(

This reference manual is intended for system managers and application programmers who
~are using or are going to use PCI¥/1000 to supervise and interact with Programmable
Controllers (PCs).

The manual assumes a knowledge of the HP 1000 computer and its RTE-A operating
system, plus the operating principles of Programmable Controllers. It is divided into
nine chapters, and can be used as both a reference and ja user guide.

New users of PCIF/1000 should read Chapters 1, 2, 3 anas System Managers will find
Chapters 5 and 6 useful when installing PCIF/1000 for the first time, and Chapters 7
and 8 when configuring a PC-computer system. The reference sections for application
programmers are Chapters 4 and 9. |
|
The handler manuals (e.g. Using PCIF/1000 wit Allen-Bradley Programmable
Controllers), provide information specific to the | particular handler software
purchased along with the core PCIF software. Use your\handler manual in conjunction
with this manual to install and operate your PCIF system.
1
|
CHAPTER 1 provides a definition of the product, its purpose, what it consists of
and a very brief description of how it works. Also listed are the
hardware and software requirements of PCIK/1000.

CHAPTER 2 describes in more detail the operat%on of PCIF/1000, 1including
definitions of PCIF/1000 terms, such as configuration, run-time and PC

Access Routines.

|
|
CHAPTER 3 is a review of Programmable Controllers. It describes the functions that
PCs perform in the industrial automation area, gives an example of a
PC-computer system and outlines the loglch structure of a PC’s memory.

lists all the PC Access Routines availab with PCIF/1000. An analysis
is provided with each routine, plus the routine’s calling sequence,

CHAPTER 4 is intended for application programmers fn is a reference guide that
entry/return parameters and return codes. (

CHAPTER 5 outlines the installation and configuration processes of PCIF/1000, and
provides a definition of the preconfléirator and the configuration

progranms.

possible connection methods between a computer and a PC system, i.e.
RS232C; 20mA current loop; and RS232C/current loop. The product’s
software installation is divided into [two procedures, one for the
configurator programs and one for generating an RTE-A run-time system.

CHAPTER 7 is a step-by-step description of the | preconfigurator program, the
screens it displays to the operator and the information to be entered on

these screens.

PREFACE

CHAPTER 6 describes the installation procedure, and provides examples of the three

CHAPTER 8 provides a similar step-by-step description of the configuration editor
program.

CHAPTER 9 analyzes for application programmers the run-time operation of the
PCIF/1000 utility programs. It indicates in detail how to start and stop

the PCIF/1000 subsystem, possible errors that might occur and how to
deal with them.

APPENDIX A lists and explains all the error codes that may be returned by the
PCIF/1000 monitor, at either configuration or run-time.

APPENDIX B is a description and listing of PCIST, a program to assist in testing,
verification, program debugging and learni-g PCIF/1000.

vi

CONTENTS

Chapter 1
GENERAL INTRODUCTION

1.1 PCIF/1000 DEFINITION & PURPOSE.......c.ootvvuenanns

1.2 BRIEF SPECIFICATION. vt iernnnnnnnonannnsons

1.3 WHAT IT DOES........cvvunnn [

1.4 HOH IT HORKS. .. ittt iiinneetnnnrennuocsennesnns

1.5 WHAT IT CONSISTS OF....viiniitieninrinennennnnnsnns

1.6 PCIF/1000 REQUIREMENTS.......cciiiviitinneeneennns .

Chapter 2
OPERATING PRINCIPLES

N
=
-
-4
3
S
[
(@]
—
S
=

NN N D

DLW

Chapter 3
REVIEW OF PROGRAMMABLE CONTROLLERS

oooooooooooooooooooooooooooooooooooooo

.2.1 PC-Computer System Overall Appearance.........
2.2 Getting PCIF/1000 Ready For Use.......vovuvnnn
.2.3 Definition of Configuration-Time..............
.2.4 Definition of Run-Time.........cciivviiinnnnnns

PC~-COMPUTER INFORMATION EXCHANGE........ccvvvevnnn
.3.1 The PCIF/1000 Subsystem........ccoveeueess SRR
.3.2 Definition of PC Access Routines..............
.3.3 PC Handler Definition......cvvivevnerncenenns
.3.4 Highway Handler Definition.............. e

3.1 INTRODUCTION.. .. eiviutvienerennonsennnsesnnononnad

3.2 STRUCTURE OF A PC-COMPUTER SYSTEM.................

3.3 STRUCTURE OF A PROGRAMMABLE CONTROLLER...........

3.3.1 PC Hardware Structure and Functioning Cyele.. |
3.3.2 Logical Memory Structure of a PC.............. !

Computer

“ToMuseum

ooooooooooooooooo

ooooooooooooooooo

ooooooooooooooooo

ooooooooooooooooo

ooooooooooooooooooooooooooo

ooooooooooooooooooooooooooo

oooooooooo

ooooooooooooooooooooooooooo

ooooooooooooooooooooooooooo

ooooooooooooooooooooooooooo

ooooooooooooooooooooooooooo

ooooooooooooooooooooooooooo

ooooooooooooooooooooooooooo

ooooooooooooooooooooooooooo

ooooooooooooooooooooooooooo

ooooooooooooooooooooooooooo

oooooooooo

oooooooooo

oooooooooo

3.4 PC COMMUNICATION FUNCTIONS. . vt iiittereeeeenooestoonesoatssasssoasssensonnns

vii

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

Chapter 4
PC ACCESS ROUTINES

4ol GENERAL . .o v it ir ittt ttneeeooneneonsoesonetoosessesseseeasossessossesssnonanas 4-01
4. 1.1 Introduetion. cv. e i in ittt ieeosteeeseosovonnssossossnseasaseassasaanasas 4-01
4.1.2 Operating Principles. . .v.u.oir ittt ittt iennnesooesssnannnonaoeenss 4-01
4.1.3 Logical versus Physical PC Status...... .ttt iier it rnernoneaonnnns 4-02
4.1.4 Simultaneous Access by Different APs.........cciiiiiniiiiiiinaninnenonnnn 4-02
4.1.5 PCIF Transparent ACCeSS.......oeveeeeeannns v erraee e tertaaaanaan PN 4-03
4.1.6 Using the Wait/No-RHait Option...... . .iiiiniiiiiiieiir it iiiennnnnnnnnans 4-03
4.1.7 Reading Unsolicited Requests.......oiiiiiiiiiiiiniiireeneninenanenesannns 4-03
4.1.8 Pascal and Fortran Compatibility....coviiiiiiiiiriiinieriennerinnnernenns 4-04
4.1.9 Linking An Application Program with PCARS.........iviiiieiinrnnnnncnnnnns 4-04
4.1.10 Handling PCIF Library Errors in the Application Program................. 4-04

4.2 SUMMARY OF PCARS . .o i it ittt ttttieteaneenesseneeanesosssasesssssassossossaanss 4-06

4.3 DETAILED DESCRIPTION OF THE ROUTINES.t iieittonereotssstosonsocsnsnsanas 4-08
4.3.1 General Information.. . cvveet e iieereeeeeneenssonronsessesonssasssasoneas 4-08
4.3.2 Entry versus Return Parameters.ccciveieriiieennionornnnnssosnsansas 4-08
4.3.3 StatUS Parameter. v vttt ittt e it ettt e et et 4-08
L O) 3 1 P 4-09
PCIF CLOSE. .. .ivitririneninnronenenannanns Nt eeeeeeattet et et ee e toasaae s 4-10
PCIF ERROR. ..t iiiiitiiiitienanenenrorneeeneoeuonsnsssnessnanesonnsnsnansnssas 4-11
PC CANCEL.........¢coovvienennn Gt etaea W et eeeeeneteee ettt 4-12
PC_CONNECT.......... f et e et e s e et it e s e eetaa e eeeaasetes ettt e et e reereens 4-14
L O O 4-16
L O N) P 4-18
O 1. [1 4~19
O 01 L)L N 4-24
L O 4 4 0 4-26
L O) 4-27
O 0, 01 G e 4-30
O 1 0 . ¥ e 4-31
PO READD . ittt iiiii i tiieeeieenestoenesoasoaesoosassesosssessasaoascenasssonneonas 4-33
L O N) et ecieteeer et 4-37
L O 1 0114 0 4-40
L O 1V 4-41
g O ¥ O P S & A5
g O 4 1 . ¥ e 4=45
g O 71 it ietiee ettt 447
L O) 7 ¢, 01 Qe 4-51
g O 0 1 1 PP 4-52
O 3 I - P et ettt ee e 4=-55

Chapter 5

INSTALLATION OVERVIEW

5.l PURPOSE. st ittt iiiiittitietreneeeeeeeeeeeonsoonssseessenaoeseneasssossonnnnnas 5-01

5.2 GENERATING AN RTE OPERATING SYSTEM FOR PCIF/1000. cuuveeueerennennanonnnnn 5-02

viii

5.3 INSTALLATION PROCEDURE.t ireiivnirsrsesnssoedesessesessnneaceonnassoenos 5-03
5.4 CONFIGURATION PROCEDURE. ¢ v vivievesrenrenssaronosdosssoeosnsnnenaconsassnnns 5-03
Chapter 6

INSTALLATION

6.1 INTRODUCTION . ittt it insttneeetonenssoososanossssaqasnossosssonsoncnassssnsas 6-01

6.2 UNPACKING AND INSPECTION. ... iiv vt teeetennesoacsoseatosossosoonsossnsnesssssonss 6-01

6.3 HARDWARE REQUIREMENTS. ...t tveereeernnoccenosonanns vt tieennonereresoasannnnns 6-02
6.3.] GENerAL. it ittt ieestanneeeeeroonoasssestoseseastocseatosetooancaneacansanna 6-02
6.3.2 PC Connections to the HP/1000. ... o vueiietttiodeeeoeecooontncencnsossnnns 6-02
6.3.3 RS232C MUX/Highway Connection. .o cveerererssetdoeeesnoetoooaeononassanons 6-03
6.3.4 RS232C MUX/Highway 20mA Current Loop Connectio& 6-04
6.3.5 Mixing 20mA and RS232C MUX ConnectionsS....veeeieierrecetsoenocenoossoesns 6-05

6.4 SOFTRARE REQUIREMENT S, ..ttt iittennnetonneosansosostonssosasososesnnssooansoons 6-07
YA R = =5 - Gt et eeteereeetbeeeeneanns 6-07
6.4.2 Preconfigurator & Configuration Editor.......coiiitiiinrirnrcncnnnsoeesans 6-07

6.5 RUN-TIME RTE~-A REQUIREMENT S.iiviiernererntotbosononasosnnas Cesereresene 6-10
6.5.1 Logical Units...vvvveiiiiinniennnnnncnrocannans R R R 6-10
6.5.2 ANSWer File.. . .viieiitinneieieeeronenononnnnns beeonnonons Ceereeiastenenas 6-10
6.5.3 C1lass NUMDErS . c e tvv ittt eeeeeoeoennseaeeaaeotoshocesonnns teeeas e 6-10
6.5.4 Memory Requirements..........cocieniviinennnnns L 6-10
6.5.5 Required Files.......cviiiiiiiiinnninnennennnn e eeieerateibtieeraneaens 6-13

|
\

6.6 SOFTHWARE INSTALLATION. ... i v iterrvenneonascaanns L e e etevascannennnsscaacanes 6-14
6.6.1 Loading SoOftWaIe. . it tviriererestorereroeesooohoseronenns ettt eeesereeeas 6-14
6.6.2 Preparing PCIF/1000 Installation......ccvveveeborcccanons Creedeaereneae 6-14
6.6.3 Installing The Preconfigurator Program.......civeeeeeossescascencnnonns . .6-17

Chapter 7

PRECONFIGURATION

7.1 INTRODUCTION. . vttt einerneotoenossnnsnnnnnas t e el tecetia it a s iasneennns 7-01

7.2 SCREEN DESCRIPTIONS. .. vvettinreronsstsnscsssossosobosessnasns Ceeeeraesecanans 7-02
A €= 1= - Y 7-02
A A8+ 1= 1= 7 X o) ¢ T 7-04
A T Lo (o) 7 7-C4
7.2.4 Screen 1: Descriptor Selection.....vveeeeissrehiesconrrostonssnssnsnnsons 7-05
7.2.5 Screen 2: Descriptor File Information....veveelheeeeeiirercecernnsnsonneans 7-07
7.2.6 Screen 3: Completion Information.......ceiieeeihneroreensotoensssscranas ..7-09

7.3 COMPLETION OF THE PRECONFIGURATOR. ... et vt ieecenvnfosoanseasasnncsoanaocsonanas 7-11

ix

Chapter 8

CONFIGURATION

8.1 GENERAL. . vt it iietet e renneeooneoaoseososeenoanasssesesanasosesseenssennnnens 8-01
8.1.]1 Introduetion. .o ve it ietnettieereetoeesesosesaaeaassassasssesassoassanss 8-01
8.1.2 Overview........... S et e er i eeetteseceaaeeee et aeeets et ettt t et eatran s 8-01
8.1.3 Proposed ValuesS cuveioenerorosersosessasssceasassossssssassasssasassss 8-01
B.1l.4 Validation. . couveeesteeronoeeosnsessoenessoosasasnessssosssesasssassanss 8-02
8.1.5 Listing a Conflguratlon .. 8-02

8.2 SCREEN SEQUENCTING. .. it titieotetentessototenessosotosessssesonsssenssssossssas 8-04
A R -5 1= o - T P 8-04
A A 0 o T3 - 7 e) « W O 8-05

8.3 SCREEN DESCRIPTIONS. c vttt verviooeosoooeeeeesoasoassacesesansssssoasesasasnssss 8-06
8.3.1 Screen 1: Files S€leCtion . .ot iitnrereeriettirineeeesoastoansanassssssnsss 8-06
8.3.2 Screen 2: WOrK Selection..voeirieieieiieeneesiersaressosassssssesonssasansss 8-08
8.3.3 Screen 3: Highway Selection.....oveeiiiiiiiiioiiirrioesosnsesecsasacsonnsas 8-10
8.3.4 Screen 4: Highway Type Selection.............. et te ettt 8-12
8.3.5 Screen 5: Highway Configurationn.............ciiiiiiiiiiininiinnnnnnennns 8-14
8.3.6 Screen 6: Highway Special Information.....eeveieeivsnvenerrorossssannnnns 8-16
8.3.7 Screen 7: PC Selection...v.ovvvivienerreenanens et eeeet ettt sttt 8-18
8.3.8 Screen 8: PC Type Selection... ...t iiiiiiinnrsecioeearensoetosssennennanas 8-20
8.3.9 Screen 9: PC Configuration....viviiieeeeiriirroeensssosssssssasasnssnnnas 8-22
8.3.10 Screen 10: PC Special Information............ e et ee sttt 8-25
8.3.11 Screen 11: PCIF General Information..........cciiiieitieensnneaeronennas 8-26

Chapter 9

RUN-TIME OPERATION

9.1 INTRODUCTION. i vviverreereessonnnsosseesonsananans et ere ettt ettt 9-01

9.2 STARTING PCIF. ..t tittttieenenononeeeseeeessssssoonnonnonconss e terecreraaaas 9-03
9.2.1 RTE COMMANA . + ¢ et s et eevensosonenasotoseeesstasssosesosessassssoesassnsnnns 9-03
9.2.2 Initialization Phase......ccoiivterereerreeeeronnneennnnnas et eereenen 9-03
9.2.3 MESSAEE S . ittt ettt testiosssrnosssssoseassosssasasssssrsssassesstsssecns 9-05
9.2.4 Localizing Error MesSageSveeeeeereeeeetaroaansonoossssnasssosnsonsos 9-06
9.2.5 Running Application PrOgramsS....c.veeeivreeeeerossosssossasossosossnnsons 9-07

9.3 ERRORS DURING PCIF OPERATION. ..o vviinennnnnnnoosoanconas e esatecet ettt aaas 9-08
9.3.1 Application Program CallS. iveeeeeornsionoocensssosassssnassososssans 9-08
9.3.2 Abort of Application PrOgram........ciceviireciorrosssennssssasessosansas 9-08
9.3.3 Error in PCIF COMPONENtS . ccv e eviirtteerorosestosessoanssssossssnossssans 9-09
9.3.4 POWEr FAilUPe. ... iiviiverernesoteeesososensosssoeeesseasasosassssssasasannas 9-10
9.3.5 RUn-Time Utilities..vuvi it iitteeeeeeeeeeesoaanneoeriosonsaeacsrssssans 9-10

G.4 STOPPING PCIF. .. ittt it tieeeeeeneceeotseoneesesnesoseosssnsssnseeasesoessosssonoas 9-11

Appendix A
ERROR MESSAGES
A.1 CONFIGURATION PROCESS ERROR MESSAGES (COOXX) .. vetiujiorennneennnsoenoacsnnnnen A-02
A.2 ERRORS RELATED TO THE DESCRIPTOR FILE (DCOXX) . ¢ vt vujevennresrrennoenonsssanons A-04
A.3 FORM ERROR MESSAGES (FOOXX) ... oivuitrennneennoeeeeaioresnoononeesonnnsennnses A-05
A., SCREEN ERROR MESSAGES (FROXX)......ocvevnnerennaneciieiiniiiiiiiieiiniinnnnens A-06
A.5 PARTIAL FMP ERROR CODES (FMOXX) .. oot ovnvnorononnenafooseeenosnsensonnsoennaons A-06
A.6 PCIF INITIALIZATION ERRORS (MIOXX) ...t vuttennneoeuioornonnsnnessnnsncssnnsanss A-07
A.7 RUN TIME MONITOR ERRORS (MKOXX)..:::vuvveneonooeennelionenanonoasoonsnnsnannsns A.09
A.8 PCDMX ERRORS (UTILITY TO DOWNLOAD CARDS) (DMOXX) ... vveeernineneennnennnness A-11
A.9 PCTMO ERRORS (TIME OUT UTILITY) (TMOXX).u.tvriiueinuiiennneennneennnneronnnens A-12
A.10 PCHLT ERRORS (HALT UTILITY PROGRAM) (HTOXX)..eeivulvrirueeneeonnnnnennnnen A-12
Appendix B
PCTST LISTING
0 0 ¢~ 0 8 B-02
B.2 PCTST DIALOG. ittt iitttrnnttreeneosnnneessssssosanefsansooenasnsnneesansesanas B-02
B.3 PCTST PCIF COMMAND SUMMARY0 vtiiinuininrnneonennfooennonssnnresnsnoneasesns B-03
B.4 PCTST PCIF COMMANDS. vttvieeunronennconnnnennns et veorosssnoasannsnannans B-05
B.5 PCTST SPECIAL COMMANDS. ¢ ot i ittt iernionneneooosfonosonnosnsononnsssesnssss B-19
B.6 PCTST INSTALLATION.vtoviiiiiieneneeooansesecassaliosrussosesnsnonanensesans B-23
B.7 PCTST SOURCE CODE. ittt tntititeinosesnntoronostoeaianesssssancsscannensnnsns B-24
Index

xi

GENERAL |

1.1 PCIF/1000 DEFINITION & PURPOSE

PCIF/1000 is a software interface that allows th
Controllers (P/Cs) of different manufacturers and

Chapter 1
TRODUCTION

connection of Programmable
ypes to an HP 1000 A-Series

. supervisory computer. The product provides an application programmer with standard
and transparent access to a range of P/Cs, via the computing power and facilities
offered by the operating system of the HP 1000, and thus enables easier supervision

of programmable controllers in an industrial automation

1.2 BRIEF SPECIFICATION
Product Name : PCIF/1000

Product Number : 94200B

Operating System Requirements : RTE-A

environment.

Supported Program Languages : Pascal and/or FORTRAN

Supported P/C Manufacturers : Allen-Bradley

Gould-Modic
Siemens

Telemecanique

1.3 WHAT IT DOES

PCIF/1000 allows real-time access from an HP 1000 to ﬂ
This means that data and programs from one P/C may t
another P/C in the same system, under instructions
running on the HP 1000,

PCIF/1000 is not a program development tool for P/Cs.
HP 1000 users to exchange data and programs between P
collect data and programs from these P/Cs. PCIF/1000
this aim which avoids alteration of an application pr
types of P/Cs in the system are changed.

1-01

he data and programs of P/Cs.
be uploaded and downloaded to
from an application program

Its main purpose is to allow
/Cs connected in a system, or
provides a means of achieving
ogram each time the number or

GENERAL INTRODUCTION

1.4 HOW IT WORKS

The following is a brief summary of how PCIF/1000 allows application programs to
interact with programmable controllers.

(1)

(2)

(3)

(4)

The user’s P/Cs are connected to the supervisory HP 1000 via a multiplexer (MUX).
(See your handler manual for the specific MUX to be used with your P/C brand.)

A logical picture (in fact a file) of the types and manufacturers of the
connected P/Cs is created by an operator feeding the relevant information to
configuration programs. These programs are part of the PCIF/1000 package and may
be used to update the configuration file if the connected P/Cs are changed.

An application program runs on the HP 1000, activates a PCIF/1000 monitor program
and uses the previously created configuration file to identify target P/Cs. The
application program does not know the type of the target P/C or its connection
method. This P/C type and protocol independence allows the constituents of the
P/C system to be changed without the subsequent need to rewrite the application
progranm.

Information exchanges occur between the application program and the target P/Cs,
and these P/Cs reply to requests from the program. The requests may be ‘read
program" to one P/C, and "write program" to another. The information exchange is
supervised by the PCIF/1000 monitor program.

1.5 WHAT IT CONSISTS OF

Generally speaking, PCIF/1000 is composed of four basic parts:

A menu-driven configuration program that allows the system manager to describe the
characteristics of the various P/Cs installed.

4 library of high-level routines that implement the application program interface
to PCIF/1000 at run-time.

A monitor program that controls the overall operation of the PCIF/1000 software at
run-time.

A set of handler programs for the interface between PCIF/1000 and the P/Cs. Note

that these programs are a separate product from the core and are documented in
separate handler-specific manuals.

1-02

GENERAL INTRODUCTION

1.6 PCIF/1000 REQUIREMENTS

* HP 1000 A-Series computer (1IMb minimum memory and 10 Mb minimum disec storage
space).

* RTE-A operating system.

* Macro assembler program resident in the operating system.

* FORTRAN 77 or Pascal language.

* At least one of the following HP block-mode terminals: 2622A; 2623A; 2624B; 2626A4;
2027A; 2382A; R647A/F; 2648A; 150A. NOTE: The HP 2645A terminal is not supported.

* HP multiplexer. {(See your handler manual for the specific MUX to be used with your
P/C brand.)

1-03

Chapter 2
OPERATING PRINCIPLES

2.1 INTRODUCTION

This explanatory chapter is written for operators who | are using PCIF/1000 for their
first time. For this explanation it is assumed that the product is to be installed
and configured, and then used with application programs.

It is important to realize the distinction between t&? configuration phase and the
run-time phase of PCIF/1000. Section 2 (GENERAL) includes, therefore, a definition
of the two phases and an outline of the actions required to facilitate a progression
from installation to configuration, and from configuration-time to run-time.

The third section (PC-COMPUTER INFORMATION EXCHANGE) analyzes what is happening
inside PCIF/1000 at run-time, and explains the various modules that comprise the
PCIF/1000 subsystem.

2.2 GENERAL
2.2.1 PC-Computer System Overall Appeara#ce

A typical P/C and computer system consists of at least one P/C connected to a
computer via an interface and a connection cable. For convenience the data
communication path is referred to as the ‘'"highway", whether the physical
implementation of this connection is point to point, multipoint, or whatever
communication protocol is used.

The P/C and the computer can exchange information, programs, status or data through
the communication cable and the appropriate hardware interfaces. These interfaces
must be electrically compatible and use the same protocol. A multiplexer (MUX) is
used as the interface at the HP computer end of the communication highway. On the P/C
side the interface used is determined by the manufacturer of the P/C.

The following figure shows the general appearance and the constituent parts of a
PC-computer system using PCIF/1000.

2-01

OPERATING PRINCIPLES

< User’s
Application Program - Software
PCIF/1000 Library
CALLs :
(Requests) Rep”es
v
M
O PC Handler(s)
N PCIF /1000
(<
| Subsystem
T
0 Highway Handler(s)
R
Device Driver / Systemn
Interface Driver - software
Input/Output
Messages
A\ 4
Multiplexer < Interface
Hardware
. Cormmunication
||Highwoyll
PROGRAMMABLE
CONTROLLER

Figure 2.1 General Appearance of a PC-Computer System Using PCIF/1000

Hith reference to the figure above, note that:

Application Program is the user written software that interacts with programmable
controllers via PCIF/1000 at run-time. More than one application program may be
handled by PCIF/1000 during the same run-time session.

PCIF/1000 Library is located on disc and contains the P/C Access Routines. During
the linking process of an application program the required P/C Access Routines are
found in this library and appended to the application program for use at run-time.
The routines are further explained in section 2.3.

2-02

PCIF Subsystem comprises the monitor plus the P/C
brought into the memory of the supervisory HP 100
representation of how these modules interact withi
requests and replies between application programs an
subsystem are explained in section 2.3.

Device Driver is a software interface module provided

Interface Driver is a software interface module prov
system of the HP 1000.

Multiplexer (MUX) is a microprocessor based interfac
contain firmware that is altered at run-time by prot
highway handler. In addition, these MUXs accept on
convert it to eight outputs, each containing the r¢
target P/C.

Programmable Controller is a P/C or P/Cs whose manufa
the user. Information on the connected P/Cs is provid
at configuration-time. The P/Cs themselves are further

2.2.2 Getting PCIF/1000 Ready For Use

From an operator’s viewpoint, PCIF/1000 can be divi
require understanding. These are:

- the configuration environmer

- the run-time environment

These two environments are created from the supplied

etc) by the installer of PCIF/1000.- The operator and

OPERATING PRINCIPLES

and highway handlers, and is
0 at run-time. The "E" is a
n the memory when processing
d P/Cs. The components of the

with the PCIF software.

rided with the RTE-A operating
e. The 12041A and 12041B MUXs
,0c0l code downloaded from the

e composite input signal and
alevant protocol code for its

cturer and type are defined by
ed to PCIF/1000 by an operator
discussed in Chapter 3.

ded into two main areas that

nt

media (i.e tapes, cartridges
installer of PCIF/1000 may of

course be the same person, but for explanatory purpose

their tasks may be separately

considered. The installer, therefore, must complete the following tasks in order to

create the two environments for the operator:

- Verify that the target PC-computer system meets
PCIF/1000, such as compatible protocol, interface

he hardware requirements of

t
Lnd connection details.

- Generate an RTE-A operating system for PCIF/1000 on the supervisory HP 1000.

- Install the PCIF/1000 software onto the the HP 1000.

The above procedure is a very broad picture of the
fully described in Chapters 5 and 6.

Now the operator takes over. Remember that PCIF/1000
interface between P/Cs (number and type defined by the
running on the HP 1000. So the first task of the

installation process, which is

provides an adaptable software
user) and application programs
operator is to configure the

installed PCIF/1000 software to meet the requirements of the target PC-computer

system.
the configuration environment or configuration-time.

2-03

This is achieved with two interactive prograns, collectively referred to as

OPERATING PRINCIPLES

At the end of configuration-time the operator is ready to load application programs
on the HP 1000 and actually use the facilities of PCIF/1000 to command, obtain and
transfer information to the target P/Cs. This phase is referred to as run-time.

2.2.3 Definition of Configuration-Time

Configuration-time occurs after installation and before run-time, and refers to the
use of two programs: PRECONFIGURATOR followed by CONFIGURATION EDITOR. In these
programs the operator supplies information (relating to the target P/C system upon
which PCIF/1000 will be expected to run) to a sequence of formatted screens. These
screens are displayed and managed by an internal program called F/1000, which is
supplied with PCIF/1000.

In the preconfigurator program, the operator defines the manufacturer(s) of the P/Cs
installed on the target system. This information is used to build the second
program, the configuration editor. Here, specific details on the previously defined
P/Cs are supplied, and a logical P/C number is attached to each installed P/C.

All the information supplied by the operator during both programs is checked for
validity to ensure that the operator is configuring a logically feasible P/C system.
If invalid information is supplied, the operator is warned by error messages, and the
configuration editor program will not be completed.

The end result of configuration-time is a unique configuration file that logically
describes the target P/C system. The file is given a name by the operator and is
called with the command string used to initiate run-time, as shown below:

CI> XQ,PCIF,<configuration file name>...

Note that the "PCIF" in this command string refers to the PCIF/1000 monitor program,
which is also unique for the target P/C system and is created at the end of the
preconfigurator program.

The above description of configuration-time is an overview of the complete
configuration process. Each program is described in detail by Chapter 7
(preconfigurator) and Chapter 8 (configuration editor). It is also advisable to read
Chapter 5 (Installation Overview) if you are using the preconfigurator (and therefore
the configuration editor) for the first time.

Note that configuration is only necessary the first time PCIF/1000 is used with a
particular P/C system, unless the amount or type of P/Cs in this system are
subsequently changed. If the amount or types are changed, then only the
configuration editor needs to be run again in order to edit the configuration file.
However, if a P/C is installed whose manufacturer is different from those previously
defined for this target system, then both the preconfigurator and the configuration
editor must be run again to create a new PCIF monitor and a new configuration file.

2-04

OPERATING PRINCIPLES

2.2.4 Deftinition of Run-Time

For PCIF/1000, run-time starts with the "XQ,PCIF,<configuration file name>" command,
which may be issued by an application program or by an operator from a scheduling

terminal.

By run-time, PCIF/1000 comprises a number of different modules that together make up
a unique PCIF/1000 subsystem for the target P/Cs. A constant part of this subsystem
is the PCIF monitor, and the other parts are the P/C and highway handlers whose
construction depends upon the types and manufacturers of the P/Cs in the target
system, in fact the information supplied to PCIF/1000 during configuration-time.

Figure 2.1 provides a very simple view of what the PCIF/1000 subsystem looks like at
run-time. In fact, a number of utility programs are automatically called after the
issue of the run-time command, but before the interaction between application
programs and P/Cs can take place. A complete description of the run-time operation
appears in Chapter 9. .

Again turn your attention to Figure 2.1. Note that the PCIF Library contains high
level routines (called the P/C Access Routines) which |contain instructions that are
converted by the PCIF/1000 subsystem into the required function to be performed on or
by the PC(s). There are 23 different PC Access Routines provided in this library by
PCIF/1000. Each is designed to implement a different function in the P/C (read/write
data, stop/start PC, ete) as instructed from the application program, but is of the
same construction irrespective of the type of P/C| being accessed. Generally
speaking, the application program only needs to logically identify the target P/C,
and can ignore the P/Cs type or manufacturer.

2-05

OPERATING PRINCIPLES

2.3 PC-COMPUTER INFORMATION EXCHANGE

In this section the description of the principles of operation relate only to what is
happening in the PCIF/1000 subsystem at run-time, and therefore how the HP 1000 and
P/Cs exchange information.

2.3.1 The PCIF/1000 Subsystem

When an application program wants to interact with a P/C, four different modules are
activated for the execution of the desired function:

- A particular P/C Access Routine (e.g. PC WRITED), found in the PCIF Library and
appended to the calling application program.

The PCIF/1000 monitor program.

The P/C handler corresponding to the target P/C (i.e. the P/C logically
identified by the application program).

The highway handler corresponding to the data communication protocol used for
transferring information between the HP 1000 and the target P/C.

<——— APPLICATION PROGRAMS ——

Appllcation Appilcgtion Application
Program 1 | Program 2 Program 3 000
Fé kioeu PC Access Access
Routines Routines Routines

\ '\ \1' 1‘// Re/gly

| A] A
]

Handler 1 Handler 2
A A A

A 4 v l/ o
| | Messages
v | v \

Backplane Driver
PROGRAMMABLE CONTROLLERS

|
T
M PC PC
Hondler Hondler 2 Request
0) Sub-reply
N . $_ A
&
l [A 3 A
T A & T TL‘ T V
o) Highway Highwoy | Sub-~request
R

~

Figure 2.2 PCIF/1000 Subsystem Information Flow

As can be seen from Figure 2.2, the monitor is the main program of PCIF/1000. It
manages the different parts, activates the appropriate handlers and supervises the
flow of information through the PCIF/1000 subsystem.

2-06

With reference to Figure 2.2,
P/Cs is as follows:

the flow of informatio

- An application program issues a REQUEST to exchange

OPERATING PRINCIPLES

n between the HP 1000 and the

data with a P/C by calling the

appropriate P/C ACCESS ROUTINE and supplying the target PC’s logical
identification. This P/C number would have been allocated to the target P/C at
configuration-time.

The PCIF/1000 MONITOR receives the request and verifies that the supplied P/C
identification is valid, and that the request is valid for this P/C.

The monitor then calls the appropriate P/C HANDLER sub-program which translates
the request into specific P/C commands, called SUB-REQUESTS. One request from an
application program can generate any number of sub-requests (including zero),
depending upon the nature of the request and the target PC’s type. For instance,
if a data buffer destined for the target P/C is longer than the maximum allowed by
this P/C, then it will be divided into several messages. These messages can then

be sent to the highway handler using several sub-requests.

- Once a sub-request is built, the P/C handler call

a routine in the monitor to

find the correct HIGHWAY HANDLER to implement the [correct communication protocol

between the HP 1000 and the target P/C. The highwa

handler also manages the I/0

instruction for the LUs associated with the target PC’s highway.

For the return flow of information, from the P/C to the HP 1000:

- An I/0 message is detected by the monitor which recognizes this message as a
SUB-REPLY to a corresponding sub-request. The sub-re
the P/C handler, from which the monitor delivers the appropriate return parameters

for the P/C Access Routine that originally made the request.

monitor keeps track of the flow of information in 1
the message tree structure associated with the r¢

messages.

In cases of multiple access by several (or only one) aj

P/C,
highway handlers.

the monitor queues the requests according to]

All communication between the PCIF/1000 subsystem and
P/Cs and their highways, passes through a backplane drij

operating system.
reference manual.)

(For your specific backplane drx

2-07

1y is changed into a REPLY by

At all times the
both directions, together with
equests, sub-requests and I1/0

splication programs to the same
instructions from the P/C and

the '"outside world", i.e. the
lver which is part of the RTE-A
*iver name, see your handler

OPERATING PRINCIPLES

2.3.2 Definition of P/C Access Routines

The P/C Access Routines are an application program’s Xey to the P/C management
facilities of PCIF/1000. There are 23 routines stored in a library file on dise. Each
has a unique neme that accurately reflects the required function to be performed on
the target P/C, and each is available for use by an application program written in
either Pascal or FORTRAN.

When called, a routine is seen to perform a specific function in the target P/C, such
as:

PC READD : Allows the application program that calls this routine to read (upload)
data from the target P/C.

An individual P/C is identified by a logical P/C number that is a required parameter
for most P/C Access Routines. This P/C then becomes the specified or target P/C.

The P/C Access Routine returns information to the application program by using return
parameters in the routine. The first of these parameters (STAT) informs the
application program (that has called the routine) whether or not the routine has
successfully completed its task, for example uploading data. If the routine is
successful, subsequent parameters will contain the required information from the
target P/C. '

All the available P/C Access Routines, their parameters, their calling sequences and
possible error codes are detailed in Chapter 4.

2.3.3 P/C Handler Definition

As a part of the PCIF/1000 subsystem, the P/C handler is a specific subprogram of the
monitor. It transforms, for a certain P/C type (or range of P/C types) the
application user request into commands for the target P/C. There may be two different
. P/C handlers configured in the same PCIF/1000 subsystem at the same time, one for
each P/C brand installed on the target system.

A P/C handler performs the P/C dependent part of an exchange of information between
an application program and a P/C. It is called when a user request (in a P/C Access
Routine) is received by the monitor and this request has been recognized as valid
from an external and system viewpoint, i.e. the supplied P/C logical identifier
exists, the target P/C is connected, etec.

The P/C handler called is the one associated with the P/C whose logical identifier
was supplied in the P/C Access Routine. The subrequest generated by the PC handler is
given to the monitor for transmission to the target P/C. This transmission is
accomplished via the associated highway handler. When the reply to the subrequest
comes back from the P/C, the monitor calls the appropriate PC handler again.

