcb2,err,file2,’woc’,l)
if (err .1lt. 0) goto 20

c copy the data

do while (.true.)
len = FmpRead(dcbl,err,buffer,256)

¢ look for errors and end-of-file

if (err .1lt. 0) goto 10
if (len .eq. -1) goto 30

¢ none of those, so write the record.
call FmpWrite(dcb2,err,buffer,len)
if (err .1t. 0) goto 20
enddo
¢ come here to report errors
10 call FmpReportError(err,filel)
goto 30
20 call FmpReportError(err,file?)
c come here to close files and quit
30 call FmpClose(dcbl,err)
call FmpClose(dcb2,err)

stop
end

6-91

FMP Subroutines

Mask Example

The following program shows how FmpInitMask, FmpNextMask and FmpMaskName can
be used to generate a list of files which match a mask.

ftnTx,1,s
program files
implicit integer (a-z)

¢ files lists the names of files which match the mask
integer dirdcb(356), entry(32)
character curpath*®(63), newname®(63), mask(63)
logical FmpNextMask

c get the mask
call fparm(mask)

¢ initialize the directory dcb, report errors

if (FmpInitMask(dirdcb,err,mask,curpath,356) .1lt. 0) then
call FmpReportError(err,mask)
stop

endif

¢ while errors are nonfatal, print name of file

do while (FmpNextMask(dirdcb,err,curpath,entry))
if (err .1lt. 0) then
call FmpReportError(err,curpath)
else
call FmpMaskName(dirdcb,newname,entry,curpath)
write(1l,*) newname
endif
enddo

¢ if search ended with error, print error

if (err .1t. 0) then
call FmpReportError(err,curpath)

endif
c
¢ close down mask search
c
call FmpEndMask(dirdcb)
stop
end

6-92

FMP Subroutines

Advanced FMP Example

The following is a much larger program that builds a data base and writes
records to it.

In the example, a FmpUniqueName is called to create a unique file name for
the data base in the directory "“CRDB" with a file type extension of "DAT".
The program illustrates name building, file positioning, and many other
less-frequently used FMP routines. The database built here is simply a type
2 file, it should not be confused with an Image data base.

ftnTx,s
program crdb
implicit integer(a-z)

¢ Program to create a database in a type 2 file
parameter (recordlen=30)
parameter (recordbytes=2"recordlen)
parameter (filesize=2L)
integer dcb(1l44), buffer(recordlen)

character name®63, asciitime®28, charbuffer®(recordbytes)
character tempname®*16

¢ Note use of double integers for times, record numbers
integer®l time, currec
¢ Allow "charbuffer" as the string version of "buffer"
equivalence (buffer,charbuffer)
¢ Make up the name
call FmpUniqueName(’D’,tempname)
call FmpBuildName (name,tempname, 'DAT’,0, ’CRDB’,2,
hd filesize, recordlen,’ ’)

namelen = trimlen(name)

¢ Open the database for read, write; create it; update is implicit.

call FmpOpen(dcb,err,name,’RWC’,1)
if (err .1t. 0) goto 20

6-93

FMP Subroutines

¢ Print the file name, and when it was created

err = FmpCreateTime (name,time)

if (err .1lt. 0) goto 20

call daytime(time,asciitime)

write(1,*) ’File ’,name(l:namelen),’ created ’,asciitime

¢ Loop on adding records
do while (.true.)
c See what record number to change

5 write(1,*) ’Record to add? ’
read(1l,*,end=10,err=10) currec

¢ Position to this record (let FMP trap bad record number)

call FmpSetPosition(dcb,err,currec,-1J)
if (err .eq. -12) then
write(1,*) ’That record doesn’t exist’
goto 5
endif
if (err .1lt. 0) goto 20

¢ Get a value for the record

write(1,*) ’Enter record contents: _’

read(1,’(a)’) charbuffer
¢ Put it in the file
call FmpSetPosition(dcb,err,currec,-1J)
if (err .1t. 0) goto 20
call FmpWrite(dcb,err,buffer,recordbytes)
if (err .1lt. 0) goto 20
¢ Post the file to show what to do if this is shared access
call FmpPost(dcb,err)
if (err .1lt. 0) goto 20
enddo

¢ Come here when the last record is entered

10 write(1,*) ’All done’
goto 30

6-94

FMP Subroutines

¢ Come here to report errors
20 call FmpReportError(err,name)
¢ Come here to close file, purge it, and quit

30 call FmpClose(dcb,err)
err = FmpPurge(name)
if (err .1t. 0) then
call FmpReportError(err,name)
endif
stop
end

6-95

Chapter 7
File System Utilities

This chapter describes the disc management utilities provided for use in the
CI file system: FSCON, FPACK, FREES, FOWN and FVERI. FSCON converts the
directory structure of an FMGR cartridge to that of the CI hierarchical
directory structure. FPACK packs a CI disc volume to increase disc free
space. FREES and FOWN report the amount of free space on the disc and the
amount of disc space used by file owners. FVERI verifies the validity of
the disc volume directories and tables.

FSCON File System Conversion

FSCON converts the directory structure of an FMGR cartridge, creating a
hierarchical directory entry for each file on the cartridge. After
conversion, the files have all the characteristics of the CI file system
(time stamps, file type extensions, etc.)

Note that programs not converted to the hierarchical directory structure may
have difficulty accessing the converted files.

Requirements for Successful Conversion

Before bYeginning the conversion, FSCON checks to see if the following
prerequisites are satisfied. If any one of the conditions is not met, FSCON
terminates with the appropriate error message.

There must be sufficient free space between the 1last file and the FMGR
directory at the end of the cartridge to create the new directory and free
space table. The amount of space required depends on such factors as the
number of files in the directory and the number of extents. You can most
likely meet this requirement by purging unneeded files and then wusing the
FMGR PK command to pack the disc before calling FSCON. If there is not
enough disc space for the conversion, - FSCON exits with the message "Not
enough free space on disc".

The total size of the cartridge cannot exceed 128k blocks. This is due to a
limitation on the size of the free space table. If the FMGR disc cartridge

exceeds this size, FSCON terminates with the message '"Disc too big to
convert".

The disc must be dismounted. This is to preclude the possibility of any
open files, swap files, or active type 6 files. If the disc cartridge to be

converted is mounted, FSCON terminates with the message 'Cartridge must be
dismounted"”.

7-1

File System Utilities

The disc must be an FMGR cartridge. FSCON will only convert FMGR
cartridges. Otherwise, it terminates with the message "Doesn’t look like an
FMGR disc”.

Operating Instructions
To call FSCON, enter the runstring:
RU,FSCON,LU

LU is the LU of the FMGR cartridge to be converted. If the LU is omitted,
FSCON issues a message defining the correct runstring, and then terminates.

FSCON scans the directory on the given LU and builds a new directory in the
unused space at the end of the disc, before the FMGR directory. At the same
time, it builds a free space table. The FMGR directory is scanned once to
determine if it will be possible to do the conversion, and then scanned
again to actually build the CI directory.

File data is never moved during the conversion process; only the directory
structure changes. The new directory is built in unused space, and the
entire conversion is done before any change is made to the FMGR directory
structure. Thus, if the conversion fails at any point short of completion,
the FMGR directory will still be in place and all of the files will be
unchanged.

The final step in the conversion is to overwrite the FMGR directory with the
CI, hierarchical structure, directory. This is accomplished in a single
disc write operation. The new directory name will be the CRN of the FMGR
cartridge. In this way, the name of a file will be unchanged (except as
noted in the following section). That is, a reference to &SORC::DB will
access the same file both before and after the conversion.

After the successful conversion FSCON issues <the message "Cartridge
converted”. If an error occurs during the conversion process, FSCON issues
the appropriate error message followed by "Cartridge not converted" then
terminates.

T7-2

File System Utilities

File Renaming

If the name of a file includes the character "." or "/", these characters
are changed to """ and "|", respectively. This change is necessary because
the CI file system attaches special significance to these characters: the
“/" delimits directories and subdirectories and the "." delimits the type
extension and mask qualifier. If these names were not changed, the file

would never be found. As each file name is changed, the the message
Renaming <name> to <name>

appears on your screen. After conversion, the files can be listed using the
directory list (DL) command:

DL,@°@::dir *list all files with "." changed to "~"

DL,@|@::dir *1list all files with "/" changed to "|"

Converted CI Directory Entries

In building the new CI directory, information required for +the directory
entries is obtained from the FMGR cartridge directory, from scanning the
files, or from the default values. The entries of a newly converted CI
directory contain the following information (refer to the System Manager’s
Manual for the format of the file directory entry):

word

1

flag: protection set to rw/rw for all files and for directory;
backup bit (bit 8) set
2 - type: taken from FMGR file directory entry
5 - size: taken from FMGR file directory entry
6 - recln: type 1,2 files - taken from FMGR file directory entry;
all other files - calculated by scanning file
9-16 - name: taken from FMGR file directory entry as modified
to change special characters
17-18 - ext: extent type, blank
19-24 - time: create, access, update - set to current time
25-26 - nblk: type 1,2 files - taken from FMGR file directory entry;
all other files - calculated by scanning file
27-28 - eof: type 1,2 files - taken from FMGR file directory entry;
all other files - calculated by scanning file
29-30 - nrec: type 1,2 files - taken from FMGR file directory entry;
all other files - calculated by scanning file

7-3

File System Utilities

Error Messages

If any of the following errors occur, FSCON issues the related message and
terminates:

Cartridge not converted
This message will appear with a definitive message if an error occurs during
conversion. If the cartridge is not converted, the files are all intact and
the FMGR directory structure is unaltered.

Bad lu parameter
The lu parameter is not a disc lu.

Cartridge must be dismounted
The cartridge to be converted must be dismounted. This guarantees there
will be no open files, active type 6 files or the swap file on this
cartridge.

Disc too big to convert
Disc has more than 128K blocks (2717).

Doesn’t look like an FMGR disc
FSCON will only convert FMGR discs into CI file system disc volumes.

Insufficient memory, size up program
FSCON uses free space for tables, and will run faster with more memory.
Sufficient memory for at least one track of the disc is required. If the LU
contains many type 1 or type 2 files with extents, more free space will be
required. Resize the program.

Not enough free space on disc
FSCON requires sufficient free tracks between the last file and the FMGR
directory to build a new directory and other tables. Correct this condition
by purging some files and packing the disc, using the FMGR PK command,
before trying the conversion again.

Open file: xxxxxx
This message should never appear, because the cartridge must be dismounted

before the conversion begins. However FSCON checks for open flags on files
as it converts them.

7-4

File System Utilities

FPACK File System Pack

FPACK rearranges the files on a disc volume, packing the files together more
tightly to increase the size of the largest free space on the volume. When
the operation is complete, there usually will be free space at the high end
of the volume. After the disc volume has been packed, you can run the
utility FREES to determine the amount of free space and the largest area of
free space obtained by FPACK.

Operating Instructions

To run FPACK, enter the runstring:
RU,FPACK,LU

LU is the LU of the volume to be packed. If no LU is given, FPACK issues a
message defining the correct runstring, then terminates. Note that to copy
a file, you must have read/write access to both the file and its directory;
generally, only a System Manager has access to all files and directories.

FPACK scans the directories and generates a 1list of files in the order of
their location on the disc volume. FPACK then copies files from higher
numbered blocks to free spaces in lower numbered blocks on the disc, then
purges the original files and marks the original file blocks as free space.
A file is copied only if there is an area of free space below it that is
large enough to contain the file and its extents. When a file is copied,
any extents are copied into the main. All other attributes of the file
(time stamps, protection, etc.) are not changed.

Because the integrity of a directory cannot be guaranteed if it is moved,
FPACK does not copy directories. Open files, type 6 files, and the swap
file also are not copied.

The process is illustrated below. Assuming that all files are the same

size, FPACK would convert the disc volume structure on the left into the one
on the right.

7-5

File System Utilities

Block n File E
Empty
Empty
Dir XYZ Dir XY2
File D Empty
File C File C
Empty > | File D
File B File B
Empty L——» | File E
Block 0 File A File A

File E, the file in the highest numbered block, is copied into the free
space in the lowest numbered block. Since FPACK does not copy the
directory, the next file to be copied is File D. This process frees one
area of space at the top, thus enlarging the available free space area on
the volume. An area of free space still remains below directory XYZ.

After FPACK has moved as many files as possible, the LU is scanned again and
FPACK issues an ordered listing of the files that can be moved, beginning at
the highest disc volume address (a maximum of ten files are listed). The
files listed are generally those that could not be copied -- type 6 files,
open files, directories, the swap file. The entry for each file includes
name, directory, file type, size, and record length. After printing the
list, FPACK exits and you can run FREES to see the amount of free space now
existing on the disc volume and the size of the largest area of free space.
(Refer to the description of FREES in this chapter for the utility output
format.)

If there still is not enough free space, you can increase the size of the
free space by moving the appropriate files. If directory XYZ (in the
preceding example) can be moved down, the largest free space will be
enlarged. A procedure for moving the directory is given in the next
section. If file C can then be moved, there will again be more space in the
largest free space. If file C cannot be moved, moving file D will not help.

