Pascal 2.1
Procedure Library .
User’s Manual
for HP Series 200 Computers

Manual Part No. 09826-90075
Microfiche No. 09826-99075

© Copyright Hewlett-Packard Company, 1982, 1983
This document refers to proprietary computer software which is protected by
copyright. All rights are reserved. Copying or other reproduction of this

program except for archival purposes is prohibited without the prior written
consent of Hewlett-Packard Company.

Hewlett-Packard Desktop Computer Division
3404 East Harmony Road, Fort Collins, Colorado 80525

ji

Printing History

New editions of this manual will incorporate all material updated since the previous edition.
Update packages may be issued between editions and contain replacement and additional
pages to be merged into the manual by the user. Each updated page will be indicated by a
revision date at the bottom of the page. A vertical bar in the margin indicates the changes on
each page. Note that pages which are rearranged due to changes on a previous page are not
considered revised.

The manual printing date and part number indicate its current edition. The printing date
changes when a new edition is printed. (Minor corrections and updates which are incorporated
at reprint do not cause the date to change.) The manual part number changes when extensive
technical changes are incorporated.

March 1982...Preliminary Printing

May 1982...First Edition

December 1982...Update to include Pascal 2.0.

January 1983...Second Edition (incorporated December 1982 update).
May 1983...Update to include Pascal 2.1.

09826-90075, rev: 5/83

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

Table of Contents

Table of Contents

Chapter 1: Getting Started

Introduction 1
Manual Overview.o 1
An Introduction to the LIBRARY e 2.1
The LIBRARY You Received i 2.1
The Graphics Procedures i 2.1
The /O Procedures i e 2.2
The INTERFACE File. o e 2.2
Building Your LIBRARY 24
Makinga Memory Volume 24
The Brief Description. e 25
The Step-By-Step Example 2.5
Notes and Possible Problems 2.6
The Module Dependency Table 2.7

Chapter 2: LIF Procedures
This chapter deleted

Chapter 3: Graphics Procedures

Introduction 9
Viewing Transformation i e 10
Example Programs 35
Deviations from HP 1000 Graphics. i 58
Error Code Summary 60

Chapter 4: Interfacing Concepts

Introduction 61
Terminology.o 61
Why Do YouNeedanlnterface. 63
Electrical and Mechanical Compatibility. 64
Data Compatibility 64
Timing Compatibility. 64
Additional Interface Functions. 64
Interface Overview i 65
TheHP-IBlnterface e 65
The Serial (Datacomm) Interface. 66
The GPIO Interface. i 66
Data Representations i 67
Bitsand Bytes e 67
Representing Numbers. 68
Representing Characters 69
Representing Signed Integers 69
Representing Real Numbers. 71

09826-90075, rev: 5/83

iv Table of Contents

Chapter 5: 1/O Procedure Library

Introduction 73
Pascal /O 73
/O Library Organization.ttt 74
General. 74
HP-IB . . 74
Serial. . . 75
I/O Library Initialization 75
General Modules 76
HP-IB Modules 77
Serial Modules 78
[/O Declarations Module 78
Range of Select Codesand Devices 78
Information about the Interface. 79
Other Typeso 81

Chapter 6: Directing Data Flow

Introduction 83
Specifyinga Resource. 83
Simple Device Selectors. 83
Addressed Device Selectors. 84

The Procedure Library Language Reference

Procedure Library Summary 219
Introduction 221
Alphabetical Procedure Listing

GloSSarY . . .o 375

09826-90075, rev: 5/83

Table of Contents v

Chapter 7: Outputting Data

Introduction 85
Free Field Output 86
Real Expressions 86
String ExXpressions. 87
Characters 88
Wordso 88
Formatted Output 90
STRWRITE . .. 90

Chapter 8: Inputting Data

Introduction 83
Free Field Input 94
Real Variables 94
String Variables 95
Characters 96
N Ords . . o 96
Skipping Data. 97
Formatted Input. 98
STRREAD . . 98
. Chapter 9: Registers

Introduction 99
Firmware Registers 99

IOSTATUS Function. 99

IOCONTROL Procedure e 100

Common Register Definitions 100
Hardware Registers. 100

Chapter 10: Errors and Timeouts

Infroduction 101
Pascal EventHandling 101
TRY . 102
RECOVER . .. 102
ESCAPECODE 102
ESCAPE. . . . 102
/O Error Handling 103
IOESCAPECODE 103
IOE_RESULT 103
IO IS C . 103
IOERROR_MESSAGE 103
VO Timeouts 105
Setting Up Timeout Events 105
VO Ermors 107

vi Table of Contents

Chapter 11: Advanced Transfer Techniques

Introduction 109
Buffers 109
Buffer Control 110
ReadingBuffer Data. 110
Writing Buffer Data. e 111
Serial Transfers 112
Overlap Transfers e 114
When is the Transfer Finished? 114
Special Transfers 116
Word Transfers 116
Match Character Transfers. i 116
END Condition Transfers. e 116

Chapter 12: The HP-IB Interface

Introduction 117
Initial Installation 118
Communicating with Devices. 119
HP-IB Device Selectors i 119
Moving Data throughthe HP-IB 119
General Structureof the HP-IB. 119
Examples of Bus Sequences 121
Addressing Multiple Listeners 122
Addressing a Non-Controller HP 9826 0r9836 122
Pascal Control of HP-IB 123
HP-IB Status 123
HP-IB Control e 123
General Bus Management 124
Remote Control Devices 124
LockingOut Local Control 125
Enabling Local Control. e 125
Triggering HP-IB Devices. 126
Clearing HP-IB Devices i 126
Aborting Bus Activity 126
Passing Control. 127
Polling HP-IB Devices i 127
HP-IB Interface Conditions 129
HP-IB Control Lines e 130
Handshake Lines 130
The Attention Line (ATIN) e 131
The Interface Clear Line (IFC). i 131
The Remote Enable Line (REN) 131
The End or Identify Line (EOI) 131
The Service Request Line (SRQ) 132
Determining Bus-Line States. 132
Advanced Bus Management 134
The Message Concepto e 134

Typesof Bus Messages. o i 134

Table of Contents vii

Explicit Bus Messages. 138
Summary of HP-IB IOSTATUS and IOCONTROL Registers 139
Summary of HP-IB IOREAD_BYTE and IOWRITE_BYTE Registers 143
Summary of Bus Sequences 153

Chapter 13: The Datacomm Interface

Introduction 157
Prerequisites 157
Protocol 158
Data Transfers Between Computer and Interface 160

Overview of Datacomm Programming i .. 163
SetBaud Rate. 163
Set Stop Bits 163
Set Character Length 163
Set Parity 163
Example Terminal Emulator 164

Establishing the Connection. 166
Determining Protocol and Link Operating Parameters. 166
Using Defaults to Simplify Programming 167
Resetting the Datacomm Interface, 168
Protocol Selection. 168
Datacomm Options for Async Communication.............................. 169

. Datacomm Options for Data Link Communication. 173
Connectingthe Line e 175
Connection Procedure 176
Initiating the Connection 177

Datacomm Errors and Recovery Procedures 178
Error Recovery 179

Datacomm Programming Helps. 180
Terminal Prompt Messages 180
Secondary Channel, Half-Duplex Communication. 82
Communication Between Desktop Computers 182

Cable Adapter Options and Functions 183
DTE and DCE Cable Options 183
Optional Circuit Driver/Receiver Functions 184

HP 98628 Datacomm Interface Status and Control Register Summary 185

HP 98628 Datacomm Interface Status and Control Registers 187

Chapter 14: The GPIO Interface

Introduction 195

Interface Description. 196

Interface Configuration. 197

Interface Select Code 197

Hardware Interrupt Priority 197

DataLogic Sense 197

. Data Handshake Methods 197
Interface Reset. 208

viii

Table of Contents

Outputs and Inputs through GPIO 209
ASCII and Internal Representation. 209
Using the Special-Purpose Lines. 212
Driving the Control Qutput Lines 212
Interrogating the Status Input Lines 212
GPIO Status and Control Registers. 213
Summary of GPIO IOREAD_BYTE and IOWRITE_BYTE Registers. 214
Chapter 15: RS-232 Serial Interface
Introduction 218.1
Details of Serial /O 218.2
Baud Rate. e 218.3
Signaland Control Lines 218.3
Software Handshake, Parity and Character Format 218.4
Programming Techniques. i 218.5
Overview of Serial Interface Programming.................. 218.5
Initializing the Connection 218.6
Transferring Data. 218.8
Data Input. 2189
Error Detectionand Handling 2189
Special Applications. e 218.11
Sending BREAK Messages. 218.11
Redefining Handshake and Special Characters........................... 218.11
Using the Modem Line Control Registers. 218.12
IOREAD_BYTE and IOWRITE_BYTE Register Operations 218.14
Status and Control Registers 218.15
Serial Interface Hardware Registers. 218.19
Interface Card Registers 218.19
UART Registers e 218.20
Cable Options and Signal Functions 218.23
The DTE Cable e 218.23
The DCE Cable 218.24

09826-90075, rev: 1/83

Table of Contents ix

The Procedure Library Language Reference

Procedure Library Summary 219
Introduction 221
ABORT _HPIB 222
ABORT _SERIAL 223
ABORT_TRANSFER. 224
ACTIVE_CONTROLLER e 225
ADDR_TO_LISTEN 226
ADDR _TO_TALK . . 227
AWAIT_LOCATOR. . . . e 228
BINAND . . . 231
BINCMPP . .. 232
BINEOR . .. 233
BINIOR. . . 234
BIT ST . .. 235
BUFFER_ACTIVE 235.1 I
BUFFER _DATA. . o 236
BUFFER_RESETo s 237
BUFFER _SPACE. . .. 238
CLEAR . .. 239
CLEAR _DISPLAYo 240
CLEAR_HPIB 241
‘ CLEAR_SERIAL 242
DISPLAY _INIT . 243
DISPLAY _TERM. . . 245
DMA _RELEASE 246
DMA _REQUEST 247
END_SET...... e 248
GRAPHICSERRORo 248.1
Graphics Errors o 248.2
GRAPHICSL_INIT ... 249
GRAPHICS _TERM. 250
GTEXT . . 251
HPIB_LINE 253
INPUT _ESC. . .. 254
INQ WS 255.1 |
INT L LINE . . . 256
INT _MOVE . . 258
IOBUFFER 260
IOCONTROL.o s 261
IOERROR_MESSAGE e 262
IO _FIND IS 263
[IO_ESCAPE. 264
IOINITIALIZE. . . o 265
IOREAD _BYTE 266
IOREAD_WORD 267
‘ TORESET . . . ottt et e e e 268
JOSTATUS . . . 269
IO _SYSTEM_RESET 270

09826-90075, rev: 1/83

x Table of Contents

IOUNINITIALIZE. . .. e e 271
IOWRITE _BYTE . ..o 272
IOWRITE_WORD 273
| ISC ACTIVE .. 273.1
KERNEL_INITIALIZE 274
LIFASCIHGET .. o 275
LIFASCIIPUT . . o 276
LIFCLOSE . . . e 277
LIFCREATE . . 278
LIEDISPOSEFIB . . . o 280
LIEEOF . . 281
LIFGET . 282
LIFGETELDo 284
LIENEWEFIB 285
LIFOPEN . . 286
LIFPURGE . . . 288
LIEPUT . . 289
LIESETFLD . . . 290
LINE o 292
LIS EN. . o 293
LISTENER o 294
LOC AL . . 295
LOCAL_LOCKOUT 206
LOCATOR_INIT . . 297
LOCATOR_TERM 299
LOCKED _OUT ... 300
MOVE. . 301
MY_ADDRESS 302
OUTPUT _ESC. . . .o e 303
PASS _CONTROL. . .. e 305
PPOLL . . 306
PPOLL_CONFIGURE e 307
PPOLL_UNCONFIGURE. 308
RAND . . 308.1
RANDOM . .. 308.2
READBUFFER. 309
READBUFFER_STRING i 310
READCHAR. . . 311
READWORD 312
READNUMBER. 313
READNUMBERLN . . . 314
READSTRING 315
READSTRING_UNTIL 316
READUNTIL 317
REMOTE . . 318
REMOTED 319
REQUESTED.o e 320
REQUEST_SERVICE 321
SAMPLE_LOCATOR 322

09826-90075, rev: 1/83

Table of Contents xi

SECONDARY ..o 324
SEND _BREAK. . .. o 325
SEND_COMMAND. e 326
SERIAL _LINE ... 327
SET _ASPECT ... 328
SET_BAUD _RATE ... e 330
SET_CHAR_LENGTH e e 331
SET_CHAR_SIZE 332
SET _COLOR. . .. 333
SET DISPLAY _LIM .. 334
SET_ECHO_POS 336
SET _HPIB . .. 338
SET _LINE _STYLE 339
SET_LOCATOR _LIM. . .. o 341
SET PARITY . 343
SET _SERIAL e 344
SET_STOP_BITS e e 345
SET _TEXT _ROT e e 346
SET_TIMEOUT e e e e 347
SET_TO_LISTEN .. .o e e 348
SETOTO _TALK. ... e e 349
SET_VIEWPORT. 350
SET_WINDOW e 352
SKIPFOR . . 354
SP O .. 355
SYSTEM_CONTROLLER e 356
TALK 357
TALRER . . . 358
TRANSFER o 359
TRANSFER_END 360
TRANSFER _SETUP 361
TRANSFER_UNTIL e 362
TRANSFER_WORD 363
TRIGGER. . .. 367
UNLISTEN. .o 365
UNTALK .. 366
WRITEBUFFER. e e 367
WRITEBUFFER_STRING i 368
WRITECHAR. . . 369
WRITENUMBER e 370
WRITENUMBERLN e e 371
WRITESTRING 372
WRITESTRINGLN 373
WRITEWORD . .. 374
GlOSSaTY . . o oot e 375

09826-90075, rev: 1/83

Table of Contents

e
(=13

X

09826-90075, rev: 1/83

Chapter 1
Getting Started

Introduction

This manual describes the procedures and functions provided with Pascal 2.0 LIBRARY. The
manual is divided into two major sections. The first section (chapters 1 thru 15) is organized by
topics. It explains particular programming concepts rather than individual procedures and
functions. The second section, the Library Reference, is an alphabetical listing of the individual
procedures and functions showing syntax and giving an explanation for each.

The I/O chapters contain detailed programming techniques information. The Graphics chapter
is limited in scope. It will be very helpful if you have some backround in graphics programming.
The chapter provides graphic device information and some example programs.

This chapter contains three sections. The first is the manual overview which describes the
following chapters. The second section describes the LIBRARY as it is shipped to you. The third
section explains step-by-step how to add modules to the LIBRARY. It also has a table which
shows the module dependencies. For example, “If I must import module C so I can use
procedure X, must | also import modules A and/or B?”.

Manual Overview

Chapter 2: LIF Procedures. LIF file handling capabilities have been included in the Pascal 2.0
filing system. LIF procedures are no longer included in the Procedure Library.

Chapter 3: Graphics Procedures. The Graphics Library contains the fundamental procedures
(primitives) that allow Pascal to communicate with most HP graphic devices. This chapter
introduces the viewing transformation and provides example programs that illustrate the use of
the graphics library. Sections are included for each device that is supported by Pascal. Summar-
ies of error codes and deviations from HP 1000 conclude the chapter.

Chapter 4: Interfacing Concepts. This chapter presents a brief explanation of relevant inter-
facing concepts and terminology. This discussion is especially useful for beginners as it covers
much of the why and how of interfacing. Experienced programmers may also want to skim this
material to better understand the terminology used in this manual.

09826-90075, rev: 5/83

2 Getting Started

Chapter 5: The I/O Procedure Library. This chapter presents an introduction to the 1/O
Procedure Library. This discussion includes the organization of the library, major capabilities,
and an introduction into the use of the library. All readers should read the information pre-
sented in this chapter.

Chapter 6: Directing Data Flow. This chapter describes how to specify which computer
resource is to send data to or receive data from the computer. The use of device specifiers and
interface select codes is discussed.

Chapter 7: Outputting Data. This chapter presents methods of outputting data to devices. All
details of this process are discussed. Examples of free field and formatted output are given. You
may be able to skip sections of this chapter, depending on your application.

Chapter 8: Inputting Data. This chapter presents methods of inputting data to devices. All
details of this process are discussed. Examples of free field and formatted input are given. You
may be able to skip sections of this chapter, depending on your application.

Chapter 9: Registers. This chapter describes the use and access of interface registers. Both
the hardware and firmware registers are described. The individual interface registers are
discussed in the corresponding interface chapter.

Chapter 10: Errors and Timeouts. This chapter describes what you need to do in order to
handle and recover from error and timeout conditions.

Chapter 11: Advanced Transfer Techniques. This chapter discusses the high-performance
transfer techniques provided in the I/O Library. These techniques are called buffered transfers
and include interrupt, fast handshake, and direct memory access (DMA) data transfer mechan-
isms.

Chapter 12: The HP-IB Interface. This chapter describes programming techniques specific to
the HP-IB interface. Details of HP-IB communications processes are also included to promote
better overall understanding of how this interface may be used. This discussion is valid for the
built-in HP-IB interface and for the optional HP 98624A HP-IB interface.

Chapter 13: The Serial Data Communications Interface. This chapter describes program-
ming techniques specific to the HP 98628A serial data communications interface.

Chapter 14: The GPIO Interface. This chapter describes programming techniques specific to
the HP 98622 GPIO interface.

Chapter 15: The Serial Interface. This chapter is a programming techniques discussion of the
HP 98626 Serial Interface.

09826-90075, rev: 1/83

Getting Started 2.1

An Introduction to the LIBRARY

The LIBRARY is a collection of modules which contain support procedures and functions for
your programs. In order to use these procedures and functions, you must IMPORT the modules
which contain them. The Pascal Compiler looks for imported modules in the LIBRARY (and
files named in the $SEARCH$ compiler directive). The LIBRARY must be on-line when you
compile and when you run your program. For more information on modules and the IMPORT
statement, read the Compiler chapter in the Pascal User’'s Manual.

The LIBRARY You Received

Beginning with Pascal 2.0, only a few modules exist in the LIBRARY. If you have moved or
plan to move the LIBRARY to a new system volume on a hard disc or a Shared Resource
Management system, you should add to the LIBRARY all the modules in 10, GRAPHICS and
INTERFACE (on the LIB: disc). If you are using a 3.5-inch, 5.25-inch or 8-inch flexible disc as
the system volume, then you should add only the modules you need (in order to save space on
the system volume).

When Pascal 2.0 is shipped to you, the following modules are contained in LIBRARY.

RND -- The random number generator.
HPM -- The heap management utilities.
UIO -- The UCSD Pascal ‘“‘unit’ utilities.
LOCKMODULE -- The file locking utilities.

RND must be imported when you use the random number generator. RND must be on-line at
compile time and at run time. If you won’t be using this operation, the module need not be
contained in your LIBRARY. The random number generator is described in the Library Refer-
ence section of this manual under RAND (the function) and RANDOM (the procedure).

LOCKMODULE must be imported if you use the file locking operations on LOCKABLE files.
LOCKMODULE must be on-line at compile time and at run time. File locking operations are
described in the Concurrent File Access section of the File System chapter in The Pascal User’s
Manual.

The HPM and UIO modules need never be imported. The HPM module needs to be on-line if
you are using the $HEAP DISPOSE ON$ compiler directive or any of the graphics modules.
The UIO modules needs to be on-line if you are using any of the UCSD “UNIT”” operations. If
you won't be using these operations, the modules need not be contained in your LIBRARY.

The Graphics Procedures

The graphics procedures and functions are contained in the GRAPHICS file on the LIB: disc. If
you are using any of these procedures and functions in your programs, your LIBRARY must
contain all the modules in the GRAPHICS file except DGL_INQ. DGL_INQ is needed if you use
the INQ_WS procedure. Modules GENERAL_1, GENERAL_2 and HPIB_1 from the IO file are
also needed at run time. The graphics routines reference them. If they are in the LIBRARY, the
linking loader will find and load them.

09826-90075, rev: 1/83

2.2 Getting Started

The modules contained in GRAPHICS are:

DGL_TYPES
DGL_VAR
DGL_ARAS
DGL_RAS
DGL_MAIN
DGL_LIB
DGL_INQ

The I/O Procedures

The I/O procedures and functions are contained in the IO file on the LIB: disc. If you are using
/0O procedures and functions in your programs, your LIBRARY must contain the modules
which contain those procedures and functions. The Library Reference section of this manual
lists the module(s) you must IMPORT for each procedure and function. You must then refer to
the Module Dependency Table at the end of Chapter 2 to see what other modules (if any) must
be present in your LIBRARY.

The modules contained in 1O are:

IODECLARATIONS
GENERAL_O
IOLIBRARY_KERNEL
IOCOMASM
GENERAL_1
HPIB_1
GENERAL_2
GENERAL_3
GENERAL_4
HPIB_0

HPIB_2

HPIB_3

SERIAL_0O
SERIAL_3

The INTERFACE File

The INTERFACE file contains modules comprised of interface text only. The interface text is
that part of a program under the IMPORT and EXPORT statements and above the IMPLE-
MENT statement. The interface text is what the compiler needs when it is compiling a list of
external references for your program. These modules contain the interface text for much of the
operating system software. They are probably of little use to any but system designers posses-
sing the System Internals Documentation for Pascal 2.0.

If you have a hard disc for your system volume (and you are not concerned with disc space),
you should copy all of these modules into your LIBRARY. These modules should not be copied
last. Copy either GRAPHICS, IO or the existing LIBRARY modules into your new LIBRARY
last.

09826-90075, rev: 1/83

Getting Started

If you do not have a hard disc for your system volume (and you are concerned with disc space),
you may need one module from the INTERFACE file. SYSGLOBALS is imported by IODEC-
LARATIONS which in turn is imported by each of the I/O modules. SYSGLOBALS should be
present in your LIBRARY if you are using any of the [/O modules.

The modules contained in INTERFACE are:

ASM
SYSGLOBALS
MINI BOOTDAMMODULE
LOADER
INITLOAD
ISR

MISC

FS
INITUNITS
LDR
SETUPSYS
KBD
INITKBD
KEYS
KEYSINIT
CRT
INITCRT
BAT
INITBAT
CLOCK
CLOCKINIT
Cl

CMD

09826-90075, rev: 1/83

2.3

2.4 Getting Started

Building Your LIBRARY

If you know how to use the Librarian, the brief description below will help you get started
building a new LIBRARY. If you don’t know how to use the Librarian yet, a step-by-step
procedure follows the brief description.

Before the Librarian is loaded, your computer configuration must be capable of supporting two
mass storage devices simultaneously. The fact that the new file cannot be taken off-line during
the process, necessitates the two-volume configuration. The second volume could be another
flexible disc drive, a hard disc, a Shared Resource Management system or a memory volume.

Making a Memory Volume

If you don’t have two disc volumes, you must create a memory volume. It is usually more
convenient to use the memory volume as the destination volume (the one containing the new
file). The amount of memory that must be available to make a new library using a single disc
and a memory-resident volume depends on how much will be put in the new library. If you
were to add both 10 and GRAPHICS to the original LIBRARY you would need to allocate
about 300 blocks of 512 bytes to the memory volume (153,600 bytes). Memory consumed by
the memory volume cannot be recovered without re-booting the computer.

To make a memory volume:

1. Atthe Command prompt level, press (_M_) . The computer responds:

*%% CREATING A MEMORY WOLUME ***

?

What unit number

2. You answer:

#50

It asks:

How many S5S12 brte BLOCKS 7
3. You answer:

300 (ENTER)

It asks:

?

How many entries in directory

4. You answer:
8
It finishes:
#350: (RAM) zeroed

This has reserved approximately 150K bytes of memory to use as a mass storage device.
It is like having a disc drive with a disc named ‘“‘RAM” inserted in it.

09826-90075, rev: 1/83

Getting Started 2.5

The Brief Description

Creating a library is one of the capabilities of the Librarian. Using the Librarian, modules are
copied from the Input library file to the Output library file. When all modules are copied, the
Output file is Kept. The operating system must now be informed of the new library. You can
rename the original LIBRARY to something else before the Librarian process and then create
the new library with the name LIBRARY; you can create the new library and then replace the
original using the Filer/Filecopy/Remove commands; or you can use the What/liBrary com-
mands to specify the new library filename as the System Library. The last solution is temporary.

When the conputer is re-booted, the operating system is initialized to look for
“SYSVOL:LIBRARY” again.

The Step-By-Step Example

In this example, you will build a LIBRARY to support graphics programming. Using the Module
Dependency Table at the end of this chapter, you find that this involves copying all of the
graphics modules from the GRAPHICS file and three of the modules from the 1O file (both files
are on the LIB: disc). In this example, the new library is created with the name “TEMP” on a
volume named “‘ANYVOL”. In this example, you should substitute the correct name of your
destination volume for ANYVOL. When finished, the new library’s filename is changed to
LIBRARY.

1. Have the LIBRARIAN file on-line and give the Librarian command from the Main Com-
mand Level by typing (L).
. 2. When the Librarian’s prompt is displayed, name the the Output file. Press (0) and
type:
ANYUOL : TEMP
3. Name the first Input file. Press (1) and type:

SYSYOL:LIBRARY.
The period in the file name prevents .CODE from being added.
4. Usethe (A) command to transfer All the modules.
5. Put the LIB: disc on-line, press (_1_) for Input and type:
LIB:GRAPHICS.,
Notice the period.
6. Usethe (A) command to transfer All the graphics modules to the new library.
7. Press(_1_)again to specify a new Input file and type:

LIB:10. (ENTER

Notice the period.
8. Press the space bar four times until the module name GENERAL_1 appears.

9. Use the Transfer command three times to transfer the next three modules. These are
GENERAL_1, HPIB_1 and GENERAL_2.

. When the Transfer is complete, give the Keep command by pressing (_K_J.

09826-90075, rev: 1/83

2.6 Getting Started

Before quitting the Librarian, you can examine the new library to see that all the modules are
there. Specify ANYVOL:TEMP as the Input file. Press the spacebar repeatedly. The names of
the modules contained in the library will be displayed one after another.

The last step is to Filecopy the new library called TEMP to the system volume with the name
LIBRARY. Give the Filer’s Filecopy command and type:
ANYQOL: TEMP.CODE :SYSVYOL:LIBRARY

If the original LIBRARY is still on SYSVOL, you will be informed of this and asked:

SYSUDL:LIBRARY
exists,, Remove, Ouverwrites Neither 7 (R/0/N)

Respond with the Remove option by pressing (R J.

Notes and Possible Problems

If you add enough modules to the Output file, the Librarian may eventually report the ‘‘file
header full”’ error. If this happens to you, start over and use the (_H) command to specify a
larger library Header before specifying the Output file. A header specification of 58 is usually
big enough for most situations.

09826-90075, rev: 1/83

Getting Started

The Module Dependency Table

The Module Dependency Table shows which modules are needed in the LIBRARY to support
the modules you must IMPORT.

Module

Imported Must Also Be in LIBRARY

RND SYSGLOBALS

LOCKMODULE SYSGLOBALS

DGL_LIB DGL_TYPES, DGL_VARS, DGL_AUTL, DGL_TOOLS, DGL_GEN, DGL_
RASTER, DGL_HPGL, DGL_CONFG_OUT, DGL_KNOB, DGL_HPGLI,
DGL_CONFG_IN, GLE_AUTL, GLE_UTLS, GLE_TYPES, GLE_STROKE,
GLE_STEXT, GLE_SMARK, GLE_SCLIP, GLE_FILE_IO, GLE_HPIB_IO,
GLE_HPGL_OUT, GLE_HPGL_IN, GLE_RAS_OUT, GLE_KNOBL_IN,
GLE_GEN, GLE_GENI

DGL_POLY DGL_TYPES, DGL_VARS, DGL_AUTL, DGL_TOOLS, DGL_GEN, DGL_
RASTER, DGL_HPGL, DGL_CONFG_OUT, DGL_KNOB, DGL_HPGLI,
DGL_CONFG_IN, DGL_LIB, GLE_AUTL, GLE_UTLS, GLE_TYPES,
GLE_STROKE, GLE_STEXT, GLE_SMARK, GLE_SCLIP, GLE_FILE_IO,
GLE_HPIB_IO, GLE_HPGL_OUT, GLE_HPGL_IN, GLE_RAS_OUT,
GLE_KNOBL_IN, GLE_GEN, GLE_GENI

DGL_INQ DGL_TYPES, DGL_VARS, DGL_GEN, GLE_TYPES, GLE_GEN

DGL_TYPES —

GENERAL_O IODECLARATIONS, SYSGLOBALS

GENERAL_1 IODECLARATIONS, SYSGLOBALS

GENERAL_2 IODECLARATIONS, SYSGLOBALS, GENERAL_1, HPIB_1

GENERAL_3 IODECLARATIONS, SYSGLOBALS

GENERAL_4 IODECLARATIONS, SYSGLOBALS, HPIB..1

HPIB_0 IODECLARATIONS, SYSGLOBALS

HPIB_1 IODECLARATIONS, SYSGLOBALS

HPIB_2 IODECLARATIONS, SYSGLOBALS, HPIB_0, HPIB_1

HPIB_3 IODECLARATIONS, SYSGLOBALS, GENERAL_1, HPIB_0, HPIB_1

SERIAL_0O IODECLARATIONS, SYSGLOBALS

SERIAL_3 IODECLARATIONS, SYSGLOBALS

IOCOMASM IODECLARATIONS, SYSGLOBALS

IODECLARATIONS SYSGLOBALS

The Module Dependency Table

DGL_LIB needs these modules at load time.

ASM, FS, HPM, IODECLARATIONS, ISR, KBD, KEYS, MINI, MISC, SYSGLOBALS,
GENERAL_1, GENERAL_Z2, HPIB_1.

DGL_INQ needs these modules at load time.

ASM, SYSGLOBALS

09826-90075, rev: 5/83

2.7

2.8 Getting Started

09826-90075, rev: 1/83

Chapter 2
The LIF Procedures

procedures have been dropped from the Procedure Library since they are now included in HP
Standard Pascal on your Series 200 computer.

The LIF file handling capabilities were included in the Pascal filing system in Pascal 2.0. The LIF '

09826-90075, rev: 5/83

4 LIF Procedures

09826-90075, rev: 5/83

Sample Programs

PROGRAM SAMPLEL (INPUT,QUTPUT,LISTING)

{THIS PROGRAM SHOWS HOW TO ACCESS LIF ASCII FILES
g:3N5 THE USE OF SOME OF THE NON READ/WRITE
FUNCTIONS IN THE LIF LIBRARY.

;MPDRT LIFLIBS

VAR
DFILE :LIFFILES {lif file info. Pointer}
BUFFER :LIFBUFFER3
STRBUF :STRINGL[BOI1;
I+J+sUNIT+ASIZE :INTEGERI
NAME :LIFNAME

BEGIN
{set file name and pascal unit #}

NAME:=‘TESTF ‘3
UNIT:=33

{pPurde the file to make sure it is dgone before trvind to create

I:=LIFPURGE(UNIT :NAME) j
WRITELN(‘PURGE RESULT',I})i

{ create an ASCII (tvype 1) file to occuPry 5 sectors }

:=LIFCREATE(UNIT :NAME +1 :5) &%
WRITELN(‘CREATE RESULT’ +I)i

open the file ASCII (tvpe 1) file on svstem unit UNIT named NAME
for writing (LIFW). LIFGETFIB indicates that the file info. record

is to be allocated now and DFILE made to Point to it
I:=LIFOPEN(DFILE,LIFGETFIB UNIT sNAME +1 sLIFW) 3
WRITELN(‘OPEN RESULT’.I1)3
{ check the file size+. this i the created size (in sectors) }

I:=LIFGETFLD(DFILE LIFFSIZEJ) 3
WRITELN(‘FILE SIZE’ +J) 3§

{ Put data into the file from a string

note: the size is passed in a separate parameter from the data.

note: if the strindg is lendgth O then a rangde error will result

from the use of STRBUFL11]

STRBUF:=‘ASCII TEST RECORD 1’3
I:=LIFASCIIPUT(DFILE STRLEN(STRBUF) STRBUFL[11])3
WRITELN(‘PUT RESULT‘,I)3

{pPut data into the file from a packed arrav of 0..255 (TYPE LIFBUFFER)?}

FOR J:=0 TO 29 DO BUFFERL[JI:=0RD(’'A’);

I:=LIFASCIIPUT(DFILE»30,BUFFER)
WRITELN(‘PUT RESULT':I)}

LIF Procedures 5

The LIF library procedures are exercised for your examination in the following programs.

6 LIF Procedures

{close the file, save it and reduce the allocated size to the
minimum number of sectors needed to hold the data now in the file

:=LIFCLOSE(DFILE LIFMINSIZE)
WRITELN(‘CLOSE RESULT’+I)1

{oren the file for reading (LIFR) 2}
+=LIFOPEN(DFILE LIFGETFIB JUNIT ,NAME 1 ,LIFR) S

{ check the file size 1}
I:=LIFGETFLD(DFILE,LIFFSIZEJ)3i
WRITELNC(‘FILE SIZE’ sJ) 3

{ read each record into a packed array of 0,,255 and eprint it }

WHILE NOT LIFEDF(DFILE) DO
BEGIN
:=LIFASCIIGET(DFILE ,B0+ASIZE BUFFER)§

{-- note that ASIZE is the number of data bytes --}
FOR J:=0 TO ASIZE-1 DO WRITE(CHR(BUFFERLJ3))}
WRITELNS

END

{ close the file and Keer it }
:=LIFCLOSE(DFILELIFKEEP) }

WRITELN('SECOND READING ‘)3

{orpen the file and read each record into a string 2
I1:=LIFOPEN(DFILELIFGETFIB ,UNIT NAME:1,LIFR) 3

WHILE NOT LIFEOF(DFILE) DO
BEGIN

{ check the record size before reading the datal
I1:=LIFGETFLD(DFILE LIFRSIZE ASIZE)}
IF ASIZE»>20 THEN WRITELN(‘BIG RECORD’»ASIZE);

{force string size to avoid a rande check error on call to LIFASCIIGET 1}
SETSTRLEN(STRBUF +B0) j

{ 80 is the max number of bvtes to read »
{ ASIZE will contain the actual number read}
1:=LIFASCIIGET(DFILE +80,ASIZE +STRBUFL11)}

{set the strind lendth before usind the string }
SETSTRLEN(STRBUF +ASIZE) }

WRITELN(STRBUF) 3§
END 3

{ close the file and remove(Purde) it }
I:=LIFCLOSE(DFILE,LIFREMOVE)
END.,

LIF Procedures 7

PROGRAM SAMPLEZ (INPUT,OUTPUT);
{prodram to show how to access LIF non ASCII files 1}

IMPORT LIFLIBS
TYPE
SECTYP = ARRAYL1.,.2561 OF CHARS

VAR
FREC tLIFFILES {lif file info Pointer 1}
NAME :LIFNAME§
SECTOR :SECTYP3
c1 tCHAR S
ASIZE »DVALUE »SBYTE+S 1K L »V0L: INTEGERS

CONST
NUMSECTS = 43

BEGIN

{ set PASCAL unit # and 1lif file name
voL := 33
NAME := ‘RDATA’;

{ remove the file before trying to create it}
S 1= LIFPURGE(VOL 'NAME)

{create a tvype 9 file to occupy 4 sectors
note: there is no formal definiton for a type 9 file,
it is used here only as an exampPle 2

S := LIFCREATE(VYOL sNAME,9.,4)}

{orPen the file for writing}
S := LIFOPEN(FRECsLIFGETFIB VOL :NAME 3 :LIFHW)]

{ if no error on oren then proceed I}
IF S = 0 THEN
BEGIN

{set character to fill record?
Cl = ‘A’}

{write all records}
FOR I := 1 TO NUMSECTS DO
BEGIN

{fill the output record?
FOR L := 1 TO 256 DO SECTORLL] := C13

{calculate start byte for each record?
SBYTE := (NUMSECTS-1)#25G3

writeln(‘sector’snumsects-i+1:2,sbvtezB,’ ‘acl) i

{det character to fill next record}
Cl := SUCC(C1)3

{output the record}
S s= LIFPUT(FREC:SBYTE +256+SECTOR) §

8 LIF Procedures

{ if put oK then continue %}
IF S<»0 THEN
BEGIN
Wwriteln(‘status is’+5:2s° sector is’+it2)3

{checK actual bvtes writenl}
S := LIFGETFLD(FREC LIFRSIZE DVALUE)
writeln(’lifrsize is‘sdvaluesd)s
END}
END;

{close the file and Keer it}

S 1= LIFCLOSE(FREC,LIFKEEP) 3§

END 3
Wwriteln(/ --ccemmommmmme e ‘)i
{ now read the file and see what got Put out there

S

t= LIFOPEN(FREC,LIFGETFIB,VOL sNAME 9 LIFR)}

{ if oren workKked then continue %}
IF §=0 THEN
BEGIN

{ set start bvte 2
SBYTE := 0}

{ read all records %}

FOR K :

1 TO NUMSECTS DO

BEGIN

{

Wwriteln(’'sector’sK:2ssbyte:By’ 7)3

read and use SBYTE as auto incremented by LIFGET %}
S := LIFGET(FREC +SBYTE 256 +ASIZE:SECTOR) 3§
IF S<»0 THEN writeln{‘det failed’',s5:3)1}

{print rpart of the record?

FOR I := 1 TO 20 DO WRITE(SECTORLII}
WRITELNS

END i

{ close and remove(rurde) the file}

s

END3
END.

:= LIFCLOSE(FRECLIFREMOVE) i}

Computer
Museum

Chapter 3
The Graphics Procedures

Introduction

The Device-Independent Graphics Library (DGL) is a collection of predefined procedures that
allow Pascal to communicate with most HP graphic peripherals. These procedures are listed in
the Procedure Library Summary at the front of the Library Reference section and defined
within the Library Reference.

DGL is a low level two-dimensional graphics system designed to provide the elementary input
and output functions necessary for controlling graphic devices.

The capabilities provided by DGL can be divided into five major areas: graphics output primi-
tives, primitives attributes, viewing transformation, input, and control.

Graphics output primitives are the building blocks of a graphics picture. The graphics system
uses three types of graphics output primitives: lines, text, and moves. Primitive attributes affect
the appearance of individual output primitives. For example, a line primitive’s attributes are
color and linestyle. Character size is a primitive attribute which only applies to text.

A viewing transformation is the method whereby an object, a collection of graphics primitives
defined in an abstract coordinate system, is converted to an image displayed on a physical
display device.

An input capability provides a means of entering information from a graphic device; thus
allowing graphic programs to be truly interactive.

Control functions are used to manage various aspects of a graphics application such as in-
itialization and modification of the graphics environment.

The viewing transformation is explained first in this chapter, followed by device handler in-
formation. Helpful programming examples with explanations included in the source code are
provided following the device handler information. The chapter is concluded with a list of
deviations from DGL 1000 and an error code summary.

10 Graphics Procedures

The Viewing Transformation

Of these five functional capabilities, the viewing transformation is the most critical to grasp. The
viewing transformation is a mapping from one two-dimensional coordinate system to another.

One of the coordinate systems is the world coordinate system. This is an abstract coordinate
system in which the user specifies the location of all graphics primitives. The second is the
virtual coordinate system. This coordinate system describes the view surface. The view surface
is the portion of the physical display device which will be used to display the graphics image.

The viewing transformation maps from the world coordinate system to the virtual coordinate
system. The virtual coordinate system is then mapped onto the display device which produces
the picture that the user sees.

-1—— PHYSICAL DISPLAY SURFACE

R N S <——— | OGICAL DISPLAY SURFACE
< ' VIEW SURFACE

VIRTUAL .

—— COORDINATE
SYSTEM

VIEWPORT

WINDOW ——

WORLD COORDINATE SYSTEM

Graphics Procedures 11

Device Handlers
Pascal supports the following devices for input (locators) and/or output (display) operations.

e HP Models 16, 26 and 36 Computers

e HP 9872A/B/C/S/T Plotters

e HP 7580A and 7585A Plotters

e HP 7470A Plotter

e HP 98627A Color Interface (display only)
e HP 9111A Graphics Tablet (locator only)
® General HPGL Devices

Unrecognized HPGL devices are handled on the assumption that they have the same capabili-
ties as the HP 9872B plotter. See the end of this chapter for details concerning the general
display handler.

HP Models 16, 26 and 36 Displays

Description
The dimensions of the graphic displays are as follows:
Model 16

Screen size: 168 mm wide by 126 mm high

Screen capacity: 400 points wide by 300 points high
Aspect ratio of maximum area: 0.75

Model 26
Screen size: 120 mm wide by 90 mm high
Screen capacity: 400 points wide by 300 points high
Aspect ratio of maximum area: 0.75

Model 36
Screen size: 210 mm wide by 160 mm high
Screen capacity: 512 points wide by 390 points high
Aspect ratio of maximum area: 0.7617

The default logical display surface of the graphics display device is the maximum physical limits
of the screen. The physical origin is the lower left corner of the display.

The view surface is always centered within the current logical display surface.

09826-90075, rev: 1/83

12 Graphics Procedures

Initialization
When the graphics display is initialized (DISPLAY_INIT) the following device dependent
actions are performed:

e The starting position is in the lower left corner of the display.

e Graphics memory is cleared.

e The graphics display is turned on.

® The view surface is centered within the logical display limits.

® The drawing mode (see OUTPUT_ESC) is set to dominate.

e The DISPLAY_INIT CONTROL parameter is ignored for the graphics display.

Primitive Attributes

SET_COLOR
The supported values of color are:

COLOR = 0 — Color set to background color (erase)
= 1 — Color set to white.

The color attribute interacts with the set special drawing mode output escape function (1052) as

follows:
DOMINATE (INTEGERarray[1] = 0) (Default mode)
COLOR = 0 — Background (erase, set bits to 0)

1 — White (set bits)

NON-DOMINATE (INTEGERarray[1] = 1)
COLOR = 0 — Background (erase, set bits to 0)
= 1 — White (set bits to 1)
ERASE (INTEGERarray[1] = 2)
COLOR = 0 — Background (erase, set bits to 0)
= 1 — Erase white {set bits to 0)
COMPLEMENT (INTEGERarray[1] = 3)

COLOR = 0 — Background (erase, set bits to 0)

1 — Complement (invert bits)

09826-90075, rev: 1/83

Graphics Procedures

SET_LINE_STYLE

Eight pre-defined linestyles are supported on the graphics display. All of the linestyles may be
classified as being “‘continuous’’.

CLEAR_DISPLAY
A call to CLEAR_DISPLAY erases all of the graphics display.

Inquiry Escape Functions

None.
‘ Output Escape Functions
OPCODE FUNCTION
52 Dump graphics to the graphics printer (PRINTER:).
1050 Turn on or off the graphics display.

INTEGERarray [1] = 0 — turn display off.
INTEGERarray [1] <> 0 — turn display on.

1051 Turn on or off the alpha display.
INTEGERarray [1] = 0 — turn display off.
INTEGERarray [1] <> Q0 — turn display on.

1052 Set special drawing modes. Using this escape function will redefine the meaning of the
set color attribute. For details on how a given drawing mode affects a color set
SET-COLOR above. Out of range values default to dominate drawing mode.

INTEGERarray[1] = 0 — Dominate'drawing mode.
= 1 — Non-dominate drawing mode.
= 2 — Erase drawing mode.
= 3 — Complement drawing mode.

Locator Echoes on the Graphics Display

All locator echoes are supported by the graphics display. The starting position is unaffected by
echoes on the graphics display.

09826-90075, rev: 1/83

14 Graphics Procedures

HP Models 16, 26 and 36 Locators

The default locator limits are set equal to the maximum phuysical limits of the screen.
The physical origin of the locator device is the lower left corner of the display.

Initialization

LOCATORL_INIT
When the locator device is initialized, the graphics display is left unaltered.

Await Locator Input

AWAIT_LOCATOR
When using the HP Model 16, 26 or 36, as await locator the keyboard keys have the following
meanings:

Arrow keys — Move the cursor in the direction indicated.

Knob — Move the cursor right and left.

Knob with SHIFTa — Move the cursor up and down.

Number keys (1 to 9) — Change the amount the cursor is moved per arrow key press or
knob rotation. (_1_) provides the least movement and (_9) provides the most.

All other keys act as the locator buttons. The ordinal value of the locator button (key) struck is
returned in BUTTON.

Invoking AWAIT_LOCATOR with ECHO = 0 or ECHO = 1 turns on the graphics display.

Echo Supported
Locator input can be echoed on either a graphics display device or a locator device. For the
echoes supported on a graphics display device, see the chapter which describes the graphics
display in question.
The supported echoes on the locator device are as follows:

ECHO# Echo Performed

0 No echo performed.

1 The position of the locator is indicated by a small crosshair cursor on the internal
graphics display. The initial position of the cursor is located at the current starting
position of the internal graphics display. For back to back AWAIT_LOCATOR calls this
would mean the second AWAIT_LOCATOR would begin were the first AWAIT_LOCA-
TOR left the cursor.

9 Same as ECHO #1
or greater

09826-90075, rev: 1/83

Graphics Procedures 14.1

Sample Locator Input

The SAMPLE-LOCATOR function returns the last AWAIT-LOCATOR result of 0.0 if
AWAIT-LOCATOR has not been invoked since LOCATOR-INIT.

Echoes Supported:
ECHO# Echo Performed
0 No echo

1 The desktop beeper is sounded when the locator is sampled.

09826-90075, rev: 1/83

14.2 Graphics Procedures

09826-90075, rev: 1/83

Graphics Procedures

HP 9872A/B/C/S/T Plotters

Description
The dimensions of the HP 9872 plotters are as follows:

Platen surface: 420mm wide by 297mm high

Plotting area: 400mm wide by 285mm high

Plotting capacity: 16000 points wide by 11400 points high
Aspect ratio of maximum area: 0.7125

Resolution: 40.0 points/mm in X and Y directions

The default logical display surface is set equal to the area defined by P1 and P2 at the time
DISPLAY_INIT is invoked.

The physical origin of the graphics display is 12mm to the right of the left edge of the platen and
6mm above the lower edge of the platen. This is the lower left boundary for pen movement.

The viewsurface is always justified in the lower left corner of the current logical display surface.

Initialization

DISPLAY_INIT
When the HP 9872 plotters are initialized the following device dependent actions are per-
formed:

¢ The starting position is undefined.

® Pen velocity is set to 36 cm/sec.

® Paper cutter is enabled (HP 9872S/T).

e Advance page option is enabled (HP 9872S/T).

® Paper is advanced one full page (HP 98725/T).

® The DISPLAY_INIT CONTROL parameter is ignored for the HP 9872 displays.

Primitive Attributes

SET_COLOR
The supported values of color are:

Current pen is put away.

Pen 1 is selected.

Pen 2 is selected.

Pen 3 is selected.

Pen 4 is selected.

Pen 5 is selected (HP 9872C/T).
Pen 6 is selected (HP 9872C/T).
Pen 7 is selected (HP 9872C/T).
Pen 8 is selected (HP 9872C/T).

O~NONO R WN=O

15

16 Graphics Procedures

SET_LINE_STYLE
Seven predefined linestyles are supported on the HP 9872 plotters. All linestyles supported on
the HP 9872 plotters may be classified as being ‘‘continuous’.

S
E——— I
H—]
S — =)
c— - - — — — — — - — — — - CONTINUOUS
1

CLEAR_DISPLAY
A call to CLEAR_DISPLAY is ignored for the HP 9872A/B/C plotters and advances the paper
on the HP 9872S/T plotters.

Inquiry Escape Functions
No inquiry escape functions are supported.

Output Escape Functions
Opcode Function
1052 Enable cutter. Provides means to control the HP 9872 S/T paper cut-
ters. Paper is cut after it is advanced.

IntegerArray[1] = O Cutter is disabled
IntegerArray[]1] <> 0 Cutter is enabled

1053 Advance the paper either one half or a full page.
(HP 9872S or HP 9872T only).
IntegerArray[1] = 0 Advance page half
IntegerArray[1] <> 0 Advance page full

2050 Select pen speed. This instruction allows the user to modify the plotter’s
pen speed. Pen speed may be set from 1 to 36 cm / sec.
IntegerArray[1] = Pen speed (integer from 1 to 36).
IntegerArray[2] = Pen number
(integer 1 to 4 for HP 9872A/B/S).
(integer 1 to 8 for HP 9872C/T).
Pen numbers outside of these ranges
will change speed for all pens.

Locator Echoes on the Graphics Display

AWAIT_LOCATOR

The type of echoes available on the graphics display depend on whether or not the graphics

display and locator are the same physical device. For echoes supported on the locator device, ‘
see the section which discusses the locator device in question.

Graphics Procedures

Same Physical Device
If the locator and display are the same device (e.g., HP 9872 display and HP 9872 locator at
the same device address) then the following echoes are supported on the graphics display:

Echo Number

Echo Performed

2

Small cursor

Initially the 9872’s pen will be moved to the current locator echo posi-
tion. The pen will continue to reflect the current locator position (i.e.,
tracked) until the locator operation is terminated (i.e. ENTER pressed).

Full cross hair cursor
Simulated by ECHO #2.
Rubber band line
Simulated by ECHO #2.
Horizontal rubber band line

Simulated by ECHO #2 except the current locator X coordinate and
the locator echo position Y coordinate are returned.

Vertical rubber band line

Simulated by ECHO #2 except the locator echo position X coordinate
and the current locator Y coordinate are returned.

Snap horizontal / vertical rubber band line

If the locator’s X displacement from the locator echo position is greater
than or equal to its Y displacement, ECHO #5 is simulated. Otherwise
ECHO #6 is simulated.

Rubber band box
Simulated by ECHO #2.

17

18 Graphics Procedures

Different Physical Devices
If the locator and graphics display are physically different (e.g., HP 9872 display and 9111A
locator), then the following echoes are supported on the display:

Echo Number Echo Performed

2 Small cursor

Initially the 9872’s pen will be moved to the current locator echo posi-
tion. The pen will continue to reflect the current locator position (i.e.,
tracked) until the locator operation is terminated.

3 Full cross hair cursor
Simulated by ECHO #2.

4 Rubber band line
Simulated by ECHO #2.

5 Horizontal rubber band line

Initially the plotter’s pen will be moved to the current locator echo
position. The pen will then continue to reflect the X coordinate of the
current locator position and the Y coordinate of the current locator
echo positon,

6 Vertical rubber band line

Initially the plotter’s pen position will be moved to the current locator
echo position. The pen will then continue to reflect the X coordinate of
the current locator echo position and the Y coordinate of the current
locator position.

7 Snap horizontal / vertical rubber band line

If the locators X displacement from the locator echo position is greater
than or equal to its Y displacement, ECHO #5 is simulated. Otherwise
ECHO #6 is simulated.

8 Rubber band box
Simulated by ECHO #2.

HP 9872A/B/C/S/T Locator

The default logical locator limits are set equal to the area defined by P1 and P2.

The physical origin of the locator device is 12 mm to the right of the left edge of the platen and 6
mm above the lower edge of the platen. This is the lower left corner of pen movement.

No locator points are returned while the pen control buttons are depressed.

Initialization

LOCATOR.INIT
When the locator device is initialized, the plotter’s graphics display is left unaltered.

Graphics Procedures 19

Wait Locator Input

AWAIT_LOCATOR

The wait locator function enables a digitizing mode in the HP 9872 plotter which causes the
enter light to be turned on. The operator then positions the pen to the desired position with the
cursor buttons and then strikes the enter key. A one is returned as the button value if the pen is
down and a zero is returned if the pen is up.

Echo Supported

Locator input can be echoed on either a graphics display device or a locator device. For the
echoes supported on a graphics display device, see the chapter which describes the graphics
display in question.

When following locator input on the locator device with ECHO =0 or ECHO =1, the pen
position will remain at the last position it was moved to by the operator. This means that the
starting position for the next graphics primitive will be wherever the pen was left.

The supported echoes on the locator device are as follows:

Echo Number Echo Performed

0 Same as ECHO #1
1 The HP 9872’s pen tracks the locator position.
9 Same as ECHO #1

or greater

Sample Locator Input
SAMPLE_LOCATOR

The sample locator function returns the current plotter pen position without waiting for an
operator response.

Echoes Supported
No locator echoes are supported with the HP 9872 graphics plotters when using the sample
locator functions.

20 Graphics Procedures

HP 7470A Plotter

Description
The dimensions of the HP 7470 plotter are as follows:

Plotting area: 257.5 mm wide by 190 mm high
Plotting capacity: 10300 points wide by 7600 points high
Aspect ratio of maximum area: 0.737864

Resolution: 40 points / mm in X and Y directions

The default logical display surface is set equal to the area defined by P1 and P2.

The viewsurface is always justified in the lower left corner of the current logical display surface
(edge closest to power plug).

Initialization

When the HP 7470 plotter is initialized (DISPLAY_INIT) the following device dependent ac-
tions are performed:

® The starting position is undefined.
® Pen velocity is set to 38 cm/sec.
e The DISPLAY_INIT CONTROL parameter is ignored for the HP 7470 display.

Primitive Attributes

SET_COLOR
The supported values of color are:

1 Pen 1 is selected.
2 Pen 2 is selected.

SET_LINE_STYLE

Seven pre-defined linestyles are supported on the HP 7470 plotter. All linestyles supported on
the HP 7470 plotter may be classified as being ‘‘continuous’.

CONTINUOUS

Graphics Procedures 21

CLEAR-DISPLAY
A call to CLEAR_DISPLAY is ignored for the HP 7470 plotter.

Inquiry Escape Functions
No inquiry escape functions are supported.

Output Escape Functions

Opcode Function
2050 Select pen speed. This instruction allows the user to modify the plotter’s pen
speed. Pen speed may be set from 1 to 38 cm / sec.
IntegerArray[1] = Pen speed (integer from 1 to 38).
IntegerArray[2] = Pen number (integer 1 or 2; others select all pens).

Locator Echoes on the Graphics Display

AWAIT_LOCATOR

The type of echoes available on the graphics display depends on whether or not the graphics
display and locator are the same physical device. For echoes supported on the locator device,
see the section which discusses the locator device in question.

Same Physical Device
If the locator and display are the same device (e.g., HP 7470 display and HP 7470 locator at
the same device address) then the following echoes are supported on the graphics display:

Echo Number Echo Performed

2 Small cursor

Initially the 7470’s pen will be moved to the current locator echo position. The pen
will continue to reflect the current locator position (i.e., tracked) until the locator
operation is terminated (i.e., ENTER pressed).

3 Full cross hair cursor
Simulated by ECHO #2.

4 Rubber band line
Simulated by ECHO #2.

5 Horizontal rubber band line

Simulated by ECHO #2 except the current locator X coordinate and the locator
echo position Y coordinate are returned.

6 Vertical rubber band line

Simulated by ECHO #2 except the locator echo position X coordinate and the
current locator Y coordinate are returned.

7 Snap horizontal / vertical rubber band line

If the locators X displacement from the locator echo position is greater than or
equal to its Y displacement, ECHO #5 is simulated. Otherwise ECHO #6 is
simulated.

8 Rubber band box
Simulated by ECHO #2.

22 Graphics Procedures

Different Physical Devices
If the locator and graphics display are physically different (e.g., HP 7470 display and 9111A
locator), then the following echoes are supported on the display:

Echo Number Echo Performed
2 Small cursor

Initially the 7470’s pen will be moved to the current locator echo position. The pen
will continue to reflect the current locator position (i.e., tracked) until the locator
operation is terminated.

3 Full cross hair cursor
Simulated by ECHO #2.

4 Rubber band line
Simulated by ECHO #2.

5 Horizontal rubber band line

Initially the plotter’s pen will be moved to the current locator echo position. The
pen will then continue to reflect the X coordinate of the current locator position
and the Y coordinate of the current locator echo positon.

6 Vertical rubber band line

Initially the plotter’s pen position will be moved to the current locator echo posi-
tion. The pen will then continue to reflect the X coordinate of the current locator
echo position and the Y coordinate of the current locator position.

7 Snap horizontal / vertical rubber band line

If the locators X displacement from the locator echo position is greater than or
equal to its Y displacement, ECHO #5 is simulated. Otherwise ECHO #6 is

simulated.
8 Rubber band box
Simulated by ECHO #2.
HP 7470 Locator

The default logical locator limits are set equal to the area defined by P1 and P2.
No locator points are returned while the pen control buttons are depressed.

Initialization

LOCATOR_INIT
When the locator device is initialized, the plotter’s graphics display is left unaltered.

Wait Locator Input

AWAIT_LOCATOR

The wait locator function enables a digitizing mode in the HP 7470 plotter which causes the
enter light to be turned on. The operator then positions the pen to the desired position with the
cursor buttons and then strikes the enter key. Button returns a one if the pen is down and a zero
if the pen is up.

Graphics Procedures 23

Echo Supported

Locator input can be echoed on either a graphics display device or a locator device. For the
echoes supported on a graphics display device, see the chapter which describes the graphics
display in question.

Following locator input, the pen position will remain at the last position it was moved to by the
operator. This means that the starting position for the next graphics primitive will be wherever
the pen was left.

The supported echoes on the locator device are as follows:

Echo Number Echo Performed

0 Same as ECHO #1
1 The HP 7470’s pen tracks the locator position.
9 and greater Same as ECHO #1

Sample Locator Input

SAMPLE_LOCATOR
The sample locator function returns the current plotter pen position without waiting for an
operator response.

Echoes Supported

No locator echoes are supported with the HP 7470 graphics plotters when using the sample
locator functions.

09826-90075, rev: 1/83

24 Graphics Procedures

HP 7580 and 7585 Plotters

Description
The dimensions of the HP 7580 plotter are as follows:

Plotting area: 809.5mm wide by 524.25mm high

Plotting capacity: 32 380 points wide by 20 970 points high
Aspect ratio of maximum area: 0.6476

Resolution: 40.0 points/mm in X and Y directions

The dimensions of the HP-7585 plotter are as follows:

Plotting area: 1100mm wide by 890mm high

Plotting capacity: 44 000 points wide by 35 670 points high
Aspect ratio of maximum area: 0.8090

Resolution: 40.0 points/mm in X and Y directions

The default logical display surface is set equal to the area defined by P1 and P2 at the time
DISPLAY_INIT is invoked. The maximum logical display surface, that is the largest size that the
logical display surface may be set with the SET_DISPLAY_LIM procedure, is determined by the
size of paper loaded in the plotter at the time the DISPLAY_INIT procedure is invoked.

If the paper is changed while the graphics display is initialized, it should be the same size of
paper that was in the plotter when DISPLAY_INIT was called. If a different size of paper is
required, the device should be terminated (DISPLAY_TERM) and re-initialized after the new
paper has been placed in the plotter.

The view surface is always justified in the lower left corner (corner nearest the turret) of the
current logical display surface.

The phuysical origin is at the lower left boundary of pen movement.

Initialization

When the plotter is initialized (DISPLAY_INIT) the following device dependent actions are
performed:

® The starting position is undefined.

® Pen velocity, force, and acceleration are set to the default values for the turret loaded.
o ASCII character set is set to ‘ANSI ASCIT'.

® The automatic pen options are set.

® The DISPLAY_INIT CONTROL parameter is ignored for the graphics display.

09826-90075, rev: 1/83

Graphics Procedures 25

Primitive Attributes
SET_COLOR

The supported values of color are:

COLOR = 0 — Current pen is put away.
= 1 — Pen 1 is selected.

2 — Pen 2 is selected.

= 3 — Pen 3 is selected.

= 4 — Pen 4 is selected.

= 5 — Pen 5 is selected.

= 6 — Pen 6 is selected.

7 — Pen 7 is selected.

8 — Pen 8 is selected.

SET_LINE_STYLE

Thirteen pre-defined linestyles are supported on the plotters. Linestyles one through seven may
be classified as being “‘continuous”. Linestyles eight through thirteen are the same patterns as
styles two through eight drawn in the ‘‘vector adjusted’ format.

P —]
® e el =
g ST T T T - - - - - = = - VECTOR ADJUSTED
S T T T T T ‘F_—_——T} ’
oo —————— HIL N
oooooooooooe L

CONTINUOUS

CLEAR_DISPLAY
A call to CLEAR_DISPLAY is ignored for the plotter.

09826-90075, rev: 1/83

26 Graphics Procedures

Inquiry Escape Functions

OPCODE FUNCTION
2050 Inquire about current turret.
INTEGERarray [1] = —1 — Turret mounted, type UNKNOWN
INTEGERarray [1] = 0 — No turret mounted
INTEGERarray (1] = 1 — Fiber tip pens
INTEGERarray [1] = 2 — Roller ball pens

INTEGERarray [1] = 3 — Cabpillary pens

INTEGERarray [2] = 0 — No turret mounted or turret has no pens
INTEGERarray [2] = n — Sum of these values:
: Penin stall #1
Pen in stall #2
Pen in stall #3
8: Penin stall #4
16: Pen in stall #5
32: Penin stall #6
64: Penin stall #7
128: Pen in stall #8

el

For example, if INTEGERarray[2] = 3, pens would only be contained in stalls 1 and 2.

Output Escape Functions

OPCODE

FUNCTION

1052

2050

2051

2052

Set automatic pen. This instruction provides a means for utilizing the smart pen options
of the plotter. Initially, all automatic pen options are enabled.

INTEGERarray [1] = n — Sum of these values:
1 : Lift pen if it has been down for 60 seconds.
2 . Put pen away if it has been motionless for 20 seconds.
4 : Do not select a pen until a command which makes a mark. This
causes the pen to remain in the turret for the longest possible time.

Select pen velocity. This instruction allows the user to modify the plotter’s pen speed.
Pen speed may be set from 1 to 60 cm/sec.

INTEGERarray [1] = Pen speed (integer from 1 to 60).
INTEGERarray [2] = Pen number {integer from 1 to 8; other integers select all pens)
Select pen force. The force may be set from 10 to 66 gram-weights.

INTEGERarray [1] = Pen force (integer from 1 to 8).
10 gram-weights
18 gram-weights
26 gram-weights
34 gram-weights
42 gram-weights
50 gram-weights
58 gram-weights
66 gram-weights

S A A i e

INTEGERarray [2] = Pen number (integer 1 to 8; other integers select all pens)
Select pen acceleration. The acceleration may be set from 1 to 4 G's.

INTEGERarray [1] = Pen acceleration (integer from 1 to 4).
INTEGERarray [2] = Pen number (integer 1 to 8; other integers select all pens)

09826-90075. rev: 1/83

Graphics Procedures 27

Locator Echoes on the Graphics Display

AWAIT_LOCATOR

The type of echoes available on the graphics display depend on whether or not the graphics
display and locator are the same physical device. For echoes supported on the locator device,
see the section which discusses the locator device in question.

If the locator and display are the same device {e.g. HP 7580 display and HP 7580 locator at the
same device address) then the following echoes are supported on the graphics display:

ECHO# ECHO PERFORMED

2 Small cursor

Initially the plotter’s pen will be moved to the current locator echo position. The pen will
continue to reflect the current locator position (i.e., tracked) until the locator operation is
terminated (i.e., ENTER pressed).

3 Full cross hair cursor
Simulated by ECHO #2.

4 Rubber band line
Simulated by ECHO #2.

5 Horizontal rubber band line

Simulated by ECHO #2 except the current locator X coordinate and the locator echo
position Y coordinate are returned.

6 Vertical rubber band line

Simulated by ECHO #2 except the locator echo position X coordinate and the current
locator Y coordinate are returned.

7 Snap horizontal / vertical rubber band line

If the locators X displacement from the locator echo position is greater than or equal to
its Y displacement, ECHO #5 is simulated. Otherwise ECHO #6 is simulated.

8 Rubber band box
Simulated by ECHO #2.

09826-90075, rev: 1/83

28 Graphics Procedures

If the locator and graphics display are physically different (e.q. HP 7580 display and 9111A
locator), then the following echoes are supported on the display:

ECHO# ECHO PERFORMED

2 Small cursor
Initially the plotter’s pen will be moved to the current locator echo position. The pen will
continue to reflect the current locator position (i.e. tracked) until the locator operation is
terminated.

3 Full cross hair cursor
Simulated by ECHO #2.

4 Rubber band line
Simulated by ECHO #2.

5 Horizontal rubber band line
Initially the plotter’s pen will be moved to the current locator echo position. The pen will
then continue to reflect the X coordinate of the current locator position and the Y
coordinate of the current locator echo positon.

6 Vertical rubber band line
Initially the plotter’s pen position will be moved to the current locator echo position. The
pen will then continue to reflect the X coordinate of the current locator echo position
and the Y coordinate of the current locator position.

7 Snap horizontal / vertical rubber band line
If the locators X displacement from the locator echo position is greater than or equal to
its Y displacement, ECHO #b5 is simulated. Otherwise ECHO #6 is simulated.

8 Rubber band box

Simulated by ECHO #2.

09826-90075, rev: 1/83

Graphics Procedures

HP 7580 and 7585 Locators

The default logical display surface is set equal to the area defined by P1 and P2 at the time
LOCATORL_INIT is invoked. The maximum logical display surface, that is the largest size that
the logical locator surface may be set with the SET_LOCATOR_LIM procedure, is determined
by the size of paper loaded in the plotter at the time the LOCATOR_INIT procedure is invoked.

If the paper is changed while the locator is initialized, it should be the same size of paper that
was in the plotter when LOCATOR_INIT was called. If a different size of paper is required, the
device should be terminated (LOCATOR_TERM) and re-initialized after the new paper has
been placed in the plotter.

The physical origin of the locator device is at the lower left corner of the pen movement.

Initialization

LOCATOR_INIT
When the locator device is initialized, the plotter’s graphics display is left unaltered.

Await Locator Input

AWAIT_LOCATOR

The AWAIT_LOCATOR function enables a digitizing mode in the HP 7580A/7585A plotter
which causes the enter light to be turned on. The operator then positions the pen to the desired
position with the joystick and strikes the ENTER key. The pen state, O for 'up’, and 1 for ’down’
is returned in the button parameter.

Locator input can be echoed on either a graphics display device or a locator device. For the
echoes supported on a graphics display device, see the chapter which describes the graphics
display in question.

Following locator input (echo on locator), the pen position will remain at the last position it was
moved to by the operator. This means that the starting position for the next graphics primitive
will be wherever the pen was left.

The supported echoes on the locator device are as follows:

ECHO# ECHO PERFORMED

0 Same as ECHO #1
1 The HP 7580/7585’s pen tracks the locator position.
9 Same as ECHO #1

and above

Sample Locator Input

SAMPLE_LOCATOR
The sample locator function returns the current plotter pen position without waiting for an
operator response.

No locator echoes are supported with the HP 7580/7585 graphics plotters when using the
sample locator functions.

09826-90075, rev: 1/83

29

30 Graphics Procedures

HP 98627 Display

Description

HP 98627 is a low cost I/O card for the HP 9826/9836 that adds a color CRT display via an
external monitor. The external monitor is user supplied and may be of any size. The user
indicates in the CONTROL variable of the DISPLAY_INIT procedure information regarding the
type of the display.

CONTROL = 256 USSTD (512 x 390, 60 Hz refresh)
512 EURO STD (512 x 390, 50 Hz refresh)
768 USTV (512 x 474, 15.75 Khz horizontal
refresh, interlaced)
1024 EURO TV (512 x 512, 50 Hz vertical
refresh, interlaced)
1280 HIRES (5612 x 512, 60 Hz)
1536 Internal (HP use only)

The physical size of the display (needed by the SET_DISPLAY_LIM procedure) may be given
to the graphics system by an escape function. The physical limits have an assumed value based
on CONTROL until the escape function is given. These limits are:

CONTROL = 256

512

153.3mm wide and 116.7mm high.
153.3mm wide and 116.7mm high.

768
1024
1280

153.3mm wide and 142.2mm high.
153.3mm wide and 153.3mm high.
153.3mm wide and 153.3mm high.

The default logical display surface of the graphics display device is the maximum physical limits
of the screen. The physical origin is the lower left corner of the display.

The view surface is always centered within the current logical display surface.

Initialization

DISPLAY_INIT
When the HP 98627 graphics display is initialized the following device dependent actions are
performed:

® The starting position is in the lower left corner of the display.

® Graphics memory is cleared.

® The graphics display is turned on.

® The view surface is centered within the logical display limits.

e The DISPLAY_INIT CONTROL parameter is used as specified above.

Primitive Attributes

SET_COLOR
The supported values of color are:

2 Red
3 Yellow

4 Green
5 Cyan

6 Blue
7 Magenta

0 Background
1 White

Graphics Procedures 31

Compute!
Museum

The color attribute interacts with the set special drawing mode escape function (1052) as
follows:

COLOR # ACTION RED PLANE GREEN PLANE BLUE PLANE

DOMINATE (IntegerArray[1] = 0) (Default mode)

0 Background 0 0 0

1 Dominate White 1 1 1

2 Dominate Red 1 0 0

3 Dominate Yellow 1 1 0

4 Dominate Green 0 1 0

5 Dominate Cyan 0 1 1

6 Dominate Blue 0 0 1

7 Dominate Magenta 1 0 1
NON-DOMINATE (IntegerArray[1] = 1)

0 Background 0 0 0

1 Non-dominate White 1 1 1

2 Non-dominate Red 1 no change no change

3 Non-dominate Yellow 1 1 no change

4 Non-dominate Green no change 1 no change

5 Non-dominate Cyan . no change 1 1

6 Non-dominate Blue no change no change 1

7 Non-dominate Magenta 1 no change 1
ERASE (IntegerArray[1] = 2)

0 Background 0 0 0

1 Erase White 0 0 0

2 Erase Red 0 no change no change

3 Erase Yellow 0 0 no change

4 Erase Green ' no change 0 no change

5 Erase Cyan no change 0 0

6 Erase Blue no change no change 0

7 Erase Magenta 0 no change 0
COMPLEMENT (IntegerArray[1] = 3)

0 Background 0 0 0

1 Complement White invert invert invert

2 Complement Red invert no change no change

3 Complement Yellow invert invert no change

4 Complement Green no change invert no change

5 Complement Cyan no change invert invert

6 Complement Blue no change no change invert

7 Complement Magenta invert no change invert

32 Graphics Procedures

SET_LINE_STYLE
Eight pre-defined linestyles are supported on HP 98627. All of the linestyles may be classified
as being ‘‘continuous’.

...................................

T

CLEAR_DISPLAY
A call to CLEAR_DISPLAY erases all of the graphics display.

Inquiry Escape Functions
No inquiry escape functions are supported.

Output Escape Functions

Opcode Function

250 Specify device limits.
RealArray[1] = Points (dots) per mm in X direction
RealArray[2] = Points (dots) per mm in Y direction

1052 Set special drawing modes. Using this escape function will redefine the
meaning of the set color attribute. See SET_COLOR for details. Out of
range values default to dominate drawing mode.

IntegerArray[1] = O Dominate drawing mode.
IntegerArray[1] = 1 Non-Dominate drawing mode.
IntegerArray[1] = 2 Erase drawing mode.
IntegerArray[1] = 3 Complement drawing mode.

Locator Echoes on the Graphics Display
All locator echoes are supported by the HP 98627. The starting position is unaffected by echoes
on the HP 98627.

Graphics Procedures

HP 9111 Tablet

Description
The dimensions of the HP 9111 graphics tablets are as follows:

Active platen size: 300.8 mm wide by 217.6 mm high The entire area within the
outline on the platen.

Platen addressability: 12032 points wide by 8704 points high. The entire area within
the outline on the platen.

Resolution: 40.0 points/mm in X and Y directions

The default locator limits are the active platen limits.

The physical origin of the locator device is the lower left corner of the outlined area on the
platen.

Initialization

LOCATORL.INIT
When the locator device is initialized, any existing errors in the data tablet are cleared.

Wait Locator Input

AWAIT_LOCATOR

When the wait locator function is invoked, the DIGITIZE light on the data tablet is turned on
and the position of the stylus is constantly monitored until the stylus (locator’s button) is
depressed. To digitize a point, the operator positions the stylus to the desired position and
depresses it. When the stylus is depressed, the DIGITIZE light is turned off, the digitized point is
returned, and the value of the locator’s button (always 1) is returned to the application
program.

Echoes Supported
Locator input can be echoed on either a graphics display device or a locator device. For the
echoes supported on a graphics display device, see the section which describes the graphics
display in question.

The supported echoes on the locator device are as follows:

Echo Number Echo Performed
0 No echo is performed.
1 The HP 9111’s beeper is sounded when the stylus is depressed.
9 thru 255 Same as ECHO #1

Sample Locator Input

SAMPLE_LOCATOR
The sample locator function returns the current position of the stylus on the platen without
waiting for an operator response.

33

34 Graphics Procedures

Echoes Supported
The following locator echoes are supported with the HP 9111 Data Tablets when using the
sample locator function:

Echo Number Echo Performed
0 No echo is performed.
1 The HP 9111’s beeper is sounded when the locator is sampled.

General HPGL Display Handler

Description

At device initialization an inquiry is made of the device as to its type. If the device responds that
it is an HPGL device, but the graphics package does not recognize the particular device name,
the general HPGL display handler will be used.

Since many characteristics of the device cannot be inquired in HPGL, the graphics package will
make the assumption that the device has the same capabilities as the HP 9872B plotter.

The maximum phuysical limits of the graphics display are determined by the default settings of
P1 and P2. The default settings of P1 and P2 are the values they have after an HPGL “IN”’
command.

The default logical display surface is set equal to the area defined by P1 and P2 at the time
DISPLAY_INIT is invoked.

The viewsurface is always justified in the lower left corner of the current logical display surface.

Initialization

DISPLAY_INIT
When the HPGL display is initialized the following device dependent actions are performed:

® The starting position is undefined.
® The DISPLAY_INIT control parameter is ignored by this device handler.

Primitive Attributes

SET_COLOR

The general handler assumes the HPGL device can support up to 32767 pens. Color values
larger than the number that a given device supports may produce device dependent errors. For
additional information on a given HPGL device, refer to the 'SP’ command in that device’s
programming manual.

SET_LINE_STYLE

Seven pre-defined linestyles are supported on the HP 9872 plotters. All linestyles supported on
the HP 9872 plotters may be classified as being ‘‘continuous’. The HPGL display drivers
assume the same is true.

Graphics Procedures

CLEAR_DISPLAY
A call to CLEAR_DISPLAY sends an advance full page command to the device. Any error
generated by the device is cleared.

Inquiry Escape Functions
No inquiry escape functions are supported.

Output Escape Functions
No output escape functions are supported.

Locator Echoes on the Graphics Display
Same as for the HP 9872; see that section.

General HPGL Locator Handler

Description

At device initialization an inquiry is made of the device as to its type. If the device responds that
it is an HPGL device, but the graphics package does not recognize the particular device name,
the general HPGL drivers will be used.

Since many characteristics of the device cannot be inquired in HPGL, the graphics package will
make the assumption that the device has the same capabilities as the HP 9872B plotter.

The maximum physical limits of the graphics locator are determined by the default settings of
P1 and P2. The default settings of P1 and P2 are the values they have after an HPGL "IN’
command.

The default logical locator limits are set equal to the area defined by P1 and P2.

Initialization

LOCATORL_INIT
When the locator device is initialized, the graphics display is left unaltered.

Wait Locator Input

AWAIT_LOCATOR
See HP 9872 device handler.

Sample Locator Input

SAMPLE_LOCATOR
See HP 9872 device handler.

35

36 Graphics Procedures

Sample Programs

The following programs demonstrate the use of procedures available in the graphics system.

The first example is complete and ready to run. The second example includes a general
“set-up’’ procedure which will be needed by later examples. In fact, several procedures intro-
duced in early examples will be used by later examples. Examples that contain the ‘‘alias”
compiler directive will need to access some of the procedures defined in earlier examples.

Graphics Procedures 35

Example Programs
The following programs demonstrate the use of procedures available in the graphics system.
Each example can be compiled and executed by itself. However, some procedures in the early

examples reappear in later examples. If you have already typed in a procedure appearing in a
later example, the Editor’'s Copy command can be used to ‘‘clone’” these procedures.

09826-90075, rev: 5/83

Graphics Procedures

This program shows the initialization and and termination procedure for using the graphics
library.

Prodram examrleO3

import dgl_libi {access drarhics routines}
canst
crt_adr = 33 { device address of drarhics crt 2
cantrol = 0OF { device control wordi idnored for the crt 2
var
errar : inteder? { display initialization error returnis O if ok I
bedin { main Prodram %
draphics_init} { initialize the drarhics libary »
displav_init (crt_adrscontrolserror)s { initialize displar device ¥
if error = O then
bedin { draw a line using the default window

move (-0,3+-0.5)
line (0,5y 0,3)
ends;

{ specif» first end Point I

H
H { draw line to second end Point }

drarhics_terms {terminate drarhics librarv?}

end,

Results of Program

09826-90075, rev: 5/83

Graphics Procedures

This example shows the concept of device independence, the ability to create the same picture
on any graphics device with the same set of graphics routines.

Prodram examplel (inPutsoutpPut)s

import dgl_lib} {access gdraprhics routinesl’
var
init_oK : boolean} {true if initialized}

Procedure setur_exampPle (var init_okKk : boolean)3

{ This Procedure is used to initialize the grarhics library and a user ¥
{ specified outrut device, b
var

display_address : integderi

error_return : integders

{ Control is used only by the HP 98B27A color grarhics interface card. See 2

{ the drarhics device arppendix for details. ¥
control : inteders;

begin
{ Initialize the grarhics library., Graphics_init must be the first ¥
{ graprhics procedure called in the graprhics library, ¥

dgraphics_initi

{ Reauest the grarhic display address from the user, (#12 clears the crt» ¥
{ #10 denerates a line feed)., ¥
writeln (#12,'Enter drarphics displavy address’»#10)}

writeln (’Internal drarhics CRT = 37)3

writeln (‘External Plotters = HPIB address’ +#»10)3

Pprompt (’> ‘)3
readln (displav_address) i
writeln (#12)3

{ initialize the drarhics displav device }
display._.init (display_address: control: error_return)3

if error.return <> O then
begin
init_ok := false}
writeln(‘Diseplay initialization error #'serror_returnil)
end
else
init_ok := truei
end’ { setur_examprle }

begin { main Prodgram
setur_examprle (init_-oK)j
if init_oK then
bedin
{ draw a box using the default window }
move (-0,5:,-0.3)1
line (-0+5s 0.:5)1%
line (0.5y 0.5)1
line (0.5,-0.5)1%
line (-0:5:-0.,5)1
endj
draphics_term} . {terminate the graprhics librarv?}
end,

09826-90075, rev: 5/83

38 Graphics Procedures

Results of Program

09826-90075, rev: 5/83

Graphics Procedures 39

This program shows the concept of graphics output primitives. The output primitives of move,
line, and text will be shown.

Graphics output primitives are the building blocks of a graphics picture. Just as an algorithm is
broken into the simplest possible instructions to create a computer program, a picture may be
broken down into graphics output primitives. The graphics library uses three types of graphics
output primitives: moves, lines, and text. Each output primitive starts where the previous output
primitive ended. This means that the starting point of an output primitive is not explicitly
specified. The move primitive can be used to redefine the starting position of the next primitive.

The output primitives are accessed using five procedures provided by the graphics library. They
are; move, int_move, line, int_line, and gtext. See the language reference section for a descrip-
tion of each procedure.

The location of each output primitive is specified in the world coordinate system. The world
coordinate system is a two-dimensional space which is expressed in units that are selected by

the user using the set_window procedure covered in a later example.

The default value for the world coordinate system (-1.0 to 1.0 in the X and Y axes) is used in
this example.

Prodgram exampleZ (inPutsoutpPut)s

imPport ddl_1libs3 { access draprhics routines 1%}
var
init_ok : booleani { true if initialized }

procedure setup_exampPle (var init_ok : boolean)i

var
displav_addresss controls error.return i inteder;j

begin
display_address
control
error_return

33 { internal CRT 2
03
03

drarhics_init}i
display_init (displav_addresss controls error_return)i

if error_return <> O then
bedin
init_oK := falsei
writeln(’Display initialization error #’serror_return:l)
end
else
init_ok := true;
endj { setuPp_examprle }

procedure draw_housei

09826-90075, rev: 5/83

40 Graphics Procedures

{ This procedure draws a house using move and line drarhics outpPut Primitives 2

bedgin
move (-04+54-0.3)
line (0,54+-0.5)
line (0.5y 0.,2)
line (0.0 0.d)
line (-0.5 0.2)
line (-0.54+-0,53)

endj

R A LI T T

begin
setup_example (init_oK)3
if init_ok then

begin
draw_house§ { Plot a house 12
move (-0.5, 0.,6)1 { Add some text }
dtext (‘HOME SWEET HOME ')
end;
-graphics_terms { terminate the drarhics library 2

end,

HOME SWEET HOME

Results of Program

09826-90075, rev: 5/83

Graphics Procedures 41

The following examples (3,4 and 5) show the concept of primitive attributes.

Primitive attributes are the general characteristics of output primitives. They affect the appear-
ance of individual output primitives. This example shows how the set_line_style and set_color
procedures affect the line primitive.

