&

Microsoft® COBOL
for the 8086 Microprocessor
and the MS-DOS Operating System

User’s Guide

[5ickaro

Printed in U.S.A.

Manual Part No. 2/84

45448-90001

Microsoft Corporation

Information in this document is subject to change without notice and
does not represent a commitment on the part of Microsoft Corporation.
The software described in this document is furnished under a license
agreement or nondisclosure agreement. The software may be used or
copied only in accordance with the terms of the agreement. It is against
the law to copy Microsoft COBOL on magnetic tape, disk, or any other
medium for any purpose other than the purchaser’s personal use.

© Copyright Microsoft Corporation, 1983

Hewlett-Packard

Personal Software Division
3410 Central Expressway
Santa Clara, California 95051

Microsoft and the Microsoft logo are registered trademarks of Microsoft
Corporation.

MS is a trademark of Microsoft Corporation.

Part Number 45448-90001

Addendum

Enhancements to Version 1.10 COBOL

** You may now use DOS 2.0 pathnames within COBOL programs. When
the VALUE OF FILE-ID is a literal, the length is still limited to 16
characters. When the VALUE OF FILE-ID is an identifier, however, the
length of the specified filename, including a directory path, may be up
to 64 characters in length. Note that pathnames cannot be used with
the compiler itself for source, object, or list filenames.

** In previous versions, the size of an item subordinate to an OCCURS
clause was limited to a maximum size of 2048 bytes. This version of
COBOL removes that limitation.

** The HP 150 offers no support for color. Therefore, the reserved words
FOREGROUND-COLOR and BACKGROUND-COLOR, when used
with screen displays on the HP 150, have no effect. This allows
programs written in MS-COBOL for those Hewlett-Packard Series 100
Personal Computers that support color to also run on the HP 150.

** The compiler switches /T and /C now allow you to specify one of
twenty-six drives (A through Z). The previous limit was A
through D.

** The compiler now requires that the ACCESS MODE be SEQUENTIAL
for a sequentially organized file.

** The compiler now limits numeric items to a maximum of 18 digits.

** The compiler now traps attempts to write either the object or the list
file onto the source file, as well as onto each other.

Addendum-1

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

* ¥

* %

* %

The compiler now traps attempts to use a VALUE clause in a
statement that also contains an OCCURS clause.

A program that has less than 120 CALLS is guaranteed to generate a
valid object module. The exact number of CALLS required to generate
an invalid code depends upon additional features, such as numeric
edit, alphanumeric edit, ISAM, etc. that were required by the
program.

Multiple screen attributes (such as Half-bright, Reverse-video,
Underline, and Blink) are now allowed in a single screen item.

MS-DOS now checks for CTRL-BREAK at every procedure header.
However, when you use CTRL-C to abort an MS-COBOL compiled
program, you should press CTRL-C only once. Multiple occurences of
CONTROL-C may cause the system to hang.

Due to the HP 150 screen and keyboard configurations (see Chapter 1
and Appendix A), programs compiled with the MS-COBOL compiler,
when run, will:

— home up and clear the display,

— put the console input device in “raw mode” (MS-DOS 1/0O control
for devices) and keycode mode (the HP 150 alpha and graphics I/O
system),

— show the application softkeys,

— turn off the touch screen fields, except for the eight function keys
(£1-£8),

— turn off display functions,

— turn off memory lock,

— turn off insert character mode,

— unlock the keyboard,

— set the appropriate straps and modes,

— intercept the following keys: f1-f10, RIGHT ARROW, LEFT
ARROW, Tab, Shift Tab, Return, Backspace, Delete char, Delete
line, and ESC and translate them into COBOL escape codes (see
Table A.1 in Appendix A).

When the program finishes or is aborted,

— the console input device is returned to normal mode,

— the touch screen fields are turned off except for the eight function
keys (f1-18),

— the “modes” softkey labels are displayed.

Addendum-2

Enhancements to
REBUILD Version 1.21

** The REBUILD utility now accepts valid MS-DOS 2.0 pathnames for its
files. It also allows you to create a key file from an indexed data file
without duplicating the data file. You may use the resulting key and
data file as you would any other Indexed file.

** All ISAM files (that is, those files whose ORGANIZATION IS
INDEXED), created or modified by versions of COBOL prior to 1.10 or
REBUILD prior to 1.21, MUST be run through version 1.21 of the
REBUILD program before they can be used by version 1.10 of COBOL.
We strongly suggest REBUILDing the file and then using only version
1.10 of COBOL for ISAM file handling.