An alternate method to increase free space is to clear some existing files
from the disc volume. After purging some existing files, run FPACK again to
move files into the space left by the purged files.

File System Utilities

If the pack operations still have not created enough space, back up the
entire volume on tape using the utility TF (refer to the RTE-6/VM Utility
Programs Reference Manual), then reinitialize and restore the volume from
tape. The CI file system automatically restores files beginning at the
lowest numbered block on the disc volume. Note that if this is the system
volume, the system must be capable of being booted from a volume other than
the one being reinitialized.

Moving Directories

The following sequence of CI commands will move the global directory XYZ to
a different disc location. The leading slash in the command argument is
required to indicate that the named directory is a global directory.

WD /XYZ Change the working directory to XYZ. This simplifies the
command sequence.

CRDIR /TEMP Create the temporary directory TEMP. The directory will be
created on the same disc volume as the working directory,
and at the lowest numbered block available.

MO €.0 /TEMP/@.8 Move all of the file entries from XYZ to TEMP. Only the
directory entries are moved; the file data is unaffected.
As each directory entry is moved, a message is issued to
your terminal to define the entry being moved. A
successful move is indicated with the notation [ok]. If an
entry cannot be moved, the notation [failed] is given,
followed by the reason for the failure. (A common reason
is an open file on XYZ.) If you are unable to correct the
failure and successfully move the file, move all files back
to directory XYZ (mo /temp/@.8 /xyz/8.8) and stop the

attempt.
WD /TEMP Change the working directory to TEMP.
PU /XYZ.DIR Purge the old directory, freeing the disc space. (Note

that you must include the type extension .DIR when purging
a directory.) If the directory is not empty, it cannot be
purged. Move the files back to XYZ, purge TEMP and
terminate the action.

RN /TEMP /XYZ Restore the original name. The files now have the same
name as before, but the directory has moved.

File System Utilities

After this operation, the example disc volume structure will have been
converted as follows:

Block n
Empty
Empty
Dir XY2
Empty Dir XYZ
File C File C
File D | ————| File D
File B File B
File E File E
Block 0O File A File A

Subdirectories can be moved using the same sequence; however you must
specify the hierarchical path, as:

CRDIR /XYZ/TEMP.DIR

MO /XYZ/SUB/@.@ /XYZ/TEMP/@.e@
PU /XYZ/SUB.DIR

RN /XYZ/TEMP.DIR /XYZ/SUB.DIR

The concept is the same: create another subdirectory, move all of the files
into it, purge the original and rename the new subdirectory to the original
name.

7-8

File System Utilities

Moving Files

When a file is copied with the CO command to a disc volume, it is placed in
the lowest free space large enough for the file. This allows moving files
on a disc volume to recover free space. If a file is copied to a different
name on the same directory, the new copy of the file will be moved +to a
lower free space. For instance, using the original example in this section,
file E can be manually moved to the lowest free space using the following
command sequence (assuming file E is on directory XYZ):

WD /XYZ Change the working directory to XYZ to simplify
the command sequence.

COE X Copy file E to file X which does not exist. File X
will be placed in the lowest free space available.

PU E Purge the original file.

RN X E Restore original file name.

After +this operation, the example disc volume structure is left with a
larger free space.

Block n File E Empty
Empty
Dir XY2 Dir XYZ

File ¢ |————» File C

File D File D
File B File B
Empty File E
Block 0 File A File A

-9

File System Utilities

FREES (Report Disc Free Space)

FREES scans the free space table on CI disc volumes and reports the amount
of free space and the size of the largest area of free space. The amount of
free space on a volume is an indication of how much more can be stored on
that volume. The largest free space defines the largest file that can be
created on that volume.

FREES reports total free space in blocks and as a percentage of total space.
The size of the largest free space is reported in blocks and as a percentage
of the total available free space. This gives an indication of the amount
of fragmentation of the volume. The 1lower the percentage, the more the
volume is fragmented, and the more effective the FPACK utility will be at
packing the volume.

Operating Instructions
To run FREES, enter the runstring:
CI.65> frees[LU]

LU is the LU number of the CI file system disc volume to be scanned. If no
LU is given, FREES scans all of the mounted volumes, reporting on each one
individually.

Examples
The default case:

CIxx> frees

Analyzing LU 5%

Total Blocks: 12992 (Reserved blocks: 0)
Free Blocks: 8324

Free space is 64% of total space

Largest Free Space: 8051 Blocks

Largest Free Space is 96% of Total Free Space

Analyzing LU 27
Total Blocks:

7-10

File System Utilities

Specifying LU to be scanned:

RU,FREES, 54

Analyzing LU 54

Total Blocks: 12992 (Reserved blocks: 0)

Free Blocks: 8324

Free space is 64% of total space

Largest Free Space: 8051 Blocks

Largest Free Space is 96% of Total Free Space

FOWN (Report File Space by Owner)

FOWN scans specified files and identifies, by owmers, the total disc space
used by files that match the mask given in the utility runstring.

Operating Instructions
To call FOWN, enter the runstring:

RU,FOWN|[,mask]

The mask parameter specifies the class of files to be scanned. Refer to
Chapter 3 for a description of file masks. The default mask is /@.@.s,
which matches all files in the file system. This will tell how much disc
space is being used by all users who own files.

In some instances, FOWN will be unable to identify the owner of a file.
When this happens, FOWN displays the system number that corresponds to the
owner. Usually this means that the owner of those files is no longer a user
on this system. FOWN also cannot determine the owners of remote files, so
all owners are referred to only by number.

7-11

File System Utilities

Examples

The following example uses the default mask. Note that user number 7 is no
longer known to the system. Note also the message "FMGR files not scanned".
This indicates that some FMGR files matched the mask but were not counted.
There is no ownership information available for FMGR files.

CI.10> fown
Scanning... Mask = /@.@.s
Owner Disc Blocks

DOUG.LAB 6715
DON.TRAINING 4032
MANAGER. SYS 2761
DOUGL . SYS 328
NAOMI . GENERAL 69
Unknown (#7) 198
Total 14103

FMGR files not scanned

In the following example, all type 6 files are counted and their owners
identified.

CI.10> fown,8.8.e:::6

Scanning... Mask = 8.8.E:::6
Owner Disc Blocks

DOUG 2943

DON 433

DOUGL 148

Total 3524

FMGR files not scanned

In the following example, ownership ID requested for DON only, thus the
format of the output is changed.

CI.10> fown,/don/

Scanning... Mask = /DON/
Owner: DON Total Blocks: 641

7-12

File System Utilities

FVERI (File System Verification)

FVERI scans the directory and table structures of a CI file system disc LU
and reports on areas where the data is inconsistent. Two kinds of checks
are done.

1. Internal consistency of the directories and correctness of the bit map
(the "bit map" is a table on the volume which keeps a record of used and
free space on that volume; it is also referred to as the 'free space
table").

- FVERI checks directory consistency by looking for legal values within
the entries: extent pointers pointing to valid extents, data pointers
having legal disc addresses, non-negative file types, and so on.

- FVERI checks the bit map by building its own version of the bit map
(vased on the files it finds on the volume) and then comparing the two
bit maps.

2. Consistency between directory entries and their associated files (number
of records in the file, number of words in the file, etc.), and internal
consistency of the files (valid record length marks, valid EOF mark,
etc.)

- FVERI checks both the consistency between directory entries and their
associated files, and the internal consistency of the files, by
reading through each file it finds (using normal FMP calls). It
collects appropriate data as it is reading (number of records in the
files, number of words, etc.), then compares what it found with the
directory entry for that file.

If an LU is specified in the runstring, and the +B option is not given,
FVERI will perform both types of checks. With the +B option, FVERI will
only perform the first type of check. With a given mask, FVERI will verify
all files described by the mask, performing only the second type of check.
Because the bit map covers the entire volume, the bit map check cannot be
done if a specific mask is specified, because FVERI may not be looking at
all the files on the volume.

Note that because the second type of verification requires that FVERI read
through every file, it will be slower than the first check. For this
reason, if you want to verify the overall integrity of a disc volume, but do
not need to check each individual file, it will be faster to use the +B
option. On the other hand, if you are concerned about file integrity on a
certain area of the volume, specifying a mask can be relatively fast because
you are not asking FVERI to check the whole volume.

7-13

File System Utilities

This utility can be used after a system crash to verify that the file system
is still intact. It should also be run from time to time to verify the
integrity of the file system. In order to gain access to all read-protected
files on the disc, FVERI is best executed by a System Manager.

FVERI is most efficient when verifying a disc not in use. If other programs
are creating, purging, or modifying files while FVERI runs, the tables will
appear inconsistent due to synchronization errors. For instance, if a file
is purged after being verified but before the free space table is verified,
the free space table can appear to be invalid.

Operating Instructions

To run FVERI, enter the runstring

RU FVERI[lu/mask][options]

where:
1u = LU of volume to be verified (FVERI does not verify FMGR
cartridges). If an LU is specified, the entire volume is
verified.
mask = mask describing a set of files to be verified. If a mask is
specified, only the files described by the mask are verified.
options = one or more options in any order; legal options are:

+B = verify bit map only; illegal if a mask is also specified.
+L,file/lu = list file or device for errors.

Running FVERI with a ? or ?? (RU,FVERI,?[?]) causes FVERI to display usage
information as showm above.

If neither an LU or a mask is given, the default is to verify all mounted
volumes. For each volume, the message:

Verifying LU xx

is issued while the verification is taking place. FVERI can be halted
before completion with a BR,FVERI. The utility quits immediately without
completing a verification in process. When performing a complete
verification of a volume, FVERI can take several minutes to run, because it
reads every variable length record file on the LU.

T-1k

File System Utilities

Error Messages

FVERI is susceptible to all FMP errors, which are reported if they occur.
It also reports any errors detected in the table structures. Each error
message is preceded with a number indicating the relative importance of the
error. Most FMP errors are displayed as severity level four; some, usually
protection violations, are reported with a severity of zero. The higher the
number, the worse the problem. Continued use of an LU with a reported level
9 error can cause loss of data.

The error message usually includes a block number indicating the block on
the disc where the bad data was found. This is either the block number of
the directory entry for some file, or the block on the disc represented by
the invalid data in the free space table.

Where possible, the error output will indicate the file whose directory
entry is corrupt. This gives some clue to the logical part of the disc that
is corrupt, to complement the physical location information provided by the
block number.

As an example, the following message defines a level 6 error in the
directory entry for file PG1.FTN::JAN. This directory entry is at block
1435 of the disec.

(6) Total blocks in file less than main size at block 1435
On file PG1.FTN::JAN

The following list of error messages is arranged in ascending order of
severity, from zero to nine. The first four 0O-level errors cause FVERI to
terminate; all other error conditions are not fatal.

(0) Break detected; Verification terminated.

(0) Internal buffer too small, size up program.

(0) Not a hierarchical file system disc.

This error will be produced if the volume is not a disc, or if the volume
header is corrupt.

(0) Disc volume not mounted.

The volume must be mounted to be verified. If you cannot mount the disc,
FVERI cannot give you any further information.

7-15

File System Utilities

(0) Record Length exceeds 512 bytes.

FVERI has an internal buffer of 512 bytes for reading type 3 and above
files. A record of more than 512 bytes was read, and further verification
of this file’s contents will not be done.

(2) Directory Tag field is incorrect.

A special 32-bit tag is set for directories as a redundancy check to verify
that this is in fact a directory. This directory does not have the proper
tag value.

(2) Access time earlier than Update time.

The file access date and time must be equal to or later than the update
time.

(3) Record Length Incorrect at block <nnnnn>

The record length field in the directory does not reflect the length of the
longest record in the file. Some programs may have the file open, or the
file may have been created in a non-standard way, or created with a program
that misuses the FMP routines.

(3) Number of words in file incorrect at block <nnnnn>

The end-of-file pointer in the directory does not match the end-of-file mark
in the file. Some program may have the file open, the file may have been
created in a non-standard way, or created with a program that misuses the
FMP routines. (FMPAPPEND calls on this file will fail.)

(3) Number of records in file incorrect at block <nnnnn>

The record count in the directory does not match the number of records in
the file. The file may have been created in a non-standard way or with a
program that misuses the FMP routines.

(3) Directory header flag incorrect at block <nnnnn>

The directory header and trailer (the two ends of a directory extent) should
have a particular identifying flag. This directory doesn’t have one.

7-16

File System Utilities

(4) EOF pointer is beyond last block at block <nnnnn>

The last word of the file is reported to be beyond the last block in the
file.

(4) Free space is marked as used space at block <nnnnn>

The free space table (the bitmap) has some disc space marked as used.
However the file system does not have any files or directories in that
space. The space is wasted and unrecoverable until the file system is
completely backed up and restored. This can be caused by having
read-protected directories FVERI could not verify. FVERI will work better
if run by a System Manager.

(5) Unidentifiable directory entry at block <nnnnn>

There is an entry in the directory that is not a file main, an extent, a
purged file, or anything else defined for the file system.

(5) Directory main size does not equal extent size at block <nnnnn>

Each directory extent should be the same size as the main. This is not true
for this directory.

(6) Actual blocks in file entry is wrong at block <nnnnn>

The sum of the size of the main and all of the extents is not the same as
the recorded total number of blocks used by this file.