2-08

2.3.4 Highway Handler Definition

OPERATING PRINCIPLES

The highway handler is a subprogram of the monitor that implements the required data
communication protocol needed to transport a request from the PCIF/1000 subsystem to

the target P/C.

As with the P/C handler, there may be two different highway handlers configured on

the same PCIF/1000 subsystem at the same time, one for
P/C manufacturer) installed in the target P/C system.

each highway type (related to

The highway handler accepts subrequests from the P/C handler, transmits them to the
appropriate P/C, and returns replies coming from a PC to the P/C handler. In general,
they create or receive the various I/O messages sent to or received from the
communication highway. For example, a data communication protocol may generate
several exchanges on the highway for one received subrequest, in addition to the data

to be transferred.

2-09

Chapter 3
REVIEW OF
PROGRAMMABLE CONTROLLERS

3.1 INTRODUCTION

Programmable Controllers are often used for the direct control of production
machinery. They realize the sequencing and the control logic required . for the
functioning of this type of equipment and can be programmed, using their typical
programming language, for providing production information and details on the
functioning of the machine itself. This type of information is of great interest for
production management, and the connection of P/Cs |to supervisory computers is
required more and more for providing managers with accurate and timely information
on their operations. Such a system includes at least one P/C connected to a computer
via an interface card and a so called communication "Highway". A system of this type
is descrived by the next figure:

HP 1000 A-—Series computer

RTE—A Operating System
APPLICATION Program
PCIF/1000

INTERFACE CARD

Communication
Ilh ghwoyll

PROGRAMMABLE CONTROﬁLLER

Figure 3.1 P/C and Supervisory Computer Connection

3-01

P/C REVIEW

3.2 STRUCTURE OF A PC-COMPUTER SYSTEM

Very often a real application will need to connect several P/Cs to the same computer,
and can even include several P/Cs from different manufacturers.

Every P/C is physically connected to the computer through an interface card and one
HIGHWAY cable, in a point-to-point or a multipoint manner. In the case of a
multipoint connection, every P/C is given an address on this highway. This address
depends on the P/C manufacturer’s hardware, as HP does not provide this type of
equipment. The next figure explains these types of connection.

COMPUTER
SYSTEM Point—to—Point
Connection
(0] é{////f
T 16 (»*)
L¢]
PC
No 4
o—o 9 *)
16i(tt) 251(**) 42 (x%) 60 (¥+)
1#]
PC PC PC PC -
No 1 No 2 No 3 Na 5
(*) (%) (+) ()
Multipoint Connection
* Logical PC Number
*x Highway PC Address (Note that the PC on the point—to—point
¢an have the same dddress as a PC on the mdultipoint.)

Figure 3.2 P/C Connection Paths

3-02

P/C REVIEW

3.3 STRUCTURE OF A PROGRAMMABLE CONTROLLER
3.3.1 P/C Hardware Structure and Functioning Cycle

Very briefly explained, a P/C is a memory based computer which runs the same machine
control program permanently. Its hardware structure includes a CPU, a memory system
and industrial input and output circuits, often integrated into a rugged package for
resistance to shocks and vibrations. The I/0O points are directly connected to the
sensors and actuators installed on the machine they are| controlling.

At a first glance, P/Cs seem to be running in a permanent loop that involves:

- Reading the input points;
Calculating the outputs for machine control|

Performing other tasks (table updates, communication to external devices
ete...);

- Applying the calculated outputs to the actuators;

Return to reading the input points.

3.3.2 Logical Memory Structure of a P/C

The memory map of a programmable controller can be deseribed as a list of words used
for storing different types of information in various areas. These areas are usually
defined by P/C manufacturers as follows:

- The operating system and internal system tables.

The user written application program (i.e the P/Cs program).
The program’s variables and tables.
The images of the I/0 points.

Other types of areas exist in some P/Cs, depending upon the manufacturer and type.
But it is unnecessary to list them all for an understanding of the functioning of
PCIF/1000.

The main role of PCIF/1000 is to access variables and programs of the connected P/Cs
via their communication interface. This access is achieved by asking the P/C to
execute specific functions which are very often memory area type dependent. Figure
3.3 shows the memory map of a theoretical P/C. Program areas, timers, counters,
tables and I/0 images are not accessed by the same functions. In addition, it could
be very dangerous to write into the program memory drea when the P/C is running.
Therefore, this type of access is very often protected| and, in some cases, forbidden
by P/C manufacturers.

3-03

P/C REVIEW

Memary
Address ———————]
00000 OPERATING
SYSTEM Non-accessible

Intemal System Memary
Tables & Vorlables

A
APPLICATION PC User's
PROGRAM Program

. Accessible

Program Memoary
Varighles
Data
Dato Tables Area
v

Timers
Counters

1/0 IMAGE 1/0 Tables
MAP AREA

XXXXX

Figure 3.3 Example of a P/C Memory Map

3.4 P/C COMMUNICATION FUNCTIONS

For communicating with external devices (computers, peripherals, other P/Cs, etc.)
the P/Cs can use either their main processor (e.g. Allen-Bradley) or a separate unit
vhich shares the memory with the main processor. The communication functions they can
perform are of type read, write or device control and are differentiated according to
the memory area which is addressed. These areas can be classified in three main
types:

- Data (timers, counters, I/0 points, etec.)
- Programs .
- Device status

For PCIF/1000, therefore, any P/C is the equivalent of a LOGICAL P/C. The
correspondence between this logical P/C and the real P/C memory is defined by the
user during the PCIF/1000 configuration phase.

3-04

Chapter 4

P/C ACCESS ROUTINES

4.1 GENERAL
4.1.1 Introduction

This chapter describes how a programmer may use PCIF/10

The programming interface between application prog:
facilities of PCIF/1000 is a set of high level routine
Access Routines or PCARs.

Once the installation and configuration procedures
application programs to issue requests and command
retrieve information from these P/Cs. The complete I
the PCARs is given in section 4.2.

NOTE: This chapter describes all PCARs. Refer to you
the PCARs supported by your particular interface.
4.1.2 Operating Principles

One of the results of the configuration process is the
reference tables, to be used by the PCIF monitor at run

a) Logical P/C Identification

00 with application programs.
rams and the P/C management
collectively known as the P/C

re complete, the PCARs allow
to specific P/Cs, and to
ange of facilities offered by

r handler-specific manual for

definition of several maps and
-time.

A unique logical P/C identifier is assigned to each specific combination of a

data highway and a physical P/C along this highway.

b) Logical P/C Memory

The logical P/C memory map defines for each logic
(registers, counters, etc..) and program areas il
logical P/C address to be used by the PCARs.

¢) Logical P/C State Table

The P/C state table includes static information ¢
plus dynamic information which is alterable by t
state table lists the time-out value (statice),

waiting requests (static), P/C capabilities (static
and connect/disconnect state (dynamic).

Time-out Value: The time-out value is the maximum

al P/C the various data areas
n this P/C, according to the

lefined at configuration-time,
he PCARs. For each P/C, this
maximum allowable number of
), lock/unlock state (dynamic)

time that can elapse between

the moment a request is accepted by PCIF/1000 and the request’s completion.
Uncompleted requests that exceed the time-out value are destroyed by PCIF/1000,

and a message is returned to the application program.
received after exceeding the time-out value, it 1s ignored by PCIF/1000.

value is user definable and initialized at configur

4-01

If a reply to a request is
This
ation-time.

P/C ACCESS ROUTINES

Number of Waiting requests: This number specifies the maximum number of requests
which can be queued on each P/C. If this number is reached for a P/C, all
additional requests for this P/C are rejected by PCIF/1000 and a message is sent
back to the user program (as a completion status for the request). This value is
user definable and initialized at configuration-time.

P/C Capabilities: Certain requests may be not be allowed for certain P/Cs, as
there may not be the required function in the real P/C. For example, a P/C may
not be capable of sending unsolicited interrupts. Similarly, the capability to
stop a P/C may be restricted to those operators who know a security code.

P/C Lock/Unlock: Using this capability a programmer is able to reserve a PC for
private use. This P/C becomes unavailable for the other application programs
until it is unlocked by the application program that first locked it.

FC Connect/Disconnect: If needed, a programmer is able to connect/disconnect a
P/C from a PCIF/ point of view. No request (except a connect) can be sent to a
disconnected P/C.

Each static value is specified at configuration time. When a P/C access routine is
called by an application program, the PCIF/1000 monitor verifies that it may process
this request and will then issue the appropriate request to the P/C and/or highway
handler, which in turn interfaces with the physical P/C station. The reverse path is
followed when the P/C replies to an application program.

4.1.3 Logical versus Physical P/C Status
From the application programmers point of view a P/C can have two states:

- The physical status is defined by the condition of the P/C processor. The P/C may
be in run-mode, programming mode, stopped or down. This physical status is
interpreted by the specific P/C handlers and may be obtained by the program using
the PC_PCSTAT routine.

- The logical status describes the PC’s condition from a PCIF/1000 point of view,
such as whether the ©P/C is connected/disconnected, locked/unlocked,
enabled/disabled for unsolicited requests, etec. The program may obtain the
logical status of a specific P/C by using the PC_SYSTAT routine.

These two states are not related to one another. Any PCAR call modifying one state
will not have any effect on the other.

4.1.4 Simultaneous Access by Different APs

The PCIF monitor can deal with PCARs arriving from different application programs, as
each program must start a dialog with PCIF by using the routine PCIF OPEN. This
prompts the PCIF monitor to allocate the calling program a unique class number which
is used to identify all calls coming from this program. Furthermore, the class number
is removed from an application program when it finishes the PCIF dialog with the
routine PCIF_CLOSE.

4-02

P/C ACCESS ROUTINES

4.1.5 PCIF Transparent Access

Direct access to a P/C is possible via the PCIF systet by-pass provided by the P/C
Access Routine PC_TRANS. The use of this routine requires an in-depth knowledge of
the P/C to be addressed, and allows the application program to generate requests in
accordance wWith the target PC’s protocol.

The capability of a P/C to receive a PC_TRANS request is defined at configuration
time.

4.1.6 Using the Wait/No-Wait Option

When using the PCARs the programmer has the choice of waiting for the reply to each
P/C request, and therefore suspending the application program until the reply
arrives, or taking the no-wait option whereby the application program proceeds
without the reply, retrieving the answer at a later time. Note that if the
application program includes more than one data highway, the overall system
throughput can be greatly increased by issuing all reads together without wait, and
looping to read the replies.

If the programmer wants to take the no-wait option,| an ACCESS KEY must first be
obtained from the PCIF monitor by using the PC_GETKEY routine. The returned access
key value will be unique each time an application program calls PC_GETKEY. The number
of available access keys is defined at configuration time, but is limited to a
maximum of 16 per application program.

A P/C Access Routine can be issued with 'no-wait" by the insertion of the access key
value into the routine’s KEY parameter. This parameter may also be set to zero if the
routine must wait for the reply.

The subsequent reply to a no-wait routine is found by using the PC_ENQUIRY routine
with the relevant access key value inserted in the CONTKEY parameter.

4.1.7 Reading Unsolicited Requests

The application program may allow any unsolicited (i.e, unprovcked) requests arriving
from specific P/Cs to be read. This is also achieved with a unique access key value
obtained by a PC_GETKEY routine. Subsequently, a specific P/C is enabled to issue
unsolicited requests by receiving a PC_ENUNSOL routine containing this access key
value. If any unsolicited requests are then issued by the P/C, they can be retrieved
by using a PC_ENQUIRY call containing the same access key.

NOTE: The same access key value is usually sufficient to retrieve answers to requests
"without wait" plus any unsolicited requests.

4-03

P/C ACCESS ROUTINES

4.1.8 Pascal and FORTRAN Compatibility

The PCARs can be called by application programs written in either FORTRAN 77 or
PASCAL.

Table 4.1 gives the PCAR parameter data types used and their corresponding data type
declaration in both languages.

PCAR FORTRAN 77 PASCAL/1000 Length
Integer INTEGER -32768..32767 16 bits
Long Integer INTEGER*4 INTEGER 32 bits
String CHAR PACKED STRING 8 bits

Table 4.1 Pascal and FORTRAN Parameter Types

Note that in this chapter the term "integer"
(-32768..32767) unless stated otherwise.

always refers to a 16 bit integer

4.1.9 Linking an Application Program with PCARs

Hhen written and compiled, an application program should be linked with the PCIF/1000
livrary (PCLIB or. PCLBC). As this library is written in Pascal, the following
commands should be given to the link command file:

Non-CDS Application Program

CDS Application Program

LI,/LIBRARIES/PASCAL.LIB
LI,$PCLIB::<crn>

LI,/LIBRARIES/PASCAL CDS.LIB
LI,$PCLBC::<ern>

<Pascal Library>
<PCIF Library>

<User’s
relocatable>

4.1.10 Handiing PCIF Library Errors in the Application Program

When $PCLIB or $PCLBC is called from an application program written in Pascal, the

programmer can refer to:

"PASCAL/1000 Reference Manual"
Part Number: 92833-90005

for using either the Pascal provided error management (Pas.ErrorCatcher)

user-defined routine.

4-04

or a

P/C$ACCESS$ROUTINES

When $PCLIB or $PCLBC is used from an application program written in FORTRAN, the
user may not want to use the Pascal provided error management to control program
size. If this is the case, an entry point must be added in the program and called

Pas.ErrorCatcher

where Pascal errors will branch. Then the user can either STOP or take any desired
action. If $PCLIB or $PCLBC is the only PASCAL part of the user program, branching
into "Pas.ErrorCatcher" means that there is a failure |inside $PCLIB or $PCLBC. The
first action to be taken in this case is to verify that the $PCLIB or $PCLBC version
used to link the application program is the appropriate version (revision code,
integrity, etc...).

4-05

P/C ACCESS ROUTINES

4.2 SUMMARY OF PCARs

All the PCARs are listed below and classified by their function. Refer to section
4.3 for a detailed analysis of each routine.

Read/Hrite Data

PC_READD (STAT,TAG,KEY,PC,BUFFR,LENGR,PCADR)
PC_WRITED (STAT,TAG,KEY,PC,BUFFW,LENGW,PCADR)

Read/Write Program

PC_READP (STAT,TAG,KEY,PC,BUFFR,LENGR,PCADR)
PC_WRITEP (STAT,TAG,KEY,PC,BUFFR,LENGW,PCADR)

Lock/Unlock P/C Request

PC_LOCK (STAT,EC)
PC_UNLOCK (STAT,PC)

Connect/Disconnect P/C Request

PC_CONNECT (STAT,TAG,KEY,PC)
PC_DISC (STAT,PC,SECURITY CODE)

P/C Physical Status Request

PC_PCSTAT (STAT,TAG,KEY,PC,BUFFR)
PC_IDENT (STAT,TAG,KEY,PC,BUFFR,LENGR)

P/C Logical Status Request

PC_SYSTAT (STAT,PC,BUFFR)

Cancel Request

PC_CANCEL (STAT,PC,OLDTAG,TYPEC)

Start/Stop P/C Request

PC_START (STAT,TAG,KEY,PC)
PC_STOP (STAT,TAG,KEY,PC)

Enquiry
PC_ENQUIRY(STAT,OLDSTAT ,OLDTAG,CONTKEY,PC ,BUFFR,LENGR, TYPER ,LOGR)

4-06

P/C ACCESS ROUTINES

Request in Transparent Mode

PC_TRANS (STAT,TAG,KEY,PC,SUBFCT,BUFFN,L#NGN,BUFFR,LENGR)

Access Key Operation

PC_GETKEY (STAT,AKEY)
PC_RELKEY (STAT,AKEY)

Enable/Disable Unsolicited Requests

PC_ENUNSOL (STAT,PC,AKEY)
PC_DIUNSOL (STAT,PC)

PCIF/1000 Open and Close

PCIF_OPEN (STAT)
PCIF_CLOSE (STAT)

Error Message Management

PCIF_ERROR (STAT,BUFFR,LENGTH)

4-07

P/C ACCESS ROUTINES

4.3 DETAILED DESCRIPTION OF THE ROUTINES

4.3.1 General Information

Hith the exceptlon of the access routines PCIF_OPEN, PCIF CLOSE and PCIF_ERROR, each
routine is 1listed in this section in alphabetlcal order. All the routines are
described using the following format:

- Name of the routine

- Function of the routine

- Calling sequence, e.g. PC_EXAMPLE (P1,P2,...Pn)
Parameter Analysis

Additional Comments (where applicable).

A11 the parameters (P1,P2,...Pn) must be supplied for every routine.

The number of parameters varies with the routine used, and each is described in the
order they appear in the calling sequence.

4.3.2 Entry versus Return Parameters

With the exception of PCIF OPEN and PCIF_CLOSE where only one return parameter is
required, each routine divides into “entry" and "return" parameters.

Entry parameter values are defined by the application program before a call to the
routine is made, whereas return parameter values are returned by the routine to the
application program.

For easier reference, the return parameters are underlined in the calling sequence.

In a Pascal progrem, return parameters should be declared with VAR.

4.3.3 Status Parameter

HWith all the PCARs the first parameter Pl is a return parameter called STAT. This
indicates whether the routine’s call was completed successfully. It is then set to O.

A positive returned value indicates an error condition that in every case aborts the
call and returns control to the application program.

A returned value equal to -1 indicates that a no-wait type of request was made and
has been accepted. The status of the request itself is returned later (with the
Enquiry call) and will be a positive value or O.

Refer to Appendix A for a list of all the errors and their corresponding return code
values.

4-08

PCIF__OPEN

Allows the application program to initialize a dialog with PCIF/1000.

this request, PCIF/1000 asks RTE to allocate some re
such as a class number.

Calling Sequence

PCIF OPEN (STAT)

Parameters

Type: Integer.

This return parameter value is set to zero if the ¢

otherwise to a non-zero value if any error occurs.

are: (also refer to Appendix 4)

17 Contact with PCIF monitor lost.

20 Temporary memory shortage for request transmij

22 RTE EXEC error while dialoging with PCIF moni

23 PCIF OPEN already made by this program.

24 Lacking RTE resources for using PCIF.

25 Maximum number of possible OPENs exceeded.
Comments

An appllcation program can only issue one PCIF OPEN.
PCIF_CLOSE is made then a STAT value of 23 is returned

If a program was previously executing with the same
session number in case of RTE-A with VC+), and has

P/C ACCESS ROUTINES

Upon receiving
sources for its internal use,

Value: O or a n%n—zero value,

all is completed successfully,
The possible non-zero values

ssion.
tor.

If it issues another before a

ID segment name (and the same
never closed the dialog with

PCIF/1000 monitor, the PCIF OPEN will do a PCIF_CLOSE of the oldest program, and then

do a PCIF_OPEN for the new execution. This can only
ended (normally or abnormally) without doing a PCIF C
monitor generates the warning, MKO50 (see Appendix A f¢

4-09

occur if the application was
LOSE. In this situation, the

or details).

P/C ACCESS ROUTINES

PCIF__ CLOSE

Terminates the dialog between PCIF/1000 and the application program. This routine
also disables any outstanding P/C requests and releases all the RTE resources that
were allocated for the application program.

Calling Sequence

PCIF_CLOSE (STAT)

Parameters

Type: Integer. Value: 0 or a non-zero value.

This return parameter value is set to zero if the call is completed successfuliy,
otherwise to a non-zero value if any error occurs. The possible non-zero values
are:; (also refer to Appendix A)

16 Missing PCIF OPEN for this program

17 Contact with the PCIF monitor lost.

20 Temporary memory shortage for request transmission.
22 RTE EXEC error while dialoging with PCIF monitor.

Comments

PCIF_CLOSE routine unlocks all P/Cs locked by this application program, disables all
unsolicited enabled P/Cs (for this program) and also releases all access keys
previously allocated to this application program (i.e. a PC_GETKEY was made but no
corresponding PC_RELKEY was made). When PCIF CLOSE is accepted (STAT=0) then any
subsequent PCAR will be refused by the monitor except PCIF_OPEN.

4-10

PCIF__ERROR

P/C ACCESS ROUTINES

This is an extra routine provided to allow the application program to transform a

completion status parameter from a 16 bit integer val

ue into an ASCII string. The

ASCII strings corresponding to status codes are found in an FMGR file.

Calling Sequence

H)

PCIF_ERROR (STAT,BUFFR,LENGT

Parameters

Type: Integer. Value: 0 or a non-zero value.

For this routine, STAT is an entry parameter containing the completion status
code as provided from the F/C Access Routine. A complete list of these is given

in Appendix A.

Type: Integer/string array. Value: HP or user provided.

This return parameter will contain the ASCII message corresponding to the STAT

value.

Type: Integer. Value: Between 0 and 80.

This is a return parameter that will contain the 1length (in bytes) of the

message. Any remaining space after the message and
with blanks.

Comments

The file used to store the messages is called "PCMSG.
find the message corresponding to the current value of
string will be put in BUFFER : PCxxx . Where xxx is

value of STAT. e.g. if STAT = 3 then xxx = 003.

up to 80 characters is padded

If the routine is unable to
STAT, the following character
the last three digits of the

If the value of STAT is negative or greater than 999 then the following message is

given:

PC999 invalid PCIF ERROR value

4-11"

P/C ACCESS ROUTINES

PC__ CANCEL

Allows the application program to flush either one or all of its requests previously
sent to a specified P/C. Only those requests that are uncompleted at the time of this
call are canceliled. A completed request and associated reply are unaffected.

Calling Sequence

PC_CANCEL (STAT,PC,OLDTAG,TYPEC)

Parameters

Type: Integer. Value: 0 or a non-zero value.

This return parameter value is set to zero if the call is completed successfully,
otherwise to a non-zero value if any error occurs. Possible non-zero values for
this routine are: (also refer to Appendix 4)

16 Missing PCIF_OPEN for this program.

17 Contact with PCIF monitor lost.

20 Not enough SAM.

21 Not enough EMA.

22 RTE EXEC error while dialoging with PCIF monitor.
33 Disconnected P/C.

35 Unknown P/C logical identifier.

Type: Integer. Value: Configuration dependent.

This entry parameter is the logical identifier of a physical P/C station. The
parameter value is the one defined for the target P/C at configuration-time.

Type: Integer. Value: Defined by TAG parameter.

This entry parameter is only significant when used with a TYPEC different from
zero. It is a user defined tag for selective cancel.

4-12

Type: Integer. Value: zero or

P/C ACCESS ROUTINES

1,

For this entry parameter, the value zero indicates that all the waiting P/C
requests are cancelled. Other values specify that only the requests having a TAG
equal to the OLDTAG parameter are to be cancelled. There may be one or more

requests made by the application program with the s

Comments

ame TAG.

Cancelled requests will never send a reply to the application program. Be careful of
cancelling requests made with "no-wait", as PC_CANCEL MAY or MAY NOT flush them. This

is because a reply may be pending on an access ke
affected.
WARNING

If a PC_CANCEL is issued for a request wh
is being processed by PCIF/1000, the phys

y and therefore will not be

ile this request
ical effect of the

cancellation cannot be guaranteed. The cancelled request may

have already been partially treated.

4-13

P/C ACCESS ROUTINES

PC__CONNECT

Allows exchange of information between any application program and a logical P/C.

Calling Sequence

PC_CONNECT (STAT,TAG,KEY,PC)

Parameters

Type: Integer. Value: O or a non-zero value.

This return parameter value is set to zero if the call is completed successfully,
otherwise to a non-zero value if any error occurs. Possible non-zero values for
this routine are: (also refer to Appendix A)

-1
16
17
20
21
22

35

Request accepted but not completed (no-wait call).
Missing PCIF OPEN for this program.

Contact with PCIF monitor lost.

Not enough SAM.

Not enough EMA.

RTE EXEC error while dialoging with PCIF monitor.
Unknown P/C logical identifier.

Type: Integer. Value: User defined.

This entry parameter has a user defined value which identifies this particular
request. It is never modified by PCIF/1000 and is carried along with the reply,
for instance it is returned in a PC_ENQUIRY call as OLDTAG.

Type: Integer. Value: O or provided by PC_GETKEY.

This entry parameter should be set to zero if the routine is to be used with the
wait option. If the no-wait option is used, the value entered will signify on
which access key the answer can be found at a later stage with a PC_ENQUIRY call.
This access key value should have been allocated with a previous PC_GETKEY call.

4-14

Type: Integer. Value: Configun

P/C ACCESS ROUTINES

ation dependent

This entry parameter is the logical identifier of a physical P/C station. The

parameter value is the one defined for the target P

Comments

in the disconnected state. Once a PC_CONNECT has be

/C at configuration-time.

n successfully made, another

When PCIF/1000 monitor is started, all the P/Cs founifin the configuration file are

PC_CONNECT request for this P/C will still be succes
current status of the P/C.

4-15

ful, and will not change the

P/C ACCESS ROUTINES

PC_ DISC

Logically disconnects the specified P/C from all application programs making this P/C
unavailable for all requests except connect and status enquires.

Calling Sequence

PC_DISC (STAT,PC,SECURITY_CODE)

Parameters -

Type: Integer. Value: O or a non-zero value,.

This return parameter value is set to zero if the call is completed successfully,
otherwise to a non-zero value if any error occurs. Possible non-zero values for
this routine are: (also refer to Appendix A4)

16 Missing PCIF_OPEN for this program.

17 Contact with PCIF monitor lost.

20 Not enough SAM.

21 Not enough EMA.

22 RTE EXEC error while dialoging with PCIF monitor.
32 Locked P/C.

33 Disconnected P/C.

35 Unknown P/C logical identifier.

43 Invalid PCIF security code.

Type: Integer. Value: Configuration dependent.

This entry parameter is the logical identifier of a physical P/C station. The
parameter value is the one defined at configuration time for the target P/C.

Type: Integer. Value: Configuration dependent.

This entry parameter must be equal to the PCIF/1000 security code for this
configuration as defined at configuration-time (see screen 11 of configuration).

4-16

P/C ACCESS ROUTINES

Comments

The disconnect request has an immediate action when |accepted. To be accepted the
SECURITY CODE parameter must be correct and the P/C|should not be LOCKED to any
application program including the one making the PC_DISC.

The requests waiting to be processed on this P/C are completed with a status value of
33.

When disconnected, if the P/C is enabled for unsolicited requests it will be
disabled.

Therefore a disconnected P/C is:

- Unsolicited request disabled.
- Unlocked.

4-17

~ P/C ACCESS ROUTINES

PC_ DIUNSOL

Disables all unsolicited requests from the specified P/C to the application program.

Calling Sequence

PC_DIUNSOL (STAT,PC)

Parameters

Type: Integer. Value: 0 or a non-zero value.

This return parameter value is set to zero if the call is completed successfully,
otherwvise to a non-zero value if any error occurs. Possible non-zero values for
this routine are: (also refer to Appendix A)

16 Missing PCIF_OPEN for this program.

17 Contact with PCIF monitor lost.

20 Not enough SAM.

21 Not enough EMA.

22 RTE EXEC error while dialoging with PCIF monitor.

32 Locked P/C.

33 Disconnected P/C.

35 Unknown P/C logical identifier.

36 P/C does not have the capability to perform user request.
41 P/C not previously enabled for UNSOL with this program.

Type: Integer. Value: Configuration dependent.
This entry parameter is the logical identifier of a physical P/C station. The
parameter value is the one defined at configuration time for the target P/C.
Comments

This request can only be made by the same application program as the one which made
the PC_ENUNSOL request.

This PCAR call will immediately disable unsolicited requests from this P/C, but all
previous unsolicited request for this P/C will stay in the associated access key
queue, unless they were removed from the queue with a PC_ENQUIRY or PC_RELKEY
request.

4-18

P/C ACCESS ROUTINES

PC__ENQUIRY

Allows the retrieval of replies from previous '"no-wait requests", i.e. requests made
with their KEY parameter not equal to zero. Also the retrieval of unsolicited data or
requests from specified P/Cs, which have previously received a PC_ENUNSOL with the

same KEY parameter. |

Calling Sequence

PC_ENQUIRY (STAT,OLDSTAT,OLDTAG,CONTKEY,PC,BUFFR,LENGR,

TYPER,LOGR)
Parameters
Type: Integer. Value: O or a $on-zero value.

This return parameter value is set to zero if the call is completed successfully,
otherwise to a non-zero value if any error occurs|. Possible non-zero values for
this routine are: (also refer to Appendix A)

2 Length of buffer too long or zero.
3 Invalid length unit.

16 Missing PCIF_OPEN for this program.
17 Contact with PCIF monitor lost.

22 RTE EXEC error while dialoging with PCIF monitor.

NOTE: If STAT parameter does not equal 0, all other return parameters have no
meaning.

Type: Integer. Value: 0 or a non-zero value.

This return parameter contains the status of the retrieved request or reply. Its
value will be zero if the retrieved request was completed successfully, otherwise
it can be any non-zero value as listed in Appendix 4 or in each corresponding
section.

This return parameter is only significant if TYPER| is not equal to O.
|
|

Type: Integer. Value: Defined| by TAG parameter.

This return parameter was previously defined as the TAG parameter with the P/C
request that has been retrieved, and therefore identifies this request.

4-19

P/C ACCESS ROUTINES

This return parameter has only a meaning if TYPER is not equal 0.

Type: Integer. Value: wait bit + access key
(provided by PC_GETKEY).

151413121110 9 8 7 6 5 4 3 2 1 O

NH ACCESS KEY

This entry parameter is set to the relevant access key value (ACCESS KEY) as shown
above. NW is a no-wait bit. When set (NW=l), control is returned immediately to
the application program if no information is currently stored in this associated
access key queue. Information is returned in the STAT word describing the action
taken by the PCIF subsystem. This information must be checked by the application
program, If NW is set to O a return will not come to the application program until
the request PC_ENQUIRY is completed.

Note that replies to "no-wait" requests may be made in a different order than the
request’s emission order. The access key keeps reply order, not emission order.

Type: Integer. Value: Retrieved requést dependent

This return parameter is the logical identifier of the P/C to which the retrieved
request was previously sent.

Type: Integer/byte/bit array. Value: data retrieved.

This return parameter is used to store either the data, if there is any associated
with an unsolicited request, or a reply to a no-wait request.

The data area indicated by BUFFR is ONLY modified if STAT=0, OLDSTAT=0 AND TYPER
is not equal O.

Note: For more PC-specific information, see your handler reference manual.

4-20

Type: Integer.

P/C ACCESS ROUTINES

Value: length and type of BUFFR.

This entry parameter contains the maximum length of

to the application program, and is coded as follows:

151413121110 9 8 7 6 5 4

BUFFR that can be transferred

32160

BI LENGTH OF DATA TO RECEIVE

where: BI

0, the length is expressed in 16 bit words;
1, the length is expressed in 8 bit by
2, the length is expressed in bit unit

%es;

LENGTH OF DATA TO RECEIVE is the maximum nuﬁber of units expected
to be received from the P/C, in accordance

ith the BI information.

Note also that if the length is expressed in bits o bytes the result
always an EVEN number of bytes, and the possible re a1n1ng bits/bytes

are undefined. For example,

with LENGR = 2 43

43=(5bytes*8)+3bits

then 43 bits = 2.69 words are needed.

This must be rounded up, however,

to the nearest

word. At least three words,

therefore, are required in BUFFR to store the returned data.

BUFFR would then look like this:

Word 1 Word 2 Word 2
2 | 2 |83 s
Bytes Bytes blts\tﬂt\s/bnts
NN
< >
Significant Data Unused
bits

Refer to the specific handler reference manual for mor

4-21

e information.

P/C ACCESS ROUTINES

Type: Integer. Value: zero, >0 or <O0.

This is a return parameter that defines what type of message has been retrieved,

and is
Zero =

>0 =

coded as follows:
No reply or unsolicited request found.

The returned message is a reply to a no-wait request.
Listed below are the possible values:

1 PC_READD 16 PC_START
2 PC_WRITED 17 PC_STOP
3 PC_READP 20 PC_CONNECT
4 PC_WRITEP 22 PC_PCSTAT
8 PC_TRANS 30 PC_IDENT

The returned message is an unsolicited request.
Listed below are the possible values:

-1 Unsolicited PC_READD
-2 Unsolicited PC_WRITED
-22 Unsolieited PC_PCSTAT

Type: Integer. Value: Positive or zero.

This return parameter provides the returned message data length. It is coded in
BYTE units. This parameter is only significant if TYPER is not equal to O.

4-22

P/C ACCESS ROUTINES

Comments

The user must analyze the validity of the reply (or unsolicited request) found by the
PC_ENQUIRY routine.

When requests are made with a CONTKEY parameter not equal to zero or when unsolicited
requests arrive from P/Cs, the replies or unsolicit request are stored in memory
in an area associated with the access key. They are kept in reply chronological
order (and not in request order). - This information is purged on PC_ENQUIRY which
gets the oldest reply or unsolicited request. It may also be purged with a PC_RELKEY
(on this KEY) or on PCIF _CLOSE (for this application program). Therefore, to avoid
using too much memory with these replies and unsolicited requests, it is a good idea
to meke regular PC_ENQUIRY calls during the run-time period of PCIF/1000,

When a PC_ENQUIRY request is issued on an access key and the queue is not empty, and
if the retrieved information has associated data (from a PC_READD, for example), then
this data will also be transferred into the BUFFR of the the PC_ENQUIRY request.
Therefore, one PC_ENQUIRY call gets all the information pertaining to a no-wait reply

or unsolicited request. '

4-23

P/C ACCESS ROUTINES

PC__ ENUNSOL

Enables unsolicited requests issued by a physical P/C, logically identified as a
target P/C, to be sent into an access key provided in the PC_ENUNSOL.

Calling Sequence

PC_ENUNSOCL (STAT,PC,AKEY)

Parameters

Type: Iﬂteger. Value: O or a non-zero value.

This return parameter value is set to zero if the call is completed successfully,
otherwise to a positive non-zero value if any error occurs. Possible non-zero
values for this routine are: (also refer to Appendix A)

16 Missing PCIF OPEN for this program.
17 Contact with PCIF monitor lost.
- 18 Illegal access key.

20 Not enough SAM,

21 Not enough EMA.

22 RTE EXEC error while dialoging with PCIF monitor.

32 Locked P/C.

33 Disconnected P/C.

35 Unknown P/C logical identifier.

36 P/C does not have the capability to perform user request.

40 P/C already enabled for UNSOL with this program.

42 P/C already enabled for UNSOL with another program.
128..255 P/C handler detected error. See Appendix A.
256..511 Highway handler detected error. See Appendix A.
512.. Specific P/C manufacturer error.

No action is made by the call unless STAT is equal to zero.

Type: Integer. Value: Configuration dependent.

This entry parameter is the logical identifier of a physical P/C station. The
parameter value is the one defined at configuration time for the target P/C.

4-24

P/C ACCESS ROUTINES

Type: Integer. Value: Provided by PC_GETKEY.

This entry parameter must contain an access key

assigned to the application

program by a previous PC_GETKEY request. PCIF/1000 associates this key with a
data area for storing unsolicited requests from the specified P/C station. This
key will be used by a PC_ENQUIRY (in the CONTKEY parameter) to retrieve the

unsolicited requests.

Comments

A PC ENUNSOL request can only be performed on a |[P/C which supports the "EU"

capability (See PC_SYSTAT request explanation).

If a physical P/C emits an unsolicited request and the corresponding logical P/C is
not enabled for unsolicited requests, then the unsolicited requests are FLUSHED by

PCIF/1000.

A P/C can be "unsolicited request enabled" for only one application program at any

given time.

4-25

P/C ACCESS ROUTINES

PC_ GETKEY

Obtains ownership of an access key which will be associated with memory areas that
are used to store data. This data may be unsolicited requests, or replies to no-wait
requests.

Calling Sequence

PC GETKEY (STAT,AKEY)

Parameters

Type: Integer. Value: 0 or a non-zero value.

This return parameter value is set to zero if the call is completed successfully,
otherwise to a non-zero value if any error occurs. Possible non-zero values for
this routine are: (also refer to Appendix A)

16 Missing PCIF OPEN for this program.

17 Contact with PCIF monitor lost.

20 Not enough SAM.

21 Not enough EMA.

22 RTE EXEC error while dialoging with PCIF monitor.
24 Not enough class numbers available in RTE.

39 Maximum number of available access keys exceeded.

Type: Integer. Value: A class number.

