HP 9000 Series 200 Computers LA cackaro

Pascal 3.0
Procedure Library

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

Computer

B Museum

Pascal 3.0 Procedure Library
for the HP 9000 Series 200 Computers

Manual Part No. 98615-90030

© Copyright 1984, Hewlett-Packard Company.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject to change without notice.

Use of this manuil and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only.
Additional copies of the programs can be made for security and back-up purposes only. Resale of the programs
in their present form or with alterations, is expressly prohibited.

Restricted Rights Legend
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of the
Rights in Technical Data and Software clause in DAR 7-104.9(a).

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

ii

Printing History

New editions of this manual will incorporate all material updated since the previous edition. Update
packages may be issued between editions and contain replacement and additional pages to be
merged into the manual by the user. Each updated page will be indicated by a revision date at the
bottom of the page. A vertical bar in the margin indicates the changes on each page. Note that pages
which are rearranged due to changes on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint do
not cause the date to change.) The manual part number changes when extensive technical changes
are incorporated.

May 1984.. First Edition

Warranty Statement

Hewlett-Packard products are warranted against defects in materials and workmanship. For Hewlett-Packard Fort Collins
Systems Division products sold in the U.S.A. and Canada, this warranty applies for ninety (90) days fromthe date of delivery.”
Hewlett-Packard will, at its option, repair or replace equipment which proves to be defective during the warranty period. This
warranty includes labor, parts, and surface travel costs, if any. Equipment returned to Hewlett-Packard for repair must be
shipped freight prepaid. Repairs necessitated by misuse of the equipment, or by hardware, software, or interfacing not
provided by Hewlett-Packard are not covered by this warranty.

HP warrants that its software and firmware designated by HP for use with a CPU will execute its programming instructions
when properly installed on that CPU. HP does not warrant that the operation of the CPU, software, or firmware will be uninter-
rupted or error free.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-
Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

* For other countries, contact your local Sales and Support Office to determine warranty terms.

Table of Contents

Chapter 1: Overview

Introduction 1
Prerequisites. 1
Chapter OVerview 1

Chapter Previews. 2

Overview of Librariesand Modules. 3
Modulesand Libraries 3
The Librarian. 3
Example Modules 3
Compiling and Running the Example Program 6
SettingUp Mass Storage ... 8
Usingthe Librariano 9

Overview of the Procedure Library 12
Standard LIBRARY Modules. 12
ThelOModules. 14
The INTERFACE Modules. i, 14

. The GRAPHICS MOQUIES\ ee e s 15
The SEGMENTER Module i, 17

Building Your Own Library 18
General Recommendations 18
Specific Recommendations 18
Module Dependericy Table 20

Chapter 2: Interfacing Concepts

Introduction 21
Terminology. 21
Why Do You Need an Interface?. i 23
Electrical and Mechanical Compatibility.. 24
Data Compatibility 24
Timing Compatibility. 24
Additional Interface Functions. i 24
Interface Overview. 25
HP-IB Interface P 25
Serial Interface. 26
GPIO Interface.o 26
Data Representationsuuuuunni o 27
Bitsand Bytes 27
Representing Nurmrbers. 28
Representing Characters i 29
. Representing Signed Integers 29

Representing Real Numbers 31

iv

Chapter 3: The I/0 Procedure Library

Introduction 33
Pascal [/O 33
I/O Library Organization. e 34
GENERAL 34
HP- B . . 34
SERIAL . . 35
I/O Library Initialization. 35
GENERAL Modules 36
HPIB Modules 37
SERIAL Modules. 38
IODECLARATIONS Moduleso i 38
Range of Interface Select Codes and Device Selectors. 38
Information about Interface Cards, 39
Other Types.o 42

Chapter 4: Directing Data Flow

Introduction 43
Specifyinga Resource. 43
Simple Device Selectors.o i 43
Addressed Device Selectors. 44

Chapter 5: Outputting Data

Introduction 45
Free-Field Output 46
Real EXpressions i 46
String EXpressions. 47
Characters 48
WOrds. . .o 48
Formatted Output 50
STRWRITE . . . e 50

Chapter 6: Inputting Data

Introduction 0 53
Free-Field Input. 54
Real Variables 54
StringVariables 55
Characters o 56
N Ords. . o 56
Skipping Data 57
Formatted Input. 58

STRREAD . .. 58

Chapter 7: Registers

Introduction 59
/O System Registers 59
IOSTATUS FUunction.ot e e e e e 59
Examples 59
IOCONTROL Procedure e 60
Examples 60
Common Register Definitions 60
Hardware Registers 60

Chapter 8: Errors and Timeouts

IntrodUction 61
Pascal Event Processing 62
TRY . 62
RECOVER 63
ESCAPECODE 63
ESCAPE. . .. 63
VO Emmor Handling. 63
IOESCAPECODE 63
IOE _RESULT ... e 63
JOE IS . . 64
IOERROR_MESSAGE e 64
O TIMEOULSt e e e 65
SettingUp Timeout Events i 65
VO EITors . ..o 67

Chapter 9: Advanced Transfer Techniques

IntrodUcHOn 69
BUfers. . .o 69
Buffer Controlo 70
Reading Buffer Data 70
Writing Buffer Data. 71
Serial Transfers 72
Overlap Transfers 74
When Is the Transfer Finished? 74
Special Transfers 76
Word Transfer. 76
Match Character Transfer. 76
END Condition Transfer. 76

vi

Chapter 10: HP-IB Interface

Introduction 77
Initial Installation 78
Communicating with Devices. 79
HP-IB Device Selectors 79
Moving Data Throughthe HP-IB 79
General Structureof the HP-IB. 79
Examplesof Bus Sequences 81
Addressing Multiple Listeners 82
Addressing a Non-Active Controller it .. 82
Pascal Control of HP-IB 83
HP-IB Status 83
HP-IB Control. 83
General Bus Management ittt 84
Remote Control of Devices i 84
LockingOut Local Control 85
Enabling Local Control. 85
Triggering HP-IB Devices. i, 86
Clearing HP-IBDevices 86
Aborting Bus Activity 86
Passing Control. 87
PolingHP-IBDevices 87
HP-IB Interface Conditions. i 89
HP-IBControl Lines e 90
Handshake Lines. 90
Attention Line 91
The Interface Clear Line. 91
TheRemote Enable Line........... 91
TheEndorldentify Line 91
The Service Request Line 92
Determining Bus Line States 92
Advanced Bus Management. 94
The Message Concepto i 94
Typesof Bus Messages.t 94
Explicit Bus Messages. 98
Summary of HP-IB IOSTATUS and IOCONTROL Registers 99
Summary of HP-IB IOREAD_BYTE and IOWRITE_BYTE Registers. 103

Summary of Bus Sequences 113

Chapter 11: Datacomm Interface

INtrodUCHON 117
Prerequisites 117
Protocol 118
Data Transfers Between Computer and Interface. 120

Overview of Datacomm Programming i 123
SetBaud Rate. 123
Set Stop Bits 123
Set Character Length 123
Set Parityo 123
Example Terminal Emulator 124

Establishing the Connection. i 126
Determining Protocol and Link Operating Parameters. 126
Using Defaults to Simplify Programming o oL 127
Resetting the Datacomm Interface L. 128
Protocol Selection.o it 128
Datacomm Options for Async Communication. 129
Datacomm Options for Data Link Communication. 133
Connectingtothe Line. 135
Connection Procedure 136
Initiating the Connection 136

Datacomm Errors and Recovery Procedures. 138
Error Recovery 139

Datacomm Programming Helps. o 140

Terminal Prompt Messagesttt 140

Secondary Channel, Half-duplex Communication 142

Communication Between Desktop Computers il 142

Cable and Adapter Options and Functions. ia.. 143
DCEand DTE Cable Optonst e e 143
Optional Circuit Driver/Receiver Functions 144

HP 98628 Datacomm Interface IOSTATUS and IOCONTROL Register Summary. 145

HP 98628 Datacomm Interface IOSTATUS and IOCONTROL Registers 147

Chapter 12: RS-232 Serial Interface

INtrodUCHON e 155
Details of Serial I/O e 156
Baud Rate 157
Signal and Control Lines 157
Software Handsheke, Parity and Character Format 158
Programming Techniques. 159
Overview of Serial Interface Programming, 159
Initializing the Cormection i 160
Transferring Data 162
Data Output.o e 162
Data Input 163
Error Detectionand Handling 163

vii

viii

Special Applications 165
Sending BREAK Messageso. i, 165
Redefining Handshake and Special characters 165
Using the Modem Line Control Registers. 166
IOREAD_BYTE and IOWRITE_BYTE Register Operations. 168

Status and Control Registers 169

Serial Interface Hardware Registers. 173
Interface Card Registers 173
UART Registers. 174

Cable Options and Signal Functions. 177
The DTE Cable. 177
The DCE Cable. 178

HP 98644 Interface Differences. 181
Hardware Differences. 181
Pascal Differences. 183

Model 216 and 217 Built-In Interface Differences. 184
Hardware Differences. 184
Pascal Differences. 184

Chapter 13: GPIO Interface

Introduction 185
Interface Description 186
Interface Configuration. 187
Interface Select Code 187
Hardware Interrupt Priority 187
Data Logic Sense 187
Data Handshake Methods, 187
Interface Reset. 198
Outputs and Inputs through the GPIO 199
ASCIl and Internal Representations oo, 199
Using the Special-Purpose Lines. 202
Driving the Control Output Lines 202
Interrogating the Status Input Lines, 202
GPIO Status and Control Registers., 204
Summary of GPIO IOREAD_BYTE and IOWRITE_BYTE Registers 205
GPIO IOREAD_BYTE Registerso oo 205

GPIO IOWRITE_BYTE Registersoouiu e, 207

Chapter 14: System Devices

Introduction 209
Supported Features 210
The SYSDEVS Mcdule 211
The Example Programs 211

Interrupt Processing Overview i 213
Hooking into Your System i 213
Enabling Interrupts 215
System Featurest 216

The Beeper 217
Beeper Timing. o i 217

The Clock. 219
Direct Clock ACCeSS . ..\ttt 222

The TImers. o e 224
Timer Types. o 225
Timer Operationsttt 225
Usinga Timer 226
ATypical Timer ISR 227
Multi-Timer Example 228
Using the Periodic Timer 230
System Timer Example 232

The Displayo 234
Determining Displey Type 234
Display States 235
Display Parameters.o i 236
Changing Display Parameterso 237
Controllingthe Cursor 238
Dumpingthe Display 238
TheLastLine i 240
TheMenus. 242
The Status Area. 243
TheRunlight 244
The Debugger Wirdow 245

The Keyboard 250
The Keyboard Hooks. o 251
Keyboard Request Hook 251
Keyboard ISR Hook. o 253
Keyboard Poll Hook. 254

The Keybuffer 256
Keybuffer Control. 257
Keybuffer /OHooks 257

Key Translation Services. 259
The Translation Hook 259
Modifying the Language Table 262

The Knob . .. 264

Keyboard Hardware 266
Key-AcHonso 270

Typing Aids Program 273

ix

Power ail. 282

Battery Features 282
Powerfail Behavior 283
Powerfail Real-Time Clock e 283
Non-Volatile RAM. 284
Interface to the Host CPU i 284
CommandstotheBatteryt 285
SYSDEVS ListNgttt e e e 288

Chapter 15: Segmentation Procedures

Introduction o e 295
AWordtothe Wise i 295
Using SEGMENTER Procedures. i 296
SEGMENTER Procedure Descriptionst 297
SEGMENTER Initialization 297
Segmentation Free Space 297
Segmentation Usingthe Stack. 297
Searching foraProcedureName L. 300
Checking a Procedure Variable. i 300
Loading into the Explicit Code Area. 301
Loadinga SegmentontotheHeap............... 302
Unloading a Segment. 303
Unloading All Segments. it 303
SEGMENTER EITOrs.o e 304

Procedure Library Summary

O Procedures i e 305
Graphics Procedures. 306
Procedure Library Reference. 307
IntrodUCHON 307

Chapter

1

Overview

Introduction

This manual describes the procedures, functions, constants, and types provided by the Pascal
Procedure Library. It also presents several examples of how to use them in Pascal programs.

The manual is divided into two major parts.
® The first part (Chapters 1 thru 15) is organized by topics. It explains particular programming
concepts rather than individual procedures and functions.

® The second part (the Library Reference) is an alphabetical listing of the individual procedures
and functions, showing syntax and semantic information for each.

Prerequisites

In order to successfully use this manual, you must understand the concept of modules. This chapter
provides an overview of modules. (It is essentially a duplication of the first seven pages of the
Librarian chapter in the Pascal Workstation System manual.) For a more complete description of
modules, read the Modules section of the Compiler chapter in the Pascal Workstation System
manual (about 10 pages of text).

Chapter Overview
The remainder of this chapter contains these sections:
® A preview of each remaining chapter in this manual.
® A general overview of using library modules.
® A description of the modules provided by the Procedure Library.
® Recommendations for building your library.

2 Overview

Chapter Previews

Here are brief descriptions of the rest of the chapters in this manual. There are also recommenda-
tions as to which you may need to read.

Chapter 2: Interfacing Concepts This chapter presents a brief explanation of relevant interfacing
concepts and terminology. This discussion is especially useful for beginning /O programmers, as it
covers much of the why and how of interfacing. Experienced programmers may also want to skim
this material to better understand the terminology used in this manual.

Chapter 3: 1/0 Procedure Library This chapter presents an introduction to the /O Procedure
Library. It describes the organization of the /O library, its major capabilities, and examples of its
use. All [/O programmers should read this chapter.

Chapter 4: Directing Data Flow This chapter describes how to specify which computer resource
is to receive data from or send data to the computer by using select codes and device selectors.

Chapter 5: Data Input This chapter desribes methods of sending data to devices. Examples of
free-field and formatted output are given. You may be able to skip sections of this chapter,
depending on your application.

Chapter 6: Data Output This chapter desribes methods of receiving data from devices. Examples
of free-field and formatted input are given. As with the preceding chapter, you may be able to skip
sections of this chapter, depending on your application.

Chapter 7: Registers This chapter describes the purposes of interface registers and how to use
them. Both the hardware and firmware registers are described in general. Specific interface register
definitions are given in the corresponding chapter.

Chapter 8: Errors and Timeouts This chapter describes what you need to do in order to handle
and recover from error and timeout conditions.

Chapter 9: Advanced Transfer Techniques This chapter discusses the high-performance transfer
methods provided in the I/O library. These methods use ‘‘buffered” transfer mechanisms; they
include interrupt, fast-handshake, and direct-memory access (DMA) transfer methods.

Chapter 10: HP-IB Interface This chapter describes programming techniques specific to HP-IB
interfaces. Details of HP-IB communications processes are also included to promote better overall
uinderstanding of how this interface may be used. This discussion is valid for the built-in HP-IB
interface, as well as for the optional HP 98624 HP-IB and 98625 High-Speed Disc interfaces.

Chapter 11: Data Communications Interface This chapter describes programming techniques
specific to the HP 98628 Data Communications (or ‘‘Datacomm’) interface.

Chapter 12: RS-232C Serial Interface This chapter is a programming techniques discussion of
the HP 98626 and 98644 RS-232C Serial interfaces.

Chapter 13: GPIO Interface This chapter describes techniques specific to programming the HP
98622 General-Purpose Input/Output (GPIO) interface.

Overview 3

Chapter 14: System Devices This chapter describes using the operating system module named
SYSDEVS to access the built-in “‘system devices’ such as the keyboard, display, clock, and beeper;
it also describes how to access optional devices such as powerfail protection.

Chapter 15: Segmentation Procedures This chapter describes the procedures that provide the
capability of segmenting programs at run-time.

Overview of Libraries and Modules

This section presents some important terms and concepts you will need to know in order to
understand and use modules, and discusses how to use some general example modules. The
subsequent section describes the modules provided in the Pascal Procedure Library.

Modules and Libraries

Modules declare procedures, functions, constants, and types. Once these objects have been de-
clared, you can use them in your programs by importing them. (You will see examples momen-
tarily.)

Libraries are object files. They contain zero or more object modules. Object modules are the
product of the Compiler or Assembler. For instance, compiling a Pascal source module generates
an object module which is placed in an object file. This file is actually a library, because it contains
an object module. An object file (library) is composed of a directory of names of the module(s) that
it contains, followed by the object modules themselves.

The Librarian

The purpose of the Librarian subsystem is to manage object modules. The Librarian can also
produce object files; however, these files consist of object modules produced by the Compiler or
Assembler. It can create library files and add modules to them or remove modules from them.
Library files are intended to provide a convenient location to store object modules.

Example Modules

For this example, we will be using three example library modules provided on the DOC: disc
shipped with your system. One contains a compiled program (PROG_1.CCODE), and the other two
contain compiled modules (MOD_2.CODE and MOD_3.CODE).

The DOC: disc also contains the source versions of these modules. Although this chapter will only
be dealing specifically with the object versions, it is a good learning experience to compile the
source versions to see how the Compiler deals with imported modules. One method is briefly
outlined in the next section.

1 Complete descriptions of how to produce and use Pascal and Assembler modules are provided in the Compiler and Assembler chapters of the
Pascal Workstation System manual.

4 Overview

Here are source listings and brief explanations of each of the example modules.

Source Listing of PROG_1.CODE

PROGRAM ProgramOne (OUTPUT)
IMPORT ModuleTwos

BEGIN
WRITELNS
WRITELNS
WRITELNC " #%%%%¥%%kk*¥¥%% ProgramOne *¥*Exetetdddsss’)]
TwolLiness
WRITELNC ‘" %%%%%k®®ekkk®®®r ProgramOne *#**¥¥¥EHEREk%k%% ‘)3

END.

The example program imports ModuleTwo, which declared the procedure named TwoLines. Here

is the source of ModuleTwo, which was compiled and stored in the library (object-code) file named
MOD_2.CODE.

Source Listing of MOD_2.CODE

MODULE ModuleTwos

IMPORT ModuleThrees

EXPORT
PROCEDURE Twolines$

IMPLEMENT

PROCEDURE Twoliness
BEGIN
WRITELN(‘I came from ModuleTwo and brousht this:’)3
ThirdlLines
END3

END.

Overview

ModuleTwo exports procedure TwoLines, which is used by ProgramOne. It also imports
ModuleThree, which declares procedure ThirdLine and is in the library (object-code) file named
MOD_3.CODE.

Source Listing of MOD_3.CODE

MODULE ModuleThrees

APORT
PROCEDURE ThirdlLine}

IMPLEMENT
PROCEDURE ThirdlLines
BEGIN
WRITELN(‘I came from ModuleThree’)s
END 3

END.

This module exports procedure ThirdLine, which is imported by ModuleTwo. Notice that it does
not import any modules.

Here are the results of running the program.

KEERAXRXRRXKEXH% ProgramOne *¥ERERXXRXXXEER
I came from ModuleTwo and brought this:

I came from ModuleThree

EEERKRXRXRXRX%X ProdramOne #E¥EEEAERXREEER

Here is what happens when you run ProgramOne. First, ProgramOne prints two blank lines and
then the line of asterisks that contains its name. The procedure TwoLines, imported from
ModuleTwo, is then called; it prints the message: I catne from ModuleTwo and brought thiss:.
Procedure ThirdLine, imported from ModuleThree, is then called; it prints the message:
I came from ModuleThree. Control is then returned to TwoLines and then to the program, which
again prints out its name in asterisks.

Let's take a look at what is needed in order for you to compile and run the program.

6 Overview

Compiling and Running the Example Program

When a program (or module) imports modules, the imported modules must be accessible at two
times:

® When the program is compiled.
® When the program is loaded and run.

Let’s take a look at what happens at these two times.

How the Compiler Finds Imported Modules

At compile time, the Compiler searches for each module imported by the source program (or
module); more specifically, it searches to find each module’s “‘interface text.”’ Here is the order of
the places where the Compiler looks in search of interface text:

1. In the source text being compiled. (The source text of modules and programs can be
combined into one source file, as long as the modules precede the program and are in proper
sequence.)

2. In an object file specified in a SEARCH Compiler option.
3. In the object file currently designated as the System Library.

A module’s interface text consists of the following: the MODULE name; the IMPORT section, if

present; and EXPORT section. These sections are part of the object module produced when the

module was compiled or assembled. See the Compiler or Assembler chapters of the Pascal Work- .
station System manual for a more complete description of interface text.

The System Library is a special library file that is automatically used by the system. The default
System Library is the file named “LIBRARY"’ found on the system volume at power-up. You can
also change it with the What command and the Main Command Level.

How these Modules and Program Were Compiled

Here is a strategy (and the method actually used) for compiling these source modules and program.
(Note that you will be learning these Librarian operations later in this section, so you will probably
not want to perform this compilation exercise until after working through the examples using the
object modules and program.)

1. Compile ModuleThree first (MOD_3.TEXT); call it MOD_3.CODE for simplicity. Since this
module does not import any others, it will be compiled with no need to search for any
imported module’s interface text.

2. Use the Librarian to add the resultant object module (MOD_3.CODE) to the library file
currently designated as the System Library. (Actually, you will be creating a new library into
which you will place ModuleThree and the modules currently in the System Library; this type
of operation is subsequently explained in this chapter.)

3. After merging these two libraries (into a third new library), you will need to do one of two
things: use the What command to make the resultant library the System Library; or use the
Filer to change the resultant library’s name back to the name of the current System Library.

4. Next, compile ModuleTwo (MOD_2. TEXT); call it MOD_2.CODE. The external references
to ModuleThree will be resolved when the Compiler finds the object ModuleThree in the
System Library.

Overview 7

5. Then place this compiled module in the System Library as in steps 2 and 3.

6. Compile the program (PROG_1.TEXT). Since both object modules upon which this prog-
ram depends are in the System Library, they will be accessed automatically by the Compiler
when the program is compiled.

7. Run the program. The loader automatically looks in the System Library in order to resolve

the external references; it loads the modules required to complete the program (in this case,
ModuleTwo and ModuleThree).

Since the program and modules have already been compiled and the object files placed on the
DOC: disc, we will not discuss other alternatives of making the source files accessible to the
Compiler. (However, you are again encouraged to do this after learning how to use the Librarian.
See the Compiler chapter of the Pascal Workstation System manual for details.)

Let’s look now at how the loader finds imported object modules when the program is to be loaded
for execution.

How the Loader Finds Imported Modules

Since a compiled program contains no record of where the Compiler found the 1mported modules,
the loader must (by itself) find the imported object modules at load time. Here is the order of the
places where the loader looks:

1. Modules that are part of the object file being loaded.

. 2. In modules already P-loaded in memory, which includes all INITLIB and Operating System
modules. (The loader searches for these modules in reverse order to which they were
P-loaded; in other words, the most-recently loaded modules are searched first.)

3. In the current System Library file.

In order to make all imported modules part of the object file that uses them (alternative 1 shown
above), you have two choices:

e Combine the source modules into one source file (and compile it). You can use the Editor to
add each imported module’s source file to the source program. You can also use an INCLUDE
Compiler option in the source program to include each imported module’s source file in the
compilation of the program.

e Combine the object modules into one object file. Use the Librarian to combine the program
and imported modules into one object file; you can optionally Link the modules to save space.

With both of these methods, only the file containing the program need be loaded; and when the
program is finished, the memory used by the modules can be reclaimed for other purposes. With
P-loaded modules, this is not possible (without re-booting).

If you want to P-load modules to make them accessible to the loader (alternative 2 shown above),
you will only need to P-load all modules which are not in one of the three places stated above. In
the example modules already given, ProgramOne imports ModuleTwo, and ModuleTwo imports
ModuleThree. In the second example that follows, you will be creating a library that contains these
two modules and then P-loading the library. (You can alternatively P-load MOD_3.CODE and

. MOD_2.CODE, in that order, which does not require use of the Librarian.) The loader will then be
able to link the modules contained in the library to any program that imports them at execution
time.

8 Overview

In general, the most convenient way to use modules is to place them in the file that is currently
designated as the ““System Library” (alternative 3 shown above). This is probably the most com-
mon reason for using the Librarian. In the example that follows, you will add modules ModuleTwo
and ModuleThree to the LIBRARY file and then run the program.

Setting Up Mass Storage

With some larger applications, you will need two on-line mass storage volumes when using the
Librarian. If you only have one volume in your system, you may need to set up a memory volume.
This discusson tells why two volumes may be needed and then outlines how to estimate the size of
the volumes required.

When you combine the object modules in two libraries using the Librarian, you actually create a
third (new) library and then copy into it the desired modules from the other two libraries. For
instance, suppose that you want to add all of the CONFIG:GRAPHICS modules to the
SYSVOL:LIBRARY file. You will first create a new library file, and then add the existing LIBRARY
modules and the GRAPHICS modules to this new library. The volume on which this new library
exists must not be taken off-line during the entire process.

Thus, two separate volumes are often necessary for these two reasons:

® The sum of all source libraries plus the new destination library often exceeds the capacity of
one volume.

® The destination volume must not be taken off-line during this entire operation.

Continuing with our example, here is the total amount of space of on-line mass storage required for
the operation (assuming you have only one disc drive).

¢ All modules in the standard LIBRARY file: approximately 64 sectors
¢ All modules in the standard GRAPHICS file: approximately 808 sectors
® The new library file: roughly the sum of 64 and 808 sectors

The grand total is over 1740 sectors (over 446 Kbytes). If you only have one mini disc drive with
capacity of about 1050 sectors (about 270 Kbytes), then you will need two volumes for the process;
the second volume will be a memory volume.

In this case, you could create a memory volume with a specified size of 500 blocks, or 250 Kbytes.
(Note that memory volume blocks are 512 bytes each, while mini-disc sectors are 256 bytes each.
See the Memvol command in the Overview chapter for more specific details on creating memory
volumes.)

It is usually more convenient to use the memory volume as the destination volume, since that
volume cannot be taken off-line.

The following examples assume that either you have two disc volumes on-line or that you have
created a memory volume of sufficient size. For these examples, a memory volume of 500 blocks is
sufficient.

Overview 9

Using the Librarian

The Librarian is provided on the ACCESS: disc shipped with the system. To use the Librarian, you
will first need to put it on-line: either place the disc labeled ACCESS: in a drive, or copy the
LIBRARIAN file to another location (such as a hard disc) and use the What command (at the Main
Command Level) to specify this copy as the system Librarian. After doing either of these, pressing
directs the system to load and execute the LIBRARIAN file.

Here is the Librarian’s main prompt:

.)
Likrarian [Reuw., 3.0 15-Arr-84] 1-Mav-84 8:11:58
Q Quit
P Printout OFF PRINTER:LINK.,ASC
0 Qutput file: (nomne)
B write to Boot disk
H file Header maximum sizes 38
1 Input file: (mone)

Copyridht 1984 Hewlett-Packard Company.
command?

\. J/

The commands shown on the left-hand side of the screen are invoked by pressing the correspond-
ing key.

Adding Modules to the System Library

A common way to use library modules is to add them to the current System Library file. Let’s
assume that it is the file named LIBRARY for present purposes, although you can change it to any
file by using the What command at the Main Command Level. The general steps in the procedure
used to add modules to LIBRARY are the same as those used to add modules to almost any library.

Here is a brief summary of the steps required:

1. Make a new library file, and copy into it all of the modules currently in LIBRARY.

2 Add ModuleThree and ModuleTwo to the new file (in this case the order of modules is
arbitrary, since the loader will load them in the right order).

3. Replace the LIBRARY file with this new file.
4. Execute the program, and the modules are loaded automatically for you.

10 Overview

A more detailed procedure is given below.

1.

10.

Invoke the Librarian. This is done by pressing from the Main Command Level. (If the
Librarian is not on-line, insert the ACCESS: disc and try again. Remove the ACCESS: disc
once the Librarian has loaded.) Now use the Librarian to create the new library.

Put the SYSVOL.: disc (or the one containing the LIBRARY file) in the #3 drive. Press (1)

and then type #3:L1BRARY. and press (Retun) or (ENTER) to enter the Input file. You must
include a trailing period to prevent the Librarian from appending the .co0E suffix.

When the Librarian finds the Input file, the display will show the name of the first module in
the file. (You should see the module named RND if you have not yet modified the LIBRARY
file.) If you have a printer, you can press (_F_) to list all of the modules in the Input library.
(For this example, we will assume that you are using unit #4 as the second volume:
however, if the LIBRARY file is small enough, you can also put the new library file on drive

#3. We will also assume that the destination volume has enough room for the new library
file.)

Press (0) and enter #4:NEWLIB. as the Output file. Again, a trailing period prevents the
+CODE suffix from being appended to the file name. If you are using a memory volume, use
the unit number of the memory volume.

(If you are using a disc, this disc must not be removed until you have finished creating the
new NEWLIB file.)

Press (_E_) to enter the Edit mode. You should now see this prompt (in the middle of the
screen):

F First module: RND
U Until module: (end of file)

You can now transfer all modules in the Input file to the Output file, including the last
module, by pressing (¢) (for Copy).

When the preceding transfer is complete, press (A) to append a module to the NEWLIB
Output file. The Librarian prompts with Ineut tile:. Put the DOC: disc, or whichever disc
now contains ModuleThree, in Unit #3 (not #4, which must not be removed). Enter
#3:MDD_3 as the Input file.

The Librarian now prompts with Enter list of modules or = for all. Enter = for all.
After ModuleThree has been transferred to the NEWLIB library, the Librarian prompts with
ArPend dones <space> to continue. Press the spacebar to clear the prompt.

Now use steps 6 and 7 again to copy ModuleTwo (in file MOD_2.CODE) into the NEWLIB
file.
Now that all modules have been added to the NEWLIB file, press (_S§_) to stop editing and

(k) to keep the file.

You should now verify that the modules were indeed copied to the Output file. Press 1)
and enter #4:NEWLIB, as the Input file. Press the spacebar repeatedly to scan through the
modules in the new library file. If you have a printer, press (_F_) to get a File Directory
listing.

If all modules are present, then press (@) to Quit the Librarian.

Overview 11

11. Now you have one of two options to make this library the System Library: you can use the
What command at the Main Level to specify the file named NEWLIB (on the destination
volume) to be the System Library; or you can replace the LIBRARY file on the SYSVOL:
disc with this file. If you choose the second option, it is probably better to keep the current
copy of LIBRARY on the disc; you should first Change its name to something like OLDLIB
and then Filecopy the NEWLIB file onto the SYSVOL.: disc, changing its name to LIBRARY.

12. Make sure that the System Library file is on-line, and then eXecute or Run the program.

As the program is loaded, the imported modules will also be loaded automatically. Here are the
results of running the program.

AEXREFRERERNHHE ProgdrambDne #EXEXREEXEEEEER
I came from ModuleTwo and broudht this:

I came from ModuleThree

EFERERREFXRARFRAREE ProgramDne #EEEEEXEEEiiies

After the program has completed execution, the memory used by both program and modules can
be used for other purposes.

As you can see, the System Library is a special library of object modules that is automatically

. accessed by the linking loader at program execution time (and by the Compiler at compile time).
Because of this automatic access, you do not need to use the Permanent-load command to make
this library’s contents accessible to the loader. And also because of this automatic access, the
System Library is generally used to store those modules often used in your programs.

Using modules in the Procedure Library is similar to using these example modules. Now that you
know how to use modules, let’s look at the specific library files and modules provided with your
system.

12 Overview

Overview of the Procedure Library

The modules supplied with the Pascal system provide the following general categories of proce-
dures:

® Standard procedures

® [/O procedures

® Graphics procedures

® Segmentation procedures

Standard LIBRARY Modules

The SYSVOL:LIBRARY file contains the ‘“‘standard” library modules. It is a small collection of
modules which contain general support procedures and functions for your programs. It has been
made small in order to conserve disc space; however, you can easily add modules to it.

The following modules are contained in the standard LIBRARY file; using each module is described
momentarily. (The listing was generated by using the Librarian’s ’File directory’ command).

Librarian [Rev, 3.0 15-Apr-841] 30-Arr-84 1Z2: 0:48 page |

FILE DIRECTORY OF: ‘LIBRARY’

1 RND 6 15-Arr-84 3
2 HPM 8 15-Apr-84 9
3 uIo 7 153-Arr-84 17
4 LDCKMODULE 7 15-Arr-84 24

The first column indicates the ordinal number of the module; for instance, UIO is the third module
in this library file. (The second column shows the module’s name.)

The third column indicates the size of the module (in 256-byte sectors).
The fourth column indicates the date the module was produced.

The fifth column shows the sector offset. RND has an offset of 3; since it has a size of 6 sectors,
HPM has an offset of 9 sectors.

Using RND

Module RND must be imported when you use the random number generator. The random number
generator is described in the Library Reference section of this manual under the entries RAND (a
function) and RANDOM (a procedure).

As with most other modules, RND must be accessible at two times: when compiling and when
running programs that import it. If it is in the System Library file at compile time and at run time,
then it will be accessed automatically; see the preceding discussions of how the Compiler and
loader find modules for the other alternatives.

Overview 13

In addition, RND imports the SYSGLOBALS module. This module was effectively P-loaded at
boot time (it is part of the standard INITLIB file), so you will not need to do anything to make it
accessible to the loader. However, the Compiler still needs to search the module’s interface text, so
you will need to make the interface text accessible to the Compiler. The interface text is in the
CONFIG:INTERFACE file, and you can make it accessible in either of two ways: use a SEARCH
Compiler option in your program, or add the SYSGLOBALS module to the current System Library
file.

Using HPM

Module HPM provides the DISPOSE, NEW, MARK, and RELEASE procedures for managing
dynamic variables in the heap. Techniques for using these procedures are described in the Heap
Management section of the Compiler chapter of the Pascal Workstation System manual. Precise
descriptions of syntax and semantics for the procedures is in the HP Pascal L.anguage Reference for
Series 200 Computers.

The HPM module needs never be imported, because its procedures are “‘Compiler intrinsics;” thus,
it does not need to be accessible to the Compiler while compiling programs that use its procedures.
However, it needs to be accessible to the loader at run time if you are using the $HEAP_DISPOSE
ON$ Compiler option. In order to make it accessible to the loader, you can do one of three things:
combine the object module with the object program (or module) that imports it; P-load the module;
or add it to the current System Library.

For further details regarding the use of the HEAP_DISPOSE Compiler option, see the Compiler
chapter of the Pascal Workstation System manual.

Using UIO

Module UIO provides the low-level “‘unit [/O”” capabilities: UNITBUSY, UNITCLEAR, UNITREAD,
UNITWAIT, and UNITWRITE. With these utility procedures and functions, you can read and write
data on sectors of blocked devices which have been assigned unit numbers in the File System. For
further details on these Unit /O operations, see the Workstation Implementation section of the HP
Pascal Language Reference for Series 200 Computers.

The UIO module need never be imported, because it is a “‘Compiler intrinsic;”” thus, it does not
need to be accessible to the Compiler while compiling programs that use its procedures and
functions. However, it does need to be accessible to the loader at run time. You can do one of three
things: combine the object module with the object program (or module) that imports it; P-load the
module; or add it to the current System Library.

Using LOCKMODULE

LOCKMODULE provides locking capabilities for 'lockable’ files. File locking operations are de-
scribed in the SRM Concurrent File Access section of the File System chapter in the Pascal
Workstation System manual.

LOCKMODULE must be imported if you use the file locking operations on LOCKABLE files. As
with most other modules, it must be accessible at two times: when compiling and when running
programs that import it. If it is in the System Library file at compile time and at run time, then it will
be accessed automatically; see the preceding discussions of how the Compiler and loader find
modules for the other alternatives.

14 Overview

The 10 Modules

The file named IO on the LIB: disc contains modules that provide I/O procedures and functions.
The bulk of this manual describes using the IO library. The Library Reference section of this manual
lists the module(s) you must IMPORT for each procedure and function.

If you are using /O procedures and functions in your programs, then the modules which declare
those procedures and functions must be accessible to the Compiler and loader. If the modules are
in the System Library, then they will automatically be accessed; for alternative methods of making
them accessible, see the beginning of this chapter.

The modules contained in IO are shown in the following File directory’ listing generated by the
Librarian.

Librarian [Rev., 3.0 15-APr-841] 30-Apr-84 11:52:17 pade 1

FILE DIRECTORY OF: ‘1D’

1 IODECLARATIDNS 17 15-Apr-84 1
2 GENERAL_0 3 15-Apr-84 18
3 IOLIBRARY_KERNE 1 15-Apr-84 21
4 10COMASM 3 15-Apr-84 22
5 GENERAL_1 B 15-Apr-B4 25
& HPIB_1 10 15-Arr-84 33
7 GENERAL_Z 10 15-Apr-B4 43
8 GENERAL_3 9 15-Apr-84 53
9 GENERAL_4 14 15-Apr-84 2
10 HPIB_O B 15-Apr-B4 786
11 HPIB_2 9 15-Apr-84 g2
12 HPIB_3 8 15-Apr-84 91
13 SERIAL_O 9 15-Aprr-B4 99
14 SERIAL_3 11 15-Aprr-B4 108
The INTERFACE Modules

The INTERFACE file on the CONFIG: disc contains modules comprised of only the interface text of
several operating system modules. (The interface text of a module consists of the MODULE name;
the IMPORT section, if present; and the EXPORT section. It is used by the Compiler when
compiling programs that depend on the module.) The INTERFACE file is provided so that your
programs can import modules which in turn import these operating system modules (since the
interface text of operating system modules is not otherwise accessible).

For instance, the SYSGLOBALS module is imported by most of the IO modules; so when compil-
ing programs that import an IO module, the SYSGLOBALS module’s interface text must be
accessible to the Compiler. To make it accessible to the Compiler, either add the module to the
System Library or specify the INTERFACE library file in a SEARCH Compiler option.

The modules contained in INTERFACE are as follows:

Libkrarian [Rev., 3.0 15-Apr-84] J0-Aer-84 11:33:49 pade 1
FILE DIRECTORY OF: ‘INTERFACE’

1 ASH S 15-Apr-84 2

2 5YSGLOBALS 16 15-Apr-84 7

3 MINI 2 15-Arr-84 23

4 BODTDAMMODULE 2 15-Apr-84 23

o LDADER 14 15-Aerr-84 27

6 INITLOAD 1 15-Arr-84 a1

7 ISR 2 15-Apr-84 4z

8 MISC 4 15-Apr-84 44

9 FS 10 15-Apr-84 48

10 INITUNITS 2 15-Apr-84 58

11 LDR 2 15-Apr-84 GO

2 SETUPSY 1 15-Apr-84 62

13 SYSDEVS 15 15-Arr-84 63

14 SYSDEVICES 1 15-Arr-84 78

15 ABOAXDVR 2 15-Apr-84 79

16 ABOAXINIT 1 15-Apr-84 81

17 CI 4 15-Arr-84 2

18 CHMD 1 15-Apr-B4 86

Note
From a technical standpoint, the availability of this interface text gives
you the ability to import these modules in your own programs. Howev-
er, from a practical standpoint, the only module described enough to
allow you to import it is the SYSDEVS module, which is discussed in the
System Devices chapter.
The GRAPHICS Modules

Overview 15

The GRAPHICS file on the LIB: disc contains modules that provide graphics procedures and
functions. The FGRAPHICS file on the FLTLIB: disc provides the same set of procedures and
functions, but they have been optimized for use with the HP 98635 Floating-Point Math card. (The
FGRAPHICS modules have been compiled with the $SFLOAT_HDW TEST$ Compiler option,
which increases the performance of graphics routines by using the HP 98635 Floating-Point
Hardware card, if present. The GRAPHICS modules also use the card, if present, but the overhead
of calling the normal math library routines, which then test for the card, does not provide the
maximum performance.)

Graphics concepts and programming are explained in the Pascal Graphics Techniques manual.

16 Overview

The modules contained in GRAPHICS are as follows:
Librarian [Rev., 3.0 15-Apr-841 30-Apr-84 11:55:57 pade 1

FILE DIRECTORY OF: ‘GRAPHICS’

1 GLE_AUTL 6 15-Apr-84 3
2 GLE_UTLS 8 15-Apr-84 9
3 GLE_TYPES 22 15-Apr-84 17
4 GLE_STROKE 7 15-Apr-84 39
5 GLE_STEX 7 15-Apr-84 46
6 GLE_ASTEX 6 15-Arr-84 23
7 GLE_SMARK 7 15-Apr-84 59
8 GLE_SCLIP 5 15-Arr-84 GG
9 GLE_ASCLIP 7 15-Apr-84 71
10 GLE_FILE_ID 7 15-Apr-84 78
11 GLE_HPIB_ID 13 15-Apr-84 85
12 GLE_HPGL_OUT 20 15-Apr-84 98
13 GLE_HPGL_IN 2 15-Arr-84 118
14 GLE_RAS_OUT 16 15-Arr-84 130
15 GLE_ARAS_OUT 2 15-Arr-84 146
16 GLE_KNDB_IN 9 15-Arr-B4 167
17 GLE_GEN 13 15-Apr-84 176
18 GLE_GENI 6 15-Apr-84 189
19 DGL_TYPES 5 13-Apr-84 193
20 DGL_-VARS 17 15-Apr-84 200
21 DGL_1IBODY 7 15-Arr-84 217
22 DGL_AUTL 7 15-Apr-84 224
23 DGL-TOOLS 6 15-Apr-84 231
24 DGL_GEN 21 13-Arr-84 237
25 DGL_RASTER 18 15-Arr-84 258
26 DGL_HPGL 11 15-Apr-84 276
27 DGL_CONFG_OUT 13 153-Apr-84 287
28 DGL_KNOB 8 15-Apr-84 300
29 DGL-HPGLI 7 15-Apr-84 308
30 DGL_CONFG_IN 8 15-Apr-84 315
31 DGL_LIB 40 15-Arr-84 323
32 DGL_POLY 26 15-Apr-84 363
33 DGL_INQ 14 15-Apr-84 389

It you are using any of the graphics procedures and functions in your programs, then all
GRAPHICS modules through DGL_LIB (i.e., the first 31 of the preceding modules) must be
accessible at compile time and at load time. Module DGL_POLY is only needed if you use
procedures that work with polygons. Module DGL_INQ is only needed if you use the INQ_WS
procedure.

If the modules are in the System Library, they will be accessed automatically; for alternative
methods of making these modules accessible, see the beginning of this chapter.

Qverview 17

The SEGMENTER Module

The SEGMENTER file on the CONFIG: disc contains the SEGMENTER module that provides
procedures which allow you to dynamically (programmatically) load, execute, and unload program
segments. For instance, you can use these procedures to segment and run programs in a minimum
amount of memory; however, note that it sometimes requires some very clever programming to
accomplish this type of feat. Examples of these procedures are given in the Segmentation Proce-
dures chapter of this manual.

Here is a File directory’ listing of the SEGMENTER library file, produced by the Librarian.

Librarian C[Reu, 3:0 15-Arr-841 30-Apr-84 11:58: 2 sage 1
FILE DIRECTORY OF: 'SEGMENTER’

1 ALLOCATE 3 15-Apr-84 1
2 SEGMENTER 11 13-Apr-B4d B

Module SEGMENTER must be imported in order to use the segmentation procedures. Module
ALLOCATE is only the initialization program for module SEGMENTER, so you will not be import-
ing it.

As with importing most other modules, SEGMENTER must be accessible at two times: when
compiling and when running programs that import it. If it is in the System Library file at compile
time and at run time, then it will be accessed automatically; see the beginning of this chapter for
alternative methods of making it accessible.

18 Overview

Building Your Own Library

In general, placing modules in the System Library is the simplest way of making modules accessible
to the Compiler and loader. This section gives both general and specific recommendations about
adding modules to this file. This is the primary method of using modules that is described in this
section. Other methods (such as adding object modules to an object program’s file) were described
in the beginning of this chapter and in the Compiler chapter of the Pascal Workstation System
manual.

General Recommendations

Only a few modules have been placed in the standard LIBRARY file in order to conserve disc
space. You will probably want to add to it the modules you will be using.

If You Have Large Mass Storage Volumes

If you have a mass storage volume with sufficient capacity (such as a hard disc, an SRM system, or a
dual-sided micro floppy), then you should add to the LIBRARY all the modules in [0, GRAPHICS,
and INTERFACE. That way you will never have to worry about whether or not any module is
accessible.

If You Have Smaller Volumes

If you are using a 5.25-inch disc (with 270-Kbyte capacity) as the system volume, then all of the
modules in the LIBRARY, 10, GRAPHICS, and INTERFACE files will not fit on your disc. Howev-
er, this should only be a problem if you are using both GRAPHICS and 10 modules. (The
LIBRARY, IO, and INTERFACE files will easily fit on one disc). More specific recommendations
follow.

Specific Recommendations

If you really want to conserve space, you should add to the System Library file only the modules
you need to import in order to use procedures in programs and modules. Here are the steps you
will be taking:

1. Make a list of the procedures you will be using.

2. Make a list of the modules that need to be imported in order to use these procedures. You
will find this information in the Procedure Library Reference description of each procedure
(at the back of this manual).

3. Make a list of the modules upon which the imported modules depend. You will find this
information in the following Module Dependency Table. For instance, most Procedure Lib-
rary modules depend on the SYSGLOBALS (Operating System) module.

If possible, you should use an alternate method of accessing the modules upon which the
imported modules depend; for example, use a SEARCH Compiler option to make the
interface text of the SYSGLOBALS module accessible to the Compiler.

4. Create a new System Library file, and add to it only the necessary modules.

Here are specific recommendations for how to make modules from each of the files in the Proce-
dure Library accessible to the Compiler or loader.

Overview 19

Making INTERFACE Modules Accessible
You can save quite a bit of disc space by not adding the INTERFACE modules to your System

Library. Since INTERFACE modules are only used by the Compiler, you can make them accessible
by merely specifying the INTERFACE file in a SEARCH Compiler option.

Making LIBRARY Modules Accessible
You can remove the module(s) that you are not using from the standard LIBRARY file.

If you will be using the standard LIBRARY modules named RND or LOCKMODULE, then module
SYSGLOBALS must also be accessible; again, you can use a SEARCH Compiler option to tell the
Compiler where to look for the module’s interface text.

Making IO Modules Accessible

If you are using any IO modules, then you should have in your System Library only the following
modules: IODECLARATIONS; the modules that must be imported in order to use procedures you
have chosen; and any 10 modules upon which the imported modules depend.

For instance, if you will be using the READSTRING procedure, then you will need to import the
GENERAL_2 module (see the Library Reference entry for this procedure). You will also need
IODECLARATIONS, and modules GENERAL_1 and HPIB_1 in the System Library (see the
Module Dependency Table). Module SYSGLOBALS can be found by specifying the INTERFACE
file in a SEARCH Compiler option.

Making GRAPHICS Modules Accessible

If you are using any graphics procedures, then you must have all GRAPHICS modules through
DGL_LIB (i.e., the first 31 modules in the GRAPHICS file) in the System Library. The only
modules that you can remove are DGL_POLY and DGL_INQ; the former is only required if you
will be using polygon graphics procedures, and the latter if using the INQ_-WS procedure. The
INTERFACE modules, such as SYSGLOBALS and SYSDEVS, are not required at compile time.

Making SEGMENTER Modules Accessible
If you are using segmentation procedures, then you must have both the ALLOCATE and the
SEGMENTER modules in the System Library.

20 Overview

Module Dependency Table .

The Module Dependency Table shows which modules are imported by the standard LIBRARY, IO,
GRAPHICS, and SEGMENTER modules.

Module to Module(s) Upon
Be Imported Which It Depends
LIBRARY Modules:
RND SYSGLOBALS
HPM -
8)(0] -
LOCKMODULE SYSGLOBALS
IO Modules:
IODECLARATIONS SYSGLOBALS
IOCOMASM SYSGLOBALS, IODECLARATIONS
GENERAL_0O SYSGLOBALS, IODECLARATIONS
GENERAL _1 SYSGLOBALS, IODECLARATIONS
GENERAL_2 SYSGLOBALS, IODECLARATIONS, GENERAL_1, HPIB_1
GENERAL_3 SYSGLOBALS, IODECLARATIONS
GENERAL_4 SYSGLOBALS, IODECLARATIONS, HPIB_1
HPIB_0 SYSGLOBALS, IODECLARATIONS
HPIB_1 SYSGLOBALS, [ODECLARATIONS
HPIB_2 SYSGLOBALS, IODECLARATIONS, HPIB_0, HPIB_1
HPIB_3 SYSGLOBALS, IODECLARATIONS, GENERAL_1, HPIB_0, HPIB_1
SERIAL_O SYSGLOBALS, [ODECLARATIONS
SERIAL_3 SYSGLOBALS, [ODECLARATIONS
GRAPHICS (and FGRAPHICS) Modules:
DGL_LIB ASM, IODECLARATIONS, SYSGLOBALS, MINI, ISR, MISC, FS,
SYSDEVS, and all GRAPHICS modules except DGL_INQ and
DGL_POLY
DGL_POLY SYSGLOBALS, SYSDEVS, and all GRAPHICS modules except
DGL_INQ
DGL_INQ ASM, SYSGLOBALS, A804XDVR, DGL_TYPES, DGL_VARS,
DGL_GEN, GLE_TYPES, GLE_GEN
SEGMENTER Modules:
SEGMENTER LOADER, LDR, SYSGLOBALS, MISC

Some Are Needed at Compile Time, Some Aren’t

From the table, you can see that several Procedure Library modules depend upon various Operat-
ing System modules (such as SYSGLOBALS, IODECLARATIONS, SYSDEVS, and A804XDVR).
However, the table does not show that some of the Procedure Library modules need these
Operating System module(s) only at load time and not at compile time (some also need them at
both times).

Modules such as SYSGLOBALS, SYSDEVS, and AB04XDVR are part of the Operating System
that is automatically loaded during the booting process (because they are in the standard INITLIB
file.) Thus, you don’t ever need to be concerned about making them accessible to the loader
(unless you somehow remove them from the INITLIB file).

® The GRAPHICS and FGRAPHICS modules require the specified Operating System modules
only at load time (not at compile time).

e The LIBRARY, 10, and SEGMENTER modules require the specified modules at both compile
time and at load time. You can make these Operating System modules accessible to the
Compiler by specifying the INTERFACE file in a SEARCH Compiler option or by adding them
to the System Library.

21

Chapter

2

Interfacing Concepts

Computer

Museum

Introduction

This chapter describes the functions and requirements of interfaces between the computer and its
resources. Most of the concepts in this chapter are presented in an informal manner. Hopefully, all
levels of programmers can gain useful background information that will increase their understand-
ing of the why and how of interfacing.

Terminology

These terms are important to your understanding of the text of this manual. They are not highly
technical, so don’t worry about not having a PhD. in computer science to be able to understand
all of them. The purpose of this section is to make sure that our terms have the same meanings.

The term computer is herein defined to be the processor, its support hardware, and the
Pascal-language operating system; together these system elements manage all computer re-
sources. The term computer resource is herein used to describe all of the ‘‘data-handling”
elements of the system. Computer resources include: internal memory, CRT display, keyboard,
and disc drive, and any external devices that are under computer control.

The term hardware describes both the electrical connections and electronic devices that make
up the circuits within the computer; any piece of hardware is an actual physical device. The
term software describes the user-written, Pascal-language programs.

22 Interfacing Concepts

(includes operating
system and user

memory)
Internal CRT
Memory Display Keyboard
Backplane
Connector
Data and A
Control Buses
" Backplane
L/ Connectors
) Di Built-In
Processor Isc HP-1B < 25 >
Drive
Interface
HP-IB
Connector

Block Diagram of the Computer

The term I/O is an acronym that comes from ‘“‘Input and Output’’; it refers to the process of
copying data to or from computer memory. Moving data from computer memory to another
resource is called output. During output, the source of data is computer memory and the
destination is any resource, including memory. Moving data from a resource to computer

memory is input; the source is any resource and the destination is a variable in computer
memory.

The term bus refers to a common group of hardware lines that are used to transmit information
between computer resources. The computer communicates directly with the internal resources
through the data and control buses. The computer backplane is an extension of these internal
data and control buses. The computer communicates indirecily with the external resources
through interfaces connected to the backplane hardware.

:
hm Electronic 3 ,
Processor Buffering P !E|ght Connectors
Hardware |® | inthe Card Cage
°
-

Backplane Hardware

Interfacing Concepts

Why Do You Need an Interface?

The primary function of an interface is, obviously, to provide a communication path for data
and commands between the computer and its resources. Interfaces act as intermediaries be-
tween resources by handling part of the ‘‘bookkeeping”’ work, ensuring that this communica-
tion process flows smoothly. The following paragraphs explain the need for interfaces.

First, even though the computer backplane is driven by electronic hardware that generates and
receives electrical signals, this hardware was not designed to be connected directly to external
devices. The electronic backplane hardware has been designed with specific electrical logic
levels and drive capability in mind. Exceeding its ratings will damage this electronic hardware.

Second, you cannot be assured that the connectors of the computer and peripheral are com-
patible. In fact, there is a good probability that the connectors may not even mate properly, let
alone that there is a one-to-one correspondence between each signal wire’s function.

Third, assuming that the connectors and signals are compatible, you have no guarantee that the
data sent will be interpreted properly by the receiving device. Some peripherals expect single-
bit serial data while others expect data to be in 8-bit parallel form.

Fourth, there is no reason to believe that the computer and peripheral will be in agreement as to
when the data transfer will occur; and when the transfer does begin the transfer rates will
probably not match. As you can see, interfaces have a great responsibility to oversee the
communication between computer and its resources. The functions of an interface are shown in
the following block diagram.

r-———-"—"-"—-"—-"—-—"=-"—-"=-"=-"=-="=-"=-==-= _l
| Interface |
| Computer |
I Compatible . I

Connector Logic |
| Level

| Interface Matcher
I — Logic Cabl |

l— able .
| =]]] | Peripheral

Computer — ;.4:] Dovice
I = Device I
| Compatible |
| Logic Connector |
Level

| Matcher |
I |
[|
e e e e e e e . o — — —— — — = — —

Functional Diagram of an Interface

23

24 Interfacing Concepts

Electrical and Mechanical Compatibility

Electrical compatibility must be ensured before any thought of connecting two devices occurs.
Often the two devices have input and output signals that do not match; if so, the interface
serves to match the electrical levels of these signals before the physical connections are made.

Mechanical compatibility simply means that the connector plugs must fit together properly. All
Series 200 interfaces have 100-pin connectors that mate with the computer backplane. The
peripheral end of the interfaces may have unique configurations due to the fact that several types of
peripherals are available. Most of the interfaces have cables available that can be connected directly
to the device so you don’t have to wire the connector yourself.

Data Compatibility

Just as two people must speak a common language, the computer and peripheral must agree
upon the form and meaning of data before communicating it. As a programmer, one of the
most difficult compatibility requirements to fulfill before exchanging data is that the format and
meaning of the data being sent is identical to that anticipated by the receiving device. Even
though some interfaces format data, most interfaces have little responsibility for matching data
formats; most interfaces merely move agreed-upon quantities of data to or from computer
memory. The computer must generally make the necessary changes, if any, so that the receiv-
ing device gets meaningful information.

Timing Compatibility
Since all devices do not have standard data-transfer rates, nor do they always agree as to when
the transfer will take place, a consensus between sending and receiving device must be made. If
the sender and receiver can agree on both the transfer rate and beginning point (in time), the
process can be made readily.

If the data transfer is not begun at an agreed-upon point in time and at a known rate, the
transfer must proceed one data item at a time with acknowledgement from the receiving device
that it has the data and that the sender can transfer the next data item; this process is known as a
“handshake’’. Both types of transfers are utilized with different interfaces and both will be fully
described as necessary.

Additional Interface Functions

Another powerful feature of some interface cards is to relieve the computer of low-level tasks,
such as performing data-transfer handshakes. This distribution of tasks eases some of the
computer’s burden and also decreases the otherwise-stringent response-time requirements of
external devices. The actual tasks performed by each type of interface card vary widely and are
described in the next section of this chapter.

Interfacing Concepts

Interface Overview

Now that you see the need for interfaces, you should see what kinds of interfaces are available for
the Series 200 computers using the Pascal Workstation System. Each of these interfaces is specifi-
cally designed for specific methods of data transfer; each interface’s hardware configuration reflects
its function.

This section briefly describes only these interfaces:
e HP-IB
e RS 232 Serial
e GPIO

Note that this Pascal System also supports the following types of interfaces:
¢ Data Communications

e EPROM Programmer
e Video output

The HP-IB Interface

This interface is Hewlett-Packard’s implementation of the IEEE-488 1978 Standard Digital Inter-
face for Programmable Instrumentation. The acronym “HP-IB” comes from Hewlett-Packard
Interface Bus, often called the ‘‘bus”.

Data

Interface

Handshake
Data and
Control Hardware
Backplane and
Connector Firmware : Control :
I Logic and Shield

Shielded Cable
to Device(s)

=

25-Pin Connector

Block Diagram of the HP-IB Interface

The HP-IB interface fulfills all four compatibility requirements (hardware, electrical, data, and
timing) with no additional modification. Just about all you need to do is connect the interface cable
to the desired HP-IB device and begin programming. All resources connected to the computer
through the HP-IB interface must adhere to this IEEE standard.

The “bus” is somewhat of an independent entity; it is a communication arbitrator that provides an
organized protocol for communications between several devices. The bus can be configured in
several ways. The devices on the bus can be configured to act as senders or receivers of data and
control messages, depending on their capabilities.

25

26

Interfacing Concepts

The Serial Interface

The serial interface changes 8-bit parallel data into bit-serial information and transmits the data
through a two-wire (usually shielded) cable; data is received in this serial format and is con-
verted back to parallel data. This use of two wires makes it more economical to transmit data
over long distances than to use 8 individual lines.

Bit-Serial Data
(In)

1
1 Parallel/Serial (Out)

Converter
(UART) Handshake

Parallel Data

Shielded Cable
to a Device

1
Data and !
Control Serial !
Backplane Interface
Connector Hardware .
< Special Purpose
6

il

50-Pin Connector

Grounds

< 7
A

AV

Block Diagram of the Serial Interface

Data is transmitted at several programmable rates using either a simple data handshake or no
handshake at all.

The GPIO Interface

This interface provides the most flexibility of the three interfaces. It consists of 16 output-data
lines, 16 input-data lines, two handshake lines, and other assorted control lines. Data is trans-
mitted using several types of programmable handshake conventions and logic sense.

Parallel Data Qut
16

N/

Parallel Data In
16

Shielded Cable
to a Device

Handshake
4

Data and
Control GPIO

Backplane m Interface

Connector Hardware

Special Purpose
6

50-Pin Connector

VANVANIVAN

Grounds
7

/}
VAV

Block Diagram of the GPIO Interface

Interfacing Concepts 27

Much of the flexibility of this interface lies in the fact that you have almost direct access to the
internal data bus for outputting and entering data.

Data Representations

As long as data is only being used internally, it really makes little difference how it is repre-
sented; the computer always understands its own representations. However, when data is to be
moved to or from an external resource, the data representation is of paramount importance.

Bits and Bytes

Computer memory is no more than a large collection of individual bits (binary digits), each of
which can take on one of two logic levels (high or low). Depending on how the computer interprets
these bits, they may mean on or not on (off), true or not true (false), one or zero, busy or not busy,
or any other bi-state condition. These logic levels are actually voltage levels of hardware locations
within the computer. The following diagram shows the voltage of a signal line versus time and
relates the logic levels to voltage levels.

Voltage of
a Signal Line
A
+5v s
\"—f/_ Logic High
Logic Ground » Logic Low
(OV) t4 ta ta Time

Voltage Levels and Positive-True Logic

In some cases, you want to determine the state of an individual bit (of a variable in computer
memory, for instance). The logical binary functions (BIT_SET, BINCMP, BINIOR, BINEOR,
and BINAND) provide access to the individual bits of data.

In most cases, these individual bits are not very useful by themselves, so the computer groups
them into multiple-bit entities for the purpose of representing more complex data. Thus, all data
in computer memory are somehow represented with binary numbers.

The computer’s hardware can access groups of 16 bits at one time through the internal data
bus; this size group is known as a word. With this size of bit group, 65536 (=2 1 16) different
bit patterns can be produced. The computer can also use groups of eight bits at a time; this size
group is known as a byte. With this smaller size of bit group, 256 (=2 1 8) different patterns can
be produced. How the computer and its resources interpret these combinations of ones and
zeros is very important and gives the computer all of its utility.

The computer is also capable of logically handling 32 bits; this size group is known as a long
word and is the Pascal INTEGER type.

28

Interfacing Concepts

Representing Numbers

The following binary weighting scheme is often used to represent numbers with a single data
byte. Only the non-negative integers O through 255 can be represented with this particular
scheme.

Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 0 0 1 0 1 1 0

Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value = 1

Notice that the value of a 1 in each bit position is equal to the power of two of that position. For
example, a 1 in the Oth bit position has a value of 1 (=2 1 0), a 1 in the 1st position has a value
of 2 (=21 1), and so forth. The number that the byte represents is then the total of all the
individual bit’s values.

Determining the Number Represented

Number represented =

4
0
= 16 2+ 4+ 16 + 128 = 150
0
0
8

The preceding representation is used by the “ORD”’ function when it interprets a byte of data.
The next section explains why the character ‘A’ can be represented by a single byte.

PROGRAM exampPle(inPutsoutpPut)i
VAR number : INTEGER}

BEGIN

number 2= ORD('A‘)}

WRITELN(‘ Number = ’'snumber)s
END,

Printed Result
Number = GBS

Interfacing Concepts

Representing Characters

Data stored for humans is often alphanumeric-type data. Since less than 256 characters are
commonly used for general communication, a single data byte can be used to represent a charac-
ter. The most widely used character set is defined by the ASCII standard’. This standard defines the
correspondence between characters and bit patterns of individual bytes. Since this standard only
defines 128 pattersn (bit 7=0), 128 additional characters are defined by the 9826 (bit 7=1). The
entire set of the 256 characters on the Series 200 computers is hereafter called the ‘‘extended
ASCII” character set.

When the CHR function is used to interpret a byte of data, its argument must be specified by its
binary-weighted value. The single (extended ASCII) character returned corresponds to the bit
pattern of the function’s argument.

PROGRAM example(inPut soutpPut)i
VAR number : INTEGERS

BEGIN

number 1= BS3

WRITELN(’ Character is ’schrinumber));i
END .

Printed Result
Character is A

Representing Signed Integers

There are two ways that the computer represents signed integers. The first uses a binary
weighting scheme similar to that used by the ORD function. The second uses ASCII characters
to represent the integer in its decimal form.

Internal Representation of Integers

Bits of computer memory are also used to represent signed (positive and negative) integers.
Since the range allowed by eight bits is only 256 integers, a double word (four bytes) is used to
represent integers. With this size of bit group, 4 294 967 296 (=2 1 32) unique integers can be
represented.

The range of integers that can be represented by 32 bits can arbitrarily begin at any point on the
number line. With Series 200 Workstation Pascal, this range of integers has been chosen for
maximum utility; it has been divided as symmetrically as possible about zero, with one of the bits
used to indicate the sign of the integer.

1 ASCIlI stands for ‘‘American Standard Code for Information Interchange’ . See the Appendix for the complete table.

29

30

Interfacing Concepts

With this ‘‘2’s complement’’ notation, the most significant bit (bit 31) is used as a sign bit. A sign
bit of 0 indicates positive numbers and a sign bit of 1 indicates negatives. You still have the full
range of numbers to work with, but the range of absolute magnitudes is divided in half
(—2 147 483 648 through 2 147 483 647). The following 32-bit integers are represented using
this 2’s-complement format.

Binary representation Decimal equivalent
1111 1111 1111 1111 1111 1111 1111 1111 -1
0000 0000 0000 0000 0000 0000 0000 0001 1
1111 1111 1111 1111 1111 1111 OOOO 0001 -255
0000 0000 0000 0000 0000 0000 1111 1111 255

signbitﬂ 2T81;| 2T0—1
2130 217

The representation of a positive integer is generated according to place value, just as when
bytes are interpreted as numbers. To generate a negative number’s representation, first derive
the positive number’s representation. Complement (change the ones to zeros and the zeros to
ones) all bits, and then to this result add 1. The final result is the two’s-complement representa-
tion of the negative integer. This notation is very convenient to use when performing math
operations. Let’s look at a simple addition of 2 two’s-complement integers.

Example: 3+(-3) = ?

First, + 3 is represented as: 0000 0000 0000 0000 0000 0000 0000 0011
Now generate —3’s representation:

first complement + 3, 1111 1111 1111 1111 1111 1111 1111 1100
then add 1 + 0000 0000 0000 0000 0000 0000 0000 0001
—3’s representation: 1111 1111 1111 1111 1111 1111 1111 1101
Now add the two numbers: 1111 1111 1111 1111 1111 1111 1111 1101
+ 0000 0000 0000 0000 0000 0000 0000 0011

1l 1< carry on

final carry 0000 0000 0000 0000 0000 0000 0000 0000all places

not used

Interfacing Concepts

ASCII Representation of Integers

ASCII digits are often uszd to represent integers. In this representation scheme, the decimal
(rather than binary) value of the integer is formed by using the ASCII digits O through 9
{CHR(48) through CHR(557), respectively}. An example is shown below.

Example

The decimal representation of the binary value ‘1000 0000 is 128. The ASCII-decimal
representation consists of the following three characters.

Character 1 2 8

Decimal value
of character

49 50 56

Binary value

of character 00110001 | 00110010 | 00111000

Representing Real Numbers

Real numbers, like signecl integers, can be represented in one of two ways with the computers.

They are represented in a special binary mantissa-exponent notation within the computers for

numerical calculations. During output and enter operations, they can also be represented with
. ASClII-decimal digits.

Internal Representation of Real Numbers

Real numbers are represented internally by using a special binary notation'. With this method,
all numbers of the REAL data type are represented by eight bytes: 52 bits of mantissa magni-
tude, 1 bit for mantissa sign, and 11 bits of exponent. The following equation and diagram
illustrate the notation; the number represented is 1/3.

Byte 1 2 3 4 8

Decimal value

of character 63 213 85 85 85

Binary value

of characters (30111111 11010101 | 01010101 | 01010101 | ... | 01010101
mantissa sign exponent mantissa

1 The internal representation used for real numbers is the IEEE standard 64-bit floating-point notation.

31

32 Interfacing Concepts

ASCII Representation of Real Numbers

The ASCII representation of real numbers is very similar to the ASCII representation of inte-
gers. Sign, radix, and exponent information are included with ASCII-decimal digits to form
these number representations. The following example shows the ASCII representation of 1/3.
Even though, in this case, 18 characters are required to get the same accuracy as the eight-byte
internal representation shown above, not all real numbers represented with this method require
this many characters.

ASCII characters 0 . 3 (33|33 |3]|3|3|(3|[3]3|3|3]|3]|3]3s

Decimal value
of characters

48 | 46 [51 [51 [51 | 51 |51 |51 |51 (5151|5151 |51 |51]51 5151

Chapter

The /O Procedure Library

3

Introduction

This chapter presents an introduction to the /O Procedure Library. This discussion includes the
organization of the library, major capabilities, and an introduction into the use of the library. The
last sections of this chapter contain a list of module capabilities. It is recommended that you scan
these sections to familiarize yourself with what features are available in the I/O Library.

Pascal /O

The Pascal language has been well known for some time as a good high-level langauge with
modularity and transportatility features. It has not had good I/O capabilities, particularly device I/O.
The Pascal language on the HP Series 200 computers still does not have /O as a fundamental part
of the language.

Rather than adding specific built-in language features to support 1/O, graphics, and other useful
extensions, HP Standard Pascal has a general extension mechanism called modules. A module is
very similar to a Pascal PROGRAM in that it can contain CONSTants, TYPEs, VARiables,
PROCEDUREs, and FUNCTIONS .

Various portions of a mocdlule can be EXPORTed for anyone to use. The Pascal 1/0 Procedure
Library is a collection of several modules. When you want to use the capabilities of the /O library,
you must tell the Compiler which module(s) you want from the /O library. This is done with the
IMPORT statement.

Here is an example of using the 1/O library. Suppose you want to write a program that reads a string
from a device and then writes a string {o the same device. The read and write string procedures are
both in the /O module called GENERAL_2. So the program might look like this:

PROGRAM test (INPUT ., OQUTPUT)3

IMPDORT GENERAL_Z3 { tell the compiler which module 1}
VAR str : STRINGL25513%
BEGIN
READSTRING(724+str) 3 { read str with CR/LF termination 1}
WRITESTRINGLN(724yst1) 3§ { write str with CR/LF termination }

END .

33

34 The VO Procedure Library

I/O Library Organization

Each of the I/O Library modules contains related features and capabilities. The I/O library contains
modules that provide general capabilities that are valid for all interfaces and devices and of specific
capabilities that are valid only for a specific interface or type of interface. Reading a character is an
example of a general capability. Checking for ACTIVE CONTROL is an HP-IB specific operation.

The I/O Library is divided into groups: general and interface specific. The interfaces currently
supported in the I/O Library consist of HP-IB, Serial, and Parallel (GPIO) interfaces. In the imple-
mentation of the /O Library, all the necessary Parallel capabilities are handled in the general
capabilities group. So, the 1/O Library consists of three groups:

e GENERAL
e HPIB
e SERIAL

Each of these groups consists of several modules. The last section in this chapter contains a list of
the procedures and functions in each of the modules in the I/O Library.

GENERAL

The GENERAL group contains the common operations used by all interfaces. This group consists
of the following modules:

Module Capability Example
IODECLARATIONS common constants, types, vari- what type of card is at interface
ables select code 7
IOCOMASM binary operations binary AND of two integers
GENERAL_0O machine and hardware depen- hardware register access
dent status and control
GENERAL_1 character 1/O input a character
GENERAL_2 string and numeric /O input a real number
GENERAL_3 error messages
GENERAL_4 transfers and buffers output data via DMA
HPIB
The HPIB group contains routines that are useful for the built-in and optional HP-IB interfaces.
Module Capability Example
HPIB_0 access to HP-IB interface bus lines clear the ATN line
HPIB_1 low level bus control send an ATN bus command
HPIB_2 HP-IB messages send selective device clear

HPIB_3 high level bus status and control request bus service

The 1/O Procedure Library 35

SERIAL

The SERIAL group contains the capabilities specific to serial interfaces. Currently, the HP
98626 and 98628 are supported.

Module Capability Example
SERIAL_O access to serial interface lines set Clear To Send
SERIAL_3 high level serial control set baud rate to 2400

Each module is a separate entity in the Pascal system. Being separate, only those modules
imported from the system library are used in the running of an application program. This
partitioning of the library minimizes the size of the program. The Pascal system, in normal
programming, will load and link all the modules that you have imported. You only need to
explicitly import the appropriate modules and use their procedures and functions.

I/O Library Initialization

The /O Library provides a setup procedure, IOINITIALIZE, and a clean up procedure,
IOUNINITIALIZE. Both procedures operate in a very similar manner. They perform the
following operations:

¢ Reset all interfaces.
e Stop all transfers.
o Release all I/O resources (such as DMA channels).

A well written Pascal program that uses the I/O Library will include these procedures. These
procedures are in the GENERAL_1 module. The example program from the previous section
rewritten would look like:

PROGRAM test (INPUT » OUTPUT)i
IMPORT GENERAL_1:
GENERAL_23 { tell the compiler which modules ¥
VAR str ¢ STRINGLZ253513
BEGIN
IOINTIALIZES
READSTRING(724sstr)}
WRITESTRINGLN(724ystr) i
IOUNINITIALIZES
END.,

set up the I/D svstem

read str with CR/LF termination
write str with CR/LF termination
clean up the I/0 svstem

A A A
B

The /O system is used by the rest of the Pascal system for /O operations. Because of this use,
IOINITIALIZE is called ty the system when power is first applied to the computer. Also,
because /O errors can occur during normal operation, the STOP and CLR /O keys call
IOUNINITIALIZE to clean up the I/O system state. This information leads to the fact that it is, in
many instances, unnecessary to call IOINITIALIZE and IOUNINITIALIZE. It is, however,
strongly recommended that you use these procedures. The use of the set-up and clean-up
procedures will make your programs more resistant to hardware and firmware problems and to
programming errors in software.

36 The /O Procedure Library

GENERAL Modules ‘

GENERAL modules contain the capabilities that are useful for all interfaces. For syntax and seman-
tics information refer to the reference section in the back of this manual.

MODULE iocomasm
FUNCTION bit_set
FUNCTION binand
FUNCTION binior
FUNCTION bineor
FUNCTION bincmp

MODULE general_0
FUNCTION ioread_word
PROCEDURE iowrite_word
FUNCTION ioread_byte
PROCEDURE iowrite_byte
FUNCTION iostatus
PROCEDURE iocontrol

MODULE general_1
PROCEDURE ioinitialize
PROCEDURE iouninitialize
PROCEDURE ioreset
PROCEDURE readchar
PROCEDURE writechar
PROCEDURE readword
PROCEDURE writeword
PROCEDURE set_timeout

MODULE general_2
PROCEDURE readnumber
PROCEDURE writenumber
PROCEDURE readstring
PROCEDURE readstring_until
PROCEDURE writestring
PROCEDURE readnumberin
PROCEDURE writenumberln
PROCEDURE writestringln
PROCEDURE readuntil
PROCEDURE skipfor

MODULE general_3
FUNCTION ioerror_message

MODULE general_4
PROCEDURE abort_transfer
PROCEDURE transfer
PROCEDURE transfer_word
PROCEDURE transfer_until
PROCEDURE transfer_end
PROCEDURE iobuffer
PROCEDURE buffer_reset
FUNCTION buffer_space
FUNCTION buffer_data
PROCEDURE readbuffer
PROCEDURE writebuffer
PROCEDURE readbuffer_string
PROCEDURE writebuffer_string
FUNCTION buffer_active
FUNCTION isc_active

Is a bit set in a 32-bit integer?

Logical AND of two 32-bit integers.
Logical OR of two 32-bit integers.
Exclusive OR of two 32-bit integers.
Logical complement of a 32-bit integer.

Read a 16-bit interface register.
Write a 16-bit interface register.
Read an 8-bit interface register.
Write an 8-bit interface register.
Read the firmware interface register.
Write the firmware interface register.

Reset the entire I/O system.

Reset the entire I/O system.

Reset a single interface card.

Read a character from an interface.
Write a character to an interface.
Read a 16-bit word from an interface.
Write a 16-bit word to an interface.
Set up an interface timeout value.

Read a real number.

Write a real number.

Read a string.

Read a string until a character match.
Write a string.

Read a real number until a LF occurs,
Write a real number with a CR/LF.
Write a string with a CR/LF.

Read until a character match.

Skip over a number of characters.

What is the error message for a specific /O error?

Stop a transfer.

Transfer a block of data as bytes.
Transfer a block of data as words.
Transfer in until a match character.
Transfer using a card condition.
Create a transfer buffer.

Reset the buffer space.

How much space is left in the buffer.
How much data is left in the buffer.
Read a character from a buffer.

Write a character to a buffer.

Read a string from a buffer.

Write a string to a buffer.

Is there a transfer active on the buffer?
Is there a transfer active on the interface?

The /O Procedure Library

HPIB Modules

HPIB modules contain routines that are useful for the built-in and optional HP-IB interfaces. For
syntax and semantics information refer to the reference section in the back of this manual.

MODULE hpib-0
PROCEDURE set_hpib
PROCEDURE clear_hpib
FUNCTION hpib_line

MODULE hpib_1
PROCEDURE send_command
FUNCTION my_address
FUNCTION active_controller
FUNCTION system_controiler
FUNCTION end_set

MODULE hpib_2
PROCEDURE abort_hpib
PROCEDURE clear
PROCEDURE listen
PROCEDURE local
PROCEDURE local_lockouit
PROCEDURE pass_control
PROCEDURE ppoll_configure
PROCEDURE ppoll_uncorifigure
PROCEDURE remote
PROCEDURE secondary
PROCEDURE talk
PROCEDURE trigger
PROCEDURE unlisten
PROCEDURE untalk

MODULE hpib_3
FUNCTION requested
FUNCTION ppoll
FUNCTION spoll
PROCEDURE request_service
FUNCTION listener
FUNCTION talker
FUNCTION remoted
FUNCTION locked_out

Set an HP-IB hardware line.
Clear an HP-IB hardware line.
Is an HP-IB hardware line set?

Send an ATN command.

What is my bus address?

Am [active controller?

Am [system controller?

Was EOI received with the last byte?

Stop all bus activity.

Send clear command to a device.
Send listen command to a device.
Send local command to a device.
Send lockout command to all devices.
Pass active control to a device.
Configure PPOLL response of a device.
Remove PPOLL response of a device.
Send remote command to a device.
Send a secondary command.

Send talk command to a device.

Send trigger command to a device.
Send unlisten command to all devices.
Send untalk command to all devices.

Is SRQ asserted?

What is the bus parallel poll byte?
What is the device senal poll byte?
Request bus service (via SRQ).
Am | a listener?

Am | a talker?

Is REN being asserted?

Am | in the local lockout state?

37

38 The /O Procedure Library

SERIAL Modules

SERIAL modules contain the capabilities specific to serial interfaces. Currently, the HP 98626 and
98644 Serial and HP 98628 Datacomm cards are supported. For syntax and semantics informa-
tion, refer to the reference section in the back of this manual.

MODULE serial_0
PROCEDURE set_serial Set a serial line.
PROCEDURE clear_serial Clear a serial line.
FUNCTION serial_line Is a serial line set?

MODULE serial_3
PROCEDURE set_baud_rate Set the interface baud rate.
PROCEDURE set_stop_bits Set the interface number of stop bits.
PROCEDURE set _char_length Set the interface character length.
PROCEDURE set_parity Set the interface parity.
PROCEDURE send_break Send a serial BREAK.
PROCEDURE abort_serial Stop all serial activity.

IODECLARATIONS Module

Most of the I/O Library consists of modules that contain procedures and functions. However, the
IODECLARATIONS module is a module of constants, types, and variables. This module is used by
the rest of the I/O Library for range checking, common variables, and /O system tables. IODEC-
LARATIONS is also of use to you, the programmer, for various reasons. This section will not fully
discuss the IODECLARATIONS module. It will only discuss few points of general interest.

The useful information in IODDECLARATIONS relates to interface information. Typical questions
about interfaces include:

® What is the range of interfaces?

® [s there an interface on interface select code 12?

® Is the interface on interface select code 15 a serial interface?

® Is the interface on interface select code 15 a 98626 serial interface or a 98628 serial interface?

The descriptions that follow will show the actual Pascal code used to define the various constants,
types and variables.

Range of Interface Select Codes and Device Selectors

This range is supported by several constants and types. The I/O Library supports various select
codes, as described in the next chapter. The interface select code range is from O through 31. There
are two constants that define this range:

CONST IOMINISC
I0OMAXISC

Q3
315

The /O Procedure Library 39

In addition to defining the upper and lower limits of select codes there are type definitions that
support interface select code and device variables. These type definitions are:

TYPE TYPE_ISC
TYPE_DEVICE

IOMINISC. . IOMAXISC 3
[OMINISC. . IOMAXISC*100+993

These type definitions are: used in the /O Library for interface select code and device para-
meters. With the compiler option $SRANGE ONS$, which is the default, the compiler will emit a
range check for your parameters. So, if you tried to use an interface select code of 45, the
program would generate zn error. You can use the type definitions for interface select code and
device variables, if you clesire. It is also possible to use integer variables and other integer
subranges for interface se.ect code and device variables.

Information about Interface Cards

There is a table defired in the [IODECLARATIONS module that contains common information
about all interface cards in the computer. This table is called ISC_TABLE and is an array of
structured elements, a compound data type. The definition of this table is:

VAR ISC_TABLE . PACKED ARRAY [TYPE_ISC]
OF isc_table_tyPes

The compound data type [SC_TABLE_TYPE contains several pieces of information. The de-
finition of this type is:

TYPE isc_table_tvepe = RECORD
io_dru_ptr: “driver} { ptr to drivers %
io_tmP_pPtr: “memorys { ptr to R/HW T
CARD_TYPE : -327GB..327675
user—_time : INTEGER]} { for timeout >
CARD_ID : -32768.,.32767}
card_ptr : “cards { card addr ¥
END 3

The table contains pointers to the actual drivers, driver read/write memory space, user specified
timeout value and a pointer to the physical address of the interface card in the computer’s
memory. The table also contains the type of card and card id information. You should only
need to examine the card type and card id.

Note

All of this informaticn is for system use. Do not modify any table
entries.

40 The /O Procedure Library

The following program lists the type of card and card id for all interface select codes.

PROGRAM list_cards (INPUT , DUTPUT 3
IMPORT IODECLARATIONS;
VAR isc : TYPE_ISC3

BEGIN
FOR isc := IOMINISC TO IOMAXISC DO
WRITELN(‘card ‘, ise:2,y
‘is of tvpe 7, ISC_TABLELiscl.CARD_TYPE:4d,
" with an id of "+ISC_TABLELiscl.CARD_ID:4) ;
END,

This program is not useful because the values for card type and id are integers and you do not know
what each value means. The IODECLARATIONS module has a series of pre-defined constants for
the card type and id.

The CARD_TYPE field contains information about the generic card type—whether the card is
Serial, HP-IB, etc. The constants are as follows:

CONST

no_card
other_card

n 1]
<

—

system_card
hpib_card
gpio_card
serial_card
drarhics_card
srm_card
bubble_card
ePrOM_PrImMT

00O~ @®W S WM

The CARD_ID field contains hardware specific information. For example, the id will inform you
whether an HPIB_CARD is the internal interface or an optional 98624 plug-in card. This should
only be necessary if you are doing low-level operations to the interfaces.

Note
The appearance of a card id in the following list does not imply Pascal
support for the specified interface. The cards are mentioned because
they may be supported by other languages which run on this machine.

The constants are defined as follows:

CONST
hp9B862B_dsndl = =73
hp9BGZ9 = -(33
hp_datacomm = =33
hp8BBZ0 = -U3
internal_kbd = -33
internal_crt = -23
internal_hprib = =13
no-id = 03
hpOBGZ24 = 13 { HP-IB ?}
hr9BE2B = 23 { Serial ?
hp9BEZ22 = 33 { GPID }
hp9BBZ3 = 43 { BCD }
hp9BBZS = Bj { Fast Disc 1}
hp9BGZ2B_asvnc = 203 { Serial ?
hPGATOR = 5% { bit-mapped alpPha/drarhics }
hp9B253 = 273 { EPROM Programmer }
hp9BE27 = B3 { Color output }
hp9B259 = 403 { Bubble }
hp9BE44 = BB { Serial }?

A program to determine card type and id is shown below.

PROGRAM List_cards (INPUT,DUTPUT)S

IMPORT
IODECLARATIONS

VAR
Isc : Tvre_Isci

BEGIN
FOR Isc := IOMinlsc TO IOMaxIsc Do
BEGIN
IF Isc_Tablel[Iscl.Card_Tvpe > System_Card THEN

BEGIN

WRITE('Card at “+lsc:2y’ is of tvPe: R

CASE Isc_TablelIscl.Card_Tvee OF
HPIB_Card: WRITE(’ HP-IB)3
GPIO_Card: WRITE(’ GPIOD "y
Serial_Card: WRITE(’ Gerial i
Graphice_Card: MWRITE(’ Graphics R

SRM_Caril: WRITE(’ SRM R
Bubble_Card: WRITE(’ Bubhble R
EPROM_Pgmr: WRITE(' EPROM 3
OTHERWISE WRITE(' Other "3

END; { CASE Card_Tvre 1}

The /O Procedure Library 41

42 The I/O Procedure Library

WRITE(” Card_ID: /)3

CASE Isc_TablelIscl.Card_ID OF
HP98253: WRITE(’ HP 98253 K
HP98259: WRITE(‘ HP 98259 R
HP9BGZ?Z: WRITE(* HP 98GzZ)3
HP98G623: WRITE(’ HP 98623 ‘)
HP98G6Z4: WRITE(’ HP 988624 ‘)i
Internal _HPIB: WRITE(’ built-in)3
HP98EB25: WRITE(’ HP 9BEZS)3
HP9BGZ6: WRITE(’ HP 9BEZ2B)3
HP98GZ7: WRITE(’ HP 9BEBZ27 R
HPO9BBZB_Asvnc: WRITE(’ HP 98628 - Async');
HP9BGZ9: WRITE(‘ HP 98829 R}
HPOBE44: WRITE(’ HP 9BG44 ‘)i
OTHERWISE WRITE(' Other)i

END3 { CASE Card_ID }
WRITELN
ENDS { IF ., BEGIN }
END3 { FOR .. BEGIN }
END.

Other Types ‘

In addition to the previously specified information there are some pre-defined types used through-
out the I/O Library. These type definitions are:

I0_BIT = 0..15 3

I0_BYTE = 0,,255 ;3
I0_WORD = -32768,.32767 3
I0O_STRING = STRINGL2551;

Chapter

4

Directing Data Flow

Introduction

This chapter describes how to specify which computer resource is to send data to the computer or
receive data from the computer. There are three main resources for the source and destination of
data:

o Internal devices
e External devices
® Mass storage files

The V/O Library is used for accessing internal and external devices and is discussed here. The Pascal
system has other methods for accessing mass storage files and these commands are covered in the
Pascal Workstation System manual.

Specifying a Resource

The procedures and functions that perform 1/O have a device selector parameter as a part of the
parameter list. This parameter has two forms: a simple device selector and an addressed device
selector.

Simple Device Selectors

Devices include the built-in CRT and keyboard, external printers and instruments, and all other
physical entities that can be connected to the computer through an interface. Thus, each device
connected to the computer can be accessed through its interface. Each interface has a unique
number by which it is identified, known as its interface select code. The internal devices are
accessed with the followirg, permanently assigned interface select codes.

Device Select Code
CRT Display 1
Keyboard 2
Built-in HP-1B 7
Built-in Serial 9

43

44 Directing Data Flow

Optional interfaces all have switch-settable select codes. These interfaces cannot use select
codes 0 through 7; the valid range is 8 through 31. The following settings on optional interfaces
have been made at the factory but can be changed to any other unique select code. See the
interface’s installation manual for further instructions.

Device Select Code
98624A HP-IB 8
98626 Serial 9
98644 Serial 9
98622A GPIO 12
98625A Disc 14
98625A Datacomm 20

An example program using interface select codes is shown below:

FPROGRAM selectcode (INPUT , OUTPUT 3

IMPORT GENERAL_Z:

VAR str : STRINGLZ2551;

BEGIN
WRITESTRING(1s’tvrPe something - terminated by the ENTER Key’)}
READSTRING_UNTIL(CHR(13) +2ss5t1) }
WRITESTRING(12,'messade from Keyboard - ‘)3
WRITESTRINGLN(1Zsstr) 3

END .

Addressed Device Selectors

Each device on an HP-IB interface has an address by which it is uniquely identified. The
addressed device selector is a combination of the interface select code and the device’s bus
address. This combination is:

interface select code * 100 + device bus address = addressed device selector

A printer with a bus address of 1 on the internal HP-IB interface (which is an interface select
code of 7) would be accessed with a device selector of 701.

An example program using an addressed device selector is shown below:

PROGRAM device (INPUT + OUTPUT)i

IMPORT GENERAL_Z;

VAR num : REALS

BEGIN
READNUMBERLN (724 snum) §
WRITESTRING(701s’reading from voltmeter - 7);
WRITENUMBERLN(701 srium) 3

END.

Chapter

5

Outputting Data

Introduction

The preceding chapter described how to identify a specific device as the destination of data in a
WRITESTRING procedure. Even though a few examples were shown, the details of how the data is
sent was not discussed. This chapter describes the topic of outputting data to devices.

There are two general classes of output operations. The first type, known as “‘free field” output,
uses the computer’s default data representation. The second class provides precise control over
each character to be sent and is called ‘‘formatted’” output.

The /O Library is a separate set of procedures and functions. As such, it does not have variable
length or variable type parameter lists. In Pascal there are normal “print” facilities called WRITE

and WRITELN (for write l:ne) that can have a variable list. Some examples are:

WRITELN(‘hello there’)3}

WRITELN(‘the value received was '+1)7
WRITE(i+' times ‘+ds’ is edual to Cyi%g)i
WRITE(client.names’ hkas ‘yglient.evecolor,’ eves ‘)i

Note that there are no requirements for what types of constants, variables, or expressions are
allowed in a list, nor are there any requirements for their order in a list.

Because of this restriction on the variability of lists, the /O Library only normally supports a small
set of types. These types ere:

o Real expressions

o Strings (up to 255 characters)
e Characters (8 bits)

e Words (16 bits)

The procedures that hancle these types will only handle one of the type. These operations can be
used in a series to get the effect of a list.

45

46 Outputting Data

Free Field Output

As mentioned in the previous section, there are four main types supported directly by the /O
Library output facility. These are:

® Real Expressions
® String Expressions
® Characters

® Words

Real Expressions

There are two output procedures for real expressions: WRITENUMBER and WRITENUMBERLN.
Both operate in an identical fashion except that WRITENUMBERLN appends a carriage return and
line feed to the characters sent to the device. The form of these procedures is:

WRITENUMBER (device_selector, numeric_expression)3
WRITENUMBERLN (device_selector; nuneric_expression)3

Both procedures are in the /O Library module GENERAL_2. The device selector can be a simple
interface select code or it can contain addressing information. The numeric expression can be any
valid expression including simple real, integer, or integer subrange variables, numeric constants,
and numeric expressions. An example program follows:

PROGRAM realexpression (INPUT,0UTPUT):

IMPORT IODECLARATIONS »
GENERAL_Z3;
VAR a : REALS
i t INTEGER}:
device : TYPE_DEVICE;
BEGIN
devices=7013
is=123%
a:r=12.34%

WRITENUMBERLN(deuvice ri);

MRITENUMBERLN(device sa) s

WRITENUMBERLN(device +1234) 3

WRITENUMBERLN(device sa+1234) 3

WRITENUMBERLN(device »i+12);
END.

This program will produce the following output:

C20000E+001
y23400E+001
+y23400E+003
1.24634E+003
2.40000E+001

Outputting Data 47

The example program did not use WRITENUMBER. This is because there are no additional
characters sent with the ASCII character sequence. Two numbers sent with two consecutive
WRITENUMBERSs might look like:

1,2345B6E+1239,87654E-321

Notice that there is no separator. The examples toward the end of this section will show
examples of WRITENUMBER. Be sure that you remember that the real number can be pre-
ceded by a minus sign.

String Expressions

There are two output procedures for string expressions: WRITESTRING and
WRITESTRINGLN. Both operate in an identical fashion except that WRITESTRINGLN
appends a carriage return and line feed to the characters sent to the device. The form of these
procedures is:

WRITESTRING (device_specifier strind_expression)
WRITESTRINGLN device_specifier strind_expression)

Both procedures are in the [/O Library module GENERAL_2. The device selector can be a simple
interface select code or it can contain addressing information. The string expression can be any
valid expression including simple string variables, string constants, and string expressions. An
example program follows:

PROGRAM strings (INPUT,OUTPUT)S

IMPORT IODECLARATIONS »
GENERAL -2}
VAR s 1 STRINGLZ25513
t 1 STRINGL3213
device : TYPE_DEJICES
BEGIN
device:=7013}
s:='first string’si

tes='second stringd’s
WRITESTRING (devicess)i
WRITESTRINGLN(devicest) i
WRITESTRING (device:’this is a string constant and ‘)i
WRITESTRINGLN(device: this is the ‘+5) 3
WRITESTRINGLN(devices‘both ‘+s+’ and the ‘+t)i

END

This program will produce the following output:

first stringsecond strind
this is a string constant and this is the first string
both first string and the second strind

48 Outputting Data

Characters
There is a single output procedure for single characters: WRITECHAR. The form of this proce-
dures is:

WRITECHAR (interface_select_code; character_expression)}

The procedure is in the I/O Library module GENERAL_1. The interface select code cannot be a
device specifier (like 701). Refer to the HP-IB section regarding bus addressing. The character
expression can be a character variable, character constant, or character expression. An
example program follows:

PROGRAM characters (INPUT,OUTPUT) ;

IMPORT IODECLARATIONS »
GENERAL_1,
GENERAL_Z235
VAR ¢ t CHAR3
isvd t INTEGER:
device : TYPE_DEWICE:
isc : TYPE_ISC:
BEGIN
isc:=73

device:=7013
WRITESTRING(devices‘some characters ¢ ') 3
WRITECHAR(iscs» 'x’)3

cr="v'j
WRITECHAR(iscsc) i
J:=0RD(’z ")}

WRITECHAR(iscschr(J))}
FOR i:=65 TO 90 DO WRITECHAR(iscschr(i))}
WRITESTRINGLN(iscs+’>')3

END.

This program will produce the following output:

some characters <xyzABCDEFGHIJKLMNOPORSTUYMWXYZ S

Words
There is a single output procedure for 16 bit words. It is WRITEWORD. The form of this
procedures is:

WRITEWORD (interface_select_code word_exPression)i

The procedure is in the I/O Library module GENERAL_1. The first parameter must be an interface
select code; it cannot be a device selector (like 701). Refer to the HP-IB section regarding bus
addressing. The word expression can be a word, integer, or integer subrange variable, integer
constant, or integer expression. The evaluated value must be in the range of — 32768 to 32767.

Outputting Data

The procedure has two different behaviors, depending on what type of interface it is used with.
When used with a GP1O interface (HP 98622), this procedure will send a single 16 bit quantity
over the 16 data lines on the interface. This procedure will send two consecutive bytes for all
other interface types — most significant byte first, least significant byte last. An example pro-
gram for an HP-IB interface follows:

PROGRAM words (INPUT.QUTPUT)S
IMPORT IODECLARATIONS
GENERAL L+
GENERAL .23
-32768,.327673

TYPE short

VAR c : CHARS
isd : INTEGER
X : I0_WORD;
¥ : shortid
device ¢ TYPE_DEVICES
isc : TYPE_ISC3
BEGIN
isc:=71

device:=7013
WRITESTRING(device:‘some characters <
x:=65%256+66 3
WRITEWDRD(iscsx) 3
WRITEWORD(isc +B7%256+68) 3
J1=69%256+703
WRITEWORD(isc+J)3
J:=0RD(2"}
FOR i:=G65 TO 75 DO WRITEWORD(isc»Ji%256+i) 3}
WRITESTRINGLN(iscs'>"1)3
END.

This program will produce the following output:

some characters <ABCDEFzAzBzCzDzEzFzGzHzlzJzK%

The following program is an example of how to use the “‘free field” procedures together to get
effect of a full parameter list:

PROGRAM strindgs (INPUT,OUTPUT)

IMPORT IODECLARATIONS »
GENERAL -1
GENERAL _Z3

VAR st : STRINGLZ2551}
X : REALS
device : TYPE_DEVICES
isc : TYPE_ISC3
BEGIN
device:=7013
isc 1=73%
si1='RandeliTridderl jNumber’3
x:=1003

t:=‘Store’

WRITESTRING (devicerss)?

WRITENUMBER (isc X)3

WRITESTRING (isc st}

WRITECHAR (isc schr(l0)) 3
END.

49

50 Outputting Data

This program will produce the following output sequence:

RardgeliTrigderl iNumberl,00000E+002Store

Formatted Output

The previous ‘‘free field” procedures are adequate for a large number of applications. There
are, however, a large number of applications that need the “‘formatted” output capability. The
I/O Library does not directly provide this capability. Formatted output is achieved with the use
of the built in procedure STRWRITE.

STRWRITE

The STRWRITE procedure is a version of the standard Pascal procedure WRITE. The differ-
ence is that STRWRITE sends the character stream to a string variable, as opposed to an output
file. The form of STRWRITE is as follows:

STRWRITE (strind_variahles starting_char, next_char_var,..outputlist...) ;

The string variable is the destination for the output operation. The starting character position is an
integer expression that indicates which character in the string is the start of the output area. The
next character variable will contain, after the execution of STRWRITE, the next available character
in the string for a successive STRWRITE or other string operation. For additional information, refer
to The HP Pascal Language Reference for Series 200 Computers.

The following program is an example of how to use STRWRITE to produce formatted output;

PROGRAM formatted (INPUT,OUTPUT);

IMPORT IODECLARATIONS ,
GENERAL_2}%
TYPE color = (blue s brown » dreen , red)i
VAR ssname : STRINGL2551;
POS M : INTEGER:
BEYes t colors
device : TYPE_DEVICES
BEGIN
device:=7013
name s='John Smith’;
T 1=123
eves s=hlues
STRWRITE(s +1+r0ss name+’ is emplovee number ‘“snizd) s

SETSTRLEN(s srPos-1)3}
WRITESTRINGLN(devicess);

STRWRITE(s1,ros+ ‘and has ‘seves,’ eves ‘)i
SETSTRLEN(s srP05-1)3
WRITESTRINGLN(devicess)}

END,

Outputting Data 51

This program will produce the following output:

John Smith is emplove2 number 12
and has BLUE eves

52 Outputting Data

Chapter

6

Inputting Data

Introduction

There are two general classes of input operations. The first type, known as “free-field” input, uses a
default interpretation of the data to be input. The second class provides precise control over each
character to be received and is called ‘‘formatted” input.

The I/O Library is a separate set of procedures and functions. As such, it does not have variable
length or variable type parameter lists. However, in Pascal there are normal “input” facilities, called
READ and READLN (for read line), that can have a variable length list. Some examples are as
follows:

READ(rame)3 FOR isz= 1 TD 100 DO READ(mvchar[il)}
READ(voltasdesfreauency)’i READLN(promet)}

Note that there are no requirements for what types of variables are allowed in the list, nor are there
any requirements on the order of variables on the list. Because of this restriction on the variability of
lists, the /O Library only normally supports a small set of input data types. These types are as
follows:

o Real variables

e Strings (up to 255 characters)
e Characters (8 bits)

o Words (16 bits)

In addition to these data “ypes, the /O Library supports some field skipping facilities. The proce-
dures that handle these types and facilities will only handle one operation at a time. However these
operations can be used in a series to get the effect of a list.