(6) Extent entry back pointer is wrong at block <nnnnn>

Extent entries have a pointer that points back to the previous extent entry
or the main (extent entries are in a doubly linked 1list). The return
pointer in this extent entry does not point back to the right place.

(6) Total blocks in file less than main size at block <nnnnn>

The total number of blocks wused by this file is 1less than the number of
blocks in the main.

(6) Illegal file type at block <nnnnn>

File types must be greater than zero.

T-17

File System Utilities

(7) Invalid directory extent pointer at block <nnnnn>

The pointer to the next or previous directory extent points to a disc
address beyond the valid address space on this disc.

(7T) Extent entry flag is wrong at block <nnnnn>

Extent entries in the directory should have a particular identifier flag.
This extent does not have the right flag, yet is pointed to as an extent of
this file.

(8) Invalid extent data pointer at block <nnnnn>

The pointer to the extent data points to a block address outside the legal
address range of this disc.

(8) Invalid extent forward pointer at block <nnnnn>

The pointer to the next extent entry points to a block address outside the
legal address range of this disc.

(8) Invalid extent pointer in main at block <nnnnn>

The pointer to the first extent of this file points to a disc address beyond
the valid address space of this disc.

(8) Illegal directory size at block <nnnnn>

Each directory extent must be from 1 to 64 blocks long. This directory has
a size not in that range.

(9) Duplicate use of disc block <nnnnn>

Two or more files are stored on the same section of the disc. At least one
of the files must be corrupt. This message can occur as a result of other
file activity on this disc while FVERI is running. Run FVERI again. The
same block should not be reported on two consecutive runs of FVERI unless
the error is real.

(9) Blocks per bit value is illegal at block <nnnnn>

The free space table represents up to 128 blocks of disc data per bit in the
free space table. There can be no more than 8192 words in the free space

table, or the free space table overflows. If this value 1is wrong, the
allocation of space on the disc can be corrupt.

7-18

File System Utilities

(9) Used space is marked as free space at block <nnnnn>

There is a space on the disc pointed to by a directory entry, however it is
not marked used in the free space table. This space is 1liable to be
reclaimed at any time by the file system for some other file. This message
can occur as a result of other file activity on this disc while FVERI is
running. Run FVERI when the volume is not in use by other programs.

Error Recovery

There are several possible responses to inconsistencies detected in the CI
file system. Minor errors can be ignored. The error can sometimes be
corrected by copying the affected files to another disc or tape, purging
them from the verified disc, then restoring the files. As the files are
restored, the file system will be properly recreated.

In the case of inconsistencies in the free space table (the bitmap), it will
be necessary to save the entire disc to tape using TF. Then initialize the

disc and restore the disc from tape. This procedure should always clear
errors.

The disc save/restore procedure should be used for all errors reported at a
severity of 7T or higher. It should also be used if any other errors are
detected that cannot be cleared by copying the file to a new location.

7-19

Appendix A
Error Messages and Codes

Most of the error messages caused by an operator action are simple self
explanatory messages. But there are some that are displayed in the form of
an error code or in a particular format where a number of variables may be
displayed. The common error formats are described below and the operator
error messages are listed in alphabetic order with the explanation, and
corrective active if not obvious, given under the heading Error Messages in
this appendix. Error codes are given in numerical order following the error
messages.

Error Formats

Error messages have different formats depending upon the operation being
performed. Errors reported by CI in response to commands, such as AS, RU,
SZ, etc, are in the form of brief descriptive messages. For example:

Parameter is not proper for this command
Input is not proper for this command/program

There may be occasions (although rare) when error messages are reported by
the system. For example:

No SAM available at this time to perform the request
The specified LU is not assigned on this system

System program D.ERR is used to generate the text of FMP error messages. If
an FMP error occurs and D.ERR cannot be found by the system, the following
message will be generated:

(warning -250) FMP error xxx

where ‘"xxx" is the FMP error that occurred. The error code -250 is a
warning indicating D.ERR not available.

Some errors are reported in the form of an error code. These are reported
in the form:

FMP error -59

The error codes are listed and described under the heading Error Codes in
this appendix.

A-1

Error Messages

Error Messages

Active working directory
Reported by purge or dismount when you try to purge another user’s

working directory, or when you try to dismount a disc containing a
working directory.

Bad record length

Attempt to read or position to a record not written, or on update to
write an illegal record length; check position or size parameters.

Bad password
The correct password was not supplied.

Break flag detected
User entered BR command, stopping the operation.

Can only run unshared
Reported when a shared program cannot be run because there is no room in
the shared program table. Use LINK to make it non-shareable, or make

room in the shared table by OFF’ing programs or by regenerating the
system.

Cannot access account

Logon error occurred other than the normal user, account, and session
limit errors.

Cannot change that property
Rename operations cannot change whether the file is a directory, nor can
they change the file type, size or record length.

Changed RPL checksum

The program file was linked with a snap that specified different
microcode instructions (RPLs), or the same ones in a different order.
Your program may or may not work, depending on whether it uses any
instructions that are not there. If it does not work, you will receive a
UI (unimplemented instruction) abort. Whenever you get this message, the
program file is changed to make it so that this error will not be
reported again with the current system. It does not fix the problem, if
any, but it keeps you from getting repeated error messages if the program
works anyway.

Connection broken

The remote system monitor TRFAS was restarted since the connection was
opened.

A-2

Error Messages

DCB is not open
Attempt to access an unopened DCB.
Check error code on open attempt.

Device I/0 failed
Illegal read/write on type 0 file Attempt to read/write or position type
0 file that does not support the operation; check file parameters.

Did not ask to read
Specify the 'R’ option in the open request.

Did not ask to write
Specify the W’ option in the open request.

Directory is corrupt
During a directory lock done by MC, DC, IN, PK, CR, or PU, the directory
is scanned for internal consistency. If this occurs, copy the files to
another disc, or just store the ones you need. Normally occurs when a
disc is mounted before being initialized.

Directory is empty
No files are in the specified directory.

Directory is full

No more room in file directory; purge files and pack directory with FMGR
PK command if possible, or try another cartridge.

Directory not empty
Directories can only be purged when they are empty. Purge the remaining
files or move them to another directory; you may want to use a wildcard
purge for this.

Directories not on the same LU
Rename operations do not move data, and data must be on the same LU as
the directory, so rename operations can only rename a file into a
directory on the same LU as the source file.

Directory read protected
You are not allowed to read one of the directories needed to access the

file. You must gain access to the directory by changing the protection
status.

Directory write protected

You are not allowed to write the directory containing the file, so you
cannot change, purge it, or rename it.

Disc error

The disc is down; try again and then report it to the system manager of
facility.

Error Messages

Disc I/0 failed
Reported when D.RTR tries to access an LU that is down, or when any EXEC
error occurs on an FMP disc access.

Disc is locked
Cartridge is locked; initialize cartridge if not initialized, otherwise,
keep trying.

Disc is not mounted
The indicated volume was not mounted, so it cannot be dismounted and
directories cannot be created on it. Try mounting it.

DSRTR not available
The DS transparency source monitor is not RP’d, so DS transparency does
not work. Try to RP DSRTR. This may also indicate invalid characters in
a file name (> or [).

Duplicate directory name
Duplicate name. Check destination of directory being created.

D.RTR EXEC request aborted
D.RTR has tried something unreasonable, probably because of a corrupted
cartridge list or a disc error :

D.RTR not available
D.RTR is not RP’d or has been removed. Check the BOOTEX file for
“RP,D.RTR,D.RTR"; then reboot.

DS error DS08 (0), node 4
Generic error message when a strange DS error occurs. These are in the
DS manual,

DS is not initialized
DS has not been started with DINIT.

DS link is not connected
Hardware problem.

File already exists
A file already exists with specified name; repeat with new name or purge
existing file.

Files are open on LU
This LU cannot be dismounted because one or more files are open. The
name of the first open file is printed by D.RTR.

File is already open

Attempt to open a file already open exclusively, or an FMGR file open to
T programs.

A-4

Error Messages

File read protected
You are not allowed to read this file because of protection, or because
it is a write-only device. Try changing the protection on the file.

File write protected
You are not allowed to write this file because of protection, or because
it is a read-only device. Try changing the protection on the file.

Illegal file position
Attempt to read or write or position beyond the file boundaries; check
record position parameters, result depends on file type and call.

Illegal interrupt from SC20
Reported when an interrupt occurs from a select code which is not in the
system select-code table. Most likely a generation error in select code
specification. Reported by the RTE system.

Illegal LU.
Attempt to access an undefined LU.

Illegal name
File name does not conform to syntax rules; correct name.

Illegal program file
Reported if a program file is not a type 6 file, or it was not loaded
with a snap file compatible with the current system, or it is a
non-transportable file from another system.

Illegal remote access
Usually indicates an internal error. Either an invalid connection number
was specified, or an invalid request was routed to the DS transparency
software.

Illegal use of directory
Directory used when it should not be, such as in creating a file with a
DIR file type extension.

Incorrect security code

Attempt to access a file without the correct security code. Use the
correct code or do not access file.

Input is not proper for this command
There may be a parameter missing or a bad number specified.

Invalid reserved partition request
The partition being assigned a program must exist, must be big enough for
the program, and must not be downed due to a parity error.

LU has old directory

This LU has an o0ld directory, and you did not tell FmpMount to
re-initialize old directories.

A-5

Error Messages

Missing extent

A request was made for a file extent which was missing from the file.
The file is probably corrupt. Purge the file.

More than 255 extents

An attempt to create more than 255 extents was made. Use a file with a
larger initial size.

Must not be remote

The specified file or directory must be on the local system.

Must specify an LU

No

No

No

No

No

No

No

No

No

No

FmpCreateDir could not figure out where to create this directory. Either
supply an LU, or set your working directory to a directory on the LU
where the new directory is to be created.

free ID segments
Cannot restore the program due to lack of ID segments. Try removing
programs no longer needed.

files selected
Nothing matches the mask supplied.

such account
No user has name specified.

such directory
One of the directories needed to find the file does not exist. It may be
misspelled, or you may be using the wrong working directory.

such cartridge
Specified cartridge is not mounted. Check disc specification.

such file
Attempt to access a file that cannot be found. Check the file name or
cartridge number.

such node
The local system does not recognize the node number or name specified.
It may not be in the NRV.

such user
Reported by OWNER command when the user does not exist.

TRFAS at remote system
Remote monitor TRFAS is not RP’d at the remote system.

working directory

Returned by FmpWorkingDir when there is no working directory established,
and by some other calls when a file name is specified with no directory
but no working directory exists.

Error Messages

Program is active
A request to purge an active type 6 file was requested by FmpPurge. The
program must be OF’d before the file can be purged. The swap file cannot
be purged if swapping is enabled.

Program is busy
(Attributes cannot be modified when running/owning a partition) Program
size and partition assignment can only be changed when the program is
dormant and not saving resources. Also returned by XQ command when the
program is running and cannot be cloned with a new name.

Parameter is not proper for this command
Some parameter value entered is out of range.

Program aborted
The program was OF’d or aborted before it ran to completion.

Program name exists
Cannot RP program with that name because there already is one. OF the
old name with the ID parameter, or choose another name.

Ran out of disc space
Disc specified for a disc file has insufficient room for file create.
Could occur when an extent is being created.

Remote system does not respond
The remote system is probably down, or not running DS.

Session limit exceeded

Cannot log on the remote system because +too many sessions are already
logged on.

String is too long
Returned by FmpReadString and FmpWriteString when the passed string is
longer than 256 bytes.

System common changed

Reported when you try to RP a program with system common defined
differently from the current system.

System programs can only be changed by superusers
Return when a general wuser uses the system manager capabilities in
commands such as OF, PR, or SS; also returned if action is taken by a
general user that may affect the operating system.

That LU is not assigned on this system
Invalid LU for a status request; usually not seen from CI. Reported by
the RTE system.

The disc where the program resides is down
Hardware problem with the disc drive preventing execution of the program.

A-T7

Error Messages

Too many directories
D.RTR has no room to record this global directory; may occur on mount or
create directory. Closing some files or dismounting a volume should
provide temporary relief; a long-term solution is to size D.RTR bigger or
open fewer files or have fewer global directories. You may be able to
rename some global directories to be subdirectories.

Too many open files
D.RTR has no room to record the open flag for this file. Closing some
files or dismounting a volume should provide temporary relief; a
long-term solution is to size D.RTR bigger or open fewer files or have
fewer global directories.

Too many remote connections
No more than 64 files can be open at remote systems at any one time.
Each open file requires a connection. Connections can be reclaimed by
closing files.

Unable to schedule program PROGN on interrupt to driver
RTE system interrupt table specifies a program to run on interrupt, but
that program was not dormant when the interrupt occurred. Reported by
the RTE system.

Unknown for FMGR file
Returned when you ask for unavailable information about a FMGR file, such
as time stamps.

Unpurge failed
Disc space or a directory entry occupied by the purged file has been
reclaimed, so the file cannot be recovered.

Value is too big
Check command syntax for valid range.

Value is too small
Check command syntax for valid range.