** REBUILD may now accept input from the command line. This
simplifies its use in batch files.

Command Line Mode

You may use the following syntax for the REBUILD command line mode:
REBUILD <command line> <RETURN>

where <command line> assumes the form:
<source filename>,<target filename>, <key description>

Each parameter is separated from the next by a comma. You must avoid
inserting space characters into the command line. '

The format for <<key description>> is:
<keyposition>:<key length>

You may use the default values for any command line argument after

< source filename>> by placing a semicolon (;) after the last argument you
desire to change. If you want the default setting for <(target filename>
but want to specify < key description>, you must type two commas
between the <(source filename> and <key description>> parameters.
(The commas show the place of the missing parameter.)

Addendum-3

When you omit either of the last two parameters, COBOL uses the
following default values:

<target filename> The default is <<source filename>>. This
creates a key file with the source filename
and the file extension “.KEY”. No new data
file is created.

<key description> The default for both <key position> and
<<key length> is 1 (that is, 1:1).

REBUILD prompts for any information that you fail to provide on the
command line.

Example 1. Command Line mode — creating a key file only:
REBUILD IXFILE.DAT,,13:582

This command line creates the file IXFILE.KEY, overwriting any existing
file with that name. You may use IXFILEKEY with IXFILE.DAT in any
MS-COBOL program.

Example 2. Command Line mode — creating both key and data files:
REBUILD IXFILE.DAT,NEWIX.DAT,13:562

This command line creates the files NEWIX.DAT and NEWIX.KEY. You
may use these files in any MS-COBOL program. IXFILE.KEY, if a file by
that name exists, remains unchanged.

Interactive Mode

To create only a new key file in interactive mode requires your typing
REBUILD then pressing the <{Return> key in response to the operating
system prompt. The format for the Command Line requires the four
parameters (<(source filename>, <target filename>, < key position>
in the data record, and <<key length>). REBUILD issues prompts for the
necessary information on the file to be rebuilt and continues to prompt
for information until all the parameters have values. You should respond
to the prompts for <<source filename>, <key position>, and <key
length> as you did in previous versions of the REBUILD utility. (See
Appendix E for examples.)

Addendum-4

The target filename prompt appears as:

Input the filename of the target data file (should not have the
extension of .KEY) or <RETURN>> to return to the Key Length
prompt.

If the target filename is the same as the source filename, a key file
with the source filename and extension “.KEY” will be produced
without producing a new data file.

Example 3. Interactive mode — creating a key file only:
Input Key Length: 52
Input Key Position: 13
Input SourceFilename: IXFILE.DAT
Input Target Filename: IXFILE.DAT

This interactive sequence creates the file IXFILE.KEY, overwriting any
existing IXFILE.KEY file. You may use this file with IXFILE.DAT in any
MS-COBOL program.

Example 4. Interactive mode — creating both a key and data file:
Input Key Length: 52
Input Key Position: 13
Input SourceFilename: IXFILE.DAT
Input Target Filename: NEWI X.DAT

This interactive sequence creates the files NEWIX.DAT and NEWIX.KEY.
You may use these files in any MS-COBOL program. IXFILEKEY, if a file
by that name exists, remains unchanged.

Remember if any previously existing Indexed key files are to be used
with programs running under MS-COBOL version 1.10 (or later
versions), you must first rebuild the file using version 1.21 or a later
version of the REBUILD utility. Version 1.21 of REBUILD allows the key
file to be recreated while still using the original data file. You may use
Indexed files processed with version 1.21 of REBUILD with all
MS-COBOL programs from version 1.0 and later.

See Appendix E - REBUILD: Indexed File Recovery Utility in the COBOL
Compilers User’s Guide for more details on REBUILD. Note that this
appendix does not currently contain information on these
enhancements.

Addendum-5

Table of Contents

Introduction

PackageContents.................................... Introduction-2
System Requirements Introduction-2
Royalty Information Introduction-3
How to Use ThisManual Introduction-4
Syntax Notation ool Introduction-5
Learning More About COBOL. Introduction-6

Chapter 1 - Getting Started

Your Distribution Disks i 1-1
Disk Backup 1-3
Using the HP 150 Screen Features 1-3
The Compilation Process, 1-4
Sample Session 1-5

Chapter 2 - Compiling Microsoft COBOL Programs

Invoking the Compiler 2-1
Using Compiler Switches. i 2-5
The Source Listing File o i 2-7
Compiling Large Programs 2-7

Table of Contents-1

Chapter 3 - Linking Microsoft COBOL Programs

Using MS-LINK 3-2
Linking Independent Segments (Overlays) 3-6
Linking Program Modules. oo 3-6
Linking Large Programs. 3-7