Prodram example3 (inPutroutPut)i

imPport dgl_lib}i { access grarhics routines }
var
init_ok : boolean? { true if initialized %}
index : integers { do loop index }

Procedure setur_example (var init_oK : boolean)3

var
displavy_addressscontrols error_return i inteder;j

bedin
display_address := 33%
control 1= 04
error_return HER VR

{ internal CRT }

graphics_initi
display_init (displav_addresss controls error_return)3

if error_return <> O then
bedin
init_ok = false}
writeln(‘Diseplay initialization error #’,error_return:1)
end
else
init_oK 1= truei
endi { setur_examprle 1}

bedgin { main Program }

setur_example (init_oK)j
if init_ok then
{ draw 8 lines using colors 1 throush 8 and linestyles 1 throush 8 }
for index := 1 to 8 do
begin
set_color(index) 3
set_line_style(index) 3

move(-1.,0,-0.5 + index / B.,0)3}
line(1,0,-0,5 + index / 8.:0)1
end3j
drarhics_terms3 { terminate the drarhics library }

end.

Results of Program

09826-90075, rev: 5/83

42 Graphics Procedures

This example shows how the set_char_size procedure is used to change the character size of
text.

Prodram exampPled (inpPutsoutput)s

import ddl_1lib} { access draphics routines ¥
var
init_ok : booleans { true if initialized %

procedure setup_example (war init_ok : boolean)3

var
display_addressscontrol, error_return § intederi

bedin
displav_address := 33} { internal CRT }
control HERR O
error_return HEROR]

draphics_initi
displav_init (displav_addresss controls error.return)3}

if error_return <3 Q0 then
bedgin
init_ok 1= falses
writeln(’Display initialization error #'serror_return:l)
end
else
init_ok := truei
endi { setup_examprle

kedin { main Prodram

setup_example (init_ok)}j
if init_ok then
begin
{ Plot strings usind different character sizes }
mouve (-1,0, 0,8)3
set_char_.size (0,045,0,075)3
gtext ('C D,045 0,075)‘)j

move (-1,0, 0.4)3
set_char_size (0,09:0,15)3
gtext (‘(C 0,08, 0,15)")j

move (-1,04 0,0)3
set_char_size (0.,045,0,13)3
dgtext (/(0,045,0,15)’)3

moue (-1.,043-0.4)3
set_char_size (Q0,11,+0.,075)3
gtext (‘C 0,114 0,075)')i

end?

grarhics_terms} { terminate the draphics library 3}
end.

09826-90075, rev: 5/83

Graphics Procedures 43

(8.045, B.B?5)

(8.809, B.15)

(0.043,0.15)

< 2. 11, 2 .2075 J

Results of Program

09826-90075, rev: 5/83

Graphics Procedures

This example shows how the procedure set_text_rot is used to set the angle at which text is
rotated.

Prodram example3 (inPutsoutput)s

import dgl_lib} { access drarhics routines %
var

deg : integder}

cnt : inteder;)

s : stringld013

init_oK : booleani { true if initialized ¥

procedure seturp_example (wvar init_oK ¢ boolean)3

var
displavy_address:controls error_return : intedersy

bedin
display_address 1= 3i { internal CRT }
control HERVE
error_return 1= 03

drarhics_init}
displav_init (displav_addresss control, error_return)i

if error_return <> O then
bedin
init_ok := falses
writeln(‘Display initialization error #’serror_return:l)
end
else
init_oK = truei
endi { seturp_exampPle }

begin { main Program %
setur_.exampPle (init_oK)i
if init_ok then
bedgin
set_char_size (0,09,0,15)3

{ Plot text using many different text directions 2}
ded 2= 0}
rereat
moue(0D,0,0,0)3 { plot from center of display }

set_text_rot (cos(ded#3.14/180)ssin{ded*3,14/180)) 3 { set rotation }
s 3= ' B | { create string to be pPlotted }
strwrite(ss7scntdegsl) s

dtext(s)i { plot the string }

deg := deg + 233
until ded > 3403

ends
drarhics_termi { terminate the drarhics library %
end.

09826-90075, rev: 5/83

Graphics Procedures 45

2 o
\§\ — AN
o NV e
s[\ \\ \ / //2
Sl ——_ ——-0
/// \\
@@2 // /o \\ \\9
G A B @5
2D
S oo S
& N S
Q@ 8)

Results of Program

09826-90075, rev: 5/83

46 Graphics Procedures

The next 4 examples (6 thru 9) show aspects of the viewing transformation. Refer to figure 1.0
for an overall diagram of the viewing transformation.

This program shows the set_display_lim procedure. Set_display_lim specifies a subset of the
physical display surface to be used for graphics output. This area is called the logical display
limits. The limits of this area are expressed in terms of millimeters, offset from the physical orgin
of the device. The location of the physical origin, and the default limits of a display device are
device dependent, and are specified in the device dependent appendix of this document.

The clipping limits are set to be equal to the logical display limits in the graphics library. Clipping

is the elimination from view of all visible primitives or parts of primitives which lie outside the
clipping limits.

Program examprleB (inPutsoutput)s

import d9l_1lib} { access grarhics routines }
var
init_oKk : booleani { true if initialized %

error_return : inteders
procedure setur_examPle (var init_ok : boolean)3

var
displav_address:control, error_return : intederi

begin
displav_address :=
control HE
error_return 1=

H { internal CRT }
03
[P

drarhics_init}
displav_init (displav_addresss controls error~return)3

if error_return <3 O then
bedin
init_ok 1= falses
Wwriteln(’Display initialization error #’serror_return:zl)
end
else
init_ok 2= trues
endi { setur_examrle }

Procedure draw_housej

begin
mouve (-0,5:-0,3)3
Iine (0,5+-0,5)3
line (0.5y 0,203
line ¢ 0,04 0,4)3
line (-0.,5y 0,203
line (-0,5,-0,5)3%

end}

procedure draw_box (xminsxmax,ymins¥max 3 real)ds

bedin
moue (xminsymin)
line (xmaxsymin)
line (xmaxsymax)
line (xminsvymax)
line (xmins¥min)
end}

09826-90075, rev: 5/83

begin

Graphics Procedures

setup.examPle (init_oK)j

if init_oK then
bkedin
{ Define the lodical displav limits to be located between O mm and
{ 50 mm in the X and ¥ directions
set_displary_1im(0.0,+30,0,0,0,50,0error_return)j
{ Draw a box around the current window limits %
draw_box (-1,0+1.0,:-1,0,1,0)3
draw_house} { Draw a Picture 1}
move (-0.,5, 0.6)3
dtext (’HOME SWEET HOME ‘)3
{ Define the lodical display limits to ke located between BO mm and
{ 100 mm in the X directions and between 30 mm and 70 mm in the Y
{ direction.
set_display_1lim(BO.,0,100.,04+30.,0,:,70,0+error_return)}i
{ Draw a box around the current window limits %
draw_box (-1,0:1:0+-1,04+1,0)3
draw_houses { Draw the same Picture as above ¥}
move (-0,5 0,B)]
dtext (‘HOME SWEET HOME)3
{ Note that the same Picture is drawns only its location and size on
{ the plotter have changed.
{ Also note that the size of the box around the Pictures measures to
{ the size specified in the set_displavy_lim Procedure.,
{ The next examPle will show how the set_aspect ratio Procedure
{ interacts with set_displav_lim,
ends;
drarhics_termsj { terminate the drarhics librarv }
end.

HOME SHEET HOME

HOME SWEET HOME

Results of Program

09826-90075, rev: 5/83

[

47

48 Graphics Procedures

This program shows the set_aspect procedure. Set_aspect sets the aspect ratio of the virtual
coordinate system, and hence the aspect ratio of the view surface (the area in which all plotting
occurs) to be height divided by width. A ratio of 1.0 defines a square virtual coordinate system;
a ratio greater than 1.0 specifies it to be higher than it is wide; and a ratio less than 1.0 specifies
it to be wider than it is high.

The initial aspect ratio of the virtual coordinate system is 1.0, meaning the virtual coordinate
system is a unit square. This produces a view surface that is the largest inscribed square within
the logical display limits (set by set_display_lim). By changing the aspect ratio, the view surface
defines the largest inscribed rectangle within the logical display limits.

The placement of the view surface is dependent upon the device being used. It is generally
centered on CRT displays and is usually placed in the lower left-hand corner of plotters.

Program example7 (inPutsroutput)s

imPport dgl_libs { access drarhics routines 2
var
init_ok : boolean: { true if initialized »

error_return ! integders

Procedure setur_example (var init_ok : boolean)i

var
displav_addresssconrntrol, error_return : inteder?

begin
displav_address = 33i { internal CRT %
control 1= 04
= H

§]
error_return 0

graphics_inits
displav_init (displav_addresss controls error_return)3

if error_return <> 0 then
begin
init_ok = falsei
writeln(‘Display initialization error #'serror_returnil)
end
else
init_ok = truei
endi { setur_example 3

procedure draw_houses

begin
move (-0,5+-0,5)1%
line (0.5+-0,5)1%
line (0.5 0,203
line ¢ 0,0 0,403
line (-0,5+ 0.2)1
line (-0,5+-0,5)1

endj

rrocedure draw_box {(xminsxmaxsvminsvymax : real)}

begin
move (xminsymin)i
line (xmaxsymin) i
line (xmaxsvymax)i
1
1

line (xminsvymax)i
line (xminsymin)
ends’

09826-90075, rev: 5/83

Graphics Procedures

bedin
setup_exampPle (init_oK) i
if init_oKk then

bedin

{ Use set_display_lim to define the logical display limits to be a
{ rectandle on the lower Portion of the displavy,
set_displavy_1im{(Q.0,120,0:0,0,+45.,0serror_return)i

{ Set the view surface to have a 1:1 aspect ratio, %
set_asepect(1+1)3

{ draw a Picture with a box around the current window 2
draw_box (-1.0:1,04-1,0+1,0)3

draw_houses}

move (-045: 0,B)1

dtext (’HOME SWEET HOME’)}

end.

FHOME SIWEET HOME

HOME SWEET HOME

Results of Program

09826-90075, rev: 5/83

{ Note that only a Pportion of the area defined with set_diseplav_lim }
{ is used. H
{ Use set_display_lim to defime the logical display limits to be a ¥
{ rectandle the same size and share as aboves but located above the H
{ last rectandle. }
set_displav_lim(0.0,120,0,45,0,90,0serror_return)i
{ Set the view surface to have the same aspect ratio as the rectangle, }
set_aspect(120,0,45.0)3
draw_box (-1.0+1,04+-1,0,1.0)3 { draw the same pPicture as above 1}
draw_housei
move (~0,5y 0.B)3
dgtext ('HOME SWEET HOME ‘)3
{ Note that the picture fills the area defined with set_diseplav_lim.
{ Also note that distortion has occured in the Picture, This will he
{ discused in a later examprle.,

ends

drarhics_termi { terminate the drarhics librarvy

o

}

49

50 Graphics Procedures

This program shows the set_viewport procedure. Set_viewport sets the limits of the viewport,
the area onto which the window map, in units of the virtual coordinate system. The graphics
library calculates the range of the virtual coordinate system based on the value of the aspect
ratio. The coordinates of the longer axis are always set to range from 0.0 to 1.0, and those of
the shorter axis from 0.0 to a value that achieves the specified aspect ratio.

ASPECT RATIO X LIMITS Y LIMITS
AR < 1 041 0r1/AR
AR = 1 031 011
AR » 1 0y1/AR 01

Since the inital aspect ratio is 1:1, the initial viewport is mapped onto the maximum visible
square within the logical display limits.

By changing the limits of the viewport, an application program can display an image in several
different positions on the same display surface. This program shows an image sequentially
displayed in the four corners of a display surface.

Prodgram exampleB (inPutsoutput)s

import dd1_1libs { access drarhics routines 2
var
init_oK : booleani { true if initialized 2

error_return : inteders

Pprocedure setur_examprle (var init_oK ! boolean)i

var
displav_addressscontrols error_return :"inteders

begin
displav_address := 33j { internal CRT %
control 1= 04
error_return 1= 03

grarhics_init}
displav_init (displav_address, controls error_return)i

if error_return <3 QO then
bedin
init_oK 1= falsei
writeln(‘'Display initialization error #'serror_return:i)
end
else
init_oK := truej)
endi { setur_example ¥

procedure draw_houses

bedgin
moue (-0.,5+-0.5)3%
line (0,5,-0,5)3
line (0.5y 0,2)3
line (0,0,y 0.,4)5
line (-0.5, 0,2)3%
line (-0,5,-0.,5)3

end s’

procedure draw_box (xminsxmaxsyminsymax : real)s

09826-90075, rev: 5/83

bedgin
move (xminsymin)
line (xmaxsymin)
line (xmax:vmax)
line (xminsvmax)
line (xminasymin)

ends’

bedin

setup_example
if init_oK then
bedin

{ Using four different viewPorts,

(init_ok?)j§

set_viewrport(0,0:0,49,0,0,0.,49)3

draw-box (-1,0,1.0,-1.,0,1,0)3
draw_housej

move (-0.3s 0.,B)3

dtext (‘HOME SWEET HOME’) 3

move (-0,85,-0.8)3

dtext (‘viewport = 0O, .49, 0, ,497) 1

set_viewport(Q,51,+1,040,0,0,49)3

draw-_box
draw_house}
move (-0.5
dgtext

move

dtext

(-1,041.0+-1,0,1,0)3

0.6)3
(‘HOME SWEET HOME ')
(-0,85,-0.8)
(‘viewrPart

51 1y Oy 44973

set_viewport(0,0:0,49,0,514+1.,0)3

draw-_box (-1,041:04-1.,0,1,0)3
draw_housej

move (-0.3: 0.B)3%

dgtext (‘HOME SWEET HOME ‘)3

move (-0.85,-0,8)3

dgtext (‘viewport = 0O, ,49s .31+ 17)}

set_viewport(2,51:1,040,51,1.0)3

draw-box
draw_house}
move (-Q.35,
gtext
move
dtext
endi
drarhics_terms
end.

09826-90075, rev: 5/83

(-1,0+140,-1,0+1,0)3

G.6)3
("HOME SWEET HOME ") 3j
(-0,85+-0,8)13
(‘viewport =

31y 1 W31y 17)3

{ terminate the drarhics librarv

display the same

¥

Picture.

}

Graphics Procedures

51

52 Graphics Procedures

HOME SWEET HOME

/\

viewport = 0, .48,

viewport

HOME SWEET HOME

/\

.51, 1, .51, 1

HOME SWEET HOME

T

viewport = 08, .49, 0O,

.49

viewport

HOME SWEET HOME

Results of Program

09826-90075, rev: 5/83

Graphics Procedures

This example shows the set_window procedure.

Set_window specifies the portion of the world coordinate system which maps onto the view-
port. Setting the window allows the application program to define which portion of the world
coordinate space is to be viewed. This provides the application program with the flexibility of
working in units that are relevent to the application. Since the window is in the same coordinate
space in which objects are defined, the bounds of the window can affect the size of the image
displayed. The larger the limits of the window, the smaller the object’s image. If, however, the
window is specifed as having smaller limits than the object, portions of the object will be plotted
outside the viewport bounds.

The window is defined in units of the world coordinate system. The window’s aspect ratio
should be the same as the aspect ratio of the viewport if distortion is not desired. In general,
setting the window by calculating its dimensions as a function of the viewport dimensions is a
good way to prevent distortion.

This example shows the same object drawn with different window dimensions.

Program exampled (inputsoutPut)s

import dgl_1ib3J { access drarhics routines 7}
var
init_okK : boolean} { true if initialized }

error_return & intederi
procedure setup_examprle (var init_oKk : boolean)3}

var
display_addressscontrol, error_return : intedersj

bedin
display_address :
control :
PETTOT_TEtuUrnN :

{ internal CRT ?

33
03
03

draphics_init}
displav_init (displav_address» control, error_return)3

if error_return <> 0O then
begin
init_ok := false}
writeln{(’Display initialization error #%'serror_return:i’
end
else
init_oK 3= truel
endy { setur_examprle 2

procedure draw_house?

bedin
move {(-0+54,-0.3)1
line (0.5+-0.,3)1%
line (0.5 0.2)3
line (0.0, 0.4)3
line (-0.5y 0.2)3
line (-0,5,-0.,3)1

ends}

procedure draw_box (xminsxmaxsymin,ymax : real)s

09826-90075, rev: 5/83

53

54 Graphics Procedures

bedin

move (xmirnsymin)3
line (xmaxsymin)i
line (xmax»ymax)ji
line (xminsymax)i
line (xminsymin)i
endj
bedin

setuP_example (init_oK)j
if init_ok then
bedin

{ draw the obJject with the default window of -1:1,-1,1 1}
set_viewport(0Q.,0,0,49,0,0,0.,49)3
set_window (-1.,031,0,-1,0,1,0)3
draw_box (-1.,04+1,0,-1,0+1,0)1
draw_house]
move (-0,3y 0,8)3
dtext (’HOME SWEET HOME’) 3
move (-0.835,-0.,8);
gtext (‘viewrort
move {(-0,85:,-0,92
gtext (‘window

O 49y 0y 4973
i

-1y 1y -1 17)3

n ~ n

-

{ draw the obJject with a window 2 times larder. 1}
set_viewport(0.,51,41,0,0,0,0,49)3

set_window (-24+0:2,04-2.0:,2,0)73

draw_box (-2,04+2,04-2,042,0)%

draw_house}

move (-0,3, 0.B)3

gtext (‘HOME SWEET HOME ‘)i

move (-0,B5,-0,8)3

gtext {(‘viewpPort = ,351 1, 0+ 4903
moue (-0,85:-0,92)3

dtext (‘window = -2y 2y -2y 27)3%

{ draw the obdect with distortion in the X axes 1}
set_viewrPort(0,040,49,0,514+1.,0)1

set_window (-2.0:2,0:-1,0,1,0)3

draw_box (-2,0+2,0,-1,04+1,0)1

draw_house}

move (-0.,5, 0,6)3

dtext (’'HOME SWEET HOME ‘)i

move (-0,85,-0,8)3
gtext (‘viewPort =
moue (-0,B5,-0,92)3
dtext (‘window = -2y 2y -1 17)3

Qs 49y 51 17)3

{ draw the obJject with distortion in the ¥ axes 1}
set_viewPort(0.51,1,0,0.31,1.,0)3%

set_window (-1.+0:1,09-2,0,2,0)73

draw_box (-1.0+1,0,4-2,042,0)7%

draw_house?’

move (-0.5s 0.,8)3

gtext (‘HOME SWEET HOME ')

move (-0,85,-0.8)
gtext (‘viewrPort

moue (-0,85,-0,92
dtext (‘window

WSl 3y 451y 17)5
5
-1y 1y =24 2903

{ note that character size is affected by the window. }
end}
drarhics_termi { terminate the grarphics library 1}
end.,

09826-90075, rev: 5/83

Graphics Procedures 55

HOME SWEET HOME

viewpor<t

-
window -

viewport = 8, .49, .51, |
window =-2,2,-1,1

HOME SWEET HOME

viswpert = .88, 1, 8, .48
windew = -2, 2, -2, 2

viewport = @8, .49, @, .49
window - -1, 1, -1, 1

Results of Program

09826-90075, rev: 5/83

55.1

Graphics Procedures

This program shows how locator input is used. The locator device returns an (X,Y) point in the
world coordinate system. Typical locator devices are digitizers and graphics cursors on CRTs.

A call to await_locator causes the application program to wait until a locator button is pressed.
The value of the selected button and a world coordinate point are then returned to the calling
program.

Several different types of echoing can be performed. Some echoes are performed only on the
locator device, these echoes may include blinking a light or sounding a bell each time a point is
entered. Other echoes are performed on the graphics display device. All locator echoes on the
graphics display begin at a world coordinate point called the locator echo positon. Some echoes
may also use the locator echo position as a reference point. For example, many devices support
a rubberband line echo. The fixed end of the rubber band line will be at the locator echo
position.

This example uses set_echo_pos, and await_locator to enter 6 points, which will beused as
endpoints of 5 lines.

For details on the operation of the KNOB or other graphics device, refer to the device depen-
dent sections of this document.

Program examplelDd (inPutsoutpPut))

imPort dgl_lihbs { access drarhics library }

var

displav_address : intederi
locator_address : inteders

control_word : inteder?
error_return : inteders
X : reall
¥ i reals
button : inteders
i : inteder:

begin
drarhics_initi { initialize draphics library 1}

{ set up the viewindg transformation to use a larde portion of the logical }
{ display surface }
set_aspect(4,3)1

set_window(0,3,0:2)3

{ Get displav address 1}

writeln (#12,'Enter drarhics display address’ »#10)]
writeln (‘Internal draphics CRT = 37)3

writeln (’External plotters = HPIB address’ +#10)]1
PrompPt (/>)i

readln (displav_address)}

Wwrite (#12) 3

{ initialize grarhics display 1}
display_init (displav_address:s control_words error_return)3

{ check if an error occured }

if error_return <> O then

writeln(‘Display initialization error #‘,error_returnil)
else

bedin

09826-90075, rev: 5/83

Graphics Procedures 55.2

{ det locator address 2}

writeln (#12,‘Enter drarhics locator address’»#10)3§
Wwriteln (‘Knob = 27)%

writeln (’External locators = HPIB address’s#10)}
Promet [I

readln (locator_address)}

Wwrite (#12)3

{ initialize grarphics locator 1}
locator_init (locator_address, error_return)i

{ check if an error occured 1}

if error_return 4% O then

writeln(’Locator initialization error #‘jerror_returnil)
end s’

{ check if an error occured }
if error_return = O then
begin
{ get first point using small cross hair cursor 2
await_locator (Z:buttonsexsv)i
move (xis¥)3

{ set the locator echo rosition to that point 1}
set_echo_pPos(xs+v)i

{ et a Ppoints set the locator echo Position to that roint:+ and then }
{ draw a line to that point., %
for i:= 1 to 5 do
besgin
await_locator (4dsbuttonsxsv)3
set_echo_pPos(xsv)i
line (xs¥)3§
ends
endj
grarhics_term3’ { terminate the gdgrarhics library %}
end,

09826-90075, rev: 5/83

56 Graphics Procedures

AAhAAAAASAAAAASAAASA A A A A A AN

AN

~

ty

This example shows several uses of the DUTPUT_ESC procedure.

In addition to Providing a variety of device independent functions: the
draphics library provides a mechanism to access some capabilities of
devices that are not supported in a device inderendent manner., For
example HPGL rplotters have the abilitry to chande the sreed at which the
Plotter Pen is moved:. The draprhics librarvy does not have a device
inderendent Procedure to change the pen speed,» but it is still a useful
feature. The draphics librarvs therefores, Provides a standard wav to
access device dependent features, The mechanism by which these features
are accessed is called drarphics escare functions. There are two tyres of
drarhics escare functions. OutpPput drarhics escarpe functions: implemented
by OUTPUT_ESC, provide access to srpecial features of the drarhic disrlavy
device, INPUT_ESC allows a Prodram to inguire about the carpabilities of
the device, The feature to be accessed is specified by the value of an
opcode Passed to the procedure. The value of opcode mav differ for each
devices and can be found in the Device Handlers section of this manual.
If the orcode srpecified is not suprorted by a particular device or if the
rarameters are specified incorrectly¥s an error will bhe returned and the
procedure will ke idnored.

The following 4 example Procedures show how OUTPUT_ESC can be used to
perform device dependent actions on the dgrarhics displav. Each example
has a section of code which should be added to the main Prodram tvyre
declaration area.

HREREEEERREEREERRRRRRRRRERRRRRRHR 1 ERERREREEEERERREEERREREEE R AR RN
Pe
rmode = (dominateserasescomPlement)

procedure set_raster_drawind_mode (mode : rmode)3

{ This procedure will chande the current drawing mode. ¥
const
chande_drawingd_mode = 10523
var
ilist : array [1,,1]1 of inteder}
rlist : array [1,.1]1 of real}
error : inteder)
begin
case mode of
dominate : ilistl1] 3= 05 { set bits in display memorvy }
erase : ilistl11 := 25 { clear bits in displavy memory }
compPplement = ilist[1] := 35 { invert bits in diseplavy memory 2
end’ { of case ¥
outPut_.esc (chande_drawing_modesi0silistyrlistserror)i
if error <% O then writeln(‘OUTPUT_ESC orcode not suPported’);
endsj
{ FEEERERERERRERERRERREERRERRRR RN z FEEEEEEERR R RRRRRRRRREEEERRRRH,
Pprocedure set_plotter_speed (speed : inteder)3
{ This procedure will chande the spreed that a ‘HPGL’ plotter Pen draws. ¥
{ The speed pPassed in must be in the rande 1 to 36 (cm/sec) >
const
chande_speed = 20503
var
ilist array [1,,2] of intederi

array [1,,1] of reals
inteders

rlist
error

BN R N e e o e e A A) A b M A A e

o e

Graphics Procedures

bedin
ilist [11]

peedi
ilist [2] i

HEI
1= 0

{ change speed for all Pens 1}

output_esc (chande_spreed 2+0silistsrlistserror)s
if error <> O then writeln(‘OUTPUT_ESC orcode not supported’)s

end3}
[YT T TSI ISR ET LR T T2 3 HHRRNNEENNR NN RRNRRRRRRNRRRERRNRE)
typPe

switch = (onsoff)j

Pprocedure turn_draprhics (mode : switch)i
{ This procedure will turn the drarhics display on or off. }

const
don_doff = 1050}

var
ilist ¢ array [1..1]1 of intederi
rlist : array [1.,.,1]1 of reals
error @ intederi
bedin
if mode = on then
ilist [11 1= 1
else

ilist C11 := O3

outPut_esc (don_doffsl,s0,ilistsrlistserror)i
if error <> O then writeln(‘OUTPUT_ESC orcode not surported’};

endi
£ RN RERRRRRRRRRRRRRRERRRRRERRRRRR 4 [T T T R S .
typPe

switch = (onsoff)i

procedure turn_alprha (mode : switch)3
{ This procedure will turn the alpha diseplay on or off. 1}

const
aon_gdoff = 10511

var
ilist ¢ array [1,,1]1 of inteders
rlist : arravy [1,41]1 of real}
error : inteders
begin
if mode = on then
ilist [11 3= 1
else

ilist C11 := 03

outPut_esc (aon_goffs1,0,ilistsrlistserror)i
if error <> O then writeln(’OUTPUT_ESC orpcode not suprorted’);
end)

57

58 Graphics Procedures

Deviations from HP 1000 Graphics

In general, the HP 9826/9836 Pascal Graphics Procedure Library is a strict subset of the DGL
Graphics Procedure Library used on the HP 1000. Graphics programs written using DGL 1000
will usually transport with little reprogramming effort. Differences between 1000 DGL and DGL
libraries are listed below.

Procedure Syntax

DGL 1000 uses five letter procedure names. The procedure names for 9826/9836 DGL have
been lengthened to make them more descriptive. The table below lists the DGL procedure
names and the equivalent 9826/9836 names. When transporting programs, the existing DGL
1000 INCLUDE file can be used along with the ALIAS compiler directive to convert to DGL
9826/9836 names.

Text Procedures

The ZTEXT procedure in DGL 1000 requires a parameter of type PACKED ARRAY OF CHAR.
The equivalent GTEXT procedure in 9826/9836 DGL expects a parameter of type STRING.
When transporting programs, the parameter type should be changed either manually or auto-
matically by a specially written procedure.

A new call, SET_TEXT_ROT, has been added to 9826/9836 DGL. Text rotation is supported
by DGL 1000 for certain devices using escape functions. When transporting programs, refer to
the specific device driver reference for further details. ‘

Integer Move and Draw Procedures

The calls, INT_MOVE and INT_LINE supplied by 9826/9836 DGL are not supported by DGL
1000. When transporting to the HP 1000, the ALIAS directive can be used to convert these
routines to the ZMOVE and ZDRAW routines of DGL 1000.

Multiple Displays

The HP 1000 uses a segmentation scheme to link multiple device drivers to a program. On the
9826/9836 all graphics device drivers are simultaneously resident in memory. Transported
DGL 1000 programs should be revised so that the entire program is resident in memory.

Transported 9826/9836 programs using multiple device drivers will have to be segmented to be
run on the HP 1000.

Procedure Name Cross Reference

DGL 1000 DGL 9826/9836
ZBEGN GRAPHICS_INIT
ZEND GRAPHICS_TERM
ZDINT DISPLAY_INIT
ZDEND DISPLAY_TERM
ZLINT LOCATOR_INIT
ZLEND LOCATOR_TERM
ZASPK SET_ASPECT
ZDLIM SET_DISPLAY_LIM
ZLLIM SET_LOCATOR_LIM
ZVIEW SET_VIEWPORT
ZWIND SET_WINDOW
ZMOVE MOVE

ZDRAW LINE

ZTEXT GTEXT

ZCOLR SET_COLOR
ZLSTL SET_LINE_STYLE
ZCSIZ SET_CHAR_SIZE
ZLOCP SET_ECHO_POS
ZSLOC SAMPLE_LOCATOR
ZWLOC AWAIT_LOCATOR
ZNEWF CLEAR_DISPLAY
ZOESC OUTPUT_ESCAPE
ZIESC INPUT_ESCAPE

Graphics Procedures

59

60 Graphics Procedures

Error Code Summary

The graphics procedures return some errors via an error code return parameter, and others are
returned with the pascal work station “‘escape’”. The errors returned by the error code are
generally errors that may occur in a working program while the errors returned with the escape
function are generally program development errors.

When an error occurs that uses the escape function, escapecode —27 is used. Additional
information may be found by invoking the function GRAPHICSERROR, which will return one
of the following errors:

0 No errors since the last call to GRAPHICSERROR or since the last call to init_graphics.

1 The graphics system is not initialized.
ACTION: Call ignored.

2 The graphics display is not enabled.
ACTION: Call ignored.

3 The locator device is not enabled.
ACTION: Call ignored.

4 Echo value requires a graphics display to be enabled.
ACTION: Call completes with echo value = 1.

5 The graphics system is already initialized.
ACTION: Call ignored.

6 lllegal aspect ratio specified. X_SIZE and Y_SIZE must be greater than zero.
ACTION: Call ignored.

7 lllegal parameters specified.
ACTION: Call ignored.

8 The parameters specified are outside the physical display limits.
ACTION: Call ignored.

9 The parameters specified are outside the limits of the window.
ACTION: Call ignored.

10 The logical locator and the logical display use the same physical device. The logical
locator limits cannot be redefined explicitly, they must correspond to the logical view
surface limits.

ACTION: Call ignored.

11 The parameters specified are outside the current virtual coordinate system boundary.
ACTION: Callignored.

12 The escape function requested is not supported by the graphics display device.
ACTION: Call ignored.

13 The parameters specified are outside of the physical locator limits.
ACTION: Call ignored.

The function GRAPHICSERROR returns the value of the last error generated and then clears
the value of the return error. A user who is trapping errors and wishes to keep the value of the
error must save it in some variable. .

Computer
. Museum

Chapter 4 »

Interfacing Concepts

Introduction

This chapter describes the functions and requirements of interfaces between the computer and
its resources. Most of the concepts in this chapter are presented in an informal manner. Hope-
fully, all levels of programmers can gain useful background information that will increase their
understanding of the why and how of interfacing.

Terminology

These terms are important to your understanding of the text of this manual. They are not highly
technical, so don’t worry about not having a PhD. in computer science to be able to understand
all of them. The purpose of this section is to make sure that our terms have the same meanings.

The term computer is herein defined to be the processor, its support hardware, and the
Pascal-language operating system; together these system elements manage all computer re-
sources. The term computer resource is herein used to describe all of the ‘‘data-handling”
elements of the system. Computer resources include: internal memory, CRT display, keyboard,
and disc drive, and any external devices that are under computer control.

The term hardware describes both the electrical connections and electronic devices that make
up the circuits within the computer; any piece of hardware is an actual physical device. The
term software describes the user-written, Pascal-language programs. Firmware refers to the
pre-programmed, machine-language programs that are invoked by Pascal-language proce-
dures and functions. As the term implies, firmware is not modified by the user. The machine-
language routines of the operating system are firmware programs.

62 Interfacing Concepts

(includes operating
system and user

memory)
Internal CRT
Memory Display Keyboard
Backplane
Connector
Data and A
Control Buses
Backplane
\l Connectors
. Built-in
Processor D|§c HP-IB < 25 >
Drive
Interface
HP-IB
Connector

Block Diagram of the Computer

The term 1/0 is an acronym that comes from “‘Input and Output’’; it refers to the process of
copying data to or from computer memory. Moving data from computer memory to another
resource is called output. During output, the source of data is computer memory and the
destination is any resource, including memory. Moving data from a resource to computer

memory is input; the source is any resource and the destination is a variable in computer
memory.

The term bus refers to a common group of hardware lines that are used to transmit information
between computer resources. The computer communicates directly with the internal resources
through the data and control buses. The computer backplane is an extension of these internal
data and control buses. The computer communicates indirectly with the external resources
through interfaces connected to the backplane hardware.

Eight Connectors
in the Card Cage

Processor Buffering

Hardware

T

Jeee O

Backplane Hardware

Interfacing Concepts 63

Why Do You Need an Interface?

The primary function of an interface is, obviously, to provide a communication path for data
and commands between the computer and its resources. Interfaces act as intermediaries be-
tween resources by handling part of the ‘‘bookkeeping’’ work, ensuring that this communica-
tion process flows smoothly. The following paragraphs explain the need for interfaces.

First, even though the computer backplane is driven by electronic hardware that generates and
receives electrical signals, this hardware was not designed to be connected directly to external
devices. The electronic backplane hardware has been designed with specific electrical logic
levels and drive capability in mind. Exceeding its ratings will damage this electronic hardware.

Second, you cannot be assured that the connectors of the computer and peripheral are com-
patible. In fact, there is a good probability that the connectors may not even mate properly, let
alone that there is a one-to-one correspondence between each signal wire’s function.

Third, assuming that the connectors and signals are compatible, you have no guarantee that the
data sent will be interpreted properly by the receiving device. Some peripherals expect single-
bit serial data while others expect data to be in 8-bit parallel form.

Fourth, there is no reason to believe that the computer and peripheral will be in agreement as to
when the data transfer will occur; and when the transfer does begin the transfer rates will
probably not match. As you can see, interfaces have a great responsibility to oversee the
communication between computer and its resources. The functions of an interface are shown in
the following block diagram.

A
| Intertace |
| Computer I
| Compatible . I
Connector Logic |
| Level
T Intertace Matcher I
= Logic Cabl
— able Peripheral
Computer I [— | || | erp
pu [— Device
I [— Device I
| Compatible |
| Logic Connector |
Level
| Matcher I
| i
I |
e om e e e . . e e e e E— . . e = —— — — -

Functional Diagram of an Interface

64

Interfacing Concepts

Electrical and Mechanical Compatibility

Electrical compatibility must be ensured before any thought of connecting two devices occurs.
Often the two devices have input and output signals that do not match; if so, the interface
serves to match the electrical levels of these signals before the physical connections are made.

Mechanical compatibility simply means that the connector plugs must fit together properly. All
of the 9826 interfaces have 100-pin connectors that mate with the computer backplane. The
peripheral end of the interfaces may have unique configurations due to the fact that several
types of peripherals are available. Most of the interfaces have cables available that can be
connected directly to the device so you don’t have to wire the connector yourself.

Data Compatibility

Just as two people must speak a common language, the computer and peripheral must agree
upon the form and meaning of data before communicating it. As a programmer, one of the
most difficult compatibility requirements to fulfill before exchanging data is that the format and
meaning of the data being sent is identical to that anticipated by the receiving device. Even
though some interfaces format data, most interfaces have little responsibility for matching data
formats; most interfaces merely move agreed-upon quantities of data to or from computer
memory. The computer must generally make the necessary changes, if any, so that the receiv-
ing device gets meaningful information.

Timing Compatibility
Since all devices do not have standard data-transfer rates, nor do they always agree as to when
the transfer will take place, a consensus between sending and receiving device must be made. If
the sender and receiver can agree on both the transfer rate and beginning point (in time), the
process can be made readily.

If the data transfer is not begun at an agreed-upon point in time and at a known rate, the
transfer must proceed one data item at a time with acknowledgement from the receiving device
that it has the data and that the sender can transfer the next data item; this process is known as a
“handshake’. Both types of transfers are utilized with different interfaces and both will be fully
described as necessary.

Additional Interface Functions

Another powerful feature of some interface cards is to relieve the computer of low-level tasks,
such as performing data-transfer handshakes. This distribution of tasks eases some of the
computer’s burden and also decreases the otherwise-stringent response-time requirements of
external devices. The actual tasks performed by each type of interface card vary widely and are
described in the next section of this chapter.

Interfacing Concepts 65

Interface Overview

Now that you see the need for interfaces, you should see what kinds of interfaces are available
for the 9826. Each of these interfaces is specifically designed for specific methods of data
transfer; each interface’s hardware configuration reflects its function.

The HP-IB Interface

This interface is Hewlett-Packard’s implementation of the IEEE-488 1975 Standard Digital
Interface for Programmable Instrumentation. The acronym “HP-IB” comes from Hewlett-
Packard Interface Bus, often called the ‘‘bus’.

Data

HP-IB
Interface
Handshake

3

Shielded Cable
to Device(s)

Data and
Control Hardware

Backplane m and

Connector Firmware

Control
5

AV VAR V4

25-Pin Connector

Logic and Shield
Grounds

8

VANIVANVANVAN

N/

Block Diagram of the HP-IB Interface

The HP-IB interface fulfills all four compatibility requirements (hardware, electrical, data, and
timing) with no additional modification. Just about all you need to do is connect the interface
cable to the desired HP-IB device and begin programming. All resources connected to the
computer through the HP-IB interface must adhere to this IEEE standard.

The “‘bus’ is somewhat of an independent entity; it is a communication arbitrator that provides
an organized protocol for communications between several devices. The bus can be configured
in several ways. The devices on the bus can be configured to act as senders or receivers of data
and control messages, depending on their capabilities.

66 Interfacing Concepts

The Serial Interface

The serial interface changes 8-bit parallel data into bit-serial information and transmits the data
through a two-wire (usually shielded) cable; data is received in this serial format and is con-
verted back to parallel data. This use of two wires makes it more economical to transmit data
over long distances than to use 8 individual lines.

Bit-Serial Data
(In)

1
1 Parallel/Serial (Out)
Converter

- |

(s Digmere |

Data and 1

Control Serial !

Backplane m Interface

Connector Hardware
< Special Purpose

6

Grounds
—

Block Diagram of the Serial Interface

Parallel Data

Shielded Cable
to a Device

]

50-Pin Connector

N N\

Data is transmitted at several programmable rates using either a simple data handshake or no
handshake at all.

The GPIO Interface

This interface provides the most flexibility of the three interfaces. It consists of 16 output-data
lines, 16 input-data lines, two handshake lines, and other assorted control lines. Data is trans-
mitted using several types of programmable handshake conventions and logic sense.

Parallel Data Out
o >

Parallel Data In
16

Shielded Cable
to a Device

Handshake
4

Data and
Control GPIO

Backplane m Interface

Connector Hardware

Special Purpose
6

50-Pin Connector

Grounds
7

VANV NIVAN
AVAAVEA VA

Block Diagram of the GPIO Interface

Interfacing Concepts 67

Much of the flexibility of this interface lies in the fact that you have almost direct access to the
internal data bus for outputting and entering data.

Data Representations

As long as data is only being used internally, it really makes little difference how it is repre-
sented; the computer always understands its own representations. However, when data is to be
moved to or from an external resource, the data representation is of paramount importance.

Bits and Bytes

Computer memory is no more than a large collection of individual bits (binary digits), each of
which can take on one of two logic levels (high or low). Depending on how the computer
interprets these bits, they may mean on or not on (off), true or not true (false), one or zero, busy
or not busy, or any other bi-state condition. These logic levels are actually voltage levels of
hardware locations within the computer. The following diagram shows the voltage of a point
versus time and relates the logic levels to voltage levels.

Voltage of
a Point
A
+5v Lo
\ jvs_ Logic High
Logic Ground » Logic Low
(0v) ty to ts Time

Voltage and Positive-True Logic

In some cases, you want to determine the state of an individual bit (of a variable in computer
memory, for instance). The logical binary functions (BIT_SET, BINCMP, BINIOR, BINEOR,
and BINAND) provide access to the individual bits of data.

In most cases, these individual bits are not very useful by themselves, so the computer groups
them into multiple-bit entities for the purpose of representing more complex data. Thus, all data
in computer memory are somehow represented with binary numbers.

The computer’s hardware can access groups of 16 bits at one time through the internal data
bus; this size group is known as a word. With this size of bit group, 65536 (=2 1 16) different
bit patterns can be produced. The computer can also use groups of eight bits at a time; this size
group is known as a byte. With this smaller size of bit group, 256 (=2 1 8) different patterns can
be produced. How the computer and its resources interpret these combinations of ones and
zeros is very important and gives the computer all of its utility.

The computer is also capable of logically handling 32 bits; this size group is known as a long
word and is the Pascal INTEGER type.

68

Interfacing Concepts

Representing Numbers

The following binary weighting scheme is often used to represent numbers with a single data
byte. Only the non-negative integers 0 through 255 can be represented with this particular
scheme.

Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 0 0 1 0 1 1 0

Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1

Notice that the value of a 1 in each bit position is equal to the power of two of that position. For
example, a 1 in the Oth bit position has a value of 1 (=2 1 0), a 1 in the 1st position has a value
of 2 (=211), and so forth. The number that the byte represents is then the total of all the
individual bit’s values.

Determining the Number Represented

Number represented =

4
= 0
= 16 2+ 4+ 16+ 128 = 150
0
0
8

The preceding representation is used by the ““ORD” function when it interprets a byte of data.
The next section explains why the character “‘A” can be represented by a single byte.

PROGRAM examprle(input soutpPut)}

VAR number : INTEGERS
BEGIN

number = ORD(‘A)S

WRITELN(’ Number = ‘snumber)]?
END.

Printed Result
Number = B3

Interfacing Concepts 69

Representing Characters

Data stored for humans is often alphanumeric-type data. Since less than 256 characters are
commonly used for general communication, a single data byte can be used to represent a
character. The most widely used character set is defined by the ASCII standard®. This standard
defines the correspondence between characters and bit patterns of individual bytes. Since this
standard only defines 128 patterns (bit 7 = 0), 128 additional characters are defined by the
9826 (bit 7 = 1). The entire set of the 256 characters on the 9826 is hereafter called the
“‘extended ASCII”’ character set.

When the CHR function is used to interpret a byte of data, its argument must be specified by its
binary-weighted value. The single (extended ASCII) character returned corresponds to the bit
pattern of the function’s argument.

PROGRAM example(inPutsoutput)si
VAR number : INTEGER:

BEGIN

number := B33}

WRITELM(" Character is ‘schr{number))s
END.

Printed Result
Character is A

‘ Representing Signed Integers

There are two ways that the computer represents signed integers. The first uses a binary
weighting scheme similar to that used by the ORD function. The second uses ASCII characters
to represent the integer in its decimal form.

Internal Representation of Integers

Bits of computer memory are also used to represent signed (positive and negative) integers.
Since the range allowed by eight bits is only 256 integers, a double word (four bytes) is used to
represent integers. With this size of bit group, 4 294 967 296 (=2 1 32) unique integers can be
represented.

The range of integers that can be represented by 32 bits can arbitrarily begin at any point on the
number line. In the 9826, this range of integers has been chosen for maximum utility; it has
been divided as symmetrically as possible about zero, with one of the bits used to indicate the
sign of the integer.

1 ASCII stands for ‘““‘American Standard Code for Information Interchange’. See the Appendix for the complete table.

70

Interfacing Concepts

With this “‘2’s complement’’ notation, the most significant bit (bit 31) is used as a sign bit. A sign
bit of 0 indicates positive numbers and a sign bit of 1 indicates negatives. You still have the full
range of numbers to work with, but the range of absolute magnitudes is divided in half
(—2 147 483 648 through 2 147 483 647). The following 32-bit integers are represented using
this 2’s-complement format.

Binary representation Decimal equivalent
1111 1111 1111 1111 1111 1111 1111 1111 -1
0000 0000 0000 0000 0000 0000 0000 0001 1
1111 1111 1111 1111 1111 1111 OOOO0 0001 —255
0000 0000 0000 0000 0000 0000 1111 1111 255

signbitﬂ 21‘8-1‘_[2T0—j
2130 217

The representation of a positive integer is generated according to place value, just as when
bytes are interpreted as numbers. To generate a negative number’s representation, first derive
the positive number’s representation. Complement (change the ones to zeros and the zeros to
ones) all bits, and then to this result add 1. The final result is the two’s-complement representa-
tion of the negative integer. This notation is very convenient to use when performing math
operations. Let’s look at a simple addition of 2 two’s-complement integers.

Example: 3+(-3) = ?

First, +3 is represented as: 0000 0000 0000 0000 0000 0000 0000 0011
Now generate —3’s representation:

first complement + 3, 1111 1111 1111 1111 1111 1111 1111 1100
then add 1 + 0000 0000 0000 0000 0000 0000 0000 0001
—3’s representation: 1111 1111 1111 1111 1111 1111 1111 1101
Now add the two numbers: 1111 1111 1111 1111 1111 1111 1111 1101
+ 0000 0000 0000 0000 0000 0000 0000 0011

le 1« carry on

final carry 0000 0000 0000 0000 0000 0000 0000 0000all places

not used

Interfacing Concepts

ASCII Representation of Integers

ASCII digits are often used to represent integers. In this representation scheme, the decimal
(rather than binary) value of the integer is formed by using the ASCII digits O through 9
{CHR(48) through CHR(57), respectively}. An example is shown below.

Example

The decimal representation of the binary value ‘“1000 0000 is 128. The ASCII-decimal
representation consists of the following three characters.

Character 1 2 8

Decimal value
of character

49 50 56

Binary value

of character 00110001 | 00110010 | 00111000

Representing Real Numbers

Real numbers, like signed integers, can be represented in one of two ways with the computers.
They are represented in a special binary mantissa-exponent notation within the computers for
numerical calculations. During output and enter operations, they can also be represented with

‘ ASClII-decimal digits.

Internal Representation of Real Numbers

Real numbers are represented internally by using a special binary notation'. With this method,
all numbers of the REAL data type are represented by eight bytes: 52 bits of mantissa magni-
tude, 1 bit for mantissa sign, and 11 bits of exponent. The following equation and diagram
illustrate the notation; the number represented is 1/3.

Byte 1 2 3 4 8

Decimal value

of character 63 213 85 85 85

Binary value

of characters 00111111 11010101 | 01010101 | 01010101 .. | 01010101
mantissa sign exponent mantissa

1 The internal representation used for real numbers is the |IEEE standard 64-bit floating-point notation.

71

72 Interfacing Concepts

ASCII Representation of Real Numbers

The ASCII representation of real numbers is very similar to the ASCII representation of inte-
gers. Sign, radix, and exponent information are included with ASCII-decimal digits to form
these number representations. The following example shows the ASCII representation of 1/3.
Even though, in this case, 18 characters are required to get the same accuracy as the eight-byte
internal representation shown above, not all real numbers represented with this method require
this many characters.

ASCII characters 0 3133|3333 |]3]3]]3]|3]|]3]|3(3]3]3

Decimal value
of characters

48 [46 | 51 |51 |51 |51 |51 515151515151]51 |51]51]51]51

Chapter 5
The 1I/0O Procedure Library

Introduction

This chapter presents an introduction to the I[/O Procedure Library. This discussion includes the
organization of the library, major capabilities, and an introduction into the use of the library.
The last sections of this chapter contain a list of module capabilities. It is recommended that you
scan these sections to familiarize yourself with what features are available in the I/O Library.

Pascal I/O

The Pascal language has been well known for some time as a good high-level langauge with
modularity and transportability features. It has not had good 1/O capabilities, particularly device
/0. The Pascal language on the HP 9826 and 9836 computers still does not have 1/O as a
fundamental part of the language.

Rather than adding specific built-in language features to support I/O, graphics, and other useful
extensions, HP Standard Pascal has a general extension mechanism called modules. A module
is very similar to a Pascal PROGRAM in that it can contain VARiables, CONSTants,
PROCEDURESs, and FUNCTIONS.

Various portions of a module can be EXPORTed for anyone to use. The Pascal [/O Procedure
Library is a collection of several modules placed in the LIBRARY file. When you want to use
the capabilities of the 1/O library you must tell the compiler which modules you want from the
I/O library. This is done with the IMPORT feature.

An example of using the I/O library follows. You want to write a program that reads a string
from a device and then writes a string to the same device. The read and write string procedures
are both in the I/O module called GENERAL_2Z. So the program might look like:

PROGRAM test (INPUT + OUTPUT)3
IMPORT GENERAL_ZS { tell the compiler which module ¥
VAR str 1 STRINGLZ5513
BEGIN
READSTRING(72dsstr) i { read str with CR/LF termination }
WRITESTRINGLN(7Z2d,s5tr) 3 { write str with CR/LF termination }
END .,

09826-90075, rev: 1/83

74

I/0 Procedure Library

I/O Library Organization

Each of the I/O Library modules contains related features and capabilities. I/O consists of
general capabilities that are valid for all interfaces and devices and of specific capabilities that
are valid only for a specific interface or type of interface. Reading a character is an example of a
general capability. Checking for ACTIVE CONTROL is an HP-IB specific operation.

The I/O Library is divided into groups: general and interface specific. The interfaces currently
supported in the I/O Library consist of HP-IB, Serial, and Parallel (GPIO) interfaces. In the
implementation of the [/O Library, all the necessary Parallel capabilities are handled in the
general capabilities group. So, the 1/O Library consists of three groups:

e GENERAL
e HPIB
e SERIAL

Each of these groups consists of several modules. The last section in this chapter contains a list
of the procedures and functions in each of the modules in the I/O Library.

GENERAL

The GENERAL group contains the common operations used by all interfaces. This group
consists of the following modules:

Module Capability Example
GENERAL_O machine and hardware depen- hardware register access
dent status and control
GENERAL_1 character [/O input a character
GENERAL_2 string and numeric /O input a real number
GENERAL_3 error messages
GENERAL_4 transfers and buffers output data via DMA
IODECLARATIONS common constants, types, vari- what type of card is the interface
ables at interface select code 7
IOCOMASM binary operations binary AND of two integers
HPIB
The HPIB group contains routines that are useful for the built-in and optional HP-IB interfaces.
Module Capability Example
HPIB_0 access to HP-IB interface bus clear the ATN line
lines
HPIB_1 low level bus control send an ATN bus command
HPIB_2 HP-IB messages send selective device clear

HPIB_3 high level bus status and control request bus service

1/O Procedure Library 75

SERIAL

The SERIAL group contains the capabilities specific to serial interfaces. Currently, the HP
98626 and 98628 are supported.

Module Capability Example
SERIAL_O access to serial interface lines set Clear To Send
SERIAL_3 high level serial control set baud rate to 2400

Each module is a separate entity in the Pascal system. Being separate, only those modules
imported from the system library are used in the running of an application program. This
partitioning of the library minimizes the size of the program. The Pascal system, in normal
programming, will load and link all the modules that you have imported. You only need to
explicitly import the appropriate modules and use their procedures and functions.

I/O Library Initialization

The I/0O Library provides a setup procedure, IOINITIALIZE, and a clean up procedure,
IOUNINITIALIZE. Both procedures operate in a very similar manner. They perform the
following operations:

e Reset all interfaces.
e Stop all transfers.
® Release all /0O resources {such as DMA channels).

A well written Pascal program that uses the [/O Library will include these procedures. These
procedures are in the GENERAL_1 module. The example program from the previous section
rewritten would look like:

PROGRAM test (INPUT . QUTPUT)3
IMPORT GENERAL_1:

GENERAL_23 { tell the compiler which modules 1}
VAR str 3 STRINGLZ25513
BEGIN
IODINTIALIZES { set up the I/0 svstem }
READSTRING(724d st 1)} { read str with CR/LF termination 2
WRITESTRINGLN(724+str)} { write str with CR/LF termination }
IOUMINITIALIZES { clean up the I/0 svstem }
END.,

The /O system is used by the rest of the Pascal system for [/O operations. Because of this use,
IOINITIALIZE is called by the system when power is first applied to the computer. Also,
because I/O errors can occur during normal operation, the STOP and CLR [/O keys call
IOUNINITIALIZE to clean up the I/O system state. This information leads to the fact that it is, in
many instances, unnecessary to call IOINITIALIZE and [IOUNINITIALIZE. It is, however,
strongly recommended that you use these procedures. The use of the set-up and clean-up
procedures will make your programs more resistant to hardware and firmware problems and to
programming errors in software.

09826-90075, rev: 1/83

76 1/0 Procedure Library

GENERAL Modules

GENERAL modules contain the capabilities that are useful for all interfaces. For syntax and
semantics information refer to the reference section in the back of this manual.

MODULE iocomasm
FUNCTION bit_set
FUNCTION binand
FUNCTION binior
FUNCTION bineor
FUNCTION bincmp

MODULE general_0
FUNCTION ioread_word
PROCEDURE iowrite_word
FUNCTION ioread_byte
PROCEDURE iowrite_byte
FUNCTION iostatus
PROCEDURE iocontrol

MODULE general 1
PROCEDURE iocinitialize
PROCEDURE iouninitialize
PROCEDURE ioreset
PROCEDURE readchar
PROCEDURE writechar
PROCEDURE readword
PROCEDURE writeword
PROCEDURE set_timeout

MODULE general_2
PROCEDURE readnumber
PROCEDURE writenumber
PROCEDURE readstring
PROCEDURE readstring_until
PROCEDURE writestring
PROCEDURE readnumberln
PROCEDURE writenumberln
PROCEDURE writestringln
PROCEDURE readuntil
PROCEDURE skipfor

MODULE general_3
FUNCTION ioerror_message

MODULE general_4
PROCEDURE abort_transfer
PROCEDURE transfer
PROCEDURE transfer_word
PROCEDURE transfer_until
PROCEDURE transfer_end
PROCEDURE iobuffer
PROCEDURE buffer_reset
FUNCTION buffer_space
FUNCTION buffer_data
PROCEDURE readbuffer
PROCEDURE writebuffer
PROCEDURE readbuffer_string

PROCEDURE writebuffer_string

FUNCTION buffer_active
FUNCTION isc_active

[s a bit set in a 32-bit integer?

Logical AND of two 32-bit integers.
Logical OR of two 32-bit integers.
Exclusive OR of two 32-bit integers.
Logical complement of a 32-bit integer.

Read a 16-bit interface register.
Write a 16-bit interface register.
Read an 8-bit interface register.
Write an 8-bit interface register.
Read the firmware interface register.
Write the firmware interface register.

Reset the entire /O system.

Reset the entire I/O system.

Reset a single interface card.

Read a character from an interface.
Write a character to an interface.
Read a 16-bit word from an interface.
Write a 16-bit word to an interface.
Set up an interface timeout value.

Read a real number.

Write a real number.

Read a string.

Read a string until a character match.
Write a string.

Read a real number until a LF occurs.
Write a real number with a CR/LF.
Write a string with a CR/LF.

Read until a character match.

Skip over a number of characters.

What is the error message for a specific I/O error?

Stop a transfer.

Transfer a block of data as bytes.
Transfer a block of data as words.
Transfer in until a match character.
Transfer using a card condition.
Create a transfer buffer.

Reset the buffer space.

How much space is left in the buffer.
How much data is left in the buffer.
Read a character from a buffer.

Write a character to a buffer.

Read a string from a buffer.

Write a string to a buffer.

Is there a transfer active on the buffer?
Is there a transfer active on the interface?

09826-90075, rev: 1/83

1/O Procedure Library

HPIB Modules

HPIB modules contain routines that are useful for the built-in and optional HP-IB interfaces.
For syntax and semantics information refer to the reference section in the back of this manual.

MODULE hpib_0
PROCEDURE set_hpib
PROCEDURE clear_hpib
FUNCTION hpib_line

MODULE hpib_1
PROCEDURE send_command
FUNCTION my_address
FUNCTION active_controller
FUNCTION system_controller
FUNCTION end_set

MODULE hpib_2
PROCEDURE abort_hpib
PROCEDURE clear
PROCEDURE listen
PROCEDURE local
PROCEDURE local_lockout
PROCEDURE pass_control
PROCEDURE ppoll_configure
PROCEDURE ppoll_unconfigure
PROCEDURE remote
PROCEDURE secondary
PROCEDURE talk
PROCEDURE trigger
PROCEDURE unlisten
PROCEDURE untalk

MODULE hpib_3
FUNCTION requested
FUNCTION ppoll
FUNCTION spoll
PROCEDURE request_service
FUNCTION listener
FUNCTION talker
FUNCTION remoted
FUNCTION locked_out

Set an HP-IB hardware line.
Clear an HP-IB hardware line.
Is an HP-IB hardware line set?

Send an ATN command.

What is my bus address?

Am [active controller?

Am [system controller?

Was EOI received with the last byte?

Stop all bus activity.

Send clear command to a device.
Send listen command to a device.
Send local command to a device.
Send lockout command to all devices.
Pass active control to a device.
Configure PPOLL response of a device.
Remove PPOLL response of a device.
Send remote command to a device.
Send a secondary command.

Send talk command to a device.

Send trigger command to a device.
Send unlisten command to all devices.
Send untalk command to all devices.

Is SRQ asserted?

What is the bus parallel poll byte?
What is the device serial poll byte?
Request bus service (via SRQ).
Am I a listener?

Am I a talker?

I[s REN being asserted?

Am I in the local lockout state?

77

78

I/O Procedure Library

SERIAL Modules

SERIAL modules contain the capabilities specific to serial interfaces. Currently, the HP 98626
Serial 98628 Datacomm cards are supported. For syntax and semantics information refer to the
reference section in the back of this manual.

MODULE serial_0

PROCEDURE set_serial Set a serial line.
PROCEDURE clear_serial Clear a serial line.
FUNCTION serial_line Is a serial line set?

MODULE serial_3
PROCEDURE set_baud_rate Set the interface baud rate.
PROCEDURE set_stop_bits Set the interface number of stop bits.
PROCEDURE set_char_length Set the interface character length.
PROCEDURE set_parity Set the interface parity.
PROCEDURE send_break Send a serial BREAK.
PROCEDURE abort_serial Stop all serial activity.

[ODECLARATIONS Module

The rest of the I/O Library consists of modules that contain procedures and functions. The
IODECLARATIONS module is a module of constants, types, and variables. This module is
used by the rest of the [/O Library for range checking, common variables, and /O system
tables. [ODDECLARATIONS is also of use to you, the programmer, for various reasons. This
section will not fully discuss the [ODECLARATIONS module. It will only discuss the points of
general interest.

The useful information in [IODECLARATIONS relates to interface information. Typical ques-
tions about interfaces include:

e What is the range of interfaces?
o [s there an interface on interface select code 12?
o [s the interface on interface select code 15 a serial interface?

o [s the interface on interface select code 15 a 98626 serial interface or a 98628 serial
interface?

The descriptions that follow will show the actual Pascal code used to define the various con-
stants, types and variables.

Range of Interface Select Codes and Devices

This range is supported by several constants and types. The /O Library supports various select
codes, as described in the next chapter. The interface select code range is from 0 through 31.
There are two constants that define this range:

CONST IOMINISC
IOMAXISC

03
313

09826-90075, rev: 1/83

1/0 Procedure Library 79

In addition to defining the upper and lower limits of select codes there are type definitions that
support interface select code and device variables. These type definitions are:

TYPE TYPE_ISC
TYPE_DEVICE

IOMINISC. . IOMAKISC 3
IOMINISC., ., IDMAXISC*100+39;

These type definitions are used in the I/O Library for interface select code and device para-
meters. With the compiler option $RANGE ON$, which is the default, the compiler will emit a
range check for your parameters. So, if you tried to use an interface select code of 45, the
program would generate an error. You can use the type definitions for interface select code and
device variables, if you desire. It is also possible to use integer variables and other integer
subranges for interface select code and device variables.

Information about the Interface

There is a table defined in the IODECLARATIONS module that contains common information
about all interface cards in the computer. This table is called ISC_TABLE and is an array of
structured elements, a compound data type. The definition of this table is:

VAR ISC_TABLE : PACKED ARRAY [TYPE_ISCI]
OF isc_table_tvrei

The compound data type ISC_TABLE_TYPE contains several pieces of information. The de-
finition of this type is:

TYPE isc_.table_tyre = RECORD

io_drv_prtr: “driveri { Ptr to drivers }
10_tmP_Ptr: “memorvy}) { Ptr to R/WU ¥
CARD_TYPE : -32768B.,.327873)

nuser_time : INTEGER] { for timeout ¥
CARD_ID : -327G8..327G71

card_rtr : “cardj { card addr ¥

END 3§

The table contains pointers to the actual drivers, driver read/write memory space, user specified
timeout value and a pointer to the physical address of the interface card in the computer’s
memory. The table also contains the type of card and card id information. You should only
need to examine the card type and card id.

Note

All of this information is for system use. Do not modify any table
entries.

80 1/O Procedure Library

The following program lists the type of card and card id for all interfaces.

PROGRAM list_cards (INPUT , OUTPUT)3
IMPORT IODECLARATIONS:
VAR isc : TY¥PE_ISC3

BEGIN
FOR isc := IOMINISC TO IOMAXISC DD
WRITELN(‘card ‘» isciZy
' is of tvyere ' ISC_TABLEL[iscl.CARD_TYPE:4,
" with an id of ‘»ISC_TABLE[iscl.CARD_ID:4)3
END.

This program is not useful because the values for card type and id are integers and you do not
know what each value means. The IODECLARATIONS module has a series of pre-defined
constants for the card type and id.

The card type field contains information about the generic card type—whether the card is
Serial, HP-IB, etc. The constants are as follows:

CONST NO_CARD
OTHER_CARD
SYSTEM_CARD
HPIB_CARD
GPIO_CARD
SERIAL_CARD
GRAPHICS_CARD
SRM_CARD

~N@OUa e W

The card id contains hardware specific information. For example, the id will inform you whether
an HPIB_CARD is the internal interface or an optional 98624 plug in. This should only be
necessary if you are doing low level operations to the interfaces.

Note
The appearance of a card id in the following list does not imply
Pascal support for the specified interface. The cards are mentioned
because they may be supported by other languages which run on
this machine.

The constants are defined as follows:

CONST HP98B2G_DSNDL = -7 3
HP98GB29 = -6 3
HP_DATACOMM = -5
HP9BBZ20 = -43
INTERNAL_KBD = =33
INTERNAL_CRT = -2
INTERNAL_HPIB = -1
NO_ID = 03 { no card ¥
HP98G624 = 13 { HP-IB >
HP9BBZ6 = 23 { serial ¥
HP9BGBZZ2 = 35 { drio }
HP9BGBZ3 = 45 { bed T
HP9BGBZS = 83 { disk T
HP9BBZ2B_ASYNC = 203 { serial ¥
HP98GZ7 = 2B { drarhics ¥

09826-90075, rev: 1/83

A program to determine card type and id is shown below.

PROGRAM list_cards

BEGIN
FOR isc :=

IOMINISC TO IOMAXISC DO BEGIN

(INPUT s+ OUTPUT
IMPORT IODECLARATIONS
VAR isc : TYPE_ISC]

)i

IF ISC_TABLELiscl.CARD_TYPE > SYSTEM_CARD
THEN BEGIN
WRITE(‘’card ‘sisc:2s’ is of tvpe
CASE ISC_TABLELiscl.CARD_TYPE OF

HPIB_CARD: WRITEC'
GPIO_CARD: WRITEC’
SERIAL_CARD: WRITE(
GRAPHICS_CARD: WRITE('

HPIB
GPIOD
SERIAL
GRAPHICS

other

‘)i

)
)

.
H
‘)3
§
.
i

‘)i

OTHERWISE WRITE('
ENDS { of CASE y
END { of IF NO_CARD Y}
IF ISC_TABLELiscl.CARD_TYPE > SYSTEM_CARD
THEN BEGIN
WRITE(’ and of id : ’)3

CASE ISC_TABLELiscl.CARD_-ID OF

HP_DATACOMM: WRITEC('
INTERNAL_HPIB: WRITE(’

HPOBGZ4: WRITE('
HP9BGZE: WRITEC(
HP9B6ZZ: WRITEC(
HPOBBZ3: WRITEC'’
HP9BEZS: WRITE('
HP9862B_ASYNC: WRITE(’
HPOBBZ7: WRITEC’
DTHERWISE WRITEC(
END; { of CASE }

WRITELNC’)3
{ of IF NO_CARD 1}

END

END 3
END.

Other Types

{ of

FOR DO BEGIN %

HP

98628

built in

HP
HP

98624
98626
98622
98623
9BB2S
98628
98627

other

- NON ASYNC

- ASYNC

R

/O Procedure Library 81

In addition to the previously specified information there are some pre-defined types used
throughout the [/O Library. These type definitions are:

I0_BIT
I0_BYTE
I0_WORD
ID_STRING

0.4015 3
0.4255 3
-32768..32767
STRINGL25513%

82 1/O Procedure Library

Notes

Chapter 6
Directing Data Flow

Introduction

This chapter describes how to specify which computer resource is to send data to the computer
or receive data from the computer. There are three main resources for the source and destina-
tion of data:

e Internal devices
e External devices

® Mass storage files

The I/0O Library is used for accessing internal and external devices and is discussed here. The
Pascal system has other methods for accessing mass storage files and these commands are
covered in the Pascal System User’s Manual.

Specifying a Resource

The procedures and functions that perform I/O have a device selector parameter as a part of the
parameter list. This parameter has two forms: a simple device selector and an addressed device
selector.

Simple Device Selectors

Devices include the built-in CRT and keyboard, external printers and instruments, and all other
physical entities that can be connected to the computer through an interface. Thus, each device
connected to the computer can be accessed through its interface. Each interface has a unique
number by which it is identified, known as its interface select code. The internal devices are
accessed with the following, permanently assigned interface select codes.

Device Select Code

CRT Display 1
Keyboard 2
Built-in HP-IB 7

84

Directing Data Flow

Optional interfaces all have switch-settable select codes. These interfaces cannot use select
codes 0 through 7; the valid range is 8 through 31. The following settings on optional interfaces
have been made at the factory but can be changed to any other unique select code. See the
interface’s installation manual for further instructions.

Device Select Code
98624A HP-IB 8
98622A GPIO 12
98628A Datacomm 20
98625A Disc 14

An example program using interface select codes is shown below"

PROGRAM selectcode (INPUT » OQUTPUT)3

IMPORT GENERAL_-Z23

VAR str : STRINGI[Z5517%

BEGIN
WRITESTRING(1ls'tvypPre something - terminated by the ENTER Kev ‘)i
READSTRING_UNTIL(CHR(13) +2s5t)3
WRITESTRING(12)‘messade from Kevboard - ‘)i
WRITESTRINGLN(1Z2sstr) 3

END .

Addressed Device Selectors

Each device on an HP-IB interface has an address by which it is uniquely identified. The
addressed device selector is a combination of the interface select code and the device’s bus
address. This combination is:

interface select code * 100 + device bus address = addressed device selector

A printer with a bus address of 1 on the internal HP-IB interface (which is an interface select
code of 7) would be accessed with a device selector of 701.

An example program using an addressed device selector is shown below:

PROGRAM device (INPUT OUTPUT)3

IMPORT GENERAL_Z3

VAR num i REALS

BEGIN
READNUMBERLN (724 yrium) i
WRITESTRING(701+’reading from voltmeter - “)3
WRITENUMBERLN(701 rrium) i

END,

09826-90075, rev: 1/83

Chapter 7
Outputting Data

Introduction

The preceding chapter described how to identify a specific device as the destination of data in a
WRITESTRING procedure. Even though a few examples were shown, the details of how the
data is sent was not discussed. This chapter describes the topic of outputting data to devices.

There are two general classes of output operations. The first type, known as ‘‘free field”” output,
uses the computer’s default data representation. The second class provides precise control over
each character to be sent and is called ‘‘formatted’” output.

The I/O Library is a separate set of procedures and functions. As such, it does not have variable
length or variable type parameter lists. In Pascal there is a normal “‘print”’ facility called WRITE
and WRITELN (for write line) that can have a variable list. Some examples are:

WRITELN(‘hello there’}i

WRITELN(“the value received was ‘+i)}

WRITE(i+* times ’sJd:' is eaual to ‘si*J)]
WRITE(client.name:’ has ‘sclient.evecolors’ eves ‘)3

Note that there are no requirements for what types of constants, variables, or expressions are
allowed in a list, nor are there any requirements for their order in a list.

Because of this restriction on the variability of lists, the I/0 Library only normally supports a
small set of types. These types are:

® Real expressions

® Strings (up to 255 characters)
e Characters (8 bits)

® Words (16 bits)

The procedures that handle these types will only handle one of the type. These operations can
be used in a series to get the effect of a list.

86 Outputting Data

Free Field Output

As mentioned in the previous section, there are four main types supported directly by the I/O
Library output facility. These are:

® Real Expressions
® String Expressions
e Characters

e Words

Real Expressions

There are two output procedures for real expressions: WRITENUMBER and
WRITENUMBERLN. Both operate in an identical fashion except that WRITENUMBERLN
appends a carriage return and line feed to the characters sent to the device. The form of these
procedures is:

WRITENUMBER (device_.specifier » numeric_expression) 3§
WRITENUMBERLN (device_specifier » numeric_expression) 1}

Both procedures are in the 1/O Library module GENERAL_2. The device specifier can be a
simple interface select code or a device specifier. The numeric expression can be any valid
expression including simple real, integer, or integer subrange variables, numeric constants, and
numeric expressions. An example program follows:

PROGRAM realexpression (INPUT,OUTPUT)

IMPORT IODECLARATIONS
GENERAL_Z23
VAR a : REALS
i : INTEGERS
device : TYPE_DEVICES
BEGIN
device;=7013
i:=123%
a:=12,34}

WRITENUMBERLN(device i)}

WRITENUMBERLN(devicesa) 3}

WRITENUMBERLN(device +1234) 3

WRITENUMBERLN(device ra+1234) 3

WRITENUMBERLN(deuvice si+12) 3
END .

This program will produce the following output:

1,20000E+001
1.23400E+001
1.,23400E+003
1.24B34E+003
2.40000E+001

Outputting Data 87

The example program did not use WRITENUMBER. This is because there are no additional
characters sent with the ASCII character sequence. Two numbers sent with two consecutive
WRITENUMBERS might look like:

1,23456E+1239,87654E-321

Notice that there is no separator. The examples toward the end of this section will show
examples of WRITENUMBER. Be sure that you remember that the real number can be pre-
ceded by a minus sign.

String Expressions

There are two output procedures for string expressions: WRITESTRING and
WRITESTRINGLN. Both operate in an identical fashion except that WRITESTRINGLN
appends a carriage return and line feed to the characters sent to the device. The form of these
procedures is:

WRITESTRING (device_specifier » strind_exPression) i
WRITESTRINGLN (device_specifier s strind_exPression) 1§

Both procedures are in the 1/O Library module GENERAL_2. The device specifier can be a
simple interface select code or a device specifier. The string expression can be any valid
expression including simple string variables , string constants, and string expressions. An
example program follows:

PROGRAM strings (INPUT,OUTPUT)

IMPORT IODECLARATIONS,
GENERAL_23}
VAR s : STRINGLZ25513
t 1 STRINGL3Z213
device : TYPE_DEVICES
BEGIN

devices=7011
si=‘first string’j
t:=’‘gsecond string’j
WRITESTRING (device:s)i
WRITESTRINGLN(devicest)}
WRITESTRING (devices‘this is a strindg constant and ‘)3
WRITESTRINGLN(devices»‘this is the ‘+s)i
WRITESTRINGLN(device:‘both ‘+s+’ and the ‘+t)]}
END,

This program will produce the following output:

first stringsecond string
this is a string constant and this is the first string
both first string and the second string

88 Outputting Data

Characters
There is a single output procedure for single characters: WRITECHAR. The form of this proce-
dures is:

WRITECHAR (interface_select_.codes character_expression);
The procedure is in the /0 Library module GENERAL _1. The interface select code cannot be a
device specifier (like 701). Refer to the HP-IB section regarding bus addressing. The character

expression can be a character variable, character constant, or character expression. An
example program follows:

PROGRAM characters (INPUT:0UTPUT)

IMPORT I0ODECLARATIONS
GENERAL_1
GENERAL_Z3
VAR ¢ : CHARS
i : INTEGER]
device : TYPE_DEWICE}S
isec : TYPE_ISCH
BEGIN
isc:=73

device:=7013
WRITESTRING(device:‘some characters <)}
WRITECHAR(isc» 'x’)3
ci='v '}
WRITECHAR(iscsc) 3
Ji=0RDC‘z7) 3
WRITECHAR(iscschr(d)) 3
FOR i:=65 TO 90 DO WRITECHAR(iscschr(i))i
WRITESTRINGLN(isc s’ ')
END,

This program will produce the following output:

some characters <xyzABCDEFGHIJKLMNOPQRSTUVKWKXYZ»

Words
There is a single output procedure for 16 bit words. It is WRITEWORD. The form of this
procedures is:

WRITEWORD (interface_select.code» word_exPression)i

The procedure is in the [/O Library module GENERAL_1. The interface select code cannot be a
device specifier (like 701). Refer to the HP-IB section regarding bus addressing. The word
expression can be a word, integer, or integer subrange variable, integer constant, or integer
expression. The evaluated value must be in the range of —32768 to 32767.

Outputting Data 89

The procedure has two different behaviors, depending on what type of interface it is used with.
When used with a GPIO interface (HP 98622), this procedure will send a single 16 bit quantity
over the 16 data lines on the interface. This procedure will send two consecutive bytes for all
other interface types — most significant byte first, least significant byte last. An example pro-
gram for an HP-IB interface follows:

PROGRAM words (INPUT.,OUTPUT)

IMPORT IODECLARATIONS
GENERAL_1,
GENERAL_Z3
TYPE short = -32768..32767}
VAR ¢ : CHARS
isd : INTEGER]
X : I0O_WORD;S
y t short}
device : TYPE_DEVICES
isc t TYPE_ISCi
BEGIN
iscs=71

device:=7013

WRITESTRING(devices‘some characters <‘)}§
Xx:=B5*256+663

WRITEWORD(iscx} i

WRITEWORD(isc +67#256+68) i

J1=69%256+70%

WRITEWORD(isc»d)

J:=0RD(’z)3

FOR i:=65 TO 75 DO WRITEWORD(isc,»i*256+i)3
WRITESTRINGLN(isc s »')}

‘ END.,

This program will produce the following output:

some characters <ABCDEFzRzBzCzDzEzFzGzHzIzJzK>

The following program is an example of how to use the “‘free field”’ procedures together to get
effect of a full parameter list:

PROGRAM strindgs (INPUT:OUTPUT)

IMPORT IODECLARATIONS »
GENERAL_1»
GENERAL_2Z3
VAR st : STRINGLZ25511
X : REAL
device : TYPE_DEVICE]
isc : TYPE_ISC}
BEGIN
device:=7013
isc 1=73
s:='RandeliTriggerl iNumber’3
x:=1003

t:='Store’}
WRITESTRING (devicess)i

WRITENUMBER (isc tX) 3

WRITESTRING (isc tt) s

WRITECHAR (isc rchr(10)) 3
END.

90 OQutputting Data

This program will produce the following output sequence:

RandeliTrigderl iNumberl ,00000E+0Q2Store

Formatted Output

The previous ‘“‘free field”” procedures are adequate for a large number of applications. There
are, however, a large number of applications that need the ‘‘formatted’’ output capability. The
1/O Library does not directly provide this capability. Formatted output is achieved with the use
of the built in procedure STRWRITE.

STRWRITE

The STRWRITE procedure is a version of the standard Pascal procedure WRITE. The differ-
ence is that STRWRITE sends the character stream to a string variable, as opposed to an output
file. The form of STRWRITE is as follows:

STRWRITE (string_variahle,» starting_chars» next_char.var,..outputlist..) 3

The string variable is the destination for the output operation. The starting character position is .
an integer expression that indicates which character in the string is the start of the output area.

The next character variable will contain, after the execution of STRWRITE, the next available

character in the string for a successive STRWRITE or other string operation. For additional

information, refer to The Pascal Handbook.

The following program is an example of how to use STRWRITE to produce formatted output:

PROGRAM formatted (INPUT:OUTPUT)

IMPORT IODECLARATIONS »
GENERAL_Z23

TYPE color = (blue + brown » dreen s+ red)i
VAR ss:name : STRINGLZS313

Ppos st ¢ INTEGERS

eves : colorj

device : TYPE-DEVICE}S
BEGIN

deuvigce:=7013%

name :=‘Jdohn Smith’j

n =123
eves t=blues
STRWRITE(s:1spos+ name:’ is emplovee number ‘snzd)s

SETSTRLEN(s srp0s5-1) 3
WRITESTRINGLN(devicess) i

STRWRITE(s»1lsPos+ ‘and has “sevess’ eves ‘)j
SETSTRLEN(s srPos-1)3
WRITESTRINGLN(device rs) 3

END.

Outputting Data 91
This program will produce the following output:

John Smith is emplovee number 12
and has BLUE eves

92 Outputting Data

Notes

Chapter 8
Inputting Data

Introduction

There are two general classes of input operations. The first type, known as “‘free field’’ input,
uses a default interpretation of the data to be input. The second class provides precise control
over each character to be received and is called “‘formatted’ input.

The I/0 Library is a separate set of procedures and functions. As such, it does not have variable
length or variable type parameter lists. In PASCAL there is a normal “‘input” facility called
READ and READLN (for read line) that can have a variable list. Some examples are:

READ(name)’ FOR i:= 1 TO 100 DO READ(mvcharl[il)}
READ(voltade:frequency) i READLN(Promet) i

Note that there are no requirements for what types of variables are allowed in the list, nor are
there any requirements on the order of variables on the list. Because of this restriction on the
variability of lists, the 1/O Library only normally supports a small set of input types. These types
are:

® Real variables

® Strings (up to 255 characters)
® Characters (8 bits)

® Words (16 bits)

In addition to these data types, the /O Library supports some field skipping facilities. The
procedures that handle these types and facilities will only handle one operation at a time. These
operations can be used in a series to get the effect of a list.

94 Inputting Data

Free Field Input

As mentioned in the previous section, there are five main types supported directly by the 1/0
Library input facility. These are:

@ Real Variables
® String Variables
e Characters

e Words

e Field Skipping

Real Variables

There are two input procedures for real variables: READNUMBER and READNUMBERLN.
Both operate in an identical fashion except that READNUMBERLN searches for a line feed
termination from the device. The form of these procedures is:

READNUMBER (device_specifier, real_variable)i
READNUMBERLN ({(dewice_specifiers real_variahbkle)s

Fundamental to understanding how these procedures work is the concept of termination. The
READNUMBER procedures will skip over any number of non-numeric characters until a
numeric character is found. Then, up to 255 numeric characters will be read in as an ASCII
representation of a real number. Numeric characters are defined to be:

0 5 E

1 6 e

2 7 +

3 8 -

4 9 period
space

When reading numbers, the terminating conditions are:

® Any non-numeric character after numeric characters have been read, or
® 255 numeric characters read.

Both procedures are in the [/O Library module GENERAL_2. The device specifier can be a

simple interface select code or a device specifier. The variable must be a real variable (including
a real array element). An example program follows:

PROGRAM realvariable (INPUT:QUTPUT)]

IMPDRT IODECLARATIONS »
GENERAL_Z23

VAR a : REAL:

BEGIN

{ inPut comes from Kevboard 2}

WRITELN(“tvPe in a real number termivated by anv non-numeric’);
READNUMBER (1 sa) i
WRITELNS

WRITELN(’vou tvprped in the value ‘sa)li

{Continued)

Inputting Data 95

WRITELN(‘type in a real number terminated by a control-Jj‘)}
READNUMBERLN(1 sa) 3

WRITELNS

WRITELN(’vyou typed in the value ‘sa)i

END.

String Variables

There are two input procedures for string variables: READSTRING and
READSTRING_UNTIL. Both operate in a similar manner except that READSTRING_UNTIL
searches for a specified termination character where the READSTRING uses some default
terminations.

The form of the READSTRING procedure is:

READSTRING (device_specifiers, strind_variabhle)]}
The READSTRING procedure will read characters into a string until one of the following
termination conditions are encountered:

¢ A line feed is received.
® A carriage return and a line feed are received.
® The string variable is filled.

The line feed or carriage return and line feed are NOT placed in the string variable. The form of
the READSTRING_UNTIL procedure is:

READSTRING_UNTIL (termination-character:
device_specifiery strind_variable)s

The READSTRING_UNTIL procedure will read in characters into a string until one of the
following termination conditions are encountered:

e The match character is received.
e The string variable is filled.

The termination character is placed into the string variable.

96 Inputting Data

Both procedures are in the /0O Library module GENERAL_2. An example program follows:

PROGRAM stringvariable (INPUT,OUTPUT)

IMPORT IODECLARATIONS 4
GENERAL_Z2}
VAR s : STRINGLZ5513
t : STRINGL 81}
BEGIN

{ the Kevboard is the input device 2

WRITELN(’enter a string terminated with a control-J‘);
READSTRING(145) 3
WRITELN{ 'vou entered <'s+54'> as vour strind’)i

WRITELN(’enter a strind of B characters ‘)i

READSTRING(1:t) 3

WRITELN(‘yvou entered «‘sts+’> as vour string’);

WRITELN(‘enter a strind terminated with an ENTER (carriade return)’);3
READSTRING_UNTIL(chr(13)+14+5)3

WRITELN{(you entered < yss’* as vour strind’)i

END.