Value must be positive
Enter proper positive value.

You do not own
You must be the owner of file to change its protection information, and
you must own a directory to change it owner. A system manager is
required to performed the desired task.

Error Messages

Error Codes

FMP error -3
Backspace illegal
Attempt was made to backspace a device (or type O file) that cannot be
backspaced; check device type.

FMP error -u4
Type 2 record length is zero.
Type 2 file record length must be a positive number.

FMP error -9
Attempt to position or force to 1 a type 0 file.
Type 0 files cannot be positioned or be forced to type 1; check file
type.

FMP error -10
Not enough parameters Required parameters omitted from call; enter the
parameters.

FMP error -16
Illegal type or size=0
Wrong type code supplied; attempt to create or purge type 0 file or
create O-length file; check size and type parameters.

FMP error -36
Lock error on device
A call to OPEN or OPENF specified exclusive use of a device which was
already 1locked or no resource numbers were available. Try again or
request non-exclusive use.

FMP error -38
Illegal scratch file number
The legal range of scratch file numbers is 0-99. Check your program.

FMP error -53
Program assigned to bad reserved partition.
The program is assigned to a reserved partition which is "bad" due to a
parity error in a reserved partition which is undefined. Use the AS
command to re-assign the program to a good partition.

FMP error -54
Program is assigned to a reserved partition which is too small
The program is assigned to a reserved partition which is not large enough

to hold the program. The program must be assigned to a larger reserved
partition.

A-9

Error Messages

FMP error -55
No room in shareable EMA table
The shareable EMA table already contains 15 entries. If possible, OF,,ID
any programs not in use that access shareable EMA. Note that all
programs that access a certain shareable EMA area must be OF’d for the
shareable EMA table entry to be deleted.

FMP error -56

Shareable EMA assigned to a non-existent reserved partition

The shareable EMA area wused by the program is assigned to a reserved
partition which was not defined (by the AS command) at system bootup
time. The program must be reloaded to change the shareable EMA assign
number or the system must be rebooted to define the partition. (Remember
that the first program RP’ed that uses a shareable EMA area determines
where it is allocated. Perhaps another program that uses the shareable
EMA area could be RP’d first.)

FMP error -57
Shareable EMA assigned to (or will be allocated in due to a previously
RP’d program) a reserved partition which is too small
The shareable EMA area used by the program is assigned to a reserved
partition which is not large enough to hold it. If all the programs that
access the shareable EMA area do not specify the same shareable EMA size,
this error could result.

FMP error -58

Program assigned to same reserved partition as shareable EMA area.

The program is assigned to the same reserved partition as the shareable
EMA area the program accesses. Both must be in memory for the program to
run, so one must be re-assigned to a different reserved partition. This
error could result if the first program that uses that shareable EMA area
assigns it to a reserved partition in which a second program that
accesses it is assigned to rum.

FMP error -59
Already 63 programs using shareable EMA area
There are already 63 programs RP’d that access the shareable EMA area
specified by the program. No more programs may be RP’d (or run).

FMP error -60 through -100 NOT USED

FMP error -101
Illegal parameter in D.RTR call
Possible operator error; recheck previous entries for illegal or
misplaced parameters.

FMP error -217
Bad directory block
Tag fields in the directory do not match, indicating a corrupt disc or
working directory pointer. Try changing working directories. If that
fails, use the file system status utility to check the situation.

A-10

Error Messages

FMP error -223
Illegal DCB buffer size
DCB buffer sizes must be in the range 1-127 blocks, except for type 0 and
1 files which ignore the size.

FMP error -227
Program does not fit in partition (SC08/09)
The program is <too big for the partition it is assigned to, or for
available memory. Try unassigning the program or assigning it to a
bigger partition.

FMP error -228
No SAM to pass string (SC10)
System does not have enough SAM. Try shortening the string. If
unsuccessful, regenerate the system with more SAM.

FMP error -2u3
Parameter error
One of the parameters specified is not a reasonable value.

FMP error -2uh
Mapping error
One of the VMA file routines got an error mapping VMA.

FMP Error Codes

-001 Disc error

The disc is down; try again and then report it +to the system manager
of facility.

-002 File already exists
A file already exists with specified name; repeat with new name or
purge existing file.

-003 Backspace illegal
Attempt was made to backspace a device (or type 0 file) that cannot be
backspaced, check device type.

-004 Illegal record length
Attempt to create a type 2 file with a zero record length.

-005 Bad record length
Attempt to read or position to a record not written, or on update to
write an illegal record length; check position or size parameters.

-006 No such file

Attempt to access a file that cannot be found. Check the file name or
cartridge number.

A-11

-007

-008

-009

-010

-011

-012

-013

-01k4

-015

-016

-017

-018

-030

-032

A-12

Error Messages

Bad file security code
Attempt to access a file without the correct security code. Use the
correct code or do not access file.

File is already open

Attempt to open file already open exclusively or open to eight
programs or cartridge containing file is locked; use CL or DL to
locate lock.

Attempt to position or force to 1 a type O file
Type O files cannot be positioned or be forced to type 1; check file
type.

Not enough parameters
Required parameters omitted from call; enter the parameters.

DCB not open
Attempt to access an unopened DCB. Check error code on open attempt.

Illegal file position
Attempt to read or write or position beyond the file boundaries; check
record position parameters, result depends on file type & call.

Disc locked
Cartridge is locked; initialize cartridge if not initialized,
otherwise, keep trying.

Directory is full
No more room in file directory; purge files and pack directory if
possible, or try another cartridge.

Illegal name
File name does not conform to syntax rules; correct name.

Illegal type or size=0
Wrong type code supplied; attempt to create or purge type 0 file or
create O-length file; check size and type parameters.

Illegal read/write on type 0 file
Attempt to read/write or position type O file that does not support
the operation; check file parameters, namr.

Illegal LU. LU not assigned to system
Attempt to access an undefined LU.

Value too large for parameter
Value is greater than legal maximum.

No such cartridge
Specified cartridge is not mounted. Check disc specification in call.

-033

-03L

-036

-037

-038

-0k46

-0lg

-050

-053
-099

-101

-102

-103

Error Messages

Ran out of disc space
Disc specified for a disc file has insufficient room for file create.
Could occur during a WRITF if an extent is being created.

Disc already mounted
Disc is mounted as an FMGR or hierarchical volume.

Lock error on device

A call to OPEN or OPENF specified exclusive use of a device which was
already locked or no resource numbers were available. Try again or
request nonexclusive use.

Program is active

A request to purge an active type 6 file was requested by PURGE. The
program must be off’d before the file can be purged. The swap file
cannot be purged if swapping is enabled.

Illegal scratch file number
The legal range of scratch file numbers is 0-99. Check your program.

Greater than 255 extents
An attempt to create more than 255 extents was made. Use a file with
a larger initial size.

Copy verify failed
The verify option of the COPYF routine detected a discrepancy while
verifying a transfer of data. Check the file for correctness.

No files found
A "-" was specified in a namr, but there were no files matching the
mask. Check the mask for correctness.

through 98 NOT USED.

D.RTR EXEC request aborted
D.RTR has tried something unreasonable, probably because the cartridge
list has been corrupted.

Illegal parameter in D.RTR call
Possible operator error; recheck previous entries for illegal or
misplaced parameters.

D.RTR not available
D.RTR is not RP’d or has been off’d; system should be rebooted.

Directory is corrupt

During a directory lock done by MC, DC, IN, PK, CR, PU, the directory
is scanned for internal consistency. If this occurs, copy the files
to another disc, or just store the ones you need.

A-13

-104

-105

-200

-201

-202

-203

-204

-205

-206

-207

-208

-209

-210

A-1h4

Error Messages

Extent not found
A request was made for a file extent which was missing from the file.
The file is probably corrupt. Purge the file.

through 199 NOT USED.

No working directory

Returned by FmpWorkingDir when there is no working directory
established, and by some other calls when a file name is specified
with no directory but no working directory exists.

Directory not empty .
Directories can only be purged when +they are empty. To purge the
directory, purge the remaining files (use a wildcard purge).

Did not ask to read
This file is read-protected. Specify the ’R’ option in the open
request.

Did not ask to write
This file is write-protected. Specify the ’W’ option in the open
request.

File read protected
This file is read-protected or is a write-only device. Change the
protection on the file.

File write protected

This file is write-protected or is a read-only device. Either the
file has write protection set or it has a positive security code which
must be specified K correctly in the open call. Change the protection
on the file.

Directory read protected
One of the directories needed to access the file is read-protected.
Change its protection.

Directory write protected
The directory containing the file is write-protected, so you cannot
change its properties, purge it, or rename it.

Directory already exists
That name already being used. Be sure the directory is being created
where you expect it to be.

No such directory
One directory needed to find the file does not exist. Its name may be
misspelled, or the working directory may be wrong.

Unpurge failed
Disc space or a directory entry occupied by the purged file has been
reclaimed, so the file cannot be unpurged. Not repairable.

-211

-212

-213

-21k

-215

-216

-217

-218

-219

-220

Error Messages

Directories are not on the same LU

Rename operations do not move data, and data must be on the same LU as
the directory, so rename operations can only rename a file into a
directory on the same LU as it was originally.

Cannot change that attribute
Rename operations cannot change whether the file is a directory, nor
can they change the file type, size, or record length.

Too many open files

D.RTR has no room to record the open flag for this file. Close some
files or dismount a volume for temporary relief; a long-term solution
is to size D.RTR larger, open fewer files, or have fewer global
directories.

Disc not mounted
The indicated volume was not mounted, so it cannot be dismounted and
directories cannot be created on it.

Too many directories

D.RTR has no room to record this global directory; this error can
occur on mount or directory create. Close some files or dismount a
volume for temporary relief; a long-term solution is to size D.RTR
larger, open fewer files, or have fewer global directories. Perhaps
some global directories can be renamed as subdirectories.

You do not own

Only the file owner can change its protection information, and only
the directory owner can change the file owner. The system manager
does not get this error.

Bad directory block

Tag fields in the directory do not match, indicating a corrupt disc or
working directory pointer. Change working directories. If that
fails, investigate the situation with the file system status utility.

Must specify an LU

FmpCreateDir could not determine where to create this directory.
Either supply an LU, or set the working directory to a directory on
the LU where the new directory is to be created.

No remote access

The passed name or DCB indicates that this file is located on a
[possibly] remote system, so it must be routed through the DS
transparency software before it is usable.

DSRTR not available

The DS transparency source monitor is not RP’d, so DS transparency
does not work. RP DSRTR.

A-15

-221

-222

-223

-224

-225

-226

-227

-228

-229

-230

-231

-232

-233

A-16

Error Messages

File are open on LU
This LU cannot be dismounted because one or more files are open. The
name of the first open file is printed by D.RTR.

LU has old directory
This LU has an old directory, and FmpMount was not told to
re-initialize old directories.

Illegal DCB buffer size

DCB buffer sizes must be in the range one to 127 blocks, except for
type zero and one files, which ignore the size. This error is also
returned by routines such as FmpCopy when the passed buffer is too
small.

No free ID segments
Cannot restore the program, due to lack of ID segments. Remove
programs that are no longer needed.

Program busy
FmpRunProgram reports that the program named in the XQ command is
busy.

Program was aborted
The program was OF’d or aborted before it ran to completion.

Program doesn’t fit in partition (SC08/09)

The program is too big for available memory or the partition to which
it 1is assigned. Unassign the program or assign it to a bigger
partition.

No SAM to pass string (SC10)

The system does not have enough SAM to pass runstrings. If a shorter
string does not work (it probably won’t), rebooting may help is SAM is
fragmented or may need to regenerate the system to get more SAM.

Active working directory
Tried to purge a working directory or dismount a disc containing a
working directory.

Illegal use of directory
A directory was used illegally (e.g., to create a file).

String is too long
A string longer than 256 bytes was passed to FmpReadString or
FmpWriteString.

Unknown for old file
Requested unavailable information (e.g., time stamp) about an old
file.

No such user
User name not found by FmpSetOwner.

-234

-235

-236

-237

-238

-239

-2ko

-242

-2L3

-24)h

-245

-2L6

-250

Error Messages

Size mismatch on copy
Source and destination file sizes for FmpCopy are incompatible.

Breakflag detected
An FMP routine detected a break sent by the BR command.

Reserved for superuser
Normal user used a command reserved for the superuser.

Must not be remote

A file was specified with a remote system name or account in a
situation where such names are illegal. This error is reported even
if the node specifies (or defaults to) the local system.

Illegal program file
The file named is illegal because:

o It is not a program file.

o It accesses system entry points outside the table in %VCTR and is
being RP’d to a system other than the one for which it is linked.

o It was linked with an incompatible version of %VCTR.

Program name exists
Cannot RP program with that name because another program already has
it. OF the old program with the ID parameter, or choose another name
for the new program.

through 241 NOT USED.

Disc I/0 failed
D.RTR tried to access an LU that was down, or an EXEC error occurred
on an FMP disc access.

Parameter error
An actual parameter has an unreasonable value.

Mapping error
An error occurred while a VMA file routine was mapping VMA.

NOT USED.

System common changed
Tried to RP a program that defines system common differently than it
is defined on the current system.