This return parameter contains the access key assigned by PCIF/1000 to this
PC_GETKEY request. PCIF/1000 associates this key with a data area for storing
unsolicited requests from the specified P/C station, plus replies to other P/C
requests made with the no-wait option (via their parameter KEY in each
appropriate call).

This parameter has a significant value only if STAT = O.

Comments

It is up to the user to remember the allocation of access keys used. The maximum
number per run-time session is determined at P/C configuration-time; however, for any

application program it may never be more than 16 associated access keys at any given
time.

4~26

{ P/C ACCESS ROUTINES

PC__IDENT

Allows the application program to identify the brand naLe, model number, and physical
station ID of the target P/C.

Calling Sequence

PC_IDENT (STAT,TAG,KEY,PC,BUFFR,LENGR)

Parameters

Type: Integer. Value: 0 or non-jzero value.

This return parameter value is set to zero if the call is completed successfully,
otherwise to a non-zero value if any error occurs.| Possible non-zero values for
this routine are: (also refer to Appendix A)

-1 Request accepted but not completed (no wait call).
16 Missing PCIF OPEN for this program.
17 Contact with PCIF monitor lost.
20 Not enough SAM.
21 Not enough EMA. ‘
22 RTE EXEC error while dialoging with PCIF monitor.
32 Locked P/C.
33 Disconnected P/C.
35 Unknown P/C logical identifier.
37 Maximum number of waiting requests reached on this P/C.
38 Time-out.
128..255 P/C handler detected error. See Appendix A.
256..511 Highway handler detected error. See Appendix A.
512.. Specifie P/C manufacturer error.

Type: Integer. Value: User defined.
This entry parameter has a user defined value which identifies this particular

request. It is never modified by PCIF/1000 and is carried along with the reply;
for instance, it is returned in PC_ENQUIRY call as OLDTAG.

4-27

P/C ACCESS ROUTINES

Type: Integer. Value: O or provided by PC_GETKEY.

This entry parameter may be set to zero if this routine call is to be used with
the wait option. If the no-wait option is used, the value entered will signify
on which access key the answer can be found at a later stage with a PC_ENQUIRY
call. This access key value should have been allocated with a previous PC_GETKEY
call.

Type: Integer. Value: Configuration dependent.

This entry parameter is the logical identifier of a physical P/C station. The
parameter value is defined at configuration time for the target P/C.

Type: Integer. Value: P/C status dependent.

This return parameter is a 10-word buffer containing data that identifies the
specified P/C. The identity is defined as follows:

151413121110 9 8 7 6 5 4 3 2 1 O

word 1 VENDOR
2 MODEL NUMBER
3 STATION ID
b |/1177777107777777777777117777117717771771777177777
5 |/77777777777777717777777177711711717777717177777
6 |///17777777177777777777771711777777777111717777

T |N/11177777777777777777777777777771707777777777777
8 |/17717177717777117717777177177711177777177777117
O |//1117771777777777777777717717777777777717717777
YO \//7111110707007777777777770707007077777717771777777

4-28

P/C ACCESS ROUTINES

target P/C (e.g. AB for Allen-Bradley). (See your handler

Where: VENDOR is the two-character mnemonic representing the brand of the
)
reference manual for details.) %n

MODEL is the PC’s model number (e.g. 584 for Gould-Modicon).
(See your handler reference menual for details.)

STATION ID is the PC’s physical station id.

// signifies that these bits have undefined values and are
reserved for future use.

Type: Integer. ' Value: Length of BUFFR.

This entry parameter defines the amount of data to be received from the P/C. For
PC_IDENT this amount is always 10 words.

T Gomputer,

wMuseum

4-29

P/C ACCESS ROUTINES

PC_ LOCK

Allows the application program to lock a target P/C and prevent access to this P/C by
any other application programs.

Calling Sequence

PC_LOCK (STAT,PC)

Parameters

Type: Integer. ; Value: O or a non-zero value.

This return parameter value is set to zero if the call is completed successfully,
otherwvise to a non-zero value if any error occurs. Possible non-zero values for
this routine are: (also refer to Appendix 4)

16 Missing PCIF OPEN for this program.

17 Contact with PCIF monitor lost.

20 Not enough SAM.

21 Not enough EMA.

22 RTE EXEC error while dialoging with PCIF monitor.
32 Locked P/C.

33 Disconnected P/C.

35 Unknown P/C logical identifier.

The lock status of the P/C is not changed unless STAT is equal to zero.

Type: Integer. Value: Configuration dependent.
This entry parameter is the logical identifier of a physical P/C station. The
parameter value is the one defined at configuration time for the target P/C.
Comments

This request takes effect at the completion of any pending requests on the specified
P/C.

If other application programs try to access the specified P/C after the PC_LOCK
routine has been completed, the request will be refused and the PCIF monitor will
return a message in the appropriate STAT parameter. "Other" application programs are
those associated by different PCIF_OPEN calls.

4-30

PC__PCSTAT

P/C ACCESS ROUTINES

|
|

This routine allows the application program to obtai# information on the physical

status of a target P/C.

Calling Sequence

PC_PCSTAT (STAT,TAG,KEY,PC,BU

Parameters

FFR)

Type: Integer. Value: O or a Ton-zero value.

This return parameter value is set to zero if the
otherwise to a positive non-zero value if any erry
values for this routine are: (also refer to Appendi

-1 Request accepted but not completed {(no-wait ¢
16 Missing PCIF_OPEN for this program.
17 Contact with PCIF monitor lost.

20 Not enough SAM.

21 Not enough EMA.

call is completed successfully,

or occurs. Possible non-zero
X A)

all).

22 RTE EXEC error while dialoging with PCIF moni

32 Locked P/C.

33 Disconnected P/C.

35 Unknown P/C logical identifier.

37 Maximum number of waiting requests reached o

38 Time-out. 7
128..255 P/C handler detected error. See Appendix A.
256..511 Highway handler detected error. See Appendlx
512.. Specific P/C manufacturer error. ﬁ

Type: Integer. Value: User def

This entry parameter has a user defined value whi
request. It is never modified by PCIF/1000 and is

tor.

this P/C.

AD

ined.

ch identifies this particular
carried along with the reply,

for instance it is returned in PC_ENQUIRY call as OLDTAG.

4-31

P/C ACCESS ROUTINES

Type: Integer Value: O or provided by PC_GETKEY.

This entry parameter may be set to zero if this routine call is to be used with.
the wait option. If the no-weit option is used, the value entered will signify on

which access key the answer can be found at a later stage with a PC_ENQUIRY call.

This access key value should have been allocated with a previous PC_GETKEY call.

Type: Integer. Value: Configuration dependent.

This entry parameter is the logical identifier of a physical P/C station. The
parameter value is defined at configuration time for the target P/C.

Type: Integer. Value: P/C status dependent.

This is a return parameter and is a 16 bit word that holds the returned data
describing the physical status of the specified P/C. The status is defined as

follows:
151413121110 9 8 7 6 5 4 3 2 1 0
1/1771177/77/7177/777/77/1//7/////////7/7///|DO|RU
Where: RU = 0, the P/C processor is in run mode.
= 1, the P/C processor is not in run mode.
DO = 0, the P/C can accept a program download.

1, the P/C cannot accept a program download.

// signifies that these bits have undefined values and are reserved
for future use.

The contents of BUFFR are not modified if the PC_PCSTAT call is made in
no-wait mode or the STAT parameter is not equal to zero.
Refer to the specific handler manual for a PC-specific description of
the status bits.

4-32

P/C ACCESS ROUTINES

PC__READD
Allows the application program to read data from a target P/C.

Calling Sequence

PC_READD (STAT,TAG,KEY,PC,BUFFR,LENGR,PCADR)

Parameters

Type: Integer. Value: O or a noﬁ—zero value.

This return parameter value is set to zero if the call is completed successfully,
otherwise to a non-zero value if any error occurs. Possible non-zero values for
this routine are: (also refer to Appendix A4)

-1 Request accepted but not completed (no-wait call).
2 Length of buffer to transmit too long or null,
3 Invalid length unit.
16 Missing PCIF OPEN for this program.
17 Contact with PCIF monitor lost.
18 Illegal access key.
19 Illegal buffer address.
20 Not enough SAM.
21 Not enough EMA.
22 RTE EXEC error while dialoging with PCIF monitor.
32 Locked P/C.
33 Disconnected P/C.
35 Unknown P/C logical identifier.
37 Maeximum number of waiting requests reached foF this P/C.
38 Time-out
128..255 P/C handler detected error. See Appendix A.
256..511 Highway handler detected error. See Appendix A.
512.. Specific P/C manufacturer error.

Type: Integer. Value: User defined.
This entry parameter has a user defined value which identifies this particular

request. It is never modified by PCIF/1000 and is carried along with the reply,
for instance, returned with a PC_ENQUIRY call as OLDTAG.

4-33

P/C ACCESS ROUTINES

Type: Integer Value: 0 or provided by PC_GETKEY.

This entry parameter may be set to zero if this routine call is to be made with
the wait option. If the no-wait option is used, the value entered will signify on
which access key the answer can be found at a later stage with a PC_ENQUIRY call.
This access key value should have been allocated with a previous PC_GETKEY call.

Type: Integer. Value: Configuration dependent.

This entry parameter is the logical identifier of a physical P/C station. The
parameter value is the one defined at configuration time for the target P/C.

Type: Integer/byte/bit array. Value: Data coming from P/C.

This return parameter is the application program defined buffer to hold the
returned data. If STAT is not equal to zero, then no DATA is written into the
BUFFR area. If the returned data is of byte or bit type, it is in BUFFR in a
packed format. For example, if the data is in byte format, each word in BUFFR
contains two bytes of data.

4-34

P/C ACCESS ROUTINES

Type: Integer. Value: Length and type of BUFFR.

This entry parameter defines the type and amount of data to be received from the
P/C. This may be specified in a 16 bit word, a byte, or in bit units and is coded

as follows:
151413121110 9 8 7 6 5 4|3 2 1 0
BI LENGTH OF DATA TO RECEIVE

where: BI 0, the length is expressed in 16 bit words;

1, the length is expressed in 8 bit bytes;
2, the length is expressed in bit units.

LENGTH OF DATA TO RECEIVE is the number of units to be received
from the P/C, in accordance with the BI infgrmation.

Note that the length (in words) of the buffer area in the application program must
not be less than the value of LENGR converted into 16 bit word units.

Note also that if the length is expressed in bit or byte the result always has an
EVEN number of bytes, and the possible remaining ﬁits/bytes are undefined. For
example:

with LENGR = |2 43 43=(5bytes*8)+3bits

then 43 bits = 2.69 words are needed.

This must be rounded up, however, to the nearest|word. At least three words,
therefore, are required in BUFFR to store the retur?ed data.

BUFFR would then look like this:

Word 1 Woard 2 Word 3

2 2 8 3 5
Bytes | Bytes |Ditsbits bits
< Se—>
Significant Data Unused

bits

4-35

P/C ACCESS ROUTINES

Type: Integer Value: O or provided by GETKEY.

This entry parameter may be set to zero if this routine is to be used with the
wait option. If the no-wait option is used, the value entered will signify on
which access key the answer can be found at a later stage with a PC_ENQUIRY call.
This access key value should have been allocated with a previous PC_GETKEY call.

Type: Integer. Value: Configuration dependent.

This entry parameter is the logical identifier of a physical P/C station. The
parameter value is the one defined at configuration time for the target P/C.

Type: Integer/byte/bit. Value: Data read from physical P/C.

This is a return parameter and is the application program defined buffer to hold
the returned program.

No data is put into this buffer unless STAT is equal to zero.
If the returned data is of byte or bit type, it is in BUFFR in a packed format.

For example, if the data is in byte format, each word in BUFFR contains two bytes
of data.

4-38

P/C ACCESS ROUTINES

Type: Integer. Value: length and type of BUFFR.

This entry parameter contains the maximum amount o% the program to be received
from the real P/C. It may be specified in a 16 bit word.

151413121110 9 8 7 6 5 43 2 1 0

BI LENGTH OF DATA TO RECEIVE

where: BI = 0, the length is expressed in 16 bit words.

LENGTH OF DATA TO RECEIVE is the number of words to be received from the
P/C.

Note that the length (in words) of the buffer area in the application program must
not be less than the length in words of LENGR.

Type: 32 bit integér. Value: See specific P/C brand.

This entry parameter contains a value that allows the retrieval of

the physical memory address of the program to be read from the
specified real P/C. For the correspondence between this parameter value
and the real memory address, see your handler-specific manual.

Comments

Refer to the relevant handler manual for specific information on using PC_READP with
particular P/C brands.

4-39

P/C ACCESS ROUTINES

PC__RELKEY

Releases the assignment of ownership of an access key which was previously obtained
by this application program using a PC_GETKEY request.

Calling Sequence

PC_RELKEY (STAT,AKEY)

Parameters

Type: Integer. Value: 0 or a non-zero value.

This return parameter value is set to zero if the call is completed successfully,
otherwise to a non-zero value if any error occurs. Possible non-zero values for
this routine are: (also refer to Appendix A)

16 Missing PCIF_OPEN for this program.

17 Contact with PCIF monitor lost.

18 Illegal access key.

20 Not enough SAM.

21 Not enough EMA.

22 RTE EXEC error while dialoging with PCIF monitor.

If STAT is not equal to zero then the access key is not released, and none of the
possible associated actions are made.

Type: Integer. Value: User defined

This entry parameter contains the access key allocated to the application program
with a previous PC_GETKEY routine, and which is now required to be released. If
some’ routines are currently associated with this access key, either replies to
requests or unsolicited requests, and for which no PC_ENQUIRY has been made, they
will be flushed from memory and it will not be possible to reach them by any
means. It is also impossible to know their completion status.

Comments
This call disables unsolicited requests from those P/Cs associated with the AKEY

parameter. Therefore, any unsolicited requests sent from these ©P/Cs after the
PC_RELKEY call will be lost, until a program sends another PC_ENUNSOL.

4-40

P/C ACCESS ROUTINES

PC__START

Physically starts the specified P/C. The use of this routine can be forbidden for
some P/Cs, either they lack the capability to be remotely started or this capability
was restricted at configuration-time.

Calling Sequence

PC_START (STAT,TAG,KEY,PC)

Parameters

Type: Integer. Value: O or a non-zero value.

This return parameter value is set to zero if the call is completed successfully,
otherwise to a non-zero value if any error occurs., Possible non-zero values for
this routine are: (also refer to Appendix A)

~1 Request accepted but not completed (no-wait call).
16 Missing PCIF OPEN for this program.
17 Contact with PCIF monitor lost.
19 Illegal buffer address.
20 Not enough SAM.
21 Not enough EMA.
22 RTE EXEC error while dialoging with PCIF monitor.
32 Locked P/C.
33 Disconnected P/C.
35 Unknown P/C logical identifier.
36 P/C does not have the capability to perform user request.
37 Maximum number of waiting requests reached for this P/C.
38 Time-out.
128..255 P/C handler detected error. See Appendix A.
256..511 Highway handler detected error. See Appendix A.
512.. Specific P/C manufacturer error.

Type: Integer. Value: User defiined.
This entry parameter has & user defined value which identifies this particular

request, It is never modified by PCIF/1000 and is carried along with the reply,
for instance, returned in a PC_ENQUIRY call as OLDIAG.

4-41

P/C ACCESS ROUTINES

Type: Integer Value: 0 or provided by GETKEY.

This entry parameter may be set to zero if this routine is to be used with the
wait option. If the no-wait option is used, the value entered will signify on
which access key the reply can be found at a later stage with a PC_ENQUIRY call.
This access key value should have been allocated with a previous PC_GETKEY call.

Type: Integer. Value: Configuration dependent.

This entry parameter is the logical identifier of a physical P/C station. The
parameter value is the one defined at configuration time for the target P/C.

4-42

P/C ACCESS ROUTINES

PC__STOP

Physically stops the target P/C. The use of this routine may be forbidden for some
P/Cs, either they lack the capability to be remotely ﬁtopped or this capability was
restricted at configuration-time.

Calling Sequence

PC_STOP (STAT,TAG,KEY,PC)

Parameters

Type: Integer. Value: O or a non-zero value.

This return parameter value is set to zero if the call is completed successfully,
otherwise ‘to a positive non-zero value if any error occurs. Possible non-zero
values for this routine are: (also refer to Appendix A)

-1 Request accepted but not completed (no-wait call).
16 Missing PCIF OPEN for this program.
17 Contact with PCIF monitor lost.
18 Illegal access key.
20 Not enough SAM.
21 Not enough EMA.
22 RTE EXEC error while dialoging with PCIF monitor.
32 Locked P/C.
33 Disconnected P/C.
35 Unknown P/C logical identifier.
36 P/C does not have the capability to perform user request.
37 @ Maximum number of waiting requests reached for this P/C.
38 Time-out.
128..255 P/C handler detected error. See Appendix A.
256..511 Highway handler detected error. See Appendix A.
512.. Specific P/C manufacturer error.

Type: Integer. Value: User defined.
This entry parameter has a user defined value thch identifies this particular

request. It is never modified by PCIF/1000 and is| carried along with the reply,
for instance, it is returned in a PC_ENQUIRY call as OLDTAG.

4-43

P/C ACCESS ROUTINES

Type: Integer. Value: 0 or provided by GETKEY.

This entry parameter is set to zero if the routine is to be used with the wait
option. If the no-wait option is used, the value entered will signify on which
access key the reply can be found at a later stage with a PC_ENQUIRY call. This
access key value should have been allocated with a previous PC_GETKEY call.

Type: Integer. Value: Configuration dependent.

This entry parameter is the logical identifier of a physical P/C station. The
parameter value is the one defined at configuration time for the target P/C.

444

P/C ACCESS ROUTINES

PC__ SYSTAT

Allows the application program to obtain information on the logical state of a target
P/C. The logical P/C state contains two sets of information, these are the system

status and the system capability.

Calling Sequence

Parameters

PC_SYSTAT (STAT,PC,BUFFR)

Type: Integer. Value: O or a non-zero value.

This return parameter value is set to zero if the call is completed successfully,
otherwise to a positive non-zero value if any error occurs. Possible non-zero

values

16
17
20
21
22
35

for this routine are: (also refer to Appendix A)

Missing PCIF OPEN for this program.

Contact with PCIF monitor lost.

Not enough SAM.

Not enough EMA.

RTE EXEC error while dialoging with PCIF monitor.
Unknown P/C logical identifier.

Type: Integer. Value: Configuration dependent.

This entry parameter is the logical identifier 1{ a physical P/C station. The

parameter value is the one defined at configuratio

time for the target P/C.

4=45

P/C ACCESS ROUTINES

Type: Integer/bit array. Value: Request dependent.
This return parameter contains data that defines the system and capability status
of the P/C station. It is only significant if STAT is equal to zero. The buffer
is 16 bits long and is coded as follows:

151413121110 9 8 7 6 5 4 3 2 1 O

WR|PR|TR|UN(ST|////////\UE|CO|LO|BU|\///////////

Rhere:
BU = 0, the station is free.
= 1, the station is busy, i.e. one or more P/C requests are
pending.
D = 0, the station is unlocked.
= 1, the station has been locked either by this or another AP.
CO = 0, the station is connected. .
= 1, the station is unconnected.
UE = 0, the station is "unsolicited request enabled" for an AP.
= 1, the station is "unsolicited request disabled" for an AP.
Capability Status
Khere:
ST = 0, any program has the capability to start/stop the P/C station.
= 1, no program can have this capability.
UN = 0, the P/C station can issue unsolicited requests.
= 1, the P/C station cannot issue unsolicited requests.
TR = 0, the transparent mode is allowed for this P/C by any program.
= 1, the transparent mode not allowed for this P/C by any program.
PR = 0, P/C programs can be written into the P/C station memory.
= 1, P/C programs cannot be written into the P/C station memory.
KR = 0, data can be written into the P/C station memory. ’

" n
=
-

data cannot be written into the P/C station memory.

NOTE: The symbol //// denotes that these bits have undefined values and are
reserved for future use.

4-46

P/C ACCESS ROUTINES

PC__ TRANS

Allows the application program to interact with the specified P/C station in a PCIF
transparent manner. This enables an application program to subsequently transmit all
the possible functions of a P/C brand as described in the PC manufacturer’s manual.

Calling Sequence

PC_TRANS (STAT,TAG,KEY,PC,SUBFCT,BUFFW,LENGW,BUFFR,LENGR)

Parameters

Type: Integer. Value: 0 or a non-zero value.

This return parameter value is set to zero if the call is completed successfully,
otherwise to a non-zero value if any error occurs. Possible non-zero values for
this routine are: (also refer to Appendix A)

-1 Request accepted but not completed (no-wait call).
1 Invalid SUBFNC parameter.
2 Length of buffer to transmit is too long.
3 Invalid length unit.
16 Missing PCIF_OPEN for this program.
17 Contact with PCIF monitor lost.
18 Illegal access key.
19 Illegal buffer address.
20 Not enough SAM.
21 Not enough EMA.
22 RTE EXEC error while dialoging with PCIF monitor.
26 Requested function not implemented on current system.:
32 Locked P/C.
33 Disconnected P/C.
34 Stopped P/C.
35 Unknown P/C logical identifier.
36 P/C does not have the capability to perform user request.
37 Maximum number of waiting requests reached for this P/C.
38 Time-out.
128..255 P/C handler detected error. See Appendix A.
256..511 Highway handler detected error. See Appendix|A.
512.. Specific P/C manufacturer error.

4-47

P/C ACCESS ROUTINES

Type: Integer. Value: User defined.

This entry parameter has a user defined value which identifies this particular
request. It is never modified by PCIF/1000 and is carried along with the reply,
for instance, it is returned in a PC_ENQUIRY call as OLDTAG.

Type: Integer. Value: O or provided by GETKEY.

This entry parameter is set to zero if the routine is to be used with the wait
option. If the no-wait option is used, the value entered will signify on which
access Kkey the answer can be found at a later stage with a PC_ENQUIRY call. This
access Key value will have been allocated with a previous PC_GETKEY call.

Type: Integer. Value: Configuration dependent.

This entry parameter is the logical identifier of a physical P/C station. The
parameter value is the one defined at configuration time for the target P/C.

Type: Integer. Value: P/C brand and type dependent.

This entry parameter describes the P/C function to be performed by the target P/C,
and is coded according to the requirements of the relevant P/C manufacturer. This
parameter is specific P/C brand dependent.

Type: Integer/byte/bit array. Value: Data to be sent to the P/C.

This entry parameter is the application program defined buffer. Its data is P/C
type dependent and is composed as described for each specific P/C.

4-48

P/C ACCESS ROUTINES

Type: Integer. Value: length and type of BUFFW.

This entry parameter defines the amount and type of data to be written to the P/C,
which may be in words (16 bit), bytes, or bit units, jand is coded as follows:

151413121110 9 8 7 6 5 413 2 1 0

BI LENGTH OF DATA TO WRITE

0, the length is expressed in 16 bit words;
1, the length is expressed in 8 bit bytes;
2, the length is expressed in bit units

where: BI

nmnan

LENGTH OF DATA TO WRITE is the number of units to be sent to the B/C,
in accordance with the BI information.

Type: Integer/byte/bit array Value: Data read| from P/C.
This return parameter is the application program defined buffer that holds a reply
when PC_TRANS is called with the "wait" option seleifed (KEY = 0). If the call is
made with no-wait (KEY = a valid access key) the result will be retrieved with a
call to PC_ENQUIRY. '

This parameter is not modified unless STAT is equal to zero.

4-49

P/C ACCESS ROUTINES

Type: Integer. Value: Length and type of BUFFR.

This entfy parameter contains the maximum message length to be received from the
P/C station by the application program and is coded as LENGH.

Note also that if the length is expressed in bits or bytes the result always has
an EVEN number of bytes, and the possible remaining bits/bytes are undefined.
For example:

with LENGR = 2 43 43=(5bytes*8)+3bits

then 43 bits = 2.69 words are needed.

This must be rounded up, however, to the nearest word. At least three words,
therefore, are required in BUFFR to store the returned data.

BUFFR would then look like this:

Word 1 Word 2 Word 3

2 9 8 3 b5
Bytes Bytes [Pitsbits bits
o -
< D><—>
Significant Data Unused
bits

Comments

A1l request parameters are checked by the PCIF monitor to ensure PCIF/1000
compatibility, but they are not interpreted by the PCIF monitor.

Refer to your handler-specific manual for information on using PC_TRANS with your
particular P/C brand.

AAKRKKRKK kKK KKK WARNlNG AKX KKK KKK KK

During PC_TRANS the PCIF/1000 monitor does not supervise the PC computer
exchange, as with the other PCARs. Therefore using PC_TRANS requires a thorough
knowledge of the target PC’s function within a system, because this PC’s
physical status may be changed such that it is difficult or impossible to later
process other PCIF/1000 functions.

4-50

PC_ UNLOCK

P/C ACCESS ROUTINES

Allows the application program to unlock a P/C and therefore enable access to this

P/C by any application programs.

Calling Sequence

PC_UNLOCK (STAT,PC)

Parameters

Type: Integer. Value: O or a na

This return parameter value is set to zero if the ¢

otherwise to a positive non-zero value if any err

values for this routine are: (also refer to Appendi

16 Missing PCIF_OPEN for this program.

17 Contact with PCIF monitor lost.

20 Not enough SAM.

21 Not enough EMA.

22 RTE EXEC error while dialoging with PCIF moni
32 Locked P/C.

33 Disconnected P/C.

35 Unknown P/C logical identifier.

The logical state of the P/C is unchanged unless ST

Type: Integer. Value: Cecnfigur

This entry parameter is the logical identifier of
parameter value is the one defined at configuration
Comments
Requests are allowed to continue if they have been mad
incomplete at the time of PC_UNLOCK. The purpose of the

guarantee that no other appllcation program requests ai
application program’s requests.

4-51

n-zero value.
all is completed successfully,

or occurs. Possible non-zero
X A)

tor.

AT is equal to zero.

ation dependent.

" a physical P/C station. The

time for the target P/C.

e in the no-wait mode and are
e PC_LOCK/PC_UNLOCK pair is to
re intermixed with the current

P/C ACCESS ROUTINES

PC__ WRITED

Allows the writing of data to the target P/C from the specified application program
buffer,

Calling Sequence

PC WRITED (STAT,TAG,KEY,PC,BUFFW,LENGH,PCADR)

Parameters

Type: Integer. Value: 0 or a non-zero value.

This return parameter value is set to zero if the call is completed successfully,
otherwise to a non-zero value if any error occurs. Possible non-zero values for
this routine are: (also refer to Appendix A)

-1 Request accepted but not completed (no-wait call).
2 Length of buffer to transmit tooc long or null.
3 Invalid length unit.
16 Missing PCIF OPEN for this program.
17 Contact with PCIF monitor lost.
18 Illegal access key.
19 Illegal buffer address.
20 Not enough SAM.
21 Not enough EMA.
22 RTE EXEC error while dialoging with PCIF monitor.
32 Locked P/C.
33 Disconnected P/C.
35 Unknown P/C logical identifier. _
36 P/C does not have the capability to perform the user’s request.
37 Maximum number of waiting requests reached for this P/C.
38 Time-out.
128..255% P/C handler detected error. See Appendix 4.
256..511 Highway handler detected error. See Appendix A.
512.. Specifiec P/C manufacturer error.

Type: Integer. Value: User defined.
This entry parameter has a user defined value which identifies this particular

request. It is never modified by PCIF/1000 and is carried along with the reply,
for instance it is returned in a PC_ENQUIRY as OLDTAG.

4-52

P/C ACCESS ROUTINES

Type: Integer. Value: O or provided by GETKEY.

This entry parameter is set to zero if the routine is to be used with the wait

option. If the no-wait option is used, the value

entered will signify on which

access key the answer can be found at a later stage with a PC_ENQUIRY call. This
access key value should have been allocated with a previous PC_GETKEY call.

Type: Integer. Value: Configuration dependent.

This entry parameter is the logical identifier of
parameter value is the one defined at configuration

a physical P/C station. The
time for the target P/C.

Type: Integer/byte/bit. Value: Data to he sent to the P/C.

This entry parameter is the user defined buffer that
to the specified P/C.

will hold the data to be sent

Type: Integer. Value: Length and type of BUFFW.

This entry parameter contains the maximum length of data to be sent to the P/C
byte, or in bit units and is

station. It may be specified in a 16 bit word, a
coded as follows:

151413121110 9 8 7 6 5 4

3 210

BI LENGTH OF DATA TO WRITE

0, the length is expressed in 16 bit wo
1, the length is expressed in 8 bit byt

where: BI

2, the length is expressed in bit units.

rds;
es;

LENGTH OF DATA TO WRITE is the number of units to be sent to the P/C, in

accordance with the BI information.

Note: For more PC-specifie information, see your handler manual.

4-53

P/C ACCESS ROUTINES

Type: 32 bit integer. Value: See specific P/C brand.
This entry parameter contains a value that allows the retrieval of the specified
PC’s physical memory address where data will be written. The For the
correspondence between this parameter value and the real memory address, see your
handler-specific manual.

Comments

The capability of the P/C to receive a PC_WRITED request may have been restricted at
configuration-time.

4-54

P/C ACCESS ROUTINES

PC__ WRITEP
Allows the downloading of P/C programs to a target P/C from an application program.

Calling Sequence

PC_WRITEP (STAT,TAG,KEY,PC,BUFFW,LENGHW,PCADR)

Parameters

Type: Integer. Value: O or a non-zero value.

This return parameter value is set to zero if the call is completed successfully,
otherwise to a non-zero value if any error occurs. Possible non-zero values for
this routine are: (also refer to Appendix A)

-1 Request accepted but not completed (no-wait c@ll).
2 Length of buffer to transmit too long or null,
3 Invalid length unit,

16 Missing PCIF OPEN for this program.

17 Contact with PCIF monitor lost.

18 Illegal access key.

19 Illegal buffer address.

20 Not enough SAM.

21 Not enough EMA. ,

22 RTE EXEC error while dialoging with PCIF monitor.

26 Requested function not implemented on current| system.

32 Locked P/C.

33 Disconnected P/C.

35 Unknown P/C logical identifier.

36 P/C does not have capability to perform user request.

37 Maximum number of waiting requests reached for this P/C.

38 Time-out.

128..255 P/C handler detected error. See Appendix A. %

256..511 Highway handler detected error. See Appendix
512.. Specific P/C manufacturer error.

Type: Integer. Value: User deflined.
This entry parameter has a user defined value which identifies this particular

request. It is never modified by PCIF/1000 and is carried along with the reply,
for instance, it is returned in a PC_ENQUIRY call as OLDTAG.

4-55

P/C ACCESS ROUTINES

Type: Integer. Value: O or provided by GETKEY.

This entry parameter may be set to zero if the routine is to be used with the
wait option. If the no-wait option is used, the value entered will signify on
which access key the answer can be found at a later stage with a PC_ENQUIRY call.
This access key value should have been allocated with a previous PC_GETKEY call.

Type: Integer. Value: Configuration dependent.

This entry parameter is the logical identifier of a physical P/C station. The
parameter value is the one defined at configuration time for the target P/C.

Type: Integer/byte/bit array. Value: P/C program.

This is an entry parameter and is the user defined buffer for storing the program
to be sent to the specified P/C.

Type: Integer. ' Value: Length and type of BUFFW.

This entry parameter contains the maximum length of program to be sent to the
target P/C. This may be specified in a 16 bit word format only, and is coded as
follows:

151413121110 9 8 7 6 5 4 3 2 1 O

BI LENGTH OF DATA TO WRITE

where: BI = O, the length is expressed in 16 bit words.

LENGTH OF DATA TO WRITE is the number of words to be sent to the
P/C.

Note that the length (in words) of the buffer area in the application program must
not be less than the length (in words) of LENGHW.

4-56

P/C ACCESS ROUTINES

Type: 32 bit integer. Value: See specific P/C brand.

This entry parameter contains a value that corresponds to the specified PC’s
physical memory address, which is where the P/C program will be loaded. For the
correspondence between this parameter value and the| real memory address, see your
handler-specific manual.

Comments

The user must ensure that the P/C can accept a program before the PC_WRITEP call is
made, as this capability may have been restricted at run-time. Also note that the
P/C should be stopped and that the P/C outputs deactivated before downloading the
program,

Note: For more PC-specific information, refer to your handler manual.

Gomputer Y
o Museum
) -

4-57

Chapter 5

INSTALLATION OVERVIEW

‘5.1 PURPOSE

The aim of the installation and configuration proc

ure is to achieve a PCIF

subsystem ready to interact between application programs and P/Cs. The number and
type of application programs and P/Cs are variable and defined by the user. Each user

can customize PCIF/1000 to fit the requirements of

he target P/C system. The

individual variables are defined during the configuration process resulting in a
configuration file that is called at run-time, as follows:

CI> XQ, PCIF,<configuration file namr>

The configuration process may be run on a different
system to be used at run-time. However, to enable a
complete process of starting with PCIF/1000 "as shipped!

ystem than the supervisory
simple explanation of the
(i.e on magnetic media, and

finishing with a ready to use subsystem), it is assumed in this chapter that the
configuration and run-time operation will take place on the same computer system.

An overview of the installation and configuration procedures, therefore, may be

summarized as follows:

- Generate an RTE-A operating system to support PCIF/1000

~ Install the PCIF/1000 software
- Configure the PCIF/1000 software

At the end of configuration, PCIF/1000 will be ready for
If the message:

PCTMO (System Utility)

PCIF (System Utility)

Continue, Logoff, Background, or ? [C]?

is displayed when logging off after starting up PCIF,

use.

simply type "L" to logoff.

This should not occur if PCIF is started up from the WELCOME file. Also, it should

only happen once, when PCIF is initially started up from

a user’s session.

NOTE: This chapter is an overview of the detail contained in the following

chapters:

Chapter 6 for INSTALLATION
Chapter 7 for PRECONFIGURATION
Chapter 8 for CONFIGURATION
Chapter 9 for RUN-TIME

Figure 5.1 provides an illustration of the overall procedure required to get the
PCIF/1000 subsystem up and running, after receiving the product on shipping media.

Subsequent sections in this chapter describe the various

5-01

stages in this procedure.

INSTALLATION OVERVIEW

INSTALLKUONAPROCEDURE
CONFIGURATION PROCEDURE
A
00;‘::":“ Regtore Unk Run Run
PCIF PCIF Pre— Configurator
Operating] Modules] Modules K Configurator) Editor
System

!

INSTALLATION RESULTS
A

r \
,——-—-I PC Highway .—-—-]
Handtery Handlera

Application S Programmable

'Programs - Controllers '
— e — - | e = —— - J

PCIF MONITOR

\ Y 7

RUN-TIME OPERATION

Figure 5.1 Overall Installation Procedure

5.2 GENERATING AN RTE OPERATING SYSTEM FOR PCIF/1000 |

The structure of the operating system supporting PCIF/1000 will vary according to the
un-time requirements, such as the number of P/Cs to be supported and the application
program requests. The user will have to define the following:

Specific drivers for the devices and their interfaces
LUs for the supported PC/highways

Partition, SAM and EMA size

Maximum number of class numbers

These various elements are sized according to figures given to the user, and relate
to the target P/C system. The minimum requirements are listed in Chapter 6.

A standard RTE-A operating system (with the PCIF additions as stated in Chapter 6)
can be used to run the preconfigurator and configuration programs.

5-02

5.3 INSTALLATION PROCEDURE

The next task in overall installation is to transfer (u

the PCIF software from the shipping media (tape, cartr
supervisory HP 1000 system.

The contents of the media containing the PCIF monitor mu
1) the PCIF core product files must be restored to a

2) the F/1000 runtime files must be restored to a CI

INSTALLATION OVERVIERW

sing the TF utility program)
idge or minifloppy) onto the
st be restored on two places:
FMGR cartridge

directory called /F1000

Once this is achieved, the cartridge reference and security code of the various PCIF
files and programs can be changed to suit the user’s requirements. Finally, the
preconfigurator program is prepared for use by invoking the transfer file command
which 1links the PCIF programs to be used within the user system. This is achieved
with the following command:

CI> TR,*PCIF::crn,crn

where "ern" is the Cartridge Reference Number of the disc cartridge containing
the PCIF/1000 software.
The end result is a '"ready to run" preconfigurator program called PCGEN.