Characters

There is a single input procedure for single characters—READCHAR. The form of this proce-
dures is:

READCHAR (interface_select_codes» character_variable);

The procedure is in the /O Library module GENERAL _1. The interface select code cannot be a
device specifier (like 701). Refer to the HP-IB section regarding bus addressing. The variable
must be a character variable. An example program follows:

PROGRAM characters (INPUT:OUTPUT);

IMPORT IODECLARATIONS ¢
GENERAL_13
VAR ¢ : CHAR:
BEGIN
REPEAT
READCHAR(1:c) 3
WRITELNS

WRITELN(‘vou tvred ‘s»c:’ which is character “0RD(c):3)3
UNTIL c=CHR(13)3}
WRITELNC(‘done)3
END .

Words
READWORD is the input procedure for 16-bit words. The form of this procedures is:

READWORD (interface_select_codes inteder_variable)j

Inputting Data 97

The procedure is in the [/O Library module GENERAL_1. The interface select code cannotbe a
device specifier (like 701). Refer to the HP-IB section regarding bus addressing. The variable
must be an integer variable. The returned value will be in the range of —32 768 to 32 767.

The procedure has two different behaviors, depending on what type of interface it is used with.
When used with an HP 98622 GPIO interface, this procedure will read a single 16-bit quantity
from the 16 data lines on the interface. This procedure will read two consecutive bytes for all
other interface types — most significant byte first, least significant byte last. An example program
for an HP-IB interface follows:

PROGRAM words (INPUT.DUTPRUT) S

IMPORT IODECLARATIONS »
GENERAL_13

VAR x : INTEGER3S

BEGIN

READWORD(12x) 3
WRITELN(‘the word received was : ‘»x:7)3
END.

Skipping Data
There are applications where you want to skip over a block of data and do not wish to store the

information. The /O Library has two procedures to support skipping over data: READUNTIL
and SKIPFOR.

The READUNTIL procedure skips over data until a match character is received. It is of the form:

READUNTIL (termination_character» device_srecifier)i

The SKIPFOR procedure skips over a specified number of characters. It is of the form:

SKIPFDR (sKip_count: device_srecifier)s

The skip count is an integer expression. Both procedures are in 1/0O Library module
GENERAL_2.

98

Inputting Data

Formatted Input

The previous “‘free field” procedures are adequate for a large number of applications. There
are, however, a large number of applications that need the “‘formatted” input capability. The
I/0O Library does not directly provide this capability. Formatted input is achieved with the use of
the built in procedure STRREAD.

STRREAD

The STRREAD procedure is a version of the standard Pascal procedure READ. The difference
is that STRREAD reads the character stream from a string variable, as opposed to an input file.
The form of STRREAD is as follows:

STRREAD (strind_variables startind_chars next_char_uvar,..inputlist..);

The string variable is the source for the input operation. The starting character position is an
integer expression that indicates which character in the string is the start of the data to be read.
The next character variable will contain, after the execution of STRREAD, the next available
character in the string for a successive STRREAD or other string operation. For additional
information, refer to The PASCAL Handbook.

The following program is an example of how to use STRREAD to produce formatted input.

PROGRAM formatted (INPUT,OUTPUT);

IMPORT IDDECLARATIODNS
GENERAL_23

TYPE color = (blue » brown » dreen » red)3}
VAR s : STRINGL1Z21;

t : STRINGL 813

POS : INTEGER

eves : colori
BEGIN

WRITELN(‘enter 8 alrhabetic characters’)j
WRITELN(‘and then tvre the characters BLUE’)]

READSTRING(14+5) 3
STRREAD(ss1 sPos:+ treves)s
WRITELN(‘the string is “st»’ and the eves are ’seves)i

END.

Chapter 9

Registers

Introduction

There are two classes of registers in the Pascal /O Library: firmware registers and hardware
registers. The firmware registers are accessed by the IOSTATUS function and the [OCONTROL
procedure. The hardware registers are accessed by the IOREAD_BYTE and IOREAD_WORD
functions and the IOWRITE_BYTE and [OWRITE_WORD procedures.

In most instances, it is unnecessary for the programmer to access the I/O system registers. Some
of the more common register operations are supported in high level procedures and functions.
It is best to use the high level procedures and functions when possible because these are more
easily understood and are more transportable. Refer to the chapters that deal with the specific
interface for the high level procedures and functions.

Firmware Registers

The firmware registers are called the status and control registers. In previous desktop computers
and in the HP BASIC language these firmware registers are accessed with the BASIC STATUS
and CONTROL statements. In the Pascal system, most of the firmware registers have the same
definitions as the BASIC system. This is only mentioned in case you already have an understand-
ing of the BASIC firmware registers.

The IOSTATUS Function

A status register is read with the IOSTATUS function. It is necessary to specify the interface and
the register number of interest in the parameter list. Only a single register may be examined
with each invocation of IOSTATUS.

09826-90075, rev: 1/83

100 Registers

Examples
interface 1= 123
redister 1= 0} { red 0 is card id ¥
i := IOSTATUS(interfacesredister)} { det interface id 2
WRITELN('bus state is ‘+IOSTATUS(7:7))3 { det HP-IB bus state 2

The IOCONTROL Procedure

A control register is written with the IOCONTROL procedure. It is necessary to specify the
interface and the register number, and the value to be written in the parameter list. Only a single
register may be modified with each invocation of [OCONTROL.

Examples
interface := 123
register 1= 34 { red 3 sets HP-IB addr ¥
IOCONTROL({interfacesredister:3)3 { set m»¥ card to addr 5 ¥
IOCONTROL(7+0+1) 3 { reset HP-IB card ¥

Common Register Definitions

The status and control registers are very interface dependent both in number and definition of
the registers. There are two registers that are defined for all except two interfaces:

® status register O (for card identification)
e control register O (to reset the interface card)

The keyboard and CRT (interface select codes 1 and 2) do not have status and control registers
implemented.

Hardware Registers

The hardware registers are accessed by the system firmware. It is, therefore, dangerous for you
to access these registers unless you have a complete understanding of both the register
definition and of the consequences of accessing the hardware registers. Their locations and
definitions are given in Appendix A of the Pascal Language System User’s Manual. The
IOREAD_BYTE and IOWRITE_BYTE perform an eight bit (byte) operation on the computer
backplane. The IOREAD_WORD and IOWRITE_WORD perform a 16-bit (word) operation on
the computer backplane.

Chapter 10

Errors and Timeouts

Introduction
There are two types of events supported in the Pascal I/O Library:

¢ 1/O Errors
o [/O Timeouts

These /0O events are handled via the TRY/RECOVER event handling mechanism. Refer to the
Compiler chapter of the Pascal System User’s Manual for additional information on TRY/
RECOVER.

Note that timeouts are only available on handshake operations. There is no timeout facility on
the advanced transfers. Also note that the Datacomm interface control blocks use the TRY/
RECOVER mechanism.

Pascal Event Processing

Pascal’s event handling is very much different from that found in BASIC or HPL on the 9826
and 9836. BASIC and HPL are inte:preted languages and at the end of each line there is a
system code to check for event conditions and take the appropriate branch if necessary. The
Pascal compiler does not generate code at the end of each line to check for conditions. Pascal
takes advantage of a hardware feature that allows an event to escape from whatever code is
currently being executed to a previously defined event handler. An example program using this
event handling is:

#SYSPROG ON$% { enable orPtional compiler features %
PROGRAM errors (INPUT:0UTPUT) 3
VAR a : REALS
BEGIN
TRY
a : 13
a == a/01% { this should dgenerate an error %
WRITELN(‘This should not det executed’)}
RECOVER { this is the event handler ¥
BEGIN
WRITELN(‘I have dotten an error’)}
WRITELN(‘The escare code is ' »ESCAPECODE)
ESCAPE(ESCAPECODE) § { Pass error on
END3

WRITELN(‘Program finished normally)3
END.

102 Errors and Timeouts

When run, this program will generate a CRT screen similar to the following:

I have dotten an error
The escare code is -3

error -5: divide by zero
PC value: -444090

The error handling in Pascal depends on four language features:

o TRY

¢ RECOVER

¢ ESCAPECODE
e ESCAPE

These features are not in the normal Pascal language. To access these features it is necessary to
turn on a compiler option called SYSPROG. This compiler option enables error handling and
several other system features. Refer to the Compiler chapter of the Pascal System User’s
Manual for additional information about $SYSPROG ONS$.

TRY

TRY defines the start of a block of code that is to be handled by a following RECOVER block.
This block of code may contain anything including procedure and function calls. If any error
occurs, it will be handled by the RECOVER block, unless there is a nested TRY/RECOVER
block. TRY/RECOVER blocks may be nested to any level. The inner-most RECOVER block will
receive control.

If no error occurs in a TRY/RECOVER block then the next statement following the RECOVER
block is executed.

RECOVER

RECOVER defines the start of the error handling code. The RECOVER code must be a simple
statement or a BEGIN/END block.

ESCAPECODE

ESCAPECODE is an INTEGER variable that contains the error code from the last error. System
errors have negative values. User errors should have positive values.

ESCAPE

ESCAPE is a procedure that generates an error escape. It has a single INTEGER parameter.
When ESCAPE is executed it places the parameter into the ESCAPECODE variable and
generates an error. This error will be trapped by a RECOVER block, if any.

Errors and Timeouts

I/O Exror Handling

I/O errors are just one of several error conditions that can occur in the Pascal system. Because
of the multitude of errors that can happen within device /O, only one ESCAPECODE has been
allocated for use by the I/O Library. When ESCAPECODE has the value — 26, the error was an
I/O error.

The /O Library uses some additional variables and functions for the various errors that it can
generate:

¢ IOESCAPECODE

e [OE_RESULT

¢ IOE_ISC

¢ IOERROR_MESSAGE

IOESCAPECODE

IOESCAPECODE is an integer constant with the value —26. This constant is compared with
the ESCAPECODE to determine if the ESCAPE was due to an 1/O error. The constant
IOESCAPECODE is defined in the [/O Library Module IODECLARATIONS.

IOE_RESULT

IOE_RESULT is an integer variable. This variable contains the specific 1/O error code, if any.
The variable IOE_RESULT is defined in the I/O Library Module IODECLARATIONS. A listing
of current error codes and their messages is in the last section in this chapter. For each error
code, the /O Library has defined a constant for that error. For example, when IOE_RESULT
has the value 11, the error is that there is no firmware to support the interface card in the
system. This error has a constant defined in IODECLARATIONS called ioe_no_driver that is
defined to have the decimal value 11.

IOE_ISC

IOE_ISC is an integer variable. This variable contains the interface select code of the last
interface to generate an I/O error. If the error was not due to an interface problem, then
IOE_ISC will contain the value 255 (which is NO_ISC). The variable IOE_ISC is defined in the
I/O Library Module IODECLARATIONS.

IOERROR_MESSAGE

IOERROR_MESSAGE is a string function. This function has one INTEGER parameter that
should contain the [/O error code IOE_RESULT. The function returns a string that is the English
error message associated with the specific error code. The string function
IOERROR_MESSAGE is in the 1/O Library Module GENERAL _3. A listing of current error
codes and their messages is in the last section in this chapter.

103

104 Errors and Timeouts

The following program is an example of handling an [/O error using the TRY/RECOVER
mechanism used with the features of the I/0 Library. This program attempts to write a string out
to an HP-IB interface without first addressing the interface card as a talker.

#SYSPROG ON% { enable opPptional compiler features %
PROGRAM io_errors (INPUT.OUTPUT)
IMPORT IODECLARATIONS,
GENERAL_1
GENERAL_Z
GENERAL_33
BEGIN
TRY
IOINITIALIZE { Put I/0 svstem into Known state 2}
WRITESTRINGLN(7,‘I am not sending address information’)3}
WRITELN(‘This should not det executed’)]
RECOVER { this is the event handler ¥
BEGIN
WRITELN('I have dotten an error’)}
WRITELN(‘The escare code is ' +ESCAPECODE)
IF ESCAPECODE=IOESCAPECODE
THEN BEGIN
WRITELN(‘The error was an I/0 error’)3
WRITELN(IOERROR_MESSAGE(IOE_RESULT) s’ on isc '»IOE_ISC)3

END
ELSE BEGIN
ESCAPE(ESCAPECODE) 3§ { Pass error on ¥
END
END 3
WRITELN(‘Prodram finished normally ‘)3

END.

When run, this program will generate a CRT screen similar to the following:

I have dotten an error

The escare code is -26
The error was an I/0 error
not addressed as talkKer on isc 7

Prodgram finished normally

Note that the program finished normally. The path that was executed inside the RECOVER
block did not perform an ESCAPE. Therefore, the statement immediately following the
RECOVER block is executed next.

It is important to structure your TRY/RECOVER blocks in a manner similar to the one just
shown. This is necessary because all errors go through the TRY/RECOVER mechanism. If you
do not check the cause of the error with ESCAPECODE, you might trap an error meant for
some other TRY/RECOVER or an error you did not expect.

Errors and Timeouts

[/O Timeouts

A timeout occurs when the handshake response from any external device takes longer than a
specified amount of time to complete. The time specified for the timeout is usually the max-
imum time that a device can be expected to take to respond to a handshake during an I/O
statement.

Setting Up Timeout Events

The SET_TIMEOUT procedure in Module GENERAL_1 has two parameters, the interface
select code and a single REAL parameter that is the time that the 1/O Library will wait for an
operation to complete. This parameter is the time in seconds. The parameter can range from 0
thru 8191 seconds with a resolution of .001 seconds. The default timeout value is 0, which is
interpreted by the I/O Library as a timeout period of infinity—the system will wait forever for the
operation to complete.

The timeout event is just another [/O error. The timeout error has the I/O error code
(IOE_RESULT) of 17 (I/O error constant ioe_timeout).

A sample program trapping timeouts follows. This program will try to send some data to a
device ten times and will then stop.

$SYSPROG ON% { enable ortional compiler features 1}
PROGRAM timeouts (INPUT,0UTPUT)S
IMPORT IODECLARATIONS,
GENERAL_1»
GENERAL_2
GENERAL_31i
VAR attempPt : INTEGER]}
success : BOOLEAN:
BEGIN
IOINITIALIZES
SET_TIMEDUT(7:1.,0)3% { timeout of 1 second on isc 7 ¥
attempPt := 13
success := FALSEY
REPEAT
TRY
WRITESTRINGLN(724:'This device does not exist on the hus’)i
success := TRUE}

RECOVER { this is the event handler }
BEGIN
IF ESCAPECDODE=IDESCAPECODE
THEN BEGIN
IF (IOE_RESULT = ICE_TIMEQOUT) AND (IGE_ISC = 7)
THEN BEGIN
IORESET(7) i { because interface is in a bad state 2

WRITELN(‘timeout #',attempt:2)3i
attempPt := attempPt+l1]i
END
ELSE BEGIN
WRITELN(IDERROR_MESSAGE(IOE_RESULT)»* on isc ‘HIDE_ISC)H3
ESCAPE(ESCAPECODE)
END 3§
END
ELSE BEGIN
ESCAPE(ESCAPECODE) } { Pass error on }
END 3§
END
UNTIL (attempt>10) OR successi
WRITELN(‘Program finished’)3
IOUNINITIALIZES { clean uprP interface state }
END.

105

106 Errors and Timeouts

When run, this program will generate a CRT screen similar to the following:

timeout % 1
timeout % 2
timeout # 3
timeout # 4
timeout # 5
timeout # B
timeout % 7
timeout # B
timeout # 9

timeout #10
Prodram finished

Errors and Timeouts

I/O Errors

The following list contains the error codes in the I[/O Library. The error code value is stored in
the system variable IOE_RESULT. This list also contains the text of the error message produced
by the GENERAL_3 string function IOERROR_MESSAGE. The name of the error is a constant
that is declared in the IODECLARATIONS Module. The errors from 306 through 327 are HP
98628A Datacomm interface errors.

Name Value Error Message
ioe_no_error 0 no error

ioe_no_card 1 no card at select code
ioe_not_hpib 2 interface should be hpib
ioe_not_act 3 not active controller
ioe_not_dvc 4 should be device not sc
joe_no_space 5 no space left in buffer
ioe_no_data 6 no data left in buffer
ioe_bad_tfr 7 improper transfer attempted
ioe_isc_busy 8 the select code is busy
ioe_buf_busy 9 the buffer is busy
ioe_bad_cnt 10 improper transfer count
ioe_bad_tmo 11 bad timeout value
ioe_no_driver 12 no driver for this card
ioe_no._dma 13 no dma

ioe_no_word 14 word operations not allowed
ioe_not_talk 15 not addressed as talker
ioe_not_lstn 16 not addressed as listener
ioe_timeout 17 a timeout has occurred
ioe_not_sctl 18 not system controller
ioe_rds_wtc 19 bad status or control
ioe_bad_sct 20 bad set/clear/test operation
ioe_crd_dwn 21 interface card is dead
ioe_eod_seen 22 end/eod has occurred
ioe_misc 23 miscellaneous - value of param error
ioe_dc_fail 306 dc interface failure
ioe_dc_usart 313 USART receive buffer overflow
ioe_dc_ovfl 314 receive buffer overflow
joe_dc_clk 315 missing clock

ioe_dc_cts 316 CTS false too long
ioe_dc_car 317 lost carrier disconnect
ioe_dc_act 318 no activity disconnect
ioe_dc_conn 319 connection not established
ioe_dc_conf 325 bad data bits/par combination
ioe_dc_reg 326 bad status /control register
ioe_dc_rval 327 control value out of range

107

108 Errors and Timeouts

Computer
“Museum

Chapter 11

Advanced Transfer Techniques

Introduction

This chapter discusses advanced transfer techniques. These transfers are intended primarily for
two main applications:

® Where the computer is much faster than the device being communicated with
e Where the computer is slower than the device being communicated with

This chapter includes discussions on buffers, serial transfers, overlap transfers and special forms
of transfers.

Bufférs

Buffers are the data area where the transfer procedures read and write the data that is being
transferred. This area is actually in two pieces. One piece is the control block for the buffer. The
other is the memory where data is actually stored.

The control block is a user variable. This variable must be of the type BUF_INFO_TYPE which
is defined in the I/O Library module IODECLARATIONS. This block of information contains
various fields including a pointer to the actual data area.

The data area is not allocated when the BUF_INFO_TYPE variable is declared. The data area is
allocated at program execution time with the execution of a procedure called IOBUFFER. This
procedure is of the form:

IDBUFFER (buffer_control_bklock: size_in_bvtes)i

The size in bytes is an integer value and can be of any size that the memory in your computer
can create. The IOBUFFER procedure, at program execution time, will allocate the data area
and initialize the various pointers in the buffer control block (a variable of BUF_INFO_TYPE).
IOBUFFER and all other I/O Library transfer procedures are in the GENERAL_4 module.

The data area that is allocated is allocated with the NEW facility. Refer to the Pascal Handbook
for more information on NEW and its related capabilities. In particular, be careful of the MARK
and RELEASE facilities since these can affect the buffer space.

110 Advanced Transfer Techniques

Once a buffer has been declared and allocated, it is necessary to be able to read and write the
buffer. The I/0O Library, as with normal input and output, has a small number of procedures and
functions to access the buffer space. These procedures and functions are:

e BUFFER_RESET

¢ BUFFER_SPACE

e BUFFER_DATA

e READBUFFER

e WRITEBUFFER

¢ READBUFFER_STRING
e WRITEBUFFER_STRING

Buffer Control

Necessary aspects of buffer control are empty and fill pointers. When data is written into the
buffer, the fill pointer is incremented. When data is read from the buffer the empty pointer is
incremented. When these two pointers meet, there is no data in the buffer.

The procedure BUFFER_RESET puts the empty and fill pointers back to the start of the
buffer—effectively clearing it of data. The form of this procedure is:

BUFFER_RESET (buffer_control_blocK)j

The integer function BUFFER_SPACE returns the number of bytes that are available at the end
of the buffer from the fill pointer to the end of the buffer. This function is of the form:

BUFFER_SPACE (buffer_control_blocK)3

The integer function BUFFER_DATA returns the number of bytes of data that are available in
the buffer from the empty pointer to the fill pointer. This function is of the form:

BUFFER.DATA (buffer_control_blocK)i

Reading Buffer Data

There are two procedures that read buffer data:. READBUFFER and READBUFFER_STRING.
READBUFFER reads a single character. READBUFFER_STRING reads a string. The form of
these procedures is:

READBUFFER (buffer_control_blocK: character_var)s
READBUFFER_STRING (buffer_control_blocks string_var,
character_count)i

The READBUFFER_STRING will read the specified number of characters from the buffer into
the string variable.

Advanced Transfer Techniques

Writing Buffer Data

There are two procedures that write buffer data: WRITEBUFFER and
WRITEBUFFER_STRING. WRITEBUFFER writes a single character.
WRITEBUFFER_STRING writes a string. The form of these procedures is:

WRITEBUFFER (buffer_control_blocK,s character)s
WRITEBUFFER_STRING (buffer_control_blocks string)i

The WRITEBUFFER_STRING will write the entire number of characters from the string ex-
pression into the buffer.

The following is an example program showing the creation and use of a buffer:

PROGRAM buffers (INPUT:OUTPUT)
IMPORT IODECLARATIONS »
GENERAL _43

VAR buffer : BUF_INFO_TYPE}
i : INTEGER;
c : CHARS

BEGIN

IOBUFFER(buffer100) { create a 100 character buffer 2

BUFFER_RESET(buffer) { maKe sure it is empty ¥
FOR i:=65 TO 90 DO

WRITEBUFFER(bufferschr(id)si { Put character data in the buf
WRITEBUFFER_STRING(buffers’hello’)3 { Put a string in the buffer ¥

WHILE BUFFER_DATA(buffer)>0 DO BEGIN
READBUFFER(buffersc)si { dump out the buffer by char >
WRITE{(c)

END3 { of WHILE DO BEGIN }

WRITELNS

END.

This program will produce the following screen on the CRT:

ABCDEFGHIJKLMNOPQRSTUVWXYZhello

111

112 Advanced Transfer Techniques

Serial Transfers

Serial transfers are those that complete before the next Pascal line is executed. This is the
normal approach that Pascal uses in program execution. This type of transfer is useful in the
application where you have a high speed data transfer where the computer is slower than or the
same speed as the device.

The procedure that performs a data transfer to and from a buffer is the TRANSFER procedure.
It has the following form:

TRANSFER (devices transfer_mode,» direction,
kuffer_control_blocK:» count)i

The device is the device specifier described in previous chapters (like 12 or 701). The count is
the number of bytes to be transferred by the procedure. The buffer control block is the buffer
variable of type BUF_INFO_TYPE.

The direction parameter is of a special type and can have two values: FROM_MEMORY and
TO_MEMORY. So a direction of FROM_MEMORY is an output transfer and TO_MEMORY is
an input transfer.

The transfer mode is also of a special type. For serial transfers it can have the values:

e SERIAL_DMA
e SERIAL_FHS
e SERIAL_FASTEST

The DMA mode specifies a dma transfer. The FHS mode specifies a fast handshake transfer.
The FASTEST mode specifies that if DMA is installed and available for the transfer, then it
should be used, otherwise a FHS transfer will occur. Some interfaces do not support DMA
transfers (like the Serial Data Comm interface). Those interfaces, when a FASTEST transfer is
requested, will give a FHS transfer since they cannot do DMA.

The DMA mode transfer can only transfer 1 through 65536 bytes of data. The fast handshake
transfer can be of arbitrary size.

An example program using a serial transfer to a printer is:

PROGRAM transfers

IMPDRT IODECLARATIONS +
GENERAL_43
VAR buffer : BUF_INFO_TYPE:
14d : INTEGERS
c : CHARS
BEGIN

IOBUFFER(buffer,»100)1
FOR 4:=1 TO S DO BEGIN

BUFFER_RESET (buffer)i
FDrR 1:=65 TO 90 DO

(INPUT »OUTPUT) 3

WRITEBUFFER(bufferschr(i))i
WRITEBUFFER(bufferschr(13)1}3
WRITEBUFFER(bufferschr(10}}3
TRANSFER (701 ySERIAL_FASTEST

FROM_MEMORY sbuffer,
kuffer_data(buffer) i

WRITELN(“this line will

ENDS { of FOR DO BEGIN 3}

END .

will
will
will
will
will

Printed
printed
printed
printed
printed

not be
not be
not be
not be
not be

line
line
line
line
line

this
this
this
this
this

and this on the PRINTER:

ABCDEFGHIJKLMNOPQRSTUWVKXMYZ
ABCDEFGHIJKLMNOPORSTUWWXYZ
ABCDEFGHIJKLMNOPORSTUVWXY Z
ABCDEFGHIJKLMNOPORSTUVKWXYZ
ABCDEFGHIJKLMNOPORSTUY

VT
TARL IS

not hbe

until
until
until
until
urntil

~

the
the
the
the
the

Advanced Transfer Techniques

create a 100 character buffer 3
make sure it is empty }
pPut character data in the buf 3}

This program will produce the following on the CRT:

transfer
transfer
transfer
transfer
transfer

is
is
is
is
is

done
done
done
done
done

{ Put in a carriade return 3}
{ Put in a line feed }
{ send all of the data in buf 3}
printed until the transfer is done’}3

113

114 Advanced Transfer Techniques

Overlap Transfers

Serial transfers are useful for high-speed applications. The computer will not continue execu-
tion of the program until the transfer is complete. For lower speed applications, this is not
adequate. The Pascal I/O Library provides an overlap transfer mechanism. This mechanism
allows for the program to continue execution while the transfer is continuing. The overlap
transfer mechanism is identical to the serial transfer. Its form is:

TRANSFER (devices» transfer_modes direction:
buffer_control_block, count)s

All of the parameters are the same with the exception of the transfer_mode. The mode param-
eter can have the following values for overlap transfers:

Transfer Mode Value | Meaning

OVERLAP_INTR Interrupt transfer

OVERLAP_DMA dma transfer

OVERLAP_FHS Interrupt on first byte fast handshake on rest
OVERLAP_FASTEST dma if available, else use overlap_fhs
OVERLAP dma if available, else use overlap_intr

The overlap fast handshake mode has also been called burst mode, because it does not

consume any CPU time until the first byte is transferred. The overlap mode is provided so that if

your application requires a data transfer to execute concurrently with the program execution, ‘
then you will get the most efficient method available.

The DMA mode transfer can only transfer 1 through 65 536 bytes of data. The other transfer
modes can be of arbitrary size.

When is the Transfer Finished?

There are two BOOLEAN functions which can tell you if a transfer is still occurring between a
buffer and an interface. These are:

BUFFER_ACTIVE(buffer_control_block)3

and

ISC_ACTIVE(interface_.select_code)3

Either function returns TRUE if the transfer is still active.

09826-90075, rev: 1/83

Advanced Transfer Techniques

The following program is an example of an overlap transfer. This program does not do anything
useful with the spare time available to it.

PROGRA
IMPORT

VAR bu
i

c
BEGIN
10BU
FOR

WH

BU
FO

WR

WR
TR

END 3

END.

M owerlared (INPUT,OUTPUT)
IODECLARATIONS »
GENERAL_43
BUF_INFO_TYPE}
INTEGER

CHAR

ffer
J

FFER(buffer,100) 1
J:=1 TO 5 DO BEGIN

ILE
BEGIN

BUFFER_ACTIVE(buffer

)

DO

WRITELN(‘waitind for transfer

END ;

FFER_RESET(buffer) s

R i:=63 TO 90 DO

WRITEBUFFER(bufferschr(i))i

ITEBUFFER(buffer,chr(13))3

ITEBUFFER(buffer,chr(10))3i

ANSFER(701 ;OVERLAP_INTR
FROM_MEMDRY sbuffer,

buffer_data(buffer))s

{ of FOR DO BEGIN 1}

{ create a 100

to finish’) 3

{ maKe sure it

{ Put character

{ Put
{ Put

character buffer 2

is emPty }

data in the buf 1}

in a carriade return }

in a line feed }

{ send all of the data in buf }

This program will produce the following on the PRINTER:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVMWXYZ

ABCDEFGHIJKLMNOPORSTUY

AT
N L

ABCDEFGHIJKLMNOPQRSTUVWXYZ

09826-90075, rev: 1/83

115

116 Advanced Transfer Techniques

Special Transfers

In addition to the block transfers that were described above, there are three additional versions
of transfer. They are:

e word transfers
e match character transfers
¢ END condition transfers

Word Transfer

The GPIO interface can support 16 bit data transfers. The TRANSFER_WORD procedure
simultaneously transfers 2 bytes over the GPIO interface. The form of this procedure is:

TRANSFER_WORD (devices transfer_modes direction:
buffer_control_blocKk:s count)s

All of the parameters are the same with the exception of the count which now contains the
16-bit word count to be transferred. All the transfer types, overlap and serial, are the same as a
regular transfer.

Match Character Transfer

This transfer procedure will transfer data into the computer until a match character is found. .
Note that this transfer, called TRANSFER_UNTIL, is an input only transfer. The form of the

procedure is:

TRANSFER_UNTIL (termination_char, devices transfer_mode:
directions buffer_control_blocK);i

The termination character is the match character that will stop the transfer. The transfer will also
stop when the there is no more room in the buffer. All of the other parameters are the same.
Most of the transfer types, overlap and serial, are the same as a regular transfer - except that
DMA transfers are not allowed. Note that there is NO count parameter. The direction must be
TO_MEMORY.

END Condition Transfer

This transfer procedure will transfer data into the computer until an interface condition occurs
or it will transfer data out with the last data byte being sent with an interface condition. This
transfer is TRANSFER_END and has the form:

TRANSFER_END (devices transfer_mode:s direction:
buffer_control_blocK)i

All of the parameters are the same. Note that there is NO count. The transfer will send all the
available data followed by the condition or will receive data until the end condition occurs or
the buffer fills up. All the transfer types, overlap and serial, are the same as a regular transfer.
An example of an end condition is the EOI condition on HP-IB.

Computer

Chapter 12
The HP-IB Interface

Introduction

This chapter describes the techniques necessary for programming the HP-1B interface. Many of
the elementary concepts have been discussed in previous chapters. This chapter describes the
specific details of how this interface works and how it is used to communicate with and control
systems consisting of various HP-IB devices.

The HP-IB (Hewlett-Packard Interface Bus), commonly called the “‘bus’, provides compatibil-
ity between the computer and external devices conforming to the IEEE 488-1978 standard.
Electrical, mechanical, and timing compatibility requirements are all satisfied by this interface.

HP-1B
Interface
Handshake
Data and 3

Control Hardware
Backplane and

Connector Firmware Control
5

Shielded Cable
to Device(s)

25-Pin Connector

Logic and Shield
Grounds

8

The HP-IB interface is both easy to use and allows great flexibility in communicating data and
control information between the computer and external devices. It is one of the easiest methods
to connect more than one device to the same interface.

118 HP-IB Interface

Initial Installation

Refer to the HP-IB Installation Note for information about setting the switches and installing an
external HP-IB interface. Once the interface has been properly installed, you can verify that the
switch settings are what you intended by running the following program. The defaults of the

internal HP-IB interface can also be checked with the program. The results are displayed on the
CRT.

PROGRAM checKk_hpibk (INPUT s OUTPUT)3
IMPORT IODECLARATIONS

HPIB_13
VAR isc : TYPE_ISC3
BEGIN
WRITELN(‘Enter HP-IB interface select code‘):
READLN(isc) 3
IF ISC_TABLELiscl.CARD_TYPE <> HPIB_CARD
THEN BEGIN
WRITELN(‘The interface at isc ’'sisc:2y’ is not am HP-IB interface’)}
END
ELSE BEGIN
WRITELN(‘The interface at isc ‘s+isc:2s’ is an HP-IB interface’)3

IF ISC_TABLELiscl.CARD_ID = HP98GZ4
THEN WRITELNC(' and is an optional:+ external interface’)
ELSE WRITELN(and is the standards built in interface’)

WRITE('The interface is ‘)]}
IF NOT SYSTEM_CONTROLLER(isc) THEN WRITE(’'NOT ‘)3
WRITELN(’the system controller’)s

WRITE('The interface has a bus address of ‘smy_address(isc):2)3

END§ { of IF THEN/ELSE ¥}
END,

The terms system controller and bus address are described in the following sections. The
internal HP-IB has a jumper that is set at the factory to make it a system controller. This jumper
is located below the lowest interface slot at the computer backplane. The lowest interface (or
memory board) in the backplane must be removed to access this jumper. If the jumper in the
center of the clear plastic cover is placed on the middle and right most pins, as seen from the
rear of the computer, the computer is set to be a system controller. If the jumper is on the

middle and leftmost pins, then the computer is not system controller and will have a bus address
of 20.

HP-IB Interface 119

Communicating with Devices

This section describes programming techniques used to output data to and enter data from
HP-IB devices. General bus operation is also briefly described.

HP-IB Device Selectors

Since the HP-IB allows the interconnection of several devices, each device must have a means
of being uniquely accessed. Specifying just the interface select code of the HP-IB interface
through which a device is connected is not sufficient to identify that device on the bus.

Each device connected to the bus has an address by which it can be identified. This address
must be unique to allow individual access of each device. Most HP-IB devices have a set of
switches that are used to set its address. Those that do not have switches, like the built in HP-IB
interface in the computer, have a pre-set bus address. So, when a particular HP-IB device is to
be accessed, it must be identified with both its interface and its bus address.

The interface select code is the first part of an HP-IB device selector. The interface select code
of the internal HP-IB is 7. The second part of an HP-IB device specifier is the device’s bus
address. This address is the range of 0 through 30. As described in the Directing Data Flow
chapter, interface 7, device address 17 would have a device specifier of 717. Interface 10,
device address 2 would have a device specifier of 1002.

Moving Data Through the HP-IB

Data is output from and entered into the computer through the output and input procedures
described in Chapters 7 and 8. All the information in these chapters applies directly to the
HP-IB interface. The advanced transfer techniques of Chapter 11 also apply to the HP-IB
interface.

Example

PROGRAM hpib_io (INPUT:OUTPUT)

IMPORT GENERAL_23
VAR a : REALS

i : INTEGER?
BEGIN

WRITESTRINGLN(701+‘messade to a printer’);
WRITESTRINGLN(7Z24+ 'RITINIS)3
FOR i:= 1 TO 100 DO BEGIN
READNUMBER (724 a) i
WRITELN(‘the readind from the voltmeter is ‘,a:B:2)3
END5 { of FOR DO BEGIN 1}
END.

General Structure of the HP-IB

Communications through the HP-IB are made according to a precisely defined set of rules.
These rules help to ensure that only orderly communication may take place on the bus. For
conceptual purposes, the organization of the HP-IB can be compared to that of a committee. A
committee has certain “‘rules of order’ that govern the manner in which business is to be
conducted. For the HP-IB, these rules of order are the IEEE 488-1978 standard.

120 HP-IB Interface

One member, designated the ‘‘committee chairman,’’ is set apart for the purpose of conducting
communications between members during the meetings. This chairman is responsible for over-
seeing the actions of the committee and generally enforces the rules of order to ensure the
proper conduct of business. If the committee chairman cannot attend a meeting, he designates
some other member to be ‘‘acting chairman.”

On the HP-IB, the system controller corresponds to the committee chairman. The system
controller is generally designated by setting a switch on the interface and cannot be changed
under program control. However, it is possible to designate an ‘“‘acting chairman’ on the
HP-IB. On the HP-IB, this device is called the active controller, and may be any device
capable of directing HP-IB activities, such as a desktop computer.

When the system controller is first turned on or reset, it assumes the role of active controller.
Thus, only one device can be designated system controller. These responsibilities may be
subsequently passed to another device while the system controller tends to other business. This
ability to pass control allows more than one computer to be connected to the HP-1B at the same
time.

In a committee, only one person at a time may speak. It is the chairman’s responsibility to
“recognize’’ which one member is to speak. Usually, all committee members present always
listen; however, this is not always the case on the HP-IB. One of the most powerful features of
the bus is the ability to selectively send data to individual (or groups of) devices.

Imagine slow note takers and fast note takers on the committee. Suppose that the speaker is
allowed to talk no faster than the slowest note taker can write. This would guarantee that
everybody gets the full set of notes and that no one misses any information. However, requiring
all presentations to go at that slow pace certainly imposes a restriction on our committee,
especially if the slow note takers do not need the information. Now, if the chairman knows
which presentations are not important to the slow note takers, he can direct them to put away
their notes for those presentations. That way, the speaker and the fast note taker(s) can cover
more items in less time.

A similar situation may exist on the HP-IB. Suppose that a printer and a flexible disc are
connected to the bus. Both devices do not need to listen to all data messages sent through the
bus. Also, if all the data transfers must be slow enough for the printer to keep up, saving a
program on the disc would take as long as listing the program on the printer. That would
certainly not be a very effective use of the speed of the disc drive if it was the only device to
receive the data. Instead, by ‘‘unlistening’’ the printer whenever it does not need to receive a
data message, the computer can save a program as fast as the disc can accept it.

During a committee meeting, the current chairman is responsible for telling the committee
which member is to be the talker and which is (are) to be the listener(s). Before these assign-
ments are given, he must get the attention of all members. The talker and listener(s) are then
designated, and the next data message is presented to the listener(s) by the talker. When the
talker has finished the message, the designation process may be repeated.

HP-1B Interface 121

On the HP-IB, the active controller takes similar action. When talker and listener(s) are to be
designated, the attention signal line (ATN) is asserted while the talker and listener(s) are being
addressed. ATN is then cleared, signaling that those devices not addressed to listen may ignore
all subsequent data messages. Thus, the ATN line separates data from commands; com-
mands are accompanied by the ATN line being true, while data messages are sent with the ATN
line false.

On the HP-IB, devices are addressed to talk and addressed to listen in the following orderly
manner. The active controller first sends a single command which causes all devices to unlisten.
The talker's address is then sent, followed by the address(s) of the listener(s). After all listeners
have been addressed, the data can be sent from the talker to the listener(s). Only device(s)
addressed to listen accept any data that is sent through the bus (until the bus is reconfigured by
subsequent addressing commands).

The data transfer, or data message, allows for the exchange of information between devices on
the HP-IB. Qur committee conducts business by exchanging ideas and information between
the speaker and those listening to his presentation. On the HP-IB, data is transferred from the
active talker to the active listener(s) at a rate determined by the slowest active listener on
the bus. This restriction on the transfer rate is necessary to ensure that no data is lost by any
device addressed to listen. The handshake used to transfer each data byte ensures that all data
output by the talker is received by all active listeners.

Examples of Bus Sequences

Most data transfers through the HP-IB involve a talker and only one listener. For instance,
when an input or output procedure is used to send data to or from a device, the following
sequence of commands is sent through the bus.

WRITESTRINGLN{(7C1:'Data’) s

The unlisten command is sent.
The talker’s address is sent (the computer’s talk address).
The listener’s address is sent (address 01).

-

The data bytes “‘D”’,*““a”,*‘t”’,*‘a’’,carriage return and line feed are sent.
READSTRING(724 :Messade) ;

The unlisten command is sent.
The talker’s address is sent (talk address for device 24).
The listener’s address is sent (the computer listen address).

A=

The data bytes are transferred.

122 HP-IB Interface

Addressing Multiple Listeners

HP-IB allows more than one device to listen as data is sent through the bus. The PASCAL 1/O
Library supports this capability in the following way. It is necessary for you to address the bus
yourself. The procedures to do this addressing exist in the module HPIB_2. The following
example shows how to address the computer as a talker and several devices as listeners.

UNLISTEN(isc) 3

TALK (iscsmy._.address(isc))i

LISTEN {(iscsaddress_1)3

LISTEN (iscsaddress_2) 3

LISTEN (iscraddress_3)
WRITESTRINGLN(iscs'‘message to three devices’) i

An example where the computer is one of several devices listening to some incoming data is :

UNLISTEN(isc))

TALK (iscsaddress_1)3
LISTEN (iscsmy._.address{isc))i
LISTEN (iscraddress_2) s
LISTEN (iscsraddress._3)
READSTRING(iscsstr)

The UNLISTEN, TALK and LISTEN procedures are in the I/O Library module HPIB_2. .

| Addressing a Non-Controller Computer

The bus standard states that a non-active controller cannot perform any bus addressing. When
only the interface select code is specified in an input or output procedure, no bus addressing
occurs.

If the computer currently is not the active controller, it can still act as a talker or listener,
provided it has been previously addressed. So, if an input or output procedure is executed
while the computer is not an active controller, the computer first determines whether or not it is
an active talker or listener. If not addressed to talk or listen, the computer waits until it is
properly addressed and then performs the operation. Examples of non-controller [/O are:

READCHAR (7 sc) 3
WRITESTRINGLN(7 +‘] am Just a device’):
READSTRING_UNTIL{(chr{(13)+7sstr) 3

If the computer is the active controller, it proceeds with the data transfer without addressing
which devices are talker and listener(s). If the bus has not been configured properly (the
controller not being addressed as a talker or listener), an error is reported. The escapecode is
—26 (I/0) and the io error is 15 or 16 (not addressed as a talker or listener). The following
program shows a typical use of this non-addressing approach.

WRITESTRINGLN(703:'1 d0 to device 3 on isc 77)3%
LISTEN(7:+1)3% WRITESTRINGLN(7:’I d0 to device 1 and 57)1 ‘
LISTEN(7+Z20) 3

FOR i:=1 TO 10 DO WRITESTRINGLN(10 lines to deuvices 1

20703

09826-90075, rev: 1/83

HP-IB Interface

PASCAL Control of HP-IB

The PASCAL 1/O Library has a number of procedures and functions for control of the HP-IB
bus. You have seen a number of them already in the preceding examples. The normal bus
control capabilities are broken down into two major groups - status and control.

HP-1B Status

Normal use of HP-IB requires three main status facilities:

e What is my address?
® Am [system controller?
® Am [active controller?

The function MY_ADDRESS returns the current device address of the specified interface. This
integer function is in module HPIB_1. It has the form:

MY_ADDRESS (interface_select_code)3

The function SYSTEM_CONTROLLER returns a TRUE or FALSE depending on whether the
interface is a system controller. This boolean function is in module HPIB_1 and has the form:

SYSTEM_CONTROLLER (interface_select_code })

The function ACTIVE_CONTROLLER returns a TRUE or FALSE depending on whether the
interface is a active controller. This boolean function is in module HPIB_1 and has the form:

ACTIVE_CONTROLLER (interface_.select_code)3

HP-IB Control

Normal use of HP-IB requires five main control facilities:

e Send untalk

e Send unlisten

e Send a talk command

® Send a listen command

¢ Send a secondary command

The UNTALK and UNLISTEN procedures send the appropriate command on the bus. These
procedures are in the HPIB_2 module. The interface must be active controller for them to
complete. They have the form:

UNTALK (interface_select_code)3

UNLISTEN (interface_select_code)3

123

124 HP-IB Interface

The TALK, LISTEN and SECONDARY commands send a talk, listen or secondary command.
These procedures are in the HPIB_2 module. The interface must be an active controller form
for them to complete. They have the form:

TALK { interface.select_code ; address)3
LISTEN (interface_select.code s+ address)3

SECONDARY { interface.select_code » address)3

General Bus Management
The HP-IB standard provides several mechanisms that allow managing the bus and the devices
on the bus. Here is a summary of the procedures that invoke these control mechanisms.
ABORT_HPIB is used to abruptly terminate all bus activity and reset all devices to power-on
states.
CLEAR is used to set all (or only selected) devices to a pre-defined, device-dependent state.
LOCAL is used to return all (or selected) devices to local (front-panel) control.
LOCAL_LOCKOUT is used to disable all devices’ front-panel controls. ‘

PASS_CONTROL is used to pass active control to another device on the bus.

PPOLL is used to perform a parallel poll on all devices (which are configured and capable of
responding).

PPOLL_CONF IGURE is used to setup the parallel poll response of a particular device.

PPOLL_UNCONFIGURE is used to disable the parallel poll response of a device (or all devices
on an interface).

REMDTE is used to put all (or selected) devices into their device-dependent, remote modes.
SEND_COMMAND is used to manage the bus by sending explicit command messages.

SPOLL is used to perform a serial poll of the specified device (which must be capable of
responding).

TRIGGER is used to send the trigger message to a device (or selected group of devices).

These procedures (and functions) are described in the following discussion. However, the
actions that a device takes upon receiving each of the above commands are, in general,
different for each device. Refer to a particular device’s manuals to determine how it will
respond. Detailed descriptions of the actual sequence of bus messages invoked by these state-
ments are contained in ‘‘Advanced Bus Management’’ near the end of this chapter.

Remote Control of Devices

Most HP-IB devices can be controlled either from the front panel or from the bus. If the device’s
front-panel controls are currently functional, it is in the Local state. If it is being controlled
through the HP-IB, it is in the Remote state. Pressing the front-panel “‘Local” key will return the
device to Local (front-panel) control, unless the device is in the Local Lockout state (described
in a subsequent discussion).

HP-IB Interface 125

The Remote message is automatically sent to all devices whenever the system controller is
powered on, reset, or sends the Abort message. A device also enters the Remote state auto-
matically whenever it is addressed. The REMOTE procedure also outputs the Remote message,
which causes all (or specified) devices on the bus to change from local control to remote
control. The 9826 must be the system controller to execute the REMOTE procedure. The
REMOTE procedure is in module HPIB_2.

Examples
REMOTE (7) 3
REMOTE (700) 3

Locking Out Local Control

The Local Lockout message effectively locks out the “‘local” switch present on most HP-IB
device front panels, preventing a device’s user from interfering with system operations by
pressing buttons and thereby maintaining system integrity. As long as Local Lockout is in effect,
no bus device can be returned to local control from its front panel.

The Local Lockout message is sent by executing the LOCAL_LOCKOUT procedure. This
message is sent to all device on the specified HP-IB interface, and it can only be sent by the
9826 when it is the active controller. This procedure is in module HPIB_2.

Examples
LOCAL_LOCKOUT (7)) 3

The Local Lockout message is cleared when the Local message is sent by executing the LOCAL
procedure. However, executing the ABORT_HPIB procedure does not cancel the Local Lock-
out message.

Enabling Local Control

During system operation, it may be necessary for an operator to interact with one or more
devices. For instance, an operator might need to work from the front panel to make special tests
or to troubleshoot. And, in general, it is good systems practice to return all devices to local
control upon conclusion of remote-control operations. Executing the LOCAL procedure re-
turns the specified devices to local (front-panel) control. The 9826 must be the active controller
to send the LOCAL message. This procedure is in module HPIB_2

Examples
LOCAL (7)) 3
LOCAL (801) 3

If primary addressing is specified, the Go-to-Local message is sent only to the specified de-
vice(s). However, if only the interface select code is specified, the Local message is sent to all
devices on the specified HP-IB interface and any previous Local Lockout message (which is still
in effect) is automatically cleared. The 9826 must be the system controller to send the Local
message (by specifying only the interface select code).

126 HP-IB Interface

Triggering HP-IB Devices

The TRIGGER procedure sends a Trigger message from the controller to a selected device or
group of devices. The purpose of the Trigger message is to initiate some device-dependent
action; for example, it can be used to trigger a digital voltmeter to perform its measurement
cycle. Because the response of a device to a Trigger Message is strictly device-dependent,
neither the Trigger message nor the interface indicates what action is initiated by the device.
This procedure is in module HPIB_2.

Examples
TRIGGER (7) 3
TRIGGER (707)3

Specifying only the interface select code outputs a Trigger message to all devices currently
addressed to listen on the bus. Including device addresses in the statement triggers only those
devices addressed by the statement.

Clearing HP-IB Devices

The CLEAR procedure provides a means of ‘‘initializing’”’ a device to its predefined, device-
dependent state. When the CLEAR procedure is executed, the Clear message is sent either to
all devices or to the specified device, depending on the information contained within the device
selector. If only the interface select code is specified, all devices on the specified HP-1B interface
are cleared. If primary-address information is specified, the Clear message is sent only to the
specified device. Only the active controller can send the Clear message. This procedure is in
module HPIB_2.

Examples
CLEAR (7) i
CLEAR (700) 3

Aborting Bus Activity

The ABORT_HPIB procedure may be used to terminate all activity on the bus and return all the
HP-IB interfaces of all devices to a reset (or power-on) condition. Whether this affects other
modes of the device depends on the device itself. The 9826 must be either the active or the
system controller to perform this function. If the system controller (which is not the current
active controller) executes this statement, it regains active control of the bus. This procedure is
in module HPIB_2. Only the interface select code may be specified; device selectors which
contain primary-addressing information (such as 724) may not be used. This procedure is in
module HPIB_2.

Examples

ABORT_HPIB (7) 3

HP-IB Interface 127

Passing Control

The PASS_CONTROL procedure will pass current active control to another device on the bus.
The interface must be active controller. This procedure is in module HPIB_2.

Examples
PASS_CONTROL (720) 3

Polling HP-IB Devices

The parallel poll is the fastest means of gathering device status when several devices are
connected to the bus. Each device (with this capability) can be programmed to respond with
one bit of status when parallel polled, making it possible to obtain the status of several devices
in one operation. If a device responds affirmatively to a parallel poll, more information as to its
specific status can be obtained by conducting a serial poll of the device.

Configuring Parallel Poll Responses

Certain devices can be remotely programmed by the active controller to respond to a parallel

poll. A device which is currently configured for a parallel poll responds to the poll by placing its

current status on one of the bus data lines. The logic sense of the response and the data-bit

number can be programmed by the PPOLL_CONFIGURE procedure. If more than one device

is to respond on a single bit, each device must be configured with a separate PPOLL_CONFI-
. GURE procedure. This procedure is in module HPIB_2.

Note

Use of PPOLL_CONFIGURE may interfere with the Pascal Oper-
ating System, especially if an external disk is being used. Be very
careful.

Example

PPOLL_CONFIGURE (705 :masK) 3
The value of the mask (any numeric expression can be specified) is first rounded and then used
to configure the device’s parallel response. The least significant 3 bits (bits O through 2) of the
expression are used to determine which data line the device is to respond on (place its status
on). Bit 3 specifies the “‘true’’ state of the parallel poll response bit of the device. A value of 0
implies that the device’s response is 0 when its status-bit message is true.

Example

The following statement configures device at address 01 on interface select code 7 to respond
by placing a 0 on bit 4 when its status response is ‘‘true’’.

RPOLL_CONFIGURE (701.4) 3

128 HP-IB Interface

Conducting a Parallel Poll

The PPOLL function returns a single byte containing up to 8 status bit messages of all devices
on the bus capable of responding to the poll. Each bit returned by the function corresponds to
the status bit of the device(s) configured to respond to the parallel poll. (Recall that one or more
devices can respond on a single line.) The PPOLL function can only be executed by the 9826
when it is the active controller. This function is in module HPIB_3.

Example
Responses=PPOLL(7) 3
Disabling Parallel Poll Responses

The PPOLL_UNCONFIGURE procedure gives the 9826 (as active controller) the capability of
disabling the parallel poll responses of one or more devices on the bus.

Note

Use of PPOLL_UNCONFIGURE may interfere with the Pascal Oper-
ating System, especially if an external disk is being used. Be very
careful.

Examples

The following statement disables device 5 only.
PPOLL _UNCONFIGURE (703) 3

This statement disables all devices on interface select code 8 from responding to a parallel poll.
PPOLL_UNCONFIGURE (8) 3

If no primary addressing is specified, all bus devices are disabled from responding to a parallel
poll. If primary addressing is specified, only the specified devices (which have the parallel poll
configure capability) are disabled.

Conducting a Serial Poll

A sequential poll of individual devices on the bus is known as a serial poll. One entire byte of
status is returned by the specified device in response to a serial poll. This byte is called the
Status Byte message and, depending on the device, may indicate an overload, a request for
service, or a printer being out of paper. The particular response of each device depends on the
device.

The SPOLL function performs a serial poll of the specified device; the 9826 must be the active
controller. This function is in module HPIB_3.

Examples

Resrponse:=SPOLL(724) %

HP-IB Interface

HP-IB Interface Conditions

The HP-IB interface can be in various states at various times. It is desirable for the programmer
to know about this state information. The major conditions of interest are:

® [s a device requesting service?

e Am | a talker?

e Am | a listener?

e What remote/local state am [in?

These conditions are supported by the following [/O Library functions in the HPIB_3 module.
All of these functions are boolean functions and will return an appropriate TRUE or FALSE
indication depending of the condition state.

function meaning

REQUESTED (interface_select_code) Is SRQ asserted?
TALKER (interface_select_code) Am [a talker?
LISTENER (interface_select_code) Am | a listener?
REMOTED (interface_select_code) Is REN asserted?
LOCKED.OUT (interface_select_code) Am lin a locked out state?

The REQUESTED function requires that the interface be active controller. The REMOTED
function requires that the interface not be system controller. The LOCKED_OUT function
requires that the interface not be active controller. An example program segment follows.

WHILE REQUESTED({(isc) DO
FOR 1:=0 TO 7 DO BEGIN
IF BIT_SET(SPOLL(isc*100+1i)6)
THEN WRITELN{ ‘device ‘“si:2+' reguesting service ‘)3
ENDSF { of FOR DO BEGIN %

129

130 HP-IB Interface

HP-IB Control Lines

Device A [< Data Bus
(8 Lines)
Able to talk, N
listen, and ()
contro!
(e.g.
calculator)
Device B < Data Byte
Transfer
Able to talk oy Controt
and listen
(e.g.,
multimeter)
General
< Interface
Device C N Management
Only able to
listen >
(e.g., signal
generator)
Device D
Only able to
talk
(e.g., counter)
[}oio1.s
DAV
NRFD
NDAC
IFC
ATN
SRQ
REN
EOI

Handshake Lines

The preceding figure shows the names given to the eight control lines that make up the HP-IB.
Three of these lines are designated as the ‘*handshake’’ lines and are used to control the timing
of data byte exchanges so that the talker does not get ahead of the listener(s). The three
handshake lines are as follows.

DAV Data Valid
NRFD Not Ready for Data
NDAC Not Data Accepted

HP-IB Interface 131

The HP-IB interlocking handshake uses the lines as follows. All devices currently designated
as active listeners would indicate when they are ready for data by using the NRFD line. A device
not ready would pull this line low (true) to signal that it is not ready for data, while any device
that is ready would let the line float high. Since an active low overrides a passive high, this line
will stay low until all active listeners are ready for data.

When the talker senses that all devices are ready, it places the next data byte on the data lines
and then pulls DAV low (true). This tells the listeners that the information on the data lines is
valid and that they may read it. Each listener then accepts the data and lets the NDAC line float
high (false). As with NRFD, only when all listeners have let NDAC go high will the talker sense
that all listeners have read the data. It can then float DAV (let it go high) and start the entire
sequence over again for the next byte of data.

The Attention Line (ATN)

Command messages are encoded on the data lines as 7-bit ASCII characters, and are distin-
guished from normal data characters by the logic state of the attention line (ATN). That is, when
ATN is false, the states of the data lines are interpreted as data. When ATN is true, the data
lines are interpreted as commands. The set of 128 ASCII characters that can be placed on the
data lines during this ATN-true mode are divided into four classes by the states of data lines
DIO6 and DIO7. These classes of commands are shown in a table in the section called “‘Adv-
anced Bus Management”’.

The Interface Clear Line (IFC)

Only the system controller can set the IFC line true. By asserting IFC, all bus activity is uncon-
ditionally terminated, the system controller regains the capability of active controller (if it has
been passed to another device), and any current talker and listeners become unaddressed.
Normally, this line is only used to terminate all current operations, or to allow the system
controller to regain control of the bus. It overrides any other activity that is currently taking
place on the bus.

The Remote Enable Line (REN)

This line is used to allow instruments on the bus to be programmed remotely by the active
controller. Any device that is addressed to listen while REN is true is placed in the Remote mode
of operation.

The End or Identify Line (EOI)

Normally, data messages sent over the HP-IB are sent using the standard ASCII code and are
terminated by the ASCII line-feed character, CHR(10). However, certain devices may wish to
send blocks of information that contain data bytes which have the bit pattern of the line-feed
character but which are actually part of the data message. Thus, no bit pattern can be desig-
nated as a terminating character, since it could occur anywhere in the data stream. For this
reason, the EOQI line is used to mark the end of the data message.

132 HP-IB Interface

The EOI line is not directly supported by the input and output procedures of Chapters 7 and 8.
It is supported in advanced transfers by the TRANSFER_END procedure.

The /O Library does provide access to the EOI line at a lower level. The state of the EOI line
after the last byte read is stored in the system and can be viewed with the END_SET boolean
function which is module HPIB_1. An example of this function is:

UNLISTEN(7) 3
TALK (7 +20) 3
LISTEN(7 MY _ADDRESS(7)) 3
REPEAT

READCHAR (7 »el[i1) 3
UNTIL END_SET(7)3

The 1/O Library also provides a facility for setting the EOI line with a byte to be sent. This is
provided with the procedure SET_HPIB which is in module HPIB_0. An example use of this
procedure is:

UNLISTENC(7) 3

TALK (7 sMY_ADDRESS(7))3

LISTEN(7,11) 3

FOR i:=1 TO STRLEN(str)-1 DD WRITECHAR(7:strl[il);3
SET_HPIB(7+EOQI.LINE)S

WRITECHAR(7 st P[STRLENT) }

After the character output occurs, the EOI line will be set false automatically.

The Service Request Line (SRQ)

The active controller is always in charge of the order of events that occur on the HP-IB. If a
device on the bus needs the controller’s help, it can set the service request line true. This line
sends a request, not a demand, and it is up to the controller to choose when and how it will
service that device. The REQUESTED function tells the controller whether it is being requested.
The procedure to request the service is the REQUEST_SERVICE procedure in the module
HPIB_3. This module is of the form:

REQUEST_SERVICE (interface_select_code » response.bvyte)3

The response byte is an integer value in the range of O through 255. If bit 6 of this byte is set, the
SRQ line will be asserted by this interface. If bit 6 is not set, then this device will not assert the
SRQ line. The interface must not be active controller to request service.

Determining Bus-Line States

IOSTATUS register 7 contains the current states of all bus hardware lines. Reading this register
returns the states of these lines.

bus_lines := I0OSTATUS(7:7) 3

Status Register 7

Most significant Bit

Bus Control and Data Lines
Least Significant Bit

HP-IB Interface

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
ATN DAV NDAC* NRFD* EOI SRQ** IFC REN
True True True True True True True True
Value = Value = Value = Value = Value = Value = Value = Value =
—32768 16 384 8 192 4 096 2048 1024 512 256
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0
DIO8 DIO7 DIO6 DIOS DIO4 DIO3 DIO2 DiO1
Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1
* Only if addressed to TALK, else not valid.
** Only if Active Controller, else not valid.
Note

Due to the way the bi-directional buffers work, NDAC and NRFD are
not accurately read by this IOSTATUS function unless the interface
is currently addressed to talk. Also, SRQ is not accurately shown
unless the interface is currently the active controller.

134 HP-IB Interface

Advanced Bus Management

Bus communication involves both sending data to devices and sending commands to devices
and the interface itself. ‘‘General Structure of the HP-IB” stated that this communication must
be made in an orderly fashion and presented a brief sketch of the differences between data and
commands. However, most of the bus operations described so far in this chapter involve
sequences of commands and/or data which are sent automatically by the computer when
HP-IB statements are executed. This section describes both the commands and data sent by
HP-IB statements and how to construct your own, custom bus sequences.

The Message Concept

The main purpose of the bus is to send information between two (or more) devices. These
quantities of information sent from talker to listener(s) can be thought of as messages. Howev-
er, before data can be sent through the bus, it must be properly configured. A sequence of
commands is generally sent before the data to inform bus devices which is to send and which is
(or are) to listen to the subsequent message(s). These commands can also be thought of as
messages.

Most bus messages are transmitted by sending a byte (or sequence of bytes) with numeric
values of 0 through 255 through the bus data lines. When the Attention line (ATN) is true, these
bytes are considered commands; when ATN is false, they are interpreted as data. Bus com-

mand groups and their ASCII characters and codes are shown in ‘“Bus Commands and
Codes”.

Types of Bus Messages

The messages can be classified into twelve types. This computer is capable of implementing all
twelve types of interface messages. The following list describes each type of message.

1. A Data message consists of information which is sent from the talker to the listener(s)
through the bus data lines.

2. The Trigger message causes the listening device(s) to initiate device-dependent action(s).
3. The Clear message causes either the listening device(s) or all of the devices on the bus to
return to their device-dependent ‘“‘clear’ states.

4. The Remote message causes listening devices to change to remote program control when
addressed to listen.

5. The Local message clears the Remote message from the listening device(s) and returns
the device(s) to local front-panel control.

6. The Local Lockout message disables a device’s front-panel controls, preventing a de-
vice’s operator from manually interfering with remote program control.

7. The Clear Lockout/Local message causes all devices on the bus to be removed from
Local Lockout and to revert to the Local state. This message also clears the Remote
message from all devices on the bus.

8. The Service Request message can be sent by a device at any time to signify that the
device needs to interact with the the active controller. This message is cleared by sending
the device’s Status Byte message, if the device no longer requires service.

HP-IB Interface 135

9. A Status Byte message is a byte that represents the status of a single device on the bus.
This byte is sent in response to a serial poll performed by the active controller. Bit 6
indicates whether the device is sending the Service Request message, and the remaining
bits indicate other operational conditions of the device.

10. A Status Bit message is a single bit of device-dependent status. Since more than one
device can respond on the same line, this Status Bit may be logically combined and/or
concatenated with Status Bit messages from many devices. Status Bit messages are
returned in response to a parallel poll conducted by the active controller.

11. The Pass Control message transfers the bus management responsibilities from the active
controller to another controller.

12. The Abort message is sent by the system controller to assume control of the bus uncon-
ditionally from the active controller. This message terminates all bus communications,
but is not the same as the Clear message.

These messages represent the full implementation of all HP-IB system capabilities; all of these
messages can be sent by this computer. However, each device in a system may be designed to
use only the messages that are applicable to its purpose in the system. It is important for you to
be aware of the HP-IB functions implemented on each device in your HP-IB system to ensure
its operational compatibility with your system.

136 HP-IB Interface

Bus Commands and Codes

The table below shows the decimal values of IEEE-488 command messages. Remember that
ATN is true during all of these commands. Notice also that these commands are separated into
four general categories: Primary Command Group, Listen Address Group, Talk Address
Group, and Secondary Command Group. Subsequent discussions further describe these com-

mands.
Decimal ASCII Interface
Value Character Message Description
PCG Primary Command Group
1 SOH GTL Go to Local
4 EOT SDC Selected Device Clear
5 ENQ PPC Parallel Poll Configure
8 BS GET Group Execute Trigger
9 HT TCT Take Control
17 DC1 LLO Local Lockout
20 DC4 DCL Device Clear
21 NAK PPU Parallel Poll Unconfigure
24 CAN SPE Serial Poll Enable
25 EM SPD Serial Poll Disable
LAG Listen Address Group
32-62 Space through > Listen Addresses O through 30
(Numbers & Special Chars.)
63 ? UNL Unlisten
TAG Talk Address Group
64-94 @ through 4 Talk Addresses O through 30
(Uppercase ASCII)
95 _ (underscore) UNT Untalk
SCG Secondary Command Group
~ through ~ Secondary Commands 0 through 30
96-126 (Lowercase ASCII)
127 DEL Ignored

HP-IB Interface 137

Address Commands and Codes

The following table shows the ASCII characters and corresponding codes of the Listen Address
Group and Talk Address Group commands. The next section describes how to send these
commands.

Address Characters Address Code Address Switch Settings
Listen Talk Decimal B) @) 3) (2) (1)
Space @ 0 0 0 0 0 0

! A 1 0O 0 0 0 1 fi,‘,’("-“?“?e'
'y B 2 0 0 0 1 0 B iSeum
C 3 0O 0 0 1 1
$ D 4 0O 0 1 0 o
% E 5 0O 0 1 o0 1
& F 6 0 0 1 1 0
’ G 7 0 0 1 1 1
{ H 8 0 1 0 0 o0
) I 9 0 1 0 0 1
* dJ 10 0 1 0 1 O
+ K 11 0 1 0 1 1
, L 12 0 1 1 0 0
- M 13 0 1 1 0 1
) N 14 0 1 1 1 0
/ 0 15 0 1 1 1 1
0 P 16 1 0 0 0 o0
1 Q 17 1 0 0 0 1
2 R 18 1 0 0 1 o0
3 S 19 1 0 0 1 1
4 T 20 1 0 1 0 O
5 U 21 1 0 1 0 1
6 Y, 22 1 0 1 1 0
7 W 23 1 0 1 1 1
8 X 24 1 1 0 0 o0
9 Y 25 1 1 0 0 1
: V4 26 1 1 0 1 0
; [27 1 1 0 1 1
< / 28 1 1 1 0 O
=] 29 1 1 1 0 1
> 0 30 1 1 1 1 0

138 HP-IB Interface

Explicit Bus Messages
Any “ATN” command can be sent in any order with a procedure called SEND_COMMAND.

This procedure will send the specified command on the bus. The interface must be active
controller. The form of the procedure is:

SEND_COMMAND (interface_select_code + command_character)3

The command character is a normal character expression in the range of CHR(0) through
CHR(255). You should be very careful when using this procedure because you can put devices
into bad or unknown states. The procedure is in module HPIB_1.

Example

SEND_COMMAND(7 7’27} 3
SEND_COMMAND(7 4+ _"2 3
SEND_COMMAND(7 4+ 1723
SEND_COMMAND(7+’U")5

send unlisten 3
send untalk }
send duve 01 listen ¥
send duec 21 talk >

- an oar -
Lon T e B e B e}

HP-IB Interface 139

Summary of HP-IB IOSTATUS and
IOCONTROL Registers

Status Register 0
Most Significant Bit

Card Identification
Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 Q 0 0 0 0 0 1
Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1
Control Register 0 Interface Reset
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Any Bit Will Reset Interface
Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1
Status Register 1 Interrupt and DMA Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Inter t Int t Interrupt DMA DMA
Ena’gfpds R“ e”“tpd Levelp 0 0 Channel 1 | Channel 0
€ equeste Enabled | Enabled
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1
Control Register 1 Serial Poll Response Byte
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device SRQ
Dependent | 1 = I did it Device Dependent Status
Status 0 = | didn't
Value = 128| Value = 64 | Value = 32 | Value =16 | Value =8 | Value=4 | Value=2 | Vaiue =1

140 HP-IB Interface

Control Register 2
Most Significant Bit

Parallel Poll Response Byte

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DiO8 DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DIO1
1 = True 1 = True 1 = True 1 = True 1 = True 1 = True 1 = True 1 = True
Value = 128| Value = 64 | Value = 32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1
Status Register 3 Controller Status and Address
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
System Active .
Controller | Controller 0 Primary Address of Interface
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value=1
Control Register 3 Set My Address
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Not Used Primary Address
Value = 128/ Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

Status Register 4

HP-

Interrupt Status

Most Significant Bit
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
. Parallel My Talk My Listen Remote/ Talker/
Active Poll EOI Listener
Controller |Configuration Address Address Received SPAS Local Address
Received | Received Change
Change Change
Value = Value = Value = Value = Value = Value = Value = Value =
- 32768 16 384 8 192 4096 2048 1024 512 256
Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
. Secondary .
Trigger | Handshake Unrepogmzed Command Clear Unrecognized SRQ IFC
; Universal . . Addressed : .
Received Error While Received Received Received
Command Command
Addressed
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value=1
Status Register 5 Interrupt Enable Mask
Most Significant Bit
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
Active PaPrslllIeI My Talk My Listen EOI Remote/ Jsa::ﬁgr
Controller |Configuration Address Address Received SPAS Local Address
Received Received Change
Change Change
Value = Value = Value = Value = Value = Value = Value = Value =
-32768 16 384 8 192 4 096 2 048 1024 512 256
Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Unrecognized Secondary Unrecognized
Trigger | Handshake €09 Command Clear 9 SRQ IFC
> Universal : . Addressed .)
Received Error While Received Received Received
Command Command
Addressed
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value=1

IB Interface 141

142 HP-IB Interface

Status Register 6
Most Significant Bit

Interface Status

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
REM LLO ATN LPAS TPAS LADS TADS *
True
Value = Value = Value = Value = Value = Value = Value = Value =
—-32768 16 384 8192 4096 2048 1024 512 256
Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
System Active)
Controller | Controller 0 Primary Address of Interface
Value = 128(Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1
* Least-significant bit of last address recognized
Status Register 7 Bus Control and Data Lines
Most Significant Bit
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
ATN DAV NDAC* NRFD* EO! SRQ** IFC REN
True True True True True True True True
Value = Value = Value = Value = Value = Value = Value = Value =
—32768 16 384 8 192 4 096 2048 1024 512 256
Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DIO1
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value =1
* Only if addressed to TALK, else not valid.
** Only if Active Controller, else not valid.

Status Register 8 Unrecognized Command
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1

HP-IB Interface

Summary of HP-IB IOREAD_BYTE and
IOWRITE_BYTE Registers

IOREAD Registers

Register 1 — Card Identification

Register 3 — Interrupt and DMA Status
Register 5 — Controller Status and Address
Register 17 — Interrupt Status 0

Register 19 — Interrupt Status 1!

Register 21 — Interface Status

Register 23 — Control-Line Status

Register 29 — Command Pass-Through
Register 31 — Data-Line Status'

HP IOREAD_BYTE Register 1 Card Identification
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Future Use
Jumper 0 0 0 0 0 0 1
Installed

Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

Bit 7 is set (1) if the ‘‘future use’’ jumper is installed and clear (0) if not.

Bits 6 through 0 constitute a card identification code (=1 for all HP-IB cards).

Note
This register is only implemented on external HP-IB cards. The inter-
nal HP-IB, at interface select code 7, ‘‘floats’ this register (i.e., the
states of all bits are indeterminate).

HP-IB IOREAD_BYTE Register 3 Interrupt and DMA Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Interrupt Interrupt Interrupt
Enabled Request Level X X DMA1 DMAD
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

1 Indicates that an IOREAD_BYTE operation will change the state of the interface.

143

144 HP-IB Interface

Bit 7 is set (1) if interrupts are currently enabled.
Bit 6 is set (1) when the card is currently requesting service.

Bits 5 and 4 constitute the card’s hardware interrupt level (a switch setting on all external cards,
but fixed at level 3 on the internal HP-IB).

Bit5 | Bit4 Hardware Interrupt
Level
0 0 3
0 1 4
1 0 5
1 1 6

Bits 3 and 2 are not used (indeterminate).
Bit 1 is set (1) if DMA channel one is currently enabled.
Bit 0 is set (1) if DMA channel zero is currently enabled.

Note

Bits 7, 5, 4, 3, 2, and 1 are not implemented on the internal HP-IB
{(interface select code 7).

HP-IB IOREAD_BYTE Register 5 Controller Status and Address
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
System Not ~——————— HP-IB Primary Address of Interface ———————

y Active X y

Controller (MSB) (LSB)

Controller

Value = 128| Value = 64 | Value = 32 | Value = 16 | Value =8 | Value=4 | Value=2 | Value =1

Bit 7 is set (1) if the interface is the System Controller.

Bit 6 is set (1) if the interface is not the current Active Controller and clear (0) if it is the Active
Controller.

Bit 5 is not used.

Bits 4 through 0 contain the card’s Primary Address switch setting. The following bit patterns
indicate the specified addresses.

HP-IB Interface

Bit Primary
43210 Address
00000 0
00001 1
11101 29
11110 30
11111 (not allowed)

Note
Bits 5 through O are not implemented on the internal HP-IB.

HP-IB IOREAD_BYTE Register 17 MSB of Interrupt Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Ready Remote/ My
MSB LSB End
Intersrupt Inte?rupt Re?:étised for Next Detected SPAS Local Address
Byte Change Change
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value = 1

Bit 7 set (1) indicates that an interrupt has occurred whose cause can be determined by reading
the contents of this register.

Bit 6 set (1) indicates that an interrupt has occurred whose cause can be determined by reading
Interrupt Status Register 1 (IOREAD_BYTE Register 19).

Bit 5 set (1) indicates that a data byte has been received.

Bit 4 set (1) indicates that this interface is ready to accept the next data byte.
Bit 3 set (1) indicates that an End (EOI with ATN =0) has been detected.
Bit 2 set (1) indicates that the Serial-Poll-Active State has been entered.

Bit 1 set (1) indicates that a Remote/Local State change has occurred.

Bit 0 set (1) indicates that a change in My Address has occurred.

145

146 HP-IB Interface

HP-IB IOREAD_BYTE Register 19 LSB of Interrupt Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

. Secondary
Trigger | Handshake Unrecognized Command Clear My Address SRQ IFC
Received E Command Whil Received Received Received Received
eceive rror Group ile eceive (MLAOrMTA) eceive eceive
Addressed
Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

Bit 7 set (1) indicates that a Group Execute Trigger command has been received.
Bit 6 set (1) indicates that an Incomplete-Source-Handshake error has occurred.
Bit 5 set (1) indicates that an unidentified command has been received.

Bit 4 set (1) indicates that a Secondary Address has been sent in while in the extended-
addressing mode.

Bit 3 set (1) indicates that the interface has entered the Device-Clear-Active State.
Bit 2 set (1) indicates that My Address has been received.

Bit 1 set (1) indicates that a Service Request has been received.

Bit 0 set (1) indicates that the Inteface Clear message has been received.

HP-IB IOREAD_BYTE Register 21 Interface Status
Most Signiticant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ATN LSB of
REM LLO T LPAS TPAS LADS TADS Last
rue Address
Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

Bit 7 set (1) indicates that this Interface is in the Remote State.

Bit 6 set (1) indicates that this interface is in the Local Lockout State.

Bit 5 set (1) indicates that the ATN signal line is true.

Bit 4 set (1) indicates that this interface is in the Listener-Primary-Addressed State.
Bit 3 set (1) indicates that this interface is in the Talker-Primary-Addressed State.
Bit 2 set (1) indicates that this interface is in the Listener-Addressed State.

Bit 1 set (1) indicates that this interface is in the Talker-Addressed State.

Bit 0 set (1) indicates that this is the least-significant bit of the last address recognized by this .
interface.

HP-IB Interface

HP-IB IOREAD_BYTE Register 23 Control-Line Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ATN DAV NDAC* NRFD* EOI SRQ** IFC REN
True True True True True True True True

Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

*Only it addressed to TALK, else not valid.
**Only if Active Controlier, else not valid.

A set bit (1) indicates that the corresponding line is currently true; a O indicates that the line is
currently false.

HP-IB IOREAD_BYTE Register 29 Command Pass-Through
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DIO1

Value = 128| Value = 64 | Value = 32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1

This register can be read during a bus holdoff to determine which Secondary Command has
been detected.

HP-IB IOREAD_BYTE Register 31 Bus Data Lines
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DIO1

Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

A set bit (1) indicates that the corresponding HP-IB data line is currently true; a O indicates the
line is currently false.

147

148 HP-IB Interface

HP-IB IOWRITE_BYTE Registers

Register 3 — Interrupt Enable

Register 17 — MSB of Interrupt Mask
Register 19 — LSB of Interrupt Mask
Register 23 — Auxiliary Command Register
Register 25 — Address Register

Register 27 — Serial Poll Response
Register 29 — Parallel Poll Response
Register 31 — Data Out Register

HP-IB IOWRITE_BYTE Register 3 Interrupt Enable
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Enable Enable Enable
Interrupt X X X X X Channel 1 | Channel 0

Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

Bit 7 enables interrupts from this interface if set (1) and disables interrupts if clear (0).

Bits 6 through 2 are ‘‘don’t cares” (i.e., their values have no effect on the interface’s opera-
tion).

Bit 1 enables DMA channel 1 if set (1) and disables if clear (0).
Bit 0 enables DMA channel O if set (1) and disables if clear (0).

Note

Bits 7 through 1 are not implemented on the internal HP-IB interface
and thus have no effect on the interface’s operation.

IOWRITE_BYTE Register 17 MSB of Interrupt Mask
Setting a bit of this register enables an interrupt for the specified condition. The bit assignments
are the same as for the MSB of Interrupt Status Register ((OREAD Register 17), except that bits
7 and 6 are not used.

IOWRITE_BYTE Register 19 LSB of Interrupt Mask
Setting a bit of this register enables an interrupt for the specified condition. The bit assignments
are the same as for the LSB of Interrupt Status Register (IOREAD Register 19).

HP-IB IOWRITE_BYTE Register 23

HP-IB Interface

Auxiliary Command Register

Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Set X X Auxiliary Command Function
|
&uue = 128] Value = 64 t/alue =32 | Value=16 | Value=8 | Value=14 } Value =2 | Value =1 1

Bit 7 is set (1) for a Set operation and clear (0) for a Clear operation.

Bits 6 and 5 are ‘‘don’t cares’’.

Bits 4 through 0 are Auxiliary-Command-Function-Select bits. The following commands can
be sent to the interface by sending the specified numeric values.

Decimal
Value

0 —
128 —

1 —

129 —

130 —

131 —

132 —

133 —

134 —

135 —

136 —

137 —

10 —
138 —

Description of
Auxiliary Command

Clear Chip Reset.
Set Chip Reset.

Release ACDS holdoff. [f Address Pass Through is set, it indicates an invalid second-
ary has been received.

Release ACDS holdoff; If Address Pass Through is set, indicates a valid secondary
has been received.

Release RFD holdoff.
Same command as decimal 2 (above).

Clear holdoff on all data.
Set holdoff on all data.
Clear holdoff on EOI only.

Set holdoff on EOI only.

Set New Byte Available (nba) false.
Same command as decimal 5 (above).

Pulse the Group Execute Trigger line, or clear the line if it was set by decimal
command 134.
Set Group Execute Trigger line.

Clear Return To Local (rtl).
Set Return To Local (must be cleared before the device is able to enter the Remote
state).

Causes EOI to be sent with the next data byte.
Same command as decimal 8 (above).

Clear Listener State (also cleared by decimal 138).
Set Listener State.

Clear Talker State (also cleared by decimal 137).
Set Talker State.

(Continued)

149

150 HP-IB Interface

Decimal Description of
Value Auxiliary Command
11 — Go To Standby (gts; controller sets ATN false).
139 — Same command as decimal 11 (above).
12— Take Control Asynchronously (tca; ATN true).
140 — Same command as decimal 12 (above).
13 — Take Control Synchronously (tcs; ATN true).
141 — Same command as decimal 13 (above).
14 — Clear Parallel Poll.
142 — Set Parallel Poll (read Command-Pass-Through register before clearing).
15 — Clear the Interface Clear line (IFC).
143 — Set Interface Clear (IFC maintained >100 ps).
16 — Clear the Remote Enable (REN) line.
144 — Set Remote Enable.
17 — Request control (after TCT is decoded, issue this to wait for ATN to drop and receive
control).
145 — Same command as decimal 17 (above).
18 — Release control (issued after sending TCT to complete a Pass Control and set ATN
false).
146 — Same command as decimal 18 (above).
19 — Enable all interrupts.
147 — Disable all interrupts.
20 — Pass Through next Secondary Command.
148 — Same command as decimal 20 (above).
21 — SetT1 delay to 10 clock cycles (2 ns at 5 MHz).
149 — Set T1 delay to 6 clock cycles (1.2 ps at 5 MHz).
22 — Clear Shadow Handshake.

150 — Set Shadow Handshake.

HP-IB Interface 151

HP-IB IOWRITE_BYTE Register 25

Address Register
Most Significant Bit

Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Enable . .
Dual DLIissct::]e I?I'I::(ZI? Primary Address
Addressing

Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value=1

Bit 7 set (1) enables the Dual-Primary-Addressing Mode.
Bit 6 set (1) invokes the Disable-Listen function.

Bit 5 set (1) invokes the Disable-Talker function

Bits 4 through 0 set the device’s Primary Address {same address bit definitions as READIO
Register 5).

HP-IB IOWRITE_BYTE Register 27

Most Significant Bit

Serial Poll Response Byte

Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
. Device Request
Dependent qu Device-Dependent Status
Service
Status

Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1

Bits 7 and 5—0 specify the Device-Dependent Status.
Bit 6 sends an SRQ if set (1).

Note
Given an unknown state of the Serial Poll Response Byte, it is neces-
sary to write the byte with bit 6 set to zero followed by a write of the

byte with bit 6 set to the desired final value. This will insure that a
SRQ will be generated if one was desired.

152 HP-IB Interface

HP-IB IOWRITE_BYTE Register 29

Parallel Poll Response
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DIO1
Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

A 1 sets the appropriate bit true during a Parallel Poll; a O sets the corresponding bit false.
Initially, and when Parallel Poll is not configured, this register must be set to all zeros.

HP-IB IOWRITE_BYTE Register 31

Most Significant Bit

Data-Out Register

Least Significant Bit
Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIOs8 DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DIO1
Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

HP-IB Interface 153

Summary of Bus Sequences

The following tables show the bus activity invoked by executing HP-IB statements and func-
tions. The mnemonics used in these tables were defined in the previous section of this chapter.

Note that the bus messages are sent by using single lines (such as the ATN line) and multi-line
commands (such as DCL). The information shows the state of and changes in the state of the
ATN line during these bus sequences. The tables implicitly show that these changes in the
state of ATN remain in effect unless another change is explicitly shown in the table. For
example, if a statement sets ATN (true) with a particular command, it remains true unless the
table explicitly shows that it is set false (ATN). The ATN line is implememted in this manner to
avoid unnecessary transitions in this signal whenever possible. It should not cause any dilem-
mas in most cases.