D.ERR not available

The system program D.ERR (used to generate FMP error messages) cannot
be scheduled. It was not RP’d or it has been OF’d. RP D.ERR.

A-17

Error Messages

The following error codes reflect errors in DS transparency software.

-300

-301

-302

-303

-304

-305

-306

-308

illegal remote access

Usually means an internal error. Either an invalid connection number
was specified, or an invalid request was routed to the DS transparency
software.

too many remote connections

No more than 64 files can be open at remote systems at any one time.
Each open file requires a connection. You can reclaim connections by
closing files.

no such node
The local system does not know anything about the node number or the
name specified. It may not be in the NRV.

session limit exceeded
Can’t log on the remote system because too many other sessions are
already logged on.

no such account
No user has that name.

bad password
The correct password was not supplied.

cannot access account
Some logon error occurred that was not one of the above three.

connection broken
The remote system monitor TRFAS was restarted since the connection was
open.

The following errors are reported by DS software; see the DS manuals for
more details,

-310

-311

-312

-313

-315

A-18

DS is not initialized [DS00]
DS has not been started with DINIT

DS link is not connected [DS01]
Hardware problem.

Remote system doesn’t respond [DS05]
Other system is probably down, or not running DS.

No TRFAS at remote system [DS06]
Remote monitor TRFAS is not RP’d at remote system.

DS error DSXX(X), node YY
Something happened not included in the above. The DS error code is
reported.

Appendix B
Exception Condition Handling

There are situations that do not occur often but when they do, the cause and

the corrective action may not be apparent. These are described in this
appendix.

Unusual File Access Errors

A number of unusual problems can occur when using CI files. The following
paragraphs discuss some of these problems.

Non-Standard File Names

Non-standard characters are those other than A-Z, a-z, 0-9 (not as the first
character), and underscore. The CI file system assigns specific meanings to
the following characters: period, slash, and colon. (However, FMGR files
have different file name requirements as discussed below.) In addition, the
commands which allow masks assign meaning to the minus sign and at sign (@),
and the DS +transparency routines assign meaning to the characters left
bracket ([) and greater-than (>) sign (except as the first character of a
name). Do not use any of these characters in file names; a file called €.€
will not be recognized as such by DL, CO, and PU.

Often, FMGR files have special characters in them. This was a naming
convention, since only six characters were allowed in names. CI can
accommodate FMGR files from the normal CI file commands if the files do not
have any special characters. It is recommended that all FMGR files with
special characters be changed to conform to the CI file system convention as
mentioned above, by renaming them from FMGR.

File Not Found

The CI file system follows a specific file search sequence if the directory
(or subdirectory) is not given. If a file is not within the default search
path, it may not be found. It is easy to forget the directory (subdirectory)
search sequence. It is best to specify the subdirectory/directory name with
the file to prevent accessing the wrong file or receive the "No such file"

message. A quick reference to the CI file system search sequence is given
below:

B-1

Exception Condition Handling

1. When a directory name is specified with a file, such as FILE::XX, the
named directory is searched. If the program can also accommodate FMGR
files, then FMGR discs will also be searched to find such a directory.
If the program only understands FMGR files (such as FMGR, FC and other
subsystems), then only FMGR disc directories will be searched.

2. If no name is specified, then the working directory will be searched, if
there is one. If there is no working directory, all FMGR files are
searched in the order they appear in the cartridge 1list. The directory
name 0, as in FILE::0, is used to search all FMGR cartridges regardless
of whether there is a working directory.

3. Some programs, such as CI and LINK, will look in special directories if
the file 1is specified without a directory name. Programs using FMGR
subroutines will receive the "No such file" message when accessing files
in the CI file system.

Directory Name and FMGR Cartridge Reference

An untimely CRDIR or MC command or tape restore can cause the same name to
be used simultaneously as a global directory and as a FMGR cartridge name.
This situation seldom occurs but can be confusing when it does happen.

Files on a FMGR cartridge called XX are referred to as <filename>::XX. The
same is true for global directories, those directories (not subdirectories)
that are at the top of the CI file structure. It is possible for XX to
refer to both a FMGR cartridge and a global directory at the same time. 1In
this case, if you are running FMGR or FC, the FMGR cartridge XX is used; CI
and other programs will use directory XX. It is recommended that you use
unique names for global directories and FMGR cartridge references.

Unable to Open File or Create Directory

If you try to open a file or create a global directory and receive a message
"Too many open files" or "Too many directories”, it is caused by program
D.RTR running out of table space. D.RTR keeps information about open files
and mounted global directories in the table space at the end of its code
space. The amount of this table space is determined by the SZ command, and
is fixed while D.RTR is running. If you have a large system, this space may
be used up; D.RTR will be unable to open any file, create any global
directory, or mount any volume until the situation is cleared. You can
clear this situation by closing files, or by removing global directories via
purge, rename or dismount commands; but it is best to prevent it by keeping
D.RTR sized to 32 pages and by limiting the number of open files and global
directories to no more than 600 total. (300 of each, 100/500, etc.)

B-2

Exception Condition Handling

OWNER, PROT or WD Command Failures

If an account is purged and subsequently recreated, the directory/file
ownership for that user must be reassigned. Purging an account removes the
user ID number used in the session environment and this number is used for

directory/file ownership. This also applies to moving a disc volume from
one system to another system with a different set of user accounts, causing
incorrect ownership. This problem can also be corrected with the OWNER
command.

Disc Volume Full

There are limits to how much data will fit on a disc. Flexible discs, such
as mini- and micro-floppies, have limited storage space; other discs have
much more space available. When there is no room available to create or
extend a file on a particular volume, the message "Ran out of disc space” is
displayed.

This message means that there is not enough contiguous, free disc space on a
particular volume. There may adequate free space available on other
volumes; or there may be enough free space in the disc but they are smaller
than the needed size on that volume. Files (and directories) never cross
volumes, and they are not broken up into smaller pieces to fit into smaller
areas.

There are several courses of action available. You may be able to create
the file in a directory on another volume which has space. The FREES
program will show how much space is available on a volume. If you have
several volumes, you may be able to choose one with more free space. You
may also be able to create the file with a smaller number of contiguous
blocks; this will help if the free space 1is fragmented into smaller
sections. (The CI CO command tries to create contiguous sequential files if
you do not specify a size.)

If the problem still exists, you may purge the unneeded files to reclaim
disc space. The free space is automatically reclaimed (except on FMGR
cartridges which require packing). Purging a large file may free enough
space, or purging several small files may be sufficient. Some helpful hints
are given below.

1. Archive and purge files that have not been used in a long time. The
command DL €.@ +A will sort by time of last access to help you decide.

2. Purge files which are close to each other; "DL €.8 +L" can be used to
sort by disc location of the main file.

3. Purge larger files to get more space; 'DL €.8 -S" reverse sorts by size.

B-3

Exception Condition Handling

4. Purge any temporary files, left by LINK, Macro, or other program, with a
PU €.€.T command. (Open files are not purged.)

The E qualifier can be used with these commands to search everywhere; this
may or may not be useful, depending on how many volumes and files you have.

If there is not enough contiguous free space available, the FPACK program
can be used to rearrange the files on the disc to produce more contiguous
space. Program FPACK can be run concurrently with other operations.

For a permanent solution, the system must be regenerated to change the way
disc space is allocated. Having fewer, larger volumes will reduce the
number of times that a volume will be full, though it will make the problem
worse if and when it does happen. There are no disc space limits for
individual users, only for volumes; you may want to place directories on
particular volumes to keep them from competing with each other for disc
space.

For FMGR cartridges, disc space 1is generally not reused when files are
purged. The FMGR PK command can be used to reclaim space; files on that
cartridge cannot be used while it is being packed. FPACK cannot be used on
FMGR volumes.

Disc Volume Dismounted

One or more disc volumes may be dismounted or not mounted during system
initialization. All directories on a dismounted volume are inaccessible
until it is mounted again. Accessing files in this case will display the
message "No such directory".

If you get such errors, do not compound the problem by creating the missing
directory on another volume. When you do mount the dismounted volume, you
will get duplicate directory errors (see the MC command for details). You
should mount the missing volume to fix the problem.

A disc volume cannot be dismounted if it has files that are open, restored

programs, or working directories. Thus your more important volumes will
probably not be easily dismountable, while less important volumes will be.

B-}

Exception Condition Handling

Parity Errors

High-speed computer memory is subject to intermittent errors. They are not
very common, but can be bad when they occur. The CI system detects these
errors through parity checking, or corrects these errors with Error
Correcting Circuitry (ECC). If an error occurs which cannot be corrected by
hardware, the CI system handles the error.

If the error occurs in memory occupied by the operating system, by operating
system tables, or by the program being swapped, the system is halted. This
is an unrecoverable error. If the error occurs in a program, the system
aborts the program and reports an error in much the same way as it does for
other types of aborting errors, such as memory protect violations. Other
programs continue to run, and the offending program can be rerun later,
usually without error.

Most parity errors are not reproducible and they are known as soft errors.
Some errors are repeatable and when one of these occurs, the system blocks
off the offending page (or partition if it is a reserved partition), making
that page unavailable for use. This will keep other programs from using the
bad memory location.

Power-Fail

If your system is equipped with a battery backup card, it will be able to
recover from power failures lasting up to several minutes. Battery backup
maintains the state of memory, allowing the system to recover where it left
off when power failed. The following paragraphs explain what happens during
power-fail handling.

The status of programs is maintained during power failures. All data in
memory will be intact, although the program will not run while power is off.
Power to the I/O cards and peripherals is not maintained, so they may be in
an indeterminate state. The operating system notifies all I/O drivers when
a power failure occurs. This allows the drivers to reset the I/0 cards,
along with any other processing the peripheral may require.

Appendix C
Converting FMGR File Calls

This appendix describes a step-by-step procedure to convert FMP calls used
in the FMGR file system environment to CI calls for use in the CI file
system environment. The conversion procedures have been written to assist
in converting programs that may be unfamiliar to the user.

General Considerations

File system calls usually make up a small percentage of a program, so the
conversion effort is minimal since in most cases the program logic should
not have to be changed.

Many of the FMGR calls will still work although it is recommended that
programs be converted to allow full usage of the enhancements available with
the FMP calls.

NOTE

The CI calls do not have any optional parameters. All
parameters in these calls nmust be supplied.

File and Directory Names

File and directory names can contain up to 63 characters, allowing for a
full name including all directories and the ASCII versions of type, size,
etc. A sample file descriptor is shown below.

/population/cities/california/sanjose.txt:::4:24 (48 characters)

File names should be stored in 32-word character buffers if they are
supplied as input to the program. This ensures consistency between
programs. Since names are passed as character strings, it is possible to
use a smaller buffer for file names which are embedded in the program. CI

calls work with unparsed names, so the 32-word buffer replaces the 10-word
namr used by FMGR.

C-1

Converting FMGR File Calls

Global directory names contain up to 16 characters, and can be stored in
8-word character buffers. A subdirectory is treated as part of the file
name by the supplied parsing routines. The global directory name can be
specified as a prefix, as in the following example:

SOURCE/CMDS: :USER:3 or /USER/SOURCE/CMDS:::3
Constructs such as /FILE::DIR produce undefined results.

The directory name can appear in either of +two places: to the left of any
subdirectories or after two colons to the right of the file name. Use the
following conventions to determine where to print the directory name:

o If no subdirectories are specified, print the directory name after the
two colons, as in GRIDLOCK.RUN::PROGRAMS.

o If one or more subdirectories are specified, print the directory name as
a prefix to the subdirectory name, as in FAMILY/GENUS/SPECIES.TXT.

Use file names in FMP calls after the file is opened since many of the FMP
calls work with file names. File names are also useful in reporting errors.

Namr Calls and Strings

Namr calls that parse file names need to be replaced, but be careful not to
change namr calls used for different purposes. Namr calls which are used
only to set up calls to open, create and purge can be removed, as the new
equivalents of these calls do not require parsed file names. Calls which
break apart file names for purposes of examining individual components can
be replaced with a call to FmpParseName in most cases. FmpParseName does
not distinquish subfield types and does not parse up to a comma the way that
Namr does.

FmpParseName does not completely replace Namr. Other wuseful routines
include: SplitString, which divides a character string at a blank or comma,
and DecimalToInt, which converts a character string to a single integer.
Fparm does runstring parsing, returning the file name in a runstring as
separate character variables. (Fparm is not available to Pascal users.)
Descriptions of these routines can be found in the RTE-6/VM Relocatable
Libraries Manual.

c-2

Converting FMGR File Calls

Examples:

Here is an example of code which opens two files whose names are passed in
the runstring:

call getst(buffer,-80,len)

start = 1

if (namr(pbuf,buffer,len,start) .1lt. 0) goto 900
typel = open(dcbl,err,pbuf,0,pbuf(5),pbuf(6))

if (err .1t. 0) goto 920

if (namr(pbuf,buffer,len,start) .1lt. 0) goto 900
type2 = open(dcb2,err,pbuf,0,pbuf(5),pbuf(6))

if (err .1t. 0) goto 920

This can be replaced by:

filel = * °

file2 = * °

call fparm(filel,file2)

if (filel .eq. ’ * .or. file2 .eq ’ ’) goto 900
typel = fmpopen(dcbl,err,filel,’ro’,1)

if (err .1lt. 0) goto 920

type2 = fmpopen(dcb2,err,file2,’ro’,1)

if (err .1lt. 0) goto 920

Note that Namr was not used.