53

54 Inputting Data

Free-Field Input
As mentioned in the previous section, there are four main data types supported directly by the I/O
Library input facility:
® Real Variables
® String Variables
o Characters
e Words

Real Variables

There are two input procedures for real variables: READNUMBER and READNUMBERLN. Both
operate in an identical fashion except that READNUMBERLN searches for a line feed termination
from the device. The form of these procedures is:

READNUMBER (device_selector» numeric_expression)3
READNUMBERLN (device_selectors numeric_exrression)}

Fundamental to understanding how these procedures work is the concept of termination. The
READNUMBER procedures will skip over any number of non-numeric characters until a numeric
character is found. Then, up to 255 numeric characters will be read in as an ASCII representation of
a real number. Numeric characters are defined to be the following characters:

0 5 E

1 6 e

2 7 +

3 8 -

4 9 period
space

When reading numbers, the terminating conditions are:

® Any non-numeric character after numeric characters have been read, or
® 255 numeric characters read.

Note

Note that spaces are not considered to be “non-numeric’’ characters,
and therefore will not terminate numbers. Erroneous results may occur
if you try to use them to terminate or delimit numbers, because these
procedures do not report receiving erroneously formatted numbers.

Inputting Data

Both procedures are in the 1/O Library module GENERAL 2. The first parameter can be either a
simple interface select code or a device selector that contains addressing information. The variable
must be a real variable (including a real array element). An example program follows:

PROGRAM realvariable (INPUT. OUTPRUT)3

IMPORT IODECLARATIONS .,
GENERAL_Z3

VAR
a : REALS
BEGIN
{ inPut comes from Kevboard }
WRITELN(‘Tv¥pPe in a real numbers terminated by a non-numeric character’)s
READNUMBER(1 sa) i
WRITELNS

WRITELN(‘Here is the value vou entered: ‘sa)lj

WRITELN('TvPe in a real number, terminated by CTRL-J7)3
READNUMBERLN(1 ra) i

WRITELNS

WRITELN{ 'Here is tfe value vou entered: ‘,a)i

END .

String Variables

There are two input procedures for string variables: READSTRING and READSTRING_UNTIL.
. Both operate in a similar manner except that READSTRING_UNTIL searches for a specified
termination character where the READSTRING uses some default terminations.

The form of the READSTRING procedure is:

READSTRING (device_selectors strind_variable)i

The READSTRING procedure will read characters into a string until one of the following termina-
tion conditions are encourtered:

o A line feed is received.

e A carriage return and a line feed are received.

® The string variable is filled.
The line feed or carriage return and line feed are NOT placed in the string variable. The form of the
READSTRING_UNTIL procedure is:

READSTRING_UNTIL (termination_uharactér;

device_selectors strind_variable)s

The READSTRING_UNTIL procedure will read in characters into a string until one of the following
termination conditions are encountered:

e The match character ‘s received.
® The string variable is filled.

‘ The termination character is placed into the string variable.

56 Inputting Data

Both procedures are in the 1/O Library module GENERAL_2. An example program follows:

PROGRAM strindvariable (INPUT,OUTPUT)3

IMPORT IODECLARATIONS +
GENERAL_23
VAR s : STRINGLZ5513
t : STRINGL 813
BEGIN

{ the Kevboard is the input device }

WRITELN(’enter a strind terminated with a control-J‘)}
READSTRING(1 +5) 3
WRITELN(’vou entered <’s5,’> as vour string’)s;

WRITELN(‘enter a string of 8 characters’)}
READSTRING (1 ,t) 3
WRITELN(’vou entered <‘sts’> as your string’);

WRITELN(‘enter a strind terminated with an ENTER (carriade return)‘):
READSTRING_UNTIL(chr(13)+145)3
WRITELN(‘vou entered <‘’ys:’> as vour string’);

END.

Characters
There is a single input procedure for single characters—READCHAR. The form of this proce-
dures is:

READCHAR (interface_select_codes character_variable)s

The procedure is in the 1/O Library module GENERAL_1. The interface select code cannot be a
device specifier (like 701). Refer to the HP-IB section regarding bus addressing. The variable
must be a character variable. An example program follows:

PROGRAM characters (INPUT,OUTPUT);

IMPORT IODECLARATIONS +
GENERAL_1}
VAR ¢ 1 CHARS
BEGIN
REPEAT
READCHAR(1sc) i
WRITELNS

WRITELN(’vou tvyped ‘ycs’ which is character ’+ORD(c):3)}
UNTIL c=CHR(13)3
WRITELN(“done)3
END.,

Words
READWORD is the input procedure for 16-bit words. The form of this procedures is:

READWDORD (interface_select_code, inteder_variable):

Inputting Data

The procedure is in the /O Library module GENERAL_1. The first parameter must be an interface
select code; it cannot be a device selector that contains addressing information (like 701). Refer to
the HP-IB section regarding bus addressing. The variable must be an integer variable. The returned
value will be in the range of —32 768 to 32 767.

The procedure has two different behaviors, depending on what type of interface it is used with.
When used with an HP 98622 GPIO interface, this procedure will read a single 16-bit quantity
from the 16 data lines on the interface. This procedure will read two consecutive bytes for all
other interface types — most significant byte first, least significant byte last. An example program
for an HP-IB interface follows:

PROGRAM words (INPUTJUTPUT);

IMPORT IODECLARATIONS »
GENERAL_13

VAR x : INTEGERS
BEGIN

READWORD (12 +x) 3

WRITELN(‘the word received was ! ‘+x37)3
END.

Skipping Data

There are applications where you want to skip over a block of data and do not wish to store the
information. The I/O Library has two procedures to support skipping over data: READUNTIL
and SKIPFOR.

The READUNTIL procedure skips over data until a match character is received. It is of the form:

READUNTIL (termimation-character: device_selector)}

The SKIPFOR procedure skips over a specified number of characters. It is of the form:

SKIPFOR (skip_count: device_selector)s

The skip count is an integer expression. Both procedures are in I/O Library module
GENERAL_Z2.

57

58 Inputting Data

Formatted Input

The previous “‘free field” procedures are adequate for a large number of applications. There
are, however, a large number of applications that need the ‘“formatted’’ input capability. The
I/O Library does not directly provide this capability. Formatted input is achieved with the use of
the built in procedure STRREAD.

STRREAD

The STRREAD procedure is a version of the standard Pascal procedure READ. The difference
is that STRREAD reads the character stream from a string variable, as opposed to an input file.
The form of STRREAD is as follows:

STRREAD (stringd_variable, startind_char, next_char_var,..inputlist...);

The string variable is the source for the input operation. The starting character position is an
integer expression that indicates which character in the string is the start of the data to be read.
The next character variable will contain, after the execution of STRREAD, the next available
character in the string for a successive STRREAD or other string operation. For additional
information, refer to the HP Pascal Language Reference for Series 200 Computers.

The following program is an example of how to use STRREAD to produce formatted input.

FROGRAM formatted (INPUT,OUTPUT);

IMPORT IODECLARATIONS 4
GENERAL_Z3
TYPE color = (blue + brown s dreen + red)3
VAR s : STRINGL121];
t : STRINGL 813
POS t INTEGER
eves : colors

BEGIN

WRITELN(’enter B alphabetic characters’);
WRITELN(’and then tvyepe the characters BLUE’)3

READSTRING(14+5) 3
STRREAD(ss1 P05+ treves)s
WRITELN(‘the string is ‘,t+‘ and the eves are ‘seves);

END.

Chapter

Registers

7

Introduction

There are two classes of registers available to the Pascal [/O Library: hardware registers and 1/0O
system registers. Hardware registers are actual registers located on the I/O cards, while /O system
registers are maintained by the Pascal [/O system. I/O system registers are often concatenations of
bits in hardware registers, rnaintained and accessed by 1/O system routines.

The hardware registers are accessed with the low-level IOREAD_BYTE and IOREAD_WORD
functions and IOWRITE_BYTE and IOWRITE_WORD procedures. The /O system registers are
accessed with the higher-level IOSTATUS function and IOCONTROL procedure.

In most instances, it is unnecessary for the programmer to access the I/O system registers. Some
of the more common register operations are supported in high level procedures and functions.
It is best to use the high level procedures and functions when possible because these are more
easily understood and are more transportable. Refer to the chapters that deal with the specific
interface for the high level procedures and functions.

I/O System Registers

The I/O System registers are called the status and control registers. In previous desktop computers
and in the current Series 200 HP BASIC language, these registers are accessed with the BASIC
STATUS and CONTROL statements. In the Pascal system most of the [/O system registers have the
same definitions as the BASIC system. This is only mentioned in case you already have an
understanding of the BASIC registers.

The IOSTATUS Function

A status register is read with the IOSTATUS function. To read a register, specify the interface and
the register number of interest in the parameter list. Only a single register may be examined with
each invocation of IOSTATUS.

Examples
interface := 123
redister = 0} { reg O is card id }
i := I0OSTATUS(interfacesredister)s; { det interface id 1}

WRITELN(‘bus state is ‘+IOSTATUS(7:+7))3 { det HP-IB bus state

59

60 Registers

The IOCONTROL Procedure

A control register is written with the IOCONTROL procedure. It is necessary to specify the
interface and the register number, and the value to be written in the parameter list. Only a single
register may be modified with each invocation of IOCONTROL.

Examples
interface := 73 { Built-in HP-IB., 1}
redister 3= 33 { Redister 3 sets address, }
TOCONTROL(interfaces redisters5)3 { Set address to 5., }
IOCONTROL(7+041) 3 { Reset HP-IB interface, }

Common Register Definitions

The status and control registers are very interface dependent both in number and definition of
the registers. There are two registers that are defined for all except two interfaces:

® status register O (for card identification)
® control register O (to reset the interface card)

The keyboard and CRT (interface select codes 1 and 2) do not have status and control registers
implemented.

Hardware Registers

The hardware registers are accessed by the system. It is, therefore, dangerous for you to access
these registers unless you have a complete understanding of both the register definition and of the
consequences of accessing the hardware registers. Their locations and definitions are given in
subsequent chapters that describe each interface’s registers. The IOREAD_BYTE and
IOWRITE_BYTE perform an eight-bit (byte) operation on the computer backplane. The
IOREAD_WORD and IOWRITE_WORD perform a 16-bit (word) operation on the computer
backplane.

Chapter

Errors and Timeouts

8

Introduction
There are two types of events supported in the Pascal /O Library:

o [/O Errors
o [/O Timeouts

These /O events are handled via the TRY/RECOVER event handling mechanism. Refer to the

Compiler chapter of the Pascal Workstation System manual for additional information on TRY/
RECOVER.

Note that timeouts are only available on handshake operations. There is no timeout facility on the
advanced transfers. Also note that the Datacomm interface control blocks use the TRY/RECOVER
mechanism.

61

62 FErrors and Timeouts

Pascal Event Processing

Pascal’s event-handling mechanism is very much different from that found in BASIC or HPL on the
Series 200 computers. BASIC and HPL are interpreted languages. At the end of each program line,
there is a call to a system routine that checks for the occurrence of events. If one has occurred (and
is enabled to initiate a program branch), then the appropriate branch is taken. The Pascal Compiler
does not generate code at the end of each line to check for events. Pascal takes advantage of a
hardware feature that allows an event to escape from whatever code is currently being executed to
a previously defined event handler. An example program that uses this event handling is as follows:

$SYSPROG ON$ { enable optionmal compiler features %
PROGRAM errors (INPUT,0UTPUT)
UAR a : REALS

BEGIN

TRY
a 1= 13
a 1= a/03 { this should denerate an error %
WRITELN(‘This should not det executed’)}

RECOVER { this is the event handler X
BEGIN

WRITELN('I have dotten an error’)}

WRITELN('The escare code is ' sESCAPECODE);

ESCAPE(ESCAPECODE) 3 { Pass error on ¥
END3

WRITELN('Program finished normally ')}
END.,

When run, this program will generate a CRT screen similar to the following:

I have dotten an error
The escare code is -3

error -5: divide by zero
PC value: -444090

The error handling in Pascal depends on four language features:

e TRY

e RECOVER

e ESCAPECODE
e ESCAPE

These features are not in the normal Pascal language. To access these features it is necessary to turn
on a Compiler option called SYSPROG. This Compiler option enables error handling and several
other system features. Refer to the Compiler chapter of the Pascal Workstation System manual for
additional information about $SYSPROG ONS.

TRY

TRY defines the start of a block of code that is to be handled by a following RECOVER block. This
block of code may contain anything including procedure and function calls. If any error occurs, it
will be handled by the RECOVER block, unless there is a nested TRY/RECOVER block. TRY/
RECOVER blocks may be nested to any level. The inner-most RECOVER block will receive
control.

Errors and Timeouts 63

If no error occurs in a TRY/RECOVER block then the next statement following the RECOVER
block is executed.

RECOVER

RECOVER defines the start of the error handling code. The RECOVER code must be a simple
statement or a BEGIN/END block.

ESCAPECODE

ESCAPECODE is an INTEGER variable that contains the error code from the last error. System
errors have negative values. User errors should have positive values.

ESCAPE

ESCAPE is a procedure that generates an error escape. It has a single INTEGER parameter. When
ESCAPE is executed it places the parameter into the ESCAPECODE variable and generates an
error. This error will be trapped by a RECOVER block, if any.

I/O Error Handling

1/O errors are just one of several error conditions that can occur in the Pascal system. Because of the
multitude of errors that cari happen within device 1/O, only one ESCAPECODE has been allocated
for use by the /O Library. When ESCAPECODE has the value — 26, the error was an I/O error.

The /O Library uses some additional variables and functions for the various errors that it can
generate:

¢ IOESCAPECODE

e [OE_RESULT

e [OE_ISC

o [OERROR_MESSAGIL:

IOESCAPECODE

IOESCAPECODE is an integer constant with the value —26. This constant is compared with the
ESCAPECODE to determine if the ESCAPE was due to an I/O error. The constant
IOESCAPECODE is definzd in the /O Library Module IODECLARATIONS.

IOE_RESULT

IOE_RESULT is an integer variable. This variable contains the specific /O error code, if any. The
variable IOE_RESULT is defined in the /O Library Module IODECLARATIONS. A listing of
current error codes and thzir messages is in the last section in this chapter. For each error code, the
1/O Library has defined a constant for that error. For example, when IOE_RESULT has the value
11, the error is that there is no firmware to support the interface card in the system. This error has a
constant defined in IODECLARATIONS called ioe_no_driver that is defined to have the decimal
value 11.

64 Errors and Timeouts

IOE_ISC

IOE_ISC is an integer variable. This variable contains the interface select code of the last interface to
generate an I/O error. If the error was not due to an interface problem, then IOE_ISC will contain
the value 255 (which is NO_ISC). The variable IOE_ISC is defined in the I/O Library Module
IODECLARATIONS.

IOERROR_MESSAGE

IOERROR_MESSAGE is a string function. This function has one INTEGER parameter that should
contain the I/O error code IOE_RESULT. The function returns a string that is the English error
message associated with the specific error code. The string function IOERROR_MESSAGE is in the
/O Library Module GENERAL _3. A listing of current error codes and their messages is in the last
section in this chapter.

The following program is an example of handling an I/O error using the TRY/RECOVER mechan-
ism used with the features of the /O Library. This program attempts to write a string out to an
HP-IB interface without first addressing the interface card as a talker.

$SYSPROG ON% { enable opPptional compiler features }
PROGRAM io_errors (INPUT,OUTPUT);
IMPORT IODECLARATIONS;

GENERAL_1
GENERAL_Z
GENERAL _33
BEGIN
TRY
IDINITIALIZES { Put I/0 system into Known state 2

WRITESTRINGLN(Z7:'I am not sending address information’);:
WRITELN('This should not get executed’)}
RECOVER { this is the event handler ¥
BEGIN
WRITELN(’I have gotten an error’)}
WRITELN('The escare code is ' +sESCAPECODE)
IF ESCAPECODE=IDESCAPECODE

THEN BEGIN
WRITELN(‘The error was an I/0 error’)]i
WRITELN(IOERROR_MESSAGE(IODE_RESULT):’ on isc ‘+IDE_ISC)}

END

ELSE BEGIN
ESCAPE(ESCAPECODE) 3 { Pass error on ¥

END 3}

END i
WRITELN(‘Program finished normally ')}

END.
When run, this program will generate a CRT screen similar to the following:

I have gotten an error

The escare code is -26

The error was an I/0 error

not addressed as talker on isc 7
Prodgram finished normally

Note that the program finished normally. The path that was executed inside the RECOVER
block did not perform an ESCAPE. Therefore, the statement immediately following the
RECOVER block is executed next.

Errors and Timeouts 65

It is important to structure your TRY/RECOVER blocks in a manner similar to the one just
shown. This is necessary because all errors go through the TRY/RECOVER mechanism. If you
do not check the cause of the error with ESCAPECODE, you might trap an error meant for
some other TRY/RECOV?Z=R or an error you did not expect.

I/O Timeouts

A timeout occurs when the handshake response from any external device takes longer than a
specified amount of time to complete. The time specified for the timeout is usually the max-
imum time that a device can be expected to take to respond to a handshake during an I/O
statement.

Setting Up Timeout Events

The SET_TIMEOUT prccedure in Module GENERAL_1 has two parameters, the interface
select code and a single REAL parameter that is the time that the I/O Library will wait for an
operation to complete. This parameter is the time in seconds. The parameter can range from 0
thru 8191 seconds with a resolution of .001 seconds. The default timeout value is 0, which is
interpreted by the I/O Library as a timeout period of infinity—the system will wait forever for the
operation to complete.

The timeout event is just another I/O error. The timeout error has the 1/O error code
(IOE_RESULT) of 17 (I/OQ error constant ioe_timeout).

66 Errors and Timeouts

A sample program trapping timeouts follows. This program will try to send some data to a
device ten times and will then stop.

$SYSPROG ON% { enabkle oPtional compiler features }
PROGRAM timeouts (INPUT+DUTPUT) S
IMPORT IODECLARATIONS,
GENERAL_1»
GENERAL_Z s
GENERAL_33
VAR attemPt : INTEGERS
success : BOOLEANS;
BEGIN
IDINITIALIZE
SET_TIMEDOUT(7,1,0) 3 { timeout of 1 second on isc 7 ¥
attempPt 2= 13
success := FALSE}S
REPEAT
TRY
WRITESTRINGLN(724,'This device does not exist on the bus’)j
success 1= TRUE}

RECOVER { this is the event handler ¥
BEGIN
IF ESCAPECODE=I0OESCAPECODE
THEN BEGIN
IF (IOE_RESULT = IOE_TIMEDOUT) AND (IQE_ISC = 7)
THEN BEGIN
IORESET(7) 3§ { because interface is in a bad state ?»

WRITELN(‘timeout #’'jrattempt:2)3
attempt = attempPt+1]1
END
ELSE BEGIN
WRITELN(IOERROR_MESSAGE(IQE_RESULT) s’ on isc ‘»I0OE_ISC)]i
ESCAPE(ESCAPECODE) 3§
END3
END
ELSE BEGIN
ESCAPE(ESCAPECODE) i { Pass error on ¥
END §
END 5
UNTIL (attempt>10) OR successi
WRITELN(‘Prodram finished’) 3
IOUNINITIALIZES { clean up interface state ¥
END.

When run, this program will generate a CRT screen similar to the following:

timeout # |
timeout # 2
timeout # 3
timeout # 4
timeout # 3
timeout # B
timeout # 7
timeout # 8
timeout # 9

timeout #10
Prodram finished

Errors and Timeouts 67

I/O Errors

The following list contains the error codes in the [/O Library. The error code value is stored in
the system variable [OE_RESULT. This list also contains the text of the error message produced
by the GENERAL_3 string function IOERROR_MESSAGE. The name of the error is a constant
that is declared in the [ODECLARATIONS Module. The errors from 306 through 327 are HP
98628A Datacomm interface errors.

Name Value Error Message
ioe_no_error 0 no error

ioe_no_card 1 no card at select code
ioe_not_hpib interface should be hpib
ioe_not_act not active controller
joe_not_dvc should be device not sc

ioe_no_space
ioe_no_data
ioe_bad_tfr
ioe_isc_busy
ioe_buf_busy
ioe_bad_cnt
ioe_bad_tmo
ioe_no_driver
ioe_no_dma
ioe_no_word

no space left in buffer

no data left in buffer
improper transfer attempted
the select code is busy

the buffer is busy

improper transfer count

bad timeout value

no driver for this card

no dma .
word operations not allowed

ioe_not_talk not addressed as talker
ioe_not_lstn not addressed as listener
ioe_timeout a timeout has occurred
ioe_not_sctl not system controller
ioe_rds_wtc bad status or control
ioe_bad_sct bad set/clear/test operation

ioe_crd_dwn
ioe_eod_seen

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

interface card is dead
end/eod has occurred

ioe_misc miscellaneous - value of param error
ioe_dc_fail 306 dc interface failure
ioe_dc_usart 313 USART receive buffer overflow
ioe_dc_ovfl 314 receive buffer overflow
ioe_dc_clk 315 missing clock

ioe_dc_cts 316 CTS false too long

ioe_dc_car 317 lost carrier disconnect
ioe_dc_act 318 no activity disconnect
ioe_dc_conn 319 connection not established
ioe_dc_conf 325 bad data bits/par combination
ioe_dc_reg 326 bad status /control register
ioe_dc_rval 327 control value out of range

68 Errors and Timeouts

Notes

Chapter

9

Advanced Transfer Techniques

Computer

Museum

Introduction

This chapter discusses advanced transfer techniques. These transfers are intended primarily for two
main applications:

e Where the computer is much faster than the device being communicated with
e Where the computer is slower than the device being communicated with

This chapter includes discussions on bulffers, serial transfers, overlap transfers and special forms of
transfers.

Buffers

Buffers are the data area where the transfer procedures read and write the data that is being
transferred. This area is actually in two pieces. One piece is the control block for the buffer. The
other is the memory wherz data is actually stored.

The control block is a user variable. This variable must be of the type BUF_INFO_TYPE which is
defined in the /O Library module IODECLARATIONS. This block of information contains various
fields including a pointer to the actual data area.

The data area is not allocated when the BUF_INFO_TYPE variable is declared. The data area is
allocated at program execution time with the execution of a procedure called IOBUFFER. This
procedure is of the form:

I0BUFFER (buffer_control_block, size_in_brtes)si

The size in bytes is an integer value and can be of any size that the memory in your computer can
create. The IOBUFFER procedure, at program execution time, will allocate the data area and
initialize the various pointers in the buffer control block (a variable of BUF_INFO_TYPE). IOBUF-
FER and all other [/O Library transfer procedures are in the GENERAL 4 module.

The data area that is allocated is allocated with the NEW facility. Refer to the HP Pascal Language
Reference for Series 200 Computers for more information on NEW and its related capabilities. In
particular, be careful of tre MARK and RELEASE facilities since these can affect the buffer space.

69

70 Advanced Transfer Techniques

Once a buffer has been declared and allocated, it is necessary to be able to read and write the
buffer. The I/O Library, as with normal input and output, has a small number of procedures and
functions to access the buffer space. These procedures and functions are:

e BUFFER_RESET

e BUFFER_SPACE

e BUFFER_DATA

e READBUFFER

e WRITEBUFFER

e READBUFFER_STRING
e WRITEBUFFER_STRING

Buffer Control

Necessary aspects of buffer control are empty and fill pointers. When data is written into the
buffer, the fill pointer is incremented. When data is read from the buffer the empty pointer is
incremented. When these two pointers meet, there is no data in the buffer.

The procedure BUFFER_RESET puts the empty and fill pointers back to the start of the
buffer—effectively clearing it of data. The form of this procedure is:

BUFFER_RESET (buffer_control_blocK)j

The integer function BUFFER_SPACE returns the number of bytes that are available at the end
of the buffer from the fill pointer to the end of the buffer. This function is of the form:

BUFFER_SPACE (buffer_control_block)3

The integer function BUFFER_DATA returns the number of bytes of data that are available in
the buffer from the empty pointer to the fill pointer. This function is of the form:

BUFFER_DATA (buffer_control_block)}

Reading Buffer Data

There are two procedures that read buffer data: READBUFFER and READBUF FER_STRING.
READBUFFER reads a single character. READBUFFER_STRING reads a string. The form of
these procedures is:

READBUFFER (buffer_control_blocks character_var)}
READBUFFER_STRING (buffer_control_blocKks strimg_var,
character_count)}

The READBUFFER_STRING will read the specified number of characters from the buffer into
the string variable.

Advanced Transfer Techniques

Writing Buffer Data

There are two procedures that write buffer data: WRITEBUFFER and
WRITEBUFFER_STRING. WRITEBUFFER writes a single character.
WRITEBUFEFER_STRING writes a string. The form of these procedures is:

WRITEBUFFER (buffer_control_blcck: character)}i
WRITEBUFFER_STRING (suffer_control_block: string)i

The WRITEBUFFER_STRING will write the entire number of characters from the string ex-
pression into the buffer.

The following is an example program showing the creation and use of a buffer:

PROGRAM buffers (INPUT,OUTPUT)

IMPORT IDODECLARATIONS +
GENERAL_43i
UAR buffer : BUF_INFO_TYPES
i : INTEGERS
c : CHARS
BEGIN
I0BUFFER(buffer 1C0) i { create a 100 character buffer %
BUFFER_RESET(buffer)i { maKe sure it is empty >
FOR i:=65 TO 80 DC
WRITEBUFFER(bufferichr(i))i { Put character data in the buf %
WRITEBUFFER_STRING(buffer,’hello’)i { Put a string in the buffer >
WHILE BUFFER_DATA(buffer)>0 DO BEGIN
READBUFFER(buffersc)i { dump out the buffer by char }
WRITE(c) i
END3 < of WHILE DO BEGIN 1}
WRITELNS

END.

This program will produce the following screen on the CRT:

ABCDEFGHIJKLMNOPQRSTUVWXYZhello

71

72 Advanced Transfer Techniques

Serial Transfers

Serial transfers are those that complete before the next Pascal line is executed. This is the
normal approach that Pascal uses in program execution. This type of transfer is useful in the
application where you have a high speed data transfer where the computer is slower than or the
same speed as the device.

The procedure that performs a data transfer to and from a buffer is the TRANSFER procedure.
It has the following form:

TRANSFER (devices transfer_mode s direction,
buffer_control_block, count);

The “device’” parameter is the device selector (like 12 or 701) described in previous chapters . The
“count” parameter is the number of bytes to be transferred by the procedure. The “buffer control
block” parameter is the buffer variable of type BUF_INFO_TYPE.

The “direction” parameter is of a special type and can have two values: FROM_MEMORY and
TO_MEMORY. So a direction of FROM_MEMORY is an output transfer and TO_MEMORY is an
input transfer.

The “transfer mode” parameter is also of a special type. For serial transfers it can have the values:

¢ SERIAL_DMA
e SERIAL_FHS
o SERIAL_FASTEST

The DMA mode specifies a direct memory access transfer. The FHS mode specifies a fast hand-
shake transfer. The FASTEST mode specifies that if DMA is installed and available for the transfer,
then it should be used, otherwise a FHS transfer will occur. Some interfaces do not support DMA
transfers (like the Datacomm interface). Those interfaces, when a FASTEST transfer is requested,
will give a FHS transfer since they cannot do DMA.

The DMA mode transfer can only transfer 1 through 65 536 bytes of data. The fast handshake
transfer can be of arbitrary size.

Advanced Transfer Techniques 73

An example program using a serial transfer to a printer is:

PROGRAM transfers (INPUT,OUTPUT);

IMPORT IODECLARATIONS »
GENERAL . -4

YAR buffer : BUF_INFO_TYPES

isd : INTEGER
c : CHAR3
BEGIN
IOBUFFER(buffer ,102)3 { create a 100 character buffer 2

FOR J:=1 TO 5 DO BEGIN

BUFFER_RESET(buffer)s { maKe sure it is empPty }
FOR i:=GS TO 90 DO

WRITEBUFFER(bufferschr(i)); { Put character data in the buf }
WRITEBUFFER(bufferschr(13))3 { Put in a carriade return }
WRITEBUFFER(bufferschr(10})53 { Put in a line feed }

TRANSFER (701 +SERIAL_FASTEST »

FROM_MEMORY sbuffer.

buffer_datal(buffer))i { send all of the data in buf }
WRITELN(‘this line will not be printed until the transfer is done’) s

END3 { of FOR DO BEGIN 1}

END.

‘ This program will produce the following on the CRT:

this line will not be printed until the transfer is done
this line will not be printed until the transfer is done
this line will mot be Pprinted until the transfer is done
this line will not be printed until the transfer is done
this line will not be printed until the transfer is done

and this on the PRINTER:

ABCDEFGHIJKLMNOPQRSTUVMKYZ
ABCDEFGHI JKLMNOPQRSTUVWAYZ
ABCDEFGHI JKLMNOPQRSTUVWRYZ
ABCDEFGHIJKLMNOPQRSTUVMRYZ
ABCDEFGHIJKLMNOPQRSTUVMWXYZ

74 Advanced Transfer Techniques

Overlap Transfers

Serial transfers are useful for high-speed applications. The computer will not continue execu-
tion of the program until the transfer is complete. For lower speed applications, this is not
adequate. The Pascal I/O Library provides an overlap transfer mechanism. This mechanism
allows for the program to continue execution while the transfer is continuing. The overlap
transfer mechanism is identical to the serial transfer. Its form is:

TRANSFER (devices» transfer_modes direction;:
buffer_control_block: count)i

All of the parameters are the same as for other types of transfers, with the exception of the
“transfer_mode” parameter. For overlap transfers, the parameter can have the following values:

Transfer Mode Value | Meaning

OVERLAP_INTR Interrupt transfer

OVERLAP_DMA dma transfer

OVERLAP_FHS Interrupt on first byte fast handshake on rest
OVERLAP_FASTEST dma if available, else use overlap_ths
OVERLAP dma if available, else use overlap_intr

The overlap fast handshake mode has also been called burst mode, because it does not
consume any CPU time until the first byte is transferred. The overlap mode is provided so that if
your application requires a data transfer to execute concurrently with the program execution,
then you will get the most efficient method available.

The DMA mode transfer can only transfer 1 through 65 536 bytes of data. The other transfer
modes can be of arbitrary size.

When is the Transfer Finished?
There are two BOOLEAN functions which can tell you if a transfer is still occurring between a
buffer and an interface. These are:

BUFFER_BUSY (buffer_control_block)

and

ISC_BUSY (interface_select_code)}

Either function returns TRUE if the transfer is still active.

Advanced Transfer Techniques 75

The following program is an example of an overlap transfer. This program does not do anything
useful with the spare time available to it.

PROGRAM overlared (INPUT.,OUTPUT)

IMPORT IODECLARATIONS
GENERAL -4}
UAR buffer : BUF_INFJ_TYPES
isd : INTEGERS
c : CHARS
BEGIN
IOBUFFER(buffer+100D) 3§ { create a 100 character buffer 2

FOR J4:=1 TO 5 DD BEGIN

WHILE BUFFER-ACTIVE(buffer) DO

BEGIN
WRITELN(‘waiting for transfer to finish’)3i
END
BUFFER_RESET(buffer)} { maKke sure it is empPty >
FOR i:=65S TO 90 DO
WRITEBUFFER(buffers:chr(i))i { Put character data in the buf >
WRITEBUFFER(bufferschr(13))} { put in a carriade return >
WRITEBUFFER(bufferschr(10))} { eput in a line feed }
TRANSFER(701 »OVERLAP_INTR
FROM_MEMORY sbuffer:
buffer_datal(buffer))} { send all of the data in buf >

ENDS { of FOR DO BEGIN 2

®

This program will produce the following on the PRINTER:

ABCDEFGHIJKLMNOPQRSTUVMWXYZ
ABCDEFGHIJKLMNOPQRSTUVHXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVMWXYZ
ABCDEFGHIJKLMNOPQRSTUVHXYZ

76 Advanced Transfer Techniques

Special Transfers

In addition to the block transfers that were described above, there are three additional versions
of transfer. They are:

e word transfers
® match character transfers
o END condition transfers

Word Transfer

The GPIO interface can support 16 bit data transfers. The TRANSFER_WORD procedure
simultaneously transfers 2 bytes over the GPIO interface. The form of this procedure is:

TRANSFER_WORD {devices transfer_mode, direction:
buffer_control_blocks count) i

All of the parameters are the same with the exception of the count which now contains the
16-bit word count to be transferred. All the transfer types, overlap and serial, are the same as a
regular transfer.

Match Character Transfer

This transfer procedure will transfer data into the computer until a match character is found. .
Note that this transfer, called TRANSFER _UNTIL, is an input only transfer. The form of the
procedure is: :

TRANSFER_UNTIL (termination_char, device: transfer_mode:
directions buffer_control_blocK)}

The termination character is the match character that will stop the transfer. The transfer will also
stop when the there is no more room in the buffer. All of the other parameters are the same.
Most of the transfer types, overlap and serial, are the same as a regular transfer - except that
DMA transfers are not allowed. Note that there is NO count parameter. The direction must be
TO_MEMORY.

END Condition Transfer

This transfer procedure will transfer data into the computer until an interface condition occurs
or it will transfer data out with the last data byte being sent with an interface condition. This
transfer is TRANSFER_END and has the form:

TRANSFER_END (devices transfer_modes direction:
buffer_control_blocK) 3

All of the parameters are the same. Note that there is NO count. The transfer will send all the
available data followed by the condition or will receive data until the end condition occurs or
the bulffer fills up. All the transfer types, overlap and serial, are the same as a regular transfer.
An example of an end condition is the EQI condition on HP-IB.

77

Chapter

10

The HP-IB Interface

Introduction

This chapter describes the techniques necessary for programming the HP-IB interface. Many of the
elementary concepts have seen discussed in previous chapters. This chapter describes the specific
details of how this interfacz works and how it is used to communicate with and control systems
consisting of various HP-IB devices.

The HP-IB (Hewlett-Packerd Interface Bus), commonly called the “bus”, provides compatibility
between the computer and external devices conforming to the IEEE 488-1978 standard. Electrical,
mechanical, and timing comnpatibility requirements are all satisfied by this interface.

Computer
Museum

Logic and Shield
Grounds

8

i

Data
8 >
HP-1B
Interface
Cate ang Handshake S | shielded Cable
ata an 3 - to Device(s)
Centrol Hardware 15
Backplane <‘_—1£> and 2
O
Connector Firmware Control c
< 5 > &
un
N

N/

The HP-IB interface is bcth easy to use and allows great flexibility in communicating data and
control information between the computer and external devices. It is one of the easiest methods to
connect more than one device to the same interface.

78 The HP-IB Interface

Initial Installation

Refer to the HP-IB Installation Note for information about setting the switches and installing an
external HP-IB interface. Once the interface has been properly installed, you can verify that the
switch settings are what you intended by running the following program. The defaults of the
internal HP-IB interface can also be checked with the program. The results are displayed on the
CRT.

PROGRAM check_hepib (INPUT .+ OUTPUT)3;
IMPORT IODECLARATIDNS,
HPIB_13
VAR isc : TYPE_ISC:
BEGIN
WRITELN(‘Enter HP-IB interface select code’);
READLN(isc) 3

IF ISC.TABLELiscl.CARD_TYPE <> HPIB_CARD

THEN BEGIN

WRITELN(‘The interface at isc ‘sisc:Z+’ is not an HP-IB interface’)}
END
ELSE BEGIN

WRITELN('The interface at isc ‘,isc:2s’ is an HP-IB interface’)3

IF ISC_TABLELiscl.CARD_ID = HP98GZ24
THEN WRITELNC(’ and is an oPtional: external interface’)
ELSE WRITELN(and is the standard, built in interface’)3

WRITE('The interface is)3}
IF NOT SYSTEM_CONTROLLER(isc) THEN WRITE(’NOT ‘)3
WRITELN(’the s¥stem controller’)3

WRITE('The interface has a bus address of ‘' mv_address(isc):2)}

ENDi { of IF THEN/ELSE 1}
END.

The terms system controller and bus address are described in the following sections. The
internal HP-IB has a jumper that is set at the factory to make it a system controller. This jumper
is located below the lowest interface slot at the computer backplane. The lowest interface (or
memory board) in the backplane must be removed to access this jumper. If the jumper in the
center of the clear plastic cover is placed on the middle and right most pins, as seen from the
rear of the computer, the computer is set to be a system controller. If the jumper is on the

middle and leftmost pins, then the computer is not system controller and will have a bus address
of 20.

The HP-IB Interface 79

Communicating with Devices

This section describes programming techniques used to output data to and enter data from
HP-IB devices. General bus operation is also briefly described.

HP-IB Device Selectors

Since the HP-IB allows the interconnection of several devices, each device must have a means
of being uniquely accessed. Specifying just the interface select code of the HP-IB interface
through which a device is connected is not sufficient to identify that device on the bus.

Each device connected to the bus has an address by which it can be identified. This address
must be unique to allow individual access of each device. Most HP-IB devices have a set of
switches that are used to set its address. Those that do not have switches, like the built in HP-IB
interface in the computer, have a pre-set bus address. So, when a particular HP-IB device is to
be accessed, it must be identified with both its interface and its bus address.

The interface select code is the first part of an HP-IB device selector. The interface select code of the
internal HP-IB is 7. The second part of an HP-IB device selector is the device’s bus address. This
address is the range of 0 through 30. As described in the Directing Data Flow chapter, interface 7,
device address 17 would have a device selector of 717. Interface 10, device address 2 would have a
device selector of 1002.

Moving Data Through the HP-IB

Data is output from and entered into the computer through the output and input procedures
described in earlier chapters. All the information in these chapters applies directly to the HP-IB
interface. The advanced transfer techniques described in the preceding chapter also apply to the
HP-IB interface.

Example

PROGRAM hpib_io C(INPUT,QUTPUT)

IMPORT GENERAL _Z3
VAR a i REALS

i : INTEGER
BEGIN

WRITESTRINGLN(701‘messagde to a Printer’)i
WRITESTRINGLN (724 'R1ITIN1S’) 3
FOR i:= 1 TO 100 DO BEGIN
READNUMBER (724ya)i
WRITELN(‘the reading from the voltmeter is ‘sa:B:2)3
END3 { of FOR DO BEGIN ¥
END.

General Structure of the HP-IB

Communications througa the HP-IB are made according to a precisely defined set of rules.
These rules help to ensure that only orderly communication may take place on the bus. For
conceptual purposes, the organization of the HP-IB can be compared to that of a committee. A
committee has certain ‘“rules of order” that govern the manner in which business is to be
conducted. For the HP-I3, these rules of order are the IEEE 488-1978 standard.

80 The HP-IB Interface

One member, designated the ‘‘committee chairman,’” is set apart for the purpose of conducting
communications between members during the meetings. This chairman is responsible for over-
seeing the actions of the committee and generally enforces the rules of order to ensure the
proper conduct of business. If the committee chairman cannot attend a meeting, he designates
some other member to be ‘‘acting chairman.”

On the HP-IB, the system controller corresponds to the committee chairman. The system
controller is generally designated by setting a switch on the interface and cannot be changed
under program control. However, it is possible to designate an “acting chairman” on the
HP-IB. On the HP-IB, this device is called the active controller, and may be any device
capable of directing HP-IB activities, such as a desktop computer.

When the system controller is first turned on or reset, it assumes the role of active controller.
Thus, only one device can be designated system controller. These responsibilities may be
subsequently passed to another device while the system controller tends to other business. This
ability to pass control allows more than one computer to be connected to the HP-IB at the same
time.

In a committee, only one person at a time may speak. lt is the chairman’s responsibility to
“‘recognize’” which one member is to speak. Usually, all committee members present always
listen; however, this is not always the case on the HP-IB. One of the most powerful features of
the bus is the ability to selectively send data to individual (or groups of) devices.

Imagine slow note takers and fast note takers on the committee. Suppose that the speaker is
allowed to talk no faster than the slowest note taker can write. This would guarantee that
everybody gets the full set of notes and that no one misses any information. However, requiring
all presentations to go at that slow pace certainly imposes a restriction on our committee,
especially if the slow note takers do not need the information. Now, if the chairman knows
which presentations are not important to the slow note takers, he can direct them to put away
their notes for those presentations. That way, the speaker and the fast note taker(s) can cover
more items in less time.

A similar situation may exist on the HP-IB. Suppose that a printer and a flexible disc are
connected to the bus. Both devices do not need to listen to all data messages sent through the
bus. Also, if all the data transfers must be slow enough for the printer to keep up, saving a
program on the disc would take as long as listing the program on the printer. That would
certainly not be a very effective use of the speed of the disc drive if it was the only device to
receive the data. Instead, by ‘‘unlistening” the printer whenever it does not need to receive a
data message, the computer can save a program as fast as the disc can accept it.

During a committee meeting, the current chairman is responsible for telling the committee
which member is to be the talker and which is (are) to be the listener(s). Before these assign-
ments are given, he must get the attention of all members. The talker and listener(s) are then
designated, and the next data message is presented to the listener(s) by the talker. When the
talker has finished the message, the designation process may be repeated.

The HP-IB Interface 81

On the HP-IB, the active controller takes similar action. When talker and listener(s) are to be
designated, the attention signal line (ATN) is asserted while the talker and listener(s) are being
addressed. ATN is then cleared, signaling that those devices not addressed to listen may ignore
all subsequent data messages. Thus, the ATN line separates data from commands; com-
mands are accompanied by the ATN line being true, while data messages are sent with the ATN
line false.

On the HP-IB, devices are addressed to talk and addressed to listen in the following orderly
manner. The active controller first sends a single command which causes all devices to unlisten.
The talker’'s address is then sent, followed by the address(s) of the listener(s). After all listeners
have been addressed, the data can be sent from the talker to the listener(s). Only device(s)
addressed to listen accept any data that is sent through the bus (until the bus is reconfigured by
subsequent addressing commands).

The data transfer, or data message, allows for the exchange of information between devices on
the HP-IB. Our committez conducts business by exchanging ideas and information between
the speaker and those listening to his presentation. On the HP-IB, data is transferred from the
active talker to the active listener(s) at a rate determined by the slowest active listener on
the bus. This restriction on the transfer rate is necessary to ensure that no data is lost by any
device addressed to listen. The handshake used to transfer each data byte ensures that all data
output by the talker is received by all active listeners.

Examples of Bus Sequences

Most data transfers through the HP-IB involve a talker and only one listener. For instance,
when an input or output procedure is used to send data to or from a device, the following
sequence of commands is sent through the bus.

WRITESTRINGLN(701,’Data’) 3

1. The unlisten command is sent.

2. The talker’s address is sent (the computer’s talk address).

3. The listener’s address is sent (address O1).

4. The data bytes “D’',"“a”,*'t"",*‘a” ,carriage return and line feed are sent.
READSTRING(724 yMessade) ’

1. The unlisten command is sent.

2. The talker's address is sent (talk address for device 24).

3. The listener’s address is sent (the computer listen address).

4. The data bytes are transferred.

82 The HP-IB Interface

Addressing Multiple Listeners

HP-IB allows more than one device to listen as data is sent through the bus. The Pascal I/O Library
supports this capability in the following way. It is necessary for you to address the bus yourself. The
procedures to do this addressing exist in the module HPIB_2. The following example shows how to
address the computer as a talker and several devices as listeners.

UNLISTEN(isc)3

TALK (iscMY_ADDRESS(isc));

LISTEN (iscraddress_1)3}

LISTEN {iscsaddress_2)i

LISTEN (iscsaddress_3)}

WRITESTRINGLN(iscs'This messade sent to three listeners,)}

An example where the computer is one of several devices listening to some incoming data is :

UNLISTEN(isc) i

TALK (iscsaddress_1)3
LISTEN ({isc»MY_ADDRESS{isc));
LISTEN (iscsaddress_2)}
LISTEN (iscsaddress_3)3
READSTRING(iscsstr)}

The UNLISTEN, TALK and LISTEN procedures are in the [/O Library module HPIB_2.

Addressing a Non-Active Controller

The bus standard states that a non-active controller cannot perform any bus addressing. When
only the interface select code is specified in an input or output procedure, no bus addressing
occurs.

If the computer currently is not the active controller, it can still act as a talker or listener,
provided it has been previously addressed. So, if an input or output procedure is executed
while the computer is not an active controller, the computer first determines whether or not it is
an active talker or listener. If not addressed to talk or listen, the computer waits until it is
properly addressed and then performs the operation. Examples of non-controller I/O are:

READCHAR(74c)3 { If not a listener, then wait until addressed to listen, }
WRITESTRINGLN(7'This messade sent after I’'m addressed to talk,)3
READSTRING_UNTIL(CHR(13) ,7+s5tr)

If the computer is the active controller, it proceeds with the data transfer without addressing
which devices are talker and listener(s). If the bus has not been configured properly (the
controller not being addressed as a talker or listener), an error is reported. The escapecode is
—26 (I/O) and the io error is 15 or 16 (not addressed as a talker or listener). The following
program shows a typical use of this non-addressing approach.

WRITESTRINGLN(705:’This goes to device 5 on isc 7.')}
LISTEN(7+1)3
WRITESTRINGLN(?7,'This does to devices 1 and 5.')3}
LISTEN(7,20)3
FOR i := 1 TO 10 DO
WRITESTRINGLN (7'These ten lines do0 to devices 1+ 5+ and 20.7)3

The HP-IB Interface

Pascal Control of HP-IB

The Pascal /O Library has a number of procedures and functions for controlling the HP-IB. You
have already seen a number of them in the preceding examples. These capabilities are broken
down into two major groups — status and control.

HP-IB Status

Normal use of HP-IB requires three main status facilities:

e What is my address?
e Am [system controller?
e Am | active controller?

The function MY_ADDRESS returns the current device address of the specified interface. This
integer function is in module HPIB_1. It has the form:

Y _ACDRESS (interface.select_code)3

The function SYSTEM_CCNTROLLER returns a TRUE or FALSE depending on whether or not
the interface is set to be the system controller. This boolean function is in module HPIB_1, and has
the form:

SYSTEM_CONTROLLER (¢ interface_select_code)»

The function ACTIVE_CONTROLLER returns a TRUE or FALSE depending on whether or not
the interface is currently the active controller. This boolean function is in module HPIB_1, and has
the form:

ACTIVE_CONTROLLER (interface.select-code)3
HP-IB Control

Normal use of HP-IB requires five main control facilities:

e Send untalk

e Send unlisten

e Send a talk command
® Send a listen command

e Send a secondary command
The UNTALK and UNLISTEN procedures send the appropriate command on the bus. These
procedures are in the H?IB_2 module. The interface must be active controller for them to
complete. They have the form:

UNTALK (interface_select_code)

UNLISTEN (interface_select_code)3

83

84 The HP-IB Interface

The TALK, LISTEN and SECONDARY commands send a talk, listen or secondary command.
These procedures are in the HPIB_2 module. The interface must be an active controller form
for them to complete. They have the form:

TALK (interface_.select_code ; address)
LISTEN (interface_select_code + address)3
SECONDARY (interface_select_code + address)3

General Bus Management

The HP-IB standard provides several mechanisms that allow managing the bus and the devices
on the bus. Here is a summary of the procedures that invoke these control mechanisms.

ABORT_HPIB is used to abruptly terminate all bus activity and reset all devices to power-on
states.

CLEAR is used to set all (or only selected) devices to a pre-defined, device-dependent state.
LOCAL is used to return all (or selected) devices to local (front-panel) control.

LOCAL_LOCKOUT is used to disable all devices’ front-panel controls.

PASS_CONTROL is used to pass active control to another device on the bus,

PPOLL is used to perform a parallel poll on all devices (which are configured and capable of
responding).

PPOLL_CONFIGURE is used to setup the parallel poll response of a particular device.

PPOLL_UNCONF IGURE is used to disable the parallel poll response of a device (or all devices
on an interface).

REMOTE is used to put all (or selected) devices into their device-dependent, remote modes.
SEND_COMMAND is used to manage the bus by sending explicit command messages.

SPOLL is used to perform a serial poll of the specified device (which must be capable of
responding).

TRIGGER is used to send the trigger message to a device (or selected group of devices).

These procedures (and functions) are described in the following discussion. However, the
actions that a device takes upon receiving each of the above commands are, in general,
different for each device. Refer to a particular device’s manuals to determine how it will
respond. Detailed descriptions of the actual sequence of bus messages invoked by these state-
ments are contained in “‘Advanced Bus Management’’ near the end of this chapter.

Remote Control of Devices

Most HP-IB devices can be controlled either from the front panel or from the bus. If the device’s
front-panel controls are currently functional, it is in the Local state. If it is being controlled
through the HP-IB, it is in the Remote state. Pressing the front-panel “‘Local’” key will return the
device to Local (front-panel) control, unless the device is in the Local Lockout state (described
in a subsequent discussion).

The HP-IB Interface 85

The Remote message is automatically sent to all devices whenver the system controller is
powered on, reset, or sends the Abort message. A device also enters the Remote state auto-
matically whenever it is addressed. The REMOTE procedure also outputs the Remote message,
which causes all (or specified) devices on the bus to change from local control to remote
control. The interface must be configured as the system controller to execute the REMOTE
procedure. The REMOTE procedure is in module HPIB_2.

Examples
REMOTE (7) 3
REMOTE (700) 3

Locking Out Local Control

The Local Lockout message effectively locks out the “‘local” switch present on most HP-IB
device front panels, preventing a device’s user from interfering with system operations by
pressing buttons and thereby maintaining system integrity. As long as Local Lockout is in effect,
no bus device can be returned to local control from its front panel.

The Local Lockout message is sent by executing the LOCAL_LOCKOUT procedure. This message
is sent to all devices on the specified bus, and it can only be sent by the interface when it is the active
controller. This procedure is in module HPIB_2.

Examples
LOCAL_LDCKOUT (7) 3

The Local Lockout message is sent by executing the LOCAL_LOCKOUT procedure. This
message is sent to all devices on the specified HP-IB interface, and it can only be sent by the
interface when it is the active controller. This procedure is in module HPIB_2.

Enabling Local Control

During system operation, it may be necessary for an operator to interact with one or more devices.
For instance, an operator might need to work from the front panel to make special tests or to
troubleshoot. And, in general, it is good systems practice to return all devices to local control upon
conclusion of remote-control operations. Executing the LOCAL procedure returns the specified
devices to local (front-panel) contrel. The interface must be the active controller to send the
LOCAL message. This procedure is in module HPIB_2.

Examples

LOCAL (7) 3

LDOCAL (801) 3
If primary addressing is specified, the Go-to-Local message is sent only to the specified device(s).
However, if only the interface select code is specified, the Local message is sent to all devices on the
specified HP-IB interface and any previous Local Lockout message (which is still in effect) is

automatically cleared. The interface must be the system controller to send the Local message (by
specifying only the interface select code).

86 The HP-IB Interface

Triggering HP-IB Devices

The TRIGGER procedure sends a Trigger message from the controller to a selected device or
group of devices. The purpose of the Trigger message is to initiate some device-dependent
action; for example, it can be used to trigger a digital voltmeter to perform its measurement
cycle. Because the response of a device to a Trigger Message is strictly device-dependent,
neither the Trigger message nor the interface indicates what action is initiated by the device.
This procedure is in module HPIB_2.

Examples
TRIGGER (7) 3
TRIGGER (707)3

Specifying only the interface select code outputs a Trigger message to all devices currently
addressed to listen on the bus. Including device addresses in the statement triggers only those
devices addressed by the statement.

Clearing HP-IB Devices

The CLEAR procedure provides a means of “initializing”” a device to its predefined, device-
dependent state. When the CLEAR procedure is executed, the Clear message is sent either to
all devices or to the specified device, depending on the information contained within the device
selector. If only the interface select code is specified, all devices on the specified HP-IB interface
are cleared. If primary-address information is specified, the Clear message is sent only to the
specified device. Only the active controller can send the Clear message. This procedure is in
module HPIB_2.

Examples
CLEAR (7)) 3
CLEAR (700) 3

Aborting Bus Activity

The ABORT_HPIB procedure may be used to terminate all activity on the bus and return all the
HP-IB interfaces of all devices to a reset (or power-on) condition. Whether this affects other modes
of the device depends on the device itself. The interface must be either the active or the system
controller to perform this function. If the system controller (which is not the current active controller)
executes this statement, it regains active control of the bus. This procedure is in module HPIB_2.
Only the interface select code may be specified; device selectors which contain primary-
addressing information (such as 724) may not be used. This procedure is in module HPIB_2.

Examples

ABORT_HPIB (7) 3

The HP-IB Interface 87

Passing Control

The PASS_CONTROL procedure will pass current active control to another device on the bus.
The interface must be act've controller. This procedure is in module HPIB_2.

Examples
PASS_CONTROL (720) 3

Polling HP-IB Devices

The parallel poll is the “astest means of gathering device status when several devices are
connected to the bus. Each device (with this capability) can be programmed to respond with
one bit of status when parallel polled, making it possible to obtain the status of several devices
in one operation. If a device responds affirmatively to a parallel poll, more information as to its
specific status can be obtained by conducting a serial poll of the device.

Configuring Parallel Poll Responses

Certain devices can be remotely programmed by the active controller to respond to a parallel

poll. A device which is currently configured for a parallel poll responds to the poll by placing its

current status on one of the bus data lines. The logic sense of the response and the data-bit

number can be programred by the PPOLL_CONFIGURE procedure. If more than one device

is to respond on a single bit, each device must be configured with a separate PPOLL_CONFI-
. GURE procedure. This procedure is in module HPIB_2.

Note

Use of PPOLL_CONFIGURE may interfere with the Pascal Oper-
ating System, especially if an external disk is being used. Be very
careful.

Example
PPOLL_CONFIGURE (705 smashk) 3

The value of the mask (any numeric expression can be specified) is first rounded and then used
to configure the device’s parallel response. The least significant 3 bits (bits 0 through 2) of the
expression are used to determine which data line the device is to respond on (place its status
on). Bit 3 specifies the ‘“rue’” state of the parallel poll response bit of the device. A value of O
implies that the device’s response is 0 when its status-bit message is true.

Example

The following statement configures device at address 01 on interface select code 7 to respond
by placing a 0 on bit 4 when its status response is “true’’.

. PPOLL_CONFIGURZ (701+4) 3

88 The HP-IB Interface

Conducting a Parallel Poll

The PPOLL function returns a single byte containing up to 8 status bit messages of all devices on
the bus capable of responding to the poll. Each bit returned by the function corresponds to the
status bit of the device(s) configured to respond to the parallel poll. (Recall that one or more devices
can respond on a single line.) The PPOLL function can only be executed on an interface that is
currently the active controller. This function is in module HPIB_3.

Example
Response:=PPOLL(7) 3
Disabling Parallel Poll Responses

The PPOLL_UNCONFIGURE procedure gives the interface (as active controller) the capability of
disabling the parallel poll responses of one or more devices on the bus.

Note
Use of PPOLL_UNCONFIGURE may interfere with the Pascal Oper-
ating System, especially if an external disk is being used. Be very
careful.

Examples

The following statement disables device 5 only.
PPOLL_UNCONFIGURE (705) 3

This statement disables all devices on interface select code 8 from responding to a parallel poll.
PPOLL_UNCONFIGURE (B) 3

If no primary addressing is specified, all bus devices are disabled from responding to a parallel
poll. If primary addressing is specified, only the specified devices (which have the parallel poll
configure capability) are disabled.

Conducting a Serial Poll

A sequential poll of individual devices on the bus is known as a serial poll. One entire byte of
status is returned by the specified device in response to a serial poll. This byte is called the
Status Byte message and, depending on the device, may indicate an overload, a request for
service, or a printer being out of paper. The particular response of each device depends on the
device.

The SPOLL function performs a serial poll of the specified device; the interface must be the active
controller. This function is in module HPIB_3.

Examples .

Response:=SPOLL(724) 3%

The HP-IB Interface

HP-IB Interface Conditions

The HP-IB interface can be in various states at various times. It is desirable for the programmer
to know about this state information. The major conditions of interest are:

e Is a device requesting service?

e Am | a talker?

e Am | a listener?

e What remote/local s:ate am Iin?

These conditions are supported by the following /O Library functions in the HPIB_3 module.
All of these functions are boolean functions and will return an appropriate TRUE or FALSE
indication depending of the condition state.

function meaning

REQUESTED (interface.select_code Is SRQ asserted?
TALKER (interface_select_code Am | a talker?
LISTENER (interface_select-code Am | a listener?
(
(

REMDTED interface_select_code Is REN asserted?
LOCKED_OUT interface_select_code Am [in a locked out state?

— e e

The REQUESTED function requires that the interface be active controller. The REMOTED
function requires that the interface not be system controller. The LOCKED_OUT function
requires that the interfacz not be active controller. An example program segment follows.

WHILE REQUESTED{isc}) DO
FOR i:=0Q TO 7 DD BEGIN
IF BIT_SET(SPOLL(isc*100+1i)6)
THEN WRITELN(‘’device ‘+i:2s' reauesting service ‘)3
END3 { of FOR DD BEGIN X

89

90 The HP-IB Interface

HP-IB Control Lines

Device A |< Data Bus
(8 Lines)
Able to talk, (
listen. and)
control
(e.qg.
calculator)
Device B Data Byte
Able to talk Transfer
etota
— Control
and listen ™ ontro
(e.g..
multimeter)
General
Interface
Device C Management
Only able to
listen >
(e.g., signal
generator)
Device D
Only able to
talk
(e.g., counter)
__‘} DIO1.8
DAV
NRFD
NDAC
IFC
ATN
SRQ
REN
EOI

Handshake Lines

The preceding figure shows the names given to the eight control lines that make up the HP-IB.
Three of these lines are designated as the ‘*handshake’’ lines and are used to control the timing
of data byte exchanges so that the talker does not get ahead of the listener(s). The three
handshake lines are as follows.

DAV Data Valid
NRFD Not Ready for Data
NDAC Not Data Accepted

The HP-IB Interface 91

The HP-IB interlocking handshake uses the lines as follows. All devices currently designated
as active listeners would indicate when they are ready for data by using the NRFD line. A device
not ready would pull this line low (true) to signal that it is not ready for data, while any device
that is ready would let the line float high. Since an active low overrides a passive high, this line
will stay low until all active listeners are ready for data.

When the talker senses that all devices are ready, it places the next data byte on the data lines
and then pulls DAV low ftrue). This tells the listeners that the information on the data lines is
valid and that they may read it. Each listener then accepts the data and lets the NDAC line float
high (false). As with NRFD, only when all listeners have let NDAC go high will the talker sense
that all listeners have read the data. It can then float DAV (let it go high) and start the entire
sequence over again for the next byte of data.

The Attention Line (ATN)

Command messages are encoded on the data lines as 7-bit ASCII characters, and are distin-
guished from normal data characters by the logic state of the attention line (ATN). That is, when
ATN is false, the states of the data lines are interpreted as data. When ATN is true, the data
lines are interpreted as commands. The set of 128 ASCII characters that can be placed on the
data lines during this ATN-true mode are divided into four classes by the states of data lines
DIO6 and DIO7. These classes of commands are shown in a table in the section called “Adv-
anced Bus Management’’.

The Interface Clear Line (IFC)

Only the system controller can set the IFC line true. By asserting [FC, all bus activity is uncon-
ditionally terminated, the system controller regains the capability of active controller (if it has
been passed to another device), and any current talker and listeners become unaddressed.
Normally, this line is only used to terminate all current operations, or to allow the system
controller to regain conirol of the bus. It overrides any other activity that is currently taking
place on the bus.

The Remote Enable Line (REN)

This line is used to allow instruments on the bus to be programmed remotely by the active
controller. Any device that is addressed to listen while RENis true is placed in the Remote mode
of operation.

The End or Identify Line (EOI)

Normally, data messages sent over the HP-IB are sent using the standard ASCII code and are
terminated by the ASCII line-feed character, CHR(10). However, certain devices may wish to
send blocks of information that contain data bytes which have the bit pattern of the line-feed
character but which are actually part of the data message. Thus, no bit pattern can be desig-
nated as a terminating character, since it could occur anywhere in the data stream. For this
reason, the EOI line is used to mark the end of the data message.

92 The HP-IB Interface

The EOI line is not directly supported by the input and output procedures. It is supported in
advanced transfers by the TRANSFER_END procedure.

The I/O Library does provide access to the EOI line at a lower level. The state of the EOI line
after the last byte read is stored in the system and can be viewed with the END_SET boolean
function which is module HPIB_1. An example of this function is:

UNLISTEN(7) 3§
TALK(720) 3
LISTEN(7 »MY_ADDRESS(7)) 3
REPEAT

READCHAR(7 »cLil) 5
UNTIL END_SET(7)}

The /O Library also provides a facility for setting the EQI line with a byte to be sent. This is
provided with the procedure SET_HPIB which is in module HPIB_0. An example use of this
procedure is:

UNLISTEN(7) 3

TALK (7 +MY_ADDRESS(7)) 3}

LISTEN(7:11)3

FOR i:=1 TO STRLEN(str)-1 DO WRITECHAR(7sstr[il)}
SET.HPIB(7+EDI_LINE) 3}

WRITECHAR{(7 +strLSTRLENI1) i}

After the character output occurs, the EOI line will be set false automatically.

The Service Request Line (SRQ)

The active controller is always in charge of the order of events that occur on the HP-IB. If a
device on the bus needs the controller’s help, it can set the service request line true. This line
sends a request, not a demand, and it is up to the controller to choose when and how it will
service that device. The REQUESTED function tells the controller whether it is being requested.
The procedure to request the service is the REQUEST_SERVICE procedure in the module
HPIB_3. This module is of the form:

REQUEST_SERVICE (interface_-select_code s response_hvte)}

The response byte is an integer value in the range of 0 through 255. If bit 6 of this byte is set, the
SRQ line will be asserted by this interface. If bit 6 is not set, then this device will not assert the
SRQ line. The interface must not be active controller to request service.

Determining Bus-Line States

IOSTATUS register 7 contains the current states of all bus hardware lines. Reading this register
returns the states of these lines.

bus_lines := IOSTATUS(7:+7)}

The HP-IB Interface 93

Status Register 7 Bus Control and Data Lines

Most significant Bit Least Significant Bit
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
ATN DAV NDAC* NRFD* EQI SRQ** IFC REN
True True True True True True True True

Value = Value = Value = Value = Value = Value = Value = Value =
—32768 16 384 8 192 4 096 2048 1024 512 256
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DIO1

Value = 128/ Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value =2 Value = 1

* Only if addressed to TALK, else not valid.
** Only if Active Controller, else not valid.

. Note

Due to the way the bi-directional buffers work, NDAC and NRFD are
not accurately read by this IOSTATUS function unless the interface
is currently addressed to talk. Also, SRQ is not accurately shown
unless the interface is currently the active controller.

94 The HP-IB Interface

Advanced Bus Management

Bus communication involves both sending data to devices and sending commands to devices
and the interface itself. “‘General Structure of the HP-IB”’ stated that this communication must
be made in an orderly fashion and presented a brief sketch of the differences between data and
commands. However, most of the bus operations described so far in this chapter involve
sequences of commands and/or data which are sent automatically by the computer when
HP-IB statements are executed. This section describes both the commands and data sent by
HP-IB statements and how to construct your own, custom bus sequences.

The Message Concept

The main purpose of the bus is to send information between two (or more) devices. These
quantities of information sent from talker to listener(s) can be thought of as messages. Howev-
er, before data can be sent through the bus, it must be properly configured. A sequence of
commands is generally sent before the data to inform bus devices which is to send and which is
(or are) to listen to the subsequent message(s). These commands can also be thought of as
messages.

Most bus messages are transmitted by sending a byte (or sequence of bytes) with numeric
values of 0 through 255 through the bus data lines. When the Attention line (ATN) is true, these
bytes are considered commands; when ATN is false, they are interpreted as data. Bus com-
mand groups and their ASCII characters and codes are shown in “Bus Commands and
Codes’’.

Types of Bus Messages

The messages can be classified into twelve types. This computer is capable of implementing all
twelve types of interface messages. The following list describes each type of message.

1. A Data message consists of information which is sent from the talker to the listener(s)
through the bus data lines.

2. The Trigger message causes the listening device(s) to initiate device-dependent action(s).

3. The Clear message causes either the listening device(s) or all of the devices on the bus to
return to their device-dependent ‘‘clear’’ states.

4. The Remote message causes listening devices to change to remote program control when
addressed to listen.

5. The Local message clears the Remote message from the listening device(s) and returns
the device(s) to local front-panel control.

6. The Local Lockout message disables a device’s front-panel controls, preventing a de-
vice's operator from manually interfering with remote program control.

7. The Clear Lockout/Local message causes all devices on the bus to be removed from
Local Lockout and to revert to the Local state. This message also clears the Remote
message from all devices on the bus.

8. The Service Request message can be sent by a device at any time to signify that the
device needs to interact with the the active controller. This message is cleared by sending
the device’s Status Byte message, if the device no longer requires service.

The HP-IB Interface 95

9. A Status Byte message is a byte that represents the status of a single device on the bus.
This byte is sent in response to a serial poll performed by the active controller. Bit 6
indicates whether the device is sending the Service Request message, and the remaining
bits indicate other cperational conditions of the device.

10. A Status Bit message is a single bit of device-dependent status. Since more than one
device can respond on the same line, this Status Bit may be logically combined and/or
concatenated with Status Bit messages from many devices. Status Bit messages are
returned in response to a parallel poll conducted by the active controller.

11. The Pass Control message transfers the bus management responsibilities from the active
controller to another controller.

12. The Abort message is sent by the system controller to assume control of the bus uncon-
ditionally from the active controller. This message terminates all bus communications,
but is not the same as the Clear message.

These messages represent the full implementation of all HP-IB system capabilities; all of these
messages can be sent by this computer. However, each device in a system may be designed to
use only the messages that are applicable to its purpose in the system. It is important for you to
be aware of the HP-IB functions implemented on each device in your HP-IB system to ensure
its operational compatibility with your system.

96 The HP-IB Interface

Bus Commands and Codes

The table below shows the decimal values of IEEE-488 command messages. Remember that
ATN is true during all of these commands. Notice also that these commands are separated into
four general categories: Primary Command Group, Listen Address Group, Talk Address
Group, and Secondary Command Group. Subsequent discussions further describe these com-

mands.
Decimal ASCIH Interface
Value Character Message Description
PCG Primary Command Group
1 SOH GTL Go to Local
q EOT SDC Selected Device Clear
5 ENQ PPC Parallel Poll Configure
8 BS GET Group Execute Trigger
9 HT TCT Take Control
17 DC1 LLO Local Lockout
20 DC4 DCL Device Clear
21 NAK PPU Parallel Poll Unconfigure
24 CAN SPE Serial Poll Enable
25 EM SPD Serial Poll Disable
LAG Listen Address Group
32-62 Space through > Listen Addresses 0 through 30
(Numbers & Special Chars.)
63 ? UNL Unlisten
TAG Talk Address Group
64-94 @ through ¢ Talk Addresses O through 30
(Uppercase ASCII)
95 — (underscore) UNT Untalk
SCG Secondary Command Group
* through ~ Secondary Commands 0 through 30
96-126 (Lowercase ASCII)
127 DEL Ignored

Address Commands and Codes
The following table shows the ASCII characters and corresponding codes of the Listen Address
Group and Talk Address Group commands. The next section describes how to send these

commands.

The HP-IB Interface 97

Address Characters Address Code Address Switch Settings
Listen Talk Decimal B) @ @) 2 (@)
Space @ 0 O 0 O 0 O

! A 1 0O 0 0 o0 1
” B 2 0O 0 0 1 O
C 3 0O 0 o0 1 1
$ D 4 0o o 1 0 O
% E 5 0O 0o 1 o0 1
& F 6 0O 0o 1 1 O
' G 7 0O 0 1 1 1
{ H 8 0 1 0 0 O
) I 9 0 1 0 0 1
* J 10 0 1 0 1 O
+ K 11 o 1 0 1 1
, L 12 0 1 1 0 O
- M 13 0 1 1 0 1
) N 14 0 1 1 1 O
/ 0 15 0 1 1 1 1
0 P 16 1 0 0 0 O
1 Q 17 1 0o 0 0 1
2 R 18 1 0 0 1 0
3 S 19 1 0 0 1 1
4 T 20 1 0 1 0 0
5 U 21 1 0 1 0 1
6 Vv 22 1 0 1 1 0
7 W 23 1 0 1 1 1
8 X 24 1 1 0 0 O
9 Y 25 1 1 0 0 1
: z 26 1 1 0 1 O
: (27 1 1 0 1 1
< / 28 1 1 1 0 O
=] 29 1 1 1 0 1
> 1 30 1 1 1 1 0

98 The HP-IB Interface

Explicit Bus Messages
Any “ATN” command can be sent in any order with a procedure called SEND_COMMAND.

This procedure will send the specified command on the bus. The interface must be active
controller. The form of the procedure is:

SEND.COMMAND (interface_select_code » command_character)3

The command character is a normal character expression in the range of CHR(0) through
CHR(255). You should be very careful when using this procedure because you can put devices
into bad or unknown states. The procedure is in module HPIB_1.

Example

SEND_COMMAND (7777} 3
SEND_COMMAND(7 773
SEND_COMMAND(7 71 ") 3
SEND_COMMAND (77U ") 3

send unlisten 2
send untalk ¥
send dve 0Ol listewn ¥
send dve 21 talk ¥

L T B T

Summary of HP-IB IOSTATUS and
IOCONTROL Registers

Status Register 0
Most Significant Bit

The HP-IB Interface 99

Card ldentification

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 0 0 0 1
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 Value =4 | Value =2 | Value =1
Control Register 0 Interface Reset
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 ‘ Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Any Bit Will Reset Interface
T
Value = 128| Value = 64 \ Value = 32 | Value = 16 | Value=8 | Value=4 | Value = 2 | Value=1
Status Register 1 Interrupt and DMA Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
interrrupts Interrupt Interrupt DMA DMA
Enabltfd Requ stped Levelp 0 0 Channel 1| Channel 0
que Enabled | Enabled
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value = 8 | Value=4 | Value=2 | Value =1
Control Register 1 Serial Poll Response Byte
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 \ Bit 2 Bit 1 Bit 0
Device SRQ
Dependent | 1 = | did it Device Dependent Status
Status 0 = ldidn't
Value = 128| Value = 64 | Value = 32 | Value = 16 Value = 8 \ Value = 4 \ Value =2 | Value =1

100 The HP-IB Interface

Control Register 2
Most Significant Bit

Parallel Poll Response Byte

Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DIO1
1 = True 1 = True 1 = True 1 = True 1 = True 1 = True 1 = True 1 = True
Value = 128/ Value = 64 | Value = 32 | Value = 16 | Value = 8 Value=4 | Value=2 | Value = 1
Status Register 3 Controller Status and Address
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
System Active ,
Controller | Controller 0 Primary Address of Interface
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value = 8 Value=4 | Value=2 | Value =1
Control Register 3 Set My Address
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Not Used Primary Address
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value = 4 Value =2 | Value =1

Status Register 4
Most Significant Bit

The HP-IB Interface

Interrupt Status

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
. Parallel My Talk My Listen Remote/ Talker/
Active Poil EOI Listener
. . Address Address . SPAS Local
Controller |Configuration . . Received Address
Received | Received Change
Change Change
Value = Value = Value = Value = Value = Value = Value = Value =
- 32768 16 384 8192 4096 2048 1024 512 256
Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
. Secondary .
Trigger | Handshake Unrepogmzed Command Clear Unrecognized SRQ IFC
X Universal : , Addressed .)
Received Error : While Received Received Received
Command Command
Addressed
Value = 128/ Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 Value = 1
Status Register 5 Interrupt Enable Mask
Most Significant Bit
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
. Parallel My Talk My Listen Remote/ Talker/
Active Poll EOQI Listener
. . Address Address : SPAS Local
Controller |Configuration . . Received Address
Received Received Change
Change Change
Value = Value = Value = Value = Value = Value = Value = Value =
—32768 16 384 8 192 4096 2048 1024 512 256
Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
. Secondary .
Trigger | Handshake Unrepognlzed Command Clear Unrecognized SRQ IFC
: Universal . . Addressed A .
Received Error - While Received Received Received
(Command Command
Addressed
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value =2 Value = 1

101

102 The HP-IB Interface

Status Register 6
Most Significant Bit

Interface Status

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
REM LLO ATN LPAS TPAS LADS TADS *
True
Value = Value = Value = Value = Value = Value = Value = Value =
—-32768 16 384 8 192 4 096 2048 1024 512 256
Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
System Active .
Controller | Controller 0 Primary Address of Interface
Value = 128/ Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value =2 | Value = 1
* Least-significant bit of last address recognized
Status Register 7 Bus Control and Data Lines
Most Significant Bit
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
ATN DAV NDAC* NRFD* EOQI SRQ** IFC REN
True True True True True True True True
Value = Value = Value = Value = Value = Value = Value = Value =
—32768 16 384 8 192 4 096 2 048 1024 512 256
Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 D107 DIO6 DIOS DI04 DIO3 DI02 DIO1
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value = 1
* Only if addressed to TALK, else not valid.
** Only if Active Controller, eise not valid.
Status Register 8 Unrecognized Command
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Value = 128 Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value = 1

The HP-IB Interface

Summary of HP-IB IOREAD_BYTE and
IOWRITE_BYTE Registers

IOREAD Registers

Register 1 — Card Identification

Register 3 — Interrupt and DMA Status
Register 5 — Controller Status and Address
Register 17 — Interrupt Status 0

Register 19 — Interrupt Status 1

Register 21 — Interface Status

Register 23 — Control-L:ne Status

Register 29 — Command Pass-Through
Register 31 — Data-Line Status'

HP IOREAD_BYTE Register 1 Card ldentification
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Future Use
Jumper 0 0 0 0 0 0 1
Installed

Value = 128| Value = 64 | Value = 32 | Value = 16 | Value =8 | Value=4 | Value=2 | Value =1

Bit 7 is set (1) if the “future use” jumper is installed and clear (0) if not.

Bits 6 through 0 constitute a card identification code (=1 for all HP-IB cards).

Note

This register is only implemented on external HP-IB cards. The inter-
nal HP-IB, at interface select code 7, ““floats’” this register (i.e., the
states of all bits are indeterminate).

HP-IB IOREAD_BYTE Register 3 Interrupt and DMA Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Interrupt Interrupt Interrupt
Enabled Request Level X X DMA1 DMAQ
Value = 128/ Value = 64 | Value = 32 | Value = 16 | Value =8 | Value=4 | Value=2 | Value =1

1 Indicates that an IOREAD_BYTE operation will change the state of the interface.

103

104 The HP-IB Interface

Bit 7 is set (1) if interrupts are currently enabled.
Bit 6 is set (1) when the card is currently requesting service.

Bits 5 and 4 constitute the card’s hardware interrupt level (a switch setting on all external cards,
but fixed at level 3 on the internal HP-IB).

Bit5 | Bit4 Hardware Interrupt
Level

—_ =00
—_ O =0
AU W

Bits 3 and 2 are not used (indeterminate).
Bit 1 is set (1) if DMA channel one is currently enabled.
Bit 0 is set (1) if DMA channel zero is currently enabled.

Note

Bits 7, 5, 4, 3, 2, and 1 are not implemented on the internal HP-IB
{(interface select code 7).

HP-IB IOREAD._BYTE Register 5 Controller Status and Address
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
System Not ~+— HP-IB Primary Address of Interface ———————»

yste Active X y

Controller Controller (MSB) (LSB)

Value = 128 Value = 64 | Value =32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value = 1

Bit 7 is set (1) if the interface is the System Controller.

Bit 6 is set (1) if the interface is not the current Active Controller and clear (0) if it is the Active
Controller.

Bit 5 is not used.

Bits 4 through 0 contain the card’s Primary Address switch setting. The following bit patterns
indicate the specified addresses.

Bit Primary
43210 Address
00000 0
00001 1
11101 29
11110 30
11111 (not allowed)

The HP-IB Interface

Bits 5 through O are not implemented on the internal HP-IB.

Note

HP-IB IOREAD_BYTE Register 17

Most Significant Bit

MSB of Interrupt Status

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Ready Remote/ My
MSB LSB Byte End
. for Next SPAS Local Address
Int
nterrupt Interrupt Received Byte Detected Change Change
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value=1

Bit 7 set (1) indicates that an interrupt has occurred whose cause can be determined by reading

the contents of this register.

Bit 6 set (1) indicates that an interrupt has occurred whose cause can be determined by reading

Interrupt Status Register 1 (IOREAD_BYTE Register 19).

Bit 5 set (1) indicates that a data byte has been received.

Bit 4 set (1) indicates tha this interface is ready to accept the next data byte.
Bit 3 set (1) indicates tha: an End (EQI with ATN =0) has been detected.
Bit 2 set (1) indicates that the Serial-Poll-Active State has been entered.

Bit 1 set (1) indicates that a Remote/Local State change has occurred.

Bit 0 set (1) indicates that a change in My Address has occurred.

105

106 The HP-IB Interface

HP-IB IOREAD_BYTE Register 19 LSB of Interrupt Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

. Secondary
M
Trigger | Handshake | U1reC09nzed | o and Clear y Address SRQ IFC
R ved E Command Whil R ived Received Received Received
eceive rror Group ile eceive (MLAor MTA) eceive eceive
Addressed
Value = 128| Value = 64 | Value =32 | Value= 16 | Value=8 | Value=4 | Value=2 | Value = 1

Bit 7 set (1) indicates that a Group Execute Trigger command has been received.
Bit 6 set (1) indicates that an Incomplete-Source-Handshake error has occurred.
Bit 5 set (1) indicates that an unidentified command has been received.

Bit 4 set (1) indicates that a Secondary Address has been sent in while in the extended-
addressing mode.

Bit 3 set (1) indicates that the interface has entered the Device-Clear-Active State.
Bit 2 set (1) indicates that My Address has been received.

Bit 1 set (1) indicates that a Service Request has been received.

Bit 0 set (1) indicates that the Inteface Clear message has been received.

HP-IB IOREAD_BYTE Register 21 Interface Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit @

ATN LSB of
REM LLO LPAS TPAS LADS TADS Last
True
Address
Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value = 1

Bit 7 set (1) indicates that this Interface is in the Remote State.
Bit 6 set (1) indicates that this interface is in the Local Lockout State.

Bit 5 set (1) indicates that the ATN signal line is true.

(
(
(
Bit 4 set (1) indicates that this interface is in the Listener-Primary-Addressed State.
Bit 3 set (1) indicates that this interface is in the Talker-Primary-Addressed State.

Bit 2 set (1) indicates that this interface is in the Listener-Addressed State.

Bit 1 set (1) indicates that this interface is in the Talker-Addressed State. .

Bit 0 set (1) indicates that this is the least-significant bit of the last address recognized by this
interface.

The HP-IB Interface 107

HP-IB IOREAD_BYTE E.egister 23 Control-Line Status

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ATN DAV NDAC* NRFD* EOI SRQ** IFC REN
True True True True True True True True

Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 Value =1

*Only if addressed to TALK, zlse not valid.
**Only if Active Controller, else not valid.

A set bit (1) indicates thar the corresponding line is currently true; a O indicates that the line is
currently false.

Command Pass-Through

Least Significant Bit

HP-IB IOREAD_BYTE Register 29

Most Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DIO1
‘ Value = 128/ Value = 64 | Value = 32 | Value = 16 | Value =8 | Value = 4 | Value=2 | Value=1

This register can be read during a bus holdoff to determine which Secondary Command has

been detected.

Bus Data Lines
Least Significant Bit

HP-IB IOREAD_BYTE Register 31

Most Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 DIO7 DIO6 D105 DI04 DIO3 DiO2 DIO1

Value = 128| Value = 64 | Value = 32 | Value = 16 | Value = 8 | Value=4 | Value=2 | Value =1

A set bit (1) indicates that the corresponding HP-IB data line is currently true; a 0 indicates the

line is currently false.

108 The HP-IB Interface

HP-IB IOWRITE_BYTE Registers

Register 3 — Interrupt Enable

Register 17 — MSB of Interrupt Mask
Register 19 — LSB of Interrupt Mask
Register 23 — Auxiliary Command Register
Register 25 — Address Register

Register 27 — Serial Poll Response
Register 29 — Parallel Poll Response
Register 31 — Data Out Register

HP-IB IOWRITE_BYTE Register 3 Interrupt Enable
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Enable Enable Enable
Interrupt X X X X X Channel 1 | Channel 0

Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value = 2 Value =1

Bit 7 enables interrupts from this interface if set (1) and disables interrupts if clear (0).

Bits 6 through 2 are “‘don’t cares” (i.e., their values have no effect on the interface’s opera-
tion).

Bit 1 enables DMA channel 1 if set (1) and disables if clear (0).
Bit 0 enables DMA channel 0 if set (1) and disables if clear (0).

Note

Bits 7 through 1 are not implemented on the internal HP-IB interface
and thus have no effect on the interface’s operation.

IOWRITE_BYTE Register 17 MSB of Interrupt Mask
Setting a bit of this register enables an interrupt for the specified condition. The bit assignments
are the same as for the MSB of Interrupt Status Register (IOREAD Register 17), except that bits
7 and 6 are not used.

IOWRITE_BYTE Register 19 LSB of Interrupt Mask
Setting a bit of this register enables an interrupt for the specified condition. The bit assignments
are the same as for the LSB of Interrupt Status Register (IOREAD Register 19).

HP-IB IOWRITE_BYTE Register 23

Most Significant Bit

The HP-IB Interface

Auxiliary Command Register
Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Set X X Auxiliary Command Function
Value = 128| Value = 64 | Value = 32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1

Bit 7 is set (1) for a Set operation and clear (0) for a Clear operation.

Bits 6 and 5 are ‘‘don’t cares’’.

Bits 4 through 0 are Auxiliary-Command-Function-Select bits. The following commands can
be sent to the interface by sending the specified numeric values.

Decimal
Value

0 —
128 —

1 —

129 —

130 —

131 —

132 —

133 —

134 —

135 —

136 —

137 —

10 —
138 —

Description of
Auxiliary Command

Clear Chip Reset.
Set Chip Reset.

Release ACDS$ holdoff. If Address Pass Through is set, it indicates an invalid second-
ary has been received.

Release ACDS holdoff: If Address Pass Through is set, indicates a valid secondary
has been received.

Release RFD holdoff.
Same command as decimal 2 (above).

Clear holdoff on all data.
Set holdoff on all data.
Clear holdoff on EOI only.

Set holdoff on EOI only.

Set New Byte Available (nba) false.
Same command as decimal 5 (above).

Pulse the Group Execute Trigger line, or clear the line if it was set by decimal
command 134%.
Set Group Execute Trigger line.

Clear Return To Local (rtl).
Set Return To Local {must be cleared before the device is able to enter the Remote
state).

Causes EOI to be sent with the next data byte.
Same command as decimal 8 (above).

Clear Listener State (also cleared by decimal 138).
Set Listener State.

Clear Talker State (also cleared by decimal 137).
Set Talker State.

(Continued)

109

110 The HP-IB Interface

Decimal Description of
Value Auxiliary Command
11 — Go To Standby (gts; controller sets ATN false).
139 — Same command as decimal 11 (above).
12— Take Control Asynchronously (tca; ATN true).
140 — Same command as decimal 12 (above).
13 — Take Control Synchronously (tcs; ATN true).
141 — Same command as decimal 13 (above).
14 — Clear Parallel Poll.
142 — Set Parallel Poll (read Command-Pass-Through register before clearing).
15 — Clear the Interface Clear line (IFC).
143 — Set Interface Clear (IFC maintained >100 ps).
16 — Clear the Remote Enable (REN) line.
144 — Set Remote Enable.
17 — Request control (after TCT is decoded, issue this to wait for ATN to drop and receive
control).
145 — Same command as decimal 17 (above).
18 — Release control (issued after sending TCT to complete a Pass Control and set ATN
false).
146 — Same command as decimal 18 (above).
19 — Enable all interrupts.
147 — Disable all interrupts.
20 — Pass Through next Secondary Command.
148 — Same command as decimal 20 (above).
21 — SetTI1 delay to 10 clock cycles (2 ps at 5 MHz).
149 — Set T1 delay to 6 clock cycles (1.2 ps at 5 MHz).
22 — C(Clear Shadow Handshake.

150 — Set Shadow Handshake.

The HP-IB Interface

HP-IB IOWRITE_BYTE Register 25 Address Register
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Enable . .
Dual ?_'f;g;e %':ﬁgf Primary Address
Addressing
Value = 128| Value = 64 | Value = 32 | Value= 16 | Value=8 | Value=4 | Value=2 | Value =1

Bit 7 set (1) enables the Dual-Primary-Addressing Mode.
Bit 6 set (1) invokes the Disable-Listen function.
Bit 5 set (1) invokes the Cisable-Talker function

Bits 4 through 0 set the device’s Primary Address (same address bit definitions as READIO
Register 5).

HP-IB IOWRITE_BYTE Register 27 Serial Poll Response Byte
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Device Request
Dependent qu Device-Dependent Status

Status Service

Value = 128/ Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value =2 | Value =1

Bits 7 and 5—0 specify the Device-Dependent Status.
Bit 6 sends an SRQ if set (1).

Note
Given an unknown state of the Serial Poll Response Byte, it is neces-
sary to write the byte with bit 6 set to zero followed by a write of the
byte with hit 6 set to the desired final value. This will insure that a
SRQ will be generated if one was desired.

111

112 The HP-IB Interface

HP-IB IOWRITE_BYTE Register 29

Most Significant Bit

Parallel Poll Response
Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIOS8 DIO7 DIO6 DIOS DI04 DIO3 DIO2 DIO1
Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value=1

A 1 sets the appropriate bit true during a Parallel Poll; a 0 sets the corresponding bit false.
Initially, and when Parallel Poll is not configured, this register must be set to all zeros.

HP-IB IOWRITE_BYTE Register 31

Most Significant Bit

Data-Out Register

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DIiO1
Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

Summary of Bus Sequences

The following tables show the bus activity invoked by executing HP-IB statements and func-
tions. The mnemonics used in these tables were defined in the previous section of this chapter.

The HP-IB Interface 113

Note that the bus messages are sent by using single lines (such as the ATN line) and multi-line
commands (such as DCL). The information shows the state of and changes in the state of the
ATN line during these bus sequences. The tables implicitly show that these changes in the
state of ATN remain in effect unless another change is explicitly shown in the table. For
example, if a statement sets ATN (true) with a particular command, it remains true unless the
table explicitly shows that it is set false (ATN). The ATN line is implememted in this manner to
avoid unnecessary transitions in this signal whenever possible. It should not cause any dilem-

mas in most cases.

ABORT_HPIB
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
IFC (duration ATN
Active =100ps6c) MTA
Controller REN UNL
ATN
ATN Error Error
IFC (duration
Not Active =100 usec)* No
Controller REN Action
ATN

* The IFC message allows a non-active controller (which is the system controller) to become the active controller.

CLEAR
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
Active ATN MTA ATN MTA
Controll DCL UNL DCL UNL
ontrofler LAG LAG
sDC SDC
Not Active Error
Controller

114 The HP-IB Interface

LOCAL
System Controller Not System Controller T
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN ATN
Active REN MTA ATN MTA
Controller ATN UNL GTL UNL
e LAG LAG
GTL GTL

Not Active REN Error Error

Controller

LOCAL_LOCKOUT

System Controller Not System Controiler
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
Active ATN ATN
Controller LLO Error LLO Error
Not Active
Controller Error

PASS_CONTROL

Controller

System Controller Net System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN ATN ATN
Active TCT UNL TCT UNL
Controller ATN TAG ATN TAG
TCT TCT
ATN ATN
Not Active
Error

The HP-IB Interface 115

PPOLL
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN & EOI ATN & EOI
(cdluration=25ps) (duration=25p.s)
Active Read byte Error Read byte E
Controller EOI EOI rror
Flestore ATN to Restore ATN to
Jrevious state previous state
Not Active
Controller Error
PPOLL_CONFIGURE
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
MTA MTA
Active UNL UNL
Controller Error LAG Error LAG
PPC PPC
PPE PPE
Not Active
Controller Error
PPOLL_UNCONFIGURE
System Controller Not System Controller
nterface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
MTA MTA
Active ATN UNL ATN UNL
Controller PPU LAG PPU LAG
PPC PPC
PPD PPD
Not Active
Controller Error

116

The HP-IB Interface
REMOTE
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
REN
Acti ATN
c "t"’ﬁ REN MTA Error
ontroller ATN UNL
LAG
Not Active REN Error Error
Controller
SPOLL
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
UNL UNL
MLA MLA
TAD TAD
Active SPE SPE
Controller Error ATN Error ATN
Read data Read data
ATN ATN
SPD SPD
UNT UNT
Not Active
Controller Error
TRIGGER
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
am
Active ATN UNL ATN UNL
Controller GET LAG GET
GET LAG
GET
Not Active
Controller Error

Chapter

The Datacomm Interface

11

Introduction

The HP 98628 Data Communications Interface enables your desktop computer to communi-
cate with any device that is compatible with standard asynchronous or HP Data Link data
communication protocols. Devices can include various modems or link adapters, as well as
equipment with standard RS-232C or current loop links.

This chapter discusses both asynchronous and Data Link protocols, and programming techni-
ques. Subject areas that are similar for both protocols are combined, while information that is
unique to one protocol or the other is separated according to application.

Prerequisites

It is assumed that you are familiar with the information presented in Data Communication
Basics (98046-90005), and that you understand data communication hardware well enough to
determine your needs when configuring the datacomm link. Configuration parameters include
such items as half/full duplex, handshake, and timeout requirements. If you have any questions
concerning equipment installation or interconnection, consult the appropriate interface or
adapter installation manuals.

The datacomm interface supports several cable and adapter options. They include:

e RS-232C Interface cable and connector wired for operation with data communication
equipment (male cable connector) or with data terminal equipment (female cable con-
nector).

e HP 13264A Data Link Adapter for use in HP 1000- or HP 3000-based Data Link network
applications

e HP 13265A Modem for asynchronous connections up to 300 baud, including built-in
autodial capability'.

e HP 13266A Current Loop Adapter for use with current loop links or devices.

Some of the information contained in this chapter pertains directly to certain of these devices in
specific applications.

1 The HP 13265A modem is compatible with Bell 103 and Bell 113 Modems, and is approved for use in the USA and Canada. Most other
countries do not allow use of user-owned mcdems. Contact your local HP Sales and Service office for information about local regulations.

117

118 The Datacomm Interface

Before you begin datacomm operation, be sure all interfaces, cables, connectors, and equip-
ment have been properly plugged in. Power must be on for all devices that are to be used.
Consult applicable installation manuals if necessary.

Protocol

Two protocols are switch selectable on the datacomm interface. They are also software select-
able during normal program operation. The switch setting on the interface determines the
default protocol when the computer is first powered up. Protocol is changed between Async
and Data Link during program operation by selecting the new protocol, waiting for the message
to reach the card, then resetting the card. The exact procedure is explained in the IOCONTROL
register operations section of this chapter.

Asynchronous Communication Protocol

Asynchronous data communication is the most widely used protocol, especially in applications
where high data integrity is not mandatory. Data is transmitted, one character at a time, with
each character being treated as an individual message. Start and stop bits are used to maintain
timing coordination between the receiver and transmitter. A parity bit is sometimes included to
detect character transmission errors.Asynchronous character format is as follows: Each charac-
ter consists of a start bit, 5 to 8 data bits, an optional parity bit, and 1, 1.5, or 2 stop bits, with an
optional time gap before the beginning of the next character. The total time from the beginning
of one start bit to the beginning of the next is called a character frame.

Parity options include:

¢ NONE No parity bit is included.

¢ ODD Parity set if EVEN number of “1”’s in character bits.
® EVEN Parity set if ODD number of ““1”’s in character bits.
¢ ONE Parity bit is set for all characters.

e ZERO Parity bit is zero for all characters.

Here is a simple diagram showing the structure of an asynchronous character and its rela-
tionship to previous and succeeding characters:

T,,g ' , — ' 4—]_

[—— i 7
Preceding Line in Start 1 0 1 0 0 0 1 Parity Stop Start Bit
Character ldle State | Bit Bit Bit for Next
(Mark) | Single Character Frame > Character
Beginning of End of

Character Character

The Datacomm Interface 119

Data Link Communication Protocol

Data Link protocol overcomes the data integrity limitations of Async by handling data in blocks.
Each block is transmitted as a stream of individual asynchronous characters, but protocol
control characters and block check characters are also transmitted with the data. The receiver
uses the protocol control characters to determine block boundaries and data format. Block
check characters are used to detect transmission errors. If an error occurs, the block is retrans-
mitted until it is successfully received. Block protocol and format is similar to Binary Synchro-
nous Communication (BSC or Bisync, for short).

Data Link protocol provides for two transmission modes: Transparent, and Normal. In transpa-
rent mode, any data format can be transferred because datacomm control characters are
preceded by a DLE character. If a control character is sent without an accompanying DLE, it is
treated as data. When normal mode is used, only ASCII data can be sent, and datacomm
control characters are not allowed in the data stream. The HP 1000 and HP 3000 computers
usually transmit in transparent mode. All transmissions from your desktop computer are sent as
transparent data. If your application involves non-ASCII data transfers (discussed later in this
chapter), be sure the HP 1000 or HP 3000 network host is using transparent mode for all
transmissions to your comr puter.

Each data block sent to the network host by the datacomm interface is structured as follows:

— Start of Block End of Block—>|
[Q¢
D S G D A D E B B
Le | TTy Iy Iy text (data) " Le | TTx | C¢ | TCc
N— — — — R ‘ » ”’ WV 4
1 2 3 4 5

1. The “start transmission” control characters identify the beginning of valid data. If a DLE is
present, the data is iransparent; If absent, data is normal. All data from your desktop compu-
ter is transparent.

2 The terminal identification characters are included in blocks sent to the network host. Blocks
received from the network host do not contain these two characters.

3. Data characters are transmited in succession with no time lapse between characters.

4. The “end transmission” control characters identify the end of data. DLE ETX or DLE ETB
indicate transparent data. ETX or ETB indicates normal data.

5 Block check characters (usually two characters) are used to verify data integrity. If the value
received does not match the value calculated by the receiver, the entire block is rejected by

the receiver. Block check includes GID and DID characters in transmissions to the network
host.

Protocol control characters are stripped from the data transfer, and are not passed from the
interface to the computer. For information about network polling, terminal selection and other
Data Link operations, consult the Data Link network manuals supplied with the HP 1000 or HP
3000 network host computer.

120 The Datacomm Interface

Data Transfers Between Computer and Interface

Data transfers between your desktop computer and its datacomm interface involve two mes-
sage types: control blocks, and data. Both types are encountered in both output and input
operations as follows:

® Outbound control blocks are created by IDCONTROL procedures.
® Outbound data messages are created by the output procedures.

® Inbound control blocks are created by certain protocol operations such as Data Link block
boundaries, or Async prompt, end-of-line, parity/framing error, or break detection.

® Inbound data messages are created by the interface as messages are received from the
remote. They are transferred to the Pascal programs via the input procedures.

Outbound Control Blocks

Outbound control blocks are messages from your computer to the datacomm interface that
contain interface control information. They are usually generated by IOCONTROL procedures,
although TRANSFER_END creates a control block that terminates a given Async transmission
or forces a block to be sent on the Data Link. Outbound control blocks are serially queued with
data. An exception to the queued control block rule is output to Control Register O (card reset)
which is executed immediately.

Note

When an interface card reset is executed by use of a [DCONTROL
procedure, the control block that results is transmitted directly to the
interface. It is not queued up, so any previously queued data and
control blocks are destroyed. To prevent loss of data, be sure that all
queued messages have been sent before resetting the datacomm
interface. IOStatus Register 38 returns a value of 1 when the out-
bound queue is empty. Otherwise, its value is 0. To prevent loss of
inbound data, 10Status Register 5 must return a value of zero prior
to reset.

Inbound Control Blocks

Inbound control blocks are messages from the interface to the computer that identify protocol
control information. Which item(s) are allowed to create a control block is determined by the
contents of IOControl Register 14. [OStatus Registers 9 and 10 identify the contents of the
block, and IOControl Register 24 defines what protocol characters are also included with
inbound Async data messages. Refer to the IOControl and I0OStatus Redgister section at the end
of this chapter for details about register contents for various control block types.

The Datacomm Interface 121

Two types of information are contained in each control block: Type and Mode. The TYPE is
contained in IOSTATUS register 9; the MODE in IOSTATUS register 10. Type and Mode
values can be used to interpret datacomm operation as follows:

Async Protocol Control Blocks

Type Mode Interpretation

250 1 Break received (channel A).

251 1 Framing error in the following character.

251 2! Parity error in the following character.

251 3! Both Framing and Parity error in the following character.
252 1 End-of-line terminator detected.

253 1 Prompt received from remote.

Data Link Protocol Control Blocks

Type | Mode | Interpretation

254 1 Preceding block terminated by ETB character.
254 2 Preceding block terminated by ETX character.
253¢ (See following table for Mode interpretation.)

Mode Bit(s) | Interpretation

0 1 = Transparent data in following block.
0 =Normal data in following block.

2,1 00 = Device Select {(most common).
01 = Group Select
10 =Line Select

3 1 = Command Channel
0 =Data Channel

For Data Link applications, control blocks are normally set up for end-of-block (ETB or ETX).
Control blocks are then used to terminate TRANSFER_END operation, or are trapped via an
1/O escape. Control block contents are not important for most applications unless you are doing
sophisticated protocol-control programming.

For Async applications, terminal emulator programs usually use prompt and end-of-line control
blocks. Use of other functions such as break or error detection depend on the requirements of
the individual application.

1 Parity/framing error control blocks are not generated when characters with parity and/or framing errors are replaced by an underscore (_)
character.

2 This type is used mainly in specialized applications. In most cases, you can expect a Mode value of zero or one for Type 253 Data Link control
blocks. For most Data Link applications. control blocks are not used by programmers.

122 The Datacomm Interface

Outbound Data Messages
Outbound data messages are created when an output procedure is executed. Here is a short
summary of how output parameters can affect datacomm operation.

® Async protocol: Data is transmitted directly from the outbound queue. When operating in
half-duplex, TRANSFER_END causes the interface to turn the line around and allow the
remote device to send information back (line turn-around is initiated when the interface
sets the Request-to-send line low). TRANSFER_END has no effect when operating in full
duplex.

® Data Link protocol: Data messages are concatenated until at least 512 characters are
available, then a block of 512 characters is sent. Block boundaries may or may not
coincide with the end of a given output message.
You can force transmission of shorter blocks by using the TRANSFER_END procedure.
The interface then transmits the last pending block regardless of its length. This technique
is useful for ensuring that block boundaries coincide with message boundaries, or for
sending one message string per block when you are transmitting short records.