ABORT_HPIB
System Controlier Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
IFC (duration ATN
Active =100usec) MTA
Controller REN UNL
ATN
ATN Error Error
IFC (duration
Not Active =100 psec)* No
Controller REN Action
ATN

* The IFC message allows a non-active controller (which is the system controller) to become the active controller.

CLEAR
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
Active ATN MTA ATN MTA
Controll DOL UNL DCL UNL
ontroller LAG LAG
sDC sDC
Not Active
Controller Error

154

HP-IB Interface

LOCAL
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
Active REN MTA ATN MTA
Controller ATN UNL GTL UNL
ontro LAG LAG
GTL GTL
Not Active REN Etror Error
Controller

LOCAL_LOCKOUT

System Controller

Not System Controller

Interface Select

Primary Addressing

Interface Select

Primary Addressing

Code Only Specified Code Only Specified
Active ATN ATN
Controller LLO Error LLO Error
Not Active
Controller Error

PASS_CONTROL

Controller

Error

System Controller Net System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN ATN ATN
Active TCT UNL TCT UNL
Controlier ATN TAG ATN TAG
TCT TCT
ATN ATN
Not Active

HP-IB Interface 155

PPOLL
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN & EOI ATN & EOI
(duration=25ps) (duration=25us)
Active Read byte Read byte
Controller EOI Error EOI Error
Restore ATN to Restore ATN to
previous state previous state
Not Active
Controller Error

PPOLL_CONFIGURE

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
MTA MTA
Active UNL UNL
Controller Error LAG Error LAG
PPC PPC
PPE PPE
Not Active
Controller Error
PPOLL_UNCONFIGURE
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
MTA MTA
Active ATN UNL ATN UNL
Controller PPU LAG PPU LAG
PPC PPC
PPD PPD
Not Active

Controller

Error

156 HP-IB Interface

REMOTE
System Controller Not System Controller R
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
REN
Active ATN
Controller REN MTA Error
© ATN UNL
LAG
Not Active REN Error Error
Controller
SPOLL
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
UNL UNL
MLA MLA
TAD TAD
Active SPE SPE
Controller Error ATN Error ATN
Read data Read data
ATN ATN
SPD SPD
UNT UNT
Not Active
Controller Error
TRIGGER
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
o
Active ATN UNL ATN UNL
Controller GET LAG GET LAG
GET
GET
Not Active
Controller Error

Computer
useum

Chapter 13

The Datacomm Interface

Introduction

The HP 98628 Data Communications Interface enables your desktop computer to communi-
cate with any device that is compatible with standard asynchronous or HP Data Link data
communication protocols. Devices can include various modems or link adapters, as well as
equipment with standard RS-232C or current loop links.

This chapter discusses both asynchronous and Data Link protocols, and programming techni-
ques. Subject areas that are similar for both protocols are combined, while information that is
unique to one protocol or the other is separated according to application.

Prerequisites

It is assumed that you are familiar with the information presented in Data Communication
Basics (98046-90005), and that you understand data communication hardware well enough to
determine your needs when configuring the datacomm link. Configuration parameters include
such items as half/full duplex, handshake, and timeout requirements. If you have any questions
concerning equipment installation or interconnection, consult the appropriate interface or
adapter installation manuals.

The datacomm interface supports several cable and adapter options. They include:

® RS-232C Interface cable and connector wired for operation with data communication
equipment (male cable connector) or with data terminal equipment (female cable con-
nector).

e HP 13264A Data Link Adapter for use in HP 1000- or HP 3000-based Data Link network
applications

o HP 13265A Modem for asynchronous connections up to 300 baud, including built-in
autodial capability’.

e HP 13266A Current Loop Adapter for use with current loop links or devices.

Some of the information contained in this chapter pertains directly to certain of these devices in
specific applications.

1 The HP 13265A modem is compatible with Bell 103 and Bell 113 Modems, and is approved for use in the USA and Canada. Most other
countries do not allow use of user-owned modems. Contact your local HP Sales and Service office for information about local regulations.

158 The Datacomm Interface

Before you begin datacomm operation, be sure all interfaces, cables, connectors, and equip-
ment have been properly plugged in. Power must be on for all devices that are to be used.
Consult applicable installation manuals if necessary.

Protocol

Two protocols are switch selectable on the datacomm interface. They are also software select-
able during normal program operation. The switch setting on the interface determines the
default protocol when the computer is first powered up. Protocol is changed between Async
and Data Link during program operation by selecting the new protocol, waiting for the message
to reach the card, then resetting the card. The exact procedure is explained in the IOCONTROL
register operations section of this chapter.

Asynchronous Communication Protocol

Asynchronous data communication is the most widely used protocol, especially in applications
where high data integrity is not mandatory. Data is transmitted, one character at a time, with
each character being treated as an individual message. Start and stop bits are used to maintain
timing coordination between the receiver and transmitter. A parity bit is sometimes included to
detect character transmission errors.Asynchronous character format is as follows: Each charac-
ter consists of a start bit, 5 to 8 data bits, an optional parity bit, and 1, 1.5, or 2 stop bits, with an
optional time gap before the beginning of the next character. The total time from the beginning
of one start bit to the beginning of the next is called a character frame.

Parity options include:

e NONE No parity bit is included.

e ODD Parity set if EVEN number of ““1’’s in character bits.
e EVEN Parity set if ODD number of ““1”’s in character bits.
e ONE Parity bit is set for all characters.

e ZERO Parity bit is zero for all characters.

Here is a simple diagram showing the structure of an asynchronous character and its rela-
tionship to previous and succeeding characters:

| | | |
—‘ T 1] I T T
| Lt l] L

1 T —] T 17
Preceding Line in Start 1 0 1 0 0 0 1 Parity Stop Start Bit
Character Idle State | Bit Bit Bit for Next
(Mark) |« Single Character Frame > Character
Beginning of End of

Character Character

The Datacomm Interface 159

Data Link Communication Protocol

Data Link protocol overcomes the data integrity limitations of Async by handling data in blocks.
Each block is transmitted as a stream of individual asynchronous characters, but protocol
control characters and block check characters are also transmitted with the data. The receiver
uses the protocol control characters to determine block boundaries and data format. Block
check characters are used to detect transmission errors. If an error occurs, the block is retrans-
mitted until it is successfully received. Block protocol and format is similar to Binary Synchro-
nous Communication (BSC or Bisync, for short).

Data Link protocol provides for two transmission modes: Transparent, and Normal. In transpa-
rent mode, any data format can be transferred because datacomm control characters are
preceded by a DLE character. If a control character is sent without an accompanying DLE, it is
treated as data. When normal mode is used, only ASCII data can be sent, and datacomm
control characters are not allowed in the data stream. The HP 1000 and HP 3000 computers
usually transmit in transparent mode. All transmissions from your desktop computer are sent as
transparent data. If your application involves non-ASCII data transfers (discussed later in this
chapter), be sure the HP 1000 or HP 3000 network host is using transparent mode for all
transmissions to your computer.

Each data block sent to the network host by the datacomm interface is structured as follows:

Start of Block End of Block
-~ § -
D

s: |a |D N D B. |B
e | 51y | G5 [P text (data) - e | 5Ty ce | Peg
N—— — emm— — ER)) N — | — —
1 2 T 4 5
3

1. The “start transmission” control characters identify the beginning of valid data. If a DLE is
present, the data is transparent; If absent, data is normal. All data from your desktop compu-
ter is transparent.

2. The terminal identification characters are included in blocks sent to the network host. Blocks
received from the network host do not contain these two characters.

3. Data characters are transmited in succession with no time lapse between characters.

4. The “end transmission” control characters identify the end of data. DLE ETX or DLE ETB
indicate transparent data. ETX or ETB indicates normal data.

5. Block check characters (usually two characters) are used to verify data integrity. If the value
received does not match the value calculated by the receiver, the entire block is rejected by

the receiver. Block check includes GID and DID characters in transmissions to the network
host.

Protocol control characters are stripped from the data transfer, and are not passed from the
interface to the computer. For information about network polling, terminal selection and other
Data Link operations, consult the Data Link network manuals supplied with the HP 1000 or HP
3000 network host computer.

160 The Datacomm Interface

Data Transfers Between Computer and Interface

Data transfers between your desktop computer and its datacomm interface involve two mes-
sage types: control blocks, and data. Both types are encountered in both output and input
operations as follows:

e Outbound control blocks are created by IOCONTROL procedures.
e Outbound data messages are created by the output procedures.

¢ Inbound control blocks are created by certain protocol operations such as Data Link block
boundaries, or Async prompt, end-of-line, parity/framing error, or break detection.

e Inbound data messages are created by the interface as messages are received from the
remote. They are transferred to the Pascal programs via the input procedures.

Outbound Control Blocks

Outbound control blocks are messages from your computer to the datacomm interface that
contain interface control information. They are usually generated by [IOCONTROL. procedures,
although TRANSFER_END creates a control block that terminates a given Async transmission
or forces a block to be sent on the Data Link. Outbound control blocks are serially queued with
data. An exception to the queued control block rule is output to Control Register 0 (card reset)
which is executed immediately.

Note

When an interface card reset is executed by use of a [OCONTROL
procedure, the control block that results is transmitted directly to the
interface. It is not queued up, so any previously queued data and
control blocks are destroyed. To prevent loss of data, be sure that all
queued messages have been sent before resetting the datacomm
interface. I0Status Register 38 returns a value of 1 when the out-
bound queue is empty. Otherwise, its value is 0. To prevent loss of
inbound data, [OStatus Register 5 must return a value of zero prior
to reset.

Inbound Control Blocks

Inbound control blocks are messages from the interface to the computer that identify protocol
control information. Which item(s) are allowed to create a control block is determined by the
contents of I0Control Register 14. 10Status Registers 9 and 10 identify the contents of the
block, and IOControl Register 24 defines what protocol characters are also included with
inbound Async data messages. Refer to the IOControl and IOStatus Register section at the end
of this chapter for details about register contents for various control block types.

The Datacomm Interface 161

Two types of information are contained in each control block: Type and Mode. The TYPE is
contained in IOSTATUS register 9; the MODE in IOSTATUS register 10. Type and Mode
values can be used to interpret datacomm operation as follows:

Async Protocol Control Blocks

Type Mode Interpretation

250 1 Break received (channel A).

251 1 Framing error in the following character.

251 2! Parity error in the following character.

251 3! Both Framing and Parity error in the following character.
252 1 End-of-line terminator detected.

253 1 Prompt received from remote.

Data Link Protocol Control Blocks

Type Mode | Interpretation

254 1 Preceding block terminated by ETB character.
254 2 Preceding block terminated by ETX character.
253? (See following table for Mode interpretation.)

Mode Bit(s) | Interpretation

‘ 0 1 =Transparent data in following block.
0 =Normal data in following block.

2.1 00 = Device Select {(most common).
01 = Group Select
10=Line Select

3 1 =Command Channel
0=Data Channel

For Data Link applications, control blocks are normally set up for end-of-block (ETB or ETX).
Control blocks are then used to terminate TRANSFER_END operation, or are trapped via an
I/O escape. Control block contents are not important for most applications unless you are doing
sophisticated protocol-control programming.

For Async applications, terminal emulator programs usually use prompt and end-of-line control
blocks. Use of other functions such as break or error detection depend on the requirements of
the individual application.

‘ 1 Parity/framing error control blocks are not generated when characters with parity and/or framing errors are replaced by an underscore (-)
character.

2 This type is used mainly in specialized applications. In most cases, you can expect a Mode value of zero or one for Type 253 Data Link control
blocks. For most Data Link applications, control blocks are not used by programmers.

162 The Datacomm Interface

Outbound Data Messages
Outbound data messages are created when an output procedure is executed. Here is a short
summary of how output parameters can affect datacomm operation.

® Async protocol: Data is transmitted directly from the outbound queue. When operating in
half-duplex, TRANSFER_END causes the interface to turn the line around and allow the
remote device to send information back (line turn-around is initiated when the interface
sets the Request-to-send line low). TRANSFER_END has no effect when operating in full
duplex.

e Data Link protocol: Data messages are concatenated until at least 512 characters are

available, then a block of 512 characters is sent. Block boundaries may or may not
coincide with the end of a given output message.
You can force transmission of shorter blocks by using the TRANSFER_END procedure.
The interface then transmits the last pending block regardless of its length. This technique
is useful for ensuring that block boundaries coincide with message boundaries, or for
sending one message string per block when you are transmitting short records.

Inbound Data Messages

Inbound data messages are created by the datacomm interface as information is received from

the remote. Input procedures are terminated when a control block is encountered or the input

variable is filled. Whether control characters are included in the data stream depends on the

configuration of Control Register 24 (Async operation only). Control information is never

included in inbound data messages when using Data Link protocol. .

With this brief introduction to the data communications capabilities of the HP 98628 Data-
comm Interface, you are ready to begin programming your desktop computer for datacomm
operation. The next section of this chapter introduces Pascal datacomm programming techni-
ques.

The Datacomm Interface

Overview of Datacomm Programming

Your desktop computer uses several [/O Library facilities for data communication with various
computers, terminals, and other peripheral devices. Datacomm programs will include part or all
of the following elements:

® Input procedures (including transfers)
e Qutput procedures (including transfers)
¢ [OSTATUS functions

o [OCONTROL procedures

e High level control procedures.

The input and output procedures are described in the previous chapters. Later sections of this
chapter discuss the IOSTATUS and IOCONTROL operations. The I/O Library provides several
high level control procedures to set up the serial interface card and its parameters. These
procedures are in the module SERIAL_3 and consist of the following procedures. Note that
these procedures are for ASYNC operations ONLY.

Set Baud Rate

This procedure will set the interface baud rate. It is of the form:
SET_BAUD_RATE (isc » rate)3

The rate is a real expression with the range of 0 through 19 200.

Set Stop Bits

This procedure will set the number of stop bits on the interface. The procedure is of the form:
SET_STOP_BITS { isc » number_of_bits)3

The number of bits is a real expression with valid values of 1, 1.5 and 2.

Set Character Length

This procedure will set the number of bits in a character on the specified interface. The proce-
dure is of the form:

SET_CHAR_LENGTH (isc » number_of_bkits)3

The number of bits is an integer expression with valid values of 5, 6, 7, and 8 bits per character.

Set Parity

This procedure sets the parity mode of the specified interface. The procedure is of the form:

SET_PARITY (isc » Parity)3

163

164 The Datacomm Interface

The parity parameter is an enumerated type with the following values:

no_parity
odd_parity
even_parity
zero_parity
one_parity

Example Terminal Emulator

The following program is a very simple terminal emulator. It uses overlap transfers to bring data
into the computer and uses handshake I/O to send data from the computer. This is not a
supported product — merely an example program.

$SYSPROG ON$%
$UCSD ONS%
$DEBUG ON%

PROGRAM TERMINAL (INPUT ;OUTPUT ,KEYBOARD) j§

IMPORT iodeclaratians:
deneral_0,
demeral_1,
deneral_Z2,
deneral_3,
deneral_d,
serial_o0,
serial_33

CONST mvsc = 203
bufsize = 10003
Kbdunit = 23
VAR i : INTEGER
mybuf : buf_info_tvres
bufchar : CHARS
oldbufchar : CHAR;
kbdchar : CHAR
half_durlex : BOOLEANS
auto_1°f : BOOLEANS
BEGIN
TRY
ioinitializes
igcontraol (mysc+22+0)3% { no Protocol 1}
igcontrol (mysc+23+0)% { mo handshaKke 1}
igcantrol (mvsc+2d4127)5{ rPass all chars }
iocantrol (nvsc+28,0)5 { card EOL = none }

set_baud_rate (mysc+2400) 3
set_Parity (myscsodd_Parity) i
set_char_length(mvscs+7)3
set_stap_bits (myscel)y

iocontral (nysc:8,63)F { set all modem lines 1}
iocontrol (mvsc+12+1)3 { connect the card }

TRUE

half_.duplex
:= TRUE

auto_1f

The Datacomm Interface 165

iotbuffer(mybufsbufsize)s
transfer(mvscrsoverlarsto_memory smybuf,bufsize)s

WRITELN('TERMINAL EMULATOR READY ') 3

REPEAT

IF NOT (UNITBUSY (Kbdunmit))
THEN BEGIN
IF EOLN(kevboard)

THEN BEGIN
READ(KevhoardsKkbdchar) i
Kbdchar := io_carriade_rtns

END

ELSE BEGIN
READ{(Revboardskkdchar) i

END§ { of IF EOLN }

IF half_duplex
THEN BEGIN
WRITE(kbdchar)i
END 3
IF auto_lf AND (Kbdchar = io_carriagdge_rtn)
THEN BEGIN
writechar{(mvscskbkdchar)i
kbdechar := io_line_feed}
END 3
writechar{(mysc+Kbdchar)i
END i

IF buffer_data(mybuf) <x O
THEN BEGIN
oldbufchar := bufcharsi
readbyffer(mybufsbufchar)i
IF bufchar = io_line_feed
THEN BEGIN
IF oldbufchar = io_carriade_rtn
THEN BEGIN
{ nothing }
END
ELSE BEGIN
WRITE(io_carriage_rtn)}
END
END
ELSE BEGIN
WRITE(bufchar) i
END 3}
END 3

IF (mvbuf ,active_isc = no _isc) AND (buffer_data (mvybuf) = 0)
THEN BEGIN
transfer{mryrscsioverlarsto_memory myvbuf ,bufsize)i
END 3}

UNTIL FALSE]
RECOVER BEGIN

PAGE(outPut) i
WRITELNS
WRITELN(‘escare code : ‘sescapecode)}
IF ESCAPECODE=icescaprecode
THEN BEGIN
WRITELN(some I/0 Pproblem has occurred’) s
WRITELN(ioerror_messagde(ioe_result))j
WRITELN(‘on select code ‘sice_isc:d)3i
END
ELSE BEGIN
IF ESCAPECODE« »-20
THEN BEGIN
WRITELN(‘some mon-I/0 Problem has occurred’)3
END
ELSE BEGIN

continued

166 The Datacomm Interface

WRITELN(‘stoP Key pPressed’)}
END §
END3

ESCAPE(ESCAPECODE) §
END 3

END.

Establishing the Connection

Determining Protocol and Link Operating Parameters

Before information can be successfully transferred between two devices, a communication link
must be established. You must include the necessary protocol parameters to ensure compatibil-
ity between the communicating machines. To determine the proper parameters for your ap-
plication, select Async or Data Link protocol, then answer the following questions:

For BOTH Async and Data Link Operation:
® [s a modem connection being used? What handshake provisions are required? (Data Link
does not use modems, but multi-point Async modem connections use a protocol compati-
ble with Data Link.)

e [s half-duplex or full-duplex line protocol being used?

For Async Operation ONLY:
e What line speed (baud rate) is being used for transmitting?

e What line speed is being used for receiving?
e How many bits (excluding start, stop, and parity bits) are included in each character?
e What parity is being used: none, odd, even, always zero, or always one?
e How many stop bits are required on each character you transmit?
e What line terminator should you use on each outgoing line?
e How much time gap is required between characters (usually 0)?
e What prompt, if any, is received from the remote device when it is ready for more data?
e What line terminator, if any, is sent at the end of each incoming line?
For Data Link Operation ONLY:

e What line speed (baud rate) is being used? (Data Link uses the same speed in both
directions.) :

e What parity is being used: none (HP 1000 network host), or odd (HP 3000 network
host)?

e What is the device Group [Dentifier (GID) and Device [Dentifier (DID) for your terminal?

e What is the maximum block length (in bytes) the network host can accept from your
terminal?

All these parameters are configured under program control by use of [OCONTROL procedures.
Alternately, default values for line speed, modem handshake, parity, and Async or Data Link
protocol selection can be set using the datacomm interface configuration switches. Other de-
fault parameters are preset by the datacomm interface to accommodate common configura-
tions. You can use the defaults, or you can override them with IOCONTROL procedures for
program clarity and immunity to card settings. Default IOControl Register values are shown in

W T

The Datacomm Interface

the IOCONTROL and IOSTATUS register tables in the back of this chapter. The HP 98628
Datacomm Interface Installation manual (98628-90000) explains how to set the default switch-
es on the interface.

The next section of this chapter shows a summary of the available default options and switch
settings for both Async and Data Link.

Using Defaults to Simplify Programming

The datacomm interface includes two switch clusters. One cluster is used to program the select
code and interrupt level. The other cluster sets defaults for protocol, line speed (baud rate),
modem handshake, and parity. Setting the defaults on the card eliminates the need to program
the corresponding interface IOCONTROL registers. These defaults are useful in applications
where the configuration of the link is rarely altered, and the program is not used on other
machines with dissimilar configurations. They also enable a beginning programmer to use
output and input procedures to perform simple datacomm operations without using IOCON-
TROL or IOSTATUS statements. On the other hand, where link configuratiion may vary, or
where programs are used on several different machines with dissimilar configurations, it is
usually worthwhile to override the defaults with IOCONTROL procedures. This assures known
datacomm behavior, independent of interface defaults.

Here, for your convenience is a brief summary of the default switch options:

o]

N——
Default Switches

Parity Bits/Char Hardware Handshake Baud Rate Stop Bits
00 =None 8 00 = Handshake OFF, 000=110 2
01 =None 7 non-modem connection’ 001 =150 2
10=0dd 7 01 =FULL Duplex modem 010=300 1
11 =Even 7 connection? 011=600 1
10=HALF Duplex modem| [100=1200 1
connection ? 101 =2400 1
11 =Handshake ON, 110=4800 1
non-modem connection’ 111=9600 1

Async Default Configuration Switches

' Default No Activity timeout: Disabled
2 Default No Activity timeout: 10 minutes

167

168 The Datacomm Interface

[oncocad] il

Default Switches

DID: (“@”...“G”) Baud Rate |[Hardware Handshake

000=@ 100=D 00=300 00 = Handshake OFF, non-modem connection
001=A 101=E 01=1200 ||01=FULL Duplex modem connection
010=B 110=F 10=9600 ||10=HALF Duplex modem connection
011=C 111=G 11=19200| {11 =Handshake ON, non-modem connection

Default GID="A" Default No Activity timeout: 10 minutes

Data Link Default Configuration Switches

Resetting the Datacomm Interface

Before you establish a connection, the datacomm interface must be in a known state. The
datacomm interface does not automatically disconnect from the datacomm link when the
computer reaches the end of a program. To prevent potential problems caused by unknown
link conditions left over from a previous session, it is a good practice to reset the interface card
at the beginning of your program before you start configuring the datacomm connection.
Resetting the card causes it to disconnect from the line and return to a known set of initial
conditions,

Example
IORESET (203} 3

Protocol Selection

During power-up and reset, the card uses the default switches to preset the card to a known
state. The protocol select switch defines which protocol the card uses at power-up only. If the
default protocol is the same as you are using, you can skip the protocol selection statements.
However, if the switch might be set to the wrong protocol, or if you want to change protocol in
the middle of a program, you can use a IOCONTROL procedure to select the protocol. After
the protocol is selected, reset the card again to make the change. Here is how to do it:

The Datacomm Interface 169

Select the protocol to be used:

IOCONTROL (S5C33:1)3 {Select Asvnc Protocoll
or

IOCONTROL (Sc:3:2)37 {Select Data LinK Protocol?

Wait until the protocol select message has been sent to the card, then reset the card. The Reset
command restarts the interface microcomputer using the selected protocol.

REPEAT
UNTIL IOSTATUS(Sc:3B) =1 3
IORESET (Sc)

Note

Be careful when resetting the interface card during normal program
operation. Data and Control information are sent to the card in the
same sequence as the statements originating the information are
executed. When a card reset is initiated by a
[OCONTROL procedure, the reset is not placed in the queue with
outbound data, but is executed immediately. Therefore, if there is
other information in the output queue waiting to be sent, a reset can
cause the data to be lost. To prevent loss of data, use IOSTATUS
function (register 38) to verify that all data transfers have run to
completion before you reset the interface.

You are now ready to program datacomm options that are related to the selected protocol. In
applications where defaults are used, the options are very simple. The following pair of exam-
ples shows how to set up datacomm options for each protocol.

Datacomm Options for Async Communication

This section explains how to configure the datacomm interface for asynchronous data com-
munication. The example used shows how to set up all configurable options without consider-
ing default values. Some statements in the example are redundant because they override
interface defaults having the same value. Others may or may not be redundant because they
override configuration switch options. The remaining statements are necessary because they
override the default values, replacing them with non-default values required for proper opera-
tion of the example program. If you are not familiar with Asynchronous protocol, consult the
section on protocol for the needed background information.

Control Block Contents

Configuration of the link begins with register 14 which determines what information is placed in
the control blocks that appear in the input (receive) queue. In this example, only the end-of-line
position and prompts are identified. Parity or framing errors in received data, and received
breaks are not identified in the queue. This register interacts with Control registers 28 thru 33.

170 The Datacomm Interface

Datacomm Line Timeouts

Registers 16-19 set timeout values to force an automatic disconnect from the datacomm link
when certain time limits are exceeded. For most applications, the default values are adequate.
A value of zero disables the timeout for any register where it is used. Each register accepts
values of 0 thru 255; units vary with the register function.

- ® Register 16 (Connection timeout) sets the time limit (in seconds) allowed for connecting to
the remote device. It is useful for aborting unsuccessful attempts to dial up a remote
computer using public telephone networks.

® Register 17 (No Activity timeout) sets an automatic disconnect caused by no datacomm
activity for the specified number of minutes. Default value is determined by default hand-
shake switch setting. Default is not affected by [IOCONTROL procedures to IOControl
Register 23 (hardware handshake).

® Register 18 (Lost Carrier timeout) disconnects when:

Full Duplex: Data Set Ready (Data Mode) or Data Carrier Detect go false, or
Half Duplex: Data Set Ready goes false,

indicating that the carrier from the remote modem has disappeared from the line.
Value is in multiples of 10 milliseconds.

® Register 19 (Transmit timeout) disconnects when a loss-of-clock occurs or a clear-to-send
(CTS) is not returned by the modem within the specified number of seconds.

Line Speed (Baud Rate)

The transmit and receive line speed(s) are set by [OControl Registers 20 and 21, respectively.
Each is independent of the other, and they are not required to have identical values. The
following baud rates are available for Async communication:

Register Baud Register Baud Register Baud Register Baud
Value Rate Value Rate Value Rate Value Rate

0 0! 4 134.5 8 600? 12 3600

1 50 5 1502 9 12002 13 4800?

2 75 6 200 10 1800 14 9600°

3 1102 7 300? 11 24007? 15 19 200

All configurable line speeds are available to [OCONTROL Registers 20 and 21. Only the eight
speeds indicated can be selected using the default switches (see the switch configuration dia-
gram earlier in this chapter). When the configuration switch defaults are used, transmit and
receive speeds are identical. The selected line speed must not exceed the capabilities of the
modem or link.

1 An external clock must be provided for this option.

2 These speeds can be programmed using the default switches on the interface card. Other speeds are accessed by CONTROL statements. (The
HP 13265A Modem can be operated up to 300 baud.)

The Datacomm Interface 171

Handshake

Registers 22 and 23 configure handshake parameters. There are two types of handshake:

e Software or protocol handshake specifies which of the participants is allowed to transmit
while the other agrees to receive until the exchange is reversed. Options include:

1. No handshake, commonly used with connections to non-interactive devices
such as printers.

2. Eng/Ack (EQ/AK) or DC1/DC3 handshake, with the desktop computer confi-
gured either as a host or a terminal. Handshake characters are defined by regis-
ters 26 and 27.

3. DC1/DC3 handshake with the desktop computer as both a host AND a terminal.
Handshake characters are defined by registers 26 and 27. This option simplifies
communication between two desktop computers.

® Hardware or modem handshake that establishes the communicating relationship between
the interface and the associated datacomm hardware such as a modem or other link
device. The four available options are:

1. Handshake Off, non-modem connection — most commonly used for 3-wire
direct connections to a remote device.

2. Full Duplex modem connection — used with full-duplex modems or equivalent
connections.

3. Half Duplex modem connection — used with half-duplex modems or equivalent
connections.

4. Handshake On, non-modem connection — used with printers and other similar
devices that use the Data Carrier Detect (DCD) and Clear-to-send (CTS) lines to
signal the interface card. When DCD is held down by the peripheral, the inter-
face ignores incoming data. When CTS is held down, the interface does not
transmit data to the device until CTS is raised.

Options 2 and 3 are usually associated with modems or similar devices, but may be used
occasionally with direct connections when the remote device provides the proper signals. Refer
to the table at the end of this chapter for a list of handshake signals and how they are handled
for each cable or adapter option.

172 The Datacomm Interface

Handling of Non-data Characters

Register 24 specifies what non-data characters are to be included in the input queue. For each
bit that is set, the corresponding information is passed along with the incoming data. If the bit is
not set, the information is discarded, and is not included in the inbound data stream that is
passed to the desktop computer by the interface.

Bit 0: Include handshake characters in data stream. They are defined by Control Registers
26 and 27.

Bit 1: Include incoming end-of-line character(s). EOL characters are defined by Control
Registers 28-30.

Bit 2: Include incoming prompt character(s). Prompt is defined by Control Registers 31-
33.

Bit 3: Include any null characters encountered.
Bit 4: Include any DEL (rubout) characters in data.

Bit 5: Include any CHR$(255) encountered. This character is encountered ONLY when
8-bit characters are received.

Bit 6: Change any characters received with parity or framing errors to an underscore. If
this bit is not set, all inbound characters are transferred exactly as received, with or
without errors.

Register 25 is not used.

Protocol Handshake Character Assignment

Registers 26 and 27 establish what characters are to be used for handshaking between com-
municating machines. You can select the values of 6 (AK) or 17 (DC1) for register 26, and 5
(EQ) or 19 (DC3) for register 27. Any ASCII value from O thru 255 can be used, but non-
standard values should be reserved for exceptional situations.

End-of-line Recognition

Registers 28, 29, and 30 operate in conjunction with registers 14 (control block mask) and 24
(non-data character stripping) and defines the end-of-line sequence used to identify boundaries
between incoming records. Register 28 (value of 0, 1 or 2) defines the number of characters in
the sequence, while registers 29 and 30 contain the decimal equivalent of the ASCII characters.
If register 28 is set for one character, register 30 is not used. Register 29 contains the first EOL
character, and register 30, if used, contains the second. If register 28 is zero, registers 29 and 30
are ignored and the interface cannot recognize line separators.

Prompt Recognition

Redgisters 31, 32, and 33 operate in conjunction with registers 14 and 24 and define the prompt
sequence that identifies a request for data by the remote device. As with end-of-line recogni-
tion, the first register defines the number of characters (0, 1, or 2), while the second and third
registers contain the decimal equivalents of the prompt character(s). Register 33 is not used
with single-character prompts. If register 31 is zero, registers 32 and 33 are ignored and the
interface is unable to recognize any incoming prompts.

The Datacomm Interface 173

Character Format Definition
Registers 34 through 37 are used to define the character format for transmitted and incoming

data.

® Register 34 sets the character length to 5, 6, 7, or 8 bits. The value used is the number of
bits per character minus five (0 =5 bits, 3 =8 bits). When 8-bit format is specified, parity
must be Odd, Even, or None (parity “1” or “0”’ cannot be used).

® Register 35 specifies the number of stop bits sent with each character. Values of 0, 1, or 2
are used to select 1, 1.5, or 2 stop bits, respectively.

® Register 36 specifies the parity to be used. Options include:

Register
Value Parity Result

0 None Characters are sent with no parity bit. No parity checks are made on
incoming data.

1 Odd* Parity bit is set if there is an EVEN number of ones in the character
code. Incoming characters are also checked for odd parity.

2 Even' Parity bit is set if there is an ODD number of ones in the character
code.

3 0 Parity bit is present, but always zero. No parity checks are made on
incoming data.

4 1 Parity bit is present, but always one. No parity checks are made on

incoming data.

Parity must be odd, even, or none when 8-bit characters are being transferred.

® Register 37 sets the time gap (in character times, including start, stop, and parity bits)
between one character and the next in a transmission. It is usually included to allow a
peripheral, such as a teleprinter, to recover at the end of each character and get ready for
the next one. A value of zero causes the start bit of a new character to immediately follow
the last stop bit of the preceding character.

Control Register 38 is not used.

Break Timing

Register 39 sets the break time (2-255 character times). A Break is a time gap sent to the remote
device to signify a change in operating conditions. It is commonly used for various interrupt
functions. The interface does not accept values less than 2. Register 6 is used to transmit a
break to the remote computer or device.

Datacomm Options for Data Link Communication

This section explains how to configure the datacomm interface for Data Link operation.If you
are not familiar with Data Link protocol and terminology, consult the section on protocol for the
needed background information.

1 Parity sense is based on the number of ones in the character including the parity bit. An EVEN number of ones in the character, plus the parity
bit set produces an ODD parity. An ODD number of ones in the character plus the parity bit set produces an EVEN parity.

174 The Datacomm Interface

Control Block Contents

Data Link configuration begins with I0Control Register 14. This register determines what
information is to be placed in control blocks and included with inbound data transferred from
the interface to the desktop computer.

e ETX (Bit 1) identifies the end of a transmission block that contains one or more complete
records.

o ETB (Bit 2) identifies the end of a transmission block where the last record is continued in
the next block of data.

e Bit 0 causes a control block to be inserted that identifies the beginning of a new block of
data.

Datacomm Line Timeouts, and Line Speed

Registers 15 through 19 are functionally identical for both Async and Data Link. Refer to the
preceding Async section for more information. Register 20 sets the line speed for both transmit-
ting and receiving (Data Link does not accommodate split-speed operation). The following line
speed options are available:

Register Baud Register Baud Register Baud Register Baud
Value | Rate Value | Rate Value | Rate Value | Rate
0 0! 9 12007 12 3600 15 19 2002
7 3002 10 1800 13 4800
8 600 11 2400 14 96002

Terminal Identification

Registers 21 and 22 specify the terminal identifier characters for the datacomm interface.
Register 21 contains the GID (Group [Dentifier), and register 22 contains the DID (Device
[Dentifier. Values of 0-26 correspond to the characters @, A, B, . . ., Z. These registers must be
configured to match the terminal identification pair assigned to your device by the Data Link
Network Manager. In the example, Line 1320 is redundant because it duplicates the default
GID value. Line 1330 overrides the DID default switch on the interface card, and may or may
not be necessary. Alternate methods for assigning different GID/DIDs are shown following the
group of configuration IOCONTROL procedures.

Handshake

Register 23 establishes the hardware handshake type. There is no formal software handshake
with Data Link because the network host controls all data transfers. Hardware or modem
handshake options are identical to Asynchronous operation. Handshake should be OFF (regis-
ter set to 0) when using the HP 13264A Data Link Adapter. When you are using non-standard
interconnections such as direct or modem links to the network host, select the handshake
option that fits your application. Refer to the table at the end of this chapter for a list of
handshake signals and how they are handled for each cable or adapter option.

1 An external clock must be provided for this option.

2 These speeds can be programmed using the default switches on the interface card. Other speeds are accessed by CONTROL statements.

The Datacomm Interface 175

Transmitted Block Size

Register 24 defines the maximum transmitted block length. When transmitting blocks of data to
the network host, the block length must not exceed the available buffer space on the receiving
device. Block size can be specified for increments of two from 2 to 512 characters per block. A
value of zero forces the block length to a maximum of 512 bytes. For other values, the block
length limit is twice the value sent to the register. For example, a register value of 130 produces
a transmitted block length not exceeding 260 characters (bytes).

Parity
Register 36 defines the parity to be used. Unlike Async, Data Link has only two parity options:
None, or Odd. Odd parity is:

Register Parity Application
Value
Required for operation with HP 1000 network host

0 l NONE
1 ODD

Required for operation with HP 3000 network host

Registers 25 through 35, and 37 and above are not used.

Connecting to the Line

Interface configuration is now complete. You are ready to begin connecting to the datacomm
line. The exact procedure used to connect to the line varies slightly, depending on the type of
link being used. Before you connect, you must know what the link requirements are, including
dialing procedures, if any.

Switched (Public) Telephone Links

When you are using a public or switched telecommunications link, the modem connection
between computers must be established. The HP 13265A Modem can be used in any Async
application that requires a Bell 103- or Bell 113-compatible modem operating at up to 300
baud line speed. However, the HP 13265A Modem is not suitable for data rates exceeding 300
baud. For higher baud rates, use a modem that is compatible with the one at the remote
computer site. Modems cannot be used for remote connections from a terminal to the data link.

Private Telecommunications Links

Private (leased) links require modems unless the link is short enough for direct connection (up
to 50 feet, depending on line speed). The HP 13265A Modem can be used at data rates up to
300 baud. For higher speeds, a different modem must be used.

Direct Connection Links

For short distances, a direct connection may be used without modems or adapters, provided
both machines use compatible interfaces. Async connections normally use RS-232C interfaces.
You can also operate as a Data Link terminal directly connected to an HP 1000 or HP 3000
host computer through a dedicated Multipoint Async interface on the network host, although
such connections are unusual.

176 The Datacomm Interface

Data Link Connections

Most Data Link connections use an HP 13264A Data Link Adapter to connect directly to the
Data Link. In special situations, a modem may be used to communicate with a Multipoint Async
interface on the HP 1000 or HP 3000 network host. When the Data Link Adapter is used, no
special procedures are required. If you are using a leased or switched telecommunications link,
the procedures are the same as when using point-to-point Async with modems.

Connection Procedure

This section describes procedures for modem connections using telephone telecommunications
circuits. If you are NOT using a switched, modem link, skip to the next section: Initiating the
Connection.

Dialing Procedure for Switched (Public) Modem Links

Except for dialing, connection procedures do not usually vary between switched and dedicated
links. Dialing procedures depend on whether the modem is designed for manual or automatic
dialing. Automatic dialing can be used with the HP 13265A Modem, but other modems must be
operated with manual dialing unless you design your own interface to an Automatic Calling
Unit. For manual dialing procedures, consult the operating manual for the modem you are
using.

Automatic Dialing with the HP 13265A Modem:

The automatic dialer in the HP 13265A Modem is accessed by Control Register 12. The
IOCONTROL procedure is followed by an output procedure that contains the telephone num-
ber string, including dial rate and timing characters. The two statements set up the automatic
dialer, but dialing is not started until a “start connection” command is sent to IOControl
Register 12. Here is an example sequence:

IOCONTROL (Scs124+2) 3
WRITESTRING (Sc,’> 9 BEBEE (303)-555-1234");

Unrecognized characters are ignored.
3-second wait for secondary dial tone.
Select FAST dial rate.

The output procedure contains several essential elements.

® The first character (‘>""), if included, specifies a fast dialing rate. If it is omitted, the default
slow dialing rate is used.

® A time delay character “‘@’’ may be inserted anywhere in the string. A one-second time
delay is executed in the dialing sequence each time a delay character is encountered.

e Numeric character sequences define the telephone number. Multiple dial-tone sequences,
such as when calling out from a PBX (Private Branch Exchange), can be used by inserting
a suitable delay to wait for the next dial tone.

® Unrecognized characters such as parentheses, hyphens, and spaces can be included for
clarity. They are ignored by the automatic dialer.

e Up to 500 characters can be included in the telephone number string.

The Datacomm Interface 177

Here is how an autodial connection is executed:

e The IOCONTROL (Sc+124+2) places a “‘start dialing’ control block in the outbound
queue to the interface. The OUTPUT statement places the telephone number string (in-
cluding spaces and other characters) in the queue after the control block. When the
interface encounters the control block, it transfers the string to the HP 13265A Modem’s
autodial circuit. No other action is taken at this time.

® When IOCONTROL (Sc:12:1) is executed, another control block is queued up.
When the interface encounters the block, it sends a ‘‘start connection’”” command to the
modem. The modem then disconnects from the line, waits two seconds, then reconnects.
The autodialer waits 500 milliseconds, then starts executing the telephone number string.
The string is executed character-by-character in the same sequence as sent by the output
procedure.

e If your application requires more than 500 milliseconds to guarantee a dial tone is present,
you can increase the delay by adding delay characters (“@’’) where needed, one second
per character. Be sure to provide adequate delays in multiple dial tone sequences, such as
when calling through a private branch exchange (PBX) to a public telephone network.

® When dialing is complete, the modem is connected to the line, and you are ready to start
communication. The next section explains how to determine when connection is com-
plete.

Two dialing rates are available: slow (default) and fast. To select the fast rate, you must include
the fast rate character (‘>"") as the FIRST character in the telephone number string. Here is a
summary of differences between the two options:

Parameter | Slow Dialing | Fast Dialing

Click Length 60 milliseconds 32.5 milliseconds
Click Gap 40 milliseconds 17.5 milliseconds
Number Gap 700 milliseconds 300 milliseconds

One to ten dial pulses (clicks) are sent for each digit 1 through 0, respectively. The number gap
is the time lag between the end of the last click of one number and the beginning of the first click
of the next number.

Most Bell System facilities can handle both fast and slow dialing rates, but private or independ-
ent telephone systems or companies may require slow dialing.

Initiating the Connection

After you have executed the necessary dialing procedures, if any, you are ready to initiate the
connection. The following statement is used to start the connection:

IOCONTROL (Sc»124+1) {Start Connection.?}

This statement sends a control block to the interface telling it to connect to the datacomm line. If
the HP 13265A Modem is being used, and the autodialer is enabled, it starts dialing the
number. Otherwise, the interface executes a direct connection to the line, or tells the modem or
data link adapter to connect.

178

The Datacomm Interface

The status of the connection process can be monitored by using the IOSTATUS function. The
following lines hold the computer in a continuous loop until the connection is complete:

REPEAT

State:;=IDSTATUS(Sc:+12) 3

IF State=2 THEN WRITELN C"Dialing")s

IF State=1 THEN WRITELN C"Trving to Connect")}
UNTIL State=31%
WRITELN ("Connected") 3§

Refer to the I0Status and IOControl Register section for interpretation of the values in [OStatus
Register 12. Only values of 1, 2, or 3 are usually encountered at this stage of the program.

As soon as IOStatus Register 12 indicates that connection is complete, you are ready to
continue into the main body of the terminal emulator or other program you are writing. This
completes the datacomm initialization and connection phase of the program.

Datacomm Errors and Recovery Procedures

Several errors can be encountered during datacomm operation. They are listed here with
probable causes and suggested corrective action.

Error Description and Probable Cause

306 Interface card failure. This error occurs during interface self-test, and indicates an interface
card hardware malfunction. You can repeat the power-up self-test by pressing

SHIFT)-(PAUSE). If the error persists, replace the defective card. Using a defective card may
result in improper datacomm operation, and should be considered only as a last resort.

313 USART receive buffer overflow. The SIO buffer is not being cleared fast enough to keep up
with incoming data. This error is uncommon, and is usually caused by excessive processing
demands on the interface microprocessor. To correct the problem, examine Pascal prog-
ram flow to reduce interference with normal interface operation. This error causes the
interface to disconnect from the datacomm line and go into a SUSPENDED state. Clear or
reset the interface card to recover.

314 Receive Buffer overflow. Data is not being consumed fast enough by the desktop compu-
ter. Consequently, the buffer has filled up causing data loss. This is usually caused by
excessive program demands on the desktop computer CPU, or by poor program structure
that does not allow the desktop computer to properly service incoming data when it
arrives. Modify the Pascal program(s) to allow more frequent interrupt processing by the
desktop computer, or change to a lower baud rate and/or use protocol handshaking to
hold off incoming data until you are ready to receive it. This error causes the interface to
disconnect from the datacomm line and go into a SUSPENDED state. Clear or reset the
interface to recover.

315 Missing Clock. A transmit timeout has occurred because the transmit clock has not allowed
the card to transmit for a specified time limit (Control Register 19). This error can occur
when the transmit speed is O {external clock), and no external clock is provided, or be
caused by a malfunction. The interface is disconnected from the datacomm line and is
SUSPENDED. To recover, correct the cause, then reset the card.

The Datacomm Interface 179

COmpute:
-Musey m

Error Description and Probable Cause

316 CTS false too long. Due to clear-to-send being false on a half-duplex line, the interface
card was unable to transmit for a specified time limit (Control Register 19). The card has
disconnected from the datacomm line, and is in a SUSPENDED state. To recover, deter-
mine what has caused the problem, correct it, then reset or clear the interface card.

317 Lost Carrier disconnect. Data Set Ready (DSR) (and/or Data Carrier Detect, if full-duplex)
went inactive for the specified time limit (Control Register 18). This condition is usually
caused by the telecommunications link or associated equipment. The card has discon-
nected from the datacomm line and is in a SUSPENDED state. To recover, clear or reset
the interface card.

318 No Activity Disconnect. The interface card disconnected from the datacomm line automati-
cally because no information was transmitted or received within the time limit specified by
Control Register 17. The card is in a SUSPENDED state. Clear or reset the interface to
recover.

319 Connection not established. The card attempted to establish connection, but Data Set
Ready (DSR) (and Data Carrier Detect, if full duplex) was not active within the time limit
specified by Control Register 16. The card has disconnected from the datacomm line and is
in a SUSPENDED state. Clear or reset the interface to recover.

325 lllegal DATABITS/PARITY combination. IOCONTROL procedures have attempted to
program 8 bits per character and parity “1”” or “0”’. The IOCONTROL procedure causing
the error is ignored, and the previous setting remains unchanged. To correct the problem,
change the IOCONTROL procedure(s) and/or interface default switch settings.

326 Register address out of range. An IOCONTROL or STATUS function has attempted to
address a non-existing register. The command is ignored, and the interface card state
remains unchanged.

327 Register value out of range. An IOCONTROL procedure attempted to place an illegal
value in a defined register. The command is ignored, and the interface card state remains
unchanged.

Error Recovery

When any error from Error 313 through Error 319 occurs, it forces the interface card to
disconnect from the datacomm line. When a forced disconnect terminates the connection, the
interface is placed in a SUSPENDED state, indicated by Status Register 12 returning a value of
4. The interface cannot be reconnected to the datacomm line when it is SUSPENDED.
ABORT_SERIAL and IORESET are used to recover from the suspended state and resume
normal card operation.

To recover from a SUSPENDED interface, two programmable options are available, all of
which destroy any existing data in the transmit and receive queues. They are:

e The ABORT_SERIAL procedure clears the receive and transmit queues.

e RESET interface (IOControl Register 0 or IORESET) clears all buffers and queues, and
resets all [DCONTROL options to their power-up state EXCEPT the protocol which is
determined by the most recent IOCONTROL statement (if any) addressed to register 3
since power-up.

A fourth (keyboard only) option is available. [CLR 10) causes a hardware reset to be sent to ALL
peripherals. This completely resets the datacomm interface to its power-up state with protocol
and other options determined by the default switch settings.

180 The Datacomm Interface

Datacomm Programming Helps

This section is designed to assist you in writing datacomm programs for special applications by
discussing selected techniques and characteristics that can present obstacles to the beginning
programmer.

Terminal Prompt Messages

Care must be exercised to ensure that messages are never transmitted to the network host if the
host is not prepared to properly handle the message. Receipt of a poll from the host does not
necessarily mean that the host can handle the message properly when it is received. Therefore,
prompts or interpretation of messages from the host are used to determine the status of the host
operating system.

Prompts are message strings sent to the terminal by a cooperating program. They are well-
defined and predictable, and are usually tailored to specific applications. When the terminal
interacts directly with RTE or one or more subsystems, the process becomes less straightfor-
ward. Each subsystem usually has its own prompt which is not identical to other subsystem
prompts. To maintain orderly communication with subsystems, you must interpret each mes-
sage string from the host to determine whether it is to be treated as a prompt.

Prevention of Data Loss on the HP 1000

On the HP 1000, the RTE Operating System manages information transfer between programs
or subsystems and system /O devices, including DSN/DL. Terminals are continually polled by
the host’s data link interface (unless auto-poll has been disabled by use of an HP 1000 File
Manager CN command). Since there is no relationship between automatic polling and HP 1000
program and subsystems execution, it is possible to poll a terminal when there is no need for
information from that terminal. If the terminal sends a message in response to a poll when no
data is being requested, the HP 1000 discards the message, causing the data to be lost, and
treats it as an asynchronous interrupt. A break-mode prompt is then sent to the terminal by the
host.

The terminal must determine that the host is ready to receive a message in order to ensure that
messages are properly handled by the host. This is done by checking all messages from the host
(CREAD until queue is empty) and not transmitting (CWRITE) until a prompt message or its
equivalent has been received (unless you want to enter break-mode operation). Since the HP
1000 does not generate a consistent prompt message for all programs and subsystems, it is
easiest to use cooperating programs to generate a predictable prompt. If your application
requires interaction with other subsystems, prompts can usually be most easily identified by the
ABSENCE of the sequence: tr-rEc_ at the end of a message. When a proper sequence has
been identified, you are reasonably certain that the host is ready for your next message block.

The Datacomm Interface 181

Here is an example of host messages where a prompt is sent by the File Manager (FMGR) and
answered by a RUN,EDITR command. Note that the prompt from the interactive editor fits the
description of a prompt because a line-feed is not included after the carriage-return in the
sequence.

L Prompt is sent by FMGR to terminal.
RUJEDITR EDITR Run command is sent to host.
SOURCE FILE NAMET?CsLrEc_ File name message is sent by the host, followed by a
Cr/B Ec_ prompt sequence which has no line-feed. Sequence is

different from FMGR prompt.

Whenever an unexpected message from a terminal is received by RTE, it is treated as an
asynchronous interrupt which terminates normal communication with that terminal. A break-
mode prompt is sent to the terminal by RTE, and the next message is expected to be a valid
break-mode command. If the the message is not a valid command (such as data in a file being
transferred), the data is discarded, and an error message is sent to the terminal. If, in the
meantime, the cooperating program or subsystem generates an input request, the next data
block is sent to the proper destination, but is out of sequence because at least one block has
been lost. You can prevent such data losses and the mass confusion that usually ensues
(especially during high-speed file transfers to the host), by disabling auto-poll on the HP 1000
data link interface. With auto-poll OFF, no polls are sent to your terminal unless the host is
prepared to receive data.

Disabling Auto-poll on the HP 1000

To operate with auto-poll OFF, log on to the network host, disable auto-poll, perform all
datacomm activities and file transfers, enable auto-poll, then log off. If you don’t enable
auto-poll at the end of a session, polling is suspended to your terminal after log-off, and
you cannot reestablish communication with the host unless polling is restored from
another terminal or the network host System Console.

The auto-poll ON/OFF commands are:

CN,LU#,23B,1014018B Auto-poll OFF!
CN,LU#,23B,001401B Auto-poll ON!

where LU# us the logical unit number assigned to your terminal.

When auto-poll is disabled, no polls are sent to your terminal unless an input request is initiated
by the cooperating program or subsystem on the network host. When the request is made, a
poll is scheduled, and polling continues until a reply is received from the terminal. When the
reply is received, and acknowledged, polling is suspended until the next input is scheduled.
Operating with auto-poll OFF is especially useful when transferring files TO the HP 1000.
Otherwise, in most applications, it is practical to leave auto-poll ON.

1 The File Manager CN (Control) command parameters for the multipoint interface are described in more detail in the 91730A Multipoint
Terminal Interface Subsystem User’s Guide (91730-90002).

182 The Datacomm Interface

Prevention of Data Loss on the HP 3000

Neither the HP 1000 nor the HP 3000 provide a DC1 poll character when they are ready for
data inputs from DSN/DL. The HP 3000, like the HP 1000, also discards data if it has not
requested the transfer. Since the HP 3000 does not provide an auto-poll disable command,
you must interpret messages from the HP 3000 to determine that it is ready for the next data
block before you transmit the block.

Secondary Channel, Half-duplex Communication

Half-duplex telecommunications links frequently use secondary channel communication to
control data transmission and provide for proper line turn-around. This is done by using
Secondary Request-to-send (SRTS) and Secondary Data Carrier Detect (SDCD) modem sig-
nals.

Consider two devices communicating with each other: Each connects to the datacomm link,
then waits for SDCD to become active (true). As each device connects to the line, Secondary
Request-to-send is enabled, causing each modem to activate its secondary carrier output. The
Secondary Data Carrier Detect is, in turn, activated by each modem as it receives the secondary
data carrier from the other end.

When communication begins, the first device to transmit (assumed to be your computer, in this
case) clears its Secondary Request-to-send modem line. This removes the secondary data
carrier from the line, causing the other modem to clear SDCD to its terminal or computer,
telling it that you have the line. (The modems also maintain proper line switching and prevent
timing conflicts so both ends don’t try to get the line simultaneously.) The other device receives
data, and must not attempt to transmit until you relinquish control of the line as indicated by
SDCD true. After you finish transmitting, you must again activate SRTS so that SDCD can be
activated to the other device, allowing it to use the line if it has a message.

Communication Between Desktop Computers

Two desktop computers can be connected, directly, or by use of modems. DC1/DC3 hand-
shake protocol can be used conveniently to enable each computer to transmit at will without
risk of buffer or queue overruns. To ensure proper operation, the following guidelines apply:

e Set up I0Control Register 22 with a value of 5. This allows both computers to act either as
host or terminal in any given situation, depending on which one initiates the action.

e Set up I0Control Registers 26 and 27 for DC1 and DC3 respectively, or use two other
characters if necessary.

® Data to be transmitted must NOT contain any characters matching the contents of IOCon-
trol Register 26 or 27. This prevents the receiving interface from confusing data with
control characters.

e If both computers attempt to transmit large amounts of data at the same time, a lock-up
condition may result where each side is waiting for the other to empty its buffers.

The Datacomm Interface 183

Cable and Adapter Options and Functions

The HP 98628A Datacomm Interface is available with RS-232C DTE and DCE cable configura-
tions, or it can be connected to various modems or adapters for other applications.

DTE and DCE Cable Options

DTE and DCE cable options are designed to simplify connecting two desktop computers
without the use of modems. The DTE cable (male RS-232 connector) is configured to make the
datacomm interface look like standard data terminal equipment when it is connected to an
RS-232C modem. The DCE cable (female RS-232 connector) is configured so that it eliminates
the need for modems in a direct connection. When you connect two computers to each other in
a direct non-modem connection, both datacomm interfaces are functionally identical. The DCE
cable acts as an adapter so that both interfaces behave exactly as they would if they were
connected to a pair of modems by means of DTE cables.

Several signal lines are rerouted in the DCE cable so that, in direct connections, outputs from
one interface are connected to the corresponding inputs on the other interface. Certain outputs

on each interface are also connected to inputs on the same card by ‘‘loop-back’ connections in
the DCE cable.

The schematic diagram in this section shows two datacomm interfaces directly connected
through a DTE-DCE cable pair. Note that the DCE cable wiring complements the DTE cable so
that output signals are properly routed to their respective destinations. Signal names at the

’ RS-232C connector interface are the same as the signal names for the DTE interface. However,
because the DCE cable adapts signal paths, the signal name at the RS-232C connector does
not necessarily match the signal name at the DCE interface. Connector pin numbers are
included in the diagram for your convenience.

RS-232C DTE (male) Cable Signal Identification Tables

Signal Interface | RS-232C
RS-232C V.24 Pin # Pin # Mnemonic | /O Function
AA 101 24 1 - - Safety Ground
BA 103 12 2 Out Transmitted Data
BB 104 42 3 In Received Data
CA 105 13 4 RTS Out Request to Send
CB 108 44 5 CTS In Clear to Send
CC 107 45 6 DSR In Data Set Ready
AB 102 48 7 - - Signal Ground
CF 109 46 8 DCD In Data Carrier Detect
SCF (OCR2) 122 47 12 SDCD In Secondary DCD
DB 114 41 15 In DCE Transmit Timing
DD 115 43 17 In DCE Receive Timing
SCA (OCD2) 120 15 19 SRTS Out Secondary RTS
CD 108.1 14 20 DTR Out Data Terminal Ready
CE (OCR1) 125 9 22 RI In Ring Indicator
. CH (OCD1) 111 40 23 DRS Out | Data Rate Select
DA 113 7 24 Out Terminal Transmit Timing

184 The Datacomm Interface

Optional Circuit Driver/Receiver Functions
Two optional drivers and receivers are used with the RS-232C cable options. Their functions
are as follows:

Drivers Receivers
Name Function Name Function
OCD1 Data Rate Select OCR1 Ring Indicator
OCD2 | Secondary Request-to-send OCR2 | Secondary Data Carrier Detect

OCD3 Not used
OCD4 Not used

OCD2 is used for autodial pulsing in the HP 13265A Modem. None of the optional
drivers and receivers are used for Data Link and Current Loop Adapters.

98628 DTE RS-232C DCE 98628
INTERFACE ™I CABLE SIGNALS CABLE INTERFACE *2
DATA 12 42 DATA [N\
oUT 2——> BA(PIN2) > >> >
‘<‘I DATA 42 > BB (PIN 3) > 12, Daa <],
~{>——<(—> CA(PIN 4) >——¢°5>DCO
—<} G > CB(PINS) >————
—<} DCD (48 > CF(PIN8) >—9—13 RTS
44y, CTS Ny
l/
SECONDARY 47 SECONDARY [\
—[SECONDARY((B 5 sca(PINI9) > >N >
<I|SD%(‘E)ONDARY,<47 3 SCF(PIN 12) > |5\>ssconos$; <]I
ore s CD(PIN2O) >y FL[>
45, DSR[™N,
l/
RI & ScE(PIN22)>—¢ oTR
DSR 45

< DCE 41 > 43 3 DCE >
XMIT TIMINGI‘< > DB (PINIS) > RCV. TIMING
< DCE 43 > 7 3 DCE <
RCV. TIMING/‘< > DO(PINIT) > XMIT. TIMING

48
SIGNAL <8 > AB(PIN7) > > SIGNAL
GROUND‘; ROUND
24 24,
SAFETYI—«—) AA(PIN 1) > > SAFETY
GROUND L GROUND
DTE L7

XMIT TIMING € > DA (PIN 24) >——NOT USED

—DLT(‘“’—) CH (PIN 23) >——NOT USED
f f

INTERFACE MALE FEMALE INTERFACE
REAR PANEL RS-232C RS-232C REAR PANEL
CONNECTOR CONNECTOR CONNECTOR CONNECTOR

DTE/DCE Interface Cable Wiring

HP 98628 Datacomm Interface

The Datacomm Interface

[OStatus and IOControl Register Summary

PASCAL Register Map - Control Registers

Register =
000 .. 127
257 .. 383
512
513

Use

Buffered Control - Queued up with data
Direct Control - Occurs immediately (meaning is the same as buffered ctl register +

256)
Immediate transfer in Abort

Immediate transfer out Abort

Unless indicated otherwise, the Status Register returns the current value for a given parameter;

the Control Register sets a new value.

Register

Function

0

1 (Status only)
2 (Status only)

3
4 (Status only)
5

6
7 (Status only)
8

9 (Status only)
10 (Status only)
11 (Status only)

12
13
14

15

16
17

18
19
20
21
22

23

Control: Interface Reset; Status: Interface Card ID
Hardware Interrupt Status: 1=Enabled, O = Disabled

Datacomm activity: O =inactive, 1 = ENTER in process, 2=0OUTPUT in process

Select Protocol: 1= Async, 2= Data Link

185

Interrupt Status. Interrupt operations are not currently supported at a user level in Pascal.
Control: Terminate transmission; Status: Inbound queue status

Control: Send BREAK to remote; Status: 1=BREAK pending

Current modem receiver line states
Modem driver line states

Control block TYPE
Control block MODE
Available outbound queue space

Control: Connect/Disconnect line; Status: Line connection status

Interrupt mask. Interrupt operations are not currently supported at a user level in Pascal.
Control Block mask

Modem line interrupt mask. Interrupt operations are not currently supported at a user

level in Pascal.

Connection timeout limit
No Activity timeout limit

Lost Carrier timeout limit
Transmit timeout limit

Async: Transmit baud rate (line speed)
Data Link: Set Transmit/Receive baud rate (line speed)

Async: Incoming (receiver) baud rate (line speed)

Data Link: GID address (0 thru 26 corresponds to “@"’ thru “Z”)

Async: Protocol handshake type

Data Link: DID address (0 thru 26 corresponds to “‘@’’ thru “Z”’)
Hardware handshake type: ON/OFF, HALF/FULL duplex, Modem/Non-modem

186 The Datacomm Interface

Register

Function

24

25 (Status only)
26

Async: Control Character mask
Data Link: Block Size limit
Number of received errors since last interface reset

Async: First protocol character (ACK/DC1)
Data Link: NAKs received since last interface reset

Registers 27-35, 37, and 39 are used with Async protocol only. They are not accessible
during Data Link operation.

27
28
29

30
31
32

33
34
35

36

37

38 (Status only)
39

125 (Control only)
512 (Control only)
513 (Control only)

Second protocol handshake character (ENQ/DC3)
Number of characters in End-of-line sequence
First character in EOL sequence

Second character in EOL sequence
Number of characters in PROMPT sequence
First character in PROMPT sequence

Second character in PROMPT sequence
Data bits per character excluding start, stop and parity
Stop bits per character (0=1, 1=1.5, and 2 =2 stop bits)

Parity sense: 0=NONE, 1=0DD, 2= EVEN, 3=Z2ERO, 4=0NE
Data Link: 0=NONE (HP 1000 host}, 1 =0DD (HP 3000 host)
Inter-character time gap in character times (Async only)

Transmit queue status {1 =empty)

BREAK time in character tirnes {(Async only})
Abort both input and output transfers.
Immediate transfer in Abort.

Immediate transfer out Abort.

The Datacomm Interface 187

HP 98628 Data Communications Interface
IOSTATUS and IOCONTROL Registers

General Notes: Control registers accept values in the range of zero through 255. Some regis-

Status 0

Control 0

Status 1

Status 2

Status 3

Control 3

Status 4

Status 5

Control 5

ters require specified values, as indicated. Illegal values or values less than zero
or greater than 255, cause ERROR 327. Accessing a non-existent register
generates ERROR 326.

Reset value, shown for various Control Registers, is the default value used by
the interface after a reset or power-up until the value is overridden by an
IOCONTROL procedure.

Card Identification

Value returned: 52 (if 180 is returned, check select code switch cluster and make sure
switch R is ON).

Card Reset

Any value, 1 thru 255, resets the card. Immediate execution. Data in queues is destroyed.

Hardware Interrupt Status (not used in most applications)
1 = Enabled 0 = Disabled

Datacomm Activity

0 = No activity pending on this select code.

Bit O set: input in process.

Bit 1 set: output in process.

(Non-zero ONLY during multi-line function calls.)

Current Protocol [dentification:
1 = Async, 2 = Data Link Protocol

Protocol to be used after next card reset (CoNTROL Sc0351)
1 = Async Protocol 2 = Data Link Protocol
This register overrides default switch configuration.

Interrupt status. Interrupt operations are not currently supported at a user level in
Pascal.

Inbound queue status

Value | Interpretation

0 Queue is empty

1 Queue contains data but no control blocks

2 Queue contains one or more control blocks but no data

3 Queue contains both data and one or more control blocks

Terminate Transmission

Data Link: Sends previous data as a single block with an ETX terminator, then idles the
line with an EOT.

Async: Tells card to turn half-duplex line around. Does nothing when line is full-
duplex. The next data output automatically regains control of the line by raising
the RTS (request-to-send) modem line.

188 The Datacomm Interface

Status 6 Break status: 1=BREAK transmission pending, 0 =no BREAK pending.

Control 6 Send Break; causes a Break to be sent as follows:

Data Link Protocol: Send Reverse Interrupt (RVI) reply to inbound block, or CN character
instead of data in next outbound block.

Async Protocol: Transmit Break. Length is defined by Control Register 39.
Note that the value sent to the register is arbitrary.

Status 7 Modem receiver line states (values shown are for male cable connector option for
connection to modems).

Bit 0: Data Mode (Data Set Ready) line

Bit 1. Receive ready (Data Carrier Detect line)
Bit 2: Clear-to-send (CTS) line

Bit 3: Incoming call (Ring Indicator line)

Bit 4: Depends on cable option or adapter used

Status 8 Returns modem driver line states.

Control 8 Sets modem driver line states (values shown are for male cable connector option
for connection to modems).

Bit 0: Request-to-send (RS or RTS) line 1 =line set (active)

Bit 1: Data Terminal Ready (DTR) line 0 =line clear (inactive)
Bit 2: Driver 1: Data Rate Select

Bit 3: Driver 2: Depends on cable option or adapter used

Bit 4: Driver 3: Depends on cable option or adapter used

Bit 5: Driver 4. Depends on cable option or adapter used

Bits 6,7: Not used

Reset value=0 prior to connect. Post-connect value is handshake dependent.

Note that RTS line cannot be altered (except by OUTPUT or OUTPUT...END) for half-
duplex modem connections.

Status 9 Returns control block TYPE if last input terminated on a control block. See Status
Register 10 for values.

Status 10 Returns control block MODE if last input terminated on a control block.
Async Protocol Control Blocks

Type Mode |Interpretation
250 1 Break received (Channel A)
251 1! |Framing error in the following character
251 2! |Parity error in the following character
251 3! |Parity and framing errors in the following character
252 1 End-of-line terminator detected
253 1 Prompt received from remote
0 0 No Control Block encountered

1 Parity/framing error control blocks are not generated when characters with parity and/or framing errors are replaced by an underscore (_)
character.

The Datacomm Interface

Data Link Protocol Control Blocks

Type | Mode | Interpretation

254 1 Preceding block terminated by ETB character
254 2 Preceding block terminated by ETX character
2532 — {see following table for Mode interpretation)

0

0

No Control Block encountered.

Mode Bit(s) | Interpretation

0 1 = Transparent data in following block
0 = Normal data in following block
21 00 = Device select

01 = Group select

10 = Line select

3 1 = Command channel
0 = Data channel

Status 11 Returns available outbound queue space (in bytes), provided there is sufficient
space for at least three control blocks. If not, value is zero.

Status 12 Datacomm Line connection status

Value | Interpretation

0 Disconnected

Attempting Connection

Dialing

Connected?

Suspended

Currently receiving data (Data Link only)
Currently transmitting data (Data Link only)

U W=

Note

When the datacomm line is suspended, ABORT_SERIAL, or
[IORESET must be executed before the line can be reconnected.

Reset value =0 if R on interface select code switch cluster is ON (1).
Control 12 Connects, disconnects, initiates auto-dialing as follows:

Value | Interpretation

0 Disconnects
1 Connects
2 Initiates

Status 13 Interrupt mask. Interrupt operations are not currently supported at a user level in
Pascal.

Control 13 Interrupt mask. Interrupt operations are not currently supported at a user level in
Pascal.

2 This type is used primarity in specialized applications.

1 When using Data Link: Connected - datacomm idle

189

190 The Datacomm Interface

Status 14
Control 14

Status 15

Control 15

Status 16
Control 16

Status 17
Control 17

Status 18
Control 18

Status 19
Control 19

Returns current Control Block mask.

Sets Control Block mask. Control block information is queued sequentially with
incoming data as follows:

Bit | Value ‘ Async Control Block Passed | Data Link Control Block Passed

0 1 Prompt position Transparent/Normal Mode'
1 2 End-of-line position ETX Block Terminator?

2 4 Framing and/or Parity error® ETB Block Terminator?

3 8 Break received

Reset Value: 0 {Control Blocks disabled) 6 (ETX/ETB Enabled)

Bits 4, 5, 6, and 7 are not used.

Modem line interrupt mask. Interrupt operations are not currently supported at a
user level in Pascal.
Modem line interrupt mask. Interrupt operations are not currently supported at a
user level in Pascal.

Returns current connection timeout limit.

Sets Attempted Connection timeout limit.

Acceptable values: 1 thru 255 seconds. 0 =timeout disabled.
Reset Value =25 seconds

Returns current No Activity timeout limit.

Sets No Activity timeout limit.

Acceptable values: 1 thru 255 minutes. 0 =timeout disabled.

Reset Value =10 minutes (disabled if Async, non-modem handshake).

Returns current Lost Carrier timeout limit.

Sets Lost Carrier timeout limit in units of 10 ms.
Acceptable values: 1 thru 255. 0 =timeout disabled.
Reset Value=40 (400 milliseconds)

Returns current Transmit timeout limit.

Sets Transmit timeout limit (loss of clock or CTS not returned by modem when
transmission is attempted).

Acceptable values: 1 thru 255.0 =timeout disabled.

Reset Value =10 seconds

1 Transparent/Normal format identification control block occurs at the BEGINNING of a given block of data in the receive queue.

2 ETX and ETB Block Termination identification control blocks occur at the END of a given block of data in the receive queue.

3 This control block precedes each character containing a parity or framing error.

The Datacomm Interface 191

Status 20 Returns current transmission speed (baud rate). See table for values.
Control 20 Sets transmission speed (baud rate) as follows:

Register Register
Value Baud Rate Value Baud Rate

0 External Clock 8 600
*] 50 9 1200
*2 75 10 1800
*3 110 11 2400
*4 134.5 12 3600
*5 150 13 4800
*6 200 14 9600

7 300 15 19200

* Async only. These values cannot be used with Data Link. These values set transmit
speed ONLY for Async; transmit AND receive speed for Data Link. Default value is
defined by the interface card configuration switches.

Status 21 Protocol dependent. Returns receive speed (Async) or GID address (Data Link)
as specified by Control Register 21.
Control 21 Protocol dependent. Functions are as follows:

Data Link: Sets Group [Dentifier (GID) for terminal. Values 0 thru 26 correspond to
identifiers @, A, B,...Y, Z, respectively. Other values cause an error. Default
value is 1 (“A”).

. Async: Sets datacomm receiver speed (baud rate). Values and defaults are the
same as for Control Register 20.

Status 22 Protocol dependent. Returns DID (Data Link) or protocol handshake type
(Async) as specified by Control Register 22.
Control 22 Protocol dependent. Functions are as follows:

Data Link: Sets Device IDentifier (DID) for terminal. Values are the same as for Con-
trol Register 21. Default is determined by interface card configuration
switches.

Async: Defines protocol handshake type that is to be used.

Value | Handshake type

0 Protocol handshake disabled

ENQ/ACK with desktop computer as the host
ENQ/ACK, desktop computer as a terminal

DC1/DC3, desktop computer as host

DC1/DC3, desktop computer as a terminal

DC1/DC3, desktop computer as both host and terminal

il W N~

Status 23 Returns current hardware handshake type.
Control 23 Sets hardware handshake type as follows:

0 =Handshake OFF, non-modem connection.
1 =FULL-DUPLEX modem connection.
2 =HALF-DUPLEX modem connection.

. 3 =Handshake ON, non-modem connection.
Reset Value is determined by interface configuration switches.

192 The Datacomm Interface

Status 24

Control 24

Status 25

Status 26

Control 26
{Async only)

Status 27

{Async only)
Control 27
{Async only)

Protocol dependent. Returns value set by preceding IOCONTROL procedure to
Control Register 24.

Protocol dependent. Functions as follows:

Data Link protocol: Set outbound block size limit.

Value | Block size Value | Block size
0 512 bytes 4 8 bytes
1 2 bytes . .
2 4 bytes : :
3 6 bytes 255 | 510 bytes

Reset outbound block size limit =512 bytes

Async Protocol: Set mask for control characters included in receive data message
queue.

Bit set: transfer character(s).

Bit cleared: delete character(s).

Bit set | Value | Character(s) passed to receive queue

1 Handshake characters (ENQ, ACK, DC1, DC3)
2 Inbound End-of-line character(s)
4 Inbound Prompt character(s)
8 NUL (CHR(0))
16 DEL (CHR(127))
32 CHR(255)
64 Change parity/framing errors to underscores (_) if bit is set.
128 Not used

Reset value =127 (bits O thru 6 set)

Returns number of received errors since power up or reset.

NO Ok WNRRO

Note

Control Registers 26 through 35, Status Registers 27 through 35,
and Control and Status Registers 37 and 39 are used for ASYNC
protocol ONLY. They are not available during Data Link operation.

Protocol dependent

Data Link protocol: Returns number of transmit errors (NAKs received) since last inter-
face reset.

Async protocol: Returns first protocol handshake character (ACK or DC1).

Sets first protocol handshake character as follows:

6=ACK, 17 =DC1. Other values used for special applications only. Reset value=17

(DC1). Use ACK when Control Register 22 is set to 1 or 2. Use DC1 when Control

Register 22 is set to 3, 4, or 5.

Returns second protocol handshake character.

Sets second protocol handshake character as follows:

5=ENQ, 19=DC3. Other values used for special applications only. Reset value=19
(DC3). Use ENQ when Control Register 22 is set to 1 or 2. Use DC3 when Control
Register 22 is set to 3, 4, or 5.

Status 28

{(Async only)
Control 28
{Async only)

Status 29

{Async only)
Control 29
{Async only)

Status 30

{Async only)
Control 30
{Async only)

Status 31

{Async only)
Control 31
{Async only)

Status 32

{Async only)
Control 32
{Async only)

Status 33

{Async only)
Control 33
(Async only)

Status 34

{Async only)
Control 34
(Async only)

Status 35

{Async only)
Control 35
{Async only)

The Datacomm Interface

Returns number of characters in inbound

End-of-line delimiter sequence.

Sets number of characters in End-of-line delimiter sequence
Acceptable values are 0 (no EOL delimiter), 1, or 2. Reset Value=2

Returns first End-of-line character.

Sets first End-of-line character. Reset Value = 13 {carriage return)

Returns second End-of-line character.

Sets second End-of-line character. Reset Value=10 (line feed)

Returns number of characters in Prompt sequence.

Sets number of characters in Prompt sequence.
Acceptable values are O (Prompt disabled), 1 or 2.
Reset Value=1

Returns first character in Prompt sequence.

Sets first character in Prompt sequence.
Reset Value=17 (DC1)

Returns second character in Prompt sequence.

Sets second character in Prompt sequence.
Reset Value=0 (null)

Returns the number of bits per character.

Sets the number of bits per character as follows:

0 =5 bits/character 2 =17 bits/character

1 =6 bits/character 3 =8 bits/character)

When 8 bits/char, parity must be NONE, ODD, or EVEN.
Reset Value is determined by interface card default switches.

Returns the number of stop bits per character.

Sets the number of stop bits per character as follows:

0=1 stop bit 1=1.5 stop bits 2 =2 stop bits

Reset Value: 2 stop bits if 150 baud or less, otherwise 1 stop bit.
Reset Value is determined by interface configuration switch settings.

193

194 The Datacomm Interface

Status 36 Returns current Parity setting.
Control 36 Sets Parity for transmitting and receiving as follows:

Data Link Protocol: 0=NO Parity; Network host is HP 1000 Computer.
1 =0DD Parity; Network host is HP 3000 Computer.
Reset Value=0
Async Protocol : 0=NONE; no parity bit is included with any characters.
1 =0DD; Parity bit SET if there is an EVEN number of
“1”’s in the character body.
2 =EVEN,; Parity bit OFF if there is an ODD number of
“1”s in the character body.
3="0"; Parity bit is always ZERO, but parity is not checked.
4 =1, Parity bit is always SET, but parity is not checked.
Default is determined by interface configuration switches. If 8 bits per character,
parity must be NONE, ODD, or EVEN.

Status 37 Returns inter-character time gap in character times.
(Async only)
Control 37 Sets inter-character time gap in character times.
(Async only) Acceptable values: 1 thru 255 character times.

0=No gap between characters. Reset Value=0

Status 38 Returns Transmit queue status.
If returned value =1, queue is empty, and there are no pending transmissions.

Status 39 Returns current Break time (in character times).
(Async only)

Control 39 Sets Break time in character times.

(Async only) Acceptable values are: 2 thru 255. Reset Value=4.

Control 125 Abort both input and output transfers.
Control 512 Immediate transfer in Abort.

Control 513 Immediate transfer out Abort.

Chapter 14
The GPIO Interface

Introduction

This chapter should be used in conjunction with the HP 98622A GPIO Interface Installation
manual. The best way to use these two documents is to read this chapter before attempting
to configure and connect the interface according to the directions given in the installation
manual. The reason for this order of use is that knowing how the interface works and how it is
driven by Pascal programs will help you to decide how to connect it to your peripheral device.

The HP 98622 Interface is a very flexible parallel interface that allows you to communicate with
a variety of devices. The interface sends and receives up to 16 bits of data with a choice of
several handshake methods. The interface is known as the General-Purpose Input/Output
(GPIO) Interface. This chapter describes the use of the interface’s features from Pascal pro-
grams.

Computer
seum

196 The GPIO Interface

Interface Description

The main function of any interface is to transfer data between the computer and a peripheral
device. This section briefly describes the interface lines and how they function. Using the lines
from Pascal programs is more fully described in subsequent sections.

The GPIO Interface provides 32 lines for data input and output: 16 for input (DI0O — DI15),
and 16 for output (DO0 — DO15).

16

Parallel Data Out >

Parallel Data In

< 76
5 .
Data and Handshake Ei ﬁ)h;elgz\clji;able
Control GPIO £
Backplane Interface : 8
Connectol
nnector Hardware Special Purpose £
(= :
/J7 < Grounds

—

Block Diagram of the GPIO Interface

Three lines are dedicated to handshaking the data from source to destination device. The
Peripheral Control line (PCTL) is controlled by the interface and is used to initiate data trans-
fers. The Peripheral Flag line (PFLG) is controlled by the peripheral device and is used to signal
the peripheral’s readiness to continue the transfer process.

Four general-purpose lines are available for any purpose that you may desire; two are
controlled by the computer and sensed by the peripheral (CTLO and CTL1), and two are
controlled by the peripheral device and sensed by the computer (STIO and STI1).

Both Logic Ground and Safety Ground are provided by the interface. Logic Ground provides
the reference point for signals, and Safety Ground provides earth ground for cable shields.

The GPIO Interface 197

Interface Configuration

This section presents a brief summary of selecting the interface’s configuration-switch settings.
It is intended to be used as a checklist and to begin to acquaint you with programming the
interface. Refer to the installation manual for the exact location and setting of each switch.

Interface Select Code

In Pascal, allowable interface select codes range from 8 through 31; codes 1 through 7 are
already used for built-in interfaces. The GPIQO interface has a factory default setting of 12, which
can be changed by re-configuring the “SEL CODE”’ switches on the interface.

Hardware Interrupt Priority

Two switches are provided on the interface to allow selection of hardware interrupt priority. The
switches allow hardware priority levels 3 through 6 to be selected. Hardware priority deter-
mines the order in which simultaneously occurring interrupt events are processed.

Data Logic Sense

The data lines of the interface are normally low-true; in other words, when the voltage of a
data line is low, the corresponding data bit is interpreted to be a 1. This logic sense may be
changed to high-true with the Option Select Switch. Setting the switch labeled “DIN’’ to the
“0” position selects high-true logic sense of Data In lines. Conversely, setting the switch labeled
“DOUT” to the ‘1"’ position inverts the logic sense of the Data Out lines. The default setting is
“1” for both.

Data Handshake Methods

This section describes the data handshake methods available with the GPIO Interface. A gener-
al description of the handshake modes and clock sources is given first. A more detailed discus-
sion of each handshake is then given to allow you to choose the handshake mode, clock source,
and handshake-line logic sense that is compatible with your peripheral device.

As a brief review, a data handshake is a method of synchronizing the transfer of data from the
sending to the receiving device. In order to use any handshake method, the computer and
peripheral device must be in agreement as to how and when several events will occur. With
the GPIO Interface, the following events must take place to synchronize data transfers; the first
two are optional.

® The computer may optionally be directed to perform a one-time “OK check’ of the
peripheral before beginning to transfer any data.

® The computer may also optionally check the peripheral to determine whether or not the
peripheral is “‘ready’’ to transfer data.

® The computer must indicate the direction of transfer and then initiate the transfer.

e During output operations, the peripheral must read the data sent from the computer while
valid; similarly, the computer must clock the peripheral’s data into the interface’s Data In
registers while valid during input operations.

® The peripheral must acknowledge that it has received the data.

198 The GPIO Interface

Handshake Lines

The GPIO handshakes data with three signal lines. The Input/Output line, I/O, is driven by
the computer and is used to signal the direction of data transfer. The Peripheral Control line,
PCTL, is also driven by the computer and is used to initiate all data transfers. The Peripheral
Flag line, PFLG, is driven by the peripheral and is used to acknowledge the computer’s requests
to transfer data.

Handshake Logic Sense

Logic senses of the PCTL and PFLG lines are selected with switches of the same name. The
logic sense of the I/O line is High for input operations and Low for output operations; this logic
sense cannot be changed. The available choices of handshake logic sense and handshake
modes allow nearly all types of peripheral handshakes to be accommodated by the GPIO
Interface.

Handshake Modes

There are two general handshake modes in which the PCTL and PFLG lines may be used to
synchronize data transfers: Full-Mode and Pulse-Mode Handshakes. If the peripheral uses
pulses to handshake data transfers and meets certain hardware timing requirements, the Pulse-
Mode Handshake may be used. The Full-Mode Handshake should be used if the peripheral
does not meet the Pulse-Mode timing requirements.

The handshake mode is selected by the position of the “HSHK” switch on the interface, as
described in the installation manual. Both modes are more fully described in subsequent
sections.

Data-In Clock Source

Ensuring that the data are valid when read by the receiving device is slightly different for output
and input operations. During outputs, the interface generally holds data valid while PCTL is in
the Set state, so the peripheral must read the data during this period. During inputs, the data
must be held valid by the peripheral until the peripheral signals that the data are valid (which
clocks the data into interface Data In registers) or until the data is read by the computer. The
point at which the data are valid is signalled by a transition of PFLG. The PFLG transition that is
used to signal valid data is selected by the “CLK” switches on the interface. Subsequent
diagrams and text further explain the choices.