1, Getting Started with PCIF,
hen the tutorial is prepared

The contents of the media containing the on-line tutoria
must be restored on a CI directory called /GSHPCIF. T
for use by invoking the following transfer file command:

CI> TR,XFER.CMD

.

The end result is a "ready to run" tutorial program called TEACHME.

5.4 CONFIGURATION PROCEDURE

The configuration procedure cen be divided into two
program followed by the configuration editor program.| This is because at run-time
PCIF is made up of a number of modules. One group of these modules is predefined (by
whatever P/C brands are in use) and is created with the preconfigurator to form the
run-time monitor. The formation of another group depends upon the number and type of
P/Cs and highways to be supported. This group forms the|P/C and highway handlers.

phases: the preconfigurator

The preconfigurator defines a range of P/C and highway types to be used, but specific
details for P/Cs (and highways), such as P/C logical identifier, priority and many
other characteristics are defined with the configuration editor.

The preconfigurator program is fully described in Chapter 7. Its end result is the
construction of a run-time monitor program referred to as the PCIF monitor (PCIF) and
the configuration editor (PCCON).

The configuration editor is detailed in Chapter 8. Its end result is a configuration
file that describes characteristics of all the P/Cs gnd highways connected to the

5-03

INSTALLATION OVERVIEW

supervisory HP 1000, as defined by the user. The completion of the configuration file
signals that PCIF/1000 is ready to run.

The following flow chart shows the complete configuration process.

Monitor H & PC Partial Predefined
Relocatable Hondlers Descriptors Configurator Configuration
Relocatables Relocatable Editor
PRECONFIGURATOR
CONFIGURATION
EDITOR
* POIF/1000
. RUN=TIME PART Confiquration
. File
IF/ 1
PSO'{'ngﬂ [€<—— XQ,PCIF,CONFIGURATION FILE NAMR

Figure 5.2 Overall Configuration Procedure

When the preconfigurator is executed, the user names descriptor files specific to the
types of P/Cs and highways intended for use. All handlers to be used with PCIF/1000
should be configured at this time. The preconfigurator then uses the run-time
monitor program (PCIF) relocatables, the appropriate highway, and P/C relocatables to
link the run-time monitor program (PCIF). Similarly, the preconfigurator combines
predefined configuration editor information to link the configuration editor program
(PCCON). The configuration editor can then be run to create the specific application
configuration file used at run-time.

If you decide at a later date to include another handler, and thus re-run PCGEN, you

must create new configuration files. Do not use old configuration files with a new
configurator and PCIF monitor program.

5-04

Chapter 6

INSTALLATION

6.1 INTRODUCTION

This chapter describes the installation requirements of
it on an RTE-A operating system.

Due to the modular aspect of PCIF/1000, some of the r
depending upon the supported P/C and highway handler
configuration. Only the minimum requirements for inst

listed here. Supplementary information may be found in th

manual.
PCIF/1000 is divided into two parts. These are:

- The preconfigurator and configuration editor progr
- The run-time sub-system and P/C Access Routine 1lib

The two configuration programs may be run on a diffen

supervisory system used for run-time. Therefore,
requirements are separated in sections 6.4 and 6.5.

6.2 UNPACKING AND INSPECTION

The PCIF/1000 end related products including the mul
cables, and required software are shipped in multiple c
arrives, check to ensure the receipt of each container.

6-01

PCIF/1000 and how to install

equirements will be variable
, 8S well as the real P/C
lling the basic product are
e relevant handler reference

ams .
rary.

ent computer system than the

the different installation

tiplexer, multiplexer panel,
ontainers.

When the shipment

INSTALLATION

6.3 HARDWARE REQUIREMENTS
6.3.1 General

The following table defines the hardware required for the different parts of
PCIF/1000.

Preconfigurator Run-time

& Configurator Monitor
CPU : A/600/A700/A900 | required required
Memory (words) 256K 256K (*)
Disc storage required (**) required(**)
Terminal required (***)
Multiplexer (MUX) required (#)

Table 6.1 Hardware Requirements

* dependent upon configuration and traffic (see section 7.4).

** at least 20 Mbytes of hard disc.

*** must be one of the following: 2622A, 2623A, 2624B, 2626A, 2627A, 23824,
30924, 3093A, or HP 150 connected on point-to-point, multiplexed or
multipoint connections.

MUX panel with MUX interface board. This is only required for HP
provided handlers.

6.3.2 P/C Connections to the HP 1000
The connection of HP supported P/Cs are made using a MUX interface card with a MUX
panel. (See your handler reference manual for the specific MUX to be used with your

P/C brand.)

The next three sections describe two possible connection methods, plus a third one
which is a mixture of the first two.

6-02

6.3.3 RS232C MUX/Highway Connection

INSTALLATION

At run-time, this RS232C connection can be used by any HP supported P/C brand. Also
refer to the brand’s specific requirements in the relevant handler reference manual.

(i

Software Backplane Driver

Multiplexer

HP
PROVIDED

(CCCE

Multiplexer Pgnel

b
................. A
P

R
\.—/
g

e SRR

Up to 8 Highwaoys

PG FAGTURER
PROVIDED

SUPPLIED BY HEWLETT-PACKARD
[1] MUX interface board

Figure 6.1 RS232C Connecti$;

[2] cable provided with MUX panel

[3] MUX panel

[4] cable 25 pin male RS232C to 25 pin male RS232C. Part No. 92140-60001.

!

SUPPLIED BY P/C MANUFACTURER [
Refer to your handler-specific manual.

6-03

6.3.4 RS232C MUX/Highway 20mA Current Loop Connection

INSTALLATION

At run-time, this type of connection can be used by certain HP supported PC brands.
In each case refer to the individual brand requirements in the relevant handler

manual.

(Software Bockplane driver)

DDP61/IDS00

120418
(Downioadable MUX)

]
T R,
R
g
]
—

MULTIPLEXER PANEL

A

-

—

_—

-

< 4 modified S
chonnels

-
- user
bt

\ /deflned

\-1

{51| CURRENT LOOP
’ CONVERTER

" CURRENT LOOP
CONVERTER

s

€——— 4x20me —>

L L L L

Pcusert
Up ta

4 PCs or Highways 4 PCs

VT

e
e
Pyt

Up to
or Highways

PC MANUFACTURER

PROVIDED

HP

PROMDED

Figure 6.2 Current Loop Connection

SUPPLIED BY HEWLETT PACKARD
[1] MUX interface board.
[2] cable provided with MUX panel.

[3] MUX panel.
[4] customer fabricated cable, 25 pin male RS232C to 3 pin male RS232C.

[5] third party current loop converter; see PCIF/1000 data sheet.

[6] cable for connection between the P/C and the current loop converter.

SUPPLIED BY P/C MANUFACTURER
Refer to relevant handler reference manual.
Connect kit, plug and cables.
Data communication interface.

6-04

INSTALLATION

6.3.5 Mixing 20mA and RS232C MUX Connections

At run-time, it is possible to conneet RS232 lines and current loop lines on the same
MUX card. Note that all P/Cs and highways must be lof the same brand and can be

downloaded to the same MUX.

DDPB1,/1DS00 _ M
(Softwars Backpione driver)

120418

{Downioadable MUX)

HP
PROVIDED

(L B - MULTIPLEXER PANEL

channels

-
Py

.

Heg - ¢ 4 modified
—
M

4 non-maodfitied

151 ... -.| CURRENT LOOP
CONVERTER

At €—— 4x20ma

channeis

DU
.9

V

Vo A G

N
'\

L L L

bt
| EREETS =
—

Up to
4 PCs or Highways

O (O

Up to
4 PCs or Highways

PC MANUFACTURER
PROMIDED

Figure 6.3 Mixing 20mA & RS232C Connected on the Same MUX

SUPPLIED BY HEWLETT PACKARD
[1] MUX interface board.
[2] cable provided with MUX panel.
[3]) MUX panel.

[4] customer fabricated cable, 25 pin male RS232C to 3 pin male RS232C.
[5] third party current loop converter; see PCIF/1000 |data sheet.

[6] cable for connection between the P/C and the current loop converter.
[?7] customer fabricated cable, 25 pin male RS232C to 25 pin male RS232C.

SUPPLIED BY P/C MANUFACTURER
Refer to relevant handler manual.

6-05

INSTALLATION

For this type of connection mix, the adapter cable details will have to be changed so
that pin connections are reversed when coupled to a 20mA current loop.

For example, in the following table, if port O requires a 20 mA connection and port 1
an RS232 then the adapter cable must be modified as follows:

side A side B
PORT O RDO+ 15 white 33
(20ma) RDO- 33 black 15
PORT 1 RD1+ 13 white 13
(RS232) .RD1- 31 brown 31

Note that RD is data received at the P/C. The transmit data wires are never
reversed (as this inversion is made inside the 92922A option D0l if 20 mA
conversion is desired).

6-06

INSTALLATION

6.4 SOFTWARE REQUIREMENTS
6.4.1 General

PCIF/1000 requires certain software packages to be installed on a HP 1000 system
before PCIF/1000 can be run on this system. List below are these required
packages, cross-referenced to the various parts of PCIF/1000:

Pre- Confi ratlonl Run-time
Configurator Ed1 Monitor

LINK/1000 loader prgm | required (*)

PASCAL/1000 library required (*)

RTE-A operating system| required requ#red required

MACRO/1000 assembler required (*)

F/1000 executable code| required (**) requ1+ed (**)

Table 6.2 General PCIF Software Re£u1rements
* supplied with RTE-A (

** supplied with PCIF
6.4.2 Preconfigurator & Configuration Editor

The following lists the software requirements for the BCIF/1000 configuration
process.

1 for the dialog te inal

Logical Unit (LU) +1 (at least) for a GR cartridge

Class Numbers 2 for the dialog with program FOCLO

Resource Number none L

Memory program name si%e note
PCGEN 25| pages
PCCON 24| pages (1) (2)
FOCLO 31 pages (3)

Table 6.3 Configuration Software Riquirements

Notes: [1] The Configurator uses VMA for building configuration files.
[2] The real size depends on the partial configurator editors.

6-07

INSTALLATION

(Figures given here are for HP provided handlers.)
[3] This is the F/1000 forms management monitor used by
PCIF/1000.

Table 6.4 lists the default and required directories for the PCIF software.

NAME - TYPE COMMENTS

/UBRARIES | Cldirectory | Required to hald $PCIFM l(if CDS
monitor used). $PCIFM is accessed
by MACRO during PCGEN build of
PCIF. $PCIFM is built from "CDSLB
during load of PCGEN in transfer
file *PCIFC.

Default directory for PASCAL.LIB

- and PASCAL__CDS.LIB. Referenced

in link command files.

/Fi000 Cl directory | Required directory for F/1000
- o software, Referanced in link
command files.

/PROGRAMS | Cl directory | Required directory must contain o
program FOCLO.RUN. Referenced
in link command file #FOCLO.

“P1 FMGR Required directory for PCIF/1000

directory software. P1is the recommended
' name.

Table 6.4 Required PCIF Software Directories

6-08

INSTALLATION

Table 6.5, below, lists all the files required by the PCGEN preconfigurator program,
and the PCCON configuration editor program. The table also lists the types of access

made by the programs to their files.
specific to your P/C brand.)

(See your hendler reference manual for files

PCIF Programs Files Used Access Types
PCGEN PCCON CR (1)
PCIF CR (1)
[PCPGE, [PCPGF, $PCIFM RO (4)
&PCCTB, &PCRTB, &PCRTC SC (2) (5)
#PCLCO, #PCLRT, %PCCTB, %PCRT#,
#PCRTC UP (3) (6)
plus possible user list file
plus three screens:
{PCPO1, {PCPO2, IPCPO3 RO
and three associated help files:
"PCPO1l, "PCPO2, "PCPO3
FOCLO.TXT: :F1000, “PCERR RO
scratch files for LINK & MACRG SC
PCCON configuration editor file CR
plus possible user list file UP
and 11 screens:
IPCCO1...!PCCl1 RO
{PCCB5, {PCCB9, "PCCB5, "PCCB9
and 11 associated help files:
“"PCCOl1..."PCCll RO
"PCERR RO
virtual memory file SC

Table 6.5 PCGEN and PCCON Required Fil$s and Access
i

Access Types

CR created file :
RO read only file
SC scratch file :
UP updated file :

(1)
(2)
(3)
(4)

These files must not already exist.

These are scratch files used internally and then pu
These files are kept at the end of preconfiguration
[PCPGE for the non-CDS monitor; [PCPGF and $PCIFM f

$PCIFM is created from "CDSLB by the transfer file

reside on the
(5)
(6)

: :LIBRARIES directory.
&PCRTB for the non-CDS moniotr; &PCRTC for the CDS
%¥PCRTB for the non-CDS monitor; %PCRTC for the CDS

6-09

this file MUST NOT exist prior running PCGEN.
: this file is not modified by this P
this file is deleted at completion of
this file is created if it does not e

IF/1000 step.
the present step.
ist.

ged.
(see Chapter 7).

r the CDS monitor.

PCIFC. It must}

onitor.
onitor.

INSTALLATION

6.5 RUN-TIME RTE-A REQUIREMENTS

This section describes the logical unit, enswer file, class numbers, memory, and file
requirements of PCIF/1000.

6.5.1 Logical Units

Each data highway requires a certain number of LUs. This number varies among the
different P/C brands. See your handler-specific reference manual for details.

6.5.2 Answer File

As far as LU generation is concerned, handler-specific information is to be put into
the RTE-A generation answer file. See your handler-specific menual for this
information.

6.5.3 Class Numbers

The run-time part of PCIF/1000 contains several programs as well as the user’s
application programs. All of these programs use RTE-A class numbers for
communication, Therefore the RTE-A system must be generated with the following
minimum requirements:

- one class number for the PCIF/1000 run-time monitor
- one class number for each concurrent application program
- one class number for each access key

The total number of class numbers is at least:

N = 1l+(max AP)+(max AK)

where:

(max AP): is the maximum number of application programs to run cdncurrently
with PCIF/1000. The maximum is 16.

(max AK): is the maximum number of access keys as defined in Screen 11 of the
configuration editor program, for all application programs.
PCIF/1000 allows a total of 64 access keys for all the application
programs, and 16 for each application program.

6.5.4 Memory Requirements
PCIF/1000 memory requirements are concentrated in the following areas:

- PCIF/1000 program partitions (code and data);
- EMA size (depending upon the P/C user’s configuration);
- SAM size (depending upon the P/C user’s configuration).

.

6-10

INSTALLATION

The various PCIF/1000 run-time programs have the following requirements:

Note:

(1) It is recommended that the PCIF monitor b

(2)

(3)

(4)

memory

program name size

note

PARTITION

PCIF (monitor) 36 --> 500 pages

PCOPN (open) 2 pages
PCTMO (time out) 5 pages
PCDMX (MUX download) 9 pages
PCHLT (halt) 5 pages

(1), (4)
(2)
(2)
(2), (3)

Table 6.6 Memory Requirements

locked in memory for faster

response time. However, this is application dependent and it may not be

necessary for specific applications.

These programs are linked as system utility
segment (can be created with RTE A command:
has a session monitor, these programs can on
The assignment of an ID segment to these
welcome file.

RP,...).

programs and MUST have an ID
If the RTE-A system
y be removed by a super-user.
programs can be done in the

This program is required for specific P/Cs to download communication
protocol to the 12041A or the 12041B downloadable MUX. Refer to your
handler reference manual if your system uses either of these MUX cards.

The EMA size needed by the PCIF monitor ¢

be set by the user using an

RTE-A "SZ" command. The minimum size can be approximated using Figure 6.4
on the following page.

6-11

INSTALLATION

PCF /1000 EMA REQUIREMENTS

256 Byte 1024 Byte
Req. Size Req. Size

mLm Pogas {minimum)

J PCs & HIGHMAYs {consoidabed)

Figure 6.4 Minimum EMA Size

The minimum size is given using the following data:

- One request simultaneously on each P/C, with a length of 256 bytes
{Curve 1).

- The Handler used is HP provided with a request length of 1024 bytes
(Curve 2).

The minimum SAM size (in pages) can be approximated by the following formula:

<number of data highways> * 0.132
+ <general P/C overhead> 1.000

6-12

INSTALLATION

6.5.5 Required Files

PCIF/1000 requires the use of some FMGR files at run-time. These files are used in
read-only access mode and will not be modified by fCIF/lOOO. The files are as
follows: '

PCIF programs FMGR files note
PCIF (monitor) <configuration file> (1)
“PCMER (2) (3)
PCTMO "PCMER (2),(3)
PCDMX IPCFxx ' (3),(4)
"PCMER (2),(3)
PCHLT "PCMER (2),(3)

Table 6.7 Required Files

Note: (1) This file is provided by the user. It | has /been built using the
configuration editor and is specified in the #un string of PCIF/1000.

(2) This run-time error file can be localized by|the user or it can be the HP
provided file. The file is searched on the FMGR cartridges in cartridge
mounted order.

(3) This file is searched on the same FMGR cartridge as that given with the
highway descriptor file namr in Screen 1 of [the preconfiguration process.
The highway descriptor file is [PCHxx (P/C brand dependent). See Chapter
7.2.4 for details about the highway descriptor file.

(4) This file is used only for PC’s requiring the| 12041A or 12041B downloadable
MUX.

6-13

INSTALLATION

6.6 SOFTWARE INSTALLATION

This section describes how to 1load the PCIF/1000 software, prepare it for
installation, and install the PCGEN program.

6.6.1 Loading Software

The PCIF core software is delivered on magnetic media and must be restored to two
places:

1) the PCIF core product files must be restored to a FMGR cartridge

2) the F/1000 run-time files must be restored to a CI directory called /F1000

To restore the software, use the copy command CO of the utility program TF, as in the
following example:

CI> TF

TF: GR

TF: CO, <media device LU>{/PCIF/CORE/@.@},8.8::<FMGR cartridge name>,V
TF: CO, <media device LU>{/PCIF/F1000/@.@},/F1000/@.@,V

TF: EG

TF: EX

where: <media device LU> is the LU number of the device containing PCIF/1000.
<FMGR cartridge name> is the destination cartridge for PCIF/1000.

You must use the ::xx format to specify the FMGR cartridge. The FMGR cartridge must
already exist, because, if it does not, TF will create a CI directory of the same
name,

The on-line tutorial, Getting Started with PCIF, must be restored to a CI directory
called /GSWPCIF.

This is achieved using the TF command described below:

CI> TF
TF: CO, <media device LU>{/PCIF/GS/@.@},/GSHPCIF/@.@, V
TF: EX

6.6.2 Preparing PCIF/1000 Installation

Once restored, PCIF/1000 programs must be linked on the user system. The following
LINK command files are provided:

- for the preconfigurator: #PCLGE (or #PCLGC for CDS monitor)
#PCFOC

- for the run-time subsystem: #PCLOP
#PCLDM
#PCLTM

6-14

#PCLHL
#PCTST

It is recommended that the transfer file, *PCIF or *P
6.6.3) be used to install PCIF. If you do not use th
consult them to make sure that you are installing [
creating $PCIFM::LIBRARIES.

Do not initialize the MUX port in the WELCOME file.

NOTE:

These command files use Pl as a default cartridge re
code, R2, is used for all the files created at the
FOCLO, PCOPN, PCDMX, PCTMO and PCHLT). The security
files is "0". The operating system snap-shot file uses
the PASCAL library uses /LIBRARIES/PASCAL.LIB.

The user can edit these files for changing default valu
an example.

6-15

'IFC,

’CIF properly,

INSTALLATION

(described in subsection
se files, you should at least
especially for

erence. The default security
r;ser’s site (programs PCGEN,
code of all other PCIF/1000
SNAP as a default name, while

es. See the following page for

INSTALLATION

In the following example, the command file #PCLGE has been transferred to the user’s
cartridge (reference US) with the TF command, as explained in 6.6.1. The cartridge
references of all the files must now be changed from the default reference (Pl) to
US. In addition, a security code can also be inserted. In this example it is 31416.
These changes are achieved with the "Exchange" EDIT command.

EDIT #PCLGE::US - x% PCIF files are on US **
..... EDIT/1000 comments

* #PCLGE 94200~17002 REV.2525 <850610.1725>
* link file for PCIF/1000 PCGEN <preconfigurator>
* command file needs updating for FMGR cartridge number & security code
* command file needs updating for the Snap Shot file and PASCAL library.
SN, SNAP
LI,/F1000/FOPRL.LIB
LI,/F1000/FRULB.LIB
LI,/LIBRARIES/PASCAL.LIB
RE, /F1000/FCOMM.REL
RE,$PCGEN: :P1
EN,PCGEN:R2:P1
/18X/::P1/::US//
..... EDIT/1000 comments
/1$X/:R2:P1/:31416:US//
..... EDIT/1000 comments

* #PCLGE 94200-17002 REV.2525 ¢850610.1725>

* 1ink file for PCIF/1000 PCGEN <preconfigurator>

* command file needs updating for FMGR cartridge number & security code
* command file needs updating for the Snap Shot file and PASCAL library.
SN,SNAP

LI,/F1000/FOPRL.LIB

LI,/F1000/FRULB.LIB

LI,/LIBRARIES/PASCAL.LIB

RE, /F1000/FCOMM.REL

RE, $PCGEN: :US
EN,PCGEN:31416:US
/ER .

This operation must be perfomed on all other previously indicated files. A similar
operation must be performed if F/1000 is not stored on the CI directory /F1000. In
any event, the program FOCLO.RUN must be put in the directory /PROGRAMS.

PCIF/1000 may be split between two computer systems, one for running the
preconfigurator and configuration editor, and possibly another for the run-time
monitor and utilities. In this case two snap-shot files are used:

* snap-shot (1) for #PCLGE, #PCFOC, and #PCLCO (the link command file
built by PCGEN for linking PCCON).

* snap-shot (2) for #PCLOP, #PCLDM, #PCLHL, and #PCLRT (the link command
file built by PCGEN for linking PCIF monitor).

6-16

REMARKS:

Using the wrong SNAPSHOT FILE may result in an incor
time.

The following explanations may help the user to correc

a) The preconfigurator or configuration editor c

message FO0l06 (FMP RP error on FORM monitor

preconfigurator or the configuration editor we
forms management monitor because of RPL checksum.

the last RTE command (i.e. RU,PCGEN or RU,PCCON
directory is O (type "WD 0") before you re-r

INSTALLATION

rect RPL checksum at execution

t some unusual situsations:

an be aborted with the error
file). This means that the
re unable to start the F/1000
In such a situation, retry
). Make sure that your working
un PCGEN or PCCON. The error

should have disappeared.

At the end of preconfiguration (PCGEN),
might be aborted because the specified snapsho

b)

does not exist under the names SNAP or /LIBRA]
correct the files, #PCLCO and #PCLRT, as descril

6.6.3 Installing The Preconfigurator Program

The installation of the preconfigurator (PCGEN) is ach
If you az
you can use the non-CDS monitor, loaded with the tra:

one of two transfer files, *PCIF or *PCIFC.
several P/C brands in your system, or if the PCIF moni
the PCGEN created by *PCIF, then use the CDS version
transfer file *PCIFC.

TR *PCIF::<PCIF FMGR cartridge>, <PCIF

or

TR *PCIFC::<PCIF FMGR cartridge>, <PCIF

where: <PCIF FMGR cartridge> is the name of the car
restored.
NOTE: This installation must not be done on a sys

presently running, or where some run-time programs of
Should any of these be present on the target system
operations will be aborted.

HWhen *PCIF or *PCIFC ends, the operator is able to u
This is described in Chapter 7.

Note that the preconfigurator and configuration ed
package F/1000 for controlling the terminal/operat
already owns this package, the installation as describ
followed. Then either the PCIF provided ‘'"forms" moni
monitor the user received with F/1000.

6-17

the 1

ink process for PCCON or PCIF
t file, or the pascal library
RIES/PASCAL.LIB. In this case,
bed in section 7.3.

1ieved automatically by calling
¢ using only one handler type,
nsfer file *PCIF. If you have
tor program will not load using
of the monitor by invoking the

FMGR cartridge>

FMGR cartridge>

rtridge on which PCIF/1000 was

tem where PCIF and PCCON are
PCIF/1000 have an ID segment.
parts of the *PCIF or *PCIFC

%e the preconfigurator program.

itor use the forms management
or interaction. If the user
ed with PCIF/1000 must still be
tor FOCLO can be used, or the

Chapter 7

PRECONFIGURATION

7.1 INTRODUCTION

Preconfiguration is the definition of a source data area from which the PCIF run-time

monitor and the configuration editor will be expect

achieved with a menu-driven program called the preconfigurator.

screens which are used to establish the following infor

Choose the names of the descriptor files.
descriptor files, one for the P/C itself and

contents of the descriptor file.

Repeat the for all the PC/hig

configuration.

process

Confirm that all the required information has
The preconfigurator will use this information to create

- The configuration editor, PCCON.
- The PCIF run-time monitor, PCIF.

The following CI command is used to start the preconf
working directory to "O" with the CI command "KWD 0"):

CI> PCGEN: :cartridge referer

The cartridge reference was previously specified when
If it is unknown, it may be found by typing the CI comm

CI> DL, PCGEN::0

NOTE: ALL FILES should be on an FMGR cartridge; the v
use the FMGR namr format to name files.

7-01

to work. This definition is
The program displays
ation:

Each P/C brand requires two
one for the highway.

Verify that the required P/C or highway is supported, by checking the

hway combinations requiring

been found.

two programs:

igurator (be sure to set your
1ce

the program PCGEN was loaded.
d:

arious screens described here

PRECONFIGURATION

7.2 SCREEN DESCRIPTIONS
7.2.1 General

~ During the execution of the preconfigurator, information is requested via the
screened menus described in this section. There are three screens to be processed,
screen 1 and 2 in a loop followed by screen 3. This process may be summarized as
follows:

- Enter the name of a descriptor file.
- Verify the content of this descriptor file.
- Enter another descriptor file name for the associated P/C or highway.

- Verify the content of this file.

- Obtain a listing of all the verified information.

-~ Link the PCIF monitor (PCIF) and the configuration editor (PCCON)
programs .

This summary corresponds to the following sequence of screens:

START PRECONFIGURATOR
(C1> PCGEN::CRN)
/
EXIT SCREEN 1
Descriptar
Sealaction
ENTER Loop
ﬁgﬁEEN 2
soriptor
Information ENTER
EXIT
SCREEN 3
Compietion
Information , wtl-:trl:‘\T%ﬁditicn
X ENTER | CENTER
with completian with listing
List, schedule MACRO, schedule LINK and END

Figure 7.1 Preconfigurator Screen Sequencing

7-02

Screen Sequencing Comments

The loop comprising screen 1/ENTER,

|
|

PRECONFIGURATION

followed by screen 2/ENTER must be maintained

until all the the required information has been defined for both the P/C and the
highway portion of each brand. Then pressing EXIT on screen 2 displays screen 3 which
allows a file to be defined for listing this preconfi
allocation of a security code for the run-time monitor and configuration editor
program files created by the preconfigurator. \

When ENTER (with completion)

is pressed on screen

ration information, plus the

3 the preconfigurator first

schedules the MACRO assembler progrem, followed by |[the LINK loading program to

develop the run-time monitor (PCIF) and configuration

successful development of
preconfigurator program.

editor (PCCON) programs. The

these programs signals the completion of the

7-03

PRECONFIGURATION

7.2.2 Operation

The screens of the preconfigurator program are managed by the operator interface
program F/1000. Attempted use of the screens outside the parameters of F/1000 may
result in an error message : FOxxx FORMS ERRCR.

The following should be noted when using the screens:

The operator can only enter values or information in the unprotected fields of
the screen. These fields are always enhanced with inverse video, and may already
contain data that can be overwritten.

The cursor is moved between unprotected fields by pressing the TAB key (which
moves the cursor to the NEXT field) or pressing TAB and SHIFT keys
simultaneously (which moves the cursor to the PREVIOUS field). ‘

The ENTER key, and sometimes the EXIT softkey are used to validate the
information entered on the screen and to initiate the screen sequencing.

The window line is a display-only field where error messages are displayed when
an error has been detected. The entered data is not validated and the current
screen will remain displayed until the operator takes corrective action.

7.2.3 Softkeys

The following softkeys always appear in the same position with each screen.

HELP Displays an explanation of the use of the current screen. Pressing the
terminal key "home-up" redisplays the current screen in the same state
as it was when HELP was requested.

REFRESH Clears and resets the values of the currently displayed screen to the
values it had on first display.

ABORT A confirmation will be required if this key is pressed. The key

PCGEN must be pressed again to confirm. The preconfigurator will then
be terminated without generating either the run-time monitor or
the configuration editor. If the ABORT key is pressed once in
error, pressing another softkey (or ENTER key) disables the ABORT
request and the action associated with the depressed key is
taken.

7-04

7.2.4 Screen 1: Descriptor Selection

PRECONFIGURATION

s

PCIF/1000 (A.85.00.2525)

Descriptor file namr:

\,

HP94200 (c) COPYRIGHT Hew

PCIF/1000 Preconfigurator: Descriptor FilL Namr

Pressing ENTER key is the normal way to actithe next screen

Y
lett-Packard Co. 1985

x % * %

SCREEN 1

Comments

This screen asks for the FMGR namr of a descriptor fi
information on the P/C or highway to be configured.

The handler, possibly the partial configurator, and p
are named in a descriptor file must exist on a FMGR ca

The FMGR namr field is made up of twenty characters.
cartridge reference in the FMGR namr, as the preconf
associated files (handlers, partial configurators, etc
If no cartridge reference is specified, the preconfi
the FMGR cartridges for these files.

The operator must press ENTER to proceed to screen 2
been filled.

The descriptor files used must always be consistently

"non-CDS" descriptor files for all brands of P/Cs s
handler manual.

7-05

R
manual for the descriptor files that correspond to your

¥
tridge.

e which will contain relevant
fer to your handler reference
handler.

sibly the download files that

It is advisable to enter the
igurator will only search for
) on this specified cartridge.
rator will search throughout

when the FMGR namr field has

all "CDS" descriptor files or
elected. See the appropriate

PRECONFIGURATION

If the softkey EXIT is depressed, screen 3 is displayed. However, the preconfigurator

will

ignore the file name entered in the FMGR namr field. The acceptance of

descriptor file names by the preconfigurator only occurs with the validation of
screen 2.

Error Messages

The foilowing error messages may occur with this menu after the ENTER key has been
pressed. :

CO001 REQUIRED FIELD MISSING - ENTER VALUE IN FIELD. No file namr has been
entered.

CO003 NON-DESCRIPTOR FILE: The file exists but is not a deseriptor file.

CO035 NO ASSOCIATED HANDLER (OR FMP ERROR ON THIS FILE). A handler file has been
named in the specified descriptor file but has not been found.

CO037 NO ASSOCIATED PARTIAL CONFIGURATOR (OR FMP ERROR ON THIS FILE). A partial
configurator file has been named in the specified descriptor file but has not
been found. ‘
CO038 ALREADY ENTERED DESCRIPTOR FILE NAMR.

CO061 NO ASSOCIATED DOWNLOAD. FILE (OR FMP ERROR ON THE DOWNLOAD FILE). - A
downlcad file has been named in the specified descriptor file but has not been
found. - '

DCxxx CORRUPTED DESCRIPTOR

FMxxx FILE MANAGER ERROR.

XXxxx ?? : No error message has been found.

7-06

PRECONFIGURATION

7.2.5 Screen 2: Descriptor File Information

r f >
{ ** SCREEN 2 **
{

PCIF/1000 Preconfigurator: Descriptor Fil# Information

Descriptor file namr: [PCHAB
PC Brand Name: ALLEN-BRADLEY ﬁ
Handler file namr: %PCHAB [

Partial configurator file namr: PILC-PLC2.FAMILY

32 first supported types:

General information:

The ALLEN-BRADLEY highway supports the following;PC’E:

mini PLC-2/15,PLC-2,PLC-2/20,PLC-2/30,PLC [
|

Do you want to validate ? Yes:

_ L Y,

i
Comments I

screen. (The screen above shows Allen-Bradley specific information as an example.)
The preconfigurator program will search for, open and read the contents of these
files.

This screen describes the descriptor file whose FMGR njmr was entered in the previous

The operator must confirm whether the displayed informetion needs to be in the
required configuration. This validation is achieved by entering an X in the YES field
followed by pressing EXIT or ENTER. The displayed descriptor information will then be-
held for later use by programs MACRO and LINK (see 7,3}. Otherwise, an X in the NO
field refuses the information displayed on this screen, i.e. the associated handler
file. ﬁ

ENTER returns the preconfigurator to screen 1 for the definition of another
descriptor namr, while EXIT goes to screen 3 (in both cases the action given by X is

made) .

Note that it is impossible to modify the handler namr or the list of supported types

on this screen.

7-07

|
|
|
|
|

|

PRECONFIGURATION

Error Messages

1

C0001 REQUIRED FIELD MISSING: ENTER VALUE IN FIELD: Either a yes or no must be
selected.

C0004 X REQUIRED: Only the letter X in either upper or lower case can be
entered.

C0005 CONFLICTING ANSHWERS: Both yes and no have been simulteneously selected.
FOxxx FORMS ERROR

XXyyy UNDEFINED ERROR: No message has been found for this error in the error
message file,

7-08

7.2.6 Screen 3: Completion Information

PRECONFIGURATION

7

.

Y
** SCREEN 3 **

PCIF/1000 Preconfigurator: Completion Information
SC for PCIF/1000 created files:
CRN for PCIF/1000 work cartridge:

Listing namr:

Preconfiguration completion: Yes:

Adding other descriptor: ¥

Comments

|
|
|

This screen is used to complete the preconfiguration program by defining the security

code

(SC) and the cartridge reference (CRN) of the run-time monitor and +the

configuration editor, plus the name of a list file for recording the preconfiguration

answers. The required information is as follows:

code for the PCIF run-time monitor, for PCCON (the ccnfiguration editor), and
for the MACRO and LINK files.

- SC FOR PCIF/1000 CREATED FILES: This allows the %perator to define the security

CRN FOR PCIF/1000 WORK CARTRIDGE: Allows the operator to define the cartridge
reference for the PCIF monitor file, for PCCON (the configuration editor), and

for the MACRO and LINK files.

LISTING NAMR: a FMGR namr must be entered here if the user decides to end the

preconfiguration process. A confirmation request will be displayed after
pressing ENTER if the file already exists. Pressing ENTER again will overlay
this file with the latest preconfiguration data. This will include the

descriptors, the handlers and partial configurator file names that have been
chosen. The listing can be selected alone or si ultaneously with "adding other
descriptor". Screen 3 will be displayed again [if it is selected alone, and
screen 1 for adding another descriptor.

PRECONFIGURATION

PRECONFIGURATION COMPLETION: Enter the letter X in either upper or lower case in
the appropriate field. An answer one way or the other is required, and this has
been preset to "no". A "yes" is not allowed if "adding another descriptor" is
selected in the same screen. If 'yes" is selected, subsequently pressing ENTER
schedules the generation of the run-time monitor (PCIF) and of the configuration
editor (PCCON). For details of this process refer to section 7.3.

ADDING OTHER DESCRIPTOR: Enter the letter X in either upper or lower case to
display Screen 1 again. This can only be selected if the 'completion" option has
not been taken.

Error Messages

CO001 REQUIRED FIELD MISSING. ENTER VALUE IN FIELD: Neither '"yes", '"no" nor
"adding another descriptor" have been selected.

C0004 X REQUIRED: A character other than X has been used to answer the "“adding
another descriptor" or "completion" questions.

C0005 CONFLICTING ANSWERS: A "yes" and a 'no" answer have been selected
simultaneously for the '"completion" question.

CO011l NO TASK SELECTED: None of the questions in the screen have been answered,
and a '""no" has been selected for the "completion' option.