Inbound Data Messages

Inbound data messages are created by the datacomm interface as information is received from

the remote. Input procedures are terminated when a control block is encountered or the input

variable is filled. Whether control characters are included in the data stream depends on the
configuration of Control Register 24 (Async operation only). Control information is never .
included in inbound data messages when using Data Link protocol.

With this brief introduction to the data communications capabilities of the HP 98628 Data-
comm Interface, you are ready to begin programming your desktop computer for datacomm
operation. The next section of this chapter introduces Pascal datacomm programming techni-
ques.

The Datacomm Interface

Overview of Datacomm Programming

Your desktop computer uses several /O Library facilities for data communication with various
computers, terminals, and other peripheral devices. Datacomm programs will include part or all
of the following elements

e Input procedures (including transfers)
e Output procedures (including transfers)
¢ [OSTATUS functions

¢ [OCONTROL procedures

e High level control procedures.

The input and output procedures are described in the previous chapters. Later sections of this
chapter discuss the IOSTATUS and IOCONTROL operations. The I/O Library provides several
high level control procedures to set up the serial interface card and its parameters. These
procedures are in the module SERIAL_3 and consist of the following procedures. Note that
these procedures are for ASYNC operations ONLY.

Set Baud Rate

This procedure will set the interface baud rate. It is of the form:
SET_BAUD_RATE (isc » rate)i

The rate is a real expression with the range of 0 through 19 200.

Set Stop Bits

This procedure will set the number of stop bits on the interface. The procedure is of the form:
SET-STDP.BITS (isc + number_of_bits)3

The number of bits is a real expression with valid values of 1, 1.5 and 2.

Set Character Length

This procedure will set the number of bits in a character on the specified interface. The proce-
dure is of the form:

SET_CHAR_LENGTH (isc + number_of_bits)i

The number of bits is an integer expression with valid values of 5, 6, 7, and 8 bits per character.

Set Parity

This procedure sets the ‘darity mode of the specified interface. The procedure is of the form:

SET_PARITY (isc » Parity)3

123

124 The Datacomm Interface

The parity parameter is an enumerated type with the following values:

no_parity
odd_parity
even_parity
zero_parity
one_patrity

Example Terminal Emulator

The following program is a very simple terminal emulator. It uses overlap transfers to bring data
into the computer and uses handshake 1/O to send data from the computer. This is not a
supported product — merely an example program.

$SYSPROG ON$
$UCS5D ON$%
$DEBUG ONS$

PROGRAM TERMINAL (INPUT,OUTPUT +KEYBOARD) ;

IMPORT iodeclarations:
dgenneral_0,
deneral_1,
deneral_2
general_3.
deneral_4,
serial_0;,
serial_33

CONST mvsc = 203
bufsize = 10003
Kbdunit = 23
VAR i : INTEGERS
mybuf t buf_info_tvpes
bufchar : CHAR:
oldbufchar : CHARS
Kbdchar : CHAR;
half_duplex : BOOLEANS
auto_ 1f : BOOLEAN;
BEGIN
TRY
ioinitializes
iocontrol (myscy224+0)5 { no Protocol }
iocontrol (myscs23+0)% { no handshake }
iocontrol (mysc+244+127)i{ pPass all chars }
iocontrol (mysc»28,0)% { card EOL = none }

set_baud_rate (mysc »2400) 3
set_Parity (mvscsodd_Parity)}
set_char_lendth(mvsc:+7)3}
set_storP_bits (myscl)3j

iocontrol (mysc18+63)5 { set all modem lines ¥

iocontrol (myscs12+1)5 { connect the card 3

half_durlex := TRUE 3}
auto_1f 1= TRUE 3

iobuffer(mybuf sbufsize)s
transfer(mvscsoverlarsto_memory smybuf bufsize)s

WRITELN('TERMINAL EMULATOR READY ‘)3
REPEAT

IF NOT (UNITBUSY(Kbdunit))
THEN BEGIN
IF EOLN(Kevboard)

THEN BEGIN
READ(Kevboard.Kbdchar) i
Kbdchar := io_carriade_rtn}

END

ELSE BEGIN
READ(Kevboard:Kbdchar)i

END3 { of IF EOLN 2

IF half_durlex
THEN BEGIN
WRITE(kbdchar)i
END
IF auto_1f AND (Kbkdchar = io_carriade_rtn)
THEN BEGIN
writechar(myscsKbhdchar)i
Kbdchar = io_line.feedi
END
writechar(myscsKkbdchar)i
END i

IF buffer_data(mybuf) <> O
THEN BEGIN
oldbufchar := bufchar?
readbuffer(mybuf sbufchar)i
IF bufchar = io_line_feed
THEN BEGIN
IF oldbufchar = io_carriade_rtn
THEN BEGIN
{ nothing %
END
ELSE BEGIN
WRITE(io_carriade_rtn)}j
END3
END
ELSE BEGIN
WRITE(bufchar)i
END3
END 3

IF (NOT isc_busy¥(mybuf)) AND (buffer_data(mybuf) = Q)
THEN BEGIN
transfer{mvscsoverlarsto_memory smvbuf sbhufsize)s
END 3}

UNTIL FALSES
RECOVER BEGIN

PAGE(outrPut);
WRITELNS
WRITELN(‘’escare code : ‘:escarecode)s
IF ESCAPECQODE=iocescarecode
THEN BEGIN
WRITELN(‘some I/0 Problem has occurred’)s
WRITELN(iocerror_messade(ice_result)) s
WRITELN(‘on select code ’'sice_isc:d)}
END
ELSE BEGIN
IF ESCAPECODE< »-20
THEN BEGIN
WRITELN(‘some non-1/0 Pproblem has occurred’)s
END
ELSE BEGIN

continued

The Datacomm Interface 125

126 The Datacomm Interface

WRITELN(‘stor Kevy pressed’) 3
END 3
END 3
ESCAPE(ESCAPECODE) 3
END ;

END.

Establishing the Connection

Determining Protocol and Link Operating Parameters

Before information can be successfully transferred between two devices, a communication link
must be established. You must include the necessary protocol parameters to ensure compatibil-
ity between the communicating machines. To determine the proper parameters for your ap-
plication, select Async or Data Link protocol, then answer the following questions:

For BOTH Async and Data Link Operation:
® [s a modem connection being used? What handshake provisions are required? (Data Link
does not use modems, but multi-point Async modem connections use a protocol compati-
ble with Data Link.)

¢ s half-duplex or full-duplex line protocol being used?

For Async Operation ONLY:
e What line speed (baud rate) is being used for transmitting?

® What line speed is being used for receiving?

® How many bits (excluding start, stop, and parity bits) are included in each character?

e What parity is being used: none, odd, even, always zero, or always one?

e How many stop bits are required on each character you transmit?

e What line terminator should you use on each outgoing line?

® How much time gap is required between characters (usually 0)?

e What prompt, if any, is received from the remote device when it is ready for more data?
e What line terminator, if any, is sent at the end of each incoming line?

For Data Link Operation ONLY:
e What line speed (baud rate) is being used? (Data Link uses the same speed in both
directions.)

® What parity is being used: none (HP 1000 network host), or odd (HP 3000 network
host)?

e What is the device Group IDentifier (GID) and Device [Dentifier (DID) for your terminal?

® What is the maximum block length (in bytes) the network host can accept from your
terminal?

All these parameters are configured under program control by use of [OCONTROL procedures.
Alternately, default values for line speed, modem handshake, parity, and Async or Data Link
protocol selection can be set using the datacomm interface configuration switches. Other de-
fault parameters are preset by the datacomm interface to accommodate common configura-
tions. You can use the defaults, or you can override them with IOCONTROL procedures for
program clarity and immunity to card settings. Default IOControl Register values are shown in

The Datacomm Interface 127

the IOCONTROL and IOSTATUS register tables in the back of this chapter. The HP 98628
Datacomm Interface Installation manual (98628-90000) explains how to set the default switch-
es on the interface.

The next section of this chapter shows a summary of the available default options and switch
settings for both Async and Data Link.

Using Defaults to Simplify Programming

The datacomm interface includes two switch clusters. One cluster is used to program the select
code and interrupt level. The other cluster sets defaults for protocol, line speed (baud rate),
modem handshake, and parity. Setting the defaults on the card eliminates the need to program
the corresponding interface IOCONTROL registers. These defaults are useful in applications
where the configuration of the link is rarely altered, and the program is not used on other
machines with dissimilar configurations. They also enable a beginning programmer to use
output and input procedures to perform simple datacomm operations without using IOCON-
TROL or IOSTATUS statements. On the other hand, where link configuratiion may vary, or
where programs are used on several different machines with dissimilar configurations, it is
usually worthwhile to override the defaults with IDCONTROL procedures. This assures known
datacomm behavior, independent of interface defaults.

Here, for your convenience is a brief summary of the default switch options:

I, -;mmmm“

DefauW

™\
Parity Bits/Char | | Hardware Handshake Baud Rate Stop Bits
00=None 8 00 =Handshake OFF, 000=110 2
01 =None 7 non-modem connection’ 001=150 2
10=0dd 7 01 =FULL Duplex modem 010=300 1
11 =Even 7 connection?® 011 =600 1
10 =HALF Duplex modem| |100=1200 1
connection ? 101 =2400 1
11 =Handshake ON, 110=4800 1
‘ non-modem connection’ 111=9600 1

Async Default Configuration Switches

' Default No Activity timeout: Disabled
2 Defauit No Activity timeout: 10 minutes

128 The Datacomm Interface

oonoom]

Default Switches /z[

DID: (“@”...“G”) Baud Rate | |Hardware Handshake

000=@ 100=D 00=300 00 =Handshake OFF, non-modem connection
001=A 101 =E 01=1200 | |01=FULL Duplex modem connection
010=B 110=F 10=9600 | |10=HALF Duplex modem connection
011=C 111=G 11=19200]| | 11 = Handshake ON, non-modem connection

O

Default GID="A" Default No Activity timeout: 10 minutes

Data Link Default Configuration Switches

Resetting the Datacomm Interface

Before you establish a connection, the datacomm interface must be in a known state. The
datacomm interface does not automatically disconnect from the datacomm link when the
computer reaches the end of a program. To prevent potential problems caused by unknown
link conditions left over from a previous session, it is a good practice to reset the interface card
at the beginning of your program before you start configuring the datacomm connection.
Resetting the card causes it to disconnect from the line and return to a known set of initial
conditions.

Example
IORESET (20) 3

Protocol Selection

During power-up and reset, the card uses the default switches to preset the card to a known
state. The protocol select switch defines which protocol the card uses at power-up only. If the
default protocol is the same as you are using, you can skip the protocol selection statements.
However, if the switch might be set to the wrong protocol, or if you want to change protocol in
the middle of a program, you can use a IOCONTROL procedure to select the protocol. After
the protocol is selected, reset the card again to make the change. Here is how to do it:

The Datacomm Interface

Select the protocol to be used:

IOCONTROL (SCs+3+1) 1 {Select As¥nc Protocoll

or

IOCONTROL (Sc+3+2) 3 {Select Data Link Protocoll}

Wait until the protocol select message has been sent to the card, then reset the card. The Reset
command restarts the interface microcomputer using the selected protocol.

REPEAT
UNTIL IOSTATUS{S5c:38) =1 ;3
IORESET (Sc) i

Note

Be careful when resetting the interface card during normal program
operation. Data and Control information are sent to the card in the
same sequence as the statements originating the information are
executed. When a card reset is initiated by a
IOCONTROL procedure, the reset is not placed in the queue with
outbound data, but is executed immediately. Therefore, if there is
other information in the output queue waiting to be sent, a reset can
cause the data to be lost. To prevent loss of data, use IOSTATUS
function (register 38) to verify that all data transfers have run to
completion before you reset the interface.

You are now ready to program datacomm options that are related to the selected protocol. In
applications where defaults are used, the options are very simple. The following pair of exam-
ples shows how to set up datacomm options for each protocol.

Datacomm Options for Async Communication

This section explains how to configure the datacomm interface for asynchronous data com-
munication. The example used shows how to set up all configurable options without consider-
ing default values. Some statements in the example are redundant because they override
interface defaults having the same value. Others may or may not be redundant because they
override configuration switch options. The remaining statements are necessary because they
override the default values, replacing them with non-default values required for proper opera-
tion of the example program. If you are not familiar with Asynchronous protocol, consult the
section on protocol for the needed background information.

Control Block Contents

Configuration of the link begins with register 14 which determines what information is placed in
the control blocks that appear in the input (receive) queue. In this example, only the end-of-line
position and prompts are identified. Parity or framing errors in received data, and received
breaks are not identified in the queue. This register interacts with Control registers 28 thru 33.

129

130 The Datacomm Interface

Datacomm Line Timeouts

Registers 16-19 set timeout values to force an automatic disconnect from the datacomm link
when certain time limits are exceeded. For most applications, the default values are adequate.
A value of zero disables the timeout for any register where it is used. Each register accepts
values of 0 thru 255; units vary with the register function.

e Register 16 (Connection timeout) sets the time limit (in seconds) allowed for connecting to
the remote device. It is useful for aborting unsuccessful attempts to dial up a remote
computer using public telephone networks.

® Register 17 (No Activity timeout) sets an automatic disconnect caused by no datacomm
activity for the specified number of minutes. Default value is determined by default hand-
shake switch setting. Default is not affected by IOCONTROL procedures to I0Control
Register 23 (hardware handshake).

® Register 18 (Lost Carrier timeout) disconnects when:

Full Duplex: Data Set Ready (Data Mode) or Data Carrier Detect go false, or
Half Duplex: Data Set Ready goes false,

indicating that the carrier from the remote modem has disappeared from the line.
Value is in multiples of 10 milliseconds.

® Register 19 (Transmit timeout) disconnects when a loss-of-clock occurs or a clear-to-send
(CTS) is not returned by the modem within the specified number of seconds.

Line Speed (Baud Rate)

The transmit and receive line speed(s) are set by IOControl Registers 20 and 21, respectively.
Each is independent of the other, and they are not required to have identical values. The
following baud rates are available for Async communication:

Register Baud Register Baud Register Baud Register Baud
Value Rate Value Rate Value Rate Value Rate
0 0! 4 134.5 8 600? 12 3600
1 50 5 1502 9 120072 13 48007
2 75 6 200 10 1800 14 9600
3 1102 7 3007? 11 24002 15 19 200

All configurable line speeds are available to IDCONTROL Registers 20 and 21. Only the eight
speeds indicated can be selected using the default switches (see the switch configuration dia-
gram earlier in this chapter). When the configuration switch defaults are used, transmit and
receive speeds are identical. The selected line speed must not exceed the capabilities of the
modem or link.

1 An external clock must be provided for this option.

2 These speeds can be programmed using the default switches on the interface card. Other speeds are accessed by CONTROL statements. (The
HP 13265A Modem can be operated up to 300 baud.)

The Datacomm Interface 131

. Handshake

Registers 22 and 23 configure handshake parameters. There are two types of handshake:

e Software or protocol handshake specifies which of the participants is allowed to transmit
while the other agrees to receive until the exchange is reversed. Options include:

1. No handshake, commonly used with connections to non-interactive devices
such as printers.

2. Eng/Ack (EQ/AK) or DC1/DC3 handshake, with the desktop computer confi-
gured either as a host or a terminal. Handshake characters are defined by regis-
ters 26 and 27.

3. DC1/DC3 handshake with the desktop computer as both a host AND a terminal.
Handshake characters are defined by registers 26 and 27. This option simplifies
communication between two desktop computers.

e Hardware or modem handshake that establishes the communicating relationship between
the interface and the associated datacomm hardware such as a modem or other link
device. The four available options are:

1. Handshake Off, non-modem connection — most commonly used for 3-wire
. direct connections to a remote device.

2. Full Duplex modem connection — used with full-duplex modems or equivalent
connections.

3. Half Duplex modem connection — used with half-duplex modems or equivalent
connections.

4. Handshake On, non-modem connection — used with printers and other similar
devices that use the Data Carrier Detect (DCD) and Clear-to-send (CTS) lines to
signal the interface card. When DCD is held down by the peripheral, the inter-
face ignores incoming data. When CTS is held down, the interface does not
transmit data to the device until CTS is raised.

Options 2 and 3 are usually associated with modems or similar devices, but may be used
occasionally with direct connections when the remote device provides the proper signals. Refer
to the table at the end of this chapter for a list of handshake signals and how they are handled
for each cable or adapter option.

132 The Datacomm Interface

Handling of Non-data Characters

Register 24 specifies what non-data characters are to be included in the input queue. For each
bit that is set, the corresponding information is passed along with the incoming data. If the bit is
not set, the information is discarded, and is not included in the inbound data stream that is
passed to the desktop computer by the interface.

Bit 0: Include handshake characters in data stream. They are defined by Control Registers
26 and 27.

Bit 1: Include incoming end-of-line character(s). EOL characters are defined by Control
Registers 28-30.

Bit 2: Include incoming prompt character(s). Prompt is defined by Control Registers 31-
33.

Bit 3: Include any null characters encountered.
Bit 4: Include any DEL (rubout) characters in data.

Bit 5: Include any CHR$(255) encountered. This character is encountered ONLY when
8-bit characters are received.

Bit 6: Change any characters received with parity or framing errors to an underscore. If
this bit is not set, all inbound characters are transferred exactly as received, with or
without errors.

Register 25 is not used.

Protocol Handshake Character Assignment

Registers 26 and 27 establish what characters are to be used for handshaking between com-
municating machines. You can select the values of 6 (AK) or 17 (DC1) for register 26, and 5
(EQ) or 19 (DC3) for register 27. Any ASCII value from O thru 255 can be used, but non-
standard values should be reserved for exceptional situations.

End-of-line Recognition

Registers 28, 29, and 30 operate in conjunction with registers 14 (control block mask) and 24
(non-data character stripping) and defines the end-of-line sequence used to identify boundaries
between incoming records. Register 28 (value of O, 1 or 2) defines the number of characters in
the sequence, while registers 29 and 30 contain the decimal equivalent of the ASCII characters.
If register 28 is set for one character, register 30 is not used. Register 29 contains the first EOL
character, and register 30, if used, contains the second. If register 28 is zero, registers 29 and 30
are ignored and the interface cannot recognize line separators.

Prompt Recognition

Registers 31, 32, and 33 operate in conjunction with registers 14 and 24 and define the prompt
sequence that identifies a request for data by the remote device. As with end-of-line recogni-
tion, the first register defines the number of characters (0, 1, or 2), while the second and third
registers contain the decimal equivalents of the prompt character(s). Register 33 is not used
with single-character prompts. If register 31 is zero, registers 32 and 33 are ignored and the
interface is unable to recognize any incoming prompts.

The Datacomm Interface

Character Format Definition

Registers 34 through 37 are used to define the character format for transmitted and incoming
data.

® Register 34 sets the character length to 5, 6, 7, or 8 bits. The value used is the number of
bits per character minus five (0=>5 bits, 3 =18 bits). When 8-bit format is specified, parity
must be Odd, Even, or None (parity ““‘1”’ or “‘0”’ cannot be used).

® Register 35 specifies the number of stop bits sent with each character. Values of 0, 1, or 2
are used to select 1, 1.5, or 2 stop bits, respectively.

® Register 36 specifies the parity to be used. Options include:

Register
Value Parity Result

0 None Characters are sent with no parity bit. No parity checks are made on
incoming data.

1 0Odd! Parity bit is set if there is an EVEN number of ones in the character
code. Incoming characters are also checked for odd parity.

2 Even’ Parity bit is set if there is an ODD number of ones in the character
code.

3 0 Parity bit is present, but always zero. No parity checks are made on
incoming data.

4 1 Parity bit is present, but always one. No parity checks are made on
incoming data.

Parity must be odd, even, or none when 8-bit characters are being transferred.

® Register 37 sets the time gap (in character times, including start, stop, and parity bits)
between one character and the next in a transmission. It is usually included to allow a
peripheral, such as a teleprinter, to recover at the end of each character and get ready for
the next one. A value of zero causes the start bit of a new character to immediately follow
the last stop bit of the preceding character.

Control Register 38 is not used.

Break Timing

Register 39 sets the break time (2-255 character times). A Break is a time gap sent to the remote
device to signify a change in operating conditions. It is commonly used for various interrupt
functions. The interface does not accept values less than 2. Register 6 is used to transmit a
break to the remote computer or device.

Datacomm Options for Data Link Communication

This section explains how to configure the datacomm interface for Data Link operation.If you
are not familiar with Data Link protocol and terminology, consult the section on protocol for the
needed background information.

1 Parity sense is based on the number of ones in the character including the parity bit. An EVEN number of ones in the character, plus the parity
bit set produces an ODD parity. An ODD number of ones in the character plus the parity bit set produces an EVEN parity.

133

134 The Datacomm Interface

Control Block Contents

Data Link configuration begins with IOControl Register 14. This register determines what
information is to be placed in control blocks and included with inbound data transferred from
the interface to the desktop computer.

e ETX (Bit 1) identifies the end of a transmission block that contains one or more complete
records.

e ETB (Bit 2) identifies the end of a transmission block where the last record is continued in
the next block of data.

e Bit 0 causes a control block to be inserted that identifies the beginning of a new block of
data.

Datacomm Line Timeouts, and Line Speed

Registers 15 through 19 are functionally identical for both Async and Data Link. Refer to the
preceding Async section for more information. Register 20 sets the line speed for both transmit-
ting and receiving (Data Link does not accommodate split-speed operation). The following line
speed options are available:

Register Baud Register Baud Register Baud Register Baud
Value | Rate Value | Rate Value | Rate Value | Rate
0 0 9 120072 12 3600 15 19 20072
7 3002 10 1800 13 4800
8 600 11 2400 14 96002

Terminal Identification

Registers 21 and 22 specify the terminal identifier characters for the datacomm interface.
Register 21 contains the GID (Group IDentifier), and register 22 contains the DID (Device
IDentifier. Values of 0-26 correspond to the characters @, A, B, . . ., Z. These registers must be
configured to match the terminal identification pair assigned to your device by the Data Link
Network Manager. In the example, Line 1320 is redundant because it duplicates the default
GID value. Line 1330 overrides the DID default switch on the interface card, and may or may
not be necessary. Alternate methods for assigning different GID/DIDs are shown following the
group of configuration IOCONTROL procedures.

Handshake

Register 23 establishes the hardware handshake type. There is no formal software handshake
with Data Link because the network host controls all data transfers. Hardware or modem
handshake options are identical to Asynchronous operation. Handshake should be OFF (regis-
ter set to 0) when using the HP 13264A Data Link Adapter. When you are using non-standard
interconnections such as direct or modem links to the network host, select the handshake
option that fits your application. Refer to the table at the end of this chapter for a list of
handshake signals and how they are handled for each cable or adapter option.

1 An external clock must be provided for this option.
2 These speeds can be programmed using the default switches on the interface card. Other speeds are accessed by CONTROL statements.

The Datacomm Interface 135

Transmitted Block Size

Register 24 defines the maximum transmitted block length. When transmitting blocks of data to
the network host, the block length must not exceed the available buffer space on the receiving
device. Block size can be specified for increments of two from 2 to 512 characters per block. A
value of zero forces the block length to a maximum of 512 bytes. For other values, the block
length limit is twice the value sent to the register. For example, a register value of 130 produces
a transmitted block length not exceeding 260 characters (bytes).

Parity
Register 36 defines the parity to be used. Unlike Async, Data Link has only two parity options:
None, or Odd. Odd parity is:

Register Parity Application
Value ‘ |
0 | NONE | Required for operation with HP 1000 network host
1 ODD Required for operation with HP 3000 network host

Registers 25 through 35, and 37 and above are not used.

Connecting to the Line

Interface configuration is now complete. You are ready to begin connecting to the datacomm
line. The exact procedure used to connect to the line varies slightly, depending on the type of
link being used. Before you connect, you must know what the link requirements are, including
dialing procedures, if any.

Switched (Public) Telephone Links

When you are using a public or switched telecommunications link, the modem connection
between computers must be established. The HP 13265A Modem can be used in any Async
application that requires a Bell 103- or Bell 113-compatible modem operating at up to 300
baud line speed. However, the HP 13265A Modem is not suitable for data rates exceeding 300
baud. For higher baud rates, use a modem that is compatible with the one at the remote
computer site. Modems cannot be used for remote connections from a terminal to the data link.

Private Telecommunications Links

Private (leased) links require modems unless the link is short enough for direct connection (up
to 50 feet, depending on line speed). The HP 13265A Modem can be used at data rates up to
300 baud. For higher speeds, a different modem must be used.

Direct Connection Links

For short distances, a direct connection may be used without modems or adapters, provided
both machines use compatible interfaces. Async connections normally use RS-232C interfaces.
You can also operate as a Data Link terminal directly connected to an HP 1000 or HP 3000
host computer through a dedicated Multipoint Async interface on the network host, although
such connections are unusual.

136 The Datacomm Interface

Data Link Connections

Most Data Link connections use an HP 13264A Data Link Adapter to connect directly to the
Data Link. In special situations, a modem may be used to communicate with a Multipoint Async
interface on the HP 1000 or HP 3000 network host. When the Data Link Adapter is used, no
special procedures are required. If you are using a leased or switched telecommunications link,
the procedures are the same as when using point-to-point Async with modems.

Connection Procedure

This section describes procedures for modem connections using telephone telecommunications
circuits. If you are NOT using a switched, modem link, skip to the next section: Initiating the
Connection.

Dialing Procedure for Switched (Public) Modem Links

Except for dialing, connection procedures do not usually vary between switched and dedicated
links. Dialing procedures depend on whether the modem is designed for manual or automatic
dialing. Automatic dialing can be used with the HP 13265A Modem, but other modems must be
operated with manual dialing unless you design your own interface to an Automatic Calling
Unit. For manual dialing procedures, consult the operating manual for the modem you are
using.

Automatic Dialing with the HP 13265A Modem:

The automatic dialer in the HP 13265A Modem is accessed by Control Register 12. The
IOCONTROL procedure is followed by an output procedure that contains the telephone num-
ber string, including dial rate and timing characters. The two statements set up the automatic
dialer, but dialing is not started until a ‘“‘start connection” command is sent to IOControl
Register 12. Here is an example sequence:

IBCONTROL (Scs12,2) 3
WRITESTRING (Sc»s‘> 9 BBE (303)-555-12347)3

Unrecognized characters are ignored.
3-second wait for secondary dial tone.
Select FAST dial rate.

The output procedure contains several essential elements.

o The first character (‘*>""), if included, specifies a fast dialing rate. If it is omitted, the default
slow dialing rate is used.

e A time delay character “‘@’’ may be inserted anywhere in the string. A one-second time
delay is executed in the dialing sequence each time a delay character is encountered.

e Numeric character sequences define the telephone number. Multiple dial-tone sequences,
such as when calling out from a PBX (Private Branch Exchange), can be used by inserting
a suitable delay to wait for the next dial tone.

e Unrecognized characters such as parentheses, hyphens, and spaces can be included for
clarity. They are ignored by the automatic dialer.

e Up to 500 characters can be included in the telephone number string.

The Datacomm Interface 137

Here is how an autodial connection is executed:

e The IOCONTROL (Secs12:2) places a ‘“‘start dialing” control block in the outbound
queue to the interface. The OUTPUT statement places the telephone number string (in-
cluding spaces and other characters) in the queue after the control block. When the
interface encounters the control block, it transfers the string to the HP 13265A Modem’s
autodial circuit. No other action is taken at this time.

e When IOCONTROL (Scs12:1) is executed, another control block is queued up.
When the interface encounters the block, it sends a ‘‘start connection” command to the
modem. The modem then disconnects from the line, waits two seconds, then reconnects.
The autodialer waits 500 milliseconds, then starts executing the telephone number string.
The string is executed character-by-character in the same sequence as sent by the output
procedure.

o If your application requires more than 500 milliseconds to guarantee a dial tone is present,
you can increase the delay by adding delay characters (“@"’) where needed, one second
per character. Be sure to provide adequate delays in multiple dial tone sequences, such as
when calling through a private branch exchange (PBX) to a public telephone network.

e When dialing is complete, the modem is connected to the line, and you are ready to start
communication. The next section explains how to determine when connection is com-
plete.

‘ Two dialing rates are available: slow (default) and fast. To select the fast rate, you must include
the fast rate character (‘>"") as the FIRST character in the telephone number string. Here is a
summary of differences between the two options:

Parameter | Slow Dialing | Fast Dialing

Click Length
Click Gap
Number Gap

32.5 milliseconds
17.5 milliseconds
300 milliseconds

60 milliseconds
40 milliseconds
700 milliseconds

One to ten dial pulses (clicks) are sent for each digit 1 through 0, respectively. The number gap
is the time lag between the end of the last click of one number and the beginning of the first click
of the next number.

Most Bell System facilities can handle both fast and slow dialing rates, but private or independ-
ent telephone systems or companies may require slow dialing.

Initiating the Connection

After you have executed the necessary dialing procedures, if any, you are ready to initiate the
connection. The following statement is used to start the connection:

IOCONTROL (Scs12+1) 3{Start Connection.z

This statement sends a control block to the interface telling it to connect to the datacomm line. If
the HP 13265A Modem is being used, and the autodialer is enabled, it starts dialing the

. number. Otherwise, the interface executes a direct connection to the line, or tells the modem or
data link adapter to connect.

138 The Datacomm Interface

The status of the connection process can be monitored by using the IOSTATUS function. The
following lines hold the computer in a continuous loop until the connection is complete:

REPEAT

State := IDSTATUS(Sc.12)3

IF State=2 THEN WRITELN (’Dialing’)}

IF State=1 THEN WRITELN (‘Trvind to Connect’)}
UNTIL State=3}
WRITELN (‘Connected’) 3

Refer to the I0Status and IOControl Register section for interpretation of the values in IOStatus
Register 12. Only values of 1, 2, or 3 are usually encountered at this stage of the program.

As soon as [OStatus Register 12 indicates that connection is complete, you are ready to
continue into the main body of the terminal emulator or other program you are writing. This
completes the datacomm initialization and connection phase of the program.

Datacomm Errors and Recovery Procedures

Several errors can be encountered during datacomm operation. They are listed here with
probable causes and suggested corrective action.

Error Description and Probable Cause

306 Interface card failure. This error occurs during interface self-test, and indicates an interface card
hardware malfunction. You can repeat the power-up self-test by pressing the Reset key. If the
error persists, replace the defective card. Using a defective card may result in improper data-
comm operation, and should be considered only as a last resort.

313 USART receive buffer overflow. The SIO buffer is not being cleared fast enough to keep up
with incoming data. This error is uncommon, and is usually caused by excessive processing
demands on the interface microprocessor. To correct the problem, examine Pascal prog-
ram flow to reduce interference with normal interface operation. This error causes the
interface to disconnect from the datacomm line and go into a SUSPENDED state. Clear or
reset the interface card to recover.

314 Receive Buffer overflow. Data is not being consumed fast enough by the desktop compu-
ter. Consequently, the buffer has filled up causing data loss. This is usually caused by
excessive program demands on the desktop computer CPU, or by poor program structure
that does not allow the desktop computer to properly service incoming data when it
arrives. Modify the Pascal program(s) to allow more frequent interrupt processing by the
desktop computer, or change to a lower baud rate and/or use protocol handshaking to
hold off incoming data until you are ready to receive it. This error causes the interface to
disconnect from the datacomm line and go into a SUSPENDED state. Clear or reset the
interface to recover.

315 Missing Clock. A transmit timeout has occurred because the transmit clock has not allowed
the card to transmit for a specified time limit (Control Register 19). This error can occur
when the transmit speed is O (external clock), and no external clock is provided, or be
caused by a malfunction. The interface is disconnected from the datacomm line and is
SUSPENDED. To recover, correct the cause, then reset the card.

Error

The Datacomm Interface

Description and Probable Cause

316

317

318
319

325

o =

327

CTS false too long. Due to clear-to-send being false on a half-duplex line, the interface
card was unable to transmit for a specified time limit (Control Register 19). The card has
disconnected from the datacomm line, and is in a SUSPENDED state. To recover, deter-
mine what has caused the problem, correct it, then reset or clear the interface card.

Lost Carrier disconnect. Data Set Ready (DSR) (and/or Data Carrier Detect, if full-duplex)
went inactive for the specified time limit (Control Register 18). This condition is usually
caused by the telecommunications link or associated equipment. The card has discon-
nected from the datacomm line and is in a SUSPENDED state. To recover, clear or reset
the interface card.

No Activity Disconnect. The interface card disconnected from the datacomm line automati-
cally because no information was transmitted or received within the time limit specified by
Control Register 17. The card is in a SUSPENDED state. Clear or reset the interface to
recover.

Connection not established. The card attempted to establish connection, but Data Set
Ready (DSR) (and Data Carrier Detect, if full duplex) was not active within the time limit
specified by Control Register 16. The card has disconnected from the datacomm line and is
in a SUSPENDED state. Clear or reset the interface to recover.

llegal DATABITS/PARITY combination. IOCONTROL procedures have attempted to
program 8 bits per character and parity “1” or ““0”. The IOCONTROL procedure causing
the error is ignored, and the previous setting remains unchanged. To correct the problem,
change the IOCONTROL procedure(s) and/or interface default switch settings.

Register address out of range. An IOCONTROL or STATUS function has attempted to
address a non-existing register. The command is ignored, and the interface card state
remains unchanged.

Register value cut of range. An IOCONTROL procedure attempted to place an illegal

value in a defined register. The command is ignored, and the interface card state remains
unchanged.

Error Recovery

When any error from Error 313 through Error 319 occurs, it forces the interface card to
disconnect from the datacomm line. When a forced disconnect terminates the connection, the
interface is placed in a SUSPENDED state, indicated by Status Register 12 returning a value of
4. The interface cannot be reconnected to the datacomm line when it is SUSPENDED.
ABORT_SERIAL and IORESET are used to recover from the suspended state and resume
normal card operation.

To recover from a SUSPENDED interface, two programmable options are available, all of
which destroy any existing data in the transmit and receive queues. They are:

e The ABORT_SERIAL procedure clears the receive and transmit queues.

e RESET interface (IOControl Register O or IORESET) clears all buffers and queues, and
resets all IDCONTROL options to their power-up state EXCEPT the protocol which is
determined by the most recent (OCONTROL statement (if any) addressed to register 3
since power-up.

‘ Another option is available. Pressing (CLR10)) causes a hardware reset to be sent to all
interfaces. This completely resets the datacomm interface to its power-up state with protocol

and other options determined by the default switch settings.

139

140 The Datacomm Interface

Datacomm Programming Helps

This section is designed to assist you in writing datacomm programs for special applications by
discussing selected techniques and characteristics that can present obstacles to the beginning
programmer.

Terminal Prompt Messages

Care must be exercised to ensure that messages are never transmitted to the network host if the
host is not prepared to properly handle the message. Receipt of a poll from the host does not
necessarily mean that the host can handle the message properly when it is received. Therefore,
prompts or interpretation of messages from the host are used to determine the status of the host
operating system.

Prompts are message strings sent to the terminal by a cooperating program. They are well-
defined and predictable, and are usually tailored to specific applications. When the terminal
interacts directly with RTE or one or more subsystems, the process becomes less straightfor-
ward. Each subsystem usually has its own prompt which is not identical to other subsystem
prompts. To maintain orderly communication with subsystems, you must interpret each mes-
sage string from the host to determine whether it is to be treated as a prompt.

Prevention of Data Loss on the HP 1000

On the HP 1000, the RTE Operating System manages information transfer between programs
or subsystems and system [/O devices, including DSN/DL. Terminals are continually polled by
the host’s data link interface (unless auto-poll has been disabled by use of an HP 1000 File
Manager CN command). Since there is no relationship between automatic polling and HP 1000
program and subsystems execution, it is possible to poll a terminal when there is no need for
information from that terminal. If the terminal sends a message in response to a poll when no
data is being requested, the HP 1000 discards the message, causing the data to be lost, and
treats it as an asynchronous interrupt. A break-mode prompt is then sent to the terminal by the
host.

The terminal must determine that the host is ready to receive a message in order to ensure that
messages are properly handled by the host. This is done by checking all messages from the host
(CREAD until queue is empty) and not transmitting (CWRITE) until a prompt message or its
equivalent has been received (unless you want to enter break-mode operation). Since the HP
1000 does not generate a consistent prompt message for all programs and subsystems, it is
easiest to use cooperating programs to generate a predictable prompt. If your application
requires interaction with other subsystems, prompts can usually be most easily identified by the
ABSENCE of the sequence: CrtrEc_ at the end of a message. When a proper sequence has
been identified, you are reasonably certain that the host is ready for your next message block.

The Datacomm Interface 141

Here is an example of host messages where a prompt is sent by the File Manager (FMGR) and
answered by a RUN,EDITR command. Note that the prompt from the interactive editor fits the
description of a prompt because a line-feed is not included after the carriage-return in the
sequence.

tEc Prompt is sent by FMGR to terminal.

RUJEDITR EDITR Run command is sent to host.
SOURCE FILE NAME?Cr-rEc_ File name message is sent by the host, followed by a
Cr/BLEC.. prompt sequence which has no line-feed. Sequence is

different from FMGR prompt.

Whenever an unexpected message from a terminal is received by RTE, it is treated as an
asynchronous interrupt which terminates normal communication with that terminal. A break-
mode prompt is sent to the terminal by RTE, and the next message is expected to be a valid
break-mode command. If the the message is not a valid command (such as data in a file being
transferred), the data is discarded, and an error message is sent to the terminal. If, in the
meantime, the cooperating program or subsystem generates an input request, the next data
block is sent to the proper destination, but is out of sequence because at least one block has
been lost. You can prevent such data losses and the mass confusion that usually ensues
(especially during high-speed file transfers to the host), by disabling auto-poll on the HP 1000
data link interface. With auto-poll OFF, no polls are sent to your terminal unless the host is
prepared to receive data.

Disabling Auto-poll on the HP 1000

To operate with auto-poll OFF, log on to the network host, disable auto-poll, perform all
datacomm activities and file transfers, enable auto-poll, then log off. If you don’t enable
auto-poll at the end of a session, polling is suspended to your terminal after log-off, and
you cannot reestablish communication with the host unless polling is restored from
another terminal or the network host System Console.

The auto-poll ON/OFF commands are:

CN+LU#:23B+101401B Auto-poll OFF
CN+LU#:23B:001401B Auto-poll ON!

where LU# us the logical unit number assigned to your terminal.

When auto-poll is disabled, no polls are sent to your terminal unless an input request is initiated
by the cooperating program or subsystem on the network host. When the request is made, a
poll is scheduled, and polling continues until a reply is received from the terminal. When the
reply is received, and acknowledged, polling is suspended until the next input is scheduled.
Operating with auto-poll OFF is especially useful when transferring files TO the HP 1000.
Otherwise, in most applications, it is practical to leave auto-poll ON.

1 The File Manager CN (Control) command parameters for the multipoint interface are described in more detail in the 91730A Multipoint
Terminal Interface Subsystem User’s Guide (91730-90002).

142 The Datacomm Interface

Prevention of Data Loss on the HP 3000

Neither the HP 1000 nor the HP 3000 provide a DC1 poll character when they are ready for
data inputs from DSN/DL. The HP 3000, like the HP 1000, also discards data if it has not
requested the transfer. Since the HP 3000 does not provide an auto-poll disable command,
you must interpret messages from the HP 3000 to determine that it is ready for the next data
block before you transmit the block.

Secondary Channel, Half-duplex Communication

Half-duplex telecommunications links frequently use secondary channel communication to
control data transmission and provide for proper line turn-around. This is done by using
Secondary Request-to-send (SRTS) and Secondary Data Carrier Detect (SDCD) modem sig-
nals.

Consider two devices communicating with each other: Each connects to the datacomm link,
then waits for SDCD to become active (true). As each device connects to the line, Secondary
Request-to-send is enabled, causing each modem to activate its secondary carrier output. The
Secondary Data Carrier Detect is, in turn, activated by each modem as it receives the secondary
data carrier from the other end.

When communication begins, the first device to transmit (assumed to be your computer, in this
case) clears its Secondary Request-to-send modem line. This removes the secondary data
carrier from the line, causing the other modem to clear SDCD to its terminal or computer,
telling it that you have the line. (The modems also maintain proper line switching and prevent
timing conflicts so both ends don’t try to get the line simultaneously.) The other device receives
data, and must not attempt to transmit until you relinquish control of the line as indicated by
SDCD true. After you finish transmitting, you must again activate SRTS so that SDCD can be
activated to the other device, allowing it to use the line if it has a message.

Communication Between Desktop Computers

Two desktop computers can be connected, directly, or by use of modems. DC1/DC3 hand-
shake protocol can be used conveniently to enable each computer to transmit at will without
risk of buffer or queue overruns. To ensure proper operation, the following guidelines apply:

® Set up IOControl Register 22 with a value of 5. This allows both computers to act either as
host or terminal in any given situation, depending on which one initiates the action.

® Set up I0Control Registers 26 and 27 for DC1 and DC3 respectively, or use two other
characters if necessary.

® Data to be transmitted must NOT contain any characters matching the contents of IOCon-
trol Register 26 or 27. This prevents the receiving interface from confusing data with
control characters.

e If both computers attempt to transmit large amounts of data at the same time, a lock-up
condition may result where each side is waiting for the other to empty its buffers.

The Datacomm Interface 143

Cable and Adapter Options and Functions

The HP 98628A Datacomm Interface is available with RS-232C DTE and DCE cable configura-
tions, or it can be connected to various modems or adapters for other applications.

DTE and DCE Cable Options

DTE and DCE cable options are designed to simplify connecting two desktop computers
without the use of modems. The DTE cable (male RS-232 connector) is configured to make the
datacomm interface look like standard data terminal equipment when it is connected to an
RS-232C modem. The DCE cable (female RS-232 connector) is configured so that it eliminates
the need for modems in a direct connection. When you connect two computers to each other in
a direct non-modem connection, both datacomm interfaces are functionally identical. The DCE
cable acts as an adapter so that both interfaces behave exactly as they would if they were
connected to a pair of modems by means of DTE cables.

Several signal lines are rerouted in the DCE cable so that, in direct connections, outputs from
one interface are connected fo the corresponding inputs on the other interface. Certain outputs

on each interface are also connected to inputs on the same card by “loop-back’ connections in
the DCE cable.

The schematic diagram in this section shows two datacomm interfaces directly connected
through a DTE-DCE cable pair. Note that the DCE cable wiring complements the DTE cable so
that output signals are properly routed to their respective destinations. Signal names at the
RS-232C connector interface are the same as the signal names for the DTE interface. However,
because the DCE cable adapts signal paths, the signal name at the RS-232C connector does
not necessarily match the signal name at the DCE interface. Connector pin numbers are
included in the diagram for your convenience.

RS-232C DTE (male) Cable Signal Identification Tables

Signal Interface | RS-232C
RS-232C V.24 Pin # Pin # Mnemonic | VO Function

AA 101 24 1 - - Safety Ground

BA 103 12 2 Out Transmitted Data

BB 104 42 3 In Received Data

CA 105 13 4 RTS Out Request to Send

CB 108 44 5 CTS In Clear to Send

CC 107 45 6 DSR In Data Set Ready

AB 102 48 7 - - Signal Ground

CF 109 46 8 DCD In Data Carrier Detect
SCF (OCR2) 122 47 12 SDCD In Secondary DCD

DB 114 41 15 In DCE Transmit Timing

DD 115 43 17 In DCE Receive Timing
SCA (0OCD2) 120 15 19 SRTS Out Secondary RTS

CD 108.1 14 20 DTR Out Data Terminal Ready
CE (OCR1) 125 9 22 Rl In Ring Indicator
CH (OCD1) 111 40 23 DRS Out Data Rate Select

DA 113 7 24 Out Terminal Transmit Timing

144 The Datacomm Interface

Optional Circuit Driver/Receiver Functions

Two optional drivers and receivers are used with the RS-232C cable options. Their functions
are as follows:

Drivers Receivers
Name Function Name Function
OCD1 Data Rate Select OCR1 Ring Indicator
OCD2 Secondary Request-to-send OCR2 Secondary Data Carrier Detect
OCD3 Not used
OCD4 | Not used

OCD2 is used for autodial pulsing in the HP 13265A Modem. None of the optional
drivers and receivers are used for Data Link and Current Loop Adapters.

98628 DTE RS-232C DCE 98628
INTERFACE *I CABLE SIGNALS CABLE INTERFACE *2
—[>83§‘ (2 > BA(PIN 2) > 425 DATI‘H>
{} DaTA ¢ (42 > BB (PIN3) > i
—|>L<(i—) CA(PIN 4) $o5> °°°'—|>
—<}°Ts—<<ﬁ—> CB(PIN5) >———

roo (48 > CF(PIN8) ° 13, RTS
l> s:TCSONDARk< 15 5 SCA(PINI9) > 47>‘SECON03§;|'>
<]%EC%ONDARY: E47 > SCF(PIN [2) > |5\>ssconos$_;<
—[>°TR —d > CD(PIN 20))—0—9>>—'”[>—
{}RI <& > CE(PIN22) >———¢% PTR
U N L L | —
DCE , 4! 43 DCE
< Ime TIMINGS € > DB (PINI5) > > Rev TIMING I>
DCE 43 s s L DCE q
RCV. TIMING DD(PINIT) — XMIT. TIMING
4
SIGNAL 3 > AB (PINT) >——98 SIGNAL
GROUND ROUND
1124 N N\ 24\\
SAFETY £3 > AA(PIN I) - SAFETY
GROUND. GROUND
_{>XDMT'$ Tmm(? - DA (PIN 24) >——NOT USED
DRS &9 SCH(PIN 23) >—NOT USED
INTERFACE MALE FEMALE INTERFACE
REAR PANEL RS-232C RS-232C REAR PANEL
CONNECTOR CONNECTOR CONNECTOR CONNECTOR

DTE/DCE Interface Cable Wiring

The Datacomm Interface

HP 98628 Datacomm Interface

IOSTATUS and IOCONTROL Register Summary

Pascal Register Map - Control Registers

Register =
000 .. 127
257 .. 383
512
513

Use

Buffered Control - Queued up with data
Direct Control - Occurs immediately (meaning is the same as buffered ctl register +
256)

Immediate transfer in Abort

Immediate transfer out Abort

Unless indicated otherwise, the Status Register returns the current value for a given parameter;
the Control Register sets a new value.

Register

Function

0
1 (Status only)
2 (Status only)

3
4 (Status only)
5

6
7 (Status only)
8

9 (Status only)
10 (Status only)
11 (Status only)

12
13
14

15

16
17

18
19
20
21
22

23

Control: Interface Reset; Status: Interface Card ID
Hardware Interrupt Status: 1=Enabled, 0= Disabled
Datacomm activity: 0 =inactive, 1 == ENTER in process, 2=OUTPUT in process

Select Protocol: 1= Async, 2= Data Link
Interrupt Status. Interrupt operations are not currently supported at a user level in Pascal.
Control: Terminate transmission; Status: Inbound queue status

Control: Send BREAK to remote; Status: 1 =BREAK pending
Current modem receiver line states
Modem driver line states

Control block TYPE
Control block MODE
Available outbound queue space

Control: Connect/Disconnect line; Status: Line connection status
Interrupt mask. Interrupt operations are not currently supported at a user level in Pascal.
Control Block mask

Modem line interrupt mask. Interrupt operations are not currently supported at a user
level in Pascal.

Connection timeout limit
No Activity timeout limit

Lost Carrier timeout limit
Transmit timeout limit

Async: Transmit baud rate (line speed)
Data Link: Set Transmit/Receive baud rate (line speed)

Async: Incoming (receiver) baud rate (line speed)
Data Link: GID address (0 thru 26 corresponds to “‘@’" thru “Z’")

Async: Protocol handshake type
Data Link: DID address (0 thru 26 corresponds to “@’’ thru “Z")

Hardware handshake type: ON/OFF, HALF/FULL duplex, Modem/Non-modem

145

146 The Datacomm Interface

Register Function
24 Async: Control Character mask
Data Link: Block Size limit
25 (Status only) Number of received errors since last interface reset
26 Async: First protocol character (ACK/DC1)
Data Link: NAKs received since last interface reset

Registers 27-35, 37, and 39 are used with Async protocol only. They are not accessible
during Data Link operation.

27 Second protocol handshake character (ENQ/DC3)

28 Number of characters in End-of-line sequence

29 First character in EOL sequence

30 Second character in EOL sequence

31 Number of characters in PROMPT sequence

32 First character in PROMPT sequence

33 Second character in PROMPT sequence

34 Data bits per character excluding start, stop and parity

35 Stop bits per character (0=1, 1=1.5, and 2 =2 stop bits)

36 Parity sense: 0=NONE, 1=0DD, 2= EVEN, 3=ZERO, 4 =0ONE
Data Link: 0=NONE (HP 1000 host), 1 =0DD (HP 3000 host)

37 Inter-character time gap in character times (Async only)

38 (Status only) Transmit queue status (1 = empty)

39 BREAK time in character times (Async only)

125 (Control only) | Abort both input and output transfers.

512 (Control only) | Immediate transfer in Abort.

513 (Control only) | Immediate transfer out Abort.

The Datacomm Interface 147

HP 98628 Datacomm Interface
IOSTATUS and IOCONTROL Redgisters

General Notes: Control registers accept values in the range of zero through 255. Some regis-
ters require specified values, as indicated. lllegal values or values less than zero
or greater than 255, cause ERROR 327. Accessing a non-existent register
generates ERROR 326.

Reset value, shown for various Control Registers, is the default value used by

the interface after a reset or power-up until the value is overridden by an
IOCONTROL procedure.

Status 0 Card ldentification

Value returned: 52 (if 180 is returned, check select code switch cluster and make sure
switch R is ON).

Control 0 Card Reset

Any value, 1 thru 255, resets the card. Immediate execution. Data in queues is destroyed.

Status 1 Hardware Interrupt Status (not used in most applications)
1 = Enabled 0 = Disabled

Status 2 Datacomm Activity
0 = No activity pending on this select code.
Bit O set: input in process.
Bit 1 set: output in process.
(Non-zero ONLY during multi-line function calls.)

Status 3 Current Protocol Identification:
1 = Async, 2 = Data Link Protocol

Control 3 Protocol to be used after next card reset (CONTROL Scs031)
1 = Async Protocol 2 = Data Link Protocol
This register overrides default switch configuration.

Status 4 Interrupt status. Interrupt operations are not currently supported at a user level in
Pascal.

Status 5 Inbound queue status

Value | Interpretation

0 Queue is empty

1 Queue contains data but no control blocks

2 Queue contains one or more control blocks but no data

3 Queue contains both data and one or more control blocks

Control 5 Terminate Transmission

Data Link: Sends previous data as a single block with an ETX terminator, then idles the
line with an EOT.

Async: Tells card to turn half-duplex line around. Does nothing when line is full-
duplex. The next data output automatically regains control of the line by raising
the RTS (request-to-send) modem line.

148 The Datacomm Interface

Status 6
Control 6

Status 7

Status 8
Control 8

Status 9

Status 10

Break status: 1 =BREAK transmission pending, 0=no BREAK pending.

Send Break; causes a Break to be sent as follows:

Data Link Protocol: Send Reverse Interrupt (RVI) reply to inbound block, or CN character
instead of data in next outbound block.

Async Protocol: Transmit Break. Length is defined by Control Register 39,
Note that the value sent to the register is arbitrary.

Modem receiver line states (values shown are for male cable connector option for
connection to modems).

Bit 0: Data Mode (Data Set Ready) line

Bit 1: Receive ready (Data Carrier Detect line)
Bit 2: Clear-to-send (CTS) line

Bit 3: Incoming call (Ring Indicator line)

Bit 4: Depends on cable option or adapter used

Returns modem driver line states.

Sets modem driver line states (values shown are for male cable connector option
for connection to modems).

Bit 0: Request-to-send (RS or RTS) line 1 =line set (active)

Bit 1: Data Terminal Ready (DTR) line 0 =line clear (inactive)
Bit 2: Driver 1: Data Rate Select

Bit 3: Driver 2: Depends on cable option or adapter used

Bit 4: Driver 3: Depends on cable option or adapter used

Bit 5: Driver 4: Depends on cable option or adapter used

Bits 6,7: Not used

Reset value =0 prior to connect. Post-connect value is handshake dependent.

Note that RTS line cannot be altered (except by OUTPUT or OUTPUT...END) for half-
duplex modem connections.

Returns control block TYPE if last input terminated on a control block. See Status
Register 10 for values.

Returns control block MODE if last input terminated on a control block.

Async Protocol Control Blocks

Type Mode |Interpretation
250 1 Break received (Channel A)
251 1! Framing error in the following character
251 2! Parity error in the following character
251 3' |Parity and framing errors in the following character
252 1 End-of-line terminator detected
253 1 Prompt received from remote
0 0 No Control Block encountered

1 Parity/framing error control blocks are not generated when characters with parity and/or framing errors are replaced by an underscore (_)

character.

The Datacomm Interface

Data Link Protocol Control Blocks

Type | Mode | Interpretation

254 1 Preceding block terminated by ETB character
254 2 Preceding block terminated by ETX character
253° — (see following table for Mode interpretation)

0

0 No Control Block encountered.

Mode Bit(s) | Interpretation

0 1 = Transparent data in following block
0 = Normal data in following block

2,1 00 = Device select

01 = Group select

10 = Line select

3 1 = Command channel

0 = Data channel

Status 11 Returns available outbound queue space (in bytes), provided there is sufficient
space for at least three control blocks. If not, value is zero.

Status 12 Datacomm Line connection status

Value | Interpretation

0 Disconnected

Attempting Connection

Dialing

Connected’

Suspended

Currently receiving data (Data Link only)
Currently transmitting data (Data Link only)

SN ph W=

Note

When the datacomm line is suspended, ABORT_SERIAL, or
IORESET must be executed before the line can be reconnected.

Reset value =0 if R on interface select code switch cluster is ON (1).
Control 12 Connects, disconnects, initiates auto-dialing as follows:

Value | Interpretation

0 Disconriects
1 Connects
2 Initiates

Status 13 Interrupt mask. Interrupt operations are not currently supported at a user level in
Pascal.

Control 13 Interrupt mask. Interrupt operations are not currently supported at a user level in
Pascal.

2 This type is used primarity in specialized applications.

1 When using Data Link: Connected - dazacomm idle

149

150 The Datacomm Interface

Status 14
Control 14

Status 15

Control 15

Status 16
Control 16

Status 17
Control 17

Status 18
Control 18

Status 19
Control 19

Returns current Control Block mask.

Sets Control Block mask. Control block information is queued sequentially with
incoming data as follows:

Bit | Value | Async Control Block Passed | Data Link Control Block Passed

0 1 Prompt position Transparent/Normal Mode'
1 2 End-of-line position ETX Block Terminator?

2 4 Framing and/or Parity error® ETB Block Terminator?

3 8 Break received

Reset Value: 0 (Control Blocks disabled) 6 (ETX/ETB Enabled)

Bits 4, 5, 6, and 7 are not used.

Modem line interrupt mask. Interrupt operations are not currently supported at a
user level in Pascal.
Modem line interrupt mask. Interrupt operations are not currently supported at a
user level in Pascal.

Returns current connection timeout limit.

Sets Attempted Connection timeout limit.

Acceptable values: 1 thru 255 seconds. O =timeout disabled.
Reset Value =25 seconds

Returns current No Activity timeout limit.

Sets No Activity timeout limit.

Acceptable values: 1 thru 255 minutes. 0 =timeout disabled.

Reset Value = 10 minutes (disabled if Async, non-modem handshake).

Returns current Lost Carrier timeout limit.

Sets Lost Carrier timeout limit in units of 10 ms.
Acceptable values: 1 thru 255. 0 =timeout disabled.
Reset Value=40 (400 milliseconds)

Returns current Transmit timeout limit.

Sets Transmit timeout limit (loss of clock or CTS not returned by modem when
transmission is attempted).

Acceptable values: 1 thru 255.0 = timeout disabled.

Reset Value =10 seconds

1 Transparent/Normal format identification control block occurs at the BEGINNING of a given block of data in the receive queue.

2 ETX and ETB Block Termination identification control blocks occur at the END of a given block of data in the receive queue.

3 This control block precedes each character containing a parity or framing error.

The Datacomm Interface 151

' Status 20 Returns current transmission speed (baud rate). See table for values.
Control 20 Sets transmission speed (baud rate) as follows:

Register Register
Value Baud Rate Value Baud Rate

0 External Clock 8 600
*1 50 9 1200
*2 75 10 1800
*3 110 11 2400
*4 134.5 12 3600
*5 150 13 4800
*6 200 14 9600

7 300 15 19200

* Async only. These values cannot be used with Data Link. These values set transmit
speed ONLY for Async; transmit AND receive speed for Data Link. Default value is
defined by the interface card configuration switches.

Status 21 Protocol dependent. Returns receive speed (Async) or GID address (Data Link)
as specified by Control Register 21.
Control 21 Protocol dependent. Functions are as follows:

Data Link: Ses Group [Dentifier (GID) for terminal. Values O thru 26 correspond to
identifiers @, A, B,...Y, Z, respectively. Other values cause an error. Default
valueis 1 (“A”").

Async: Sets datacomm receiver speed (baud rate). Values and defaults are the

‘ same as for Control Register 20.

Status 22 Protocol dependent. Returns DID (Data Link) or protocol handshake type
(Async) as specified by Control Register 22.
Control 22 Protocol dependent. Functions are as follows:

Data Link: Sets Device IDentifier (DID) for terminal. Values are the same as for Con-
trol Register 21. Default is determined by interface card configuration
switches.

Async: Defines protocol handshake type that is to be used.

Value | Handshake type

0 Protocol handshake disabled

ENQ/ACK with desktop computer as the host
ENQ/ACK, desktop computer as a terminal

DC1/DC3, desktop computer as host

DC1/DC3, desktop computer as a terminal

DC1/DC3, desktop computer as both host and terminal

G, W~

Status 23 Returns current hardware handshake type.
Control 23 Sets hardware handshake type as follows:

0 = Handshake OFF, non-modem connection.
1 =FULL-DUPLEX modem connection.
2 =HALF-DUPLEX modem connection.
3 = Handshake ON, non-modem connection.
. Reset Value is determined by interface configuration switches.

152 The Datacomm Interface

Status 24

Control 24

Status 25

Status 26

Control 26
(Async only)

Status 27

(Async only)
Control 27
(Async only)

Protocol dependent. Returns value set by preceding IOCONTROL procedure to
Control Register 24.

Protocol dependent. Functions as follows:

Data Link protocol: Set outbound block size limit.

Value | Block size Value | Block size
0 512 bytes 4 8 bytes
1 2 bytes . .
2 4 bytes . .
3 6 bytes 255 510 bytes

Reset outbound block size limit =512 bytes

Async Protocol: Set mask for control characters included in receive data message
queue.

Bit set: transfer character(s).

Bit cleared: delete character(s).

Bit set [Value | Character(s) passed to receive queue

1 Handshake characters (ENQ, ACK, DC1, DC3)
2 Inbound End-of-line character(s)
4 Inbound Prompt character(s)
8 NUL (CHR(0))
16 DEL (CHR(127))
32 CHR(255)
64 | Change parity/framing errors to underscores (_) if bit is set.
128 Not used

Reset value =127 (bits O thru 6 set)

Returns number of received errors since power up or reset.

N WN—~=O

Note

Control Registers 26 through 35, Status Registers 27 through 35,
and Control and Status Registers 37 and 39 are used for ASYNC
protocol ONLY. They are not available during Data Link operation.

Protocol dependent

Data Link protocol: Returns number of transmit errors (NAKs received) since last inter-
face reset.

Async protocol: Returns first protocol handshake character (ACK or DC1).

Sets first protocol handshake character as follows:

6=ACK, 17=DC1. Other values used for special applications only. Reset value=17

(DC1). Use ACK when Control Register 22 is set to 1 or 2. Use DC1 when Control

Register 22 is set to 3, 4. or 5.

Returns second protocol handshake character.

Sets second protocol handshake character as follows:

5=ENQ, 19=DC3. Other values used for special applications only. Reset value=19
(DC3). Use ENQ when Control Register 22 is set to 1 or 2. Use DC3 when Control
Register 22 is set to 3, 4. or 5.

Status 28

{(Async only)
Control 28
{Async only)

Status 29

{Async only)
Control 29
{Async only)

Status 30
{Async only)

Control 30
{Async only)

Status 31

{Async only)
Control 31
{Async only)

Status 32

{Async only)
Control 32
{Async only)

Status 33

{Async only)
Control 33
{Async only)

Status 34

{Async only)
Control 34
{Async only)

Status 35

{Async only)
Control 35
{Async only)

The Datacomm Interface

Returns number of characters in inbound

End-of-line delimiter sequence.

Sets number of characters in End-of-line delimiter sequence
Acceptable values are O (no EOL delimiter), 1, or 2. Reset Value=2

Returns first End-of-line character.

Sets first End-of-line character. Reset Value =13 (carriage return)

Returns second End-of-line character.

Sets second End-of-line character. Reset Value =10 (line feed)

Returns number of characters in Prompt sequence.

Sets number of characters in Prompt sequence.
Acceptable values are 0 (Prompt disabled}, 1 or 2.
Reset Value=1

Returns first character in Prompt sequence.

Sets first character in Prompt sequence.
Reset Value=17 (DC1)

Returns second character in Prompt sequence.

Sets second character in Prompt sequence.
Reset Value =0 (null)

Returns the number of bits per character.

Sets the number of bits per character as follows:

0 =5 bits/character 2 =17 bits/character

1 =6 bits/character 3 = 8 bits/character)

When 8 bits/char, parity must be NONE, ODD, or EVEN.
Reset Value is determined by interface card default switches.

Returns the number of stop bits per character.

Sets the number of stop bits per character as follows:

0=1 stop bit 1=1.5 stop bits 2 =2 stop bits

Reset Value: 2 stop bits if 150 baud or less, otherwise 1 stop bit.
Reset Value is cletermined by interface configuration switch settings.

153

154 The Datacomm Interface

Status 36
Control 36

Status 37

(Async only)
Control 37
(Async only)

Status 38

Status 39

(Async only)
Control 39
(Async only)

Control 125
Control 512
Control 513

Returns current Parity setting.
Sets Parity for transmitting and receiving as follows:
Data Link Protocol: 0= NO Parity; Network host is HP 1000 Computer.
1 =0DD Parity; Network host is HP 3000 Computer.
Reset Value=0
Async Protocol : 0=NONE; no parity bit is included with any characters.
1 =0DD; Parity bit SET if there is an EVEN number of
“1""s in the character body.
2 =EVEN; Parity bit OFF if there is an ODD number of
“1”’s in the character body.
3 ="0"; Parity bit is always ZERO, but parity is not checked.
4 =""1""; Parity bit is always SET, but parity is not checked.
Default is determined by interface configuration switches. If 8 bits per character,
parity must be NONE, ODD, or EVEN.

Returns inter-character time gap in character times.

Sets inter-character time gap in character times.
Acceptable values: 1 thru 255 character times.
0= No gap between characters. Reset Value=0

Returns Transmit queue status.
If returned value = 1, queue is empty, and there are no pending transmissions.

Returns current Break time (in character times).

Sets Break time in character times.

Acceptable values are: 2 thru 255. Reset Value =4.
Abort both input and output transfers.

Immediate transfer in Abort.

Immediate transfer out Abort.

Chapter

12

RS-232 Serial Interface

Computer
Museum

Introduction

The HP 98626! Serial Interface is an RS-232C? compatible interface used for simple asynchronous
(“async” for short) I/0O applications such as driving line printers, terminals, or other peripherals. If
your applications require more advanced capabilities, use the HP 98628 Datacomm Interface
instead.

The Serial Interface uses a UART (Universal Asynchronous Receiver and Transmitter) integrated
circuit to generate the required signals. Because the Serial Interface does not have a processor
onboard, the computer must provide most control functions. Consequently, there is more interac-
tion between the card and cornputer than when you use a more intelligent interface.

The RS-232C interface standard establishes electrical and mechanical interface requirements, but
does not define the exact function of all the signals that are used by various manufacturers of data
communications equipment and serial I/O devices. Consequently, when you plug your Serial
Interface into an RS-232 connector, there is no guarantee the devices can communicate unless you
have configured optional parameters to match the requirements of the other device.

The terms ‘‘asynchronous data communication’” and “‘serial /O’ refer to a technique for transfer-
ring data between two devices one bit at a time where characters are not synchronized with
preceding or subsequent characters. Each character is sent as a complete entity without relationship
to other events. Characters may be sent in close succession, or they may be sent sporadically as
data becomes available. Start and stop bits are used to identify the beginning and end of each
character, with the character cata placed between them.

1 The HP 98644 interface and the built-in serial interface of the Model 216 and 217 computers are similar to the 98626 interface. Differences
are described at the end of this chapter.

2 RS-232C is a data communication standard established and published by the Electronic Industries Association (EIA). Copies of the standard
are available from the association at 2001 Eye Street N. W., Washingtoen D. C. 20006. Its equivalent for European applications is CCITT
V.24,

155

156 RS-232 Serial Interface

Details of Serial I/O

The transfer of data over a serial line is a trivial operation when the host and terminal devices are
designed to work together. However, some applications require some configuration before the
communication can be performed smoothly. You must determine the operating parameters of the
terminal device and then set up the host device for compatible operation.

The Serial Interface! includes three default configuration switch clusters in addition to the select
code and interrupt level switches. These three switch clusters include Modem Line, Baud Rate, and
Line Control switches. The operating parameters can be set using these switches or by program
control which overrides most switches.

To determine operating parameters, you need to know the answer for each of the following
questions about the peripheral device.

e What baud rate (line speed) is expected by the peripheral?
® Which of the following signal and control lines are actively used during communication with
the peripheral?

—Data Set Ready (DSR) —Data Carrier Detect (DCD)
—Clear to Send (CTS) —Ring Indicator {RI)

In addition, you must know the expected format for an individual frame of character data. Each
character frame consists of the following elements:

o Start Bit—The start bit signals the receiver that a new character is being sent. All other bits in a
given frame are synchronized to the start bit.

o Character Data Bits—The next bits are the binary code of the character being transmitted,
consisting of 5, 6, 7, or 8 bits; depending on the application.

¢ Parity Bit—The parity bit is optional, included only when parity is enabled.

o Stop Bit(s)—One or more stop bits identify the end of each character. The serial interface has
no provision for inserting time gaps between characters.

Here is a simple diagram showing the structure of an asynchronous character and its relationship to
other characters in the data stream:

1 | | |
—‘ 1 T] | T 1 _‘—’
L | | | L (L
R pr—— T T T 17
Preceding Line in Start 1 0 1 0 0 0 1 Parity Stop Start Bit
Character Idle State | Bit Bit Bit for Next
(Mark) - Single Character Frame > Character
Beginning of End of
Character Character

1 There are no Modem Status Line, Baud Rate, or Line Control switches on the 98644 interface.

RS-232 Serial Interface 157

Baud Rate

The rate at which data bits are transferred between the interface and the peripheral is called the
baud rate. The interface card must be set to transmit and receive at the same rate as the peripheral,
or data cannot be successfully transferred. The Baud Rate Select switches can be set to any one of
the following values.

Baud Rate Switch Settings

Switch Settings Switch Settings

Baud Rate 3 210 Baud Rate 3 210
50 0 0 0 0 1200 1 0 0 0

75 0 0 01 1800 1 0 0 1
110 0 01 0 2400 * 1 01 0
134.5 0 01 1 3600 1 01 1
150 01 0 0 4800 1 1 0 O
200 01 0 1 7200 1 1 0 1
300 01 1 0 9600 1 1 10
600 01 1 1 19200 1 1 1 1

* factory switch settings

Modem Status and Control Lines

A modem is used for serial communications between the computer and a remote device. The
interface uses the following lines to indicate its status to the modem.

e Data-Terminal-Ready (DTR)—Indicates that the interface is ready for communications.
o Request-To-Send (RTS)——Indicates that the interface wants to send data.

The modem indicates its status to the interface through the following lines:

e Data-Set-Ready (DSR)—Indicates that the modem (data set) is ready.

e Clear-To-Send (CTS)—Indicates that the interface can transmit data over the communications
link.

e Data-Carrier-Detect (DCD)—Indicates that the remote device has requested data.
e Ring-Indicator (RI)—Indicates that the modem is receiving an incoming call.

The Status Line Disconnect switches are used to connect or disconnect the modem status lines
from the interface cable. When a given switch is in the “CONNECT" position, the correspond-
ing status line (from the peripheral) is connected to the interface circuitry. When it is in the
“ALWAYS ON” position, the status line is disconnected (from the peripheral) and the interface
receiver input for that line is held high (logic true). Although these status lines are only moni-
tored by the interface if Control register 13 is set (and the default for Control register 13 is 0, or
clear), any status lines that are not actively used while communicating with the peripheral
should be disconnected to minimize errors due to electrical noise in the cable.

Note that Status Line Disconnect switches cannot be altered under program control. To
reconfigure the switches, the interface must be removed from the computer (with power off)’
and the settings changed by hand. Note also that these switches are not implemented on the
built-in serial interfaces of the Model 216 and 217 computers.

158 RS-232 Serial Interface

Software Handshake, Parity and Character Format

The Line Control switches are used to preset the software handshake, character format, and
parity options. Functions are as follows:

Line Control Switch Settings

Software Parity Stop Bits Character
Handshake Length

(Bits 6,7) (Bits 5,4,3) (Bit 2) (Bits 1,0)

00 ENQ/ACK xx0 no parity 0 1 stop bit 00 5 bits/char
01 Xon/Xoft 001 odd parity 1 2 stop bits 01 6 bits/char
10 Reserved 011 even parity (1.5 stop bits 10 7 bits/char
11 None 101 always One if 5 bits/char) 11 8 bits/char

111 always Zero

* factory switch settings

Software Handshake

Software handshakes are used by two communicating devices in order to prevent overflowing
buffers. Special characters are used to implement the handshake. Two types of software hand-
shakes are implemented.

® Enquire/Acknowledge—the host of this handshake sends an Enquire character after send-
ing a specified number of characters (usually 80 characters), and then waits until it receives
an Acknowledge character from the terminal. The terminal sends the Acknowlege charac-
ter when it is ready to receive the specified number of characters.

® Xon/Xoff—the terminal sends an Xoff character when its receiving buffer is close to over-
flowing and then sends an Xon character when the buffer can again receive characters.

The Enquire/Acknowledge handshake implemented on the Serial Interface is the terminal-only
version. The interface responds with an Acknowledge character (ASCII character 6) after it has
received an Enquire character (ASCII character 5).

The Xon/Xoff handshake is the ““host and terminal’’ version. The interface responds to an Xoff
character by stopping all transmission. It resumes transmission when it receives a Xon charac-
ter. It also sends a Xoff character (ASCII character 19) when it is running out of receiver buffer
space, and sends an Xon character (ASCII character 17) after the buffer data has been pro-
cessed.

Parity

The parity bit is used to detect errors as incoming characters are received. If the parity bit does
not match the expected sense, the character is assumed to be incorrectly received. The action
taken when an error is detected depends upon the interface and/or the application program.

RS-232 Serial Interface 159

Parity sense is determined by system requirements. The parity bit may be included or omitted
from each character by enabling or disabling the parity function. When the parity bit is enabled,
four options are available.

e ODD—Parity bit is set if there is an even number of bits set in the data character. The
receiver performs parity checks on incoming characters.

e EVEN—Parity bit is set if there is an odd number of bits set in the data character. The
receiver performs parity checks on incoming characters.

e ONE—Parity bit is set for all characters. Parity is checked by the receiver on all incoming
characters.

e ZERO—Parity bit is cleared, but present for all characters. Parity is checked by the receiver
on all characters.

Programming Techniques
Overview of Serial Interface Programming

Your computer uses several I/O Library facilities for data communication with various compu-
ters, terminals and peripheral devices. Serial Interface programs will include part or all of the
following elements:

. e Input procedures (including buffer-transfers)
e Output procedures (including buffer-transfers)
o [OSTATUS functions
¢ [OCONTROL procedures
e High level control procedures

The following steps represent a normal sequence of operations in a Serial [/O program.

1. Initialize the particular interface with an IORESET or initialize the whole I/O system by
doing an IOINITIALIZE.

2. Set the operating parameters, this includes hardware characteristics, hardware hand-
shake, and software handshake. This step can be skipped if the interface defaults are
adequate.

3. Activate the Serial Interface by an IOCONTROL to Control Register 12. This activates
the receiving buffer.

4. Do input and output using the I/O library procedures and functions. This is where all the
data is transferred between the computer and the peripheral.
Deactivate the interface with an [IOCONTROL to Control Register 12.

6. Cleanup the card by a IORESET or cleanup the whole I/O system by doing an
IOUNINITIALIZE. This step disables the receiving buffer on the interface.

o

160 RS-232 Serial Interface

Initializing the Connection

Before you can successfully transfer information to a device, you must match the operating
characteristics of the interface to the corresponding characteristics of the peripheral device. This
includes matching signal lines and their functions as well as matching the character format for
both devices. You can override some of the interface configuration switch settings by using the
IOCONTROL procedure. This not only enables you to guarantee certain parameters, but also
provides a means for changing selected parameters in the course of a running program. Control
Register definitions for the Serial Interface are listed at the end of this chapter.

Interface Reset

Whenever an interface is connected to a modem that may still be connected to a telecom-
munications link from a previous session, it is good programming practice to reset the interface
to force the modem to disconnect, unless the status of the link and remote connection are
known. When the interface is connected to a line printer or similar peripheral, resetting the
interface is usually unnecessary unless an error condition requires it.

The Serial Interface can be reset by an IORESET, IOINITIALIZE, IOUNINITIALIZE or by use of
an [OCONTROL operation to register 0. The interface is restored to its power-up condition by
all of these operations, except that the timeout is not altered with the IORESET and IOCON-
TROL procedures.

Resetting the Serial Interface puts it in a non-active state. To activate the card use:

TOCONTROL(iscsy 12+ 1)
But before the interface is activated, the operating parameters should be set.

Selecting the Baud Rate

In order to successfully transfer information between the interface card and a peripheral, the
interface and peripheral must be set to the same baud rate. In addition to the procedure
SET_BAUD_RATE, Control Register 3 will allow the user to change the baud rate. The follow-
ing baud rates are recommended:

50 150 1200 4800
75 200 1800 7200
110 300 2400 9600
134 600 3600 19200

For example, to select a baud rate of 3600, either of these statements can be used:

IOCONTROL (iscs3:3G00)

or

SET_BAUD_RATE (isc,y 3600)
Use of values other than those shown may result in incorrect operation.

To verify the current baud rate setting, use the [IOSTATUS function addressed to Status Regis-
ter 3. All rates are in baud (bits/second).

RS-232 Serial Interface 161

Setting Character Format, Parity and Software Handshake

Control Register 4 overrides the Line Control switches that control software handshake, parity,
and character format. To determine the value sent to the register, add the appropriate values
selected from the following table:

Line Control IOCONTROL Register

Software Parity Stop Bits Character
Handshake Length

(Bits 6,7) (Bits 5,4,3) (Bit 2) (Bits 1,0)

00 ENQ/ACK xx0 no parity 0 1 stop bit 00 5 bits/char
00 Xon/Xoft 001 odd parity 1 2 stop bits 01 6 bits/char
01 Reserved 011 even parity (1.5 stop bits 10 7 bits/char
11 None 101 always One if 5 bits/char) 11 8 bits/char

111 always Zero
For example, use IOCONTROL to configure a character format of 8 bits per character, two stop
bits, EVEN parity, and no software handshake:
IOCONTROL(iscs 4, BINARY(‘110111117°))

or

IOCONTROL(iscs 4 223)

To configure a 5-bit character length with 1 stop bit, no parity bit, and Enquire/Acknowledge
software handshake use:

IOCONTROL{ iscs 4y O)

The Serial_4 procedures SET_PARITY, SET_STOP_BITS, and SET_CHAR_LENGTH can be
used to individually set these parameters. But to change the software handshake, you must do
an IOCONTROL to register 4.

Modem Handshake

Two types of connections can be selected for the serial interface: direct connection and modem
connection. The difference between the two types of connection is that with the modem
connection, the modem lines DSR and DCD have to be high when a character is received and
the lines DSR and CTS have to be high when a character is transmitted. To change modem
checking, you must do an IOCONTROL to Control Register 13. For example:

IOCONTROL(iscs 13 1) { turns on modem handshake 1}
IOCONTROL(iscs 13: ©) { direct connection 1}

162 RS-232 Serial Interface

Transferring Data

When the interface is properly configured, either by use of default switches or IOCONTROL
statements, you are ready to begin data transfers.

Data Qutput

When a non-‘‘buffer-transfer’” output operation is done (example WRITECHAR), the inter-
face waits until the previous character is sent and then puts the next character in the buffer. If
your application requires that the character is sent before continuing with the program, bits 5
and 6 of Status Register 10 can be checked. The following procedure waits until all characters
are transmitted:

procedure wait_sent(isc : tvype_isc)1
{

This procedure waits until the transmit buffer is empty.
It works for the 9BG26 and 98628 cards.

The modules IDDECLARATIONS: GENERAL_O:s and IODCOMASM needs
to be imported.

}
var busy : booleani
bedin
rereat
if isc_tableliscl.card_id = hrP986G26 then
busy = binand(iostatus(isc:10)+sHEX(’B0O’)) <3 HEX(’'B0O’))
else { assume the card is hp98G28 }
busy := iostatus(iscs38) = 03
until mot busy?l
ends

In the program the output sequence should be:

Wwritechar(iscs ‘a’)i

wait_sent(isc)i

RS-232 Serial Interface

Data Input

When a non-*‘buffer-transfer”” input operation is done (example READSTRING), the interface
waits for each character until the number of characters required is satisfied. For some applica-
tions, knowing if there is a character in the buffer is important. Bit O of Status Register 10 gives
this information. The following function returns TRUE if there is at least one character in the
receive buffer:

function have_char(isc : tvpe-isc) ¢ booleaw}
{
This function returns true if there is a character in the
receive buffer. If not it returns false.
It works for the 98G26 and 98628 cards.
The modules IODECLARATIONS: GENERAL-0O: and I0OCOMASM need
to be imported.
¥
bedin
if isc_tableliscl.card_id = hr9BB2B then
have_char := odd(iostatus(iscs 10 1))
else { assume it is hrP9BBZ28 card %
have_char := odd(iostatus(iscs 5))3
ends

The program input sequence would be:

if have_char(isc) then readchar(iscs character)}

Error Detection and Handling

The Serial Interface can detect and report several different classes of errors. The handling of
errors by the interface differs depending on the severity of the error. For an unrecoverable
error, an ESCAPE error is given. In case of an ESCAPE error, you can evaluate the error in the
RECOVER section of your program. An 1/O procedure ESCAPE error gives an ESCAPECODE
of -26. To identify the error more closely, you can use the IOERROR_MESSAGE procedure
with the IOE_RESULT variable as the parameter. For example:

if ESCAPECODE = -2B then

bedin
writeln (IOERROR_MESSAGE(IOE_RESULT)) S
ESCAPE(ESCAPECODE) 3

ends

163

164

RS-232 Serial Interface

The TRY/RECOVER mechanism, the ESCAPECODE variable and the ESCAPE procedure
are available by using $SYSPROG ONS$. The IOERROR_MESSAGE procedure and the
IOE_RESULT variable are available when you IMPORT the IODECLARATIONS module.

The errors which can happen are listed below.

® Parity Error—The parity bit on an incoming character does not match the parity expected
by the receiver. This condition is most commonly caused by line noise. The interface
handles this error by changing the character into a special character. This special character
is defined by Control Register 19 and the default character is an underscore (*‘_""). The
interface also sets bit 2 of Status Register 10.

¢ Framing Error—Start and stop bit(s) do not match the timing expectations of the receiver.
This can occur when line noise causes the receiver to miss the start bit or obscures the stop
bits. This error is handled similar to a parity error: the received character is translated into
the special character defined by Register 19. The interface also sets bit 3 of Status Register
10.

® Break received—A BREAK was sent to the interface by the peripheral device. The Serial
Interface does not interpret this condition as an error. The interface sets bit 4 of Status
Register 10. Since BREAK is detected as a special type of framing error, bit 3 of Status
Register 10 is also set. However, no special character is inserted into the receive buffer.

¢ Overrun error—Incoming data was not consumed fast enough so that one or more data
characters were lost. This error can occur in two different ways: the software receive
buffer overflowed, and the hardware receive buffer overflowed. In the first case, the
program running cannot keep up with the receiver buffer at the current baud rate. Either
reduce the baud rate, use software handshake, or change the program so that characters
are read consistently. In the second case the error implies that interrupts were disabled so
that the characters could not be processed. In both cases, an ESCAPE is generated and an
IOE_RESULT of 314 results. In the second case, bit 1 of Status Register 10 is also set.

¢ Timeout error—Timeout errors occur when a character is not read or written within the
timeout period specified. An ESCAPE is generated and an IOE_RESULT of 17 results. A
timeout can occur when writing a character if DSR or CTS is low for the duration of the
timeout. A timeout can occur when reading a character if no valid character was received
during the timeout period.

¢ CTS False Too Long—This error occurs when a software handshake character cannot be
sent because either DSR or CTS is low. The interface gives an ESCAPE error with an
IOE_RESULT of 316.

¢ Range Errors—These errors occur when parameters passed to [/O library procedures and
functions are out of range. For example, the Serial Interface does not support DMA; a call
to TRANSFER with the transfer type being OVERLAP_DMA will result in an ESCAPE
error with an IOE_RESULT of 7. These errors do not indicate a communications problem,
rather they indicate a programming problem.

The ESCAPE errors “Overrun” and *‘CTS False Too Long”’ can happen even when there is no
direct read or write to the interface. These errors will be saved by the interface and will be given
at the next read or write operation to the interface. To avoid these ESCAPE errors, you can
check Status Register 14. This register will return the IOE_RESULT of any pending errors. It will
also clear the pending error so that the error can be handled without going into a RECOVER
block.

RS-232 Serial Interface 165

As mentioned above, Status Register 10 has four bits which indicate if certain error conditions
have occurred on the card. The four bits (1 through 4) are read-destructive bits. That is, if the
register is read, the error bits are reset to zero.

When an ESCAPE error occurs (other than range type errors), it means there is a fairly serious
problem. You should reset the interface if you decide to continue with the program. However
an IORESET is sometimes undesirable since it resets all hardware parameters and modem
connections are broken. To alleviate this problem, a soft reset is provided. A call to IOCON-
TROL with Register 14 and a non-zero value as parameters resets the interface without chang-
ing the hardware parameters or modem connections. It also clears the receive buffer.

Special Applications

This section provides advanced programming information for applications requiring special
techniques.

Sending BREAK Messages

A BREAK is a special character transmission that usually indicates a change in operating
conditions. Interpretation of break messages varies with the application. To send a break
message, send a non-zero value to control Register 1.

IOCONTROL(iscs1s1) {Sernd a BREAK to rerirheral?

Redefining Handshake and Special characters

Control registers 15 through 18 can be used to redefine the software handshake characters.
The values passed to these registers should be the ordinal value of the character. The following
example changes the Xon handshake character to DC2.

IODCONTROL(iscs 15 20)
Status registers 15 through 19 gives the ordinal value of the current handshake character. The
following assigns to a character the current Acknowledge character.

ch := CHR(IOSTATUS(isc: 18))
As mentioned previously, Control Register 19 redefines the character into which parity error

and framing error are converted. The following example sets this character to be the ASCII
character DEL.

IOCONTROL(iscs 18y 127)

Status Register 19 returns the current special character.

166 RS-232 Serial Interface

Using the Modem Line Control Registers

Modem line handshaking is performed automatically by the Serial Interface. The lines set by the
interface are DTR and RTS. The lines checked by the interface are DSR, DCD, and CTS. Lines
are set by the Serial Interface regardless of the modem handshake selection. Modem lines are
checked only if the modem handshake is turned on. Your can change the values of the modem
lines by writing to Control Register 5 or 7. The operations which involve modem lines are
described below.

® Reset—both DTR and DSR are set to low.
e Activate—DTR is set to high.
® Deactivate—both DTR and DSR are set to low.

® Output—RTS is set to high. If the modem handshake is on, the interface will wait until
DSR and CTS to become high before putting the characters in the transmit buffer.

® [nput—If the modem handshake is on, all characters received when DSR or DCD is low
are discarded (not put into the buffer).

® TRANSFER_END—When this procedure is called with direction “from_memory”’, at the
end of the transfer RTS will be set Iow.

The following table summarizes the modem lines affected.

How Operations Affect Modem Lines

DTR RTS DSR CTS DCD
reset 0 0 — — i
activate 1 — — — _
deactivate 0 0 — — —
input — — X — X
output — 1 X X _
transfer_end — 0 —_ — _

the modem line was not used.
the modem line was set to low.
the modem line was set to high.
the modem line was checked.

X = o

Control Register 5 controls various functions related to modem operation. Bits O thru 3 control
modem lines, and bit 4 enables a self-test loopback configuration.

RS-232 Serial Interface

Modem Handshake Lines (RTS and DTR)

As explained earlier in this chapter, Request-To-Send and Data-Terminal-Ready lines are set
or cleared by certain Serial Interface operations. For example, RTS is set high by the first
write operation. Your application might require RTS to be high before the first write opera-
tion. The following example sets both RTS and DTR high at the same time.

IOCONTROL(iscs S+ 3)3 { set both RTS and DTR hidh 2%
IDCONTROL(iscs+12s+ 1)3 { activate the receive buffer 7}

The above example also clears the loopback bit, and it clears the modem lines DRS and SRTS.
To change only those two bits would require:

IOCONTROL(iscs 5 BINIOR(IOSTATUS(isc: 3) s+ BINARY (7000000117)))
{8ets RTS and DTR without disturbing other bits of redister 57}

Programming the DRS and SRTS Modem Lines

Bits 3 and 2 of Control Register 5 control the present state of the Data Rate Select (DRS) and
Secondary-Request-To-Send (SRTS) lines, respectively. When either bit is set, the corres-
ponding modem line is activated. When the bit is cleared, so is the modem line.

Configuring the Interface for Self-test Operations

Self-test programs can be written for the Serial Interface. Prior to testing the interface, it must
be properly configured. Using bit 4 of Control Register 5, you can rearrange the interconnec-
tions between input and output lines on the interface, enabling the interface to feed outbound
data to the inbound circuitry.

When LOOPBACK is enabled (bit 4 is set), the UART output is set to its MARK state and sent to
the Transmitted Data (TxD) line. The output of the transmitter shift register is then connected to
the input of the receiver shift register, causing outbound data to be looped back to the receiver.
In addition, the following modem control lines are connected to the indicated modem status
lines.

Loopback Connections

Modem Control Line to Modem Status Line

DTR Data Terminal Ready CTS Clear-to-send

RTS Request-to-send DSR Data Set Ready
DRS Data Rate Select DCD Data Carrier Detect
SRTS Secondary RTS RI Ring Indicator

When loopback is active, receiver and transmitter interrupts are fully operational. Modem
control interrupts are then generated by the modem control outputs instead of the modem
status inputs. Refer to Serial Interface hardware documentation for information about card
hardware operation.

167

168 RS-232 Serial Interface

IOREAD_BYTE and IOWRITE_BYTE Register Operations

For those cases where you need to write special interface driver routines, the interface card
hardware registers can be accessed by use of IOREAD_BYTE and IOWRITE_BYTE proce-
dures. These capabilities are intended for use by experienced programmers who understand
the inherent programming complexities that accompany this versatility. Warning: operations
through hardware registers might interfere with the Serial Interface drivers.

Some registers are read/write; that is, both [OREAD_BYTE and IOWRITE_BYTE operations
can be performed on a given register. Writing places a new value in the register; a read
operation returns the current value. All registers have 8 bits available, and accept values from 0
thru 255 unless noted otherwise. When the value of a given bit is 1, the bit is set. Otherwise it is
zero (cleared or inactive).

Some hardware registers are similar in structure and function to Status and Control Registers.
However, their interaction with the Pascal operating system is considerably different. To pre-
vent incorrect program operation, do not intermix the use of Status/Control registers and
hardware registers in a given program.

RS-232 Serial Interface 169

Status and Control Registers

Most Control Registers accept values in the range from O thru 255. Some registers accept only
specified values as indicated, or higher values for baud rate settings. Values less than zero are
not accepted. Higher-order bits not needed by the interface are discarded if the specified value
exceeds the valid range.

Reset value is the default value used by the interface after a reset or power-up until the value is
overridden by a IOCONTROL procedure.

Status 0—Card Identification
Value returned: 2 (if 130 is returned, the Remote jumper wire has been removed from the
interface card). The value returned for a 98644 card is 66 (or 194 if the Remote jumper has
been removed).

Control 0—Card Reset
Any value, 1 thru 255, resets the card. Immediate execution. Data transfers in process are
aborted and any buffered data is destroyed.

Status 1—Interrupt Status
Bit 7 set: Interface hardware interrupt to CPU enabled.
Bit 6 set: Card is requesting interrupt service.
Bits 5&4: 00 Interrupt Level 3 ‘
01 Interrupt Level 4
10 Interrupt Level 5
11 Interrupt Level 6
Bits 3 thru O not used.

Control 1—Transmit BREAK
Any non-zero value sends a 400 millisecond BREAK on the serial line.

Status 2—Interface Activity Status

Bit 5 set: Software handshake character pending. The peripheral is the host and it
should not be sending more characters since it is waiting for either an
ENQUIRE character (ENQ/ACK handshake) or a Xon character (Xon/
Xoff handshake).

Bit 4 set: Waiting for handshake character. The desktop is acting as a host and it is
not transmitting because it has received an Xoff character and it is wait-
ing for an Xon character.

Bit 1 set: Interrupts are enabled for this interface.

Bit O set: Transfer in progress. Either an input or an output transfer is in progress.

Bits 2, 3, 6, and 7 are not used.

170 RS-232 Serial Interface

Status 3—Current Baud Rate
Returns current baud rate.

Control 3 -- Set New Baud Rate
The recommended baud rates are:

50 150 1200 4800
75 200 1800 7200
110 300 2400 9600

134 600 3600 19200

Status 4—Current Character Format
See Control Register 4 for function of individual bits.

Control 4—Set New Character Format

Software Parity Stop Bits Character
Handshake Length
(Bits 6,7) (Bits 5,4,3) (Bit 2) (Bits 1,0)
00 ENQ/ACK xx0 no parity 0 1 stop bit 00 5 bits/char
01 Xon/Xoff 001 odd parity 1 2 stop bits 01 6 bits/char
10 Reserved 011 even parity 1 15if 10 7 bits/char
11 None 101 always One 5 bits/char 11 8 bits/char

111 always Zero

Status 5—Current Status of Modem Control Lines
Returns CURRENT line state values. See Control Register 5 for function of each bit.

Control 5—Set Modem Control Line States
Bit 4 set: Enables loopback mode for diagnostic tests.
Bit 3 set: Set Secondary Request-to-Send line to active state.
Bit 2 set: Set Data Rate Select line to active state.
Bit 1 set: Set Request-To-Send line to active state.
Bit O set: Set Data-Terminal-Ready line to active state.

Status 6—Data In

Reads character from receive buffer. Results are undefined if no character is present in the
receive buffer.

Control 6—Data Out
Sends character to the transmitter holding register. This transmits a character without affecting
modem lines. (Be sure that the transmitter holding register is empty before this operation.)

Status 7'—Optional Receiver/Driver Status
Returns current value of optional circuit drivers or receivers as follows:
Bit 3: Optional Circuit Driver 3 (OCD3).
Bit 2: Optional Circuit Driver 4 (OCD4).
Bit 1: Optional Circuit Receiver 2 (OCR2).
Bit 0: Optional Circuit Receiver 3 (OCR3).
Other bits are not used (always 0).

1 With the 98644 interface, this register always contains 0.

Control 7'—Set iNew Optional Driver States
Sets (bit=1) or clears (bit=0) optional circuit drivers as follows:
Bit 3: Optional Circuit Driver 3 (OCD3),
Bit 2: Optional Circuit Driver 2 (OCD2).
Other bits are not used.

Status 10—UART Status
Bit set indicates UART status or detected error as follows:
Bit 7: Not used.
Bit 6: Transmit Shift Register empty.
Bit 5: Transmit Holding Register empty.
Bit 4: Break received.
Bit 3: Framing error detected.
Bit 2: Parity error detected.
Bit 1: Receive Buffer Overrun error.
Bit 0: Receiver Buffer full.

RS-232 Serial Interface 171

Note: bits 1 through 4 are read destructive, they will be cleared each time this register is read

with an IOSTATUS.

Status 11—Modem Status
Bit set indicates that the specified modem line or condition is active.
Bit 7: Data Carrier Detect (DCD) modem line active.
‘ Bit 6: Ring Indicator (RI}) modem line active.
Bit 5: Data Set Ready (DSR) modem line active.
Bit 4: Clear-to-Send (CTS) modem line active.
Bit 3: Change in DCD line state detected.
Bit 2: RI modem line changed from true to false.
Bit 1: Change in DSR line state detected.
Bit 0: Change in CTS line state detected.

Note: Bits 0 through 3 are read destructive; they will be cleared each time this register is

read with an I[OSTATUS.

Status 12—Interface activity
Returned value:
0—The interface is deactivated.
1—The interface is active.

Control 12—Set interface active
Value:
0—Deactivate the interface.
1—Activate the interface, sets DTR and does a soft reset.

Status 13—Modem handshake status
Returned value:
0O—modem line handshaking is disabled.
. 1—modem line handshaking is enabled.

1 With the 98644 interface. writing this register performs no operation.

172 RS-232 Serial Interface

Control 13—Set modem handshake
Value
(U—disable checking of modem lines.
1—enable checking of modem lines.

Status 14—Error pending
Returns the IOE_RESULT of any escape errors pending on the interface. A value of 0 is
returned if no errors are pending.

Control 14—Soft reset
Any value, 1 through 255 resets the interface without affecting the modem lines or the
hardware parameters. Receive buffer is reset with this command.

Status 15—Current Xon handshake character
Returns the ordinal value of the current Xon handshake character.

Control 15—Redefine Xon handshake character

Sets the Xon handshake character to have ordinal value equal to the input value. Default is
DC1 (ASCII character 17).

Status 16—Current Xoff handshake character
Returns the ordinal value of the current Xoff handshake character.

Control 16—Redefine Xoff handshake character
Sets the Xoff handshake character to have ordinal value equal to the input value. Default is
DC3 (ASCII character 19).

Status 17—Current Enquire handshake character
Returns the ordinal value of the current Enquire handshake character.

Control 17—Redefine Enquire handshake character
Sets the ENQUIRE handshake character to have ordinal value equal to the input value.
Default is ENQ (ASCII character 5).

Status 18—Current Acknowledge handshake character
Returns the ordinal value of the current Acknowledge handshake character.

Control 18—Redefine Acknowledge handshake character
Sets the Acknowledge handshake character to have ordinal value equal to the input value.
Default is ACK (ASCII character 6).

Status 19—Current framing/parity error character
Returns the ordinal value of the special character into which framing errors and parity errors
would be converted.

Control 19—Redefine framing/parity error handshake character
Sets the special character used to represent framing errors and parity errors to have an
ordinal value equal to the input value. Default is an underscore (**_"") (ASCII character 95).

RS-232 Serial Interface 173

Serial Interface Hardware Registers

Interface Card Registers

[OREAD_BYTE and IOWRITE_BYTE registers 1, 3, 5, and 7 access interface registers. Their
functions are as follows:

Register 1—Interface Reset and ID
IOREAD_BYTE to Register 1 returns the interface ID value—2 for the HP 98626 Serial Inter-
face (or 66 for the 98644 interface) [OWRITE_BYTE to Register 1 with any value resets the
interface as when using an IOCONTROL statement to Control Register 0.

Register 3—Interrupt Control
Only the upper four bits of Register 3 are used. Bits 5 and 4 return the setting of the
Interrupt Level switches on the interface. Their values are as follows:

00 Interrupt Level 3 10 Interrupt Level 5
01 Interrupt Level 4 11 Interrupt Level 6

Bit 6 is set when an interrupt request is originated by the UART. No machine interrupt can
occur unless bit 7, Interrupt Enable is set by an IOWRITE_BYTE statement. Only bit 7 is
affected by IOWRITE_BYTE statements. During IOREAD_BYTE, bit 7 returns the current
enable value; bits 6 thru 4 return interrupt request and level information.

Register 5'—Optional Circuit and Baud Rate Control

IOWRITE_BYTE to bits 7 and 6 control the state of optional circuit drivers 3 and 4, respec-
tively. IOREAD_BYTE returns current values of the respective drivers, plus the following:

Bit 5—Optional Circuit Receiver 2 state.

Bit 4—Optional Circuit Receiver 3 state.

Bits 3-0—Current Baud Rate switch setting (not necessarily the current UART baud rate).
These switches can be interpreted in any way you choose. The current interpretation
given to them by the serial interface drivers are as follows:

Setting Baud Rate Setting Baud Rate
0000 50 1000 1200
0001 75 1001 1800
0010 110 1010 2400
0011 134.5 1011 3600
0100 150 1100 4800
0101 200 1101 7200
0110 300 1110 9600
0111 600 1111 19200

Note that IOWRITE_BYTE to this register can NOT be used to set the baud rate.
Use Register 23, bit 7 and Registers 17 and 19 instead.

Register 7'—Line Control Switch Monitor
IOREAD_BYTE of this register returns the current settings of the Line Control switches that set
the default character format and parity. Bits 7 thru O correspond to switches 7 thru 0, respec-
tively. IOWRITE_BYTE operations to this register are meaningless.

1 Registers 5 and 7 are not defined with the 98644 interface.

174 RS-232 Serial Interface

UART Registers

Addresses 17 through 29 access UART registers. They are used to directly control certain UART
functions. The function of Registers 17 and 19 are determined by the state of bit 7 of Register
23.

Register 17—Receive Buffer/Transmitter Holding Register
When bit 7 of Register 23 is clear (0), this register accesses the single-character receiver
buffer by use of IOREAD_BYTE. The IOWRITE_BYTE procedure places a character in the
transmitter holding register.