Chapter 4 - Loading and Executing Microsoft COBOL
Programs

Chapter 5 - Batch Command Files

Chapter 6 - Data Input and Qutput

Using Disk Files.......... il 6-1
Using MS-DOS and Nondisk Files. 6-4

Chapter 7 - The Interactive Debug Facility

Using the Debug Facility 7-1
Debugging Subprograms.............. i 7-5

Table of Contents-2

Appendix A - The HP 150 Terminal Interface

Terminal Functions, ASCII Key Names, and Escape Codes A-3

Appendix B - Interprogram Communication

Calling Microsoft COBOL Programs B-2
Calling Assembly Language Subroutines. B-4
Chaining MS-COBOL Programs.cooiiiiieieininnennn.. B-7
Chaining Assembly Language Programs B-9

Appendix C - Customizations

Source Program Tab Stops. o oo C-1
Compiler Listing Page Length, C-1

Appendix D - Compiler Phases

Appendix E - REBUILD: Indexed File Recovery Utility

Overview. E-1
Running REBUILD E-3
Sample REBUILD Session, E-8

Table of Contents-3

Appendix F - Demonstration Programs

CRTEST ... F-1
CENTER. F-1
MS-COBOL Demonstration System.ooouo... F-2

Appendix G - Microsoft COBOL Error Messages

Command Input and Operating System I-O Errors............... G-3
Program Syntax Errors..............l G-5
FileUsage Errors i i G-11
Warning Errors. G-12
Runtime Errors. e G-14
Program Load Errors.............. G-16
MS-LINK Errors. G-16
Index

Table of Contents-4

Introduction

Microsoft® COBOL (MS®-COBOL) Compiler is an extensive
implementation of the COBOL language for microcomputers. This
compiler has been certified with the Federal Compiler Testing Center
at the Low Intermediate level of compliance with the ANSI X3.23-
1974 Standard. MS-COBOL has many features that are standard for
higher levels of validation. It also includes extensions to the Standard
that are designed to optimize use of the COBOL language in the
microcomputer environment. :

Introduction-1

Package Contents

Your Microsoft COBOL Compiler package includes:

Two floppy disks (see Chapter 1 of this manual for a list of the files on
each disk).

One binder containing the following documentation:
Microsoft COBOL User’s Guide

Contains the information that is specific to a particular
implementation or operating system. This includes a list of system
requirements and a description of the contents of your disks. The
User’s Guide also provides general instructions on how to compile,
link, load, and execute programs on your operating system.

Microsoft COBOL Reference Manual

Contains detailed descriptions of the Microsoft COBOL language.
With the exceptions (if any) noted in the Liser’s Guide, the
information in the Reference Manual applies to all implementations
of Microsoft COBOL Compiler.

Microsoft COBOL Quick Reference Guide

Outlines the COBOL program structure and gives the formats of
individual statements.

System Requirements

Your implementation of MS-COBOL requires:
128K bytes of memory, minimum:

MS-COBOL Compiler requires approximately 40K of memory, and
the MS-LINK Linker requires approximately 41K. The exact
amount of additional memory needed for the user’s programs
depends on the programs themselves — the amount of data storage
used, the length of the PROCEDURE DIVISION, and the number of
optional runtime support modules used.

Note that a single MS-COBOL program module is limited to 64K.
The data for an MS-COBOL program is also limited to 64K. A
linked MS-COBOL program and program modules, however, may
be as large as the available memory.

Introduction-2

Two disk drives are recommended, although you can use MS-COBOL
with just one disk drive.

If your system does not meet these minimum requirements, ask your
computer dealer how to expand it.

NOTE
The MS-COBOL compiler has been configured to the HP 150’s terminal
characteristics. The runtime executor COBRUN.EXE is configured to
store all information that pertains to screen and keyboard features (such
as reverse video and blinking, or Tab and Shift Tab). For more
information refer to the paragraph on “Using the HP 150 Screen
Features” in Chapter 1 and also Appendix A.

Royalty Information

The policy for distribution of parts of the Microsoft COBOL Compiler is as
follows:

The COBRUN.EXE runtime module cannot be distributed without first
entering into a license agreement with Microsoft Corporation for such
distribution. A copy of the license agreement can be readily obtained
by writing to Microsoft. In addition, a copyright notice reading
“PORTIONS COPYRIGHTED BY MICROSOFT CORPORATION, 1982,
83" must be displayed on the media.

All other software in your Microsoft COBOL Compiler package cannot
be duplicated, except for purposes of backing up your software. Other
duplication of any of the software in the Microsoft COBOL Compiler
package is illegal.

Introduction-3

How to Use This Manual

This manual provides information about compiling and running
MS-COBOL programs with the MS-COBOL Compiler.

Chapters 1 through 4 provide the information you need to compile, link,
load, and execute an MS-COBOL program. Any information that is
specific to your MS-COBOL implementation is also contained in these
chapters. Chapter 5 tells you how to set up a batch command file to
“compile, link, and go.”

Chapter 6 explains the four disk file organizations: sequential, line
sequential, relative, and indexed. It also describes how to use disk input/
output files and other types of files.