The next example shows a sequence without character strings.

It illustrates constructing string descriptors, which are the
double integer (integer*l) variables in the following example.

The function STRDSC takes parameters of buffer, starting character
and number of characters, and returns a string descriptor.

Here it is used to create string descriptors for the file name

and option strings (a constant ’ROS’):

integer*l strdsc,string,filel,file2,options
call getst(buffer,-80,len)
string=strdsc(buffer,1,len)
filel=strdsc(bufferl,1,6k)
file2=strdsc(buffer2,1,64)

call splitstring(string,filel,string)

call splitstring(string,file2,string)

if (blankstring(filel) .ne. 0 .or. blankstring(file2) .ne. 0)) goto 900
options = strdsc(3hR0S,1,3)

typel = fmpopen(dcbl,err,filel,options,1)
if (err .1t. 0) goto 920

type2 = fmpopen(dcb2,err,file2,options,1)
if (err .1t. 0) goto 920

c-3

Converting FMGR File Calls

String descriptors describe strings by identifying where they can be found
and how big they are. Once a string descriptor is set up, it can be used
indefinitely. The buffer it points to can be changed through the string
descriptor or through direct changes. In the above example, ’splitstring’
changes the referenced buffer, and ’blankstring’ tests for an all blank
string.

The file system assigns default values for type and size when the file is
created. The following example shows how the +type and size values can be
changed. In the example, the code sequence constructs the name of a debug
file from the name of a type 6 file according to the following rule: if the
type 6 file name has a .RUN type extension, then create a file with the same
name and a .DBG extension; otherwise create a file with the same name but
insert an ’at’ sign (@) in front of it, because this is a FMGR file. Make
the file type 1, block size 96:

character pname*64, name*6l4, dir*16, typex*h, ds*6lh

call fmpparsename (pname,name,typex,sc,dir,d,d,d,ds)
if (typex .eq. 'RUN’) then
call fmpbuildname(pname,name,’DBG’,sc,dir,1,96,0,ds)
else
call fmpbuildname(pname,’@’//name,typex,sc,dir,1,96,0,ds)
endif

Open and Openf Calls
All OPEN and OPENF calls are replaced by FmpOpen calls. Handling of file
name parsing and character string is the same as previously described. 1In
addition, be aware of how options and buffer sizes are specified. For
example, the FMGR call:

type = open(dcb,err,pbuf,0,pbuf(5),pbuf(6),256)
specifies exclusive open for reading and writing (assuming the security code
matches), with no other unusual options. It wuses a 256-word DCB buffer, so
the DCB should be declared as 256+16=272 words.
To get the same effect with CI calls, the call would be:

type = fmpopen(dcb,err,name, ’rwo’,2)

c-X

Converting FMGR File Calls

Note that character options ’rwo’ have been specified. Reading and writing
are specified by ’rw’. The ‘o’ option means it is allowed to open an FMGR
file, but not to create a new one. (This is discussed more under the
section describing the CREAT call.) Other options available and their octal
equivalents in the option word of the OPEN call are:

1: shared access: ’s’
2:

update mode: ’u’
4: force to type 1: ’f’
10: supply subfunction: no equivalent, see FmpSetIoOptions
20: (not defined)
b b

40: permit extents: ’x

The option word must be specified in a CI call. In converting an FMGR call,
start with ’rwo’, then add the other options to match the FMGR call options.
For example, an option word 45B (open, permitting type 1 and type 2 extents,
forced to type 1 and shared) would be option word ’rwoxfs’. The option
characters can come in any order. If it is known that the file will be used
only for reading or only for writing, omit the ’w’ or ’r’ respectively. Use
the shared option only for reading files; do not use it for writing without
providing synchronization.

Note that the buffer size is specified in blocks, rather than in words. The
buffer size needed is the OPEN buffer size divided by 128:

type = fmpopen(dcb,err,name,options,256/128)

The buffer size parameter must be supplied; if the FMGR call didn’t supply a
buffer size, use a value of 1.

FmpOpen call accepts a logical unit number as in the OPENF call, but the
logical unit number must be a string. For example,

type = fmpopen(dcb,err,’6’,’wo’,1)
is correct, but

type = fmpopen(dcb,err,6,’wo’,1)
does not work, because the logical unit number is an integer, not an ASCII
string. If the logical unit is non-interactive, FmpOpen will try a logical
unit lock with wait unless the file open is shared.
Note that CI files can be opened to a large number of programs (more than
7), but there must be room in D.RTR’s internal table for the open flag. If
there is not enough room, the open will fail. One program can have the same

file open several times (if file is shared); this is different from how it
used to be when a file is only open to a program once.

C-5

Converting FMGR File Calls

READF and WRITF Calis

For sequential files, (type 3 and above, and type 0), READF calls are
replaced by FmpRead calls, and WRITF calls are replaced by FmpWrite calls.
They are similar to the FMGR calls, except that lengths are passed in and
returned as byte lengths, not word lengths. The length read is returned
only as a function value, so calling FmpRead as a subroutine will probably
not produce the desired results.

For example, the following FMGR call sequence

call readf(dcbl,err,buffer,128,1len)
if (err .1lt. 0) goto 900

call writf(dcb2,err,buffer,len)

if (err .1lt. 0) goto 910

is replaced by:

len = fmpread(dcbl,err,buffer,256)
if (err .1lt. 0) goto 900
call fmpurite(dcb2,err,buffer,len)
if (err .1lt. 0) goto 910

Now len is in bytes. If the program is expecting to use words, you can
either change the program to deal with byte lengths (including odd byte
lengths), or you can convert len to words:

if (len .ne. -1) len = (len+l)/2

End of file is reported as err = 0, len = -1. Do not try to use FmpWrite
with a length of -1 +to write an explicit end of file, as this will write O
bytes (see below).

For random access files (type 1 and 2), READF and WRITF calls are converted
to an FmpPosition call followed by an FmpRead or FmpWrite call. The
straightforward way +to do this is to position via (double integer) record
number; this is requested by using an internal position parameter of (double
integer) -1. (Refer to the FmpSetPosition description for details.)

c-6

Converting FMGR File Calls

For example, the following code

call readf(dcbl,err,buffer,len,dummy,rrec)
if (err .1lt. 0) goto 900

call writf(deb2,err,buffer,len,wrec)

if (err .1lt. 0) goto 910

is replaced by:
integer*l drec

drec = rrec

call fmpsetposition(dcbl,err,drec,-1J)
if (err .1lt. 0) goto 900

call fmpread(dcbl,err,buffer,len*2)

if (err .1t. 0) goto 900

drec = wrec

call fmpsetposition(dcb2,err,drec,-1J)
if (err .1t. 0) goto 910

call fmpwrite(dcb2,err,buffer,len*2)
if (err .1lt. 0) goto 910

Be careful not to pass single integers to FmpSetPosition. A called
subroutine cannot determine what kind of integer was passed, so

FmpSetPosition will use the single integer as the upper half of a double
integer.

CLOSE Calls

Non-truncating calls to CLOSE can be replaced by calls to FmpClose:
call close(dcb) => call fmpclose(dcb,err)

Pass the error parameter, even 1if no error can occur. FmpClose stores a
value through the error parameter.

Truncating CLOSE requires two or three calls, depending on whether or not
the user knows the truncation size. The sequence to truncate a file at the
current position used to be:

call locf(dcb,err,rec,block,offset,size)
if (err .1t. 0) goto 900

tblocks = (size/2) - (block+1l)

call close(dcb,err,tblocks)

if (err .1t. 0) goto 900

c-7

Converting FMGR File Calls

Now it is:

integer*h record, position, newsize

call fmpposition(dcb,err,record,position)

if (err .1t. 0) goto 900

newsize = (position+127)/128 for type 3, (position/128)+1
call fmptruncate(dcb,err,newsize)

if (err .1t. 0) goto 900

call fmpclose(dcb,err)

if (err .1lt. 0) goto 900

Note that the CLOSE call specified the number of blocks to truncate, while
the converted code specifies the desired file size. The new sequence will
truncate extra extents, which was not possible before. All sizes are double
integers. There is no call provided for this sequence because it is not
common.

Note that truncating to zero size does not purge the file. It leaves a one
block file.

CREAT and CRETS Calls

All CREAT and CRETS calls are replaced by FmpOpen calls which specify the

’¢’ option, meaning it is allowed to create the file. These calls are
similar to the OPEN and OPENF call. Refer to the description of OPEN and
OPENF for conversion details. Additional size, type and record length

information is passed as ASCII, appended to the name; FmpBuildName is useful
for creating ASCII strings.

Any options wused in an OPEN call can be specified when creating a file.
CREAT sets up default options of nonshared update mode, so to create the
equivalent code sequence, use the string ’rwcu.’

For example,

call creat(dcb,err,pbuf,pbuf(8),pbuf(7),pbuf(5),pbuf(6))
if (err .1t. 0) goto 900

is replaced by:

call fmpopen(dcb,err,name,’rwcu’,1)

Converting FMGR File Calls

This will give an error -2 if the file exists. Specifying both ’o0’ and ’c¢’
will open the existing file, or create a new one if necessary. Note that
this sequence followed by opens can be replaced by a single FmpOpen call:

call creat(dcb,err,pbuf,2y4,3,pbuf(5),pbuf(6),256)
if (err .eq. -2) then

call open(dcb,err,pbuf,0,pbuf(5),pbuf(6),256)
endif
if (err .1t. 0) goto 900

is replaced by:

call fmpopen(dcb,err,name, ’rwoc’,2)
if (err .1t. 0) goto 900

Handling of scratch files consists of creating a name which is unique and a
bit which indicates that this file is not important. The program that
creates the scratch file must purge it before exiting. The file system does
not automatically purge scratch files, although a wildcard purge of all
scratch files can be specified. This eases the problem of having scratch
files disappear when they are closed briefly.

To create an extendible type 1 scratch file with a starting size of 2k
blocks, the FMGR calling sequence

call crets(dcb,err,0,name,24J,1,sc,cr)
if (err .1t. 0) goto 900

call open(dcb,err,name,40b,sc,cr)

if (err .1t. 0) goto 900

is replaced by:

call fmpuniquename(’TEMP’,name)
call fmpopen(dcb,err,name//’:::1:24°, ructx’,1)
if (err .1t. 0) goto 900

The *t’ option specifies this is a scratch file. Note that this file goes
on the working directory. This only causes a problem if the working
directory is currently on a small or slow disc, when a larger or faster disc
is available elsewhere. One possible solution is to create the file on
directory SCRATCH or some such special name, then try again on the working
directory if the special directory does not exist.

In this example the unique name has a prefix ’'TEMP’. This is of no special
significance, except that some prefix must be supplied to differentiate the
name from a number. If there is a chance the scratch file will go on an
FMGR cartridge, then the prefix should be short (one character) to keep from
getting duplicate six-character names. In any case, the name must be known
in order to purge the file.

Converting FMGR File Calls

APOSN, LOCF and POSNT Calis

File positioning is also discussed in the section covering random access
READF and WRITF calls. APOSN and LOCF wuse internal file pointers, while
POSNT positions by record number. These functions are performed with
FmpPosition and FmpSetPosition for CI files.

Two position pointers are maintained for open disc files, a record number
and an internal file position. The internal file position is the word
offset from the first word of the file. To record the current record number
and internal file position, use FmpPosition. Note that it always returns
double integer values, even if single integers were passed. For example,
the LOCF call

call locf(deb,err,record,block,offset)
if (err .lt. 0) goto 900

is replaced with

integer*l drecord, dposition
call fmpposition(dcb,err,drecord,dposition)
if (err .1lt. 0) goto 900

The new internal position value is related to the previous
value: position = block * 128 + offset.

Use caution when changing LOCF calls. They contain much information, and it
is not always easy to tell what is used and what is not. FmpPosition only
returns file position. Other LOCF information can be obtained using the
FmpSize and FmpEof calls. The FmpSize call returns the total size of the
file in blocks, not the size of the main part of the file in sectors. The
FmpEof call tells how much of the file is being used. There is no CI call
to return the logical unit of a file, because the logical unit cannot be
used in place of the directory name. The FmpRecordLength call returns file
record length; FmpOpen returns file type when it opens the file.

To restore file position to a place recorded with APOSN, use FmpSetPosition.
For example:

call aposn(dcb,err,record,block,offset)
if (err .1lt. 0) goto 900

is replaced by:
integer*l4 drecord, dposition

call fmpsetposition(dcb,err,drecord,dposition)
if (err .1lt. 0) goto 900

c-10

Converting FMGR File Calls

This works for any type disc file. FmpSetPosition knows to use the internal
position recorded by FmpPosition because the passed ©position is a
non-negative value. If the position is negative, it 1is ignored and
positioning is done by record number (see below.) The record number
parameter is only used to set up the record number in the DCB for use later
by calls which position by record number.