The receiver and transmitter are doubly buffered. When the transmitter shift register becom-
es empty, a character is transferred from the holding register to the shift register. You can
then place a new character in the holding register while the preceding character is being
transmitted. Incoming characters are transferred to the receiver buffer when the receiver
shift register becomes full. You can then input the character (IOREAD_BYTE) while the
next character is being constructed in the shift register.

Registers 17 and 19—Baud Rate Divisor Latch
When bit 7 of Register 23 is set, Registers 17 and 19 access the 16-bit divisor latch used by
the UART to set the baud rate. Register 17 forms the lower byte; Register 19 the upper. The
baud rate is determined by the following relationship:
Baud Rate = 153 600/Baud Rate Divisor

To access the Baud Rate Divisor latch, set bit 7 of Register 23. This disables access to the
normal functions of Registers 17 and 19, but preserves access to the other registers. When
the proper value has been placed in the latch, be sure to clear bit 7 of Register 23 to return
to normal operation.

Register 19—Interrupt Enable Register
When bit 7 of Register 23 is clear (0), this register enables the UART to interrupt when
specified conditions occur. Only bits O thru 3 are used. IOWRITE_BYTE establishes a new
value for each bit; [OREAD_BYTE returns the current register value. Interrupt enable condi-
tions are as follows:

Bit 3—Enable Modem Status Change Interrupts. When set, enables an interrupt whenever
a modem status line changes state as indicated by Register 29, bits 0 thru 3.

Bit 2—Enable Receiver Line Status Interrupts. When set, enables interrupts by errors, or
received BREAKs as indicated by Register 27, bits 1 thru 4.

Bit 1—Enable Transmitter Holding Register Empty Interrupt. When set, allows interrupts
when bit 5 of Register 27 is also set.

Bit 0—Enable Receiver Buffer Full Interrupts. When set, enables interrupts when bit O of
Register 27 is also set.

RS-232 Serial Interface 175

Register 21—Interrupt Identification Register
This register identifies the cause of the highest-priority, currently-pending interrupt. Only
bits 2, 1, and 0 are used. Bit 0, if set, indicates no interrupt pending. Otherwise an interrupt
is pending as defined by bits 2 and 1. Causes of pending interrupts in order of priority are as
follows:

11—Receiver Line Status interrupt (highest priority) is caused when bit 2 of Register 19 is
set and a framing, parity, or overrun error, or a BREAK is detected by the receiver
(indicated by bits 1 thru 4 of Register 27). The interrupt is cleared by reading Register
27.

10—Receive Buffer Register Full interrupt is generated when bit 0 of Register 19 is set and
the Data Ready bit (bit 0) of Register 27 is active. To clear the interrupt, read the
receiver buffer, or write a zero to bit O of Register 27.

01— Transmitter Holding Register Empty interrupt occurs when bit 1 of Register 19 is set
and bit 5 of Register 27 is set. The interrupt is cleared by writing data into the
transmitter holding register (Register 17 with bit 7 of Register 23 clear) with a IOW-
RITE_BYTE statement, or by reading this register (Interrupt [dentification).

00—Modem Line Status Change interrupt occurs when bit 3 of Register 19 is set and a
modem line change is indicated by one or more of bits 0 thru 3 of Register 29. To
clear the interrupt, read Register 29 which clears the status change bits.

Register 23—Character Format Control Register
‘ This register is functionally equivalent to Control and Status Register 4 except for bits 6 and
7. IOWRITE_BYTE sets a new character format; IOREAD_BYTE returns the current char-
acter format setting.

Bit 7— Divisor Latch Access Bit. When set, enables you to access the divisor latches of the
Baud Rate generator during read/write operations to registers 17 and 19.

Bit 6—Set BREAK. When set, holds the serial line in a BREAK state (always zero),
independent of other transmitter activity. This bit must be cleared to disable the
break and resume normal activity.

Bits 5,4—Parity Sense. Determined by both bits 5 and 4. When bit 5 is set, parity is always

ONE or ZERO. If bit 5 is not set, parity is ODD or EVEN as defined by bit 4. The
combinations of bits 5 and 4 are as follows:

00 ODD parity 10 Always ONE
01 EVEN parity 11 Always ZERO

Bit 3—Parity Enable. When set, sends a parity bit with each outbound character, and
checks all incoming characters for parity errors. Parity is defined by bits 4 and 5.
Bit 2—Stop Bit(s). Defined by a combination of bit 2 and bits 1 & 0.

Bit 2 Character Length Stop Bits
0 56,7, 0r8 1

1 5 1.5
. 1 6,7, 0r8 2

176

RS-232 Serial Interface

Bits 1,0—Character Length. Defined as follows:

Bits 1&0 Character Length
00 5 bits
01 6 bits
10 7 bits
11 8 bits

Register 25—Modem Control Register

This is a READ/WRITE register. IOREAD_BYTE returns current control register value. [QW-
RITE_BYTE sets a new value in the register. This register is equivalent to interface Control
Register 5.

Bit 4 —L oopback. When set, enables a loopback feature for diagnostic testing. Serial line is
set to MARK state, UART receiver is disconnected, and transmitter output shift
register is connected to receiver input shift register. Modem line outputs and inputs
are connected as follows: DTR to CTS, RTS to DSR, DRS to DCD, and SRTS to R
Interrupts are enabled, with interrupts caused by modem control outputs instead of
inputs from modem.

Bit 3—Secondary Request-to-Send. Controls the OCD2 driver output. 1 =Active,

0 =Disabled.

Bit 2—Data Rate Select. Controls the OCD1 driver output. 1 =Active, 0= Disabled.

Bit 1—Request-to-Send. Controls the RTS modem control line state. When bit 1 = 1,RTSis
always active. When bit 1 =0, RTS is toggled by the output operations, as described
earlier in this chapter.

Bit 0—Data Terminal Ready. Holds the DTR modem control line active when the bit is set. If
not set, DTR is controlled by output or input operations, as described earlier.

Bits 7, 6, and 5 are not used.

Register 27—Line Status Register

Bit 7—Not used.

Bit 6—Transmitter Shift Register Empty. Indicates no data present in transmitter shift
register.

Bit 5—Transmitter Holding Register Empty. Indicates no data present in transmitter hold-
ing register. The bit is cleared whenever a new character is placed in the register.

Bit 4—Break Indicator. Indicates that the received data input remained in the spacing (line
idle) state for longer than the transmission time of a full character frame. This bit is
cleared when the line Status register is read.

Bit 3—Framing Error. Indicates that a character was received with improper framing; that
is, the start and stop bits did not conform with expected timing boundaries.

Bit 2—Parity Error. Indicates that the received character did not have the expected parity
sense. This bit is cleared when the register is read.

Bit 1—Overrun Error. Indicates that a character was destroyed because it was not read
from the receiver buffer before the next character arrived. This bit is cleared by
reading the line Status register.

Bit 0—Data Ready. Indicates that a character has been placed in the receiver buffer
register. This bit is cleared by reading the receiver buffer register, or by writing a
zero to this bit of the line Status register.

RS-232 Serial Interface 177

Register 29—Modem Status Register

Bit 7—Data Carrier Detect. When set, indicates DCD modem line is active.

Bit 6—Ring Indicator. If set, indicates that the RI modem line is active.

Bit 5—Data Set Ready. If set, indicates that the DSR modem line is active.

Bit 4—Clear-to-send. If set, indicates that CTS is active.

Bit 3—Change in Carrier Detect. When set, indicates that the DCD modem line has
changed state since the last time the modem status register was read.

Bit 2— Trailing Edge of Ring Indicator. Set when the RI modem line changes from active to
inactive state.

Bit 1—Delayed Data Set Ready. Set when the DSR line has changed state since the last
time the modem status register was read.

Bit 0—Change in Clear-to-send. If set, indicates that the CTS modem line has changed
state since the last time the register was read.

HP 98626 Cable Options and Signal Functions

The HP 98626A Serial Interface is available with RS-232C DTE and DCE cable configurations.
The DTE cable option consists of a male RS-232C connector and cable designed to function as
Data Terminal Equipment (DTE) when used with the serial interface. The cable and connector
are wired so that signal paths are correctly routed when the cable is connected to a peripheral
device wired as Data Communication Equipment (DCE), such as a modem. The cables are

‘ designed so that you can write programs that work for both DCE and DTE connections without
requiring modifications to accommodate equipment changes.

The DCE cable option includes a female connector and cable wired so that the interface and
cable behave like normal DCE. This means that signals are routed correctly when the female
cable connector is connected to a male DTE connector.

Line printers and other peripheral devices that use RS-232C interfacing are frequently wired as
DTE with a female RS-232C chassis connector. This means that if you use a male (DTE) cable
option to connect to the female DTE device connector, no communication can take place
because the signal paths are incompatible. To eliminate the problem, use an adapter cable to
convert the female RS-232C chassis connector to a cable connector that is compatible with the
male or female interface cable connector. The HP 13242 adapter cable is available in various
configurations to fit most common applications. Consult cable documentation to determine
which adapter cable to use.

The DTE Cable

The signals and functions supported by the DTE cable are shown in the signal identification
table which follows. The table includes RS-232C signal identification codes, CCITT V.24
equivalents, the pin number on the interface card rear panel connector, the RS-232C connec-
tor pin number, the signal mnemonic used in this manual, whether the signal is an input or
output signal, and its function.

178 RS-232 Serial Interface

RS-232C DTE (male) Cable Signal Identification Tables

Signal Interface | RS-232C
RS-232C V.24 Pin # Pin # Mnemonic | 1/0O Function

AA 101 24 1 - - Safety Ground

BA 103 12 2 Out Transmitted Data

BB 104 42 3 In Received Data

CA 105 13 4 RTS Out Request to Send

CB 108 44 5 CTS In Clear to Send

CC 107 45 6 DSR In Data Set Ready

AB 102 48 7 - - Signal Ground

CF 109 46 8 DCD In Data Carrier Detect
SCF (OCR2) 122 47 12 SDCD In Secondary DCD

DB 114 41 15 In DCE Transmit Timing

DD 115 43 17 In DCE Receive Timing
SCA (OCD2) 120 15 19 SRTS Out Secondary RTS

CD 108.1 14 20 DTR Out Data Terminal Ready
CE (OCR1) 125 9 22 RI In Ring Indicator
CH (OCD1) 111 40 23 DRS Out Data Rate Select

DA 113 7 24 Out Terminal Transmit Timing

Optional Circuit Driver/Receiver Functions

Not all signals from the interface card are included in the cable wiring. RS-232C provides for

four optional circuit drivers and two receivers. Only two drivers and two receivers are supported .
by the DCE and DTE cable options. They are as follows:

Drivers Receivers
Name Function Name Function
OCD1 Data Rate Select OCR1 Ring Indicator
OCD2 Secondary Request-to-send OCR2 Secondary Data Carrier Detect

OCD3 Not used
OCD4 Not used

It your application requires use of OCD3 or OCD4, you must provide your own interface cable
to fit the situation.

The DCE Cable

The DCE cable option is designed to adapt a DTE cable and serial or data communications
interface to an identical interface on another desktop computer. It is also used with the serial
interface to simulate DCE operation when driving a peripheral wired for DTE operation. The
DCE cable is equipped with a female connector. Since most DTE peripherals are also equipped
with female connectors (pin numbering is the same as the standard male DTE connector), an
adapter (such as the HP 13242M) is used to connect the two female connectors as explained
earlier.

Note
Not all RS-232C devices are wired the same. To ensure proper
operation, you must know whether the peripheral device is wired as
DTE or DCE. The interface cable option and associated adapter
cable, if needed, must be configured to properly mate with the
female DTE chassis connector.

RS-232 Serial Interface 179

The following schematic diagram shows the input and output signals for the Serial Interface and
how they are connected to a DCE peripheral.

98626
INTERFACE
DATA /

RS-232C
SIGNALS

—> BA(PIN 2) >—DATA

ouT

DATA ¢ 32
<

= 2
\
G

N DATA
> BB (PIN3) >— 1

REQUEST

> CA(PIN 4) > 15 °seND (IN)
CLEAR

o
(o]
o
N

F
(o]

N L
> CB(PINS) >—T0 SEND (OUT)

DATA CARRIER

SECONDARY , 15

> CF (PIN8) > perect (ouT)

SECONDARY REQUEST

RTS A
SECONDARY, ,47

> SCA(PIN19) > =34 sEND (IN)

SECONDARY DATA

NN\

Ao AAbAY

Q O
-4 o
2 O

14

> SCF(PINI2) >— - srRIER DETECT (OUT)

DATA TERMINAL

£ &
N\

A 4

CD(PIN 20) >—READY (IN)

RING

o
[72]
a
Fa
N
H
(¢

A 4

CE (PIN22) >= \\nicATOR (OUT)

DATA SET

AL

> CC(PIN 6) >—peapy (0UT)

v

AB (PIN 7) >—J7 SIGNAL
GROUND

4
SIGNAL (€ 8
GROUND,
SAFETY <<24
GROUND

> AA(PIN) >—] SAFETY
i L GROUND

DRS ;.40
- N

INTE RFACE
REAR PANEL
CONNECTOR

R DATA
% CH(PIN 23) = paTE SELECT (IN)

MALE FEMALE

RS-232C DCE PERIPHERAL
INTERFACE CHASSIS CONNECTOR
CABILE CONNECTOR

DTE Cable Diagram

DCE Interface
Signals to and
from Peripheral

NOTE: Some DCE
peripherals may not
provide for ali the

signal lines shown.

180 RS-232 Serial Interface

This diagram shows an HP 13242M adapter cable connected to a DCE interface cable and a
DTE peripheral. Note that RTS is connected to CTS in the DCE cable. If your peripheral uses
RTS/CTS handshaking. a different adapter cable must be used with the appropriate DTE or
DCE interface cable option.

13242 M

98626 DCE RS-232C ADAPTER N
INTERFACE CABLE SIGNALS CABLE
-WA d2 — BB(PIN3) ¢—————> >3 DATAN
uT
< DATA ,\!42 IBA(PlNZ) ¢ a>g_DATAOUT
8

IN
RTS i3 DATA CARRIER
—{ >RS¢ (—
CF(PINB) DETECT (IN)
< cTS (34

DCD 46 4 REQUEST TO
< ¢)
CA(PIN 4) ¢€&—m> >— SEND (OUT)
: 5 CLEARTO
—
CB(PIN 5) > SEND(IN)
>SECONDARY 15 ¢ 3 2 SECONDARY DATA
RTS N SCF (PINI2) > CARRIER DETECT (IN)
SECONDARY , 47 19 SECONDARY REQUEST DCE Interface
9) &——m>
< DCD SCA (PINI9) >~ 70 SEND (0UT) Signals fo and
from Peripheral
l> DTR 14 CE(PIN 22) ¢ 5 22 RING INDICATOR (IN)
NOTE: Some DTE
DATA SET R IN .
CC(PINB) ¢«—m)6— SET READY (IN) peripherals may not
provide for all the .
RI .9 20 DATA TERMINAL . .
PR (—) signal lines shown.
<} < CD (PIN 20) > READY (OUT) aner ¥
< DSR Qo
48 7
SIGNAL € —< AB(PIN7) ¢——— SIGNAL
GROUND GROUND
24 |
SAFETY — ¢ AA(PIN|) 6—— > >—_| SAFETY
GROUND < A - L Grounp
—D&—«ﬂr«m USED
INTERFACE FEMALE FEMALE
REAR PANEL RS-232¢C RS-232C
CONNECTOR !NTERFACE DTE PERIPHERAL /
CABLE CONNECTOR CHASSIS CONNECTOR

DCE Cable Diagram

RS-232 Serial Interface

HP 98644 Interface Differences

The HP 98644 RS-232 Serial Interface is nearly identical to the HP 98626 RS-232 Serial Interface.
This section describes the few differences between them.

Hardware Differences
The differences in the hardware of the two cards occur in the following areas:

e Card ID register contains 66 (rather than 2).

o There are no optional driver and receiver lines.

e There are fewer configuration switches (there are no Baud Rate or Line Control switches).
e There is a 25-pin coverplate connector (instead of 50).

o There are different cables available.

Card ID Register
The default card ID for the HP 98644 interface is 66. (The card ID of the 98626 is 2.)

Note

HP 98644 cards are logged as HP 98626 interfaces while booting
machines with Boot ROM 3.0 (and earlier versions). This is not a prob-
lem, because the Pascal 3.0 VO system recognizes the 98644 card
properly.

You can also change the card ID to 2 (to make it look like a 98626) by
cutting a jumper on the card. See the 98644’s installation manual for
details.

See the following Pascal Differences section for details of how to read this register with software.

Optional Driver Receiver Circuits
On the 98626 interface, there are two optional driver lines (OCD3 and OCD4) and two optional
receiver lines (OCR2 and OCR3). These lines are not implemented on the 98644 interface.

Configuration Switches

The 98644 card does not implement the following configuration switches on the card:

e Baud Rate
e Line Control (character length, parity, etc.)

These operating parameters are set to defaults that match the 98626 card by the Pascal system. See
the subsequent Pascal differences section for default values.

181

182 RS-232 Serial Interface

Coverplate Connector

The connector on the 98644 interface’s coverplate is set up for DTE (Data Terminal Equipment)
applications; it has a 25-pin, female, D-series connector (the connector on the 98626 is a 50-pin
connector). Here are the pin designators for the connector.

Pin

Signal Description

O 00 2 O 1 kW N -

NN NN DNDND = = o 2 e e e e
G P W= OO o0 WN = O

Cables

Safety Ground
Transmitted Data
Received Data
Request to Send
Clear to Send
Data Set Ready
Signal Ground
Carrier Detect
not used

not used

not used

not used

not used

not used

not used

not used

not used

not used

not used

Data Terminal Ready
not used

Ring Indicator
Data Rate Select
not used

not used

You can use standard RS-232C compatible cables, as long as the signal lines are connected
properly. Here are cables available from HP Computer Supplies Operation.

HP Product Number Description
13242N Modem cable {male to male)
13242G DTE cable {male to male, with pins 2 and 3
reversed)
13242H DCE cable {male to female, with pins 2 and 3

reversed)

RS-232 Serial Interface 183

Pascal Differences

The only differences between programming these two interfaces with the Workstation Pascal
System are in the register definitions given in this section. See the Status and Control Registers
section and the Serial Interface Hardware Registers section for further details.

Card ID Register
The card ID register is IOSTATUS register 0. It will contain a value of 66 if the interface is a 98644.

(It will contain 2 if the card ID jumper has been cut.) If the REMOTE jumper has been removed,
then the value returned will be 194 (=128 + 66) or 130 (=128 +2).

The card ID can also be determined by reading IOREAD_BYTE register 1.

Optional Driver/Receiver Registers

Since there are no optional driver or receiver lines on the 98644 interface, IOSTATUS and
IOCONTROL register 7 are not implemented for this card. (IOSTATUS register 7 always contains
0, and IOCONTROL register 7 is a no-op.)

The hardware register bits that are not defined because of this difference are as follows: bits 7 and 6
of IOWRITE_BYTE and register 5 (for writing OCD3 and OCD4, respectively); bits 7 and 6 of
IOREAD_BYTE and register 5 (for reading OCD3 and OCD4, respectively); bits 5 and 4 of
IOREAD_BYTE register 5 (for reading OCR2 and OCRS3, respectively).

Baud Rate and Line Control Registers
Since there are no switches to set the default baud rate and line control parameters, the Pascal
system sets them to its own default values, which are as follows:

Parameter Default value
Baud rate 2400 baud
Character length 8 bits/character
Stop bits 1 stop bit
Parity Parity disabled
Parity type Odd parity

IOSTATUS registers 3 (baud rate) and 4 (line control) are still implemented for the 98644 interface
and retain their original definitions. However, the hardware registers no longer contain any baud
rate and line control information (since there are no switches to read). The hardware registers
affected are IOREAD_BYTE register 5 (bits 3 thru) and register 7 (bits 7 thru 0), respectively.

You can still program the baud rate and line control parameters by writing to IOCONTROL register
3 (baud rate) and IOCONTROL register 4 (character format). These registers correspond to
IOWRITE_BYTE register 5 (bits 3 thru 0) and register 23 (bits 5 thru 0), respectively.

184 RS-232 Serial Interface

Model 216 and 217 ¢

Built-In Interface Differences

This section describes the differences between the HP 98626 Serial interface and the built-in Serial
interface in the Model 216 (HP 9816) and 217 (HP 9817) Computers.

Hardware Differences
The hardware differences between the built-in serial interfaces and the 98626 interface occur in the
following areas:

® There are no Select Code switches (the Select Code is hard-wired to 9).

® There are no Interrupt Level switches (the Interrupt Level is hard-wired to 3).

® There are no Status Line Disconnect switches (the modem status lines are always monitored;
you cannot throw switches to make them “ALWAYS ON” like you can with with the 98626
interface).

Pascal Differences

There are no differences between programming these two interfaces with the Workstation Pascal
System.

Chapter

13

The GPIO Interface

Introduction

This chapter should be used in conjunction with the HP 98622A GPIO Interface Installation
manual. The best way to use these two documents is to read this chapter before attempting
to configure and connect the interface according to the directions given in the installation
manual. The reason for this order of use is that knowing how the interface works and how it is
driven by Pascal programs will help you to decide how to connect it to your peripheral device.

The HP 98622 Interface is a very flexible parallel interface that allows you to communicate with
a variety of devices. The interface sends and receives up to 16 bits of data with a choice of
several handshake methods. The interface is known as the General-Purpose Input/Output
(GPIO) Interface. This chapter describes the use of the interface’s features from Pascal pro-
grams.

Computer

i ‘Museum

185

186 The GPIO Interface

Interface Description ‘

The main function of any interface is to transfer data between the computer and a peripheral
device. This section briefly describes the interface lines and how they function. Using the lines
from Pascal programs is more fully described in subsequent sections.

The GPIO Interface provides 32 lines for data input and output: 16 for input (DI0 — DI15)
and 16 for output (DO0 — DO15).

’

Parallel Data Qut
16 >

Parallel Data In

K 16
o .
Data and Handshake g Sh'e'geq Cable
Control GPIO g to a Device
Backplane Interface 4 8
Connetor Hardware Special Purpose £ 'l -l
6 3

A

Grounds
7

PANVANAN

=
=
=

Block Diagram of the GPIO Interface

Three lines are dedicated to handshaking the data from source to destination device. The
Peripheral Control line (PCTL) is controlled by the interface and is used to initiate data trans-
fers. The Peripheral Flag line (PFLG) is controlled by the peripheral device and is used to signal
the peripheral’s readiness to continue the transfer process.

Four general-purpose lines are available for any purpose that you may desire; two are
controlled by the computer and sensed by the peripheral (CTLO and CTL1), and two are
controlled by the peripheral device and sensed by the computer (STIO and STI1).

Both Logic Ground and Safety Ground are provided by the interface. Logic Ground provides
the reference point for signals, and Safety Ground provides earth ground for cable shields.

The GPIO Interface 187

Interface Configuration

This section presents a brief summary of selecting the interface’s configuration-switch settings.
It is intended to be used as a checklist and to begin to acquaint you with programming the
interface. Refer to the installation manual for the exact location and setting of each switch.

Interface Select Code

In Pascal, allowable interface select codes range from 8 through 31; codes 1 through 7 are
already used for built-in interfaces. The GPIO interface has a factory default setting of 12, which
can be changed by re-configuring the “‘SEL. CODE” switches on the interface.

Hardware Interrupt Priority

Two switches are provided on the interface to allow selection of hardware interrupt priority. The
switches allow hardware priority levels 3 through 6 to be selected. Hardware priority deter-
mines the order in which simultaneously occurring interrupt events are processed.

Data Logic Sense

The data lines of the interface are normally low-true; in other words, when the voltage of a
data line is low, the corresponding data bit is interpreted to be a 1. This logic sense may be
changed to high-true with the Option Select Switch. Setting the switch labeled “DIN” to the
0’ position selects high-true logic sense of Data In lines. Conversely, setting the switch labeled
“DOUT” to the ‘1 position inverts the logic sense of the Data Out lines. The default setting is
“1” for both.

Data Handshake Methods

This section describes the data handshake methods available with the GPIO Interface. A gener-
al description of the handshake modes and clock sources is given first. A more detailed discus-
sion of each handshake is then given to allow you to choose the handshake mode, clock source,
and handshake-line logic sense that is compatible with your peripheral device.

As a brief review, a data handshake is a method of synchronizing the transfer of data from the
sending to the receiving device. In order to use any handshake method, the computer and
peripheral device must be in agreement as to how and when several events will occur. With
the GPIO Interface, the following events must take place to synchronize data transfers; the first
two are optional.

e The computer may optionally be directed to perform a one-time “OK check’” of the
peripheral before beginning to transfer any data.

e The computer may also optionally check the peripheral to determine whether or not the
peripheral is “‘ready” to transfer data.

e The computer must indicate the direction of transfer and then initiate the transfer.

e During output operations, the peripheral must read the data sent from the computer while
valid; similarly, the computer must clock the peripheral’s data into the interface’s Data In
registers while valid during input operations.

e The peripheral must acknowledge that it has received the data.

188 The GPIO Interface

Handshake Lines

The GPIO handshakes data with three signal lines. The Input/Output line, 1/0, is driven by
the computer and is used to signal the direction of data transfer. The Peripheral Control line,
PCTL, is also driven by the computer and is used to initiate all data transfers. The Peripheral
Flagline, PFLG, is driven by the peripheral and is used to acknowledge the computer’s requests
to transfer data.

Handshake Logic Sense

Logic senses of the PCTL and PFLG lines are selected with switches of the same name. The
logic sense of the I/0 line is High for input operations and Low for output operations: this logic
sense cannot be changed. The available choices of handshake logic sense and handshake
modes allow nearly all types of peripheral handshakes to be accommodated by the GPIO
Interface.

Handshake Modes

There are two general handshake modes in which the PCTL and PFLG lines may be used to
synchronize data transfers: Full-Mode and Pulse-Mode Handshakes. If the peripheral uses
pulses to handshake data transfers and meets certain hardware timing requirements, the Pulse-
Mode Handshake may be used. The Full-Mode Handshake should be used if the peripheral
does not meet the Pulse-Mode timing requirements.

The handshake mode is selected by the position of the “HSHK’’ switch on the interface, as
described in the installation manual. Both modes are more fully described in subsequent
sections.

Data-In Clock Source

Ensuring that the data are valid when read by the receiving device is slightly different for output
and input operations. During outputs, the interface generally holds data valid while PCTL is in
the Set state, so the peripheral must read the data during this period. During inputs, the data
must be held valid by the peripheral until the peripheral signals that the data are valid (which
clocks the data into interface Data In registers) or until the data is read by the computer. The
point at which the data are valid is signalled by a transition of PFLG. The PELG transition that is
used to signal valid data is selected by the ‘“CLK’ switches on the interface. Subsequent
diagrams and text further explain the choices.

Peripheral Status Check

Many peripheral devices are equipped with a line which is used to indicate the device’s current
“OK-or-Not-OK’’ status. If this line is connected to the Peripheral Status line (PSTS) of the
GPIO Interface, and the computer determines the status of the peripheral device by checking
the state of PSTS. The logic sense of this line may be selected by setting the “PSTS” switch.

The computer performs a check of the Peripheral Status line (PSTS) before initiating any
transfers as part of the data-transfer handshake. If PSTS indicates ‘‘Not OK,” an error is
reported with ioe_result set to 21; otherwise, the transfer proceeds normally. This feature is
available with both Full-Mode and Pulse-Mode Handshakes. See “Using the PSTS Line” for
further details.

The GPIO Interface

Full-Mode Handshakes

The Eull-Mode Handshake mode is described first for two reasons. The first reason is that the
PCTL and PFLG transitions must always occur in the order shown, so only one sequence of
peripheral handshake responses needs to be shown. Secondly, this mode will generally work
when the Pulse-Mode Handshake may not be compatible with the peripheral’s handshake
signals. The Pulse-Mode Handshake is described in the next section.

The following diagrams show the order of events of the Full-Mode output and input Hand-
shakes. These drawings are not drawn to any time scale; only the order of events is important.
The /O line has been omitted to simplify the diagrams; in all cases, it is driven Low before any
output is initiated by the computer and High before any input is initiated.

0 ——— i} ! ——
L First Data Second Data
DataOut ...~ Is Valid Is Valid

1

< PCTL___ | . PCTL___|
Delay Delay
Clear —& T { =
|
PCTL | |
Set | {)
| | | |
| | | |
} | | !
Busy | | : ! 14—
PFLG L | !
|
Ready —© : ‘l { = : i
			I	
10 1 t2 3 t4 15

Diagram of Full-Mode OUTPUT Handshakes

With Full-Mode Handshakes, the computer first checks to see that the peripheral device is
Ready before initiating the transfer of each byte/word (10); with this handshake mode, the
peripheral indicates Ready when both PCTL is Clear and PFLG is Ready. If the peripheral
does not indicate Ready, the computer waits until a Ready is indicated.

When a Ready is sensed, the computer places data on the Data Out lines (t1) and drives the /O
line Low (not shown). The interface then waits the PCTL Delay time before initiating the
transfer by placing PCTL in the Set state (t2).
£

The peripheral acknowledges the computer’s request by placing the PFLG line Busy (t3); this
PFLG transition automatically Clears the PCTL line (t4). However, the computer cannot inti-
tate further transfers until the peripheral is Ready with Full-Mode Handshake; the peripheral is
not Ready until both PCTL is Clear and PFLG is Ready (t5).

The data on the Data Out lines is held valid from the time PCTL is Set until after the peripheral
indicates Ready. The peripheral may read the data any time within this time period.

189

190 The GPIO Interface

The PCTL and PFLG lines are used in the same manner in Full-Mode input Handshakes as in
Full-Mode output Handshakes. However, there are three options available as to when the
peripheral’s data may be valid: at the Ready-to-Busy transition of PFLG (BSY clock source), at
the Busy-to-Ready transition of PFLG (RDY clock source), and when the Data In lines are read
with an IOSTATUS function (READ clock source). The first two of these options are shown in
the following two diagrams.

|
!
Data Must Be :

|
|
I
!
| Valid Here ‘ﬁ—'l —
PFLG | : |
Ready —eo lr —) :
' ! Settling '
I ! o S N
| | Time :
|
T

Data \Iialid::_,
[

|
0 1 2 3 4 5

Full-Mode Input Handshake with BSY Clock Source

As with Full-Mode output Handshakes, the computer first checks to see if the peripheral is
Ready (t0); since PCTL is Clear and PFLG is Ready, the handshake may proceed. The compu-
ter places the I/O line in the High state (not shown) and then initiates the handshake by placing
PCTL in the Set state (t1).

With the “BSY" clock source, the PFLG transition to the Busy state clocks the peripheral’s data
into the interface’s Data-In registers; consequently, the peripheral must place data on the
Data-In lines (t2), allowing enough time for the data to settle before placing PFLG in the Busy
state (t3). This PFLG transition to the Busy state automatically Clears PCTL (t4). The next
handshake may be initiated when PFLG is placed in the Ready state by the peripheral (t5).

The GPIO Interface

Clear ——6—— { —
|
PCTL :
set | | ! =
! |
| | Data Must Be
Lo Valid Here
I l
Busy | | -
|
PFLG | I|
i
Ready —& '. 1 ¢ b
i
|
[
|

" |‘S.eming_'
| Time
|

Data In

Full-Mode Input Handshake with RDY Clock Source

As with other Full-Mode Handshakes, the computer first checks to see if the peripheral is ready
(t0). Since PCTL is Clear and PFLG is Ready, the computer may drive the I/O line High (not
shown) and initiate the handshake by placing PCTL in the Set state (t1).

The peripheral may acknowledge by placing PFLG Busy (t2), which automatically Clears PCTL
(t3). Unlike the previous example, this transition does not clock data into the interface Data-In
registers. With the “RDY”’ clock source, the peripheral must place the data on the Data-In lines
(t4), allowing enough time for the data to settle before placing PFLG in the Ready state (t5).
The computer may then initiate a subsequent transfer.

Pulse-Mode Handshakes

The following drawings show the order of handshake-line events during Pulse-Mode Hand-
shakes. Notice that the main difference between Full-Mode and Pulse-Mode Handshakes is
that the PFLG is not checked for Ready before the computer initiates Pulse-Mode Hand-
shakes; the computer may initiate a subsequent data transfer as soon as the PCTL line is
Cleared by the Ready-to-Busy transition of PFLG.

Two cycles of data transfers are shown in these diagrams to illustrate that the computer need
not wait for the PFLG = Ready indication with the Pulse-Mode Handshake. The first cycle
shown in each diagram is a typical example of the first transfer of an 1/O statement. The dashed
PFLG line at the beginning of the second cycle shows that computer disregards whether or not
PFLG is in the Ready state before the next transfer is initiated.

This absense of the PFLG check allows a potentially higher data-transfer rate than possible
with the Full-Mode Handshake; however, in some cases, it also places additional timing restric-
tions on the peripheral’s response time, as described in the text.

191

192

The GPIO Interface

-1 —— -t b
First Data Second Data
Data Out Is Valid :>< Is Valid

PCTL PCTL
Delay Delay

Clear ¢ —
PCTL
Set | —_

Busy
PFLG

|
|
I
|
|
|
Ready —t | |l
.
|

3 w4

|
I
!
|
I
I
|
!
I
|
|
2 t5

1 t

Busy Pulses With Pulse-Mode Output Handshake

The PFLG line is not checked for Ready before the computer drives the I/O line Low (not
shown) and places data on the Data-Out lines (t1). A PCTL Delay time later, the interface
initiates the transfer by placing PCTL in the Set state (t2).

The peripheral acknowledges by placing PFLG Busy (t3); this transition automatically Clears
PCTL (t4). The dashed PFLG line shows that the computer may initiate another transfer any
time after PCTL is Clear, possibly before the peripheral places PFLG in the Ready state (t5).

The Busy Pulse shown in the diagram is identical to the PFLG’s response during the previous
Full-Mode handshake; however, the Pulse-Mode Handshake works properly with this type of
pulse only if the peripheral reads the data by the time PCTL is Clear (data should be read
between t2 and t3). If the peripheral has not read the data by the time that PCTL is Clear, it
might erroneously read the data for the second transfer, since the computer might have already
changed the data and initiated the second transfer.

The GPIO Interface

Clear JE—
PCTL ‘
Set] f

! |
t1 ©2 13

Data In
| Settling Settling
ll ‘-'_ Time _’l ! ~ " Time |
Bus ' | o AP
y | | Data Must 7| N Data Must 7]
PFLG | | Be Valid | | Ei?a Valid
| ! re
Ready ! | Here { L
! I
I I |t
4

Busy Pulses With Pulse-Mode Input Handshakes (BSY Clock Source)

The computer does not have to check for PFLG to be Ready before placing I/O in the High state
(not shown) and initiating the transfer by placing PCTL in the Set state (t1).

The peripheral must place data on the Data In lines (t2), allowing enough tome for the data to
settle before placing PFLG in the Busy state (t3). This Ready-to-Busy transition of PFLG
automatically Clears PCTL. The dashed PFLG signal shows that the next transfer may be
initiated before PFLG indicates Ready.

193

194 The GPIO Interface

Clear 1 —
PCTL ‘ r
Set ~ £ S f— f — f :

Data In :
: Settling_> Settling
| Time ~“Time
I . [[¢ .
Busy 1/ | Data Must—~" S B Data Must"T
PFLG | : Be Valid | Be Valid
Here 4 Here
Ready | —— Ly p —_cr |
| | | |
| ! | |
t1 t2 13 4

Busy Pulses With Pulse-Mode Input Handshakes (RDY Clock Source)

The computer does not have to check for PFLG to be Ready before placing I/O in the High state
(not shown) and initiating the transfer by placing PCTL in the Set state (t1).

The peripheral must place data on the Data In lines (t2), allowing enough time for the data to
settle before placing PFLG Busy (t3). This requirement may seem contradictory, since the
clock source is the Busy-to-Ready transition of PFLG. However, with Pulse-Mode handshakes,
the peripheral is assumed to be Ready whenever PCTL is Clear; consequently, the computer
may read the data any time after PCTL is cleared by the Ready-to-Busy transition of PFLG. The
PFLG transition to Busy Clears PCTL (t4), after which the peripheral may place PFLG Ready
(t5).

Note

In order to use this type of pulse with the Pulse-Mode Handshake
and RDY clock source, the peripheral must adhere to the stated
timing restrictions.

The GPIO Interface

— — —— — —
First Data Second Data

Data Out s Valid s Valid
1 —_— — — b T
‘ . PCTL PCTL
Delay I‘_ Delay -
Clear : —_—
PCTL ! l—
Set }) — b | ¥ T
| | |
[| [
| | :
] J i J)
Busy] T LR X
PFLG ! .
| |1
Ready : — : S O
| |
| |
©2 13 14 5

|
|
|
|
|
|
t1

Ready Pulses With Pulse-Mode Output Handshakes

The PFLG line is not checked for Ready before the computer drives the I/O line Low (not
shown) and places data on the Data Out lines (t1). A PCTL Delay time later the interface
initiates the transfer by placing PCTL in the Set state (t2).

The peripheral later acknowledges by placing PFLG in the Ready state (t3). The handshake is
completed by the peripheral placing PFLG in the Busy state (t4), which automatically Clears
PCTL (t5).

If the peripheral uses the type of Ready pulses shown, either the Pulse-Mode handshake with
default PFLG logic sense or Full-Mode handshake with inverted PFLG logic sense may be used.
With this type of pulse, the data being output may be read by the peripheral as long as PCTL is
Set.

195

196 The GPIO Interface

Computer May Computer May
Clear Read Data Here - Read Data Here -
PCTL
Set — f | — f
I
!
} |
| |
0 - . l
ata In P valid |
| e |
| |
i |
|| Sgtthng__ |
| Time]
| |
Busy : | I
PFLG | | !
Ready — } :
} [: |
' |
t1 t2 3 1“4 t5

Ready Pulses With Pulse-Mode Input Handshakes (BSY Clock Source)

The computer does not have to check for PFLG to be Ready before placing I/O in the High state
(not shown) and initiating the transfer by placing PCTL in the Set state (t1),

The peripheral acknowledges by placing PFLG in the Ready state (t2). The peripheral must
place data on the Data In lines (t3), allowing enough time for the data to settle before placing
PFLG in the Busy state (t4). With this type of pulse, events t2 and t3 may also occur in the
reverse order.

The Ready-to-Busy transition of PFLG automatically Clears PCTL (t4). The dashed PFLG
signal shows that the state of PFLG is not checked before the computer initiates a subsequent
transfer.

The GPIO Interface 197

Clear
PCTL

Set |

—
Data
Data In Valid
l ll
| ,Settling__| | < Settling
: Time { Time
Busy t — — — f f —
| | Data Mus | 1 Data Must~""
PFLG : | Be Valid ||] Be Valid Here
Ready | |lHere S 5 | R s L
I | i P
| | | ol
t1 2 13 t4 5

Ready Pulses With Pulse-Mode Input Handshakes (RDY Clock Source)

The computer does not have to check for PFLG to be Ready before placing I/O in the High state
(not shown) and initiating the transfer by placing PCTL in the Set state (t1).

The peripheral must place data on the Data In lines (t2), allowing enough time for the data to
settle before placing PFLG Ready (t3). The peripheral places PFLG in the Busy state (t4), which
automatically Clears PCTL (t5).

198 The GPIO Interface

Interface Reset

The interface should always be reset before use to ensure that it is in a known state. All
interfaces are automatically reset by the computer at certain times: when the computer is
powered on, when the key is pressed, and at other times including when the or
keys are pressed and when IOINITIALIZE and IOUNINITIALIZE are executed. The
interface may be optionally reset at other times under control of Pascal programs. Two exam-
ples are as follows:

IORESET(12) 3

SC:=123
IOCONTROL (Sc +1) 3

The following action is invoked whenever the GPIO Interface is reset:
® The Peripheral Reset line (PRESET) is pulsed Low for at least 15 microseconds.

® The PCTL line is placed in the Clear state.
¢ If the DOUT CLEAR jumper is installed, the Data Out lines are all cleared (set to logic 0).

The following lines are unchanged by a reset of the GPIO Interface:

® The CTLO and CTL1 output lines.
® The [/O line.
® The Data Out lines, if the DOUT CLEAR jumper is not installed.

The GPIO Interface

Outputs and Inputs through the GPIO

This section describes technicues for outputting and inputting data through the GPIO Interface.
The mechanism by which data are communicated are the electrical signals on the data lines.
The actual signals that appear on the data lines depend on three things: the data currently being
transferred, how this data is being represented, and the logic sense of the data lines.

Brief explanations of ASCII and internal data representation are given in Chapter 4. This
section gives simple examples of how several representations are implemented during outputs
and inputs through the GPIO Interface.

ASCII and Internal Representations

When data are moved through the GPIO Interface, the data are generally sent one byte at a
time, with the most significant byte first. However, there are three exceptions; data are
represented by words when READWORD and WRITEWORD are used, and when TRANSFER-
WORD is used and when numeric data are moved with reads of IOSTATUS register 3 and
writes to IOCONTROL register 3. The following diagrams illustrate which data lines are used
during byte and word transfers.

GPIO Peripheral
Interface __ Device

o1 50;,_ DO8 Upper 8 bits are not used
DI15 — DI8 (all 0’s during byte transfers).

, .

DO7 — DOO
or Only lower 8 bits are used.
D17 — DIO

had

Diagram of Byte Transfers

GPIO Peripheral
Interface /g Device

Upper 8 bits are used only when:

D015 —DO8 1. Writing to IOCONTROL register 3
or (reading from I0STATUS register 3).
DI15 —DI8 2. When READWORD,

WRITEWORD, and TRANSFER_
WORD are used.

N

)

Do7 (; DGO Lower 8 bits are used for ALL data
DI7 — DI0 transfers.

NS

Diagram of Word Transfers

199

200 The GPIO Interface

Example - Output Data Bytes

The following diagram shows the actual logic signals that appear on the least significant data
byte (DO7 thru DOO) as the result of the corresponding output procedure; the most significant
byte is always zeros with byte transfers. The actual logic levels depend on how the data lines are
configured (i.e., as Low-true or High-true).

Signal Line ASCII

DO7 DOO Char.
WRITESTRINGLN(1Z,'ASCII') 0100 0001 A
0101 0011 5
0100 0011 C
0100 1001 I
0100 1001 I
0000 1101 ¢cg
0000 1010 ¢

Signal Line ASCII
DO7 DOO Char.

WRITECHAR(1Z, B’)3 0100 0010 B

Example - Input Data Bytes

The following diagrams show the variable values that result from the logic signals being present
during the corresponding input procedures on the least significant data byte (DI7 thru DIQ): the
most significant byte is always ignored with byte transfers. The actual logic levels required
depend on how the data lines are configured (i.e., as Low-true or High-true).

Signal Line ASCII
DI7 DIO Char.

READCHAR (120} s 0100 0001 ral
WRITELN(*VYalue entered=',0RD(c))

Value entered= GBS

Signal Line ASCII

DI7 DIO Char.
READSTRING(12:Str) 3 0111 0010 r
WRITELN (*Strind entered=’,Str)} 0111 0101 i
0110 1111 0
String entered= ruok? 0110 1011 K
0011 1111 7
0000 1010 ¢

The GPIO Interface

Example - Output Data Words

The following diagrams show the actual signals that appear on the Data Out lines as a result of
the corresponding Pascal procedures and numeric values. All numeric values are first rounded
to an INTEGER value before being placed on the Data Out lines. The actual logic level that
appears on each line depends on how the lines have been configured (i.e., as High-true or
Low-true).

Signal Lines
DO15 DO8 DO7........ DO0

Word:=3%#256+33 0000 0011 0000 0011
WRITEWORD(1Zsword) 3

Signal Lines
DO15 DO8 DO7........ DOO

Duteput_16_bits:=-13 1111 1111 1111 1111
IOCONTROL(12+30utpPut_16.bits) 3

It is important to note that no output handshake is executed when the IOCONTROL procedure
is executed; only the states of the Data Out lines and the 1/O line are affected. Handshake
sequence, if desired, must be performed by Pascal procedures in the program.

Example - Input Data Words
The following diagrams show the variable values that result from entering the logic signals on
the Data In lines. Note that all sixteen-bit values entered are interpreted as INTEGER values.

Signal Lines
DI15 DI8 DI7 DIO

0000 0001 1111 1111

READWORD(1Z2Input_16.bits) 3
WRITELN('INTEGER entered='s3ilnPut_1B_Bits)3

INTEGER entered= 511

Signal Lines
DI15 DI8 DI7 DIO

1111 1110 0000 0000

H:=I0STATUS(12,3) 3
WRITELN(INTEGER entered="'4+X)3

INTEGER entered= -812

It is important to note that no enter handshake is performed when the IOSTATUS function is
executed. The only actions taken are the /O line being placed in the High state and the Data In
registers being read. If an input handshake is required, it must be performed by the Pascal
program.

201

202 The GPIO Interface

Using the Special-Purpose Lines ‘

Four special-purpose signal lines are available for a variety of uses. Two of these lines are
available for output (CTLO and CTL1), and the other two are used as inputs (STIO and STI1).

Driving the Control Output Lines

Setting bits 0 and 1 of GPIO IOCONTROL register 2 places a logic low on CTLO and CTL1,
respectively. The definition of this IDOCONTROL register is shown in the following diagram.

Control Register 2 Peripheral Control
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Set CTLA1 Set CTLO
Not Used (1 = Low; | (1 = Low;
0 = High) | @ = High)

Value = 128 Value = 64 | Value = 32 | Value = 16 | Value = 8 | value=4 | value=2 | Value = 1

CHO:=03
CH1l:=13
IOCONTROL (1242 sCH1%2+CHO) 3

As indicated in the diagram, setting a bit in the register places the corresponding line Low, while
clearing the bit places a logic High on the line. The logic polarity of these signals cannot be
changed. The signal remains on these lines until another value is written into the IOCONTROL
register, and Reset has no effect on the state of either line.

Interrogating the Status Input Lines

The state of both status input lines STIO and STI1 are determined by reading bits 0 and 1 of
IOSTATUS register 5, respectively. A logic *“1”" in a bit position indicates that the corresponding
line is at logic Low, and a *‘0’’ indicates the opposite logic state. This logic polarity cannot be
changed. The definition of GPIO IOSTATUS register 5 is shown below.

Status Register 5 Peripheral Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 PSTS EIR ST STIO

Ok Line Low Line Low Line Low
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value =8 | Value = 4 Value =2 | Value = 1

The GPIO Interface 203

| P_status:=I0STATUS(1Z+5) %
§1i0:=BIT_SET(P_status:0)3i
Stil:=BIT_SET(P_status:l)}

Reading this register returns a numeric value that reflects the logic states of these lines at the
instant the computer reads the interface lines; the state of these lines are not latched by any

internal or external event.

204 The GPIO Interface

GPIO Status and Control Registers

Status Register 0

Control Register 0

Status Register 1
Most Significant Bit

Card identification

3

Writing any numeric value into this register resets the interface.
Interrupt and DMA Status

Least Significant Bit

Bit 7 Bit 6 Bit 5 r Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Interrupts | An Interrupt Interrupt Burst- Word- DMA DMA
Are Is Currently Level Switches Mode Mode Channel 1 | Channel 0
Enabled | Requested (Hardware Priority) DMA DMA Enabled
Value = 128 Value = 64 | Value = 32 | Value = 16 Value =8 | Value=4 | Value=2 | Value = 1

Control Register 1

Status Register2

Control Register 2
Most Significant Bit

Writing any numeric value into this register sets the PCTL line true.

Not implemented

Peripheral Control

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 —!
Set CTLA1 Set CTLO
Not Used (1 = Low; | (1 = Low;
0 = High) | @ = High)
Value = 128| Value = 64 | Value = 32 | Value = 16 r Value=8 | Value=4 | Value=2 | Value = 1
Status Register 3 Data In (16 bits)
Control Register 3 Data Out (16 bits)
Status Register 4 1 = Ready: 0 = Busy
Status Register 5 Peripheral Status
Most Significant Bit Least Significant Bit
]
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 PSTS EIR ST STIO
Ok Line Low Line Low Line Low
Value = 128| Value = 64 | Value = 32 | Value = 16 Value =8 | Value=4 | Value=2 | Value = 1

The GPIO Interface

Summary of GPIO IOREAD_BYTE
and IOWRITE_BYTE Redgisters

This section describes the GPIO Interface’s IOREAD_BYTE and IOWRITE_BYTE registers.
Keep in mind that these registers should be used only when you know the exact consequences
of their use, as using some of the registers improperly may result in improper interface behavior.
If the desired operation can be performed with IOSTATUS or IOCONTROL, you should not
use IOREAD_BYTE or IOWRITE_BYTE.

GPIO IOREAD_BYTE Registers

Register 0—Interface Ready
Register 1—Card Identification
Register 2—Undefined
Register 3—Interrupt Status
Register 4—MSB of Data In
Register 5—LSB of Data In
Register 6—Undefined
Register 7—Peripheral Status

IOREAD_Byte Register 0 Interface Ready

A 1 indicates that the interface is Ready for subsequent data transfers, and O indicates Not
Ready.

IOREAD_BYTE Redgister 1 Card ldentification
This register always contains 3, the identification for GPIO interfaces.

IOREAD_BYTE Register 3 Interrupt Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Interrupts | An Interrupt Interrupt Burst- Word- DMA DMA
Are Is Currently Level Switches Mode Mode Channel 1 | Channel 0
Enabled | Requested (Hardware Priority) DMA DMA Enabled Enabled
Value = 128 Value = 64 | Value = 32 | Value = 16 | Value = 8 | Value=4 | Value=2 | Value =1

IOREAD_BYTE Register 4 MSB of Data In
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DI15 D!14 DH13 DI12 Di11 | Dlo DI9 DI8

Value = 128| Value = 64 | Value = 32 | Value = 16 Value=8 | Value=4 | Value=2 | Value =1

205

206 The GPIO Interface

IOREAD_BYTE Register 5 LSB of Data In
Most Significant Bit

Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit ¢
DI7 Dlé DI5 Dl4 Di3 DI2 DIt DIo

Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value = 4 Value = 2

Value = 1

IOREAD_Byte Register 7

Peripheral Status
Most Significant Bit

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 PSTS EIR sTi STio
Ok Line Low Line Low Line Low

Value = 128/ Value = 64 | Value = 32 Value = 16 | Value=8 | Value =4 | Value = 2 | Value =1

GPIO IOWRITE_BYTE Registers

Register 0 — Set PCTL

Register 1 — Reset Interface

Register 2 — Interrupt Mask ,
Register 3 — Interrupt and DMA Enable
Register 4 — MSB of Data Out

Register 5 — LSB of Data Out

Register 6 — Undefined

Register 7 — Set Control Output Lines

IOWRITE_BYTE Redgister 0

Writing any numeric value to this register places PCTL in the Set state.

IOWRITE_BYTE Register 1

Writing any numeric value to this register resets the interface.

IOWRITE_BYTE Register 2

Most Signiticant Bit

The GPIO Interface

Set PCTL

Reset Interface

Interrupt Mask

Least Significant Bit

Bit 7) Bit 6 \ Bit 5 \ Bit 4 \ Bit 3 l Bit 2 Bit 1 Bit 0
rtace | Enacie
Not Used EIR
Ready Interrupts
Interrupts P
Value = 128| Value = 64 | Value = 32 | Value = 16 \ Value=8 | Value=4 | Value=2 | Value =1

IOWRITE_BYTE Register 3

Most Significant Bit

Interrupt and DMA Enable

Least Significant Bit

Bit 7 Bit 6 Bit 5) Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Enable Enable
Enable Enable
Enable Not Used Burst- Word- DMA DMA
Interrupts Mode Mode Channel 1 | Channel 0
DMA DMA e
Value = 128| Value = 64 | Value = 32 uame - 16 | Value=8 | Value=4 | Value =2 Value =1

207

208

The GPIO Interface

IOWRITE BYTE Register 4

Most Significant Bit

MSB of Data Qut

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DO15 DO14 DO13 DO12 DO11 DO10 DO9 DO8
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value =2 | Value = 1
IOWRITE_BYTE Register 5 LSB of Data Out
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DOO
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value =2 | Value = 1
IOWRITE_BYTE Register 7 Set Control Output Lines
Most Significant Bit Least Significant Bit
7]
Bit 7 Bit 6 Bit 5 [Bit 4 ' Bit 3 r Bit 2 Bit 1 Bit 0
Set CTL1 Set CTLO
Not Used (1 = Low; | (1 = Low:
0 = High) | @ = High)
Value = 128(Value = 64 | Value = 32 | Value = 16 | Value = 8 Value =4 | Value=2 | Value = 1

Chapter

14

System Devices

Introduction

This chapter introduces the SYSDEVS module and the special features available inside most Series
200 Computers. This information will allow you to access almost every feature available inside your
computer including: the beeper, clock, crt, keyboard, type-ahead buffer, key translator, timers, and
powerfail. Earlier releases of the Pascal Language System required importing several different
modules to access these devices. Now you only need SYSDEVS.

The following list explains some of the problems you will encounter if you decide to use the devices
and routines described in this chapter. Be forewarned, these devices were originally intended to be
used only by the operating system and not by application programs. If you write a program which
uses these devices, it may not be transportable to all other Series 200 Computers. It will definitely
not be compatible with previous releases of Pascal.

e Correct use of the system devices requires a familiarity with Pascal and the Pascal Language
System. If you have not programmed in Pascal, do yourself a favor and avoid this chapter until
you have gained some programming experience. It is very easy to ‘‘crash” or “hang’” your
system with the information provided in this chapter.

e Programs which access the internal devices must be very carefully written. Most of the system
features use interrupt service routines (ISR) and variables which are procedures. If your prog-
ram doesn’t run correctly the first time, the operating system may become so confused that
you won’t get a second chance. You will have to re-boot the system and start over.

o If you customize your system, and something goes wrong, do not expect the standard support
services to be able to help you. It is virtually impossible to support something that is unique to
every customer. Special system internals consulting may be available in your area.

e All system devices are not available on all of the Series 200 computers. For example, the
powerfail option is not available on most models. Extensive use of every available feature on
your computer almost guarantees non-transportability to other Series 200 Computers (unless
your programs are extremely well written).

e The programs presented in this chapter will not work with any other operating system, includ-
ing the HP-UX Operating System. Similar capabilities are provided in HP-UX but are accessed
differently.

After reading these warnings, you may wonder why these features are presented at all. The answer
is quite simple. If your computer has these features, you should be able to use them without a
tremendous effort. As a side benefit, some of the information presented in this chapter can be used
to determine the hardware configuration of any Series 200 Computer.

209

210 System Devices

Supported Features

The following Series 200 Computer features are accessed through the SYSDEVS module. While
SYSDEVS provides access to all of these features, not all of them may be present inside your
computer. Tests for the presence of these features are included when possible.

Tone Generator
® Beep with fixed frequency and duration (bell).

® Beep with specified frequency and duration.

Clock
o Elapsed time in hundredths of a second.

® Set and read the date,
® Set and read the time of day.

Timers
® Enquire timer status.

® Set or cancel periodic system interrupt.

® Set or cancel real-time match timer interrupt.
® Set or cancel cyclic timer interrupt.

® Set or cancel delayed timer interrupt.

® Set or cancel non-maskable delayed interrupt (timeout).

CRT
® Toggle alpha screen on and off.

® Toggle graphics screen on and off,

® Interrogate screen parameters.

® Check or set status indicator (run-light)
@ Control of the last line of the CRT.

@ Control of the debugger window:.

® Dump alpha procedure variable.

® Dump graphics procedure variable,

The Keyboard
® Examine keycodes and qualifiers (shift, control, extend).
® Set keystroke auto-repeat rate.
® Set delay before keystroke auto-repeat.
® Keystroke interrupt processing.

Type-ahead Keybuffer
® Control the display of the type-ahead buffer.

® Modify the contents of the keybuffer.
® Control the file system access to the buffer.

Key Translation Services
® Translate keycodes to ASCIHI characters.
® Modify semantic action.

® Specify lookup table.

Rotary pulse generator (The RPG or “knob”)
® Knob interrupt processing.

® Mask knob interrupts.

Powerfail
® Test for presence of battery.

® Send command to powerfail.
® Interrogate powerfail status.

You may have noticed that some of the listed features correspond to actual hardware devices while
others are really pseudo-devices (such as the type-ahead buffer). From SYSDEVS point of view, it
does not matter if a “‘device” corresponds to an actual hardware device. Real devices and pseudo-

devices are treated similarly.

Note

Programs which access these features must be carefully written and
debugged. Any error may ‘“‘crash” the operating system.

System Devices

The SYSDEVS Module

The SYSDEVS module contains the necessary interface text to access most internal devices and
features available on current Series 200 Computers. The primary reasons for creating SYSDEVS
were to unify low-level access to the hardware in the Series 200 Computers and to allow the Pascal
Language System (Workstation) to operate without one or more of these devices present.

By using SYSDEVS and avoiding other modules for accessing your computer’s internal hardware,
your programs will be safer from future changes to the operating system and underlying hardware.
However, no guarantee is made that your program will not require modifications in the future.

SYSDEVS is a standard part of INITLIB and its interface (export) text can be found in the INTER-
FACE file.

The SYSGLOBALS Module

Some of the features provided by the SYSDEVS module use constructs exported by the SYSG-
LOBALS module. Like SYSDEVS, the actual SYSGLOBALS “code” always resides in memory (it
is part of INITLIB) while the interface text can be found in the library named INTERFACE. The
examples in this chapter often import SYSGLOBALS to access useful features and constructs. For
example, the clock uses a packed record that is exported by SYSGLOBALS for the time and date.
If you are not familiar with the SYSGLOBALS module, you can ask the Librarian to list the
interface text.

Previous Module Names

In general, previous versions of the Pascal Language System had individual modules for each
device or feature. Although some of the previous module names still exist in Pascal 3.0, their
interface text has probably changed or no longer exists in the 3.0 version.

If you wrote programs in previous versions of Pascal which imported the BAT, CLOCK, CRT, or
KBD modules, you will find similar functionality in the SYSDEVS module. Not necessarily identical
functionality, but similar functionality. For example, if you imported KBD for the BEEP procedure,
you can just change KBD to SYSDEVS in your program’s import statement. However, if you
imported KBD for manipulating the type-ahead buffer, not only were you very brave, but you will
now have to “re-think’’ your strategy since there is a new interface to the keybuffer. This may not
be as bad as you think. It is now quite easy to manipulate the type-ahead buffer.

For the most part, operations that use the file system are not affected by SYSDEVS (i.e. operations
that use the standard input, output, keyboard, and listing files that appear in the program header).

The Example Programs

All of the example programs found in this chapter are included on the poc: disc supplied with your
system. To save space, the files were stored as type ASCII (“‘.asC” suffix). Your Editor can read
these files but remember to specify the suffix. It is still recommended that you read through the
listings to better understand how the examples work.

Some examples will interract with each other. Example programs whose name ends with the letter
“P” become a permanent part of the system and can only be removed by re-booting the computer
(or modifying the example).

211

212 System Devices

Not all examples given in this chapter will work on all Series 200 Computers. [f you find an example
that will not work on your computer, study it to see what it is trying to do. You may have to make
slight modifications for your particular display or keyboard. For example, if your display has only 50
columns, a long prompt may wrap to the next line. Simply shorten the prompt to fit your display. Of
course, if your computer does not have the necessary hardware, the example progam will probably
fail.

The fact that all examples may not work is not an oversight, it is simply an attempt to keep the
examples as short as possible. Be sure to study all of the examples and text since some examples
use features described in other sections.

As a last resort, if you need assistance contact your Sales and Service office and ask about possible
consulting or training for Pascal “internals’’.

Note
The example programs in this chapter were compiled using a LIBRARY
that contained the source text from the INTERFACE module. If you
have not added INTERFACE to your standard LIBRARY, you must
include the compiler option, $SEARCH ‘CONFIG: INTERFACE. ‘$ at the
start of each example program.

Please do not execute an example program before you read the section where it is listed. Some ‘
examples will change your operating system. If you are having trouble typing the examples into
your computer, you should stop typing and start reading.

System Devices

Interrupt Processing Overview

Many of the features made accessible by SYSDEVS produce hardware interrupts. When a device
interrupts, the operating systern must react to the interrupt in an intelligent manner.

To handle interrupts effectively, the internal architecture of your computer allows seven different
levels (priorities) of interrupts. Most of the devices described in this chapter produce interrupts at the
lowest level (level 1). Other levels are used by other devices and interfaces. For example, if your
system has internal disc drives, they interrupt on level 2. The highest priority (level 7) is usually
reserved for very important purposes (such as the RESET key) since a level 7 interrupt can
“override’ all other levels of interrupts.

When the computer is operating, any interrupt will cause it to stop what it is doing and branch to the
appropriate routine to service the interrupt. After the interrupt has been processed, the computer
resumes the task it was performing before it was interrupted.

If a higher priority interrupt should occur during the processing of an interrupt, the computer stops
what it was doing and starts processing the higher priority interrupt. Only after handling the higher
priority interrupt will the computer resume processing the lower priority interrupt. Thus, a low level
interrupt may go unnoticed during the processing of a high level interrupt.

Installing an additional service routine for levels 2 through 7 requires procedures exported by the
module named ISR. Adding a service routine for most system devices is easier since the SYSDEVS
module exports procedure variables that let you “hook into™ the operating system.

One of the restrictions of interrupt service routines is not being able to detect interrupts at the same
or lower level. For instance, while servicing a timer interrupt, you cannot use a readln statement
since the keyboard also interrupts at the same level. The keyboard interrupt will go unnoticed until
you finish processing the timer interrupt (an exception to this is shown in the Keyboard section).

Unlike normal programs which use the ‘‘user” stack, interrupt processing uses the “‘supervisor”
stack. Since only about 5K bytes are reserved for the supervisor stack, avoid recursive procedures,
excessive procedure calls, large local variables, and passing variables by value within your ISR.
Large global variables and passing large objects by reference do not cause problems. If you
“overflow”” the supervisor stack, unexpected behavior or errors will result (the system will “crash’).

Hooking into Your System

Before trying to access a system feature, it is important to understand the methods used by the
operating system to communicate with these features. Accidentally or intentionally disconnecting a
feature from the operating system may result in unexpected errors or behavior.

There are two maijor classes of devices accessed by SYSDEVS,; those which perform an action
when requested (such as the beeper or the display) and those which actually interrupt the system
(such as the keyboard or a timer). The first class of devices generally has a simple interface and is
invoked by calling the proper procedure. The second class of devices usually has a more complex
interface and is accessed by taking control of the proper “‘hook™.

213

214 System Devices

In general, each device that generates a hardware interrupt has a “*hook” (procedure variable) that
contains the “name” (actually the address) of the procedure in the operating system which can
process the interrupt. The interrupt processing procedure is also called an interrupt handler or
interrupt service routine (ISR). Typical identifiers for these hooks include: KBDISRHOOK, TIMERIS-
RHOOK, and RPGISKHOOK (their type is PROCEDURE and they may have parameters).

When an interrupt occurs, the operating system detects it, determines which device produced the
interrupt, and invokes the proper “hook”. Normally, this hook points to a procedure inside the
operating system which can handle the interrupt. The computer then continues whatever task it was
performing before the interrupt.

If you have been following closely, you may have noticed the best feature of a procedure variable; it
is a variable. You can write your own procedure and replace the operating system’s procedure with
your own. Inside your procedure, you can determine what action to take or you may decide to pass
the interrupt back to the standard operating system procedure.

There are some important things to remember when you are writing interrupt service routines.

® An ISR must be very carefully written (a bad hook can hang your system). Errors occurring
inside an ISR will not get reported by the operating system.

® In general, your routine should only attempt to process the interrupts you are looking for; other
interrupts should be passed on to the operating system. You may think of your ISR as just a
link in a chain.

¢ If you take control of a system hook and your ISR does not remain in memory, unexpected
behavior or errors will result. You can either make your routine a permanent part of the
operating system or restore the hook to its original value before terminating your program.

® Keep your ISRs as short as possible. A slow ISR will affect the overall performance of the
system. An overly large ISR can crash the operating system. Also, don’t forget, your routine
may be interrupted at any time. The value of a system global may suddenly change while you
are processing an interrupt.

® When processing an interrupt, no other interrupts at the same (or lower) level will be detected.
(There is a special “‘hook” that lets you receive keystrokes while inside an ISR.)

When writing a hook, you must include the $5v5PrR0OGS compiler option, however, due to the nature
of most interrupt service routines, they cannot be compiled with the $DEBUGS compiler option.
These restrictions require careful coding and patience on your part. A good idea is to save your files
before executing any ISR program. That way, if something goes wrong, you only have to reboot
your system to try again.

One last point. Your keyboard generates an interrupt every time you press a key. If you “‘take over”
the keyboard hook, be very careful. A bad keyboard hook stops you from communicating with the
computer. Your last resort may be the power switch.

System Devices 215

Enabling Interrupts

Your Series 200 Computer allows the masking (suppression) of timer, keyboard, and special
interrupts. Once a device has been masked, it cannot generate interrupts. Thus, no service routines
will be called.

The MASKOPSHOOK procedure variable is used to contrel the enabling and disabling of interrupts. The
procedure has two parameters, the first is the name of a mask for the device to be enabled while the
second is the name of the mask for the device to be disabled.

The five masks are described below.

KBDMASK This mask prevents the operating system from reacting to keystrokes. While dis-
abled, only the RESET key will have any effect. This mask also disables knob (RPG)
interrupts and all HP-HIL devices.

RESETMASK This mask disables the RESET key.

TIMERMASK This mask stops interrupts caused by the Cyclic, Delay, and Match timers. To use
these interrupts you must also provide an ISR of your own.

PSIMASK This mask prevents the Periodic System Interrupt (PSI). When enabled, the PSI
produces an interrupt every 10 milliseconds. To use these interrupts you must also
provide an ISR of your own.

FHIMASK This mask enables and disables the level 7 “Non-Maskable Interrupt’” (NMI) delay
timer interrupts. Using this level of interrupt requires that an ISR to be linked into the
operating systern using the procedures exported by the module named ISR.

Since each mask has been assigned a positive numeric constant by SYSDEVS, multiple masks can

be specified by adding the constants (as shown below). A zero (0) is specified when no action is to

be taken. For instance, this call will enable the timer interrupts.
call (MASKOPSHOOK s TIMERMASK »0) 3
To disable the timers, reverse the order of the parameters.
call (MASKOPSHODK s s TIMERMASK) 3
The following call will simultaneously enable the keyboard and timers while disabling the reset key.

call(MASKOPSHOOK sKBDMASK+TIMERMASK yRESETMAGK) 3

In general, at power-up, the keyboard and reset key are enabled, while the timers, periodic system
interrupt, and ‘‘fast-handshake” interrupt are disabled.

The following example program will disable the keyboard momentarily.

216 System Devices

$sysProds
prodram MASKi(inPutsoutpPut)i

imPort svsdeuss

gvar
i@ inteder:

bedin
call(maskorshook ;0 ,KBDMASK+RESETMASK) 3 {disable all Kevs?}
writeln(’All Kevs idgnored’);
for i 1= 1 to 500000 doj {wait a few seconds?
call{masKorshook +KBDMASK+RESETMASK »0) 3§ {emnable all kKevs?
writeln(’All Kers restored’)3}

end.,

Once disabled, the keyboard is “‘disconnected”” from the system. If something goes wrong while the
keyboard is masked or if you forget to re-enable the keyboard, the power-switch may be your only
chance for recovery. Even if you are writing a program that will mask the reset key, you might
consider leaving the reset key active until the development work is done.

A better solution is to use the TRv..RECOVER programming extension to ensure that any disabled
device is re-enabled before the program terminates. This technique is used by several of the
examples presented in this chapter.

System Features

The rest of this chapter describes the various features which can be accessed by the SYSDEVS
module. Most features can be accessed in more than one way. That is to say, there are many levels
of access for a given device. Not all possible levels of access will be described in this chapter. In
general, only the “higher” levels are described. By using the highest-level methods of accessing a
feature, your programs are less likely to require changes due to new releases of software or
revisions to the hardware.

Here is a list of the features described in this chapter.

® Beeper ® Keyboard

e Clock ® Type-ahead buffer
® Timers ® Key translator

® Display ® Powerfail

The supporting interface text for all of these features appears at the end of this chapter.

Note

All example programs in this chapter will not work on all Series 200
Computers. Slight modifications may be necessary.

If you have not already done so, please go back and read the section entitled The Example .
Programs.

System Devices 217

The Beeper

If your computer has an internal tone generator, it can be accessed by two procedures exported
from the SYSDEVS module. These procedures did not change from earlier releases, except they
are now found in SYSDEVS.

e The BEEP procedure activates the tone generator at a fixed frequency and duration.

e The BEEPER(freauencys duration) procedure allows you to specify the frequency and dura-
tion of the generated tone.

The actual code that causes the hardware to make a noise is not in SYSDEVS, it is located
elsewhere (currently in the AS04XDVR module). However, by using SYSDEVS to access the
procedures you are less likely to have to change your program in the future.

There are 63 audible tones that can be produced by the BEEPER procedure. The useful frequency
values are 1 through 63. The actual frequency is 81.38 times the passed value. This gives a range of
frequencies from about 81 Hz. to 5200 Hz. Passing a 0 as the frequency produces silence.

Note that if you have the newer style HP-HIL keyboard, its interface has different sound generator
hardware. The actual frequency may be slightly different.

The value of the duration parameter can range from 0 through 255 and is measured in hundredths
of a second (centiseconds). Passing a value of O produces a duration of 256 centiseconds.

Although both parameters to the BEEPER function are declared to be of type bt te, integer express-
ions may be used.

SYSDEVS exports two constants (BFREQUENCY and BDURATION) which can be used with the BEEPER
procedure to produce the same sound as the BEEP procedure.

Beeper Timing

Once started, there is no way to determine if a sound is still being produced. Thus, sending two
commands in a row may only produce one sound. A small wait loop will prevent the commands
from “‘stepping’’ on each other. For example,

prodram BEEP1j
import SYSDEWS)

var 1i: inteders

bedin
beeri {rind the bell}
for i 1= O to 9999 daj {delay tactic?}
beeri {another belll}

end.

218 System Devices

This same method can be used with the BEEPER procedure.

Program BEEPER1(output)j
import SYSDEVSS

var fs z & inteder}

begin
for f 1= 63 downto O do {all frequencies}
begin
beeper(f, 5)3 {short duration}
writeln(round(f#*81,4))} {show fresuencr}
for z := { to 9999 do; {wait a bit}
end?
end,

If you wanted to ensure completion of a previous command, you could use the internal clock or a
timer to count the centiseconds. However, it is probably not a good idea to wait inside an ISR until a
beep is finished; you might miss a keystroke or a timer interrupt.

Intentionally sending commands to the tone generator before it finishes a previous command can
produce interesting sounds as the following program demonstrates.

Pprodram BEEPERZ2%

import SYSDEVYS}

var i ¢ 0,.255%
J 1 intederi

bedin
for i := 128 downto 1 do
bedin
beerer(i mod G4, 10)3 {all freauencies}
for J 1= 1 to (12B-i)#10 do} {strande delavs?
end?

end,

System Devices 219

The Clock

Several procedures and a function are exported by SYSDEVS for accessing the internal clock. The
clock interface has not changed from earlier releases of Pascal.

e The SYSCLOCK function returns an integer representing the number of centiseconds since
midnight.

Of course, if the clock has not been set to the correct time, this function returns the time since
power-up.

The procedures exported for the clock require packed records representing the date and time.
These records are defined in SYSGLOBALS and are also listed later.

@ The 5YSDATE (thedate) procedure returns the packed month, day, and year.
@ The 5YSTIME (thetime) procedure returns the packed hour, minute, and centisecond.

Similar procedures are exported for setting the time and date.

e The SETSYSDATE (thedate) procedure sets the date.
@ The SETSYSTIME (thetime) procedure sets the time of day.

The SYSCLOCK function can be used in timing or ‘‘stopwatch” applications. (Another timer is
described in the Timers section.) The following program prints the value of SYSCLOCK for five
seconds and then quits.

prodram CLOCKi(outPut)i
impaort svsdevssi

var aquittime : intedert

bedin
quittime := svsclock + 300} {quit five seconds from now}
while sysclock < auittime do
write(#1,'Centiseconds: ‘ssysclock)i

end.

In this program the “quittime” is computed by adding 500 centiseconds to the current systime.
Using this method to set a future time would not work for times greater than 24 hours; nor would it
work at midnight when the clock is reset to zero. (At midnight you would need to use the date as
well as the time.) A later exarnple uses such a method.

220 System Devices

The SYSDATE and SYSTIME procedures are used in the following program to read the current
date and time. The program also demonstrates two methods of displaying the formatted date and
time.

Program CLOCKZ(outrPut)j
imPort svysglobals: sysdevs$
const century = 19003

tyre monthtvyre = (nul,JansFebMar Arr+May yJunsJul +Aug+Ser+0ct sNov sDec) |

var date : daterecH
time ! timerecs
mtag ! monthtyres
timestr : stringl[B813

is» davs» monthss vears:
hours minutes, seconds : inteder}

begin
sysdate(date) s {det the date from the clock}
systime(time)s {det the time from the clock}

{rlain} writeln{’pPlain’)}
writeln{date.dav:2+'-‘, date.month:2+'-', dates.vear:2?)}
writeln(timeshourt2s/s /' stime.minute:2, : “yround(time.centisecond/100):2) 3 .

{fancy} writeln(‘fancy’)}
davs := date.dav}
menths := date.monthsj

vyears i= century + date.vear:

mtadg = nuli for i := 1 to months do mtad := succi(mtag)
writeln(dars:2,’ 'smtady’ ‘svears:d)}

hours := time.hours

minutes := time.minutes

seconds := round(time.centisecond/100)}

strurite(timestrslsishours:2,’: /' sminutes:2,’:’s5econds:2)}
for 1 =1 to strlen(timestr) do
if timestr[il = ’ / then timestr[il := 'O’}
writeln(timestr)i
end,

The program prints the date and time as follows.

plain
2- 4-84
15:34: 4
fancy

2 APR 1984
15:34:04

System Devices 221

Setting the time can be accomplished by the SETSYSTIME procedure as demonstrated in the
following program. A similar program with the proper range checking could set the date.

$sysprod$
prodram CLOCK3{inpPutsoutprut)}

imPort svsdlobalsy sysdeuss

var time ! timerecH
tstr : string[2351%
delimit : chars
iy hourss minutess seconds : inteder’

bedin
systime(time)} {dget the time from the clock}
write(‘The current time iss R
uriteln(time.hour:Z:‘:’7time.minute:2":’,round(time.centisecond/lOO):E)i
writelni

write(‘Enter the new time in the form: hhimmiss ‘)3 readln(tstrl}i
if strlen(tstr) > O then
bedin
try
strread{(tstrsl ishourssdelimit minutessdelimitsseconds)s
recover
bedin
writeln(’Unrecodnized time format. Try adain, ')}
‘ writeln(‘For example» try typing: 12:34:56 ‘)3
escare(0)1 {bail out}
ends

it (hours >= 0) and (minutes »>= 0) and (seconds »= 0) then
it (hours ¢ 24) and (minutes ¢ BO) and (seconds < BO) then
bedin
time.hour := hours;i
time,minute := minutess
time.centisecond := seconds * 100}

setsystime(time) s {set the clock?}
end
else
writeln(’Value too larde, Try adain.’)
else
writeln(’Value too small, Try adain,’)3
end}

end.

The program prints the following prompt.

The current time is: 15:34:48
Enter the new time in the form: hhimm:ss

An error message is printed if the time value is too large, too small, or not formatted correctly.

222 System Devices

The DATEREC and TIMEREC types used in the previous examples are defined in the SYSGLOBALS
module as follows.

daterec = pacKed record
vear 101003

day 1 040315

month p 0.,12%

endsj

timerec = pacKed record
hour p 0404230

mingte 04,3935
centisecond : 0,,5999;

ends

datetimerec = packed record
date : datereci

time i timerec:

endi

If you use these types, do not forget to perform the necessary range checking before assigning
values.

Direct Clock Access

In addition to the standard clock procedures, the clock may also be accessed by these procedure
variables.

® CLOCKREQHDOK is the interface to the CLOCK module, and will also set the battery-backup
clock.

©® CLOCKIOHOOK is an interface to the routine which actually communicates with the clock hard-
ware.

Both hooks let you read or set the time and date, but each uses its own method. There is nothing to
stop you from using these hooks, instead of the standard procedures for reading the clock, however
your program will probably require more changes in the future.

For the first hook, SYSDEVS exports the following enumerated type.
CLOCKFUNC = (CGETDATECGETTIME ,CSETDATE sCSETTIME) ;

An example call to read the date is shown below.
call(clockreahook, CGETDATE, data)}

Where data is a variable of type CLOCKDATA viewed as either TIMETYPE or DATETYPE as described by
this record.

CLOCKDATA = RECORD
CASE BOOLEAN OF
TRUE :{(TIMETYPE:TIMEREC)
FALSE: (DATETYPE:DATEREC) j
END

System Devices

Of course, if you just read the date, you would want to access the data as data.datetyre, rather
than try to decode the date as a time of day. The types, TIMEREC and DATEREC were described
earlier.

The second hook uses the following enumerated type to control the clock.
CLOCKOP = (CGETs CSET)3

Thus, a call to read the date would appear as follows.
call{clockiohooks, CGET+ rtcdata)

Where the rtcdata is a variable of the following type.

RTCTIME = PACKED RECORD
PACKEDTIME: PACKEDDATE : INTEGERS
END 3

When possible, do not use this last hook since it operates directly on the clock hardware and not
through the operating system. (The lower the level of access, the more likely it will have to be
changed in the future.)

Note
Although perfectly suited for most application programs, the example
programs presented here will not work inside an interrupt service
routine because the clock already uses the level 1 ISR.

223

224 System Devices

The Timers

There are three independent hardware timers inside your Series 200 Computer. Since these timers
are not used by the operating system, they are available for any purpose you choose.

The three programmable timers are:
® Cyclic — This timer repeatedly interrupts the system at a specified interval.
® Delay — This timer interrupts the system after a specified delay.
® Match — This timer interrupts the system at a specified time of day.

While each timer can be set or read independently, the timers are enabled and disabled (masked)
collectively. All examples in this section include the necessary statements to enable the timers.

The TIMERISRHOOK is a procedure variable called by the operating system’s timer ISR when an
interrupt is generated by the timer hardware. Thus, if you change TIMERISRHOOK to use your ISR,
vou will be able to process the interrupts as you choose.

The timers are programmed by the TIMERIOHOOK. The timer hook is a procedure variable that takes
three parameters. The first parameter is the name of the timer to be used. SYSDEVS exports an
enumerated type that lists the timers.

TIMERTYPES = (CYCLICT, PERIDDICT, DELAYT,» DELAY7Ts MATCHT)i

The second parameter is the operation code.
TIMEROPTYPE = (SETT, READTs GETTINFO);

The third parameter is the timer data. This is a data variable that can be viewed as a number of
centiseconds (for the cyclic and delay timers), a time of day (for the match timer), and as a return
value for the GETTINFO request.

TIMERDATA = RECORD
CASE INTEGER OF
0: (COUNT: INTEGER)3
1: (MATCH: TIMEREC):
2: (RESOLUTION: RANGE: INTEGER):
END}

Thus a typical call to the TIMERIOHOOK would appear as follows.
call(timeriohooks CYCLICT, SETT, mrdata);

Where mvdata is a variable of type TIMERDATA and would contain the count to set the cycle timer.
How TIMERDATA is interpreted depends on its usage.

System Devices 225

Timer Types

A short explanation of each tirner is given below.

CYCLICT This timer interrupts on a specified interval; the interval is given in centiseconds, in
the COUNT field of the TIMERDATA variable.

PERIODICT This timer interrupts every centisecond. See the later section entitled
Using the Periodic Timer for details on using this timer.

DELAYT Interrupts once after a specified amount of time. The time is given in centiseconds in
the COUNT field of the TIMERDATA variable and is measured from the time the SETT
operation reaches the hardware.

MATCHT This timer interrupts whenever a specified time of day is reached. The time is given
in TIMEREC form (hour, minute, and centisecond) in the MATCH field of the TIMERDATA
record.

DELAY7T This ‘“timer”’ is the same as DELAYT except that the interrupt will occur as a level 7

(non-maskable interrupt). Use of this timer requires you install a level 7 ISR with the
procedures given in module ISR. There is no system default code for a DELAY7T
interrupt.

Timer Operations
Here are the permissible timer operations.

SETT Sets the timer using the data specified by the TIMERDATA.
READT Returns the current setting of the timer in a variable of TIMERDATA type.
GETTINFO This command returns information in the RESOLUTION and RANGE fields of TIMERDATA.

If the RESOLUTION is zero then the timer is physically missing, otherwise RESOLUTION is
the smallest possible timer interval given in microseconds. For current Series 200
Computers this is 10000 microseconds or 1 centisecond.

The RESDLUTION and RANGE values of a timer cannot be changed.

The following program checks the status of each timer to see if it is being used.

$sysprog$
prodram TIMERI(outputls

import svsdlobalsy svsdeusi

uar
tdata : timerdataj .
time : timerec? {trrpe from SYSGLOBALS}

bedgin {TIMER1 Prodram}
Wwriteln(‘#%% Cvclic timer ***')3
call(timeriohooks CYCLICT, GETTINFQ: tdatal?
write{‘Resolution: ‘,tdata.resolution:®,s’ usec,)3
write(’ Range: ‘stdata.randez0’ usec:)i
call(timeriohooks CYCLICT: READT: tdata)i
writeln(’ Count: ‘stdata.count:0s’ centisecs)3

226 System Devices

writeln(/*%% Delav timer *%%')}

call(timeriohook, DELAYT: GETTINFO, tdata)}

write{ 'Resolution: ‘stdata.resolutions0,’ usec, ')
Wwrite(’ Range: ‘stdatae.rande:0,’ usec,’);
call(timeriohooks DELAYT: READT: tdata):

writeln(’ Count: ‘stdata.count:0s’ centisec, ')

Writeln(/%%% Match timer *%%’);
call(timeriohook, MATCHTs GETTINFD, tdata): {set CYCLIC timer}
write(‘Resolution: ‘stdata,resolution:Os’ usec,’)}
write(’ Range: ‘stdata.rande:0:’ wsec,’)}
call{timeriohook MATCHT,» READT: tdata); {set CYCLIC timer}
write(’ “HH:MM:SS" ‘,tdata.match.,hour:O,‘:‘);}
write(tdata.match.minute:O»’:"tdata.match.centisecond:O);

end.

A sample output is given below.

¥¥% Cyclic timer #*#
Resolution: 10000 usec, Rande: 16777215 usec, Count: 16777216 centisec,
%% Delay timer ***

Resolution: 10000 usec, Rande: 16777215 usec, Count: 16777216 centisec,
¥¥% Match timer #*#*
Resolution: 1000Q¢ usec, Range: 16777215 usec, "HH:MM:S5" (:0:0

Note that the count value is greater than the range! This is not an error, it just indicates that the
timers have not been used. If you “clear” the timers after using them, as shown in the following
programs, you will restore the timers to the values printed above. This allows a program to test if a
timer is already in use.

When you check a timer, if the count values are not as above, the timer may be in use.

Using a Timer

The CvCLICT, DELAYT, and MATCHT timers are set up and used similarly. The choice of timer depends
on the application. A timer's general mode of operation is to provide an interrupt whenever a
specific ime condition is met. Timers therefore involve the use of interrupt service routines. As
always, misuse of an ISR can cause the system to “hang”.

The typical sequence of using one of these timers is described below. (Using the periodic timer is
described later.)

1. Save the value of TIMERISRHOOK by copying it into a variable of type KBDHDOKTYPE. The copy
will be needed for the last step and may be used to “pass on’’ interrupts you do not wish to
handle.

2. Set TIMERISRHOOK to the procedure which will process the interrupt.

w

Set the time condition in a variable of type TIMERDATA.
4. Make a system call to set the timer.

CALL(timeriohooR,timer_tvpe,SETT,time_condition_uariable);

Where timer_tyre is the name of the timer you wish to use.

System Devices

5. Now enable the timers and wait for interrupts.
CALL (maskoprshook »TIMERMASK +0) 3

When an interrupt occurs, your procedure will be executed rather than the standard proces-
sing procedure. (A typical ISR procedure is shown later.) If more than one timer ISR is in use,
be sure to “pass on” any interrupt you do not wish to process. You may leave your ISR
installed as long as you wish (provided the program stays in memory).

6. When you no longer desire to process interrupts, call the MASKOPSHOOK to disable further
interrupts.

CALL (maskorshook 0 TIMERMASK) 3
7 Set the time condition to zero (0) in the TIMERDATA variable.
8. Call the TIMERIOHDOK (with zero as the data) to clear the timer.

CALL(timeriuhooK;timer_tvpepSETT,time_condition_uariable);

Although the timer does not require this call, it will set the timer’s control values to a known
state that can be tested by some other programn that may wish to use the timer.

9 Set the value of TIMERISRHOOK back to the copy made in the first step. You have now
returned the system to its normal state. Your program can now terminate.

If you think the timer may already be in use, you might want to perform the test mentioned
previously before executing these steps.

A Typical Timer ISR

Here is the generic form of a timer interrupt service routine. Your ISR will need to use the same
procedure parameters given below but not necessarily the same procedure name. The boolean
variables shown below are assumed to be defined as globals.

procedure timehook(var statbvtes databvte: bvted var doit: boolean) i

hedin
if doit then

hedin
periodic := odd(statbvte div 18)3 {stathyte bit 4%
timer := odd(statbrte div 32)3 {statbvyte hit 5}
cvelic := odd(databvte div 32)3 {databvte bit 5 = cvclic}
delay := odd(databvte div B4)3 {databvte bit B = delav}
match := odd(databrte div 128)3 {databvte bit 7 = match?

endi

endi {Proct

The procedure has three variables, the statustvte indicates the which “class’” of timer interrupt
occurred, the databyte indicates which timer interrupted, and doit indicates whether any action
should be taken. If doit is false, then no action should be taken (the interrupt was processed
elsewhere).

A call through TIMERISRHOOK will only occur if statusbyte bit-4 or bit-5 is true. (See the keyboard
hook for the meaning of the other status bits.) Bit-4 indicates if the interrupt was generated by the
periodic system interrupt (which interrupts every centisecond when enabled). If bit-5 is true, then a
cycle, delay, or match timer interrupt has occurred. To determine which timer has interrupted, the
top three bits of the data byte can be tested. Databyte Bit-7 indicates a match-time, bit-6 indicates a
delay, and bit 5 indicates a cycle interrupt.

227

228 Systemn Devices

Note that both a periodic interrupt and a timer interrupt can occur at the same time (Status byte
bit-4 and bit-5 both true). Also, two or three regular timers can interrupt at the same time (Data byte
bit-5, bit-6, and bit-7 all true). It is possible for a timer or periodic interrupt to be completely missed
if the operating system is processing a higher level interrupt.

A provision has been made for counting missed cyclic interrupts. If bit-5 of the data byte is true
(cyclic interrupt) the lower 5 bits (bit-4 through bit-0) contain the count of missed cyclic interrupts.
Thus, up to 31 missed cycle interrupts can be logged. Actually, the count “saturates” at 31 so there
is no way of knowing if more than 31 missed interrupts have occurred. The count will be reset to
zero when the timer is read.

Multi-Timer Example

The following program sets each timer then waits for 15 interrupts. When an interrupt occurs, the
program prints the name of the timer. This program assumes that the timers are not already in use
and clears the timers when it is finished.

$sysProds
prodram TIMERZ(output)i

import svysglobalss aBOdxdurs svysdeus;

const
readintrmask = 43
var
intcount : inteders
tdata 1 timerdatas {tvepe is from svsglobals?
saveisrhook : Kbdhooktvpes {tvre is from svsdeus}

saveoldmask : hvtei

Procedure set_timerss

var
overflow : integers

begin
tdatascount := 1003 {1.00 seconds}
call(timeriohooksy CYCLICT, SETT: tdata)s {set CY¥CLIC timer}
tdata.count := S503 {5:50 seconds}
call(timeriohook, DELAYTs SETT: tdata)s {set DELAY timer?}

{Push-urs to set the match timer to a future time}

systime(tdata.match) 3 {get the current timel}
with tdata.match do
bedin
overflow 1= centisecond + 9503 {add 9.350 seconds}
centisecond := guerflow mod BOOOS {may carry to minutes?
if overflow » 5999 then {too many seconds}
begin
overflow == minute + 13 {carry to next minute?
minute 1= overflow mod GOJ {may carry to hours}
if overflow * 59 then {too many minutes?}
kedin
overflow 1= hour + 13 {carry to next hour}
hour := guverflow mod 243 {may carry to next dav}
ends
endy

endi {with}
call(timeriohook, MATCHT, SETT, tdata)} {set the MATCH timer}

System Devices

{Next procedure is from ABOAXDVR and will save the interrurt mask}
cmd_read_l(readintrmaskssaveoldmask)j

{Next line enables timer interrupts if thevy are currently disabled?}
if odd(saveoldmask div 4) then call (MASKOPSHGOOK:; TIMERMASK ;0) 3
endi {Pproc?

procedure clear_timerss
bedin
{Next line disables timer interrupts if ther were oridinally disabled}
if odd{(saveoldmask div 4) then call (MASKOPSHOOK +0O»TIMERMAGK) ;

tdata.count := 03 {set data to zero}
call(timeriohook: CYCLICT, S5ETT: tdatals {clear CYCLE timer}
call(timeriohook, DELAYT, SETT: tdata)i {clear DELAY timer}
call(timeriohooks MATCHT, SETT: tdata)i {clear MATCH timer}

endiy {proc?

procedure timehooK(var statbvtes databvte: bvtei var doit: boolean)s

var
periodic:
timer:
cyclicy
delay
match : booleansi

bedin

{Interrupt Service Routinel
periodic 3= odd(stathvte div 16)3 {statbrte bit 4}
timer := odd(stathvte div 32)} {stathvte bit S}
if periodic then

call(saveisrhooksstatbvte,databytesdoit)s {pass it back to svstem}

cyclic == odd(databrte div 32)3 {bit 5 = cvclic}
delay 3= odd{(databvte div B4); {bit 6 = delav}
match := odd{databrte div 128)1 {bit 7 = match?}
intcount := intcount + 13 {count interrurts}
write{intcount:3:’ ‘:13)3 {print the count}

if timer and cvclic then write(‘Cyclic ‘)3%
if timer and delay then write(’Delay ‘)3
if timer and match then write{(‘Match ‘)%
writeln(‘interrupt,:’)}

ends {rroc}

bedin {TIMERZ Prodram?’

try
intcount = 03} {initialize count}
saveisrhook := timerisrhook} {save old timer hook}
timerisrhook := timehooKk3$ {use new timer hook}
set_timerss {set and emable timers}
writeln(’Running’)s
rereat {nothing} until intcount > 143 {wait for i35 interrupts}
escare(0)} {irvoke recover-block}
recover
bedin
clear_timersi {clear and disable timers}
timerisrhook := sawveisrhooki {restore old hook}
writeln('Storped’)}
ends

end.,

229

230 System Devices

Here are the results of running the multi-timer program.

Running
Cveclic interruprt.
Cvclic interruprt.
Cvclic interruprt,
Cvclic interruprt,
Cvclic interruprt.
Delay interrurt.
Cyclic interrurt.
Cvclic interrurt.
Cvclic interrurt,
Cveclic interruprt,
Match interrurt,
Cyvclic interrurt,
Cveclic interruprt.
Cyclic interruprt,
15 Cvclic interrurt.
Stopped

—_
— 003~ UM

—_
~J

— -
£~ W

Note that there is nothing to stop two timers from interrupting at the same time. If this happens, only
one call will be made to the ISR, but both “flag’” bits will be set. (You might want to modify the
program to see what happens.)

Also note that the previous program does not pass on timer interrupts. This means that if another
timer ISR is already active, it will not “‘see” the timer interrupts during the execution of the above
program. If you wanted to give the other program a change to also process the interrupts, you
would need to add the following line at the end of the ISR procedure in the above program.

call{saveisrhooks statbvte, databvtes doit)}

Of course, since the previous program changes the settings of all of the timers, any prior timer
settings would be lost.

Not Enough Timers

Just as there is an old “law’” about software expanding to to fill all available memory, you may soon
find that you need an extra timer. You might consider the periodic timer (described next) or using
the clock, however both have certain restrictions. Another posibility would be to “multiplex’” a
timer. For example, if you wanted a cyclic interrupt at 30 times a second and another at 10 times a
second, it would be easy to count the interrupts in the “‘slower” ISR and take an action only on
every third interrupt.

Using the Periodic Timer

When enabled, the periodic timer interrupts the operating system every centisecond (every 10
milliseconds). Beware, misuse of this timer will impact the performance of your system. If your
routine took 1 millisecond to execute, the operating system would spend 10 per cent of its time in
your routine. Use this timer only when absolutely necessary and keep your ISR as short (fast) as
possible.

System Devices

To set up and use the periodic timer, follow these steps.
1. Save the value of TIMERISRHODK by copying it into a variable of type KBDHOOKTYPE. The copy
will be needed for the last step.
2. Set TIMERISRHOOK to the procedure which will process the interrupt.
3. Enable timer interrupts and wait for interrupts.

CALL(maskorshook sPSIMASK »0) }

When an interrupt occurs, your procedure will be executed rather than the standard interrupt
service routine. You may leave your ISR installed as long as you wish (provided the program
stays in memory).

4. When you are no longer desire to process interrupts, call the MASKOPSHOOK to disable
further interrupts.

CALL(maskorshook »0+PSIMASK) ¢

5. Set the value of TIMERISRHOOK back to the copy made in the first step. You have returned the
system to its normal state.

When you use the PERIODIC timer, remember to keep your service routines as short as possible
since they will be executed every centisecond. A slow ISR for this timer will seriously degrade
overall system performance. Also remember that interrupts run in “supervisor’” mode. Heavy use
of the stack may cause the operating system to “‘crash”.

. Periodic Timer Example
The following program enables the periodic timer for about a second.

$svysprod$
prodram TIMER3(outPut)s

imPort svsdlobalss svsdevsi
var
i : inteders

saveisrhook : KbdhooKtyres {tvpe is from svsdevs}

procedure ptimehook{wvar statbvytes databvte: bvtei var doit: boolean)s

bedin
{Interrurt Service Koutine?l
if odd{statbvte diuv 1B) then write(’,’)} {periodic timer?

if odd(statbvte div 3Z) then
call(saveisrhooks statbvtes databvtes doit)i {some other timer}
endy {Procl

bedgin {TIMER3 Prodram}

try
saveisrhook := timerisrhooki {save o0ld timer hooK}
timerisrhook := PtimehooK3 {use new timer hook}
call(maskorshooks+ PSIMASK, O)} {enable interrurts?
for i 1= 1 to 100000 do {nothingl}s {wait for a few intr.}
escare(0)} {invoke recover-block}
‘ recover
call(maskorshooK, 0, PSIMASK)] {disable interrurts}
timerisrhook := saveisrhooki {restore old hook}

end,

231

232 System Devices

The program prints a period (.) for every interrupt.

System Timer Example

The final timer example program sets the cyclic timer to continually display the cursor position on
the screen. Note that this example must become part of the operating system since it does not

release the timer hook.

$sysProg$
program TIMER4P(outPut) i

import svsdlobals, sv¥sdeus, loaders fs3i

var frosxsfrosy ¢ inteders
fconsole 1 file of chari
tdata ! timerdatas
saveisrhook : KbdhooKtyped

Procedure set_timers
begin
tdata.count := 103
call(timeriohook,s CYCLICT+ SETT: tdata)s
call (MASKOPSHOOK » TIMERMASK :0)
endi {Procl

procedure clear_timers
bedin
tdata.count := 03
call(timeriohooky CYCLICT» SETT, tdata)i
call (MASKOPSHODK 0 ,TIMERMASK)
endi {proc}

procedure cvclehook(var stathvtes databvte: byte}

var i» rval ¢ intedersi
tempstr stringlB813

bedin

{Interrurt Service Routinel

{tvpe is from svsdlobals}
{tvre is from sysdeus}

{0+10 = 10 pPer second?}
{set CYCLIC timer}
{enable timer interrupts}

{set data to zero}
{clear CYCLE timer}
{disable timer interrupts}

var doit: boolean)s

if odd(statbvte div 32) {timer} and odd{databyte div 32) {cvclic} then

bedin
if doit then
bedin
doit == falsei
faetx¥ (OUTPUT,» frosxs frosy)s
frosx = frosx + 13
frosy := frosy + 13
temPstr 1= ‘yyaxx‘i
if frosx < 100 then
strurite(tempstrslsrval +frPosyi2s’y’
else

{process interruprt only if doit is true}

{Processed here}
{det cursor Pos.}
{ordin at 1}

{desired format}

1frPosx:2) {copy into string}

strurite(tempstrslsrval sfrPosy:2+fPosx:3)3 {copy into string}

for i := 1 to 5 do
setstatus(i-1stempstrlil)}
end s’
end i

{print it on screen}

{If doit is still true then Pass the interruprt on to the next hook?
if doit then call(saveisrhook:statbvtesdatabvtesdoit)s {Pass it on}

endi {Proc}

System Devices 233

hegin {TIMER4P Prodram?

try
saveisrhook := timerisrhooKi {save old timer hook}
timerisrhook := cvclehooks {use new timer hook}
set_timersi {set and enable timers}
writeln(‘Cursor-diselav enabled,)3
MARKUSER 3 {Keer this around?}
recouer
bedin
clear_timer3 {clear and disable timers}
timerisrhook := saveisrhooks3 {restore old hook}
writeln(‘Crashed,)3
ends
end.

Running this program causes the current cursor position to be displayed in the lower right-hand
corner of the display. The program checks the cursor position and updates the display ten times
every second. Other system information could be displayed in a similar fashion.

The setstatus statement is used in this program to print the cursor information in the status area of
the display (see the next section for details).

The markuser statement is imported from the LOADER module and instructs the loader to move

‘ the current “‘top-of-heap’” pointer to the end of the most recently loaded program. This prevents
the program from being unloaded (scratched) when it finishes executing. (Without this statement,
the timer ISR would be removed from memory and the next interrupt would call a non-existant
routine resulting in very unusual behavior.)