Chapter 7 tells you how to use the Interactive Debug Facility to correct
program errors at runtime.

Appendix A tells you how to interface your terminal with MS-COBOL
(this must be done before compilation); Appendix B explains
interprogram communication with the CALL and CHAIN statements.
Appendix C shows you how to customize some of the MS-COBOL
features.

Appendix D gives an overview of the five phases of the MS-COBOL
Compiler. This appendix may be useful if your program generates a
“Compiler phase error.”

Appendix E describes the REBUILD program, which allows you to recover
or restore information in indexed files.

Appendix F describes the demonstration programs that are included with
MS-COBOL Compiler. These include a test program for the INSTALL
terminal interface, a simple MS-COBOL program, and three programs
that demonstrate the MS-COBOL SCREEN capabilities.

Error messages are listed in Appendix G. They are arranged alphabetically
within five sections:

1. command input and operating system I-O errors
2. program syntax errors

3. runtime errors

4. program load errors

5

. MS-LINK errors

Introduction-4

Syntax Notation :

The following notation is used throughout this manual for descriptions of
the MS-COBOL general format:

(]

< >

CAPS

Square brackets indicate that the enclosed text is
optional.

Angle brackets indicate user entered data. When the
angle brackets enclose lowercase text, the user must type
in an entry defined by the text; for example,
<filename>> indicates that the user must enter the
name of a file. When the angle brackets enclose
uppercase text, the user must press the key named by the
text; for example, <<RETURN>> means press the
<RETURN> key.

Braces indicate that the user has a choice between two or
more entries. At least one of the entries enclosed in
braces must be chosen unless the entries are also
enclosed in square brackets.

Braces also delimit the portion of a statement that is
referred to by an ellipsis.

Vertical bars separate the choices within braces. At least
one of the entries must be chosen unless the entries are
also enclosed in square brackets.

Ellipses indicate that an entry may be repeated as many
times as needed or desired.

Capital letters indicate portions of statements or
commands that must be entered, exactly as shown. They
are also used for words that the computer displays.

All other punctuation, such as commas, colons, slash marks, and equal
signs, must be entered exactly as shown.

Introduction-5

Learning More About COBOL

If you are new to COBOL programming, you will probably want to
learn more about writing programs before using the MS-COBOL
Compiler. The following texts are COBOL tutorials, written for the
novice programmer:

Abel, Peter. COBOL Programming: A Structured Approach. Reston,
Virginia: Reston Publishing Company, 1980.

McCracken, Daniel D. A Simplified Guide to Structured COBOL
Programming. New York: John Wiley & Sons, Inc., 1976.

Parkin, Andrew. COBOL for Students. Beaverton, Oregon: Edward
Arnold, Ltd., 1978.

Introduction-6

Chapter 1

GETTING STARTED

The purpose of this User’s Guide is to help you get a Microsoft COBOL
program up and running on your computer. To do this, you need to
perform some one-time tasks, and you need an understanding of the
major steps involved in using MS-COBOL. This chapter begins by
listing the contents of your disks and by telling you how to perform
disk backup. Then it presents an overview of the compilation process
and a sample program development session.

Your Distribution Disks

You receive two MS-COBOL distribution disks that are organized in
the following manner:

1-1

Disk 1 files
The MS-COBOL Compiler, the Runtime System, and the Linker

COBOL.COM — the main compiler program

COBOL1.0VR — overlay 1

COBOL2.0VR — overlay 2

COBOL3.0VR — overlay 3

c0BOL4.0OVR — overlay 4

COBOL1.LIB — the runtime library of optional routines
COBOL2.LIB — the runtime library containing the routines

necessary for loading COBRUN.EXE

COBRUN.EXE — the common runtime executor
COBDBG.0BJ — the interactive debug facility
LINK.EXE — the MS-DOS linker

Disk 2 files

Demonstration Programs

CRTEST.COB — a test program for the terminal interface, as
customized for the HP 150

CENTER.COB — a test program for the M5-COBOL Compiler
and runtime system

1-2

The MS-COBOL Demonstration System

DEMOD.COB — a program to demonstrate the MS-COBOL
screen section, to call the subprogram BUILD,
and to chain to the program UPDATE

DEMD.CPY — a file used by the COPY verb in DEMO.COB

BUILD.COB — a program to create an indexed (ISAM) file of
names, addresses, and telephone numbers

UPDATE.COB — a program to list or update the ISAM file
created by BUILD

DEMO.EXE — an executable version of DEMO already linked
with BUILD

UPDATE.EXE — an executable version of UPDATE, already
linked

DEMO__01.0VL — an overlay file generated by linking DEMO

CLDEMO.BAT — a batch command file for compiling and

linking the Demonstration System
The Rebuild Utility

REBUILD.EXE — the utility for recovering damaged indexed files

Disk Backup

The first thing you should do when you receive your disk(s) is make
copies to work with, saving the original disk(s) as backups. Do this by
using the COPYDISK utility supplied on your operating system disk.