FmpSetPosition is also used to position files by record number. Positioning
type 1 and 2 files has already been discussed under READF and WRITF.
Positioning type 0 and type 3 and above files has been described in the
FmpPosition description in Chapter 6. POSNT can position to an absolute
record number, or to a record number relative to the current position.
FmpSetPosition always positions to an absolute record number; however,
relative positioning can be achieved by first using FmpPosition to see where
you are, then adding the offset to get the absolute record number.
(FmpSetPosition always positions relative to the current record number in
the DCB, so if this is wrong you will not end up at the right absolute
record number.) Remember that positioning sequential files by record number
can be very slow.

For example, to position to absolute record 100, then skip backward 10
records, using POSNT:

call posnt(dcb,err,100,1)
if (err .1t. 0) goto 900

call posnt(dcb,err,-10,0)
if (err .1t. 0) goto 900

The above sequence can be replaced by:

integer*l4 drecord, dposition
call fmpsetposition(dcb,err,100J,-1J)
if (err .1t. 0) goto 900

call fmpposition(dcb,err,drecord,dposition)
if (err .1t. 0) goto 900
call fmpsetposition(dcb,err,drecord-10,-1J)
if (err .1t. 0) goto 900

The -1J parameter passed as the file position indicates that only the record
number is to be used for positioning, as with type 1 and 2 files.

c-11

Converting FMGR File Calls

PURGE and NAMF Calls

PURGE calls are replaced by FmpPurge calls, and NAMF calls are replaced by
FmpRename calls. The CI calls do not work if the file is open to anyone,
including the caller, so the file should be closed first. These calls do
not require the caller to pass in a DCB.

The following PURGE call,

call purge(dcb,err,pbuf,pbuf(5),pbuf(6))
if (err .1t. 0) goto 900

is replaced by:

call fmpclose(dcb,err)
err = fmppurge(name)
if (err .1lt. 0) goto 900

The following NAMF call,

call namf(dcb,err,pbuf,newname,pbuf(5),pbuf(6))
if (err .1t. 0) goto 900

is replaced by:

call fmpclose(dcb,err)
err = fmprename (cldname,errl,newname,err2)
if (err .1t. 0) goto 900

Extended Calls

Extended calls (ones that start with E, i.e., EREAD, EWRIT, ECREA) are

replaced in the same way as their non-extended equivalents. These calls
work with large files as a standard feature.

The creation of a file larger than 32767 blocks is slightly complicated.
The user must pass in an ASCII file size which is the negative number of
128-block ‘chunks"” in the file, so that a 50000 block file would be
represented as -(50000+127)/128 = F0O:::-391. This will really create a
50048 block file. Maximum file size is 32767 * 128 blocks, which is about 4
million blocks or 1 billion bytes.

C-12

Converting FMGR File Calls

Other Calls

CI calls that perform the functions done by Rwndf, Post and Fcont are
FmpRewind, FmpPost and FmpControl, respectively. Their wuse is not
illustrated here, but is described in Chapter 6.

Accessing FMGR Files

This section describes what happens when a CI call refers to a FMGR file,
which provides the same level of service as is obtained with FMGR calls
referring to FMGR files. The caller can open, create, or purge files on
FMGR disc cartridges. This is straightforward if the cartridge is
specified, and if there is no new directory with this name. The cartridge
can be specified as +CRN or -LU. The following paragraphs discuss the cases
where the cartridge is not specified.

If there is a CI directory with the same name as an FMGR cartridge CRN, then
that cartridge cannot be accessed via the CI calls, although it can be with
FMGR calls. (CI calls first check CI directories, while FMGR calls first
check disc cartridges.) In general, it is confusing to have a CI directory
with the same name as a disc cartridge, so it is not recommended (although
it is allowed).

If the directory is not specified, e.g., FOO or F00:::3, and the user has a
working directory, only that directory is searched. If the directory is
explicitly specified as 0, F00::0, or FOO::0:3, then all of the FMGR disc
cartridges mounted to this user will be searched. This also applies to the
case where there is no working directory and a directory is not specified.
This is one way to get a multiple disc search with the CI calls, and it only
searches FMGR disc cartridges.

Calls which specify a file name only work with FMGR files if the information
is available in the FMGR directory. Thus, a user can get the name of an
FMGR file, but cannot get the timestamps or position of end-of-file. 1In the
latter cases, the FMGR cartridges are not even searched, even if a disc
cartridge name is specified. A summary is given below.
Calls that pass file names and work with FMGR files:

FmpOpen, FmpPurge, FmpRename, FmpSize, FmpAccess
Calls that pass file names but do not work with FMGR files:

FmpCreateTime, FmpAccessTime, FmpUpdateTime, FmpEof,

FmpCreateDir, FmpSetWorkingDir, FmpUnpurge,
FmpSetOwner, FmpSetAccess

C-13

Converting FMGR File Calls

Calls that do not pass file names and do not work with FMGR files:
FmpSetDirInfo, FmpOpenFiles

Other calls that do not pass file names work with FMGR files.

NOTE
If the directory name is found on a disc cartridge,
then the FMGR rules for parsing namrs apply. Dots and

slashes in names are not significant on FMGR
directories. The name is truncated to six characters.

Accesses to FMGR directories follow all rules for the FMGR file system, such
as that for open flags and extent creation. The same protection checks
(security code, etc.) are made, although it is not guaranteed that all
invalid requests will be caught (such as illegal characters in file names.)
FMGR file system error codes are returned when appropriate.

Calls which specify a DCB work regardless of whether the file is FMGR or CI,
including read, write, position, etc. This includes files with extents, and
files with odd byte length records.

Standard Type Extensions

File type extensions are used to replace the special characters used in FMGR
to designate a group of files, e.g., % for relocatables and & for source,
etc. The following is a list of the standard file type extensions used in
the CI file system.

.ABS absolute file

.CMD transfer file

.DAT data

.DBG debug information file
.DIR directory

.FIN FORTRAN source

.LIB indexed library

.LOD loader command file
.LST list file

.MAC Macro source

.MAP load map

.PAS Pascal source

.REL relocatable

.RUN loczded program

.STK command stack file
.TXT text (reports, etc.)

Cc-14

INDEX

$AUTO LOGOFF, 2-20, 2-2k
$LOG, 2-20

$OPSY, 2-20
$PROMPT, 2-20
$RETURN1, 2-20
$RETURN2, 2-20
$RETURN3, 2-20
$RETURNL, 2-20
$RETURNS, 2-20
$RETURN S, 2-20
$RU_FIRST, 2-21
$SAVE_STACK, 2-21
$SESSION, 2-21
$WD, 2-21

/ display command stack, 5-63
/n/ command, 5-66

? command, 5-62

A

Aborting a program, 5-29
accessing FMGR files, C-13
advance one file, 2-13
advance one record, 2-13
advance paper, 2-13

AG command, 5-1

APOSN call, C-10

AS command, 5-2

assign code partition, 5-2
assign program to a partition, 5-2
assigning partitions, 4-11

bit map, 3-33
BL command, 5-3
blank file type extension, 3-3
BR command, 5-3
break program execution, L-8
break up program execution, 5-3
buffer ’

DCB, 6-2

user, 6-10
buffer limit, 5-3

Index-1

INDEX

C

Calc_Dest Name, 6-16
calling FMP subroutines, 6-2
change

command stack display size, 5-66

directory owner, 5-30

program priority, 5-35

protection for all files in a directory, 3-27
protection status, 5-36

subdirectory owner, 5-30

time-out values, 2-15

VMA requirement, Y4-12

working directory, 5-57

changing

a working directory, 3-29
automatic buffering, 5-19
directory owner, 3-30

directory protection, 3-31

file protection, 3-26

FMGR disc to CI disc volume, 7-1
I/0 device attributes, 2-1k
memory requirements, L4-10
program priority, U4-9
subdirectory protection, 3-31
time-out limit, 5-49

timeslice guantum, 5-39

virtual memory area requirement, 4-12

character strings, 6-5
chunk, 3-10

CI

CI

error codes, A-1

error format, A-1

error messages, A-1, A-2
file system, 6-1

help file, 5-62

SET command, 2-18

UNSET command, 2-18
command

AG, 5-1, 5-2

BL, 5-

BR,
CL,
CN,
co,
CR,
CRDI
Ccu,
DC,
DL,
DN,

1
o AV AR g g VN

-10

1
RRPP

(G RV, RAC, R, RC, RV, RV, RV, RV)|
-
=~ W NN DWW

Index-2

RTE-6/VM CI User’s Manual

RTE-6/VM CI User’s Manual

ECHO, 2-1, 5-18
EQ (buffering), 5-19
EQ (status), 5-19

EX,
GO,

HE, 5-20, 5-62
IF-THEN-ELSE-FI, 2-23, 5-21

IN,
IT,
LI,
LU,
MC,
MO,
OF,
ON,

OWNER, 5-30
PATHs 3'2, 5_31

PR,

PROT, 5-36

PU,
Qu,

RETURN, 2_13 2'233 5—39

RN,
RP,
RU,

SET, 2-2, 2-18, 5-u5

SL,
Ss,
ST,
Sz,
TI,
™,
TO,
IR,
UL,
UNPU
UP,
UR,
Vs,

WD,
WH,

WHILE-DO-DONE, 2-23, 5-59
WHOSD, 3-2, 5-60

ws,
XQ,

CI features, 1-4

CI files FMP calls, 6-1
CL command, S-U4
cloning a program, 4-5
CLOSE utility, 3-u41
CLOSE call, C-T

5-19
5-20

5-22
5-24
5-25
5-26
5-27
5-27
5-29
5-29

5-35

5-37
5-39

5-L1
5-42
5-U43

5-U5
5-46
5-4UT
5-4T
5-L48
5-L49
5-U49
5-51
5-5U

’ 5—5h
UNSET, 2-2, 2-18, 5-55

5-55
5-56
5-56
5-57
5-58

5-61
5-62

INDEX

Index-3

INDEX

closing remote files, 3-U41
CN command, 5-4
CO command, 5$-5
command
CN, S5-4
GO, 5-20
OF, 5-29
command file, 2-17, 5-51
Command Interpreter description, 1-4
command stack, 2-5
command syntax conventions, 1-7
comparison between CI and FMGR, 1-1
control structure, 2-23
IF-THEN-ELSE-FI, 5-21
WHILE-DO-DONE, 5-59
controlling devices, 2-13
controlling execution of command file, 5-21
converted CI directory entries, 7-3
converting FMGR File calls, C-1
converting to CI directory structure, 7-1
copying files, 3-22, 5-5
CPU utilization, 5-12
CR command, 5-7
CRDIR command, 5-10
CREAT call, C-8
create a directory, 5-10
create a file with CR command, 5-7
create a subdirectory, 5-10
creating a directory, 3-28
creating a file, 6-U43
creating a subdirectory, 3-28
creating empty files, 3-26
CRETS call, C-8
CU command, 5-12

D

Data Control Block (DCB), 6-2
data transfer to and from devices, 3-36
DC command, 5-12
DCB (Data Control Block), 6-2

buffer size, 6-2

for type 0/1 files, 6-2
DcbOpen, 6-16
default file

directory, 5-9

size, 5-9

type, 5'9

type extension, 5-9

Index-4

RTE-6/VM CI User’s Manual

RTE-6/VM CI User’s Manual

default search sequence, 3-32

command
program

files, 5-52
files, 5-43

define variables, 5-45

defining UDSP, 3-32

delete user-defined variable, 5-55
description of FMP routines, 6-12
destination masks, 3-17

device control, 5-U4

request,

5-4

device operational status, 2-1L
device time-outs, 2-15
limit, 5-49

differentiating directories and subdirectories, 3-6

dir (file descriptor parameter), 6-3

directory,

3-4, 6-1, 6-3

and file names, C-1
description, 3-27
listings, 3-19, 5-13

name and FMGR cartridge reference, B-2
c-2

names,

protection, 3-11
disc volume description, 3-33
disc volume dismounted, B-k4
disc volume full, B-3
dismount disc volume, 5-12
dismounting a volume, 3-34
display directory owmer, 5-30
display files in a directory, 5-13
display I/O controller status, 5-19

display LU

information, 5-26

display parameters at terminal, 5-18
display program size, 5-U7

display program status, 5-47
display protection status, 5-36
display session LU information, 5-45
display subdirectory owner, 5-30
display system status, 5-58

display system time, 5-U49

display time, 5-48

display UDSP, 5-31

display variables, 5-45

display VMA size, 5-56

display VMA working set size, 5-61
display working directory, 5-5T7

displaying
displaying
displaying
displaying
displaying
displaying
displaying

device time-out value, 2-16
directory owner, 3-29
directory protection, 3-31
I1/0 configuration, 2-11
memory usage, 2-10

program status, 2-7
subdirectory protection, 3-31

INDEX

Index-5

INDEX

displaying system time, 2-16

displaying time-out limit, 5-49
displaying working directory, 3-29

DL command, 5-13
DN command, 5-17
down a device, 5-17
down an I/O controller, 5-17
DS

and FMP calls, 6-84

node, 6-3

routines, 6-85%

user, 6-3
DS file access, 3-38

considerations, 3-40
DsCloseCon, 6-86
DsDcbWord, 6-86
DsDiscInfo, 6-87
DsDiscRead, 6-87
DsFstat, 6-88
DsNodeNumber, 6-89
DsOpenCon, 6-89
DsSetDcbWord, 6-90