234 Systemn Devices

The Display

The SYSDEVS module provides access to several features of the display (CRT) including most of
the features previously imported from the modules KBD and CRT. In Pascal 3.0, there are now two
display modules, a module for alpha-type displays (CRT) and a module for bit-mapped displays
(CRTB). Neither module has any interface text. Their features are accessed through SYSDEVS.

As mentioned previously, there are usually several levels of access to a device. Before introducing
the access to the display provided by SYSDEVS, it is worth mentioning what can be accomplished
by the file system. By using the file system to access the display, you are practically guaranteed that
your program will operate correctly on all Series 200 Computers that have the necessary hardware.

The following table lists the effects of control characters written to the display.

Character Effect

chr(1) Homes cursor to upper-left corner.

chr(7) Produces a beep.

chr(8) Moves the cursor left one position (if possible).
chr(9) Clears from the cursor to end of line.

chr(10) Moves the cursor down one position (if possible).
chr(11) Clears from the cursor to the end of the screen.
chr(12) Homes the cursor and clears the screen.

chr(13) Moves the cursor to the left end of the line.
chr(28) Moves the cursor right one position (if possible).
chr(31) Moves the cursor up one position (if possible).

All of these control characters produce an action rather than display a character. A ‘‘shorthand”
notation exists in HP Pascal for including these control characters in output statements. For exam-
ple, to clear the display before printing, try the following statement.

writeln(#12, ‘Home Sweet Home')i
Many of the examples in this chapter use this notation.

Determining Display Type

Inside most Series 200 Computers there are two independent screens (also called rasters). There is
an “alpha” screen and a ‘“‘graphics” screen. The alpha screen can display only characters (text)
while the graphics screen is capable of displaying individual dots or lines (of course, a character can
be formed out of dots and lines on a graphics screen). Both screens may be displayed independent-
ly or at the same time.

Your computer may have only one of these screens. The graphics screen is a deletable option on
some computers while the newest computers only have a “‘bit-mapped” (graphics-type) character
display. On the bit-mapped displays, clearing alpha or graphics clears both alpha and graphics since
they use the same hardware.

Systern Devices

SYSDEVS exports an enumerated type and a system variable of that type which let you determine
what kind of display is in use. Currently, only the first three “‘kinds” of displays are supported by the
operating system.

crtkinds = (NOCRT» ALPHATYPE: BITMAPTYPE, SPECIALCRT1 SPECIALCRTZ)

The following short program will print the current console display type.

prodram CRTi(inPuts output)s
import svsdeusi

bedin
writeln(currentcrt)s
end.

Unless you have modified the system, either ALPHATYPE or BITMAPTYFE will be displayed. NOCRT is
returned if the display hardware is missing or if a remote console is being used.

Display States

This section on display states only applies to non-bit-mapped (non-BITMAPTYPE) displays. The
bit-mapped displays have only one screen for both alpha and graphics and that screen cannot be
turned off.

SYSDEVS exports a boolean for each screen which indicates whether the screen is being displayed.
For the majority of Series 200 Computers, both of these booleans will be true after power-up. The
booleans are:

@ aLPHASTATE — This boolean is true when the alpha screen is being displayed.
® GRAPHICSTATE — This boolean is true when the graphics screen is being displayed.

The booleans are for testing only. Changing one to false will not turn off the display. You can toggle
a screen (turn it on or off) from the keyboard by pressing the proper key. To control the screens
from inside a program, SYSDEVS exports the following procedures.

® TOGGLEALPHAHOOK — This procedure toggles the alpha screen on or off.
® TOGGLEGRAPHICSHOOK — This procedure toggles the graphics screen on or off.

By combining the booleans and the procedures, you can control what will be displayed; as the
following program demonstrates.

$SYSPROGS
prodram CRTZ3

imPort svsdeuss

bedin
{If grarhics is on: turn it off}
if draphicstate then call(toddledgrarhicshook)s
{If alepha is not on: turn it on}
if not alephastate then call(toddlealrhahook)i
end.

235

236 System Devices

Executing this program will turn off the graphics screen (if it was on), and turn on the alpha screen
(if it was off). When the Pascal System first “‘wakes-up”, both displays are on if the hardware is
present (the graphics screen is also cleared so even though it is on, nothing is shown).

Display Parameters

The safest way to interrogate screen parameters is to use the SYSCOM variable. SYSCOM is of type
ENVIRONPTR (a pointer to an ENVIRONMENT). The ENVIRONMENT is a record containing three records:
MISCINFO, CRTCTRL, CRTINFO and an integer CRTTYPE. The records contain information used by the
operating system to determine what actions to take when communicating with the display. If you
decide to change any of the following parameters, you will need to reinitialize the CRT (explained
later in this section).

The MISCINFO record contains booleans that can be tested to determine the operating characteristics
of the display. MISCINFO is a record of type crtfrec. The second record in SYSCOM is the CRTTYPE
(type crtcrec) which contains the control characters to which the screen will respond. The last
record in the ENVIRDNMENT is CRTINFO (type crtirec). The CRTINFO record contains a considerable
amount of information concerning the display. The following program prints the values of a
CRTINFD record.

rrogram CRT3(inPuts output)s

imrort svsdevss

bedin
with svyscom™,crtinfo do
bedin
write(’ Width Heidht Memaddr Control’)s
writeln(’ Buffer Prodstate Buflen’)s

write(width:10, heidht:10, crtmemaddr:10, crtcontroladdr:10);
write(Kevbufferaddr:10, Prodstateinfoaddr:10, Kevybuffersize:10)}
writelns

write('right left down up badc cdel stop’)si

writeln(’ brek flsh eof altm ldel bkksp etx’)}
write(ord(ridht):5; ord(left):S, ord(down):5, ord(up):5);
write(ord(badch):5, ord(chardel):5: ord(stor):5s ord{(break):5)}
write(ord(flush):S, ord(eof):5, ord(altmode):5y ord(linedel):5)}
writeln{ord(hackspace):5s ord{etx):5)}

writelns
writeln(’ Prefix Cursormask Spare’)i
write(ord(prefix)s cursormask, spare)i
ends
end.,

Typical values are printed below.

Width Height Memaddr Control Buffer Prodstate Buflen
BO 24 5316608 5341185 3320448 3320392 72
ridht left down up badc cdel stop brek flsh eof altm ldel hksp etx

28 B 10 31 63 8 19 1B 6 3 27 127 8 3

Prefix Cursormask Spare
0 0 0

System Devices 237

If you write values into the crtmemadd r space, characters may appear on the display.
Do not write values into the crtcontroladdr space since this can damage the display.

While 5YscoM contains all of the information concerning alpha-type displays, if you have a bit-
mapped display (CURRENTCRT = BITMAPPEDTYPE), there are some other variables of interest.

51 TMAPADDR — This integer contains the address of the bitmap control space. Do not read from
or write anything in the control space since this can damage the display.

e FRAMEADDR — This integer contains the address of the first byte of memory used for the frame
buffer (bit-mapped display area). The first byte corresponds to the upper-left corner of the
display. Consecutive bytes above this address are screen locations.

® REPLREGCOPY — This shortint contains a copy of the replacement rule register.
® WINDOWREGCOPY — This shortint contains a copy of the bitmap window width register.

® WRITEREGCOPY — This shortint contains a copy of more bit-map control register information
since the actual registers are write-only and cannot be read.

Changing Display Parameters \
If you decide to change any of the display parameters described previously, you will need to
reinitialize the display. Simply changing the display parameters will not change the set up.

. The following program will change the height of your display to 12 lines. The program first prints
the current screen height so you can restore the display height to its value after running the
program.

$sysProds
prodram CRT4(outPut)

import svysdeus?

var 2z i inteders

bedin :
with syscom”,crtinfo do
bedin
writeln(’ Width Heidht ')

writeln{width:10, height:10)}
for z := 1 to 150000 dos

height := 123 {s5et new valuel}
call(crtinithooKk)s {chande disrlav?}
writelni
writeln(’ Width Heidht ')}
writeln(width:10, heidht:10)3

endi

end,

After running the program, try using the Editor, or Filer. You will see than only the top lines of the
. display are used. To return your display to normal, change the heisht parameter and re-run it.
Errors will result if you exceed the maximum values for your display size.

238 System Devices

Controlling the Cursor

SYSDEVS exports two variables, xras and vros, which contain the column (x) and row (y) location
of the cursor. If you want to move the cursor by changing these values, you will also need to call
updatecursorhook to actually change the location of the cursor. The following program demons-
trates moving the cursor.

$5ysProg$
prodram CRT3(inPutsoutput)i

import svysdlobalss svsdeusy uios

var
isd 1 shortints
2 : inteder;

c : chars

bhedin
writeln{’This Pprodram moves the cursor around the screen,’)
writeln(‘Press any Key to stor., ')}

i =13 J == 13 {initial increments}
while unitbusy(2) do {unitbusy is from UIOY {run until Kevpress}
bedin
if (xrpos < 0) or (xpPos »= svscom ecrtinfo.width) {too widel}
then i = -ij {chande direction}
if (vrpos < 0) or (vPos = syscom“,crtinfo,height-1) <{too hidgh}
then J = -J} {chande direction}
XPOS = XPOS + 13 {changde x cursor position}
¥POS = YPRPOS + Ji {chande v cursor position}
call(updatecursorhook)s; {update cursor location}
for z 1= 1 to 5000 doi {wait a bit}
endi
read(c) s {clear the Kevstrokel}
end.

Running this program bounces the cursor around the screen. Pressing any key will cause it to stop.

Remember, if you use the file system rather than this method to position the cursor, your program is
less likely to require changes in the future.

Dumping the Display

Dumping the display refers to creating a hardcopy (by printer) or a softcopy (by file) of the contents
of the display. It does not refer to a frustrated user knocking the display off the computer.

Two hooks are exported by SYSDEVS for producing a printout of whatever is currently shown on
the display. If you call the DUMPALPHAHOOK or DUMPGRARHICSHODK inside a program, the contents of
the respective screen will be dumped to your local printer. If no printer is connected to the system, a
printer timeout will occur. You then may then either abort the dump or correct the problem (i.e. put
a printer on-line).

If you have a bit-mapped display, your printer must have graphics capability for either the dump-
alpha or dump-graphics routines to work properly. As you might suspect, for a bit-mapped display
dump-alpha and dump-graphics are equivalent.

If you have a printer that is not supported by the system or wish to send the dump to a file, you can
take control of the hook by substituting your own procedure for the system’s dump procedure.

The following program will send the contents of the alpha screen to a file. If you have only a
bit-mapped display, see the comments at the end of the example program. Note that this program

System Devices

installs itself in the operating system and can only be removed by re-booting the computer.

$svsProd$
prodram CRTBP(inPut,output)y

module dump2files

import svsdlobals,y svsdewvsi

eXPort

var

savedumphook : Procedures {a place to

procedure initdump}
procedure dumpiti

implement

tyre
screen = packed arrav(Q..maxintl of crtword’
tricky = record case hoolean of
trus @ (i inteder):
false: (a ¢ anvyPtr)s
ends
var
dcount : inteders
Wy h ; inteders
scretr “screeni
trickrec trickyi

fn ot stringl1B13
df : texti

procedure dumpits
var
i+ J ¢ inteders
s 1 string[25513
bedin
dcount 1= dcount + 13
strurite(frs1+i, :DUMP’DCOUNT:s1 ' +ASC') 3
try
rewrite(df +fn)i
setstrlen{s w)}
for 4 t= 0 to h-1 do
bedin
for i 1= 0 to w-1 do
bedin
s{i+1] := scrrptr [i+j*wl.,characters
ends
wWwriteln(dfiss)i
ends
close(df, LOCK’)}
recover
writeln{ *%*% Dump-Alrha failed., *¥*x'};
ends

save the old dumpalpha hook}

{initialization routine}
{new dumpalrha hook}

{alpha-screen is crtwords}
{‘magic’ record that}
{can be an inteder}
{or a Pointer}

{number of dumps counter}
{displavy width & height}

{a pointer to a screen tvrel
{used for tvre coercion?’
{stringd for the filenamel}
{dump-file variable}

{count times called}
{make filename?l

{open file}

{make a string for each CRT line}

{write string to the dumpfilel

239

240 System Devices

procedure initdumps

begin
with svscom“.crtinfo do
begin
W 1= Wwidthsi
h == height}
trickrecsi 2= syscom™.crtinfo.crtmemaddrs {det screen address?}
scrptr := trickrec.aj {Point to screen}
endi
savedumphook := dumpalrhahooks {save old hook}
dumpalprphahook := dumpits {install new hook}
end?

endi {module}

import loadery syvsdevs: dump2files

begin
initdumps
markusersi
writelns
writeln('The dump-alpha-to-a-file utility has been installed.’)3
Wwritelns
writeln(‘When vou Press the dump-alpha Kev, the contents of the’);}
writeln(’‘display will be sent to an ASCII file in the default’)i
writeln{(‘directory, The files are numbered (e.9, ‘’DUMP2,ASC’ ‘), ')}
end,

A program to dump the graphics screen to a printer would be similarly constructed, but would use a
pointer to the start of the graphics screen. Also, since the graphics memory is just a contiguous
series of bytes, it would not require using the CRTWORD type.

The exact method used to dump the graphics raster to a printer depends upon the how the printer
handles graphics and the way the graphics raster is constructed. Most monochrome displays use
one bit-per-pixel while color displays may use one byte-per-pixel. You will also need to consult
your printer manual (does it support graphics and what escape sequences do you need to send to
set graphics mode). You may then have to transform the bit patterns since most displays map the
pixels horizontally while many dot-matrix printers print the bit patterns vertically.

The Last Line

There is a special hook for the last line of the display. The last line usually displays the contents of
the type-ahead buffer or a menu prompt.

If you have a keyboard that has a MENU key, pressing it will cause the system to stop echoing the
type-ahead buffer and start displaying a menu. If your keyboard does not have a MENU key, then
the type-ahead buffer is always displayed. An example program in the Keyboard section of this
chapter will allow you to display a menu regardless of your keyboard type.

Without getting too involved with the information presented in the Keyboard section, it is worth
mentioning that there is a control record for the type-ahead keybuffer. One of the fields of this
record is a boolean which controls whether the contents of the type-ahead buffer should be echoed
on the display. This boolean is used in the example program shown later in this section.

System Devices

Several operations can be performed on the last line of the display. SYSDEVS exports the following

type which lists the last-line operations.

CRTLLOPS=(CLLPUT sCLLSHIFTL yCLLSHIFTR sCLLCLEAR sCLLDISPLAY »PUTSTATUS) §

These operations are used with the CRTLLHDOK to control the last line. The following example

program demonstrates the various operations.

$sysprod%
prodgram CRT7(outpPut)i

imPort svsdeussy

tvre
disestr = string[BOI3
dispstrrptr = “dispstri
var
iy 2 1 inteders
llchar ¢ charsi
llpos : inteder?
llstr : disPstri
save_echo : boolean?

bedin
save_echo := Kevbuffer*.echoi
Kevbhuffer“,echo 1= false}

{save echo state for later?}
{don‘t echo tvre-ahead}

call{crtllhooks CLLCLEARs 1llros:y llchar)} {clear the last line}

writeln{‘Display a stringd in the last line’)}
llstr == ‘Flashind messades det attention.’}
for i := 1 to 16 do

begin

call{crtllhooks CLLDISPLAYs llstrsy * ‘)3 {display the stringl

for z := 1 to 15000 dos

call{crtllhooks CLLCLEARs llross llchar)i {clear the last linel}

for z := 1 to 15000 doi
end?
for z := 1 to 150000 doi

writeln(‘Writing into the last line’)s
Ilstr = ‘This is the last line of the displav.’i
for i = 1 to strlen{llstr) do

begin

call(crtllhooks CLLPUT is 1lstrlil)s {print each character}

for z := 1 to 13000 doi
ends
for z := 1 to 150000 do}

writeln('Movingd text to the right,’)}
for i := 1 to 10 do
bedin

call(crtilhooks CLLSHIFTR: 1lrPoss * ')} {dance to the ridht?}

for z := 1 to 13000 doj
end}
for z := 1 to 150000 doj

241

242 System Devices

writeln('Moving text to the left,)3
for i := 1 to 10 do

bedgin
call(crtllhooks CLLSHIFTL:s 1lrPosy * 7)1 {dance to the left}
for z := 1 to 15000 dos

endsi

for z := 1 to 150000 doj

call(crtllhooks CLLCLEAR: 1lrPoss llchar)s {clear the last line}
writeln(’Set some status bvtes.,’)j
for i := 1 to 5 do

bedin
llpos == i3
llchar := chr(i+ord('0"))3

call(crtllhook, PUTSTATUS: llross llchar)s {do the status hytes?}
for z := 1 to 92000 doi
end?
for z 1= 1 to 150000 do3

writeln(‘Finished, Return to normal,’)3

call(crtllhook, CLLCLEAR llross llchar)s {clear the last line}

for i = 1 to S do call(crtllhook, PUTSTATUS: i+ ' ')}

Kevbuffer“.echo := save_echoj {restore echo state}
end.,

So that you can watch what happens, the example program was written to perform all the opera-
tions very slowly. If you ran a previous example that uses the status area, it may be difficult to see
the effects of the PUTSTATUS statement.

The Menus

In addition to displaying the contents of the type-ahead keybuffer, the last line of the display is
capable of displaying a menu. If your keyboard has a MENU key, pressing the key will result in a
menu being displayed insead of the keybuffer. If you do not have a MENU key on your keyboard,
you may still use the menu feature although the system menu definitions will not apply.

A menu is simply a prompt; a reminder of how the softkeys (““f” keys) are defined. The operating
system uses two menus, one for unshifted softkeys and one for shifted softkeys. The prompts do
not indicate which definition is in effect. For example, if the shifted menu is displayed, pressing the
unshifted softkey does not perform the shifted function (it performs the unshifted function).
SYSDEVS exports the following type.

MENUTYPE = (M_NONE,M_SYSNORMsM_SYSSHIFT M_Ui M_UZ,M_U3+M_U4) 3

The MENUSTATE variable indicates which menu is currently displayed. Only the first three menu types
are used by the operating system. The user menus are provided for your own use.

Two system menus are also exported by SYSDEVS.

® SYSMENU A string pointer to the unshifted system softkey menu.
® SYSMENUSHIFT A string pointer to the shifted system softkey menu.

System Devices

To simplify using the menus, SYSDEVS also exports a pointer type (STRINGBOPTR) that can be used
to point to menu strings. If you want to change a menu, change the pointer, not the string.

The following example program sets a user menu.

$svsProdé
prodgram CRTB(inPut soutprPut) s

imPort svsdlobalsy sysdeuss

const
sPpmeny = stringB0
L'y fi i f2 i f3 I | EE M. D i fB 17 1 8 R
vyar

2t

dummyi : inteder?

dummyc 3 chari

savemodes saveecho : booleans
savemenustate & menutyresl
specialmenu = stringBOPtrs

bedgin
savemode := Kbdsvsmodes
kbdsvysmode := falses

savemenustate := menustates
‘ menustate := m_nones
saveecho := Kevbuffer®.echoi
kevbuffer ,echo := falses
call(crtllhooK:cllclearsdummyisdummye) {clear last linel
specialmenu := addr(spmenu)i {rPoint at the menul}
call(crtllhook:clldisrlaysspecialmenu™ sdummyc) s’
writeln(‘Wow, A menu,’)i
for z 1= 1 to 250000 doi
write(#12)3
call{crtllhookscllclear dummyisdummyc)s {clear last line}
kbdsysmode := sauemodes
{menustate := savemenustatesd}
kevbuffer .echo := saveecho?
end,

A more complete menu example is given in a later program.

The Status Area

The last eight character positions on the display are used for status indicators and the runlight. The
operating system uses the last position as the runlight and the next to the last character as the menu
mode (“U” for user or “S” for system). The debugger uses the entire status area to display its
information. If you are not using the debugger, you may use any of the first five positions of the
status area without disturbing other functions.

243

244 System Devices

SYSDEVS exports a procedure that lets you change the contents of the status area. Although this
includes the runlight position, there is special procedure for changing the runlight (described next).
The status area can also be controlled by the last line hook mentioned previously.

® SETSTATUS(nsc) — This procedure lets you position (n) a character (c) in the status area.
An error will occur if the position (n) is outside the range 0 through 7.

While characters can be written to the status area by the SETSTATUS procedure or by the crt1lhook,
to read the current values you will need to use the STATUSLINE variable.

® STATUSLINE — This variable contains a readable copy of the status display area of the system
CRT (e.g. STATUSLINEL 7] is the runlight.

The following program manipulates the contents of the status area.

program CRT9(inPuts outrut)i

imPort svsdeuss

var iy dy 2 & inteders
¢ : chari
hedgin
for i := 1 to 100 do
bedin
for 4 3= 0 to 7 do
bedin

setstatus(dy ‘%#7)3
for z := 1 to 1999 doj
setstatus(dy * ")}
end s
endi
end,

The Runlight

The last character position on the display is reserved for the runlight. The runlight indicates which
subsystem is in use or which operation is in progress. When the system is waiting for input, the
runlight usually indicates an 1/O condition.

SYSDEVS exports a function and a procedure for accessing the runlight.

® RUNLIGHT — This function returns the current character being displayed in the runlight position.
® SETRUNLIGHT (¢) — This procedure sets the runlight to the specified character.

System Devices

The following program plays with the runlight.
prodram CRT10(inPuts outpPutls
import svsdeussi

var iy z & inteders

c ! charsi
bedin
¢ = runlidhts {save wvalue for later?}
for i 1= 32 to 127 do
begin
setrunlight(chr(i))}
for z := 1 to 1999 dos
ends
setrunlight(c)s {restore runlight valuel
end.,

Unless you have changed it, the RUNLIGHT function returns an R, X, or D during the running,
execution, or debugging of a program.

By now you may have noticed that there are at least three different ways to change the runlight.
(You can use the last line hook, the status area procedure, or the runlight procedure.)

The Debugger Window

SYSDEVS supports an independent window into the display screen. Although originally designed
for the debugger’s use, the window can be used by your programs.

SYSDEVS exports the following type which lists the operations for controlling the debugger
window.
DBCRTOPS =(DBINFO, DBEXCG. DBGOTOXY,» DBPUTs DBINIT. DBCLEAR DBCLINE 4
DBSCROLLUP s DBSCROLLDN: DBSCROLLL » DBSCROLLR DBHIGHL)

These operations are used with the debugger display hook (DBCRTHOOK) and a debugger window
record (type DBCINFO) to create and maintain a separate display window. An example call to set the
highlight byte (i.e. inverse, blinking, etc.) would appear as follows.

call(dbcrthook: DBHIGHL, dbinfols

245

246 System Devices

Where the data parameter dtinfo is a variable of type DBCINFO. The various operations are listed

below.

Command Action

DBINFO Requests information about the window parameters. The values are returned in
the data parameter.

DBEXCG Exchanges the contents of the display area with the save area. (See below.)

DBGOTOXY Positions the cursor at the specified coordinates.

DBPUT Prints the specified character at the given coordinate.

DBINIT Initializes the window.

DBCLEAR Clears the window.

DBCLINE Clears the current line.

DBSCROLLUP Scrolls the contents of the window up one line. (The contents of the top line are
lost.)

DBSCROLLDN Scrolls the contents of the window down one line. (The contents of the bottom
line are lost.)

DBSCROLLL Scrolls the contents of the window left one column. (The contents of the first
column are lost.) .

DBSCROLLR Scrolls the contents of the window left one column. (The contents of the first
column are lost.)

DBHIGHL Sets the default highlight byte. (e.g. blinking, inverse, etc.)

One nice feature of the debugger window is its ability to save the current display contents. This
allows you to use the window then restore the original contents.

The steps to set up and use this feature are outlined below.

1. Choose and set the window margins.
2. Call DBINFO to compute the number of bytes needed to save the display area.

3. Call the system procedure newtrtes (found in module ASM) to reserve space for the display
contents,

Call DBINIT to initialize the window.
Call DBEXCG to exchange the contents of the display with the contents of the save area.
Call DBCLEAR to clear the window for use.

N oo

After using the window, call DBEXCG to restore the original contents to the display.

System Devices

The following program demonstrates the various debugger window operations and then restores

the original window contents.

$sysProd$
prodgram CRTI1(inPutsoutput)s

import svsdlobalsys asms srsdevss

type
dbhstrind = string[255313
tricky = record case boolean of
true ¢ (i ¢ inteder)s
false : (a : anvPir)i
endi
var
i+ wy hy 2 1 inteders
dbexs dbhcy ¢ inteders
dbs : dbstringsi
dbecrtinfo dbcinfos
trickrec ¢ trickvi

procedure debud_infos
bedin
call(dbcrthook sDBINFDsdbcrtinfo)
with dbecrtinfo do
bedin

trickrec.a := saveareas
write(’ xmin xmax ymin ymax curx
if w £ B0 then writelnsi

writeln(’ savearea savesize dcuraddr’

{request infol}

{trick to print Pointer value}

{small screen}

areaisdbdgcrt ')

write(xmin:Sixmax:Sr,yminsSyymax:SscursxiSscursy:s)i

if w < BO then writelns

writeln(trickrec.i:9rsavesize:9 dcursoraddr:9sareaisdbertild)s

endi
endi {Prock

procedure oren_dbwindows

var
I : inteders
bedin
with dbertinfo do
tedin
xmin 1= 03 xmax 1= w-13
ymin 1= h-51 ymax 1= h-13

Cursx = xmini cursy = yminj
call{(dbcrthooKDBINFO dbcrtinfo)s
newbytes(saveareassavesize)s
call(dbcrthook DBINITsdbcrtinfo)ls
call(dtcrthook DBEXCGsdbcrtinfo)l s
endi {with}
ends {proct

{set desired window sizel

{set cursor inside window}
{comPute savearea sizel}
{create space for imagdel}
{initialize window?}

{save displavy contents}

247

248 System Devices

procedure dbwrite(var dbcx, dbcy & intederj dbs : dbstring) s
var
i @ integders
bedin
with dbcrtinfo do
bedin
call(dbcrthook ;DBINFO,dbcrtinfo) {check values}
if dbcx > xmax then dbcx := xmax3 {check boundrvs}
if dbcx ¢ xmin then dbcx := xmin}
if dbecy > vymax then dbcy := vmax}
if dbcy < vmin then dbcy := ymins}
cursx = dbcxd cursy := dboys
call{dbcrthook ,DBGOTOXY dbcrtinfo); {set cursor?
for i := 1 to strlen{dbs) do
bedin
c 3= dbsfils
call(dbcrthook yDBPUT rdbcrtinfo) s {Print each character}
CMUrsSX = cursx + 13 {comPute new cursor Position}
if cursx > xmax then
bedin
CUPSX := Xming
Cursy = gursy + 13
if cursy > ymax then
bedin
call(dbcrthook :DBSCROLLUP »dbcrtinfo)} {need new line?
CUTSY 3= vmaxs

ends “I"
ends

call(dbcrthook »DBGOTOXY sdbcrtinfao) s {update cursor Position}
ends
dbex == cursxi dbcy := cursys {return the new Position}

endi {with}
endy {Proc?

bedin
Wwith s¥scom™.,crtinfo do
bedin
W 1= widths {displav-screen width}
h := height} {displav-screen height}
ends
for i =1 to h-1 do writeln{’ ’:w-3,i:0); {print line numbers}
write(’ ‘:w-3,h:0)} {print last line number}

writeln(#1,#10,'Initial Conditions’); debusg_info}

open_dbwindows

writeln(#10,'Debudder window Parameters’); debug_infos
writeln(#10, Writind into debud window, ‘)

dbex 1= 05 dbey 1= 05 {cursor Position}

for i 1= 1 to 200 do dbwrite{dbcxs dbcys ‘This is the Debudder window.,)}
for z 1= 1 to 10000 doj

dbs 2= ‘’§ dbex := 0% dbecy := 22} dbwrite(dbcxsdbey sdbs)

for z 1= 1 to 100000 doj

beeri call(dbcrthooksdbscrallupsdbcrtinfo); {90 up}

for z := 1 to 100000 do}

beeri call(dtcrthooksdbscrolldnsdtcrtinfa); {90 down}

for z := 1 to 100000 do3

beeri call(dbcrthooksdbscrolll ydbertinfol; {d0 left}

for z := 1 to 100000 doj
beeri call(dbcrthooksdbscrollrsdbortinfo); {90 right?}

System Devices 249

for z := 1 to 100000 doj .
beepi call(dbcrthook +DBEXCG,dbcrtinfo)i {restore imadel}
writeln{(#10,’Disrplar restored,’)i debud_infoi

end.

No checking is performed by the debugger window hook to ensure that you stay within the window
boundaries. Of course, if you change something outside the window area, the original contents will
not be restored by the DBEXCG command.

Note that during the scrolling operations, characters on the edge of the window are lost and not
restored by later operations.

A Simplified Window
If you do not care what happens to the original contents of the display window, several of the steps
previously explained can be eliminated.

The following steps create a window but do not save the original contents of the display.

1. Choose and set the window margins.
2. Call DBINIT to initialize the window.
3. When you are finished with the window, call DBCLEAR to clear the window.

' This simpler method may improve performance when using multiple windows.

250 System Devices

The Keyboard

Currently, there are three different styles of keyboards used with Series 200 Computers and
supported by SYSDEVS.

® The HP 98203A Keyboard. A small detachable keyboard with a rotary pulse generator (knob).
® The HP 98203B Keyboard. A large keyboard with a rotary pulse generator (knob).

® The HP 46020A Keyboard. A thin keyboard that is electronically compatible with the HP-HIL
(Hewlett-Packard Human Interface Link).

All of these keyboards are supported by SYSDEVS, however, only one of these keyboards is used
by a particular Series 200 Computer. This is no problem if you are writing programs for your
computer. If you plan to write programs that will work on all Series 200 Computers, your program
should only use those keys that are available on all keyboards. (See the section on Keyboards and
Keycodes.)

To determine the type of keyboard, SYSDEVS exports the following enumerated type.
KEYBOARDTYPE (NOKBD sLARGEKBD »SMALLKBD s ITFKBD »SPECIALKBD1 sSPECIALKBD?) ;

At this time only the first four types are supported by the system. (The HP-HIL keyboard is the

ITFKBD in the preceeding type declaration.) If you create some special hardware configuration that

acts like a keyboard, you might wish to stop the system from trying to interpret your signals by
setting the keyboard type to one of the unused values.

SYSDEVS also exports the following type that lists the languages which can be supported by
Pascal.

LANGTYPE = (NO_KBD:FINISH_KBD,BELGIAN_KBD sCDN_ENG_KBD »CON_FR_KBD s
NORWEGIAN_KBD +DANISH_KBD DUTCH_KBD »SWISS_GR_KBD sSWISS_FR_KBD
SPANISH_EUR_KBD»SPANISH_LATIN_KBD sUK_KBD,ITALIAN_KBD .
FRENCH_KBD yGERMAN_KBD +SWEDISH_KBD +SPANISH_KBD 4
KATAKANA_KBD »US_KBD »ROMANB_KBD sNS1_KBD NSZ_KBD +NS3_KBD) 3

These two types are used with the keyboard request hook in the following program to print your
keyboard type and language.

$syspProd$
prodram KBDl(inPutoutrput)s

imPort svedlobalss svsdeuss
var i+ ruv i inteder;

s ! string[2551%
kbdata : bvtes

bedin
call{Kkbdreahook SET_KBDLANG: Kbdata)3 {sets Kbdlang}
call(Kkbdreahooks; SET_KBDTYPE: Kbkdata)i {sets Kbdconfig and Khdtveeld

writeln(/'Confiduration brte

writeln(’ Kevboard landuade

writeln(’ Kevboard tvre
end.,

"y Kbdconfig:3)si
"yKbdlang) s .
"sKbdtvyre)

System Devices 251

The Keyboard Hooks

SYSDEVS exports several hooks (procedure variables) for accessing the features of the keyboard.

KBDREQHOOK This hook is used to pass information to and from the keyboard controller
hardware.

KBDIOHOOK This is the procedure variable called by the file system to read from the typea-
head bulffer.

KBDISRHOOK This hook is invoked when a key is pressed, to handle key codes. (This is an
extension of the keyboard interrupt service routine found in earlier releases of
Pascal.)

KBDPOLLHOOK This procedure variable is used to allow keyboard operations when the proces-

sor priority is too high for normal operations.
Most of these hooks are explained below.

Keyboard Request Hook

This procedure has two parameters. The first is the command or request code and the second is the
data value to be sent or returned. Thus, a typical system call would appear as follows.

CALL(Kbdreahooks reauest: Kdata)s
Where kdata is a variable of type b te. The supported requests are given below.

Request Description

KBD_ENABLE Allows the keyboard controller to interrupt. The data parameter is not used
or changed. Note that for non-HP-HIL keyboards this operation is identical
to RPG_ENABLE. (See the later section about the Knob.)

KBD_DISABLE Stops the keyboard controller from interrupting. The data parameter is not
used or changed. Note that for non-HP-HIL keyboards this operation is
identical to RPG_DISABLE. (See the later section about the Knob.)

SET_AUTO-DELAY Sets the time delay from keypress to first auto repeat of the key. The data
parameter is the time in centiseconds.

GET.AUTO_DELAY Retumns the value set by the last SET_AUTO_DELAY. The value is returned in
the data parameter.

SET_AUTO_REPEAT Sets the time interval between auto repeated keys. The data parameter is
the time in centiseconds.

GET_AUTO_REPEAT Returns the value set by the last SET_AuT0_REPEAT. The value is returned in
the data parameter.

SET_KBDTYPE Reads the configuration byte from the keyboard controller and sets KBDCON-
F1G and KBDTYPE. The data parameter will be the same value as KBOCONFIG.

SET_KBDLANG Reads the language byte from the keyboard controller and decodes the
byte to set KBDLANG. The data parameter will be the same value as the
language byte.

252 System Devices

The following program lets you change the keyboard repeat and delay settings.

$sysProds$
prodram KBDZ(inPput:outerut)s

import svsglobals,s sysdeuss

var i+ rv : inteders
s 3 string[25513
auto_rereat
auto_delay : hbrtel

bedin
call(Kbdresahooks GET_AUTO_REPEAT: auto_repeat)}
writeln(‘Current auto-repeat-rate = ', auto_repeat)]
call(kbdreahooks GET_AUTO_DELAY, auto_delay)}
writeln(’Current delav-hefore-rereat time = ‘» auto_delay)]
writelni
write(’Enter new auto-repeat-rate (0,,255):)}
readln(s)j
if strlen(s) » O then
bedgin
try
strread(sslsrusi)s
if i in [0.,+255]1 then
bedin
auto_repreat := 13
call(Kbdresahooks SET_AUTO_REPEAT: auto_rereat):
end
else
writeln(/'Out-of-randge’)}
recover writeln(/*%% not-numeric inPut *¥%’)}
ends
writelns
write('Enter new delav-before-auto-rereat (0,,255): ’);
readln(s)}
if strlen(s) » O then
bedgin
try
strread(sslsrusi)s
if i in [0,.255] then
bedin
auto_delay := i}
call{Kbdreahooks, SET_AUTO_DELAY,» auto_delay)}
end
else
writeln(/'Out-of-rande’)}
recover writeln(’#*¥% not-numeric inPut *%%’)}
ends
end,

System Devices

Keyboard ISR Hook

The KBDISRHOOK procedure variable is called by the keyboard controller to handle keycodes. You
must exercise caution if you take control of this hook. If an error should occur, you may not be able
to regain control of the keyboard. You may have to cycle power to restore the system.

This is the second hook to be invoked whenever a key is pressed. The first hook is the KBDTRAN-
SHOOK. See the later section on Translation Services for the details of that hook.

The following program prints the keycode and modifiers for each keystroke.

$sysProd$
Prodgram KBD3(inPutoutPut)}

import sysdlobalss svsdevsi

var Kevcount ! intederi
savehook : KbdhooKtrpes

procedure Kbdhook(var statbvtes databvte : bvted var doit : boolean)}
bedin
{Interrurt Service Routinel}
Kevcount := Kevcount + 13
write(Kevcount:3:’)3

if not odd(statbvyte div 32) then write(’Control-') else write(’ R
i? not odd(statbyte div 18) then write(’Shift-') else write(’)
if not odd(statbvyte div B) then write(’Extend-’) else write('’)3
writeln(’ Databvte: ‘:databvte:3’ ‘)i

end}

bedin

try
kevcount := 03 {initialize count}
savehook := KbdisrhooKi {save old Key hook?}
kbdisrhook := KbdhooK} {use new hook}
writeln(‘Waiting for KevstroKes’)}
rereat

until Kevcount » 243
escare(Q)}

recover
bedin
kbdisrhook := savehook} {restore old hook}
writeln(‘StoprpPed’);
endi
end,

Running this program will suspend normal processing of keystrokes and print the keycode for each
key. After a few keystrokes, the system will be returned to normal.

253

254 System Devices

Keyboard Poll Hook

The KBDPOLLHOOK procedure variable is used to detect keystrokes when the processor priority is too
high for normal operations.

The following program demonstrates its use.

$sysProgs
prodram KRBDA(inPutsoutput)i

import svsdlobals, asms sysdeuss

var
savehooks saveisrhook : Kbdhooktvres
tdata : timerdata: {tvpe is from svsdlobals}

kusy : booleans
z 1 inteder:
c ¢ chars

Procedure Kbdhook(var statbvte, databvte : bvtes var done : boolean)|
var busys, shift : booleans
bedin
{Kevboard Interrurt Service Routine}
writeln(‘Kevboard Hook Called,’)}
ends

Procedure timehook(var statbvte, databvte: bvtei var doit: boolean):
var z : inteders
bedin
{Timer Interrupt Service Routine}
if odd(stathyte div 32) {timer} and odd(databvte div B4) {delav} then
bedin
writeln('Now executing a very slow timer hook without polling’);
writeln('Try tvpind a few Kevs,’)j
Wwritelns
for z 1= 1 to 1000000 do}
writelnsi
writeln(’Now executind a very slow timer hook with Polling’)}
writeln(’'Try tvPpind somethind, ')}
for z 1= 1 to 30000 do call (KBDPOLLHOOK sbusy);
writeln(‘'Now leavind timer ISR’):
end
else
call(saveisrhooksstatbvte,databrte,doit)i {Pass it on}
endi {Proc}

System Devices

bedin
try

savehook := KbdisrhooKki {save old Kev hook}
kbdisrhook := KbdhooKs {use new Kevy hook}
saveisrhook := timerisrhooks {save old timer hook}
timerisrhook := timehook} {use new timer hook}
tdata.count := 3793 {3:75 seconds?}
call(timeriohooks, DELAYTs SETT, tdatali {set DELAY timer}

writeln(‘In a moment, a timer will interrupt ‘)3
writeln(‘and a very slow ISR will be executed.,’)}
writeln{ ‘At firsts no Kevstrokes will be detected.’)}

writelns

writelns

call (MASKOPSHODK » TIMERMASK ()3 {enable timer interrurts?’

for z := 1 to 1000000 doj {wait for interruprt}

escapre(0))

recouer

bedin
call (MASKOPSHOOK »0:TIMERMASK) 3 {disabhle timer interrupts}
kbdisrhook := savehooK}? {restore old hook}
timerisrhook := saveisrhooks {restore old hook}
writeln(’Prodram storred, ')}

endi

end.,

When this program is run, it sets the delay timer to interrupt a few seconds in the future, prints a
message, and waits for the inetrrupt. Once the timer ISR has been invoked by the interrupt, further
keystrokes are ‘‘masked’” by the fact that the interrupt priority is now at at level 1 (the same level
that the keyboard uses). After a few seconds, keyboard polling is enabled and the keystrokes are
acknowledged.

It is recommended that this feature be used only when absolutely necessary.

255

256 System Devices

The Keybuffer

The main purpose of the type-ahead keybuffer is to provide a place for the keyboard interrupt
service routine to store keydata until the system or current program is ready to read it. Access to this
buffer is provided through a procedure named KEYBUFOPS.

Control of the keybuffer has changed from earlier releases of Pascal. The buffer is now managed
through a procedure residing in SYSDEVS which allows the keyboard system to operate even if no
display hardware exists inside the computer. For speed of operations, the buffer is now maintained
as a circular queue. The array containing the keydata is available for direct access but it is not
recommended that this be done. Instead, SYSDEVS exports several procedures for maintaining the
keybuffer.

The variable KEYBUFFER is a pointer to a KBUFREC which is shown below.

KBUFREC = RECORD
ECHO: BOOLEAN3
NON_CHAR: CHAR3
MAXSIZESIZE+INP+OUTP: INTEGER:
BUFFER: KBUFPTR:
END

The fields are described below.
ECHO Returns TRUE if operations on the BUFFER and NON_CHAR are to be reflected on the

system display. You may set this variable true or false depending on whether you
want the operations to be reflected on the system display.

NON_CHAR Used to store a readable copy of the current non_advanced character (if any)
used by keyboard semantic procedures.

MAXSIZE The current maximum size of the buffer (in practice this is set by the CRT driver
depending on the amount of display area devoted to the typeahead).

SIZE The number of characters currently in the buffer.

INP Internal buffer input index. This variable points to the next location where keydata
will be placed. This is not the pointer to the displayed type-ahead keybuffer.

ouTP Internal buffer output index. This variable points to the next location where
keydata will be removed. This is not the pointer to the displayed type-ahead
keybuffer.

The following program prints the current values of the keybuffer record.

prodram KBDS(output)s
imPort svsdeusy

begin
with Keybuffer® do

bedin
writeln{‘'Echo: ‘secho)s

writeln(‘Non-char: smon-char,’" Ord(mon_char): rord(non_char):3)3;
writeln(‘Maxsize: ‘smaxsize:3,’ Size: ’‘rsize:3
! Inp: "4inP:3:/ Dutp: “soutp:3);

ends
end.,

System Devices

Try running this program several times (use the User-restart command). Each time the program is
run, the input and output pointers will change. If you hold down the key, the buffer will fill and the
size parameter will increase.

Keybuffer Control

To manipulate the contents of the keybuffer, SYSDEVS exports the KEYBUFOPS procedure. This
procedure has two parameters, the first is the keybuffer operation and the second is a character.
The operations are listed in the following type and explained below.

KOPTYPE = (KGETCHARKAPPEND sKNONADVANCE sKCLEAR KDISPLAY »
KGETLAST :KPUTFIRST) 3

Each operation is explained below.

KGETCHAR The first character in the buffer is moved to C, then deleted from the buffer.
Do not do this if the buffer is empty (i.e. KEYBUFFER*.SIZE = 0).

KAPPEND Move the character ¢ to the end of the buffer. NON_CHAR is set to an ASCII
space. Do not make this call if the buffer is full (i.e.
KEYBUFFER*,SIZE = KEVYBUFFER" ,MAXSIZE).

KNONADVANCE The character ¢ is moved to NON_CHAR.
KCLEAR The buffer is set empty.
KDISPLAY I[f ECHD = TRUE then display line is cleared, the current buffer contents sent to

the display, otherwise do nothing.

KGETLAST Move the last character in the buffer to ¢ then delete it from the buffer. Do not
make this call if the buffer is empty (i.e. KEYBUFFER"SIZE = 0).

KPUTFIRST Move the character ¢ to the front of the buffer. Do not make this call if the
buffer is full (KEYBUFFER*.SIZE = KEYBUFFER"/MAXSIZE).
An typical call to append a character to contents of the type-ahead buffer, would appear as follows.

KEYBUFOPS(KAPPEND +c) i

Where ¢ is of type char. An example of this feature is shown in the next section.

Keybuffer 1/0 Hooks

A pair of hooks exists for the file system interface to the keybuffer. These procedure variables allow
you to control the access to the keybuffer.

® KBDWAITHOOK — This procedure variable is called when there is a read request from the file
system and the typeahead bulffer is empty.

® KBDRELEASEHOOK — This procedure is called from the keyboard ISR when data is placed in the
buffer.

257

258 System Devices

The following example demonstrates these hooks.

$syspProgs
program KBDB(inPut,output)s

imPort svsdeuss

var
c+d : chars
! inteders
i : inteder;
s 1 stringl2531%
done : booleans
savewaithook : procedures
savereleasehook ¢ pProcedures

4
<

procedure release_heres
begin
done = falses
writeln(‘Release hook activated,’);
if Kevbuffer*vine = O then

¢ := Kevbuffer*.buffer " [Kevbuffer®.,maxsizel {det the last character?
else
¢ := Kevbuffer buffer"[Kevbuffer ,inp-113 {det the last character?}
if ¢ = chr{13) then dorne := true} {was it a C/R?}

ends

procedure wait_heres

begin
writeln(‘Wait hook activated.’);
repeat {nothing} until dones {wait until a C/R7}
endsi
begin
try

writeln(’If vou have a menu displaved, please turn it aff. ‘)
for z 1= 1 to 300000 do}

wWwritelns

writeln(/In a few seconds, '

“the file svstem will attempt to read from the Kevbuffer’);

for z := 1 to 300000 doj

writelnsi

writeln(’When vou see that the wait hook has been activateds’);
writeln('press a few Kevs and then Press <enter: or <returnz,’);
Wwritelns

savewaithook := Kbdwaithook3 {save wait hook}

kbdwaithook := wait_heres
savereleasehook := Kbdreleasehooks {save release hook?
Kbdreleasehook := release_heres
for z 1= 1 to 200000 doj
readln{s)s {file svstem reaquest}
writelns
write(‘The strind returned by the readln statement is:)}
writeln(s)i
Wwritelmnsi
escare(0);
recover

Systemn Devices 259

bedin
if escarecode <> 0 then writeln(’Error:’escarecode:d)s
kbdwaithook := savewaithook}?
kKbkdreleasehooK := savereleasehooKks
writeln(‘Done,)3
ends
end.,

Key Translation Services

A new set of procedures has been created as part of the translation services facility. These proce-
dures provide mappings of keycodes to “‘universal keycodes” and keycode to character (see the
Keycode section for details on keycode mapping). The main purpose of this package is to centralize
system translation requirements. If you take control of the keyboard hook, you can use these
services to decode keystrokes.

Keystrokes are processed on two levels. When a key is pressed, the system first invokes the key
translation hook (kBDTRANSHOOK). This hook will provide whatever semantics are necessary to
perform the requested operation regardless of the keyboard type. When the translation hook is
finished, a call is made to the keyboard ISR hook (kBDISrRHOOK) where normal key processing can
occur.

The Translation Hook

All keystrokes are first interpreted by the translation hook (kBDTRANSHOOK). SYSDEVS exports a

type (KEYTRANSTYPE) and a variable of that type (TRANSMODE) which control the actions performed by
the translation hook. The possible modes are:

KEYTRANSTYPE = (KPASSTHRU: KSHIFT_EXTC, KPASS_EXTC)}

These types are explained below.

KPASSTHRU This mode causes no keycode interpretation. All first level keycode interpretation
is by-passed (including SYSTEM/USER mode conversions of softkeys).

KSHIFT_EXTC This mode treats the “Extend char” keys as shift keys. (This is the ‘“normal”
setting.)

KPASS_EXTC In this mode, only the down-stroke of the “Extend char” keys is passed. (This is
the “normal’ setting for KATAKANA keyboards.)

260 System Devices

The common language record variable, LANGCOM, is a record (type LANGCOMREC) which contains the
original keystroke information and the results of the semantic action of the translation hook. The
fields for a LANGCOMREC are listed below.

STATUS Contains the original keyboard status register value.

DATA Contains the original keyboard data register value.

KEY Interpreted key (usually an ascii character code).

RESULT The return code from the semantic routine.

SHIFT This boolean returns true if the shift key was held down.

CONTROL This boolean returns true if the control key was held down.

EXTENSION This boolean returns true if the extension key was in the “‘down” mode.

Another important keycode translation variable is LANGTABLE (an array [0..1] of type LANGPTR where
LANGPTR is a pointer to a LANGRECORD). This variable is the “look-up” table for the translation of
keycodes into characters and is the control record for the current keyboard “‘language”. The fields
are shown below.

CAN_NONADY When true this variable indicates non-advancing keys are allowed.
LANGCODE Contains the language code for this record (type LANGTYPE).
SEMANTICS This procedure does translations for the given language.

KEYTABLE An array used to translate keycodes.

The last field (KEYTABLE) is an array of LANGKEYREC. Each LANGKEYREC record contains the translation
controls for a single key. The fields for a LANGKEYREC are described as follows.
NO_CAPSLOCK If true, ignore the capslock state (KBDCAPSLOCK).
NO_SHIFT If true, ignore the shift key state.
NO_EXTENSION If true, ignore the extension key state (may use shift interpretation).
KEYCLASS The general key class (shown below).
KEYTYPE = (ALPHA_KEY ;NONADVY_KEY sSPECIAL_KEY IGNORED_KEY +NONA_ALPHA_KE'Y) §

KEYS These two codes (usually ASCII) are for the unshifted and shifted interpretation of
the key.

System Devices

The following program takes control of the key translation hook and prints selected fields of the
preceeding records.

$svsProdé
prodgram KBD7(inPut soutpPut)s

import sysdlobals,y sysdeuvss

var HKevcount : inteders
savehook : Kbdhooktvpres

procedure Kbdhook{var stathvte, databvte : byted var doit : boolean);s
bedin
{Translation Interrupt Service Routinel}
kevcount := Kevcount + 13
write(Kevcounts3s’ ‘)3
with landtablellandindex]” s Kevtableldatabrtel do
bedin
writeln(’ no-caps no-shift no-ctrl no-ext kevclass Key sh-Key’)i
writeln(’ “:dino_capslock:9mo_shift:9sno_control:9sno_extension:9:
kevclass:1Z kevslfalsel:3sKkevsltruel:B)}
ends
doit 2= falses {tell ISR hook to idnore Kevr}
endi {Proct

bedin
try
Keycount == 03} {initialize count}
savehook := Kbdtrarshooks {save old trans hook?}
kbdtranshook := Kbdhooks {use new hook}
writeln(‘Waiting for kevstrokes’)s
rereat

until Kevcount » 243
escare(Q)}

recover
bedin
kbdtranshook := cavehooki {restore old hook}
writeln(‘Storred’)s
end?
end.,

One other noteworthy variable (kBDSYSMODE) controls the semantic actions of the translation ser-
vices. When this variable is true, the softkeys will be specially mapped for the HP-HIL keyboards
(see the Keyboard Hardware section for an explaination of this mapping).

261

262 System Devices

Modifying the Language Table

As mentioned previously, the LANGTABLE variable is a two element array. This allows two indepen-
dent key lookup tables. For HP-HIL keyboards, the default language uses the first table while the
ROMANS characters occupy the second table. For non-HP-HIL keyboards, the second table is
used only if the default language is KATAKANA. "

If you want to make slight modifications to the lookup table, the following short program generates
a long program that can be edited and then executed to change the lookup table.

prodram KBDB(inPut,outpPut);s
import svysdeusi

const
test = false}

var
s stringl11}
f texts
iy c ¢ inteders

bedin
writeln{’This prodram will create a prodram named KBDBALT')j
writeln(‘on the default (prefixed) volume.’)}

writelns

write(’Do vou wish to Proceed? (Y/N) ‘)3

read(s)i

if not (s[11 = ‘¥*) and not (s[11 = ‘Y’) then halt(Q)}
writelnsj

{5et the "test" constant true to displav program: false to create Prodram’
if test then rewrite(f, ‘CONSOLE:’) else rewrite(f, ‘:;KBDBALT.TEXT')i
writeln(f, PRDGRAM KBDBALT(INPUT,OUTPUT) 3)}
writeln(f)si
writeln(f, IMPORT SYSDEWSi')j
writeln(f)3
writeln(f+’{This prodram installs and enables an alternate landuade.}’)i
writeln(f,'{Chande the variables for each Kevcode as vou desire,}’)j
writeln(f)3
writeln(f,’BEGIN’) 3}
with landtablef0]" do
bedin
writeln(f,’ LANGTABLECLO]".CAN_NONADY := ‘scan_nonadv:’§’)}
writeln(f,’ LANGTABLECOI".LANGCODE := ‘slandcode,’i’)}
writeln(f)i
for 1 3= 0 to 127 do
bedin
if not (i in [0+4,126+127]) then
bedin

System Devices

Wwrite{isQs)14
writeln(f,’ WITH LANGTABLELOQI" KEYTABLEL'+i:0,’]1 DO") 3
writeln(f ./ BEGIN') 3
write(f,’ NO_CAPSLOCK := ‘sKevtablelilsno_carslock:Dy’% ‘)i
writeln(f s 'MO_SHIFT := “sKevtablelil.ino.shift:S:+'% ')}
write(f,’ NO_CONTROL := 'sKevtablelil.no_control:3+’% ')}
writeln(f» 'NO_EXTENSION := ‘sKevtablelil.no_extension:zd,’s ')}
writeln(f s’ KEYCLASS := ‘sKevtablel[iliKevclasss'3')3
¢ := ord{Kevtable[il.Kevs[falsel)s
write(f,’ KEYSLFALSE] := CHR{’sc:04+’))3
if not {c in [0, 32+1251) then write(f,'{’schri{c)s’}s ')
else write(fs'{}% ')}
c := ord(Kevtablel[il.Kevs[truel)i
wWwrite(f y’KEYSITRUE] := CHR(sc:Qs’))3
if not (c in [0.+.32+1251) then writeln(fs’'{ schri{c)+ }3")
else writeln{(f,'{}35/)%
writeln(f,’ END3 ‘)3
end s
end
writeln(f,’ WRITELN(’‘The landuade table has been modified,’’)37)3
writeln(f +END. ')

ends
if test = false then close(fs’lock’)}
writelns
Wwriteln(‘Done,)3
end.,

Running this program creates another program which, when executed, modifies the language
lookup table. Once created, the new program can be easily modified to suit your needs.

263

264 System Devices

The Knob

The knob or RPG (Rotary Pulse Generator) is available with some keyboards and provides a way
to quickly move the cursor around the display. By taking control of its hook, you can have the knob
perform other functions. Of course, if you do not have this hardware, this hook is of little interest
(skip ahead to the next section).

Earlier release of Pascal used the keyboard hook to handle knob interrupts. SYSDEVS now
supports a separate hook (RPGISRHOOK) for the knob.

Interrupts from the knob can be enabled or disabled by sending a command through another knob
hook (RPGREQHDDK). This procedure has two parameters. The first is the operation while the second
is the data value.

The knob request hook allows the following operations.

RPG_ENABLE Allow the controller to interrupt. The data parameter is not used or changed.
Note that this is the same as KBD_ENABLE for non-HP-HIL keyboards.

RPG_DISABLE Stop the controller from interrupting. The data parameter is not used or
changed. Note that this is the same as KBD_DISABLE for non-HP-HIL
keyboards.

SET_RPG_RATE Sets the knob sampling rate to the value specified by the data parameter. The

data represents the sample period in centiseconds.

GET_RPG_RATE Returns the knob sampling rate in the data parameter. The data represents the
sample period in centiseconds.

The knob accumulation period can be modified by the following program.

$sysProg$
program KNOBl(inPutsoutput)i

import svsdlobalsy svsdeuss
var 1y ry 3 integers

s 3 stringl2551)
rate : brtes

begdin

call(rpdreqhoak s GET_RPG_RATE, rate)}
writeln('Current Knob-rate = ‘' rate)j}
writelns
write('Enter new rate (0.,.255): 7)3}
readln(s)}
if strlen(s) > 0 then

begin

try
strread(sylsrusi)i
if i in [0,,255] then

bedgin
rate 1= i9
call{rrpdreahook, SET_RPG_RATE: rate)3
end
else

writeln(‘Out-of-range’)}
recover writeln(/*%% not-rumeric input *#%%*’);}
ends
end,

System Devices

The next program takes over the RPGISRHOOK momentarily.

$5ysprod$
prodram KNOBZ(outpPut)i
import svysglobalss sysdevss

var
z ¢ intederi
shift: control : booleans
saverrdhook : Kbdhooktvprei

procedure Knobhook(var statbvte, databvte : byteid var doit : boolean)i
bedin

{RPG Interrupt Service Routinel

shift := not odd(statbvte div 1B}}

control := not odd(statbrte div 32)3

if shift then
if databvte

else
if databyte »= 128 then writeln(‘right’) else writeln('left)i

128 then writeln(’down’) else writeln(’up’)

endi

bedin
saverpghook := rrpdisrhooks
rpdisrhook := KnobhooK3
writeln(‘Try turning the knob.)3
for z 3= 1 to 500000 do {nothingl};
heer}
rrdisrhook := saverpdhooks

end.

Runring this program will cause the knob to print “up”, “down”, “left”, or “right”” depending on
the direction of the rotation and the status of the shift key. After a few seconds the system will return
to normal.

265

266 System Devices

Keyboard Hardware

In general, application programs written and compiled prior to this release of Pascal can execute
with the new HP-HIL keyboard without change. However, since some keys no longer exist, the
new keyboard supports two softkey interpretation modes: User mode and System mode. The

current mode is signified by the letter “‘s” or “U” appearing in the lower-right corner next to the
runlight.

In system mode, the following softkeys (“f”" keys) are defined as follows.

Softkey Definition
fl

f2

3

#

5

f6

f1

8

At powerup the keyboard is in System mode. In User mode the “f” keys (f1 through f8) are
mapped to the “k” keys (k1 through k8) found on the older type keyboards. Only the key
and the key found on the older keyboards have no equivalent keys on the new keyboard.

Other keys are mapped as follows.

Old Key New key

(Appears in a different location)
RETURN

SELECT

BREAK

CLR 110

PRINT

(CCTRL)-PRINT

The following illustrations show the keycodes generated by the keys found on each of the three
classes of keyboards supported by SYSDEVS. A key-action table follows that can be used to
determine the system’s response to a particular keystroke. .

System Devices 267

pieoqfiay V£0286 dH

1l 0cl

cll

901 SO 01

147" el

|8

1% 4

13534 S ®
by o og 0g 62
2134 3 SN mx mx mv_
ys-bS Us-e§ Ip usey G€ e ee z€ 2 9z WUS
v 6/ US29 US-€9 US-L9 US-LZ US-G. US-BL USBL US-LL US-9L 41D

P-ppy 10-Ep 10-0p 02y 10-6€ 10-8€ US-EE US-g€ Us-8c US-L¢ Us-9¢ 1H1O-WUS

268 System Devices

~r o © N
-
©
[l
©

~ Yol

N [{e] ~

©
~

6.
o

.

[32]
Vo]

Iv
Vo]

LS 0S 6v

ANNILNO D

114

[14

L

preoqfiay g¢0z86 dH

€01 c0l

Nm LOL 001 Ll

'ﬂﬁ :

44 1574 6 8¢ —m 62

8Ll

Scl |44 €21

Gll bl

901

yE z€
I II IIII

ccl Lcl

€Ll

SOl

021

92

cli

Y0l

13

12

11

10

Bl

60

1
64
[0_

23

22

55 [CO000

36

30

)

29

20

CCE) M) el O

21

33

28

27

EE]

T} © o))
———
. < T} <
Sggb T (| P |o
>
~ 0
~
YmBE B
- N~
e o
o |§
& ol
. 18 T
AT =2l o3
0\035%
—|. & .
o © ~
m/\.m
o o
oed ~—
o 2@F ©
oV
o
_E:z - .
@
ooE -
I,._
o
j“z T o))
2T - <« [©
~ N
0l [T
cl@)My
w2)~
8“-_,: o
m ™~ N
< -
Bla |~ -
w | (o]
Fe et Al WIS
4
;8["’ "' of?
~— N %
o\ ~ 8§
~— [(o]
sla F— =8
g |~ -
e |%
¥
m .
o <+
ETY ‘5 Sl gl g

System Devices 269

HP 46020A Keyboard

270 System Devices

Key-Actions

The following table lists all possible keycodes and the operating system’s response to each keycode.

Note
Not all keycodes can be generated by your keyboard. Please refer to the
previous illustrations to determine which keycodes can be generated by
your keyboard.

Undefined. All keycodes labeled “Undefined” are either ignored or cause a beep
depending on the language semantics routine installed. The only way to generate an
undefined keycode is to call the keyboard or translation hook with the proper data byte
and status byte.

HP-HIL only — A language dependant character is placed in the typeahead buffer.
HP-HIL only - A language dependant character is placed in the typeahead buffer.

HP-HIL only — ESC Places CHR(27) in the typeahead buffer. Shifted-key (DEL) places
CHR(127) in the typeahead buffer.

Undefined.
HP-HIL only — With debugger, pauses the system. Otherwise ignored.

Shift or Shift-Control — With debugger, enters debugger’s command interpreter. With-
out debugger, performs powerup (level 7 interrupt)

Control — With debugger, enters debugger’s command interpreter. Otherwise ignored.
HP-HIL only — Generates escape -20 and calls cleariohook.

HP-HIL only — Send chr(3) to the typeahead keybulffer. If shifted, send chr(27).
HP-HIL only, keypad — Send chr(13) to the typeahead keybuffer.

HP-HIL only, keypad — Send chr(9) to the typeahead keybuffer.

HP-HIL only, keypad — Beeps.

HP-HIL only, keypad — Beeps.

HP-HIL only, keypad — Beeps.

HP-HIL only, keypad — Beeps.

HP-HIL only — Beeps.

HP-HIL only — Beeps.

HP-HIL only — Beeps.

HP-HIL only — Send chr(13) to the typeahead buffer.

Shift — Dump alpha. Sends the current contents of the alpha display to the system
printer.

Shift-Control — Dump Graphics. Sends the current contents of the graphics display to
the system printer.

Control — Beeps.

18

19

20

21

22

23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

System Devices

HP-HIL only — For non-KATAKANA keyboards, this key acts as a shift key to invoke
the ROMANS translation of the keycodes (while this key is held down). For KATAKA-
NA keyboards this sets ASCIl mode (switches to ASCII translation until key code 19).
Keycode 146 is sent when this key is released.

HP-HIL only — For non-KATAKANA keyboards, this key functions the same as
keycode 18. For KATAKANA keyboards this sets KATAKANA mode (switches to
KATAKANA translation until key code 18). Keycode 147 is sent when this key is
released.

HP-HIL only — Sets system mode.

Shift — Sets user mode.

Control — Ignored.

HP-HIL only — Beeps if in user mode.

If in system mode, the key will change the menu display as follows:

Toggles the display between no menu and the unshifted menu unless the shifted menu
is displayed in which case the unshifted menu is displayed.

Shift — Toggles the display between no menu and the shifted menu unless the un-
shifted menu is displayed in which case the no menu is displayed.

HP-HIL only — Send chr(127) to the typeahead keybuffer.
Control — clears the typeahead bulffer.

HP-HIL only — Send chr(12) to the typeahead keybuffer.
Control — clears the typeahead buffer.

Toggles capslock state variable.

Send chr(9) to the typeahead keybuffer.

Non-HP-HIL only — Beeps.

Beeps.

Beeps.

Beeps.

Beeps.

Beeps.

Beeps.

Beeps.

Send chr(10) to the typeahead keybuffer.

Send chr(31) to the typeahead keybuffer.

Beeps.

Non-HP-HIL only — Beeps.

Send chr(8) to the typeahead keybuffer.

Control — Clears last character in typeahead buffer.

271

272 System Devices

39
40
41

42

43

45

47

49

50

51

52

53
54
55

Send chr(28) to the typeahead keybulffer.
Send the letter “I”” to the typeahead keybuffer.
Send the letter “D” to the typeahead keybuffer.

Shift — If the keyboard type is “small” then this key is interpreted to be the ALPHA
key. (See keycode 49.)

Non-HP-HIL only — Beeps.

Shift — If the keyboard type is “‘small” then this key is interpreted to be the GRAPHICS
key. (See keycode 50.)

Send the letter “I”” to the typeahead keybuffer.

Shift — If the keyboard type is “small”” then this key is interpreted to be the DUMP
ALPHA key. (See keycode 49.)

Sned the letter “D” to the typeahead keybuffer.

Shift — If the keyboard type is “‘small’’ then this key is interpreted to be the DUMP
GRAPHICS key. (See keycode 50.)

Non-HP-HIL only — Beeps.

Send chr(8)to the typeahead keybuffer.

Control — Removes the last character in the typeahead buffer.
Non-HP-HIL only — Send the letter “R” to the typeahead keybulffer.
Non-HP-HIL only — Send the letter “E” to the typeahead keybuffer.

Non-HP-HIL only — If the alpha screen is displayed, turn off the graphics screen.
Otherwise turn on the alpha screen.

Shift — Dump alpha. Sends the current contents of the alpha display to the system
printer.

Non-HP-HIL only — If the graphics screen is displayed, turn off the alpha screen.
Otherwise turn on the graphics screen.

Shift — Dump graphics. Sends the current contents of the graphics display to the
system printer.

Non HP-HIL only — Ignored without debugger. See the Debugger.

Shift — The next 3 digit keys are combined to produce a character (e.g. 065 is the
character A).

Non-HP-HIL only — Send chr(127) to the typeahead keybuffer.
Shift — Send chr(12) to the typeahead keybuffer.

Control — Clears the typeahead buffer.

Non-HP-HIL only — Beeps.

Non-HP-HIL only — Beeps.

Non-HP-HIL only — Generates escape -20 and calls cleariohook.

System Devices

56 Non-HP-HIL only — With debugger, pauses the system. Otherwise ignored.

Shift or Shift-Control — With debugger, enters debugger’s command interpreter. With-
out debugger, performs powerup (level 7 interrupt)

Control — With debugger, enters debugger’s command interpreter. Otherwise ignored.

57 Non-HP-HIL only — Send chr(13) to the typeahead keybuffer.
58 Non-HP-HIL only — Resumes from paused state. Ignored if no DEBUGGER installed.
59 Non-HP-HIL only — Send chr(3) to the typeahead keybuffer.

Shift — Send chr(27) to the typeahead keybuffer.
60 thru All keycodes in this range are alpha keys and the exact character placed in the typea-

125 head buffer depends on the language conversion table active when the key is pressed.
125 thru Al keycodes above 125 are undefined except 146 and 147.

255

146 Keycode generated when key 18 is released.

147 Keycode generated when key 19 is released.

Typing Aids Program

What follows is a listing of a program which lets you redefine the action of all non-alpha keys. It
makes use of several features described in this chapter.

This program allows all non-alpha keys (including the “‘softkeys”) to be used as typing aids. The
keys may be defined and used at any time (e.g. you can define a key while using the Editor, Filer, or
other subsystem).

To define a key, press and hold both (CTRL) and (SHIFT) keys as you press the (non-alpha) key to be
defined. A window will appear on the display and you will then be able to create or edit the
keystrokes which will be placed in the typeahead keybuffer when that key is pressed. Each key
allows two strings, one for the key and one for the shifted key.

The first seven characters of the edit-string are reserved for the label portion of the string. (The

softkey labels appear in the menus.) The remaining characters are what’s placed in the type-ahead
buffer.

To enter a control-character in the string, press and hold the key down while pressing the
key you want (e.g. RETURN, (ENTER), ((BACK SPACE), etc.) The insert character and delete character
keys may also be used to help in the editing process.

When you are finished editing the string, press (_EXECUTE) or SELECT (depending on your keyboard)
to return to normal operation. The next time you press the key you defined, its string will be placed
in the type-ahead keybuffer. If the key is undefined, its normal action will occur.

Note that this program will not work if an application program takes control of the keyboard hook.
Erratic behavior may occur if you try to define a key during 1/O operations.

273

274 System Devices

The program installs itself in the operating system and can be “unhooked” if you need to use the
keyboard hooks for some other purpose. If some other program changes the “‘hooks” you may be
able to recover by executing the program and pressing “R’”’ (Remove) and then “I” (Install).

Once you have defined some keys, you can save them in a file called “SOFTKEYS’’ on the default
volume by executing the program and giving the “S” (Save) command. You can then load those
definitions by the “G” (Get) command. Remember, the Get command expects to load the key
definitions from the default (prefixed) volume.

$sysProg ons

$pPartial_eval on$
$hear_dispose on$

prodgram KBDY9P(irpPutoutput) s

{ This prodram is part of the documentation vou received and not Part
of the suprorted system software, With this prodram vou can define
all novn-alrhanumeric Kevs as tvpind-aids. This Prodram may not work
correctly on all Series 200 Computers or with all svstem software, }

module Passkevs
import svsglobalsy asm, srsdeuss
EXPOTt

var
initialized : boolean?
usind_hooks : booleant
edit_mode : booleans

procedure boild_menusi
procedure do_hooks}
procedure undo_hooksi
Procedure det_kKevysi
procedure save_Kevs]
procedure paskey_inmit}

implement

tvee
dbstrind = string[B0]3
Kevtakle = packed arrav[0,,59:false,.truel of dbstring;
kevfile = file of Kevtables
var

localy slines

shifts controls

Krob s ecars : booleans {ecars = edit mode cars?
kchar ¢ chars {current key char?

Kcode : hvtes {current Kev code?

ecode : hvtes {edit-Kev code?

Ktyre & Kevtvre]

edPtr : shortinti {edit-string Pointer}
schar : stringl113 {string character?

Kevfilptr : "Kevfile;
Kevtabrtr : “Kevtables

Usernorm: usershift strind80prtrs {menus?

saveisrhook : KbdhooKtvpres

saverpdhook : KbdhooKtvres

savetranshook : kKhdhooktveres

dbecrtinfo : dhecinfos {debud window record?
dbexs dbey & shartints {cursor locatiaon}

dbs : dbstrings {editing string}

procedure init_dbwindow}
var
1 : inteders

System Devices 275

bedin
call(dbcrthooh,DBINFUpdbcrt1nf0)
with dbcrtinfos svscom .crtinfo do

begin
Xmin = 03
¥max $= width-13
ymin = heidght-4i
Ymax &= heisht—li

cursx 1= Xmind cursy = vymini
call(dbcrthooh’DBINFDydhcrt1nf0
newbvytes{saveareassavesize):
endt {with?
endi {proc?

procedure dbwrite(var dhexs dbey @ shortinti dbs @ dbstring)s

var
i : inteders
bedin
with dbcrtinfo do
bedin

calll dbcrthooh,DBINFD,dbcrtlnfo)a {check values}

if dbex * xmax taen dbex = xmaXs {check boundarvs}

if dbex < xmin then dbcx 1= Xxmins

if dbev » vmax then dbey = vmaxj

if dbecy ¢ vmin then dbecy = ymini

cursx := dbcxi cursy := dbc,1

call(dbcrthook +D3GOTORY sdbcrtinfo) s {set cursor}

for i 1= 1 to strlen(dbs) do

bedin
c t= dbslils
c:ll(dhcrthooh,DBPUT,dbcrt1nf0>’ {print each character}
if cursx < xmax then cursx := cursy + 13 {stor from wrapPingd}
gqll(dhcrthooh,DBGDTDHY,dhcrt1nfo) {update cursor Position’
enady
dbcx := cursxi dhoy := cursvs {return the new Position}
endy {with?}

endi {proc?

procedure build_menuss
var
rv : intederi
dummyc : chari
dummyi ¢ inteders
bedin
setstrlen(usernorm™+71)1

strurite{usernorm”™ s1lsrus’ i sstr(Kevtabrtr " [27,false IR
strikevtabptr"[28:falsel sl "y
strikevtabptr " {3Z:falsel,l "y
strikevtabptr"[33,falsel l :»
R E t
str{kevtabrtr"[2Z9:falsel ! "y
str(kevtabptr " [30+falselsl, "y
str{kevtabrptr [31falselsl, "y
strikevtabptr"[3B6+falselsl: ‘)i
satstrlen(usershift™71)3
strwrite(usershift s1lsrus’ i sstr{keytabrtr " [27 tTue]
strikevtabrtr " [2Bstruel ! "y
strikevtabptr [32struel.l "y
stri{kertabetr"[33struel l,7 :,
H
str(kevtabrtr [29+truel 14+7))
str{kevtabptr [30struelsls?) ‘y
str(kevtabptr [31struel sl 7) "y
str(kevtabptr [36struel 14+7))i
case menustate of
m_ul : callfcrtllhooksclldisplaysusernorm” sdummyc)
m_uz : call{crtllhooksclldiselaysusershift” »dummvc)s
m-_none : bedin
menustate == m_uli
kbhdsvemode := falses {set user mode}
setstatus(Bsy'U’)3 {set status lidht}
Kevbuffer ,echo := false: {don‘t echo tvepeahead}
callf{crtllhookscllclear »dammyi sdummyc) i {clear last line}
call(crtllhooksclldisplaysusernorm” sdummyc)

end;
otherwise
endi {casel}
end i

276 System Devices

procedure translate_Kev!
t¥Pe
clp = packed arrav[0,.,59] of charsj
const
{assign add-characters to ‘controlled’ Kevcodes for editor}
4] 1 2 3 4 3 B 7
ctrlookup = clp [#000#000#000#027#0004000%000200340134009),
#010#011#0124013%#0144015#01B#000#000#000,
#010#011#1274012#0008#0098010#011#0128015,
#016#01 780134014201 0#0312#018#019#008%028
#000#000#000#0008000%#000#00B#000#0OO0O#000 ,

#000#000#12740008000%#000#000#01 3802740031 {0 thru 593
bedin
Ktvpe 1= landtablellandindex]*,KevtablefKkcodel.kevclass3
if Kcode <« 3 then
lkchar = landtablellandgindex] " Kevtablelkcodel.kevslecars<:shift]
else

if Kcode ¢ GO then
Kchar := ctrlookurlkcodel
else
if Kcode < 100 then
lkchar := landtablellandindex)” . kevtablelKcodel.Kevslshift]
else
if Kcode ¢ 126 then
lkchar := landtablellandindex]” Kkevtable[kcodel.Kevslecarss »shift]
else
oy Kchar := landtablellandindex] kevtablelKcodel.Kevslshiftl3
endys

procedure finish_edits
kedin
while strlen{dbs) < 7 do strappend{(dbs,’ ')
if strlen(dbs) » B0 then setstrlen({dbs B0)}

if NOT shift thew Kevtabptr [ecodesslinel := dbsi {save the edited line}
call{dbcrthook DBINFOsdbcrtinfo) i ’
call{dbcrthook DBEXCG dbcrtinfo) s {restore imadel}

if (ecode in [27,,331) or (ecode = 3B8) then build_meruss
edit_mode := falses
local := trues

ends

procedure edit_entrys

uar
i: rv @ inteders
bedin
if not control and ((Kkcode=7) or (Kcode=59)) then finish_edit
else
bedgin
translate_Kevs
strwrite{schars1s1skchar)s {coPpy Into str-tvee if we need it}
if control or (Ktvepe = alrpha_Key) then
begin
if edeptr <= strlen(dbs) then

bedin
dbsledptr] := Kchari
if edptr < 7B then edptr := edptr+li
dbwrite(dbcxsdbcy sschar) s

and
else
bedin
if strlen(dbs) < 78 then
hedin
setstrlen({dbs,strlen(dbs)+1)3
strwrite(dbssstrlen(dbs)siskchar)s
edrtr := edptr+ls
dbwrite{(dbkcxsdbcyischar)s
ends
ends

end
else {NOT control}
case Kcode of

24: {cars lock} ’
bedin

ecars := not ecaPrsi {tod9le local capslock}
endsj

System Devices

34,3%: {dowr-arrows uP-arrow’
bedin
while strlen(dbs) % 7 do strappend(dbss’ ")}

kevtahptr“lecodesslinel := dbs3 {save edited line}

sline := not slines
dbcx := 0% i 1= 25 if sline then i := 33
dbcy:=dbcrtinfo.ymin + 13
dbs := kevtabkptr [ecodesslinels
dbwrite(dbcxs dbcys dbs)3
dbcx := 0§ if strlen(dbs)=7 then dbex == 73
dbcyr=dbecrtinfo.ymin + 13
edptr = dbox + 13
dbwritet{dbex s dbcy s 7)1

end?

38,46: {left-arrow: back-space’}
kedin
if edetr * 1 then
bedin
edetr :1= edptr-11
dbcx := dbecx - 137 dbwrite(dbexsdbcy s’ ")3
ends
ends

39: {ridht-arrow’
bedin
if edptr <= strlen(dbs) then
bedgin
edptr := edptr+ls
dbcx == dbeox + 13
ends
ends

dbwrite(dbecxsdbcy s’)3

43: {insert-char}
bedin
if strlen{dbs) < 78 then
kedin
i 1= strlen(dbs) - edptr + 13
if i > 0 then
badin
setstrlen(dbssstrlen(dbs)+1)3
strwrite(dbssedptr+lsrusstr(dbssedptrsi))i
strurite{dhssedrptrsis’ "}3
dbex 1= 03 1 := 2% if sline then 1 = 33
dbcy:=dbcrtinfosymin + 13
dbwrite(dbexy dbcoys dbs)y
dbcx := edptr-13 dbwrite(dbex . dbcys “7)3
end?
ends
ends’

44: {delete-char?}
bedin
if strlen{dbs) * O then
bedin
i = strlen{dbs) - edptr + 13
if 1 * 0 then
bedin
strwrite(dbssedptrsrusstr(dbssedrtr+lsi-1))3
setstrlen{dbssstrlen(dbs)-1)3
dbex := 03 1 == 27 if sline then i = 33}
dbeys=dbecrtinfo.ymin + i3
dbwrite{dbcxs dbcys dbs)i
dbwrite(dbexy dbcoyy © 7)3 {blank-out last
dbcx := edptr-13 dbwrite(dbcx,» dbcvs 77013
ends
endi
end i
otherwise beeprs
endi {casel}
ends {if-then-elsel}
end’s {rroc?

char}

277

278 System Devices

procedure start_edits

var
it inteders

begin
call{dbcrthook sDBINIT dbcrtinfo) s {init window}
call(dbcrthook sDBEXCGsdbortinfo) s {save imade}

dbex:=0§ dbcvi=dbertinfo,ymin + 03

dbs 1= ‘Hkknxxkk ki nkx55%% DEFINE KEY XX FEEXEREEEEEEREREER]

strwrite(dbs 30,1 kcodez2) 3 {fix number?
dbwrite(dbexs dbcy s dbs) 3

dbhex:=03 dbecvi=dbertinfo.vymin + 13

dl:-wl‘ite(dbcx, dbicy s ’Label..Defil‘nition........u............ 3

dbex:=03 dbcvi=dbertinfo,ymin + 23
dbwrite(dbecxs dbcvs Kevtabptr*CKcodesfalsel)s
dbex:=03 dbove=dbertinfo.ymin + 33
dbwrite(dbexs dbcys Kevtabrtr [Kkcodestruel);

ecode := Kcodej {save Kevcode for finish_edit}
if menustate = m_u2 then bedin
sline 1= truej {edit-shift}
dbevi=dbertinfo,ymin + 33
end
else
bedin
sline 1= falses {edit-rormal}
dbcrs=dbecrtinfo.vymin + 23
endj
dbs 1= Kevtabptr“[ecodesslinels {cory strind to edit)}
edrtr 1= 1§ if strlen(dbs) *= 7 then edrtr := B} dhex:=edptr-1;
dbwrite(dbeox s dbovs *7)3 {Position cursor}

edit_mode := trues
local := trues
end i

Pr?cedure newrpdhook(var stathvte, databvte : byte’ var doit : boolean);
edin
{RPG Interrurt Service Routine?
if riot edit_mode then
call(saverpdhook,statbvtesdatabvte doit)
else
bedin
local == trues
Kcode := databvtes
shift 3= not odd(stathvte div 1B);
control := not odd(stathvte div 32);
if shift then

. if databyte = 128 then kcode := 34 else Kcode := 35
else
if databyte = 1ZB then Kcode := 39 else Kcode := 38}
iqit_entrvi
ends

ends

procedure newtranshook(var statbvte, databvte : bvte’} var doit : boolean)]
var
dummyc : charsi
dummyi & inteders

bedin
{First Kevboard ISRy Kevcode translation and semantics hook?
local := falsej
Kcode := databvtes
shift := not odd(statbvte div 1B)}

control := mot odd(statbvte diuv 32)3

if edit_mode then edit_entrys;

if not edit_mode and shift and control and
(kcode < B0) and (Kcode » 2) then start_edit

else
bedin
if (databvte = 21) or (databvte=28) and (Kbdtvee < itfkbd) then
bedin
databyte 1= 213 {Convert KO (2B) kev to he MENU kev}

if NOT Kbdsvsmode then
begin {usermodel
doit := not doits
if shift then
if menustate = m_uZ2 then menustate
else menustate

m_rone

M2

non

System Devices

else
if menustate = m_ul then menustate = m_none
plee menustate 3= m_ulj
kevbuffer®.echo := (memustate=m_none}j {don’t echo tvpeahead?
calll(crtllhookscllclear sdummyisdummyc) s {clear last line?l
case menustate of
m_rone : bedin
kKevbhufors(kdisplaysdummyc)
Kevbuffer®.echo $= truei
endy
m_ul : callfcrtllhooksglldisplay rusernorm” sdummyc) s
Moz : call(crtllhooksclldisplay usershift” sdummvc)s
otherwise
endy {case?
endsy {if?}

end i
if (databyte = 20) or (databyte=37) and (Kbdtvee <3 itfkbd) then
hedin
databyte 1= 203 {Convert K3 (37) to be USER/SYSTEM kKev}

Kbdsysmode 1= not shifts
if {(menustate = m_ul) or {(menustate = m_uZ) then
bedgin
menustate = m_mnones
kevbuffer®,echo := truej
keybufors(kdisplay sdummyc) i
end
endi

if doit then call(savetranshookstatbvtesdatabvte doit)s
ends
ends {proc’}

procedure addtobuffers

var
¢ : chars
i : inteders
tas : dbstrings

hedin
i 1= strlen(kevtabrtr [Kcode shiftl)s
tas := strikevtabrtr [Kkcodesshiftl8+1-7)3

if (strlen(tas) = (Kevbuffer . maxsize-kevbuffer®.size)) then
for i := 1 to strlen{tas) do
kedin
3 1= tas[il: Kevbufors(KAPPEND:, c)i
Bnt
else
beers
ends

Pr?cedure fewisrhook(var statbvtes databvte : bvted var doit : boolean)s
egdin
{Kevboard Interrupt Service Routinel}

if not edit_mode and not local then

bedin
if (kcode ¢ 3) or (kcode » 38) then
gall(saueisrhooh,stathvte»databvtEydoit)
else
if (strlen{kevtabrtr“[Kcodesshiftl) < 8) then
$a11(saueisrhookpstatbvte,databvte,doit)
else
addtobuffers {typeahead?
endy
ends’

procedure do_hookss
var
hooKls hookZ : booleani
hedin
if initialized then writelms
hookl := falses
hook? := falses
if kbdisrhook <% newisrhook then
bedin
hookl := truei
saveisrhook := Kbdisrhooki
kbhdisrhook := mewisrhook)
saverrdhook := rpdisrhooks
redisthook := mewrpghook}
?riteln(’ISR Hooks Imstalled.’#8}3
ent

279

280 System Devices

else writeln{ '#** ISR already hooKed. #¥%’)}

if Kbdtranshook < newtranshook then
bedin
hook2 := trues
savetranshook := Kbdtranshooks
Kbdtranshook := newtranshooK;
writeln(‘Translation Hook Installed,’,#9)3
eni
else writeln(‘#%% Translation already hooked, L L RN
if hookl and hook2 then usind_hooks := trues
ends

procedure undo_hookss
var
hookly hookZ : booleans
bedin
if initialized then writeln;
hookl := false}
hook2 := falses
if Kbdisrhook <> saveisrhook then
bedin
hookl := truej
Kbdisrhook := saveisrhooks
regisrhook := saverpdhooks
griteln(’ISR Hooks Removed.,’ #9)3
ents
else writeln(’**% ISR already unhooKed, #¥%');}

if Kbdtranshook <> savetranshook then
bedin
hookZ := trues
kbdtranshooKk := savetranshooks
griteln(’Translation Hook Removed.,’,#9);}
en
else writeln(‘#*% Translation already unhooked. *Ex') 5
éf hookl and hooK2 thern usind_hooks := falses]
ends

procedure det_Kevs:
bedin
new(kevfilptr)i
try
Writeln(#12,/Trying to load "KEYFILE".');
reset(Kevfilprtr" s/ sKEYFILE');
read(Kevfilptr", Kevtakprtr");
close(kevfilertr™) s
build_mernuss;
escare(0) 3
recover
bedin
if (escapecode = () then writeln(’Keys loaded.’)
ljglse writeln(’FAILED to load., escaprecode = "sescarecode:3)
endy»
dispose(Keyfilrtr)s
end;

Procedure save_Keys]

bedin
new(keyfilptr)}j
try
writeln(#12,'Tryind to save "KEYFILE"., ')}
rewrite(Keyfilptr* s/ :KEYFILE') ;
write(Keyfilertr*skevtabptr”)}
close{Kevfileptr",'LOCK’) 3
escare(()
recover
bedin
if (escarpecode = 0) then writeln(‘Kevs saued,’)
Ijglse writeln(‘FAILED to save. escapecode = ‘sescarecode:3)
ends

dispose(kevfilrPtr)i
endi

procedure paskey_inits
yar
i+ inteders
bedin
if not initialized then
bedin
if kKertabeptr = nil
if usernorm = nil
if wusershift = nil

for i := 0 to 29 do

hedin

then new{kevtabrPtr)i
then new(usernorm)i
then newl{usershift)s

kevtabptr“[isfalsel := ‘-plain-'3j
kevtabptr [istruel := ‘-shift-'3

ends

{Default ker labels}

strwrite(kevtabprtr®
strwrite(KevtabPtr”
strwrite{kevtabrtr”
strurite(kevtabptr”®
strurite{Kevtabptr’
strwrite(Kevtabptr®
strurite{kevtabprtr"®
strurite(kevtabprtr”®
strurite(kevtabprtr®
strwrite(kevtabrtr”
strwrite(kevtabprtr”
strwrite(kevtabrtr®
strwrite(Revtabptr’
strwrite(kevtabrtr”
strurite(Keytabptr”
strwrite(Keytathr
dbex = 03 dbecy =
init_dbwindow}
ecars := falses
local := falses
edit_mode := falsei
build_menusi

wrlteln(#ln:’PasshE/ is initialized.’

writeln(#10,#10,°'To

writeln(‘press <CTRL> and <SHIFTX and

[27:falselslsis
[27truelslsiy

[28sfalsels
[28:truel:

—_—

S,true] '
Osfalsel. sl
Ostruelsly
1:falselsl
l,true],

MeT=-T =TT T T T
000~ ~J0I G IS LI CI I3 o

I
1
7
1
7
7
7
i
7
7
7
1
7
4
I3
4

("-ﬁp—u—|r—|r—||—|r—|ﬁ
-UUUUUUNI“J

)3
define any non- alp?

writeln(’at the same t1me.’)a

if kRbdtvee <> itfkb
writeln{#10,#13,’
#10,813,"
#10,#13,
end
else
writeln(‘Already initi
end?

ends {modulel

{prodram KBDOP(inPutsoutrPut)
import svsdlobalsy sv¥sdeuvs,

var
i1 inteders
cmdchar 3 chars
quittime : booleans

bedin
try .
if not initialized then

‘{ghift>k9 sete USER mode,

d then
Press kO to tcddle menu. '
Key k9 sets SYSTEM mode: i

t
)
)}

alized,)3

i}

loaders PassKkevs

try
bedin
do_hooksi
paskey_inits
initialized = trues
markusersi
end?
recover
bedgin
BEEP?

if usind_hooks then undo_hooks?

initialized := false}
pscape{escarecode)
end)

Systern Devices

281

282 Systemn Devices

quittime := falsej
rereat
write(#1,'Paskey; Install hookss; Remouve hooKss, .,
‘Get Kevss Save Kevsy Quit [1,017 /,#B);
read{cmdchar)s
case cmdchar of
"T79717 1+ do_hooKks}i
e urdo_hookss
det_Kevyst
save_Keysi
P #27 1 quittime :=
r Dowrite(#12)3
otherwise
Write(#12,#7)3
ends
until quittimes {program dones return to command interpreter}
recover
begin
if not initialized then writeln(’Initialization FAILED.’)
else writeln('Prodgram crashed,’)}
writeln(’Escare: ‘sescarecode)’
escare(escarecode)
end
end,

trues

Powerfail

Some Series 200 Computers may be equipped with an optional battery powered back-up supply,
which also contains an uninterruptible real-time clock and some non-volatile CMOS RAM. This
section describes the features of this option and how they are accessed. The interface is the same as
earlier releases of Pascal.

SYSDEVS exports a boolean |[CBATTERYPRESENT) which returns TRUE if the hardware is pre-
sent. To determine if your computer has the optional powerfail circuit, test this boolean.

When power fails, the battery and its controller are capable of giving a warning and supplying
power for a programmable amount of time. The Pascal Language System only uses the battery to
provide 60 second protection (the maximum) and to store the system date and time between
powerdown and powerup.

The boolean variable BATTERYPRESENT is set by the Boot ROM at powerup. If its value is true, then a
battery is present.

The BATCOMMAND procedure is used to communicate with the powerfail hardware. BATCOMMAND takes
a command byte, followed by a number telling how many bytes of data to send to the battery,
followed by five bytes of data. To send, for instance, a command followed by three bytes, use the
call:

batcommand (commandbyte 3 .datalsdataZ,datad+040)

with dummy bytes for the unused data arguments.

Function BATBYTERECIEVED waits until a data byte is available from the battery and then returns it to
the caller.

The powerfail hardware may also be accessed by two hooks exported by SYSDEVS.

® BATCMDHOOK is a procedure variable used to pass information to the controller.
® BATREADHOOK is a procedure variable used to read information from the controller.

System Devices 283

Battery Features

The Powerfail option contains an 18 volt, 2 amp-hour nickel-cadmium (NICAD) battery with its
associated charging and transfer circuitry, a real-time clock, and CMOS RAM which is battery
powered when the AC power is off.

The Powerfail option is controlled by an 8041A microcomputer which provides some user-
programmable features. Two 5-volt power supplies are included on the Powerfail circuit board.
One insures that the Powerfail microcomputer and voltage comparators are operating before the
rest of the computer comes up, and the other keeps the CMOS circuitry operating when AC power
is off.

Note
The word “battery” is generally used in the following discussion to
denote the entire Powerfail ‘‘smart peripheral”’, under the control of its
8041 microcornputer.

Powerfail Behavior

Once the battery turns on and passes its self-test, it may be thought of as having four states: Power
Valid, Power Failed, Last Second, and Switched Off. The 8041 may be programmed to interrupt
the host CPU via level 7 (non-maskable interrupt) at each transition among these states, or host
CPU interrupts may be suppressed. (Obviously, there is no interrupt on the transition to Switched
Oft.)

Note that the computer's power switch has been specially wired to prevent the battery from
thinking power has failed when the computer is turned off. Pulling the power cord from the socket
will invoke the powerfail option.

1 Power Valid: This is the normal state, when things are running properly. When power fails,
the battery will immediately go to Power Failed state.

2 Power Failed: In this state, the battery provides protective power to the mainframe for a
limited time (default 60 seconds). After a delay which is programmable (default zero
seconds) the battery will try to interrupt the mainframe with a power-failed interrupt. If power
does not return during the protection period or the NICAD battery is about to die, the battery
will go to Last Second state. If power returns and stays up for a specified time (default 1
second) the battery returns to Power Valid state.

3 Last Second: One second after this state is entered, the battery will go to Switched Off state
and shut down the computer. After Last Second is entered, the computer will be shut down
even if power comes back.

4. Switched Off: Once this happens, if the power is restored the computer will go through its
normal power-up sequence as if someone had turned on the main power switch.

Note that in Power Failed state, if power is restored but protection time runs out before the
power-back delay is elapsed, the battery will go to Last Second anyway.

There is a fourth timer in the battery which is not programmable. Its purpose is to prevent the power
supply from heating up too much while the fan is off. It counts up to 60 seconds when there is a
power failure, and if it reaches 60 seconds the computer is shut off. This timer is not cleared when
power comes back, but counts back down toward zero at half speed. For instance if power was
down for 40 seconds, it would have to be on for 80 seconds before a full minute of protection is
again available.

284 System Devices

Powerfail Real-Time Clock

The non-interruptible real-time clock is kept as a combination of three pieces of data: a 32-bit timer
which counts in 10 millisecond increments, a record of the timer value when the clock was set, and
the time and date when the clock was set (the date and time use the same format as the system
clock.

To figure out the real time, the battery subtracts the current timer count from the timer value when
the clock was set, and adds the difference to the time and date when the clock was set. This is a
time-consuming operation which is normally only done when the machine is turned on. For
moment-to-moment timing while the computer is on, use the keyboard microcomputer which has a
number of timing features.

Non-Volatile RAM

The battery contains 128 bytes of battery-powered CMOS RAM. 16 bytes are used by the battery
for its own purposes; 112 are available for user-programmed purposes.

This RAM is accessed by moving it into 8041 memory in 16-byte blocks. Commands are available
which enable the host CPU to read or modify a block while it is in the 8041’s memory.

No standards have been established for how users may allocate space in this RAM, except that the
first 16 byte block is reserved for the real-time clock.

Here is the layout of bytes in the first 16 byte block:

Byte Usage / Meaning

0-2 Will be $0F, $A5, $C2 if the battery has been commanded to set the real time since the
CMOS RAM woke up; else garbage. You can use these values to verify that the real
time is probably meaningful.

3 Least significant byte of time when clock was set.

4 2nd byte of time when clock was set.

5 Most significant byte of time when clock was set.

] Least significant byte of day number when clock was set.

7 Most significant byte of day when clock was set.

8-11 Value of 32-bit CMOS counter at time when clock was set.

12-15 Used as temporary cell during computation of real time to honor $41 command.

Interface to the Host CPU

The host CPU can send commands to the battery by writing to the byte at address $458021.
Reading a byte from this address yields battery status information.

The host CPU can write data bytes to the battery through address $458001, or read data from the
battery via the same byte address.

System Devices 285

The battery status register bits are interpreted as follows:

Bit Meaning

0 If = 1, there is data ready to read at $458001.

1 If = 1, command buffer full; If = 0, battery is ready for a command to be written to
$458021. MUST be zero before a command is sent.

2 If = 1, battery is interrupting the host CPU on level 7.

5 If = 1 and bit 2 = 1, this is Last Second interrupt.

B If = 1 and bit 2 = 1, this is power retumning interrupt.

7 If = 1and bit2 = 1, this is power fail interrupt.

In general the host CPU communicates with the battery by sending a command to the command
register, then sending one or more bytes of data to the data register. If the battery is enabled to
interrupt the host CPU, level 7 (non-maskable) interrupts will signal the mainframe of changes in
battery state. Otherwise the host CPU may ask the battery what's up. See commands $0x and $C3
below.

Commands to the Battery
The following commands can be sent to the battery.

$01 Tells the battery to turn off backup power. This command is used to discontinue
battery protection in order to conserve the charge. It will turn power off even if there is
not a power failure; if there is no power failure, the machine will come back up in about
one second.

$10 Tells the battery to stop interrupting on level 7. It takes the battery about 200 mic-
roseconds to stop interrupting after this command is received. (The command has
been received when bit 1 of the status register goes to zero).

$2x Set the interrupt mask. This command disables the three types of interrupt. The lower
four bits of the command are:

bit O must be zero.
bit 1 — If one, power fail interrupt disabled. If zero, enable condition stays unchanged.

bit 2 — If one, power back interrupt disabled. If zero, enable condition stays un-
changed.

bit 3 — If one, last second interrupt disabled. If zero, enable condition stays unchanged.

$0x Clear the interrupt mask. Used to enable the three types of interrupt. The lower four
bits of the command are:

bit 0 — must be zero.

bit 1 — If one, power fail interrupt enabled. If zero, enable condition stays unchanged.
bit 2 — If one, power back interrupt enabled. If zero, enable condition stays unchanged.
bit 3 — If one, last second interrupt enabled. If zero, enable condition stays unchanged.

Note that command $OE will be ignored. Only one or two of these bits should be
cleared at a time.

286 Systemn Devices

Data is written to and read from the CMOS memory through a 16 byte buffer in the 8041’s address
space. The following four commands have to do with using the CMOS memory and the buffer.

$F %

$B8x

$7x

$8x

Tells the battery to send a byte from the CMOS buffer to the host CPU. The lower four
bits of the command act as a pointer to the byte to be sent. Bit zero of the status register
will be 1 when the data is ready.

Used to write to the CMOS buffer. The four lower bits of the command act as a pointer
to the byte to be written in the buffer. The command is followed by sending the data.
The buffer pointer is retained and decremented when a data byte is received, so if all
16 bytes of the buffer are to be sent, issue command $BF followed by 16 data bytes.

This command tells the battery to load the CMOS buffer with a 16 byte block of
CMOS memory. Bit zero must be a zero. Bits one through three tell what block to load,
and must indicate 1 through 7; block zero is used by the Real Time Clock.

Tells the battery to write the CMOS buffer into one of the 16-byte blocks of CMOS
RAM. Bit zero must be zero. Bits one through three tell what block to write. If block
zero is written to, the real time will be lost.

The real time is read and written through the same buffer that is used to read and write CMOS
memory. The following three commands are used to read and write the real time.

$B87

$40

$41

Sets up the real time in the CMOS buffer. Tells the battery that the next five bytes of
data sent will be the real time. The five data bytes must be sent in this order:

MSB (most significant byte) of days.
LSB (least significant byte) of days.
MSB of time of day.

Second byte of time of day.

LSB of time of day.

"Days” is an arbitrary integer. “Time of day” is the number of 10 msec ticks since
midnight.

Tells the battery to set the time to what is in the buffer.

Tells the battery to load the buffer with the real time. Then particular bytes of the real
time can be requested by the host CPU using these commands:

$F7 MSB of day

$F6 LSB of day

$F5 MSB of time of day

$F4 Second byte of time of day
$F3 LSB of time of day

System Devices

There are three ongoing timers that may be read. These are maintained by the 8041 and are all two
bytes long; they are ‘‘volatile” in that they are cleared when the machine shuts down. A single timer
buffer in 8041 memory is used by the host CPU to access these timers.