CO074 ALREADY EXISTING PCIF MONITOR OR CONFIGURATION EDITOR ON THIS CARTRIDGE.
FOxxx FORMS ERROR.

XXyyy ??: No message has been found for this error in the error message file.

7-10

PRECONFIGURATION

7.3 COMPLETION OF THE PRECONFIGURATO

The operator decides that all the required descriptors have been specified and
verified. Then having selected the "completion"” field in screen 3 and pressed ENTER,
the terminal screen is cleared. The preconfigurator| program now generates the
configuration editor and the run-time monitor by first using the assembler program
MACRO followed by the loader prcgram LINK.

During the operation of MACRO and LINK the following se#uence of events occur:

ithe

configuration editor (PCCON) and the run-time monitor ﬁ

The preconfigurator builds two assembler source |files. These are &PCCTB for
generating the configuration editor, and &PCRTIB for the run-time monitor (or
&PCRTC for the CDS run-time monitor). |

MACRO is scheduled twice, assembling &PCCTB which produces a relocatable %PCCTB,
end &PCRTB which produces %PCRTB (or assembling & CRTC which produces #%PCRTC).
The two source files are then purged.

The preconfigurator builds two command files for |the LINK program. These are
#PCLCO for the configuration editor, and #PCLRT for the run-time monitor. Only
one link command file name is used for both CDS and non-CDS monitors. This
command file reflects what is currently linked as PCIF.

i
|

LINK is scheduled a first time for the configurat4on editor and displays a list
of its segments. The last displayed are the partial configurators just selected
at preconfiguration time. If the configuration |editor has been successfully
assembled and loaded, the following message will be displayed: PCCON READY.

list of segments. If the run-time monitor has been successfully assembled and

LINK is scheduled a second time for the run—tizj monitor and also displays a
loaded, the following message will be displayed: HCIF READY.

successful creation of the
PCIF) programs.

preconfiguration program finishes with the

The two LINK command files #PCLCO and #PCLRT, and the relocatable files %PCCTB and
%PCRTB (or %PCRIC) are not purged after preconfiguration. The files #PCLCO and
#PCLRT can be modified and used to reload PCCON d PCIF without running the
preconfigurator again. If it is necessary to run t e preconfigurator again, the
flles, PCCON and PCIF, should be purged. |

The

operator can now run the configuration edi#or program to complete the

configuration process. Refer to Chapter 8 for details.

The file relationship may be summarized as follows:

|
|
|
MACRO &PCCTB &PCRTB or &PCRE source file

MACRO %PCCTB %PCRTB or %PCRTC relocatahle file
LINK #PCLCO #PCLRT ﬁ command file
Configuration Editor Run-time Mon1 or
PCCON PCIF

7-11

PRECONFIGURATION

All these files are located on the FMGR cartridge which has been specified in screen
3, and with the security code also provided in screen 3.

Any problem in the linking process will cause an abort before completion. The reason
for this may be one of the following:

a)

b)

e)

Some files were not found: SNAP and PASCAL libraries for example. Edit files
#PCLCO and #PCLRT to the file names used (Refer to section 6.6.2 for editing
these files). When the corrections are made, then run LINK again.

CI> LINK, #PCLCO:<SC>:<CRN>

CI> LINK, #PCLRT:<SC>:<CRN>
Where <SC> and <CRN> are those values entered in screen 3.
The program to link is too large (this usually happens with the 1link of
PCIF): There are too many P/C and HIGHWAY handlers for this system. Redo the

pre-configuration with less brands, or use the (DS version of PCIF by
re-installing with the transfer file *PCIFC.

Other 1ink messages may appear, see the LINK reference manual (PN
92077-90007) for correcting the errors, then run LINK again as described in
step a.

7-12

Chapter 8

CONFIGURATION

8.1 GENERAL

8.1.1 Introduction

- Computer,
- Museum

The configuration editor program allows the P/C user to set or modify values for the

parameters which describe the existing physical conne
and the HP 1000. This initialization of required par

supplying information, in sequence, to the formatted
program.

The end result of the program is a disc FMGR file whic

.

at run-time. The configurator uses a temporary Virtua
modify a user configuration according to information
configuration file is only created or updated at the en
{unless the configuration editor is aborted).

8.1.2 Overview
The configurator work file contains information deri
program. This information includes a list of types of
the current PCIF/1000 monitor program, and may not
preconfigurator again.

The configuration process may be summarized as follows:

Start the configuration editor with the command CI> 1}
sure your working directory is set to zero using the ¢

tion between the P/C stations
eters is achieved by the user
screens of the configurator

h is read by the PCIF monitor
Memory Area file to build or
btained on screens. The FMGR
d of the configuration process

°

ved from the preconfigurator
highways and P/Cs supported by
be altered without using the

PCCON: :cartridge reference (be _
Tmmand ch ND 0).

1. select configuration context (highway, P/C, or exit)
2. enter information specific to each handler:
- select the current P/C or highway;
- enter standard PC/highway information;
- enter type-dependent PC/highway information;
3. enter general information 0 ; :
. s . aese APPUCAR
4. create or update the configuration dise file. La”, r;f; ”%/
; / AT -~
s @3 Zijfi' ¢§”; =
8.1.3 Proposed Values g T I T
P

)

g fg/;he T

e
equested information

When a screen is displayed, a value or values pertainin
may already be found in some fields. These are propose
been defined before by the previous configuration or
configuration editor itself if +the screen is

configuration file for the first time. In either cas

d values, and will either have

i1l have been proposed by the

being used with the defined

the values may be altered to

suit current requirements or left as proposed. The most important point to remember
is that any value found in any field with any screen remains proposed until ENTER (or
in some cases, the PREVIOUS SCREEN softkey) is pressed|to validate the screen.

8-01

Norz Wb / Te (?/ G e

CONFIGURATION

8.1.4 Validation

At the end of the configuration process a configuration file is created or updated.
In this file a validation flag is set by the configuration editor which indicates
that the associated configuration is complete and confirmed to be ready for use by
the PCIF monitor at run-time.

The flag is not set if insufficient information has been supplied during the
configuration or update, and the configuration editor displays a warning to this
effect if the operator attempts to create a configuration file that lacks such data.
This is to prevent run-time problems and to ensure that PCIF/1000 operates within
previously defined parameters. However, it is possible for the operator to
temporarily store an incomplete configuration file that may be validated at some
later stage.

The following will be regarded as insufficient information and therefore not allowed
by the configuration editor:

Example

The port number to be used on the MUX card is required information for the
configuration editor. This number must be an integer between 0 and 7. Therefore if O
is entered this information will be validated, but if a blank is entered it will be
considered insufficient information and the validation flag will not be set for this
configuration.

NOTE

It may be useful to temporarily save an incomplete configuration,
for example to get more information, or to get a hard copy of a
list file.

8.1.5 Listing a Configuration
Listing a configuration is useful when searching for undefined parameters.

Making a listing of a configuration is possible by using the softkey LIST. This key
is available at screens 2, 3, 4, 5, 7, 9 and 11. It enables the operator to record
the configuration at various stages of the process. A list file must be defined in
screen 2 at the beginning of the configuration, and subsequent commands to LIST fills
this file with the available configuration data associated with the temporary work
file.

8-02

|

|

J CONFIGURATION
|

|

Printing or displaying the listing can be achieved by oke of three methods:

- Using the utility program PRINT.

- With the CI command LI, but this cannot be used while the configuration editor
is still creating or modifying the associated configuration file.

- By allocating en LU to a file name with the FMGR command CR before starting the
configuration editor. In this case the listing is placed directly into the LU
from which it can be printed or displayed Quring the processing of the

|

associated configuration file.

I

r
o
|

CONFIGURATION

8.2 SCREEN SEQUENCING
8.2.1 General

Each screen contains information for the user and presents options. The selection of
options enables the progression of the program which then proceeds to the next
screen. A screen is generally validated by pressing the ENTER or the PREVIOUS SCREEN
softkey. The next screen is then displayed.

The allocation of softkeys will vary slightly between screens, but the following are
found in every screen and in the same physical softkey position:

dELP:

REFRESH:

ABORT
PCCON:

LIST:

PREVIOUS
SCREEN:

ENTER:

Displays an explanation of the use of the current screen. Pressing the
terminal key "home-up" redisplays the current screen again, and
pressing "shift, home-up" redisplays the help screen again.

Removes the current screen and redisplays it showing the values it
contained when the screen was first displayed.

Terminates the configuration editor and prevents generation of
the configuration file. The operator will be asked to confirm
the abort request by pressing the softkey again. If ABORT is not
pressed again, the action of the depressed key is taken. If the
ABORT is confirmed, the program may be restarted with the
RU,PCCON command.

Writes configuration data into a file on disc from which a copy can
then be produced. There are methods available to achieve this. Refer to
subsection 8.1.5 for details.

Available at certain screens only, this key also reads the
information provided by the operator but provides an alternative
screen sequence than ENTER.

This is not a softkey but it may be used at every screen to read the

information supplied by the operator and display the next screen in
sequence.

8-04

|
(CONFIGURATION

8.2.2 Operation

The following diagram displays the sequence of the Conflguration Editor screens.

CONFIGURATION EDITOR START

|

SCREEN 1 |
BT

+ [
SCREEN 2 ”] SCREEN 11

I PREVIQUS

SCREEN

r

HIGHWAY PC f

+ + |
......................... ENTER \ |y ENTER |

DELETE i DELETE
+ PREVIOUS:|:PREVIOUS +
ENTER SCREEN :|: SCREEN / ENTER
< SCREEN 3| - SCREEN 7
ADD ADD
: + + t
: MODIFY ENTER ENTER MODIFY '
s SCREEN 4 |->—4 I—<{ SCREEN 8 £
EENTER PREVIOUS} [PREVIOUS ENTER
ENTER SCREEN SCREEN ENTER .
ENTER ENTER
Le SCREEN 5 >H< SCREEN ¢ (&~

T l Ll

] Ly '

! ENTER (! ENTER !

A7 : 1 Al

= ENTERJ "\ENTER -

SCREEN 6 [- - -~ - €4 SCREEN 10

...... HIGHWAY CONFIGURATION .1:99’_’..55.....’."?. CONFIGURATION LOOP -

|

Figure 8.1 Screen Seqencing Diagram

Note that screens 6 and 10 may not appear when configuring certain P/C brands. Refer
to section 7.2.2 for general advice on entering information on screens.

|

|

|
8-05 f |

CONFIGURATION

8.3 SCREEN DESCRIPTIONS
8.3.1 Screen 1: File Selection

-

\.

PCIF/1000 (A.85.00.2525) HP94200 (c) COPYRIGHT Hewlett-Packard Co. 1985

** SCREEN 1 **

PCIF/1000 Configuration Editor: File Selection

Configuration file namr:

Y
7N

Nad A “mﬁﬁ A | Hle |
O BT

PP

Pressing ENTER key is the normal way to activate next screen

Comments

The operator allocates a name for the configuration file to be subsequently made. By
using the entered FMGR namr the configuration editor checks if this will be a
configuration update or a new configuration.

- CONFIGURATION FILE NAMR is the name of the FMGR file that will be used by the
_PCIF run-time monitor for information on this particular configuration. It may
have been used for a previous configuration, but requires updating. Also, as it
is the namr associated with the call XQ,PCIF,NAMR to be made at run-time, it
must be in FMGR namr format. It is advisable to enter the cartridge number. If
this namr field is left blank it is assumed that this is a new configuration, of
which the namr may be defined in screen 11 at the end of the configuration
program. The file is not created, or updated until screen 1l is processed (as
the configuration editor works on a work file).

The provided namr is validated by pressing the ENTER key. The program then compiles
the required descriptors, and screen 2 is displayed. If a problem occurs, Screen 1 is
redisplayed containing a relevant error message. If error FMOO6 is returned, you
need to set your working directory to zerc allowing FOCLO to find the FMGR screen
files).

8-06

} CONFIGURATION

Error Messages

The following error messages may be displayed with this screen after the ENTER key is
pressed. Refer to Appendix A for further details.

C0014 INVALID CONFIGURATION FILE NAME. This file}already exists but is not a
configuration file.

CO013 UNDEFINED SOFTKEY

C0036 FMP ERROR NUMBER -xxx

DC036 FMP ERROR XX ON DESCRIPTOR FILE.

DCOxx CORRUPTED DESCRIPTOR. One of the desc¢riptor files wused by this
configuration editor has been corrupted. Run the preconfigurator
again to determine which one. |

XXyyy ??. No message has been found for this error in the error message file

("PCERR) .
Note: CO = Configuration error; DC = Descriptor error;
FO = Forms error; FM = File Manager error.

8-07

CONFIGURATION

8.3.2 Screen 2: Work Selection

- A
** SCREEN 2 **

PCIF/1000 Configuration Editor: Work Selection

Creating configuration

Listing file namr:

(must be defined if LIST is pressed on this
screen or subsequent screens)
Highway configuration:
PC configuration:

Exit:

\. J

Comments

This is the main screen in the configuration editor program end it informs the
operator whether the current configuration is a creation (CREATING) or a modification
(MODIFYING). The screen provides the option for selecting the subsequent screen
sequence, that is, for configuration of the highway or the P/C or to exit the editor
program upon completion of both of these. Also, the operator may define a namr for
providing a listing of the configuration.

A highway must always be configured before its associated P/C. This is because the
configuration editor verifies the compatibility of this highway (defined by its
number) with the required P/Cs.

- LISTING FILE NAMR is the name of the file that will be used to store a hard-copy
listing of the current configuration. It must be in FMGR namr format. The
softkey command LIST is used to output to the file. Refer to subsection 8.1.5.
for details of this operation. '

PC/HIGHWAY CONFIGURATION selects the configuration of either a P/C or a highway.
The operator must enter an X in the appropriate field.

EXIT provides the opportunity to leave the configuration process through screen
11. The operator must enter an X.

8-08

CONFIGURATION

Error Messages

The following error messages may be displayed with this
pressed. Refer to Appendix A for further details. |

screen after the ENTER key is

- CO001 REQUIRED FIELD MISSING - ENTER VALUE IN FIEL#.

- C0004 X REQUIRED. Only the character X in upper| or lower case is allowed to
select options. The erronecus field(s) will be shown blinking.

- CO005 CONFLICTING ANSWER. Two or three alternative options have been selected at
the same time. The erroneous fields will be shown blinking.

- CO013 UNDEFINED SOFTKEY.
C0056 UNDEFINED LISTING FILE.

|
|
|
|
!
|

FOxxx FORMS ERRCR /

|
XXyyy ??. No message has been found for this error in the error message file

("PCERR). {
Note: CO = Configuration error; DC = Descriptor error;§
FM = File Manager error;

8-09 !

CONFIGURATION

8.3.3 Screen 3: Highway Selection

Creating configuration

~\
**x SCREEN 3 **

" PCIF/1000 Configuration Editor: Highway Selection

.

Highway number:

Add/modify: b

Delete:

Comments

This screen will be the first displayed if the operator has opted to configure the
highways. It asks the operator to allocate a number to the highway requiring
configuration, which then becomes the highway’s internal identifier. The operator
also selects the type of highway configuration to be performed, either adding a new
configuration, or modifying or deleting a highway from an existing configuration. The
subsequent display of screens depends upon this selection.

- HIGHWAY NUMBER. The default value is n+l, where n is the largest highway number
already allocated. The number must be a positive non zero integer, smaller than
32767. If the default is entered, the operator creates a new highway, and
screen 4 will be displayed. If the value for an existing highway is entered, the
operator must specify in the next two fields, whether a highway is to be
modified or deleted.

- ADD/MODIFY. This field allows the operator to add a highway to en existing
configuration, or to modify the highway defined with the highway number field.
If you are modifying an existing highway, the next displayed screen will be
screen 5,

- DELETE. Allows deletion of the selected highway from the current configuration,

as long as this highway is not referenced by any P/Cs. Otherwise, this deletion
will be refused until all the associated P/Cs are deleted (see screen 7). The

8-10

Error Messages

CONFIGURATION

character X is entered tc request the deletion. Having selected DELETE, the user
can then press:

-~ ENTER to delete the selected highway and display screen 3.
or

- PREVIOUS SCREEN to delete the selected highway and display screen 2.

The following error messages may be displayed with thié screen after the ENTER key is

pressed. Refer to Appendix A for further details.

Note:

C0001 REQUIRED FIELD MISSING. ENTER VALUE IN FIELD. The relevant field is shown
blinking.

C0004 X REQUIRED. Only the character X in uppe‘ or lower case is allowed to
select options. The erroneous field(s) is (are) shown blinking.

C0005 CONFLICTING ANSWERS. Two or three alternatkve options have been selected
at the same time. The erroneocus fields are shown blinking.

C0013 UNDEFINED SOFTKEY.

C0019 NON EXISTING HIGHWAY NUMBER. Follows an attempt to delete a highway from a
configuration for which it has not previously been defined.

\

C0022 PC(s) ALREADY DEFINED WITH THIS HIGHWAY. Follows an attempt to delete
a highway for which P/Cs are still defined.
|

C0031 OUT OF RANGE DATA. The highway number must be an integer between 0 and
32767.

C0041 FULL HIGHWAY LIST. No more than 64 highways may be defined.

CO0056 UNDEFINED LISTING FILE.

\
CO065 DATA ENTERED DOES NOT MATCH FIELD TYPE. #E-ENTER. Concerns the highway
number.

FOxxx FORMS ERROR.

XXyyy ??. No message has been found for this error in the error message file
("PCERR).

CO = Configuration error; DC = Descriptor error;
FM = File Manager error;

8-11

CONFIGURATION

8.3.4 Screen 4: Highway Type Selection

4 N
** SCREEN 4 **

PCIF/1000 Configuration Editor: Highway Type Selection

Creating configuration

Available Highway types:

PLC-PLC2.FAMILY

\. 7

Comments

This screen is used to add a highway to an existing configuration. It displays a list
of the supported highway types as found in the descriptor files. The screen shown
above is an example showing the supported highway types for the Allen-Bradley
handler. The names are the same as those displayed in the preconfiguration program
at screen 2. The operator must select the highway type by entering an X in the
appropriate square. Only one type can be selected at a time.

The list of supported types may be too long to be displayed on a single screen. For
this reason two softkeys are defined for this screen. These are NEXT TYPES and
PREVIOUS TYPES, and pressing the appropriate softkey displays either the next or the
previous list. Once a highway type has been selected the operator must press ENTER
or PREVIOUS SCREEN to validate this selection. Pressing PREVIOUS SCREEN redisplays
screen 3, and pressing ENTER displays screen 5.

Error Messages

The following error messages may be displayed with this screen after the ENTER,
PREVIOUS SCREEN or LIST key is pressed. Refer to Appendix A for further details.

- CO001 REQUIRED FIELD MISSING. ENTER VALUE IN FIELD. The relevant field will be
shown blinking.

8-12

Note:

CONFIGURATION

CO004 X REQUIRED. Only the character X in uppeJ or lower case is allowed to

select options. The erroneous field(s) will be shc

CO005 CONFLICTING ANSWERS. Two or three alternatj
at the same time. The erronecus fields will be shd

CO013 UNDEFINED SOFTKEY.

CO056 UNDEFINED LISTING FILE.

C0080 NO AVAILABLE TYPES. ABORT PCCON. CHECK PRECC

FOxxx FORMS ERROR.

XXyyy ??. No message has been found for

("PCERR).

co
™

File Manager error;

Configuration error; DC = Descriptor error; |

8-13

wn blinking.

DNFIGURATION.

ive options have been selected
wn blinking.

this error in the error message file

i

CONFIGURATION

8.3.5 Screen 5: Highway Configurationn

4 N,
* X SCREEN 5 %* X

PCIF/1000 Configuration Editor: Highway Configuration

Creating configuration

Highway type: PLC-PLC2 . FAMILY Number: 1

Priority:
Port number:
First LU number:

Second LU number:

Comments

This screen asks for information whose nature is common to all highway types but
whose content is specific for the type that has been selected. There will be an
indication if this highway has been configured before (MODIFYING) or was never
configured (ADDING). The number of required LUs will be dependent on the selected
highway type. If only one LU is required then only one LU field will be displayed.
The validation flag will not be set unless values are entered for all the fields.

~ PRIORITY. This field asks for a parameter that defines the priority of this
highway. The priority will be used by the PCIF monitor progiram at run-time and
will be an integer between 1 and 99. The highest priority is 99, and the lowest
priority is 1. If two requests are received simultaneously, the highest
priority is handled first. This will integrate the PCIF software with the
various data flows defined for a given application. The priority is determined
by comparison with other modules. A value O may be entered temporarily but this
must be redefined between 1 and 99, with this screen, to set the validation
flag.

- PORT NUMBER. Provides the port number of this highway on the interface card,

where this interface card is a MUX. The entered value sets the validation flag
and should be an integer between O and 7. A blank may be entered if a port

8-14

Error Messages

|

|

| CONFIGURATION
[

\

number is not selected but in this case the validation flag will not be set. Any
integer between 0 and 7 must be entered even if a MUX card is not used.

FIRST & SECOND LU. Allocates either one or two LUs to the highway. A warning
message will appear, after pressing ENTER, if the LU has already heen allocated
to another highway. Pressing ENTER a second time confirms the selection. A value
0 may be entered temporarily but this must be redefined between 1 and 255, with
this screen. If two LUs are required they must have different numbers.

I
I

The following error messages may be displayed with thls/screen after the ENTER key is

pressed. Refer to Appendix B for further details.

Note:

(

C0010 INVALID LU NUMBER. This will be caused by §nter1ng an LU number that is
either negative or higher than 255.

CO026 INVALID PRIORITY NUMBER. The entered value i§ outside the range 0 to 99.
|

CO043 INVALID PORT NUMBER. The port number must be| between 0 and 7.
|

CO045 INVALID LUs: FOR THIS HIGHWAY TYPE THE LUs MUST BE DIFFERENT.

CO065 DATA ENTERED DOES NOT MATCH FIELD TYPE. RE-EFTER. Will either concern the
priority, the LU number or the port number. The lerroneous field will be shown

blinking.

|
CO013 UNDEFINED SOFTKEY.
C0056 UNDEFINED LISTING FILE.

FOxxx FORMS ERROR. |

XXyyy ??. No message has been found for this e#ror in the error message file
("PCERR) . |
|
CO = Configuration error; DC = Descriptor error;

FM = File Manager error;

8-15 |
|

CONFIGURATION

8.3.6 Screen 6: Highway Special Information

4 ™
** SCREEN 6 **

PCIF/1000 Configuration Editor: Highway SIEMENS Special Information

Creating

Highway type: Number:

Baud rate Generator O: (see your MUX connector)

Baud rate Generator 1:

Baud rate:

(Range 1: 2400, 4800, 9600 bauds
Range 2: 300, 600, 1200 bauds)

WARNING! For the same MUX card, choose the same range for a given baud rate
generator. Refer to previously configured highways.

Comments

Screen 6 is only displayed for certain P/C brands. The example above applies to
Siemens P/Cs. It is used to define the baud rate for the P/C computer dialog and,
therefore, to ensure that the MUX and target PC’s interface operate at the same baud
rate.

If the highway has not already been configured, the message CREATING is displayed;
otherwise, MODIFYING is displayed.

-~ BAUD RATE GENERATOR. Enter an X to define the range of the baud rate generator.
- BAUD RATE. Enter the required rate from either range 1 or 2.
Note that the operator defines the relationship between generator and baud range the
first time a highway is configured for the MUX card. For example, if 0 is selected
for the generator followed by a baud rate from range 1, then the relationship between
0 and a baud rate from range 1 is established. This relationship must be maintained
for subsequent highway configurations on the same MUX card.

The screen may be passed without entering any information, but the configuration will
not be validated.

8-16

CONFIGURATION

Pressing ENTER redisplays screen 3. This allows either the highway configuration to

be repeated or selection of screen 2 (Hork Selection).

Error Messages f
|

The following error messages may be displayed with this|screen after the ENTER key is
pressed. Refer to Appendix A for further details. |

- DATA ENTERED DOES NOT MATCH FIELD TYPE. RE-ENTEh. The baud rate must be an
integer. |

- INVALID BAUD RATE. The baud rate must be one of thé listed values.

8-17

CONFIGURATION

8.3.7 Screen 7: P/C Selection

-

Creating configuration

~
** SCREEN 7 **

PCIF/1000 Configuration Editor: PC Selection

PC Logical Identifier:

Add/Modify: X

Delete:

Comments

This

screen allows the definition of a new P/C by allocation of a logical identifier.

The operator may also modify the configuration of a previously defined P/C by
entering this PC’s logical identifier.

P/C LOGICAL IDENTIFIER. The default value is n+l, where n is the largest
logical ID number already allocated. The number must be a positive integer,
smaller than 32767. If the default is entered, the operator adds a new P/C, and
screen 8 will be displayed. If an existing P/C identifier is entered, the
operator must specify in the next two fields whether the P/C is to be modified
or deleted.

ADD/MODIFY. This field allows the operator to add a P/C to an existing
configuration, or to modify the P/C defined with the P/C logical identifier
field. If you are modifying an existing P/C, the next displayed screen will be
screen 9.

DELETE. Allows deletion of the selected P/C from the current configuration. The
character X is entered to request the deletion. Having selected DELETE, it is
possible either to PRESS:

ENTER to delete the selected P/C and display screen 7.

8-18

CONFIGURATION

- or PREVIOUS SCREEN to delete the selected highway land display screen 2.

/

Error Messages |

The following error messages may be displayed with this screen after the ENTER,
PREVIOUS SCREEN or LIST (message C0056) key is pressed Refer to Appendix A for-
further details.

CO001 REQUIRED FIELD MISSING. ENTER VALUE IN FIELb The relevant field is shown

blinking. }
|

- CO004 X REQUIRED. Only the character X in uppeJ or lower case is allowed to
select options. The erronecus field(s) is (are) sgown blinking.

- CO005 CONFLICTING ANSWERS. Two or three alterna#ive options have been selected
at the same time. The erroneous fields are shown blinking.

- CO013 UNDEFINED SOFTKEY. §

- C0025 NON-EXISTING P/C IDENTIFIER. An attempt hhs been made to delete an an
undefined P/C from a configuration.

- C0031 OUT OF RANGE DATA. Either the entered valhe is larger than the maximum
allowed (32767) or it isn’t & positive integer va‘ue.

- C0042 FULL P/C LIST. No more than 256 P/Cs may be defined.
- CO056 UNDEFINED LISTING FILE.

- CO065 DATA ENTERED DOES NOT MATCH FIELD TYPE. RQ-ENTER The erroneous field is
shown blinking.

- FOxxx FORMS ERRCR.

- XXyyy ??. No message has been found for this error in the error message file

("PCERR).
Note: CO = Configuration error; DC = Descriptor error;
FM = File Manager error;

8-19

CONFIGURATION

8.3.8 Screen 8: P/C Type Selection

r A
** SCREEN 8 **

PCIF/1000 Configuration Editor: PC Type Selection

New PC Adding

Available PC types:

PLC-2.FAMILY PLC.FAMILY

Comments

This screen is only displayed if a P/C is to be added to the configuration as it
shows the supported types of P/C as contained in the descriptor file. The names are
the same as those displayed in the preconfiguration at screen 2. The P/C type is
selected with either an upper or lower case X character in the appropriate field.
Only one type can be selected at a time.

The 1list of supported types may be too long to be displayed on a single screen. For
this reason two softkeys are available, NEXT TYPES and PREVIOUS TYPES, for displaying
other parts of the list.

A P/C type selection must be made and is only validated if the ENTER or
PREVIOUS SCREEN key is pressed. Screen 9 is displayed after ENTER, and screen 7 after
PREVIOUS SCREEN.

See the following page for possible error messages.

8-20

CONFIGURATION

Error Messages

The following error messages may be displayed with |[this screen after the ENTER,
PREVIOUS SCREEN or LIST (message CQ056) key is pressed. Refer to Appendix A for
further details.

CO001 REQUIRED FIELD MISSING. ENTER VALUE IN FIELD. The relevant fields are
shown blinking.

- CO004 X REQUIRED. Only the character X in upper or lower case is allowed to
select options. The erroneous field(s) will be shown blinking.

- CO005 CONFLICTING ANSHWERS. Two or three alternative options have been selected
at the same time. The erroneous fields are shown blinking.

- CO0l13 UNDEFINED SOFTKEY.
- CO056 UNDEFINED LISTING FILE.
- CO080 NO AVAILABLE TYPES. ABORT PCCON. CHECK PRECONFIGURATION

- FOxxx FORMS ERROR.

- XXyyy ??. No message has been found for this error in the error message file
("PCERR) .

onfiguration error; DC = Descriptor error;

Note: CO = C
FM = File Manager error;

8-21

CONFIGURATION

8.3.9 Screen 9: P/C Configuration

’

Creating

™\
b8 .4 SCREEN 9 * %

PCIF/1000 Configﬁration Editor: PC Configuration

\.

PC type: PLC-2.FAMILY Number: 1

Highway number: PC Station Number:

Time out: Time out unit: 2 1: minute
2: second

Priority:

Capabilities: HWrite data allowed:

Write program allcwed:
Transparent functions allowed:
Unsolicited PC requests allowed:
Start/Stop allowed:

Comments

This screen asks for information whose nature is common to any P/C type. The screen
informs the operator if this P/C has not been previously configured (CREATING), or
that it is to be updated (MODIFYING). It is possible to pass this screen without
entering any information, but in this case the configuration will not be validated.

HIGHWAY NUMBER. Requires the highway number on which this P/C is to be
connected. The number was defined at screen 3, or if the highway was previously
configured it can be found in the configuration list file. The highway type
must be compatible with the P/C being defined. Only one P/C per highway is
allowed where point-to-point connections are used.

PC STATION NUMBER. This will only be displayed when the P/C is to be connected
using a multipoint 1link, in which case the required information will be the
physical address of the P/C. This may be 0, will be PC brand dependent and
generally defined by switches on the interface card of the P/C. For more
information refer to the relevant P/C brand chapter. NOTE: This value must be
entered in "decimal".

TIMECUT and TIMEOUT UNIT. These two fields in combination define the timeout

value for the P/C. This is the time period that a P/C request from an
application program can remain unproccessed inside PCIF.

8-22

CONFIGURATION

The timeout is a two digit integer, and the unit is selected to be either 1 or

2. If the unit is 1 the timeout value will be in minutes, if it is 2 the value

is in seconds. This gives a possible timeout range of 0 seconds to 99 minutes.

The proposed value is 30 seconds. A zero timecut value signifies no timeout

defined for this P/C. This parameter is not required to set validation of the

configuration, however if a timeout value is entered a unit must also be
|

entered. i

- PRIORITY. This parameter defines the priority of| the associated handler that
will be called by the PCIF monitor for this P/C. It may be an integer between 1
and 99 and will be significant when compared with the priority values of the
other P/Cs or highways. The proposed value is 50. A zero may be entered in
which case the validation flag will not be set. 9 is the highest priority and
1 is the lowest priority. If two requests are received simultaneously, the one
with the highest priority will be handled first. |

The following capabilities are selected if either an)upper or a lower case X is

entered in the appropriate field. They are proposed ”4ff“, unless a PC of the same

type has been previously configured otherwise.

- WRITE DATA and WRITE PROGRAM. The writing of data or PC programs into the PC
memory is only permitted if these facilities are allowed. Also refer to the
descriptions of PC_WRITED and PC WRITEP (Chapter 4p for more infermation.

- TRANSPARENT FUNCTIONS ALLOWED. Allowing this capagility permits the application
program to use the PC_TRANS access routine with thls P/C. Refer to Chapter 4
for further information.

- UNSOLICITED REQUESTS. When this capability is a%lowed the P/C can transmit
unsolicited requests to the application program. Also refer to the PC_ENUNSOL
and PC_DISUNSOL access routines description in Chabter 4.

- START/STOP ALLOWED. When this capability is allow%d the P/C can accept PC_START
and PC_STOP requests from the application programx Also refer to Chapter 4 for
further information.

Before selecting any of these capabilities for a new P/C type, refer to the relevant
P/C brand information to check that the selected capability is supported. An error
message will be displayed if an unsupported capability%is selected.

All supplied information for this screen is validated ﬁy pressing the ENTER key.
|

Error Messages |
|

|
The following error messages may be displayed with this screen after the ENTER or
LIST (message CO056) key is pressed. Refer to Appendix A for further details.

- CO001 REQUIRED FIELD MISSING. ENTER VALUE IN FIELD. The timeout unit field will
be shown blinking if a timeout value has been ent red without defining a timeout
unit.

|

- CO004 X REQUIRED. Only the character X in upper or lower case is allowed to

select options. The erroneous field(s) will be shown blinking.

|
8-23 |
|
|

Note:

CONFIGURATION

C0005 CONFLICTING ANSWERS. Two or three alternative options have been selected
at the same time. The erroneous fields will be shown blinking.

CO013 UNDEFINED SOFTKEY.

C0O019 NON EXISTING HIGHWAY NUMBER. No highway has been defined for the entered
number.

C0023 ALREADY ALLOCATED P/C STATION NUMBER. The entered P/C address has already
been allocated to another P/C on the same highway.

C0026 INVALID PRIORITY NUMBER. The entered priority value must be between 0 and
99.

CO027 TIMEQUT VALUE OUT OF RANGE. A negative integer has been entered.
CO03C NON-COMPATIBLE HIGHWAY. The entered highway number cannot support the
entered P/C type.

C0031 OUT OF RANGE DATA. The highway and P/C number must be an integer between 0
and 32767.

C0046 INVALID TIMEOUT UNIT. Only units 1 or 2 are allowed.
C0047 ENTERED CAPABILITY DOES NOT MATCH WITH THE FEATURES OF THIS P/C.
C0056 UNDEFINED LISTING FILE.

CO063 ALREADY DEFINED PC ON THIS HIGHWAY (POINT TO POINT LINK). The entered
highway has already been configured with another P/C on a point to point link.

CO065 DATA ENTERED DOES NOT MATCH FIELD TYPE. RE-ENTER. This may concern any of
the following fields: timeout unit; timeout value; priority; highway number or
the P/C address. The erroneocus field will be shown blinking.

FOxxx FORMS ERROR.

XXyyy ??. No message has been found for this error in the error message file
("PCERR}).

Configuration error; DC = Descriptor error;

File Manager error;

co
M

8-24

| CONFIGURATION

J
8.3.10 Screen 10: P/C Special Information JJ
\
|
i

.
** SCREEN 10 *;ﬁw

PCIF/1000 Configuration Editor: PC SIEMENS Sp%cial Information

PC type:

f Number:
|
|
Logical start address of physical areas: |

Data module area: (word address) |

Input image: (byte address)

Output image: (Byte address)

Flags: (byte address)

Counters: (counter address)

Timers: (timer address)

Absolute addresses: (byte address,
word address for %5-1505)

[Bit number

|
J

Coordination flag: Byte number

Comments]

Screen 10 is only displayed if the P/C being configured is of a certain brand. For
example, P/Cs manufactured by Siemens will require such|information as the P/C memory
map to be defined. Details of this screen are contained in the specific handler

manual. The content of this screen will vary when other|P/Cs are being configured.

|
{
;
|
|
I
|
\
(
J
|
!
|
i
|
|

|
8-25 [

CONFIGURATION

8.3.11 Screen 11: PCIF General Information

‘ N
** SCREEN 11 **

PCIF/1000 Configuration Editor: General Information

Creating Configuration

Maximum length of application
program requests or replies:

Maximum PC request queue length 8 (requests)

Maximum number of access keys:

PC DISC Security code
(also used for scheduling PCHLT):

Configuration file namr:

Depress ENTER to complete PCCON.

Comments

This screen asks for information that is common to all the modules of PCIF/1000 and
that generally describes the highway and P/C configuration that has taken place.

NOTE: If you wish to list the values displayed on screen 1l in a list file,
you must do the following before pressing the ENTER key:

* Press PREVIOUS SCREEN to return to screen 2. This validates the entered
data;

* On screen 2, select the exit option and press ENTER. Screen 11 will be
redisplayed;

* On screen 11, press LIST to store the validated data in the list file.