Peripheral Status Check

Many peripheral devices are equipped with a line which is used to indicate the device’s current
“OK-or-Not-OK”’ status. If this line is connected to the Peripheral Status line (PSTS) of the
GPIO Interface, and the computer determines the status of the peripheral device by checking
the state of PSTS. The logic sense of this line may be selected by setting the “PSTS’”’ switch.

The computer performs a check of the Peripheral Status line (PSTS) before initiating any
transfers as part of the data-transfer handshake. If PSTS indicates ‘“Not OK,” an error is
reported with ioe_result set to 21; otherwise, the transfer proceeds normally. This feature is
available with both Full-Mode and Pulse-Mode Handshakes. See ‘‘Using the PSTS Line’’ for
further details.

The GPIO Interface 199

Full-Mode Handshakes

The Full-Mode Handshake mode is described first for two reasons. The first reason is that the
PCTL and PFLG transitions must always occur in the order shown, so only one sequence of
peripheral handshake responses needs to be shown. Secondly, this mode will generally work
when the Pulse-Mode Handshake may not be compatible with the peripheral’s handshake
signals. The Pulse-Mode Handshake is described in the next section.

The following diagrams show the order of events of the Full-Mode output and input Hand-
shakes. These drawings are not drawn to any time scale; only the order of events is important.
The /O line has been omitted to simplify the diagrams; in all cases, it is driven Low before any
output is initiated by the computer and High before any input is initiated.

First Data - Second Data
Is Valid Is Valid

4L
-

- PcTL__ | PCTL
Delay Delay
Clear —& T {
|
PCTL | |
Set | | { F
| | | |
| | | |
| | | |
| | [|
Busy | | | T t
PFLG] | [!
|
A]] N |
Ready —0— | _ 1 |
| | | | | |
| | | | | |
| | | | | |
t0 t1 t2 t3 4 t5

Diagram of Full-Mode OUTPUT Handshakes

With Full-Mode Handshakes, the computer first checks to see that the peripheral device is
Ready before initiating the transfer of each byte/word (t0); with this handshake mode, the
peripheral indicates Ready when both PCTL is Clear and PFLG is Ready. If the peripheral
does not indicate Ready, the computer waits until a Ready is indicated.

When a Ready is sensed, the computer places data on the Data Out lines (t1) and drives the [/O
line Low (not shown). The interface then waits the PCTL Delay time before initiating the
transfer by placing PCTL in the Set state (t2).

The peripheral acknowledges the computer’s request by placing the PFLG line Busy (t3); this
PFLG transition automatically Clears the PCTL line (t4). However, the computer cannot inti-
tate further transfers until the peripheral is Ready with Full-Mode Handshake; the peripheral is
not Ready until both PCTL is Clear and PFLG is Ready (t5).

The data on the Data Out lines is held valid from the time PCTL is Set until after the peripheral
indicates Ready. The peripheral may read the data any time within this time period.

200 The GPIO Interface

The PCTL and PFLG lines are used in the same manner in Full-Mode input Handshakes as in
Full-Mode output Handshakes. However, there are three options available as to when the
peripheral’s data may be valid: at the Ready-to-Busy transition of PFLG (BSY clock source), at
the Busy-to-Ready transition of PFLG (RDY clock source), and when the Data In lines are read
with an IOSTATUS function (READ clock source). The first two of these options are shown in
the following two diagrams.

Clear 3¢
|
PCTL =
Set I }

| |
. |
[
‘ Data Must Be
| |
BUsy 1| valid Here T
PFLG : I |
Ready Q fl 1= :
l '{ Settling I
| | 1)
| |
Data In Data \{alid:3

| | I | :
0ot t2 13 1

Full-Mode Input Handshake with BSY Clock Source

As with Full-Mode output Handshakes, the computer first checks to see if the peripheral is
Ready (t0); since PCTL is Clear and PFLG is Ready, the handshake may proceed. The compu-
ter places the I/O line in the High state {(not shown) and then initiates the handshake by placing
PCTL in the Set state {t1).

With the “BSY”’ clock source, the PFLG transition to the Busy state clocks the peripheral’s data
into the interface’s Data-In registers; consequently, the peripheral must place data on the
Data-In lines (t2), allowing enough time for the data to settle before placing PFLG in the Busy
state (t3). This PFLG transition to the Busy state automatically Clears PCTL (t4). The next
handshake may be initiated when PFLG is placed in the Ready state by the peripheral (t5).

The GPIO Interface 201

Clear —o—— I——« —
PCTL
Set 1 ¢
| |
I } Data Must Be
Valid Here
Busy : lr !+ \
PFLG I |
Ready — I —
i I
I I
| |
|

Data In

|
|
|
!
I
|
|
|
|
|
|
|
©
|
|
|
|
i
i
1
|
|

+ 7

| | |
|

10

Full-Mode Input Handshake with RDY Clock Source

As with other Full-Mode Handshakes, the computer first checks to see if the peripheral is ready
(t0). Since PCTL is Clear and PFLG is Ready, the computer may drive the I/O line High (not
shown) and initiate the handshake by placing PCTL in the Set state (t1).

The peripheral may acknowledge by placing PFLG Busy (t2), which automatically Clears PCTL
(t3). Unlike the previous example, this transition does not clock data into the interface Data-In
registers. With the “RDY”’ clock source, the peripheral must place the data on the Data-In lines
(t4), allowing enough time for the data to settle before placing PFLG in the Ready state (t5).
The computer may then initiate a subsequent transfer.

Pulse-Mode Handshakes

The following drawings show the order of handshake-line events during Pulse-Mode Hand-
shakes. Notice that the main difference between Full-Mode and Pulse-Mode Handshakes is
that the PFLG is not checked for Ready before the computer initiates Pulse-Mode Hand-
shakes; the computer may initiate a subsequent data transfer as soon as the PCTL line is
Cleared by the Ready-to-Busy transition of PFLG.

Two cycles of data transfers are shown in these diagrams to illustrate that the computer need
not wait for the PFLG =Ready indication with the Pulse-Mode Handshake. The first cycle
shown in each diagram is a typical example of the first transfer of an I/O statement. The dashed
PFLG line at the beginning of the second cycle shows that computer disregards whether or not
PFLG is in the Ready state before the next transfer is initiated.

This absense of the PFLG check allows a potentially higher data-transfer rate than possible
with the Full-Mode Handshake; however, in some cases, it also places additional timing restric-
tions on the peripheral’s response time, as described in the text.

202 The GPIO Interface

— } — i}
First Data Second Data
Data Out ls Valid :><Is Valid
PCTL PCTL
e —el B ——
Delay Delay
Clear ;
PCTL l
Set : I— ‘e
| | !
| |]
| | :
Busy { | —_————————- 1
PFLG ! | l | |
| ['
Ready T : — T i
| | | | v
| | | |
t1 2 t3 4 t5

Busy Pulses With Pulse-Mode Output Handshake

The PFLG line is not checked for Ready before the computer drives the /O line Low (not
shown) and places data on the Data-Out lines (t1). A PCTL Delay time later, the interface
initiates the transfer by placing PCTL in the Set state (t2).

The peripheral acknowledges by placing PFLG Busy (t3); this transition automatically Clears
PCTL (t4). The dashed PFLG line shows that the computer may initiate another transfer any
time after PCTL is Clear, possibly before the peripheral places PFLG in the Ready state (t5).

The Busy Pulse shown in the diagram is identical to the PFLG’s response during the previous
Full-Mode handshake; however, the Pulse-Mode Handshake works properly with this type of
pulse only if the peripheral reads the data by the time PCTL is Clear (data should be read
between t2 and t3). If the peripheral has not read the data by the time that PCTL is Clear, it
might erroneously read the data for the second transfer, since the computer might have already
changed the data and initiated the second transfer.

The GPIO Interface 203

Clear
PCTL
Set
0
: Data
Data In Vaiid
1
| i .
| - Sgttllng — __S_ettllng_’
' Time Time
Bus! ! e f——— =
Y : : Data Must 1 Data Must 7]
PFLG | | Be Valid E:r\éahd
|
Ready ! — . Here
| I |
t1 t2 3 t

Busy Pulses With Pulse-Mode Input Handshakes (BSY Clock Source)

The computer does not have to check for PFLG to be Ready before placing I/O in the High state
(not shown) and initiating the transfer by placing PCTL in the Set state (t1).

The peripheral must place data on the Data In lines (t2), allowing enough tome for the data to
settle before placing PFLG in the Busy state (t3). This Ready-to-Busy transition of PFLG
automatically Clears PCTL. The dashed PFLG signal shows that the next transfer may be
initiated before PFLG indicates Ready.

204 The GPIO Interface

Clear] —
PCTL l—

Set — ¥ 5 F — f

|
[
l
|
0 —f
Data In - :
J—
! Settling Settling
: [Time | ~Time ﬂ
L | i p
Busy T 1 F | Data Must T 7 Data Must-*]
PFLG ; : Be Valid) Be Valid
Here ' Here
Ready : | i ‘I ey p - ¥
| | | |
| | | 1
t1 12 t3 4

Busy Pulses With Pulse-Mode Input Handshakes (RDY Clock Source)

The computer does not have to check for PFLG to be Ready before placing I[/O in the High state
(not shown) and initiating the transfer by placing PCTL in the Set state (t1).

The peripheral must place data on the Data In lines (t2), allowing enough time for the data to
settle before placing PFLG Busy (t3). This requirement may seem contradictory, since the ‘
clock source is the Busy-to-Ready transition of PFLG. However, with Pulse-Mode handshakes,

the peripheral is assumed to be Ready whenever PCTL is Clear; consequently, the computer

may read the data any time after PCTL is cleared by the Ready-to-Busy transition of PFLG. The

PFLG transition to Busy Clears PCTL (t4), after which the peripheral may place PFLG Ready

(t5).

Note
In order to use this type of pulse with the Pulse-Mode Handshake
and RDY clock source, the peripheral must adhere to the stated
timing restrictions.

The GPIO Interface 205

— - { — { it i
First Data Second Data
Is Valid Is Valid

—} ! — 1 b b

Data Out
PCTL , PCTL
| Delay I__Delay_'
Clear % _—
PCTL ! l
Set : — ¢ — ¥ T
| | |
| | |
| | :
Busy }— — - — i
PFLG | | K
Ready : : — I S
! I | I
| | l [
t1 2 3 t4 t5

Ready Pulses With Pulse-Mode Output Handshakes

The PFLG line is not checked for Ready before the computer drives the I/O line Low (not
shown) and places data on the Data Out lines (t1). A PCTL Delay time later the interface
initiates the transfer by placing PCTL in the Set state (t2).

The peripheral later acknowledges by placing PFLG in the Ready state (t3). The handshake is
completed by the peripheral placing PFLG in the Busy state (t4), which automatically Clears
PCTL (t5).

If the peripheral uses the type of Ready pulses shown, either the Pulse-Mode handshake with
default PFLG logic sense or Full-Mode handshake with inverted PFLG logic sense may be used.
With this type of pulse, the data being output may be read by the peripheral as long as PCTL is
Set.

206 The GPIO Interface

Computer May Computer May
Clear Read Data Here 4§ Read Data Here -
PCTL
Set —] } i #
|
I
I
|
0 + id
{
e Data
Data In ' ; E Valid
1T —
| 1
! I‘_Seming
1 . e
| Time
|
Busy : i
PFLG : :
Ready + ~ || |
| : .
X I
t1 2 83 ¥ t5

Ready Pulses With Pulse-Mode Input Handshakes (BSY Clock Source)

The computer does not have to check for PFLG to be Ready before placing I/O in the High state
(not shown) and initiating the transfer by placing PCTL in the Set state (t1).

The peripheral acknowledges by placing PFLG in the Ready state (t2). The peripheral must
place data on the Data In lines (t3), allowing enough time for the data to settle before placing
PFLG in the Busy state (t4). With this type of pulse, events t2 and t3 may also occur in the
reverse order.

The Ready-to-Busy transition of PFLG automatically Clears PCTL (t4). The dashed PFLG
signal shows that the state of PFLG is not checked before the computer initiates a subsequent
transfer.

The GPIO Interface 207

Clear
PCTL

Set { f

Dat:
Data In V;;
T 7 | 7
|
! Senhng_J | Senhng
: Time l ~Time
Bus o ——— —
’ f : Data Mus ! 1 Data Must/
PFLG ! Be Valid |
| | I | Be Valid Here
Ready | | Here 4§ ¢ | Lgpmegpm e ==
' | | P!
! | | y |
t1 2 t3 t4 t5

Ready Pulses With Pulse-Mode Input Handshakes (RDY Clock Source)

The computer does not have to check for PFLG to be Ready before placing I/O in the High state
(not shown) and initiating the transfer by placing PCTL in the Set state (t1).

The peripheral must place data on the Data In lines (t2), allowing enough time for the data to
settle before placing PFLG Ready (t3). The peripheral places PFLG in the Busy state (t4), which
automatically Clears PCTL (t5).

208 The GPIO Interface

Interface Reset

The interface should always be reset before use to ensure that it is in a known state. All
interfaces are automatically reset by the computer at certain times: when the computer is
powered on, when the key is pressed, and at other times including when the or
keys are pressed and when IOINITIALIZE and IOUNINITIALIZE are executed. The
interface may be optionally reset at other times under control of Pascal programs. Two exam-
ples are as follows:

IORESET(12) 3

SC:=123
IOCONTROL(Sc 1) 3

The following action is invoked whenever the GPIO Interface is reset:

® The Peripheral Reset line (PRESET) is pulsed Low for at least 15 microseconds.
® The PCTL line is placed in the Clear state.
e If the DOUT CLEAR jumper is installed, the Data Out lines are all cleared (set to logic 0).

The following lines are unchanged by a reset of the GPIO Interface:

® The CTLO and CTL1 output lines.
® The /O line.
e The Data Out lines, if the DOUT CLEAR jumper is not installed.

The GPIO Interface

Outputs and Inputs through the GPIO

This section describes techniques for outputting and inputting data through the GPIO Interface.
The mechanism by which data are communicated are the electrical signals on the data lines.
The actual signals that appear on the data lines depend on three things: the data currently being
transferred, how this data is being represented, and the logic sense of the data lines.

Brief explanations of ASCII and internal data representation are given in Chapter 4. This
section gives simple examples of how several representations are implemented during outputs
and inputs through the GPIO Interface.

ASCII and Internal Representations

When data are moved through the GPIO Interface, the data are generally sent one byte at a
time, with the most significant byte first. However, there are three exceptions; data are
represented by words when READWORD and WRITEWORD are used, and when TRANSFER-
WORD is used and when numeric data are moved with reads of IOSTATUS register 3 and
writes to IOCONTROL register 3. The following diagrams illustrate which data lines are used
during byte and word transfers.

GPIO Peripheral
Interface Device
DO15 — DO8

Upper 8 bits are not used

or (all O’'s during byte transfers).

D15 —DI8
DO7 — DOO

or Only lower 8 bits are used.
DI7 —DI0

Diagram of Byte Transfers

GPIO Peripheral
Interface Device

Upper 8 bits are used only when:

DO15 — DO8 1. Writing to IOCONTROL register 3
or . ({reading from IOSTATUS register 3).
DI15 — DI8 2. When READWORD,

WRITEWORD, and TRANSFER_
WORD are used.

DO7 — DOO
or
Di7 —DI0

Lower 8 bits are used for ALL data
transfers.

Diagram of Word Transfers

209

210 The GPIO Interface

Example - Output Data Bytes

The following diagram shows the actual logic signals that appear on the least significant data
byte (DO7 thru DOO) as the result of the corresponding output procedure; the most significant
byte is always zeros with byte transfers. The actual logic levels depend on how the data lines are
configured (i.e., as Low-true or High-true).

Signal Line ASCII
DO7 DOO Char.

WRITESTRINGLN(12, 'ASCII')3 A
s
C
I
I

c
L

R
F

OO OO OoO O
OO
OO OO OO OO
O =

Signal Line ASCII
DO7 DOO Char.

WRITECHAR(1Z 4B ")} 0100 0010 B

Example - Input Data Bytes

The following diagrams show the variable values that result from the logic signals being present
during the corresponding input procedures on the least significant data byte (DI7 thru DIO); the
most significant byte is always ignored with byte transfers. The actual logic levels required
depend on how the data lines are configured (i.e., as Low-true or High-true).

Signal Line ASCII
DI7 DI0O Char.

READCHAR(1Zsc) 4 0100 0001 A
WRITELN(*Value entered=',,0RD(c))

Value entered= GBS

Signal Line ASCII

DI7 DIO0 Char.
READSTRING(1Z2+5tr) 3 0111 0010 r
WRITELN (‘*String entered=',8tr) 3 0111 0101 i
0110 1111 o
String entered= ruokK? 0110 1011 K
0011 1111 "
0000 1010 ¢t

The GPIO Interface

Example - Output Data Words

The following diagrams show the actual signals that appear on the Data Out lines as a result of
the corresponding Pascal procedures and numeric values. All numeric values are first rounded
to an INTEGER value before being placed on the Data Out lines. The actual logic level that
appears on each line depends on how the lines have been configured (i.e., as High-true or
Low-true).

Signal Lines
DO15 DO8 DO7........ DOO0
Word:=3%236+33 0000 0011 0000 OO11
WRITEWORD(1Z sword)
Signal Lines
DO15 DO8 DO7........ DO0
OutPut_1B_bits:=~13 1111 1111 1111 1111

IDCONTROL(12,+3s0utPut_1B_bits)

It is important to note that no output handshake is executed when the IOCONTROL procedure
is executed; only the states of the Data Out lines and the /O line are affected. Handshake
sequence, if desired, must be performed by Pascal procedures in the program.

Example - Input Data Words
The following diagrams show the variable values that result from entering the logic signals on
the Data In lines. Note that all sixteen-bit values entered are interpreted as INTEGER values.

Signal Lines
DI15 DI8 DI7 DIO

0000 0001 1111 1111

READWORD(12sInpPut_1B_bits) i
WRITELN(*INTEGER entered='35InPut_16_Bits)s

INTEGER entered= 3511

Signal Lines
DI15 DI8 DI7 DIO

1111 1110 0000 O0O0O0O

Xe=I08TATUS(12,3) 3
WRITELN(*INTEGER entered="'X)}

INTEGER entered= -312

It is important to note that no enter handshake is performed when the IOSTATUS function is
executed. The only actions taken are the I/O line being placed in the High state and the Data In
registers being read. If an input handshake is required, it must be performed by the Pascal
program.

211

212 The GPIO Interface

Using the Special-Purpose Lines

Four special-purpose signal lines are available for a variety of uses. Two of these lines are
available for output (CTLO and CTL1), and the other two are used as inputs (STIO and STI1).

Driving the Control Output Lines

Setting bits 0 and 1 of GPIO IOCONTROL register 2 places a logic low on CTLO and CTL1,
respectively. The definition of this [OCONTROL register is shown in the following diagram.

Control Register 2 Peripheral Control
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Set CTL1 | Set CTLO
Not Used (1 = Low; | (1 = Low;
0 = High) | @ = High)

Value = 128| Value = 64 | Value = 32 | Value=16 | Value=8 | Value=4 | Value=2 | Value=1

CHO:=03
CH1:=15
TOCONTROL(12:2CHi*Z2+CHO) 3

As indicated in the diagram, setting a bit in the register places the corresponding line Low, while
clearing the bit places a logic High on the line. The logic polarity of these signals cannot be
changed. The signal remains on these lines until another value is written into the IOCONTROL
register, and Reset has no effect on the state of either line.

Interrogating the Status Input Lines
The state of both status input lines STIO and STI1 are determined by reading bits 0 and 1 of
IOSTATUS register 5, respectively. A logic ‘1’ in a bit position indicates that the corresponding

line is at logic Low, and a ‘0" indicates the opposite logic state. This logic polarity cannot be
changed. The definition of GPIO IOSTATUS register 5 is shown below.

Status Register 5 Peripheral Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 PSTS EIR ST STIO

Ok Line Low Line Low Line Low
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value=1

P_status:=I0STATUS(12:5) 3%
Sti0:=BIT_SET{(P_status Q)%
Stil:=BIT_SET(P_statusl)i

The GPIO Interface

Reading this register returns a numeric value that reflects the logic states of these lines at the
instant the computer reads the interface lines; the state of these lines are not latched by any
internal or external event.

GPIO Status and Control Registers

Status Register (

Control Register 0

Status Register 1
Most Significant Bit

Card identification

3

Reset interface if non-zero

Interrupt and DMA Status
Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Interrupts | An Interrupt Interrupt Burst- Word- DMA DMA
Are Is Currently Level Switches Mode Mode Channel 1 | Channel @
Enabled | Requested (Hardware Priority) DMA DMA Enabled J
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value=1
Control Register 1 Set PCTL if non-zero
Status Register2 Not implemented
Control Register 2 Peripheral Control
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Set CTL1 | Set CTLO
Not Used (1 = Low; | (1 = Low;
0@ = High) | 0 = High)
Value = 128| Value = 64 | Value = 32 | Value = 16 TVa|ue = ﬂ Value =4 | Value=2 | Value =1

213

214 The GPIO Interface

Status Register 3 Data In (16 bits)
Control Register 3 Data Out {16 bits)
Status Register 4 1 = Ready; 0 = Busy
Status Register 5 Peripheral Status
Most Significant Bit Least Significant Bit
—
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 PSTS EIR STH STIo
Ok Line Low Line Low Line Low
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value=1

Summary of GPIO IOREAD_BYTE
and IOWRITE_BYTE Registers

This section describes the GPIO Interface’s IOREAD_BYTE and IOWRITE_BYTE registers.
Keep in mind that these registers should be used only when you know the exact consequences
of their use, as using some of the registers improperly may result in improper interface behavior.
If the desired operation can be performed with IOSTATUS or IOCONTROL, you should not
use IOREAD_BYTE or IOWRITE_BYTE.

GPIO IOREAD_BYTE Registers

Register O—Interface Ready
Register 1—Card Identification
Register 2—Undefined
Register 3—Interrupt Status
Register 4—MSB of Data In
Register 5—LSB of Data In
Register 6—Undefined
Register 7—Peripheral Status

IOREAD_Byte Register 0 Interface Ready
A 1 indicates that the interface is Ready for subsequent data transfers, and O indicates Not
Ready.

IOREAD_BYTE Register 1 Card Identification

This register always contains 3, the identification for GPIO interfaces.

The GPIO Interface

215

IOREAD_BYTE Register 3 Interrupt Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Interrupts | An Interrupt Interrupt Burst- Word- DMA DMA
Are Is Currently Level Switches Mode Mode Channel 1 | Channel 0
Enabled | Requested (Hardware Priority) DMA DMA Enabled Enabled
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value =1
IOREAD_BYTE Register 4 MSB of Data In
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DI15 Dl14 DI13 DI12 DI11 DIo DIs DI8
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1
IOREAD_BYTE Register 5 LSB of Data In
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Di7 Dl6 DI5 Dl4 DI3 DI2 DIt DIo
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1
IOREAD_Byte Register 7 Peripheral Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 PSTS EIR ST STIO
Ok Line Low Line Low Line Low
Value = 128| Value = 64 | Value =32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value =1

216 The GPIO Interface

GPIO IOWRITE_BYTE Registers

Register 0 — Set PCTL

Register 1 — Reset Interface

Register 2 — Interrupt Mask

Register 3 — Interrupt and DMA Enable
Register 4 — MSB of Data Out

Register 5 — LSB of Data Out

Register 6 — Undefined

Register 7 — Set Control Output Lines

IOWRITE_BYTE Register 0 Set PCTL

Writing any non-zero numeric value to this register places PCTL in the Set state; writing zero
causes no action.

IOWRITE_.BYTE Register 1
Writing any non-zero numeric value to this register resets the interface.

Reset Interface

IOWRITE_.BYTE Register 2

Most Signiticant Bit

Interrupt Mask

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
nterfage | ENGDle
Not Used EIR
Ready
Interrupts
Interrupts
Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1
IOWRITE_.BYTE Register 3 Interrupt and DMA Enable
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Enable Enable
Enable Enable
Enable Not Used Burst- Word- DMA DMA
Interrupts Mode Mode Channel 1 | Channel 0
DMA DMA
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value=1

The GPIO Interface 217

MSB of Data Out

IOWRITE_BYTE Redister 4

Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DO15 DO14 DO13 DO12 DO11 DO10 DO9 DOs8

Value = 128| Value = 64 | Value =32 Value =16 | Value=8 | Value =4 | Value=2 | Value :T\

IOWRITE_BYTE Register 5 LSB of Data Out

Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

[—

\ DO7 DOs DO5 DO4 DO3 ’7002 DO1 DOo

Value = 128| Value = 64

Value = 32 | Value =16 | Value =84\ Value=4 | Value=2 | Value =1

|

IOWRITE_BYTE Register 7 Set Control Output Lines
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 ‘ Bit 2 Bit 1 Bit 0

Set CTLA Set CTLO

Not Used (1 = Low; | (1 = Low;
0 = High) | ® = High)

Value = 128| Value = Sﬂ Value = 32 \ Value = 16 \ Value=8 | Value=4 | Value=2 | Value=1

218 The GPIO Interface

Notes

,;;.Computer
o Museum
%M

Chapter 15
RS-232 Serial Interface

Introduction

The HP 98626 Serial Interface is an RS-232C' compatible interface used for simple asynchro-
nous (“‘async’’ for short) I/O applications such as driving line printers, terminals, or other
peripherals. If your applications require more advanced capabilities, use the HP 98628 Data-
comm Interface instead.

The Serial Interface uses a UART (Universal Asynchronous Receiver and Transmitter) inte-
grated circuit to generate the required signals. Because the Serial Interface does not have a
processor onboard, the computer must provide most control functions. Consequently, there is
more interaction between the card and computer than when you use a more intelligent inter-
face.

The RS-232C interface standard establishes electrical and mechanical interface requirements,
but does not define the exact function of all the signals that are used by various manufacturers
of data communications equipment and serial /O devices. Consequently, when you plug your
Serial Interface into an RS-232 connector, there is no guarantee the devices can communicate
unless you have configured optional parameters to match the requirements of the other device.

The terms ‘“‘asynchronous data communication” and ‘‘serial I[/O” refer to a technique for
transferring data between two devices one bit at a time where characters are not synchronized
with preceding or subsequent characters. Each character is sent as a complete entity without
relationship to other events. Characters may be sent in close succession, or they may be sent
sporadically as data becomes available. Start and stop bits are used to identify the beginning
and end of each character, with the character data placed between them.

1 RS-232C is a data communication standard established and published by the Electronic Industries Association (EIA). Copies of the standard
are available from the association at 2001 Eye Street N. W., Washington D. C. 20006. Its equivalent for European applications is CCITT
V.24,

09826-90075, rev: 1/83

218.2 RS-232 Serial Interface

Details of Serial I/O

The transfer of data over a serial line is a trivial operation when the host and terminal devices
are designed to work together. However, some applications require some configuration before
the communication can be performed smoothly. You must determine the operating parameters
of the terminal device and then set up the host device for compatible operation.

The Serial Interface includes three default configuration switch clusters in addition to the select
code and interrupt level switches. These three switch clusters include Modem Line, Baud Rate
and Line Control switches. The operating parameters can be set using these switches or by
program control which overrides most switches.

To determine operating parameters, you need to know the answer for each of the following
questions about the peripheral device.

e What baud rate (line speed) is expected by the peripheral?
e Which of the following signal and control lines are actively used during communication
with the peripheral?

—Data Set Ready (DSR) —Data Carrier Detect (DCD)
—~Clear to Send (CTS) —Ring Indicator (RI)

In addition, you must know the expected format for an individual frame of character data. Each
character frame consists of the following elements:

e Start Bit—The start bit signals the receiver that a new character is being sent. All other bits ‘
in a given frame are synchronized to the start bit.

e Character Data Bits—The next bits are the binary code of the character being transmit-
ted, consisting of 5, 6, 7, or 8 bits; depending on the application.

e Parity Bit—The parity bit is optional, included only when parity is enabled.

e Stop Bit(s)—One or more stop bits identify the end of each character. The serial interface
has no provision for inserting time gaps between characters.

Here is a simple diagram showing the structure of an asynchronous character and its rela-
tionship to other characters in the data stream:

7 :lalai.l; ‘r_al

[———— | ! !
Preceding Linein Start 1 0 1 0 0 0 1 Parity Stop Start Bit
Character Idie State | Bit Bit Bit for Next
(Mark) | Single Character Frame > Character
Beginning of End of
Character Character

09826-90075, rev: 1/83

RS-232 Serial Interface 218.3

Baud Rate

The rate at which data bits are transferred between the interface and the peripheral is called the
baud rate. The interface card must be set to transmit and receive at the same rate as the
peripheral, or data cannot be successfully transferred. The Baud Rate Select switches can be set
to any one of the following values.

Baud Rate Switch Settings

Switch Settings Switch Settings

Baud Rate 3 21 0 Baud Rate 3 2 1 0
50 0 0 0 0 1200 1 0 0 0

75 0 0 0 1 1800 1 0 0 1
110 0 01 O 2400 * 1 0 1 0
134.5 0 0 1 1 3600 1 0 1 1
150 01 0 O 4800 1 1 0 0
200 0 1 0 1 7200 1 1 0 1
300 01 1 0 9600 1 1 1 0
600 01 1 1 19200 1 1 1 1

* factory switch setting

Signal and Control Lines

A modem is used for serial communications between the computer and a remote device. The
interface uses the following lines to indicate its status to the modem.

® Data-Terminal-Ready (DTR)—Indicates that the interface is ready for communications.
® Request-To-Send (RTS)—Indicates that the interface wants to send data.

The modem indicates its status to the interface through the following lines:

® Data-Set-Ready (DSR)—Indicates that the modem (data set) is ready.

e Clear-To-Send (CTS)—Indicates that the interface can transmit data over the communica-
tions link.

o Data-Carrier-Detect (DCD)—Indicates that the remote device has requested data.

® Ring-Indicator (RI)—Indicates that the modem is receiving an incoming call.

The Modem Line Disconnect switches are used to connect or disconnect the modem lines from
the interface cable. When a given switch is in the CONNECT position, the corresponding
modem line is connected from the peripheral device to the interface circuitry. When it is in the
disconnected position, the modem line is disconnected, and the interface receiver input for that
line is held HIGH (true). Any modem lines that are not actively used while communicating with
the peripheral should be disconnected to minimize errors due to electrical noise in the cable.
Modem Line disconnect switch settings cannot be altered under program control. To
reconfigure the switches, the interface must be removed from the computer, and the settings
changed by hand. These modem lines are monitored by the interface only if control register 13
is set. The default for control register 13 is 0. The modem line disconnect switches are not
available with the HP Model 16’s internal serial interface.

09826-90075, rev: 1/83

218.4 RS-232 Serial Interface

Software Handshake, Parity and Character Format

The Line Control switches are used to preset the software handshake, character format, and
parity options. Functions are as follows:

Line Control Switch Settings

Software Parity Stop Bits Character
Handshake Length
(Switches 6,7) (Switches 5,4,3) (Switch 2) (Switches 1,0)
00 ENQ/ACK * 000 no parity * 0 1 stop bit 00 5 bits/char
01 Xon/Xoff 001 ODD parity 1 2 stop bits * 01 6 bits/char
10 Reserved 011 EVEN parity 1 1.5 stop bits 10 7 bits/char
11 None 101 always ONE if 5 bits/char

11 8 bits/char *
111 always ZERO

* factory switch settings

Software Handshake

Software handshakes are used by two communicating devices in order to prevent overflowing
buffers. Special characters are used to implement the handshake. Two types of software hand-
shakes are implemented.

® Enquire/Acknowledge—the host of this handshake sends an Enquire character after send-
ing a specified number of characters (usually 80 characters), and then waits until it receives
an Acknowledge character from the terminal. The terminal sends the Acknowlege charac-
ter when it is ready to receive the specified number of characters.

e Xon/Xoff—the terminal sends an Xoff character when its receiving buffer is close to over-
flowing and then sends an Xon character when the buffer can again receive characters.

The Enquire/Acknowledge handshake implemented on the Serial Interface is the terminal-only
version. The interface responds with an Acknowledge character (ASCII character 6) after it has
received an Enquire character (ASCII character 5).

The Xon/Xoff handshake is the “‘host and terminal’’ version. The interface responds to an Xoff
character by stopping all transmission. It resumes transmission when it receives a Xon charac-
ter. It also sends a Xoff character (ASCII character 19) when it is running out of receiver buffer
space, and sends an Xon character (ASCII character 17) after the buffer data has been pro-
cessed.

Parity

The parity bit is used to detect errors as incoming characters are received. If the parity bit does
not match the expected sense, the character is assumed to be incorrectly received. The action
taken when an error is detected depends upon the interface and/or the application program.

09826-90075, rev: 1/83

RS-232 Serial Interface 218.5

Parity sense is determined by system requirements. The parity bit may be included or omitted
from each character by enabling or disabling the parity function. When the parity bit is enabled,
four options are available.

e ODD—Parity bit is set if there is an even number of bits set in the data character. The
receiver performs parity checks on incoming characters.

e EVEN—Parity bit is set if there is an odd number of bits set in the data character. The
receiver performs parity checks on incoming characters.

o ONE—Parity bit is set for all characters. Parity is checked by the receiver on all incoming
characters.

o ZERO—Parity bit is cleared, but present for all characters. Parity is checked by the receiver
on all characters.

Programming Techniques

Overview of Serial Interface Programming

Your computer uses several [/O Library facilities for data communication with various compu-
ters, terminals and peripheral devices. Serial Interface programs will include part or all of the
following elements:

‘ ® Input procedures (including buffer-transfers)
e Output procedures {(including buffer-transfers)
o [OSTATUS functions
o [OCONTROL procedures
® High level control procedures

The following steps represent a normal sequence of operations in a Serial I/O program.

1. Initialize the particular interface with an IORESET or initialize the whole I/O system by
doing an [OINITIALIZE.

2. Set the operating parameters, this includes hardware characteristics, hardware hand-
shake, and software handshake. This step can be skipped if the interface defaults are
adequate.

3. Activate the Serial Interface by an IDCONTROL to Control Register 12. This activates
the receiving buffer.

4. Do input and output using the 1/O library procedures and functions. This is where all the
data is transferred between the computer and the peripheral.

5. Deactivate the interface with an IOCONTROL to Control Register 12.

6. Cleanup the card by a IORESET or cleanup the whole I/O system by doing an
IOUNINITIALIZE. This step disables the receiving buffer on the interface.

09826-90075, rev: 1/83

218.6 RS-232 Serial Interface

Initializing the Connection

Before you can successfully transfer information to a device, you must match the operating
characteristics of the interface to the corresponding characteristics of the peripheral device. This
includes matching signal lines and their functions as well as matching the character format for
both devices. You can override some of the interface configuration switch settings by using the
IOCONTROL procedure. This not only enables you to guarantee certain parameters, but also
provides a means for changing selected parameters in the course of a running program. Control
Redgister definitions for the Serial Interface are listed at the end of this chapter.

Interface Reset

Whenever an interface is connected to a modem that may still be connected to a telecom-
munications link from a previous session, it is good programming practice to reset the interface
to force the modem to disconnect, unless the status of the link and remote connection are
known. When the interface is connected to a line printer or similar peripheral, resetting the
interface is usually unnecessary unless an error condition requires it.

The Serial Interface can be reset by an IORESET, IOINITIALIZE, IOUNITIALIZE or by use of
an IOCONTROL to Control Register 0 with a non-zero value. The interface is restored to its

power-up condition, except that the timeout value is not altered with the IORESET and
IOCONTROL procedures.

Resetting the Serial Interface puts it in a non-active state. To activate the card use:

IOCONTROL(iscs 124+ 1)
But before the interface is activated, the operating parameters should be set.

Selecting the Baud Rate

In order to successfully transfer information between the interface card and a peripheral, the
interface and peripheral must be set to the same baud rate. In addition to the procedure
SET_BAUD_RATE, Control Register 3 will allow the user to change the baud rate. The follow-
ing baud rates are recommended:

50 150 1200 4800
75 200 1800 7200
110 300 2400 9600

134 600 3600 19200

For example, to select a baud rate of 3600, either of these statements can be used:

I0CONTROL (1isc 323600)

or

SET_BAUD_RATE (iscs 3600)

Use of values other than those shown may result in incorrect operation.

To verify the current baud rate setting, use the IOSTATUS function addressed to Status Regis- ‘
ter 3. All rates are in baud (bits/second).

09826-90075. rev: 1/83

RS-232 Serial Interface 218.7

Setting Character Format, Parity and Software Handshake

Control Register 4 overrides the Line Control switches that control software handshake, parity,
and character format. To determine the value sent to the register, add the appropriate values
selected from the following table:

Line Control IOCONTROL Register

Software Parity Stop Bits Character
Handshake Length

(Bits 6,7) (Bits 5,4,3) (Bit 2) (Bits 1,0)

00 ENQ/ACK xx0 no parity 0 1 stop bit 00 5 bits/char
00 Xon/Xoff 001 odd parity 1 2 stop bits 01 6 bits/char
01 Reserved 011 even parity 1 1.5 stop bits 10 7 bits/char
11 None 101 always One if 5 bits/char 11 8 bits/char

111 always Zero
For example, use IOCONTROL to configure a character format of 8 bits per character, two stop
bits, EVEN parity, and no software handshake:
IOCONTROL(iscs 4 BINARY (11011111713

or

TOCONTROLC ises 4y 223)

To configure a 5-bit character length with 1 stop bit, no parity bit, and Enquire/Acknowledge
software handshake use:

IOCONTROLC isesr 4y O)

The Serial_4 procedures SET_PARITY, SET_STOP_BITS, and SET_CHAR_LENGTH can be

used to individually set these parameters. But to change the software handshake, you must do
an [OCONTROL to register 4.

Modem Handshake

Two types of connections can be selected for the serial interface: direct connection and modem
connection. The difference between the two types of connection is that with the modem
connection, the modem lines DSR and DCD have to be high when a character is received and
the lines DSR and CTS have to be high when a character is transmitted. To change modem
checking, you must do an IOCONTROL to Control Register 13. For example:

IDCONTROLY¢ ises 13 1) { turns on modem handshaKe %
IOCONTROLYC isesy 13 0) { direct connection %

09826-90075, rev: 1/83

218.8 RS-232 Serial Interface

Transferring Data

When the interface is properly configured, either by use of default switches or [OCONTROL
statements, you are ready to begin data transfers.

Data Output

When a non-‘‘buffer-transfer’’ output operation is done (example WRITECHAR), the inter-
face waits until the previous character is sent and then puts the next character in the buffer. If
your application requires that the character is sent before continuing with the program, bits 5
and 6 of Status Register 10 can be checked. The following procedure waits until all characters
are transmitted: ‘

Pprocedure wait_sent(isc : tvre_isc)1}
{
This procedure waits until the transmit buffer is empPty.
It works for the 98626 and 98628 cards.
The modules IODECLARATIONS: GENERAL_-0O» and IOCOMASM needs
to be impPorted.
>
var busy : booleans
bedin
rereat
if isc_tableliscl.card_id = hp986BZ6 then
busy := bimand(iostatus(isc»10) +HEX('BO’)) < HEX('B0O’))
else { assume the card is hrPI9BGZB
busy» := iostatus(isc:38) = 03
until not busvys
ends

In the program the output sequence should be:

writechar(iscs ‘a’)1

wait_sent(isc)3

09826-90075, rev: 1/83

RS-232 Serial Interface 218.9

Data Input

When a non-"‘buffer-transfer’” input operation is done (example READSTRING), the interface
waits for each character until the number of characters required is satisfied. For some applica-
tions, knowing if there is a character in the buffer is important. Bit O of Status Register 10 gives
this information. The following function returns TRUE if there is at least one character in the
receive buffer:

funmction have_char{ 1sc : tvyrpe_isc) : boolean:
{
This functiow returns true if there is a character in the
receive buffer. If mot 1t returns false.
It works for the 98626 and 98BGBZB cards,
The modules IODECLARATIONS, GENERAL_0Os and IOCOMASM need
to be imrPorted.
¥
bedin
if isc.tableliscl.card_id = hrI8GZ6 then
have_.char = odd{ iostatus{ isc: 10 })
else { assume it 1is hr898628 card }
have_char := odd{ iostatus{ iscs 35 })3}
ends

The program input sequence would be:

if have_char{ isc) then readchar{ isc, character }i

Error Detection and Handling
The Serial Interface can detect and report several different classes of errors. The handling of
errors by the interface differs depending on the severity of the error. For an unrecoverable
error, an ESCAPE error is given. In case of an ESCAPE error, you can evaluate the error in the
RECOVER section of your program. An /O procedure ESCAPE error gives an ESCAPECODE
of -26. To identify the error more closely, you can use the IOERROR_MESSAGE procedure
with the IOE_RESULT variable as the parameter. For example:
if ESCAPECODE = -26 then
b ed in
Wwriteln (IDERROR._MESSAGE(IOE_RESULT))
ESCAPE(ESCAPECODE) }
ends

09826-90075, rev: 1/83

218.10 RS-232 Serial Interface

The TRY/RECOVER mechanism, the ESCAPECODE variable and the ESCAPE procedure
are available by using $SYSPROG ON$. The IOERROR_MESSAGE procedure and the
IOE_RESULT variable are available when you IMPORT the IODECLARATIONS module.

The errors which can happen are listed below.

e Parity Exror—The parity bit on an incoming character does not match the parity expected
by the receiver. This condition is most commonly caused by line noise. The interface
handles this error by changing the character into a special character. This special character
is defined by Control Register 19 and the default character is an underscore (““.’). The
interface also sets bit 2 of Status Register 10.

e Framing Error—Start and stop bit(s) do not match the timing expectations of the receiver.
This can occur when line noise causes the receiver to miss the start bit or obscures the stop
bits. This error is handled similar to a parity error: the received character is translated into
the special character defined by Register 19. The interface also sets bit 3 of Status Register
10.

® Break received—A BREAK was sent to the interface by the peripheral device. The Serial
Interface does not interpret this condition as an error. The interface sets bit 4 of Status
Register 10. Since BREAK is detected as a special type of framing error, bit 3 of Status
Register 10 is also set. However, no special character is inserted into the receive bulffer.

® Overrun error—Incoming data was not consumed fast enough so that one or more data
characters were lost. This error can occur in two diifferent ways: the software receive
buffer overflowed, and the hardware receive buffer overflowed. In the first case, the
program running cannot keep up with the receiver buffer at the current baud rate. Either
reduce the baud rate, use software handshake, or change the program so that characters
are read consistently. In the second case the error implies that interrupts were disabled so
that the characters could not be processed. In both cases, an ESCAPE is generated and an
IOE_RESULT of 314 results. In the second case, bit 1 of Status Register 10 is also set.

e Timeout error—Timeout errors occur when a character is not read or written within the
timeout period specified. An ESCAPE is generated and an IOE_RESULT of 17 results. A
timeout can occur when writing a character if DSR or CTS is low for the duration of the
timeout. A timeout can occur when reading a character if no valid character was received
during the timeout period.

e CTS False Too Long—This error occurs when a software handshake character cannot be
sent because either DSR or CTS is low. The interface gives an ESCAPE error with an
IOE_RESULT of 316.

e Range Errors—These errors occur when parameters passed to [/O library procedures and
functions are out of range. For example, the Serial Interface does not support DMA; a call
to TRANSFER with the transfer type being OVERLAP_DMA will result in an ESCAPE
error with an IOE_RESULT of 7. These errors do not indicate a communications problem,
rather they indicate a programming problem.

The ESCAPE errors “‘Overrun’ and “‘CTS False Too Long’’ can happen even when there is no
direct read or write to the interface. These errors will be saved by the interface and will be given
at the next read or write operation to the interface. To avoid these ESCAPE errors, you can
check Status Register 14. This register will return the IOE_RESULT of any pending errors. It will
also clear the pending error so that the error can be handled without going into a RECOVER
block.

09826-90075. rev: 1,83

RS-232 Serial Interface 218.11

As mentioned above, Status Register 10 has four bits which indicate if certain error conditions
have occurred on the card. The four bits (1 through 4) are read-destructive bits. That is, if the
register is read, the error bits are reset to zero.

When an ESCAPE error occurs (other than range type errors), it means there is a fairly serious
problem. You should reset the interface if you decide to continue with the program. However
an IORESET is sometimes undesirable since it resets all hardware parameters and modem
connections are broken. To alleviate this problem, a soft reset is provided. A call to I[OCON-
TROL with Register 14 and a non-zero value as parameters resets the interface without chang-
ing the hardware parameters or modem connections. It also clears the receive buffer.

Special Applications

This section provides advanced programming information for applications requiring special
techniques.

Sending BREAK Messages

A BREAK is a special character transmission that usually indicates a change in operating
conditions. Interpretation of break messages varies with the application. To send a break
message, send a non-zero value to control Register 1.

IOCONTROL(iscs1,1) {Send a BREAK to rperirherall}

Redefining Handshake and Special characters

Control registers 15 through 18 can be used to redefine the software handshake characters.
The values passed to these registers should be the ordinal value of the character. The following
example changes the Xon handshake character to DC2.

IOCONTROLC iscs 13, 20)
Status registers 15 through 19 gives the ordinal value of the current handshake character. The
following assigns to a character the current Acknowledge character.

ch := CHR(IOSTATUS(isc, 18))
As mentioned previously, Control Register 19 redefines the character into which parity error

and framing error are converted. The following example sets this character to be the ASCII
character DEL.

IOCONTROL(iscs 19y 127)

Status Register 19 returns the current special character.

09826-90075. rev: 1/83

218.12 RS-232 Serial Interface

Using the Modem Line Control Registers

Modem line handshaking is performed automatically by the Serial Interface. The lines set by the
interface are DTR and RTS. The lines checked by the interface are DSR, DCD, and CTS. Lines
are set by the Serial Interface regardless of the modem handshake selection. Modem lines are
checked only if the modem handshake is turned on. Your can change the values of the modem
lines by writing to Control Register 5 or 7. The operations which involve modem lines are
described below.

® Reset—both DTR and DSR are set to low.

e Activate—DTR is set to high.

® Deactivate—both DTR and DSR are set to low.

® Output—RTS is set to high. If the modem handshake is on, the interface will wait until
DSR and CTS to become high before putting the characters in the transmit buffer.

o Input—If the modem handshake is on, all characters received when DSR or DCD is low
are discarded (not put into the buffer).

e TRANSFER_END—When this procedure is called with direction “‘from_memory’’, at the
end of the transfer RTS will be set low.

The following table summarizes the modem lines affected.

How Operations Affect Modem Lines

DTR RTS DSR CTS DCD
reset 0 0 —_ —_ -
activate 1 — — . _
deactivate 0 0 — _ _
input — — X —_ X
output — 1 X X —_
transfer_end — 0 — — _

the modem line was not used.
the modem line was set to low.
the modem line was set to high.
the modem line was checked.

X = o

Control Register 5 controls various functions related to modem operation. Bits O thru 3 control
modem lines, and bit 4 enables a self-test loopback configuration.

09826-90075, rev: 1/83

RS-232 Serial Interface 218.13

Modem Handshake Lines (RTS and DTR)

As explained earlier in this chapter, Request-To-Send and Data-Terminal-Ready lines are set
or cleared by certain Serial Interface operations. For example, RTS is set high by the first
write operation. Your application might require RTS to be high before the first write opera-
tion. The following example sets both RTS and DTR high at the same time.

IOCONTROL(iscsy 5y 3)3 { set both RTS and DTR high
IOCONTROLC(iscs+12s 1)35 { activate the receive buffer %

The above example also clears the loopback bit, and it clears the modem lines DRS and SRTS.
To change only those two bits would require:

.IUCDNTRDL(J‘.SC' 5y BINIOR(IOSTATUS(iscs S) v BINARY (/OQQQOC1L17)))
{Sets RTS and DTR without disturbivng other bits of redister 53

Programming the DRS and SRTS Modem Lines

Bits 3 and 2 of Control Register 5 control the present state of the Data Rate Select (DRS) and
Secondary-Request-To-Send (SRTS) lines, respectively. When either bit is set, the corres-
ponding modem line is activated. When the bit is cleared, so is the modem line.

Configuring the Interface for Self-test Operations

Self-test programs can be written for the Serial Interface. Prior to testing the interface, it must
be properly configured. Using bit 4 of Control Register 5, you can rearrange the interconnec-
tions between input and output lines on the interface, enabling the interface to feed outbound
data to the inbound circuitry.

When LOOPBACK is enabled (bit 4 is set), the UART output is set to its MARK state and sent to
the Transmitted Data (TxD) line. The output of the transmitter shift register is then connected to
the input of the receiver shift register, causing outbound data to be looped back to the receiver.
In addition, the following modem control lines are connected to the indicated modem status
lines.

Loopback Connections

Modem Control Line to Modem Status Line

DTR Data Terminal Ready CTS Clear-to-send

RTS Request-to-send DSR Data Set Ready
DRS Data Rate Select DCD Data Carrier Detect
SRTS Secondary RTS RI Ring [ndicator

When loopback is active, receiver and transmitter interrupts are fully operational. Modem
control interrupts are then generated by the modem control outputs instead of the modem
status inputs. Refer to Serial Interface hardware documentation for information about card
hardware operation.

09826-90075. rev: 1/83

218.14 RS-232 Serial Interface

IOREAD_BYTE and IOWRITE_BYTE Register Operations

For those cases where you need to write special interface driver routines, the interface card
hardware registers can be accessed by use of IOREAD_BYTE and IOWRITE_BYTE proce-
dures. These capabilities are intended for use by experienced programmers who understand
the inherent programming complexities that accompany this versatility. Warning: operations
through hardware registers might interfere with the Serial Interface drivers.

Some registers are read/write; that is, both [OREAD_BYTE and [OWRITE_BYTE operations
can be performed on a given register. Writing places a new value in the register; a read
operation returns the current value. All registers have 8 bits available, and accept values from 0
thru 255 unless noted otherwise. When the value of a given bit is 1, the bit is set. Otherwise it is
zero (cleared or inactive).

Some hardware registers are similar in structure and function to Status and Control Registers.
However, their interaction with the Pascal operating system is considerably different. To pre-
vent incorrect program operation, do not intermix the use of Status/Control registers and
hardware registers in a given program.

09826-90075, rev: 1/83

RS-232 Serial Interface 218.15

Status and Control Registers

Most Control Registers accept values in the range from 0 thru 255. Some registers accept only
specified values as indicated, or higher values for baud rate settings. Values less than zero are
not accepted. Higher-order bits not needed by the interface are discarded if the specified value
exceeds the valid range.

Reset value is the default value used by the interface after a reset or power-up until the value is
overridden by a IOCONTROL procedure.

Status 0—Card Identification
Value returned: 2 (if 130 is returned, the Remote jumper wire has been removed from the
interface card).

Control 0—Card Reset
Any value, 1 thru 255, resets the card. Immediate execution. Data transfers in process are
aborted and any buffered data is destroyed.

Status 1—Interrupt Status
Bit 7 set: Interface hardware interrupt to CPU enabled.
Bit 6 set: Card is requesting interrupt service.
Bits 5&4: 00 Interrupt Level 3
01 Interrupt Level 4
10 Interrupt Level 5
11 Interrupt Level 6
Bits 3 thru O not used.

Control 1—Transmit BREAK
Any non-zero value sends a 400 millisecond BREAK on the serial line.

Status 2—Interface Activity Status

Bit 5 set: Software handshake character pending. The peripheral is the host and it
should not be sending more characters since it is waiting for either an
ENQUIRE character (ENQ/ACK handshake) or a Xon character (Xon/
Xoff handshake).

Bit 4 set: Waiting for handshake character. The desktop is acting as a host and it is
not transmitting because it has received an Xoff character and it is wait-
ing for an Xon character.

Bit 1 set: Interrupts are enabled for this interface.

Bit O set: Transfer in progress. Either an input or an output transfer is in progress.

Bits 2, 3, 6, and 7 are not used.

09826-90075, rev: 1/83

218.16 RS-232 Serial Interface

Status 3—Current Baud Rate
Returns current baud rate.

Control 3 -- Set New Baud Rate
The recommended baud rates are:

50 150 1200 4800
75 200 1800 7200
110 300 2400 9600
134 600 3600 19200

Status 4—Current Character Format
See Control Register 4 for function of individual bits.

Control 4—Set New Character Format

Software Parity Stop Bits Character
Handshake Length
(Bits 6,7) (Bits 5,4,3) (Bit 2) (Bits 1,0)
00 ENQ/ACK xx0 no parity 0 1 stop bit 00 5 bits/char
01 Xon/Xoff 001 odd parity 1 2 stop bits 01 6 bits/char
10 Reserved 011 even parity 1 1.5if 10 7 bits/char
11 None 101 always One 5 bits/char 11 8 bits/char

111 always Zero

Status 5—Current Status of Modem Control Lines
Returns CURRENT line state values. See Control Register 5 for function of each bit.

Control 5—Set Modem Control Line States
Bit 4 set: Enables loopback mode for diagnostic tests.
Bit 3 set: Set Secondary Request-to-Send line to active state.
Bit 2 set: Set Data Rate Select line to active state.
Bit 1 set: Set Request-To-Send line to active state.
Bit O set: Set Data-Terminal-Ready line to active state.

Status 6—Data In

Reads character from receive buffer. Results are undefined if no character is present in the
receive buffer.

Control 6—Data Out
Sends character to transmitter holding register. This transmits a character without affect
modem lines. Be sure that the transmit holding register is empty before this operation.

Status 7—Optional Receiver/Driver Status
Returns current value of optional circuit drivers or receivers as follows:
Bit 3;: Optional Circuit Driver 3 (OCD3).
Bit 2: Optional Circuit Driver 4 (OCD4).
Bit 1: Optional Circuit Receiver 2 (OCR2).
Bit 0: Optional Circuit Receiver 3 (OCR3).
Other bits are not used (always 0).

09826-90075, rev: 1/83

RS-232 Serial Interface 218.17

Control 7—Set New Optional Driver States
Sets (bit=1) or clears (bit=0) optional circuit drivers as follows:
Bit 3: Optional Circuit Driver 3 (OCD3),
Bit 2: Optional Circuit Driver 2 (OCD2).
Other bits are not used.

Status 10—UART Status
Bit set indicates UART status or detected error as follows:
Bit 7: Not used.
Bit 6: Transmit Shift Register empty.
Bit 5: Transmit Holding Register empty.
Bit 4: Break received.
Bit 3: Framing error detected.
Bit 2: Parity error detected.
Bit 1: Receive Buffer Overrun error.
Bit O: Receiver Buffer full.
Note: bits 1 through 4 are read destructive, they will be cleared each time this register is read
with an IOSTATUS.

Status 11—Modem Status

Bit set indicates that the specified modem line or condition is active.

Bit 7: Data Carrier Detect (DCD) modem line active.
. Bit 6: Ring Indicator (RI) modem line active.

Bit 5: Data Set Ready (DSR) modem line active.
Bit 4: Clear-to-Send (CTS) modem line active.
Bit 3: Change in DCD line state detected.
Bit 2: Rl modem line changed from true to false.
Bit 1: Change in DSR line state detected.
Bit O: Change in CTS line state detected.

Note: Bits O through 3 are read destructive; they will be cleared each time this register is

read with an IOSTATUS.

Status 12—Interface activity
Returned value:
0—The interface is deactivated.
1—The interface is active.

Control 12—Set interface active
Value:
0—Deactivate the interface.
1—Activate the interface, sets DTR and does a soft reset.

Status 13—Modem handshake status
Returned value:
0—modem line handshaking is disabled.
1—modem line handshaking is enabled.

09826-90075, rev: 1/83

218.18 RS-232 Serial Interface

Control 13—Set modem handshake
Value
O—disable checking of modem lines.
1—enable checking of modem lines.

Status 14—Error pending
Returns the IOE_RESULT of any escape errors pending on the interface. A value of 0 is
returned if no errors are pending.

Control 14—Soft reset
Any value, 1 through 255 resets the interface without affecting the modem lines or the
hardware parameters. Receive buffer is reset with this command.

Status 15—Current Xon handshake character
Returns the ordinal value of the current Xon handshake character.

Control 15—Redefine Xon handshake character
Sets the Xon handshake character to have ordinal value equal to the input value. Default is
DC1 (ASCI] character 17).

Status 16—Current Xoff handshake character
Returns the ordinal value of the current Xoff handshake character.

Control 16—Redefine Xoff handshake character
Sets the Xoff handshake character to have ordinal value equal to the input value. Default is
DC3 (ASCII character 19).

Status 17—Current Enquire handshake character
Returns the ordinal value of the current Enquire handshake character.

Control 17—Redefine Enquire handshake character
Sets the ENQUIRE handshake character to have ordinal value equal to the input value.
Default is ENQ (ASCII character 5).

Status 18—Current Acknowledge handshake character
Returns the ordinal value of the current Acknowledge handshake character.

Control 18—Redefine Acknowledge handshake character
Sets the Acknowledge handshake character to have ordinal value equal to the input value.
Default is ACK (ASCII character 6).

Status 19—Current framing/parity error character
Returns the ordinal value of the special character into which framing errors and parity errors
would be converted.

Control 19—Redefine framing/parity error handshake character
Sets the special character used to represent framing errors and parity errors to have an
ordinal value equal to the input value. Default is an underscore (““_"") (ASCII character 95).

09826-90075. rev: 1/83

RS-232 Serial Interface 218.19

Serial Interface Hardware Registers

Interface Card Registers

IOREAD_BYTE and IOWRITE_BYTE registers 1, 3, 5, and 7 access interface registers. Their
functions are as follows:

Register 1 —Interface Reset and ID
IOREAD_BYTE to Register 1 returns the interface ID value — 2 for the HP 98626 Serial
Interface. IOWRITE_BYTE to Register 1 with any value resets the interface as when using
an IOCONTROL statement to Control Register O.

Register 3—Interrupt Control
Only the upper four bits of Register 3 are used. Bits 5 and 4 return the setting of the
Interrupt Level switches on the interface. Their values are as follows:

00 Interrupt Level 3 10 Interrupt Level 5
01 Interrupt Level 4 11 Interrupt Level 6

Bit 6 is set when an interrupt request is originated by the UART. No machine interrupt can
occur unless bit 7, Interrupt Enable is set by an IOWRITE_BYTE statement. Only bit 7 is
affected by IOWRITE_BYTE statements. During IOREAD_BYTE, bit 7 returns the current

enable value; bits 6 thru 4 return interrupt request and level information.

. Register 5—Optional Circuit and Baud Rate Control

IOWRITE_BYTE to bits 7 and 6 control the state of optional circuit drivers 3 and 4, respec-
tively. IOREAD_BYTE returns current values of the respective drivers, plus the following:

Bit 5—Optional Circuit Receiver 2 state.

Bit 4—Optional Circuit Receiver 3 state.

Bits 3-0—Current Baud Rate switch setting (not necessarily the current UART baud rate).
These switches can be interpreted in any way you choose. The current interpretation
given to them by the serial interface drivers are as follows:

Setting Baud Rate Setting Baud Rate
0000 50 1000 1200
0001 75 1001 1800
0010 110 1010 2400
0011 134.5 1011 3600
0100 150 1100 4800
0101 200 1101 7200
0110 300 1110 9600
0111 600 1111 19200

Note that IOWRITE_BYTE to this register can NOT be used to set the baud rate.
Use Register 23, bit 7 and Registers 17 and 19 instead.

Register 7—Line Control Switch Monitor
‘ IOREAD_BYTE to this register enables you to input the present settings of the Line Control
switches that preset default character format and parity. Bit functions are included in the
table earlier in this chapter under Using Interface Defaults to simplify programming. Bits 7
thru O correspond to switches 7 thru O, respectively. IOWRITE_BYTE operations to this
register are meaningless.

09826-90075, rev: 1/83

218.20 RS-232 Serial Interface

UART Registers

Addresses 17 through 29 access UART registers. They are used to directly control certain UART
functions. The function of Registers 17 and 19 are determined by the state of bit 7 of Register
23.

Register 17—Receive Buffer/Transmitter Holding Register
When bit 7 of Register 23 is clear (0), this register accesses the single-character receiver
buffer by use of [OREAD_BYTE. The IOWRITE_BYTE procedure places a character in the
transmitter holding register.

The receiver and transmitter are doubly buffered. When the transmitter shift register becom-
es empty, a character is transferred from the holding register to the shift register. You can
then place a new character in the holding register while the preceding character is being
transmitted. Incoming characters are transferred to the receiver buffer when the receiver
shift register becomes full. You can then input the character (IOREAD_BYTE) while the
next character is being constructed in the shift register.

Registers 17 and 19—Baud Rate Divisor Latch
When bit 7 of Register 23 is set, Registers 17 and 19 access the 16-bit divisor latch used by
the UART to set the baud rate. Register 17 forms the lower byte; Register 19 the upper. The
baud rate is determined by the following relationship:

Baud Rate = 153 600/Baud Rate Divisor

To access the Baud Rate Divisor latch, set bit 7 of Register 23. This disables access to the
normal functions of Registers 17 and 19, but preserves access to the other registers. When
the proper value has been placed in the latch, be sure to clear bit 7 of Register 23 to return
to normal operation.

Register 19—Interrupt Enable Register
When bit 7 of Register 23 is clear (0), this register enables the UART to interrupt when
specified conditions occur. Only bits O thru 3 are used. IOWRITE_BYTE establishes a new
value for each bit; IOREAD_BYTE returns the current register value. Interrupt enable condi-
tions are as follows:

Bit 3—Enable Modem Status Change Interrupts. When set, enables an interrupt whenever
a modem status line changes state as indicated by Register 29, bits O thru 3.

Bit 2—Enable Receiver Line Status Interrupts. When set, enables interrupts by errors, or
received BREAKs as indicated by Register 27, bits 1 thru 4.

Bit 1—Enable Transmitter Holding Register Empty Interrupt. When set, allows interrupts
when bit 5 of Register 27 is also set.

Bit 0—Enable Receiver Buffer Full Interrupts. When set, enables interrupts when bit O of
Register 27 is also set.

09826-90075, rev: 1/83

RS-232 Serial Interface 218.21

Register 21—Interrupt Identification Register
This register identifies the cause of the highest-priority, currently-pending interrupt. Only
bits 2, 1, and 0 are used. Bit O, if set, indicates no interrupt pending. Otherwise an interrupt
is pending as defined by bits 2 and 1. Causes of pending interrupts in order of priority are as
follows:

11—Receiver Line Status interrupt (highest priority) is caused when bit 2 of Register 19 is
set and a framing, parity, or overrun error, or a BREAK is detected by the receiver
(indicated by bits 1 thru 4 of Register 27). The interrupt is cleared by reading Register
27.

10—Receive Buffer Register Full interrupt is generated when bit O of Register 19 is set and
the Data Ready bit (bit 0) of Register 27 is active. To clear the interrupt, read the
receiver buffer, or write a zero to bit O of Register 27.

01—Transmitter Holding Register Empty interrupt occurs when bit 1 of Register 19 is set
and bit 5 of Register 27 is set. The interrupt is cleared by writing data into the
transmitter holding register (Register 17 with bit 7 of Register 23 clear) with a IOW-
RITE_BYTE statement, or by reading this register (Interrupt Identification).

00—Modem Line Status Change interrupt occurs when bit 3 of Register 19 is set and a
modem line change is indicated by one or more of bits 0 thru 3 of Register 29. To
clear the interrupt, read Redgister 29 which clears the status change bits.

Register 23—Character Format Control Register
‘ This register is functionally equivalent to Control and Status Register 4 except for bits 6 and
7. [IOWRITE_BYTE sets a new character format; IOREAD_BYTE returns the current char-
acter format setting.

Bit 7—Divisor Latch Access Bit. When set, enables you to access the divisor latches of the
Baud Rate generator during read/write operations to registers 17 and 19.

Bit 6—Set BREAK. When set, holds the serial line in a BREAK state (always zero),
independent of other transmitter activity. This bit must be cleared to disable the
break and resume normal activity.

Bits 5,4—Parity Sense. Determined by both bits 5 and 4. When bit 5 is set, parity is always

ONE or ZERO. If bit 5 is not set, parity is ODD or EVEN as defined by bit 4. The
combinations of bits 5 and 4 are as follows:

00 ODD parity 10 Always ONE
01 EVEN parity 11 Always ZERO

Bit 3—Parity Enable. When set, sends a parity bit with each outbound character, and
checks all incoming characters for parity errors. Parity is defined by bits 4 and 5.
Bit 2—Stop Bit(s). Defined by a combination of bit 2 and bits 1 & 0.

Bit 2 Character Length Stop Bits
0 56,7, 0or8 1

1 5 1.5
. 1 6,7, 0r8 2

09826-90075, rev: 1/83

218.22 RS-232 Serial Interface

Bits 1,0—Character Length. Defined as follows:

Bits 1&0 Character Length
00 5 bits
01 6 bits
10 7 bits
11 8 bits

Register 25—Modem Control Register

This is a READ/WRITE register. IOREAD_BYTE returns current control register value. IOW-
RITE_BYTE sets a new value in the register. This register is equivalent to interface Control
Redgister 5.

Bit 4—Loopback. When set, enables a loopback feature for diagnostic testing. Serial line is
set to MARK state, UART receiver is disconnected, and transmitter output shift
register is connected to receiver input shift register. Modem line outputs and inputs
are connected as follows: DTR to CTS, RTS to DSR, DRS to DCD, and SRTS to RI.
Interrupts are enabled, with interrupts caused by modem control outputs instead of
inputs from modem.

Bit 3—Secondary Request-to-Send. Controls the OCD2 driver output. 1 =Active,

0=Disabled.

Bit 2—Data Rate Select. Controls the OCD1 driver output. 1 =Active, 0 =Disabled.

Bit 1—Request-to-Send. Controls the RTS modem control line state. When bit 1 =1, RTS
is always active. When bit 1=0, RTS is toggled by the OUTPUT statement as
described earlier in this chapter.

Bit 0—Data Terminal Ready. Holds the DTR modem control line active when the bit is set.
If not set, DTR is controlled by the OUTPUT or ENTER statement as described
earlier.

Bits 7, 6, and 5 are not used.

Register 27—Line Status Register

Bit 7—Not used.

Bit 6—Transmitter Shift Register Empty. Indicates no data present in transmitter shift
register.

Bit 5—Transmitter Holding Register Empty. Indicates no data present in transmitter hold-
ing register. The bit is cleared whenever a new character is placed in the register.

Bit 4—Break Indicator. Indicates that the received data input remained in the spacing (line
idle) state for longer than the transmission time of a full character frame. This bit is
cleared when the line Status register is read.

Bit 3—Framing Error. Indicates that a character was received with improper framing; that
is, the start and stop bits did not conform with expected timing boundaries.

Bit 2—Parity Error. Indicates that the received character did not have the expected parity
sense. This bit is cleared when the register is read.

Bit 1—Overrun Error. Indicates that a character was destroyed because it was not read
from the receiver buffer before the next character arrived. This bit is cleared by
reading the line Status register.

Bit 0—Data Ready. Indicates that a character has been placed in the receiver buffer
register. This bit is cleared by reading the receiver buffer register, or by writing a
zero to this bit of the line Status register.

09826-90075, rev: 1/83

RS-232 Serial Interface 218.23

Register 29—Modem Status Register

Bit 7—Data Carrier Detect. When set, indicates DCD modem line is active.

Bit 6—Ring Indicator. If set, indicates that the RI modem line is active.

Bit 5—Data Set Ready. If set, indicates that the DSR modem line is active.

Bit 4—Clear-to-send. If set, indicates that CTS is active.

Bit 3—Change in Carrier Detect. When set, indicates that the DCD modem line has
changed state since the last time the modem status register was read.

Bit 2—Trailing Edge of Ring Indicator. Set when the Rl modem line changes from active to
inactive state.

Bit 1—Delayed Data Set Ready. Set when the DSR line has changed state since the last
time the modem status register was read.

Bit 0—Change in Clear-to-send. If set, indicates that the CTS modem line has changed
state since the last time the register was read.

Cable Options and Signal Functions

The HP 98626A Serial Interface is available with RS-232C DTE and DCE cable configurations.
The DTE cable option consists of a male RS-232C connector and cable designed to function as
Data Terminal Equipment (DTE) when used with the serial interface. The cable and connector
are wired so that signal paths are correctly routed when the cable is connected to a peripheral
device wired as Data Communication Equipment (DCE), such as a modem. The cables are

‘ designed so that you can write programs that work for both DCE and DTE connections without
requiring modifications to accommodate equipment changes.

The DCE cable option includes a female connector and cable wired so that the interface and
cable behave like normal DCE. This means that signals are routed correctly when the female
cable connector is connected to a male DTE connector.

Line printers and other peripheral devices that use RS-232C interfacing are frequently wired as
DTE with a female RS-232C chassis connector. This means that if you use a male (DTE) cable
option to connect to the female DTE device connector, no communication can take place
because the signal paths are incompatible. To eliminate the problem, use an adapter cable to
convert the female RS-232C chassis connector to a cable connector that is compatible with the
male or female interface cable connector. The HP 13242 adapter cable is available in various
configurations to fit most common applications. Consult cable documentation to determine
which adapter cable to use.

The DTE Cable

The signals and functions supported by the DTE cable are shown in the signal identification
table which follows. The table includes RS-232C signal identification codes, CCITT V.24
equivalents, the pin number on the interface card rear panel connector, the RS-232C connec-
tor pin number, the signal mnemonic used in this manual, whether the signal is an input or
output signal, and its function.

09826-90075, rev: 1/83

218.24 RS-232 Serial Interface

RS-232C DTE (male) Cable Signal Identification Tables

Signal Interface | RS-232C
RS-232C V.24 Pin # Pin # Mnemonic | 1/0 Function

AA 101 24 1 - - Safety Ground

BA 103 12 2 Out Transmitted Data

BB 104 42 3 [n Received Data

CA 105 13 4 RTS Out Request to Send

CB 108 44 5 CTS In Clear to Send

CC 107 45 6 DSR In Data Set Ready

AB 102 48 7 - - Signal Ground

CF 109 46 8 DCD In Data Carrier Detect
SCF (OCR2) 122 47 12 SDCD In Secondary DCD

DB 114 41 15 In DCE Transmit Timing

DD 115 43 17 In DCE Receive Timing
SCA (0OCD2) 120 15 19 SRTS Out Secondary RTS

CD 108.1 14 20 DTR Out Data Terminal Ready
CE (OCR1) 125 9 22 RI In Ring Indicator
CH (OCD1) 111 40 23 DRS Out Data Rate Select

DA 113 7 24 Out Terminal Transmit Timing

Optional Circuit Driver/Receiver Functions

Not all signals from the interface card are included in the cable wiring. RS-232C provides for
four optional circuit drivers and two receivers. Only two drivers and two receivers are supported
by the DCE and DTE cable options. They are as follows:

Drivers Receivers
Name Function Name Function
OCD1 Data Rate Select OCR1 Ring Indicator
OCDZ Secondary Request-to-send OCR2 Secondary Data Carrier Detect

OCD3 Not used
OCD4 Not used

If your application requires use of OCD3 or OCD4, you must provide your own interface cable
to fit the situation.

The DCE Cable

The DCE cable option is designed to adapt a DTE cable and serial or data communications
interface to an identical interface on another desktop computer. It is also used with the serial
interface to simulate DCE operation when driving a peripheral wired for DTE operation. The
DCE cable is equipped with a female connector. Since most DTE peripherals are also equipped
with female connectors (pin numbering is the same as the standard male DTE connector), an
adapter (such as the HP 13242M) is used to connect the two female connectors as explained
earlier.

Note

Not all RS-232C devices are wired the same. To ensure proper
operation, you must know whether the peripheral device is wired as
DTE or DCE. The interface cable option and associated adapter
cable, if needed, must be configured to properly mate with the
female DTE chassis connector.

09826-90075, rev: 1/83

RS-232 Serial Interface 218.25

The following schematic diagram shows the input and output signals for the Serial Interface and
how they are connected to a DCE peripheral.

98626 DTE RS-232C
INTERFACE CABLE SIGNALS \
oo ¢ > BA(PIN 2) >—XT™
DTA___ (a2 > BB (PIN3) >—0AA
RTS o > CA(PIN 4) >—REQEST
£TS 3 > CB(PIN5) »—CLEAR

TO SEND (OUT)

DATA CARRIER

DCD /¢46
N DETECT (OUT)

< > CF (PIN8) >—

SECONDARY REQUEST

> SCA(PIN19) >—

_|>
_<
_|>
<}
{}
_‘/SECONDARY< 5
%
_|>
_Q
4

RTS TO SEND (IN)

SECONDARY, ,47 R SECONDARY DATA DCE Interface

0COD MY > SCF(PIN12) > CARRIER DETECT {ouT) Signals to and
from Peripheral

DTR (¢4 > CD(PIN 20) >— i FEFMINAL .

NOTE: Some DCE
peripherals may not
provide for all the

RI (%9 > CE (PIN 22) >— I:':IgATOR (uT) signal lines shown.
SR ¢85 > CC(PIN 6) >—Reavy (ouT)
SIGNAL (38 > AB (PIN 7) SIGNAL
GROUND, GROUND
SAFETY <\42‘4 > AA(PIN |) >j SAFETY
GROUND = GROUND
DRS 40 DATA
{> <T‘L % CH(PIN 23) T RATE SELECT (IN)
INTERFACE MALE FEMALE
REAR PANEL RS-232C DCE PERIPHERAL
CONNECTOR INTERFACE CHASSIS CONNECTOR /

CABLE CONNECTOR

DTE Cable Diagram

09826-90075, rev: 1/83

218.26 RRS-2 Serial Interface

This diagram shows an HP 13242M adapter cable connected to a DCE interface cable and a
DTE peripheral. Note that RTS is connected to CTS in the DCE cable. If your peripheral uses
RTS/CTS handshaking, a different adapter cable must be used with the appropriate DTE or
DCE interface cable option.

13242 M
98626 DCE RS-232C ADAPTER AN
INTERFACE CABLE SIGNALS CABLE
i d2 (BB(PIN3) ¢————> >3 DATAN
—<H:‘ATA — 2 —<BA(PIN2) —— Y2-DATAOUT
s8

DATA CARRIER
-—' >———<:j—(—
CF(PIN8) DETECT (IN)

4 REQUEST TO
—
(——L:CA(PIN 4) > fEauest T
CBI(PIN §) ¢—> > c"““gh

SEND{
|>sECONDARY RY, 15 ¢ 3 yl2. SECONDARY DATA
RTS A —<SCF (PIN12) >= CARRIER DETECT (IN)
SECONDARY (47 yi9 SECONDARY REQUEST DCE Interface
’_'<roco —(SCA (PIN19) ¢ > 7= 70 SEND (0UT) Signals to and

from Peripheral

NCTE: Some DTE
peripherals may not
provide for all the

——Q—RI——(S CD (PIN 20) ¢———>)2— 22:;YT(ES:.:’P;AL signal lines shown.
< DSR ¢ 45

|> : E T ;CE(PIN 22) ¢ 3 22 RING INDICATOR (iN) L

>_
\TA |
CC(PIN 6) (_____)>5_DA SET READY (IN)
0

48 7
SIGNAL &——AB(PIN7) ¢————> SIGNAL
GROUND GROUND
|
SAFETY L——((———%AA(PIN 1) 6———— >—J SAFETY
GROUND = = GROUND
——D———((——- NOT USED
INTERFACE FEMALE FEMALE
REAR PANEL RS-232C R§-232C
CONNECTOR INTERFACE DTE PERIPHERAL /
CABLE CONNECTOR CHASSIS CONNECTOR

DCE Cable Diagram

09826-90075, rev: 1/83

I/O Procedures

HPIB Status/Control

ABORT_HPIB
ACTIVE_.CONTROLLER
CLEAR

CLEAR_HPIB
END_SET

HPIB_LINE

LISTEN
LISTENER

LOCAL
LOCAL_LOCKOUT

LOCKED_OUT
MY_ADDRESS
PASS_CONTROL

PPOLL
PPOLL_CONFIGURE

PPOLL_UNCONFIGURE
REMOTE

REMOTED
REQUESTED

REQUEST_SERVICE
SECONDARY
SEND_COMMAND

SET_HPIB
SPOLL

Ceases all HP-IB activity and attempts to
place the HP-IB in a known state.

TRUE if the specified interface is currently
active controller.

Attempts to send a form of the clear message

to the specified device(s).
Clears the specified HP-IB line.

Indicates whether or not EOI was set on the
last byte read.

Returns the current state of the specified line.
Not all lines are accessable at all times.

Sends the specified listen address on the bus.

TRUE if the specified interface is currently
addressed as a listener.

Places the device(s) in local mode. _

Sends LLO (the local lockout message) on
the bus.

TRUE if the specified interface is currently in
the local lockout state.

Returns the HP-IB address of the specified
HP-IB interface.

Passes control from the specified interface to
another device on the bus.

Sets the ATN and EOI bus lines on the speci-
fied interface and then reads the data bus
lines.

Programs the logical sense and data bus line
on which the selected device responds to a
parallel poll.

Causes the specified device(s) to disable the
parallel poll response.

Sends the messages to place the bus de-
vice(s) into the remote state.

Indicates if the REM line is being asserted.

TRUE if any device is currently asserting the
SRQ line.

Sets up the SPOLL response byte in the spe-
cified interface.

Sends a secondary command byte over the
bus.

Sends a single byte over the HP-IB interface
with ATN true.

Sets the specified HP-IB control line.

Performs a serial poll to the selected device.

SYSTEM_CONTROLLER TRUE if the specified interface is the system

TALK

09826-90075, rev: 1/83

controller.

Sends a talk address over the bus.

TALKER
TRIGGER

UNLISTEN
UNTALK

Serial Control
ABORT_SERIAL

CLEAR_SERIAL

SEND_BREAK
SERIAL_LINE

SET_BAUD_RATE
SET_CHAR_LENGTH
SET_PARITY
SET_SERIAL

SET_STOP_BITS

TRUE if the specified interface is currently
addressed as a talker.

Sends a trigger command to the specified
device(s).

Sends an unlisten command on the bus.

Sends an untalk command on the bus.

Attempts to return a serial interface to a
known state.

Clears the specified line on a serial interface
card.

Sends a break to the selected serial interface.

TRUE if the specified line on the serial inter-
face is asserted.

Sets the serial interface to the specified baud
rate.

Specifies the character length, in bits, for se-
rial communications.

Determines what parity mode the serial inter-
face will use.

Sets the specified modem line on the con-
nector.

Sets the number of stop bits on the serial
interface.

General Status/Control

IOCONTROL

IOERROR_MESSAGE

IOINITIALIZE
IOREAD_BYTE

IOREAD_WORD

IORESET

IOSTATUS

IOUNINITIALIZE
IOWRITE_BYTE

IOWRITE_WORD

SET_TIMEOUT

Sends control information to the selected in-
terface.

Returns a string containing an English textual
description of an error produced by the /O
procedure library.

Initializes all interfaces.

Reads the byte contained in specified regis-
ter (physical address) on the selected inter-
face.

Reads the word contained in the specified
register (physical address) on the selected in-
terface.

Resets the specified interface to its intial
(power on) state.

Returns the contents of an interface status
register.

Uninitializes all interfaces.

Wirites the supplied value (representing one
byte) to the specified register (physical
address) on the selected interface.

Wirites the supplied value {representing 16
bits) to the specified register on the selected
interface.

Sets up a timeout for all read and write op-
erations except transfer.

General Input

READCHAR

READWORD

READNUMBER
READNUMBERLN
READSTRING
READSTRING_UNTIL
READUNTIL
SKIPFOR

General Output

WRITECHAR
WRITENUMBER
WRITENUMBERLN
WRITESTRING
WRITESTRINGLN

WRITEWORD

Buffer Control

BUFFER_DATA
BUFFER_RESET

BUFFER_SPACE
BUFFER

Buffer 1/0

READBUFFER
READBUFFER_STRING

WRITEBUFFER

Reads a single byte from the specified inter-
face.

Reads 2 bytes from byte oriented interfaces
or a single 16 bit quantity from word-
oriented interfaces.

Performs a free field numeric entry from the
specified device.

Reads in a free field number and then sear-
ches for a line feed.

Reads characters into the specified string.

Reads characters from the selected device
into the specified string until the prescribed
terminator is encountered.

Reads characters until the match character
occurs.

Reads the specified number of characters
from the selected device.

Sends a single byte as data over the interface
path.

Outputs a free field number to the specified
device.

Outputs the number, a carriage return and a
linefeed.

Sends the specified string to the specified de-
vice.

Outputs the string, a carriage return and a
line feed.

Wirites 2 bytes to a byte-oriented interface or
a 16-bit quantity to a word-oriented inter-
face.

Returns the number of characters available
in the buffer.

Sets the empty and fill pointers to the empty
state.

Returns the available space left in the buffer.

Create a buffer area of the specified number
of bytes.

Reads a single byte from the buffer space
and updates the empty pointer in the buf_
info record.

Reads the specified number of characters
from the buffer and puts them into the string
variable.

Wirites a single byte into the buffer space and
update the fill pointer in the buf_info record.

. Compute!

‘Museum

219

Procedure
Library Summary

WRITEBUFFER_STRING Takes the specified string and places it in the

Transfer Control

ABORT_TRANSFER
BUFFER_ACTIVE
ISC_ACTIVE

TRANSFER

TRANSFER-END
TRANSFER_UNTIL

TRANSFER_WORD

buffer and updates the fill pointer.