$82

$90

94

$EB
$ERA

$A7

$A3

$0B

$C3

$C6

$C7

Tells the battery to load the timer buffer with the value of the non-programmable
60-second power-supply cooling timer.

Load timer buffer with the amount of time that power has been back without leaving
Power Fail state.

Load timer buffer with the length of the most recent power failure since power-up. This
timer is set to zero whenever the power fail state is first entered.

Send the MSB of the timer buffer to the host CPU.
Send the LSB of the timer buffer to the host CPU.

Set the amount of protection time. Command is followed by two bytes of data (MSB
first) indicating the protection time in 10-msec tics. Anything greater than 60 seconds
will be treated as 60 seconds.

Set the amount of time power must be gone before giving a level 7 interrupt. Com-
mand is followed by two data bytes (MSB first). Time is in 10-msec tics.

Set the amount of time power must be back before leaving the power fail state.
Command is followed by two data bytes (MSB first). Time is in 10-msec tics.

Tells battery to send power status to the host CPU. The data bits returned are:
bit 0 — If one, power is down.

bit 1 — If one, power fail interrupt delay is up.

bit 5 — If one, the AC is gone.

Tells battery to send a status word to the host CPU.

bit 1 — If one, power fail interrupt is masked.

bit 2 — If one, power back interrupt is masked.

bit 3 — If one, last second interrupt is masked.

bit 4 — If one, battery is in Last Second state and power is about to go away.
bit 6 — If one, the battery is in power fail state.

Tells battery to send host CPU the self-test status. A value of zero means 8041 thinks
battery passed self-test. A value of 2 means it failed.

This command tells the battery to send the amount of the last second that has been
used up. It is only valid in Last Second state, and returns time in 10-msec tics.

287

288 System Devices

SYSDEVS Listing

What follows is the commented export text of the SYSDEVS module.

IMPORT SYSGLOBALS;

EXPORT
{% DUMMY DECLARATIONS ¥E¥3%¥Eix8bb¥dtsipia it i a bS04 644)
TYPE
KBDHOOKTYPE = PROCEDURE(VAR STATBYTE,DATABYTE: BYTE;
VAR DOIT: BOOLEAN)3
OUT2TYPE = PROCEDURE(VALUE1 ;VALUEZ2: BYTE);
REQUESTITYPE = PROCEDURE(CMD: BYTE} VAR VALUE: BYTE);
BOOLPROC = PROCEDURE (B:BOOLEAN) 3

T8 CRT bt i r RN RN R RN RN N AR RR N RN NNRR)
{#**%* THIS SECTION HAS HARD OFFSET REFERENCES #*¥¥¥¥¥¥x)

TYPE
CRTWORD = RECORD CASE INTEGER OF
1: (HIGHLIGHTBYTE CHARACTER: CHAR);
2: (WHOLEWORD: SHORTINT)
END3
CRTLLOPS =(CLLPUT +CLLSHIFTL yCLLSHIFTR »CLLCLEAR sCLLDISPLAY ;PUTSTATUS) }
CRTLLTYPE=PROCEDURE (OP:CRTLLOPS; ANYVAR POSITION:INTEGER} C:CHAR):
DBCRTOPS =(DBINFO+DBEXCGDBGOTOXY sDBPUT »DBINIT +DBCLEAR »DBCLINE ,DBSCROLLUP
DBSCROLLDN »DBSCROLLL DBSCROLLR sDBHIGHL) §
DBCINFO = RECORD
SAVEAREA : WINDOMWP;
SAVESIZE : INTEGER;
DCURSORADDR : INTEGER;
KMIN,XMAXYMIN YMAX : SHORTINT
CURSX,CURSY : SHORTINT
C : CHARS
AREAISDBCRT : BOOLEANS
END}
DBCRTTYPE=PROCEDURE(OP:DBCRTOPSS VAR DBCRT:DBCINFO);

crtconsttype = packed array [0..,11] of byte}

crtfrec = packed record
nobreakssturidsslowtermshasxycrt s
haslcert{built in crt}shasclock:
canupscroll scandownscroll : booleans
ends

b9 = packed arrav[0,.8] of boolean}

b14= packed arravy[0..131 of boolean}

crtcrec = packed record (# CRT CONTROL CHARS %)
rlfsndfsseraseeonl
eraseeos rhome s

escare : chari
backspace : chari
fillcount : 0,,255%
clearscreen:

clearline ! chari
prefixed : b9

end}

System Devices 289

crtirec = packed record {(# CRT INFO & INPUT CHARS *)
widthyheight : shortints
crtmemaddrscrtcontroladdr,
kevbufferaddrsprodstateinfoaddriinteders
kevbuffersize: shortintsi
crtcon crtconsttyPes
rightsleftsdown up: chars
badchschardelsstopP:

breaksflushseof : chari
altmodeslinedel : char}
backspace:

etxsprefix : charj
prefixed : bid |
cursormask t inteders
spare : inteders

ends

environ = record
miscinfo: crtfrecsi
crttype: intedersi
crtctrl: crtcrecs)
crtinfo: crtirecH

endi
environpPtr = “environi
‘ crtkinds = (NOCRT: ALPHATYPE: BITMAPTYPE, SPECIALCRT1: SPECIALCRTZ):
VAR
SYSCOM: ENVIRONPTR}
ALPHASTATEL 'ALPHAFLAG '] : BOOLEAN3:
GRAPHICSTATEL ‘GRAPHILSFLAG’] : BOOLEANS
CRTIOHOOK : AMTYPES
TOGGLEALPHAHOOK : PROCEDURE}
TOGGLEGRAPHICSHOOK : PROCEDURE}
DUMPALPHAHOOK : PROCEDURE}
DUMPGRAPHICSHOOK : PROCEDURES
UPDATECURSORHOOK : PROCEDURE}
CRTINITHDOK : PROCEDURE}S
CRTLLHOOK : CRTLLTYPES
DECRTHOOK : DBCRTTYPES
*POS :+ SHORTINTS { CURSOR X POSITION 1}
YPODS : SHORTINTS: { CURSOR Y POSITION 1}
CURRENTCRT : CRTKINDSS { ACTIWE ALPHA DRIVER TYPE }
BITMAPADDR : INTEGERY <{ ADDRESS OF BITMAP CONTROL SPACE 1}
FRAMEADDR : INTEGERS <{ ADDRESS OF BITMAP FRAME BUFFER 1}
REPLREGCOPY : SHORTINTS { REGISTER COPIES FOR BITMAP DISPLAY }
WINDOWREGCOPRY : SHORTINTS { MUST BE IN GLOBALS BECAUSE REGISTERS 1}
WRITEREGCOPY : SHORTINTS { ARE NOT READABLE -- MAY BE UNDEFINED }
{# KEYBOARD #* ¥ %55 ¥ ¥R RRRRRRRRLHHRRRRRFRRNNE]
CONST
KBD_ENABLE = 03 KBD_DISABLE = 13
SET_AUTO_DELAY = 2% SET_AUTO_REPEAT= 3!
‘ GET_AUTO_DELAY = 43 GET_AUTO_REPEAT= 33

SET_KBDTYPE 63 SET_KBDLANG = 74

290 System Devices

{% CLOCK #¥%%kbdhthhhhaiiiiinnnnnnnnnnnnnnnnuhhhh R0 0uu}
TYPE
RTCTIME = PACKED RECORD
PACKEDTIME »PACKEDDATE : INTEGER 3

END 3

CLOCKFUNC = (CGETDATE,CGETTIME ,CSETDATE,CSETTIME) j
CLOCKOP = (CGET.CSET);
CLOCKDATA = RECORD

CASE BOOLEAN OF

TRUE :(TIMETYPE:TIMEREC) S

FALSE: (DATETYPE:DATEREC) 3

END §
CLOCKREQTYPE = PROCEDURE(CMD:CLOCKFUNC3i ANYYAR DATA:CLOCKDATA}
CLOCKIOTYPE = PROCEDURE(CMD:CLOCKOP i VAR DATA:RTCTIME);
VAR

CLOCKREQHOOK : CLOCKRE®TYPE3; { CLOCK MODULE INTERFACE }
CLOCKIOHOOK : CLOCKIOTYPE: { CARD DRIVER INTERFACE }

{% TIMER #XE¥XEXXEXEREXRRERERERREREREEREENERRRNA RN R RN)
TYPE
TIMERTYPES = (CYCLICT+PERIODICT:DELAYT DELAY7T MATCHT);
TIMEROPTYPE = (SETT;READT:GETTINFO)}
TIMERDATA = RECORD
CASE INTEGER OF
0: (COUNT: INTEGER)3
1: (MATCH: TIMEREC) 3
2: (RESOLUTION)RANGE:INTEGER) .
END 3
TIMERIOTYPE = PROCEDURE(TIMER: TIMERTYPES:;OP: TIMEROPTYPE:YAR TD: TIMERDATA):
VAR
TIMERIOHOOK : TIMERIOTYPE:
TIMERISRHOOK : KBDHOOKTYPE:

{% KEYBUFFER #%¥%¥¥%%EXXXEXXXXXXERERFERERERE RN N REFXNRRH RS]

CONST
KMAXBUFSIZE = 2557

TYPE
KOPTYPE = (KGETCHAR ,KAPPEND 'KNONADVANCE KCLEAR sKDISPLAY

KGETLAST +KPUTFIRST) 3
KBUFTYPE= PACKED ARRAYLO,,KMAXBUFSIZE] OF CHARS
KBUFPTR = "KBLFTYPES
KBUFRECPTR = "KBUFRECS
KBUFREC = RECORD
ECHD: BOOLEAN;
NON_CHAR: CHAR}
MAXSIZESIZE+INP,OUTP: INTEGER:
BUFFER: KBUFPTR}
END 3

System Devices

TYPE

STRINGBOPTR = "STRINGBO:

KEYBOARDTYPE = (NOKBD:LARGEKBD,SMALLKBD.ITFKBD :SPECIALKBED1,SPECIALKBDZ)]

LANGTYPE = (NO_KBD,FINISH_KBD:BELGIAN_KBD :CDN_ENG_KBD :CON_FR_KBD
NORWEGIAN_KBD sDANISH_KBD +DUTCH_KBD sSWISS_GR_KBD :SWISS_FR_KBD »
SPANISH_EUR_KBD +SPANISH_LATIN_KBD +UK_KBD,»ITALIAN_KBD
FRENCH_KBD yGERMAN_KBD +SWEDISH_KBD +SPANISH_KBD »
KATAKANA_KBD yUS_KBD yROMANB_KBD sNS1 _KBD sNSZ_KBD sNS3_KBD) 3

MENUTYPE = (M_NONEM_SYSNORM,M_SYSSHIFT M_U1,M_UZ,M_U3,M_U4d)3

VAR
KBDREQHOOK : REQUESTITYPES
KBDIOHOOK : AMTYPES

KBDISRHOOK : KBDHOOKTYPE
KBDPOLLHOOK : BOOLPROC:

KBDTYPE : KEYBOARDTYPE}
KBDCONFIG : BYTES { KEYBOARD CONFIGURATION JUMPER }
KBDLANG : LANGTYPES
¥SMENU : STRINGBOPTR:
SYSMENUSHIFT : STRINGBOPTR:
MENUSTATE : MENUTYPES

{% ENABLE / DIGSABLE ## %% %% ¥E¥XXXXXXFXEXXXXEXRXRXRHERELESE]
CONST
KBDMASK=13RESETMASK=23TIMERMASK=4 1PSIMASK=BiFHIMASK=1G1
VAR
MASKOPSHODK : OUTZTY¥PE' { ENABLE, DISABLE }

{% BEEPER %% %% H# i eii i it rbbrbrrnsissss)
VAR

BEEPERHOOK: OUTZTYPE:

BFREQUENCY » BDURATION: BYTE}

{* RPG FEEERFFERREERE R ERRR LR RER R R RRRER RN EXRNRRRRNR)

CONST
RPG_ENABLE = 05 RPG_DISABLE = 1}
SET_RPG_RATE = 2§ GET_RPG_RATE =3}
VAR

RPGREQHOOK: REQUESTITYPES
RPGISRHOOK: KBDHOOKTYPE:

{% BATTERY ¥ % ¥¥¥X¥XXXAXXXXXERRRXXXRRRXXRRRRXRXLRRRRHHEX]
TYPE

BATCMDTYPE = PROCEDURE(CMD: BYTE§ NUMDATA: INTEGER}

Bi, B2+ B3, B4, BS: BYTE):

BATREADTYPE= PROCEDURE (VAR DATA: BYTE):
VAR

BATTERYPRESENTL-5631: BOOLEAN:

BATCMDHOOK : BATCMDTYPE:

BATREADHOOK: BATREADTYPES

291

292 System Devices

VAR
KEYBUFFER : KBUFRECPTR3
KBDWAITHOOK: PROCEDURE
KBEDRELEASEHOOK: PROCEDURES
STATUSLINE: PACKED ARRAY[O..7]1 OF CHAR}
{0 s or f = STEP/FLASH IN PROGRESS (WAITING FOR TRAP #0)}
{1,439 last executed/current live number }
{6 65=5YSTEM U=USER DEFINITION FOR ITF SOFT KEYS}
{ BLANK FOR NON ITF KEYBOARDS 1}
{7 RUNLIGHT ¥

{* KEY TRANSLATION SERVICES #¥ ¥ ¥ %% %X X%k EXXXRXRNENRERRRNRRR]
TYPE
KEYTRANSTYPE ={KPASSTHRU :KSHIFT_EXTC +KPASS_EXTC)}
KEYTYPE = (ALPHA_KEY NONADV_KEY SPECIAL_KEY +IGNORED_KEY sNONA_ALPHA_KEY)

LANGCOMREC = RECORD
STATUS : BYTE]
DATA ¢ BYTES
KEY : CHARS
RESULT : KEYTYPE}
SHIFT;CONTROL JEXTENSION: BOOLEANS
END
LANGKEYREC = RECORD
NO_CAPSLOCK: BOOLEAN?
NO_SHIFT : BOOLEANS

NO_CONTROL : BOOLEAN]
NO_EXTENSION : BOOLEAN}

KEYCLASS : KEYTYPES
KEYS : ARRAY[BOOLEAN] OF CHAR;
END i

LANGRECORD= RECORD
CAN_NDNADV: BOOLEANS
LANGCDDE : LANGTYPEj
SEMANTICS : PROCEDURE
KEYTABLE : ARRAYLO..,127] OF LANGKEYREC:
END
LANGPTR = “LANGRECORD?
VAR
LANGCOM : LANGCOMRECS
LANGTABLE : ARRAYLO..1] OF LANGPTR}
LANGINDEX 1 Q.11
KBDTRANSHOOK : KBDHOOKTYPE3
TRANSMODE : KEYTRANSTYPE:
KBDSYSMODE + KBDALTLOCK + KBDCAPSLDCK : BOOLEAN:

{% HPHIL # %08 ad it st rrr b itk 0 h 00 0NN RN RN R KRR RRNRRR)

const
le_configured = hex(’'8B0O’)3}
le_error = hex(/'817)3%
le_timeout = hex({’'B2')%
le_.loordown = hex(‘Bd’)5

Imaxdevices = 73

typre

loorduror = (datastartindsdataendedsresetdevice)s
loordurproc = Procedurelop:loordurop)i

HPHILOP

HPHILCMDPROC PROCEDURE(DP : HPHILOPF):

descriprec = packed record { DEVICE DESCRIBE RECORD 1}
case boolean of
true :{(id t o bvted
twosets : booleani
abscoords: booleans
sizelB : booleani
hasprompts:boaoleans
reserved @ 0..3}
numaxes ¢ 0,,33
counts : shortints

maxcountxs
maxcountys:
maxcountz:

shortints
shortint?i
shortintsi

System Devices 293

(RAWSHIFTOP ,NDRMSHIFTOP »CHECKLOOPOP +CONFIGUREDP »LCOMMANDOPR) §

nPrompts 3 0,73

nbuttons
false:(darray

end?

devicerec = record
devstate

D470
:+ arravr[1..,11]1 of char)i

inteders

descrip : descriprect
opsproc ¢ loordurprocH
datarroc ¢ Kbdhooktyres

endi

loopdurrtr = “loopPdriverrec
loopdriverrec = record

lowidshidhidsdaddr : bytes

OPSPTrOC
datarroc
next

end?i

LOOPCONTROLREC = RECORD
rawmode : booleani

loopdurProci
kbdhooktypPes
loopdurpPtri

loopdevices : arrav[l..1maxdevices] of devicerecs

last loop command sent 2
data bve in / out }

loordevice : 1,.Ilmaxdevices?
loopcmd : bytes {
loordata s bytesd

looperror & booleans

loorinconfid:booleans
loopcmddone: booleans
loorisok : hooleans

{
{
{
{
{

errar occured on last operation }
now deing reconfidure }

last cent command is done }

loorp is caonfidured 1}

loopdevreadind: boolean$ { reading Poll data }

END

294 System Devices

var

loopdriverlist : loopduretrj
LOOPCONTROL : "LODPCONTROLREC:
HPHILCMDHOOK : HPHILCMDPROC:

PROCEDURE SYSDEW_INIT;:
{* BEEPER EEREEERERRER AR R KA R AR RN RR R AR NN RNR)
PROCEDURE BEEP:
PROCEDURE BEEPER(FREQUENCY sDURATION:BYTE)
{8 RPG SR RREEh b h bR RN R RN RN R NN R RRR RN AR NER)
PROCEDURE SETRPGRATE(RATE : BYTE)}
{% KEYBOARD ¥ ¥k kb kb fiahhhihhh b bk Xk hh R kRN R AR R RNAR)
PROCEDURE KBDSETUP(CMD:VALUE:BYTE)
PROCEDURE KBDIO(FP: FIBP; REQUEST: AMREQUESTTYPE]

ANYUAR BUFFER: WINDOW: BUFSIZE,POSITION: INTEGER):
procedure lockedaction(a: action)s
T8 CRT Hbat ik RN X R RN RN R R AR AR AR AR ARR}
PROCEDURE CRTIO(FP: FIBP3 REQUEST: AMREQUESTTYPE;

ANYUAR BUFFER: WINDOW: BUFSIZE,PDSITION: INTEGER):
PROCEDURE DUMMYCRTLL(OP:CRTLLOPS: ANYYAR POSITION:INTEGER: C:CHAR) 3
(% BATTERY Sk dt st d kb kb nh bt it h bkt NN R RN RRRRNN R}
PROCEDURE BATCOMMAND(CMD:BYTE3 NUMDATA:INTEGER; B1, B2, B3, B4, B5: BYTE) 3
FUNCTION BATBYTERECEIVED:BYTE;
{% CLOCK HEEEREEEKERERER AR KRR EERERR AR RRAE AR R RN RENNH]
function svsclock: integers {centiseconds from midnight}
procedure sysdate (var thedate: daterec)}
procedure systime (var thetime: timerec)j
procedure setsysdate { thedate: daterec)]
Procedure setsystime (thetime: timerec)}
{* KEYBUFFER EREERERERRERR AR R RER AR AR AR AR RNN ¥]
PROCEDURE KEYBUFOPS(DP:KOPTY¥PE: YAR C: CHAR)
{% STATUSLINE # Mk bkt ¥k hhn kb kb kb KRN R R R RN RRRRRRRNN R
PROCEDURE SETSTATUS(N:INTEGER3: C:CHAR);
FUNCTION RUNLIGHT:CHAR:
PROCEDURE SETRUNLIGHT(C:CHAR);

Chapter

Segmentation Procedures 15

Computer

Museum

Introduction

The SEGMENTER library file (provided on the CONFIG: disc) provides a set of procedures to
permit programmers to dynamically (programatically) load, execute, and unload program seg-
ments. These dynamically loaded program segments may import modules already loaded to gain
access to their procedures and variables. Entire program files may be loaded and executed, or the
file may be loaded and individual procedures may be called as needed. Dynamically loaded
programs may in turn load other program segments.

Programmers may use these procedures to write applications which require much more code space
than may be available in the computer, or run applications on a computer with only a minimum
amount of memory, thus reducing costs for other users.

A Word to the Wise

The SEGMENTER library provides a powerful set of capabilities to the programmer. With this
power comes some danger. These procedures make use of internal system variables and proce-
dures. Improper use of the SEGMENTER procedures can produce drastic side effects (such as the
computer hanging up, or data being destroyed).

Before using these procedures in your code, study the procedure descriptions and examples
carefully. Be familiar with the $SYSPROG$ extensions, especially the use of procedure variables.
You should also be aware that these procedures are provided as an optional library — they are not a
part of HP Standard Pascal, and they are implemented only on the HP Series 200 Computers.
Similar capabilities may be available from other manufacturers, but the details of implementation
are probably quite different.

295

296 Segmentation Procedures

Using the SEGMENTER Procedures .

Using the SEGMENTER library procedures is similar to using other Pascal libraries. A program that
uses the procedures must IMPORT module SEGMENTER. In order to be imported successfully,
this module must be accessible at two times: at load time, and at compile time. The easiest way to
ensure accessibility at these two times is to put the module into the current System Library file. (See
the Overview chapter for other methods.) The SEGMENTER code file actually contains two
modules, so make sure you copy both modules into the library file.

Since the SEGMENTER module imports other system modules (LOADER, LDR, SYSGLOBALS,
and MISC), the interface text of these modules (provided in the standard CONFIG:INTERFACE
file) must also be accessible to the Compiler.

You will also need the $SYSPROG$ Compiler option, since the procedures make use of the
ANYVAR construct and procedure variables.

Note

A program using the SEGMENTER library procedures should not be
compiled with the $HEAP_DISPOSE ON$ Compiler option. If you do,
unpredictable results may occur.

Segmentation Procedures 297

SEGMENTER Procedure Descriptions

The following section provides a detailed description of the procedures provided by the SEGMEN-
TER library. Note that the programmer has a choice of three places into which to load code: into a
user-specified area, onto the stack, or into the heap. Each of these choices has its own advantages
and disadvantages, and it is up to the programmer to choose the best fit for a particular application.

SEGMENTER Initialization
This procedure allocates two explicit areas to be used by the loader to load code files.

procedure init_sedmenter(anvyvar lowcodes highcode:
lowglobals highdlobal: brte)s

The code area, bounded by lowcode to hishcode, is used by procedure load_sedment as the area
where code is loaded. The code area may be allocated anywhere. The global area, bounded by
lowdlobal to hishslobal,isusedkn/proceduresload_se§ment,load_heap_segment,call_se§menm
and call_sedment_rroc; the area is used to allocate all global variables declared by modules in the
code file which is loaded. The global area must be allocated from global data space.

Note that since the parameters are of type ANYVAR, the program may pass variables of any type as
the boundaries of the code and global areas. The variables are typically elements of arrays. If the
lpad_segment procedure will not be used, any variables may be passed as lowcode and highcode.

Init_sesmenter should be called only once during a program, and it must be called before the first
call to 1oad_sedment, load_hear_sednent, call_sedment, call_sednent_proc, unload_sedment, OF
unload_all.

Segmentation Free Space

This procedure returns the number of bytes still remaining in the explicit code and global areas
which were set up by init_segmenter.

procedure segment_spacefvar codes dlobal: inteder}s

Segmentation Using the Stack

The following two procedures are used to load program segments onto the stack, then execute the
programs or procedures in the segments.

Calling a Program
This procedure is used to call a program.

procedure call_sedment{filename: fid)3}

The parameter filenane isa string (TYPE fid=string[1201) which contains the name of a code file.
The code file is expected to contain one or more programs. (Programs have main bodies and start
execution addresses, whereas other modules do not.) Call_sednent loads the code file onto the
stack. The global data for the modules is allocated from the explicit global area set up by
init_segmenter. After loading the code file, all of the programs in it are called as if they were
procedures.

298 Segmentation Procedures

When the program or programs finish (or if there is an error exit), then code file is automatically
unloaded. Note that since the code is loaded on the stack, the heap is not involved in this operation.
Therefore, the program which is called is at liberty to add or subtract from the heap during its
execution.

The following example shows how call_sesment may be used. Note that the “HI” program
imports a global variable defined in the program which loaded it.

Compile the following program into “MAIN.CODE”":

$5YSPROGS
$SEARCH ‘SEGMENTER.’,’INTERFACE.’$

PROGRAM MAIN(INPUT, OUTPUT)}

MODULE STUFF3;

EXPORT VAR S: STRINGLBOI]
IMPLEMENT

END}

IMPORT SEGMENTER, STUFF;

VAR G: PACKED ARRAY [0,,40001 OF 0.,255;

BEGIN
INIT_SEGMENTER(G» Gs G+ GL40001)}
CALL_SEGMENT(‘HI.CODE") 3
WRITELNS
WRITELNC(’S = 'y 8)}
END,

The following program is compiled into the file “HI.CODE”:
$5EARCH ‘MAIN’$

PROGRAM HI(DUTPUT)
IMPORT STUFF 3

BEGIN
§ := 'HOWDY';
END,

Segmentation Procedures 299

Calling a Procedure
procedure call_sedment_proc(filenames fidi svmbol: proc_name)j

This procedure is identical to call_segment, except that the parameter symbol is the name of the
entry point which is to be called instead of the start execution address
(TYPE proc_name=string[1201). If the entry point already exists in the system from a previously
loaded file, then no file is loaded. The code file does not need to contain a program. The entry point
consists of the module name followed by an underscore followed by the procedure name as used in
the module. For example, procedure PROC! contained in module MoDX is referred to as MODX_PROC1.
The following example shows how this procedure may be used:

This is the main program:

$SEARCH ‘SEGMENTER.’+’/INTERFACE.’$
PROGRAM MAIN(INPUT, OUTPUT);

IMPORT SEGMENTER3

UAR G: PACKED ARRAY [0.,.40001 OF 0.,,2551i

BEGIN
INIT_SEGMENTER{G: Gy G» G[40001) i
CALL_SEGMENT_PROC('OVERLAY.CODE‘s ‘MODX_PROC1’)i
WRITELNS
WRITELN(’END OF MAIN PROGRAM’)]

END.

The following module should be compiled into file “OVERLAY.CODE":
MODULE MODX3

EXPORT PROCEDURE PROC!:
IMPLEMENT

PROCEDURE PROC1:
BEGIN

WRITELN('HELLD FROM PROCI1 ‘)i
END3

END.

Be very careful. If the symbol being called is a procedure which uses files which are local to the
module in which it exists, the initialization body of the module containing the procedure will not
have been called, so the file variables will be in an uninitialized state. In such cases, it is better to use
load_segment or load_hear.sesment and then call the initialization body of the module before
calling the procedure. Alternatively, you could write the segment so that the main body of the
segment is a call to the desired procedure and use call_sesment.

300 Segmentation Procedures

Searching For a Procedure Name

function find_proc(svmbol: proc_name): sedment_proc}

This function returns a procedure variable whose name is passed in the parameter symtol. If no
such symbol can be found among those already loaded, then a dummy procedure is returned in the
procedure variable. If the dummy procedure is called, it will do an ESCAPE(120).

This function can be used to search for any procedure in the system, not just those loaded by the
SEGMENTER procedures. The following example shows how this may be done by locating a
system procedure which performs cursor addressing.

$5YSPROGS
$SEARCH ‘SEGMENTER, ‘s’ INTERFACE.'$

PROGRAM MAIN(INPUT, OUTPUT)}
IMPORT SEGMENTERS
VAR P: RECORD CASE INTEGER OF
O: (PR: SEGMENT_PROC)3
1: (PZ: PROCEDURE(VYAR T: TEXT§ X, Y: INTEGER))]
END 3
BEGIN

P.PR := FIND_PROC('FS_FGOTOXY ')}

CALL(P.PZs OUTPUT 104103
WRITE('HI ")
END.
Checking a Procedure Variable
function exists_proc{P: sedgment_pProc): booleans

This function is a predicate which indicates whether the procedure e is not the dummy procedure
mentioned in find_rroc. It can be used to determine whether find_rroc was successful. An
example of its usage is shown below:

$5YSPROGS
$SEARCH 'SEGMENTER.’,‘#INTERFACE,‘$

PROGRAM MAINCINPUT, QUTPUT)]
IMPORT SEGMENTER:

VAR S: PROC_NAME:
P: SEGMENT_PROC;

BEGIN
WRITE('EXECUTE WHAT PROCEDURE? ‘)i READLN(S);

P = FIND_PROC(S)]
IF EXISTS_PROC(P) THEN CALL(P)
ELSE WRITELN(’NO SUCH PROCEDURE ‘)3
END,

Segmentation Procedures

Loading Into the Explicit Code Area

procedure load_sedment(filename: fid)3

The filename parameter is a string (TYPE fid=string[120 1) which contains the name of a code file.
The 1oad_sesment parameter will load the code file and associated global variables into the two
areas explicitly defined by init_sesmenter. Global variables defined by the modules in this file will
be zeroed. No code is actually executed. Especially note that the initialization bodies of modules are
not executed at this time.

In order to call procedures or module initialization bodies contained within the code segment, the
ftind_rroc function must be used to search for the entry point. In addition, unload_sednent or
unload_all must be called before the program terminates.

The following program gives an example of the use of load_sednent and find_rroc:

$5YSPROGS
$SEARCH ‘SEGMENTER. ‘s 'INTERFACE. %

PROGRAM MAIN(INPUT, OUTPUT)S
IMPORT SEGMENTERS

TYPE SPACE = PACKED ARRAY [0,.d40001 OF 0,.,2551
SPACEPTR = "SPACE}

VAR G: SPACES
C: SPACEPTR}

BEGIN
NEW(C) 3
INIT_SEGMENTER(C*[01, C"L40001s G GL40ODT1)S
TRY
LOAD_SEGMENT (‘OVERLAY.CODE "} }
CALL(FIND_PROC(‘MODX_PROC1 "))}
UNLOAD_SEGMENT }
WRITELNS
WRITELN('END OF MAIN PROGRAM’);
RECOVER BEGIN
UNLOAD-ALLS
ESCAPE(ESCAPECODE) 3
END§
END .

The following module should be compiled into file “OVERLAY.CODE":

MODULE MODXj
XPORT PROCEDURE PROCL3
IMPLEMENT
PROCEDLURE PROC13
BEGIN
WRITELN(‘HELLO FROM PROC1)i
END

END.

301

302 Segmentation Procedures

Loading a Segment Onto the Heap

procedure load_hear_sedment{filename: fid)}

This procedure is the same as load_sesment, except that the code file is loaded onto the heap
instead of the explicit code area. The global variables for the modules in the file are still allocated
from the explicit global area.

The following program is an example of the use of load_hear_sesment. Note that no space is
allocated in the explicit code area.

$5YSPROGS
$SEARCH 'SEGMENTER, ‘', ‘INTERFACE.‘$

PROGRAM MAIN(INPUT, OUTPUT)}

IMPORT SEGMENTER3

TYPE SPACE = PACKED ARRAY [0,.40001 OF 0,,255]
VAR G: SPACE;

BEGIN
INIT_SEGMENTER(G: G+ Gy GL40O01)
TRY
LOAD_HEAP_SEGMENT(‘OVERLAY .CODE)}
CALL(FIND_PROC(’MODX._PROC1)} j
UNLOAD_SEGMENT ;
WRITELNS
WRITELN(’END OF MAIN PROGRAM')j
RECOVER BEGIN
UNLDAD_ALL
ESCAPE(ESCAPECODE) 3
END3

END,
The following module should be compiled into file “OVERLAY.CODE”:

MODULE MODX3
EXPORT PROCEDURE PROCI;
IMPLEMENT

PROCEDURE PROC13

BEGIN

WRITELN('HELLD FROM PROC1)3
END3

END,

Segmentation Procedures 303

Unloading a Segment

procedure unload_sedgment}

This procedure will unload the most recent code file which was loaded by load_sesment or
load_hear_sesment. Memory space in the explicit code and global space will be deallocated and
made available for subsequent loading. If the file unloaded had been loaded by procedure
load_hear_sesment, then the heap is released to the size it was when load_hear_segment was
called. Note that this will deallocate any heap variables that may have been allocated (with NEW)
since the file was loaded.

Note

If all segments have already been unloaded, an ESCAPE(121) is ex-
ecuted.

Unloading All Segments

procedure unload_alls

This procedure unloads all code files which have been loaded by either load.segment or
load_hear_sedment.

Note

All code files loaded by 1oad_sedment or load_hear_segment must
be unloaded before the program terminates. It is the programmer’s
responsibility to see that this is done. If not done, the system may not be
able to recover, and the machine may go “out to lunch”. A good
practice is to use a “TRY..RECOVER" around the body of the program
to do an unload_all if there is any error escape.

304 Segmentation Procedures

SEGMENTER Errors

Here is a list of errors that can be generated when using the SEGMENTER module (in addition to
the usually defined system run-time errors):

ESCAPECODE
Value Meaning
-2 stack overflow (not enough memory to execute loader)
100..105 field overflow trying to link or relocate something
110 circular or too deeply nested symbol definitions
111 improper link info format
112 not enough memory
116 file was not a code file
117 not enough space in the explicit global area
118 incorrect version number
119 unresolved external references
120 generated by the dummy procedure returned by find_proc
121 unload_segment called when there are no more segments to unload
122 not enough space in the explicit code area

I/0 Procedures

HPIB Status/Control

ABORT_HPIB

ACTIVE_CONTROLLER

CLEAR

CLEAR_HPIB
END_SET

HPIB_LINE

LISTEN
LISTENER

LOCAL
LOCAL_LOCKOUT

LOCKED_OUT

MY_ADDRESS

PASS_CONTROL

PPOLL

PPOLL_CONFIGURE

PPOLL_UNCONFIGURE

REMOTE

REMOTED
REQUESTED

REQUEST_SERVICE

SECONDARY

SEND_COMMAND

SET_HPIB
SPOLL

Ceases all HP-IB activity and attempts to
place the HP-IB in a known state.

TRUE if the mm@mm*mma interface is currently
active controller.

Attempts to send a form of the clear message
to the specified device(s).

Clears the specified HP-IB line.

Indicates whether or not EOI was set on the
last byte read.

Returns the current state of the specified line.
Not all lines are accessable at all times.

Sends the specified listen address on the bus.

TRUE if the specified interface is currently
addressed as a listener.

Places the device(s) in local mode.

Sends LLO (the local lockout message) on
the bus.

TRUE if the specified interface is currently in
the local lockout state.

Returns the HP-IB address of the specified
HP-IB interface.

Passes control from the specified interface to
another device on the bus.

Sets the ATN and EOI bus lines on the speci-
fied interface and then reads the data bus
lines.

Programs the logical sense and data bus line
on which the selected device responds to a
parallel poll.

Causes the specified device(s) to disable the
parallel poll response.

Sends the messages to place the bus de-
vice(s) into the remote state.

Indicates if the REM line is being asserted.

TRUE if any device is currently asserting the
SRQ line.

Sets up the SPOLL response byte in the spe-
cified interface.

Sends a secondary command byte over the
bus.

Sends a single byte over the HP-IB interface
with ATN true.

Sets the specified HP-IB control line.

Performs a serial poll to the selected device.

SYSTEM_CONTROLLER TRUE if the specified interface is the system

TALK

09826-90075, rev: 1/83

controller.

Sends a talk address over the bus.

TALKER
TRIGGER

UNLISTEN
UNTALK

Serial Control
ABORT_SERIAL

CLEAR_SERIAL

SEND_BREAK
SERIAL_LINE

SET_BAUD_RATE
SET_CHAR_LENGTH
SET_PARITY
SET_SERIAL

SET_STOP_BITS

TRUE if the specified interface is currently
addressed as a talker.

Sends a trigger command to the specified
device(s).

Sends an unlisten command on the bus.

Sends an untalk command on the bus.

Attempts to return a serial interface to a
known state.

Clears the specified line on a serial interface
card.

Sends a break to the selected serial interface.

TRUE if the specified line on the serial inter-
face is asserted.

Sets the serial interface to the specified baud
rate.

Specifies the character length, in bits, for se-
rial communications.

Determines what parity mode the serial inter-
face will use.

Sets the specified modem line on the con-
nector.

Sets the number of stop bits on the serial
interface.

General Status/Control

IOCONTROL

IOERROR_MESSAGE

IOINITIALIZE
IOREAD_BYTE

IOREAD_WORD

IORESET

IOSTATUS

IOUNINITIALIZE
IOWRITE_BYTE

IOWRITE_WORD

SET_TIMEOUT

Sends control information to the selected in-
terface.

Returns a string containing an English textual
description of an error produced by the /O
procedure library.

Initializes all interfaces.

Reads the byte contained in specified regis-
ter (physical address) on the selected inter-
face.

Reads the word contained in the specified
register (physical address) on the selected in-
terface.

Resets the specified interface to its intial
(power on) state.

Returns the contents of an interface status
register.

Uninitializes all interfaces.

Wirites the supplied value (representing one
byte) to the specified register (physical
address) on the selected interface.

Writes the supplied value (representing 16
bits) to the specified register on the selected
interface.

Sets up a timeout for all read and write op-
erations except transfer.

General Input

READCHAR

READWORD

READNUMBER
READNUMBERLN
READSTRING
READSTRING_UNTIL
READUNTIL
SKIPFOR

General Output

WRITECHAR
WRITENUMBER
WRITENUMBERLN
WRITESTRING
WRITESTRINGLN

WRITEWORD

Buffer Control

BUFFER_DATA
BUFFER_RESET

BUFFER_SPACE
BUFFER

Buffer /O

READBUFFER

READBUFFER_STRING

WRITEBUFFER

Reads a single byte from the specified inter-
face.

Reads 2 bytes from byte oriented interfaces
or a single 16 bit quantity from word-
oriented interfaces.

Performs .m free field numeric entry from the
specified device.

Reads in a free field number and then sear-
ches for a line feed.

Reads characters into the specified string.

Reads characters from the selected device
into the specified string until the prescribed
terminator is encountered.

Reads characters until the match character
occurs.

Reads the specified number of characters
from the selected device.

Sends a single byte as data over the interface
path.

Outputs a free field number to the specified
device.

Outputs the number, a carriage return and a
linefeed.

Sends the specified string to the specified de-
vice.

Outputs the string, a carriage return and a
line feed.

Wirites 2 bytes to a byte-oriented interface or
a 16-bit quantity to a word-oriented inter-
face.

Returns the number of characters available
in the buffer.

Sets the empty and fill pointers to the empty
state.

Returns the available space left in the buffer.

Create a buffer area of the specified number
of bytes.

Reads a single byte from the buffer space
and updates the empty pointer in the buf_
info record.

Reads the specified number of characters
from the buffer and puts them into the string
variable.

Writes a single byte into the buffer space and
update the fill pointer in the buf_info record.

305

Procedure
Library Summary

WRITEBUFFER_STRING Takes the specified string and places it in the

Transfer Control

ABORT_TRANSFER
BUFFER_BUSY
ISC_BUSY

TRANSFER

TRANSFER_END
TRANSFER_UNTIL

TRANSFER_WORD

buffer and updates the fill pointer.

Stop any transfer that is currently active in
the buffer.

Returns a TRUE if there is a transfer occur-
ring on the buffer.

Returns a TRUE if there is a transfer occur-
ring on the interface.

Transfers the specified number of bytes to or
from the buffer space using the specified
transfer type.

Transfers data to or from the buffer.

Transfers bytes into the buffer until the buf-
fer is full or the termination character was
received.

Transfers the specified number of words into
the buffer.

Binary Logic Operations

BINAND

BINCMP

BINEOR

BINIOR

BIT_SET

Returns the bit-by-bit logical AND of its argu-
ments.

Returns the bit-by-bit logical complement of
the argument.

Returns the bit-by-bit logical exclusive-OR of
the argument.

Returns the bit-by-bit logical inclusive-OR of
its arguments.

TRUE if the specified bit position of the argu-
ment is equal to 1.

gt

47 ®© Jo Sp[2y amquiyie ay} Jo 2Wos speay
‘AYVNIg pue

[IDSV ueys 1ayjo sadhy Jo s2|ij 0} ejep Saim
"a[l} paweu

ay) 1o} Angua A1010211p 4|77 2yl saAOWaY
‘suonouny ssa2dde [y

£q 2sn 10} ¥20[q uoyeWIO}Ul 3|} © s3zZi[eYIU]
“1ajutod

JojeuBisap afy ay} sjas pue ‘W sazijeniul ‘deay
8y} WOy YO0[|q UOBRWIOJUL 3y © $2)ed0[y
ey

417 ®© jo spjay ainque 2y} JO 2WOS speay
‘AHVYNIG PUe [[DSV

ueyl 1ayjo sadf} jo sajy WOl elep speay
"Paso[o st [y 2y} J1 10

?[y-Jo-pua e st 2]y pajeublsap 2yl jr ANHL
“Jajutod 103eubisap 2]y ay} siea[d pue deay
3y} WOYj 320[q UOHRWLIOJUI 2[1} © $2)@J0[[e-2(]
‘p2quos

D1} 2yl 10} Allua AlojJallp e sajeal))
‘NIdO4IT 4q pajeard

sem J1 ;1 deay ay) Wolj %20[q B[y Y} SaA0WaL
pue ‘a[y e uo suoyelado [eul ay) SWOHa]
'SpIod

-21 21 AYVNIG 10 [[OSY $23m fjeiuanbag
'Sp102

-21 21y AHYNIE 10 [[OSY speal fjenuanbag

d14L3s4dr]

o 104411

39dNddIT

N3dOdIT

ldM3INAIT

dTdL39411

139411

403411

4ld350dS1a4dlT

ERR-ELSIOEI

3SOTO4IT

10dIIOSvAIT

1391I0Sv4IT

sainpadsoid I

"103e20] soydelb
ayl jO spwy| 103ed0| [edbo| ay) sauyapay

‘Aerdsip sowydeib
ay} uo uoinsod oysa 101RI0] 3y} sauya(g

"321n2p 103ed0] Juauind ay) sajdweg
"201A2p 10Je20] PaJqeUD 2Y) S2[qesi(]
‘mndut 10} 231a2p 10}eI0] 2y} S2[qeud]

‘321
-2p 10]00] pa2|qeu? ay) Woij speal uay} pue
uojNg I0jedo] 3yl JO UOHRALDR [UN SHeA

WITHOLVOOT 13S

SOd"OHOA13S
HJOLVOOT FTdNVS
WH31 HO01VO01
LINITHOLVOOT

YOLVOOT LIVMY
mduj sorydeis)

"MopuUIm aU} O SsaLIRPUNOQ 2y} saulja(]

"W2IsAs)BUIPIO0D [eNHIA
2y} ul Jodmala ay) Jo sauepunoq ayj s1as

‘Aedsip soydeib
ay) jo spwi Aedsip [eaiboj ayy sauyapay

‘wig)sAs areurp
-1002 [enla 2y} jo onel Joadse ay) sauyapay

MOUNIM™LIS

140dM3INTLIS

WI'T AVIdSId™13S

103dsv13s

suonjewiojsuer] Buimaip

‘uond2IIp 1%a) 2y} sayadg

"2[qe) 2[A1s uob
-Ajod ayj ul Anua ue Jo sapnqupe ay} saulja(]

‘suobAjod pajeiauab
Apuanbasqns 10} sanqune ayl buyoasjes snyy
‘a1qe) 2[A)s uobAjod ay) ur Aua ue sR[RG

"21qe) 2[A)s-aull JuUap
-uadap a21nap 2y} 10} 10}02]as e Buipinoid Aq
suobAjod pajerauab Ajuanbasqns 10} 21nq
-upe a[fls-auy| louajul uobhjod ayl spajag

'2]qe} 10102 2Y) 10} 10302]2s e Buipia
-o1d Aq suobAjod pajeiauab Apuanbasqns 10}
anquue 1002 loudui uobAjod ayy spooeg

‘Juapuadap ao1aap st 2jqissod syipim-aur|

JO I2aqunu 2y ‘2Inquile Yipim-aur ay} siag
‘aInque 2[A1s aui| ayl s1ag

HOTOD™ L3S =ia

pa102[as SI Xapul I10[0d 2} Uaym pasn st uol

-1ujap 10J0d SIY] "2{qe} 10[0d 2y} Ul Ajua payj
-pads ayj jo uonduasap 10[02 Y} sauyapay

'2]qe} 1002 2y} ul siajawel
-ed Bugaidiajui 10f [2pow 10[0 @Y} $aS00YD)

j 1ouajut uobAjod 10§ 1dadxa
saaniwud ndino 1o} anquile 10[0d ay} s}

X2}
[esiydeld 10j ainquipe azis 12)oeIeyd ayl sjas

1OY™IX41713S

JTdVLNOd™13S

dTALS™NOCL™ L3S

ST NOd 135

HOTOO™NOd 13S

HLAIMANITLAS
FTALSTINIT L3S

A71dvL HOTOO™ L3S

TIAONW™HOTOD™13S

dOT100713S

JZISTHVHO™L3S

S2INQLI)IY 2AINWLL]

quiod payads ayy
je Buniels aduanbas aul| pajdaUUOd € smel(

‘uolysey Juapuadap-221aap e ul a[Als uobAhjod
payads ay) 03 Bunaype juiod payads ay}
ye Butpua pue Bunaejs jas-uobhjod e she|dsi]

‘(s)nsai1 juapuadaput-22ia
-ap “'271) paywads se Apoexa a]Als uobAhjod
peyads ay) 03 Buuiaype juiod payoads ay3
1e Butpua pue Bunae)s jas-uobAjod e shejdsig

‘payioads ajeuip
-1002 ppom 2y} o} uonisod Buniels ayl s1eg

‘uon
-1sod Bugrels ay) je [oquiAs 1axiew e sindinQ

ANITATOd

d3A"AIA"NOOATOd

NOSATOd

JNON

HIMHVIN

‘paijoads 23euIp100d pliom
a3 03 uonisod Buyaels ay} woly aulf e smel(]

‘Jutod payiads ayy
je Buyels aouanbas aul| pajoauuod e smei(]

‘uotysej juapuadap-adinap e ul 2]A1s uobhjod
payads ay; 0y Buuaype jurod paywads ayj
1e Buipua pue Bunuess jas-uobAjod e shedsi]

‘(synsai juapuadapul-22ia
-2p “2'1) payads se Apoexa a|A)s uobAjod
payoads ay3 o3 Buuaype julod payads ayy
1e Buipua pue Bunaess 1as-uobAjod e shedsig

‘payioads uonisod ajeurp
-1002 prom 2yj o} uomsod bunieis ayl sjeg

‘payvads ajeurpiood plom
ay 03 uomsod Bupe}s ay) wolj aul] e smei(]

‘Aejdsip sowydeib ayy uo siajoeieyd smei(

ANIT

ANITATOd™ INI

Ad"NOOATOd™INI

NODATOd™LNI

dANOW 1INI

ANITLNI
1X3LO

saanulid mdmnQ soydean

mdno sowydeib 1o} apow Butwy ay) s102[2g

‘221n2p Aedsip soydeib ayy uo uoy
-ouny adedsa juapuadap 201nap e swiojiad

‘Jua1nd a1noid a2y} sayepy

‘wdlshs saryded ayp jo
$O1S1I210RIRYD 2UIWId)aP O} 12Sn aY) SMOJY

‘21qes 2[A1s uoBbAjod ayy ur Aljua
ue 10} sanquuie 2]Ais uobAjod ay) saunbuj

"2]qe} Ajjiqeded
10[02 juapuadap-2dinap 2y} Ojul Xapul ue
10} siajeweled buyapow 10j0d 2y} saimnbu]

‘wi2ysAs solydelb ay) woly uonewIOjUl
wapuadap 2dinap UIRIQO O} 1asn ayl SMO[yY

‘w2yshs soryded ayy sajeulwia |
‘wysAs sorydelb ay sazieniuj

‘adeosa
soydesb e jo asned ayl auluLIRIPP O} pasn
2Q ued pue 2pod 1ouR 1abajut ue suinjay

201A
-ap Aejdsip soydeib pajqeua ayj sajqesi(

“feyd
-stp so1ydesb [ea1bo| 2y se a221adp ' sajqeudq

"3} © 03 JUdS 2q
0} Azeiqy soiyded ays jo Indino ay) sajqeuy

"308}INS 10)BJ0] 2y} UO $a1jaul|
-[lW 0] $2]eUIPIOOD PlIOM WOI} SHI2AUOYD)

‘Aeydsip soydeib ay) uo sanaw|
-[IW 0} S2]RUIPIO0D PlIOM WOJ} SH2AUOD)

‘Aedsip sowydeib ays siea[)

ONIWIL™L3S

J5371LNdLNO
INFHHINO DId™IHNVIN

SM™ONI

IT9VL NOd ONI

JT9VL HOTOOONI

JS3™LNdNI

WY1 SOIHAVHD

LINITSOIHAVHO

HOYYISOIHAVHED

WYdL™AV1dSId

LINITAVIdSIA

LINIATAVIdSIA

WNTOLM™LHIANOD

WIWJOLM™LYINANOD
AVIdSIA YVITO

[oxyuo)) sorydein

sainpadoliq soydein

Arewiwing AIeiqr] ainpadsold 90€

Procedure Library Reference

COmputer
useum

Introduction

The Pascal programming language was designed as a teaching language, and as such was intended
to be machine independent. This attribute has good and bad points. Being machine independent
makes the language more easily tranportable, but also ensures that it is difficult, if not impossible, to
access any innovative hardware features provided by a specific computer system.

To allow easy access to the graphics and 1/O features of your computer, a set of procedures and
functions are provided with your system. This reference describes the syntax and semantics for the
procedures and functions provided to access /O and graphics.

The small block of text labeled IMPORT, immediately below the title of each entry, lists the module
which must be declared in an IMPORT statement in order to access the feature. Modules which are
needed by these imported modules, if any, are shown in the Module Dependency Table at the end
of the reference.

307

308 Procedure Library Reference

ABORT_HPIB

IMPORT: hpib_2
iodeclarations

This procedure ceases all HP-IB activity and attempts to place the HP-IB in a known state. If
the controlling interface is System Controller, but not Active Controller, it is made Active

Controller.
Syntax

© 0

e Range Recommended
Item ‘ Description/Default l Restrictions Range

interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
Semantics

The actual action taken depends upon whether the computer is currently active or system
controller. The various actions taken are listed in the table below:

System Controller Not System Controlier
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
IFC (duration ATN
Active =100usec) MTA
Controller REN UNL
ATN
ATN Error Error
IFC (duration
Not Active =100 psec)* No
Controller REN Action
ATN

* The IFC message allows a non-active controiler (which is the system controller) to become the active controller.

Procedure Library Reference 309

ABORT_SERIAL

IMPORT: serial_3
iodeclarations

This procedure attempts to return a serial interface to a known state. Any current active
transfers are halted.

Syntax

interface
ssonm_seruas)+ () 0

. . Range Recommended
Item i Description/Default l Restrictions Range
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.

310 Procedure Library Reference

ABORT _TRANSFER

IMPORT: general_4
iodeclarations

This procedure will stop any transfer that is currently active in the buffer.

Syntax
© ®
It .. Range
em Description/Default Restrictions
buffer name I Variable of TYPE buf_info_type. l See the Advanced Transfer
Techniques chapter
Semantics

The termination of the transfer is accomplished by resetting the interface currently associated with
the specified buffer name. This returns the interface to power on default configuration, and all
configuration information is lost.

Procedure Library Reference 311

ACTIVE_CONTROLLER

IMPORT: hpib_1
iodeclarations

This BOOLEAN function returns TRUE if the specified interface is currently active controller.

Syntax

interface
ACTIVE_CONTROLLER o o

o Range Recommended
Item | Description/Default | Restrictions Range
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.

312 Procedure Library Reference

ADDR _TO_LISTEN

IMPORT: hpib_1
iodeclarations

Note

This function is provided for use by the internal I/O Procedure Lib-

rary drivers, only. Unexpected and possible undesirable results may
occur if it is used.

The following sequence of statements will address a device to listen:

TALK (7:24)3
UNLISTEN (7)3
LISTEN(7, MY_ADDRESS(7));

Procedure Library Reference 313

o
ADDR_TO_TALK

IMPORT: hpib_1
iodeclarations

Note

This function is provided for use by the internal /O Procedure Lib-
rary drivers, only. Unexpected and possible undesirable results may

occur if it is used.

The following sequence of statements will address a device to talk:

UNLISTEN (7)3
LISTEN (7:24)53
TALK (7 MY_ADDRESS(7))}

314 Procedure Library Reference

AWAIT LOCATOR

IMPORT: dgl_lib

This procedure waits until activation of the locator button and then reads from the enabled
locator device. Various echo methods can be selected.

Syntax

echo button variable
AWAIT.L0CATOR () O N e €)
X cooridinate Y cooridinate
variable name variable name

Item Description/Default Re?t?il::?if)ns
echo selector Expression of TYPE INTEGER MININT to MAXINT
button variable name Variable of TYPE INTEGER -

x coordinate variable Variable of TYPE REAL -
name
y coordinate variable Variable of TYPE REAL -
name

Procedure Heading

PROCEDURE AWAIT_LOCATOR (¢ Echo : INTEGER;
VAR Button : INTEGER;
VAR WX, WY : REAL)3
Semantics

AWAIT_LOCATOR waits until the locator button is activated and then returns the value of the
selected button and the world coordinates of the locator. While the button press is awaited, the
locator position can be tracked on the graphic display device. If an invalid button is pressed, the
button value will be returned as 0; otherwise it will contain the value of the button pressed. On
locators that use a keyboard for the button device (e.g. HP 9826 / HP 9836), the ordinal value of
the key pressed is returned.

The echo selector selects the type of echo used. Possible values are:

0 - No echo.

1 - Echo on the locator device.

2 - Small cursor

3 - Full cross hair cursor

4 - Rubber band line

5 - Horizontal rubber band line

6 - Vertical rubber band line

7 - Snap horizontal / vertical rubber band line

8 - Rubber band box

9 and above - Device dependent echo on the locator device.

Procedure Library Reference

Locator input can be echoed on eithera graphics display device or alocator device. The meaning
of the various echoes on various devices used as locators and displays is discussed below.

The button value is the INTEGER value of the button used to terminate the locator input.
The x and y position represent the world coordinate point returned from the enabled locator.

AWAIT_LOCATOR implicitly makes the picture current before sending any commands to the
locator device. The locator should be enabled (LOCATOR_INIT) before calling AWAIT_LOCA-
TOR. The locator is terminated by the procedure LOCATOR_TERM.

Range and Limit Considerations

If the echo selector is out of range, the call to AWAIT_LOCATOR is completed using an echo
selector of 1 and no error is reported. Echoes 2 through 8 require a graphics display to be
enabled. If a display is not enabled, the call will be completed with echo 1 and GRAPHICSER-
ROR will return 4.

If the point entered is outside of the current logical locator limits, the transformed point will still be
returned in world coordinates.

Starting Position Effects

The location of the starting position is device dependent after this procedure with echo 0 or echo
1. For soft-copy devices it is typically unchanged; however, for plotters the pen position (starting
position) will remain at the last position it was moved to by the operator. This is done to reduce
pen movement back to the current position after each AWAIT_LOCATOR invocation.

Echo Types

Several different types of echoing can be performed. Some echoes are performed on the locator
device while others use the graphics display device. When the echo selector is in the range 2 thru
8, the graphics display device will be used in echoing. All of the echoes on the graphics display
start at a point on the graphics display called the locator echo position (see SET_ECHO_POS).
For some of these echoes the locator echo position is also used as a fixed reference point. For
example, the fixed end of the rubber band line will be at the locator echo position. The echoes
available are:

2. Small cursor
Track the position of the locator on the graphics display device. The initial position of the
cursor is at the locator echo position. The point returned is the locator position.

3. Full cross hair cursor
Designate the position of the locator on the graphics display device with two intersecting
lines. One line is horizontal with a length equal to the width of the logical display surface.
The other line is vertical with a length equal to the height of the logical display surface. The
initial point of intersection is at the current locator echo position. The point returned is the
locator position.

4. Rubber band line
Designate the endpoints of a line. One end is fixed at the locator echo position; the other is
designated by the current locator position. The locator position can be told from the locator
echo position by the presence of a small cursor (echo 2) at end representing the locator
echo position. The point returned is the locator position.

315

316 Procedure Library Reference

5. Horizontal rubber band line
Designate a horizontal line. One endpoint of the line is fixed at the locator echo position;
the other endpoint has the world Y-coordinate of the locator echo position and the world
X-coordinate of the current locator position. The locator position can be told from the
locator echo position by the presence of a small cursor (echo 2) at end representing the
locator echo position. The point returned will have the X-coordinate of the locator position
and the Y-coordinate of the locator echo position.

6. Vertical rubber band line
Designate a vertical line. One endpoint of the line is fixed at the locator echo position; the
other endpoint will have the world X-coordinate of the locator echo position and the world
Y-coordinate of the current locator position. The locator position can be told from the
locator echo position by the presence of a small cursor (echo 2) at end representing the
locator echo position. The point returned will have the X-coordinate of the locator echo
position and the Y-coordinate of the locator position.

7. Snap horizontal / vertical rubber band line
Designate a horizontal / vertical line. One endpoint of the line is fixed at the locator echo
position. The other endpoint will be either a horizontal (see echo 5) or vertical (see echo 6)
rubber band line, depending on which one produces the longer line. If both lines are of
equallength, a horizontal line will be used. The locator position can be told from the locator
echo position by the presence of a small cursor (echo 2) at end representing the locator
echo position. The point returned is the endpoint of the echoed line.

8. Rubber band box
Designate a rectangle. The diagonal of the rectangle is the line from the locator echo
position to the current locator position. The locator position can be told from the locator
echo position by the presence of a small cursor (echo 2) at end representing the locator
echo position. The point returned will be the locator position.

Echo selectors of 1 and greater than or equal to 9 produce a device dependent echo on the
locator device. Most locator devices support at least one form of echoing. Possible ones include
beeping, displaying the value entered, or blinking a light each time a point is entered. If the
specified echo is not supported on the enabled locator device, echo 1 will be used.

Echoes on Raster Displays
Raster displays support all the echoes described under “‘Echo Types.”

Echoes on HPGL Plotters

Hard copy plotting devices (such as the 9872 or the 7580) cannot perform all the echoes listed
above. The closest approximation possible is used for simulating them. The actual echo per-
formed may also depend on whether the plotter is also being used as the locator. The echoes
available on plotters are:

2. Small cursor

Initially the plotter’s pen will be moved to the locator echo position. The pen will then
reflect the current locator position (i.e., track) until the locator operation is terminated.

3. Full cross hair cursor
Simulated by ECHO #2. '

4. Rubber band line
Simulated by ECHO #2.

Procedure Library Reference 317

5. Horizontal rubber band line
If the plotter is not the current locator device, the plotter’s pen will initially be moved to the
current locator echo position. The pen will then reflect the X coordinate of the current
locator position and the Y coordinate of the current locator echo position.

If the plotter is used as the locator, this echo is simulated by echo 2 except the current
locator X coordinate and the locator echo position Y coordinate are returned.

6. Vertical rubber band line
If the plotter is not the current locator device, the plotter’'s pen position will initially be
moved to the currentlocator echo position. The pen will then reflect the X coordinate of the
current locator echo position and the Y coordinate of the current locator position.

If the plotter is used as the locator, this echo is simulated by echo 2 except the locator echo
position X coordinate and the current locator Y coordinate are returned.

7. Snap horizontal / vertical rubber band line
Designate a horizontal / vertical line. One endpoint of the line is fixed at the locator echo
position. The other endpoint will be either a horizontal (see echo 5) or vertical (see echo 6)
rubber band line, depending on which one produces the longer line. If both lines are of
equallength, a horizontal line will be used. The locator position can be told from the locator
echo position by the presence of a small cursor (echo 2) at end representing the locator
echo position. The point returned is the endpoint of the echoed line.

8. Rubber band box
Simulated by echo 2. The point returned will be the locator position.

Tablet Locators

For HPGL graphics tablets the operator positions the stylus to the desired position and depresses
it The button value returned is always one. For an echo selector of 1 the tablet beeper is sounded
when the stylus is depressed. An echo selector greater than or equal to 9 uses the same echo asan
echo selector of 1.

The Knob as Locator
When the knob is specified as the locator (LOCATOR_INIT with device selector of 2) the
keyboard keys have the following meanings:

Arrow keys Move the cursor in the direction indicated.

Knob Move the cursor right and left.

Knob with shift key Move the cursor up and down.

pressed

Number keys Change the amount the cursor is moved per arrow keypress or knob
1-9 rotation. 1 provides the least movement and 9 provides the most.

All other keys act as the locator buttons. The ordinal value of the locator button (key) struck is
returned in BUTTON.

For an echo selector of 1 the position of the locator is indicated by a small crosshair cursor on the
graphics display.

318 Procedure Library Reference

The initial position of the cursor is located at the current starting position of the graphics display.
This is the point obtained by the last invocation of await_locator, or the lower left hand corner of
the locator limits if no point has been received since LOCATOR_INIT was executed. For back to
back AWAIT_LOCATOR calls this would mean the second AWAIT_LOCATOR would begin
were the first AWAIT_LOCATOR left the cursor. Echo selectors greater than or equal to 9 have
the same effect as an echo selector of 1.

Locatorinput can be echoed on either a graphics display device or a locator device. Echoes 2 thru
8 are explained above under “‘Echoes on Raster Displays’” and ‘Echoes on HPGL Plotters’. For
an echo selector of 0 or 1 the pen tracks the locator position. Echo selectors greater than or equal
to 9 have the same effect as an echo selector of 1.

HPGL Plotters as Locators

The AWAIT_LOCATOR function enables a digitizing mode in the device. For HPGL plotters the
operator then positions the pen to the desired position with the cursor buttons or joy stick and
then presses the enter key. The pen state (0 for ‘up’, and 1 for "down’) is returned in the button
parameter.

Following locator input (echo on the locator device), the pen position will remain at the last
position it was moved to by the operator. This means that the starting position for the next
graphics primitive will be wherever the pen was left.

Locatorinput can be echoed on either a graphics display device or a locator device. Echoes 2 thru ‘
8 are explained above under “‘Echoes on Raster Displays” and “‘Echoes on HPGL Plotters”. For

an echo selector of 0 or 1 the pen tracks the locator position. Echo selectors greater than or equal

to 9 have the same effect as an echo selector of 1.

Error Conditions

The graphics system must be initialized and the locator device must be enabled or the call will be
ignored. If the echo selector is between 1 and 9 and the graphics display is not enabled, the call
will be completed with an echo selector of 1. If any of the preceding errors are encountered, an
ESCAPE (.27) is generated, and GRAPHICSERROR will return a non-zero value.

Procedure Library Reference

BINAND

IMPORT: iocomasm

This INTEGER function returns the bit-by-bit logical-and of its arguments.

Syntax
Ol 2 O] 2 O
Item Description/Default Range
p Restrictions
argument Expression of TYPE INTEGER. ‘ MININT thru MAXINT
Semantics

The arguments for this function are represented as 32-bit two’s complement integers. Each bit
in an argument is logically anded with the corresponding bit in the other argument. The results
of all the ands are used to construct the integer which is returned.

319

320 Procedure Library Reference

BINCMP ®

IMPORT: iocomasm

This INTEGER function returns the bit-by-bit logical complement of the argument.

Syntax

CHYOSES"0

s, Range
Item | Description/Default l Restrictions
argument | Expression of TYPE INTEGER. l MININT thru MAXINT
Semantics

The argument for this function is represented as a 32-bit two’s complement integer. Each bit in
the argument is logically complemented, and the resulting integer is returned.

Procedure Library Reference 321

BINEOR

IMPORT: iocomasm

This INTEGER function returns the bit-by-bit logical exclusive-or of the two arguments.

Syntax
(O amen (O rosmen |00
Item Description/Default Range
p Restrictions
argument | Expression of TYPE INTEGER. l MININT thru MAXINT
Semantics

The arguments for this function are represented as 32-bit two’s complement integers. Each bit
in an argument is exclusively-ored with the corresponding bit in the other argument. The results
of all the exclusive-ors are used to construct the integer which is returned.

322 Procedure Library Reference

BINIOR

IMPORT: iocomasm

This INTEGER function returns the bit-by-bit logical inclusive-or of its arguments.

Syntax
oSE=Neor ez o
. Range
Item Description/Default Restrictions
argument Expression of TYPE INTEGER. I MININT thru MAXINT
Semantics

The arguments for this function are represented as 32-bit two’s complement integers. Each bit
in an argument is inclusively-ored with the corresponding bit in the other argument. The results
of all the inclusive-ors are used to construct the integer which is returned.

Procedure Library Reference 323

BIT_SET

IMPORT: iocomasm

This BOOLEAN function is TRUE if the specified bit position of the argument is equal to 1.

Syntax

Ol O = O

s Range Recommended
ltem Description/Default Restrictions Range
argument Expression of TYPE INTEGER. MININT thru
MAXINT
bit position Expression of TYPE INTEGER. MININT thru 0 thru 31
MAXINT
Semantics

The argument for this function is represented as a 32-bit two’s complement integer. Bit 0 is the
least-significant bit and bit 31 is the most-significant bit.

324 Procedure Library Reference

BUFFER BUSY

IMPORT: general_4
iodeclarations

This BOOLEAN function is TRUE if there is a transfer active on the specified buffer.

Syntax

BUFFER_BUSY)= () ()

Item l Description/Default l Re?t?ir::st!ieons
buffer name l variable of TYPE buf_info_type | See the Advanced Transfer

Techniques chapter

Procedure Library Reference

BUFFER DATA

IMPORT: general_4
jodeclarations

This INTEGER function returns the number of characters available in the buffer.

Syntax

buffer
sy ~(0 O

Item l Description/Default ‘ Re?t:ilgt!ieons
buffer name | Variable of TYPE buf-info-type. | See the Advanced Transfer

Techniques chapter

325

326 Procedure Library Reference

BUFFER _RESET

IMPORT: general_4

iodeclarations
This procedure will set the empty and fill pointers to the empty state.
Syntax
® ®
Item Description/Default Range
P Restrictions
buffer name | Variable of TYPE buf_info_type. , See the Advanced Transfer

Techniques chapter
Semantics

The actual buffer data will not be modified - only the pointers to it. A buffer will only be reset if
there are no transfers currently active on the specified buffer.

Procedure Library Reference

BUFFER_SPACE

IMPORT: general_4
iodeclarations
This INTEGER function returns the available space left in the buffer.

Syntax

buffer
T 0 ®

ltem ‘ Description/Default ‘ Regi:inc%eons
buffer name ‘ Variable of TYPE buf_info_type. l See the Advanced Transfer
Techniques chapter
Semantics

This function not only returns the current available space in the bulffer, it also attempts to keep
data at the front of the buffer. The buffer is reset if there is no data remaining in the buffer.

327

328 Procedure Library Reference

CLEAR

IMPORT: hpib_2
iodeclarations

This procedure attempts to send a form of the clear message to the specified HP-IB device(s).

Syntax

device
cuean)}~ 0) 0

s . Range Recommended
Item , Description/Default ’ Restrictions Range
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary
an INTEGER subrange.
Semantics
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified ode Only Specified
ATN ATN
Active ATN oy ATN Wy
Controller DCL LAG DCL LAG
SDC SDC
Not Active
Controlier Error

Procedure Library Reference

CLEAR_DISPLAY

IMPORT: dgl_lib

This procedure clears the graphics display.

Syntax

CLEAR_DISPLAY

Procedure Heading
PROCEDURE CLEAR_DISPLAYS

Semantics

The graphics system provides the capability to clear the graphics display of all output primitives at
any time in an application program. This procedure has different meaning for different graphics
display devices. CLEAR_DISPLAY makes the picture current. The starting position is not
effected by this procedure.

HPGL Plotters
Plotters with page advance will be sent a command to advance the paper. On devices such as
fixed page plotters, a call to CLEAR_DISPLAY simply makes the picture current.

Raster Displays
On CRT displays, this procedure clears the display to the background color. This means slightly
different things on different displays:

Monochrome If color table location 0 is O then the display is cleared to black. Otherwise, the
display is cleared to white.

HP 98627A The display is cleared to the non-dithered color closest to the color repre-
sented specified by color table location 0. (e.g., If color table location 0 was
Red=.5, Green =.2, Blue =0, the display would be cleared to red.)

HP Model 36C The display is cleared to the color represented by color table location O.

Error conditions:

The graphics system must be initialized and a display must be enabled or the call will be ignored,
an ESCAPE (— 27) will be generated, and the GRAPHICSERROR function will return a non-zero
value.

329

330 Procedure Library Reference

CLEAR HPIB

IMPORT: hpib_0

iodeclarations

This procedure will clear the specified HP-IB line. Not all lines are accessable at all times.

Syntax
(O O O
- Range Recommended
Item Description/Default Restrictions Range

interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
hpib line Expression of enumerated TYPE hpib_line. atn_line
specifier dav_line

ndac_line

nrfd_line

eoi_line

srq_line

ifc_line

ren_line
Semantics

All possible hpib_line types are not legal when using this procedure.

Handshake lines (DAV, NDAC, NRFD) are never accessible, and an error is generated if an
attempt is made to clear them.

The interface clear line (IFC) is automatically cleared after being set, and no action occurs if an
attempt is made to clear it through CLEAR_HPIB.

The Service Request line (SRQ) is not accessible through CLEAR_HPIB, and should be acces-
sed through REQUEST_SERVICE. Attempting to clear the service line directly through
CLEAR_HPIB generates an error.

The remote enable line (REN) can be cleared only if the selected interface is currently System
Controller. Otherwise, an error is generated.

The attention line (ATN) can be cleared only if the selected interface is currently Active Control-
ler. Otherwise, an error is generated.

Procedure Library Reference 331

CLEAR_SERIAL

IMPORT: serial_0O
iodeclarations

This procedure will clear the specified line on a serial interface card.

Syntax

interface serial line
cuean.semau) () (D D

i Range Recommended
Item Description/Default Restrictions Range

interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
serial line Expression of enumerated TYPE rts_line
specifier type_serial_line. cts_line

dcd_line

dsr_line

drs_line

ri_line

dtr_line
Semantics

The values of the enumerated TYPE type_serial_line have the following definitions :

name RS-232 line
rts ready to send
cts clear to send
ded data carrier detect
dsr data set ready
drs data rate select
dtr data terminal ready
ri ring indicator

The access to the various lines is determined by the use of an Option 1 or Option 2 connector
on the selected interface.

332 Procedure Library Reference

CONVERT_WTODMM

IMPORT: dgl_lib

This procedure converts from world coordinates to millimetres on the graphics display.

Syntax

CERTD SO i O il O S i N W e W)

Item Description/Default Re?t:irgt;ieons
world x Expression of TYPE REAL -
world y Expression of TYPE REAL -
metric X name Variable of TYPE REAL -
metric y name Variable of TYPE REAL -

Procedure Heading
PROCEDURE CONVERT_WTODMM ¢ WA s WY : REALS
VAR Mm¥,» MmY : REAL)3

Semantics

This procedure returns a coordinate pair (metric X,metric Y) representing the world X and Y
coordinates. The metric X and Y values are the number of millimetres alongthe X and Y axis from
the supplied world coordinate point to the origin of the metric coordinate system on the device.
The location of this origin is device dependent.

For raster devices, the metric origin is the lower-left dot. For HPGL plotters, it is the lower-left
corner of pen movement.

Since the origin of the world coordinate system need not correspond to the origin of the physical
graphics display, converting the point (0.0,0.0) in the world coordinate system may not result in
the value (0.0,0.0) offset from the physical display device’s origin.

CONVERT_WTODMM will take any world coordinate point, inside or outside the current
window, and convert it to a point offset from the physical display device’s origin.

Error conditions:

The graphics system must be initialized and the graphics display must be enabled or the call will
beignored, an ESCAPE (— 27) will be generated, and GRAPHICSERROR will return a non-zero

value.

Procedure Library Reference 333

CONVERT _WTOLMM

IMPORT: dgl_lib

This procedure converts from world coordinates to millimetres on the locator surface.

Syntax

CEEID RO il 0 S il T O SR O S

Item Description/Default Relsat?ir:;t!ieons
world x expression of TYPE REAL -
world y expression of TYPE REAL -
metric X name variable of TYPE REAL -
metric y name variable of TYPE REAL -

Procedure Heading
PROCEDURE CONYVERT_WTOLMM (Wiy WY : REALS
VAR MmX s MmY : REAL)3

Semantics

This procedure returns a coordinate pair (metric x,metric y) representing the world X and Y
coordinates. The metric x and y values are the number of millimetres along the X and Y axis from
the supplied world coordinate point to the origin of the metric coordinate system on the device.
The location of this origin is device dependent.

For raster devices, the metric origin is the lower-left dot. For HPGL plotters, it is the lower-left
corner of pen movement.

Since the origin of the world coordinate system need not correspond to the origin of the physical
locator device, converting the point (0.0,0.0) in the world coordinate system does not necessarily
result in the value (0.0,0.0) offset from the physical locator device’s origin.

CONVERT_WTOLMM will take any world coordinate point, inside or outside the current
window, and convert it to a point offset from the physical locator origin.

Error Conditions

The graphics system must be initialized, the graphics device must be enabled, and the locator
must be initialized or the call will be ignored, an ESCAPE (—27) will be generated, and
GRAPHICSERROR will return a non-zero value.

334 Procedure Library Reference

DISPLAY_FINIT

IMPORT: dgl_lib

This procedure enables the output of the graphics library to be sent to a file.

Syntax
® © O O
L.‘ error variable r__.@_,
name

.. Range Recommended
[tem Description/Default Restrictions Range
file name Expression of TYPE Gstring255; can be a | Must be a valid —
STRING of any length up to 255 charac- | file name (see
ters. “The File
System”’)
device specifier Expression of TYPE Gstring255; can be a | 9872A, 9872B, -
STRING of any length up to 255 charac- | 9872C, 98728,
ters. First six characters are significant. 9872T, 7470A,
7475A, 7550A
and 7586B
control value Expression of TYPE INTEGER MININT thru see below
MAXINT
error variable name | Variable of TYPE INTEGER - -
Procedure Heading
PROCEDURE DISPLAY_FINIT (File_Name ! Gstring255,
Device_Name: Gstrind255,
Control : INTEGER
var lerr : INTEGER)3

Semantics

DISPLAY_FINIT allows output from the graphics library to be sent to a file. This file can then be
sent a graphics display device by use of the operating system’s file system (e.g. FILER, or SRM
spooler). The contents of the file are device dependent, and MUST be sent only to devices of the
type indicated in device name when the file was created.

The file name specifies the name of the file to send device dependent commands to.

The device specifier tells the graphics system the type of device that the file will be sent to. Only
some types of devices may be use this command. For example raster devices (i.e. the internal
display) may not use this command. For the currently supported devices, see the range restric-
tions under Syntax, above.

Procedure Library Reference 335

The control value is used to control characteristics of the graphics display device and should be
set according to the display device the file is intended for. See ‘‘Control Values,”” below, for the
meaning of the control value.

The error variable name will contain a value indicating whether the graphics display device was
successfully initialized.

Value Meaning
0 The graphics display device was successfully initialized.
1 The graphics display device (indicated by device name) is not supported by the

graphics library.

2 Unable to open the file specified. File erroris returned in Escapecode, and loresult (see
the Pascal Language System User’s manual).

DISPLAY_FINIT enables a file as the logical graphics display. The file can be of any type,
although the current spooling mechanisms can only handle TEXT and ASCll files. The file need
not exist before this procedure is called. If this procedure is successful the file will be closed with
"LOCK’ when DISPLAY_TERM is executed.

This procedure initializes and enables the graphics display for graphics output. Before the device
is initialized the device status is 0, the device address is O, and the device name is the default
name. The default name is’ ’ (six ASCII blanks).

When the device is enabled the device status is set to 1 {enabled) and the internal device specifier
used by the graphics library is set to the file name provided by the user. The device name is set to
the supplied device name. This information is available by calling INQ_WS with operation
selectors of 11050 and 12050.

[nitialization includes the following operations:

® The graphics display surface is cleared (e.g., CRT erased, plotter page advanced) if Bit 7 of
CONTROL is not set.

® The starting position is set to a device dependent location.
® The logical display limits are set to the default limits for the device.

® The aspect ratio of the virtual coordinate system is applied to the logical display limits to
define the limits of the virtual coordinate system.

e All primitive attributes are set to the default values.
® The locator echo position is set to its default value.

336 Procedure Library Reference

Only one graphics output device can be initialized at a time. If a graphics display device is
currently enabled, the enabled device will be terminated (via DISPLAY_TERM) and the call will
continue.

A call to MOVE or INT_MOVE should be made after this call to update the starting position and in
so doing, place the physical pen or beam at a known location on the graphics display device.

The Control Value
The control value is used to control characteristics of the graphics display device. Bits should be
set according to the following bit map. All unused bits should be set to O.

glfojofojofojojojojojojojofoy|o
15(14113|12]11{ 10

Bits Meaning
0 thru 6 Currently unused. Should be set to 0.
7 If this bit is set (BIT 7= 1), it will inhibit clearing of the graphics display as part of

the DISPLAY_FINIT procedure. Some devices have the ability to not clear the
graphics display, or not to perform a page advance during device initialization.
This bit is ignored on devices that do not support the feature.

8 thru 15 Not used by DISPLAY_FINIT.

HPGL Plotter Initialization
When an HPGL device is initialized the following device dependent actions are performed, in
addition to the general initialization process:

® Pen velocity, force, and acceleration are set to the default for that device.
o ASCII character set is set to "ANSI ASCII'.

® Paper cutter is enabled (HP 9872S / HP 9872T).

e Advance page option is enabled (HP 9872S / HP 9872T / HP 7550A).

® Paper is advanced one full page (HP 9872S / HP 9872T / HP 7550A) (unless DISPLAY_INIT
CONTROL bit 7 is set).

e The automatic pen options are set (HP 7580 / HP 7585 / HP 7586B / HP 7550A).

The default initial dimensions for the HPGL plotters supported by the graphics library are:

Wide High Wide High Resolution

Plotter mm mm points points Aspect points/mm
9872 400 285 16000 11400 7125 40.0
7580 809.5 524.25 32380 20970 .6476 40.0
7585 1100 891.75 44000 35670 .8107 40.0
7586 1182.8 898.1 47312 35924 .7593 40.0
7470 257.5 191.25 10300 7650 7427 40.0
7550 411.25 254.25 16450 10170 .6182 40.0
7475 416 259.125 16640 10365 6229 40.0

Any device not in this list is not supported.

Procedure Library Reference 337

The default logical display surface is set equal to the maximum physical limits of the device. The
view-surface is always justified in the lower left corner of the current logical display surface
(corner nearest the turret for the HP 7580 and HP 7585 plotters). The physical origin of the
graphics display is at the lower left boundary of pen movement.

Error Conditions
If the graphics system is not initialized, the call is ignored, an ESCAPE (- 27) is generated, and
GRAPHICSERROR returns a non-zero value.

338 Procedure Library Reference

DISPLAY _INIT

IMPORT: dgl_lib

This procedure enables a device as the logical graphics display.

Syntax

device control error variable
D1sPLAY_INIT}—{(() O O name e (D)

.. Range Recommended
Item Description/Default Restrictions Range
device selector Expression of TYPE INTEGER MININT to
MAXINT
control value Expression of TYPE INTEGER MININT to -
MAXINT
error variable name | Variable of TYPE INTEGER - —

Procedure Heading

PROCEDURE DISPLAY_INIT ¢ Dev_Adr : INTEGER,
Control : INTEGER,
UAR IErr : INTEGER);
Semantics

DISPLAY_INIT enables a device as the logical graphics display. It initializes and enables the
graphics display device for graphics ontput.

Before the device is initialized the device status is 0, the device address is 0, and the device name
is the default name. The default name is ’ ’ (six ASCII blanks).

When the device is enabled the device status is set to 1 (enabled) and the internal device specifier
used by the graphics library is set equal to the device selector provided by the user. The device
name is set to the device being used. This information is available by calling INQ_WS with
operation selectors 11050 and 12050.

The device selector specifies the physical address of the graphics output device.
® address =3 Primary internal graphics CRT (HP Series 200) (i.e., the display designated as the
console where the command line is displayed)

® address =6 Secondary internal graphics CRT (HP Series 200), if present (i.e., any display
other than the console that does not require a select code and/or bus address to access it)

@ 8 = = device selector == 31 Interface Card Select Code
(HP 98627A default = 28)

® 100 = = device selector == 3199 composite HPIB/device address

The control value is used to control device dependent characteristics of the graphics display
device.

Procedure Library Reference

The error variable name will contain a value indicating whether the graphics display device was
successfully initialized.

Value | Meaning
0 The graphics display device was successfully initialized.
2 Unrecognized device specified. Unable to communicate with a device at the specified

address, non-existent interface card or non-graphics system supported interface card.

If an error is encountered, the call will be ignored.

The graphics library attempts to directly identify the type of device by using its device selector in
some way. The meanings for device address are listed above.

At the time that the graphics library is initialized, all devices which are to be used must be
connected, powered on, ready, and accessible via the supplied device selector. Invalid device
selectors or unresponsive devices result in that device not being initialized and an error being
returned.

Only one graphics output device maybe initialized at a time. If a graphics display device is
currently enabled, the enabled device will be terminated (via DISPLAY_TERM) and the call will
continue.

A call to MOVE or INT_MOVE should be made after this call to update the starting position and in
so doing, place the physical pen or beam at a known location on the graphics display device.

The Control Value
Used to control characteristics of the graphics display device. Bits should be set according to the
following bit map. All unused bits should be set to 0.

oloflofo|o|0|o|jo|Oo|O|O|O|O|O|O]O

15(1413|12|11|10|9| 8| 7|6(5[4|3|2|1]O

Bits Meaning
0 thru 6 Currently unused. Should be set to O.
7 If this bit is set (BIT 7 = 1), it will inhibit clearing of the graphics display as part of

the DISPLAY_FINIT procedure. Some devices have the ability to not clear the
graphics display, or not to perform a page advance during device initialization.
This bit is ignored on devices that do not support the feature.

8 thru 15 Bits 8 though 15 are used by some devices to control device dependent features
of those devices.

Bits 8,9, and 10 of DISPLAY_INIT’s CONTROL parameter determine the type of display for the
HP 98627A card and the default dimensions assumed by the graphics system.

339

340 Procedure Library Reference

Bits
CONTROL 109 8 Description
256 001 USSTD {512 x 390, 60 hz refresh)
512 010 EUROSTD (512 x 390, 50 hz refresh)
768 011 USTV (5612 x 474, 15.75 Khz horizontal
refresh, interlaced)
1024 100 EURO TV (512 x 512, 50 hz vertical refresh,
interlaced)
1280 101 HIRES (5612 x 512, 60 hz)
1536 110 Intemal (HP) use only

Out of range values are treated as if CONTROL = 256.

When using a Model 237 display that is designated the console, bit 8 of DISPLAY_INIT’s
CONTROL parameter determines if the entire screen will be used for graphics. A value of 256 (i.e.,

bit 8 =1) turns off the echo of the type-ahead buffer, and allocates the entire screen for graphics.
The type-ahead buffer echo is re-enabled by the DISPLAY_TERM procedure call.

General Initialization Operations
Initialization includes the following operations:

® The graphics display surface is cleared (e.g., CRT erased, plotter page advanced) unless Bit 7
of the control value is set.

® The starting position is set to a device dependent location. (This is undefined for HPGL
plotters.)

® The logical display limits are set to the default limits for the device.

® The aspect ratio of the virtual coordinate system is applied to the logical display limits to
define the limits of the virtual coordinate system.

o All primitive attributes are set to the default values.
® The locator echo position is set to its default value.

¢ If the display and locator are the same physical device, the logical locator limits are set to the
limits of the view surface.

Raster Display Initialization
When a raster display is initialized the following device dependent actions are performed, in
addition to the general initialization process:

® The starting position is in the lower left corner of the display.

® Graphics memory is cleared if bit 7 of the control word is 0.

¢ Initialize the color table to default values. If the device has retroactive color definition (Model
36C) and the color table has been changed from the default colors, the colors of an image will
change even if bit 7 is set to 1.

® The graphics display is turned on.
® The view surface is centered within the logical display limits.

Procedure Library Reference 341

e The drawing mode (see OUTPUT_ESC) is set to dominate.
e The DISPLAY_INIT CONTROL parameter is used as specified above.

The following table describes the internal raster displays for Series 200 computers:

Wide High Wide High Memory Color
Computer mm mm points points Planes Map
Model 216 160 120 400 300 1 no
Model 217 230 175 512 390 1 no
Model 220 (HP82913A) 210 158 400 300 1 no
Model 220 (HP82912A) 152 114 400 300 1 no
Model 226 120 88 400 300 1 no
Model 236 210 160 512 390 1 no
Model 236 Color 217 163 512 390 4 yes
Model 237 312 234 1024 768 1 no

The HP 98627A is a 3 plane non-color mapped color interface card which connects to an external
RGB monitor. Bits 8,9, and 10 of DISPLAY_INIT’s CONTROL parameter determine the type of
display for the HP 98627A card and the default dimensions assumed by the graphics system.

Bits
CONTROL 109 8 Description
256 001 USSTD (512 x 390, 60 hz refresh)
512 010 EUROSTD (512 x 390, 50 hz refresh)
768 011 USTV (512 x 474, 15.75 Khz horizontal
refresh, interlaced)
1024 100 EUROTV (512 x 512, 50 hz vertical refresh,
interlaced)
1280 101 HIRES (512 x 512, 60 hz)
1536 110 Internal (HP) use only

Out of range values are treated as if CONTROL = 256.

The physical size of the HP 98627A display (needed by the SET_DISPLAY_LIM procedure) may
be given to the graphics system by an escape function (OPCODE = 250). The physical limits
assumed until the escape function is given are:

CONTROL = 256 153.3mm wide and 116.7mm high.
512 153.3mm wide and 116.7mm high.

768 153.3mm wide and 142.2mm high.

1280 153.3mm wide and 153.3mm high.

The default logical display surface of the graphics display device is the maximum physical limits of
the screen. The physical origin is the lower left corner of the display.

The view surface is always centered within the current logical display surface.

342 Procedure Library Reference

HPGL Plotter Initialization

When an HPGL device is initialized the following device dependent actions are performed, in
addition to the general initialization process:

® Pen velocity, force, and acceleration are set to the default for that device.

® ASCII character set is set to ’ANSI ASCII'".

® Paper cutter is enabled (HP 9872S / HP 9872T).

® Advance page option is enabled (HP 9872S / HP 9872T / HP 7550A /HP 7586B).

® Paper is advanced one full page (HP 9872S / HP 9872T / HP 7550A / HP 7586B) (unless
DISPLAY_INIT CONTROL bit 7 is set).

® The automatic pen options are set (HP 7580 / HP 7585).

The default initial dimensions for the HPGL plotters supported by the graphics library are:

Wide High Wide High Resolution

Plotter mm mm points points Aspect points/mm
9872 400 285 16000 11400 7125 40.0
7580 809.5 524.25 32380 20970 .6476 40.0
7585 1100 891.75 44000 35670 .8107 40.0
7586 1182.8 898.1 47312 35924 .7593 40.0
7470 257.5 191.25 10300 7650 .7427 40.0
7550 411.25 254.25 16450 10170 .6182 40.0
7475 416 259.125 16640 10365 .6229 40.0

The maximum physical limits of the graphics display for an HPGL device not listed above are
determined by the default settings of P1 and P2. The default settings of P1 and P2 are the values
they have after an HPGL ’IN’ command. Refer to the specific device manual for additional
details.

The default logical display surface is set equal to the area defined by P1 and P2 at the time
DISPLAY_INIT is invoked. The view surface is always justified in the lower-left corner of the current
logical display surface (corner nearest the turret for the HP 7580, HP 7585 and HP 7586 plotters).
The physical origin of the graphics display is at the lower-left boundary of pen movement.

Note
If the paper is changed in an HP 7580, HP 7585 or HP 7586 plotter
while the graphics display is initialized, it should be the same size of
paper that was in the plotter when DISPLAY_INIT was called. If a
different size of paper is required, the device should be terminated
(DISPLAY_TERM) and re-initialized after the new paper has been
placed in the plotter.

Error Conditions
The graphics system must be initialized or the call will be ignored, an ESCAPE (-27) will be .
generated, and GRAPHICSERROR will return a non-zero value.

Procedure Library Reference 343

DISPLAY _TERM

IMPORT: dgl_lib

This procedure disables the enabled graphics display device.

Syntax

DISPLAY.TERM

Procedure Heading
PROCEDURE DISPLAY_TERM;

Semantics

DISPLAY_TERM terminates the device enabled as the graphics display. DISPLAY_TERM
completes all remaining display operations and disables the logical graphics display. It makes the
picture current and releases all resources being used by the device. The device name is set to the
default name ’ ’ (six ASCII blanks), the device status is set to 0 (not enabled) and the device
address is set to 0. DISPLAY_TERM does not clear the graphics display.

The graphics display device should be disabled before the termination of the application prog-
ram. DISPLAY_TERM is the complementary routine to DISPLAY_INIT.

Error Conditions

The graphics system should be initialized and the display should be enabled or the call will be
ignored, an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero
value.

344 Procedure Library Reference

DMA_RELEASE

IMPORT: iocomasm
iodeclarations

Note

This function is provided for use by the internal I/O Procedure Lib-

rary drivers, only. Unexpected and possible undesirable results may
occur if it is used.

DMA channel allocation and deallocation occur automatically in the I/O library.

Procedure Library Reference

DMA_REQUEST

IMPORT: iocomasm
iodeclarations

Note

This function is provided for use by the internal I/O Procedure Lib-
rary drivers, only. Unexpected and possible undesirable results may

occur if it is used.

DMA channel allocation and deallocation occur automatically in the 1/O library.

345

346 Procedure Library Reference

END_SET

IMPORT: hpib_1
iodeclarations

This BOOLEAN function indicates whether or not EOl was set on the last byte read — this is
not a current indication of the EOI line.

Syntax

interface
END_SET select code

C L. Range Recommended
Item | Description/Default | Restrictions ‘ Range
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.

Procedure Library Reference 347

GRAPHICSERROR

IMPORT: dgl_lib

This function returns and integer error code and can be used to determine the cause of a graphics
escape.

Syntax

GRAPHICSERROR

Function Heading
FUNCTION GRAPHICSERROR: INTEGERS

Semantics

When an error occurs that uses the escape function, escape-code — 27 is used. After the escape is
trapped and it has been determined that the graphics library is the source of the error (the escape
code equal to —27), GRAPHICSERROR can be used to determine the cause of the error. The
function returns the value of the last error generated and then clears the value of the return error.
A user who is trapping errors and wishes to keep the value of the error must save it in some
variable.

The following list of returned values and the error they represent can be used to interpret the
value returned by GRAPHICSERROR.

Value Meaning

0 No errors since the last call to GRAPHICSERROR or since the last call to GRAPHICS_INIT.

1 The graphics system is not initialized. ACTION: CAll ignored.

2 The graphics display is not enabled. ACTION: Call ignored.

3 The locator device is not enabled. ACTION: Call ignored.

4 Echo value requires a graphics display to be enabled. ACTION: Call completes with echo
value = 1.

5 The graphics system is already initialized. ACTION: Call ignored.

6 llegal aspect ratio specified. X-SIZE and Y-SIZE must be greater than 0. ACTION: Call
ignored.

7 lllegal parameters specified. ACTION: Call ignored.
The parameters specified are outside the physical display limits. ACTION: Call ignored.

9 The parameters specified are outside the limits of the window. ACTION: Call ignored.

10 The logical locator and the logical display are the same physical device. The logical locator

limits cannot be defined explicitly, they must correspond to the logical view surface limits.
ACTION: Call ignored.

348 Procedure Library Reference

11

13
14
18

The parameters specified are outside the current virtual coordinate system boundary.
ACTION: Call ignored.

The parameters specified are outside the physical locator limits. ACTION: Call ignored.
Color table contents cannot be inquired or changed. ACTION: Call ignored.

The number of points specified for a polygon or polyline operation is less than or equal to
zero. ACTION: Call ignored.

Procedure Library Reference 349

GRAPHICS_INIT

IMPORT: dgl_lib

This procedure initializes the graphics system.

Syntax

Procedure Heading
PROCEDURE GRAPHICS_INIT;

Semantics
GRAPHICS_INIT initializes the graphics system. It must be the first graphics system call made by
the application program. Any procedure call other than GRAPHICS_INIT will be ignored.
GRAPHICS_INIT performs the following operations:

e Get dynamic storage space for the graphics library.

e Sets the aspect ratio to 1.

e Sets the virtual coordinate and viewport limits to range from O to 1.0 in the X and Y
directions.

e Sets the world coordinate limits to range from —1.0 to 1.0 in the X and Y directions.
e Sets the starting position to (0.0,0.0) in world coordinate system units.
e Sets all attributes equal to their default values.

GRAPHICS_INIT does not enable any logical devices. The graphics system is terminated with a
call to GRAPHICS_TERM. Calling GRAPHICS_INIT while the graphics system is initialized will
result in an implicit call to GRAPHICS_TERM, before the system is reinitialized.

Note

Space is allocated for the graphics system using the standard Pascal
procedure, NEW. The application program should call this procedure
before any space is allocated for the application program. If memory
allocated at graphics_init is to be returned at graphics_term, the
compiler option $HEAP_DISPOSE ON$ must be used.

350 Procedure Library Reference

GRAPHICS_TERM

IMPORT: dgl_lib

This procedure terminates the graphics system.

Syntax

Procedure Heading
PROCEDURE GRAPHICS_TERM;

Semantics

GRAPHICS_TERM terminates the graphics system. Termination includes terminating both the
graphics display and the locator devices. GRAPHICS_TERM does not clear the graphics display.

GRAPHICS_TERM should be called as the last graphics system call in the application program.

GRAPHICS_TERM releases dynamic memory allocated during GRAPHICS_INIT. In order that
this memory actually be returned the compiler option $HEAP_DISPOSE ON$ must be used.

Error Conditions
If the graphics system is not initialized, the call will be ignored, an ESCAPE (- 27) will be
generated, and GRAPHICSERROR will return a non-zero value.

Procedure Library Reference 351

GTEXT

IMPORT: dgl_types dgl_lib

This procedure draws characters on the graphics display.

Syntax

)~ ®

Item i Description/Default \ Regiir(‘:st;ii)ns
string Expression of TYPE Gstring255. Can be a string length <= 255
of any length up to 255 characters characters

Procedure Heading
PROCEDURE GTEXT ¢ String : Gstring255)j

. Semantics

The string contains the characters to be output.

GTEXT produces characters on the graphics display. A series of vectors representing the
characters in the string is produced by the graphics system.

When the text string is output, the starting position will represent the lower left-hand corner ofthe
first character in STRING. Text is normally output from left to right and is printed vertically with
no slant.

After completion of this call, the starting position is left in a device dependent location such that
successive calls to GTEXT will produce a continuous line of text (i.e.,
GTEXT('H’)3 GTEXT(/I1')iis equivalent to GTEXT('HI ")).

The attributes of color, line-style, line-width, text rotation, and character size apply to text
primitives. However, the text will appear with these attributes only if the graphics device is
capable of applying them to text.

Characters

The character sets provided by the graphics system are the same ones used by the CRT in alpha
mode, namely the standard character set plus either the Roman extension character set (for all
non-Katakana machines) or the Katakana character set (for Katakana machines).

352 Procedure Library Reference

Characters are defined within a cell that has an aspect ratio of 9/15. The character cells are
adjacent, both horizontally and vertically, as shown here.

Control Codes
The following control codes are supported by GTEXT:

Height

~ N u v o o

1.2 3 45 6 7 8 9

Heght

1.2 3 45 6 7 8 9

Control Program Keyboard

Character Access Access Action

backspace CHR(8) CTRL-H Move one character cell to the left along the text direction
vector (defined by SET_CHAR_SIZE).

linefeed CHR(10) CTRL-J Move down the height of one character cell.

carriage CHR(13) CTRL-M Move back the length of the text just completed.

return

Any other control characters are ignored.

The current position is maintained to the resolution of the display device. A text size less-than-or-
equal-to the resolution of the display device will result in all the characters in a GTEXT call, ora
series of GTEXT calls, being written to the same point on the device.

The current position returned by an INQ_WS is not updated by calls to GTEXT. If you want to
know the current position aftera GTEXT, you must do a MOVE, or some other call which updates
the current position.

Error Conditions
If the graphics system is not initialized or a display is not enabled, the call will be ignored, an
ESCAPE (-27) will be generated, and GRAPHICSERROR will return a non-zero value.

Procedure Library Reference 353

HPIB_LINE

IMPORT: hpib_0

iodeclarations

This BOOLEAN function will return the current state of the specified line. Not all lines are
accessible at all times.

Syntax

interface hpib line
select code specifier

.. Range Recommended
Item Description/Default Restrictions Range

interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
hpib line Expression of enumerated TYPE hpib_line. atn_line
specifier dav_line

ndac_line

nrid_line

eoi_line

srg_line

ifc_line

ren_line
Semantics

The lines are only accessible when the hardware buffer is pointing into the interface. For
example, REN can only be examined when the selected interface is not system controller. No
error is generated when an in-accessible line is examined.

354 Procedure Library Reference

INPUT_ESC

IMPORT: dgl_lib

This procedure allows the user to obtain device dependent information from the graphics
system,

Syntax

operation INTEGER REAL

Ut ESC () O O O
INTEGER REAL array error variable
array name name name

- R R ded
Item Description/Default Re st?il::st;ieons ec%n;nmgeen €
operation selector Expression of TYPE INTEGER MININT to -
MAXINT
INTEGER array Expression of TYPE INTEGER MININT to >0
size MAXINT
REAL array size Expression of TYPE INTEGER MININT to >0
MAXINT
INTEGER array Variable of TYPE ANYVAR - -
name should be array of INTEGERs
REAL array name Variable of TYPE ANYVAR - -
should be array of REAL

error variable name | Variable of TYPE INTEGER - —

Procedure Heading

PROCEDURE INPUT_ESC (Opcode : INTEGER:
Isize : INTEGERS
Rsize : INTEGER3
ANYVAR Ilist : Gint_lists
ANYUAR Rlist : Greal_list3
VAR lerr : INTEGER)3

Procedure Library Reference 355

Semantics

The operation selector determines the device dependent inquiry escape function being in-
voked.

The INTEGER array size is the number of INTEGER parameters to be returned in the INTEGER
array by the escape function. The correct value for this can be found in the hundred’s place of the
operation selector (see the table below).