- MAXIMUM LENGTH OF APPLICATION PROGRAM REQUESTS OR REPLIES. The size of memory
taken for storage of waiting messages is dependent upon the message length. For
this reason the maximum length of the requests and replies must be defined. The
information required for this field is the maximum length in bytes. It is a
positive integer smaller than 1025 which simultaneously defines request and
reply length. If the entered value is 0 the field is assummed not to be selected

8-26

When
this

exists for a PCIF configuration, a warning is displayed;

The ENTER key must be pressed again for the affirmative

The file name in the FMGR namr field must be changed

CONFIGURATION

|
\
|
|
|
I
|
[
|

and the validation flag is not set. The proposed value is 512 bytes. For

presetting the system memory see section 6.5.5.

PC REQUEST QUEUE LENGTH. The size of memory taken by requests waiting to be
processed is dependent upon the amount of the requests and their length. HWith
this field the number of these requests can be limited. A positive integer can
be entered to define the maximum number of requests waiting to be completed for
the same P/C. If the entered value is O the field is assumed not to be selected
and the validation flag is not set. The proposed alue is 8 requests.

MAXIMUM NUMBER OF ACCESS KEYS. Access keys are| used by certain PC access
routines. For details refer to Chapter 4. The required information for this
field is a positive integer smaller than 65. If the entered value is 0 the field
assumed not to be selected and the validation f;ag is not set. The proposed
value is 64. |
SECURITY CODE. This code is used in conjunctionlwith the P/C access routine
PC DISC (see Chapter 4) and also with the stopping of the PCIF monitor (see
Chapter 9). The required information is an integer between -32768 and 32767.
The proposed value is 0. This field has no influence on the validation flag.

CONFIGURATION FILE NAME. This field allows the definition of the name of the
configuration data just compiled. The name will be the same as that entered in
screen 1 and may be changed if required, although|/ the FMGR namr format must be
maintained. A FMGR disc file will be created with the name entered in this
field.

store the data entered during
If this file already

ENTER is depressed the configuration editor will
configuration into the disc file named in the namr field.

DO YOU REALLY WANT TO REPLACE THE CONFIGURATION FILE? YES: SAME KEY.
and the file is overlaid.

#f this configuration is to be

stored in a different file from the original file (as given in screen 1).

If the file already exists but not as a PCIF configuration file the configuration

editor will not overlay it and a error message will be

displayed.

If the configuration contains unvalidated data the opefator is reminded by a message

before the configuration is stored. The message states:

NON-VALIDATED CONFIGURATION. FOR CONFIRMATION DEPRESS THE SAME KEY.

Pressing ENTER then stores the configuration without validation, which may be useful
for recording incomplete configurations awaiting confirmation of detail. Note that
the reason for validating configurations is to guaﬁkntee compatlblllty with the

application program at run-time.

8-27

CONFIGURATION

Error Messages

The following error messages may be displayed with this screen after the ENTER,
PREVIOUS SCREEN or LIST (message CQO056) key is pressed. Refer to Appendix A for
further details.

Note:

CO001 REQUIRED FIELD MISSING - ENTER VALUE IN FIELD. The namr field will be
shown blinking if no file name has been defined.

C0014 INVALID CONFIGURATION FILE NAME. The file already exists but not as a
configuration file.

CO031 OUT OF RANGE DATA. This may concern all the fields except the
configuration file namr. The erroneocus field will be shown blinking.

CO056 UNDEFINED LISTING FILE.

CO065 DATA ENTERED DOES NOT MATCH FIELD TYPE. RE-ENTER. This may concern any of
the following fields: maximum request length; P/C request length; maximum number
of request keys or the security code. The erroneous field will be shown
blinking.

FOxxx FORMS ERRCR.

XXyyy UNDEFINED ERROR.

CO = Configuration error; DC = Descriptor error; FM = File Manager error;

8-28

|
1
|
|
r

Chapter 9
RUN—TIIJIE OPERATION

[
9.1 INTRODUCTION |
This chapter describes how the variocus components of P&IF/lOOO interact at run-time.
The chapter assumes the following: (

- That the installation and configuration procedures qave been followed.

- That a valid configuration flle exists.

- That an application program has been written andrcontalns calls to P/C Access
\

Routines.
Figure 9.1 shows the utility programs of PCIF/1000 tLat are activated at run-time
with the call:

XQ,PCIF,<configuration file name>,<emer‘ency file name>

The run-time operation of PCIF/1000 can be divided into three phases.

Initialization Phase 3
This is the immediate result of the run-time command pnd is described in subsection

9.2.2. |

Run-Time Phase [
The period between PCIF OPEN and PCIF CLOSE when an application program issues P/C

Access Routines. This is described in subsection 9.2.

Stopping PCIF/1000
Another program must be scheduled to deactivate the PC&F/IOOO monitor. This is called

PCHLT and is described in section 9.4.

Section 9.3 describes possible errors that may ocﬁur during the three run-time
phases. Certain errors may abort the application program or the PCIF monitor, while
others are not fatal and only create warning messages. All the error messages are
listed in Appendix A, end in some cases advice is given on possible corrective

action. |

9-01 |

RUN-TIME OPERATION

APPLICATION
PROGRAM

$PCLIB
PCIF Library

PCOPN

0
(Open) \ PCIF

(Manitor)
(Time Out) e

e

PCHLT User’s
(Halt) Emergency
Routine

Figure 9.1 Run-Time Utility Programs

The purpose of the programs shown in Figure 9.1 are as follows:

PCIF :

PCOPN:

PCHLT:

PCTMO:

PCDMX:

$PCLIB:

This is the central run-time part of the subsystem. It analyzes the various
requests initiated by the application program and processes them.

Establishes the connection between the application program and PCIF.

This program is scheduled by the user from a terminal to stop the run-time
PCIF subsystem.

This program is scheduled by PCIF and put in the time list on a regular
basis. Every time it is activated it sends a message to the MONITOR.

This program is scheduled by PCIF to download 280 code to the MUX. The
required code (P/C brand dependent) is found in a file on disc.

This is the 1library to be used by every application program requiring
interaction with a P/C through PCIF and will contain the P/C Access Routines
listed in Chapter 4. It is appended to the application program during the
linking process of this program.

EMERGENCY: This will be scheduled by PCIF when the PCIF run-time subsystem is stopped

either normally or abnormally. This program is user written, its name is
user definable and must follow the RTE-A naming rules.

9-02

RUN-TIME OPERATION

9.2 STARTING PCIF
9.2.1 RTE Command
The PCIF subsystem must be started before any applicati#n program access to PCIF can

be made. To do this, the various program parts of the PQIF subsystem must be assigned
an ID segment as follows:

RP,PCOPN: :crn RP,PCHLT::crg

RP,PCTMO: :crn RP,PCDMX: :cr
RP,PCTST::ern |
RP,PCIF::crn (

Having assigned ID segments the subsystem can be started with the following command:
XQ,PCIF,<configuration file name>,<emergency file name>

This command can be issued from either the WELCOME file, a terminal or an RTE program
written by the user. AUTOR should be RP’ed in the NELCOME file if a power failure
recovery is being made with Gould-Modicon P/Cs. |

i
If the command is not issued from the WELCOME file, ;he following message appears
when you are logging off:

PCTMO (System Utility) f
PCIF (System Utility) |
Continue, Logoff, Background, or ? [C]? }

In response, simply type an "L'" to logoff. This mesgage should only appear once,
when PCIF is initially started up from a user’s session.

Note: The "RU" command may be used instead of the "XQ' command to start PCIF. The
"RU" command, however, is an execute with-wait command, and the CI (the A-Series user
interface) will wait for PCIF to finish before issuing another prompt. Hith "XQ",

you get "CI" back immediately because "XQ" means execute without waiting for PCIF to

finish. j

9.2.2 Initialization Phase

The XQ,PCIF command verifies that the configuration file name is valid and that this
file contains a complete configuration (i.e. the validation flag has been set), also
that an ID segment exists for the user provided emergency program if this program has
been called within the XQ,PCIF command. ;

Program PCIF then loads the configuration description into Extended Memory Area (EMA)
of the HP 1000, asks for the various RTE resources (e.g. class numbers) and verifies
that the required resources are present, such as LUs and ID segments for the various
components of the subsystem. J

Next, using information found in the configuration file the appropriate 280 code is
downloaded to the MUX with the PCDMX program for those handlers using the 12041B MUX
card. Following this, the PCTMO program is scheduled and subsequently puts itself

9-03

RUN-TIME OPERATION

into the timelist. Then the program PCOPN is scheduled and passed parameters by the
PCIF monitor.

Refer to Figure 9.2 for an overview of these operations.

]
1
User |
Program '
! @ ¥QICOF. <confnemes <Emergency Prog>
! T
. y
' Returns message Sehedulas 1 n
| a8 s TN 8 &
— () (PCIF > RUNNING) ety o'}
: to dawnlood ¢.:a e
firmrware vi -
. PCHLT @ tothe wux | 1 ; pez
1
' c
' FOIWXL 1 O
Application | 1 PCIF ° te
Program ! MONITOR , @
! Schedules & Passes 0 '
e e : pturopn(;;t:;s ‘ r '\ D
© i
r
L @ Schecuies PCTUG Vi
' PCOPN P v
]
. Tie
t PCTMO 'y
' A
1
i
!
E:,"r z’;ﬁ"ﬁ ' Puts itself into TMELIST
!
A : iy
——— S
User written F“CIF/1000
programs

Figure 9.2 Initialization Phase

Finally, if everything is correct, the message "PCIF> running” is sent to the
terminal that issued the XQ,PCIF command, The initialization phase is then complete.
Otherwise an error message is displayed and the initialization process is terminated.

The second parameter of the run-time command (the emergency program hame) provides
the name of an RTE program that is scheduled when PCIF Monitor ends, either normelly
or abnormally. The purpose of this optional parameter is to allow a user to make an
emergency decision in case of failure or to attract attention when PCIF stops
normally.

Note that when the initialization phase is complete, all the P/Cs existing in the
configuration are set to a PCIF disconnected state.

9-04

RUN-TIME OPERATION

9.2.3 Messages

During the run-time operation of PCIF/1000, messages are displayed on the scheduling
terminal and will have the following format:

PCIF>warning : XXXXXXXXXXXXXXXX [1]
or
PCIF>ABORT : XXXXXXXXXXKXXXXXX [2]

[1] This is an information message. The run-time P%IF/lOOO subsystem will stay
operational despite the occurrence of an abnormal levent. The general events are
described in this section, while a detailed descrﬂption and the possible action
to be taken are listed in Appendix A.

|
[2] This is an indication that a serious malfunction has occurred and that the

PCIF/1000 subsystem has ceased to operate. Reasons for this malfunction are
listed below. The problem should be corrected and PCIF restarted as indicated

previously (normal start). |
Both types of message have the following structure : 1

XXyyy 222222222222 ZZ2222Z2Z222222222222222222%. ...

XX is a two character tag indicating the part of the subsystem that has encountered
the problem. These characters may be:

MI the error was detected during the initialization part of PCIF. At the time of
the error neither the epplication program nor a P/C was able to start any dialog.

MK the problem has been detected by PCIF during the normal operation of PCIF (i.e.
after the message "PCIF>running" was displayed).

DM the download program (PCDMX) has detected a problenm.
TM the timeout program has detected a problem.
ST the PCHLT program has detected a problem.

FM this is an extra message that indicates what kind|/ of FMP error has occurred. It
is usually displayed as a further explanation of a previous message. For example:

PCIF>warning : DM0O0O8 FMP error on download file. FMP error -006
PCIF>warning : FMOO6 File does not exist.

yyy 1is a three digit number that indicates the error number,

2Z....1is an ASCII string that provides a short explanation of the error.

9-05

RUN-TIME OPERATION

Appendix A provides a complete explanation of all the possible error codes and
messages. The message text can be localized by the user into any local language. (see
section 9.2.4).

An error message will be displayed in the following format when PCIF is unable to
find the corresponding error file:

PCIF> XXyyy ?°?

The operator will then need to refer to Appendix A to find an explanation of the
message.

9.2.4 Localizing Error Messages

The user can localize message files by changing the text that appears after the error
number. For example:

The error message '"MKO42 impossible to answer to application program" can be
translated into French to read "MKO42 contact rompu avec le programme d’application"
or into German to read "MKO42 Unmoeglich dem Anwenderprogram zu antworten".

The error message file used by the monitor program is called "PCMER, the one used by
the P/C Access Routines is called "PCMSG, and the file used by the configuration
programs is called "PCEER.

Note the following when localizing the "PCMER or "PCEER files:

(1) The message format listed in 9.2.3 (XXyyy) must be maintained whatever the local
language. The part XXyyy must not be modified and only the next 70 characters
(2z222222...) can be changed.

(2) X¥X036 FMP error number -xxx ,
Where XX can be a CO or a DC error, the constraint listed in (1) is still true,
but these messages must finish with ~-xxx.

(3) PL xxx preconfiguration listing, LL xxx configuration listing.
For these messages, the number of characters must be:

PLOO1l... 39 LLO0O... 6
PLO02... 74 LLOO1
PLOO3 to
to LLO37... 39
PLOO7... 33 LLO38

to

LLO42... 16

DO NOT CHANGE THE ORDER OF THE MESSAGES IN ANY FILE.

9-06

RUN-TIME OPERATION

|
9. 2.5 Running Application Programs }
: |

After successfully completing the initialization process, PCIF/1000 is ready to
interact with application programs and so begin the -time phase. The run-time
phase must always begin with the P/C Access Routine PCIF OPEN . If this call is made
before the initialization process is complete (i.e. the "PCIF running" message has
not appeared) it will be rejected. The PCOPN program then establishes a link between

the application program that issued the PCIF_OPEN and the PCIF monitor.

|

|
r
Toor Scheduled by RTE-A ‘
on pawer failure .
Progrom o [Roror]
f
m @ Displays (‘ vl PC1
...... . oo mesioges ... Scheduled If | | | D
=X ony problem P t
: GCCUre v! 6 l—-—
PCHLT D (power ®ﬁ:il meten) |0 :
t
. lpcomA | - 2! 9 M
Application PCIF rel fu
Program ® MONITOR or ¢ X
Diclog — ® | b —
-i-‘—Pc— (requests,replies) " Dota exchange | [:
L8 : v
. . i
peif_open PCOPN : @ Pericdically Py : v
. sends messoges | r | o
Estog?she: PCTMO ta POF tr
ik between manitor +
AP & PCIF
Emergency
Program
\ s\ A
—~— ~
User written
programs PC'F/ 1000

Figure 9.3 Run-Time Phas

m—‘mﬁﬁghﬂﬂxu

the required dialog of requests to P/Cs and their associated replies. All the

available routines are described in Chapter 4. During the PC-application program

Various P/C Access Routines can now be issued by the application program to achieve
i the PCIF monitor to check its

dialog the PCTMO program periodically sends messages t
operational status.

i
|
|
|
\'
J
\
I
|
E
|
|
1

|
9-07 j

RUN-TIME OPERATION

9.3 ERRORS DURING PCIF OPERATION
Several types of errors may appear while PCIF is operating:

- error in application program calls to PCIF;

- abort of application program before closing PCIF;
- error in PCIF monitor or other components;

- power fail and P/C problems.

9.3.1 Application Program Calls

Any errors that occur during the application program-P/C dialog (i.e. the run-time
phase) are reported to the calling application program by the STAT parameter of the
appropriate P/C Access Routine. This parameter is set to zero if no errors occur or
an integer greater than zero if a problem occurs. The value returned will signify
what the problem is, and this STAT value may be converted into an ASCII string with a
special P/C Access Routine called PCIF ERROR. The ASCII string may then be used to
display a message on a terminal. These messages are found in a file called "“PCMSG
which may be localized if necessary.

9.3.2 Abort of Application Program

This would be caused by a serious error in the application program such that it is
aborted by the RTE operating system. When this occurs the resources allocated for
PCIF (such as locked P/Cs, unsolicited requests enabled by this application program,
pending P/C requests etc) remain active and must be deactivated, locked P/Cs being
the worst case. PCIF will achieve this aim ONLY if it is aware that a serious error
has occurred.

Example 1l: A request is made by an application program, and when the PCIF monitor
tries to return a reply it discovers that the application program is not accessible.
The monitor will then clear all current requests, unlock all P/Cs and disable all
unsolicited requests made by this program. A message is then sent to the PCIF
scheduling terminal:

MKO32 impossible to send reply to PCIF_OPEN.
MK042 impossible to answer to the application program.

Example 2: The application program has been terminated but without the knowledge of
the PCIF monitor. If another program with the same name (and the same session number
if the RTE-A session monitor is on) sends a PCIF OPEN call, then the PCIF monitor
removes all the oldest requests and sends a message to the user’s terminal:

MK050 two PCIF OPEN for the same user, oldest flushed.
As the ACCESS KEY which is used for interaction has been lost, PCIF finds all the

locked PCIF resources and frees them. From a functional point of view this is
equivalent to the concerned application program requesting PCIF_CLOSE.

9-08

9.3.3 Error in PCIF Components

Some errors may cause PCIF to be terminated by RTE, in
of recovery, or they may be caused by problems with the
corrected.

When PCIF has been terminated,

RUN-TIME OPERATION

vhich case there is no chance.
PCIF components which may be

¥

|
the "emergency" program (if given in the XQ,PCIF

command) is immediately scheduled. After which all the RTE resources used by the PCIF
monitor are removed from the system. Application program calls waiting for answers to

requests will receive a completion status informing
occurred with PCIF. However,

advisable to schedule PCIF from a user written program.

Rhenever PCIF is stopped or terminated, the emergency
with the following command:

CALL EXEC (ECODE, NAME, PRAM1, PW2)

» this may not be possible!
such as PCIF monitor terminated by RTE-A or by the ope

that a loss of contact has
in severe error situations,
rator. For this reason it is

irogram is activated by PCIF

 Computer
vMuseum -

where:

ECODE = 10+no abort bit. This is an immediate schedule without wait.

WAME = a parameter containing the "emergency program néme” (as provided in
the XQ,PCIF command)

PRAM1 = one word containing 20547 (or 50103 octal) whicA is a password.

PRAM2 = one word containing a completion code value, asifollows:

(1) PCIF stopped before the end of initializati
message has not been displayed)

(2) PCIF was stopped normally.

(3) PCIF was stopped by the operator, but some &g
were still connected to the PCIF monitor. Nc

(-2) PCIF was terminated due to abnormal conditi

monitor was unable to recover.

The emergency program can recover these parameters by
the RTE-A programmers manual for details).

When PCIF activates the emergency program it also

$n (the "PCIF>running"

ipplication programs
> PCIF_CLOSE was issued.
ons and the PCIF

using a call RMPAR (refer to

sends dummy replies to all

application programs which have issued a PCIF_OPEN call.

These programs will receive

a reply status (-17) indicating that contact with PCIF is lost.

RARNING:

If the application program is in the process o% calling PCIF OPEN when PCIF

stops, it may never receive a reply to this call

RARNING: HWaiting application programs will never rece

14

ve dummy replies if the PCIF

monitor is terminated by the operator or RTE-A.

9-09

RUN-TIME OPERATION

9.3.4 Power Faiiure

The PCIF monitor will automatically recover from a power failure and subsequent
power-up, as long as battery back-up is installed. For Gould-Modicon P/Cs, the AUTOR
program provided must be RP’ed from the WELCOME file. If you want to add other power
failure recovery processing to AUTOR, you must add to the &AUTOR source provided with
PCIF, which calls the routine PCMUX.

9.3.5 Run—-Time Utilities

When the PCIF monitor displays the message "PCIF>running" other programs have also
been activated for handling:

- request time out management (PCTMO);
- sharing PCIF communication information (PCOPN).

If a problem is detected by one of these utility programs, the "PCIF>"

message 1is still displayed but the first two letters of the message text will
indicate which utility has detected an error. See Appendix A for details.

9-10

RUN-TIME OPERATION

9.4 STOPPING PCIF ;

It is possible for the operator to stop PCIF by scheduling the PCIF STOP program
PCHLT. This is achieved by typing (on any connected terminal)

RU,PCHLT, <PCIF security cod%>
|

|
The PCIF security code must be supplied and is as pro&ided during the configuration
process (screen 11). The call will cause PCIF to send a message to the the original
scheduling terminal (i.e. the one on which the "XQ,PCIF" command was made) that may
require an answer from the operator. If there are no connected application programs
(no program has done a PCIF OPEN without a corresponglng PCIF CLOSE) then PCIF is
immediately stopped and the message "PCIF>stopped" will appear on the original PCIF

scheduling terminal. ‘

|
I
T
|
|
I
User [‘
Progrom) Answer to 2'4'YES or NO" PCIF Maritor
becomies CORMANT
Lists otill connected programs &asks
A @"Do-you want to abort?") T
Message : ! PCt
(PCIF>stopped) 0! n
or é L
O \ %, e
Schedutes PCHLT | popLr vie FE
® ol |u
PCDMXA i
PP If answer in OIS PCIF ®i ¢ u
"YES" then MONITOR cel X dees
AP2 ol APs are aborted \ 0
1 :
AP3 Between steps1+4 U
PCOPN PCIF Monitor | v !
Is suspended } o v
| v e
@ PCTMO tr
APn i
Schedules
Emergency program ‘{
{
P |
N) N | S
L4 T }
User written PCIF /1000 I
programs ‘J

|
Figure 9.4 Stopping PCIF/1000

|

The operator will be advised (on the terminal from which PCIF was originally run) if
some application programs are still connected. PCIF will wait for confirmation of
the stop request, as shown below: |

PCIF> program currently connected to PCIF: USER /78
PCIF> do you want to abort?

PCIF> program currently connected to tCIF: APPLI/1

The operator must answer either yes or no. If the answpr is yes then PCIF is stopped,
otherwise PCIF will continue to rum.

9-11

RUN-TIME OPERATION

HARNING: PCIF is suspended the moment the PCIF monitor receives a PCHLT call with the
correct security code, preventing any interaction with any application
program until the request is disabled with the "no" answer. Therefore do not
call PCHLT without being sure of the consequences of stopping PCIF.

9-12

APPENDIX A

- Appendix A
ERROR MESSAGES

|

|

!
This appendix 1lists all error messages displayed on| the scheduling terminal or
returned to the application programs by PCIF/1000. Thj errors are listed under the
section of PCIF/1000 which encountered a problem. Sections are provided in the order
that a user could encounter problems, starting with c?rfiguration; followed by PCIF
initialization; continuing with PCIF monitor; and finishing with PCIF utilities.

|
Error messages appearing on the scheduling terminal may either be warning messages or
ABORT messages (see Chapter 9 for a complete explanatio¢ of these two cases).

note:

|
Those errors that cannot be corrected by the user are indicated in this appendix by
[(*1. |

|

1

{

A-01 5

APPENDIX A

A.1 CONFIGURATION PROCESS ERROR MESSAGES (COOxx)

These errors are returned by both the preconfigurator and the configuration editor.

C0Cl Required field missing - Enter value in field.

C000%2 Do you really want to abort? if yes, depress abort again.

CO003 Non descriptor file.

C0004 X required.

CO005 Conflicting answers.

CO007 Non compatible handlers.

CO009 Already existing file.

CO010 Invalid LU number.

CO0l11l No task selected.

CO013 Undefined soft key.

C0014 Invalid configuration file name.

C0019 Non existing highway number.

C0O022 P/Cs still defined with this highway.

C0025 Non existing P/C identifier.

C0026 Invalid priority number.

C0027 Timeout out of range.

C0028 Invalid P/C station number.

C0029 Already allocated P/C station number.

CO030 Non compatible highway.

C0031 Out of range data.

C0034 Corrupted descriptor.

C0035 No associated handler (or FMP error on this file).

C0036 Fmp error number -xxx.

CO037 No associated partial configurator (or FMP error on this file).
CO038 Already entered descriptor file namr.

C0039 Configuration editor linking in process...

C0040 PCIF run-time monitor linking in process...

CO041 Full highway list.

C0042 Full P/C list.

C0043 Invalid port number.

CO044 Already allocated LU. For confirmation, depress the same key again.
CO045 Invalid LU numbers: for this highway type, the LUs must be different.
CO046 Invalid time-out unit: 1 or 2 must be entered.

CO047 Entered capability does not match with the features of this P/C type.
CO048 Non validated configuration. For confirmation, depress the same key.
CO049 Do you really want to replace the configuration file? yes: same key.
C0054 Do you really want to erase the list file ? yes: depress same key again.
CO056 Undefined listing file.

CO057 Can the file #PCLCO be erased ? (if yes, depress ENTER again)

CO058 Can the file &PCCIB be erased ? (if yes, depress ENTER again)

CC059 Can the file #PCLRT be erased ? (if yes, depress ENTER again)

CO060 Can the file &PCRTB be erased ? (if yes, depress ENTER again)

CO061 No associated download file (or FMP error on the downloed file).
(062 No entered descriptor file name.

CO063 Already defined P/C on this highway (point-to-point link).

CO064 Only one LU is required for this highway type.

CO065 Data entered does not match field type. Reenter.

4-02

APPENDIX A

i

C0066 Invalid LSA (the LSAs must be entered in growing erer)
C0067 MACRO scheduled, crunch, crunch, crunch ... ‘
C0068 Listing is done. Please continue.

C0O069 Unable to access file [PCPGE.

C0070 Unable to schedule MACRO for source file &PCCTB
C0071 Unable to schedule MACRO for source file &PCRTB
C0072 Unable to schedule LINK with command file #PCLCO
C0073 Unable to schedule LINK with command file #PCLRT
C0074 Already existing PCIF monitor or configuration ed%tor on this cartridge.
CO0075 Not confirmed answer. Please, continue.
C0076 Writing on list file. |

C0077 Can the file %PCCIB be erased ? (if yes, depress ENTER again)
CO078 Can the file %PCRTB be erased ? (if yes, depress ENTER again)
C0079 Writing on configuration file.

C0080 No available types. Abort PCCON. Check preconflgufatlon
C0081 Unable to schedule MACRO for source file &PCRIC.

C0082 Can the file &PCRTC be erased ? (if yes, depress ﬁNTER again)
C0O083 Can the file %PCRTC be erased " (if yes, depress ENTER again)
£0084 Unable to access file [PCPGF.

{

|

H

A-03

APPENDIX A

A.2 ERRORS RELATED TO THE DESCRIPTOR FILE (DCOxx)

These errors are returned by both the preconfigurator and the configuration editor.

DCO01 Non descriptor file.

DC002 Corrupted
DC003 Corrupted
DCO04 Corrupted
DCO05 Corrupted
DC006 Corrupted
DC007 Corrupted
DCO08 Corrupted
DCO009 Corrupted
DCO010 Corrupted
DCO11 Corrupted
DC012 Corrupted
DCO13 Corrupted
DCO14 Corrupted
DCO15 Corrupted
DC016 Corrupted
DCO17 Corrupted
DCO018 Corrupted
DCO019 Corrupted
DC020 Corrupted
DCO21 Corrupted
DCO022 Corrupted
DC023 Corrupted
DC036 Fmp error

descriptor
descriptor
descriptor
descriptor
descriptor
descriptor
descriptor
descriptor
descriptor
descriptor
descriptor
descriptor
descriptor
descriptor
descriptor
descriptor
descriptor
descriptor
descriptor
descriptor
descriptor
descriptor

(unable to read next record)

(invalid description command)

(file header not in first 1line)
(duplicated command)

(unable to convert ascii string in an integer)
(invalid handler type declaration)
(out of range number of types)
(undefined type)

(out of range number of comment lines)
(invalid file name)

(invalid CAPABILITY command)

(invalid IO command)

(out of range number of supported highways types)
(no defined supported types)

(no defined compatible highway)
(undefined handler type)

(undefined brand)

(undefined handler)

(undefined handler entry)

(undefined partial configurator)
(undefined partial configurator entry)
(download file in a P/C descriptor)

number -xxx on descriptor file

A-04

A.3 FORM ERROR MESSAGES (FOOxx)

These

FO001
FO002
FO003
FO004
FO005
FO006
FO007
FO008
FO009
FO010
FOO11
FO012
FO013
0014
FO015
FC0l16
FOO017
FO018
FO019
FO020
FOo21
FO022
FO023
FO024
FO025
F0026
FO027
FO028
FO029
FO030
FOO31
FO100
FOl101
FO102
FO103
FO104
FO105
FO106
FO107
FO109
FOl1lz
FO113
F0200

errors

(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms
(Forms

are returned by F/1000 part of PCIF/1000.

error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)
error)

Non supported operating system
Terminal already activated

Unable to read localization file
Invalid LU

LU not available

Driver type not supported

Terminal type not supported
Terminal not yet activated

Form already activated

Specified file is not a form file
Internal data buffer overflow
Field count overflow

Form not yet activated

Format error in forms file

Named field does not exist !
Wrong field data type for call |
Form not yet displayed |
Invalid fields selection flag !
Invalid read selection value
Invalid edit actions values
Harning: string truncated
Field type is not unprotected
Invalid string length

Invalid action code

Read error or terminal ma;funct1on
Conversion overflow

Invalid initial value |
Harning: sfk attributes too long
Non displayable value supplied
Missing or invalid block data

Help file not a type 4 file

Not enough class numbers

Duplicate monitor clone name

No ID segments available

Monitor program not found

FMP open error on monitor file

FMP close error on monitor file
FMP RP error on monitor file
Monitor program busy

Monitor program schedule error
PTOP error: main to clone

PTOP error: clone to main

|

RTE-A I/0 error * (check the RTE-A manual or‘dr1ver manual)

g
A-05 |

APPENDIX A

A.4 SCREEN ERROR MESSAGES (FROxx)

These

FROO1
FROO2
FROO3

errors are returned by the F/1000 part of PCIF/1000.

REQUIRED FIELD(S) MISSING. PLEASE ENTER MISSING VALUE(S).

DATA ENTERED DOES NOT MATCH FIELD TYPE. PLEASE REENTER VALUE.
DATA ENTERED IS OUTSIDE ACCEPTED RANGE. PLEASE REENTER VALUE.

A.5 PARTIAL FMP ERROR CODES (FMOxx)

FMOO1
FM002
FM005
FM0O06
FM0OO07
FM008
FM012
FMO13
FMO014
FM015
FM032
FMO33
FM036
FM103
FM104

Ve

DISC ERROR : disc down (FMP -1)
Duplicate file name (FMP -2)
illegal record length (FMP -5)
FILE not found (FMP -6)

bad security code (FMP -76)

file locked or open (FMP -8)

EOF or SOF error on file (FMP -12)
locked cartridge (FMP -13)
directory full (FMP -14)

illegal file name (FMP -15)
cartridge not found (FMP -32)

not enough room on disc cartridge (-33)
lock error on device (FMP -36)
disc directory corrupt (FMP -103)
extent not found (FMP -104)

A-06

APPENDIX A

APPENDIX A

A.6 PCIF INITIALIZATION ERRORS (MIOxx) |

note:

Those errors that cannot be corrected by the user are ﬁndlcated in this appendix by

[*1]. |
|

MIO00 monitor not started
[*] MIOO1l error in dereferencing pointer line # xxx
[*] MIOO2 undefined CASE (PASCAL) in line # xxxx
MIOO03 not enough EMA space for this configuration |

EMA size for keeping PCIF monitor znfbrwntton and user's buffers is not
big enough. Change this size using RTE- chonnnnd : 82 as described in
the RTE-A help file.
|
MIOO4 NIL pointer (PASCAL) dereferenced line # xxx
MIO05 PASCAL value out of range line # xxx
MIO06 PASCAL IO error (error #/line #) xXxx yyy
MIO07 PASCAL FMP error (error #/line #) xxx yyy
MIO08 PASCAL warning error (error #/line #) xxx yyy
MIOO9 PASCAL undefined error (error #/ line #) xxx yyy
MIOl0 error in loading monitor segment
MIOll missing configuration file in RUN string
Restart PCIF by providing the name of a ﬁ%le in the RUN string (first
parameter after PCIF).

e — ——
» % X X % % %
[y S P P

J

MIO12 no ID segment exists for the emergency progra%

Do RP of the emergency program, then restar# ECIF.

MIOl13 invalid configuration NAMR
Retype run string to start PCIF by provzdzng correct file name.

MIOl4 too many parameters in run string

MIOl5 missing information messages (INxxx type)
Messages of type IN0OO1 to IN0C11l are not in| the error message file. FPCIF
cannot start if any of this information is missing. Another reason can
be the fact that the error message file has not been found.

[*] MIO16 associated handler generates invalid ACTION

[*] MIO17 handler context too big
MIOl19 too many highways are used in this configuratiion
Correct the configuration file.

MI0O20 configuration file not validated
Do a listing of the current configuration file (using PCIF Configurator)
to find "undefined" statements in FC's or Highway declaration. Define the
undefined values, then restart PCIF moniton.

MIO21 file is not a configuration file
MI022 too many MUX or I/0 cards on this configuration

A-07

——
* %
[y —

[*]

MKO33

MKO34

MKO35
MKO36
MKO37
MKO38
MK039
MK040
MK041
MK042

MKO043
MKO44
MK045

MKO46

MKO47

MKO048

MK049
MK050

MKO051

APPENDIX A

impossible to send reply to PCIF OPEN
The user program that requested PCIF OPEN was removed from the system
before the PCIF monitor could reply to this PCIF OPEN request.

problems in sending 1/0 messages
See if the system has the correct device driver for the corresponding I/0
channel .

RTE-A refused to process I/0 messages (class I/0)

invalid I/0 message received by PCIF

MUX message received out of sequence

monitor class number disappeared

another program is doing class/get on PCIF monitor class number

RTE-A class I/0 problems

monitor was aborted by operator

impossible to answer to application program
A user program was removed from the system (stopped, aborted) while some
requests were still in process inside the PCIF monitor for this user, or
this user has made a PC ENUNSOL and the program stopped without
FCIF CLOSE and the corresponding P/C has sent an unsolicited request. In
all these cases all requests and operations (e.g. PC_LOCK, PC_ENUNSOL)
made by this user are cleared from the system.

wrong action _code emitted by handler

requested buffer length too big

emergency program not callable
When PCIF monitor stopped (for any reason), it tried to schedule the
emergency program whose ID name was given in run the string, but FCIF was
unable to activate it (no ID segment, program active, ...).ll11111111111l1

wrong stop password
PCIF monitor received a message from PCHLT but the password was not equal
to the password defined at configuration time.

temporary EMA shortage for request buffers
FCIF monitor was unable to process a request due to tnsufficzent EMA
space. If MKO47 occurs too frequently or if the system goes into some
deadlock (message MK048 does not arrive) then change EMA size of PCIF
monitor.

EMA shortage RECOVERED
There 1is now sufficient space for processing requests inside FPCIF
monitor.

error in handler’s call to FLUSH LU

two OPEN’s for same program, oldest flushed : XXXxx
If an application program tries to do a PCIF OPEN and there is already
another program connected with the same name (and same session number if
a system is used in session mode), then this means that the previous
program was removed without doing a PCIF CLOSE call.

MUX power fail recovered

A-10

| APPENDIX A

A.8 PCDMX ERRORS (UTILITY TO DOWNLOA[*CARDS) (DMOxx)

note:

Those errors that cannot be corrected by the user are 1ndio&ted ipn this appendix by

[*].

DMCOO2

DMO03

DMO04
[*] DMOO5
DMO06
DMO07
DM009
DMO10
DMO11
DMO12
DMO13
DMO14

DMO15
DMO16
DMO17
DMO18
DMO19
DM020
DMO21
DM022
DM023
DMO24
DMO25
DMO26
DMO27
DM028
DMO29

not a downloadable card on LU |
Check RTE-A system generation. j
FMP error on download file. j
An extra message will follow (FMxxx) giving the exact meaning of the most
common FMP error codes (otherwise see RTE-A FMP manual).
| i
‘l

invalid download file

invalid DMX function code

card not in download mode on LU

self test error on card LU

error during download on card LU xxx

card status not OK after download on LU xxx '

card does not answer on LU xxx

no download file name

invalid download file name XXXXXX

RTE-A exec call error = XXX
Something went wrong durzng an RTE-A EXEC Call the message indicates the
RTE-A code (like SC05, CLO2...).