Having made backup copies, check your copy of the compiler and
runtime system by compiling, linking, and executing the test program
CENTER.COB. To do this, refer to the sample program development
session in Chapter 1, “Sample Session.”

Using the HP 150 Screen Features

As the runtime executor COBRUN.EXE contains information on the HP
150’s screen functions, you may use any of the screen-specific features
without doing any installation procedure. To access the screen functions,

1-3

simply use the ACCEPT and DISPLAY statements with the appropriate
format for an elementary or a group screen item. (See the DATA

DI

VISION’s SCREEN SECTION in the COBOL Reference Manual and also

the addendum in the front page of the User's Guide.)

The Compilation Process

The three major steps in compiling and executing an MS-COBOL program
are:

1.

1-4

1. compiling
2. linking
3. loading and executing

Consult Figure 1.1 as you read the following descriptions of these
steps.
Compiling

The MS-COBOL Compiler consists of the main compiler program
(COBOL.COM) and four phases or overlays (COBOL1.OVR through
COBOL4.OVR). The routines contained in the compiler analyze your
COBOL program and produce an object code file. This file will have a
filename extension of .OBJ.

Compilation is performed in two passes. The first pass creates an
intermediate version of the program, which is stored in a binary work
file called COBIBETMP. The second pass creates the final version of
the object code.

Linking

The object code produced by the compiler is not executable machine
code. The Microsoft Linker (MS-LINK) is responsible for producing
the machine executable code, which will be placed in a file with an
.EXE extension.

MS-LINK performs the following tasks:
a. combines separately produced object files

b. searches library files for definitions of unresolved external
references

c. resolves external cross-references
d. produces a printable listing of symbols

e. produces the executable program

3. Loading and executing

The runtime system (COBRUN.EXE) “runs” the executable
program,

User's source program
l MS-COBOL Compiler (COBOL.COM plus COBOL1.0VR
through COBOL4.0VR)
Object code
l MS-LINK (LINK.EXE plus COBOL1.LIB and COBOL2.LIB)
Executable code

l Runtime executor or system (COBRUN.EXE)

Program execution

Figure 1.1. Major Steps in Compiling and Executing
an MS-COBOL Program

Sample Session

The compilation, linking, and loading/execution of an MS-COBOL
program are described in detail in Chapters 2, 3, and 4 of this manual.
To give you an overview of the MS-COBOL system, however, the
following sample session is provided. We recommend that you work
through the sample session and then read Chapters 2 through 4 of this
User’s Guide before beginning to compile your own programs.

The examples in this sample session are designed for systems with two
disk drives of 160K to 240K capacity. The program development steps
themselves, however, are appropriate for all implementations of
MS-COBOL.

1. Organize Your Disks

Organize the files on your disks to minimize disk-swapping and
“Disk full” errors during program development. Usually
MS-COBOL program development will require three working
disks: one for your source and object programs; one for the
Compiler and the text editor; and the other for MS-LINK, the
runtime executor, the runtime libraries, and any other necessary
utilities. For example, your three working disks might contain the
following files:

a. Program disk

COMMAND. COM

<your source files>
<intermediate files>
<object files>
<executable files>

Intermediate files, object files, and executable files are generated
during the compilation and linking process.

b. Compiler disk

COMMAND.COM

coBOL.com

cOoBOL1.0VR

CcOBOL2.0VR

COBOL3.0VR

COBOLA4.0VR

<text editor>
<miscellaneousutilities>

The <text editor>> may be any editor that will fit in the remaining
disk space. The <<miscellaneous utilities>> are MS-DOS utilities to
set up the printer, sort the directory, clear the screen, etc.

c. Utility disk

COBDBG.0BJ
LINK.EXE

cOBOL1.LIB
coBOL2.LIB
COBRUN.EXE

1-6

Your “program” disk contains your MS-COBOL source program,
object, and executable files.

You should use your copies of the distribution disk to make a copy
of the compiler disk. You do this by using the COPYDISK utility
that comes with the HP 150 operating system disk. (See the
discussion on “Disk Backup” in the first part of this chapter.)

During development, the program disk will be kept in drive B, and
either the compiler disk or the utility disk will be in drive A,
depending on which disk is required at the time.

Drive B should be selected as the default drive (the one where new
files are placed unless specified otherwise in the command). This
arrangement simplifies access to the program files by placing them
all on the same disk. Use of the programs on the utility or compiler
disk will then require an explicit drive specification (e.g., A:<text
editor executable file> or A:COBOL).