The REAL array size is the number of REAL parameters to be returned in the REAL array by the
escape function. The correct value for this can be found in the thousand’s place of the operation
selector (see the table below).

The INTEGER array is the array in which zero or more INTEGER parameters are returned by the
escape function.

The REAL array is the array in which zero or more REAL parameters are returned by the escape
function.

The error variable will contain a code indicating whether the input escape function was
performed.

Value Meaning
0 Inquiry escape function successfully completed.
1 Inquiry operation (operation selector) not supported by the graphics display device.
2 INTEGER array size is not equal to the number of INTEGER parameters to be
returned.
3 REAL array size is not equal to the number of REAL parameters to be returned.

If the error variable contains a non-zero value, the call has been ignored.

INPUT_ESC allows application programs to access special device features on a graphics display
device. The type of information returned from the graphics display device is determined by the
value of operation selector. Possible inquiry escape functions may return the status or the options
supported by a particular graphics display device.

Inquiry escape functions only apply to the graphics display device. INPUT_ESC implicitly makes
the picture current before the escape function is performed.

356 Procedure Library Reference

HPGL Plotter Operation Selectors
The following inguiry is supported:

Operation
Selector | Meaning

2050 | Inquire about current turret.

INTEGER array [1] = —1 >> Turret mounted, but its type is unknown
INTEGER array [1] = 0 >> No turret mounted

INTEGER array [1] = 1 >> Fiber tip pens

INTEGER array [1] = 2 >> Roller ball pens

INTEGER array [1] = 3 >> Capillary pens

INTEGER array [2] = 0 >> No turret mounted or turret has no pens
INTEGER array [2] = n >> Sum of these values:

1: Penin stall #1
2: Pen in stall #2
4: Pen in stall #3
8: Pen in stall #4
16: Pen in stall #5
32: Pen in stall #6
64: Pen in stall #7
128: Pen in stall #8

For example, if INTEGER array[2] = 3, pens would only be contained in stalls 1 and 2.

Operation selector 2050 is supported on the HP 7475, HP 7550, HP 7580, HP 7585 and HP 7586 ‘
plotters. 7

Error Conditions
If the graphics system is not initialized or a display is not enabled, the call will be ignored, an
ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero value,

Procedure Library Reference 357

INQ_COLOR_TABLE

IMPORT: dgl_lib
dgl_inq

This procedure inquires the color modeling parameters for an index into the device-dependent
color capability table.

Syntax

entry first second

INo_CoLoR_TABLE)—(() O (D +{aroneter
(third
parameter

Item Description/Default Re?t?;lét;ii)ns
entry selector Expression of TYPE INTEGER >0
first parameter name Variable of TYPE REAL -

second parameter name | Variable of TYPE REAL -
third parameter name Variable of TYPE REAL -

Procedure Heading

PROCEDURE INQ_COLOR.TABLE (Index : INTEGER:
VAR Colerl : REALS
JAR ColerZ : REAL:
VAR Coler3 : REAL Y

Semantics

This routine inquires the color modelling parameters for the specified location in a device-
dependent color capability table.

The entry selector specifies the location in the color capability table. The parameters returned
are for the specified location. The size of the color capability table is device dependent. For raster
displays in Series 200 computers, 32 entries are available.

The first parameter represents red intensity if the RGB model has been selected with the SET
COLOR statement, or hue if the HSL model has been selected.

The second parameter represents green intensity if the RGB model has been selected with the
SET COLOR statement, or saturation if the HSL model has been selected.

The third parameter represents blue intensity if the RGB model has been selected, or luminosity
if the HSL model has been selected.

358 Procedure Library Reference

A more detailed description of the color models and the meaning of their parameters can be
found under the procedure definition of SET_COLOR_MODEL.

Note
The color table stores color specifications as RGB values. The conver-
sion from RGB to HSL is a one-to-many transformation, and the
following arbitrary assignments may be made during the conversion:
IF Luminosity =0
THEN Hue=0
Saturation =0

IF Saturation =0
THEN Hue=0

Error Conditions

If the graphics system is not initialized, a display device is not enabled, the color table contents

cannot beinquired, or the color table entry selector is out of range, the call is ignored, an ESCAPE
(—27) will be generated, and GRAPHICSERROR will return a non-zero value.

Procedure Library Reference 359

INQ_PGN_TABLE

IMPORT: dgl_lib
dgl_ing

This procedure inquires the polygon style attributes for an entry in the polygon style table.

Syntax

entry density fi11l orientation
N_PoN_TABLE)—~(() O (O ar faore ame
e2dge variable
name

ltem Description/Default Re?t:inét;ii)zns Rect;}rr;:;;ended

entry selector Expression of TYPE INTEGER MININT thru Device
MAXINT dependent

density variable Variable of TYPE REAL - -
name
fill orientation Variable of TYPE REAL - -
variable name
edge variable name | Variable of TYPE INTEGER — -

Procedure Heading

PROCEDURE INQ_PGN_TABLE (Index : INTEGER:
VAR Densty : REALS
UAR Orient : REAL:
UAR Edgde : INTEGER)3

Semantics
The entry selector specifies the entry in the polygon style table the inquiry is directed at.

The density variable will contain a value between -1 and 1. This magnitude of this value is the
ratio of filled area to non-filled area. Zero means the polygon interior is not filled. One represents
a fully filled polygon interior. All non-zero values specify the density of continuous lines used to fill
the interior. Negative values are used to specify crosshatching. Calculations for fill density are
based on the thinnest line possible on the device and on continuous line-style. If the interior
line-style is not continuous, the actual fill density may not match that found in the polygon style
table.

360 Procedure Library Reference

The fill orientation variable will contain a value from -90 through 90. This value represents the
angle (in degrees) between the lines used for filling the polygon and the horizontal axis of the
display device. The interpretation of fill orientation is device-dependent. On devices that require
software emulation of polygon styles, the angle specified will be adhered to as closely as possible,
within the line-drawing capabilities of the device. For hardware generated polygon styles, the
angle specified will be adhered to as closely as is possible given the hardware simulation of the
requested density. If crosshatching is specified, the fill orientation specifies the angle of orienta-
tion of the first set of lines in the crosshatching, and the second set of lines is always perpendicular
to this.

The edge variable will contain a 0 if the polygon edge is not to be displayed and a 1 if the polygon
edge is to be displayed. If polygon edges are displayed, they adhere to the current line attributes
of color, line-style, and line-width, in effect at the time of polygon display.

All current devices support 16 entries in the polygon table. The polygon styles defined in the
default tables are defined to exploit the hardware capabilities of the devices they are defined for.

Error Conditions

The graphics system must be initialized, a display must be enabled, and the entry selector must be
in range or the call will be ignored, an ESCAPE (-27) will be generated, and
GRAPHICSERROR will return a non-zero value.

Procedure Library Reference

® INQ_WS

IMPORT: dgl_lib
dgl_inq

This procedure allows the user to determine characteristics of the graphics system.

Syntax
operation string INTEGER REAL
o (O - OO ot O aorisize |
string INTEGER
variable name array name

REAL error
array name variable name

Item Description/Default Re?t?incst!ieons
’ operation selector Expression of TYPE INTEGER see below
string size Expression of TYPE INTEGER see below
integer array size Expression of TYPE INTEGER see below
REAL array size Expression of TYPE INTEGER see below
string variable name Variable of TYPE PACKED ARRAY OF CHAR -
INTEGER array name Variable of TYPE ARRAY OF INTEGER -
REAL array name Variable of TYPE ARRAY OF REAL -
error variable name Variable of TYPE INTEGER -

Procedure Heading
PROCEDURE INQ_WS (Opcode : INTEGER})
Ssize : INTEGER:?
Isize : INTEGER)S
Rsize : INTEGERS
ANYVAR Slist : Gechar.lists
ANYUAR Ilist = Gint_list}
ANYYAR Rlist : Greal_list}
VAR Ierr : INTEGER) 3

361

362 Procedure Library Reference

Semantics

The operation selector is an integer from the list of operation selectors given below. Itis used to
specify the topic of the inquiry to the system,

The string size is used to specify the maximum number of characters that are to be returned in
the string array by the function specified by the operation selector. If there is a 1 in the
ten-thousand’s place a string value will be returned. The number of characters in the string is
returned in the first entry in the INTEGER arrray.

The INTEGER array size is the number of integer parameters that are returned in the integer
array by the function specified by OPCODE. The thousand’s digit of the operation selector is the
number of elements the INTEGER array must contain.

The REAL array size is the number of REAL parameters that are returned in the REAL array by
the function specified by OPCODE. The hundred’s digit of the operation selector is the number of
elements the REAL array must contain.

The string array is a PACKED ARRAY OF CHAR which will contain a string or strings that
represents characteristics of the work station specified by the value of operation selector. The
application program must ensure that string array is dimensioned to contain all of the values
returned by the selected function.

The INTEGER array will contain integer values that represent characteristics of the work station
specified by the value of OPCODE. The application program must ensure that the integer array is
dimensioned to contain all of the values returned by the selected function.

The REAL array will contain REAL values that represent characteristics of the work station
specified by the value of OPCODE. The application program must ensure that the REAL array is

dimensioned to contain all of the values returned by the selected function.

The error variable will return an integer indicating whether the inquiry was successfully per-

formed.
Value Meaning

0 The inquiry was successfully performed.

1 The operation selector was invalid.

2 The INTEGER array size was not equal to the number INTEGER parameters requested
by the operation selector.

3 The REAL array size was not equal to the number of REAL parameters requested by
the operation selector.

4 The string array was not large enough to hold the string requested by the operation
selector.

Procedure Library Reference 363

The procedure INQ_WS returns current information about the graphics system to the application
program. The type of information desired is specified by a unique value of OPCODE. The
thousands digit of the operation selector specifies the number of integer values returned in the
integer array and the hundreds digit specifies the number of REAL values returned in the REAL
array. A 1 in the ten-thousand’s place indicates that a value will be returned in the string.

One use of INQ_WS is device optimization: the use of inquiry to enhance the application’s
utilization of the output device. An example of this is using color to distinguish between lines
when a device supports colors, and using line-styles when color is not available. Another example
is maximizing the aspect ratio used, based on the maximum aspect ratio of the display device.

Device dependent information returned by the procedure is undefined if the device being
inquired from is not enabled (e.g., inquire number of colors supported, operation selector 1053,
only returns valid information when the display is enabled).

If the graphics system is not initialized, the call will be ignored and GRAPHICSERROR will return
a non-zero value.

364 Procedure Library Reference

Supported Operation Selectors
The operation selectors supported by the system and their meaning is listed below:

Operation
Selector | Meaning

250 | Current cell size used for text.
REAL Array[1] = Character cell width in world coordinates
REAL Array[2] = Character cell height in world coordinates

251 | Marker size.
REAL Array[1] = Marker width in world coordinates
REAL Array[2] = Marker height in world coordinates

252 | Resolution of graphics display
REAL Array[1] = Resolution in X direction (points/mm)
REAL Array[2] = Resolution in Y direction (points/mm)

253 | Maximum dimensions of the graphics display.
REAL Array[1] = Maximum size in X direction (MM)
REAL Array[2] = Maximum size in Y direction (MM)

254 | Aspect ratios
REAL Array[1] = Current aspect ratio of the virtual coordinate system.
REAL Array[2] = Aspect ratio of logical limits.

255 | Resolution of locator device
REAL Array[1] = Resolution in X direction (points/mm)
REAL Array[2] = Resolution in Y direction (points/mm)

256 [Maximum dimensions of the locator display.
REAL Array[1] = Maximum size in X direction (MM)
REAL Array[2] = Maximum size in Y direction (MM)

257 | Current locator echo position
REAL array[1] = X world coordinate position
REAL array[2] = Y world coordinate position

258 | Current virtual coordinate limits
REAL array[1] = Maximum X virtual coordinate
REAL array[2] = Maximum Y virtual coordinate

259 | Starting position.
The information returned may not be valid (not updated) following a text call, an escape
function call, changes to the viewing transformation or after initialization of the graphics
display device.

REAL array[1] = X world coordinate position

REAL array[2] = Y world coordinate position

450 | Current window limits

REAL array[1] = Minimum X world coordinate position
REAL array[2] = Maximum X world coordinate position
REAL array[3] = Minimum Y world coordinate position
REAL array[4] = Maximum Y world coordinate position

451 | Current viewport limits

REAL array[1] = Minimum X virtual coordinate
REAL array[2] = Maximum X virtual coordinate
REAL array[3] = Minimum Y virtual coordinate
REAL array[4] = Maximum Y virtual coordinate

Procedure Library Reference

Operation
Selector | Meaning
1050 | Does graphics display device support clipping at physical limits?

1051

1052

1053

1054

1056

1057

1059

1060

1062

1063

1064

1065

1066

INTEGER Array[1] = 0 - No

INTEGER Array[1] = 1 - Yes, to the view-surface boundaries

INTEGER Array[1] = 2 - Yes, but only to the physical limits
of the display surface.

Justification of the view surface within the logical display limits.
INTEGER Array[1] = O - View-surface is centered within
the logical display limits
INTEGER Array[1] = 1 - View surface is positioned in the lower
left corner of the logical display limits.

Can the graphics display draw in the background color? Drawing in the background color
can be used to erase’ previously drawn primitives.

INTEGER Array[1] = 0 - No

INTEGER Array[1] = 1 - Yes

The total number of non-dithered colors supported on the graphics display. The number
returned does not include the background color. (Compare operation selectors 1053, 1054,
and 1075.)

INTEGER Array[1] = number of distinct colors supported.

Number of distinct non-dithered colors which can appear on the graphics display at one
time. The number returned does not include the background color.
INTEGER Array[1] = number of distinct colors which can appear
on the display device at one time.

Number of line-styles supported on the graphics display.
INTEGER Array[1] = number of hardware line-styles supported.

Number of line-widths supported on the graphics display.
INTEGER Array[1] = number of line-widths supported.

Number of markers supported on the graphics display.
INTEGER Array[1] = # of distinct markers supported.

Current value of color attribute.
INTEGER Array[1] = Current value of color attribute.

Current value of line-style attribute
INTEGER Array[1] = Current value of line-style attribute.

Current value of line-width attribute.
INTEGER Array[1] = Current value.

Current timing mode.
INTEGER Array[1] = O - Immediate visibility
INTEGER Array[1] = 1 - System buffering

Number of entries in the polygon style table.
INTEGER Array[1] = # styles.

Current polygon interior color index.
INTEGER Array[1] = Index

365

366 Procedure Library Reference

Operation
Selector | Meaning
1067 | Current polygon style index.
INTEGER Array[1] = Index
1068 | Maximum number of polygon vertices that a display device can process.
INTEGER Array[1] = 0 No hardware support.
= N (0<n<32767) Number of vertices supported.
= 32767 The graphics display device uses all
available memory to process polygons
{the maximum number of vertices
is determined by current free memory).
1069 [Does the graphics device support immediate, retroactive change of polygon style for
polygons already displayed?
INTEGER Array[1] = O - No.
INTEGER Array[1] = 1 - Yes.
1070 | Does the graphics device support hardware (or low-level device handler) generation of
polygons using INT_POLYGON_DD?
INTEGER Array[1] = 0 - No
INTEGER Array[1] = 1 - Yes
1071 | Does the graphics device support immediate, retroactive change for primitives already
displayed?
INTEGER Array[1] = 0 - No
INTEGER Array[1] = 1 - Yes
1072 | Can the background color of the display be changed?
INTEGER Array[1] = 0 - No
INTEGER Array[1] = 1 - Yes
1073 | Can entries in the color table be redefined using SET_COLOR_TABLE?
INTEGER Array[1] = 0 - No
INTEGER Array[1] = 1 - Yes
1074 | Current color model in use.
INTEGER Array{1] = 1 - RGB
INTEGER Array[1] = 2 - HSL
1075 [Number of entries in the color capability table. The number returned does not include the
background color.
INTEGER Array[1] = # entries
1076 | Current polygon interior line-style.
INTEGER Array[1] = Current interior line-style
11050 | Graphics display device association.
String = Name of device path. (Internal device specifier.)
INTEGER Array[1] = Number of characters in the device path.
11052 | Locator device association.
String = Name of device path. (Internal device specifier.)
INTEGER Array[1] = Number of characters in the device path.

Procedure Library Reference

Operation
Selector |Meaning

12050 |Graphics display device information.

String = Name of graphics display device.

INTEGER Array[1] = Number of characters in the device name.
INTEGER Array[2] = Status

0 Graphics display is not enabled.

1 Graphics display is enabled.

13052 |[Graphics locator device information.
String = Name of the locator device.
INTEGER Array[1] = Number of characters in the device name.
INTEGER Array[2] = Status
= 0 Locator device is not enabled.
= 1 Locator device is enabled.
Number of buttons on the locator device.

INTEGER Array[3]

Error Conditions
If the graphics system is not initialized, the call will be ignored, an ESCAPE (—27) will be

generated, and GRAPHICSERROR will return a non-zero value.

367

368 Procedure Library Reference

INT_LINE

IMPORT: dgl_types
dgl_lib

This procedure draws a line from the starting position to the world coordinate specified.

Syntax

X Y
vt e)—(() o 0

Item Description/Default Re?t?i?:st;i?)ns
x coordinate Expression of TYPE Gshortint, This is subrange —-32 768 to 32 767
of INTEGER
y coordinate Expression of TYPE Gshortint, This is subrange —32 768 to 32 767
of INTEGER

Procedure Heading
PROCEDURE INT_LINE (Iwxs Iwy : Gshortint)3

Semantics
The x and y coordinate pair is the ending of the line to be drawn in the world coordinate system.

A line is drawn from the starting position to the world coordinate specified by the x and y
coordinates. The starting position is updated to this point at the completion of this call.

The primitive attributes of line style (see SET_LINE_STYLE), line width (see SET_LINE_
WIDTH), and color (see SET_COLOR) apply to lines drawn using INT_LINE.

This procedure is the same as the LINE procedure, with the exception that the parameters are of
type Gshortint (— 32 768..32 767). When used with some displays this procedure may perform
about 3 times faster than the LINE procedure. For all other displays this procedure has about the
same performance as the LINE procedure.

The INT_LINE procedure only has increased performance when the following conditions exist:

® The display must be a raster device.
® The window bounds within the range —32 768 to 32 767.
® The window must be less then 32 767 units wide and high.

Procedure Library Reference 369

INT operations are provided for efficient vector generation. Although their use can be mixed with
other, non-integer operations, one dot roundoff errors may result with mixed use since different
algorithms are used to implement each.

Drawing to the starting position generates the shortest line possible. Depending on the nature of
the current line-style, nothing may appear on the graphics display surface. See SET_LINE_
STYLE for a complete description of how line-style affects a particular point or vector.

_Computer

S Museum

370 Procedure Library Reference

INT_MOVE

IMPORT: dgl_types

dgl_lib
This procedure sets the starting position to the world coordinate position specified.
Syntax
O 0 O
Item Description/Default Range
Restrictions
X coordinate Expression of TYPE Gshortint, This is subrange —-32 768 to 32 767
of INTEGER
y coordinate Expression of TYPE Gshortint, This is subrange —32 768 to 32 767
of INTEGER

Procedure Heading
PROCEDURE INT_MOVE (Iwxs Iwy : INTEGER)i

Semantics
The x and y coordinate pair define the new starting position in world coordinates.

INT_MOVE specifies where the next graphical primitive will be output. It does this by setting the
Value of the starting position to the world coordinate system point specified by the x and v
coordinate values and then moving the pen (or its logical equivalent) to that point.

The starting position corresponds to the location of the physical pen or beam in all but four
instances: after a change in the viewing transformation, after initialization of a graphical display
device, after the output of a text string, or after the output of an escape function. A call to MOVE
or INT_MOVE should therefore be made after any one of the following calls to update the value
of the starting position and in so doing, place the physical pen or beam at a known
location: SET_ASPECT, DISPLAY_INIT, SET_DISPLAY_LIM, OUTPUT_ESC, TEXT, SET_
VIEWPORT, and SET_WINDOW.

This procedure is the same as the MOVE procedure, with the exception that the parameters are of
type Gshortint (—32 768..32 767). When used with the same display, this procedure can
perform about 3 times faster than the MOVE procedure. For all other displays this procedure has
about the same performance as the MOVE procedure.

Procedure Library Reference 371

The INT_MOVE procedure only has increased performance when the following conditions exist:

e The display must be a raster device.
e The window bounds within the range —32 768 to 32 767.
e The window must be less than 32767 units wide and high.

INT operations are provided for efficient vector generation. Although their use can be mixed with
non-integer operations, one dot roundoff errors may result with mixed use since different
algorithms are used to implement each.

Error Conditions
The graphics system must be initialized and a graphics display must be enabled or the call will be
ignored, an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero

value.

372 Procedure Library Reference

INT_POLYGON

IMPORT: dgl_types
dgl_lib
dgl_poly

This procedure displays a polygon-set starting and ending at the specified point adhering to the
specified polygon style exactly as specified (i.e., device-independent results).

Syntax

INT_POLYGON

operation selector
array name

- Range
Item Description/Default Restrictions
points Expression of TYPE INTEGER MININT thru MAXINT
X array name Array of TYPE Gshortint_list. Gshortint is a sub- —32 768 to 32 767
range of INTEGER.
y array name Array of TYPE Gshortint _list. Gshortint is a sub- ~32 768 to 32 767
range of INTEGER.
operation selector array Array of TYPE Gshortint_list Gshortintis a sub- —-32 768 to 32 767
name range of INTEGER.

Procedure Heading

PROCEDURE INT_POLYGON (NpPoint : INTEGER
ANYYAR Xuec : Gshortint_lists
ANYVAR Yuec : Gshortint_list}

ANYVAR Opcodes : Gshortint_list)}
Semantics
Points is the number of vertices in the polygon set.

The x and y coordinate arrays contain the world coordinate values for each vertex of the
polygon-set. The vertices must be in order. The vertices for the first sub-polygon must be at the
beginning of these arrays, followed by the vertices for the second sub-polygon, etc. So, the
coordinate arrays must contain a total number of vertices that equals points.

The operation selector array contains a series of integer operation selectors defining which
vertices start new polygons, and defining which edges should be displayed.

Value | Meaning

0 Don’t display the line for the edge extending to this vertex from the previous vertex.
1 Display the line for the edge extending to this vertex from the previous vertex.
2 This vertex is the first vertex of a sub-polygon. Succeeding vertices are part of a

sub-polygon until a new start-of-polygon operation selector (2) is encountered. (Or
the end of the arrays is encountered.)

Procedure Library Reference 373

Note

The first entry in the operation selector array must be 2, since it is the
first vertex of a sub-polygon.

INT_POLYGON is used to output a polygon-set, specified in world coordinates, adhering exactly
to the polygon style attributes that are currently specified. A polygon-set is a set of polygons
(called “‘sub-polygons”’) that are treated graphically as one polygon. This is accomplished by
“stacking”’ the sub-polygons. The subpolygons in a polygon-set may intersect or overlap each
other.

The edge of a sub-polygon is defined as the line sequence that connects its vertices in the order
specified. If the last vertex specified for a sub-polygon is not the same as the first, they are
automatically connected.

When a polygon-set is displayed, the primitive attributes for polygons and lines define its
appearance. In particular, the interior of the polygon-set will be filled according to the attributes
of polygon style, polygon interior color and polygon interior line-style. If the edges are to be
displayed as specified in the polygon style, the edges will adhere to the current line attributes of
color, line-style and line-width. A dot will disappear on an edged polygon if the edge is done with
a complementing line.

The filling of polygons also depends on how the sub-polygons ‘‘nest” within each other. An
“oven-odd” rule is used for determining which areas will be filled. Moving across the screen,

count the edges of the polygon. Odd-numbered edges will turn the fill on and even-numbered
edges will turn the fill off. The picture below will help clear up how the fills work.

|

Polygon Filling

374 Procedure Library Reference

Refer to SET_PGN_TABLE, SET_PGN_STYLE, SET_PGN_COLOR, SET_PGN_LS for a more
detailed description of how attributes affect polygons.

As stated above, the values in the operation selector array define how the edges of the sub-
polygons are displayed. The edge from the (I-1)th vertex to the Ith vertex will only be displayed if
the Ith entry in the operation selector array equals 1. To display the edge from the last vertex to
the first vertex of a sub-polygon, the first vertex must be explicitly respecified after all the other
vertices of the sub-polygon, with an operation selector equal to 1. Otherwise the edge from the
last vertex to the first will not be drawn. It will, however, automatically be connected for polygon
filling.

If it is within the capabilities of the device, filling of the sub-polygon will be done to the
sub-polygon edges regardless of whether the edges are displayed. If an entry in the operation
selector array does not equal 0, 1, or 2, it will be treated as if it were equal to 0 and the edge will
not be drawn.

When INT_POLYGON is used, the current position is updated to the end of the last sub-polygon
specified in the polygon-set. The end of the last sub-polygon is defined to be the first (implicit last)
vertex of the subpolygon. So, if there is only one vertex in a polygon-set this call degenerates to
an update of the current position to the first coordinate set in the x and y point arrays (x
coordinate array[1], y coordinate array[1]).

It is the application program’s responsibility to ensure that the arrays are all dimensioned to at
least the number of elements specified by points and that at least that many values are contained
in each array.

Polygons are defined to be closed surfaces. When a sub-polygon extends beyond a clipping edge
the closed nature of the sub-polygon is destroyed. As with other primitives, unpredictable results
may occur if the sub-polygon extends beyond the clipping window.

This procedure is the same as the POLYGON procedure, with the exception that the parameters
are of type Gshortint (—32 768..32 767). When used with some displays this procedure may
perform about 3 times faster than the POLYGON procedure. For all other displays this procedure
has about the same performance as the POLYGON procedure.

The INT_POLYGON procedure only has increased performance when the following conditions
exist:

® The display must be a raster device.

® The window bounds are within the range —32 768 through 32 767.
® The window must be less than 32 767 units wide and high.

INT_POLYGON is provided for efficient vector generation. Although its use can be mixed with
MOVE, LINE, POLYLINE, and POLYGON, one dot roundoff errors may result with mixed use
since different algorithms are used to implement each.

Error Conditions

The graphics system must be initialized, a graphics display must be enabled, all parameters must
be within specified limits and the number of points specified must be greater than 0 or the call will
beignored, an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero
value.

Procedure Library Reference 375

INT_POLYGON_DD

IMPORT: dgl_types
dgl_lib
dgl_poly

This procedure displays a polygon-set starting and ending at the specified point adhering to the
specified polygon style in a device-dependent fashion.

Syntax
IEED SO O O~ = -0
operation selector
> array name .(:) >

.. Range
Item Description/Default Restrictions
points Expression of TYPE INTEGER MININT thru MAXINT
X array name Array of TYPE Gshortint_list. Gshortint is a sub- —32 768 to 32 767
range of INTEGER.
y array name Array of TYPE Gshortint_list. Gshortint is a sub- —32 768 to 32 767
range of INTEGER.
operation selector array Array of TYPE Gshortint_list. Gshortint is a sub- —32 768 to 32 767
name range of INTEGER.

Procedure Heading

PROCEDURE INT_POLYGON_DD (Nroint INTEGER 3§
ANYYAR HKuec : Gshortint_.lists
ANYVAR Yuec : Gshortint_lists}
ANYUAR Orpcodes ¢ Gint_list)8
Semantics

Points is the number of vertices in the polygon set.

The x and y coordinate arrays contain the world coordinate values for each vertex of the
polygon-set. The vertices must be in order. The vertices for the first sub-polygon must be at the
beginning of these arrays, followed by the vertices for the second sub-polygon, etc. So, the
coordinate arrays must contain a total number of vertices that equals points.

The operation selector array contains a series of integer operation selectors defining which
vertices start new polygons, and defining which edges should be displayed.

376

Procedure Library Reference

Value Meaning
0 Don't display the line for the edge extending to this vertex from the previous vertex.
1 Display the line for the edge extending to this vertex from the previous vertex.
2 This vertex is the first vertex of a sub-polygon. Succeeding vertices are part of a
sub-polygon until a new start-of-polygon operation selector (2) is encountered. (Or the
end of the arrays is encountered.)

Note

The first entry in the operation selector array must be 2, since it is the
first vertex of a sub-polygon.

INT_POLYGON_DD is used to output a polygon-set, specified in world coordinates, adhering
within the capabilities of the device to the polygon style attributes that are currently specified. A
polygon-set is a set of polygons (called “sub-polygons”) that are treated graphically as one
polygon. The subpolygons in a polygon-set may intersect or overlap each other.

The edge of a sub-polygon is defined as the line sequence that connects its vertices in the order
specified. If the last vertex specified for a sub-polygon is not the same as the first, they are
automatically connected.

When a polygon-set is displayed, the primitive attributes for polygons and lines define its
appearance. In particular, the interior of the polygon-set will be filled according to the attributes
of polygon style, polygon interior color and polygon interior line-style. If the edges are to be
displayed as specified in the polygon style, the edges will adhere to the current line attributes of
color, line-style and line-width.

The filling of polygons also depends on how the sub-polygons ‘‘nest”” within each other. An
“even-odd” rule is used for determining which areas will be filled. Moving across the screen,
count the edges of the polygon. Odd-numbered edges will turn the fill on and even-numbered
edges will turn the fill off. The picture below will help clear up how the fills work.

Polygon Filling

Procedure Library Reference 377

Refer to SET_PGN_TABLE, SET_PGN_STYLE, SET_PGN_COLOR, SET_PGN_LS for a more
detailed description of how attributes affect polygons.

As stated above, the values in the operation selector array define how the edges of the sub-
polygons are displayed. The edge from the (I-1)th vertex to the Ith vertex will only be displayed if
the Ith entry in the operation selector array equals 1. To display the edge from the last vertex to
the first vertex of a sub-polygon, the first vertex must be explicitly respecified after all the other
vertices of the sub-polygon, with an operation selector equal to 1. Otherwise the edge from the
last vertex to the first will not be drawn. It will, however, automatically be connected for polygon
filling.

If it is within the capabilities of the device, filling of the sub-polygon will be done to the
sub-polygon edges regardless of whether the edges are displayed. If an entry in the operation
selector array does not equal 0, 1, or 2, it will be treated as if it were equal to 0, i.e., the edge will
not be drawn.

When INT_POLYGON_DD is used, the current position is updated to the end of the last
sub-polygon specified in the polygon-set. The end of the last sub-polygon is defined to be the first
(implicit last) vertex of the subpolygon. So, if there is only one vertex in a polygon-set this call
degenerates to an update of the current position to the first coordinate set in the x and y point
arrays (x coordinate array[1], y coordinate array[1]).

It is the application program’s responsibility to ensure that the arrays are all dimensioned to at
least the number of elements specified by points and that at least that many values are contained
in each array.

Device capabilities vary widely. Not all devices are able to draw polygon edges as requested. lf a
device is not able to draw polygon edges as requested, they will be simulated in software. The
simulation will always adhere to the edge value in SET_PGN_STYLE and the operation selector
in INT_POLYGON_DD, but the line-style and color of the edge will depend on the capability of
the device to produce lines with those attributes.

Polygon fill capabilities can vary widely between devices. A device may have no filling capabilities
at all, may be able to perform only solid fill, or may be able to fill polygons with different fill
densities and at different fill line orientations. INT_POLYGON_DD tries to match the device
capabilities to the request. If the device cannot fill the request at all, then no simulation is done
and the polygon will not be filled. For HPGL plotters, the fill is simulated. For raster devices, if the
density is greater than 0.5, a solid fill is used, otherwise, the fill is simulated.

In the case where the polygon style specifies non-display of edged, this would result in no visible
output although visible output had been specified. To provide some visible output in this case,
INT_POLYGON_DD will outline the polygon using the color and line-style specified for the fill
lines. However, only those edge segments specified as displayable by the operation selector array
will be drawn. Therefore, if all edge segments are specified as non-displayed, there will still be no
visible output.

Regardless of the capabilities of the device, INT_POLYGON_DD sets the starting position to the
first vertex of the last member polygon specified in the call. If there is only one polygon specified,
the starting position will therefore be set to the first vertex specified.

378 Procedure Library Reference

Polygons are defined to be closed surfaces. When a sub-polygon extends beyond a clipping edge
the closed nature of the sub-polygon is destroyed. As with other primitives, unpredictable results
may occur if the sub-polygon extends beyond the clipping window.

This procedure is the same as the procedure POLYGON_DEV_DEP, with the exception that the
parameters are of type Gshortint (—32 768..32 767). When used with some displays this
procedure may perform about 3 times faster than the POLYGON_DEVY_DEP procedure. For all
other displays this procedure has about the same performance as the POLYGON_DEV_DEP
procedure.

The INT_POLYGON_DD procedure only has increased performance when the following condi-
tions exist:

® The display is a raster device.
® The window bounds are within the range — 32 768 through 32 767.
® The window is less then 32 767 units wide and high.

INT_POLYGON_DD is provided for efficient vector generation. Although its use can be mixed
with MOVE, LINE, POLYLINE, and POLYGON_DEV_DEP, one dot roundoff errors may result
with mixed use since different algorithms are used to implement each.

Error Conditions

The graphics system must be initialized, a graphics display must be enabled, all parameters must
be within specified limits and the number of points (Points) must be greater than 0 or the call will
be ignored, an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return anon-zero
value. '

Procedure Library Reference 379

INT_POLYLINE

IMPORT: dgl_types
dgl_lib

This procedure draws a connected line sequence starting at the specified point.

Syntax
o)~ O~ O~

. Range
Item Description/Default Restrictions
points Expression of TYPE INTEGER MININT thru MAXINT
X array name Array of TYPE Gshortint_list. Gshortint is a sub- —-32 768 to 32 767
range of INTEGER.
y array name Array of TYPE Gshortint_list. Gshortint is a sub- —32 768 to 32 767
range of INTEGER.

Procedure Heading
PROCEDURE INT_PDLYLINE (Npts : INTEGER)
ANYYAR Xuecs Yvec : Gshortint_list)

Semantics
Points is the number of vertices in the polygon set.

The x and y coordinate arrays contain the world coordinate values for each vertex of the
polyline-set. The vertices must be in order. The vertices for the first sub-polyline must be at the
beginning of these arrays, followed by the vertices for the second sub-polyline, etc. So, the
coordinate arrays must contain a total number of vertices that equals points.

The procedure INT_POLYLINE provides the capability to draw a series of connected lines
starting at the specified point. A complete object can be drawn by making one call to this
procedure. This call first sets the starting position to be the first elements in the x and y coordinate
arrays. The line sequence begins at this point and is drawn to the second element in each array,
then to the third and continues until points-1 lines are drawn.

This procedure is equivalent to the following sequence of calls:

INT_MOVE (¥_coordinate_arrav[11:s¥_.coo rdimate_arrav[11)3
INT_LINE ¥ _poordinate_arrav[Z1:¥_coordinate_arravy[2]1)3
INT_LINE X-coordinate-arrav[B]7Y_coordinate_arrav[3])i

INT_LINE (¥_coordinate_arra¥[Points] +¥_coordinate_arrav[Points1)s

380 Procedure Library Reference

The starting position is set to (X_coordinate_array[Points], Y_coordinate_array{Points]) at the
completion of this call.

Specifying only one element, or Points equal to 1, causes a move to be made to the world
coordinate point specified by the first entries in the two coordinate arrays.

It is the application program’s responsibility to ensure that the arrays are all dimensioned to at
least the number of elements specified by points and that at least that many values are contained
in each array.

Depending on the nature of the current line-style nothing may appear on the graphics display.
See SET_LINE_STYLE for a complete description of how line-style affects a particular point or
vector.

The primitive attributes of color, line-style, and line-width apply to polylines.

This procedure is the same as the POLYLINE procedure, with the exception that the parameters
are of type Gshortint (—32 768..32 767). When used with some displays this procedure may
perform about 3 times faster than the POLYLINE procedure. For all other displays this procedure
has about the same performance as the POLYLINE procedure.

The INT_POLYLINE procedure only has increased performance when the following conditions
exist:

® The display must be a raster device.
® The window bounds within the range —32 768 to 32 767.
® The window must be less then 32 767 units wide and high.

INT_POLYLINE is provided for efficient vector generation. Although its use can be mixed with
MOVE, LINE, and POLYLINE, one dot roundoff errors may result with mixed use since different
algorithms are used to implement each.

Error Conditions

The graphics system must be initialized, a graphics display must be enabled, all parameters must
be within specified limits and the number of points (points) must be greater than O or the call will
be ignored, an ESCAPE (— 27) will be generated, and GRAPHICSERROR will return a non-zero
value.

Procedure Library Reference

IOBUFFER

IMPORT: general_4
iodeclarations

This procedure will create a buffer area of the specified number of bytes. The buffer name
variable contains the various empty and fill pointers necessary to use the buffer space.

Syntax

buffer
TR0 O-TE 1O

Item Description/Default Re:zt?incst;ieons
buffer name Variable of TYPE buf_info_type. See Chapter 11
buffer size Expression of TYPE INTEGER, specifies MININT thru MAXINT
bytes.
Semantics

Re-executing IOBUFFER on a buffer name will allocate new space in the system, not reclaim
the old space, or put a transfer in the old space into a known state.

MARK and RELEASE interact with IOBUFFER, and it is possible to lose an io buffer by
releasing it.

The buffer name should be in a VAR declaration at the outermost level of the program or
module containing it.

381

382 Procedure Library Reference

IOCONTROL

IMPORT: general_0
iodeclarations

This procedure sends control information to the selected interface. Refer to the specific inter-
face in the Status and Control Register Appendix in the Pascal System User’s Manual.

Syntax
© OTE-O-[E -0
.. Range Recommended
Item Description/Default Restrictions Range
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
register number Expression of TYPE io_word. This is an —32 768 thru Interface
INTEGER subrange. 32 767 dependent
control value Expression of TYPE INTEGER. MININT thru 0 thru 65 535
MAXINT (interface de-
pendent)

Note

Unexpected and possibly undesirable side effects may result from
attempting to use this procedure in combination with other parts of
the I/O procedure library. Make sure you understand the full implica-
tions of using it before including it in a program.

Procedure Library Reference

IOERROR_MESSAGE

IMPORT: general_3
iodeclarations

This function returns a value of TYPE iostring (a string dimensioned to 255 characters) contain-
ing an English textual description of an error produced by the 'O procedure library.

Syntax

error

. Range Recommended
Item i Description/Default ‘ Restrictions Range
error number Expression of TYPE INTEGER. MININT thru 0 thru 327
MAXINT
Semantics
Example:

PROGRAM Sample(Inputs DutpPut)s

BEGIN
TRY

RECOVER BEGIN
IF Escapecode = Ioescarecode THEN
WRITELN (IODERROR_MESSAGE(Ioe_result)s’ on ‘sloe_isc)li
ESCAPE (Escapecode)
END {Recover?’}
END, {Main Prodram?

See the Errors and Timeouts chapter for further details on the IOE_RESULT and IOE_ISC vari-
ables.

383

384 Procedure Library Reference

IO_FIND_ISC

IMPORT: iodeclarations

Note

This function is provided for use by the internal /O Procedure Lib-

rary drivers, only. Unexpected and possible undesirable results may
occur if it is used.

Procedure Library Reference 385

I0_ESCAPE

IMPORT: iodeclarations

Note

This function is provided for use by the internal /O Procedure Lib-
rary drivers, only. Unexpected and possible undesirable results may

occur if it is used.

388 Procedure Library Reference

IOREAD_WORD

IMPORT: general_0
iodeclarations

This function reads the word contained in the specified register (physical address) on the
selected interface. The function returns a value of TYPE io_word. This is an INTEGER sub-
range, —32 768..32 767.

Syntax
O (D O
. Range Recommended

Item Description/Default Restrictions Range
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
register Expression of TYPE jo_word. This is an -32 768 thru Interface
number INTEGER subrange. 32767 dependent
Semantics

Note

These are physical address registers, not the Status registers used by the
IOSTATUS statement. See the Memory Map Appendix in the Pascal
Workstation System manual.

Procedure Library Reference 389

IORESET

IMPORT: general_1
iodeclarations

This procedure will reset the specified interface to its intial (power on) state. Any currently
active transfers will be terminated.

Syntax

T WOREN N0

Recommended

Range

Range
Restrictions

Item i Description/Default

interface

select code INTEGER subrange.

Expression of TYPE type—isc. This is an l 0 thru 31 ‘ 7 thru 31

390 Procedure Library Reference

IOSTATUS

IMPORT: general_0
iodeclarations

This function returns the contents of an interface status register. The value returned is of TYPE
io_word, an integer subrange (— 32 768 thru 32 767).

Syntax
® ORE=320
‘e Range Recommended
Item Description/Default Restrictions Range
interface Expression of TYPE type_isc. This is an 0 thru31 7 thru 31
select code INTEGER subrange.
register Expression of TYPE jo~word. This is an - 32 768 thru Interface
number INTEGER subrange. 32 767 dependent
Semantics

The register meaning depends on the interface. Refer to the specific interface in the Status and
Control Registers.

Procedure Library Reference

I0_SYSTEM_RESET

IMPORT: general_O
jiodeclarations

Note

This function is provided for use by the internal /0 Procedure Lib-
rary drivers, only. Unexpected and possible undesirable results may

occur if it is used.

391

392 Procedure Library Reference

IOUNINITIALIZE

IMPORT: general_1
iodeclarations

This procedure resets all interfaces.

Syntax

Semantics
A program should be bracketed by IOINITIALIZE and IOUNINITIALIZE.

PROGRAM userprog (...) 3

BEGIN
ioinitialize;s

iouninitializes
END.

Procedure Library Reference

IOWRITE_BYTE

IMPORT: general O
iodeclarations

This procedure writes the suppl
(physical address) on the selecte

depends on the interface and register selected.

Syntax

interface register register
oware-evre)) (D O -

ied value (representing one byte) to the specified register
d interface. The actual action resulting from the operation

e s Range Recommended
Item Description/Default Restrictions Range
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
register number Expression of TYPE io_word. This is an —32 768 thru Interface
INTEGER subrange. 32767 dependent
register value Expression of TYPE io_byte. This is an IN- 0 thru 255 Interface
TEGER subrange. dependent

Semantics

Notes

These are physical address registers, not the Status registers used by the
[OSTATUS statement. See the Memory Map Appendix in the Pascal
Workstation System manual.

Unexpected and possibly undesirable side effects may result from
attempting to use this procedure in combination with other parts of the
1/O procedure library. Make sure you understand the full implications of
using it before including it in a program.

393

394 Procedure Library Reference

IOWRITE_WORD

IMPORT: general_0

iodeclarations

This procedure writes the supplied value (representing 16 bits) to the specified register on the
selected interface. The actual action resulting from the operation depends on the interface and
register selected.

Syntax
© OTEO-[E1-C
. Range Recommended
Item Description/Default Restrictions Range
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
register number Expression of TYPE io_word. This is an —32 768 thru Interface
INTEGER subrange. 32767 dependent
register value Expression of TYPE jo_word. This is an —32 768 thru Interface
INTEGER subrange. 32767 dependent
Semantics

Notes

These are physical address registers, not the Status registers used by the
IOSTATUS statement. See the Memory Map Appendix in the Pascal
Workstation System manual.

Unexpected and possibly undesirable side effects may result from
attempting to use this procedure in combination with other parts of the
/O procedure library. Make sure you understand the full implications of
using it before including it in a program.

Procedure Library Reference

ISC_BUSY

IMPORT: general_4
iodeclarations

This BOOLEAN function is TRUE if there is a transfer active on the specified interface.

Syntax
© ®

Range
Restrictions

Item I Description/Default

Expression of TYPE type_isc.
This is an INTEGER subrange

interface select code | 7 thru 31

395

396 Procedure Library Reference

KERNEL INITIALIZE

IMPORT: general_0

Note

This function is provided for use by the internal I/O Procedure Lib-
rary drivers, only. Unexpected and possible undesirable results may
occur if it is used. It will probably blow up your program, and will
definitely destroy any operation you are currently performing in the
/O Procedure Library.

Procedure Library Reference

LINE

IMPORT: dgl_lib

This procedure draws a line from the starting position to the world coordinate specified.
Syntax

X Y
00O csarginsre (O coordinare (D)

i Range
Item Description/Default ‘ Restrictions
X coordinate Expression of TYPE REAL -
X coordinate Expression of TYPE REAL -

Procedure Heading
PROCEDURE LINE (Wx» Wy : REAL)3

Semantics

A line is drawn from the starting position to the world coordinate specified by the X and Y
coordinates. The starting position is updated to this point at the completion of this call.

The x and y coordinate pair is the ending of the line to be drawn in the world coordinate system.

The primitive attributes of line style, line width, and color apply to lines drawn using LINE.
Drawing to the starting position generates the shortest line possible. Depending on the nature of
the current line-style, nothing may appear on the graphics display surface. See SET_LINE_
STYLE for a complete description of how line-style affects a particular point or vector.

Error Conditions
The graphics system must be initialized and a display must be enabled or this call will be ignored,
an ESCAPE (— 27) will be generated, and GRAPHICSERROR will return a non-zero value.

397

398 Procedure Library Reference

LISTEN

IMPORT: hpib_2
iodeclarations

This procedure will send the specified listen address on the bus. The ATN line will be set true.
The interface must be active controller.

Syntax
© O O
. Range Recommended
Item Description/Default Restrictions Range

interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.

device address Expression of TYPE type_hpib_address. 0 thru 31 0 thru 30

This is an INTEGER subrange.

Procedure Library Reference 399

LISTENER

IMPORT: hpib_3
iodeclarations

This BOOLEAN function will return TRUE if the specified interface is currently addressed as a
listener.

Syntax
®© ®

Recommended
Range

Range

Item l Description/Default ‘ Restrictions

interface
select code

Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
INTEGER subrange.

400 Procedure Library Reference

LOCAL

IMPORT: hpib_2

iodeclarations
This procedure places the device(s) in local mode.
Syntax
© O
. Range Recommended
Item I Description/Default ' Restrictions Range
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary

an INTEGER subrange.

Semantics

LOCAL (701) places the device at address 1 on interface 7 in the Local mode. LOCAL(7)
places all devices on interface 7 in Local mode.

System Controller Not System Controller
interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
Active REN MTA ATN MTA
Controller ATN UNL GTL UNL
ontrotle LAG LAG
GTL GTL
Not Active REN Error Error
Controller

Procedure Library Reference 401

LOCAL_LOCKOUT

IMPORT: hpib_2
iodeclarations

This procedure sends LLO (the local lockout message) on the bus. The interface must be active
controller.

Syntax
tocaisockour)= () D

o Recommended
Description/Default Range

Range
Restrictions

Item i

interface
select code

Expression of TYPE type_isc. This is an

0 thru 31 7 thru 31
INTEGER subrange.

Semantics
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
Active ATN ATN

Controller LLO Error LLO Error

Not Active

Controller Error

402 Procedure Library Reference

LOCATOR_INIT

IMPORT: dgl_lib
This procedure enables the locator device for input.
Syntax
® O~ (D~
Item Description/Default Range
P Restrictions
device selector Expression of TYPE INTEGER MININT TO MAXINT
error variable name Variable of TYPE INTEGER -

Procedure Heading

PROCEDURE LOCATOR_INIT (Dev_Adr : INTEGER
YAR Ierr : INTEGER)3

Semantics
The device selector specifies the physical addresses of the graphics locator device.

® device selector = 2 The Knob on Series 200 Computers
® 100 < = device selector <= 3199 composite HPIB/device address

The error variable will contain a value indicating whether the locator device was successfully

enabled.
Value I Meaning
0 The locator device was successfully initialized.
2 Unrecognized device specified. Unable to communicate with a device at the specified

address, non-existent interface card or non-graphics system supported interface card.

If the error variable contains a non-zero value, the call has been ignored.

LOCATOR_INIT enables the logical locator device for input. Enabling the locator includes
associating the logical locator device with a physical device and initializing the device. The device
name is set to the name of the physical device, the device status is set to 1 (enabled) and the
internal device selector used by the graphics library is set equal to the device selector provided by
the user. This information is available by calling INQ_WS with operation selectors 11052 and
13052.

LOCATOR_INIT implicitly makes the picture current before attempting to initialize the device.

LOCATOR_INIT enables the logical locator device for input. Enabling the locator includes
associating the logical locator device with a physical device and initializing the device.

Procedure Library Reference 403

The graphics library attempts to directly identify the type of device by using its device address in
some way. The meanings of the device address are defined above.

At the time that the graphics library is initialized, all devices which are to be used must be
connected, powered on, ready, and accessible via the specified physical address. Invalid addres-
sed or unresponsive devices result in that device not being initialized and an error being returned.

The locator device must be enabled before it is used for input. The locator device is disabled by
calling LOCATOR_TERM.

If the graphics display and the locator are not the same physical device (e.g. HP 9826 display and
HP 9111 locator), then the logical locator limits will be set to the default values for the particular
locator used. If the graphics display and locator are the same physical device (e.g., HP 9826
display and HP 9826 knob locator), then the logical locator limits are set to the current view
surface limits.

The locator echo position is set to the default value (see SET_ECHO_POS).

Only one locator device may be enabled at a time. If a locator is currently enabled, then the
enabled device will be terminated (via LOCATOR_TERM) and the call will continue. The locator
device should be disabled before the termination of the application program. LOCATOR_INIT is
the complementary routine to LOCATOR_TERM.

HPGL Locator Devices
When the locator device is initialized on an HPGL device, the graphics display is left unaltered.
HPGL devices are initialized to the following defaults when LOCATOR_INIT is executed:

Wide High Wide High Resolution

Plotter mm mm points points Aspect points/mm
9872 400 285 16000 11400 7125 40.0
7580 809.5 524.25 32380 20970 6476 40.0
7585 1100 891.75 44000 35670 .8107 40.0
7586 1182.8 898.1 47312 35924 .7593 40.0
7470 257.5 191.25 10300 7650 .7427 40.0
7550 411.25 254.25 16450 10170 6182 40.0
7475 416 259.125 16640 10365 6229 40.0

The maximum physical limits of the locator fora HPGL device not listed above are determined by
the default settings of P1 and P2. The default settings of P1 and P2 are the values they have after
an HPGL 'IN’ command. Refer to the specific device manual for additional details.

The default logical display surface is set equal to the area defined by P1 and P2 at the time
LOCATOR_INIT is invoked.

404 Procedure Library Reference

Note
If the paper is changed in an HP 7580 or HP 7585 plotter while the
graphics locator is initialized, it should be the same size of paper that
was in the plotter when LOCATORL_INIT was called. If a different size
of paper is required, the device should be terminated (LOCATOR_
TERM) and re-initialized after the new paper has been placed in the
plotter.

No locator points are returned while the pen control buttons are depressed on HPGL plotters.

The Knob as Locator
When the locator device is initialized, the graphics display is left unaltered. The default initializa-
tion characteristics for the knob on various Series 200 computers is listed below:

Wide High Wide High Resolution
Computer mm mm points points Aspect points/mm
Model 216 160 120 400 300 .75 2.5
Model 217 230 175 512 390 7617 2.226
Model 220 (HP82913A) 210 158 400 300 .75 1.905
Model 220 (HP82912A) 152 114 400 300 .75 2,632
Model 226 120 88 400 300 .75 3.333
Model 236 210 160 512 390 .7617 2438
Model 236 Color 217 163 512 390 7617 2.39 .
Model 237 312 234 1024 768 .75 3.282

The knob uses the current display limits as its locator limits for locator echoes 2 though 8. For all
other echoes the above limits are used. An example of when the two limits may differ follows:

The knob locator is initialized on a Model 226. The graphics display is an HP 98627A color output
card. The resolution of the locator is O through 399 in the X dimension, and O through 299 in the Y
dimension. The resolution of the display is 0 through 511 in the X dimension, and 0 through 389 in
the Y dimension. When AWAIT_LOCATOR is used with echo 4, the locator will effectively have
the HP 98627A resolution for the duration of the AWAIT_LOCATOR call. However, if echo 1 is
used with AWAIT_LOCATOR, the cursor will appear on the Model 226 and the locator has a
resolution of 0 through 399 and 0 through 299. Note that all conversion routines and inquiries will
use the Model 226 limits.

The physical origin of the locator device is the lower left corner of the display.
Error Conditions

The graphics system must be initialized or this call will be ignored, an ESCAPE (-27) will be
generated, and GRAPHICSERROR will return a non-zero value.

Procedure Library Reference 405

LOCATOR_TERM

IMPORT: dgl_lib

This procedure disables the enabled locator device.

Syntax

Procedure Heading
PROCEDURE LOCATOR_TERM;

Semantics

LOCATOR_TERM terminates and disables the enabled locator device. It transmits any termina-
tion sequence required by the device and releases all resources being used by the device. The
device name is set to the default device name (’ ’), the device status is set to O (not enabled) and
the device address is set to O.

LOCATOR_TERM is the complementary routine to LOCATOR_INIT.

If alocator device is used, LOCATOR_TERM should be called before the application program is
terminated.

Error Conditions
The graphics system must be initialized and alocator device enabled or this call will be ignored, an
ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero value.

406

Procedure Library Reference

LOCKED_OUT

IMPORT: hpib_3
iodeclarations

This BOOLEAN function will return TRUE if the specified interface is currently in the local

lockout state. If the interface is currently active controller a FALSE value will be returned
regardless of the local lockout state.

Syntax

interface
coores o)D) ®

L. Range Recommended
Item | Description/Default I Restrictions Range

Expression of TYPE type_isc. This is an ‘ 0 thru 31 ‘ 7 thru 31

interface

select code INTEGER subrange.

Procedure Library Reference 407

MAKE_PIC_CURRENT

IMPORT: dgl_lib

This procedure makes the picture current.

Syntax

—={(MAKE_PIC_CURRENT -

Procedure Heading
PROCEDURE MAKE_PIC_CURRENT;:

Semantics

The graphics display surface can be made current at any time with a call to MAKE_PIC_
CURRENT. This insures that all previously generated primitives have been sent to the graphics
display device. Due to operating system delays, all picture changes may not have been displayed
on the graphics display upon return to the calling program. MAKE_PIC_CURRENT is most often
used in system buffering mode (see SET_TIMING) to make sure that all output has been sent to
the graphics display device when required.

Before performing any non-graphics library input or output to an active graphics device, (e.g., a
Pascal read or write), it is essential that all of the previously generated output primitives be sent to
the device. If immediate visibility is the current timing mode, all primitives will be sent to the
device before completion of the call to generate them, but if system buffering is used, MAKE_
PIC_CURRENT should be called before performing any non-graphics system /0.

The following routines implicitly make the picture current:

AWAIT_LOCATOR DISPLAY_TERM INPUT_ESC
LOCATOR_INIT SAMPLE_LOCATOR

A call to MAKE_PIC_CURRENT can be made at any time within an application program to insure
that the image is fully displayed. MAKE_PIC_CURRENT does not modify the current timing
mode.

Error Conditions

The graphics system must be initialized and a display must be enabled or this call will be ignored,
an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero value.

408 Procedure Library Reference

MARKER

IMPORT: dgl_lib
This procedure outputs a marker symbol at the starting position.
Syntax
(e (0 0
. Range Recommended
Item | Description/Default | Restrictions Range
marker selector Expression of TYPE INTEGER | MININT TO l 1thru 19
MAXINT
Procedure Heading
PROCEDURE MARKER (MarKer_num : INTEGER)3
Semantics

The marker selector determines which marker will be output. There are 19 defined invariant
marker symbols (1-19). They are defined as follows:

1-77 7 - rectangle 13-°3% .

2-'+ 8 - diamond 14 -4
3-* 9 - rectangle with cross 15-°'%
4-°0O 10-'0 16 -'¢’
5-'X 11-'7 17-°7
6 - triangle 12 -2 18-'8

19-'9

Marker numbers 20 and larger are device dependent.

MARKER outputs the marker designated by the marker selector, centered about the starting
position. The starting position is left unchanged at the completion of this call.

If the marker selector specified is greater than the number of distinct marker symbols that are
supported by a device, then marker number 1 (*.’) will be used. INQ_WS can be used to inquire
the number of distinct marker symbols that are available on a particular graphics display device.
Depending on a particular display device’s capabilities, the graphics library uses either hardware
or software to generate the marker symbols.

The size and orientation of markers is fixed and not affected by the viewing transformation. The
size of markers is device dependent and cannot be changed.

Only the primitive attributes of color and highlighting apply to markers. However, the marker will
appear with these attributes only if the device is capable of applying them to markers.

Error Conditions
The graphics system must be initialized and a display device enabled or the call will be ignored, an
ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero value.

Procedure Library Reference

MOVE

IMPORT: dgl_lib

This procedure sets the starting position to the world coordinate specified.

Syntax
© O O

. Range
Item | Description/Default I Restrictions
X coordinate Expression of TYPE REAL -
y coordinate Expression of TYPE REAL -

Procedure Heading
PROCEDURE MOVE (Wxs Wy : REAL)3

Semantics

MOVE specifies where the next graphical primitive will be output. It does this by setting the value
of the starting position to the world coordinate system point specified by the X,Y coordinate
values and then moving the physical beam or pen to that point.

The x and y coordinate pair is the new starting position in world coordinates.

The starting position corresponds to the location of the physical pen or beam in all but four
instances: after a change in the viewing transformation, after initialization of a graphical display
device, after the output of a text string, or after the output of a graphical escape function. A call to
MOVE or INT_MOVE should therefore be made after any one of the following calls to update the
value of the starting position and in so doing, place the physical pen or beam at a known
location: SET_ASPECT, DISPLAY_INIT, SET_DISPLAY_LIM, OUTPUT_ESC, TEXT, SET_
VIEWPORT, and SET_WINDOW.

Error Conditions
The graphics system must be enabled and a display device enabled or this call will be ignored, an
ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero value.

409

410 Procedure Library Reference

MY_ADDRESS

IMPORT: hpib_1
iodeclarations

This function returns an INTEGER subrange (TYPE type_hpib_addr) representing the HP-IB
address of the specified HP-IB interface.

Syntax

interface
wr-soomess)-(() 0

. Range Recommended
Item l Description/Default (Restrictions Range
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.

Procedure Library Reference 411

OUTPUT_ESC

IMPORT: dgl_lib

This procedure performs a device dependent escape function to inquire from the graphics
display device.
Syntax

operation INTEGER REAL

outpu_£56)) O
INTEGER REAL error variable
array name array name name

I Range Recommended
ltem Description/Default Restrictions Range
operation selector Expression of TYPE INTEGER MININT to -
MAXINT
INTEGER array Expression of TYPE INTEGER MININT to >0
size MAXINT
REAL array size Expression of TYPE INTEGER MININT to >0
MAXINT
INTEGER array Any valid variable. - -
name Should be INTEGER array
REAL array name Any valid variable. - -
Should be REAL array
error variable name | Variable of TYPE INTEGER - -
Procedure Heading
PROCEDURE OUTPUT_ESC ¢ Opcode : INTEGERS
Isize : INTEGER]
Rsize ¢ INTEGER:
ANYUAR Ilist : Gint_list}
ANYYAR Rlist : Greal_list}
YarR lIerr : INTEGER)3

Semantics

The operation selector determines the device dependent output escape function to be per-
formed. The codes supported for a given device are described in the device handlers section of
this document.

The INTEGER array size is the number of INTEGER parameters contained in the INTEGER
array. The thousand’s digit of the operation selector is the number of INTEGER parameters that
the graphics system expects.

412 Procedure Library Reference

The REAL array size is the number of REAL parameters contained in the REAL array by the
escape function. The ten-thousand’s digit of the operation selector is the number of REAL
parameters that the graphics system expects.

The INTEGER array is the array in which zero or more INTEGER parameters are contained.

The REAL array is the array in which zero or more REAL parameters are contained.

The error variable will contain a value indicating whether the escape function was performed.

Value Meaning
0 Output escape function successtfully sent to the device.
1 Operation not supported by the graphics display device.
2 The INTEGER array size is not equal to the number of required INTEGER parameters.
3 The REAL array size is not equal to the number of required REAL parameters.
4 lllegal parameters specified.

If the error variable contains a non-zero value, the call has been ignored.

OUTPUT_ESC allows application programs to access special device features on a graphics
display device. The desired escape function is specified by a unique value for opcode.

The type of information passed to the graphics display device is determined by the value of
opcode. The graphics library does not check OUTPUT_ESC parameters which will be sent
directly to the display device. This can lead to device dependent results if out of range values are
sent.

Output escape functions only apply to the graphics display device.

The starting position may be altered by a call to OUTPUT_ESC.

Error Conditions

The graphics system must be initialized and a display device must be enabled or this call will be

ignored, an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero
value.

Procedure Library Reference 413

Raster Device Escape Operations

Operation
Selector

Function

52

53

250

1050!

1051!

1052

1053

1054

Dump graphics of the currently active display device if it is the console or a bit-mapped display.
Graphics will be dumped to the graphics printer (PRINTER:); if color, all planes are ORed.

Await vertical blanking. This escape function will not exit until the CRT is performing vertical
blanking.

The following example shows how to use this function when changing the color table to
reduce flicker.

OQUTPUT_ESC (53 Oy O3 dummy ¢+ dummy s error)i
SET_COLOR_TABLE (O r+ 91 b)3

The color table is not changed until the crt is blank (during a refresh cycle).
Otherwise changing the color map in the middle of a scan would create a screen
that was half the old color, and half the new color for one frame (1/60 sec). To the
eye this would look like a flicker.

Specify device limits.
REAL Array [1] = Points (dots) per mm in X direction
REAL Array [2] = Points (dots) per mm in Y direction

Turn on or off the graphics display.
INTEGER array [1] = 0 — turn display off.
INTEGER array [1] <> 0 — turn display on.

Turn on or off the alpha display.
INTEGER array [1] = 0 — turn display off.
INTEGER array [1] <> 0 — turn display on.

Set special drawing modes. Using this escape function will redefine the meaning of
the set color attribute. For details on how a given drawing mode affects a color see
“Drawing Modes’” in SET_COLOR. This drawing mode does not apply to device
dependent polygons. Out of range values default to dominate drawing mode.

INTEGER array[1] = 0 — Dominate drawing mode.
= 1 — Non-dominate drawing mode.
= 2 — Frase drawing mode.
= 3 — Complement drawing mode.
Dump graphics (from the specified color planes) to the graphics printer (PRINTER:). Also dumps
graphics on a Model 237 if it is the currently active display.
INTEGER array [1] = Color plane selection code.

BIT 1 = 1 — Select plane 1.
(Blue on HP 98627A)

BIT 2 = 1 — Select plane 2.
(Green on HP 98627A)

BIT 3 = 1 — Select plane 3.
(Red on HP 98627A)

BIT 4 = 1 — Select plane 4.

Clear selected graphics planes.

INTEGER Array [1] = O - Clear all planes
INTEGER Array [1] <> O - Color plane selection code.

BIT1=1 Clear plane 1 (Blue on HP 98627A)
BIT2 =1 Clear plane 2 (Green on HP 98627A)
BIT3 =1 Clear plane 3 (Red on HP 98627A)
BIT4 =1 Clear plane 4

1 This operation is not available for the Model 237 computer.

414 Procedure Library Reference

Operation
Selector Function
10050 Set all HP 9836C color table locations. This escape function allows the user to

change all locations in the hardware color map with one procedure. The software
maintained color table will be updated by this call. This escape function is the same

as calling SET_COLOR_TABLE with indexes O - 15,

REAL Array [1] = Parml
REAL Array [2] = Parm2 Index 0
REAL Array [3] = Parm3

REAL Array [4] = Parml
REAL Array [5] = Parm2 Index 1
REAL Array [6] = Parm3

REAL Array [46] = Parm1
REAL Array [47] = Parm2 Index 15
REAL Array [48] = Parm3

Parm1, Parm2, and Parm3 are defined to be the same as used with SET_COLOR_
TABLE.

The size of the INTEGER array must equal 0 and the size of the REAL array 48.

The following table shows which escape codes are supported on which Series 200 raster displays:

Operation
Selector 216 217 220 226 236 236 Color 237 98627A
52 ves ves yes ves ves yes ves ves
53 no no no no no ves no no
250 no no no no no no no ves
1050 yes yes yes yes yes yes no yes
1051 yes yes yes yes yes yes no no
1052 yes yes yes yes yes ves yes yes
1053 no no no no no ves yes ves
1054 ves no no yes yes ves no yes
10050 no no no no no ves no no

Procedure Library Reference

HPGL Plotter Escape Operations

Operation
Selector Function
1052* Enable cutter. Provides means to control the Plotter paper cutters. Paper is cut after it is
advanced.
INTEGER array (1] = 0 Cutter is disabled.
INTEGER array [1] <> 0 Cutter is enabled.
1052 Set automatic pen. This instruction provides a means for utilizing the smart pen options of
the plotter. Initially, all automatic pen options are enabled.
INTEGER array (11: BIT1 =1
Lift pen if it has been down for 60 seconds.
BIT2=1
Put pen away if it has been motionless for 20 seconds.
BIT3 =1
Do not select a pen until a command which makes a mark. This causes the pen to remain
in the turret for the longest possible time.
1053 Advance the paper either one haif or a full page.
INTEGER array [1] = 0 >> Advance page half
INTEGER array [1] <> 0 >> Advance page full
2050 Select pen velocity. This instruction allows the user to modify the plotter’s pen speed. Pen
speed may be set from 1 to the maximum for the given device.
INTEGER array [1] = Pen speed (INTEGER from 1 to device max).
INTEGER array [2] = Pen number (INTEGER from 1 to 8; other integers
select all pens)
2051 Select pen force. The force may be set from 10 to 66 gram-weights.
INTEGER array (1] = Pen force (INTEGER from 1 to 8).
1: 10 gram-weights
2: 18 gram-weights
3: 26 gram-weights
4. 34 gram-weights
5: 42 gram-weights
6: 50 gram-weights
7: 58 gram-weights
8: 66 gram-weights
INTEGER array [2] = Pen number (INTEGER 1 to 8; other integers
select all pens)
2052 Select pen acceleration. The acceleration may be set from 1 to 4 G’s.
INTEGER array [1] = Pen acceleration (INTEGER from 1 to 4).
INTEGER array [2] = Pen number (INTEGER 1 to 8; other integers select all pens)
Operation
Selector 9872 7470 7475 7550 7580 7585 7586
1052* S/T no no no no no no
1052 no no ves ves yes ves yes
1053 S/T no no ves no no ves
2050 ves yes yes yes ves yes ves
2051 no no yes yes yes yes yes
2052 no no yes yes yes yes yes

415

416 Procedure Library Reference

PASS_CONTROL

IMPORT: hpib_2
iodeclarations

This procedure passes active control from the specified interface to another device on the bus.

Syntax

PASS_CONTROL o o

A Range Recommended
Item l Description/Default [Restrictions | Range
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary

an INTEGER subrange.

Semantics
System Controller Net System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN ATN ATN ATN
Active TCT UNL TCT UNL
Controller ATN TAG ATN TAG
TCT TCT
ATN ATN

Not Active Error

Controller

IMPORT: dgl_types
dgl_lib
dgl_poly

Procedure Library Reference 417

POLYGON

This procedure displays a polygon-set starting and ending at the specified point adhering to the

specified polygon style exactly as specified (i.e., device-inde

Syntax

pendent results).

N X array y array
poLveon () O O (O
operation selector
array name

s Range
Item Description/Default Restrictions
points Expression of TYPE INTEGER MININT thru MAXINT

X array name
y array name

operation selector array
name

Procedure Heading

Array of TYPE Greal list.
Array of TYPE Greal list.

Array of TYPE Gshortint_list. Gshortintis a sub-
range of INTEGER.

PROCEDURE POLYGON (Npoint : INTEGER)S
ANY VAR nuec : Greal.list}
ANYVAR ¥Yuec : Greal_lists

ANYVAR Opcodes : Gshortint_list)si

Semantics

Points is the number of vertices in the polygon set.

—32 768 to 32 767

The x and y coordinate arrays contain the world coordinate values for each vertex of the

polygon-set. The vertices must be i
beginning of these arrays, followe

n order. The vertices for the first sub-polygon must be at the
d by the vertices for the second sub-polygon, etc. So, the

coordinate arrays must contain a total number of vertices that equals points.

The operation selector array contains a series of integer operation selectors defining which
vertices start new polygons, and defining which edges should be displayed.

418

Procedure Library Reference

Value Meaning
0 Don’t display the line for the edge extending to this vertex from the previous vertex.
1 Display the line for the edge extending to this vertex from the previous vertex.
2 This vertex is the first vertex of a sub-polygon. Succeeding vertices are part of a
sub-polygon until a new start-of-polygon operation selector (2) is encountered. (Or the
end of the arrays is encountered.)

Note

The first entry in the operation selector array must be 2, since it is the
first vertex of a sub-polygon.

POLYGON is used to output a polygon-set, specified in world coordinates, adhering exactly to
the polygon style attributes that are currently specified. A polygon-set s a set of polygons (called
“sub-polygons’’) that are treated graphically as one polygon. Thisis accomplished by “‘stacking”
the sub-polygons. The subpolygons in a polygon-set may intersect or overlap each other.

The edge of a sub-polygon is defined as the line sequence that connects its vertices in the order
specified. If the last vertex specified for a sub- polygon is not the same as the first, they are
automatically connected.

When a polygon-set is displayed, the primitive attributes for polygons and lines define its
appearance. In particular, the interior of the polygon-set will be filled according to the attributes
of polygon style, polygon interior color and polygon interior line-style. If the edges are to be
displayed as specified in the polygon style, the edges will adhere to the current line attributes of
color, line-style and line-width. A dot will disappear on an edged polygon if the edge is done with
a complementing line.

The filling of polygons also depends on how the sub-polygons “nest’” within each other. An
“even-odd” rule is used for determining which areas will be filled. Moving across the screen,
count the edges of the polygon. Odd-numbered edges will turn the fill on and even-numbered
edges will turn the fill off. The picture below will help clear up how the fills work.

Polygon Filling

Procedure Library Reference 419

Refer to SET_PGN_TABLE, SET_PGN_STYLE, SET_PGN_COLOR, SET_PGN_LS foramore
detailed description of how attributes affect polygons.

As stated above, the values in the operation selector array define how the edges of the sub-
polygons are displayed. The edge from the (I-1)th vertex to the [th vertex will only be displayed if
the Ith entry in the operation selector array equals 1. To display the edge from the last vertex to
the first vertex of a sub-polygon, the first vertex must be explicitly respecified after all the other
vertices of the sub-polygon, with an operation selector equal to 1. Otherwise the edge from the
last vertex to the first will not be drawn. It will, however, automatically be connected for polygon
filling.

If it is within the capabilities of the device, filling of the sub-polygon will be done to the
sub-polygon edges regardless of whether the edges are displayed. If an entry in the operation
selector array does not equal 0, 1, or 2, it will be treated as if it were equal to 0 and the edge will
not be drawn.

When POLYGON is used, the current position is updated to the end of the last sub-polygon
specified in the polygon-set. The end of the last sub-polygon is defined to be the first (implicit last)
vertex of the subpolygon. So, if there is only one vertex in a polygon-set this call degenerates to
an update of the current position to the first coordinate set in the x and y point arrays (x
coordinate array[1], y coordinate array[1]).

It is the application program’s responsibility to ensure that the arrays are all dimensioned to at
least the number of elements specified by points and that at least that many values are contained
in each array.

Polygons are defined to be closed surfaces. When a sub-polygon extends beyond a clipping edge
the closed nature of the sub-polygon is destroyed. As with other primitives, unpredictable results
may occur if the sub-polygon extends beyond the clipping window.

Error Conditions

The graphics system must be initialized, a graphics display must be enabled, all parameters must
be within specified limits and the number of points specified must be greater than O or the call will
be ignored, an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero
value.

420 Procedure Library Reference

POLYGON_DEV_DEP

IMPORT: dgl_types
dgl_lib
dgl_poly

This procedure displays a polygon-set starting and ending at the specified point adhering to the
specified polygon style in a device- dependent fashion.

Syntax
© O O O
operation selector ()
array name

Item Description/Default Re?t:i'::!t;i(:)ns
points Expression of TYPE INTEGER MININT thru MAXINT
X array name Array of TYPE Greal list. -

y array name Array of TYPE Greal list. -
operation selector array Array of TYPE Gshortint_list. Gshortint is a sub- —32 768 to 32 767
name range of INTEGER.

Procedure Heading

PROCEDURE POLYGON_DEV_DEP ¢ NrPoint : INTEGER:
ANYVAR Xvec t Greal_lists
ANYVAR Yvec : Greal_lists

ANYVAR Opcodes : Gshortint_list);

Semantics
Points is the number of vertices in the polygon set.

The x and y coordinate arrays contain the world coordinate values for each vertex of the
polygon-set. The vertices must be in order. The vertices for the first sub-polygon must be at the
beginning of these arrays, followed by the vertices for the second sub-polygon, etc. So, the
coordinate arrays must contain a total number of vertices that equals points.

The operation selector array contains a series of integer operation selectors defining which
vertices start new polygons, and defining which edges should be displayed.

Procedure Library Reference 421

Value Meaning
0 Don’t display the line for the edge extending to this vertex from the previous vertex.
1 Display the line for the edge extending to this vertex from the previous vertex.
2 This vertex is the first vertex of a sub-polygon. Succeeding vertices are part of a
sub-polygon untila new start-of-polygon operation selector (2) is encountered. (Or the
end of the arrays is encountered.)

Note

The first entry in the operation selector array must be 2, sinceitis the
first vertex of a sub-polygon.

POLYGON_DEV_DEP is used to output a polygon-set, specified in world coordinates, adhering
within the capabilities of the device to the polygon style attributes that are currently specified. A
polygon-set is a set of polygons (called *‘sub-polygons’) that are treated graphically as one
polygon. The subpolygons in a polygon-set may intersect or overlap each other.

The edge of a sub-polygon is defined as the line sequence that connects its vertices in the order
specified. If the last vertex specified for a sub- polygon is not the same as the first, they are
automatically connected.

When a polygon-set is displayed, the primitive attributes for polygons and lines define its
appearance. In particular, the interior of the polygon-set will be filled according to the attributes
of polygon style, polygon interior color and polygon interior line-style. If the edges are to be
displayed as specified in the polygon style, the edges will adhere to the current line attributes of
color, line-style and line-width.

The filling of polygons also depends on how the sub-polygons “‘nest” within each other. An
“oven-odd’’ rule is used for determining which areas will be filled. Moving across the screen,
count the edges of the polygon. Odd-numbered edges will turn the fill on and even-numbered
edges will turn the fill off. The picture below will help clear up how the fills work.

.

! 4

Polygon Filling

422 Procedure Library Reference

Referto SET_PGN_TABLE, SET_PGN_STYLE, SET_PGN_COLOR, SET_PGN_LS fora more
detailed description of how attributes affect polygons.

As stated above, the values in the operation selector array define how the edges of the sub-
polygons are displayed. The edge from the (I-1)th vertex to the Ith vertex will only be displayed if
the Ith entry in the operation selector array equals 1. To display the edge from the last vertex to
the first vertex of a sub-polygon, the first vertex must be explicitly respecified after all the other
vertices of the sub-polygon, with an operation selector equal to 1. Otherwise the edge from the
last vertex to the first will not be drawn. It will, however, automatically be connected for polygon
filling.

If it is within the capabilities of the device, filling of the sub-polygon will be done to the
sub-polygon edges regardless of whether the edges are displayed. If an entry in the operation
selector array does not equal 0, 1, or 2, it will be treated as if it were equalto 0, i.e., the edge will
not be drawn.

When POLYGON_DEV_DEP is used, the current position is updated to the end of the last
sub-polygon specified in the polygon-set. The end of the last sub-polygon is defined to be the first
(implicit last) vertex of the subpolygon. So, if there is only one vertex in a polygon-set this call
degenerates to an update of the current position to the first coordinate set in the x and y point
arrays (x coordinate array[1], y coordinate array[1]).

It is the application program’s responsibility to ensure that the arrays are all dimensioned to at
least the number of elements specified by points and that at least that many values are contained
in each array.

Device capabilities vary widely. Not all devices are able to draw polygon edges as requested. If a
device is not able to draw polygon edges as requested, they will be simulated in software. The
simulation will always adhere to the edge value in SET_PGN_STYLE and the operation selector
inPOLYGON_DEV_DEP, but the line-style and color of the edge will depend on the capability of
the device to produce lines with those attributes.

Polygon fill capabilities can vary widely between devices. A device may have no filling capabilities
at all, may be able to perform only solid fill, or may be able to fill polygons with different fill
densities and at different fill line orientations. POLYGON_DEV_DEP tries to match the device
capabilities to the request. If the device cannot fill the request at all, then no simulation is done
and the polygon will not be filled. For HPGL plotters, the fill is simulated. For raster devices, if the
density is greater than 0.5, a solid fill is used, otherwise, the fill is simulated.

In the case where the polygon style specifies non-display of edged, this would result in no visible
output although visible output had been specified. To provide some visible output in this case,
POLYGON_DEV_DEP will outline the polygon using the color and line-style specified for the fill
lines. However, only those edge segments specified as displayable by the operation selector array
will be drawn. Therefore, if all edge segments are specified as non-displayed, there will still be no
visible output.

Regardless of the capabilities of the device, POLYGON_DEV_DEP sets the starting position to
the first vertex of the last member polygon specified in the call. If there is only one polygon
specified, the starting position will therefore be set to the first vertex specified.

Procedure Library Reference 423

Polygons are defined to be closed surfaces. When a sub-polygon extends beyond a clipping edge
the closed nature of the sub-polygon is destroyed. As with other primitives, unpredictable results
may occur if the sub-polygon extends beyond the clipping window.

Error Conditions

The graphics system must be initialized, a graphics display must be enabled, all parameters must
be within specified limits and the number of points (Points) must be greater than O or the call will
be ignored, an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero

value.

424 Procedure Library Reference

POLYLINE

IMPORT: dgl_lib

This procedure draws a connected line sequence starting at the specified point.

Syntax

. X array y array
POLYLINE }—=(() O O O

Item Description/Default Re?tfil::st;izns
points Expression of TYPE INTEGER MININT thru MAXINT
X array name Array of TYPE Greal list -

y array name Array of TYPE Greal list -

Procedure Heading
PROCEDURE POLYLINE ¢ NPtsg ¢ INTEGER;
ANYUAR Xuees Yveo Greal_list)

Semantics
Points is the number of vertices in the polygon set.

The x and y coordinate arrays contain the world coordinate values for each vertex of the
polyline-set. The vertices must be in order. The vertices for the first sub-polyline must be at the
beginning of these arrays, followed by the vertices for the second sub-polyline, etc. So, the
coordinate arrays must contain a total number of vertices that equals points.

The procedure POLYLINE provides the capability to draw a series of connected lines starting at
the specified point. A complete object can be drawn by making one call to this procedure. This
call first sets the starting position to be the first elements in the x and v coordinate arrays. The line
sequence begins at this point and is drawn to the second element in each array, then to the third
and continues until points-1 lines are drawn.

This procedure is equivalent to the following sequence of calls:

MOVE (X-coordinate-arrav[l]’Y_coordinate_arravfll);
LINE (X-coordinate-arrav[E]’Y_coordinate_arraVEZJ);
LINE (X-coordinate-arraw[BJ’Y_coordinate_arraVEBJ);

LINE (X_coo rdinate_arrav[Points] ,‘n’_coordinate._arra‘/[PointsJ) 5

The starting position is set to (X_coordinate_array|[Points], Y_coordinate_array[Points]) at the .
completion of this call.

Procedure Library Reference 425

Specifying only one element, or Points equal to 1, causes a move to be made to the world
coordinate point specified by the first entries in the two coordinate arrays.

It is the application program’s responsibility to ensure that the arrays are all dimensioned to at
least the number of elements specified by points and that at least that many values are contained
in each array.

Depending on the nature of the current line-style nothing may appear on the graphics display.
See SET_LINE_STYLE for a complete description of how line-style effects a particular point or
vector.

The primitive attributes of color, line-style, and line-width apply to polylines.

Error Conditions

The graphics system must be initialized, a graphics display must be enabled, all parameters must
be within specified limits and the number of points (points) must be greater than O or the call will
beignored, an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero
value.

426 Procedure Library Reference

PPOLL

IMPORT: hpib_3
iodeclarations

This function will perform an HP-IB parallel poll. This involves setting the ATN and EQI bus
lines on the specified interface and then read the data bus lines after waiting 25usec. The ATN
and EOl lines are then returned to the clear state.

Syntax

interface
reous () O

s . Range Recommended
Item , Description/Default l Restrictions Range
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
Semantics
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN & EOI ATN & EOI
(duration=25us) (duration=25us)
Active Read byte Fiead_byte
Controller Ol Error EOI Error
Restore ATN to Restore ATN to
previous state previous state
Not Active
Controller Error

IMPORT: hpib_2

jodeclarations

This procedure program

Syntax

device
o conene)—(0) o ®

Procedure Library Reference

PPOLL_CONFIGURE

s the logical sense and data bus lines, a devices parallel poll response.

. Range Recommended
Item Description/Default Restrictions Range
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary

mask

Semantics

This procedure assumes that t

an INTEGER subrange.

Expression of TYPE INTEGER.

be active controller to execute this statement.

MININT thru
MAXINT

0 thru 15

he device’s response is bus-programmable. The computer must

System Controller

Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
MTA MTA
Active UNL UNL
Controller Error LAG Error LAG
PPC PPC
PPE PPE
Not Active
Controller Error

The mask is coded. The three least si

The fourth bit determines the logical sense of the response.

gnificant bits determine the data bus line for the response.

Note

Use of PPOLL_CONFIGURE may interfere with the Pascal Operat-
ing System, especially if an external disk is being used. Be very
careful.

427

428 Procedure Library Reference

PPOLL_UNCONFIGURE

IMPORT: hpib_2
iodeclarations

This procedure will cause the specified device(s) to disable the parallel poll response.

Syntax
—D-CPPOLI_UNCONFIGUR
e Range Recommended
Item I Description/Default l Restrictions Range
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary
an INTEGER subrange.
Semnantics
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
MTA MTA
Active ATN UNL ATN UNL
Controller PPU LAG PPU LAG
PPC PPC
PPD PPD
Not Active
Controller Error

Note

Use of PPOLL_UNCONFIGURE may interfere with the Pascal Oper-

ating System, especially if an external disk is being used. Be very
careful.

Procedure Library Reference 429

RAND

IMPORT: rnd
sysglobals

This SHORTINT function returns a random number greater than or equal to zero and less than
the specified SHORTINT range.

Syntax

CD 3O EA e O K e ©

Item l Description/Default \ Re?t?irlc%ieons
seed INTEGER 1 thru MAXINT -1
range SHORTINT 1thru 2 -1
Semantics

Given a seed and a range, the random number generator function returns a random number
greater than or equal to zero and less than the range. It also randomizes the seed INTEGER.

430 Procedure Library Reference

RANDOM

IMPORT: rnd

This procedure takes a seed INTEGER, randomizes it and returns the new random number in the
seed variable.

Syntax

DO R IR0

Item l Description/Default | Re?t?i'gi(:ms
seed | INTEGER | 1thru MAXINT —1
Semantics

When the following program is run, the RANDOM procedure returns all 23! — 1 INTEGERS
before repeating a value.

Frogram test{outpPut);

imrport RND3

var seed : INTEGERS
doomsday : BOOLEAN;

begin
seed 1= 12343
doomsday := false}

rereat
RANDOM(seed) ;
Wwrite(seed) }

until doomsdavs

end.,

IMPORT: general_4

iodeclarations

This procedure will read a single byte fr
the buf_info record. An error will occur w

Syntax

buffer destination
reaveurren) () O O

Procedure Library Reference 431

READBUFFER

om the buffer space and update the empty pointer in
hen a read is attempted beyond the end of valid data.

. Range
Item Description/Default Restrictions
buffer name Variable of TYPE buf_info_type. See Chapter 11

destination
character

Variable of TYPE CHAR.

432 Procedure Library Reference

READBUFFER_STRING

IMPORT: general_4
iodeclarations

This procedure will read the specified number of characters from the buffer and put them into
the string variable. The empty pointer is updated. If the string is not big enough or if there is
insufficient data in the buffer there will be an error.

Syntax
~(Grmmratmme)~ ® ® ©
. Range Recommended
Item Description/Default Restrictions Range
buffer name Variable of TYPE buf_info_type. See Chapter 11
destination Variable of TYPE STRING. -
string
character count Expression of TYPE INTEGER. MININT thru 0 thru 255
MAXINT ‘

Procedure Library Reference 433

READCHAR

IMPORT: general_1
iodeclarations

This procedure will read a single byte from the specified interface.

Syntax

interface destination
nesocuan)+ ()) O

Item Description/Default Rel:t?ir::gtxieons Recc:;an;r:;:ded
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
destination Variable of TYPE CHAR.
character
Semantics

If no character is ready the routine will wait until the character comes in or until a timeout occurs
(if any was set up).

An HPIB interface must be addressed as a listener before performing a READCHAR, or an
error will be generated. To avoid this, use the following sequence:

TALK (7,24) 3

UNLISTEN(7)

LISTEN(7, MY_ADDRESS(7))3
READCHAR (7: Character)s

434 Procedure Library Reference

READWORD

IMPORT: general_1
iodeclarations

This procedure will read 2 bytes from interfaces that are byte-oriented. The GPIO card and any
other word-oriented interface will read a single 16 bit quantity.

Syntax

o 0 ©

Item Description/Default Regi‘i'::st;ieons Reccl){gnmgeended

interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
destination Variable of TYPE INTEGER.
variable
Semantics

An interface less than 16-bits wide will be read into the most-significant-byte first, then into the
lease-significant-byte.

An HP-IB interface must be addressed as a listener before performing a READWORD, or an
error will be generated. To avoid this, use the following sequence:

TALK (7:24)% ,
LISTEN(7+ MY_ADDRESS(7));
READWORD (7, Character)

Procedure Library Reference 435

READNUMBER

IMPORT: general 2
jiodeclarations

This procedure will read a free-field number from the specified device.

Syntax

device destination
resonumeen) ()) O

L. Range Recommended
Item Description/Default Restrictions Range
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary
an INTEGER subrange.
destination Variable of TYPE REAL.
variable
Semantics

The routine will skip over non-numeric characters until a valid number is entered. Numeric charac-
ters will be entered until a non-numeric character is read from the interface, or until 256 characters
have been read. No further characters are read.

Note

Note that spaces are not considered to be “non-numeric’”’ characters,
and therefore will not terminate numbers. Erroneous results may occur
if you try to use them to terminate or delimit numbers, because these
procedures do not report receiving erroneously formatted numbers.

436 Procedure Library Reference

READNUMBERLN

IMPORT: general_2
iodeclarations

This procedure will read in a free-field number from the specified device, and then terminate upon
receiving a line feed.

Syntax

device destination
i) ae O O O

o . Range Recommended
Item Description/Default Restrictions Range
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary
an INTEGER subrange.
destination Variable of TYPE REAL.
variable
Semantics

The routine will skip over non-numeric characters until a valid number is entered. Characters will be
entered until a non-numeric character is read from the interface. If a line feed is the next character,
no more characters are read; otherwise, characters are read until a line feed is encountered.

Procedure Library Reference 437

READSTRING

IMPORT: general 2
iodeclarations

This procedure will read in characters to the specified string.

Syntax

dovice destination
mrse——— () O

- Range Recommended
Item Description/Default Restrictions Range
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary
an INTEGER subrange.
destination string Variable of TYPE STRING.

Semantics
This procedure will read characters into the specified string until one of the following conditions
occur :

e a carriage return & line feed are read
e a line feed is read
o the string is filled up

The line feed or carriage return/line feed are not put into the string.

438 Procedure Library Reference

READSTRING_UNTIL

IMPORT: general_2
iodeclarations

This procedure will read characters from the selected device into the specified string until the
prescribed terminator is encountered.

Syntax

termination device destination
menosTame.um) ()) () O

Item Description/Default Rez:igiims Recc;!rg:‘ngeended
termination Expression of TYPE CHAR. -
character
device selector Expression f TYPE type_device. This is an 0 thru 3199 See glossary
INTEGER subrange.
destination Variable of TYPE STRING.
string
Semantics

This procedure will read characters into the string until one of the following conditions occurs :

® termination character is received
e the string is filled

The termination character is placed into the string.

Procedure Library Reference 439

READUNTIL

IMPORT: general 2

iodeclarations

This procedure will read characters until the match character occurs. All characters read in will
be thrown away.

Syntax

termination device
character selector

s Range Recommended
Item Description/Default Restrictions Range
termination Expression of TYPE CHAR. -
character
device selector Expression of TYPE type_device. This 0 thru 3199 See glossary
is an INTEGER subrange.

440 Procedure Library Reference

REMOTE

IMPORT: hpib_2

iodeclarations

This procedure sends the messages to place the bus device(s) into the remote state.

Syntax

device
selector

. . Range Recommended
Item Description/Default | Restrictions Range
device selector Expression of TYPE type_device. This 0 thru 3199 See glossary
is an INTEGER subrange.
Semantics
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specitied
REN
Active ATN
REN MTA Error
Controller ATN UNL
LAG
Not Active
Controller REN Error Error

Procedure Library Reference 441

REMOTED

IMPORT: hpib_3
iodeclarations

This BOOLEAN function indicates if the REN line is being asserted. The interface should be
non-system controller.

Syntax

interface
teworen)-+{ () 0

. Range Recommended
Item | Description/Default ‘ Restrictions Range
device selector

Expression of TYPE type_device. This 0 thru 3199 See glossary
is an INTEGER subrange.

442 Procedure Library Reference

REQUESTED

IMPORT: hpib_3
iodeclarations

This BOOLEAN function returns TRUE if any device is currently asserting the SRQ line. The
interface must be active controller.

Syntax

interface
reavesten)— () D

o . Range Recommended
Item | Description/Default | Restrictions Range
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.

Procedure Library Reference 443

REQUEST_SERVICE

IMPORT: hpib_3
iodeclarations

This procedure will set up the spoll response byte in the specified interface. If bit 6 is set, SRQ
will be set. The interface must not be active controller.

Syntax

interface response
reoves ey () ® O

. Range Recommended
Item Description/Default Restrictions Range
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
response value Expression of TYPE INTEGER. MININT thru 0 thru 255
MAXINT

444 Procedure Library Reference

SAMPLE LOCATOR

IMPORT: dgl_lib

This procedure samples the current locator device

Syntax

echo x coordinate y coordinate
SAMPLE_LocATOR)—=(() O O 0

Item Description/Default Re?t?il::!t;ieons
echo selector Expression of TYPE INTEGER MININT to MAXINT
x coordinate name Variable of TYPE REAL -

y coordinate name Variable of TYPE REAL -

Procedure Heading

PROCEDURE SAMPLE_LOCATOR (Echo t INTEGER:
VAR kWxs Wy @ REAL)5
Semantics
The echo selector determines the level of input echoing. Possible values are:
0 - No echo.
=1 - Echo on the locator device.

The x and y coordinates are the values of the coordinates, expressed in world coordinate units,
returned from the enabled locator device.

SAMPLE_LOCATOR returns the current world coordinate value of the locator without waiting
for any user intervention. Typically, the locator is sampled in applications involving the con-
tinuous input of data points that are very close together.

If the point sampled is outside of the current logical locator limits, the transformed point will still
be returned .

The number of echoes supported by a locator device and the correlation between the echo value
and the type of echoing performed is device dependent. Most locator devices support at least one
form of echoing. Possible echoes are beeping, displaying the point sampled, etc. See the locator
descriptions below to find the locators supported by the various devices. If the echo value is larger
than the number of echoes supported by the enabled locator device, then echo 1 will be used.

Locator echoing can only be performed on the locator device. The locator echo position is not
used in conjunction with any echoes performed while sampling a locator.

Procedure Library Reference 445

SAMPLE_LOCATOR implicitly makes the picture current before sampling the locator.

The Knob as Locator

The keyboard beeper is sounded when the locator is sampled if an echo is selected (echo
selector=1). The sample locator function returns the last AWAIT_LOCATOR result or 0.0, 0.0 if
AWAIT_LOCATOR has not been invoked since LOCATOR_INIT.

HPGL Locators

The sample locator function returns the current locator position without waiting for an operator
response (pen position on plotters). On a9111A graphics Tablet, the beeperis sounded when the
stylusis depressed. For echo selectors greater than or equal to 9, the same echo as echo selector 1
is used.

Error Conditions

The graphics system must be initialized and a locator device enabled or this call will be ignored, an
ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero value.

446 Procedure Library Reference

SECONDARY

IMPORT: hpib_2
iodeclarations

This procedure will send a secondary command byte over the bus. The interface must be active

controller.
Syntax
© O O
Item Description/Default Re?tir‘incst!ieons Rec;n;rl:\;ended
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.

secondary value Expression of TYPE type_hpib_addr. This 0 thru 31
is an INTEGER subrange.

Procedure Library Reference 447

SEND _BREAK

IMPORT serial_3
iodeclarations

This procedure will send a break to the selected serial interface. (A break is an extended mark
period followed by an extended space period.)

Syntax

interface
seno.sheax) () 0

L Range Recommended
Item | Description/Default ‘ Restrictions ‘ Range
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.

448 Procedure Library Reference

SEND_COMMAND

IMPORT: hpib_1
iodeclarations

This procedure sends a single byte over the HP-IB interface with attention true. The computer
needs to be active controller when this happens.

Syntax

O O O

Item Description/Default R e?t?ir::st!ii)ns Recc;an;::;eended

interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
command Expression of TYPE CHAR.
character
Semantics

Note

Use of PPOLL_CONFIGURE may interfere with the Pascal Operat-
ing System, especially if an external disk is being used. Be very
careful.

Procedure Library Reference 449

SERIAL LINE

IMPORT: serial_0
iodeclarations

This BOOLEAN function returns TRUE if the specified line on the serial interface is asserted.

Syntax
© © 0
.. Range Recommended
Item Description/Default Restrictions Range

interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
serial line Expression of enumerated TYPE rts_line
specifier type_serial_line. cts_line

dcd_line

dsr_line

drs_line

ri_line

dtr_line
Semantics

The values of the enumerated TYPE type_serial_line have the following definitions:

name | RS-232 line

rts ready to send

cts clear to send

dcd data carrier detect
dsr data set ready

drs data rate select

dtr data terminal ready
ri ring indicator

The access to the various lines is determined by the connector used on the selected interface.

450 Procedure Library Reference

SET _ASPECT

IMPORT: dgl_lib
This procedure redefines the aspect ratio of the virtual coordinate system.
Syntax
© O O
. Range
Item Description/Default Restrictions
X size Expression of TYPE REAL -
y size Expression of TYPE REAL -

Procedure Heading
PROCEDURE SET_ASPECT (X_size, Y_size : REAL)3

Semantics

The x size is the width of the virtual coordinate system in dimensionless units. The size must be
greater than zero.

The vy size is the height of the virtual coordinate system in dimensionless units. The size must be
greater than zero.

SET_ASPECT sets the aspect ratio of the virtual coordinate system, and hence the view surface,
to be y size divided by x size. A ratio of 1 defines a square virtual coordinate system, a ratio greater
than 1 specifies it to be higher than it is wide; and a ratio less than 1 specifies it to be wider thaniitis
high. Since x size and y size are used to form a ratio, they may be expressed in any units as long as
they are the same units.

The range of coordinates for the virtual coordinate system is calculated based on the value of the
aspect ratio. The coordinates of the longer axis are always set to range from 0.0 to 1.0 and those
of the shorter axis from O to a value that achieves the specified aspect ratio. SET_ASPECT
defines the limits of the virtual coordinate system.

ASPECT RATIO (AR) | X LIMITS ‘ Y LIMITS
AR <1 0.0,1.0 0.0,1.0* AR
AR =1 0.0,1.0 0.0, 1.0
AR>1 0.0,1.0/AR 0.0,1.0

Procedure Library Reference 451

When a call to SET_ASPECT is made, the graphics system sets the viewport equal to the limits of
the virtual coordinate system. This routine can therefore be used to access the entire logical
display surface. A program could display an image on the entire HP 9826 graphics display, which
has an aspect ratio of 399/299, in the following manner:

SET_ASPECT (399, 299);

To set the aspect ratio to the entire display in a device independent manor, INQ_WS may be used
as follows:

PROCEDURE Set_max_aspect}’
CONST Get_aspect=2543

VAR Dummy : INTEGER?
Error : INTEGER S
FRatio_list: ARRAYL1.,.2]1 OF REAL:

BEGIN {PROCEDURE Set_max_aspect?
INQ_WS (Get_.aspect 002 sDummy sDummy» » Ratio_lists Error)s
IF Error=0 THEN
SET_ASPECT(1,0sRatio_list[21) 35
END3 {PROCEDURE Set_max_aspect?

The initial value of the aspect ratio is 1, setting the virtual coordinate system to be a square. This
square is mapped to the largest inscribed square on any display surface, so that the viewable area
is maximized. As a result, the initial virtual coordinate system limits range from 0.0 to 1.0 in both
the X and Y directions. A program can access the largest inscribed rectangle on any display
surface by modifying the value of the aspect ratio. The exact placement of the rectangle on the
display surface is device dependent, butitis centered on CRT’s and justified in the lower left hand
corner of plotters.

The starting position is not altered by this call. Since this call redefines the viewing transformation,
the starting position may no longer represent the last world coordinate position. A call to MOVE
or INT_MOVE should therefore be made after this call to update the starting position.

If the logical locator is associated with the same physical device as the graphics display, then a call
to SET_ASPECT will set the logical locator limits equal to the new limits of the virtual coordinate
system.

Since the window is not affected by the SET_ASPECT procedure, distortion may result in the
window to viewport mapping if the window does not have the same aspect ratio as the virtual
coordinate system {see SET_WINDOW).

The locator echo position is set to the default value by this procedure.

Error Conditions
The graphics system must be initialized and both X and Y size must be greater than zero or this call

will be ignored, an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a
non-zero value.

452 Procedure Library Reference

SET_BAUD_RATE

IMPORT: serial_3

iodeclarations
This procedure will set the serial interface to the specified baud rate.
Syntax
© ® ®
.. Range Recommended
Item Description/Default Restrictions Range
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
baud rate Expression of TYPE REAL. - 50 thru 19200
(for 98628)

Procedure Library Reference 453

SET_CHAR LENGTH

IMPORT: serial_3
iodeclarations

This procedure specifies the character length for serial communications, in bits. The valid range
of values is 5..8.