Stop any transfer that is currently active in
the buffer.

Returns a TRUE if there is a transfer occur-
ring on the buffer.

Returns a TRUE if there is a transfer occur-
ring on the interface.

Transfers the specified number of bytes to or
from the buffer space using the specified
transfer type.

Transfers data to or from the buffer.

Transfers bytes into the buffer until the buf-
fer is full or the termination character was
received.

Transfers the specified number of words into
the buffer.

Binary Logic Operations

BINAND

BINCMP

BINEOR

BINIOR

BIT_SET

Returns the bit-by-bit logical AND of its argu-
ments.

Returns the bit-by-bit logical complement of
the argument.

Returns the bit-by-bit logical exclusive-OR of
the argument.

Returns the bit-by-bit logical inclusive-OR of
its arguments.

TRUE if the specified bit position of the argu-
ment is equal to 1.

220 Procedure Library Summary

Graphics Procedures
Graphics Control

CLEAR_DISPLAY Clears the graphics display.

DISPLAY_INIT Enables a device as the logical graphics dis-
play.

DISPLAY_TERM Disables the enabled graphics display de-
vice.

GRAPHICSERROR Returns a graphics error number.

GRAPHICS_INIT Initializes the graphics system.

GRAPHICS_TERM Terminates the graphics system.

INPUT_ESC Invokes a device dependent escape function
to inquire from the graphics display device.

INQ_WS Returns information about the graphics
system.

OUTPUT-ESC Performs a device dependent escape function

on the graphics display device.

Graphics Output Primitives

GTEXT Qutputs graphical text to the graphics dis-
play.
INT_LINE Draws a line from the starting position to the

world coordinate specified.

INT_-MOVE Sets the starting position to the world coor-
dinate position specified.

LINE Draws a line from the starting position to the
world coordinate specified.

MOVE Sets the starting position to the world coor-
dinate specified.

Primitive Attributes

SET_COLOR
SET_CHAR_SIZE

Sets the color attribute for output primitives.

Sets the character size attribute for graphical
text.

SET_LINE_STYLE
SET_TEXT_ROT

Sets the line style attribute for lines and text.

Specifies the text direction.

Viewing Transformation

SET_ASPECT Redefines the aspect ratio of the virtual coor-

dinate system.

SET_DISPLAY_LIM Redefines the logical display limits of the

graphics display.

SET_VIEWPORT Sets the boundaries of the viewport in the

virtual coordinate system.
SET_WINDOW
Graphics Input

Defines the boundaries of the window.

AWAIT_LOCATOR Waits until activation of the locator button
and then reads from the enabled locator de-
vice,

LOCATOR_INIT Enables the locator device for input.

LOCATOR_TERM Disables the enabled locator device.

SAMPLE_LOCATOR Samples the locator device.

SET_ECHO_POS Defines the locator echo position on the

graphics display.

SET_LOCATOR_LIM Redefines the logical locator limits of the
graphics locator.

LIF Procedures

LIFASCIIGET

LIFASCIIPUT

LIFCLOSE

LIFCREATE

LIFDISPOSEFIB

LIFEOF

LIFGET

LIFGETFLD

LIFNEWFIB

LIFOPEN

LIFPURGE

LIFPUT

LIFSETFLD

Sequentially reads ASCII or BINARY file re-
cords.

Sequentially writes ASCII or BINARY file re-
cords.

Performs the final operations on a file, and
removes the file block from the heap if it was
created by LIFOPEN.

Creates a directory entry for the file de-
scribed.

De-allocates a file information block from the
heap and clears the file designator pointer.

TRUE if the designated file is at end-of-file,
or if the file is closed.

Reads data from files of types other than
ASCII and BINARY.

Reads some of the attribute fields of a LIF
file.

Allocates a file information block from the
heap, initializes it, and sets the file designator
pointer.

Initializes a file information block for use by
file access functions.

Removes the LIF directory entry for the
named file.

Wirites data to files of types other than ASCII
and BINARY.

Reads some of the attribute fields of a LIF
file.

09826-90075, rev: 1/83

Procedure Library

Language Reference

Introduction

The Pascal Programming Language was designed as a teaching language, and as such was
intended to be machine independent. This has good and bad points. Being machine indepen-
dent makes the language more easily tranportable, but also ensures that it is difficult, if not
impossible, to access any innovative hardware features provided by a specific computer system.

To allow easy access to the graphics and /O features of your Pascal system, a set of procedures
and functions are provided in SYSTEM.LIBRARY. This language reference describes the syn-
tax and semantics for the procedures and functions provided to access I/0O and graphics, along
with the LIF procedure library, for reading and writing LIF files, for interchange between HP
computers.

The small block of text labeled IMPORT, immediately below the title of each entry, lists the
module which must be declared in an IMPORT statement in order to access the feature.

222 Procedures Reference

ABORT_HPIB

IMPORT: hpib_2
iodeclarations

This procedure ceases all HP-IB activity and attempts to place the HP-IB in a known state. If
the controlling interface is System Controller, but not Active Controller, it is made Active
Controller.

Syntax

interface
reorr-vete)= () 0

Item Description/Default | Re?tir‘il::st!ieons | Recc;{n;g;eended
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.

Semantics

The actual action taken depends upon whether the computer is currently active or system
controller. The various actions taken are listed in the table below:

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
IFC (duration ATN
Active =100p.sec) MTA
Controller REN UNL
ATN
ATN Error Error
IFC (duration
Not Active =100 psec)* No
Controller REN Action
ATN

* The IFC message allows a non-active controller (which is the system controller) to become the active controller.

IMPORT: serial 3

iodeclarations

Procedures Reference 223

ABORT SERIAL

This procedure attempts to return a serial interface to a known state. Any current active

transfers are halted.

Syntax

interface
ssorr semas) () D

select code INTEGER subrange.

. Range Recommended
Item | Description/Default ‘ Restrictions Range
interface Expression of TYPE type_isc. This is an { 0 thru 31 ' 7 thru 31

224 Procedures Reference

ABORT_TRANSFER

IMPORT: general_4

iodeclarations

This procedure will stop any transfer that is currently active in the buffer.

Syntax

© ®
Item Description/Default Range
p Restrictions
buffer name | Variable of TYPE buf_info_type. I See Chapter 11

Semantics

The termination of the transfer is accomplished by reseting the interface currently associated
with the specified buffer name. This returns the interface to power on default configuration,
and all configuring information is lost.

Procedures Reference 225

ACTIVE_CONTROLLER

IMPORT: hpib_1

iodeclarations

This BOOLEAN function returns TRUE if the specified interface is currently active controller.

Syntax

intertace
ACTIVE_CONTROLLER a 0

e . Range Recommended
Item ’ Description/Default | Restrictions Range
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange. ‘

226 Procedures Reference

ADDR TO_LISTEN

IMPORT: hpib_1
iodeclarations

Note
This function is provided for use by the internal I/O Procedure Lib-
rary drivers, only. Unexpected and possible undesirable results may
occur if it is used.

The following sequence of statements will address a device to listen:

TALK (7:24)3
UNLISTEN (7)3
LISTEN(7: MY_ADDRESS(7))3

Procedures Reference 227

ADDR TO_TALK

IMPORT: hpib_1

iodeclarations

Note
This function is provided for use by the internal [/O Procedure Lib-
rary drivers, only. Unexpected and possible undesirable results may
occur if it is used.

The following sequence of statements will address a device to talk:

UNLISTEN (7)3
LISTEN (7:24)3
TALK (7, MY_ADDRESS(7))3

228

Procedures Reference

AWAIT_LOCATOR

IMPORT: dgl_lib

This procedure waits until activation of the locator button and then reads from the enabled
locator device. Various echo methods can be selected.

Syntax

echo button variable
AWATT_LoCATOR)—+(() O S O
x coordinate y coordinate
name name

ltem Description/Default Regﬁirzzst;ieons
echo selector Expression of TYPE INTEGER MININT to MAXINT
button variable name Variable of TYPE INTEGER -
X coordinate name Variable of TYPE REAL -
y coordinate name Variable of TYPE REAL -

Procedure Heading

PROCEDURE AWAIT_LOCATOR ¢ Echo : INTEGER:
VAR Button : INTEGERS
VAR WX+ WY : REAL)3

Semantics

AWAIT_LOCATOR waits until the locator button is activated and then returns the value of the
selected button and the world coordinates of the locator. While the button press is awaited, the
locator position can be tracked on the graphic display device. If an invalid button is pressed, the
button value will be returned as 0O; otherwise it will contain the value of the button pressed. On
locators that use a keyboard for the button device (e.g. HP 9826 / HP 9836), the ordinal value of
the key pressed is returned.

The echo selector selects the type of echo used. Possible values are:

0 - No echo.
- Echo on the locator device.
2 - Small cursor
3 - Full cross hair cursor
4 - Rubber band line
5 - Horizontal rubber band line
6 - Vertical rubber band line
7 - Snap horizontal / vertical rubber band line
8 - Rubber band box
9 and above - Device dependent echo on the locator device.

09826-90075, rev: 5/83

Procedures Reference 229

Locator input can be echoed on either a graphics display device or alocator device. The meaning
of the various echoes on various devices used as locators and displays is discussed below.

The button value is the INTEGER value of the button used to terminate the locator input.
The x and y position represent the world coordinate point returned from the enabled locator.

AWAIT_LOCATOR implicitly makes the picture current before sending any commands to the
locator device. The locator should be enabled (LOCATOR_INIT) before calling AWAIT_LOCA-
TOR. The locator is terminated by the procedure LOCATOR_TERM.

Range and Limit Considerations

If the echo selector is out of range, the call to AWAIT_LOCATOR is completed using an echo
selector of 1 and no error is reported. Echoes 2 through 8 require a graphics display to be
enabled. If a display is not enabled, the call will be completed with echo 1 and GRAPHICSER-
ROR will return 4.

If the point entered is outside of the current logical locator limits, the transformed point will still be
returned in world coordinates.

Starting Position Effects

The location of the starting position is device dependent after this procedure with echo 0 or echo
1. For soft-copy devices it is typically unchanged; however, for plotters the pen position (starting
position) will remain at the last position it was moved to by the operator. This is done to reduce
pen movement back to the current position after each AWAIT_LOCATOR invocation.

Echo Types

Several different types of echoing can be performed. Some echoes are performed on the locator
device while others use the graphics display device. When the echo selector is in the range 2 thru
8, the graphics display device will be used in echoing. All of the echoes on the graphics display
start at a point on the graphics display called the locator echo position (see SET_ECHO_PQOS).
For some of these echoes the locator echo position is also used as a fixed reference point. For
example, the fixed end of the rubber band line will be at the locator echo position. The echoes
available are:

2. Small cursor
Track the position of the locator on the graphics display device. The initial position of the
cursor is at the locator echo position. The point returned is the locator position.

3. Full cross hair cursor
Designate the position of the locator on the graphics display device with two intersecting
lines. One line is horizontal with a length equal to the width of the logical display surface.
The other line is vertical with a length equal to the height of the logical display surface. The
initial point of intersection is at the current locator echo position. The point returned is the
locator position.

4. Rubber band line
Designate the endpoints of aline. One end is fixed at the locator echo position; the other is
designated by the current locator position. The locator position can be told from the locator
echo position by the presence of a small cursor (echo 2) at end representing the locator
echo position. The point returned is the locator position.

09826-90075, rev: 5/83

230 Procedures Reference

5. Horizontal rubber band line
Designate a horizontal line. One endpoint of the line is fixed at the locator echo position;
the other endpoint has the world Y-coordinate of the locator echo position and the world
X-coordinate of the current locator position. The locator position can be told from the
locator echo position by the presence of a small cursor (echo 2) at end representing the
locator echo position. The point returned will have the X-coordinate of the locator position
and the Y-coordinate of the locator echo position.

6. Vertical rubber band line
Designate a vertical line. One endpoint of the line is fixed at the locator echo position; the
other endpoint will have the world X-coordinate of the locator echo position and the world
Y-coordinate of the current locator position. The locator position can be told from the
locator echo position by the presence of a small cursor (echo 2) at end representing the
locator echo position. The point returned will have the X-coordinate of the locator echo
position and the Y-coordinate of the locator position.

7. Snap horizontal / vertical rubber band line
Designate a horizontal / vertical line. One endpoint of the line is fixed at the locator echo
position. The other endpoint will be either a horizontal (see echo 5) or vertical (see echo 6)
rubber band line, depending on which one produces the longer line. If both lines are of
equal length, a horizontal line will be used. The locator position can be told from the locator
echo position by the presence of a small cursor (echo 2) at end representing the locator
echo position. The point returned is the endpoint of the echoed line.

8. Rubber band box
Designate a rectangle. The diagonal of the rectangle is the line from the locator echo
position to the current locator position. The locator position can be told from the locator
echo position by the presence of a small cursor (echo 2} at end representing the locator
echo position. The point returned will be the locator position.

Echo selectors of 1 and greater than or equal to 9 produce a device dependent echo on the
locator device. Most locator devices support at least one form of echoing. Possible ones include
beeping, displaying the value entered, or blinking a light each time a point is entered. If the
specified echo is not supported on the enabled locator device, echo 1 will be used.

Echoes on Raster Displays
Raster displays support all the echoes described under “‘Echo Types.”

Echoes on HPGL Plotters

Hard copy plotting devices (such as the 9872 or the 7580) cannot perform all the echoes listed
above. The closest approximation possible is used for simulating them. The actual echo per-
formed may also depend on whether the plotter is also being used as the locator. The echoes
available on plotters are:

2. Small cursor

Initially the plotter’s pen will be moved to the locator echo position. The pen will then
reflect the current locator position (i.e., track) until the locator operation is terminated.

3. Full cross hair cursor
Simulated by ECHO #2.

4. Rubber band line
Simulated by ECHO #2.

09826-90075, rev: 5/83

Procedures Reference

5. Horizontal rubber band line
If the plotter is not the current locator device, the plotter’s pen will initially be moved to the
current locator echo position. The pen will then reflect the X coordinate of the current
locator position and the Y coordinate of the current locator echo position.

If the plotter is used as the locator, this echo is simulated by echo 2 except the current
locator X coordinate and the locator echo position Y coordinate are returned.

6. Vertical rubber band line
If the plotter is not the current locator device, the plotter’s pen position will initially be
moved to the current locator echo position. The pen will then reflect the X coordinate of the
current locator echo position and the Y coordinate of the current locator position.

If the plotter is used as the locator, this echo is simulated by echo 2 except the locator echo
position X coordinate and the current locator Y coordinate are returned.

7. Snap horizontal / vertical rubber band line
Designate a horizontal / vertical line. One endpoint of the line is fixed at the locator echo
position. The other endpoint will be either a horizontal (see echo 5) or vertical (see echo 6)
rubber band line, depending on which one produces the longer line. If both lines are of
equal length, a horizontal line will be used. The locator position can be told from the locator
echo position by the presence of a small cursor (echo 2) at end representing the locator
echo position. The point returned is the endpoint of the echoed line.

8. Rubber band box
Simulated by echo 2. The point returned will be the locator position.

Tablet Locators

For HPGL graphics tablets the operator positions the stylus to the desired position and depresses
it. The button value returned is always one. For an echo selector of 1 the tablet beeper is sounded
when the stylus is depressed. An echo selector greater than or equal to 9 uses the same echo as an
echo selector of 1.

The Knob as Locator
When the knob is specified as the locator (LOCATOR_INIT with device selector of 2) the
keyboard keys have the following meanings:

Arrow keys Move the cursor in the direction indicated.

Knob Move the cursor right and left.

Knob with shift key Move the cursor up and down.

pressed

Number keys Change the amount the cursor is moved per arrow keypress or knob
1-9 rotation. 1 provides the least movement and 9 provides the most.

All other keys act as the locator buttons. The ordinal value of the locator button (key) struck is
returned in BUTTON.

For an echo selector of 1 the position of the locator is indicated by a small crosshair cursor on the
graphics display.

09826-90075, rev: 5/83

230.1

230.2 Procedures Reference

The initial position of the cursor is located at the current starting position of the graphics display.
This is the point obtained by the last invocation of await_locator, or the lower left hand corner of
the locator limits if no point has been received since LOCATOR_INIT was executed. For back to
back AWAIT_LOCATOR calls this would mean the second AWAIT_LOCATOR would begin
were the first AWAIT_LOCATOR left the cursor. Echo selectors greater than or equal to 9 have
the same effect as an echo selector of 1.

Locatorinput can be echoed on either a graphics display device or alocator device. Echoes 2 thru
8 are explained above under ‘‘Echoes on Raster Displays’’ and “‘Echoes on HPGL Plotters”. For
an echo selector of 0 or 1 the pen tracks the locator position. Echo selectors greater than or equal
to 9 have the same effect as an echo selector of 1.

HPGL Plotters as Locators

The AWAIT_LOCATOR function enables a digitizing mode in the device. For HPGL plotters the
operator then positions the pen to the desired position with the cursor buttons or joy stick and
then presses the enter key. The pen state (0 for 'up’, and 1 for ’"down’) is returned in the button
parameter.

Following locator input (echo on the locator device), the pen position will remain at the last
position it was moved to by the operator. This means that the starting position for the next
graphics primitive will be wherever the pen was left.

Locator input can be echoed on either a graphics display device or a locator device. Echoes 2 thru
8 are explained above under “‘Echoes on Raster Displays’” and “‘Echoes on HPGL Plotters”. For
an echo selector of O or 1 the pen tracks the locator position. Echo selectors greater than or equal
to 9 have the same effect as an echo selector of 1.

Error Conditions
The graphics system must be initialized and the locator device must be enabled or the call will be
ignored. If the echo selector is between 1 and 9 and the graphics display is not enabled, the call

will be completed with an echo selector of 1. If any of the preceding errors are encountered, an
ESCAPE (-27) is generated, and GRAPHICSERROR will return a non-zero value.

09826-90075, rev: 5/83

Procedures Reference

BINAND

IMPORT: iocomasm

This INTEGER function returns the bit-by-bit logical-and of its arguments.

Syntax
© O ®
Item Description/Default Range
p Restrictions
argument Expression of TYPE INTEGER. | MININT thru MAXINT
Semantics

The arguments for this function are represented as 32-bit two’s complement integers. Each bit
in an argument is logically anded with the corresponding bit in the other argument. The results
of all the ands are used to construct the integer which is returned.

231

232 Procedures Reference

BINCMP

IMPORT: iocomasm

This INTEGER function returns the bit-by-bit logical complement of the argument.

Syntax

TR0 ®

Item | Description/Default | Regerlirgt;ieons
argument | Expression of TYPE INTEGER. | MININT thru MAXINT
Semantics

The argument for this function is represented as a 32-bit two’s complement integer. Each bit in
the argument is logically complemented, and the resulting integer is returned.

Procedures Reference

BINEOR

IMPORT: iocomasm

This INTEGER function returns the bit-by-bit logical exclusive-or of the two arguments.

Syntax
(O ssment p={ s) argemert |-())
i Range
Item Description/Default Restrictions
argument Expression of TYPE INTEGER. | MININT thru MAXINT
Semantics

The arguments for this function are represented as 32-bit two’s complement integers. Each bit
in an argument is exclusively-ored with the corresponding bit in the other argument. The results
of all the exclusive-ors are used to construct the integer which is returned.

233

234 Procedures Reference

BINIOR

IMPORT: iocomasm

This INTEGER function returns the bit-by-bit logical inclusive-or of its arguments.

Syntax
(O] rgumens [)] srgoment |o=())
s Range
Item Description/Default Restrictions
argument | Expression of TYPE INTEGER. ‘ MININT thru MAXINT
Semantics

The arguments for this function are represented as 32-bit two’s complement integers. Each bit
in an argument is inclusively-ored with the corresponding bit in the other argument. The results
of all the inclusive-ors are used to construct the integer which is returned.

Procedures Reference 235

BIT SET

IMPORT: iocomasm

This BOOLEAN function is TRUE if the specified bit position of the argument is equal to 1.
Syntax

TR0 O+ O

i Range Recommended
Item Description/Default Restrictions Range
argument Expression of TYPE INTEGER. MININT thru
MAXINT
bit position Expression of TYPE INTEGER. MININT thru 0 thru 31
MAXINT
Semantics

The argument for this function is represented as a 32-bit two’s complement integer. Bit O is the
least-significant bit and bit 31 is the most-significant bit.

235.1 Procedures Reference

BUFFER _ACTIVE

IMPORT: general_4
iodeclarations

This BOOLEAN function is TRUE if there is a transfer active on the specified buffer.

Syntax

(rrereme)~(O—~FEE -0

Item ‘ Description/Default | Reg?i'::st;iims
buffer name | variable of TYPE buf_info_type | See Chapter 11

09826-90075, rev: 1/83

Procedures Reference 235.2

09826-90075, rev: 1/83

236 Procedures Reference

BUFFER DATA

IMPORT: general_4
jodeclarations
This INTEGER function returns the number of characters available in the buffer.

Syntax
buff
© ®

Range

Item | Description/Default ‘ Restrictions

buffer name | Variable of TYPE buf-info_type. | See Chapter 11

Procedures Reference

BUFFER RESET

IMPORT: general_4

iodeclarations

This procedure will set the empty and fill pointers to the empty state.

Syntax

buffer
ey (0) o

Item I Description/Default \ Re?t?itst}fons
buffer name I Variable of TYPE buf_info_type. l See Chapter 11
Semantics

The actual buffer data will not be modified - only the pointers to it. A buffer will only be reset if
there are no transfers currently active on the specified buffer.

237

238 Procedures Reference

BUFFER SPACE

IMPORT: general_4
iodeclarations
This INTEGER function returns the available space left in the buffer.

Syntax

buffer
s (0) ®

Item | Description/Default | Re?t?ir::st;ieons
buffer name | Variable of TYPE buf_info_type. | See Chapter 11
Semantics

This function not only returns the current available space in the buffer, it also attempts to keep
data at the front of the buffer. The buffer is reset if there is no data remaining in the buffer.

Procedures Reference 239

Computer
S Museum

CLEAR

IMPORT: hpib_2

iodeclarations

This procedure attempts to send a form of the clear message to the specified HP-IB device(s).

Syntax

device
cuean)~) O

I Range Recommended
Item | Description/Default | Restrictions ‘ Range
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary
an INTEGER subrange.
Semantics
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
Active ATN MTA ATN MTA
Controller DCL UNL DCL UNL
rolie LAG LAG
SDC SDC
Not Active
Controlier Error

240 Procedures Reference

CLEAR DISPLAY

IMPORT: dgl_lib

This procedure clears the graphics display.

Syntax

CLEAR_DISPLAY

Semantics

The graphics system provides the capability to clear the graphics display of all output primitives
at any time in an application program. This procedure has different connotations for each
graphics display surface. On CRT devices such as the HP 9826, the screen will be erased.
Plotters with page advance will advance the paper. On devices such as fixed page plotters, a call
to CLEAR_DISPLAY will be ignored.

The starting position is not effected by this procedure.

Error conditions:
1 The graphics system is not initialized.
ACTION: Call ignored.

2 The graphics display is not enabled.
ACTION: Call ignored.

Procedures Reference 241

CLEAR HPIB

IMPORT: hpib_0

iodeclarations

This procedure will clear the specified HP-IB line. Not all lines are accessable at all times.

Syntax

interface hpib line
cuean.nes () O O

o . Range Recommended
Item Description/Default Restrictions Range

interface Expression of TYPE type.isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
hpib line Expression of enumerated TYPE hpib_line. atn_line
specifier dav_line

ndac_line

nrfd_line

eoi_line

srq_line

ifc_line

ren_line
Semantics

All possible hpib_line types are not legal when using this procedure.

Handshake lines (DAV, NDAC, NRFD) are never accessible, and an error is generated if an
attempt is made to clear them.

The interface clear line (IFC) is automatically cleared after being set, and no action occurs if an
attempt is made to clear it through CLEAR_HPIB.

The Service Request line (SRQ) is not accessible through CLEAR_HPIB, and should be acces-
sed through REQUEST_SERVICE. Attempting to clear the service line directly through
CLEAR_HPIB generates an error.

The remote enable line (REN) can be cleared only if the selected interface is currently System
Controller. Otherwise, an error is generated.

The attention line (ATN) can be cleared only if the selected interface is currently Active Control-
ler. Otherwise, an error is generated.

242 Procedures Reference

CLEAR _SERIAL

IMPORT: serial_0

iodeclarations
This procedure will clear the specified line on a serial interface card.
Syntax
© O ®
.. Range Recommended
Item Description/Default Restrictions Range
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
serial line Expression of enumerated TYPE rts_line
specifier type_serial_line. cts_line
dcd_line
dsr_line
drs_line
ri_line
dtr_line
Semantics

The values of the enumerated TYPE type_serial_line have the following definitions :

name RS-232 line
rts ready to send
cts clear to send
dcd data carrier detect
dsr data set ready
drs data rate select
dtr data terminal ready
ri ring indicator

The access to the various lines is determined by the use of an Option 1 or Option 2 connector
on the selected interface.

Procedures Reference 243

CONVERT WTODMM

IMPORT: dgl_lib

This procedure converts from world coordinates to millimetres on the graphics display.

Syntax
CEAED RO O il O O L i O

ltem Description/Default Regi;lc%ii)ns
world x Expression of TYPE REAL -
world y Expression of TYPE REAL -
metric X name Variable of TYPE REAL -
metric y name Variable of TYPE REAL -

Procedure Heading
PROCEDURE CONVERT_WTODMM (WX WY : REALS
VAR MmX s MmY = REAL)i

Semantics

This procedure returns a coordinate pair (metric X,metric Y) representing the world X and Y
coordinates. The metric X and Y values are the number of millimetres along the X and Y axis from
the supplied world coordinate point to the origin of the metric coordinate system on the device.
The location of this origin is device dependent.

For raster devices, the metric origin is the lower-left dot. For HPGL plotters, it is the lower-left
corner of pen movement.

Since the origin of the world coordinate system need not correspond to the origin of the physical
graphics display, converting the point (0.0,0.0) in the world coordinate system may not result in
the value (0.0,0.0) offset from the physical display device’s origin.

CONVERT_WTODMM will take any world coordinate point, inside or outside the current
window, and convert it to a point offset from the physical display device’s origin.

Error conditions:

The graphics system must be initialized and the graphics display must be enabled or the call wiil
be ignored, an ESCAPE (— 27) will be generated, and GRAPHICSERROR will return a non-zero
value.

09826-90075, rev: 5/83

244

Procedures Reference

CONVERT WTOLMM

IMPORT: dgl_lib

This procedure converts from world coordinates to millimetres on the locator surface.

Syntax

CIEIEITT) o O e P e O s Kl s © g FEEH 2 O e K 2 O

Iltem Description/Default Re?t?it%i)ns
world x expression of TYPE REAL -
world y expression of TYPE REAL -
metric X name variable of TYPE REAL -
metric y name variable of TYPE REAL -

Procedure Heading
PROCEDURE CONYERT_WTOLMM ¢ WX+ WY : REAL:
VAR MmX s+ MmY : REAL)3

Semantics

This procedure returns a coordinate pair (metric x,metric y) representing the world X and Y
coordinates. The metric x and y values are the number of millimetres along the X and Y axis from
the supplied world coordinate point to the origin of the metric coordinate system on the device.
The location of this origin is device dependent.

For raster devices, the metric origin is the lower-left dot. For HPGL plotters, it is the lower-left
corner of pen movement.

Since the origin of the world coordinate system need not correspond to the origin of the physical
locator device, converting the point (0.0,0.0) in the world coordinate system does not necessarily
result in the value (0.0,0.0) offset from the physical locator device’s origin.

CONVERT_WTOLMM will take any world coordinate point, inside or outside the current
window, and convert it to a point offset from the physical locator origin.

Error Conditions

The graphics system must be initialized, the graphics device must be enabled, and the locator
must be initialized or the call will be ignored, an ESCAPE (—27) will be generated, and
GRAPHICSERROR will return a non-zero value.

09826-90075, rev: 5/83

Procedures Reference 244.01

DISPLAY_FINIT

IMPORT: dgl lib

This procedure enables the output of the graphics library to be sent to a file.

Syntax
© O O)
L_‘Trr‘or‘ variable
name I'(:)'

.. Range Recommended
Item Description/Default Restrictions Range
file name Expression of TYPE Gstring255; can be a | Must be a valid -
STRING of any length up to 255 charac- | file name (see
ters. “The File
System”’)
device specifier Expression of TYPE Gstring255; can be a | 9872A, 9872B, —
STRING of any length up to 255 charac- | 9872C, 98728,
ters. First six characters are significant. 9872T, 7470A,
7580A, 7585A
control value Expression of TYPE INTEGER MININT thru see below
MAXINT
error variable name | Variable of TYPE INTEGER — -
Procedure Heading
PROCEDURE DISPLAY_FINIT (File_Mame : Gstrind2353;:
Device_Name: Gstrind233:
Control : INTEGER s
var lerr : INTEGER)i

Semantics

DISPLAY_FINIT allows output from the graphics library to be sent to a file. This file can then be
sent a graphics display device by use of the operating system’s file system (e.g. FILER, or SRM
spooler). The contents of the file are device dependent, and MUST be sent only to devices of the
type indicated in device name when the file was created.

The file name specifies the name of the file to send device dependent commands to.

The device specifier tells the graphics system the type of device that the file will be sent to. Only
some types of devices may be use this command. For example raster devices (i.e. the internal
display) may not use this command. For the currently supported devices, see the range restric-
tions under Syntax, above.

09826-90075, rev: 5/83

244.02 Procedures Reference

The control value is used to control characteristics of the graphics display device and should be
set according to the display device the file is intended for. See ““Control Values,”” below, for the
meaning of the control value.

The error variable name will contain a value indicating whether the graphics display device was
successfully initialized.

Value Meaning
0 The graphics display device was successfully initialized.
1 The graphics display device (indicated by device name) is not supported by the

graphics library.

2 Unable to open the file specified. File error is returned in Escapecode, and loresult (see
the Pascal Language System User’s manual).

DISPLAY_FINIT enables a file as the logical graphics display. The file can be of any type,
although the current spooling mechanisms can only handle TEXT and ASCII files. The file need
not exist before this procedure is called. If this procedure is successful the file will be closed with
'LOCK’ when DISPLAY_TERM is executed.

Note

This procedure uses space allocated with the NEW procedure. The
application program should call this procedure before any space is
allocated for the application program (at least before the MARK
procedure is used). If the application program is compiled with the
$HEAP_DISPOSE ON$ compiler option, the space will be returned
to the system during the next call to the DISPLAY_TERM procedure.

This procedure initializes and enables the graphics display for graphics output. Before the device
is initialized the device status is 0, the device address is 0, and the device name is the default
name. The default name is ’ ’ (six ASCII blanks).

When the device is enabled the device statusis set to 1 (enabled) and the internal device specifier
used by the graphics library is set to the file name provided by the user. The device name is set to
the supplied device name. This information is available by calling INQ_WS with operation
selectors of 11050 and 12050.

Initialization includes the following operations:

® The graphics display surface is cleared (e.g., CRT erased, plotter page advanced) if Bit 7 of
CONTROL is not set.

e The starting position is set to a device dependent location.
e The logical display limits are set to the default limits for the device.

e The aspect ratio of the virtual coordinate system is applied to the logical display limits to
define the limits of the virtual coordinate system.

e All primitive attributes are set to the default values.

e The locator echo position is set to its default value.

09826-90075, rev: 5/83

Procedures Reference 244.03

Only one graphics output device can be initialized at a time. If a graphics display device is
currently enabled, the enabled device will be terminated (via DISPLAY_TERM) and the call will
continue.

A call to MOVE or INT_MOVE should be made after this call to update the starting position and in
so doing, place the physical pen or beam at a known location on the graphics display device.

The Control Value
The control value is used to control characteristics of the graphics display device. Bits should be
set according to the following bit map. All unused bits should be set to 0.

ojofofofojofojojojojojofofjoyo
15114)13|12|11{ 10

Bits Meaning
Othru 6 Currently unused. Should be set to 0.
7 If this bit is set (BIT 7 =1), it will inhibit clearing of the graphics display as part of

the DISPLAY_FINIT procedure. Some devices have the ability to not clear the
graphics display, or not to perform a page advance during device initialization.
This bit is ignored on devices that do not support the feature.

8 thru 15 Not used by DISPLAY_FINIT.

HPGL Plotter Initialization
When an HPGL device is initialized the following device dependent actions are performed, in
addition to the general initialization process:

e Pen velocity, force, and acceleration are set to the default for that device.
e ASCII character set is set to ’TANSI ASCITI'.

e Paper cutter is enabled (HP-9872S / HP-9872T).

® Advance page option is enabled (HP-9872S / HP-9872T).

® Paper is advanced one full page (HP-9872S / HP-9872T) (unless DISPLAY_INIT CON-
TROL bit 7 is set).

® The automatic pen options are set (HP 7580 / HP 7585).

The default initial dimensions for the HPGL plotters supported by the graphics library are:

Wide High Wide High Resolution

Plotter mm mm points points Aspect points/mm
9872 400 285 16000 11400 7125 40.0
7580 809.5 52425 32380 20970 .6476 40.0
7585! 809.5 52425 32380 20970 .6476 40.0
7470 2575 190 10300 7600 7378 40.0

Any device not in this list is not supported.

1 Only “D”’ size paper can be used in the 7585 when it is used with this call.

09826-90075, rev: 5/83

244.04 Procedures Reference

The default logical display surface is set equal to the maximum phuysical limits of the device. The
view-surface is always justified in the lower left corner of the current logical display surface
(corner nearest the turret for the HP 7580 and HP 7585 plotters). The physical origin of the
graphics display is at the lower left boundary of pen movement.

Error Conditions
If the graphics system is not initialized, the call is ignored, an ESCAPE (—27) is generated, and
GRAPHICSERROR returns a non-zero value.

09826-90075, rev: 5/83

Procedures Reference 244.05

DISPLAY_INIT

IMPORT: dgl_lib

This procedure enables a device as the logical graphics display.

Syntax

device control error variable
D15PLAY INIT)—(() O O ame 2 ()~

Item Description/Default Re?t?il::st;ieons Rec%n;t;;eended
device selector Expression of TYPE INTEGER MININT to
MAXINT
control value Expression of TYPE INTEGER MININT to -
MAXINT
error variable name | Variable of TYPE INTEGER - -

Procedure Heading

PROCEDURE DISPLAY_INIT (Dev_Adr : INTEGER:
Control : INTEGER:
VAR IErr : INTEGER)3
Semantics

DISPLAY_INIT enables a device as the logical graphics display. It initializes and enables the
graphics display device for graphics output.

Before the device is initialized the device status is O, the device address is 0, and the device name
is the default name. The default name is’ ’ (six ASCII blanks).

When the device is enabled the device status is set to 1 (enabled} and the internal device specifier
used by the graphics library is set equal to the device selector provided by the user. The device
name is set to the device being used. This information is available by calling INQ_WS with
operation selectors 11050 and 12050.

The device selector specifies the physical address of the graphics output device.

® address = 3 Internal graphics CRT (HP Series 200)

e 8 = = device selector == 31 Interface Card Select Code
(HP 98627A default = 28)

® 100 < = device selector == 3199 composite HPIB/device address

The control value is used to control device dependent characteristics of the graphics display
device.

09826-90075, rev: 5/83

244.06 Procedures Reference

The error variable name will contain a value indicating whether the graphics display device was
successfully initialized.

Value | Meaning
0 The graphics display device was successfully initialized.
2 Unrecognized device specified. Unable to communicate with a device at the specified

address, non-existent interface card or non-graphics system supported interface card.

If an error is encountered, the call will be ignored.

The graphics library attempts to directly identify the type of device by using its device selector in
some way. The meanings for device address are listed above.

At the time that the graphics library is initialized, all devices which are to be used must be
connected, powered on, ready, and accessible via the supplied device selector. Invalid device
selectors or unresponsive devices result in that device not being initialized and an error being
returned.

Only one graphics output device maybe initialized at a time. If a graphics display device is
currently enabled, the enabled device will be terminated (via DISPLAY_TERM) and the call will
continue.

A call to MOVE or INT_MOVE should be made after this call to update the starting position and in
so doing, place the physical pen or beam at a known location on the graphics display device.

The Control Value
Used to control characteristics of the graphics display device. Bits should be set according to the
following bit map. All unused bits should be set to O.

o|jo|jofojofofojofojojofofofojo

15(14(13[12|11|10]9| 8| 7|6|5|4|3| 2|1

Bits Meaning
0 thru 6 Currently unused. Should be set to 0.
7 If this bit is set (BIT 7 = 1), it will inhibit clearing of the graphics display as part of

the DISPLAY_FINIT procedure. Some devices have the ability to not clear the
graphics display, or not to perform a page advance during device initialization.
This bit is ignored on devices that do not support the feature.

8 thru 15 Bits 8 though 15 are used by some devices to control device dependent features
of those devices.

Bits 8,9, and 10 of DISPLAY_INIT’s CONTROL parameter determine the type of display for the
HP 98627A card and the default dimensions assumed by the graphics system.

09826-90075, rev: 5/83

Procedures Reference 244.07

Bits
CONTROL 109 8 Description
256 001 USSTD (512 x 390, 60 hz refresh)
512 010 EUROSTD (5612 x 390, 50 hz refresh)
768 011 USTV (512 x 474, 15.75 Khz horizontal
refresh, interlaced)
1024 100 EURO TV (612 x 512, 50 hz vertical refresh,
interlaced)
1280 101 HIRES (5612 x 512, 60 hz)
1536 110 Internal (HP) use only

Out of range values are treated as if CONTROL = 256.

Note

This procedure uses space allocated with the NEW procedure. The
application program should call this procedure before any space is
allocated for the application program (at least before the MARK
procedure is used). If the application program is compiled with the
$HEAP_DISPOSE ON$ compiler option, the space will be returned
to the system during the next call to the DISPLAY_TERM procedure.

General Initialization Operations
Initialization includes the following operations:

e The graphics display surface is cleared (e.g., CRT erased, plotter page advanced) unless Bit 7
of the control value is set.

e The starting position is set to a device dependent location. (This is undefined for HPGL
plotters.)

® The logical display limits are set to the default limits for the device.

e The aspect ratio of the virtual coordinate system is applied to the logical display limits to
define the limits of the virtual coordinate system.

e All primitive attributes are set to the default values.
® The locator echo position is set to its default value.

o [f the display and locator are the same physical device, the logical locator limits are set to the
limits of the view surface.

Raster Display Initialization
When a raster display is initialized the following device dependent actions are performed, in
addition to the general initialization process:

e The starting position is in the lower left corner of the display.

e Graphics memory is cleared if bit 7 of the control word is 0.

e [nitialize the color table to default values. If the device has retroactive color definition (Model
36C) and the color table has been changed from the default colors, the colors of an image will
change even if bit 7 is set to 1.

e The graphics display is turned on.

e The view surface is centered within the logical display limits.

09826-90075, rev: 5/83

244.08 Procedures Reference

® The drawing mode (see OUTPUT_ESC) is set to dominate.
e The DISPLAY_INIT CONTROL parameter is used as specified above.

The following table describes the internal raster displays for Series 200 computers:

Wide High Wide High Memory Color

mm mm points points Planes Map
9816 168 126 400 300 1 no
9826 120 90 400 300 1 no
9836 210 160 512 390 1 no
9836C 217 163 512 390 4 yes

The HP 98627A is a 3 plane non-color mapped color interface card which connects to an external
RGB monitor. Bits 8,9, and 10 of DISPLAY_INIT's CONTROL parameter determine the type of
display for the HP 98627A card and the default dimensions assumed by the graphics system.

Bits
CONTROL 109 8 Description
256 001 USSTD (512 x 390, 60 hz refresh)
512 010 EUROSTD (512 x 390, 50 hz refresh)
768 011 USTV (512 x 474, 15.75 Khz horizontal
refresh, interlaced)
1024 100 EURO TV (512 x 512, 50 hz vertical refresh,
interlaced)
1280 101 HIRES (512 x 512, 60 hz)
1536 110 Internal (HP) use only

Out of range values are treated as if CONTROL = 256.

The physical size of the HP 98627A display (needed by the SET_DISPLAY _LIM procedure) may
be given to the graphics system by an escape function (OPCODE = 250). The physical limits
assumed until the escape function is given are:

CONTROL = 256 153.3mm wide and 116.7mm high.
512 153.3mm wide and 116.7mm high.

768 153.3mm wide and 142.2mm high.

1280 153.3mm wide and 153.3mm high.

The default logical display surface of the graphics display device is the maximum physical limits of
the screen. The physical origin is the lower left corner of the display.

The view surface is always centered within the current logical display surface.

09826-90075, rev: 5/83

HPGL Plotter Initialization

When an HPGL device is initialized the following device dependent actions are performed, in

addition to the general initialization process:

® Pen velocity, force, and acceleration are set to the default for that device.

e ASCII character set is set to ’ANSI ASCITI'.
® Paper cutter is enabled (HP-9872S / HP-9872T).
e Advance page option is enabled (HP-9872S / HP-9872T).

® Paper is advanced one full page (HP-9872S / HP-9872T) (unless DISPLAY_INIT CON-

TROL bit 7

® The automatic pen options are set (HP 7580 / HP 7585).

The default initial dimensions for the HPGL plotters supported by the graphics library are:

is set).

Procedures Reference 244.09

Wide High Wide High Resolution

Plotter mm mm points points Aspect points/mm
9872 400 285 16000 11400 7125 40.0
7580 809.5 52425 32380 20970 6476 40.0
7585 1100 890 44000 35670 .809 40.0
7470 2575 190 10300 7600 7378 40.0

The maximum physical limits of the graphics display for an HPGL device not listed above are
determined by the default settings of P1 and P2. The default settings of P1 and P2 are the values
they have after an HPGL ’IN’ command. Refer to the specific device manual for additional

details.

The default logical display surface is set equal to the area defined by P1 and P2 at the time
DISPLAY_INIT is invoked. The view-surface is always justified in the lower left corner of the
current logical display surface (corner nearest the turret for the HP 7580 and HP 7585 plotters).
The physical origin of the graphics display is at the lower left boundary of pen movement.

plotter.

Note

If the paper is changed in an HP 7580 or HP 7585 plotter while the
graphics display is initialized, it should be the same size of paper that
was in the plotter when DISPLAY_INIT was called. If a different size of
paper is required, the device should be terminated (DISPLAY_
TERM) and re-initialized after the new paper has been placed in the

Error Conditions

The graphics system must be initialized or the call will be ignored, an ESCAPE (—27) will be

generated, and GRAPHICSERROR will return a non-zero value.

09826-90075, rev: 5/83

244.10 Procedures Reference

09826-90075, rev: 5/83

Procedures Reference 245

DISPLAY TERM

IMPORT: dgl_lib

This procedure disables the enabled graphics display device.

Syntax

DISPLAY_TERM

Procedure Heading
PROCEDURE DISPLAY_TERM;

Semantics

DISPLAY_TERM terminates the device enabled as the graphics display. DISPLAY_TERM
completes all remaining display operations and disables the logical graphics display. It makes the
picture current and releases all resources being used by the device. The device name is set to the
default name ’ ’ (six ASCII blanks), the device status is set to O (not enabled) and the device
address is set to 0. DISPLAY_TERM does not clear the graphics display.

The graphics display device should be disabled before the termination of the application prog-
ram. DISPLAY_TERM is the complementary routine to DISPLAY_INIT.

Error Conditions

The graphics system should be initialized and the display should be enabled or the call will be
ignored, an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero
value.

09826-90075, rev: 5/83

246 Procedures Reference

DMA RELEASE

IMPORT: iocomasm
jodeclarations

Note

This function is provided for use by the internal /O Procedure Lib-
rary drivers, only. Unexpected and possible undesirable results may
occur if it is used.

DMA channel allocation and deallocation occur automatically in the I/O library.

Procedures Reference 247

DMA REQUEST

IMPORT: iocomasm

jodeclarations

Note
This function is provided for use by the internal [/O Procedure Lib-
rary drivers, only. Unexpected and possible undesirable results may
occur if it is used.

DMA channel allocation and deallocation occur automatically in the I/O library.

248 Procedures Reference

END_SET

IMPORT: hpib_1
jodeclarations

This BOOLEAN function indicates whether or not EOI was set on the last byte read — this is
not a current indication of the EOI line.

Syntax

interface
o5~ ®

N Range Recommended
Item l Description/Default } Restrictions Range
interface

select code INTEGER subrange.

Expression of TYPE type_isc. This is an i 0 thru 31 | 7 thru 31

Procedures Reference 248.1

GRAPHICSERROR

IMPORT: dgl_lib

This function returns and integer error code and can be used to determine the cause of a graphics
escape.

Syntax

GRAPHICSERROR

Function Heading
FUNCTION GRAPHICSERROR: INTEGER;

Semantics

When an error occurs that uses the escape function, escape-code — 27 is used. After the escape is
trapped and it has been determined that the graphics library is the source of the error (the escape
code equal to —27), GRAPHICSERROR can be used to determine the cause of the error. The
function returns the value of the last error generated and then clears the value of the return error.
A user who is trapping errors and wishes to keep the value of the error must save it in some
variable.

The following list of returned values and the error they represent can be used to interpret the
value returned by GRAPHICSERROR.

Value Meaning

0 No errors since the last call to GRAPHICSERROR or since the last call to GRAPHICS_INIT.

1 The graphics system is not initialized. ACTION: CAll ignored.

2 The graphics display is not enabled. ACTION: Call ignored.

3 The locator device is not enabled. ACTION: Call ignored.

4 Echo value requires a graphics display to be enabled. ACTION: Call completes with echo
value = 1.

5 The graphics system is already initialized. ACTION: Call ignored.

6 lllegal aspect ratio specified. X-SIZE and Y-SIZE must be greater than 0. ACTION: Call
ignored.

7 lllegal parameters specified. ACTION: Call ignored.

8 The parameters specified are outside the physical display limits. ACTION: Call ignored.

9 The parameters specified are outside the limits of the window. ACTION: Call ignored.

10 The logical locator and the logical display are the same physical device. The logical locator

limits cannot be defined explicitly, they must correspond to the logical view surface limits.
ACTION: Call ignored.

09826-90075, rev: 5/83

248.2 Procedures Reference

11

13
14
18

The parameters specified are outside the current virtual coordinate system boundary.
ACTION: Call ignored.

The parameters specified are outside the physical locator limits. ACTION: Call ignored.
Color table contents cannot be inquired or changed. ACTION: Call ignored.

The number of points specified for a polygon or polyline operation is less than or equal to
zero. ACTION: Call ignored.

09826-90075, rev: 5/83

Procedures Reference 249

GRAPHICS_INIT

IMPORT: dgl_lib

This procedure initializes the graphics system.

Syntax

GRAPHICS.INIT

Procedure Heading
PROCEDURE GRAPHICS_INIT;

Semantics
GRAPHICS_INIT initializes the graphics system. It must be the first graphics system call made by
the application program. Any procedure call other than GRAPHICS_INIT will be ignored.
GRAPHICS_INIT performs the following operations:

® Get dynamic storage space for the graphics library.

e Sets the aspect ratio to 1.

® Sets the virtual coordinate and viewport limits to range from O to 1.0 in the X and Y
directions.

® Sets the world coordinate limits to range from —1.0 to 1.0 in the X and Y directions.
® Sets the starting position to (0.0,0.0) in world coordinate system units.
o Sets all attributes equal to their default values.

GRAPHICS_INIT does not enable any logical devices. The graphics system is terminated with a
call to GRAPHICS_TERM. Calling GRAPHICS_INIT while the graphics system is initialized will
result in an implicit call to GRAPHICS_TERM, before the system is reinitialized.

Note

Space is allocated for the graphics system using the standard Pascal
procedure, NEW. The application program should call this procedure
before any space is allocated for the application program. If memory
allocated at graphics_init is to be returned at graphics_term, the
compiler option $HEAP_DISPOSE ON$ must be used.

09826-90075, rev: 5/83

250

Procedures Reference

GRAPHICS_TERM

IMPORT: dgl_lib

This procedure terminates the graphics system.

Syntax

Procedure Heading
PROCEDURE GRAPHICS_TERM;

Semantics

GRAPHICS_TERM terminates the graphics system. Termination includes terminating both the
graphics display and the locator devices. GRAPHICS_TERM does not clear the graphics display.

GRAPHICS_TERM should be called as the last graphics system call in the application program.

GRAPHICS_TERM releases dynamic memory allocated during GRAPHICS_INIT. In order that
this memory actually be returned the compiler option $HEAP_DISPOSE ON$ must be used.

Error Conditions

If the graphics system is not initialized, the call will be ignored, an ESCAPE (—27) will be
generated, and GRAPHICSERROR will return a non-zero value.

09826-90075, rev: 5/83

Procedures Reference

Computer
‘Museum

GTEXT

IMPORT: dgl_types dgl_lib

This procedure draws characters on the graphics display.

Syntax

D SORETRSO

Item | Description/Default | Retharlil::!t}ieons
string Expression of TYPE Gstring255. Can be a string length <= 255
of any length up to 255 characters characters

Procedure Heading
PROCEDURE GTEXT (String : Gstrindg255)3j

Semantics
The string contains the characters to be output.

GTEXT produces characters on the graphics display. A series of vectors representing the
characters in the string is produced by the graphics system.

When the text string is output, the starting position will represent the lower left-hand corner of the
first character in STRING. Text is normally output from left to right and is printed vertically with
no slant.

After completion of this call, the starting position is left in a device dependent location such that
successive calls to GTEXT will produce a continuous line of text (i.e.,
GTEXT(/H’Y§ GTEXT('I’) 3 isequivalentto GTEXT(HI ‘) 3).

The attributes of color, line-style, line-width, text rotation, and character size apply to text
primitives. However, the text will appear with these attributes only if the graphics device is
capable of applying them to text.

Characters

The character sets provided by the graphics system are the same ones used by the CRT in alpha
mode, namely the standard character set plus either the Roman extension character set (for all
non-Katakana machines) or the Katakana character set (for Katakana machines).

09826-90075, rev: 5/83

251

252 Procedures Reference

Characters are defined within a cell that has an aspect ratio of 9/15. The character cells are
adjacent, both horizontally and vertically, as shown here.

Width Width

2
1

Height

X & o < @ © =

Height

12 3 4 56 7 8 9

Control Codes
The following control codes are supported by GTEXT:

Control Program Keyboard

Character Access Access Action

backspace CHR(8) CTRL-H Move one character cell to the left along the text direction
vector (defined by SET_CHAR_SIZE).

linefeed CHR(10) CTRL-J Move down the height of one character cell.

carriage CHR(13) CTRL-M Move back the length of the text just completed.

return

Any other control characters are ignored.

The current position is maintained to the resolution of the display device. A text size less-than-or-
equal-to the resolution of the display device will result in all the characters in a GTEXT call, or a
series of GTEXT calls, being written to the same point on the device.

The current position returned by an INQ_WS is not updated by calls to GTEXT. If you want to
know the current position aftera GTEXT, you must do a MOVE, or some other call which updates
the current position.

Error Conditions
If the graphics system is not initialized or a display is not enabled, the call will be ignored, an
ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero value.

09826-90075, rev: 5/83

Procedures Reference

HPIB_LINE

IMPORT: hpib_0

iodeclarations

This BOOLEAN function will return the current state of the specified line. Not all lines are
accessible at all times.

Syntax
(O O O
. Range Recommended
Item Description/Default Restrictions Range

interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
hpib line Expression of enumerated TYPE hpib_line. atn_line
specifier dav_line

ndac_line

nrid_line

eoi_line

srg_line

ifc_line

ren_line
Semantics

The lines are only accessible when the hardware buffer is pointing into the interface. For
example, REN can only be examined when the selected interface is not system controller. No
error is generated when an in-accessible line is examined.

253

254 Procedures Reference

system.

Syntax

INPUT_ESC

INPUT_ESC

operation
selector

INTEGER
array size

REAL
array size

IMPORT: dgl_lib

This procedure allows the user to obtain device dependent information from the graphics

INTEGER
array name

RAEAL array
name

error variable
name

~--

Procedure Heading
PROCEDURE INPUT_ESC (

Orpcode
Isize
Rsize
ANYUVAR Ilist
ANYYVAR Rlist
VAR Terr

INTEGER 3

INTEGER 3
INTEGER 3

Gint.list)
Greal_.lists

INTEGER)3

. Range Recommended
Item Description/Default Restrictions Range
operation selector Expression of TYPE INTEGER MININT to -
MAXINT
INTEGER array Expression of TYPE INTEGER MININT to >0
size MAXINT
REAL array size Expression of TYPE INTEGER MININT to >0
MAXINT
INTEGER array Variable of TYPE ANYVAR - -
name should be array of INTEGERs
REAL array name Variable of TYPE ANYVAR — -
should be array of REAL
error variable name | Variable of TYPE INTEGER - -

09826-90075, rev: 5/83

Procedures Reference 255

Semantics

The operation selector determines the device dependent inquiry escape function being in-
voked.

The INTEGER array size is the number of INTEGER parameters to be returned in the INTEGER
array by the escape function. The correct value for this can be found in the hundred’s place of the
operation selector (see the table below).

The REAL array size is the number of REAL parameters to be returned in the REAL array by the
escape function. The correct value for this can be found in the thousand’s place of the operation
selector (see the table below).

The INTEGER array is the array in which zero or more INTEGER parameters are returned by the
escape function.

The REAL array is the array in which zero or more REAL parameters are returned by the escape
function.

The error variable will contain a code indicating whether the input escape function was
performed.

Value Meaning
0 Inquiry escape function successfully completed.
1 Inquiry operation (operation selector) not supported by the graphics display device.
2 INTEGER array size is not equal to the number of INTEGER parameters to be
returned.
3 REAL array size is not equal to the number of REAL parameters to be returned.

If the error variable contains a non-zero value, the call has been ignored.

INPUT_ESC allows application programs to access special device features on a graphics display
device. The type of information returned from the graphics display device is determined by the
value of operation selector. Possible inquiry escape functions may return the status or the options
supported by a particular graphics display device.

Inquiry escape functions only apply to the graphics display device. INPUT_ESC implicitly makes
the picture current before the escape function is performed.

09826-90075, rev: 5/83

255.01 Procedures Reference

HPGL Plotter Operation Selectors
The following inguiry is supported:

Operation
Selector | Meaning

2050 [Inquire about current turret.

INTEGER array [1] = —1 >> Turret mounted, but its type is unknown
INTEGER array [1] = 0 >> No turret mounted

INTEGER array [1] = 1 >> Fiber tip pens

INTEGER array [1] = 2 >> Roller ball pens

INTEGER array [1] = 3 >> Capillary pens

INTEGER array [2] = 0 >> No turret mounted or turret has no pens
INTEGER array [2] = n >> Sum of these values:

: Penin stall #1
2: Penin stall #2
4: Pen in stall #3
8: Pen in stall #4
16: Pen in stall #5
32: Penin stall #6
64: Pen in stall #7
128: Pen in stall #8

For example, if INTEGER array[2] = 3, pens would only be contained in stalls 1 and 2.

Operation selector 2050 is only supported on the HP 7580 and HP 7585 plotters.

Error Conditions
If the graphics system is not initialized or a display is not enabled, the call will be ignored, an
ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero value.

09826-90075, rev: 5/83

Procedures Reference 255.02

INQ_COLOR_TABLE

IMPORT: dgl_lib
dgl-inq

This procedure inquires the color modeling parameters for an index into the device-dependent
color capability table.

Syntax

entry first second
ING_COLOR.TABLE

third
parameter

. Range
Item Description/Default Restrictions
entry selector Expression of TYPE INTEGER >0
first parameter name Variable of TYPE REAL -

second parameter name | Variable of TYPE REAL -
third parameter name Variable of TYPE REAL -

Procedure Heading

PROCEDURE INQ_COLOR_TABLE (¢ Index = INTEGERS
VAR Colrl : REALS
VAR ColrZ : REALG
UAR Colr3 : REAL y3

Semantics

This routine inquires the color modelling parameters for the specified location in a device-
dependent color capability table.

The entry selector specifies the location in the color capability table. The parameters returned
are for the specified location. The size of the color capability table is device dependent. For raster
displays in Series 200 computers, 32 entries are available.

The first parameter represents red intensity if the RGB model has been selected with the SET
COLOR statement, or hue if the HSL model has been selected.

The second parameter represents green intensity if the RGB model has been selected with the
SET COLOR statement, or saturation if the HSL model has been selected.

The third parameter represents blue intensity if the RGB model has been selected, or luminosity
if the HSL model has been selected.

09826-90075, rev: 5/83

255.03 Procedures Reference

A more detailed description of the color models and the meaning of their parameters can be
found under the procedure definition of SET_COLOR_MODEL.

Note
The color table stores color specifications as RGB values. The conver-
sion from RGB to HSL is a one-to-many transformation, and the
following arbitrary assignments may be made during the conversion:

IF Luminosity =0
THEN Hue=0
Saturation=0

[F Saturation=0
THEN Hue=0

Error Conditions
If the graphics system is not initialized, a display device is not enabled, the color table contents

cannot be inquired, or the color table entry selector is out of range, the call isignored, an ESCAPE
(—27) will be generated, and GRAPHICSERROR will return a non-zero value.

09826-90075, rev: 5/83

Procedures Reference 255.04

INQ_PGN_TABLE

IMPORT: dgl_lib
dgl_ing

This procedure inquires the polygon style attributes for an entry in the polygon style table.

Syntax

entry density f1i11 orientation
ng_pon_TABLE () O © g NS
edge variable
name

. Range Recommended

ltem Description/Default Restrictions Range

entry selector Expression of TYPE INTEGER MININT thru Device
MAXINT dependent

density variable Variable of TYPE REAL - -
name
fill orientation Variable of TYPE REAL - -
variable name
edge variable name | Variable of TYPE INTEGER - -

Procedure Heading

PROCEDURE INQ_PGN_TABLE (Index : INTEGER
VAR Densty : REALS
YAR Orient : REALS
VAR Edde : INTEGER 13

Semantics
The entry selector specifies the entry in the polygon style table the inquiry is directed at.

The density variable will contain a value between -1 and 1. This magnitude of this value is the
ratio of filled area to non-filled area. Zero means the polygon interior is not filled. One represents
a fully filled polygon interior. All non-zero values specify the density of continuous lines used to fill
the interior. Negative values are used to specify crosshatching. Calculations for fill density are
based on the thinnest line possible on the device and on continuous line-style. If the interior
line-style is not continuous, the actual fill density may not match that found in the polygon style
table.

09826-90075, rev: 5/83

255.05 Procedures Reference

The fill orientation variable will contain a value from -90 through 90. This value represents the
angle (in degrees) between the lines used for filling the polygon and the horizontal axis of the
display device. The interpretation of fill orientation is device-dependent. On devices that require
software emulation of polygon styles, the angle specified will be adhered to as closely as possible,
within the line-drawing capabilities of the device. For hardware generated polygon styles, the
angle specified will be adhered to as closely as is possible given the hardware simulation of the
requested density. If crosshatching is specified, the fill orientation specifies the angle of orienta-
tion of the first set of lines in the crosshatching, and the second set of lines is always perpendicular
to this.

The edge variable will contain a 0 if the polygon edge is not to be displayed and a 1 if the polygon
edge is to be displayed. If polygon edges are displayed, they adhere to the current line attributes
of color, line-style, and line-width, in effect at the time of polygon display.

All current devices support 16 entries in the polygon table. The polygon styles defined in the
default tables are defined to exploit the hardware capabilities of the devices they are defined for.

Error Conditions

The graphics system must be initialized, a display must be enabled, and the entry selector must be
in range or the call will be ignored, an ESCAPE (—-27) will be generated, and
GRAPHICSERROR will return a non-zero value.

09826-90075, rev: 5/83

IMPORT: dgl_lib
dgl_inq

This procedure allows the user to determine characteristics of the graphics system.

Syntax

operation string INTEGER
a5 (O Eeretior (O e (O _acray size |

Procedures Reference 255.06

INQ WS

REAL array
size

string INTEGER error
name array name variable name

Item Description/Default Re?t?irgif)ns
operation selector Expression of TYPE INTEGER see below
string size Expression of TYPE INTEGER see below
integer array size Expression of TYPE INTEGER see below
REAL array size Expression of TYPE INTEGER see below
string name Variable of TYPE PACKED ARRAY OF CHAR —
INTEGER array name Variable of TYPE ARRAY OF INTEGER -
REAL array name Variable of TYPE ARRAY OF REAL -
error variable name Variable of TYPE INTEGER -

Procedure Heading
PROCEDURE INQ_WS

09826-90075, rev: 5/83

(

Opcode : INTEGER]
Ssize : INTEGER
Isize : INTEGER
Rsize : INTEGER
ANYVAR Slist : Gechar_.lists

ANYVAR Ilist : Gint_list}i
ANYVAR Rlist ¢ Greal_lists
VAR Ierr : INTEGER)

255.07 Procedures Reference

Semantics

The operation selector is an integer from the list of operation selectors given below. It is used to
specify the topic of the inquiry to the system.

The string size is used to specify the maximum number of characters that are to be returned in
the string array by the function specified by the operation selector. If there is a 1 in the
ten-thousand’s place a string value will be returned. The number of characters in the string is
returned in the first entry in the INTEGER arrray.

The INTEGER array size is the number of integer parameters that are returned in the integer
array by the function specified by OPCODE. The thousand’s digit of the operation selector is the
number of elements the INTEGER array must contain.

The REAL array size is the number of REAL parameters that are returned in the REAL array by
the function specified by OPCODE. The hundred’s digit of the operation selector is the number of
elements the REAL array must contain.

The string array is a PACKED ARRAY OF CHAR which will contain a string or strings that
represents characteristics of the work station specified by the value of operation selector. The
application program must ensure that string array is dimensioned to contain all of the values
returned by the selected function.

The INTEGER array will contain integer values that represent characteristics of the work station
specified by the value of OPCODE. The application program must ensure that the integer array is
dimensioned to contain all of the values returned by the selected function.

The REAL array will contain REAL values that represent characteristics of the work station
specified by the value of OPCODE. The application program must ensure that the REAL array is

dimensioned to contain all of the values returned by the selected function.

The error variable will return an integer indicating whether the inquiry was successfully per-

formed.
Value Meaning

0 The inquiry was successfully performed.

1 The operation selector was invalid.

2 The INTEGER array size was not equal to the number INTEGER parameters requested
by the operation selector.

3 The REAL array size was not equal to the number of REAL parameters requested by
the operation selector.

4 The string array was not large enough to hold the string requested by the operation
selector.

09826-90075, rev: 5/83

Procedures Reference 255.08

The procedure INQ_WS returns current information about the graphics system to the application
program. The type of information desired is specified by a unique value of OPCODE. The
thousands digit of the operation selector specifies the number of integer values returned in the
integer array and the hundreds digit specifies the number of REAL values returned in the REAL
array. A 1 in the ten-thousand’s place indicates that a value will be returned in the string.

One use of INQ_WS is device optimization: the use of inquiry to enhance the application’s
utilization of the output device. An example of this is using color to distinguish between lines
when a device supports colors, and using line-styles when color is not available. Another example
is maximizing the aspect ratio used, based on the maximum aspect ratio of the display device.

Device dependent information returned by the procedure is undefined if the device being
inquired from is not enabled (e.g., inquire number of colors supported, operation selector 1053,
only returns valid information when the display is enabled).

If the graphics system is not initialized, the call will be ignored and GRAPHICSERROR will return
a non-zero value.

09826-90075, rev: 5/83

255.09 Procedures Reference

Supported Operation Selectors
The operation selectors supported by the system and their meaning is listed below:

Operation
Selector | Meaning

250 | Current cell size used for text.
REAL Array[1] = Character cell width in world coordinates
REAL Array[2] = Character cell height in world coordinates

251 | Marker size.
REAL Array[1] = Marker width in world coordinates
REAL Array[2] = Marker height in world coordinates

252 | Resolution of graphics display
REAL Array[1] = Resolution in X direction (points/mm)
REAL Array[2] = Resolution in Y direction (points/mm)

253 | Maximum dimensions of the graphics display.
REAL Array[1] = Maximum size in X direction (MM)
REAL Array[2] = Maximum size in Y direction {(MM)

254 | Aspect ratios
REAL Array[1] = Current aspect ratio of the virtual coordinate system.
REAL Array[2] = Aspect ratio of logical limits.

255 | Resolution of locator device
REAL Array[1] = Resolution in X direction (points/mm)
REAL Array[2] = Resolution in Y direction (points/mm)

256 | Maximum dimensions of the locator display.
REAL Array[1] = Maximum size in X direction (MM)
REAL Array[2] = Maximum size in Y direction (MM)

257 | Current locator echo position
REAL array[1] = X world coordinate position
REAL array[2] = Y world coordinate position

258 | Current virtual coordinate limits
REAL array[1] = Maximum X virtual coordinate
REAL array[2] = Maximum Y virtual coordinate

259 | Starting position.
The information returned may not be valid (not updated) following a text call, an escape
function call, changes to the viewing transformation or after initialization of the graphics
display device.

REAL array[1] = X world coordinate position

REAL array[2] = Y world coordinate position

450 | Current window limits

REAL array[1] = Minimum X world coordinate position
REAL array[2] = Maximum X world coordinate position
REAL array[3] = Minimum Y world coordinate position
REAL array[4] = Maximum Y world coordinate position

451 | Current viewport limits

REAL array[1] = Minimum X virtual coordinate
REAL array[2] = Maximum X virtual coordinate
REAL array[3] = Minimum Y virtual coordinate
REAL array[4] = Maximum Y virtual coordinate

09826-90075, rev: 5/83

Procedures Reference 255.10

Operation
Selector | Meaning

1050 | Does graphics display device support clipping at physical limits?

INTEGER Array[1] = 0 - No

INTEGER Array[1] = 1 - Yes, to the view-surface boundaries

INTEGER Array[1] = 2 - Yes, but only to the physical limits
of the display surface.

1051 | Justification of the view surface within the logical display limits.
INTEGER Array[1] = 0 - View-surface is centered within
the logical display limits
INTEGER Array[1] = 1 - View surface is positioned in the lower
left corner of the logical display limits.

1052 | Can the graphics display draw in the background color? Drawing in the background color
can be used to "erase’ previously drawn primitives.

INTEGER Array[1] = 0 - No

INTEGER Array[1] = 1 - Yes

1053 | The total number of non-dithered colors supported on the graphics display. The number
returned does not include the background color. (Compare operation selectors 1053, 1054,
and 1075.)

INTEGER Array[1] = number of distinct colors supported.

1054 | Number of distinct non-dithered colors which can appear on the graphics display at one
time. The number returned does not include the background color.
INTEGER Array[1] = number of distinct colors which can appear
on the display device at one time.

1056 | Number of line-styles supported on the graphics display.
INTEGER Array[1] = number of hardware line-styles supported.

1057 | Number of line-widths supported on the graphics display.
INTEGER Array[1] = number of line-widths supported.

1059 | Number of markers supported on the graphics display.
INTEGER Array[1] = # of distinct markers supported.

1060 | Current value of color attribute.
INTEGER Array[1] = Current value of color attribute.

1062 | Current value of line-style attribute
INTEGER Array[]1] = Current value of line-style attribute.

1063 | Current value of line-width attribute.
INTEGER Array[]1] = Current value.

1064 | Current timing mode.
INTEGER Array[1] = O - Immediate visibility
INTEGER Array[1] = 1 - System buffering

1065 | Number of entries in the polygon style table.
INTEGER Array[1] = # styles.

1066 | Current polygon interior color index.
INTEGER Array[1] = Index

09826-90075, rev: 5/83

255.11 Procedures Reference

Operation
Selector | Meaning
1067 [Current polygon style index.
INTEGER Array[1] = Index
1068 [Maximum number of polygon vertices that a display device can process.
INTEGER Array[1] = 0 No hardware support.
= N (0<n<32767) Number of vertices supported.
= 32767 The graphics display device uses all
available memory to process polygons
(the maximum number of vertices
is determined by current free memory).
1069 [Does the graphics device support immediate, retroactive change of polygon style for
polygons already displayed?
INTEGER Array[1] = O - No.
INTEGER Array[1] = 1 - Yes.
1070 | Does the graphics device support hardware (or low-level device handler) generation of
polygons using INT_POLYGON_DD?
INTEGER Array[1l] = 0 - No
INTEGER Array[1] = 1 - Yes
1071 | Does the graphics device support immediate, retroactive change for primitives already
displayed?
INTEGER Array[1] = 0 - No
INTEGER Array[1] = 1 - Yes
1072 | Can the background color of the display be changed?
INTEGER Array[1] = 0 - No
INTEGER Array[1] = 1 - Yes
1073 | Can entries in the color table be redefined using SET_COLOR_TABLE?
INTEGER Array{1] = 0 -No
INTEGER Array[1] = 1 - Yes
1074 | Current color model in use.
INTEGER Array[1] = 1 - RGB
INTEGER Array[1] = 2 - HSL
1075 | Number of entries in the color capability table. The number returned does not include the
background color.
INTEGER Array[1] = # entries
1076 | Current polygon interior line-style.
INTEGER Array[1] = Current interior line-style
11050 | Graphics display device association.
String = Name of device path. (Internal device specifier.)
INTEGER Array[1] = Number of characters in the device path.
11052 | Locator device association.
String = Name of device path. (Internal device specifier.)
INTEGER Array[1] = Number of characters in the device path.

09826-90075, rev: 5/83

Procedures Reference

Operation
Selector |Meaning

255.12

12050 [Graphics display device information.
String = Name of graphics display device.
INTEGER Array[1] = Number of characters in the device name.
INTEGER Array[2] = Status
= 0 Graphics display is not enabled.
1 Graphics display is enabled.

13052 |Graphics locator device information.
String = Name of the locator device.
INTEGER Array[1] = Number of characters in the device name.
INTEGER Array[2] = Status
= 0 Locator device is not enabled.
=1 Locator device is enabled.
INTEGER Array[3] = Number of buttons on the locator device.

Error Conditions

If the graphics system is not initialized, the call will be ignored, an ESCAPE (—27) will be

generated, and GRAPHICSERROR will return a non-zero value.

09826-90075, rev: 5/83

256

Procedures Reference

INT_LINE

IMPORT: dgl_types
dgl_lib

This procedure draws a line from the starting position to the world coordinate specified.

Syntax

(NN} O] coordinate [)] coordinate ()

Item Description/Default Re?t&rlir::st;if)ns
x coordinate Expression of TYPE Gshortint, This is subrange - 32 768 to 32 767
of INTEGER
y coordinate Expression of TYPE Gshortint, This is subrange —32 768 to 32 767
of INTEGER

Procedure Heading
PROCEDURE INT_LINE (Iwxs Iwy : Gshortint)3

Semantics
The x and y coordinate pair is the ending of the line to be drawn in the world coordinate system.

A line is drawn from the starting position to the world coordinate specified by the x and y
coordinates. The starting position is updated to this point at the completion of this call.

The primitive attributes of line style (see SET_LINE_STYLE), line width (see SET_LINE_
WIDTH), and color (see SET_COLOR) apply to lines drawn using INT_LINE.

This procedure is the same as the LINE procedure, with the exception that the parameters are of
type Gshortint (— 32 768..32 767). When used with some displays this procedure may perform
about 3 times faster than the LINE procedure. For all other displays this procedure has about the
same performance as the LINE procedure.

The INT_LINE procedure only has increased performance when the following conditions exist:

® The display must be a raster device.
® The window bounds within the range —32 768 to 32 767.
® The window must be less then 32 767 units wide and high.

09826-90075, rev: 5/83

Procedures Reference 257

INT operations are provided for efficient vector generation. Although their use can be mixed with
other, non-integer operations, one dot roundoff errors may result with mixed use since different
algorithms are used to implement each.

Drawing to the starting position generates the shortest line possible. Depending on the nature of
the current line-style, nothing may appear on the graphics display surface. See SET_LINE_
STYLE for a complete description of how line-style affects a particular point or vector.

09826-90075, rev: 5/83

258

Procedures Reference

INT_MOVE

IMPORT: dgl_types

dgl_lib
This procedure sets the starting position to the world coordinate position specified.
Syntax
(O O Q)
Item Description/Default Range
P Restrictions
x coordinate Expression of TYPE Gshortint; This is subrange —32 768 to 32 767
of INTEGER
y coordinate Expression of TYPE Gshortint; This is subrange —32 768 to 32 767
of INTEGER

Procedure Heading
PROCEDURE INT_MOVE (Iwxs Iwy : INTEGER)i

Semantics
The x and y coordinate pair define the new starting position in world coordinates.

INT_MOVE specifies where the next graphical primitive will be output. [t does this by setting the
Value of the starting position to the world coordinate system point specified by the x and y
coordinate values and then moving the pen (or its logical equivalent) to that point.

The starting position corresponds to the location of the physical pen or beam in all but four
instances: after a change in the viewing transformation, after initialization of a graphical display
device, after the output of a text string, or after the output of an escape function. A call to MOVE
or INT_MOVE should therefore be made after any one of the following calls to update the value
of the starting position and in so doing, place the physical pen or beam at a known
location: SET_ASPECT, DISPLAY_INIT, SET_DISPLAY_LIM, OUTPUT_ESC, TEXT, SET_
VIEWPORT, and SET_WINDOW.

This procedure is the same as the MOVE procedure, with the exception that the parameters are of
type Gshortint (—32 768..32 767). When used with the same display, this procedure can
perform about 3 times faster than the MOVE procedure. For all other displays this procedure has
about the same performance as the MOVE procedure.

09826-90075, rev: 5/83

Procedures Reference 259

The INT_MOVE procedure only has increased performance when the following conditions exist:

® The display must be a raster device.
® The window bounds within the range — 32 768 to 32 767.
® The window must be less than 32767 units wide and high.

INT operations are provided for efficient vector generation. Although their use can be mixed with
non-integer operations, one dot roundoff errors may result with mixed use since different
algorithms are used to implement each.

Error Conditions

The graphics system must be initialized and a graphics display must be enabled or the call will be
ignored, an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero
value.

09826-90075, rev: 5/83

259.01 Procedures Reference

INT_POLYGON

IMPORT: dgl_types
dgl_lib
dgl_poly

This procedure displays a polygon-set starting and ending at the specified point adhering to the
specified polygon style exactly as specified (i.e., device-independent results).

Syntax

INT_POLYGON

operation selector
array name

. Range
Item Description/Default Restrictions
points Expression of TYPE INTEGER MININT thru MAXINT
X array name Array of TYPE Gshortint_list. Gshortintis a sub- —32 768 to 32 767
range of INTEGER.
y array name Array of TYPE Gshortint_list. Gshortint is a sub- -32 768 to 32 767
range of INTEGER.
operation selector array Array of TYPE Gshortint_list. Gshortint is a sub- —32 768 to 32 767
name range of INTEGER.

Procedure Heading

PROCEDURE INT_POLYGON (Npoint : INTEGERS
ANYYAR Rueg : Gshortint_list:s
ANY VAR Yuec : Gshortint_list;s

ANY VAR Opcodes : Gshortint_list) 3
Semantics

Points is the number of vertices in the polygon set.

The x and y coordinate arrays contain the world coordinate values for each vertex of the
polygon-set. The vertices must be in order. The vertices for the first sub-polygon must be at the
beginning of these arrays, followed by the vertices for the second sub-polygon, etc. So, the
coordinate arrays must contain a total number of vertices that equals points.

The operation selector array contains a series of integer operation selectors defining which
vertices start new polygons, and defining which edges should be displayed.

Value | Meaning

0 Don’t display the line for the edge extending to this vertex from the previous vertex.
1 Display the line for the edge extending to this vertex from the previous vertex.
2 This vertex is the first vertex of a sub-polygon. Succeeding vertices are part of a

sub-polygon until a new start-of-polygon operation selector (2) is encountered. (Or
the end of the arrays is encountered.)

09826-90075, rev: 5/83

Procedures Reference 259.02

Note

The first entry in the operation selector array must be 2, since it is the
first vertex of a sub-polygon.

INT_POLYGON is used to output a polygon-set, specified in world coordinates, adhering exactly
to the polygon style attributes that are currently specified. A polygon-set is a set of polygons
(called “‘sub-polygons’’) that are treated graphically as one polygon. This is accomplished by
“‘stacking”’ the sub-polygons. The subpolygons in a polygon-set may intersect or overlap each
other.

The edge of a sub-polygon is defined as the line sequence that connects its vertices in the order
specified. If the last vertex specified for a sub-polygon is not the same as the first, they are
automatically connected.

When a polygon-set is displayed, the primitive attributes for polygons and lines define its
appearance. In particular, the interior of the polygon-set will be filled according to the attributes
of polygon style, polygon interior color and polygon interior line-style. If the edges are to be
displayed as specified in the polygon style, the edges will adhere to the current line attributes of
color, line-style and line-width. A dot will disappear on an edged polygon if the edge is done with
a complementing line.

The filling of polygons also depends on how the sub-polygons “nest”’ within each other. An
“even-odd’’ rule is used for determining which areas will be filled. Moving across the screen,
count the edges of the polygon. Odd-numbered edges will turn the fill on and even-numbered
edges will turn the fill off. The picture below will help clear up how the fills work.

Polygon Filling

09826-90075, rev: 5/83

259.03 Procedures Reference

Referto SET_PGN_TABLE, SET_PGN_STYLE, SET_PGN_COLOR, SET_PGN_LS for a more
detailed description of how attributes affect polygons.

As stated above, the values in the operation selector array define how the edges of the sub-
polygons are displayed. The edge from the (I-1)th vertex to the Ith vertex will only be displayed if
the Ith entry in the operation selector array equals 1. To display the edge from the last vertex to
the first vertex of a sub-polygon, the first vertex must be explicitly respecified after all the other
vertices of the sub-polygon, with an operation selector equal to 1. Otherwise the edge from the
last vertex to the first will not be drawn. It will, however, automatically be connected for polygon
filling.

If it is within the capabilities of the device, filling of the sub-polygon will be done to the
sub-polygon edges regardless of whether the edges are displayed. If an entry in the operation
selector array does not equal 0, 1, or 2, it will be treated as if it were equal to 0 and the edge will
not be drawn.

When INT_POLYGON is used, the current position is updated to the end of the last sub-polygon
specified in the polygon-set. The end of the last sub-polygon is defined to be the first (implicit last)
vertex of the subpolygon. So, if there is only one vertex in a polygon-set this call degenerates to
an update of the current position to the first coordinate set in the x and y point arrays (x
coordinate array[1], y coordinate array[11]).

It is the application program’s responsibility to ensure that the arrays are all dimensioned to at
least the number of elements specified by points and that at least that many values are contained
in each array.

Polygons are defined to be closed surfaces. When a sub-polygon extends beyond a clipping edge
the closed nature of the sub-polygon is destroyed. As with other primitives, unpredictable results
may occur if the sub-polygon extends beyond the clipping window.

This procedure is the same as the POLYGON procedure, with the exception that the parameters
are of type Gshortint (—32 768..32 767). When used with some displays this procedure may
perform about 3 times faster than the POLYGON procedure. For all other displays this procedure
has about the same performance as the POLYGON procedure.

The INT_POLYGON procedure only has increased performance when the following conditions
exist:

® The display must be a raster device.
® The window bounds are within the range — 32 768 through 32 767.
¢ The window must be less than 32 767 units wide and high.

INT_POLYGON is provided for efficient vector generation. Although its use can be mixed with
MOVE, LINE, POLYLINE, and POLYGON, one dot roundoff errors may result with mixed use
since different algorithms are used to implement each.

Error Conditions

The graphics system must be initialized, a graphics display must be enabled, all parameters must
be within specified limits and the number of points specified must be greater than O or the call will
beignored, an ESCAPE (— 27) will be generated, and GRAPHICSERROR will return a non-zero
value.

09826-90075, rev: 5/83

Procedures Reference 259.04

INT_POLYGON_DD

IMPORT: dgl_types
dgl_lib
dgl_poly

This procedure displays a polygon-set starting and ending at the specified point adhering to the
specified polygon style in a device-dependent fashion.

Syntax
© O O O
[| operation selector (:)
array name

.. Range
ltem Description/Default Restrictions
points Expression of TYPE INTEGER MININT thru MAXINT
X array name Array of TYPE Gshortint_list. Gshortint is a sub- —32 768 to 32 767
range of INTEGER.
y array name Array of TYPE Gshortint list. Gshortint is a sub- —32 768 to 32 767
range of INTEGER.
operation selector array Array of TYPE Gshortint_list. Gshortint is a sub- —-32 768 to 32 767
name range of INTEGER.

Procedure Heading

PROCEDURE INT_PODLYGON_.DD (Nroint INTEGER 3
ANYWVAR Huec : Gshortint_list;s
ANYUVAR Yuec t Gshortint_lists
ANYUVAR Dpcodes : Gint_list)i
Semantics

Points is the number of vertices in the polygon set.

The x and y coordinate arrays contain the world coordinate values for each vertex of the
polygon-set. The vertices must be in order. The vertices for the first sub-polygon must be at the
beginning of these arrays, followed by the vertices for the second sub-polygon, etc. So, the
coordinate arrays must contain a total number of vertices that equals points.

The operation selector array contains a series of integer operation selectors defining which
vertices start new polygons, and defining which edges should be displayed.