E

ECHO command, 2-1, 2-22, 5-18
examples, 2-22

ECREA call, C-12

EQ command
(buffering), 5-19
(status), 5-19

EREAD call, C-12

error codes, 6-9, A-9

error formats, A-1

error messages
FSCON, T-4
FVERI, T7-15

EWRIT call, C-12

EX command, 5-19

examine
buffer limit, 5-3
timeslice quantum, 5-39

executing a command sequence, 2-17
executing a series of commands, 2-17
execution control structures, 2-23

Index-6

RTE-6/VM CI User’s Manual

RTE-6/VM CI User’s Manual INDEX

F
FattenMask, 6-17
file

chunks, 3-10

identification, 3-1
ownership, 3-11
properties, 3-1
protection, 3-11
protection errors, B-3
renaming, T7-3
size, 3-10
file and directory names, C-1
file descriptor, 3-3, 6-3, 6-8
definition, 5-7
delimiters, 1-6
examples, 3-U4
field default values, 5-9
format, 3-3, 6-3
parameters, 6-3
file directories, 6-1
File Management Package (FMP), 6-1
File Manager (FMGR), 6-1
file mask, 1-6, 3-13, 5-13
field, 5-13
qualifier field, 3-14
file name, 1-6
file names, 3-1, 3-3, 6-3
ending with @, 3-16
example, 3-3
file not found, B-1
file protection, 3-11
errors, B-3
file system
utilities, T7-1
verification, T7-13
file type, 3-9
extension, 3-8, 6-3
extension definition, 5-7
filenames, 1-8, 6-3
definition, 5-8
parameter, 6-3
files, 1-8, 6-1
filling CI directory entries, T7-3
find LU numbers of unmounted volumes, 3-35
finding a file, 3-31
fixed length strings, 6-5
FMGR compatible file descriptor format, 6-3
FMGR files, 3-37
FMGR FMP calls, 6-1
FMGR to CI call conversion considerations, C-1
FMGR to CI file conversion requirements, T7-1
FMP calls and DS, 6-8Y4

Index-T7

INDEX

FMP calls, 6-1, 6-2
calling sequence, 6-2
parameters, 6-2

FMP example
advanced, 6-93

mask, 6-92

programs, 6-90

Read/Write, 6-90
FmpAccessTime, 6-17

FmpAppend, 6-18

FmpBitBucket, 6-19
FmpBuildHierarch, 6-19
FmpBuildName, 6-21
FmpBuildPath, 6-22
FmpCloneName, 6-24

FmpClose, 6-25
FmpControl, 6-25

FmpCopy, 6-26
FmpCreateDir, 6-27
FmpCreateTime, 6-28

FmpDevice, 6-29
FmpDismount, 6-29
FmpEndMask, 6-30

FmpEof, 6-30

FmpError, 6-31

FmpExpandSize, 6-31

FmpFileName, 6-32

FmpHierarchName, 6-33
FmpInfo, 6-33

FmpInitMask, 6-34

FmpInteractive, 6-35
FmpIoOptions, 6-35

FmpIoStatus, 6-36

FmpLastFileName, 6-36
FmpList, 6-37

FmpLu, 6-38
FmpMaskName, 6-38
FmpMount, 6-39

FmpNextMask, 6-L40

FmpOpen, 6-2, 6-41

C option, 6-43

creating a file, 6-U43

D

F
n
Q
S
T
U
X

FmpOpenFiles, 6-46

option,
option,
option,
option,
option,
option,
option,
option,

Index-8

6-4Y
6-uk
6-45
6-4l
6-ul
6-45
6-45
6-U45

RTE-6/VM CI User’s Manual

RTE-6/VM CI User’s Manual

FmpOpenScratch, 6-47
Z option, 6-48
FmpOwner, 6-49
FmpPackSize, 6-49
FmpParseName, 6-50
FmpParsePath, 6-52
FmpPosition, 6-54
FmpPost, 6-10, 6-55
FmpProtection, 6-56
FmpPurge, 6-56
FmpRead, 6-5T7
FmpReadString, 6-59
FmpRecordCount, 6-59
FmpRecordLen, 6-60
FmpRename, 6-61
FmpReportError, 6-62
FmpRewind, 6-62
FmpRpProgram, 6-63
FmpRunProgram, 6-65
FmpRwBits, 6-66
FmpSetDcbInfo, 6-66
FmpSetDirInfo, 6-67
FmpSetEof, 6-68
FmpSetIoOptions, 6-69
FmpSetOwner, 6-69
FmpSetPosition, 6-70
FmpSetProtection, 6-71
FmpSetWord, 6-T72
FmpSetWorkingDir, 6-T73
FmpShortName, 6-T4
FmpSize, 6-Th
FmpStandardName, 6-T75
FmpTruncate, 6-75
FmpUdspEntry, 6-T76
FmpUdspInfo, 6-T77
FmpUniqueName, 6-T77
FmpUnPurge, 6-78
FmpUpdateTime, 6-78
FmpWorkingDir, 6-T9
FmpWrite, 6-80
FmpWriteString, 6-81
FOWN utility, 7-11
examples, T7-12

operating instructions, 7-11

runstring, 7-11
FPACK utility, T7-5

runstring, 7-5
FREES utility, T7-10

operating instructions, 7-10

runstring, 7-10

INDEX

Index-9

INDEX RTE-6/VM CI User’s Manual

FSCON utility, 7-1
error messages, 7-UL
operating instructions, 7-2
runstring, 7-2

FVERI utility, 7-13
error messages, 7-1%
error recovery, 7-19
operating instructions, 7-1h
runstring, 7-1k

G

getting help, 2-b
global directories, 1-2
GO command, 5-20

H
HE command, 5-20, 5-62
1-J~-K

I/0 suspension, 5-50

I/0 control request examples, 2-14
I/0 device reference, 3-19

ID segment description, U4-1
IF-THEN-ELSE-FI command, 2-23, 5-2
immediate program termination, 4-8
IN command, 5-22

initialize disc LU, 5-22
initialize disc volume, 5-22
initializing volumes, 3-35
Interrupts, 5-50

interval timer command, 5-24
introduction to files, 1-6

IS command, 5-23

IT command, 5-24

L

LI command, 5-25

list files, 5-25

list mounted disc volumes, 5-U4
listing data from 1/0 LU, 3-36
listing files, 3-20

listing volumes, 3-35

LOCF call, C-10

logical read, 6-10

logical transfer, 6-10

1lu, 1-8

LU command, 5-26

1

Index-10

RTE-6/VM CI User’s Manual

macro, 6-8

manipulating directories, 3-27
manipulating volumes, 3-33

manual conventions, 1-7

mask, 1-8

MaskMatchLevel, 6-82

MaskOldFile, 6-82

MaskOpenld, 6-83

MaskSecurity, 6-83

maximum DCB buffer size, 6-2
maximum program runstring length, 5-43
MC command, 5-27

minimum DCB buffer size, 6-2
mixed file descriptor format, 6-3
MO command, 5-27

modify buffer limit, 5-3

modify LU assignment, 5-26
modify partition priority aging, 5-1
modify program size, 5-UT7

modify UDSP, 5-31

modify VMA size, 5-56

modify VMA working set size, 5-61
mount disc LU, 5-27

mount disc volume, 5-27

mounting a volume, 3-3k

move files, 5-27

moving directories, 3-30, T7-T
moving files, 3-23, 7-9

multiple commands per line, 2-22

NAMF call, C-12

namr calls, C-2

nesting command files, 2-21
non-disc (type 0) files, 6-10
non-standard file names, B-1

0O

obtaining system status, 2-7

OF command, 5-29

ON command, 5-29

on-line error explanation, 5-20
OPEN call, C-4

OPENF call, C-4

operating instructions FPACK, T7-5
operator suspend list, 5-46
operator suspension, 5-46

OWNER command, 5-30

INDEX

Index-11

INDEX

P

parity error handling, B-5

parm, 1-8

parm*2, 1-8

parse, C-2

partition aging, 5-1

Pascal and strings, 6-6

PATH command, 5-31

physical read, 6-10

positional variables, 2-17

POSNT call, C-10

power-fail, B-5

PR command, 5-35

predefined variables, 2-20

primary program, 1-2

program
control command summary, 4-2
execution, 4-Y4
identification, 4-1
naming convention, 4-5
parameters, 4-3
priorities, 4-2
resuming, 5-20
runstring, 4-3
search sequence, U4-U4
suspension, 5-U46
termination, 5-29

PROT command, 5-36

PU command, 5-37

PURGE call, C-12

purge files, 5-37

purging directories, 3-30

purging files, 3-2k

Q

QU command, 5-39
qual (file descriptor parameter), 1-8, 6-3
quoting, 2-22.

Index-12

RTE-6/VM CI User’s Manual

RTE-6/VM CI User’s Manual

R

READF call, C-6
reassign device subchannel number, 5-26
reassign EQT number, 5-26
reassign file protection status, 3-26
reassign LU number, 5-26
record length, 3-11
release reserved partition, 5-56
remote account user password, 3-40
remote file access, 3-39
remote file access limitations, 3-41
remove a program from memory, 5-29
removing programs, 4-8
rename directory, 5-ul
rename file, 5-4l
rename subdirectory, 5-41
renaming files, 3-23
report disc free space, 7-10
report file space by owner, T7-11
report user of directory, 5-60
report user of volume, 5-60
reset device, 2-13
restart suspended programs, 4-9
restore and run program with wait, 4-k4
restore program file, 5-42
restore program to memory, 5-42
restoring programs, 4-7
resume suspended program execution, 5-U46
resuming a suspended program, 5-20
resuming execution, 4-9
RETURN command, 5-39
return from command file, 5-39
return status, 2-23
rewind one file, 2-13
rewind one record, 2-13
rewind tape, 2-13
RN command, 5-41
root directory, 1-2
RP command, 5-42
RTE-6/VM file systems, 1-1
RU command, 5-43
run program without wait, 5-62
running program, U4-3, 5-43
continuously at regular intervals, L4-6
with wait, 4-X4
without wait, 4-5, 5-43
runstring, 4-3
length, 5-43
limit, 5-43, 5-62

INDEX

Index-13

INDEX

S

schedule a program, 5-29
schedule program without wait, 5-62
search sequence

command files, 5-52

program files, 5-U43
searching for files, B-1
sequence of program search, L-4
SET command, 2-18, 5-U45
set system time, 5-49
setting time-out limit, 5-U49
size, 6-3
SL command, 5-4S
specifying files, 1-6
specifying remote files, 3-38
specifying size of large files, 3-10
specifying subdirectories, 3-5
spooling files, 3-24
SS command, 5-46
ST command, S-U47
standard file descriptor format, 6-3
standard type extensions, C-1h
stopping executing programs, L4-8
stopping program with BR, U4-8
stopping program with OF, 4-8
stopping program with SS, U4-9
strings, C-2

and Pascal, 6-6
sub (file descriptor parameter), 6-3
subdirectories, 1-2, 3-5, 6-3
subdirectory format, 3-5
suspending a program, 5-46
suspending program, 4-9
SZ command, 5-47

T

Terminating a program, 5-29
terminating CI, 5-19

TI command, 5-u48

Time Base Generator (TBG), 5-50
time scheduling programs, 4-6
time stamping, 1-6

time stamps, 3-12

time-out limit, 5-49
time-out/logoff function, 2-24
timeslicing, L4-10

T™ command, 5-L49

TO command, 5-U49

TR command, 5-51

transfer file, 5-51

transfer to command file, 5-51

Index-14

RTE-6/VM CI User’s Manual

RTE-6/VM CI User’s Manual INDEX

transferring data from files, 6-10
transferring data to files, 6-10

type extension, 6-3

typex (file descriptor parameter), 1-8, 6-3

U

UL command, 5-54

unable to create directory, B-2

unable to open file, B-2

unlocking shareable EMA partition, 2-16, 5-54
UNPU command, 5-5L4

unpurging files, 3-25, 5-5u4

UNSET command, 2-18, 5-55

unusual file access errors, B-1

up a device, 2-14, 5-55

UP command, 5-55

UR command, 5-56

use of SET command, 2-18

use of UNSET command, 2-18

user buffer, 6-10

User-Definable Directory Search Path (UDSP), 3-32, 5-31
user-defined variables, 2-18

using the command stack, 2-5

using the WH command, 2-7

utility FOWN, T7-11

v

variables, user-defined, 2-18
VS command, 5-56

w

WD command, 5-57

WH command, 2-7, 5-58

WHILE control structure, 5-59
WHILE-DO-DONE command, 2-23, 5-59
WHOSD command, 5-60

WHZAT program, 2-7
WildCardMask, 6-84

write data, 6-80

write end-of-file mark, 2-13
WRITF call, C-6

WS command, 5-61

X-Y-2

XQ command, 5-86

Index-15

Part No. 92084-90036
Printed in U.S. A. January, 1985
E0185

U

HEWLETT

PACKARD