2. Create the Source Program

In this sample session, we’ll use the sample program
CENTER.COB for the source program. CENTER asks you to

enter a line of text and lets you choose whether to center the text
or align it at the left or right margin. (CENTER can be easily
converted into a subroutine for your own use later.)

Transfer the sample MS-COBOL program CENTER.COB from
your copies of the MS-COBOL to your program disk. Then
perform part “a” in the following list. You will not have to do
parts “b” and “c.”

However, you can use your text editor to create your own source
program, also called CENTER.COB, instead of using the
CENTER.COB program provided on your copies of the
distribution disk. If you choose to create your own file, do parts
“a,” ”b,” and “c¢” in the following list.

a. After booting the system as usual, place your compiler disk in
drive A. Then place the program disk in drive B and select B as
the default drive by typing:

B:

1-7

1-8

b. Type the command

A:<¢text editor executable file> CENTER.COB

to run the editor program so you can write your MS-COBOL
program.

c. When you have finished writing the program, use your editor

command to keep the file CENTER.COB on your program disk and
exit to the operating system.

. Check Program Syntax With Trial Compilation

Before you go on, you can check your program for syntax errors
with a “quick” compilation. This is done by compiling the
program and displaying the error listing on the screen. No object
or listing files are created, so compilation is faster than usual.

To compile CENTER.COB and display a list of errors on the terminal,
use the following command:

A:COBOL CENTER,NUL;

(See Chapter 2 for a discussion of M5-COBOL Compiler commands.)

If you get errors during the trial compilation, go back to Step 2 and
correct the source file (using the text editor in the compiler disk on
drive A). See Appendix G for a list of error messages and explanations.

When the trial compilation is completed without errors, you are ready
to proceed to Step 4.

. Compile the Source Program

Now the program is ready to be compiled. Compilation produces
the object file. The compiler looks for the overlay phases
(COBOL1.OVR - COBOL4.0OVR) first on the default drive (drive B
in this example) and then on drive A. With the disks arranged as
in our example, the overlay phases will be found on drive A.

To compile the program so that an object file (named CENTER.OB]J) is
produced, enter one of the following commands:

A:COBOL CENTER; produces just the object file
A:COBOL CENTER, ,PRN produces an object file and printed
listing

A:COBOL CENTER, ,CENTER produces an object file and a list file
(named CENTER.LST)

When compilation is successfully completed, the message “No Errors
or Warnings” is displayed, and the compiler exits to the operating
system.

. Link and Save the Executable Program

Put the utility disk in drive A. Note that the linker expects to find
the MS-COBOL common runtime libraries (COBOLI1.LIB and
COBOL2.LIB from the utility disk) on the default drive (drive B in
this case). If the libraries are not there, you will be prompted to
specify the drive on which they are located, unless you instruct
MS-LINK to look elsewhere. In this example, we will do just that
by specifying drive A in the following link command.

Now type the command:
A:LINK CENTER,,,A:;

This command links the object file with the runtime system,
producing the executable file. The “A:” at the end of the command
line tells MS-LINK to look on drive A for the MS-COBOL libraries.
(See Chapter 3 for a discussion of MS-LINK commands.) The
executable file (called CENTER.EXE) is saved on the disk in drive B.

Your program disk now contains the following files: CENTER.COB,
CENTER.OBJ, CENTER.EXE, CENTER.DBG, CENTER.MAP, and, if
you requested a list file, CENTER.LST. The DBG and MAP files will
not be used in this session, and may be deleted.

. Load and Execute the Program

To run a program, you need the executable file (CENTER.EXE) and
the common runtime executor (COBRUN.EXE). COBRUN.EXE
may be in either drive. The compiler will search for it first on the
default drive, then on drive A.

1-9

In this example, CENTER.EXE is on the program disk and COBRUN is
on the utility disk on drive A. Since we are keeping the program disk in
drive B, and drive B is selected as the default drive, type just the name of
the executable file (the .EXE is not required):

CENTER

Even though you’ve been very careful to remove all compile time errors,
you may still get runtime errors when the program is run. Error
messages are described in Appendix G of this manual. If you get runtime
errors, return to Step 2 and edit the program to correct the errors.

Chapter 2

COMPILING MICROSOFT COBOL
PROGRAMS

As in Chapter 1, the sample commands in this chapter assume that: the
Microsoft COBOL Compiler disk is in drive A, your program disk is in
drive B, and drive B has been selected as the default drive.

In the following examples, the file CENTER.DBG will be produced in
addition to the files specified. Files with a .DBG extension are used by the
Interactive Debug Facility. (See Chapter 7 for more information on the
Interactive Debug Facility.) Use the /D switch to suppress DBG files.
However, the DBG file assists in debugging, and we therefore recommend
that you produce it during program development.