MUX card not ready on LU xxx

MUX card dialog into time out on LU xxx

IDSOO : transmission error on LU xxx

write protected LU xxx

IDSO0 : datacommunication error on LU xxx

IDSO0 : undefined error on LU xxx i

illegal length of record on file for LU xxx

incorrect checksum on file for LU xxx

Z80 address out of range for downloaded cod on LU xxx

incorrect download file length specified within record on LU xxx

unrecognized download file record format foﬁ LU xxx

no entry address specified in download file [for LU xxx

IDSO0 : multiple errors during download on UU XXX

non existing LU xxx

impossible to answer to PCIF monitor |
FCDMX program was asked by PCIF monitor #o dounload a MUX card. The job
finished but it was not possible tc send completion information to
monitor. .

A-11

APPENDIX A

A.9 PCTMO ERRORS (TIME OUT UTILITY) (TMOXxx)

TM002 impossible to communicate with PCIF monitor

FCTMO (time out manager) was unable to communicate with PCIF monitor
(aborted, infinite loop,...).

TM003 RTE-A error
TM004 PCIMO programming (PASCAL) error

A.10 PCHLT ERRORS (HALT UTILITY PROGRAM) (HTOxx)

HTOO1 PCOPN program not found

HT002 invalid PCOPN program

HT003 PCIF subsystem not started

HT004 impossible to communicate with PCIF monitor

A-12

| Appendix B
PCTST LISTING

This appendix contains a description and listing of PCTST, a program to assist in
testing, verification, program debugging and learning PCIF/1000.

B-01

APPENDIX B

B.1 USING PCTST

PCTST is an exerciser program which allows the user to execute PCIF subroutine
calls in an interactive fashion. For those familiar with the HP 2250, PCTST is
to PCIF mueh like MCX is to MCL/50.

To run PCTST simply input:

PCTST, 1,1

from CI, CM, or FMGR. PCTST will then respond as follows:

PCIF/1000 exercizer 94200-16404 REV.2XXX <YYMMDD.HHMM>
(The current day and time)

pctest >
PCIF itself must be running before anything may be done with PCTST. PCIF itself

is started by entering XQ PCIF,namr from CI, CM, or FMGR (NOT from PCTST) where
namr is the namr of the PCIF configuration file.

B.2 PCTST DIALOG

PCTST supports all the standard PCIF subroutine calls. In addition to this
there are several "special" commands used by the PCIST program for things such
as buffer management. These '"special" calls will be discussed in section B.5.
The standard PCIF calls are executed by entering the name of the routine,
excluding the prefix of PC__ or PCIF_ .

For example, to execute the routine PCIF_OPEN, the PCTST user simply inputs
OPEN, omitting the PCIF__ prefix. PCTST will then prompt the user for any
additional input parameters required.

The following is an example dialog in which the operator first opens
communication with PCIF, logically connects the PC of interest, and then
enquires upon this PC it’s status. Operator inputs are indicated with an
underline.

CI> PCTST

PCIF/1000 exercizer 94200-16301 REV.2340 <831128.1020>
9:55 AM FRI., 21 OCT., 1983

petest > open

pctest > connect

pe 21

pctest > pestat
pec 21
-> PC run mode=ON; download accept=ON

B-02

APPENDIX B

pctest > ex
-> end of PCTEST program

cI»
Commands may be entered in either lower or uppér case. The parameters for a
call may also be entered all at once. For example, when the operator input
connect in the above example, PCIST prompted him for the pec to connect. To
eliminate the prompting, it is possible to input connect 1 and execute the
entire command without the subsequent dialog.

For exémple, the dialog:

petest > readd

pe 71
length ? 10
pcadr ? 32

is equivalent to:

pctest > readd 1 10 32

When a command is completed normally, the "pectest >'" prompt appears, if an error
occurs an error message will be displayed. For example, if PCIF was not running
when a open request is made to PCTST, the following will be displayed:

-> error : PC017 contact with PCIF monitor lost
B.3 PCTST PCIF COMMAND SUMMARY

The following table summarizes each of the PCIF access routines and how they are
accessed from PCTST. Detailed explanations of each routine may be found in
chapter 4 of the PCIF manual. The routines are listed in the table in the same
order in which they appear in the manual. Following the table is a detailed
description of each command.

The table is divided into three columns. The first column contains the name of
the PCIF access routine as it would be used in a "Call" statement of an
application program. The second column indicates the equivalent PCTST command.
The third column briefly describes the function of the call.

PCIF Routine PCTIST Command Comments

PCIF _ OPEN Open Opens commuﬁication with
PCIF :

PCIF__CLOSE Close Closes communication
with PCIF

PCIF__ERROR Error ' Displays the error

message for the given #

-B-03

PCIF Routine

PC_ CANCEL

PC__CONNECT

PC_ DISC

PC_ DIUNSOL

PC_ ENQUIRY

PC__ENUNSOL

PC__GETKEY

PC__IDENT

PC_ LOCK

PC__PCSTAT
PC_ READD
PC_ READP

PC_ RELKEY

PC__ START
PC__STOP

PC__SYSTAT

PC__TRANS

PC__UNLOCK

PC_ WRITED

PCTST Command

Cancel

Connect

Disc

Diunsol

Enquiry

Enunsol

Getkey

Ident

Lock

Pestat
Readd
Readp

Relkey

Start
Stop

~Systat

Trans

Unlock

Hrited

Comments

Flushes previous
requests

Logically connects a PC

Logically disconnects a
PC

Disables unsolicited
requests

Enquires the status of
a call made w/o wait

Enables unsolicited
requests

Gets a key (class no.)
for calls made w/wait

Identifies the target
PC

Locks a PC for
exclusive use

Gets status of a PC
Reads PC data
Reads PC programs

Releases a key (class
no.)

Starts a PC program
Stops a PC program

Returns the logical
status of a PC

Allows transparent
communication to a PC

Unlocks a PC from
exclusive use

Writes data to a PC

B-04

APPENDIX B

APPENDIX B

PC__WRITEP Writep Writes a program to
a PC

B.4 PCTST PCIF COMMANDS

The following pages describe, in detail, each of| the PCIF commands as used in
PCTST. Included for each command are the name of the PCIF command, the name of
the equivalent PCTST command, the required entry parameters, and an explanation
of the data, if any, returned. Entry parameters indicated with a "*" are only
entered when operationg in asynchronous (I/0 without wait) mode. (See the mode
command in section B.5.)

* indicates inputs required only in asynchronous mode

B-05

PCIF

PCIF

OPEN

PCTST Command: Open

Function: Logically opens communication between the
application program (in this case PCTST)
and PCIF.

Entry Parameters:

None
Returned Information:

CLOSE

PCIF

None
PCTST Command: Close
Function: Logically closes communication with the

application program (in this case, PCTST).

Entry Parameters:

None

Returned Information:

ERROR

None

PCTST Command: Error

Function: Returns an ascii error message for a
specified error number.

Entry Parameters: error# ?

Entry Parameter Descriptions:

error# - Enter the PCIF error number in integer format.

Returned Information:

B-06

APPENDIX B

An ascii string defining the particular error number.

PC CANCEL
PCTST Command: Cancel
Function: To cancel all pending PC requests, or a
specified PC request.
Entry Parameters: pe ?
tag ?
typee ?

Entry Parameter Descriptions:

pc -
tag -

typec -

Enter the logical PCIF address of the PC to which
the command is to be addressed. ‘

Enter the tag of the request to be canceled. This
only is used when typec is non-zero.

Enter a zero to cancel all waiting PC requests,
enter a one to cancel only the request with the
specified tag.

Returned Information:

None
PC CONNECT
PCTST Command: Connect
Function: Logically connects the speclﬁled PC to the
PCIF application program (PCTST in this
case).
Entry Parameters: pe ?
* tag ?
* key ?

Entry Parameter Descriptions:

pe -

tag -

Enter the logical PCIF address of the PC to which
the command is to be addressed.)

Enter any integer value to identify this request.
This value is only used in asynchronous mode.

B-07

APPENDIX B

APPENDIX B

key - Enter a valid access key (obtained with a Getkey).
This value is only used in asynchronous mode.

Returned Information:

None
PC DISC
PCTST Command: Disc
Function: Logically disconnects the specified PC
from all application programs.
Entry Parameters: pe ?

passwd ?

Entry Parameter Descriptions:

pe - Enter the logical PCIF address of the PC to which
the command is to be addressed.

passwd - This must be the PCIF security code entered at
configuration time. It is an integer number.

Returned Information:

None
PC DIUNSOL
PCTST Command: Diunsol
Function: Disables all unsolicited requests from the
specified PC to the application program
Entry Parameters: pc ?

Entry Parameter Descriptions:
pe - Enter the logical PCIF address of the PC to which

the command is to be addressed.

Returned Information:

B-08

APPENDIX B

None
PC ENQUIRY

PCTST Command: Enquiry or Enquiryw

Function: Retrieves replys to previous requests
made in asynchronous mode (without wait).
Enquiry checks for a ready réply and
finishes if not reply is ready.
Enquiryw will wait until a r?ply is
received if no reply is currently available.

Entry Parameters: key ?

Entry Parameter Descriptions:

key - Enter the key for the request which you wish to
enquire upon.

Returned Information:

A reply like the one shown below will be received when an
enquiry is made:

message get for PC 1 reply to reply to READD typer = 1
tag 123 1logr = 20

This reply indicates that for the specified access key, a reply is indeed ready.
The type of request that was made was a READD (read data), this is also
indicated by the typer (type of request field). ! The following values are used

in typer to indicate the type of request for which information is being

returned:

Typer Request Type Typer Hequest type
1l PC__READD 17 PC__STOP
2 PC__WRITED 18 PC__ENUNSOL
3 PC__READP 19 'PC__ DIUNSOL
4 PC__WRITEP 20 PC__ CONNECT
8 PC__TRANS 22 'PC__STAT
16 PC__ START 30 ‘PC__IDENT

B-09

APPENDIX B

Also indicated is the tag of the returned request, and the length of returned
data. The length of returned data is indicated in bytes in the logr field. The
PC_ENQUIRY call made in PCTST uses a length of 256 words. To read longer return
buffers, you must change the code in PCTST.

Note that an enquiry may also be made to an access key which is being used for
unsolicited requests. If this were the case the message displayed by PCIST
would look something like this:

message get for PC 1 reply to unsolicited typer = 0
tag O logr = O

If no replies are ready for the indicated access key a message to that effect
will be displayed by PCTIST:

no message currently ih access key
To wait on enquiry use function : ENQUIRYW

PC__ ENUNSOL
PCTST Command: Enunsol
Function: Enables a specified PC to generate
: unsolicited interrupts to a specified
access key.
Entry Parameters: pe ?

key ?

Entry Parameter Descriptions:

pc - Enter the logical PCIF address of the PC to which
the command is to be addressed.

key ~ Enter a valid access key (obtained with a Getkey).
This value will be used in an Enquiry or an
Enquiryw to determine if an unsclicited request
has occurred.

Returned Information:

None
PC GETKEY
PCTST Command: Getkey
Function: Obtains an access key (like a RTE class
number) to be used in PCIF I/0 without
wait.

B-10

Entry Parameters: None

Returned Information:

A key to be used in subsequent asynchronous PCIF I/0 requests.

PC IDENT
PCTST command: Ident
Function: Identifies the vendor, model number, and station
ID of the target PC.
Entry Parameters: pc ?
* tag ?
* Key ?

Entry Parameter Descriptions:

pc =

tag -

key -

lengr

Enter the logical PCIF address of the PC to which
the identity enquiry is to be made.

Enter any integer value to identify this requist.
This value is only used in asynchronous mode.

Enter a valid access key (obtained w1th a Getkey.)
This value is only used in asynchronous mode.

Enter the length of the return buffer. Thls value is
always ten words.

Returned Information:

A ten-word buffer identifying the vendor, model number and station
ID of the speclfled PC.

PC LOCK
PCTST Command: Lock
Funetion: Locks the specified PC for exclusive use
of the calling program, in this case
PCIST.
Entry Parameters: pe ?

Entry Parameter Descriptions:

B-11

APPENDIX B

APPENDIX B

pe - Enter the logical PCIF address of the PC which is
to be locked,

Returned Information:

None
PC PCSTAT
PCTST Command: Pestat
Function: Enquires upon a specified PC its status.
Entry Parameters: pe ?
* tag ?
* key ?

Entry Parameter Descriptions:

pc - Enter the logical PCIF address of the PC to which
the status enquiry is to be made.

tag - Enter any integer value to identify this request.
This value is only used in asynchronous mode.

key - Enter a valid access key (obtained with a Getkey).
This value is only used in asynchronous mode.
Returned Information:

PCTST will return a message indicating WHETHER the specified PC has run mode on
or off, and WHETHER it has download accept on or off:

-> PC run mode=ON/OFF; download accept=ON/OFF

PC READD
PCTST Command: Readd
Function: Reads data from the specified PC address for
a specified length.
Entry Parameters: pe ?
length ?
pcadr ?

B-12

APPENDIX B

* tag ?
* key ?
Entry Parameter Descriptions:

pe - Enter the logical PCIF address of the PC to which
the command is to be addressed.

Enter the length of data in 16 bit words.

length -
NOTE: the length may also be specified in bits or
bytes, see Chapter 4 of the PCIF manual for
details.
pcadr - Enter the physical PC address from which the data
is to be read. ‘
tag -~ Enter any integer value to identify this request.
This value is only used in asynchronous mode.
key - Enter a valid access key (obtained with a Getkey).

This value is only used in asynchronous mode.

Returned Information:

The specified data is returned to an internal buffer in PCTST (note that this
buffer is limited to 256 words). This buffer can be read with the BUFRD command
which is described in section B.5.

PC READP
PCTST Command: Readp
Function: Allows the application program (PCTST in this case) to
upload a PC program into a buffer.
Entry Parameters: pe ?
length ?
pcadr ?
* tag ?
* key ?

Entry Parameter Descriptions:

pe - Enter the logical PCIF address of the PC to which
the command is to be addressed.

length -~ Enter the length of data in 16 bit words.

B-13

APPENDIX B

NOTE: the length may also be specified in bits or
bytes, see Chapter 4 of the PCIF manual for

details.
pcadr - Enter the physical PC address of the program to be
read.
tag - Enter any integer value to identify this request.

This value is only used in asynchronous mode.
key - Enter a valid access key (obtained with a Getkey).
This value is only used in asynchronous mode.
Returned Information:
The returned program information is stored in a buffer internal to the PCTST

program. This buffer may be displayed with the BUFRD command which is discussed
in section B.5. Note that the buffer is limited to 256 words.

PC RELKEY
PCTST Command: Relkey
Function: Releases an access key back to the system.
Entry Parameters: key ?

Entry Parameter Descriptions:

key - Enter the number of the key to be released.

Returned Information:

None
PC START
PCTST Command: Start
Function: Physically starts the specified PC. Note that not all PCs
have this capability, Allen-Bradley is an example.
Entry Parameters: pe ?
* tag ?
* key ?

Entry Parameter Descriptions:

B-14

tag -

key -

Enter the logical PCIF address of the PC which is
to be started.

Enter any integer value to identify this request.
This value is only used in asynchronous mode.

Enter a valid access key (obtained with a Getkey).
This value is only used in asynchronous mode.

Returned Information:

None
PC STOP
PCTST Command: Stop
Function: Physically stops the specified PC.
Entry Perameters: pe ?
* tag ?
* key ?

Entry Perameter Descriptions:

pe -

tag -

key -

Enter the logical PCIF address of the PC which is
to be stopped.

Enter any integer value to identify this request.
This value is only used in asynchronous mode.

Enter a valid access key (obtained with a Getkey).
This value is only used in asynchronous mode.

Returned Information:

None
PC SYSTAT
PCTST Command: Systat
Function: Enquires the logical state of a specified
PC.
Entry Parameters: pe ?

B-15

APPENDIX B

APPENDIX B

Entry Parameter Descriptions:

pe ~ Enter the logical PCIF address of the PC to which
the command is to be addressed.

Returned Information:

PCTST will return a small table of information describing the current logical
state of the specified PC. Information dispalyed includes WHETHER a PC has
unsolicited requests enabled, WHETHER or not it is logically connected, WHETHER
it is locked or unlocked, WHETHER or not it has any requests pending, and what
capabilities the PC has. An example of this table is shown below:

Example Systat table:

-> unsolicited DISABLEd
CONNECTED
UNlocked
NO rgst pending
capability : WriteData HKWriteProgram
TRansparent Unsolicited

PC TRANS
PCTST Command: Trans
Function: This commend allows transparent

communication with a PC. The actual
buffer to be written must first be
created with the BUFWR command (see
section B.5 for details on BUFKR).

%% K K K K K K K KKk Kk KK HARNING % % % % K K 3 Kk ok kK Kk K Kk

The use of PC__ TRANS requires from the user a good knowledge of the particular
PC addressed. PC__TRANS will not preserve PCIF/1000 transparency and may change
the physical status of the real PC, making it difficult or impossible to process
further normal PCIF/1000 functions.

Entry Parameters: pe
length
logr
subfne

* tag
* key

D 03 o D &))

Entry Parameter Descriptions:

B-16

length

logr

subfnc

tag -

key -

Enter the logical PCIF address of the PC to which
the command is to be addressed.

Enter the length of data in 16 bit words.

NOTE: the length may also be specified Lh bits or
bytes, see Chapter 4 of the PCIF manual for
details.

Enter the maximum message length to be returned
from the PC in words. Like the length field,
logr can also be expressed in bits or bytes, see
Chapter 4 of the PCIF manual for details.

Enter the PC subfunction to be performed. This
subfunction is an integer code which is PC
manufacturer and model dependent.

Enter any integer value to identify this request.
This value is only used in asynchronous mode.

Enter a valid access key (obtained with a Getkey).

This value is only used in asynchronous mode.

Returned Information:

APPENDIX B

A buffer is returned to the PCTST which may be disblayed with the BUFRD command.

PC UNLOCK
PCTST Command: Unlock
Function: Unlocks a PC from exclusive uée by an
application program, in this case PCTST.
Entry Parameters: pe ?

Entry Parameter Descriptions:

pe - Enter the logicel PCIF address of the PC which is

to be unlocked.

Returned Information:

None

PC WRITED

B-17

PCTST Command: Hrited

Function:

Entry Parameters: pec ?
length ?
pcadr ?

* tag ?
* key ?

HWrites data to the specified address of a
specified PC. The huffer to be written is
created with the PCTST BUFWR buffer write
command (see section B.5).

Entry Parameter Descriptions:

pe =

length

pcadr -

tag -

key -

Enter the logical PCIF address of the PC to which
the command is to be addressed.

Enter the length of date in 16 bit words.

NOTE: the length may also be specified in bits or
bytes, see Chapter 4 of the PCIF menual for
details.

Enter the physical PC address to which the data
is to be written

Enter any integer value to identify this request.
This value is only used in asynchronous mode.

Enter a valid access key (obtained with a Getkey).
This value is only used in asynchronous mode.

Returned Information:

None
PC HWRITEP

PCTST Command: Writep

Function: Downloads a PC program from an application
program (PCTST in this case) to the
specified address of the specified PC.
The program must first be stored in an
internal PCTST buffer with the BUFWR
command (see section B.5).

Entry Parameters: pe ?

length ?

B-18

APPENDIX B

APPENDIX B

pcadr ?
* tag ?
* key ?

Entry Parameter Descriptions:

pe -

length

pcadr -

tag -

key -

Enter the logical PCIF address of the PC to which
the command is to be addressed.

Enter the length of data in 16 bit words.

NOTE: the length may also be specified in bits or
bytes, see Chapter 4 of the PCIF manual for
details.

Enter the physical PC address to which the program
is to be written.

Enter any integer value to identify this request.

'This value is only used in asynchronous mode.

Enter a valid access key (obtained witﬁ a Getkey).
This value is only used in asynchronous mode.

Returned Information:

None

B.5 PCTST SPECIAL COMMANDS

In addition to the previously defined commands which are based on actual PCIF
commands, there are several "special" PCTST commands used for various things.
These commands are summarized in the table below and described in detail in the
following sections.

PCTST Command Comments

Bufrd Displays the internal PCTST buffer. This
buffer is filled by, for example, a Readd.

Bufwr Creates an internal PCTST buffef for use with
subsequent commands such as Writed.

Dwload Downloads a PC program from a file to a PC.

Exit or Ex Exits PCTST.

Mode Changes the command mode from synchronous (with

wait) to asynchronous (without wait) or vice-
versa ‘

B-19

APPENDIX B

Upload Uploads a PC program from a PC to a file.
BUFRD

PCTST Command: Bufrd

Function: Displays an internal PCTST buffer. This

buffer is the result of some sort of PCIF
I/0, e.g. a Readd.

Entry Parameters: None

Returned Information:

The current value of the internal buffer is displayed. For example, if a Bufrd
command were executed after a Readd request asking for ten words of data, a
display like the following would result:

0 - 5
1-> 100
2 -> 0
3 - 12538
4 => 11
5 -> -576
6 -> 465
7 > 1
8 - 1000
9 -> 0

Note that the values are displayed in integer format.

BUFWR
PCTST Command: Bufwr
Function: Creates an internal buffer with values input
by the operator for use with subsequent PCIF
output operations.
Entry Parameters: Array values (see example below).

Entry Parameter Descriptions:
The following is an example dialog in which a three word buffer is created with

B-20

APPENDIX B

a 10 in the first word, a 20 in the second word, and a 30 in the final word:

pctest > bufwr
enter values as INTEGER, enter ’*’ or ’a’ to stop

0 ? 10
1 ? 20
2 ? 30
3 ? a
pctest >

Note that values are entered in integer and that én ’a’ or an ’*’ terminates
input. Once this buffer is created, it can be used in a subsequent output
operation such as a Hrited.

Returned Information:

None “Gomputer
v Museum ”
DHLOAD
PCTST Command: Dwload
Function: Downloads a PC program from a file to a PC.
Entry Parameters: pe ?
pcadr ?
* tag ?
* key ?
file ?

Entry Parameter Descriptions:

pe - Enter the logical PCIF address of the PC to which
the program is to be downloaded.

pcadr - Enter the physical PC address to which the program
is to be written.

tag - Enter any integer value to identify thiqsrequest.
This value is only used in asynchronous mode.

key - Enter a valid access key (obtained withia Getkey).
This value is only used in asynchronous mode.

file - Enter the namr of the file containing tﬂe PC program.

Returned Information:

B-21

APPENDIX B

None
MODE
PCTST Command: Mode
Function: Changes the PCIF I/0 mode from synchronous
(with wait) to asynchronous (without wait)
or vice-versa.
Entry Parameters: Verification of change (Yes or No)

Entry Parameter Descriptions:

When ’mode’ is input, PCTST will display the current mode and ask you if you
want to change the mode as follows:

current mode is synchronous

to change mode type "YES". All other input will not do any change
YES/NO ?

Returned Information:

None
UPLOAD
PCTST Command: Upload
Function: Uploads a PC program from a PC to a file.
Entry Parameters: pe ?
pcadr ?
length ?
* tag ?
* key ?
file ?

Entry Parameter Descriptions:

pe -~ Enter the logicel PCIF address of the PC from which
the program is to be uploaded.

pcadr - Enter the physical PC address from which the program
is to be read.

B-22

APPENDIX B

length - Enter the length of data in 16 bit words.

NOTE: the length may also be specified in bits or
bytes, see Chapter 4 of the PCIF manual for
details.

tag - Enter any integer value to identify this request.
This value is only used in asynchronous mode.

key - Enter a valid access key (obtained with a Getkey).
This value is only used in asynchronous mode.

file - Enter the namr of the file into which the PC program

is to be written.

Returned Information:

None

B.6 PCTST INSTALLATION

Installing PCIST is quite simple. First of all, however, PCIF/1000 itself must
be installed. Consult Chapters 5 thru 7 of the PCIF manual for details on this.

Next, install the PCTST files on your system. They may be put on any cartridge
or volume. The files needed are listed in the table below.

PCTIST Files

File Name Type Comments

#PCTST 4 Link command file for linking PCTST
&PCTST 4 PCTST source code

%PCTST 5 PCTST relocatable file

PCTST 6 PCTST program

In addition to these files the following libraries are required for linking
PCTST:

$PCLIB PASCAL.LIB

After the above files are in place, try running the type 6 file, PCTST. If this
doesn’t work relink PCTST by entering from CI:

B-23

APPENDIX B

CI> link,#pctst::<FMGR crn of PCIF software>
This will run LINK with the command file provided with PCIF.

Note that you may need to edit #PCTST to reflect the directories
of your particular system.

B.7 PCTST SOURCE CODE

$PASCAL ’94200-16404 REV.2525 <850609.2200>’

NAME : PCTST

SOURCE: 94200-18404

RELOC.: 94200-16404

COMMAND FILE : 94200-17404

PRGMR : SGR

Modified Added PC_IDENT command processing.

5-8-85

by CGY Added run_string 0 option, so it can be
(rev.2525) used serial reusable in a memory based

system.

K KK K KK K e K KR K K KK AR KK KT R KK T KK KKK T KK e K KK % Kk v v K e gk % de ok e v e ok ok Kk Kk

* (C) COPYRIGHT HEWLETT-PACKARD COMPANY 1984. ALL RIGHTS *
* RESERVED. NO PART OF THIS PROGRAM MAY BE PHOTOCOPIED *
* REPRODUCED OR TRANSLATED TO ANOTHER PROGRAM LANGUAGE WITHOUT *
* THE PRIOR WRITTEN CONSENT OF HEWLETT-PACKARD COMPANY *

% % % % 3 Kk Tk ok 3k I 3k 3 Ik I K ok 3 % o ok ok 3 ok ok 3k 3k 3k 3k 3k 3k 3k ok ok 3 3k 3k 3k 0k 3k 9k 3k ok Ik 3 ok 3k ok 3k ok ok o vk ok ke ok ke

A P A P P P o, o, e, P P, P P, P, o, e, P,
e e o " v e

$ RECURSIVE OFF $
$ RUN_STRING 0 §
$ TITLE ’PCIF/1000 exerciser’ §

PROGRAM PC_test (input, output) ;

$PAGE
TYPE
WORD = -32768..32767 ;
BYTE = -128..127 H
BIT TYPE = 0..1;
ideb_type =ARRAY([1..144] OF WORD ;
ibuf_type =ARRAY({1..128] OF WORD ;
name_type =PACKED ARRAY(1..6] OF CHAR ;
isize type =ARRAY[1..2] OF HORD ;
isecu ier type =HORD ;

BUF_TYPE = ARRAY [1..512] OF WORD ;
STRING80 = PACKED ARRAY [1..80] OF CHAR ;
- STRING20 = PACKED ARRAY [1..20] OF CHAR ;
STRING6 = PACKED ARRAY [1..6] OF CHAR ; e
STRING2 = PACKED ARRAY [1..2] OF CHAR ;

B-24

APPENDIX B

STRING3 = PACKED ARRAY [1..3] OF CHAR ;
STRING9 = PACKED ARRAY [1..9] OF CHAR ;
STRING1l1 = PACKED ARRAY [1..11] OF CHAR ;

EQ WRD BYTE = PACKED RECORD
CASE INTEGER OF {*CGY* Added bit_array}
1: (wrd: word);
2: (bit_array : PACKED ARRAY [1..16] OF BIT TYPE);
3: (btl: byte;
bt2: byte);
END;

{*CGY* For printing bufrd with bit lengths.}
BIT LENGTH TYPE = PACKED RECORD
CASE INTEGER OF
1: (wd: word);
2: (hi_bit : 0..1;
lo bits : 0..32767);

END;
VAR
tempo: eq_wrd_byte;
nb_displayed: WORD;
zero:HORD;

abup,abdown:FILE OF WORD;
key,oldtag,typec,typer,contwd,tag,oldstat :NORD;
func: STRINGZ20;

length,

stat,pe,buffr,lengt,subfne:HORD;

bit_length : BIT_LENGTH TYPE; {*CGY* Added bit_length}
pcadr: INTEGER;

logr : WORD ;

password : WORD ;

lengr,i,j:WORD;

error_buffer : STRING8O ;

error_length : WORD ;

eof flag, found flag, command flag : BOOLEAN ;
command string : PACKED ARRAY [1..80] OF CHAR ;
command _ptr : WORD ;

command_index : WORD ;

indexl : WORD ;

number : KWORD ;

ideb:ideb_type ;

ibuf:ibuf_type ;

file name:name_type ;

file namr : STRING20 ;

len,ierr,c,number_of cut,cut_number,il: WORD ;
isize: isize_type ;
icer,isecu:isecu_ier_type ;

buffl : BUF_TYPE ;

ask_bufval : STRING11 ;

stop_flag : BOOLEAN ;

asynch flag : BOOLEAN ;

echo_flag : BOOLEAN ;

B-25

APPENDIX B

CONST

ask_command = STRING1l [’ pectest > ’] ;

ask_pe = STRING1l [’ ©pc ?’];

ask lengt = STRING1l [’ length ? ’] ;

ask_logr = STRING1l [’ 1logr ?2] ;

ask_pcadr = STRING1l [’ pecadr ? ’] ;

ask file = STRING1l [’ file ? ’] ;

ask_subfne = STRING1l [’ subfne ? ’] ;

ask passwd = STRING1l [’ passwd ? ’] ;

ask_tag = STRING1l [’ tag ?’1;

ask_type ca = STRING1l [’ typec ? ’] ;

ask_key = STRING1l [’ key ?2 '] ;

ask yes = STRING1l [’ YES/NO ? °’] ;

ask_error = STRING1l [’ error# ? ’] ;
$PAGE
{==rmmmmmm e }
{ }
{ PCIF/1000 LIBRARY PROCEDURE CALL DEFINITIONS }
{ ¥
{mmmm e e }

PROCEDURE FC_CALL
(VAR stat : HWORD

tag : WORD ;
contwd : WORD ;
pc : WORD ;

subfne : WORD ;
VAR buffr : BUF _TYPE ;
lengt : WORD ;
pcadr : INTEGER) ;
EXTERNAL ;

PROCEDURE PC_CANCEL
(VAR stat : WORD ;
pe : WORD ;
oldtag : WORD ;
typec : WORD) ;
EXTERNAL;

PROCEDURE PCIF CLOSE
(VAR stat : WORD);
EXTERNAL;

PROCEDURE PC_CONNECT
(VAR stat : WORD ;

tag ¢ WORD ;
contwd : WORD ;
pec : WORD) ;
EXTERNAL;
PROCEDURE PC_DISC
(VAR stat : WORD ;
pe : WORD ;

B-26

APPENDIX B

password : WORD) ;
EXTERNAL;

PROCEDURE PC_DIUNSOL
(VAR stat : WORD ;

pe : WORD);
EXTERNAL;
$PAGE
PROCEDURE PC_ENQUIRY
(VAR stat : WORD

VAR oldtag : WORD ;
contwd : WORD ;
pe ¢ HWORD ;
VAR buffr : BUF_TYPE;
lengr : WORD ;
VAR typer : KWORD ;
VAR logr : WORD) ;
EXTERNAL;

H
oldstat : HWORD ;
’
’

PROCEDURE PC_ENUNSOL
(VAR stat : KWORD ;

pe ¢ HORD ;
akey : HORD) ;
EXTERNAL;

PROCEDURE PCIF_ERROR
(stat : WORD ;
VAR buffer : STRING8O ;
VAR length : WORD) ;
EXTERNAL ;

PROCEDURE PC_GETKEY
(VAR stat : WORD ;
VAR akey : WORD);

EXTERNAL;

PROCEDURE PC_LOCK
(VAR stat : WORD ;
pe : WORD) ;
EXTERNAL;

PROCEDURE PCIF_OPEN
(VAR stat : WORD);
EXTERNAL;

PROCEDURE PC_PCSTAT
(VAR stat : WORD

tag : WORD ;
contwd : WORD ;
pe : WORD ;
VAR buffr : BUF_TYPE) ;
EXTERNAL;

PROCEDURE PC_IDENT

B-27

(VAR stat

¢ HWORD

tag : WORD ;
contwd : WORD ;
pe : WORD ;
VAR buffr : BUF_TYPE;
lengt : WORD) ;
EXTERNAL;
$PAGE
PROCEDURE PC_READD
(VAR stat : HWORD ;
tag : WORD ;
contwd : WORD ;
pe : WORD ;
VAR buffr : BUF_TYPE ;
lengt : WORD ;
pcadr : INTEGER);
EXTERNAL;

PROCEDURE PC_READP

(VAR stat

: WORD

tag : HORD ;
contwd : WORD ;
pe : HORD ;
VAR buffr : BUF_TYPE ;
lengt : WORD ;
pcadr : INTEGER);
EXTERNAL;

PROCEDURE PC_RELKEY

(VAR stat : WORD ;
VAR akey : WORD);
EXTERNAL;

PROCEDURE PC_START
(VAR stat : WORD ;

tag, contwd, pc : WORD) ;

EXTERNAL;

PROCEDURE PC_STOP
(VAR stat : WORD ;

tag, contwd, pc : WORD) ;

EXTERNAL;

PROCEDURE PC_SYSTAT
(VAR stat : WORD ;
pec : WORD ;
VAR buffr : BUF_TYPE);
EXTERNAL;

PROCEDURE FPC_TRANS
(VAR stat
tag, contwd, pec, subfet
VAR buffs
lengs

: WORD ;
: WORD ;
: BUF_TYPE ;
: WORD ;

B-28

APPENDIX B

VAR buffr : BUF_TYPE ;
lengr : WORD) ;
EXTERNAL;

PROCEDURE PC_UNLOCK
(VAR stat : WORD ;
pe : WORD) ;

EXTERNAL;
$PAGE
PROCEDURE PC_WRITED
(VAR stat : HORD ;
tag, contwd, pc : WORD ;
VAR buffr : BUF_TYPE ;
lengt : WORD ;
pcadr : INTEGER);
EXTERNAL;
PROCEDURE PC_WRITEP
(VAR stat : HORD ;
tag, contwd, pc : HORD ;
VAR buffr : BUF_TYPE ;
lengt : HWORD ;
pcadr : INTEGER);
EXTERNAL;

PROCEDURE PCIF_build error msg
(file namr : STRING20 ;

tag : STRINGZ ;
error ¢ HORD ;
promptof : WORD ;
VAR buffer : STRING8O ;
VAR length : NORD) ;
EXTERNAL ;
{mmmmmm oo }
{ ‘ }
{ RTE LIBRARY : PROCEDURE CALL DEFINITIONS }
{ }
ittt ittt ettt ittt }
PROCEDURE RTE CNUMD $ALIAS ’CNUMD’$
(number : HWORD ;
VAR ascii : STRING6) ;
EXTERNAL ; :

PROCEDURE RTE_FTIME $ALIAS ’FTIME’$
(VAR buffer : STRING8O) ;

EXTERNAL ;

$PAGE

B-29

APPENDIX B

FUNCTION find integer(VAR number : INTEGER) : BOOLEAN ;

CONST

char_digit =’0123456789° ;
VAR

indexl : WORD ;

command char : CHAR ;
end number flag : BOOLEAN ;
negative flag : BOOLEAN ;

BEGIN

negative flag := FALSE ;
find_integer:= FALSE ;
WHILE (command_ptr<70) AND (command_string{command ptr]=’ ’)
DO command ptr := command ptr + 1 ;
IF (command_string[command ptr]=’-)
THEN BEGIN
negative flag := TRUE ;
command_ptr := command ptr+l ;

END ;
end number flag := FALSE ;
number := 0 ;

WHILE (NOT end number_flag) AND (command ptr<¢=80) DO
BEGIN

command_char := command_string[command_ptr] ;
indexl := 0 ;
found flag := FALSE ;
REPEAT
BEGIN
indexl := indexl + 1 ;

IF (char_digit[indexl]=command_char)
THEN found flag := TRUE ;
END ; { end REPEAT }
UNTIL
found_flag OR (index1>=10) ;

$PAGE
IF found flag
THEN BEGIN
number := number * 10 + indexl - 1 ;
find_integer:= TRUE ;
END
ELSE BEGIN
end number flag := TRUE ;
END