Syntax

interface character
ser om0 O

i Range Recommended
Item Description/Default Restrictions Range
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
character Expression of TYPE INTEGER. MININT thru 5 thru 8
length MAXINT

454 Procedure Library Reference

SET_CHAR_SIZE ’

IMPORT: dgl_lib
This procedure sets the character size attribute for graphical text.
Syntax
© o ®
Item Description/Default Range
p Restrictions

width Expression of TYPE REAL -

height Expression of TYPE REAL -
Procedure Heading
PROCEDURE SET_CHAR_SIZE (Widths Height : REAL)}
Semantics
The width is the requested graphics character cell width in world coordinate units. (width <>
0.0)

The height is the requested graphics character cell height in world coordinate units. (height <>
0.0)

SET_CHAR_SIZE sets the character size for subsequently output graphics text. The absolute
value of width and height are used to specify the world coordinate size of a character cell.
Therefore, the actual physical size of a character output is determined by applying the current
viewing transformations to the world coordinate units specification.

The default character size (set by GRAPHICS_INIT and DISPLAY_INIT) is dependent upon the
physical device associated with the graphical display device. The size is determined as follows:

® Height : = .05 x (height of the world coordinate system)
e Width := .035 x (width of the world coordinate system)

If a change is made to the viewing transformation (by SET_WINDOW, SET_VIEWPORT,
SET_DISPLAY_LIM, or SET_ASPECT), the value of the character size attribute will not be
changed, but the actual size of the characters generated may be modified.

Error Conditions

The graphics system must be initialized, a display must be enabled, and width and height must
both be non-zero or this call will be ignored, an ESCAPE (-27) will be generated, and
GRAPHICSERROR will return a non-zero value.

Procedure Library Reference 455

SET_COLOR

IMPORT: dgl_lib

This procedure sets the color attribute for output primitives except for polygon interior fill.

Syntax

(oo)y~ O— i O

Range

Item \ Description/Default \ Restrictions

color selector | Expression of TYPE INTEGER | -

Procedure Heading
PROCEDURE SET_COLOR (Colar : INTEGER)i

Semantics
SET_COLOR sets the color attribute for the following primitives:

Lines

Markers
Polylines
Polygon Edges
Text

At device initialization a default color table is created by the graphics system. The size and
contents of the table are device dependent. At least one entry exists for all devices. A call to
INQ_WS with OPCODE equal to 1053 will return the number of colors available on a given
graphics device. Some devices allow the color table to be modified with SET_TABLE.

The color selector is an index into the color table. The contents of the color table are then used to
specify the color when primitives are drawn. On some devices (HPGL plotters), the color selector
maps directly to a pen number for the device. On the HP 9836C, the entries in the color table can
be modified with SET_COLOR_TABLE.

The default value of the color attribute is 1. If the value of the color selector is not supported on
the graphics display, the color attribute will be set to 1.

A color selector of O has special effects depending on the graphics display used. For raster
devices, a color selector of 0 means to draw in the background color. For most plotters, it puts the
pen away.

456 Procedure Library Reference

If the device is not capable of reproducing a color in the color table, the closest color which the
device is capable of reproducing is used instead. On some devices, this may depend on the
primitive being displayed. For example, the HP98627A color outputinterface card is capable of a
large selection of polygon fill colors, but only 8 line colors. Thus, the fill color could match the
selected color much more closely than the line color used to outline the polygon.

Default Raster Color Map

The following table shows the default (initial) color table for the black and white displays (HP
9816 / HP 9920 / HP 9826 / HP 9836):

Index # | Hue|Saturation Luminosity
0 0 0 0
1 0 0 1.0000
2 0 0 0.9375
3 0 0 0.8750
4 0 0 0.8125
5 0 0 0.7500
6 0 0 0.6875
7 0 0 0.6250
8 0 0 0.5625
9 0 0 0.5000
10 0 0 0.4375
11 0 0 0.3750
12 0 0 0.3125
13 0 0 0.2500
14 0 0 0.1875
15 0 0 0.1250
16 0 0 0.0625

Colors 17 though 31 are set to white.
The following table shows the default (initial) color table for the color displays (HP 9836C and HP

98627A):
Index # | Color name Red Green Blue
0 Black 0.000000 | 0.000000 { 0.000000
1 White 1.000000 { 1.000000 | 1.000000
2 Red 1.000000 | 0.000000 | 0.000000
3 Yellow 1.000000 | 1.000000 | 0.000000
4 Green 0.000000 | 1.000000 [0.000000
5 Cyan 0.000000 | 1.000000 | 1.000000
6 Blue 0.000000 | 0.000000 { 1.000000
7 Magenta 1.000000 | 0.000000 | 1.000000
8 Black 0.000000 | 0.000000 | 0.000000
9 Olive green | 0.800000 | 0.733333 0.200000
10 Aqua 0.200000 | 0.400000 | 0.466667
11 Royal blue 0.533333 | 0.400000 | 0.666667
12 Violet 0.800000 | 0.266667 | 0.400000
13 Brick red 1.000000 | 0.400000 [0.200000
14 Burnt orange | 1.000000 | 0.466667 0.000000
15 Grey brown | 0.866667 | 0.533333 0.266667 .

Colors 9 though 15 are a graphic designers idea of colors for business graphics. Color table
entries not shown above are set to white.

Procedure Library Reference

Raster Drawing Modes

For raster devices (e.g., HP 9836 display) the effect of the color selectors depends on the current
drawing mode (drawing mode is set using the OUTPUT_ESC function). The color selectors and
their effects are listed below:

Color Color

Selector Selector
Mode =0 >=1
DOMINATE Background Draw
(Default mode) (erase, set (setbitsto 1,

bits to 0) overwrite current pattern)
NON-DOMINATE Background Draw

(erase, set (set bits to 1

bits to 0) Inclusive OR

with current pattern)

ERASE Background Background

(erase, set (erase, set

bits to 0) bits to 0)
COMPLEMENT Background Complement

(erase, set (Invert bits in

bits to 0) selected planes)

Plotters
A Color Selector of 0 selects no pens (the current pen is put away). The supported range of Color
Selectors for each supported plotter is:

0 9872A - 0 thru 4

¢ 9872B - 0 thru 4

0 9872C/S/T - 0 thru 8

e 7580A/7585A - 0 thru 8
e 7470A - 0 thru 2

Error Conditions
The graphics system must be initialized and a display must be enabled or this call will be ignored,
an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero value.

457

458 Procedure Library Reference

SET_COLOR_MODEL

IMPORT: dgl_lib

This procedure chooses the color model for interpreting parameters in the color table.

Syntax

SET_C0LoR_MoDEL }—={(() ()

Item l Description/Default ’ Re?terlil::?if)ns Rec%r::lgeended
model selector Expression of TYPE INTEGER ’ MININT thru l Oorl
MAXINT

Procedure Heading
PROCEDURE SET_COLOR_MODEL (MODEL : integer);

Semantics

The model selector determines the color model which will be used to interpret the values passed
to the color table with SET_COLOR_TABLE or read from it with INQ_COLOR_TABLE.

Value , Meaning
1 RGB (Red-Green-Blue) color cube.
2 HSL (Hue—Saturation-Luminosity) color cylinder.

The RGB physical model is a color cube with the primary additive colors (red, green, and blue) as
its axes. With this model, a call to SET_COLOR_TABLE specifies a point within the color cube
that has a red intensity value (X-coordinate), a green intensity value (Y-coordinate) and a blue
intensity value (Z-coordinate). Each value ranges from zero (no intensity) to one.

Effects of RGB color parameters

Parm 1 (RED) Parm 2 (GREEN) Parm 3 (BLUE) Resultant color
1.0 1.0 1.0 White
1.0 0.0 0.0 Red
1.0 1.0 0.0 Yellow
0.0 1.0 0.0 Green
0.0 1.0 1.0 Cyan
0.0 0.0 1.0 Blue
1.0 0.0 1.0 Magenta
0.0 0.0 0.0 Black

Procedure Library Reference

The HSL perceptual model is a color cylinder in which:

e The angle about the axis of the cylinder, in fractions of a circle is the hue (redisat 0, green is
at 1/3 and blue is at 2/3).

e The radius is the saturation. Along the center axis of the cylinder, (saturation equal zero) the
colors range from white through grey to black. Along the outside of the cylinder (saturation
equal one) the colors are saturated with no apparent whiteness.

e The height along the center axis is the luminosity (the intensity or brightness per unit area).
Black is at the bottom of the cylinder (luminosity equal zero) and the brightest colors are at
the top of the cylinder (luminosity equal one) with white at the center top.

Hue (angle), saturation (radius), and luminosity (height) all range from zero to one. Using this
model, a call to SET_COLOR_TABLE specifies a point within the color cylinder that has a hue

value, a saturation value, and a luminosity value.

Effects of HSL color parameters

Parm 1 (Hue) Parm 2 (Sat) Parm 3 (Lum) Resultant color

Don’t Care 0.0 1.0 White

0.0 1.0 1.0 Red

1/6 1.0 1.0 Yellow

2/6 1.0 1.0 (Green

3/6 1.0 1.0 Cyan

4/6 1.0 1.0 Blue

5/6 1.0 1.0 Magenta
Don’t Care Don’t Care 0.0 Black

When a call to SET_COLOR_MODEL switches color models, parameter values in subsequent
calls to SET_COLOR_TABLE then refer to the new model. Switching models does not affect
color definitions that were previously made using another model. Note that when the value of a
color table entry is inquired (INQ_COLOR_TABLE), it is returned in the current model, which
may not be the model in which it was originally specified.

Not all color specifications can be displayed on every graphics device, since the devices which the
graphics library supports differ in their capabilities. If color specification is not available on a
device, the graphics system will request the closest available color.

Error Conditions

The graphics system must be initialized and the color selector must evaluate to O or 1 or this call
will be ignored, an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a
non-zero value.

459

460 Procedure Library Reference

SET_COLOR_TABLE

IMPORT: dgl_lib
This procedure redefines the color description of the specified entry in the color table. This color
definition is used when the color index is selected via SET_COLOR.

Syntax

SET_COLOR_TABLE

entry first second
selector parameter parameter

third
parameter

Item Description/Default Re?t?i?:st!if)ns Recc;}rg;r;eended
entry selector Expression of TYPE INTEGER MININT to device
MAXINT dependent (see
below)
first parameter Expression of TYPE REAL Othru 1 -
second parameter | Expression of TYPE REAL Othrul -
third parameter Expression of TYPE REAL O thrul -

Procedure Heading

PROCEDURE SET_COLOR_TABLE (Index : INTEGER;
Colrl : REALS
Colr2 : REALS
Colr3 : REAL)3

Semantics

SET_COLOR_TABLE is ignored by some devices (such as pen plotters) which do not allow their
color table to be changed. The procedure INQ_WS (opcode 1073) tells whether the color table
can be changed.

The entry selector specifies the location in the color capability table that is to be redefined. For
raster displays in Series 200 computers, 32 entries are available.

The first parameter represents red intensity if the RGB model has been selected with the SET
COLOR statement, or hue if the HSL model has been selected.

The second parameter represents green intensity if the RGB model has been selected with the
SET COLOR statement, or saturation if the HSL model has been selected.

The third parameter represents blue intensity if the RGB model has been selected, or luminosity
if the HSL model has been selected.

Procedure Library Reference 461

A more detailed description of the color models and the meaning of their parameters can be
found under the procedure definition of SET_COLOR_MODEL.

The effect of a redefinition of the color table on previously output primitives is defice dependent.
On most devices changing the color table will only affect future primitives; however, on the Model
236C (HP 9836C) changing a color table entry with a color selector from O through 15 will
immediately change the color of primitives previously drawn with that entry. The procedure INQ_
WS (opcode 1071) tells whether retroactive color change is supported.

Monochromatic Displays

All Series 200 computers except the Model 236C have a monochromatic internal CRT. Changing
an entry in the table will not affect the current display; however, future changes to the display will
use the new contents of the table. Device dependent polygons use the color table entry when
performing dithering.

The color that lines are drawn with (black or white) is determined from the perceived intensity of
the color table entry. This is calculated as follows:

if (red * 0.3 + green * 0.59 + blue * 0.11) > 0.1
then
color : = white
else
color : = black;

The HP 98627A Display

Changing an entry in the table will not affect the current display; however, future changes to the
display will use the new contents of the table. Device dependent polygons use the color table
entry when performing dithering.

The color that lines are drawn with (one of the 8 non-dithered colors) is determined from the
closest HSL value to the requested value.

The Model 236C

The first 16 locations (0..15) of the color table map directly to the hardware color map. Changing
one of these color table locations will immediately change the display (assuming the color has
been used).

The next 16 locations (16..31) will not affect the current display; however, future changes to the
display will use the new contents of the color table.

Device dependent polygons drawn with color table locations 0..15 will be drawn in a solid color
without using dithering. When drawn with color table location above 15 dithering will be used.

462 Procedure Library Reference

Note

Since dithering on the HP 9836C uses the current color map values
(i.e., color table locations 0..15) changing the first 16 color table
locations will affect the dither pattern used. This leads to two major
effects. First, changing the first 16 locations after a polygon was
generated using dithering will change the dither pattern such that its
averaged color no longer matches the color that it was generated with.
Second,ﬂncethednherpanennsbasedontheﬁmt16cokn&thefhﬁ
16 colors can be set to produce a dither pattern with minimum color
changes between pixels within the pattern. The following example
produces a continuous shaded polygon across the crt:

$RANGE OFFs$
PROGRAM T3

IMPORT dgl_tvpes dgl_lits dgl_poly;

UAR 1 : INTEGER
KvecsYvec : ARRAY [1,.2]1 OF REAL S
Ouec : ARRAY [1..2] OF Gshortint:
C : REALS

BEGIN

GRAPHICS_INIT:
DISPLAY_INIT(34+04+i);
SET_-ASPECT(511,389) ;
SET.WINDOW(0,511,0,589);

FOR I := © to 15 DO
SET_CDLFJR'_TABLE(I;I/lS;I/lSsI/lS); { set up color mar 3}

SET_PGN_COLOR ¢ 16)3
SET.PGN_STYLE (1B)i

Ywecll]l := 1003 Yyec[?] := 1503 Ovecl1] := 03 Ouvecl2] := 23
FOR I := O tg S11 DO
BEGIN

Hvecl1]l = 1§ Huecl2] := 13
C 1= 1/811;
SET_COLOR_TABLE(1B,C+C+C) 5 { set Polvdon color 3}
POLYGON_DEVY_DEP(Z:XvecsYuec +Ovec) s
END 3
END .,

The color that lines are drawn with (one of the first 16 non-dithered colors) is determined from the
closest HSL value to the requested value,

Procedure Library Reference 463

Dithered Polygon Fills

All the raster displays use a technique called dithering for filling device dependent polygons. The
polygon is divided into 4 pixel by 4 pixel dither cells’. The colors that are placed in each pixel
location inside the dither cells average to the current polygon color. The eye will average the
pixels, and see the intended color.

The 98627A has 3 memory planes thus, providing 8 non-dithered colors (white, red, green, blue,
cyan, magenta, and black). Using dithering 4913 polygon colors may be generated. To obtain a
polygon color of half-tone yellow (R = 0.5G = 0.5B = 0.0) the dither cellwould contain 8 black
pixels and 8 yellow pixels.

On black and white displays, the largest r,g,b value of the current_polygon color is used to
determine the dither pattern.

On the HP 9836C the current values of the color map are used to determine the dither cell pixel
colors. This leads to a very very large number of colors that the HP 9836C can produce when
performing device dependent polygon fill.

The Background Color

Color index O represents the background color. The ability to redefine this index is device-
dependent. Many devices do not allow the redefinition of their background color. Whether a
display device has the ability to redefine the background color can be inquired via a call to
INQ_WS with opcode = 1072. All raster displays in the 200 Series are capable of redefining the
background color.

Error Conditions

The graphics system must be initialized and a display device must be enabled or this call will be
ignored, an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero
value.

464 Procedure Library Reference

SET_DISPLAY_LIM

IMPORT: dgl_lib

This procedure redefines the logical display limits of the graphics display.

Syntax

CECIRD e Ol O SN0 S O

maximum)
y value
error
variable name

Item Description/Default Re?t?ilgif)ns
minimum x value Expression of TYPE REAL -
maximum x value Expression of TYPE REAL -
minimum y value Expression of TYPE REAL -
maximum y value Expression of TYPE REAL -

error variable name Variable of TYPE INTEGER —

Procedure Heading

PROCEDURE SET_DISPLAY_LIM ¢ Xmins Xmax
¥Ymins Ymax : REAL
VAR Ierr : INTEGER)
Semantics

The minimum x value is the distance in millimetres that the left side of the logical display limits is
offset from the left side of the physical display limits.

The maximum x value is the distance in millimetres that the right side of the logical display limits
is offset from the left side of the physical display limits.

The minimum y value is the distance in millimetres that the bottom of the logical display limits is
offset from the bottom of the phuysical display limits.

The maximum y value is the distance in millimetres that the top of the logical display limits is
offset from the bottom of the physical display limits.

The error variable will contain an integer indicating whether the limits were successfully set.

Procedure Library Reference 465

Value Meaning
0 The display limits were successfully set.
1 The minimum x value was greater than or equal to the maximum x value and/or the

minimum y value was greater than the maximum y value.

2 The parameters specified were outside the physical display limits.

If the error variable is non-zero, the call was ignored.

SET _DISPLAY_LIM allows an application program to specify the region of the display surface
where the image will be displayed. The limits of this region are defined as the logical display limits.
Upon initialization, the graphics system sets these limits equal to some portion of the specified
phuysical device. This routine allows a programmer to set the plotting surface of a very large plotter
equal to the size of an 8 1/2 x 11 inch paper, for example.

The pairs (minimum x value, minimum y value) and (maximum x value, maximum y value)
define the corner points of the new logical display limits in terms of millimetres offset from the
origin of the physical display. The exact position of the physical display origin is device depen-
dent. The specifics of various devices are covered later in this entry.

This procedure causes a new virtual coordinate system to be defined. SET_DISPLAY_LIM
calculates the new limits of the virtual coordinate system as a function of the current aspect ratio
and the new limits of the logical display. This does not affect the limits of the viewport. Since it
changes the size of the area onto which the viewport is mapped, it may scale the size of the image
displayed. It will not distort the image; it can only make it smaller or larger.

SET_DISPLAY_LIM should only be called while the graphics display is enabled.

Neither the value of the starting position nor the location of the physical pen or beam is altered by
this routine. Since this routine may redefine the viewing transformation, the starting position may
be mapped to a different coordinate on the display surface. A call to MOVE or INT_MOVE should
therefore be made after this call to update the value of the starting position and in so doing, place
the physical pen or beam at a known location.

If the logical display and logical locator are associated with the same physical device, a call to
SET_DISPLAY_LIM will set the logical locator limits equal to the new limits of the virtual
coordinate system. A call to SET_DISPLAY_LIM also sets the locator echo position to its default
value, the center of the world coordinate system.

Display Limits of Raster Devices
The internal CRT’s for Series 200 computers have the following limits:

Wide High Wide High Resolution
Computer mm mm points points Aspect points/mm
Model 216 160 120 400 300 .75 2.5
Model 217 230 175 512 390 7617 2.226
Model 220 (HP82913A) 210 158 400 300 .75 1.905
Model 220 (HP82912A) 152 114 400 300 .75 2.632
Model 226 120 88 400 300 .75 3.333
Model 236 210 160 512 390 .7617 2.438
Model 236 Color 217 163 512 390 7617 2.39
Model 237 312 234 1024 768 .75 3.282

466 Procedure Library Reference

The physical size of the HP 98627A display (needed by the SET_DISPLAY_LIM procedure) may
be given to the graphics system by an escape function (OPCODE = 250). The physical limits
assumed until the escape function is given are:

CONTROL = 256 153.3mm wide and 116.7mm high.
512 153.3mm wide and 116.7mm high.

768 153.3mm wide and 142.2mm high.

1024 153.3mm wide and 153.3mm high.

1280 153.3mm wide and 153.3mm high.

The defaultlogical display surface of the graphics display device is the maximum physical limits of
the screen. The physical origin is the lower left corner of the display.

The view surface is always centered within the current logical display surface. The origin of a
raster display is the lower-left dot.

HPGL Plotter Display Limits

Wide High Wide High Resolution

Plotter mm mm points points Aspect points/mm
9872 400 285 16000 11400 7125 40.0
7580 809.5 524.25 32380 20970 6476 40.0
7585 1100 891.75 44000 35670 .8107 40.0
7586 1182.8 898.1 47312 35924 .7593 40.0
7470 2575 191.25 10300 7650 .7427 40.0
7550 411.25 254.25 16450 10170 .6182 40.0
7475 416 259.125 16640 10365 .6229 40.0

The maximum physical limits of the graphics display for a HPGL device not listed above are
determined by the default settings of P1 and P2. The default settings of P1 and P2 are the values
they have after an HPGL 'IN’ command. Refer to the specific device manual for additional
details.

The default logical display surface is set equal to the area defined by P1 and P2 at the time
DISPLAY_INIT is invoked. The view-surface is always justified in the lower left corner of the
current logical display surface (corner nearest the turret for the HP 7580 and HP 7585 plotters).
The physical origin of the graphics display is at the lower left boundary of pen movement.

Note
If the paper is changed in an HP 7580, HP 7585 or HP 7586 plotter
while the graphics display is initialized, it should be the same size of
paper that was in the plotter when DISPLAY_INIT was called. If a
different size of paper is required, the device should be terminated
(DISPLAY_TERM) and re-initialized after the new paper has been
placed in the plotter.

Error Conditions
The graphics system must be initialized and a display device enabled or this call will be ignored, .
an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero value.

Procedure Library Reference 467

SET _ECHO_POS

IMPORT: dgl_lib
This procedure defines the locator echo position on the graphics display.
Syntax
O O O
.. Range
Item Description/Default Restrictions
x coordinate Expression of TYPE REAL -
y coordinate Expression of TYPE REAL -

Procedure Heading
PROCEDURE SET_ECHO_POS (Wxs Wy : REAL)3

Semantics
The x and y coordinate pair is the new echo position in world coordinates.

When echoing on the display device, SET_ECHO_POS allows a programmer to define the
position of the locator echo position. This is a point in the world coordinate system that represents
the initial position of the locator. It is used with certain locator echoes on the graphics display. For
example, itis used as the anchor point when a rubber band echo is performed. With this echo, the
graphics cursor is initially turned on at the locator echo position. From that time on, the cursor
reflects the position of the locator and a line extends from the locator echo position to the locator
as it moves around the graphics display. To be used in echoing, the point must be displayable.
Therefore, if the point specified is outside of the limits of the window the call is ignored.

The locator echo position will only be used when AWAIT_LOCATOR is called with echo types 2
through 8, e.g., type 4 is a rubber band line echo. The locator echo position is only used when the
locator echo is being sent to the graphics display device, and is not used when sampling the
locator.

SET_ECHO_POS should only be called while the graphics display and locator are initialized. If
the point passed to SET_ECHO_POS is outside the current window limits, then the call to
SET_ECHO_POS is ignored and no error is given.

The default locator echo position is the center of the limits of the window. When the locator is
initialized, the locator echo position is set to the default value. When a call is made which affects
the viewing transformations for the graphics display surface or the logical locator limits, the
locator echo position is set to the default value. The calls which cause this are SET_ASPECT,
DISPLAY_INIT, SET_DISPLAY_LIM, LOCATOR_INIT, SET_LOCATOR_LIM, SET_WIN-
DOW, and SET_VIEWPORT.

468 Procedure Library Reference

Once thelocator echo position is set, it retains this value until the next call to SET_ECHO_POS or
until a call is made which resets it to the default value.

Error Conditions

The graphics system must be initialized, and a display device and a locator device must be
enabled, or this call will be ignored, an ESCAPE (— 27) will be generated, and GRAPHICSER-
ROR will return a non-zero value.

Procedure Library Reference 469

SET HPIB

IMPORT: hpib_0
jodeclarations

This procedure will set the specified HP-IB control line. Not all HP-IB lines are acessible at all
times.

Syntax

interface hpib line
serre)) O O

. Range Recommended
Item Description/Default Restrictions Range

interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
hpib line Expression of enumerated TYPE atn_line
specifier hpib_line. dav_line

ndac_line

nrfd_line

eoi_line

srq_line

ifc_line

ren_line
Semantics

All possible hpib_line types are not legal when using this procedure. Handshake lines (DAV,
NDAC, NRFD) are never accessible, and an error is generated if an attempt is made to set them.

The Service Request line (SRQ) is not accessible and should be set with REQUEST_SERVICE.

Setting the Interface Clear line (IFC) and the Remote Enable line (REN) requires the system to
be system controller.

Setting the Attention line (ATN) requires the interface to be active controller.

470 Procedure Library Reference

SET_LINE_STYLE

IMPORT: dgl_lib

This procedure sets the line style attribute.

Syntax

SETLINE STYLE () 0

_y Range Recommended
Item | Description/Default ‘ Restrictions | Range
line style selector Expression of TYPE INTEGER MININT thru Device
MAXINT Dependent

Procedure Heading
PROCEDURE SET_LINE_STYLE (Line_Style : INTEGER);

Semantics
The line style selector is the line style to be used for lines, polylines, polygon edges, and text.

Markers are not affected by line-style. Polygon interior line-style is selected with SET_PGN_LS.

SET_LINE_STYLE sets the line style attribute for lines and text. The mapping between the value
of the line style attribute and the line style selected is device dependent. If a line style attribute is
requested that the device cannot perform exactly as requested, line style 1 will be performed.

There are three types of line-styles: start adjusted, continuous, and vector adjusted:

Start adjusted line-styles always start the cycle at the beginning of the vector. Thus if the current
line-style starts with a pattern, each vector drawn will start with that pattern. Likewise, if the
current line-style starts with a space and then a dot, each vector will be drawn starting with a space
and then a dot. In this case if the vectors are short, they might not appear at all.

Continuous line styles are generated such that the pattern will be started with the first vector
drawn. Subsequent vectors will be continuations of the pattern. Thus, it may take several vectors
to complete one cycle of the pattern. This type of line-style is useful for drawing smooth curves,
but does not necessarily designate either endpoint of a vector. A side effect of this type of
line-style is if a vector is small enough it might be composed only of the space between points or
dashes in the line-style. In that case, the vector may not appear on the graphics display at all.

Procedure Library Reference 471

Vector adjusted line-styles treat each vector individually. Individual treatment guarantees that a
solid component of the dash pattern will be generated at both ends of the vector. Thus, the
endpoints of each vector will be clearly identifiable. This type of line-style is good for drawing
rectangles. The integrity of the line-style will degenerate with very small vectors. Since some
component of the dash pattern must appear at both ends of the vector, the entire vector for a
short vector will often be drawn as solid.

The following figure illustrates how one pattern would be displayed using each one of the
different line-style types:

==

[J'i‘ 'r@n' |||[z_;jm

START ADJUSTED CONTINUOUS VECTOR ADJUSTED

LINESTYLE USED

It should be apparent from the above discussion that drawing to the starting position will generate
a point (the shortest possible line) only if the line-style is such that the pen is down (or the beam is
on) at the start of that vector. Likewise, whole vectors may not appear on the graphics display
surface if the line-style is such that the vector is smaller than the blank space in the line-style. The
device handlers section of this document details the line-styles available for each device.

Note

When using continuous line styles, complement and erase drawing
modes (available on some raster displays e.g., HP 9826) may not
completely remove lines previously drawn. This happens since the
line style pattern may not be in sync with the first line when the second
line is drawn. By setting the line-style to solid when using complement
and erase drawing modes the application program can insure that the
line is completely removed.

472 Procedure Library Reference

Raster Line Styles

Eight pre-defined line-styles are supported on the graphics display. All of the line-styles may be
classified as being ‘‘continuous”’

Raster Line Styles

Plotter Line Styles
The following table describes the line styles available on the supported plotters.

Number of continuous Number of vector adjusted
Device line-styles line-styles
9872 7 0
7580 7 6
7585 7 6
7470 7 0
Other 7 0
7 .
8 — e e e —
< =
4— l “
3 ______________
2 ______________ CONTINUOUS

HP 9872 and 7470 Line Styles
(all are continuous)

Procedure Library Reference 473

e M___J l | I l

______________ CONTINUOUS

—NwhUuONODOU—-NVW

____________ — ||||_L__JJ

VECTOR ADJUSTED

HP 7580, 7585 and 7586 Line Styles

If the line style specified is not supported by the graphics display, the call is completed with
LINE_STYLE = 1 and no error is reported.

Error Conditions

The graphics system must be enabled and a display device must be enabled or this call will be
ignored and GRAPHICSERROR will return a non-zero value.

474 Procedure Library Reference

SET_LOCATOR_LIM

IMPORT: dgl_lib

This procedure redefines the logical locator limits of the graphics locator.

Syntax
minimum maximum minimum
SeTLocaToR L}~ O+ 20,100 (D~ 2itie O TR 0O
max imum error
y value variable name

Item Description/Default Re?tiriir::st!ieons
minimum x value Expression of TYPE REAL -
maximum x value Expression of TYPE REAL -
maximum y value Expression of TYPE REAL -
minimum y value Expression of TYPE REAL -
error variable name Variable of TYPE INTEGER -

Procedure Heading

PROCEDURE SET_LOCATOR_LIM ¢ rminy Hmax s
Ymins Ymax : REAL
VAR Terr : INTEGER) 3
Semantics

The minimum x value is the distance in millimetres that the left side of the logical locator limits is
offset from the left side of the physical locator limits.

The maximum x value is the distance in millimetres that the right side of the logical locator limits
is offset from the left side of the physical locator limits.

The minimum y value is the distance in millimetres that the bottom of the logical locator limits is
offset from the bottom of the physical locator limits.

The maximum y value is the distance in millimetres that the top of the logical locator limits is
offset from the bottom of the physical locator limits.

The error variable will contain an integer indicating whether the limits were successfully set.

Procedure Library Reference 475

Value Meaning
0 The display limits were successfully set.
1 The minimum x value was greater than or equal to the maximum x value and/or the
minimum y value was greater than the maximum y value.
2 The parameters specified were outside the physical display limits.
3 Attempt to explicitly define locator limits on a device which is both the logical locator

and the logical display. The logical display limits are used when a device is shared for
both purposes, and they cannot be redefined with this call.

If the error variable is non-zero, the call was ignored.

SET_LOCATOR_LIM allows an application program to specify the portion of the physical
locator device that should be used to perform locator functions. When the logical locator device is
enabled (via LOCATOR_INIT) the logical device limits are set to a device dependent portion of
the physical locator device. With a call to this routine the user can set the logical locator limits by
specifying a new area within the physical locator limits.

The pairs (minimum x value, minimum y value) and (maximum x value, maximum y value)
define the corner points of the new logical locator limits in terms of millimetres offset from the
origin of the physical locator. The exact position of the physical locator origin is device depen-
dent. Specific origins are covered later in this entry.

If a logical locator and a logical display are associated with the same physical device, then the
logical locator limits must be the same as the logical view surface limits. Specifically, the effects of
the association with the same physical device are as follows:

e The logical locator limits are initialized to the same values as the virtual coordinate system.

e Any call which redefines the virtual coordinate system limits will also redefine the logical
locator limits.

@ The logical locator limits can not be defined by a call to SET_LOCATOR_LIM.

By changing the logical locator limits any portion of the graphics locator can be addressed, with
the restrictions stated above.

The logical locator limits always map directly to the view surface, therefore, distortion may result
in the mapping between the logical locator and the display when the logical locator limits and the
view surface have different aspect ratios. If the distortion is not desired it can be avoided by
assuring that the logical locator limits maintain the same aspect ratio as that of the view surface.

SET_LOCATOR_LIM should only be called while the graphics locator is enabled. SET_LOCA-
TOR_LIM sets the locator echo position to the default value (see SET_ECHO_POS).

476 Procedure Library Reference

Locator Limits: The Knob
The knob may be used as a locator on Series 200 computers. The default characteristics of the
knob on various Series 200 computers is listed in the table below.

Wide High Wide High Resolution
Computer mm mm points points Aspect points/mm
Model 216 160 120 400 300 .75 25
Model 217 230 175 512 390 .7617 2.226
Model 220 (HP82913A) 210 158 400 300 .75 1.905
Model 220 (HP82912A) 152 114 400 300 .75 2,632
Model 226 120 88 400 300 75 3.333
Model 236 210 160 512 390 7617 2,438
Model 236 Color 217 163 512 390 .7617 2.39
Model 237 312 234 1024 768 .75 3.282

The knob uses the current display limits as its locator limits for locator echoes 2 though 8. For all
other echoes the above limits are used. An example of when the two limits may differ follows:

The knob locator is initialized on an HP 9826. The graphics display is an HP 98627A color
output card. The resolution of the locator is O through 399 in x dimension, and 0 through
299 in y dimension. The resolution of the display is O through 511 in x dimension, and 0
through 389 in y dimension. When await_locator is used with echo 4, the locator will
effectively have the HP 98627A resolution for the duration of the await_locator call.
However if echo 1 is used with await_locator, the cursor will appear on the HP 9826 and the
locator has a resolution of 0x 399 and 0x299. Note that all conversion routines, and
inquiries will use the HP 9826 limits.

The physical origin of the locator device is the lower left corner of the display.

Locator Limits: HPGL Devices
HPGL devices can be used as locators. The default characteristics of some HPGL devices are

listed below.

Wide High Wide High Resolution

Plotter mm mm points points Aspect points/mm
9872 400 285 16000 11400 7125 40.0
7580 809.5 524.25 32380 20970 .6476 40.0
7585 1100 891.75 44000 35670 .8107 40.0
7586 1182.8 898.1 47312 35924 .7593 40.0
7470 257.5 191.25 10300 7650 .7427 40.0
7550 411.25 254.25 16450 10170 .6182 40.0
7475 416 259.125 16640 10365 .6229 40.0
9111 300.8 217.6 12032 8704 7234 40.0

The maximum physical limits of the locator for a HPGL device not listed above are determined by
the default settings of P1 and P2. The default settings of P1 and P2 are the values they have after
an HPGL 'IN’ command. Refer to the specific device manual for additional details.

The default logical display surface is set equal to the area defined by P1 and P2 at the time .
LOCATOR_INIT is invoked.

Procedure Library Reference 477

Note
If the paper is changed in an HP 7580, HP 7585 or HP 7586 plotter
while the graphics display is initialized, it should be the same size of
paper that was in the plotter when DISPLAY_INIT was called. If a
different size of paper is required, the device should be terminated
(DISPLAY_TERM) and re-initialized after the new paper has been
placed in the plotter.

Error Conditions
The graphics system must be initialized and a display device enabled or this call will be ignored,
an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero value.

478 Procedure Library Reference

SET_LINE _WIDTH

IMPORT: dgl_lib
This procedure sets the line-width attribute. The number of line-widths possible is device
dependent.

Syntax

SET_LINe_WIOTH)—(() O

. Range
Item | Description/Default ‘ Restrictions
line-width selector | Expression of TYPE INTEGER I MININT thru MAXINT

Procedure Headings
PROCEDURE SET_LINE_WIDTH (Linewidth : INTEGER)i

Semantics

SET_LINE_WIDTH sets the line-width attribute for lines, polylines and text. The line-width
attribute does not affect markers which are defined to be always output with the thinnest
line-width supported on the device. All devices support at least one line-width. The range of
line-widths is device dependent but line-width 1 is always the thinnest line-width supported. For
devices that support multiple line-widths, the line-width increases as line-width does until the
device supported maximum is reached. For example, line-width = 1 specifies the thinnest,
line-width = 2 specifies the next wider line-width, etc.

If line-width is greater than the number of line-widths supported by the graphics display or
line-width is less than 1, then the line-width will be set to the thinnest available width (line-width
= 1). All subsequent lines and text will then be drawn with the thinnest available line-width. A call
to INQ_WS with OPCODE equal to 1063 to inquire the value of the line-width will then return a
1.

The initial line-width is the thinnest width supported by the device (line-width = 1).

Note
All current devices support a single line-width.

Error Conditions

The graphics system must be initialized and a display device must be enabled or this call is
ignored, an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero
value.

Procedure Library Reference 479

SET_PARITY

IMPORT: serial_3
iodeclarations

This procedure determines what parity mode the serial interface will use.

Syntax

interface parity mode
sereanmy)(() O

L. Range Recommended
Item Description/Default Restrictions Range

interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
parity mode Expression of enumerated TYPE no_parity
specifier type_parity. odd_parity

even_parity

one_parity

zero_parity

480 Procedure Library Reference

SET_PGN_COLOR

IMPORT: dgl_lib
dgl_poly

This procedure selects the polygon interior color attribute for subsequently generated polygons
by providing a selector for the color table.

Syntax

G RO S PO

. Range Recommended
Item | Description/Default ‘ Restrictions Range
color selector Expression of TYPE INTEGER MININT thru Device
MAXINT dependent.

Procedure Heading
PROCEDURE SET.PGN_COLOR {(Cindex : INTEGER)3

Semantics

The color selector is an index into the color table. The contents of the color table are then used to
specity the color when primitives are drawn. On some devices (HPGL plotters), the color selector
maps directly to a pen number for the device. On the HP 9836C, the entries in the color table can
be modified with SET_COLOR_TABLE. The color actually used depends on the value in a
device dependent color table.

At device initialization a default color table is created by the graphics system. The size and
contents of the table are device dependent. At least one entry exists for all devices. A call to
INQ_WS with OPCODE equal to 1053 will return the number of colors available on a given
graphics device. Some devices allow the color table to be modified with SET_TABLE.

The default value of the color attribute is 1. If the value of the color selector is not supported on
the graphics display, the color attribute will be set to 1.

A color selector of 0 has special effects depending on the graphics display used. For raster
devices, a color selector of 0 means to draw in the background color. For most plotters, it puts the
pen away.

Dithering

If the device is not capable of reproducing a color in the color table, the closest color which the
device is capable of reproducing is used instead. For polygon fill (in a device dependent mode)
this may involve dithering. For example, the HP 98627A color output interface card is capable of
a large selection of polygon fill colors, but only 8 line colors. Thus, the fill color could match the
selected color much more closely than the line color used to outline the polygon. See SET_
COLOR_TABLE for details on how colors are matched to the devices.

Default Raster Color Map

The following table shows the default (initial) color table for the black and white displays (HP

9816 / HP 9920 / HP 9826 / HP 9836):

Index #

Hue

Saturation

Procedure Library Reference 481

Luminosity

0

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Colors 17 though 31 are set to white.

The following table shows the default (initial) color table for the color displays (HP 9836C and

HP 98627A):

[ecReNoloNoloRoNoNoReNeNoloNaiaiala)

ecReRoloNoloRoRoNeNeloloRoNala i)

0

1.0000
0.9375
0.8750
0.8125
0.7500
0.6875
0.6250
0.5625
0.5000
0.4375
0.3750
0.3125
0.2500
0.1875
0.1250
0.0625

Colors 9 though 15 are a graphic designers idea of colors for business graphics. Color table

Index # | Color name Red Green Blue

0 Black 0.000000 | 0.000000 | 0.000000
White 1.000000 | 1.000000 | 1.000000

2 Red 1.000000 | 0.000000 | 0.000000
3 Yellow 1.000000 | 1.000000 | 0.000000
4 Green 0.000000 | 1.000000 | 0.000000
5 Cyan 0.000000 | 1.000000 | 1.000000
6 Blue 0.000000 | 0.000000 | 1.000000
7 Magenta 1.000000 | 0.000000 | 1.000000
8 Black 0.000000 | 0.000000 | 0.000000
9 Olive green | 0.800000 | 0.733333 | 0.200000
10 Aqua 0.200000 | 0.400000 | 0.466667
11 Roval blue 0.533333 | 0.400000 | 0.666667
12 Violet 0.800000 | 0.266667 | 0.400000
13 Brick red 1.000000 | 0.400000 | 0.200000
14 Burnt orange | 1.000000 | 0.466667 | 0.000000
15 Grey brown | 0.866667 | 0.533333 | 0.266667

entries not shown above are set to white.

482 Procedure Library Reference

Raster Drawing Modes
Raster drawing modes have no effect on polygon fill color.

Plotters
A Color Selector of 0 selects no pens (the current pen is put away). The supported range of Color
Selectors for each supported plotter is:

¢ 9872A -0 thru 4

© 9872B - 0 thru 4

© 9872C/S/T - 0 thru 8

® 7550A/7580A/7585A/7586B - 0 thru 8
® 7470A - 0 thru 2

® 7475 -0 thru 6

Error Conditions
The graphics system must be initialized and a display must be enabled or this call will be ignored,
an ESCAPE (—27) will be generated, and GRAPHICSERROR returns a non-zero value.

Procedure Library Reference

SET_PGN_LS

IMPORT: dgl_lib
dgl_poly

This procedure selects the polygon interior line-style attribute for subsequently generated
polygons by providing a selector for the device dependent line-style table.

Syntax

seT_pan1s }—~(O) Q)

N Range Recommended
ltem ’ Description/Default ‘ Restrictions ‘ Range
line-style selector Expression of TYPE INTEGER MININT thru Device
MAXINT dependent

Procedure Heading
PROCEDURE SET_PGN_LS (Lindex : INTEGER)i

Semantics
The line style selector is the line style to be used for polygon interiors.

Line-styles for other primitives are selected using SET_LINE_STYLE.

The mapping between the value of the line style attribute and the line style selected is device
dependent. If a line style attribute is requested that the device cannot perform exactly as
requested, line style 1 will be performed.

There are three types of line-styles - start adjusted, continuous, and vector adjusted:

Start adjusted line-styles always start the cycle at the beginning of the vector. Thus if the current
line-style starts with a pattern, each vector drawn will start with that pattern. Likewise, if the
current line-style starts with a space and then a dot, each vector will be drawn starting with a space
and then a dot. In this case if the vectors are short, they might not appear at all.

Continuous line styles are generated such that the pattern will be started with the first vector
drawn. Subsequent vectors will be continuations of the pattern. Thus, it may take several vectors
to complete one cycle of the pattern. This type of line-style is useful for drawing smooth curves,
but does not necessarily designate either endpoint of a vector. A side effect of this type of
line-style is if a vector is small enough it might be composed only of the space between points or
dashes in the line-style. In that case, the vector may not appear on the graphics display at all.

483

484 Procedure Library Reference

Vector adjusted line-styles treat each vector individually. Individual treatment guarantees that a
solid component of the dash pattern will be generated at both ends of the vector. Thus, the
endpoints of each vector will be clearly identifiable. This type of line- style is good for drawing
rectangles. The integrity of the line-style will degenerate with very small vectors. Since some
component of the dash pattern must appear at both ends of the vector, the entire vector for a
short vector will often be drawn as solid.

The following figure illustrates how one pattern would be displayed using each one of the
different line-style types:

=1

0 B @

START ADJUSTED CONTINUOUS VECTOR ADJUSTED

Itshould be apparent from the above discussion that drawing to the starting position will generate
a point (the shortest possible line) only if the line-style is such that the pen is down (or the beam is
on) at the start of that vector. Likewise, whole vectors may not appear on the graphics display
surface if the line-style is such that the vector is smaller than the blank space in the line-style. The
device handlers section of this document details the line-styles available for each device.

Note

When using continuous line styles, complement and erase drawing
modes (available on some raster displays e.g., HP 9826) may not
completely remove lines previously drawn. This happens since the
line style pattern may not be in sync with the first line when the second
line is drawn. By setting the line style to solid when using complement
and erase drawing modes the application program can insure that the
line is completely removed.

Raster Line Styles

Procedure Library Reference 485

Eight pre-defined line-styles are supported on the graphics display. All of the line-styles may be

classified as being

Plotter Line Styles

‘continuous’’

' f:Omputer
wMUSeum

Raster Line Styles

The following table describes the line styles available on the supported plotters.

Device

9872
7470
7475
7550
7580
7585
7586
Other

Number of continuous Number of vector adjusted
line-styles line-styles

NN NN NN NN
OO OO

N '@UH‘

HP 9872, 7470 and 7475 Line Styles
(all are continuous)

486 Procedure Library Reference

==
Bl il _ mﬁ]m
ié . :_
g:jtjttrjjjjtjj VECTOR ADJUSTED
oo ==
2 O _ \Q ’I
3 —- - _
"’f _____________ \Ll:‘

CONTINUOUS

HP 7550, 7580, 7585 and 7586 Line Styles

If the line style specified is not supported by the graphics display, the call is completed with
LINE_STYLE = 1 and no error is reported.

The graphics system must be enabled and a display device must be enabled or this call will be
ignored and GRAPHICSERROR will return a non-zero value.

Error conditions:

The graphics system must be initialized and a display device must be enabled or this call will be
ignored, an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return an non-zero
value.

Procedure Library Reference

SET_PGN_STYLE

IMPORT: dgl_lib
dgl_poly

This procedure selects the polygon style attribute for subsequently generated polygons by
providing a selector for the polygon style table.

Syntax
1 tyl
seT_poNSTILE () O

.. Range Recommended
Item ‘ Description/Default l Restrictions ‘ Range
polygon style Expression of TYPE INTEGER MININT thru Device
selector MAXINT dependent

Procedure Heading
PROCEDURE SET_PGN_STYLE (Pindex : INTEGER)3

Semantics

Polygon styles can vary in polygon interior density, polygon interior orientation and polygon
edge display. See SET_PGN_TABLE for details on default styles, and how the polygon style
table may be changed.

Error Conditions
The graphics system must be initialized and a display device must be enabled or this call will be
ignored and GRAPHICSERROR will return an non-zero value.

487

488 Procedure Library Reference

SET_PGN_TABLE

IMPORT: dgl_lib
dgl_poly
This procedure defines a polygon style attribute, i.e. an entry in a polygon style table.

Syntax

SET_PGN_TABLE

entry fill
selector density

fill
orientation
edge
selector

" Range Recommended
Item Description/Default Restrictions Range
entry selector Expression of TYPE INTEGER MININT thru Device
MAXINT dependent
fill density Expression of TYPE REAL MININT thru -1thru 1
MAXINT
fill orientation Expression of TYPE REAL MININT thru -90 thru 90
MAXINT
edge selector Expression of TYPE INTEGER MININT thru -
MAXINT

Procedure Heading

PROCEDURE SET_PGN_TABLE (Index : INTEGER:
Densty : REALS
Orient : REAL]
Eddge : INTEGER)3

Semantics
This routine defines the attribute of polygon style, i.e. it specifies an entry in a polygon style table.

This entry contains information that specifies polygon interior density, polygon interior orienta-
tion, polygon edge display, and device-independence of polygon display.

The entry selector specifies the entry in the polygon style table that is to be redefined.

The fill density determines the density of the polygon interior fill. The magnitude of this value is
the ratio of filled area to non-filled area. Zero means the polygon interior is not filled. One
represents a fully filled polygon interior. All non-zero values specify the density of continuous
lines used to fill the interior.

Procedure Library Reference 489

Positive density values request parallel fill lines in one direction only. Negative values are used to
specify crosshatching. For a given density, the distance between two adjacent parallel lines is
greater with cross hatching than in the case of pure parallel filling. Calculations for fill density are
based on the thinnest line possible on the device and on continuous line-style.

The distance between fill lines — hence density — does not change with a change of scale caused
by a viewing transformation. If the interior line-style is not continuous, the actual fill density may
not match that found in the polygon style table.

The fill orientation represents the angle (in degrees) between the lines used for filling the
polygon and the horizontal axis of the display device. The interpretation of fill orientation is
device-dependent. On devices that require software emulation of polygon styles, the angle
specified will be adhered to as closely as possible, within the line-drawing capabilities of the
device. For hardware generated polygon styles, the angle specified will be adhered to as closely
asis possible given the hardware simulation of the requested density. If crosshatchingis specified,
the fill orientation specifies the angle of orientation of the first set of lines in the crosshatching, and
the second set of lines is always perpendicular to this.

The value of the edge selector determines whether the edge of the polygon is displayed. If the
edge selector is 0, the edges will not be displayed. If the edge selector is 1, display of individual
edge segments depends on the operation selector in the call that draws the polygon set,
POLYGON, INT_POLYGON, POLYGON_DEV_DEP, or INT_.POLYGON_DD.

If polygon edges are displayed, they adhere to the current line attributes of color, line-style, and
line-width, in effect at the time of polygon display.

A device-dependent number of polygon styles are available. All devices support at least 16
entries in the polygon table. The polygon styles defined in the default tables are defined to exploit
the hardware capabilities of the devices they are defined for.

Polygon interiors can be generated in either a device-dependent or device-independent fashion,
by calling POLYGON_DEV_DEP or POLYGON respectively.

Polygons generated in a device-dependent fashion will utilize the available hardware polygon
generation capabilities of the device to increase the speed and efficiency of polygon generation.
The output may vary depending on the device. Devices that have no hardware polygon genera-
tion capabilities will only do a minimal representation of the polygon if a device-dependent
representation of the polygon is requested. If an edge is not requested, an outline of the
non-clipped boundaries of the polygon interior will be drawn in the current polygon interior color
and polygon interior line-style if the density of the polygon interior was not zero.

Polygons generated in a device-independent fashion will adhere strictly to the polygon style
specification. The polygon interior generated would look similar when generated on different
devices for a given polygon style specification. However, on raster devices rasterization of the fill
lines may leave empty pixels when solid fill is requested with an orientation that is not O or 90
degrees. Available hardware would only be used where the polygon style could be generated
exactly as specified.

490 Procedure Library Reference

The number of entries in the polygon style table and the default contents of the table are device
dependent. However, all devices support the following polygon style table:

Entry Density Angle Edge
1 0.0 0.0 1
2 0.125 90.0 1
3 0.125 0.0 1
4 -0.125 0.0 1
5 0.125 45.0 1
6 0.125 -45.0 1
7 -0.125 45.0 1
8 0.25 90.0 1
9 0.25 0.0 1

10 -0.25 0.0 1
11 0.25 45.0 1
12 0.25 —-450 1
13 -0.25 45.0 1
14 -05 0.0 1
15 1.0 0.0 0
16 1.0 0.0 1

Error Conditions

The graphics system must be initialized, a display must be enabled, and the parameters must be
within the specified limits or this call will be ignored, an ESCAPE (—27) will be generated, and

GRAPHICSERROR will return a non-zero value.

Procedure Library Reference 491

SET_SERIAL

IMPORT: serial_
jiodeclarations

This procedure will set the specified modem line on the connector. Not all lines are available at
all times. The use of an Option 1 or Option 2 connector determines which lines are accessible.

Syntax

interface serial line
ser.semu)~ ()) O

i Range Recommended
Item Description/Default Restrictions Range

interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
serial line Expression of enumerated TYPE rts_line
specifier type_serial_line. cts_line

dcd_line

dsr_line

drs_line

ri_line

dtr_line

TABLE HERE

Semantics

The values of the enumerated TYPE type_serial_line have the following definitions:

Name RS-232 line

rts ready to send

cts clear to send

dcd data carrier detect

dsr data set ready

drs data rate select

dtr data terminal ready
ri ring indicator

492 Procedure Library Reference

SET_STOP_BITS

IMPORT: serial_3

iodeclarations

This procedure will set the number of stop bits on the serial interface. The valid range of values
includes 1, 1.5, and 2.

Syntax
© O-EFQ
. L. Range Recommended
Item Description/Default Restrictions Range
interface Expression of TYPE type_isc. This is 0 thru 31 7 thru 31
select code an INTEGER subrange.
stop bits Expression of TYPE REAL. - 1,152

Procedure Library Reference

SET_TEXT_ROT

IMPORT: dgl_lib

This procedure specifies the text direction.

Syntax

y-axis
ey (O~ 0O O

_ Range
Item \ Description/Default \ Restrictions
x-axis offset Expression of TYPE REAL -
y-axis offset Expression of TYPE REAL -

Procedure Heading
PROCEDURE SET_TEXT_ROT ¢ Dxs Dy & REAL)i

Semantics

The x axis offset and the v axis offset specify the world coordinate components of the text
direction vector relative to the world coordinate origin. These components cannot both be zero.

This procedure specifies the direction in which graphics text characters are output. The default
value (X-axis offset = 1.0; Y-axis offset = 0.0) for the text direction vector is such that characters
are drawn in a horizontal direction left to right. The default value is set during GRAPHICS_INIT
and DISPLAY_INIT. With X-axis offset = - 1.0 and Y-axis offset = 1.0 a 135 degree rotation
from the horizontal (in a counter clockwise direction) may be obtained.

Y

Y Axis Offset
2.5

X RAxis Offset
1.8

Text Rotation Angle

Error Conditions

The graphics system must be initialized, a display must be enabled, and the parameters must be
within the specified limits or this call will be ignored, an ESCAPE (—27) will be generated, and
GRAPHICSERROR will return a non-zero value.

493

494 Procedure Library Reference

SET TIMEOUT

IMPORT: general_1
iodeclarations

This procedure will set up a timeout for all [/O Library input and output operations except
transfer.

Syntax

interface
sermearr (D o O

. Range Recommended
Item Description/Default Restrictions Range

interface Expression of TYPE type_isc. This is 0 thru 31 7 thru 31

select code an INTEGER subrange.

seconds Expression of TYPE REAL. - 0, .001 thru
8192.000
inc. by .001

Semantics

Zero (0) is no timeout (infinite).
The resolution is to 1 millisecond.

If the select codes do not respond within the specified time an ESCAPE will be performed.
Refer to the chapter on Errors and Timeouts.

Example:

TRY
SETTIMEQUT(12,1000) 3
READCHAR(12scharacter)
RECOVER BEGIN
IF Escarecode
Ioe_result =
Ioe_isc = 12
THEN WRITELN (‘TIMEQUT on Interface 127)
ENDS {end of RECOVER?Y}

Ioescarecode AND
Ioe_timeout AND

Procedure Library Reference

SET_TIMING

IMPORT: dgl_lib

This procedure selects the timing mode for graphics output.

Syntax

s)—~(0) ®

Item ‘ Description/Default | Rel;?i‘::st;ie()ns
timing mode selector | Expression of TYPE INTEGER | Oorl

Procedure Heading
PROCEDURE SET_TIMING (Orcode : INTEGER)3

Semantics
The timing mode selector determines the timing mode used.

Value | Meaning
0 Immediate visibility mode
1 System buffering mode

Graphics library timing modes are provided to control graphics throughput and picture update
timing. Picture update timing refers to the immediacy of visual changes to the graphics display
surface. Regardless of the timing mode used, the same final picture is sent to the graphics display.
SET_TIMING only controls when a picture appears on the graphics display, not what appears.

The graphics system supports two timing modes:

e Immediate visibility Requested picture changes will be sent to the graphics display device
before control is returned to the calling program. Due to operating system delays there may
be a delay before the picture changes are visible on the graphics display device.

e System buffering Requested picture changes will be buffered by the graphics system. This
means that the graphics output will not be immediately sent to the display device. This allows
the graphics library to send several graphics commands to the graphics display devicein one
data transfer, therefore, reducing the number of transfers. System buffering is the initial
timing mode.

The following routines implicitly make the picture current:

AWAIT_LOCATOR DISPLAY_TERM INPUT_ESC
LOCATOR_INIT SAMPLE_LOCATOR

495

496 Procedure Library Reference

The immediate visibility mode is less efficient than the system buffering mode. It should only be
used in those applications that require picture changes to take place as soon as they are defined,
even if the finished picture takes longer to create. When changing the timing mode to immediate
visibility the picture is made current.

An alternative to immediate visibility that will solve many application needs is the use of systern
buffering together with the MAKE_PIC_C URRENT procedure. With this method, an application
program places graphics commands into the output buffer and flushes the buffer (see MAKE._
PIC_CURRENT) only at times when the picture must be fully displayed.

A call to MAKE_PIC_CURRENT can be made at any time within an application program to insure
that the image is fully defined. MAKE_PIC_CURRENT flushes the output buffer but does not
modify the timing mode.

Before performing any non-graphics system input or output (to a graphics system device) such as
a PASCAL read or write, the output buffer must be empty. If the buffer is not flushed (via
immediate visibility of MAKE_PIC_CURRENT) prior to non-graphics system /0, the resulting
image may contain some 'garbage’ such as escape functions or invalid graphics data.

Note

Although SET_TIMING can be used with all display devices, only
HPGL plotters buffer commands.

Error Conditions

The graphics system must be initialized and all parameters must be in range or this call will be
ignored, an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero
value.

Procedure Library Reference

SET_TO_LISTEN

IMPORT: hpib_1
iodeclarations

Note

This function is provided for use by the internal I/O Procedure Lib-
rary drivers, only. Unexpected and possible undesirable results may

occur if it is used.

497

498 Procedure Library Reference

SET_TO_TALK

IMPORT: hpib_1
iodeclarations

Note

This function is provided for use by the internal /O Procedure Lib-

rary drivers, only. Unexpected and possible undesirable results may
occur if it is used.

Procedure Library Reference 499

SET_VIEWPORT

IMPORT: dgl_lib

This procedure sets the boundaries of the viewport in the virtual coordinate system.

Syntax

minimum maximum minimum
SeT_vIEwpoRT—() O O :()3
maximum
y value

Item Description/Default Re?t?ir::st;ieons
minimum x value Expression of TYPE REAL 0.0-1.0
maximum x value Expression of TYPE REAL 0.0-1.0
minimum y value Expression of TYPE REAL 0.0-1.0
maximum y value Expression of TYPE REAL 0.0-1.0

Procedure Heading

PROCEDURE SET_VIEWPORT (Wxmins Uxmax:
Uymines Yvmax : REAL)3

Semantics

The minimum x value is the minimum boundary in the X-direction expressed in virtual coordin-
ates.

The maximum x value is the maximum boundary in the X-direction expressed in virtual
coordinates.

The minimum y value is the minimum boundary in the Y-direction expressed in virtual coordin-
ates.

The maximum v value is the maximum boundary in the Y-direction expressed in virtual
coordinates.

SET_VIEWPORT sets the limits of the viewport in the virtual coordinate system. The viewport
must be within the limits of the virtual coordinate system; otherwise the call will be ignored.

The initial viewport is set up with the minimum x and y values set to 0.0 and the maximum X and
Y values set to 1.0.

500 Procedure Library Reference

The initial viewport is set by GRAPHICS_INIT and SET_ASPECT. This initial viewport is
mapped onto the maximum visible square within the logical display limits. This area is called the
view surface. The placement of the view surface within the logical display limits is dependent
upon the device being used. It is generally centered on CRT displays and is placed in the lower
left-hand corner of plotters.

By changing the limits of the viewport, an application program can display an image in several
different positions on the same graphics display device. A program can make a call to SET_
VIEWPORT anytime while the graphics system is initialized.

The starting position is not altered by this call. Since this call redefines the viewing transformation,
the starting position may no longer represent a known world coordinate position. A call to MOVE
or INT_MOVE should be made after this call to update the starting position.

Error Conditions

The graphics system must be initialized, all parameters must be within the specified range, the
minimum X value must be less than the maximum X value and the minimum Y value must be less
than the maximum Y value and all parameters must be within the current virtual coordinate
system boundary, or this call will be ignored, an ESCAPE (-27) will be generated, and
GRAPHICSERROR will return a non-zero value..

Procedure Library Reference

SET_WINDOW

IMPORT: dgl_lib

This procedure defines the boundaries of the window.

Syntax

(o)~ O - OO O

Item Description/Default Re?t?il::st!i(:)ns
left Expression of TYPE REAL See below
right Expression of TYPE REAL See below
bottom Expression of TYPE REAL See below
top Expression of TYPE REAL See below

Procedure Heading

PROCEDURE SET_WINDOW (Wxmin: Wxmax s
Wymins Wymax = REAL)3

Semantics

The left is the minimum boundary in the X-direction expressed in world coordinates. (i.e., the left
window border). Must not equal maximum x value.

The right is the maximum boundary in the X-direction expressed in world coordinates. (i.e. the
right window border). Must not equal minimum x value.

The bottom is the minimum boundary in the Y-direction expressed in world coordinates. (i.e. the
bottom window border). Must not equal maximum y value.

The top is the maximum boundary in the Y-direction expressed in world coordinates. (i.e. the top
window border). Must not equal minimum y value.

SET_WINDOW defines the limits of the window. All positional information sent to and received
from the graphics system is specified in world coordinate units. This allows the application
program to specify coordinates in units related to the application.

If the top value is less than the bottom value, the Y-axis will be inverted. If the right value is less
than the left boundary, the X-axis will be inverted.

501

502 Procedure Library Reference

The window is linearly mapped onto the viewport specified by SET_VIEWPORT. This is done by
mapping the left boundary to the minimum X-viewport boundary, the right boundary to the
maximum X-viewport boundary, the bottom boundary to the minimum Y-viewport boundary,
and the top boundary to the maximum Y-viewport boundary. If distortion of the graphicsimage is
not desired, the aspect ratio of the window boundaries should be equal to the aspect ratio of the
viewport.

The default window limits range from — 1.0 to 1.0 on both the X and Y axis. GRAPHICS_INIT is
the only procedure which sets the window to its default limits.

The starting position is not altered by this call. Since this call redefines the viewing transformation,
the starting position may no longer represent a known world coordinate position. A call to MOVE
or INT_MOVE should therefore be made after this call to update the starting position.

SET_WINDOW can be called at anytime while the graphics system is initialized.

Error Conditions

The graphics system must be initialized, the minimum value for either axis must not equal the
maximum value for that axis or this call will be ignored, an ESCAPE (- 27) will be generated, and
GRAPHICSERROR will return a non-zero value.

Procedure Library Reference 503

SKIPFOR

IMPORT: general_2
iodeclarations

This procedure will read the specified number of characters from the selected device. The
characters will be thrown away.

Syntax

character device
count selector

. Range Recommended
Item Description/Default Restrictions Range
character Expression of TYPE INTEGER. MININT thru -
count MAXINT
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary.
an INTEGER subrange.

504 Procedure Library Reference

SPOLL

IMPORT: hpib_3
iodeclarations

This INTEGER function will perform a serial poll to the selected device, The serial poll byte is
returned by the function.

Syntax

device
selector

.. Range Recommended
Item Description/Default , Restrictions Range
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary.
an INTEGER subrange.

Semantics

The interface must be active controller and the device must be a device address (i.e. 701,
not 7). The bus sequence will look like:

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
UNL UNL
MLA MLA
TAD TAD
Active SPE SPE
Controller Error ATN Error ATN
Read data Read data
ATN ATN
SPD SPD
UNT UNT
Not Active
Controlier Error

Procedure Library Reference 505

SYSTEM_CONTROLLER

IMPORT: hpib_1
iodeclarations

This BOOLEAN function returns TRUE if the specified interface is the system controller.

Syntax
. Range Recommended
Item | Description/Default ‘ Restrictions Range
interface

Expression of TYPE type_isc. This is 0 thru 31 7 thru 31
an INTEGER subrange.

select code

506 Procedure Library Reference

TALK

IMPORT: hpib_2

iodeclarations

This procedure will send a talk address over the bus. The interface must be active controller.

Syntax
(O () O
. Range Recommended
Item Description/Default Restrictions Range

interface Expression of TYPE type_isc. This is O thru 31 7 thru 31
select code an INTEGER subrange.

device address Expression of TYPE type_hpib_address. Othru 3 Interface

This is an INTEGER subrange. dependent

Procedure Library Reference

TALKER

IMPORT: hpib_3
iodeclarations

This BOOLEAN function will return TRUE if the specified interface is currently addressed as a
talker.

Syntax

interface
) O D

.. Range Recommended
Item i Description/Default I Restrictions Range
interface Expression of TYPE type_isc. This is 0 thru 31 7 thru 31
select code an INTEGER subrange.

507

508 Procedure Library Reference

TRANSFER

IMPORT: general_4

iodeclarations

This procedure will transfer the specified number of bytes to or from the buffer space using the
specified transfer type.

Syntax

device transfer buffer character
i) pa O s = 1 O 0 Il O s Bl 1 O I 2 O 5 il 2 O

. Range Recommended
Item Description/Default Restrictions Range
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary
an INTEGER subrange.
transfer type Expression of the enumerated TYPE serial_dma
user_tfr_type. serial_fhs

direction

buffer name

character
count

Expression of the enumerated TYPE
dir_of_tfr.

Variable of TYPE buf_info_type.

Expression of TYPE INTEGER.

serial_fastest
overlap_intr
overlap_dma
overlap_fhs
overlap_fastest
overlap

to_memory
from_memory

See glossary

MININT thru
MAXINT

Procedure Library Reference 509

TRANSFER_END

IMPORT: general_4
iodeclarations

This procedure will transfer data to or from the butfer.

Syntax
® o o o ®
. Range Recommended
Item Description/Default Restrictions Range
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary
an INTEGER subrange.
transfer type Expression of the enumerated TYPE serial_dma
user_tfr_type. serial_ths
serial_fastest
overlap_intr
overlap_dma
overlap_fhs
overlap_fastest
overlap
direction Expression of the enumerated TYPE to_memory
dir_of_tfr. from_memory
buffer name Variable of TYPE buf_info_type. See glossary
Semantics

If the transfer is into the computer then the transfer will terminate when an END condition (like
EOI) comes true or the buffer is filled. If The transfer is out of the computer then the transfer
will send all of the available data with the END condition sent with the last byte.

510 Procedure Library Reference

TRANSFER_SETUP
IMPORT: general_4
iodeclarations

Note

This function is provided for use by the internal I/O Procedure Lib-
rary drivers, only. Unexpected and possible undesirable results may
occur if it is used.

Procedure Library Reference

TRANSFER UNTIL

IMPORT: general 4
iodeclarations

This procedure will transfer bytes into the buffer until the buffer is full or the termination
character was received. (The DMA transfer type is not allowed).

Syntax

terminating device transfer -
o)D) o O @
buffer
name

. Range Recommended
Item Description/Default Restrictions Range
terminating Expression of TYPE CHAR. -
character
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary
an INTEGER subrange.
transfer type Expression of the enumerated TYPE serial_dma
user_tfr_type. serial_fhs
serial_fastest
overlap_intr
overlap_dma
overlap_ths
overlap_fastest
overlap
direction Expression of the enumerated TYPE to_memory
dir_of_tfr. from_memory
buffer name Variable of TYPE buf_info_type. See glossary

511

512 Procedure Library Reference

TRANSFER WORD

IMPORT: general_4

iodeclarations

This procedure will transfer the specified number of words into the buffer. This transfer will
only work with 16-bit interfaces.

Syntax

device transfer N buffer
erervons) (0 ® o O o

. Range Recommended
Item Description/Default Restrictions Range
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary
an INTEGER subrange.
transfer type Expression of the enumerated TYPE serial_dma
user_tfr_type. serial_fhs
serial_fastest
overlap_intr
overlap_dma
overlap_fhs

direction

buffer name

word count

Expression of the enumerated TYPE
dir_of_tfr.

Variable of TYPE buf_info_type.

Expression of TYPE INTEGER.

overlap_fastest
overlap

to_memory
from_memory

See glossary

MININT thru
MAXINT

TRIGGER

IMPORT: hpib_2

iodeclarations

Procedure Library Reference

This procedure sends a trigger command to the specified device(s).

Syntax

device
=0 O

Item

Description/Default

| Range

Restrictions

Recommended
Range

device selector

Expression of TYPE type_device. This is
an INTEGER subrange.

‘ 0 thru 3199 ‘ See glossary

Semantics
System Controller Not System Controller
Interface Select Primary Addressing Intertace Select Primary Addressing
Code Only Specified Code Only Specified
o
Active ATN UNL ATN UNL
Controller GET LAG GET
GET LAG
GET
Not Active
Controller Error

513

514 Procedure Library Reference

UNLISTEN

IMPORT: hpib_2
iodeclarations

This procedure will send an unlisten command on the bus. The interface must be active
controller.

Syntax

interface
nusTen)--(() O

. Range Recommended
Item | Description/Default | Restrictions Range
interface Expression of TYPE type_isc. This is 0 thru 31 7 thru 31
select code an INTEGER subrange.

Procedure Library Reference

UNTALK

IMPORT: hpib_2
jodeclarations

This procedure will send an untalk command on the bus. The interface must be active con-
troller.

Syntax

interface
D20 O

ltem | Description/Default | Re?t?ir::stxieons Recc;{n;;ngeended
interface Expression of TYPE type-isc. This is ‘ 0 thru 31 | 7 thru 31

select code an INTEGER subrange.

515

516 Procedure Library Reference

WRITEBUFFER

IMPORT: general_4
jodeclarations

This procedure will write a single byte into the buffer space and update the fill pointer in the
buf_info record.

Syntax

buffe
wresoren (0 O O

Item ‘ Description/Default ‘ Re?t?iltl:stxii)ns
buffer name Variable of TYPE buf_info_type. See Chapter 11

character Expression of TYPE CHAR. -

Procedure Library Reference 517

WRITEBUFFER STRING

IMPORT: general_4
jodeclarations

This procedure will take the specified string and place it in the buffer and update the fill pointer.
An error will occur if there is insufficient space.

Syntax

(e =(D o ®

s . Range
Item Description/Default Restrictions
buffer name Variable of TYPE buf_info_type. See Chapter 11
source string Expression of TYPE io_string. This is —
STRING[255].

518 Procedure Library Reference

WRITECHAR

IMPORT: general_1
iodeclarations

This procedure will send a single byte as data over the interface path (writechar will drop the
“ATN” line on an HP-IB interface).

Syntax

® © ®

Item Description/Default Re?t:il::?ieons Rec%n;::);ended

interface Expression of TYPE type_isc. This is 0 thru 31 7 thru 31
select code an INTEGER subrange.
source Expression of TYPE CHAR. -
character
Semantics

An HPIB interface must be addressed as a talker before performing a WRITECHAR, or an error
will be generated. To avoid this, use the following sequence:

LISTEN (7:24) 3
TALK (7 MY_ADDRESS(7)) 5
WRITECHAR (7 Character) s

Procedure Library Reference 519

WRITENUMBER

IMPORT: general 2
iodeclarations

This procedure outputs a free field number to the specified device. The format rules follow the
HP Pascal standard for WRITE. No additional characters are sent after the number.

Syntax

device
wairenwsen)+) (D Lromer (D)

. Range Recommended
Item Description/Default Restrictions Range
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary
an INTEGER subrange.
number Expression of TYPE REAL -

520 Procedure Library Reference

WRITENUMBERLN

IMPORT: general _2
iodeclarations

This procedure will output the number and a carriage return/ linefeed.

Syntax

device
ez (1) o ®

.. Range Recommended
Item Description/Default Restrictions Range
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary

an INTEGER subrange.

number Expression of TYPE REAL -

Procedure Library Reference 521

WRITESTRING

IMPORT: general_2
iodeclarations

This procedure will send the specified string to the specified device. No additional characters
are sent.

Syntax

s O ®

. L. Range Recommended
Item Description/Default Restrictions Range
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary

an INTEGER subrange.

string Expression of TYPE STRING -

522 Procedure Library Reference

WRITESTRINGLN

IMPORT: general_2
jodeclarations

This procedure will write out the string followed by a carriage return/line feed.

Syntax

WRITESTRINGLN o o m o

e 4. Range Recommended
Item Description/Default Restrictions Range
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary

an INTEGER subrange.

string Expression of TYPE STRING -

Procedure Library Reference 523

WRITEWORD

IMPORT: general_1
jodeclarations

This procedure will write 2 consecutive bytes to a byte-oriented interface. A word oriented
interface will write a single 16-bit quantity.

Syntax

interface control
wareworo) () O O

o . Range Recommended
Item Description/Default Restrictions Range
interface Expression of TYPE type_isc. This is 0 thru 31 7 thru 31
select code an INTEGER subrange.
control word Expression of TYPE INTEGER. MININT thru
MAXINT

524 Procedure Library Reference

Procedure Library Reference

Module Dependency Table

The Module Dependency Table shows which modules are imported by the standard LIBRARY, 10,
GRAPHICS, and SEGMENTER modules.

Module to Module(s) Upon
Be Imported Which It Depends
LIBRARY Modules:
RND SYSGLOBALS
HPM -
UIO -
LOCKMODULE SYSGLOBALS
IO Modules:
IODECLARATIONS SYSGLOBALS
IOCOMASM SYSGIL.OBALS, IODECLARATIONS
GENERAL_0O SYSGLOBALS, IODECLARATIONS
GENERAL 1 SYSGLOBALS, IODECLARATIONS
GENERAL_2 SYSGLOBALS, IODECLARATIONS, GENERAL_1, HPIB_1
GENERAL_3 SYSGLOBALS, IODECLARATIONS
GENERAL_4 SYSGLOBALS, IODECLARATIONS, HPIB_1
HPIB_0 SYSGLOBALS, IODECLARATIONS
HPIB_1 SYSGLOBALS, IODECLARATIONS
HPIB_2 SYSGLOBALS, IODECLARATIONS, HPIB_0, HPIB_1
HPIB_3 SYSGLOBALS, IODECLARATIONS, GENERAL. 1, HPIB_O, HPIB_1
SERIAL_Q SYSGLOBALS, IODECLARATIONS
SERIAL_3 SYSGLOBALS, IODECLARATIONS
GRAPHICS (and FGRAPHICS) Modules:
DGL_LIB ASM, IODECILARATIONS, SYSGLOBALS, MINI, ISR, MISC, FS,
SYSDEVS, and all GRAPHICS modules except DGL_INQ and
DGL_POLY
DGL_POLY SYSGLOBALS, SYSDEVS, and all GRAPHICS modules except
DGL_INQ
DGL_INQ ASM, SYSGLOBALS, A804XDVR, DGL_TYPES, DGL_VARS,
DGL_GEN, GLE_TYPES, GLE_GEN
SEGMENTER Modules:
SEGMENTER LOADER, LDR, SYSGLOBALS, MISC

Some Are Needed at Compile Time, Some Aren’t

From the table, you can see that several Procedure Library modules depend upon various Operat-
ing System modules (such as SYSGLOBALS, IODECLARATIONS, SYSDEVS, and A804XDVR).
However, the table does not show that some of the Procedure Library modules need these
Operating System module(s) only at load time and not at compile time (some also need them at

both times).

Modules such as SYSGLOBALS, SYSDEVS, and A804XDVR are part of the Operating System
that is automatically loaded during the booting process (because they are in the standard INITLIB
file.) Thus, you don’t ever need to be concerned about making them accessible to the loader
(unless you somehow remove them from the INITLIB file).

o The GRAPHICS and FGRAPHICS modules require the specified Operating System modules
only at load time (not at compile time).

e The LIBRARY, 10, and SEGMENTER modules require the specified modules at both compile
time and at load time. You can make these Operating System modules accessible to the
Compiler by specifying the INTERFACE file in a SEARCH Compiler option or by adding them
to the System Library.

525

526 Procedure Library Reference

Procedure Library Reference 527

Glossary
aspect ratio - The ratio of the height to width of an area (e.g. the area of a display surface).
attribute - See primitive attribute.
buffer name - A structured variable of TYPE buf_info_type.

complement drawing mode - A device dependent drawing mode for raster graphic displays in
which a line is drawn by inverting bits in the display memory.

character cell - An imaginary rectangle placed around a character which defines its dimen-
sions. The character size attribute determines the size of the character cell.

clipping - The elimination from view of all visible primitives or parts of primitives which lie
outside the clipping limits (see window clipping).

default - See initial value.

device selector - An INTEGER expression used to specify the source or destination of an /O
transfer. A device selector can use either an interface select code or a combination of
an interface select code and a primary address. To construct a device selector with a
primary address, multiply the interface select code by 100 and add the primary
address.

echoing - A mechanism for reflecting the status of an input function. Echoing is manifested in
several ways as a function of the different input functions and the different physical
devices being used.

erase drawing mode - A device dependent drawing mode for raster graphic displays in which a
line is drawn by setting bits in the display memory to zero (off).

escape function - A facility within the graphics system which allows access to device dependent
functions of a graphics display device.

file designator - A variable which points to the file informaton block for a lif file. It is a
structured variable of the form:

LIFFILE = RECORD
FPOINTER: INTEGER 3
END 3§

graphics display device - A device which displays graphics output.

initial value - The value of an attribute, viewing component, or characteristic of a work station
which is in effect when the graphics system is initialized.

inquiry - User request for the current status, value, or characteristics of the graphics environ-
ment.

1if file name - The name of a lif file in the lif directory. A variable of TYPE lifname, which is a
packed array of characters, of the form:

LIFNAME=PACKED ARRAYL[1,.,101 OF CHAR:
line - A vector drawn from the current position to a specified point.

linestyle - An output primitive attribute which controls the pattern with which lines and text
primitives are drawn.

528 Procedure Library Reference

locator device - An input device which returns a world coordinate point.

locator input function - An input function which returns a world coordinate point correspond-
ing to a location on a locator device.

logical device - An abstraction of a typical graphics device, defined in terms of the type of data
input or output. The logical devices supported by the graphics system are locator and
graphics display.

logical display limits - The bounds of the logical display surface.

logical display surface - The portion of a graphics display device within which all output will
appear.

mapping - The transformation of data from one coordinate system to another.
move - Moving the starting position to a specified point without generating a line.

object - The conceptual graphics entity in the application program. Objects are defined in terms
of output primitives and primitive attributes. Their units are the units of the world
coordinate system.

output primitive - The basic element of an object. The output primitives which the graphics
system supports are: move, draw and text. Values of the primitive attributes deter-
mine aspects of the appearance of output primitives.

picture - A collective reference to all the images on a display device.

primary address - An INTEGER in the range O thru 31 that specifies an individual device on an
interface which is capable of supporting more than one device. The HP-IB interace
can support more than one device. (Also see ‘‘device selector.”)

primitive - See output primitive.

primitive attribute - A characteristic of an output primitive, such as color, linestyle, character
size, etc.

raster display - A type of graphics display in which all vectors are defined by turning on dots
across a screen. TV is an example of a raster display.

sampled input - An input operation which does not require operator intervention; the routine
returns with the current value as soon as the input device can respond.

viewing operation - See viewing transformation.

viewing transformation - An operation which maps positions in the world coordinate system to
positions in device coordinates, thereby transforming objects into images.

viewport - The rectangular region of the view surface onto which the window will be mapped.

view surface - The largest rectangle within the logical display limits having the same aspect ratio
as the virtual coordinate system.

virtual coordinate system - A two-dimensional coordinate system representing an idealized
display device. Virtual coordinates are always in the range 0.0 to 1.0.

window - A rectangular region in the viewplane which may delimit the portion of the projected ‘
image which will be output.

world coordinate system - The two dimensional left handed cartesian coordinate system in
which objects are described by the user program (user units).

Subject Index

Abort (HP-IB) ... 86
Active controller (HP-IB) 78, 83
Address (HP-IB) coiiiinn 83
Addressed to listen state (HP-IB).......... 89
Addressed to talk state (HP-IB) 89
Addresses (HP-IB).t 78
Advanced bus management (HP-IB) 94
ALLOCATEmodule.coott 17
Asynchronous protocol (Datacomm) 118, 129
Attention line (HP-IB) 91
Attention message (HP-IB). 80
Auto-dialing (Datacomm). 136
Auto-poll (Datacomm) 141
Auxiliary command register (HP-IB)...... 109
Backplane ...t 22
Battery features (System devices) 282
Baud rate (Datacomm) 123, 130
Baud rate (Seral). 157, 160
Beeper (System devices) 217
Bit. .t 27
Block size (Datacomm). 135
Break messages (Serial) 165
Break timing (Datacomm) 133
Buffers:
BUF_INFO_TYPE.... ...t 69
Controlof. . ..o 70
END condition transfers 76
Feedingofcovviiinnn. 71
General. . ..o 69
Match character transfers 76
Overlap transfers. 74
Readingdatafrom.................... 70
Serialtransfers. 72
Special transfers. 76
Terminating transfers 74
Wordtransfers.o oo 76

Writingdatato.................ooetn 71

BUF_INFO_TYPE.t 69
BUS . oot 22
Busaddresscovvevvuiueneneenens 44
Bus line states (HP-IB) 92
Bus sequences (HP-IB). 81
Byte ... 27

Cable options (Datacomm) 143
Cable options (Serial)e 177
CARD_ID. ... 39-41
CARD_TYPE....... ..ot 3941
Chapter previews.oooooeeeenns 2
Character format (Datacomm). 133
Character format (Serial) 156, 158, 161
Character length (Datacomm)........... 123
Characters (internal representation of) 29
Clear (HP-IB). 86
Clock (System devices) 219
Commands table (HP-IB). 96
Compatibility (of interfaces) 24
Compile strategy (for modules) 6
Compiler intrinsics. 13
Compiler options:
FLOAT_HDWt 15
HEAP_DISPOSE.cooenn. 13
RANGEON. e 39
SEARCH 6
SYSPROG . .. oviiieeaaiaeaaeeees 62
Computer (block diagram)............... 22
COMPpULEr reSOUICEo vevvevve e e 21
Control blocks (Datacomm) 120, 129, 134
Control characters (System devices) 234
CRTinformation...........cccvvvvvnn. 236
CRT interface (selectcode 1)............. 43
Cursor control (System devices) 238

Data compatibility 24
Data flow, directing. 43
Data input:
Datacomm............... 120
General................... 53
GPIO 199
HPIB..... 79
Seral 163
Data link connections {Datacomm). 136
Data link options (Datacomm). 133
Data link protocol (Datacomm) 119
Data messages (Datacomm). 122
Data messages (HP-IB). 81
Data output:
Datacomm................. 120
General.................... 45
GPIO 199
HPIB.. 79
Seral 162
Data representations:
Bitsandbytes 27
Characters 29
GPIO 199
Numbers.................. 28
Realnumbers. 31
Signedintegers 29
Data types:
Vo . ..o 38-42
Supported forinput. 53
Supported foroutput 45
Datacomm:
Asynchronous 129
Asynchronous protocol. 118
Auto-dialing.................. 136
Auto-poll 141
Baudrate 123, 130
Blocksize................... 135
Breaktiming 133
Cable adapter options. 143
Character format.............. 133
Characterlength 123
Connecting to theline 135
Connection procedures 136
Control blocks 120, 129, 134
Data Communication Basics
(98046-90005) 117
Data link connections 136
Data link options 133
Data link protocol 119
Data messages. 122

Defaults 127
Dialing procedures 136
Direct connection links 135
Driver/receiver circuits 144
End-of-line recognition........... 132
Errors and recovery 138
Establishing the connection 126
Example terminal emulator 124
Half-duplex 142
Handshake 131, 134
Handshake characters 132
Initiating connection 137
Introduction.............. 117
IOSTATUS and IOCONTROL registers 145
Line imeouts. 130
Non-data characters 132
Operating parameters. 126
Overview of programming......... ... 123
Parity 118, 123, 135
Preventingdataloss 140
Prvatelinks................. 135
Programming helps. 140
Prompt recognition. 132
Protocol.............. 118, 128
Reset............ 128
RS-232C cablesignals 143
Secondary channel.......... 142
Startbit. 118
Stopbits 118,123
Telephonelinks. 135
Terminal identification 134
Terminal prompt messages 140
Date and time (System devices) 219
DCE and DTE cables (Datacomm) 143
DCEcable (Seral) 178
Debugger window {Systemn devices). 245
Defaults:
Datacomm................ 127
GPIO............................ 187-8
HP-IB... 78
Seral............ 157-8
Dependency of modules (table). 20
Destination (of /O operations)............ 22
Device selectors:
General...................... 38, 43, 44
HP-IB........................ 79
Device-independent Graphics (DGL) 16
Dialing procedures (Datacomm) 136
Direct connection links (Datacomm). 135
Directingdata flow 43
Display control characters {System devices) 234
DISPOSE (procedure) 13
Driver/receiver circuits {Datacomm) 144
DTE cable (Serial). 177

e

Electrical compatibility 24
END condition transfers 76
End or Identify (HP-IB) 91
End-of-line recognition (Datacomm). 132
Errors:
Datacomm......................... 138
General. ... 61
VO. . 63
VO (able)..............cciiint. 67
Segmentation, 304
Serial (Serial)....................... 163
ESCAPE. 63
ESCAPECODE................ 63
Establishing the connection (Datacomm) .. 126
Events (errors and timeouts) 61
Examplemodules 3
Example terminal emulator (Datacomm) .. 124
Explicit commands (HP-IB) 98
FGRAPHICS modules 15
Floating-point math card (HP 98635). 15
FLOAT_HDW (Compiler option) 15
Formattedinput. 58
Formattedoutput. 50-1
Freefieldinput....................... 54-7
Free-fieldoutput 45-50

Full-mode handshakes (GPIO) 189

g

General bus management (HP-IB) 84
GENERAL modules. 34, 37
Gotolocal (HP-IB)..................... 85
GPIO interface (select code 12) 26, 44
GPIO:
Configuration. 187
Datainput 199
Dataoutput........................ 199
Data representations. 199
Description., 186
Examplesof /O 200, 201
Full-mode handshakes 189
Handshake lines 188
Handshakes. 187
Interfacereset 198
Interrupt priority, 187
Introduction., 185
IOREAD_BYTE and IOWRITE_BYTE
registers 205
IOSTATUS and IOCONTROL registers 204
Logicsense 187
Peripheral status line. 188
Pulse-mode handshakes. 191
Selectcode 187
Special purpose lines 202
GRAPHICS modules 15
Graphics programming. 15

h

Half-duplex (Datacomm) 142
Handshake characters (Datacomm) 132
Handshake:
Datacomm 131, 134
General............................. 24
GPIO 187
HP-IB........................... 81, 90
Serial 158, 166
Hardware.......................... ... 21
HEAP_DISPOSE (Compiler option) 13
HP 98635 Floating-point math card 15
HP 98644 differences (Serial) 181
HP-IBaddress......................... 44
HP-IB interface description. 25

HP-IB interface, built-in (select code 7) 43
HP-IB interface, optional (select code 8) ... 44
HP-IB:

Abort. 86
Activecontroller 80, 83
Address of interface 78, 83
Addressed to listen state 89
Addressed to talk state 89
Addressingto listen. 81, 82
Addressingtotalk 81
Advanced bus management. 94
Attentionline.................. 91
Attention message........... e 80
Auxiliary command register 109
Buslinestates 92
Clear............ 86
Commands (table) 96
Control thru Pascal 83
Data messages....................... 81
Device selectors. 79
Endorldentify.................... ... 91
Example bus sequences 81

Explicit commands 98

General bus management 84
General I/O operations 79
Generalrules..................... ... 79
Gotolocal 85
Handshake....................... ... 81
Handshakelines 90
Installation 78
Interfaceclear 91
Interface conditions. 89
Introduction......................... 77

IOCONTROL and IOSTATUS registers . . 99
IOREAD_BYTE and IOWRITE_BYTE

registers L. 103
Listen and talk messages 81
Locallockout........................ 85
Local lockout state 89
Messages 94
Multiple listeners 82
Non-active controller. 82
Passcontrol 87
Polling.............................. 87
Remoteenable 91
Remote message. 84
Remotestate 89
Secondary addresses 84
Send command...................... 98
Servicerequest 92
Service requested state. 89
Status............. 83
Summary of bus sequences........... 113
System controller 80, 83
System controller jumper/switch 78
Triggering......................... .. 86
Unlisten and untalk messages 83
HPIBmodules. 34, 37
HPMmodule........................ .. 13

I/O (definitionof). 22
I/Oerrorhandling...................... 63
IOerrors 61
[/O events (errors and timeouts) 61
I/O Procedure Library:
GENERAL modules............... 34, 36
HPIBmodules. 34, 37
Initialization 35
Introduction. 33
IODECLARATIONS module 38
Organization. 34
SERIAL modules 35, 38
I/O terminologyl 21
I/Otimeouts. 61, 65
Initialization (I/O). 35
Initiating connection:
Datacomm................. ..., 137
Serial i 160
INITLIBmodules. 7
Input (defined). 22
Input:
Charactersc.. ... 56
Formatted. 58
Freefield 54-57
Realnumbers. 54
Skippingdata. 57
Strings. 55
Termination......................... 54
Words. 56
Integers (internal representation of). 29
Interface clear (HP-IB) 91
Interface conditions (HP-IB). 89
INTERFACE modules. 14
Interface reset:
Datacomm......................... 128
GPIO 198
HP-IB..... 99

Interfacetext 14,6
Interfaces:
Additional functions 24
Datacomm......................... 117
Functional diagram 23
GPIO 26
HP-IB........... 25,77
Overviewcoiiviiieinn.. 25
Registers. 59
Selectcodes 38, 43
Serial. 26
Whyneeded?........................ 23
Interfacing concepts 21
Interrupt priority (GPIO). 187
Interrupt processing overview (System
devices) 213
[Odatatypes....................... 3842
IOmodules 14
IODECLARATIONS modules 38
IOERROR MESSAGE 64
IOESCAPECODE...................... 63
IOE_ISC........... . 64
IOE_LRESULT 63
IOREAD_BYTE and IOWRITE_BYTE registers:
General.oc i 59
GPIOl 205
HP-IB.......o . 103
Serial 168, 173
IOSTATUS and IOCONTROL registers:
Datacomm......................... 145
General............................. 59
GPIO 204
HPIB....... 99
Serial, 169
ISCTABLE........................... 39

k

Key buffer (System devices). 256
Key codes (System devices). 267
Keyboard (System devices) 250
Keyboard interface (select code 2) 43
Knob (System devices). 264

Librarian:
Main prompt, 9
Purposeof 3
Using. ... 9
Libraries:
Creating............................. 8
Overview 3
LIBRARY. 6,9
LIBRARY modules 12
Library overview 3
Line timeouts (Datacomm).............. 130
Listen addresses (HP-IB) 81, 82
Local lockout (HP-IB). 85
Local lockout state (HP-IB) 89
LOCKMODULE 13
Logic sense (GPIO). 187
Loopback (Senal) 167
Manual organization 1
MARK (procedure) 13
Massstorage. 8
Match character transfers 76
Menus (System devices). 242
Messages (HP-IB) 94
Models 216 and 217 differences (Seral) .. 184
Modem handshake (Seral) 161
Modem line control (Serial) 166
Modem status and control (Seral). 157
Modem-line handshakes (Serial). 166
Modules:
Adding to the System Library. 9
ALLOCATE......................... 17
Compiling. 6
Dependency table.................... 20
Directory. 3

Examples (on DOC disc) 3

FGRAPHICS 15

Filesizes............................. 8
GENERAL. 34, 36
GRAPHICS 15
How the Compiler finds them 6
How the loader finds them........... ... 7
HPIB 34, 37
HPM.. 13
Importing 4
INTERFACE 14
14, 34
IODECLARATIONS 38
LIBRARY...... 12
LOCKMODULE 13
Making them accessible. 18,19, 6, 7
Overview 3
RND ... 12
SEGMENTER 17
SERIAL 35, 38
Standard. 12
SYSDEVS 211
SYSGLOBALS 211
UO. ... 13
Multiple listeners (HP-IB) 82
NEW (procedure) 13
Non-active controller (HP-IB) 82
Non-data characters (Datacomm) 132
Numbers (internal representation of). 28
Objectfile.......................... .. 3,7
Operating parameters (Datacomm). 126
Output:
Characters 48
Data types supported 45
Definitonof. 22
Formatted. 50-1
Freefield 45-50
General. 45
Real numbers. 46
Strings. 47
Words. 48
Overlap transfers. 74
Overviewof manual 1

P-load (modules). 7
Parity (Datacomm) 118, 123, 135
Parity (Serial). 156, 158, 161
Pascal Graphics Techniques manual. 15
Pass control (HP-IB) 87
Peripheral status line (GPIO) 188
Poling(HP-IB) 87
Powerfail (System devices). 282
Preventing data loss (Datacomm) 140
Private links (Datacomm)............... 135
Procedure Library 12
Programming helps (Datacomm). 140
Programming techniques 159
Prompt recognition (Datacomm)......... 132
Protocol {(Datacomm). 118,128
Protocol (Serial) 158
Pulse-mode handshakes (GPIO)......... 191
RAND (function) 12
RANDOM (procedure) 12
Range of device selectors. 39
Range of selectcodes 38
Readingbuffers........................ 70
Real numbers (internal representation of). .. 29
RECOVER...........o ... 62
Registers:
Common definitions 60
Datacomm......................... 145
General. 59
GPIO 204
Hardware vs. /O System 59
HP-IB......... ... 99
Seriall 169
RELEASE (procedure) 13
Remote enable (HP-IB) 91
Remote message (HP-IB)................ 84
Remote state (HP-IB) 89
Reset:
Datacomm......................... 128
GPIO 198
HP-IB........... ... 99
Serial 160
Resource 43

RS-232 Serial:
98626 interface..................... 155
98644 interface. 155, 181
Built-in (Models 216 and 217). 184
Introduction. 155
UART 155
RS-232C cable signals (Datacomm) 143
Run light (System devices).............. 244
SEARCH Compileroption................ 6
Secondary addresses (HP-1B) 84
Secondary channel (Datacomm)......... 142
Segmentation:
Calling a procedure. 299
Callingaprogram 297
Checking a procedure variable 300
Errorsl 304
Freespace......................... 297
Initialization 297
Introduction. 295
Searching for a procedure name. 300
Unloading segments 303
Using the explicit code area 301
Usingtheheap 302
Usingthestack 297
WARNING - You're on yourown. 297
SEGMENTER module 17
Selectcodes 38,43
Self-test (Serdal). 167
Send command (HP-IB). 98
Serial interfaces. 26,44
SERIAL modules 35, 38
Serial transfers......................... 72
Serial:
98626 interface. 155
98644 interface. 155, 181
Baudrate e 157, 160
Break messages..................... 165
Built-in {(Models 216 and 217)......... 184
Cableoptions 177
Character format........... 156, 158, 161
Datainput 163
Dataoutput........................ 162
DCEcable......................... 178
DTEcable 177
Errorhandling...................... 163

Handshake 158, 166
HP 98644 differences. 181
Initializing the connection............. 160
Interfacereset 160
Introduction........................ 155
IOREAD_BYTE and [OWRITE_BYTE
registers. 168, 173
IOSTATUS and IOCONTROL
registers, 169
Loopback. 167
Models 216 and 217 differences 184
Modem handshake 161
Modem line control. 166
Modem status and control 157
Modem-line handshakes. 166
Parity......................... 158, 161
Parity bit. 156
Programming techniques 159
Selftest 167
Signal functions. 177
Software handshake 158, 161, 165
Special applications. 165
Special characters 165
Startbit. 156
Status-Line Disconnect switches 157
Stopbits. 156
Transferringdata.................... 162
Service request (HP-IB) 92
Service requested state (HP-IB)........... 89
Signal functions:
Datacomm......................... 143
Serial 177
Skipping data (duringinput). 57
Software.................. 21
Software handshake:
Datacomm......................... 131
Serial. 158, 161, 165
Source (of I/O operations) 22
Sourcefile 3
Sourcetext. i 6
Special purpose lines (GPIO)............ 202
Special transfers. 76
Standard modules. 12
Start bit:
Datacomm......................... 118
Serial 156
Status (HP-IB) 83
Status-Line Disconnect switches (Serial). .. 157
Stop bits:
Datacomm......................... 123
Serial 156
Summary of bus sequences (HP-IB). 113

Supported features (System devices) 210

SYSGLOBALS 211

SYSPROG (Compiler option) 62

System controller (HP-IB) 78, 83

System devices:
Battery commands 285
Battery features. 282
Beeper............................ 217
Bit-mapped display parameters. 237
Changing display parameters. 237
Clock .o i 219
Cursorcontrol 238
Dateandtime 219
Debugger window. 245
Direct clock access 222
Display............................ 234
Display control characters. 234
Display parameters 236
Display status area 243
Display types 234
Dumpingthe display. 238
Example programs 211
Hooks.......................... ... 213
Interruptmasks 215
Interrupt processing overview 213
Interrupts (enabling) 215
Introduction........................ 209
ISR, 214
Keyactions 270
Keybuffer 256
Key buffer /O hooks 257
Keycodes 267
Key translation hook................. 259
Keyboard.......................... 250
Keyboard ISR hook 253
Keyboard pollhook 254
Keyboard request hook 251
Keyboard types..................... 250
Keyboards 266
Knob....................... ..., 264
Languagetable 262
Languagetypes..................... 250
Lastlineof display 240
Menus............................. 242
Missed timer interrupts 228
Module............................ 211
Periodic timer 230
Powerfail 282
Runlight........................... 244
Simplified debugger window 249
Supported features 210
SYSDEVS source listing. 288
System timer example 232
TimerISR.......................... 227

Timer operations. 225

Timers 224
Toggle alpha/graphics. 235
Tonegenerator 217
Typing aids program. 273
WARNING-You're on yourown. 209
System Library:
Adding modules toit................... 9
Buildingyourown.................... 18
Defined.............................. 6
Volume size considerations 18, 8
When used by Compiler................ 6
Whenused byloader 7
Talk addresses (HP-IB). 81
Telephone links (Datacomm)}. 135
Terminal identification (Datacomm) 134
Terminal prompt messages (Datacomm) .. 140
Terminating transfers 74
Terminology. 21
Timeouts 61, 65
Timeouts (Datacomm) 130
Timers (Systen devices). 224
Timing compatibility 24
Tone generator (System devices) 217
Transfers:
END condition....................... 76
Introduction 69
Match character. 76
Overlap. i 74
Seral. 72
Special 76
Terminationof....................... 74
Word. 76
Triggering (HP-IB). 86
TRY . 62
TRY/RECOVER blocks. 61-63

Typing aids program (System devices) 273

u

UART (RS-232 interface}. 155
UCSD Unit /O operations 13
UOmodule........................... 13
Unit /O operations 13
UNITBUSY (function). 13
UNITCLEAR (procedure). 13
UNITREAD (procedure)................. 13
UNITWAIT (procedure) 13
UNITWRITE (procedure)................ 13
Unlisten and untalk messages (HP-IB) 83

Volumes. i, 8

What command. 6,9
Where the buffers low roam.............. 69
Word 27
Wordtransfers. 76
Words ... 48 56
Writingdata........................ .. 45
Writingtobuffers. 71