Invoking the Compiler

The MS-COBOL Compiler may be invoked in one of the two ways listed
below. Note that the following discussions on “Compiler Responses” and
“Partial Command Strings” apply to both these methods. Therefore, read
these paragraphs before you begin to compile your own programs.

1. You may invoke the compiler by entering the command
A:COBOL

The drive specification is necessary because the compiler is not in the
default drive.

Then reply to the following prompts. (Filenames are discussed under
“Compiler Responses.”)

Source filename [.COB1:

2-1

Name of your source program. A filename must be specified. If no
extension is specified, .COB will be appended by default.

Object filename [<source filename>.0BJ]):

Name of the object file to be created. The source filename is the default
filename. The extension .OB]J is the default extension.

Source listing [NUL.LST}:
Name of the file to which the program listing is to be written.

If a filename is entered, its default extension is .LST. If a filename is not
entered, the default is NUL (no list). See “The Source Listing File”
paragraph for further discussion of the list file.

Example: The following series of responses compiles the source file
CENTER.COB, producing the object file CENTER.OBJ and a listing file
CENTER.LST on the default drive:

A:COBOL

Source filename [.COB): CENTER
Object filename [CENTER.OBJl: <RETURN>
Source listing [NUL.LST}: CENTER

. The compiler can also be invoked by entering

A:COBOL <command string>
where the command string contains

<source filename>,<object filename>
,<source listing>

as explained above and in “Compiler Responses.”

The separator character is the comma (,). No spaces are allowed.

When compilation has finished, you will be notified of any errors. If
errors exist, you must locate and correct them in the source program and
recompile the program before linking it. If the compiler detected no
errors, you will be told

No Erfrors or Warnings

and you may proceed with linking (as described in Chapter 3).

2-2

Compiler Responses

When you use either of the above methods to invoke the compiler, each
of your responses can be the name of a disk file and/or system device.
The format is:

<device><filename><extension>

<<device>> is the name of a system device. This can be a disk drive,
terminal, line printer, or other device supported by the operating
system. If the device is a disk drive, the filename must also be given,
unless a default filename is available (see final example under “Partial
Command Strings™). If the device is not a disk drive, only the device
name is required. The device may be followed by a colon (:) for
readability (it is required only for disk drives). MS-COBOL recognizes
the following device names:

NUL Do not create

CON or USER Display on terminal

A: or B: ... Disk drive (colon required)
PRN or LPT1 Printer

LPT2 ... Additional printer(s)

AUX or COM1 RS232

<filename> is the name of the file on disk. If the filename is specified
without a device, the default disk drive is assumed as the device.
Maximum length of the filename is eight characters.

<<extension> is a period (.) followed by a three-character suffix to the
filename. If an extension is not specified, the following defaults are
assumed:

.COB for the source program file
.0BJ for the object file
.LST for the list file

Partial Command Strings

You may also enter a partial command string when invoking a compiler.
Note that the default object filename may be specified by entering only
the comma which normally follows the filename. Also note that if the
comma which follows the object filename is entered, the source listing
filename defaults to the source filename. You will be prompted for any
files not specified in the command string. For example, the command

A:COBOL CENTER,,

2-3

would (1) prompt you for the source listing filename (with the default
name CENTER.LST), (2) compile the source from CENTER.COB, and (3)
produce the object file CENTER.OB]J.

Each prompt displays its default, which you may accept by pressing
<RETURNZ>> or override by entering another filename or device name.

If you enter an incomplete command string followed by a semicolon (;),
default entries will be assumed for the unspecified files.

The following examples assume the compiler is in drive A and that drive
B has been selected as the default drive:

1. A:COBOL CENTER;

Compiles the source from CENTER.COB and
produces the object file CENTER.OBJ. No
listing file is produced.

2. A:COBOL CENTER, ;

Does exactly the same thing as the previous
example.

3. A:COBOL CENTER, , ;

Compiles the source from CENTER.COB and
produces the files CENTER.OBJ] and CENTER.LST.
(The second comma (,) tells the compiler to use
the source filename as the default list filename.)

4. A:COBOL CENTER, ,CON

Compiles the source from CENTER.COB and places
the source listing file on the terminal. The
object program is CENTER.OB]J.

5. A:COBOL CENTER,CENTOBJ,PRN

Compiles the source from CENTER.COB, sends the
list file to the printer, and places the object
in CENTOBJ.OBJ.

6. A:COBOL A:CENTER,CENTOBJ,A:;

Compiles CENTER.COB from disk A, places the
object into CENTOBJ.OBJ on drive B, and places
the listing into CENTER.LST on drive A.

Using Compiler Switches

You can add one or more switches to the compiler command string or at
the end of any interactive response. A switch is indicated by a slash (/).
The switches and their effects are described below.