; { end if found flag }
IF (command char=’*’)
OR
(command_char=’a’)
OR
(command_char=’A’)
THEN stop flag := TRUE
ELSE command ptr := command ptr + 1 ;

B-30

APPENDIX B

APPENDIX B

END ; { end WHILE NOT end_number flag }

IF (negative flag) THEN number := -number ;

END ; { end of PROCEDURE find integer}

$PAGE

{-—-~mmmmm e }

{ }

{ find_number }

{ }
{-==~-mmmmmmmm e e e e }

FUNCTION find number (VAR number : WORD) : BOOLEAN ;

VAR
long number : INTEGER ;
flag : BOOLEAN ;
BEGIN

flag := find_integer (long_number) ;
IF flag AND (NOT stop flag)
THEN BEGIN
find_number := TRUE ;
IF (long_number>=-32768) AND (long number<=32767)

THEN number := long number
ELSE find number := FALSE ;
END
ELSE BEGIN
find number := FALSE ;
END

; { end IF flag }

END ; { end of PROCEDURE find number }
$PAGE

—— " - —— o T —— = - = o . = . e — -

———— iy - — - S m = e e e = A -

PROCEDURE get_input (ask : STRING1l1) ;

VAR
eof flag : BOOLEAN ;

BEGIN

eof flag := TRUE ;

WHILE eof_flag DO

BEGIN

PROMPT (ask) ;

IF EOF THEN BEGIN
RESET ;
eof flag := TRUE ;
END

B-31

ELSE BEGIN

READLN (command string) ;

command ptr := 1

.
’

eof flag := FALSE ;

END
; { end IF ECF }
END ; { end WHILE ... }

END ; { end of PROCEDURE get input }
$PAGE

- - — —— - T " — - —

PROCEDURE get_function ;

VAR
flag : BOOLEAN ;
index : HWORD ;
temp : CHAR ;
shift : WORD ;

BEGIN

FOR index:=1 TO 20 DO
func[index]:=’ ’ ;
flag := TRUE ;
WHILE (command ptr<=80) AND flag DO
BEGIN
IF (command string[command ptr]<>’
ELSE command ptr := command ptr+l
END ;
flag:=TRUE ;
index := 1 ;
WHILE (command ptr<=80) AND flag DO
BEGIN
IF (command string{command ptr]=’
THEN BEGIN
flag:=FALSE ;
END
ELSE BEGIN
IF (index<=20)
THEN BEGIN
shift := ORD(’a’)-ORD(

’) THEN flag:=FALSE

.
b

)

'A%)

temp := command_string{command ptr] ;

CASE temp OF
‘a’..’z’:
OTHERKISE ;
END ; { end CASE ... }
func[index]:=temp ;
END
s { end IF ... }

temp := CHR(ORD(temp)-shift);

B-32

APPENDIX B

APPENDIX B

command ptr := command ptr+l ;
index := index + 1 ;
END

; { end IF ... }

END ;

END ; { end of PROCEDURE get function }
$PAGE

—— - o s - — " - —— " e = = -

PROCEDURE get pe ;

VAR
flag : BOOLEAN ;

BEGIN
REPEAT

flag := find number(pe) ;
IF flag OR stop_flag

THEN BEGIN
END
ELSE BEGIN
get_input (ask_pe) ;
END
; { end IF }
UNTIL (flag OR stop_flag) ;
END ;
$PAGE
{mmmm e)
{ }
{ get subfne }
{ }
e S }
PROCEDURE get subfnc;
VAR
flag : BOOLEAN ;
BEGIN
REPEAT

flag := find_number(subfnc) ;
IF flag OR stop_flag
THEN BEGIN
END
ELSE BEGIN
get_input (ask_subfne) ;

B-33

APPENDIX B

END
; { end IF }
UNTIL (flag OR stop_flag) ;

e T

- - - - Y o A= = = o . ———

PROCEDURE get_length ;

VAR
flag : BOOLEAN ;

BEGIN

REPEAT
flag := find number(lengt) ;
IF flag OR stop flag
THEN BEGIN
END
ELSE BEGIN
get_input (ask_lengt) ;
END
; { end IF }
UNTIL (flag OR stop_flag) ;

PROCEDURE get_logr ;

VAR
flag : BOOLEAN ;

BEGIN

REPEAT

flag := find_number(logr) ;

IF fleg OR stop flag

THEN BEGIN
END

ELSE BEGIN
get_input (ask_logr) ;
END

B-34

APPENDIX B

; { end IF }
UNTIL (flag OR stop flag) ;
END ;
$PAGE
R }
{ . }
{ get _password }
{ }
{mmmmmmm e e }

PROCEDURE gef_password ;

VAR
flag : BOOLEAN ;

BEGIN

REPEAT
flag := find_number(password) ;
IF flag OR stop flag
THEN BEGIN
END
ELSE BEGIN
get_input (ask_passwd);
END
; { end IF }
UNTIL (flag OR stop_flag) ;

- ———— — - —— T ——— " v - - —

PROCEDURE get_tag ;

VAR
flag : BOOLEAN ;

BEGIN

REPEAT
flag := find number(tag) ;
IF flag OR stop_flag
THEN BEGIN
END
ELSE BEGIN
get_input (ask_tag) ;
END
; { end IF }
UNTIL (flag OR stop flag) ;

B-35

APPENDIX B

{ }
{ }
{ get _type_cancel }
{ }
{ }

PROCEDURE get_type cancel ;

VAR -
flag : BOOLEAN ;

BEGIN

REPEAT
flag := find number(typec) ;
IF flag OR stop flag
THEN BEGIN
END
ELSE BEGIN
get_input (ask_type ca) ;
END
; { end IF }
UNTIL (flag OR stop flag) ;

— e . ——— = — o ———

PROCEDURE get_pcadr;

VAR
flag : BOOLEAN ;

BEGIN

REPEAT
flag := find_integer (pcadr) ;
IF flag OR stop flag
THEN BEGIN
END
ELSE BEGIN
get_input (ask_pcadr) ;

END
; { end IF }
UNTIL (flag OR stop flag) ;
END ;
$PAGE

B-36

APPENDIX B

———— ——— ——— - — - — o " —— S - = -y = -

= - ——— o o - = e - W - -

PROCEDURE get_access_key ;

VAR
flag : BOOLEAN ;

BEGIN
REPEAT

flag := find_number(key) ;
IF flag OR stop_flag

THEN BEGIN
END
ELSE BEGIN
get_input (ask_key);
END
; { end IF }
UNTIL (flag OR stop_flag) ;
END ;
$PAGE
(= oo }
{ }
{ get _read_write_ _parameters }
{ }
{==m=mmmmmm e e R iniiniaiat ittt }

PROCEDURE get_read write_parameters ;

BEGIN

get_pe ;
get_length ;
get_pcadr ;

IF asynch_flag

THEN BEGIN

get_tag ;

get_access_key ;

END ;
END ; { end of PROCEDURE get_read write_parameters }
$PAGE
{mmm e e o oo }
{ }
{ get _error_number }
{ }
{~----mmmmmmmm oo e }

PROCEDURE get_error_number ;

B-37

APPENDIX B

VAR
flag : BOOLEAN ;

BEGIN

REPEAT
flag := find number(stat) ;
IF flag OR stop_flag
THEN BEGIN
END
ELSE BEGIN
get_input (ask_error) ;

END
; { end IF }
UNTIL (flag OR stop_flag) ;
END ;
$PAGE
{mmmmmmm o mmmme oo }
{ }
{ get yes }
{ }
e ittty }

FUNCTION get_yes : BOOLEAN ;

CONST
yes = STRING3 [’YES’] ;

BEGIN

get_input (ask_yes) ;
get_function ;

IF (func=yes) OR (func=’Y’)
THEN get _yes := TRUE

ELSE get_yes := FALSE ;

END ; { end of PROCEDURE get yes }

$PAGE

{mmmmmmm e }
{ }
{ get buffr }

{ }
{mmmmmm e }
PROCEDURE get_buffr (index : WORD) ;
CONST

init_ask = STRING11[’ 2’1 ;

VAR

flag : BOOLEAN ;
value : WORD ;

B-38

APPENDIX B

temp : STRING6 ;
index2 : WORD ;

BEGIN

ask bufval := init_ask ;
RTE_CNUMD(index-1,temp) ;
FOR index2:=1 TO 6 DO ask bufvall[index2]:=temp[index2] ;
REPEAT
flag := find number (value) ;
IF flag OR stop flag
THEN BEGIN
buffl[index] := value ;
END
ELSE BEGIN
get_input (ask_bufval) ;
END
; { end IF }
UNTIL (flag OR stop flag) ;

o = a = = e v - . - e ——— -

o}
Le
-
o}
ct
oy
=
J
(1)
=
Le
[o]
Le

et N gt et

PROCEDURE print FMP msg (error : KWORD) ;
CONST
error_file namr =STRING20[’"PCMER 1

VAR
err_buff : STRING80 ;
err_len : KWORD ;
BEGIN
PCIF build error_msg (error_file namr,

’FM’ ,error,0,err buff,err len) ;
WRITELN(’ file error : ’,err_buff) ;

PROCEDURE get_file name ;
CONST
no_namr = STRING20[’ 1

B-39

VAR
index : WORD ;

BEGIN

REPEAT
get_function ;
IF func=no_namr
THEN BEGIN
get_input
END
ELSE BEGIN

file namr :

{-} FOR index:
END
; {end IF ... }

(ask_file) ;

= f
=1 T

UNTIL (func<>no_namr) ;

BEGIN

CASE functlon code OF

1 : WRITE (’READD’) ;

2 : WRITE (’WRITED’) ;

3 : WRRITE (’READP’) ;

’

4 : WRITE (’WRITEP’) ;

8 : WRITE (’TRANS’) ;

16: WRITE (’START’)

’
.
’

17: WRITE (’STOP’) ;

20: WRITE (’CONNECT’

) s

21: WRITE (’DISC’) ;
22: WRITE (’PCSTAT’) ;

30: WRITE (’IDENT’) ;

’

une ;

O 6 DO file name[index]:=file namr[index];

_function_name }

OTHERWI WRITE (’unknown’) ;
; { end CASE function_code }

END ; { end of PROCEDURE print_ PCIF function name }

$PAGE

- A - . S G S at ae e e G . S .

- e T = AR S M v A S e e S S ——— -

PROCEDURE print_PC_status (status : WORD) ;

B-40

APPENDIX B

APPENDIX B

TYPE
STAT_TYPE =
RECORD
CASE INTEGER OF
0 : (word_access : WORD) ;
1 : (bit_access : PACKED ARRAY [1..16] OF BOOLEAN) ;
END ;

VAR
temp_stat : STAT TYPE ;

BEGIN

IF (stat=0)
THEN BEGIN
temp_stat.word_access := status ;
WRITE(’ -> BPC run mode=’) ;
IF temp_stat. b1t_access[l6] THEN WRITE(’OFF’)
ELSE WRITE(’ON’) ;
HRITE(’; download accept=’) ;
IF temp_stat.bit_access[15] THEN WRITE(’OFF’)
ELSE WRITE(’ON’) ;
IF temp_stat.bit_access[14] THEN WRITE(’; PC not online’) ;
WRITELN ;
ENd ; { end IF }

END ; { end of PROCEDURE print_PC status }

$PAGE
i it ittty }
{ }
{ print system status }
{ }
{mm o oo }
PROCEDURE print_PC_system_status (status : WORD) ;
TYPE
STAT_TYPE =
RECORD
CASE INTEGER OF
0 : (word_access : WORD) ;
1 : (bit_access : PACKED ARRAY [1..16] OF BOOLEAN) :
END ;
VAR
temp_stat : STAT_TYPE ;
BEGIN
IF (stat=0)
THEN BEGIN
temp_stat.word_access := status ;
IF (NOT temp _ stat.bit _access[4])
THEN BEGIN

B-41

WRITE(’ -> unsolicited ’) ;

IF temp stat.bit_access[9] THEN WRITELN(’DISABLEd’)

WRITE(’)
END
ELSE WRITE(® ->’) ;

ELSE WRITELN(’ENABLEd’) ;

IF temp stat.bit_access[10] THEN WRITELN(’ DISConnected’)
ELSE WRITELN(’ CONNECTED’) ;
IF temp_stat.bit_access[11] THEN WRITELN(’ LOCKED’)

ELSE WRITELN(’

UNlocked’) ;

IF temp stat.bit_access[12] THEN WRITELN(’ pending rgst’)

ELSE WRITELN(’

WRITE(’ capability :’) ;

IF (NOT temp_stat.bit_access[1])
THEN WRITE(’ WriteData’) ;

IF (NOT temp_stat.bit_access[2])
THEN WRITE(’ WriteProgram’) ;

IF (NOT temp_stat.bit_access[3])
THEN WRITE(’ TRansparent’) ;

IF (NOT temp_stat.bit_access[4])
THEN WRITE(® UNsolicited’) ;

IF (NOT temp_stat.bit_access[5])
THEN WRITE(’ STart/STop’) ;

WRITELN ;

END ; { end IF (stat=0) }

NO rqst pending’) ;

END ; { end of PROCEDURE print PC_system_status }

$PAGE
{ __
{
{ priant_pe_ident _
{
{ __
PROCEDURE print_pec_ident_status (VAR buff : BUF _TYPE) ;
TYPE
V_TYPE =
RECORD
. CASE INTEGER OF
0 : (word_access : HWORD) ;
1l : (char_access : STRING2) ;
END ;
VAR
vendor : V_TYPE ;
i : HORD;

BEGIN {print_pc_ident_status}

IF (stat=0)

THEN BEGIN
vendor.word_access := buff[l];
WRITE(’ -> Vendor = ")

-e

B-42

APPENDIX B

FOR i := 1 TO 2-DO WRITE (vendor.char access[i]);
WRITELN;
WRITE(’)
WRITELN(’ Model number =’,buff[2]:6);
WRITE(’ ') «
WRITELN(’ Station ID =’, buff[3]:6) ;
END ; { end IF (stat=0) }

END ; { end of PROCEDURE print PC_ident_status }

$PAGE
{****t******ft***‘******}

{ }

{ PCIF/1000 EXERCIZER : MAIN }
E'k*****************************ir************************:******}
BEGIN

WRITELN ;

WRITELN(’ PCIF/1000 exercizer 94200-16404 REV.2525 <850609.2200>’

)

RTE FTIME (error_buffer) ;
WRITELN(error_buffer) ;
WRITELN ;
ier:=0 ;
isecu:=0 ;
tag := 0 ;
key := 0 ;
contwd := 0 ; °
stop flag := FALSE ;
echo_flag := FALSE ;
asynch flag := FALSE ;
Jj:=1;
FOR i:=l TO 512 DO

BEGIN

bufflil:=j;

IF (j>2) THEN j:=1 ELSE j:=j+1;

END;
func:=’?’ ;
$PAGE
WHILE (func<>’EX’) AND (func<>’EXIT’) DO
BEGIN .
stat:=0;
tag := 0
key := 0 ;

stop_flag := FALSE ;
get_input (ask_command) ;
get_function ;

IF (func=’?’) OR (func-’??’)
THEN BEGIN

WRITELN(’ PCIF/1000 access routines may be qalled via’) ;
WRITELN(’ their name (without typing PC_ or PCIF)’) ;

WRITELN ;
WRITELN(’ Calls may be made in :’);

WRITELN(’ in synchronous mode (tag & key always=0)’);

B-43

APPENDIX B

APPENDIX B

WRITELN(’ or asynchronous (tag and access key are asked)’) ;
WRITELN(’ Mode is changed by using the function : MODE’) ;
WRITELN ;
WRITELN(’ Parameters may be entered at once on the same line’) ;
WRITELN(’ but missing parameters will be explicitly asked’) ;
WRITELN(’ Input can be stopped by entering "*","a" or "A"’) ;
WRITELN ;
WRITELN(’ Special functions are : MODE BUFRD BUFWR EXIT EX’) ;
WRITELN(’ DWLOAD UPLOAD ERROR ECHO’) ;
END
$PAGE
ELSE IF (func=’MODE’)
THEN BEGIN
WRITE(’ current mode is ’) ;
IF asynch_flag THEN WRITE(’ a’) ;
WRITELN(’synchronous’) ;
RRITELN(’ to change mode type "YES". All other input will’,
’ not do any change’) ;
IF get_yes
THEN BEGIN
IF asynch _flag THEN asynch flag := FALSE
ELSE asynch_flag := TRUE ;
END
ELSE BEGIN
WRITELN(’ NO change made’) ;
END ;
END
$PAGE
ELSE IF (func=’'READD’)
THEN BEGIN

$PAGE

ELSE
THEN

ELSE
THEN

ELSE
THEN

ELSE

get read write parameters ;
IF (NOT stop_flag)
THEN PC_READD (stat,tag,key,pc,buffl,lengt,pcadr)

END

IF (func=’"READP’)

BEGIN

get read write parameters ;
IF (NOT stop_flag)
THEN PC_READP (stat,tag,key,pc,buffl,lengt,pcadr)

END

IF (func="WRITED’)

BEGIN

get_read_write parameters ;
IF (NOT stop_flag)
THEN PC_WRITED (stat,tag,key,pc,buffl,lengt,pcadr)

END

IF (func="WRITEP’)

BEGIN

get_read write parameters ;
IF (NOT stop_flag)
THEN PC_WRITEP (stat,tag,key,pc,buffl,lengt,pcadr)

END

IF (func=’OPEN’)

B-44

THEN

ELSE
THEN

ELSE
THEN

ELSE
THEN

ELSE
THEN

ELSE
THEN

$PAGE
ELSE
THEN

ELSE
THEN

BEGIN
PCIF OPEN (stat);
END
IF (func=’CLOSE’)
BEGIN
PCIF CLOSE (stat)
END
IF (func="LOCK’)
BEGIN
get_pe;
IF (NOT stop_flag) THEN PC_LOCK (stat,pc);
END
IF (func=’UNLOCK’)
BEGIN
get_pc; !
IF (NOT stop_flag) THEN PC_UNLOCK (stat,pc);
END
IF (func=’CONNECT’)
BEGIN
get_pe;
IF asynch_flag
THEN BEGIN
get_tag ;
get_access_key ;
END ;
IF (NOT stop flag) THEN PC_CONNECT (stat,tag,key,pc);
END
IF (func=’DISC’) OR (func=’DISCONNECT’)
BEGIN
get_pe;

get_passwvord ;
IF (NOT stop_flag) THEN PC_DISC (stat,pc,password) ;
END

IF (func=’PCSTAT’)
BEGIN
get pec;
IF asynch flag
THEN BEGIN
get_tag ;
get_access_key ;
END ;
IF (NOT stop_flag)
THEN BEGIN
PC_PCSTAT (stat,tag,key,pc,buffl);
print PC status(buffl{l]) ;
END ;
END
IF (func=’IDENT’)
BEGIN
get_pc;
IF asynch_flag
THEN BEGIN
get_tag ;

B-45

APPENDIX B

$PAGE

ELSE
THEN

ELSE
THEN

ELSE
THEN

ELSE
THEN

get_access_key ;
END ;
IF (NOT stop_flag)
THEN BEGIN
PC_IDENT (stat,tag,key,pc,buffl,l0);
print_PC_ident_status(buffl) ;
END ;
END
IF (func=’SYSTAT’)
BEGIN
get_pe;
IF (NOT stop_flag)
THEN BEGIN
PC_SYSTAT (stat,pe,buffl);
print PC system_status(buffl[l]) ;
END ;
END
IF (func=’START’)
BEGIN
get pe;
IF (asynch_flag)
THEN BEGIN
get_tag ;
get_access_key ;
END ;
IF (NOT stop_flag) THEN PC_START (stat,tag,key,pc);
END
IF (func=’STOP’)
BEGIN
get_pe;
IF asynch flag
THEN BEGIN
get_tag ;
get_access_key ;
END ;
IF (NOT stop_flag) THEN PC_STOP (stat,tag,key,pc);
END

IF (func=’TRANS’)
BEGIN
get pe ;
get_length ;
get_logr ;
get_subfnc;
IF asynch_flag
THEN BEGIN
get_tag ;
get_access_key ;
END ;
IF (NOT stop_flag)
THEN BEGIN
PC_TRANS (stat,tag,key,pc,subfne,
buffl,lengt,buffl,logr);
IF (stat=0) THEN lengt:=logr ;

B-46

APPENDIX B

ELSE
THEN

ELSE
THEN

ELSE
THEN

$PAGE
ELSE
THEN

ELSE
THEN

IF ((lengt > -24576) AND (lengt < 0)) OR
((lengt > 512) AND (lengt < 16384)) OR
({lengt > 17384) AND (lengt < 32767))
THEN lengt := 512;
END ;

END

IF (func=’GEIKEY’)

BEGIN

PC_GETKEY (stat,key);

WRITELN (’ key : ’,key:6);

END

IF (func=’RELKEY’)

BEGIN

get_access_key ;

IF (NOT stop flag) THEN PC_RELKEY (stat,key)

END

IF (func=’CANCEL’)

BEGIN

get_pc ;

get_tag ;

get_type_cancel ;

IF (NOT stop_flag) THEN PC_CANCEL (stat,pe, tag typec);

END

IF (fune='CALL’)
BEGIN
get_pc ;
get_length ;
get_subfne ;
get_pcadr ;
IF asynch flag
THEN BEGIN
get_tag ;
get_access_key ;
END ; :
IF (NOT stop_flag)
THEN BEGIN
PC_CALL (stat,tag,key,pc,subfne,
buffl,lengt,pcadr);

IF (stat=0) AND (subfnc>31) THEN 1engt 1= 0 ;
IF (lengt>512) THEN lengt:=512 ;
END ;
END
IF (func=’ENQUIRY’)
BEGIN

get_access_key ;
contwd := key - 32768 ;
IF (NOT stop_flag)
THEN BEGIN
PC_ENQUIRY (stat,oldstat,tag,contwd,
pe,buffl,256,typer,logr);
lengt := logr DIV 2 ;
IF ((logr MOD 2)<>0)
THEN lengt := lengt + 1 ;

B-47

APPENDIX B

APPENDIX B

IF (stat=0)
THEN BEGIN
IF (typer<>0)
THEN BEGIN
WRITE(’ message get for PC’,pc:6,
' reply to ’) ;
IF (typer<0)
THEN BEGIN
HRITE(’ unsolicited ’);
print_PCIF function name (-typer) ;
END
ELSE BEGIN
WRITE(’ reply to ’) ;
print_PCIF_function name (typer) ;
END
; { end IF (typer<0) }
WRITELN(’ typer=’,typer:6);
WRITELN(’ tag’,tag:6,
’ logr =’,logr:6) ;
stat := oldstat ;
END
ELSE BEGIN
WRITELN(’ no message currently in access key’) ;
WRITELN(’ To wait on enquiry use function : ENQUIRYR’);
END
; { end IF (typer<>0) }
END ; { end IF (stat=0) }
END ; { end IF (NOT stop_flag) }
END
$PAGE
ELSE IF (func=’ENQUIRYW’)
THEN BEGIN
get_access_key ;
contwd := key ;
IF (NOT stop_flag)
THEN BEGIN
PC_ENQUIRY (stat,oldstat,tag,contwd,
pe,buffl,256,typer,logr);
lengt := logr DIV 2 ;
IF ((logr MOD 2)<>0)
THEN lengt := lengt + 1 ;
CASE stat OF
0 : BEGIN
WRITE(’ message get for PC’,pc:6) ;
IF (typer<0)
THEN BEGIN
WRITE(’ unsolicited ’);
print_PCIF function name (-typer) ;
END
ELSE BEGIN
WRITE(’ reply to ’) ;
print PCIF function name (typer) ;
END
; { end IF (typer<0) }

B-48

APPENDIX B

WRITELN(’ typer=’,typer:6); |
WRITELN(’ tag’ tag16
> logr =’,logr:6) ;
stat := oldstat ;
END ;
OTHERWISE BEGIN END ;
END ; { end CASE stat }
END ; { end IF (NOT stop_flag) }
END
$PAGE
ELSE IF (func=’ENUNSOL’)
THEN BEGIN
get_pe ;
get_access_key ;
IF (NOT stop flag) THEN PC_ENUNSOL (stat,pc,key);
END
ELSE IF (funec=’DIUNSOL’)
THEN BEGIN
get _pc ;
IF (NOT stop_flag) THEN PC_DIUNSOL (stat,pe);
END
$PAGE
ELSE IF (func=’BUFRD’)
THEN BEGIN
IF (lengt < 16384) AND (lengt > 0)
THEN FOR i:=1 TO lengt DO
WRITELN(i-1:6,’ -> ’,buffl[i]:7)
ELSE ;
{*CGY* Added below to print bit length 1engt buffers}
IF (lengt < 0)
THEN
BEGIN
bit_length.wd := lengt;
nb displayed := bit_length.lo_bits DIV 16;
FORi :=1 TO nb dlsplayed Do~
writeln (i-1:6,’ -> ’,bufflfi]: 7)»
IF (bit_length.lo_bits MOD 16 <> 0)’THEN
BEGIN {print remainder, zero out unused bits}
tempo.wrd := buffl[nb_displayed + 1];
FOR 1 := 1 TO (16 - (bit lengtm lo bits MOD 16)) DO
tempo.bit_array[(bit_length.lo bits MOD 16)+i]:=0;
writeln (nb _displayed: 6,” -,
tempo.wrd:7);
END;
END
{*CGY* End of mod.}
ELSE
BEGIN !
nb displayed (lengt - 16384) DIV 2;
IF (2 * nb_displayed <> lengt- 16384) THEN
nb displayed nb _displayed + l
FOR i:=1 TO nb displayed DO
BEGIN
tempo.wrd:= buffl{i];

B-49

APPENDIX B

WRITELN (tempo.btl:7);
IF (i<nb_displayed) OR
(2 * nb_displayed = lengt-16384) THEN
WRITELN (tempo.bt2:7);
END;
END;
END
ELSE IF (func=’BUFWR’)
THEN BEGIN
WRITELN(’ enter values as INTEGER, enter ’’*’’ or ’’a’’ to stop’);
I :=0;
WHILE ((I<=511) AND (NOT stop_flag)) DO
BEGIN
I :=1+1;
get_buffr(I) ;
END ; { end of WHILE ((I<=511) OR (NOT stop_flag)) }
stop_flag := FALSE ;
END
$PAGE
ELSE IF (func=’DWLOAD’)
THEN BEGIN
get_pe H
get pcadr H
IF asynch flag
THEN BEGIN
get_tag ;
get_access_key ;
END ;
get_file name ;
IF (NOT stop_flag)
THEN BEGIN
reset (abdown,file name);
i:=0;
WHILE (NOT eof (abdown)) AND (i<512) DO
BEGIN
1:=i+1;
read (abdown,buffl[i]);
END; {WHILE}
PC_WRITEP (stat,tag,key,pc,buffl,i,pcadr);
close (abdown);
END ;
END
$PAGE
ELSE IF (func=’UPLOAD’)
THEN BEGIN
get_pc ;
get_pcadr H
get_length H
IF asynch flag
THEN BEGIN
get_tag ;
get_access_key ;
END ;
IF (NOT stop_flag)

B-50

APPENDIX B

THEN BEGIN
get file name;
rewrite (abup,file_name);
IF (lengt»>512) THEN lengt:=512;
PC_READP (stat,0,0,pc,buffl,lengt,pcadr);
FOR i:=1 TO lengt DO
BEGIN -
write (abup,bufflli]);
END; {FOR}
close (abup);
END ;
END
$PAGE
ELSE IF (func=’ERROR’)
THEN BEGIN
get_error_number ;
END
ELSE IF (func=’**’)
THEN BEGIN
END
ELSE IF (fune=’ECHO’)
THEN BEGIN
echo_flag := TRUE ;
END
ELSE IF (func=’EX’) OR (func=’EXIT’)
THEN BEGIN
PCIF CLOSE (stat) ;
WRITELN (’ -> end of PCTEST program’) ;
stat := 0 ;
END
ELSE WRITELN (’ -> unknown test function name’);
IF (NOT stop_flag)
THEN BEGIN
IF (stat>0)
THEN BEGIN |
PCIF_ERROR(stat,error_buffer, error_length) ;
WRITELN(’ -> error : ’,error_buffer) ;
END ‘
ELSE BEGIN
WRITELN ;
END ; { end IF (stat>0) }
END
ELSE BEGIN
WRITELN(’ ~-> function not executed’) ;
END ; { end IF stop_flag }
END;

B-51

INDEX

A

Abort of Application Program 9-08
Access Keys, Maximum Number 8-26
Add/Modify a P/C 8-18
Allen-Bradley 1-01
Application Program 2-02, 9-07
Abort 9-08
Calls 9-08
Handling PCIF Library Errors 4-04, 4-05
PCLIB 4-04
PCLBC 4-04

C

Cartridge Reference (CRN) 7-9
Configuration Editor 2-04, 6-01
Configuration Editor Program 8-01
Configuration Environment, Definition of 2-04
Configuration File Namr 8-06, 8-26
Configuration Listing 8-02

Operation 8-05

Overview of 8-01

Proposed Values 7-01

Screen 1 8-06

Screen 2 8-08

Screen 3 8-10

Screen 4 8-12

Screen 5 8-14

Screen 6 8-16

Screen 7 8-17

Screen 8 8-19

Screen 9 8-21

Screen 10 8-24

Screen 11 8-25

Screen Descriptors 8-06

Screen Sequencing 8-04

Softkeys 8-04

Validation 8-04
Configuration Procedure 5-03

Overview 5-01
Configuration Process Error Messages (COOxx) A-02
Configurator Program 5-03
Configuration-Time 2-04

INDEX-01

PCIF OPEN 4-09
PCIF CLOSE 4-10
PCIF_ERROR 4-11
PC_CANCEL 4-12
PC_CONNECT 4-14
PC_DISC 4-16
PC_DIUNSOL 4-18
PC_ENQUIRY 4-19
PC_ENUNSOL 4-24
PC_GETKEY 4-26
PC_IDENT 4-27
PC_LOCK 4-30
PC_PCSTAT 4-31
PC_READD 4-33
PC_READP 4-37
PC_RELKEY 4-40
PC_START 4-41
PC_STOP 4-43
PC_SYSTAT 4-45
PC_TRANS 4-47
PC_UNLOCK 4-51
PC_WRITED 4-52
PC_WRITEP 4-55

INDEX/continued

Pascal and Fortran Compatibility 4-04
Reading Uncsolicited Requests 4-03
Return Parameters 4-08

Simulataneous Access 4-02
Status Parameter 4-08
Summary 4-06

Time-out Value 4-01

Using the Wait/No Wait Option 4-03

P/C
P/C
P/C

Communication Functions 3-04
Connections to HP 1000 6-02
Handler 2-06

Definition of 2-08

P/C
p/C
P/C
P/C
P/C
p/C
pP/C
P/C
P/C

Hardware Structure and Functioning Cycle 3-03
Highway 2-01 .

Logical Identifier 8-1

Request Queue Length 8-25

Station Number 8-21

and Supervisory Computer Connection 3-01
Logical Memory Structure of 3-03

-- Computer Information Exchange 2-06

-- Computer System Overview 2-01

PC/Highway Configuration 8-08

PCCON 5-03

PCDMX 6-11, 9-02

PCDMX Errors (Utility to Download Cards)(DMOxx) A-1l
PCGEN 5-03

PCHLT 6-12, 9-02

PCHLT Error (Halt Utility Program)(HTOxx) A-12

PCIF Initalization Errors (MIOxx) A-07

PCIF/1000 Definition and Purpose 1-01

Four Basic Parts 1-02

INDEX-04

INDEX/continued

Library 2-02
Monitor Program 2-06
Requirements 1-93
Specifications 1-01
Subsystem 2-03, 2-06
Subsytem Information Flow 2-06
Supported P/C Manufacturers and Types 1-01
Using Two Computer Systems 5-01, 6-13
PCIF CLOSE 4-10
PCIF_ERROR 4-11
PCIF_OPEN 4-09
PCLIB 4-04, 9-02
PCOPN 6-11, 9-02
PCTMO 6-11, 9-02
PCTMO Errors (Time Out Utility) (TMOxx) A-12
PC_CANCEL 4-12
PC_CONNECT 4-14
PC_DISC 4-16
PC_DIUNSOL 4-18
PC_ENQUIRY 4-02, 4-19
PC_ENUNSOL 4-03, 4-24
PC_GETKEY 4-03, 4-26
PC_IDENT 4-27
PC_LOCK 4-30
PC_PCSTAT 4-31
PC_READD 4-33
PC_READP 4-37
PC_RELKEY 4-40
PC_START 4-41
PC_STOP 4-43
PC_SYSTAT 4-02, 4-45
PC_TRANS 4-03, 4-47
PC_UNLOCK 4-51
PC_WRITED 4-52
PC_WRITEP 4-55
Partial FMP Error Codes (FMOxx) A-06
PASCAL Compatibility 4-04
PASCAL Library 6-15, 7-13
Physical P/C Status 4-02
Point-to-Point Connection 3-02
Preconfiguration 7-01 to 7-13
Completion 7-12, 7-13
Definition of 7-01
Descriptor File 7-01
Descriptor File Namrs 7-05
PCGEN 7-01
Screen Descriptions 7-02
Screen Sequencing 7-02
Screen 1 7-06
Screen 2 7-08
Screen 3 7-10
Softkeys 7-04
The Configuration Editor Program 7-01
The PCIF Run-Time Monitor 7-01

INDEX-05

INDEX/continued

Preconfigurator 2-04
Software Installation 6-14
Software Requirements 6-07
Preconfigurator Program 5-03, 6-01
Programmable Controller 2-03

R

RS232C 6-03 to 6-05
MUX/Highway 20mA Current Loop Connection 6-04
MUX/Highway Connection 6-03 to 6-06
Mixing 20mA and MUX Connections 6-05
RTE-A Operating System 1-03
Review of Programmable Controllers 3-01
Run-Time RTE-A 6-10 to 6-12
Answer File 6-10
Class Numbers 6-10
EMA Size 6-11 to 6-12
Logical Units 6-10
Memory Requirements 6-10
PCIF/1000 Program Partitions 6-11
Required Files 6-13
Requirements 6-10
SAM Size 6-12
Run-Time Environment, Definition of 2-05
PCLIB 9-02
EMERGENCY 9-02
Initialization Phase 9-03
Installation Phase 9-01
Localizing Error Messages 9-06
Messages 9-05
Monitor Errors (MKOxx) A-09
Operation 9-01
PCDMX 9-02
PCHLT 9-02
PCIF 9-02
PCOPN 9-02
PCTMO 9-02
RTE Command 9-03
Run-Time Phase 9-01
Starting PCIF 9-03
Stopping PCIF/1000 9-01
Subsystem 6-01
Running Application Programs 9-07

S

SNAP Files 6-16

SNAP Library 7-13

Saving an Incomplete Configuration File 8-02
Screen Error Messages (FROxx) A-06

Security Code (SC) 7-10, 8-26

INDEX-06

INDEX/continued

Software Installation 6-14
Default Security Code R2 6-14
Editing Files 6-15
F/1000 Forms Management Package 6-14
LINK Command Files 6-14
Loading Software 6-14
Installation, Pascal Library 6-15
Preconfigurator Program 6-17
Preparing PCIF/1000 Installation 6-14
SNAP 6-16
Software Requirements 6-07
Configuration Editor 6-07
Preconfigurator 6-07
Specifications for PCIF/1000 1-01
Start/Stop Allowed 8-22
Stopping PCIF 9-11
Storing an Incomplete Configuration File 8-02
Structure of a PC-Computer System 3-02
Structure of a Programmable Controller 3-03
Sub-Reply 2-07
Sub-Requests 2-07

T

Timeout and Timeout Unit 8-21
Transparent Functions Allowed 8-22

U

Unpacking and Inspection 6-01
Unsolicited Requests 8-22
Using Two Computer Systems 5-01, 6-16

w

What PCIF/1000 Consists of 1-02
What PCIF/1000 Does 1-01

Hrite Data 8-22

Hrite Program 8-22

INDEX-07

LT