09826-90075, rev: 5/83

259.05 Procedures Reference

Value Meaning
0 Don't display the line for the edge extending to this vertex from the previous vertex.
1 Display the line for the edge extending to this vertex from the previous vertex.
2 This vertex is the first vertex of a sub-polygon. Succeeding vertices are part of a
sub-polygon until a new start-of-polygon operation selector (2) is encountered. (Or the
end of the arrays is encountered.)

Note

The first entry in the operation selector array must be 2, since it is the
first vertex of a sub-polygon.

INT_POLYGON_DD is used to output a polygon-set, specified in world coordinates, adhering
within the capabilities of the device to the polygon style attributes that are currently specified. A
polygon-set is a set of polygons (called ‘‘sub-polygons’’) that are treated graphically as one
polygon. The subpolygons in a polygon-set may intersect or overlap each other.

The edge of a sub-polygon is defined as the line sequence that connects its vertices in the order
specified. If the last vertex specified for a sub-polygon is not the same as the first, they are
automatically connected.

When a polygon-set is displayed, the primitive attributes for polygons and lines define its

appearance. In particular, the interior of the polygon-set will be filled according to the attributes

of polygon style, polygon interior color and polygon interior line-style. If the edges are to be ‘
displayed as specified in the polygon style, the edges will adhere to the current line attributes of

color, line-style and line-width.

The filling of polygons also depends on how the sub-polygons ‘‘nest” within each other. An
“even-odd’’ rule is used for determining which areas will be filled. Moving across the screen,
count the edges of the polygon. Odd-numbered edges will turn the fill on and even-numbered
edges will turn the fill off. The picture below will help clear up how the fills work.

Polygon Filling

09826-90075, rev: 5/83

Procedures Reference 259.06

Referto SET_PGN_TABLE, SET_PGN_STYLE, SET_PGN_COLOR, SET_PGN_LS for a more
detailed description of how attributes affect polygons.

As stated above, the values in the operation selector array define how the edges of the sub-
polygons are displayed. The edge from the (I-1)th vertex to the Ith vertex will only be displayed if
the Ith entry in the operation selector array equals 1. To display the edge from the last vertex to
the first vertex of a sub-polygon, the first vertex must be explicitly respecified after all the other
vertices of the sub-polygon, with an operation selector equal to 1. Otherwise the edge from the
last vertex to the first will not be drawn. It will, however, automatically be connected for polygon
filling.

If it is within the capabilities of the device, filling of the sub-polygon will be done to the
sub-polygon edges regardless of whether the edges are displayed. If an entry in the operation
selector array does not equal 0, 1, or 2, it will be treated as if it were equal to 0, i.e., the edge will
not be drawn.

When INT_POLYGON_DD is used, the current position is updated to the end of the last
sub-polygon specified in the polygon-set. The end of the last sub-polygon is defined to be the first
(implicit last) vertex of the subpolygon. So, if there is only one vertex in a polygon-set this call
degenerates to an update of the current position to the first coordinate set in the x and y point
arrays (x coordinate array[1], y coordinate array[1]).

It is the application program’s responsibility to ensure that the arrays are all dimensioned to at
least the number of elements specified by points and that at least that many values are contained
in each array.

Device capabilities vary widely. Not all devices are able to draw polygon edges as requested. If a
device is not able to draw polygon edges as requested, they will be simulated in software. The
simulation will always adhere to the edge value in SET_PGN_STYLE and the operation selector
in INT_.POLYGON_DD, but the line-style and color of the edge will depend on the capability of
the device to produce lines with those attributes.

Polygon fill capabilities can vary widely between devices. A device may have no filling capabilities
at all, may be able to perform only solid fill, or may be able to fill polygons with different fill
densities and at different fill line orientations. INT_POLYGON_DD tries to match the device
capabilities to the request. If the device cannot fill the request at all, then no simulation is done
and the polygon will not be filled. For HPGL plotters, the fill is simulated. For raster devices, if the
density is greater than 0.5, a solid fill is used, otherwise, the fill is simulated.

In the case where the polygon style specifies non-display of edged, this would result in no visible
output although visible output had been specified. To provide some visible output in this case,
INT_POLYGON_DD will outline the polygon using the color and line-style specified for the fill
lines. However, only those edge segments specified as displayable by the operation selector array
will be drawn. Therefore, if all edge segments are specified as non-displayed, there will still be no
visible output.

Regardless of the capabilities of the device, INT_POLYGON_DD sets the starting position to the
first vertex of the last member polygon specified in the call. If there is only one polygon specified,
the starting position will therefore be set to the first vertex specified.

09826-90075, rev: 5/83

259.07 Procedures Reference

Polygons are defined to be closed surfaces. When a sub-polygon extends beyond a clipping edge
the closed nature of the sub-polygon is destroyed. As with other primitives, unpredictable results
may occur if the sub-polygon extends beyond the clipping window.

This procedure is the same as the procedure POLYGON_DEV_DEP, with the exception that the
parameters are of type Gshortint (—32 768..32 767). When used with some displays this
procedure may perform about 3 times faster than the POLYGON_DEV_DEP procedure. For all
other displays this procedure has about the same performance as the POLYGON_DEV_DEP
procedure.

The INT_POLYGON_DD procedure only has increased performance when the following condi-
tions exist:

® The display is a raster device.
® The window bounds are within the range —32 768 through 32 767.
® The window is less then 32 767 units wide and high.

INT_POLYGON_DD is provided for efficient vector generation. Although its use can be mixed

with MOVE, LINE, POLYLINE, and POLYGON_DEV_DEP, one dot roundoff errors may result
with mixed use since different algorithms are used to implement each.

Error Conditions

The graphics system must be initialized, a graphics display must be enabled, all parameters must
be within specified limits and the number of points (Points) must be greater than O or the call will
be ignored, an ESCAPE (— 27) will be generated, and GRAPHICSERROR will return a non-zero
value.

09826-90075, rev: 5/83

Procedures Reference 259.08

INT_POLYLINE

IMPORT: dgl_types
dgl_lib

This procedure draws a connected line sequence starting at the specified point.

Syntax

i)~ Do~ O~ O~ 2 -0

.. Range
Item Description/Default Restrictions

points Expression of TYPE INTEGER MININT thru MAXINT

X array name Array of TYPE Gshortint_list. Gshortint is a sub- -32 768 to 32 767
range of INTEGER.

y array name Array of TYPE Gshortint_list. Gshortint is a sub- —-32 768 to 32 767
range of INTEGER.

‘ Procedure Heading
PROCEDURE INT_POLYLINE ¢ NFts : INTEGER?

ANYUVAR Xvecsy Yvec : Gshortint_list)

Semantics
Points is the number of vertices in the polygon set.

The x and y coordinate arrays contain the world coordinate values for each vertex of the
polyline-set. The vertices must be in order. The vertices for the first sub-polyline must be at the
beginning of these arrays, followed by the vertices for the second sub-polyline, etc. So, the
coordinate arrays must contain a total number of vertices that equals points.

The procedure INT_POLYLINE provides the capability to draw a series of connected lines
starting at the specified point. A complete object can be drawn by making one call to this
procedure. This call first sets the starting position to be the first elements in the x and y coordinate
arrays. The line sequence begins at this point and is drawn to the second element in each array,
then to the third and continues until points-1 lines are drawn.

This procedure is equivalent to the following sequence of calls:

INT_MOVE (X_.coordinate_arrav[ll,¥Y._.coordinate_arrav[1])3
INT_LINE (¥_coordinate_arravy[2]sY¥Y_coordinate_arrav[2]1)3
INT_LINE (X_coordinate_.arrav[3]ls¥_.coordinate_arrav[31)3

INT_LINE (X_coordinmate_array[Pointsl:¥_.coordinate_array[Pointsl)}

09826-90075, rev: 5/83

259.09 Procedures Reference

The starting position is set to (X_coordinate_array[Points], Y_coordinate_array[Points]) at the
completion of this call.

Specifying only one element, or Points equal to 1, causes a move to be made to the world
coordinate point specified by the first entries in the two coordinate arrays.

It is the application program’s responsibility to ensure that the arrays are all dimensioned to at
least the number of elements specified by points and that at least that many values are contained
in each array.

Depending on the nature of the current line-style nothing may appear on the graphics display.
See SET_LINE_STYLE for a complete description of how line-style affects a particular point or
vector,

The primitive attributes of color, line-style, and line-width apply to polylines.

This procedure is the same as the POLYLINE procedure, with the exception that the parameters
are of type Gshortint (—32 768..32 767). When used with some displays this procedure may
perform about 3 times faster than the POLYLINE procedure. For all other displays this procedure
has about the same performance as the POLYLINE procedure.

The INT_POLYLINE procedure only has increased performance when the following conditions
exist:

® The display must be a raster device.
e The window bounds within the range —32 768 to 32 767.
® The window must be less then 32 767 units wide and high.

INT_POLYLINE is provided for efficient vector generation. Although its use can be mixed with
MOVE, LINE, and POLYLINE, one dot roundoff errors may result with mixed use since different
algorithms are used to implement each.

Error Conditions

The graphics system must be initialized, a graphics display must be enabled, all parameters must
be within specified limits and the number of points (points) must be greater than 0 or the call will
beignored, an ESCAPE (— 27) will be generated, and GRAPHICSERROR will return a non-zero
value.

09826-90075, rev: 5/83

Procedures Reference 259.10

09826-90075, rev: 5/83

260 Procedures Reference

IOBUFFER

IMPORT: general_4
iodeclarations

This procedure will create a buffer area of the specified number of bytes. The buffer name
variable contains the various empty and fill pointers necessary to use the buffer space.

Syntax

T="0 o o

Item Description/Default Re?t?ir::st;rons
buffer name Variable of TYPE buf_info_type. See Chapter 11
buffer size Expression of TYPE INTEGER, specifies MININT thru MAXINT
bytes.
Semantics

Re-executing IOBUFFER on a buffer name will allocate new space in the system, not reclaim
the old space, or put a transfer in the old space into a known state.

MARK and RELEASE interact with [OBUFFER, and it is possible to lose an io buffer by
releasing it.

The buffer name should be in a VAR declaration at the outermost level of the program or
module containing it.

Procedures Reference

IOCONTROL

IMPORT: general_0

jodeclarations

This procedure sends control information to the selected interface. Refer to the specific inter-
face in the Status and Control Register Appendix in the Pascal System User’s Manual.

Syntax
© OE OO
.. Range Recommended
Item Description/Default Restrictions Range
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
register number Expression of TYPE jio_word. This is an — 32 768 thru Interface
INTEGER subrange. 32 767 dependent
control value Expression of TYPE INTEGER. MININT thru 0 thru 65 535
MAXINT (interface de-
pendent)

Note

Unexpected and possibly undesirable side effects may result from
attempting to use this procedure in combination with other parts of
the I/O procedure library. Make sure you understand the full implica-
tions of using it before including it in a program.

261

262 Procedures Reference

IOERROR_MESSAGE

IMPORT: general_3
iodeclarations

This function returns a value of TYPE jostring (a string dimensioned to 255 characters) contain-
ing an English textual description of an error produced by the I/O procedure library.

Syntax

IOERROR_MESSAGE o a

.. Range Recommended
Item Description/Default | Restrictions Range
error number Expression of TYPE INTEGER. MININT thru 0 thru 327
MAXINT
Semantics
Example:

PROGRAM Sample{InPut, Output) i

BEGIN
TRY

RECOVER BEGIN
IF Escarecode = Ioescarecode THEN
WRITELMN (IOERROR-MESSAGE(Ioe_result)»’ on ‘:loe_isc)i
ESCAPE (Escarecode)
END {Recover?}
END+ {Main Prodraml

Procedures Reference 263

I0_FIND_ISC

IMPORT: iodeclarations

Note
This function is provided for use by the internal /O Procedure Lib-
rary drivers, only. Unexpected and possible undesirable results may
occur if it is used.

264 Procedures Reference

I0_ESCAPE

IMPORT: iodeclarations

Note
This function is provided for use by the internal /O Procedure Lib-
rary drivers, only. Unexpected and possible undesirable results may
occur if it is used.

Procedures Reference 265

IOINITIALIZE

IMPORT: general_1

This procedure resets all interfaces.

Syntax

10INITIALIZE

Semantics
A program should be bracketed by IOINITIALIZE and IOUNINITIALIZE.

PROGRAM userprodg (...) 3

BEGIN
ioinitializes

iouninitializes
END.

266 Procedures Reference

IOREAD_BYTE

IMPORT: general_0
iodeclarations

This function reads the byte contained in specified register (physical address) on the selected
interface. The function returns a value of TYPE io_byte. This is an INTEGER subrange, 0..255.

Syntax
© O-{E-C
.. Range Recommended
Item Description/Default Restrictions Range
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
register number Expression of TYPE io_word. This is an —-32 768 thru Interface
INTEGER subrange. 32 767 dependent
Semantics

Note

These are physical address registers, not the Status registers used by
the [OSTATUS statement. See the Memory Map Appendix in the
Pascal System Users Manual.

IMPORT: general 0

iodeclarations

Procedures Reference

IOREAD_WORD

This function reads the word contained in the specified register (physical address) on the
selected interface. The function returns a value of TYPE io_word. This is an INTEGER sub-
range, —32 768..32 767.

Syntax

interface register
onEaD-won)--(() o D

L. Range Recommended
Item Description/Default Restrictions Range
interface Expression of TYPE type-isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
register Expression of TYPE jo_word. This is an —-32 768 thru Interface
number INTEGER subrange. 32 767 dependent
Semantics

Note

These are physical address registers, not the Status registers used by
the IOSTATUS statement. See the Memory Map Appendix in the

Pascal System Users Manual.

267

268 Procedures Reference

IORESET

IMPORT: general_1

iodeclarations

This procedure will reset the specified interface to its intial (power on) state. Any currently
active transfers will be terminated.

Syntax

interface
onesen)~() 0

. Range Recommended
Item ‘ Description/Default ‘ Restrictions Range
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.

Procedures Reference 269

IOSTATUS

IMPORT: general_0

jodeclarations

This function returns the contents of an interface status register. The value returned is of TYPE
io_word, an integer subrange (— 32 768 thru 32 767).

Syntax
O O O
. Range Recommended
Item Description/Default Restrictions Range
interface Expression of TYPE type_isc. This is an 0 thru31 7 thru 31
select code INTEGER subrange.
register Expression of TYPE io_word. This is an —32 768 thru Interface
number INTEGER subrange. 32767 dependent
Semantics

The register meaning depends on the interface. Refer to the specific interface in the Status and
Control Register Appendix in the Pascal System Users Manual.

270 Procedures Reference

I0O_SYSTEM RESET

IMPORT: general 0
iodeclarations

Note
This function is provided for use by the internal I/O Procedure Lib-
rary drivers, only. Unexpected and possible undesirable results may
occur if it is used.

Procedures Reference 271

IOUNINITIALIZE

IMPORT: general_1

iodeclarations

This procedure resets all interfaces.

Syntax

{OUNINITIALIZE

Semantics
A program should be bracketed by IOINITIALIZE and IOUNINITIALIZE.

PROGRAM usererosg (... Y 5

BEGIN
iginitializes

iouninitializes
END .

272 Procedures Reference

IOWRITE BYTE

IMPORT: general_0
jodeclarations

This procedure writes the supplied value (representing one byte) to the specified register
(physical address) on the selected interface. The actual action resulting from the operation
depends on the interface and register selected.

Syntax
© OEO-E G
. Range Recommended
Item Description/Default Restrictions Range
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
register number Expression of TYPE jo_word. This is an —32 768 thru Interface
INTEGER subrange. 32767 dependent
register value Expression of TYPE io_byte. This is an IN- 0 thru 255 Interface
TEGER subrange. dependent
Semantics

Notes
These are physical address registers, not the Status registers used by
the IOSTATUS statement. See the Memory Map Appendix in the
Pascal System Users Manual.

Unexpected and possibly undesirable side effects may result from
attemnpting to use this procedure in combination with other parts of
the I/Q procedure library. Make sure you understand the full implica-
tions of using it before including it in a program.

IMPORT: general_0

Procedures Reference

 Computer IOWRITE WORD

" Museum

iodeclarations

This procedure writes the supplied value (representing 16 bits) to the specified register on the
selected interface. The actual action resulting from the operation depends on the interface and
register selected.

Syntax

interface register register
owmre woro)--(() (D (D (O

.. Range Recommended
Item Description/Default Restrictions Range
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
register number Expression of TYPE io_word. This is an —32 768 thru Interface
INTEGER subrange. 32767 dependent
register value Expression of TYPE io_word. This is an —32 768 thru Interface
INTEGER subrange. 32767 dependent

Semantics

Notes
These are physical address registers, not the Status registers used by
the IOSTATUS statement. See the Memory Map Appendix in the
Pascal System Users Manual.

Unexpected and possibly undesirable side effects may result from
attempting to use this procedure in combination with other parts of
the [/O procedure library. Make sure you understand the full implica-
tions of using it before including it in a program.

273

273.1 Procedures Reference

ISC_ACTIVE

IMPORT: general_4
iodeclarations

This BOOLEAN function is TRUE if there is a transfer active on the specified interface.

Syntax

1scactive)=) 0

Item | Description/Default | Rel:t?il(l:stlii)ns
interface select code Expression of TYPE type_isc. ’ 7 thru 31

This is an INTEGER subrange

09826-90075, rev: 1/83

Procedures Reference 273.2

09826-90075, rev: 1/83

274 Procedures Reference

KERNEL INITIALIZE

IMPORT: general_0

Note

This function is provided for use by the internal I/O Procedure Lib-
rary drivers, only. Unexpected and possible undesirable results may
occur if it is used. It will probably blow up your program, and will
definitely destroy any operation you are currently performing in the
[/O Procedure Library.

Procedures Reference

LIFASCIIGET

IMPORT: liflib

This INTEGER function sequentially reads LIF ASCII or LIF BINARY file records.

Syntax
© O-(EF-O-T=1-0 ®
. Range Recommended

Item Description/Default Restrictions Range

file designator Variable of TYPE liffile. See Glossary -

max size Expression of type INTEGER. MININT thru 1 thru

MAXINT 32767

actual size Variable of type INTEGER. - -

destination Variable of any type. - -

variable

Semantics

Each call to the function will read at most one logical record from the designated file, even if the
buffer could contain more data. Zero length records will cause the actual size to be set to zero.

The file designator is used to point to the information record. The max size is the maximum
number of bytes to read. The actual size variable will contain the number of bytes actually read
into the destination variable by the function call.

The destination variable will contain the information read from the designated file after the
function call. This function approximates the operation performed by READ on Pascal files.

Returned Value
The value returned by LIFASCIIGET is an error code.

No error.

File is not open for reading or file type is not ASCII or BINARY.
File is not open.

File is at End Of File (actual size = 0).

Max size <= 0.

End-of-file encountered while reading the record. (The last record in the file was mal-
formed.) Actual size will contain the count of actual bytes read.

g s w N = O

275

276 Procedures Reference

LIFASCIIPUT

IMPORT: liflib

This INTEGER function sequentially writes LIF ASCII or LIF BINARY file records.

Syntax
© O O O
o Range Recommended
Item Description/Default Restrictions Range
file designator Variable of TYPE liffile. See Glossary -
actual size Expression of type INTEGER. MININT thru 0 thru 32767
MAXINT
source variable Variable of any type. - -
Semantics

A record must contain 0 thru 32767 bytes.

The file designator is used to point to the information record.

The actual size specifies the number of bytes to be written to the designated file.
The source variable contains the information to be written to the designated file.
This function approximates the operation performed by WRITELN or Pascal files.

Returned Value
The value returned by LIFASCIIPUT is an error code:

No error.

File is not open for writing or file type is not ASCII or BINARY.
File is not open.

File is at End Of File (no data written).

The actual size is less than O or greater than 32767.

W N = O

Procedures Reference 277

LIFCLOSE

IMPORT: liflib

This INTEGER function performs the final operations on a file, and removes the file block from
the heap if it was created by LIFOPEN.

Syntax
(resose)} () O D
Item Description/Default Re?t?ir::st!ieons ReC(;znal:;eended

file designator Variable of TYPE liffile. See Glossary -
close mode Expression of enumerated TYPE LIFKEEP

lifclosemode. LIFREMOVE

LIFMINSIZE

Semantics

The file designator is used to point to the information record. The close mode determines the
housekeeping to be performed on the LIF directory:

LIFKEEP Close the file and retain the LIF directory entry.
LIFREMOVE Close the file and remove the LIF directory entry.
LIFMINSIZE For LIFW and LIFU, this closes the file and sets the allocated size to cover

the last sector written. For LIFR, this is the same as LIFKEEP. The directory
entries retained in all three cases.

This function approximates the operation performed by CLOSE on Pascal files.

Returned Value
The value returned by LIFCLOSE is an error code:

0 No error.

1 File is not open.

2 Unit number is not a workstation volume, or does not have a LIF header.
3 File is not found.

Note
Errors 2 and 3 can occur only if the close mode is LIFREMOVE.

278 Procedures Reference

LIFCREATE

IMPORT: liflib

This INTEGER function creates a directory entry for the file described.

Syntax

lif lif
urcnente }o-(O i () O OL N O

. Range Recommended
Item Description/Default Restrictions Range
unit number Expression of TYPE INTEGER. MININT thru 3 thru
MAXINT 50, but not 6
lif file name Expression of TYPE lifname. See Glossary -
lif file type Expression of TYPE INTEGER. MININT thru 1, -2
MAXINT
file size Expression of TYPE INTEGER, MININT thru
represents sectors. MAXINT
Semantics

The unit number is the workstation file unit which contains the LIF volume.

The lif file name is the name of the file in the LIF directory. It must not exist before LIFCREATE
is used.

The lif file type is the numeric code used in the LIF directory structure for identifying various
types of files.

1 LIF ASCII
-2 LIF BINARY

Other file types are possible on the LIF directory, with any number in the range — 32768 thru
32767 acceptable, excluding the values 0 and —1.

The file size determines the number of sectors to be reserved for the file. If the file size is less
than or equal to 0, the maximum number of sectors available on the media is allocated.

Procedures Reference 279

Return Value
The value returned by LIFCREATE is an error code:

No error.

Unit Number is not a workstation volume, or volume does not have a LIF header.
The lif file type is invalid (0 or —1).

The file already exists.

B W~ O

Not enough room on the volume to create the file.

280 Procedures Reference

LIFDISPOSEFIB

IMPORT: liflib

This BOOLEAN function de-allocates a file information block from the heap and clears the file
designator pointer.

Syntax

LIFDISPOSEFIB o desifggator o

Item | Description/Default ‘ Reg?it::?iims
file designator | Variable of TYPE liffile. | See Glossary
Semantics

The file designator is used to point to the information record.

This function is used after closing a file (using LIFCLLOSE) which was created (using LIFOPEN)

with a file block mode equal to LIFUSEFIB. This is done when MARK and RELEASE are being

used for heap management. File blocks allocated with LIFNEWFIB are disposed of with LIF- ‘
DISPOSEFIB.

Return Value
The value returned by LIFDISPOSEFIB is a BOOLEAN:

TRUE The file block was disposed of.
FALSE The file was still opened, and the file block was not disposed of.

Procedures Reference 281

LIFEOF

IMPORT: liflib

This BOOLEAN function is TRUE if the designated file is at end-of-file, or if the file is closed.

Syntax

file
ursor) () 0

Item | Description/Default | Regi‘irgt!i(ims
file designator | Expression of TYPE liffile. I See Glossary

Semantics
The file designator is used to point to the information record.

282 Procedures Reference

LIFGET

IMPORT: liflib

This INTEGER function reads data from files of types other than ASCII and BINARY.

Syntax

fite next
uecet Jo{ O costpar = 5% () S ()

destination
variable

.. Range Recommended
Item Description/Default Restrictions Range

file designator Variable of TYPE liffile. See Glossary -
next byte Variable of TYPE INTEGER. MININT thru 0 thru

MAXINT MAXINT
max size Expression of TYPE INTEGER. MININT thru 1 thru

MAXINT MAXINT
actual size Variable of TYPE INTEGER. - -
destination Variable of any type. - -
variable
Semantics

The file designator is used to point to the information record.

Next byte is the index to the first byte to be read by LIFGET. It is automatically updated to point

to the first byte after the last byte transferred from the file to the buffer. The first byte in a file is
byte 0.

The max size is the maximum number of bytes to read.
The actual size will contain the number of bytes actually read into the return variable by the
function call. Actual size and max size will differ only if end-of-file is encountered during the

LIFGET operation.

The destination variable will contain the information read from the designated file after the
function call.

Procedures Reference 283

Returned Value
The value returned by LIFGET is an error code:

No error.

File is not open for reading or file type is ASCII or BINARY.

File is not open.

File is at End Of File (actual size contains the number of bytes read).

B W N RO

Max size <= 0, or next byte < 0.

284 Procedures Reference

LIFGETFLD

IMPORT: liflib
This INTEGER function reads some of the attribute fields of a LIF file.
Syntax
O O O O
. Range
Item Description/Default Restrictions
file designator Expression of TYPE liffile. See Glossary
attribute Expression of enumerated TYPE LIFEXTENSION
designator liffieldname. LIFVOLNUMBER
LIFLASTVOLFLAG
LIFFSIZE
LIFRSIZE
attribute value Variable of TYPE INTEGER. -
Semantics

The file designator is used to point to the information record.
The attribute designator determines which of the file attributes is to be read:

LIFEXTENSION File extension field (last 32 bits of the file directory entry).
LIFVOLNUMBER File volume number (1 thru 32767)

LIFLASTVOLFLAG 1 = > last volume of file
0 = > more volumes in the file

LIFFSIZE The number of sectors allocated for the file.

LIFRSIZE For reading ASCII and BINARY files, the number of bytes in the record
about to be read. This will be the bytes remaining in the file if the last
LIFASCIIGET executed only read part of the record.

For LIFASCIIPUT and LIFPUT, this field represents the number of bytes
actually written to the file.

The attribute value will contain the value of the designated attribute field after the function is
called.

Returned Value
The value returned by LIFGETFIELD is an error code:

0 No error.
1 File is not open.

Procedures Reference

LIFNEWFIB

IMPORT: liflib

This procedure allocates a file information block from the heap, initializes it, and sets the file
designator pointer.

Syntax

file
urer)+ () D

Item | Description/Default ‘ Regililz:st}s)ns
file designator | Variable of TYPE liffile. I See Glossary
Semantics

The file designator is used to point to the information record.

This procedure is used prior to opening a file with a file block mode equal to LIFUSEFIB. This is
done when MARK and RELEASE are being used for heap management. File blocks allocated
with LIFNEWFIB are disposed of with LIFDISPOSEFIB.

285

286 Procedures Reference

LIFOPEN

IMPORT: liflib

This INTEGER function initializes a file information block for use by file access functions.

Syntax

file file lif
wrore (D Or-{ e PO e IO ®

i open
file type mode

. L. Range Recommended
Item Description/Default Restrictions Range
file designator Variable of TYPE liffile. See Glossary -
file block mode Expression of enumerated TYPE liffibop. LIFGETFIB,
LIFUSEFIB
unit number Expression of TYPE INTEGER. MININT thru 3 thru
MAXINT 50, but not 6
lif file name Expression of TYPE lifname. See Glossary -
lif file type Expression of TYPE INTEGER. MININT thru 1, -2
MAXINT
open mode Expression of enumerated TYPE LIFR, LIFW
lifopenmode. LIFU
Semantics

The file designator is used to point to the information record.

The file block mode determines the heap discipline that LIFOPEN is to assume is being used. If
your program is using NEW and DISPOSE, use LIFGETFIB. If your program uses MARK and
RELEASE, use LIFUSEFIB. If you are using LIFUSEFIB, you must create a file block on the
HEAP with LIFNEWFIB before trying to open the file with LIFOPEN, and once you have
finished with the file, you must dispose of the file block yourself with LIFDISPOSEFIB.

The unit number is the workstation unit which contains the LIF volume.

The lif file name is the name of the file in the LIF directory. It must already exist before
LIFOPEN is used.

Procedures Reference

The lif file type is the numeric code used in the LIF directory structure for identifying various
types of files.

1 LIF ASCII
-2 LIF BINARY

Other file types are possible on the LIF directory, with any number in the range — 32768 thru
32767 acceptable, excluding the values 0 and —1.

The open mode determines the mode in which the file is to be accessed:

LIFR Read only
LIFW Write only
LIFU Update mode (not valid for ASCII or BINARY)

Return Value
The value returned by LIFOPEN is an error code:

0 No error.

1 Unit Number is not a workstation volume, or volume does not have a LIF header.

2 The file is already open.

3 The LIF file type is invalid (0 or — 1) or the open mode is invalid (update mode for ASCII
or BINARY).

4 The LIF file name is not in the directory.

5 The LIF file name is in the directory, but is not of the LIF file type specified.

287

288 Procedures Reference

LIFPURGE

IMPORT: liflib

This INTEGER function removes the LIF directory entry for the named file.

Syntax
(O smior () D
Item Description/Default Re?t?i'gizns Rec%n;:;eended
unit number Expression of TYPE INTEGER. MININT thru 3 thru 50,
MAXINT but not 6
lif file name Expression of TYPE lifname. See Glossary -
Semantics

The unit number is the workstation file unit which contains the LIF volume.

The LIF file name is the name of the file in the LIF directory. It must exist before LIFPURGE is .
used.

Return Value
The value returned by LIFPURGE is an error code:

0 No error.
1 Unit Number is not a workstation volume, or volume does not have a LIF header.
2 The file name is not in the directory.

Procedures Reference 289

LIFPUT

IMPORT: liflib

This INTEGER function writes data to files of types other than ASCII and BINARY.

Syntax
(O O) O =420
. Range Recommended
Item Description/Default Restrictions Range
file designator Variable of TYPE liffile. See Glossary -
next byte Variable of TYPE INTEGER. MININT thru 0 thru
MAXINT MAXINT
actual size Expression of TYPE INTEGER. MININT thru 0 thru
MAXINT MAXINT
source variable Variable of any type. - -
Semantics

The file designator is used to point to the information record. The next byte is the index to the
first byte to be written by LIFPUT. It is automatically updated to point to the first byte after the
last byte transferred from the buffer to the file. The first byte in a file is byte O.

The actual size specifies the number of bytes to be written into the designated file by the
function call.

The source variable should contain the data to be written to the file before LIFPUT is called.

Returned Value
The value returned by LIFPUT is an error code:

No error.

File is not open for writing or file type is ASCII or BINARY.
File is not open.

File is at End Of File (no data actually transferred).

Actual size <0, or next byte < 0.

File at end-of-file (some data transferred - see LIFRSIZE under the function LIFGET-
FIELD).

g s wNhe=e O

290 Procedures Reference

LIFSETFLD

IMPORT: liflib

This INTEGER function modifies some of the attribute fields of a LIF file.

Syntax
O O O O
N Range Recommended
Item Description/Default Restrictions Range
file designator Expression of TYPE liffile. See Glossary -
attribute Expression of enumerated TYPE LIFEXTENSION any but
designator liffieldname. LIFVOLNUMBER LIFFSIZE
LIFLASTVOLFLAG or LIFRSIZE
LIFFSIZE
LIFRSIZE
attribute value Expression of TYPE INTEGER. MININT thru attribute
MAXINT dependent
Semantics

The file designator is used to point to the information record.

The attribute designator determines which of the file attributes is to be modified:

Attribute Attribute Attribute
Designator Field Description Value Range
LIFEXTENSION File extension field MAXINT thru MININT

(last 32 bits of the file directory entry)
LIFVOLNUMBER File volume number 1 thru 32767

LIFLASTVOLFLAG Not equal to 0 = > last volume of file
Equal to 0 => more volumes in the file.

LIFFSIZE Read only field.

LIFRSIZE Read only field.

Procedures Reference 291

The attribute value contains the value to be written to the designated attribute field.

Returned Value
The value returned by LIFSETFIELD is an error code:

0 No error.
1 File is not open.

. . V. Computer
2 Attribute value is out of range. ;. Museum

3 Read only field, or file is open for read only.

292

Procedures Reference

LINE

IMPORT: dgl_lib

This procedure draws a line from the starting position to the world coordinate specified.

Syntax

X Y
LN (O coondinore [) coardinate (1)

i Range
Item | Description/Default | Restrictions
X coordinate Expression of TYPE REAL -
X coordinate Expression of TYPE REAL -
Procedure Heading
PROCEDURE LINE (HWx» Wy : REAL)3

Semantics

A line is drawn from the starting position to the world coordinate specified by the X and Y
coordinates. The starting position is updated to this point at the completion of this call.

The x and y coordinate pair is the ending of the line to be drawn in the world coordinate system.

The primitive attributes of line style, line width, and color apply to lines drawn using LINE.
Drawing to the starting position generates the shortest line possible. Depending on the nature of
the current line-style, nothing may appear on the graphics display surface. See SET_LINE_
STYLE for a complete description of how line-style affects a particular point or vector.

Error Conditions

The graphics system must be initialized and a display must be enabled or this call will be ignored,
an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero value.

09826-90075, rev: 5/83

Procedures Reference 293

LISTEN

IMPORT: hpib_2

iodeclarations

This procedure will send the specified listen address on the bus. The ATN line will be set true.
The interface must be active controller.

Syntax
(O O O
.. Range Recommended
Item Description/Default Restrictions Range

interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.

device address Expression of TYPE type_hpib_address. 0 thru 31 0 thru 30

This is an INTEGER subrange.

294 Procedures Reference

LISTENER

IMPORT: hpib_3
iodeclarations

This BOOLEAN function will return TRUE if the specified interface is currently addressed as a
listener.

Syntax

interface
Usrenen)>() D

o . Range Recommended
Item | Description/Default | Restrictions | Range
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.

Procedures Reference 295

LOCAL

IMPORT: hpib_2

iodeclarations

This procedure places the device(s) in local mode.

Syntax
(O O

Recommended
Range

0 thru 3199 ' See glossary

Range

Item | Description/Default | Restrictions

device selector Expression of TYPE type_device. This is

an INTEGER subrange.

Semantics

LOCAL (701) places the device at address 1 on interface 7 in the Local mode. LOCAL(7)
places all devices on interface 7 in Local mode.

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
Active REN MTA ATN MTA
Controller ATN UNL GTL UNL
LAG LAG
GTL GTL
Not Active REN Error Error
Controller

296 Procedures Reference

LOCAL LOCKOUT

IMPORT: hpib_2
iodeclarations

This procedure sends LLO (the local lockout message) on the bus. The interface must be active
controller.

Syntax

interface
roeaLocxour)--(() D

. Range Recommended
Item ‘ Description/Default Restrictions Range
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
Semantics
System Controller Not System Controlier
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
Active ATN Err ATN Error
Controller LLO or LLO
Not Active
Controller Error

Procedures Reference

LOCATOR_INIT

IMPORT: dgl_lib

This procedure enables the locator device for input.

Syntax

Coonron) —~(D O~ (D

ltem | Description/Default ' Regt?i[::st!izns
device selector Expression of TYPE INTEGER MININT TO MAXINT

Variable of TYPE INTEGER

error variable name

Procedure Heading

PROCEDURE LOCATOR_INIT (Deuv.Adr : INTEGER:
VAR Ierr : INTEGER)3

Semantics
The device selector specifies the physical addresses of the graphics locator device.

® device selector = 2 The Knob on Series 200 Computers
@ 100 < = device selector <= 3199 composite HPIB/device address

The error variable will contain a value indicating whether the locator device was successfully
enabled.

Value | Meaning
0 The locator device was successfully initialized.
2 Unrecognized device specified. Unable to communicate with a device at the specified

address, non-existent interface card or non-graphics system supported interface card.

If the error variable contains a non-zero value, the call has been ignored.

LOCATORLINIT enables the logical locator device for input. Enabling the locator includes
associating the logical locator device with a physical device and initializing the device. The device
name is set to the name of the physical device, the device status is set to 1 (enabled) and the
internal device selector used by the graphics library is set equal to the device selector provided by
the user. This information is available by calling INQ_WS with operation selectors 11052 and
13052.

LOCATOR_INIT implicitly makes the picture current before attempting to initialize the device.

LOCATORL_INIT enables the logical locator device for input. Enabling the locator includes
associating the logical locator device with a physical device and initializing the device.

09826-90075, rev: 5/83

297

298 Procedures Reference

The graphics library attempts to directly identify the type of device by using its device address in
some way. The meanings of the device address are defined above.

At the time that the graphics library is initialized, all devices which are to be used must be
connected, powered on, ready, and accessible via the specified physical address. Invalid addres-
sed or unresponsive devices result in that device not beinginitialized and an error being returned.

The locator device must be enabled before it is used for input. The locator device is disabled by
calling LOCATOR_TERM.

If the graphics display and the locator are not the same physical device (e.g. HP 9826 display and
HP 9111 locator), then the logical locator limits will be set to the default values for the particular
locator used. If the graphics display and locator are the same physical device (e.g., HP 9826
display and HP 9826 knob locator), then the logical locator limits are set to the current view
surface limits.

The locator echo position is set to the default value (see SET_ECHO_PQS).

Only one locator device may be enabled at a time. If a locator is currently enabled, then the
enabled device will be terminated (via LOCATOR_TERM) and the call will continue. The locator
device should be disabled before the termination of the application program. LOCATOR_INIT is
the complementary routine to LOCATOR_TERM.

HPGL Locator Devices I
When the locator device is initialized on an HPGL device, the graphics display is left unaltered.
HPGL devices are initialized to the following defaults when LOCATOR_INIT is executed:

Wide High Wide High Resolution

Device mm mm points points Aspect points/mm
9872 400 285 16000 11400 7125 40.0
7580 809.5 52425 32380 20970 .6476 40.0
7585 1100 890 44000 35670 .809 40.0
7470 257.5 190 10300 7600 7378 40.0
9111 300.8 217.6 12032 8704 7234 40.0

The maximum physical limits of the locator for a HPGL device not listed above are determined by
the default settings of P1 and P2. The default settings of P1 and P2 are the values they have after
an HPGL "IN’ command. Refer to the specific device manual for additional details.

The default logical display surface is set equal to the area defined by P1 and P2 at the time
LOCATOR_INIT is invoked.

09826-90075, rev: 5/83

Procedures Reference 298.1

Note
If the paper is changed in an HP 7580 or HP 7585 plotter while the
graphics locator is initialized, it should be the same size of paper that
was in the plotter when LOCATOR_INIT was called. If a different size
of paper is required, the device should be terminated (LOCATOR_
TERM) and re-initialized after the new paper has been placed in the
plotter.

No locator points are returned while the pen control buttons are depressed on HPGL plotters.

The Knob as Locator
When the locator device is initialized, the graphics display is left unaltered. The default initializa-
tion characteristics for the knob on various Series 200 computers is listed below:

Wide High Wide High Resolution
Computer mm mm points points Aspect mm
9816/ 168 126 400 300 .75 2.381
9920
9826 120 90 400 300 75 3.333
9836 210 160 512 390 7617 2.438
. 9836C 217 163 512 390 7617 2.39

The knob uses the current display limits as its locator limits for locator echoes 2 though 8. For all
other echoes the above limits are used. An example of when the two limits may differ follows:

The knob locator is initialized on a HP 9826. The graphics display is an HP 98627A color
output card. The resolution of the locator is O through 399 in the x dimension, and 0 through
299 in the y dimension. The resolution of the display is O through 511 in x dimension, and 0
through 389 in y dimension. When await_locator is used with echo 4, the locator will
effectively have the HP 98627A resolution for the duration of the await_locator call. However
if echo 1 is used with await_locator, the cursor will appear on the HP 9826 and the locator has
a resolution of 0 X 399 and 0 X 299. Note that all conversion routines, and inquiries will used
the HP 9826 limits.

The physical origin of the locator device is the lower left corner of the display.
Error Conditions

The graphics system must be initialized or this call will be ignored, an ESCAPE (-27) will be
generated, and GRAPHICSERROR will return a non-zero value.

09826-90075, rev: 5/83

298.2 Procedures Reference

09826-90075, rev: 583

Procedures Reference 299

LOCATOR_TERM

IMPORT: dgl_lib

This procedure disables the enabled locator device.

Syntax

LOCATOR_TERM

Procedure Heading
PROCEDURE LOCATOR_TERM;

Semantics

LOCATOR_TERM terminates and disables the enabled locator device. It transmits any termina-
tion sequence required by the device and releases all resources being used by the device. The
device name is set to the default device name (’ ’), the device status is set to O (not enabled) and
the device address is set to O.

LOCATOR_TERM is the complementary routine to LOCATOR_INIT.

If a locator device is used, LOCATOR_TERM should be called before the application program is
terminated.

Error Conditions
The graphics system must be initialized and a locator device enabled or this call will be ignored, an
ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero value.

09826-90075, rev: 5/83

300 Procedures Reference

LOCKED_OUT

IMPORT: hpib_3
jodeclarations

This BOOLEAN function will return TRUE if the specified interface is currently in the local
lockout state. If the interface is currently active controller a FALSE value will be returned
regardless of the local lockout state.

Syntax

interface
roexen-our) () O

Item | Description/Default ‘ Re?t?inc%ii)ns Rect;;r:r:lgeended
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.

Procedures Reference 300.1

MAKE_PIC_CURRENT

IMPORT: dgl_lib

This procedure makes the picture current.

Syntax

—(MAKE_PIC_CURRENT)—=

Procedure Heading
PROCEDURE MAKE_PIC_CIUIRRENT

Semantics

The graphics display surface can be made current at any time with a call to MAKE_PIC_

CURRENT. This insures that all previously generated primitives have been sent to the graphics

display device. Due to operating system delays, all picture changes may not have been displayed

on the graphics display upon return to the calling program. MAKE_PIC_CURRENT is most often

used in system buffering mode (see SET_TIMING) to make sure that all output has been sent to
the graphics display device when required.

Before performing any non-graphics library input or output to an active graphics device, (e.g., a
Pascal read or write), it is essential that all of the previously generated output primitives be sent to
the device. If immediate visibility is the current timing mode, all primitives will be sent to the
device before completion of the call to generate them, but if system buffering is used, MAKE_
PIC_CURRENT should be called before performing any non-graphics system [/O.

The following routines implicitly make the picture current:

AWAIT_LOCATOR DISPLAY_TERM INPUT_ESC
LOCATOR_INIT SAMPLE_LOCATOR

A call to MAKE_PIC_CURRENT can be made at any time within an application program to insure
that the image is fully displayed. MAKE_PIC_CURRENT does not modify the current timing
mode.

Error Conditions
The graphics system must be initialized and a display must be enabled or this call will be ignored,
an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero value.

09826-90075, rev: 5/83

300.2 Procedures Reference

MARKER

IMPORT: dgl_lib
This procedure outputs a marker symbol at the starting position.
Syntax
(O O
. Range Recommended
ltem | Description/Default | Restrictions | Range
marker selector Expression of TYPE INTEGER ' MININT TO | 1 thru 19
MAXINT
Procedure Heading
PROCEDURE MARKER (MarKer_num : INTEGER }3
Semantics

The marker selector determines which marker will be output. There are 19 defined invariant
marker symbols (1-19). They are defined as follows:

1-°0 7 - rectangle 13-°3
2.4 8 - diamond 14 -4
3-'® 9 - rectangle with cross 15-'5
4.0 10-°0 16 -6
5-'X 11-'17 17 -7
6 - triangle 12-°2 18 -'8

19-'9

Marker numbers 20 and larger are device dependent.

MARKER outputs the marker designated by the marker selector, centered about the starting
position. The starting position is left unchanged at the completion of this call.

If the marker selector specified is greater than the number of distinct marker symbols that are
supported by a device, then marker number 1 (*.”) will be used. INQ_WS can be used to inquire
the number of distinct marker symbols that are available on a particular graphics display device.
Depending on a particular display device’s capabilities, the graphics library uses either hardware
or software to generate the marker symbols.

The size and orientation of markers is fixed and not affected by the viewing transformation. The
size of markers is device dependent and cannot be changed.

Only the primitive attributes of color and highlighting apply to markers. However, the marker will
appear with these attributes only if the device is capable of applying them to markers.

Error Conditions
The graphics system must be initialized and a display device enabled or the call will be ignored, an
ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero value.

09826-90075, rev: 5/83

Procedures Reference

MOVE

IMPORT: dgl_lib

This procedure sets the starting position to the world coordinate specified.

Syntax

X Y
HOVE (O coordinste (] coondinote ()

.. Range
Item ‘ Description/Default | Restrictions
x coordinate Expression of TYPE REAL -
y coordinate Expression of TYPE REAL -

Procedure Heading
PROCEDURE MOVE (MWxs Wy : REAL);

Semantics

MOVE specifies where the next graphical primitive will be output. It does this by setting the value
of the starting position to the world coordinate system point specified by the XY coordinate
values and then moving the physical beam or pen to that point.

The x and y coordinate pair is the new starting position in world coordinates.

The starting position corresponds to the location of the physical pen or beam in all but four
instances: after a change in the viewing transformation, after initialization of a graphical display
device, after the output of a text string, or after the output of a graphical escape function. A call to
MOVE or INT_MOVE should therefore be made after any one of the following calls to update the
value of the starting position and in so doing, place the physical pen or beam at a known
location: SET_ASPECT, DISPLAY_INIT, SET_DISPLAY_LIM, OUTPUT_ESC, TEXT, SET_
VIEWPORT, and SET_WINDOW.

Error Conditions
The graphics system must be enabled and a display device enabled or this call will be ignored, an
ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero value.

09826-90075, rev: 5/83

301

302 Procedures Reference

MY_ADDRESS

IMPORT: hpib_1
iodeclarations

This function returns an INTEGER subrange (TYPE type_hpib_addr) representing the HP-IB
address of the specified HP-IB interface.

Syntax

interface
wr-sooress)--(() O

o gl Range Recommended
Item | Description/Default ‘ Restrictions Range
interface

select code

Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
INTEGER subrange.

Procedures Reference 303

OUTPUT_ESC

IMPORT: dgl_lib

This procedure performs a device dependent escape function to inquire from the graphics
display device.

Syntax
operation INTEGER REAL
outeuT_gt)—=(() O O O
INTEGER REAL error variable
array name array name name

. Range Recommended
Item Description/Default Restrictions Range
operation selector Expression of TYPE INTEGER MININT to -
MAXINT
INTEGER array Expression of TYPE INTEGER MININT to >0
size MAXINT
REAL array size Expression of TYPE INTEGER MININT to >0
MAXINT
INTEGER array Any valid variable. - -
name Should be INTEGER array
REAL array name | Any valid variable. -~ -
Should be REAL array
error variable name | Variable of TYPE INTEGER - -
Procedure Heading
PROCEDURE OUTPUT_ESC (ODrcode : INTEGER]
Isize : INTEGERS
Rsize : INTEGER?
ANYUVAR Ilist : Gint_lists?
ANYVAR Rlist : Greal_list}3
VAR Ierr : INTEGER)i
Semantics

The operation selector determines the device dependent output escape function to be per-
formed. The codes supported for a given device are described in the device handlers section of
this document.

The INTEGER array size is the number of INTEGER parameters contained in the INTEGER
array. The thousand’s digit of the operation selector is the number of INTEGER parameters that
the graphics system expects.

09826-90075, rev: 5/83

304 Procedures Reference

The REAL array size is the number of REAL parameters contained in the REAL array by the
escape function. The ten-thousand’s digit of the operation selector is the number of REAL
parameters that the graphics system expects.

The INTEGER array is the array in which zero or more INTEGER parameters are contained.

The REAL array is the array in which zero or more REAL parameters are contained.

The error variable will contain a value indicating whether the escape function was performed.

Value Meaning
0 Output escape function successfully sent to the device.
1 Operation not supported by the graphics display device.
2 The INTEGER array size is not equal to the number of required INTEGER parameters.
3 The REAL array size is not equal to the number of required REAL parameters.
4 lllegal parameters specified.

If the error variable contains a non-zero value, the call has been ignored.

OUTPUT_ESC allows application programs to access special device features on a graphics
display device. The desired escape function is specified by a unique value for opcode.

The type of information passed to the graphics display device is determined by the value of
opcode. The graphics library does not check OUTPUT_ESC parameters which will be sent
directly to the display device. This can lead to device dependent results if out of range values are
sent.

Output escape functions only apply to the graphics display device.

The starting position may be altered by a call to OUTPUT_ESC.

Error Conditions

The graphics system must be initialized and a display device must be enabled or this call will be

ignored, an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero
value.

09826-90075, rev: 5/83

Procedures Reference 304.1

Computer
‘ . Museumn

Raster Device Escape Operations

Operation
Selector Function
52 Dump graphics to the graphics printer (PRINTER:), if color, all planes are ORed. This
operation is not available for the HP 98627A.
53 Await vertical blanking. This escape function will not exit until the CRT is performing vertical
blanking.

The following example shows how to use this function when changing the color table to
reduce flicker.

OUTPUT_ESC (¢ 53y 0Oy Oy dummy s dummys» error)3
SET_COLDOR_TABLE (QO rs g b)3

The color table is not changed until the crt is blank (during a refresh cycle).
Otherwise changing the color map in the middle of a scan would create a screen
that was half the old color, and half the new color for one frame {1/60 sec). To the
eye this would look like a flicker.

250 Specify device limits.
REAL Array [1] = Points (dots) per mm in X direction
REAL Array [2] = Points (dots) per mm in Y direction

1050 Turn on or off the graphics display.
INTEGER array [1] = 0 — turn display off.
INTEGER array [1] <> 0 — turn display on.

1051 Turn on or off the alpha display.
‘ INTEGER array [1] = 0 — turn display off.
INTEGER array [1] <> 0 — turn display on.

1052 Set special drawing modes. Using this escape function will redefine the meaning of
the set color attribute. For details on how a given drawing mode affects a color see
“Drawing Modes” in SET_COLOR. This drawing mode does not apply to device
dependent polygons. Out of range values default to dominate drawing mode.

INTEGER array[1] = 0 — Dominate drawing mode.

= 1 — Non-dominate drawing mode.

= 2 — Erase drawing mode.

= 3 — Complement drawing mode.
1053 Dump graphics (from the specified color planes) to the graphics printer (PRINTER:).
INTEGER array [1] = Color plane selection code.

BIT 1 = 1 — Select plane 1.
(Blue on HP 98627A)

BIT 2 = 1 — Select plane 2.
(Green on HP 98627A)

BIT 3 = 1 — Select plane 3.
{Red on HP 98627A)

BIT 4 = 1 — Select plane 4.

1054 Clear selected graphics planes.

INTEGER Array [1] = O - Clear all planes
INTEGER Array [1] <> 0 - Color plane selection code.

I

BIT1 =1 Clearplane 1 (Blue on HP 98627A)

. BIT2 =1 Clearplane 2 ({ Green on HP 98627A)
BIT3 =1 Clear plane 3 (Red on HP 98627A)
BIT4 =1 Clear plane 4

09826-90075, rev: 5/83

304.2 Procedures Reference

Operation
Selector Function
10050 Set all HP 9836C color table locations. This escape function allows the user to

change all locations in the hardware color map with one procedure. The software
maintained color table will be updated by this call. This escape function is the same
as calling SET_COLOR_TABLE with indexes 0 - 15.

REAL Array [1] = Parml
REAL Array [2] = Parm2 Index O
REAL Array [3] = Parm3

REAL Array [4] = Parml
REAL Array [5] = Parm2 Index 1
REAL Array [6] = Parm3

REAL Array [46] = Parml
REAL Array [47] = Parm2 Index 15
REAL Array [48] = Parm3

Parm1, Parm2, and Parm3 are defined to be the same as used with SET_COLOR_
TABLE.

The size of the INTEGER array must equal O and the size of the REAL array 48.

The following table shows which escape codes are supported on which series 200 raster displays.

Operation

Selector 9816 9826 9836 9836C 98627

52 yes yes yes yes yes

53 no no no ves no

250 no no no no yes

1050 ves yes yes yes yes

1051 yes yes yes ves no

1052 ves yes ves ves yes

1053 no no no ves yes

1054 yes yes yes ves yes

10050 no no no yes no

09826-90075, rev: 5/83

Procedures Reference 304.3

HPGL Plotter Escape Operations

Operation
Selector Function

1052* Enable cutter. Provides means to control the Plotter paper cutters. Paper is cut after it is
advanced.

INTEGER array [1] = O Cutter is disabled.
INTEGER array [1] <> O Cutter is enabled.

1052 Set automatic pen. This instruction provides a means for utilizing the smart pen options of
the plotter. Initially, all automatic pen options are enabled.

INTEGER array [1]: BIT1 =1
Lift pen if it has been down for 60 seconds.

BIT2 =1
Put pen away if it has been motionless for 20 seconds.
BIT3 =1

Do not select a pen until a command which makes a mark. This causes the pen to remain
in the turret for the longest possible time.

1053 Advance the paper either one half or a full page.

INTEGER array [1] = 0 >> Advance page half
INTEGER array [1] <> 0 >> Advance page full

2050 Select pen velocity. This instruction allows the user to modify the plotter’s pen speed. Pen
speed may be set from 1 to the maximum for the given device.

INTEGER array [1] = Pen speed (INTEGER from 1 to device max).
INTEGER array [2] = Pen number (INTEGER from 1 to 8; other integers
select all pens)

2051 Select pen force. The force may be set from 10 to 66 gram-weights.

INTEGER array [1] = Pen force (INTEGER from 1 to 8).
: 10 gram-weights
18 gram-weights
26 gram-weights
34 gram-weights
42 gram-weights
50 gram-weights
58 gram-weights
: 66 gram-weights

INTEGER array [2] = Pen number (INTEGER 1 to 8; other integers
select all pens)

PP TW

2052 Select pen acceleration. The acceleration may be set from 1 to 4 G’s.

INTEGER array [1] Pen acceleration (INTEGER from 1 to 4).
INTEGER array [2] Pen number (INTEGER 1 to 8; other integers select all pens)

Operation

Selector 9872 7580 7585 7470
1052* S/IT no no no
1052 no yes yes no
1053 ST no no no
2050 yes yes yes yes
2051 no yes ves no
2052 no yes yes no

09826-90075, rev: 5/83

304.4 Procedures Reference

09826-90075, rev: 5/83

IMPORT: hpib_2

iodeclarations

Procedures Reference

PASS_CONTROL

This procedure passes active control from the specified interface to another device on the bus.

Syntax

device
PASS_CONTROL o o

Item

Description/Default

Recommended

Range
Range

Restrictions

device selector

Expression of TYPE type_device. This is

an INTEGER subrange.

0 thru 3199 ‘ See glossary

Semantics
System Controller Net System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN ATN ATN ATN
Active TCT UNL TCT UNL
Controller ATN TAG ATN TAG
TCT TCT
ATN ATN

Not Active Error

Controller

305

305.01 Procedures Reference

POLYGON

IMPORT: dgl_types
dgl_lib
dgl_poly

This procedure displays a polygon-set starting and ending at the specified point adhering to the
specified polygon style exactly as specified (i.e., device-independent results).

Syntax
i x array y array
POLYGON)} O—+fpsincal () * tane”) vame” ()
operation selector
array name

Item Description/Default Re?t?itﬁms
points Expression of TYPE INTEGER MININT thru MAXINT
X array name Array of TYPE Greal_list -

y array name Array of TYPE Greal list. -
operation selector array Array of TYPE Gshortint_list. Gshortint is a sub- —32 768 to 32 767
name range of INTEGER.

Procedure Heading

PROCEDURE POLYGON (Nrpoint : INTEGERS
ANYVAR nuec : Greal_lists
ANYVAR Yuec : Greal_lists

ANYVAR Opcodes : Gshortint_.list)s

Semantics
Points is the number of vertices in the polygon set.

The x and y coordinate arrays contain the world coordinate values for each vertex of the
polygon-set. The vertices must be in order. The vertices for the first sub-polygon must be at the
beginning of these arrays, followed by the vertices for the second sub-polygon, etc. So, the
coordinate arrays must contain a total number of vertices that equals points.

The operation selector array contains a series of integer operation selectors defining which
vertices start new polygons, and defining which edges should be displayed.

09826-90075, rev: 5/83

Procedures Reference 305.02

Value Meaning
0 Don’t display the line for the edge extending to this vertex from the previous vertex.
1 Display the line for the edge extending to this vertex from the previous vertex.
2 This vertex is the first vertex of a sub-polygon. Succeeding vertices are part of a
sub-polygon until a new start-of-polygon operation selector (2} is encountered. (Or the
end of the arrays is encountered.)

Note

The first entry in the operation selector array must be 2, since it is the
first vertex of a sub-polygon.

POLYGON is used to output a polygon-set, specified in world coordinates, adhering exactly to
the polygon style attributes that are currently specified. A polygon-set is a set of polygons (called
“sub-polygons’’) that are treated graphically as one polygon. This is accomplished by ‘stacking”
the sub-polygons. The subpolygons in a polygon-set may intersect or overlap each other.

The edge of a sub-polygon is defined as the line sequence that connects its vertices in the order
specified. If the last vertex specified for a sub- polygon is not the same as the first, they are
automatically connected.

When a polygon-set is displayed, the primitive attributes for polygons and lines define its
appearance. In particular, the interior of the polygon-set will be filled according to the attributes
of polygon style, polygon interior color and polygon interior line-style. If the edges are to be
displayed as specified in the polygon style, the edges will adhere to the current line attributes of
color, line-style and line-width. A dot will disappear on an edged polygon if the edge is done with
a complementing line.

The filling of polygons also depends on how the sub-polygons ‘‘nest” within each other. An
“even-odd’’ rule is used for determining which areas will be filled. Moving across the screen,
count the edges of the polygon. Odd-numbered edges will turn the fill on and even-numbered
edges will turn the fill off. The picture below will help clear up how the fills work.

Polygon Filling

09826-90075, rev: 5/83

305.03 Procedures Reference

Referto SET_PGN_TABLE, SET_PGN_STYLE, SET_PGN_COLOR, SET_PGN_LS for a more
detailed description of how attributes affect polygons.

As stated above, the values in the operation selector array define how the edges of the sub-
polygons are displayed. The edge from the ([-1)th vertex to the [th vertex will only be displayed if
the Ith entry in the operation selector array equals 1. To display the edge from the last vertex to
the first vertex of a sub-polygon, the first vertex must be explicitly respecified after all the other
vertices of the sub-polygon, with an operation selector equal to 1. Otherwise the edge from the
last vertex to the first will not be drawn. It will, however, automatically be connected for polygon
filling.

If it is within the capabilities of the device, filling of the sub-polygon will be done to the
sub-polygon edges regardless of whether the edges are displayed. If an entry in the operation
selector array does not equal 0, 1, or 2, it will be treated as if it were equal to 0 and the edge will
not be drawn.

When POLYGON is used, the current position is updated to the end of the last sub-polygon
specified in the polygon-set. The end of the last sub-polygon is defined to be the first (implicit last)
vertex of the subpolygon. So, if there is only one vertex in a polygon-set this call degenerates to
an update of the current position to the first coordinate set in the x and y point arrays (x
coordinate array[1], y coordinate array[1]).

It is the application program’s responsibility to ensure that the arrays are all dimensioned to at
least the number of elements specified by points and that at least that many values are contained
in each array.

Polygons are defined to be closed surfaces. When a sub-polygon extends beyond a clipping edge
the closed nature of the sub-polygon is destroyed. As with other primitives, unpredictable results
may occur if the sub-polygon extends beyond the clipping window.

Error Conditions

The graphics system must be initialized, a graphics display must be enabled, all parameters must
be within specified limits and the number of points specified must be greater than O or the call will
beignored, an ESCAPE (— 27) will be generated, and GRAPHICSERROR will return a non-zero
value.

09826-90075, rev: 5/83

Procedures Reference 305.04

POLYGON DEV_DEP

IMPORT: dgl_types
dgl_lib
dgl_poly

This procedure displays a polygon-set starting and ending at the specified point adhering to the
specified polygon style in a device- dependent fashion.

Syntax

TN SN Qy S e B e SNy WG SN R O

operation selector
array name

ltem Description/Default Re?tarlil::?ii)ns
points Expression of TYPE INTEGER MININT thru MAXINT
X array name Array of TYPE Greal list. -
y array name Array of TYPE Greal list -
operation selector array | Array of TYPE Gshortint_list. Gshortint is a sub- —32 768 to 32 767
name range of INTEGER.

Procedure Heading

PROCEDURE POLYGON_DEY_DEP { NrPoint INTEGER S
ANYVAR Auec Greal_list}
ANYVAR Yuec Greal_.lists
ANY VAR OpPcodes Gshortint.list) s

Semantics
Points is the number of vertices in the polygon set.

The x and y coordinate arrays contain the world coordinate values for each vertex of the
polygon-set. The vertices must be in order. The vertices for the first sub-polygon must be at the
beginning of these arrays, followed by the vertices for the second sub-polygon, etc. So, the
coordinate arrays must contain a total number of vertices that equals points.

The operation selector array contains a series of integer operation selectors defining which
vertices start new polygons, and defining which edges should be displayed.

09826-90075, rev: 5/83

305.05 Procedures Reference

Value Meaning
0 Don’t display the line for the edge extending to this vertex from the previous vertex.
1 Display the line for the edge extending to this vertex from the previous vertex.
2 This vertex is the first vertex of a sub-polygon. Succeeding vertices are part of a
sub-polygon until a new start-of-polygon operation selector (2) is encountered. (Or the
end of the arrays is encountered.)

Note

The first entry in the operation selector array must be 2, since it is the
first vertex of a sub-polygon.

POLYGON_DEV_DEP is used to output a polygon-set, specified in world coordinates, adhering
within the capabilities of the device to the polygon style attributes that are currently specified. A
polygon-set is a set of polygons {called ‘‘sub-polygons’’) that are treated graphically as one
polygon. The subpolygons in a polygon-set may intersect or overlap each other.

The edge of a sub-polygon is defined as the line sequence that connects its vertices in the order
specified. If the last vertex specified for a sub- polygon is not the same as the first, they are
automatically connected.

When a polygon-set is displayed, the primitive attributes for polygons and lines define its
appearance. In particular, the interior of the polygon-set will be filled according to the attributes
of polygon style, polygon interior color and polygon interior line-style. If the edges are to be
displayed as specified in the polygon style, the edges will adhere to the current line attributes of
color, line-style and line-width.

The filling of polygons also depends on how the sub-polygons ‘‘nest’”’ within each other. An
“even-odd” rule is used for determining which areas will be filled. Moving across the screen,
count the edges of the polygon. Odd-numbered edges will turn the fill on and even-numbered
edges will turn the fill off. The picture below will help clear up how the fills work.

.

4

Polygon Filling

09826-90075, rev: 5/83

Procedures Reference 305.06

Referto SET_PGN_TABLE, SET_PGN_STYLE, SET_PGN_COLOR, SET_PGN_LS for a more
detailed description of how attributes affect polygons.

As stated above, the values in the operation selector array define how the edges of the sub-
polygons are displayed. The edge from the (I-1)th vertex to the Ith vertex will only be displayed if
the Ith entry in the operation selector array equals 1. To display the edge from the last vertex to
the first vertex of a sub-polygon, the first vertex must be explicitly respecified after all the other
vertices of the sub-polygon, with an operation selector equal to 1. Otherwise the edge from the
last vertex to the first will not be drawn. It will, however, automatically be connected for polygon
filling.

If it is within the capabilities of the device, filling of the sub-polygon will be done to the
sub-polygon edges regardless of whether the edges are displayed. If an entry in the operation
selector array does not equal 0, 1, or 2, it will be treated as if it were equal to 0, i.e., the edge will
not be drawn.

When POLYGON_DEV_DEP is used, the current position is updated to the end of the last
sub-polygon specified in the polygon-set. The end of the last sub-polygon is defined to be the first
(implicit last) vertex of the subpolygon. So, if there is only one vertex in a polygon-set this call
degenerates to an update of the current position to the first coordinate set in the x and y point
arrays (x coordinate array[1], y coordinate array[1]).

It is the application program’s responsibility to ensure that the arrays are all dimensioned to at
least the number of elements specified by points and that at least that many values are contained
in each array.

Device capabilities vary widely. Not all devices are able to draw polygon edges as requested. If a
device is not able to draw polygon edges as requested, they will be simulated in software. The
simulation will always adhere to the edge value in SET_PGN_STYLE and the operation selector
in POLYGON_DEV_DEP, but the line-style and color of the edge will depend on the capability of
the device to produce lines with those attributes.

Polygon fill capabilities can vary widely between devices. A device may have no filling capabilities
at all, may be able to perform only solid fill, or may be able to fill polygons with different fill
densities and at different fill line orientations. POLYGON_DEV_DERP tries to match the device
capabilities to the request. If the device cannot fill the request at all, then no simulation is done
and the polygon will not be filled. For HPGL plotters, the fill is simulated. For raster devices, if the
density is greater than 0.5, a solid fill is used, otherwise, the fill is simulated.

In the case where the polygon style specifies non-display of edged, this would result in no visible
output although visible output had been specified. To provide some visible output in this case,
POLYGON_DEV_DEP will outline the polygon using the color and line-style specified for the fill
lines. However, only those edge segments specified as displayable by the operation selector array
will be drawn. Therefore, if all edge segments are specified as non-displayed, there will still be no
visible output.

Regardless of the capabilities of the device, POLYGON_DEV_DEP sets the starting position to
the first vertex of the last member polygon specified in the call. If there is only one polygon
specified, the starting position will therefore be set to the first vertex specified.

09826-90075, rev: 5/83

305.07 Procedures Reference

Polygons are defined to be closed surfaces. When a sub-polygon extends beyond a clipping edge
the closed nature of the sub-polygon is destroyed. As with other primitives, unpredictable results
may occur if the sub-polygon extends beyond the clipping window.

Error Conditions

The graphics system must be initialized, a graphics display must be enabled, all parameters must
be within specified limits and the number of points (Points) must be greater than O or the call will
beignored, an ESCAPE (— 27) will be generated, and GRAPHICSERROR will return a non-zero
value.

09826-90075, rev: 5/83

Procedures Reference 305.08

POLYLINE

IMPORT: dgl_lib

This procedure draws a connected line sequence starting at the specified point.

Syntax

N X array y array
PoLYLINE)—(() O O O

Item Description/Default Re?ter‘itclzst!if)ns
points Expression of TYPE INTEGER MININT thru MAXINT
X array name Array of TYPE Greal _list. -

y array name Array of TYPE Greal_list -

Procedure Heading
PROCEDURE POLYLINE (NPpts : INTEGERS
ANYVAR HXvec:» Yvec : Greal_list)

Semantics
Points is the number of vertices in the polygon set.

The x and y coordinate arrays contain the world coordinate values for each vertex of the
polyline-set. The vertices must be in order. The vertices for the first sub-polyline must be at the
beginning of these arrays, followed by the vertices for the second sub-polyline, etc. So, the
coordinate arrays must contain a total number of vertices that equals points.

The procedure POLYLINE provides the capability to draw a series of connected lines starting at
the specified point. A complete object can be drawn by making one call to this procedure. This
call first sets the starting position to be the first elements in the x and y coordinate arrays. The line
sequence begins at this point and is drawn to the second element in each array, then to the third
and continues until points-1 lines are drawn.

This procedure is equivalent to the following sequence of calls:

MOVE (X_coordinate_arrav[i1l:;¥_coordinate_arrav[11)
LINE (X_coordinate_.arrav[Z2]:¥_coordinate_arrav[21)
LINE (¥X_coordinate_arrav[3]s¥_coordinate_.arrav[31])}

LINE (X_coordinate_arrav[Pointsls¥_coordinate_arrav[Pointsl);

The starting position is set to (X_coordinate_array[Points], Y_coordinate_array[Points]) at the
completion of this call.

09826-90075, rev: 5/83

305.09 Procedures Reference

Specifying only one element, or Points equal to 1, causes a move to be made to the world
coordinate point specified by the first entries in the two coordinate arrays.

It is the application program’s responsibility to ensure that the arrays are all dimensioned to at
least the number of elements specified by points and that at least that many values are contained
in each array.

Depending on the nature of the current line-style nothing may appear on the graphics display.
See SET_LINE_STYLE for a complete description of how line-style effects a particular point or
vector.

The primitive attributes of color, line-style, and line-width apply to polylines.

Error Conditions

The graphics system must be initialized, a graphics display must be enabled, all parameters must
be within specified limits and the number of points (points} must be greater than O or the call will
beignored, an ESCAPE (— 27) will be generated, and GRAPHICSERROR will return a non-zero
value.

09826-90075, rev: 5/83

Procedures Reference 305.10

09826-90075, rev: 5/83

306 Procedures Reference

PPOLL

IMPORT: hpib_3
iodeclarations

This function will perform an HP-IB parallel poll. This involves setting the ATN and EOI bus
lines on the specified interface and then read the data bus lines after waiting 25usec. The ATN
and EOI lines are then returned to the clear state.

Syntax

interface
peo () O

.. Range Recommended
Item | Description/Default ‘ Restrictions Range
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
Semantics
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN & EOI ATN & EOI
(duration=25ps) (duration=25p.s)
Active Read byte Read byte
Controller EOI Error EOI Error
Restore ATN to Restore ATN to
previous state previous state
Not Active
Controller Error

Procedures Reference 307

PPOLL _CONFIGURE

IMPORT: hpib_2

iodeclarations

This procedure programs the logical sense and data bus lines, a devices parallel poll response.

Syntax

device
rorconpane)0 © ®

o Range Recommended
Item Description/Default Restrictions Range
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary
an INTEGER subrange.
mask Expression of TYPE INTEGER. MININT thru 0 thru 15
MAXINT

Semantics

This procedure assumes that the device’s response is bus-programmable. The computer must
be active controller to execute this statement.

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
MTA MTA
Active UNL UNL
Controller Error LAG Error LAG
PPC PPC
PPE PPE
Not Active
Controller Error

The mask is coded. The three least significant bits determine the data bus line for the response.
The fourth bit determines the logical sense of the response.

Note

Use of PPOLL_CONFIGURE may interfere with the Pascal Operat-
ing System, especially if an external disk is being used. Be very
careful,

308 Procedures Reference

PPOLL_UNCONFIGURE

IMPORT: hpib_2
iodeclarations

This procedure will cause the specified device(s) to disable the parallel poll response.

Syntax

device
—b-(PPOLI_UNcONFIGURE 0 a

Item Description/Default Range Recommended
Restrictions Range
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary
an INTEGER subrange.
Semnantics
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
ode Only Specified Code Only Specified
ATN ATN
MTA MTA
Active ATN UNL ATN UNL
Controller PPU LAG PPU LAG
PPC PPC
PPD PPD
Not Active
Controller Error

Note

Use of PPOLL_UNCONFIGURE may interfere with the Pascal Oper-

ating System, especially if an external disk is being used. Be very
careful.

Procedures Reference 308.1

RAND

IMPORT: rnd
sysglobals

This SHORTINT function returns a random number greater than or equal to zero and less than
the specified SHORTINT range.

Syntax
(R0 o O+ seea () O

Item | Description/Default ‘ Resl}t?ir::st;ii)ns
seed INTEGER 1 thru MAXINT -1
range SHORTINT 1thru 23 —1
Semantics

Given a seed and a range, the random number generator function returns a random number
greater than or equal to zero and less than the range. It also randomizes the seed INTEGER.

09826-90075, rev: 1/83

308.2 Procedures Reference

RANDOM

IMPORT: rnd

This procedure takes a seed INTEGER, randomizes it and returns the new random number in the
seed variable.

Syntax

CD R OREIN0

ltem | Description/Default | Re?t?i'::?if)ns
seed | INTEGER | 1 thru MAXINT —1
Semantics

When the following program is run, the RANDOM procedure returns all 23! —1 INTEGERS
before repeating a value.

Prodram test{(outPut))

import RND3

var seed : INTEGERS
doomsday : BOODLEAN;:

bedgin
seed 1= 12343
doomsday := falses

repeat
RANDOM(seed) 3
write(seed)}?

until doomsdav i

end.

09826-90075, rev: 1/83

IMPORT: general_4

" Computer

., Museum

iodeclarations

Procedures Reference

READBUFFER

This procedure will read a single byte from the buffer space and update the empty pointer in
the buf_info record. An error will occur when a read is attempted beyond the end of valid data.

Syntax

buffer destination
neavsurren) () O O

Item

Description/Default

Range
Restrictions

buffer name

destination
character

Variable of TYPE buf_info_type.

Variable of TYPE CHAR.

See Chapter 11

309

310 Procedures Reference

READBUFFER _STRING

IMPORT: general_4
iodeclarations

This procedure will read the specified number of characters from the buffer and put them into
the string variable. The empty pointer is updated. If the string is not big enough or if there is
insufficient data in the buffer there will be an error.

Syntax
~ G (D © © ©
.. Range Recommended
Item Description/Default Restrictions Range
buffer name Variable of TYPE buf_info_type. See Chapter 11
destination Variable of TYPE STRING. -
string
character count Expression of TYPE INTEGER. MININT thru 0 thru 255
MAXINT ‘

Procedures Reference 311

READCHAR

IMPORT: general_1

iodeclarations

This procedure will read a single byte from the specified interface.

Syntax

interface destination
reavcinn) ()) O

Item Description/Default R e;Rt?;::%% ns Reccﬁn;:]r:ended
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
destination Variable of TYPE CHAR.
character
Semantics

If no character is ready the routine will wait until the character comes in or until a timeout occurs
(if any was set up).

An HPIB interface must be addressed as a listener before performing a READCHAR, or an
error will be generated. To avoid this, use the following sequence:

TALK (7:24) 5

UNLISTEN(7)

LISTEN(74 MY_.ADDRESS(7)) 3
READCHAR (73 Character) s

312 Procedures Reference

READWORD

IMPORT: general_1
iodeclarations

This procedure will read 2 bytes from interfaces that are byte-oriented. The GPIO card and any
other word-oriented interface will read a single 16 bit quantity.

Syntax

@ o ®

Item Description/Default Re?t?i'lst;ﬁ)ns Rec%n;ll:;eended

interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
destination Variable of TYPE INTEGER.
variable
Semantics

An interface less than 16-bits wide will be read into the most-significant-byte first, then into the
lease-significant-byte.

An HP-IB interface must be addressed as a listener before performing a READWORD, or an
error will be generated. To avoid this, use the following sequence:

TALK (7 +24) 3
LISTEN{ 7 MY_ADDRESS(7));
READWORD (7 Character) i

Procedures Reference 313

READNUMBER

IMPORT: general_2

iodeclarations

This procedure will perform a free field numeric entry from the specified device.

Syntax

device destination
reaomumsen) () O O

. Range Recommended
Item Description/Default Restrictions Range
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary
an INTEGER subrange.
destination Variable of TYPE REAL.
variable
Semantics

The routine will skip over non-numerics until a valid ASCIl number is encountered. The
number will be processed until a non-numeric value is read from the interface, or until 256
characters have been read. No further characters are read.

314 Procedures Reference

READNUMBERLN

IMPORT: general 2
iodeclarations

This procedure will read in a free field number and then search for a line feed:

Syntax

device destination
meaonumeeL) () O O

. Range Recommended
Item Description/Default Restrictions Range

device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary

an INTEGER subrange.
destination Variable of TYPE REAL.
variable
Semantics
The routine will skip over non-numerics until a valid number is encountered. The number will ‘
be processed until a non-numeric value is read from the interface. If a line feed is the next

character, no more characters are read, otherwise, characters are read until a line feed is
encountered.

Procedures Reference 315

READSTRING

IMPORT: general_2

iodeclarations

This procedure will read in characters to the specified string.

Syntax

device destination
neavsTame) () O O

.. Range Recommended
Item Description/Default Restrictions Range
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary

an INTEGER subrange.

destination string Variable of TYPE STRING.

Semantics

This procedure will read characters into the specified string until one of the following conditions
occur :

® a carriage return & line feed are read
® a line feed is read
® the string is filled up

The line feed or carriage return/line feed are not put into the string.

316 Procedures Reference

READSTRING_UNTIL

IMPORT: general_2
iodeclarations

This procedure will read characters from the selected device into the specified string until the
prescribed terminator is encountered.

Syntax
© O-EFC ®
Item Description/Default Re?tir‘ir::st!fons Recc;{n;glgeended
termination Expression of TYPE CHAR. -
character
device selector Expression f TYPE type_device. This is an 0 thru 3199 See glossary
INTEGER subrange.
destination Variable of TYPE STRING.
string
Semantics

This procedure will read characters into the string until one of the following conditions occurs :

® termination character is received
e the string is filled

The termination character is placed into the string.

Procedures Reference 317

READUNTIL

IMPORT: general_2

iodeclarations

This procedure will read characters until the match character occurs. All characters read in will
be thrown away.

Syntax
C O-EC
.. Range Recommended
Item Description/Default Restrictions Range
termination Expression of TYPE CHAR. -
character
device selector Expression of TYPE type_device. This 0 thru 3199 See glossary
is an INTEGER subrange.

318 Procedures Reference

REMOTE

IMPORT: hpib_2
iodeclarations

This procedure sends the messages to place the bus device(s) into the remote state.

Syntax

device
newore)-—(() O

.. Range Recommended
Item | Description/Default ‘ Restrictions Range
device selector Expression of TYPE type_device. This 0 thru 3199 See glossary
is an INTEGER subrange.
Semantics
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
REN
Acti ATN
Controller REN MTA Error
° ATN UNL
LAG
Not Active REN Error Error
Controller

Procedures Reference 319

REMOTED
IMPORT: hpib_3

iodeclarations

This BOOLEAN function indicates if the REN line is being asserted. The interface should be
non-system controller.

Syntax

interface
feworen)~(() D

Item | Description/Default ‘ Re?t?incst!: ons Reccl)argr':;eended
device selector Expression of TYPE type_device. This 0 thru 3199 See glossary

is an INTEGER subrange.

320 Procedures Reference

REQUESTED

IMPORT: hpib_3
iodeclarations

This BOOLEAN function returns TRUE if any device is currently asserting the SRQ line. The
interface must be active controller.

Syntax

interface
reavesren)—(() 0

. L. Range Recommended
Item | Description/Default | Restrictioris Range
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.

Procedures Reference 321

REQUEST_SERVICE

IMPORT: hpib_3
iodeclarations

This procedure will set up the spoll response byte in the specified interface. If bit 6 is set, SRQ
will be set. The interface must not be active controller.

Syntax

reouesr.seavoe)} () (D 0

e . Range Recommended
Item Description/Default Restrictions Range
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
response value Expression of TYPE INTEGER. MININT thru 0 thru 255
MAXINT

322

Procedures Reference

SAMPLE _LOCATOR

IMPORT: dgl_lib

This procedure samples the current locator device

Syntax

echo x coordinate y coordinate
sauPLE_LocATOR)—={(() O O D

Item Description/Default Regfirgtlii)ns
echo selector Expression of TYPE INTEGER MININT to MAXINT
x coordinate name Variable of TYPE REAL -

y coordinate name Variable of TYPE REAL -

Procedure Heading

PROCEDURE SAMPLE_LOCATOR ¢ Echo : INTEGERS
VAR Wxis Wy : REAL }i
Semantics
The echo selector determines the level of input echoing. Possible values are:
0 - No echo.
=1 - Echo on the locator device.

The x and y coordinates are the values of the coordinates, expressed in world coordinate units,
returned from the enabled locator device.

SAMPLE_LOCATOR returns the current world coordinate value of the locator without waiting
for any user intervention. Typically, the locator is sampled in applications involving the con-
tinuous input of data points that are very close together.

If the point sampled is outside of the current logical locator limits, the transformed point will still
be returned .

The number of echoes supported by a locator device and the correlation between the echo value
and the type of echoing performed is device dependent. Most locator devices support at least one
form of echoing. Possible echoes are beeping, displaying the point sampled, etc. See the locator
descriptions below to find the locators supported by the various devices. If the echo value is larger
than the number of echoes supported by the enabled locator device, then echo 1 will be used.

Locator echoing can only be performed on the locator device. The locator echo position is not
used in conjunction with any echoes performed while sampling a locator.

09826-90075, rev: 5/83

Procedures Reference

SAMPLE_LOCATOR implicitly makes the picture current before sampling the locator.

The Knob as Locator

The keyboard beeper is sounded when the locator is sampled if an echo is selected (echo
selector=1). The sample locator function returns the last AWAIT_LOCATOR result or 0.0, 0.0 if
AWAIT_LOCATOR has not been invoked since LOCATOR_INIT.

HPGL Locators

The sample locator function returns the current locator position without waiting for an operator
response (pen position on plotters). On a 9111A graphics Tablet, the beeper is sounded when the
stylus is depressed. For echo selectors greater than or equal to 9, the same echo as echo selector 1
is used.

Error Conditions

The graphics system must be initialized and a locator device enabled or this call will be ignored, an
ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero value.

09826-90075, rev: 5/83

323

324 Procedures Reference

SECONDARY

IMPORT: hpib_2
iodeclarations

This procedure will send a secondary command byte over the bus. The interface must be active

controller.
Syntax
0 C 0
Item Description/Default Regir‘ir::st;ieons Rec%r:r:geended
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.

secondary value Expression of TYPE type_hpib_addr. This 0 thru 31
is an INTEGER subrange.

Procedures Reference 325

SEND_BREAK

IMPORT serial_3

iodeclarations

This procedure will send a break to the selected serial interface. (A break is an extended mark
period followed by an extended space period.)

Syntax

interface
seno_erear () 0

.. Range Recommended
Item | Description/Default ‘ Restrictions ‘ Range
interface

INTEGER subrange.

Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code

326 Procedures Reference

SEND_COMMAND

IMPORT: hpib_1
iodeclarations

This procedure sends a single byte over the HP-IB interface with attention true. The computer
needs to be active controller when this happens.

Syntax
(O (D) O
. Range Recommended
Item Description/Default Restrictions Range
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
command Expression of TYPE CHAR.
character
Semantics

Note

Use of PPOLL_.CONFIGURE may interfere with the Pascal Operat-
ing System, especially if an external disk is being used. Be very
careful.

Procedures Reference 327

SERIAL LINE

IMPORT: serial _0

iodeclarations

This BOOLEAN function returns TRUE if the specified line on the serial interface is asserted.

Syntax

interface serial line
semaLne)--(()) O

.. Range Recommended
Item Description/Default Restrictions Range

interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
serial line Expression of enumerated TYPE rts_line
specifier type_serial_line. cts_line

dcd_line

dsr_line

drs_line

ri_line

dtr_line
Semantics

The values of the enumerated TYPE type_serial_line have the following definitions:

name | RS-232 line

rts ready to send

cts clear to send

dcd data carrier detect
dsr data set ready

drs data rate select

dtr data terminal ready
ri ring indicator

The access to the various lines is determined by the use of an Option 1 or Option 2 connector
on the selected interface.

328

Procedures Reference

SET_ASPECT

IMPORT: dgl_lib

This procedure redefines the aspect ratio of the virtual coordinate system.

Syntax

(serpspeet = O+ st () s2e Q)

- Range
Item | Description/Default | Restrictions
X size Expression of TYPE REAL -
y size Expression of TYPE REAL -

Procedure Heading
PROCEDURE SET_ASPECT (X_sizes Y_size : REAL)}

Semantics

The x size is the width of the virtual coordinate system in dimensionless units. The size must be
greater than zero.

The y size is the height of the virtual coordinate system in dimensionless units. The size must be
greater than zero.

SET_ASPECT sets the aspect ratio of the virtual coordinate system, and hence the view surface,
to be y size divided by x size. A ratio of 1 defines a square virtual coordinate system, a ratio greater
than 1 specifies it to be higher than it is wide; and a ratio less than 1 specifies it to be wider than it is
high. Since x size and y size are used to form a ratio, they may be expressed in any units as long as
they are the same units.

The range of coordinates for the virtual coordinate system is calculated based on the value of the
aspect ratio. The coordinates of the longer axis are always set to range from 0.0 to 1.0 and those
of the shorter axis from 0 to a value that achieves the specified aspect ratio. SET_ASPECT
defines the limits of the virtual coordinate system.

ASPECT RATIO (AR) | X LIMITS | v LIMITS
AR <1 0.0, 1.0 0.0, 1.0 * AR
AR =1 0.0, 1.0 0.0, 1.0
AR > 1 0.0,1.0/AR 0.0, 1.0

09826-90075, rev: 5/83

Procedures Reference

When a call to SET_ASPECT is made, the graphics system sets the viewport equal to the limits of
the virtual coordinate system. This routine can therefore be used to access the entire logical
display surface. A program could display an image on the entire HP 9826 graphics display, which
has an aspect ratio of 399/299, in the following manner:

SET_ASPECT (399, 299);

To set the aspect ratio to the entire display in a device independent manor, INQ_WS may be used
as follows:

PROCEDURE Set_max_asrPect?
CONST Cet_aspect=2543

VAR Dummy : INTEGERS
Error : INTEGERS
Ratio_list: ARRAY[1..21 OF REAL3

BEGIN {PROCEDURE Set_max_asrect?’
INO_WS (Get_asrect 00 +2+Dummy +Dummy » Ratio_lists Error)s
IF Error=0 THEN
SET_ASPECT(1.0sRatio_list[21)}
ENDY {PROCEDURE Set_max.asrectl}

The initial value of the aspect ratio is 1, setting the virtual coordinate system to be a square. This
square is mapped to the largest inscribed square on any display surface, so that the viewable area
is maximized. As a result, the initial virtual coordinate system limits range from 0.0 to 1.0 in both
the X and Y directions. A program can access the largest inscribed rectangle on any display
surface by modifying the value of the aspect ratio. The exact placement of the rectangle on the
display surface is device dependent, but it is centered on CRT’s and justified in the lower left hand
corner of plotters.

The starting position is not altered by this call. Since this call redefines the viewing transformation,
the starting position may no longer represent the last world coordinate position. A call to MOVE
or INT_MOVE should therefore be made after this call to update the starting position.

If the logical locator is associated with the same physical device as the graphics display, then a call
to SET_ASPECT will set the logical locator limits equal to the new limits of the virtual coordinate
system.

Since the window is not affected by the SET_ASPECT procedure, distortion may result in the
window to viewport mapping if the window does not have the same aspect ratio as the virtual
coordinate system (see SET_WINDOW).

The locator echo position is set to the default value by this procedure.
Error Conditions
The graphics system must be initialized and both X and Y size must be greater than zero or this call

will be ignored, an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a
non-zero value.

09826-90075, rev: 5/83

329

330 Procedures Reference

SET_BAUD_RATE

IMPORT: serial_3

iodeclarations
This procedure will set the serial interface to the specified baud rate.
Syntax
© =G
o Range Recommended
Item Description/Default Restrictions Range
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
baud rate Expression of TYPE REAL. - 50 thru 19200
(for 98628)

Procedures Reference 331

SET_CHAR LENGTH

IMPORT: serial_3

jodeclarations

This procedure specifies the character length for serial communications, in bits. The valid range
of values is 5..8.

Syntax

interface character

e L. Range Recommended
Item Description/Default Restrictions Range
interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
character Expression of TYPE INTEGER. MININT thru 5 thru 8
length MAXINT

332

Procedures Reference

SET _CHAR_SIZE

IMPORT: dgl_lib
This procedure sets the character size attribute for graphical text.
Syntax
® O ®
Item Description/Default Range
P Restrictions
width Expression of TYPE REAL -
height Expression of TYPE REAL -

Procedure Heading
PROCEDURE SET_CHAR_SIZE (Width, Height : REAL)

Semantics

The width is the requested graphics character cell width in world coordinate units. (width <>
0.0)

The height is the requested graphics character cell height in world coordinate units. (height <>
0.0)

SET_CHAR_SIZE sets the character size for subsequently output graphics text. The absolute
value of width and height are used to specify the world coordinate size of a character cell.
Therefore, the actual physical size of a character output is determined by applying the current
viewing transformations to the world coordinate units specification.

The default character size (set by GRAPHICS_INIT and DISPLAY_INIT) is dependent upon the
physical device associated with the graphical display device. The size is determined as follows:
® Height : = .05 x (height of the world coordinate system)
o Width := .035 x (width of the world coordinate system)

If a change is made to the viewing transformation (by SET_WINDOW, SET_VIEWPORT,
SET_DISPLAY_LIM, or SET_ASPECT), the value of the character size attribute will not be
changed, but the actual size of the characters generated may be modified.

Error Conditions

The graphics system must be initialized, a display must be enabled, and width and height must
both be non-zero or this call will be ignored, an ESCAPE (—27) will be generated, and
GRAPHICSERROR will return a non-zero value.

09826-90075, rev: 5/83

Procedures Reference 333

SET_COLOR

IMPORT: dgl_lib

This procedure sets the color attribute for output primitives except for polygon interior fill.

Syntax

CETD SO EEA R0

. Range
Item ‘ Description/Default | Restrictions

color selector I Expression of TYPE INTEGER | -

Procedure Heading
PROCEDURE SET_COLOR (Color : INTEGER)

Semantics
SET_COLOR sets the color attribute for the following primitives:

Lines

Markers
Polylines
Polygon Edges
Text

At device initialization a default color table is created by the graphics system. The size and
contents of the table are device dependent. At least one entry exists for all devices. A call to
INQ_WS with OPCODE equal to 1053 will return the number of colors available on a given
graphics device. Some devices allow the color table to be modified with SET_TABLE.

The color selector is an index into the color table. The contents of the color table are then used to
specify the color when primitives are drawn. On some devices (HPGL plotters), the color selector
maps directly to a pen number for the device. On the HP 9836C, the entries in the color table can
be modified with SET_COLOR_TABLE.

The default value of the color attribute is 1. If the value of the color selector is not supported on
the graphics display, the color attribute will be set to 1.

A color selector of 0 has special effects depending on the graphics display used. For raster
devices, a color selector of 0 means to draw in the background color. For most plotters, it puts the
pen away.

09826-90075, rev: 5/83

333.1 Procedures Reference

If the device is not capable of reproducing a color in the color table, the closest color which the
device is capable of reproducing is used instead. On some devices, this may depend on the
primitive being displayed. For example, the HP98627A color outputinterface card is capable of a
large selection of polygon fill colors, but only 8 line colors. Thus, the fill color could match the
selected color much more closely than the line color used to outline the polygon.

Default Raster Color Map

The following table shows the default (initial) color table for the black and white displays (HP
9816 / HP 9920 / HP 9826 / HP 9836):

Index #
0

s
c
®

Saturation | Luminosity

0

1.0000
0.9375
0.8750
0.8125
0.7500
0.6875
0.6250
0.5625
0.5000
0.4375
0.3750
0.3125
0.2500
0.1875
0.1250
0.0625

eNeolololoNoRoNoNoNeNoReNoNoRoRe ol
OO0 OO ODODOOOOOOOOOO

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Colors 17 though 31 are set to white.
The following table shows the default (initial) color table for the color displays (HP 9836C and HP

98627A):
Index # | Color name Red Green Blue

0 Black 0.000000 | 0.000000 | 0.000000

White 1.000000 { 1.000000 | 1.000000

2 Red 1.000000 | 0.000000 | 0.000000

3 Yellow 1.000000 | 1.000000 { 0.000000

4 Green 0.000000 | 1.000000 | 0.000000

5 Cyan 0.000000 | 1.000000 | 1.000000

6 Blue 0.000000 | 0.000000 | 1.000000

7 Magenta 1.000000 | 0.000000 | 1.000000

8 Black 0.000000 | 0.000000 | 0.000000

9 Olive green | 0.800000 | 0.733333 | 0.200000

10 Aqua 0.200000 | 0.400000 | 0.466667

11 Roval blue 0.533333 | 0.400000 | 0.666667

12 Violet 0.800000 | 0.266667 | 0.400000

13 Brick red 1.000000 | 0.400000 | 0.200000

14 Burnt orange | 1.000000 | 0.466667 | 0.000000
15 | Greybrown | 0.866667 | 0.533333 | 0.266667 .

Colors 9 though 15 are a graphic designers idea of colors for business graphics. Color table
entries not shown above are set to white.

09826-90075, rev: 5/83

Raster Drawing Modes

Procedures Reference 333.2

For raster devices (e.g., HP 9836 display) the effect of the color selectors depends on the current
drawing mode (drawing mode is set using the OUTPUT_ESC function). The color selectors and

their effects are listed below:

Color Color

Selector Selector
Mode =0 >=1
DOMINATE Background Draw
(Default mode) (erase, set (set bits to 1,

bits to 0) overwrite current pattern)
NON-DOMINATE Background Draw

(erase, set (set bits to 1

bits to 0) Inclusive OR

with current pattern)

ERASE Background Background

(erase, set (erase, set

bits to 0) bits to 0)
COMPLEMENT Background Complement

(erase, set (Invert bits in

bits to 0) selected planes)

Plotters

A Color Selector of 0 selects no pens (the current pen is put away). The supported range of Color

Selectors for each supported plotter is:

¢ 9872A - 0 thru 4

¢ 9872B - 0 thru 4

® 9872C/S/T - 0 thru 8

® 7580A/7585A - 0 thru 8
e 7470A - 0 thru 2

Error Conditions

The graphics system must be initialized and a display must be enabled or this call will be ignored,
an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero value.

09826-90075, rev: 5/83

333.3 Procedures Reference

SET_COLOR_MODEL

IMPORT: dgl_lib

This procedure chooses the color model for interpreting parameters in the color table.

Syntax

(ser_coLoR WooEL)—(O] o ettor ()

Item | Description/Default | Re?t?inc%ii) s | Rec(;‘lglr:lgeended
model selector Expression of TYPE INTEGER | MININT thru | Oor1l
MAXINT

Procedure Heading
PROCEDURE SET_COLOR_MODEL (MODEL : integer);

Semantics

The model selector determines the color model which will be used to interpret the values passed
to the color table with SET_COLOR_TABLE or read from it with INQ_COLOR_TABLE.

Value | Meaning
1 RGB (Red-Green-Blue) color cube.
2 HSL (Hue-Saturation-Luminosity) color cylinder.

The RGB physical model is a color cube with the primary additive colors (red, green, and blue) as
its axes. With this model, a call to SET_COLOR_TABLE specifies a point within the color cube
that has a red intensity value (X-coordinate), a green intensity value (Y-coordinate) and a blue
intensity value (Z-coordinate). Each value ranges from zero (no intensity) to one.

Effects of RGB color parameters

Parm 1 (RED) Parm 2 (GREEN) Parm 3 (BLUE) Resultant color
1.0 1.0 1.0 White
1.0 0.0 0.0 Red
1.0 1.0 0.0 Yellow
0.0 1.0 0.0 Green
0.0 1.0 1.0 Cyan
0.0 0.0 1.0 Blue
1.0 0.0 1.0 Magenta
0.0 0.0 0.0 Black

09826-90075, rev: 5/83

Procedures Reference 333.4

The HSL perceptual model is a color cylinder in which:

® The angle about the axis of the cylinder, in fractions of a circle is the hue (red is at 0, green is
at 1/3 and blue is at 2/3).

® The radius is the saturation. Along the center axis of the cylinder, (saturation equal zero) the
colors range from white through grey to black. Along the outside of the cylinder (saturation
equal one) the colors are saturated with no apparent whiteness.

® The height along the center axis is the luminosity (the intensity or brightness per unit area).
Black is at the bottom of the cylinder (luminosity equal zero) and the brightest colors are at
the top of the cylinder (luminosity equal one) with white at the center top.

Hue (angle), saturation (radius), and luminosity (height) all range from zero to one. Using this
model, a call to SET_COLOR_TABLE specifies a point within the color cylinder that has a hue

value, a saturation value, and a luminosity value.

Effects of HSL color parameters

Parm 1 (Hue) Parm 2 (Sat) Parm 3 (Lum) Resultant color

Don’t Care 0.0 1.0 White

0.0 1.0 1.0 Red

1/6 1.0 1.0 Yellow

2/6 1.0 1.0 Green

3/6 1.0 1.0 Cyan

4/6 1.0 1.0 Blue

5/6 1.0 1.0 Magenta
Don’t Care Don’t Care 0.0 Black

When a call to SET_COLOR_MODEL switches color models, parameter values in subsequent
calls to SET_COLOR_TABLE then refer to the new model. Switching models does not affect
color definitions that were previously made using another model. Note that when the value of a
color table entry is inquired (INQ_COLOR_TABLE), it is returned in the current model, which
may not be the model in which it was originally specified.

Not all color specifications can be displayed on every graphics device, since the devices which the
graphics library supports differ in their capabilities. If color specification is not available on a
device, the graphics system will request the closest available color.

Error Conditions

The graphics system must be initialized and the color selector must evaluate to O or 1 or this call
will be ignored, an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a
non-zero value.

09826-90075, rev: 5/83

333.5 Procedures Reference

SET_COLOR _TABLE

IMPORT: dgl_lib

This procedure redefines the color description of the specified entry in the color table. This color
definition is used when the color index is selected via SET_COLOR.

Syntax

entry first second
SET_COLOR_TABLE

third
parameter

Item Description/Default Re?t?ir::st!ieons Recc&n;z;eended
entry selector Expression of TYPE INTEGER MININT to device
MAXINT dependent (see
below)
first parameter Expression of TYPE REAL Othru 1 -
second parameter Expression of TYPE REAL Othru 1 -
third parameter Expression of TYPE REAL Othrul -

Procedure Heading

PROCEDURE SET_COLOR_TABLE (Index : INTEGERS
Colrl : REAL}S
Colr2 : REALS
Colr3 : REAL)

Semantics

SET_COLOR_TABLE is ignored by some devices (such as pen plotters) which do not allow their
color table to be changed. The procedure INQ_WS (opcode 1073) tells whether the color table
can be changed.

The entry selector specifies the location in the color capability table that is to be redefined. For
raster displays in Series 200 computers, 32 entries are available.

The first parameter represents red intensity if the RGB model has been selected with the SET
COLOR statement, or hue if the HSL model has been selected.

The second parameter represents green intensity if the RGB model has been selected with the
SET COLOR statement, or saturation if the HSL model has been selected.

The third parameter represents blue intensity if the RGB model has been selected, or luminosity ‘
if the HSL model has been selected.

09826-90075, rev: 5/83

Procedures Reference 333.6

A more detailed description of the color models and the meaning of their parameters can be
found under the procedure definition of SET_COLOR_MODEL.

The effect of redefinition of the color table on previously output primitives is device dependent.
On most devices changing the color table will only affect future primitives; however, on the Model
36C changing a color table entry with a color selector from O through 15 will immediately change
the color of primitives previously drawn with that entry. The procedure INQ_WS (opcode 1071)
tells whether retroactive color change is supported.

Monochromatic Displays

All Series 200 computers except the Model 36C have a monochromatic internal CRT. Changing
an entry in the table will not affect the current display; however, future changes to the display will
use the new contents of the table. Device dependent polygons use the color table entry when
performing dithering.

The color that lines are drawn with (black or white) is determined from the perceived intensity of
the color table entry. This is calculated as follows:

if (red * 0.3 + green * 0.59 + blue * 0.11) > 0.1
then
color : = white
else
color : = black;

The HP 98627A Display

Changing an entry in the table will not affect the current display; however, future changes to the
display will use the new contents of the table. Device dependent polygons use the color table
entry when performing dithering.

The color that lines are drawn with (one of the 8 non-dithered colors) is determined from the
closest HSL value to the requested value.

The Model 36C

The first 16 locations (0..15) of the color table map directly to the hardware color map. Changing
one of these color table locations will immediately change the display (assuming the color has
been used).

The next 16 locations (16..31) will not affect the current display; however, future changes to the
display will use the new contents of the color table.

Device dependent polygons drawn with color table locations 0..15 will be drawn in a solid color
without using dithering. When drawn with color table location above 15 dithering will be used.

09826-90075, rev: 5/83

333.7 Procedures Reference

Note

Since dithering on the HP 9836C uses the current color map values
(i.e., color table locations 0..15) changing the first 16 color table
locations will affect the dither pattern used. This leads to two major
effects. First, changing the first 16 locations after a polygon was
generated using dithering will change the dither pattern such that its
averaged color no longer matches the color that it was generated with.
Second, since the dither pattern is based on the first 16 colors, the first
16 colors can be set to produce a dither pattern with minimum color
changes between pixels within the pattern. The following example
produces a continuous shaded polygon across the crt:

$RANGE OFF%
PROGRAM T3i

IMPDRT dgl_tvpres,y dgl_liby dgl_pPolv;

VAR I : INTEGER S
Huecr¥Yvec : ARRAY [1.,.2]1 OF REAL?:
Ouec : ARRAY [1..21 OF Gshortints
C : REALS

BEGIN

GRAPHICS_INIT:

DISPLAY _INIT(3:0+i)3
SET_ASPECT(311:389) 3
SET_WINDOMW(O,311.,0,389) i

FOR I := 0 to 15 DO
SET_COLOR_TABLE(I »I1/15+1/15+1/153)% { set up color mar }

SET_PGN_CODLOR (16)3
SET_PGN_STYLE (16)3

Yuec[11 := 1003% Yvec[Z2Z1 2= 150% Ovecil] := 05 Duecl2]1 :1= 03
FOR I := O to S11 DO
BEGIN

Xueclll := I35 HKvecl2] :1= I3

C := I/511%
SET.COLOR_TABLE(1G:C+C:C)3% { set Polvdon color ¥
POLYGON_DEY_DEP(Z:Xvec+YvecQuec) i

END

END.

The color that lines are drawn with (one of the first 16 non-dithered colors) is determined from the
closest HSL value to the requested value.

09826-90075, rev: 5/83

Procedures Reference

Dithered Polygon Fills

All the raster displays use a technique called dithering for filling device dependent polygons. The
polygon is divided into 4 pixel by 4 pixel 'dither cells’. The colors that are placed in each pixel
location inside the dither cells average to the current polygon color. The eye will average the
pixels, and see the intended color.

The 98627A has 3 memory planes thus, providing 8 non-dithered colors (white, red, green, blue,
cyan, magenta, and black). Using dithering 4913 polygon colors may be generated. To obtain a
polygon color of half-tone yellow (R = 0.5G =.0.5B = 0.0) the dither cell would contain 8 black
pixels and 8 yellow pixels.

On black and white displays, the largest r,g,b value of the current_polygon color is used to
determine the dither pattern.

On the HP 9836C the current values of the color map are used to determine the dither cell pixel
colors. This leads to a very very large number of colors that the HP 9836C can produce when
performing device dependent polygon fill.

The Background Color

Color index 0 represents the background color. The ability to redefine this index is device-
dependent. Many devices do not allow the redefinition of their background color. Whether a
display device has the ability to redefine the background color can be inquired via a call to
INQ_WS with opcode = 1072. All raster displays in the 200 Series are capable of redefining the
background color.

Error Conditions

The graphics system must be initialized and a display device must be enabled or this call will be
ignored, an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero
value.

09826-90075, rev: 5/83

333.8

334 Procedures Reference

SET DISPLAY LIM

IMPORT: dgl_lib

This procedure redefines the logical display limits of the graphics display.

Syntax
© O) O
maximum -

y value i by ()) ’
error
variable name

Item Description/Default Re?t?iréi!ie()ns
minimum x value Expression of TYPE REAL -
maximum x value Expression of TYPE REAL -
minimum y value Expression of TYPE REAL -
maximum y value Expression of TYPE REAL -
error variable name Variable of TYPE INTEGER -

Procedure Heading

PROCEDURE SET_DISPLAY_LIM (Kminy Xmax
Ymins Ymax : REAL
VAR Ierr # INTEGER)3
Semantics

The minimum x value is the distance in millimetres that the left side of the logical display limits is
offset from the left side of the physical display limits.

The maximum x value is the distance in millimetres that the right side of the logical display limits
is offset from the left side of the physical display limits.

The minimum y value is the distance in millimetres that the bottom of the logical display limits is
offset from the bottom of the physical display limits.

The maximum y value is the distance in millimetres that the top of the logical display limits is
offset from the bottom of the physical display limits.

The error variable will contain an integer indicating whether the limits were successfully set.

09826-90075, rev: 5/83

Computer Procedures Reference 335

< ~Museum

Value Meaning
0 The display limits were successfully set.
1 The minimum x value was greater than or equal to the maximum x value and/or the

minimum y value was greater than the maximum y value.

2 The parameters specified were outside the physical display limits.

If the error variable is non-zero, the call was ignored.

SET_DISPLAY_LIM allows an application program to specify the region of the display surface
where the image will be displayed. The limits of this region are defined as the logical display limits.
Upon initialization, the graphics system sets these limits equal to some portion of the specified
physical device. This routine allows a programmer to set the plotting surface of a very large plotter
equal to the size of an 8 1/2 x 11 inch paper, for example.

The pairs (minimum x value, minimum y value) and (maximum x value, maximum y value)
define the corner points of the new logical display limits in terms of millimetres offset from the
origin of the physical display. The exact position of the physical display origin is device depen-
dent. The specifics of various devices are covered later in this entry.

This procedure causes a new virtual coordinate system to be defined. SET_DISPLAY_LIM
calculates the new limits of the virtual coordinate system as a function of the current aspect ratio
and the new limits of the logical display. This does not affect the limits of the viewport. Since it
changes the size of the area onto which the viewport is mapped, it may scale the size of the image
displayed. It will not distort the image; it can only make it smaller or larger.

SET_DISPLAY_LIM should only be called while the graphics display is enabled.

Neither the value of the starting position nor the location of the physical pen or beam is altered by
this routine. Since this routine may redefine the viewing transformation, the starting position may
be mapped to a different coordinate on the display surface. A call to MOVE or INT_MOVE should
therefore be made after this call to update the value of the starting position and in so doing, place
the physical pen or beam at a known location.

If the logical display and logical locator are associated with the same physical device, a call to
SET_DISPLAY_LIM will set the logical locator limits equal to the new limits of the virtual
coordinate system. A call to SET_DISPLAY_LIM also sets the locator echo position to its default
value, the center of the world coordinate system.

Display Limits of Raster Devices
The internal CRT’s for Series 200 computers have the following limits:

Wide High Wide High Resolution
Plotter mm mm points points Aspect mm
9816/
9920 168 126 400 300 .75 2.381
9826 120 90 400 300 .75 3.333
9836 210 160 512 390 7617 2.438
9836C 217 163 512 390 .7617 2.39

09826-90075, rev: 5/83

335.1 Procedures Reference

The physical size of the HP 98627A display (needed by the SET_DISPLAY_LIM procedure) may
be given to the graphics system by an escape function (OPCODE = 250). The physical limits
assumed until the escape function is given are:

CONTROL = 256 153.3mm wide and 116.7mm high.
512 153.3mm wide and 116.7mm high.

768 153.3mm wide and 142.2mm high.

1024 153.3mm wide and 153.3mm high.

1280 153.3mm wide and 153.3mm high.

The default logical display surface of the graphics display device is the maximum physical limits of
the screen. The physical origin is the lower left corner of the display.

The view surface is always centered within the current logical display surface. The origin of a
raster display is the lower-left dot.

HPGL Plotter Display Limits

Wide High Wide High Resolution

Plotter mm mm points points Aspect | points/mm
9872 400 285 16000 11400 7125 40.0
7580 809.5 | 524.25 32380 20970 .6476 40.0
7585 1100 890 44000 35670 .809 40.0
7470 2575 1 190 10300 7600 7378 40.0

The maximum phuysical limits of the graphics display for a HPGL device not listed above are
determined by the default settings of P1 and P2. The default settings of P1 and P2 are the values
they have after an HPGL "IN’ command. Refer to the specific device manual for additional
details.

The default logical display surface is set equal to the area defined by P1 and P2 at the time
DISPLAY_INIT is invoked. The view-surface is always justified in the lower left corner of the
current logical display surface (corner nearest the turret for the HP 7580 and HP 7585 plotters).
The physical origin of the graphics display is at the lower left boundary of pen movement.

Note
If the paper is changed in an HP 7580 or HP 7585 plotter while the
graphics display is initialized, it should be the same size of paper that
was in the plotter when DISPLAY_INIT was called. If a different size of
paper is required, the device should be terminated (DISPLAY_
TERM) and re-initialized after the new paper has been placed in the
plotter.

Spooling on an HP 7585A plotter can only be done on “D” size
drafting paper.

Error Conditions .

The graphics system must be initialized and a display device enabled or this call will be ignored,
an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero value.

09826-90075, rev: 5/83

Procedures Reference 335.2

09826-90075, rev: 5/83

336

Procedures Reference

SET_ECHO_POS

IMPORT: dgl_lib
This procedure defines the locator echo position on the graphics display.
Syntax
O O O
I Range
Item Description/Default Restrictions
X coordinate Expression of TYPE REAL —
y coordinate Expression of TYPE REAL -

Procedure Heading
PROCEDURE SET_ECHO_POS (Wxs Wy : REAL)3

Semantics
The x and y coordinate pair is the new echo position in world coordinates.

When echoing on the display device, SET_ECHO_POS allows a programmer to define the
position of the locator echo position. This is a point in the world coordinate system that represents
the initial position of the locator. It is used with certain locator echoes on the graphics display. For
example, itis used as the anchor point when a rubber band echo is performed. With this echo, the
graphics cursor is initially turned on at the locator echo position. From that time on, the cursor
reflects the position of the locator and a line extends from the locator echo position to the locator
as it moves around the graphics display. To be used in echoing, the point must be displayable.
Therefore, if the point specified is outside of the limits of the window the call is ignored.

The locator echo position will only be used when AWAIT_LOCATOR is called with echo types 2
through 8, e.g., type 4 is a rubber band line echo. The locator echo position is only used when the
locator echo is being sent to the graphics display device, and is not used when sampling the
locator.

SET_ECHO_POS should only be called while the graphics display and locator are initialized. If
the point passed to SET_ECHO_POS is outside the current window limits, then the call to
SET_ECHO_POS is ignored and no error is given.

The default locator echo position is the center of the limits of the window. When the locator is
initialized, the locator echo position is set to the default value. When a call is made which affects
the viewing transformations for the graphics display surface or the logical locator limits, the
locator echo position is set to the default value. The calls which cause this are SET_ASPECT,
DISPLAY_INIT, SET_DISPLAY_LIM, LOCATOR_INIT, SET_LOCATOR_LIM, SET_WIN-
DOW, and SET_VIEWPORT.

09826-90075, rev: 5/83

Procedures Reference 337

Once the locator echo position is set, it retains this value until the next call to SET_ECHO_POS or
until a call is made which resets it to the default value.

Error Conditions

The graphics system must be initialized, and a display device and a locator device must be
enabled, or this call will be ignored, an ESCAPE (—27) will be generated, and GRAPHICSER-
ROR will return a non-zero value.

09826-90075, rev: 5/83

338 Procedures Reference

SET_HPIB

IMPORT: hpib_0
iodeclarations

This procedure will set the specified HP-IB control line. Not all HP-IB lines are acessible at all
times.

Syntax

interface hpib line
serars () O O

L. Range Recommended
Item Description/Default Restrictions Range

interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
hpib line Expression of enumerated TYPE atn_line
specifier hpib_line. dav_line

ndac_line

nrfd_line

eoi_line

srg_line

ifc_line

ren_line
Semantics

All possible hpib_line types are not legal when using this procedure. Handshake lines (DAV,
NDAC, NRFD) are never accessible, and an error is generated if an attempt is made to set them.

The Service Request line (SRQ) is not accessible and should be set with REQUEST_SERVICE.

Setting the Interface Clear line (IFC) and the Remote Enable line (REN) requires the system to
be system controller.

Setting the Attention line (ATN) requires the interface to be active controller.

Procedures Reference 339

SET LINE STYLE

IMPORT: dgl_lib

This procedure sets the line style attribute.

Syntax

SETLINE_STYLE)—(() D

. Range Recommended
Item | Description/Default ’ Restrictions Range
line style selector Expression of TYPE INTEGER MININT thru Device
MAXINT Dependent

Procedure Heading
PROCEDURE SET_LINE_STYLE (Line_Stvle : INTEGER);

Semantics
The line style selector is the line style to be used for lines, polylines, polygon edges, and text.

Markers are not affected by line-style. Polygon interior line-style is selected with SET_PGN_LS.

SET_LINE_STYLE sets the line style attribute for lines and text. The mapping between the value
of the line style attribute and the line style selected is device dependent. If a line style attribute is
requested that the device cannot perform exactly as requested, line style 1 will be performed.

There are three types of line-styles: start adjusted, continuous, and vector adjusted:

Start adjusted line-styles always start the cycle at the beginning of the vector. Thus if the current
line-style starts with a pattern, each vector drawn will start with that pattern. Likewise, if the
current line-style starts with a space and then a dot, each vector will be drawn starting with a space
and then a dot. In this case if the vectors are short, they might not appear at all.

Continuous line styles are generated such that the pattern will be started with the first vector
drawn. Subsequent vectors will be continuations of the pattern. Thus, it may take several vectors
to complete one cycle of the pattern. This type of line-style is useful for drawing smooth curves,
but does not necessarily designate either endpoint of a vector. A side effect of this type of
line-style is if a vector is small enough it might be composed only of the space between points or
dashes in the line-style. In that case, the vector may not appear on the graphics display at all.

09826-90075, rev: 5/83

340

Procedures Reference

Vector adjusted line-styles treat each vector individually. Individual treatment guarantees that a
solid component of the dash pattern will be generated at both ends of the vector. Thus, the
endpoints of each vector will be clearly identifiable. This type of line-style is good for drawing
rectangles. The integrity of the line-style will degenerate with very small vectors. Since some
component of the dash pattern must appear at both ends of the vector, the entire vector for a
short vector will often be drawn as solid.

The following figure illustrates how one pattern would be displayed using each one of the
different line-style types:

‘ '—:||

T—ﬂ}l ”{El“l H@J I

|_'. — | =]
—
START ADJUSTED CONTINUOUS VECTOR ADJUSTED

LINESTYLE USED

It should be apparent from the above discussion that drawing to the starting position will generate
a point (the shortest possible line) only if the line-style is such that the pen is down (or the beam is
on) at the start of that vector. Likewise, whole vectors may not appear on the graphics display
surface if the line-style is such that the vector is smaller than the blank space in the line-style. The
device handlers section of this document details the line-styles available for each device.

Note

When using continuous line styles, complement and erase drawing
modes (available on some raster displays e.g., HP 9826) may not
completely remove lines previously drawn. This happens since the
line style pattern may not be in sync with the first line when the second
line is drawn. By setting the line-style to solid when using complement
and erase drawing modes the application program can insure that the
line is completely removed.

09826-90075, rev: 5/83

Procedures Reference 340.1

Raster Line Styles
Eight pre-defined line-styles are supported on the graphics display. All of the line-styles may be
classified as being “‘continuous’’:

Raster Line Styles

Plotter Line Styles
The following table describes the line styles available on the supported plotters.

Number of continuous Number of vector adjusted
Device line-styles line-styles
9872 7 0
7580 7 6
7585 7 6
7470 7 0
Other 7 0
2
6 e~ NI -
) = | =1
——————— [0
3 ______________ + e———
2 ______________ CONTINUOUS
1

HP 9872 and 7470 Line Styles
(all are continuous)

09826-90075, rev: 5/83

340.2 Procedures Reference

13|

i z oo T T T T L[L | | |
g-__j:_jjjj__—j_:jjt-: CONTINUOUS
5 - = ﬁ—m—ﬁm
T T - -----”--C-Z LL—_—ﬂJJ
1 ity

VECTOR ADJUSTED

HP 7580 and 7585 Line Styles

If the line style specified is not supported by the graphics display, the call is completed with
LINE_STYLE = 1 and no error is reported.

Error Conditions ‘

The graphics system must be enabled and a display device must be enabled or this call will be
ignored and GRAPHICSERROR will return a non-zero value.

09826-90075, rev: 5/83

Procedures Reference 341

SET LOCATOR_LIM

IMPORT: dgl_lib

This procedure redefines the logical locator limits of the graphics locator.

Syntax
minimum maximum minimum
seT_L.ocaton 4 }—(() O O O
maximum error
y value variable name

Item Description/Default Re?t?i?:st;i?) ns
minimum x value Expression of TYPE REAL -
maximum x value Expression of TYPE REAL -
maximum y value Expression of TYPE REAL -
minimum y value Expression of TYPE REAL -
error variable name Variable of TYPE INTEGER -

Procedure Heading

PROCEDURE SET_LOCATOR_LIM (Hmin s Xmax s
Ymivn Ymax : REAL
VAR Ierr : INTEGER) %
Semantics

The minimum x value is the distance in millimetres that the left side of the logical locator limits is
offset from the left side of the physical locator limits.

The maximum x value is the distance in millimetres that the right side of the logical locator limits
is offset from the left side of the physical locator limits.

The minimum y value is the distance in millimetres that the bottom of the logical locator limits is
offset from the bottom of the physical locator limits.

The maximum y value is the distance in millimetres that the top of the logical locator limits is
offset from the bottom of the physical locator limits.

The error variable will contain an integer indicating whether the limits were successfully set.

09826-90075, rev: 5/83

342 Procedures Reference

Value Meaning
0 The display limits were successfully set.
1 The minimum x value was greater than or equal to the maximum x value and/or the
minimum y value was greater than the maximum y value.
2 The parameters specified were outside the physical display limits.
3 Attempt to explicitly define locator limits on a device which is both the logical locator

and the logical display. The logical display limits are used when a device is shared for
both purposes, and they cannot be redefined with this call.

If the error variable is non-zero, the call was ignored.

SET_LOCATOR_LIM allows an application program to specify the portion of the physical
locator device that should be used to perform locator functions. When the logical locator device is
enabled (via LOCATOR_INIT) the logical device limits are set to a device dependent portion of
the physical locator device. With a call to this routine the user can set the logical locator limits by
specifying a new area within the physical locator limits.

The pairs (minimum x value, minimum y value) and (maximum x value, maximum y value)
define the corner points of the new logical locator limits in terms of millimetres offset from the
origin of the physical locator. The exact position of the physical locator origin is device depen-
dent. Specific origins are covered later in this entry.

If a logical locator and a logical display are associated with the same physical device, then the
logical locator limits must be the same as the logical view surface limits. Specifically, the effects of
the association with the same physical device are as follows:

® The logical locator limits are initialized to the same values as the virtual coordinate system.

® Any call which redefines the virtual coordinate system limits will also redefine the logical
locator limits.

® The logical locator limits can not be defined by a call to SET_LOCATOR_LIM.

By changing the logical locator limits any portion of the graphics locator can be addressed, with
the restrictions stated above.

The logical locator limits always map directly to the view surface, therefore, distortion may result
in the mapping between the logical locator and the display when the logical locator limits and the
view surface have different aspect ratios. If the distortion is not desired it can be avoided by
assuring that the logical locator limits maintain the same aspect ratio as that of the view surface.

SET_LOCATOR_LIM should only be called while the graphics locator is enabled. SET_LOCA-
TOR_LIM sets the locator echo position to the default value (see SET_ECHO_PQOS).

09826-90075, rev: 5/83

Locator Limits: The Knob
The knob may be used as a locator on Series 200 computers. The default characteristics of the
knob on various Series 200 computers is listed in the table below.

Procedures Reference 342.1

Wide High Wide High Resolution
Plotter mm mm points points | Aspect mm
9816 168 126 400 300 .75 2.381
9826 120 90 400 300 .75 3.333
9836 210 160 512 390 7617 2.438
9836C 217 163 512 390 7617 2.39

Locator Limits: HPGL Devices
HPGL devices can be used as locators. The default characteristics of some HPGL devices are

The knob uses the current display limits as its locator limits for locator echoes 2 though 8. For all
other echoes the above limits are used. An example of when the two limits may differ follows:

The knob locator is initialized on an HP 9826. The graphics display is an HP 98627A color
output card. The resolution of the locator is O through 399 in x dimension, and O through
299 in y dimension. The resolution of the display is 0 through 511 in x dimension, and 0
through 389 in y dimension. When await_locator is used with echo 4, the locator will
effectively have the HP 98627A resolution for the duration of the await_locator call.
However if echo 1 is used with await_locator, the cursor will appear on the HP 9826 and the
locator has a resolution of 0x399 and 0x299. Note that all conversion routines, and
inquiries will use the HP 9826 limits.

The phuysical origin of the locator device is the lower left corner of the display.

09826-90075, rev: 5/83

listed below.

Wide High Wide High Resolution
Device mm mm points points Aspect | points/mm

9872 400 285 16000 11400 7125 40.0

7580 8095 | 524.25 32380 20970 6476 40.0

7585 1100 890 44000 35670 .809 40.0

7470 257.5 | 190 10300 7600 7378 40.0

9111 300.8 217.6 12032 8704 7234 40.0

The maximum physical limits of the locator fora HPGL device not listed above are determined by
the default settings of P1 and P2. The default settings of P1 and P2 are the values they have after
an HPGL ’'IN’ command. Refer to the specific device manual for additional details.

The default logical display surface is set equal to the area defined by P1 and P2 at the time
LOCATORL_INIT is invoked.

342.2 Procedures Reference

Note
If the paper is changed in an HP 7580 or HP 7585 plotter while the
graphics locator is initialized, it should be the same size of paper that
was in the plotter when LOCATOR_INIT was called. If a different size
of paper is required, the device should be terminated (LOCATOR_
TERM) and re-initialized after the new paper has been placed in the
plotter.

Error Conditions
The graphics system must be initialized and a display device enabled or this call will be ignored,
an ESCAPE (— 27) will be generated, and GRAPHICSERROR will return a non-zero value.

09826-90075, rev: 5/83

Procedures Reference 342.3

SET_LINE_WIDTH

IMPORT: dgl_lib
This procedure sets the line-width attribute. The number of line-widths possible is device
dependent.

Syntax

SET_LINE_NIOTH }—(() O

Item \ Description/Default I Re?t?ir::i}ii)ns
line-width selector | Expression of TYPE INTEGER | MININT thru MAXINT

Procedure Headings
PROCEDURE SET_LINE_WIDTH (Linewidth : INTEGER)3

Semantics

SET_LINE_WIDTH sets the line-width attribute for lines, polylines and text. The line-width
attribute does not affect markers which are defined to be always output with the thinnest
line-width supported on the device. All devices support at least one line-width. The range of
line-widths is device dependent but line-width 1 is always the thinnest line-width supported. For
devices that support multiple line-widths, the line-width increases as line-width does until the
device supported maximum is reached. For example, line-width = 1 specifies the thinnest,
line-width = 2 specifies the next wider line-width, etc.

If line-width is greater than the number of line-widths supported by the graphics display or
line-width is less than 1, then the line-width will be set to the thinnest available width (line-width
= 1). All subsequent lines and text will then be drawn with the thinnest available line-width. A call
to INQ_WS with OPCODE equal to 1063 to inquire the value of the line-width will then return a
1.

The initial line-width is the thinnest width supported by the device (line-width = 1).

Note
All current devices support a single line-width.

Error Conditions
The graphics system must be initialized and a display device must be enabled or this call is
ignored, an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero

value.

09826-90075, rev: 5/83

342.4 Procedures Reference

09826-90075, rev: 5/83

Procedures Reference 343

SET PARITY

IMPORT: serial_3

iodeclarations
This procedure determines what parity mode the serial interface will use.

Syntax

interface parity mode
serpanmy) () O

L. Range Recommended
Item Description/Default Restrictions Range

interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
parity mode Expression of enumerated TYPE no_parity
specifier type_parity. odd_parity

even_parity

one_parity

zero_parity

343.01 Procedures Reference

SET PGN_COLOR

IMPORT: dgl _lib
dgl_poly

This procedure selects the polygon interior color attribute for subsequently generated polygons
by providing a selector for the color table.

Syntax

() o(Oo }~(D

I Range Recommended
Item | Description/Default ’ Restrictions | Range
color selector Expression of TYPE INTEGER MININT thru Device
MAXINT dependent.

Procedure Heading
PROCEDURE SET_PGN.COLOR (Cindex : INTEGER)3

Semantics

The color selector is an index into the color table. The contents of the color table are then used to
specify the color when primitives are drawn. On some devices (HPGL plotters), the color selector
maps directly to a pen number for the device. On the HP 9836C, the entries in the color table can
be modified with SET_COLOR_TABLE. The color actually used depends on the value in a
device dependent color table.

At device initialization a default color table is created by the graphics system. The size and
contents of the table are device dependent. At least one entry exists for all devices. A call to
INQ_WS with OPCODE equal to 1053 will return the number of colors available on a given
graphics device. Some devices allow the color table to be modified with SET_TABLE.

The default value of the color attribute is 1. If the value of the color selector is not supported on
the graphics display, the color attribute will be set to 1.

A color selector of 0 has special effects depending on the graphics display used. For raster
devices, a color selector of 0 means to draw in the background color. For most plotters, it puts the
pen away.

Dithering

If the device is not capable of reproducing a color in the color table, the closest color which the
device is capable of reproducing is used instead. For polygon fill (in a device dependent mode)
this may involve dithering. For example, the HP 98627A color output interface card is capable of
a large selection of polygon fill colors, but only 8 line colors. Thus, the fill color could match the
selected color much more closely than the line color used to outline the polygon. See SET_
COLOR_TABLE for details on how colors are matched to the devices.

09826-90075, rev: 5/83

Default Raster Color Map

The following table shows the default (initial) color table for the black and white displays (HP

9816 / HP 9920 / HP 9826 / HP 9836):

Index # Hue Saturation | Luminosity
0 0 0 0
1 0 0 1.0000
2 0 0 0.9375
3 0 0 0.8750
4 0 0 0.8125
5 0 0 0.7500
6 0 0 0.6875
7 0 0 0.6250
8 0 0 0.5625
9 0 0 0.5000
10 0 0 0.4375
11 0 0 0.3750
12 0 0 0.3125
13 0 0 0.2500
14 0 0 0.1875
15 0 0 0.1250
16 0 0 0.0625

Colors 17 though 31 are set to white.

The following table shows the default (initial) color table for the color displays (HP 9836C and

HP 98627A):

Procedures Reference 343.02

Colors 9 though 15 are a graphic designers idea of colors for business graphics. Color table
entries not shown above are set to white.

Index # | Color name Green Blue
0 Black 0.000000 | 0.000000 | 0.000000
1 White 1.000000 | 1.000000 | 1.000000
2 Red 1.000000 | 0.000000 | 0.000000
3 Yellow 1.000000 | 1.000000 | 0.000000
4 Green 0.000000 | 1.000000 | 0.000000
5 Cyan 0.000000 | 1.000000 | 1.000000
6 Blue 0.000000 | 0.000000 | 1.000000
7 Magenta 1.000000 | 0.000000 | 1.000000
8 Black 0.000000 [0.000000 | 0.000000
9 Olive green | 0.800000 | 0.733333 | 0.200000
10 Aqua 0.200000 | 0.400000 | 0.466667
11 Royal blue 0.533333 [0.400000 | 0.666667
12 Violet 0.800000 | 0.266667 | 0.400000
13 Brick red 1.000000 | 0.400000 | 0.200000
14 Burnt orange | 1.000000 | 0.466667 | 0.000000
15 Grey brown | 0.866667 | 0.533333 | 0.266667

09826-90075, rev: 5/83

343.03 Procedures Reference

Raster Drawing Modes
Raster drawing modes have no effect on polygon fill color.

Plotters
A Color Selector of 0 selects no pens (the current pen is put away). The supported range of Color
Selectors for each supported plotter is:

® 9872A - 0 thru 4

0 9872B - 0 thru 4

e 9872C/S/T - 0 thru 8

e 7580A/7585A - 0 thru 8
e 7470A - 0 thru 2

Error Conditions
The graphics system must be initialized and a display must be enabled or this call will be ignored,
an ESCAPE (—27) will be generated, and GRAPHICSERROR returns a non-zero value.

09826-90075, rev: 5/83

Procedures Reference 343.04

SET PGN_LS

IMPORT: dgl_lib
dgl_poly

This procedure selects the polygon interior line-style attribute for subsequently generated
polygons by providing a selector for the device dependent line-style table.

Syntax

ser_pants () 0

. Range Recommended
Item | Description/Default ‘ Restrictions ‘ Range
line-style selector Expression of TYPE INTEGER MININT thru Device
MAXINT dependent

Procedure Heading
PROCEDURE SET-PGN_LS (Lindex : INTEGER)3

Semantics
The line style selector is the line style to be used for polygon interiors.

Line-styles for other primitives are selected using SET_LINE_STYLE.

The mapping between the value of the line style attribute and the line style selected is device
dependent. If a line style attribute is requested that the device cannot perform exactly as
requested, line style 1 will be performed.

There are three types of line-styles - start adjusted, continuous, and vector adjusted:

Start adjusted line-styles always start the cycle at the beginning of the vector. Thus if the current
line-style starts with a pattern, each vector drawn will start with that pattern. Likewise, if the
current line-style starts with a space and then a dot, each vector will be drawn starting with a space
and then a dot. In this case if the vectors are short, they might not appear at all.

Continuous line styles are generated such that the pattern will be started with the first vector
drawn. Subsequent vectors will be continuations of the pattern. Thus, it may take several vectors
to complete one cycle of the pattern. This type of line-style is useful for drawing smooth curves,
but does not necessarily designate either endpoint of a vector. A side effect of this type of
line-style is if a vector is small enough it might be composed only of the space between points or
dashes in the line-style. In that case, the vector may not appear on the graphics display at all.

09826-90075, rev: 5/83

343.05 Procedures Reference

Vector adjusted line-styles treat each vector individually. Individual treatment guarantees that a
solid component of the dash pattern will be generated at both ends of the vector. Thus, the
endpoints of each vector will be clearly identifiable. This type of line-style is good for drawing
rectangles. The integrity of the line-style will degenerate with very small vectors. Since some
component of the dash pattern must appear at both ends of the vector, the entire vector for a
short vector will often be drawn as solid.

The following figure illustrates how one pattern would be displayed using each one of the
different line-style types:

= = E
o o @
START ADJUSTED CONTINUOUS VECTOR ADJUSTED

It should be apparent from the above discussion that drawing to the starting position will generate
a point (the shortest possible line) only if the line-style is such that the pen is down (or the beam is
on) at the start of that vector. Likewise, whole vectors may not appear on the graphics display
surface if the line-style is such that the vector is smaller than the blank space in the line-style. The
device handlers section of this document details the line-styles available for each device.

Note

When using continuous line styles, complement and erase drawing
modes (available on some raster displays e.g., HP 9826) may not
completely remove lines previously drawn. This happens since the
line style pattern may not be in sync with the first line when the second
line is drawn. By setting the line style to solid when using complement
and erase drawing modes the application program can insure that the
line is completely removed.

09826-90075, rev: 5/83

Procedures Reference 343.06

Raster Line Styles

Eight pre-defined line-styles are supported on the graphics display. All of the line-styles may be
classified as being “‘continuous’’:

Raster Line Styles

Plotter Line Styles
The following table describes the line styles available on the supported plotters.

Number of continuous Number of vector adjusted
Device line-styles line-styles
. 9872 7 0
7580 7 6
7585 7 6
7470 7 0
Other 7 0

2 T L[L:”Il

2 ______________ CONTINUOUS

HP 9872 and 7470 Line Styles
(all are continuous)

09826-90075, rev: 5/83

343.07 Procedures Reference

ERRR N i
S (=]
S . _ _ - _ T T Z T T ecTORADUSTED
8

S T T T T T T .f ’
T T T T ——T L | |
2-ooT-oooooooos =]

CONTINUOUS

HP 7580 and 7585 Line Styles

If the line style specified is not supported by the graphics display, the call is completed with
LINE_STYLE = 1 and no error is reported.

The graphics system must be enabled and a display device must be enabled or this call will be
ignored and GRAPHICSERROR will return a non-zero value.

Error conditions:
The graphics system must be initialized and a display device must be enabled or this call will be
ignored, an ESCAPE (— 27) will be generated, and GRAPHICSERROR will return an non-zero

value.

09826-90075, rev: 5/83

Procedures Reference 343.08

SET PGN_STYLE

IMPORT: dgl_lib
dgl_poly

This procedure selects the polygon style attribute for subsequently generated polygons by
providing a selector for the polygon style table.

Syntax

ser o)~(D ®

. Range Recommended
Item ‘ Description/Default ‘ Restrictions ‘ Range
polygon style Expression of TYPE INTEGER MININT thru Device
selector MAXINT dependent

Procedure Heading
PROCEDURE SET.PGN_STYLE (Pindex : INTEGER)i

Semantics
Polygon styles can vary in polygon interior density, polygon interior orientation and polygon

edge display. See SET_PGN_TABLE for details on default styles, and how the polygon style
table may be changed.

Error Conditions
The graphics system must be initialized and a display device must be enabled or this call will be
ignored and GRAPHICSERROR will return an non-zero value.

09826-90075, rev: 5/83

343.09 Procedures Reference

SET_PGN _TABLE

IMPORT: dgl_lib
dgl_poly

This procedure defines a polygon style attribute, i.e. an entry in a polygon style table.

Syntax

entry fill 111
SET_PGN_TABLE

edge
selector

.. Range Recommended
Item Description/Default Restrictions Range
entry selector Expression of TYPE INTEGER MININT thru Device
MAXINT dependent
fill density Expression of TYPE REAL MININT thru -1thrul
MAXINT
fill orientation Expression of TYPE REAL MININT thru -90 thru 90
MAXINT
edge selector Expression of TYPE INTEGER MININT thru -
MAXINT

Procedure Heading

PROCEDURE SET_PGN_TABLE (Index INTEGER 3
Densty : REALS3
Orient : REAL}
Edde : INTEGER)3

Semantics

This routine defines the attribute of polygon style, i.e. it specifies an entry in a polygon style table.
This entry contains information that specifies polygon interior density, polygon interior orienta-
tion, polygon edge display, and device-independence of polygon display.

The entry selector specifies the entry in the polygon style table that is to be redefined.

The fill density determines the density of the polygon interior fill. The magnitude of this value is
the ratio of filled area to non-filled area. Zero means the polygon interior is not filled. One
represents a fully filled polygon interior. All non-zero values specify the density of continuous
lines used to fill the interior.

09826-90075, rev: 5/83

Procedures Reference 343.10

Positive density values request parallel fill lines in one direction only. Negative values are used to
specify crosshatching. For a given density, the distance between two adjacent parallel lines is
greater with cross hatching than in the case of pure parallel filling. Calculations for fill density are
based on the thinnest line possible on the device and on continuous line-style.

The distance between fill lines — hence density — does not change with a change of scale caused
by a viewing transformation. If the interior line-style is not continuous, the actual fill density may
not match that found in the polygon style table.

The fill orientation represents the angle (in degrees) between the lines used for filling the
polygon and the horizontal axis of the display device. The interpretation of fill orientation is
device-dependent. On devices that require software emulation of polygon styles, the angle
specified will be adhered to as closely as possible, within the line-drawing capabilities of the
device. For hardware generated polygon styles, the angle specified will be adhered to as closely
asis possible given the hardware simulation of the requested density. If crosshatching is specified,
the fill orientation specifies the angle of orientation of the first set of lines in the crosshatching, and
the second set of lines is always perpendicular to this.

The value of the edge selector determines whether the edge of the polygon is displayed. If the
edge selector is 0, the edges will not be displayed. If the edge selector is 1, display of individual
edge segments depends on the operation selector in the call that draws the polygon set,
POLYGON, INT_POLYGON, POLYGON_DEV_DEP, or INT_POLYGON_DD.

If polygon edges are displayed, they adhere to the current line attributes of color, line-style, and
line-width, in effect at the time of polygon display.

A device-dependent number of polygon styles are available. All devices support at least 16
entries in the polygon table. The polygon styles defined in the default tables are defined to exploit
the hardware capabilities of the devices they are defined for.

Polygon interiors can be generated in either a device-dependent or device-independent fashion,
by calling POLYGON_DEV_DEP or POLYGON respectively.

Polygons generated in a device-dependent fashion will utilize the available hardware polygon
generation capabilities of the device to increase the speed and efficiency of polygon generation.
The output may vary depending on the device. Devices that have no hardware polygon genera-
tion capabilities will only do a minimal representation of the polygon if a device-dependent
representation of the polygon is requested. If an edge is not requested, an outline of the
non-clipped boundaries of the polygon interior will be drawn in the current polygon interior color
and polygon interior line-style if the density of the polygon interior was not zero.

Polygons generated in a device-independent fashion will adhere strictly to the polygon style
specification. The polygon interior generated would look similar when generated on different
devices for a given polygon style specification. However, on raster devices rasterization of the fill
lines may leave empty pixels when solid fill is requested with an orientation that is not 0 or 90
degrees. Available hardware would only be used where the polygon style could be generated
exactly as specified.

09826-90075, rev: 5/83

343.11 Procedures Reference

The number of entries in the polygon style table and the default contents of the table are device
dependent. However, all devices support the following polygon style table:
Entry Density Angle Edge
1 0.0 0.0 1
2 0.125 90.0 1
3 0.125 0.0 1
4 —-0.125 0.0 1
5 0.125 45.0 1
6 0.125 —-45.0 1
7 -0.125 45.0 1
8 0.25 90.0 1
9 0.25 0.0 1
10 -0.25 0.0 1
11 0.25 45.0 1
12 0.25 —45.0 1
13 -0.25 45.0 1
14 -0.5 0.0 1
15 1.0 0.0 0
16 1.0 0.0 1
Error Conditions
The graphics system must be initialized, a display must be enabled, and the parameters must be
within the specified limits or this call will be ignored, an ESCAPE (—27) will be generated, and '
GRAPHICSERROR will return a non-zero value.

09826-90075, rev: 5/83

Procedures Reference 343.12

09826-90075, rev: 5/83

344 Procedures Reference

SET SERIAL i

IMPORT: serial_
iodeclarations

This procedure will set the specified modem line on the connector. Not all lines are available at
all times. The use of an Option 1 or Option 2 connector determines which lines are accessible.

Syntax
© ® ®
. Range Recommended
Item Description/Default Restrictions Range

interface Expression of TYPE type_isc. This is an 0 thru 31 7 thru 31
select code INTEGER subrange.
serial line Expression of enumerated TYPE rts_line
specifier type_serial_line. cts_line

dcd_line

dsr_line

drs_line

ri_line

dtr_line

TABLE HERE

Semantics

The values of the enumerated TYPE type_serial_line have the following definitions:

Name RS-232 line

rts ready to send

cts clear to send

dcd data carrier detect

dsr data set ready

drs data rate select

dtr data terminal ready
ri ring indicator

Procedures Reference 345

SET STOP_BITS

IMPORT: serial 3
iodeclarations

This procedure will set the number of stop bits on the serial interface. The valid range of values
includes 1, 1.5, and 2.

Syntax

interface
ser-sror-aim)-~(() O L0

I Range Recommended
Item Description/Default Restrictions Range
interface Expression of TYPE type_isc. This is 0 thru 31 7 thru 31
select code an INTEGER subrange.
stop bits Expression of TYPE REAL. - 1,15,2

346

Procedures Reference

SET_TEXT_ROT

IMPORT: dgLlib

This procedure specifies the text direction.

Syntax

s -(D O ®

. Range
Item | Description/Default ‘ Restrictions
x-axis offset Expression of TYPE REAL -
y-axis offset Expression of TYPE REAL -

Procedure Heading
PROCEDURE SET_TEXT_ROT (Dx» Dv : REAL)3

Semantics

The x axis offset and the y axis offset specify the world coordinate components of the text
direction vector relative to the world coordinate origin. These components cannot both be zero.

This procedure specifies the direction in which graphics text characters are output. The default
value (X-axis offset = 1.0; Y-axis offset = 0.0) for the text direction vector is such that characters
are drawn in a horizontal direction left to right. The default value is set during GRAPHICS_INIT
and DISPLAY_INIT. With X-axis offset = - 1.0 and Y-axis offset = 1.0 a 135 degree rotation
from the horizontal (in a counter clockwise direction) may be obtained.

Y

Y RAxi1s Offset
a.5

X Axi1s Offset
1.0

Text Rotation Angle

Error Conditions

The graphics system must be initialized, a display must be enabled, and the parameters must be
within the specified limits or this call will be ignored, an ESCAPE (—27) will be generated, and
GRAPHICSERROR will return a non-zero value.

09826-90075, rev: 5/83

Procedures Reference 347

SET_TIMEOUT

IMPORT: general 1
iodeclarations

This procedure will set up a timeout for all I/O Library input and output operations except

transfer.

Syntax

s+ o ®

L Range Recommended
Item Description/Default Restrictions Range

interface Expression of TYPE type_isc. This is 0 thru 31 7 thru 31

select code an INTEGER subrange.

seconds Expression of TYPE REAL. - 0, .001 thru
8192.000,
inc. by .001

Semantics

Zero (0) is no timeout (infinite).

The resolution is to 1 millisecond.

If the select codes do not respond within the specified time an ESCAPE will be performed.
Refer to the chapter on Errors and Timeouts.

Example:

TRY

SETTIMEOUT(12+1000) 3
READCHAR(1Z scharacter)

RECOVER

BEGIN

IF Escarecode
Ioe_result
Ioe.isc = 12

Ioescarpecode AND
Ioe_timeout AND

2

THEN WRITELN (‘'TIMEGUT on Interface 127)
EMD3 {end of RECOVER}

347.1 Procedures Reference

SET_TIMING

IMPORT: dgl_lib

This procedure selects the timing mode for graphics output.

Syntax

ser e)—~(D @

Item | Description/Default | Re?t?i?:st!if)ns
timing mode selector | Expression of TYPE INTEGER | Oorl

Procedure Heading
PROCEDURE SET_TIMING (Opcode 3 INTEGER)3

Semantics
The timing mode selector determines the timing mode used.

Value | Meaning
0 Immediate visibility mode
1 System butffering mode

Graphics library timing modes are provided to control graphics throughput and picture update
timing. Picture update timing refers to the immediacy of visual changes to the graphics display
surface. Regardless of the timing mode used, the same final picture is sent to the graphics display.
SET_TIMING only controls when a picture appears on the graphics display, not what appears.

The graphics system supports two timing modes:

e [mmediate visibility Requested picture changes will be sent to the graphics display device
before control is returned to the calling program. Due to operating system delays there may
be a delay before the picture changes are visible on the graphics display device.

® System buffering Requested picture changes will be buffered by the graphics system. This
means that the graphics output will not be immediately sent to the display device. This allows
the graphics library to send several graphics commands to the graphics display device in one
data transfer, therefore, reducing the number of transfers. System buffering is the initial
timing mode.

The following routines implicitly make the picture current:

AWAIT_LOCATOR DISPLAY_TERM INPUT_ESC
LOCATOR_INIT SAMPLE_LOCATOR

09826-90075, rev: 5/83

Procedures Reference 347.2

The immediate visibility mode is less efficient than the system buffering mode. It should only be
used in those applications that require picture changes to take place as soon as they are defined,
even if the finished picture takes longer to create. When changing the timing mode to immediate
visibility the picture is made current.

An alternative to immediate visibility that will solve many application needs is the use of system
buffering together with the MAKE_PIC_CURRENT procedure. With this method, an application
program places graphics commands into the output buffer and flushes the buffer (see MAKE_
PIC_CURRENT) only at times when the picture must be fully displayed.

A call to MAKE_PIC_CURRENT can be made at any time within an application program to insure
that the image is fully defined. MAKE_PIC_CURRENT flushes the output buffer but does not
modify the timing mode.

Before performing any non-graphics system input or output (to a graphics system device) such as
a PASCAL read or write, the output buffer must be empty. If the buffer is not flushed (via
immediate visibility of MAKE_PIC_CURRENT) prior to non-graphics system 1/O, the resulting
image may contain some ’'garbage’ such as escape functions or invalid graphics data.

Note

Although SET_TIMING can be used with all display devices, only
HPGL plotters buffer commands.

Error Conditions

The graphics system must be initialized and all parameters must be in range or this call will be
ignored, an ESCAPE (—27) will be generated, and GRAPHICSERROR will return a non-zero
value.

09826-90075, rev: 5/83

348 Procedures Reference

SET _TO_LISTEN

IMPORT: hpib_1
jodeclarations

Note
This function is provided for use by the internal /O Procedure Lib-
rary drivers, only. Unexpected and possible undesirable results may
occur if it is used.

Procedures Reference 349

SET_TO_TALK

IMPORT: hpib_1
iodeclarations

Note
This function is provided for use by the internal /O Procedure Lib-
rary drivers, only. Unexpected and possible undesirable results may
occur if it is used.

350 Procedures Reference

SET_VIEWPORT

IMPORT: dgl_lib

This procedure sets the boundaries of the viewport in the virtual coordinate system.

Syntax

maximum
y value

Iltem Description/Default Re?t?irgs)ns
minimum x value Expression of TYPE REAL 0.0-1.0
maximum x value Expression of TYPE REAL 0.0-1.0
minimum y value Expression of TYPE REAL 0.0-1.0
maximum y value Expression of TYPE REAL 0.0-1.0

Procedure Heading
PROCEDURE SET_VIEWPORT (Uxmins Uxmax:
Uvminsy Yvymax : REAL)3
Semantics
The minimum x value is the minimum boundary in the X-direction expressed in virtual coordin-
ates.

The maximum x value is the maximum boundary in the X-direction expressed in virtual
coordinates.

The minimum y value is the minimum boundary in the Y-direction expressed in virtual coordin-
ates.

The maximum y value is the maximum boundary in the Y-direction expressed in virtual
coordinates.

SET_VIEWPORT sets the limits of the viewport in the virtual coordinate system. The viewport
must be within the limits of the virtual coordinate system; otherwise the call will be ignored.

The initial viewport is set up with the minimum x and y values set to 0.0 and the maximum X and
Y values set to 1.0.

09826-90075, rev: 583

Procedures Reference 351

The initial viewport is set by GRAPHICS_INIT and SET_ASPECT. This initial viewport is
mapped onto the maximum visible square within the logical display limits. This area is called the
view surface. The placement of the view surface within the logical display limits is dependent
upon the device being used. It is generally centered on CRT displays and is placed in the lower
left-hand corner of plotters.

By changing the limits of the viewport, an application program can display an image in several
different positions on the same graphics display device. A program can make a call to SET_
VIEWPORT anytime while the graphics system is initialized.

The starting position is not altered by this call. Since this call redefines the viewing transformation,
the starting position may no longer represent a known world coordinate position. A call to MOVE
or INT_MOVE should be made after this call to update the starting position.

Error Conditions

The graphics system must be initialized, all parameters must be within the specified range, the
minimum X value must be less than the maximum X value and the minimum Y value must be less
than the maximum Y value and all parameters must be within the current virtual coordinate
system boundary, or this call will be ignored, an ESCAPE (—27) will be generated, and
GRAPHICSERROR will return a non-zero value..

09826-90075, rev: 5/83

352 Procedures Reference

SET_WINDOW

IMPORT: dgl_lib

This procedure defines the boundaries of the window.

Syntax

G e O L O RO O EA O

Item Description/Default Regirlil::st;if)ns
left Expression of TYPE REAL See below
right Expression of TYPE REAL See below
bottom Expression of TYPE REAL See below
top Expression of TYPE REAL See below

Procedure Heading

PROCEDURE SET_WINDOW (Wxmins Wxmax:
Wymings Wymax 3 REAL)3

Semantics

The left is the minimum boundary in the X-direction expressed in world coordinates. (i.e., the left
window border). Must not equal maximum x value.

The right is the maximum boundary in the X-direction expressed in world coordinates. (i.e. the
right window border). Must not equal minimum x value.

The bottom is the minimum boundary in the Y-direction expressed in world coordinates. (i.e. the
bottom window border). Must not equal maximum y value.

The top is the maximum boundary in the Y-direction expressed in world coordinates. (i.e. the top
window border). Must not equal minimum y value.

SET_WINDOW defines the limits of the window. All positional information sent to and received
from the graphics system is specified in world coordinate units. This allows the application
program to specify coordinates in units related to the application.

If the top value is less than the bottom value, the Y-axis will be inverted. If the right value is less
than the left boundary, the X-axis will be inverted.

09826-90075, rev: 5/83

Procedures Reference 353

The window is linearly mapped onto the viewport specified by SET_VIEWPORT. This is done by
mapping the left boundary to the minimum X-viewport boundary, the right boundary to the
maximum X-viewport boundary, the bottom boundary to the minimum Y -viewport boundary,
and the top boundary to the maximum Y-viewport boundary. If distortion of the graphics image is
not desired, the aspect ratio of the window boundaries should be equal to the aspect ratio of the
viewport.

The default window limits range from — 1.0 to 1.0 on both the X and Y axis. GRAPHICS_INIT is
the only procedure which sets the window to its default limits.

The starting position is not altered by this call. Since this call redefines the viewing transformation,
the starting position may no longer represent a known world coordinate position. A call to MOVE
or INT_MOVE should therefore be made after this call to update the starting position.

SET_WINDOW can be called at anytime while the graphics system is initialized.

Error Conditions

The graphics system must be initialized, the minimum value for either axis must not equal the
maximum value for that axis or this call will be ignored, an ESCAPE (— 27) will be generated, and
GRAPHICSERROR will return a non-zero value.

09826-90075, rev: 5/83

354 Procedures Reference

SKIPFOR

IMPORT: general_2
iodeclarations

This procedure will read the specified number of characters from the selected device. The
characters will be thrown away.

Syntax
- O -O-EE O
I Range Recommended
Item Description/Default Restrictions Range
character Expression of TYPE INTEGER. MININT thru -
count MAXINT
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary.
an INTEGER subrange.

Procedures Reference 355

SPOLL

IMPORT: hpib_3

jodeclarations

This INTEGER function will perform a serial poll to the selected device. The serial poll byte is
returned by the function.

Syntax

device
seou () O

o e Range Recommended
Item | Description/Default ‘ Restrictions Range
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary.

an INTEGER subrange.

Semantics

The interface must be active controller and the device must be a device address (i.e. 701,
not 7). The bus sequence will look like:

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
UNL UNL
MLA MLA
TAD TAD
Active SPE SPE
Controller Error ATN Error ATN
Read data Read data
ATN ATN
SPD SPD
UNT UNT
Not Active
Controlier Error

356 Procedures Reference

SYSTEM_CONTROLLER

IMPORT: hpib_1
jodeclarations

This BOOLEAN function returns TRUE if the specified interface is the system controller.

Syntax

interf
~(ersomonm) () ®

o Range Recommended
Item | Description/Default | Restrictions ‘ Range
interface Expression of TYPE type_isc. This is 0 thru 31 7 thru 31
select code an INTEGER subrange.

Procedures Reference 357

TALK

IMPORT: hpib_2

iodeclarations

This procedure will send a talk address over the bus. The interface must be active controller.

Syntax

interface device
e (0 O D

.. Range Recommended
Item Description/Default Restrictions Range
interface Expression of TYPE type_isc. This is 0 thru 31 7 thru 31
select code an INTEGER subrange.
device address Expression of TYPE type_hpib_address. 0 thru 3 Interface
This is an INTEGER subrange. dependent

358 Procedures Reference

TALKER

IMPORT: hpib_3

jodeclarations

This BOOLEAN function will return TRUE if the specified interface is currently addressed as a
talker.

Syntax

interface
)ea O D

. Range Recommended
Item | Description/Default Restrictions Range
interface Expression of TYPE type_isc. This is 0 thru 31 7 thru 31
select code an INTEGER subrange.

IMPORT: general_4

iodeclarations

Procedures Reference 359

TRANSFER

This procedure will transfer the specified number of bytes to or from the buffer space using the
specified transfer type.

Syntax

device transfer - buffer character
ansren)] e [oo (O oveoon |-(0 i (O T ()

_r Range Recommended
Item Description/Default Restrictions Range
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary
an INTEGER subrange.
transfer type Expression of the enumerated TYPE serial_dma
user_tfr_type. serial_fhs
serial_fastest
overlap_intr
overlap_dma
overlap_fhs
overlap_fastest
overlap
direction Expression of the enumerated TYPE to_memory

buffer name

character
count

dir_of_tfr.
Variable of TYPE buf_info_type.

Expression of TYPE INTEGER.

from_memory
See glossary

MININT thru
MAXINT

360 Procedures Reference

TRANSFER_END

IMPORT: general_4
iodeclarations

This procedure will transfer data to or from the buffer.

Syntax
® o o o ®
.. Range Recommended
Item Description/Default Restrictions Range
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary
an INTEGER subrange.
transfer type Expression of the enumerated TYPE serial_dma
user_tfr_type. serial_fhs
serial_fastest
overlap_intr
overlap_dma
overlap_fhs
overlap_fastest
overlap
direction Expression of the enumerated TYPE to_memory
dir_of_tfr. from_memory
buffer name Variable of TYPE buf_info_type. See glossary
Semantics

If the transfer is into the computer then the transfer will terminate when an END condition (like
EQI') comes true or the bulffer is filled. If The transfer is out of the computer then the transfer
will send all of the available data with the END condition sent with the last byte.

Procedures Reference 361

TRANSFER SETUP

IMPORT: general_4

iodeclarations

Note
This function is provided for use by the internal I/O Procedure Lib-
rary drivers, only. Unexpected and possible undesirable results may
occur if it is used.

362 Procedures Reference

TRANSFER UNTIL

IMPORT: general_4

iodeclarations

This procedure will transfer bytes into the buffer until the buffer is full or the termination
character was received. (The DMA transfer type is not allowed).

Syntax

EIIDEO OO TEFC

buffer
name

.. Range Recommended
Item Description/Default Restrictions Range
terminating Expression of TYPE CHAR. -
character
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary
an INTEGER subrange.
transfer type Expression of the enumerated TYPE serial_dma
user_tfr_type. serial_fhs

direction

buffer name

Expression of the enumerated TYPE
dir_of_tfr.

Variable of TYPE buf_info_type.

serial_fastest
overlap_intr
overlap_dma
overlap._fhs
overlap_fastest
overlap

to_memory
from_memory

See glossary

Procedures Reference 363

TRANSFER _WORD

IMPORT: general_4

iodeclarations

This procedure will transfer the specified number of words into the buffer. This transfer will
only work with 16-bit interfaces.

Syntax

mansrenworo)—(O-+{ e e (O aesn |-(5) O

word
count

e Range Recommended
Item Description/Default Restrictions Range
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary
an INTEGER subrange.
transfer type Expression of the enumerated TYPE serial_dma
user_tfr_type. serial_fhs
serial_fastest
overlap_intr
overlap_dma
overlap_fhs
overlap_fastest
overlap
direction Expression of the enumerated TYPE to_memory
dir_of_tfr. from_memory
buffer name Variable of TYPE buf_info_type. See glossary
word count Expression of TYPE INTEGER. MININT thru
MAXINT

364 Procedures Reference

TRIGGER

IMPORT: hpib_2

iodeclarations
This procedure sends a trigger command to the specified device(s).
Syntax
(O O
.. Range Recommended
Item | Description/Default ‘ Restrictions Range

device selector See glossary

Expression of TYPE type_device. This is 0 thru 3199
an INTEGER subrange.

Semantics
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
i
Active ATN UNL ATN UNL
Controller GET LAG GET
GET LAG
GET
Not Active E
Controller rror

Procedures Reference 365

IMPORT: hpib_2
iodeclarations
This procedure will send an unlisten command on the bus. The interface must be active

controller.

Syntax

interface
musren)--() O

e Range Recommended
Item | Description/Default Restrictions Range
interface Expression of TYPE type_isc. This is 0 thru 31 7 thru 31
select code an INTEGER subrange.

366 Procedures Reference

UNTALK

IMPORT: hpib_2
iodeclarations

This procedure will send an untalk command on the bus. The interface must be active con-
troller.

Syntax

interface
)0 0

.. Range Recommended
Item I Description/Default I Restrictions Range
interface

an INTEGER subrange.

Expression of TYPE type_isc. This is 0 thru 31 7 thru 31
select code

Procedures Reference 367

WRITEBUFFER

IMPORT: general_4

iodeclarations

This procedure will write a single byte into the buffer space and update the fill pointer in the
buf_info record.

Syntax

D S0 ORE=IN0

Item | Description/Default Re?t?i?:gieons
buffer name Variable of TYPE buf-info_type. See Chapter 11

character Expression of TYPE CHAR. -

368 Procedures Reference

WRITEBUFFER_STRING

IMPORT: general_4
iodeclarations

This procedure will take the specified string and place it in the buffer and update the fill pointer.
An error will occur if there is insufficient space.

Syntax

buffer source
(om0 e ®

Item Description/Default Re?t?ir::!t}ii)ns
buffer name Variable of TYPE buf_info_type. See Chapter 11
source string Expression of TYPE io_string. This is -
STRING[255].

Procedures Reference

WRITECHAR

IMPORT: general_1

iodeclarations

This procedure will send a single byte as data over the interface path (writechar will drop the
“ATN” line on an HP-IB interface).

Syntax

interface
D0 Q ®

o . Range Recommended
ltem Description/Default Restrictions Range
interface Expression of TYPE type_isc. This is 0 thru 31 7 thru 31
select code an INTEGER subrange.
source Expression of TYPE CHAR. -
character
Semantics

An HPIB interface must be addressed as a talker before performinga WRITECHAR, or an error
will be generated. To avoid this, use the following sequence:

LISTEN (7,:241) %
TALK (7 MY_ADDRESS(7}))3
WRITECHAR (7 Character) i

369

370 Procedures Reference

WRITENUMBER

IMPORT: general_2

iodeclarations

This procedure outputs a free field number to the specified device. The format rules follow the
HP Pascal standard for WRITE. No additional characters are sent after the number.

Syntax

device
WRITENUMBER 0 o m o

. Range Recommended
Item Description/Default Restrictions Range
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary

number

an INTEGER subrange.

Expression of TYPE REAL

Procedures Reference 371

WRITENUMBERLN

IMPORT: general_2

jodeclarations

This procedure will output the number and a carriage return/ linefeed.

Syntax

device
WRITENUMBERLN 0 0 m °

e Range Recommended
Item Description/Default Restrictions Range
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary

an INTEGER subrange.

number Expression of TYPE REAL -

372 Procedures Reference

WRITESTRING

IMPORT: general_2
iodeclarations

This procedure will send the specified string to the specified device. No additional characters
are sent.

Syntax

a0 OO

.- Range Recommended
Item Description/Default Restrictions Range
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary
an INTEGER subrange.
string Expression of TYPE STRING -

Procedures Reference

WRITESTRINGLN

IMPORT: general_2

iodeclarations

This procedure will write out the string followed by a carriage return/line feed.

Syntax

device
WRITESTRINGLN a Q m o

. Range Recommended
Item Description/Default Restrictions Range
device selector Expression of TYPE type_device. This is 0 thru 3199 See glossary

an INTEGER subrange.

string Expression of TYPE STRING -

373

374 Procedures Reference

WRITEWORD

IMPORT: general 1

iodeclarations

This procedure will write 2 consecutive bytes to a byte-oriented interface. A word oriented
interface will write a single 16-bit quantity.

Syntax

interface control
—r G D

. . Range Recommended
Item Description/Default Restrictions. Range
interface Expression of TYPE type_isc. This is 0 thru 31 7 thru 31
select code an INTEGER subrange.
control word Expression of TYPE INTEGER. MININT thru

MAXINT

Procedures Reference

Glossary
aspect ratio - The ratio of the height to width of an area (e.g. the area of a display surface).
attribute - See primitive attribute.
buffer name - A structured variable of TYPE buf_info_type.

complement drawing mode - A device dependent drawing mode for raster graphic displays in
which a line is drawn by inverting bits in the display memory.

character cell - An imaginary rectangle placed around a character which defines its dimen-
sions. The character size attribute determines the size of the character cell.

clipping - The elimination from view of all visible primitives or parts of primitives which lie
outside the clipping limits (see window clipping).

default - See initial value.

device selector - An INTEGER expression used to specify the source or destination of an I/O
transfer. A device selector can use either an interface select code or a combination of
an interface select code and a primary address. To construct a device selector with a
primary address, multiply the interface select code by 100 and add the primary
address.

echoing - A mechanism for reflecting the status of an input function. Echoing is manifested in
several ways as a function of the different input functions and the different physical
devices being used.

erase drawing mode - A device dependent drawing mode for raster graphic displays in which a
line is drawn by setting bits in the display memory to zero (off).

escape function - A facility within the graphics system which allows access to device dependent
functions of a graphics display device.

file designator - A variable which points to the file informaton block for a lif file. It is a
structured variable of the form:

LIFFILE = RECORD
FPOINTER: INTEGER)
END 3
graphics display device - A device which displays graphics output.

initial value - The value of an attribute, viewing component, or characteristic of a work station
which is in effect when the graphics system is initialized.

inquiry - User request for the current status, value, or characteristics of the graphics environ-
ment.

lif file name - The name of a lif file in the lif directory. A variable of TYPE lifname, which is a
packed array of characters, of the form:

LIFNAME=PACKED ARRAY¥L[1..101 OF CHAR:
line - A vector drawn from the current position to a specified point.

linestyle - An output primitive attribute which controls the pattern with which lines and text
primitives are drawn.

375

376 Procedures Reference

locator device - An input device which returns a world coordinate point.

locator input function - An input function which returns a world coordinate point correspond-
ing to a location on a locator device.

logical device - An abstraction of a typical graphics device, defined in terms of the type of data
input or output. The logical devices supported by the graphics system are locator and
graphics display.

logical display limits - The bounds of the logical display surface.

logical display surface - The portion of a graphics display device within which all output will
appear.

mapping - The transformation of data from one coordinate system to another.
move - Moving the starting position to a specified point without generating a line.

object - The conceptual graphics entity in the application program. Objects are defined in terms
of output primitives and primitive attributes. Their units are the units of the world
coordinate system.

output primitive - The basic element of an object. The output primitives which the graphics
system supports are: move, draw and text. Values of the primitive attributes deter-
mine aspects of the appearance of output primitives.

picture - A collective reference to all the images on a display device.

primary address - An INTEGER in the range O thru 31 that specifies an individual device on an
interface which is capable of supporting more than one device. The HP-IB interace
can support more than one device. (Also see ‘‘device selector.”)

primitive - See output primitive.

primitive attribute - A characteristic of an output primitive, such as color, linestyle, character
Size, eftc.

raster display - A type of graphics display in which all vectors are defined by turning on dots
across a screen. TV is an example of a raster display.

sampled input - An input operation which does not require operator intervention; the routine
returns with the current value as soon as the input device can respond.

viewing operation - See viewing transformation.

viewing transformation - An operation which maps positions in the world coordinate system to
positions in device coordinates, thereby transforming objects into images.

viewport - The rectangular region of the view surface onto which the window will be mapped.

view surface - The largest rectangle within the logical display limits having the same aspect ratio
as the virtual coordinate system.

virtual coordinate system - A two-dimensional coordinate system representing an idealized
display device. Virtual coordinates are always in the range 0.0 to 1.0.

window - A rectangular region in the viewplane which may delimit the portion of the projected
image which will be output.

world coordinate system - The two dimensional left handed cartesian coordinate system in
which objects are described by the user program (user units).