The format for a command string with switch(es) is:

<drive>:COBOL <command string>/<switch(es)>

Switches

/C Ordinarily, the compiler looks for the four overlay files
(COBOLL.OVR through COBOL4.OVR) first on the default
drive, then on drive A. To override the default drive, use the
/C switch with the letter of the drive you want. (The colon is
not required in the switch.)

Example: A: COBOL CENTER, ,/CB

In this example, the compiler looks for the overlay files on
drive B.

/T The compiler puts its intermediate file COBIBETMP on the
default drive unless you use the /T switch followed by the
desired drive designation. The disk in the drive you specify
must not be write protected.

This option is particularly helpful for compiling very large
programs on systems with more than two drives (see the
paragraph on “Compiling Large Programs”).

Example: A: COBOL CENTER, ,A:CENTERLIST/TA

In this example, the intermediate file is placed on drive A. (The
colon is not required in the switch.)

/P Each /P allocates an extra 100 bytes of stack space for the
compiler’s use. Use /P if stack overflow errors occur during
compilation.

Example: A: COBOL CENTER/P/P/P;

In this example, 300 extra bytes of stack space are allocated.

Switches (continued)

/D

/Fn

2-6

This switch suppresses both generation of the debug
information file (with a .DBG extension) and source line
numbers, which are normally placed in the object file. The
result is PROCEDURE DIVISION code that is about 16
percent shorter. However, when this switch is used, the
runtime system will not be able to note the line number at
which an error occurs. (See Chapter 7 for a discussion of
the debug information file.)

Example: A:COBOL CENTER/D;

In this example, the object file will not contain source line
numbers and CENTER.DBG will not be produced.

Fn (FIPS) flagging lets you tell the compiler to output a
warning for each COBOL statement above the Federal
Information Processing Standard level(n). The n must be a
digit from 0 through 4 (4 is the default):

0 Flag everything above low level.
1 Flag everything above low intermediate level.
2 Flag everything above high intermediate level.
3 Flag everything above high level.
4 No flagging. ‘

Example: A:COBOL CENTER/F 1;

In this example, the compiler will display a warning for
each COBOL statement above low intermediate level. If
you create a source listing file, the warning will be
included with the error messages.

The Source Listing File

The source listing file is a line-by-line account of the source file(s) with
page headings and error messages. Each source line is preceded by a four-
digit decimal number. This number will be referenced by any error
messages pertaining to that source line.

Files which are included in the compilation via COPY statements in the
source file are also included in the listing.

Compiler error messages are shown at the end of the listing file (as well as
being displayed on the terminal). See Appendix G for a listing and
explanation of error messages.

Compiling Large Programs

Occasionally, an MS-COBOL program may be too large to compile in the
available memory space or may exhaust the available disk space. There are
several ways to take care of this problem:

1. Use the /D switch in your command string (see “Using Compiler
Switches”) to prevent generation of a debug information file and to
suppress generation of line numbers in the object file.

2. Use the /T switch in your command string (see “Using Compiler
Switches”) to place the intermediate file (COBIBETMP) on a separate
disk.

3. Place the MS-COBOL Compiler (COBOL.COM) and its overlays
(COBOL1.OVR - COBOL4.OVR) on two separate disks. Then load
each portion into memory only as it is needed:

a. With the program disk in drive B, place the COBOL.COM disk in
drive A and invoke the compiler by typing “A:COBOL".

b. When you receive the first prompt “Source filename [.COB].”, take
out the COBOL.COM disk and place the overlay disk in drive A.
Then respond to the compiler prompts as usual.

This method allows the space normally used by COBOL.COM to be
available for the intermediate file COBIBE.TMP.

4. Break the program into several program modules. These modules can
be separately compiled and then combined into one program by the
linker. See Appendix B, “Interprogram Communication,” for
information on using program modules.

5. Break the large program into several smaller programs which are
chained. These programs are separately compiled and linked. See
Appendix B, “Interprogram Communication,” for information on

chaining programs.

NOTE
If you want to check the contents of your disk to make sure that
COBIBE.TMP has been deleted after compilation is completed, use
the DIR operating system command. Then, to make sure the space
has been released, use the CHKDSK program supplied with your
operating system. CHKDSK reclaims available space from unclosed
files and tells you the total amount of available space on the disk.

2-8

Chapter 3

LINKING MICROSOFT COBOL
PROGRAMS

As in previous chapters, this discussion assumes that: the utility disk is in
drive A, the program disk is in drive B, and drive B has been selected as
the default drive.

The Microsoft linker (MS-LINK) converts the compiled object version of
your program (the object file) into a version that is executable (the run
file). To do so, it searches the disk in the default drive for the MS-COBOL
runtime libraries COBOL1.LIB and COBOL2.LIB, which make up part of
the common runtime system (described in Chapter 4). COBOL1.LIB is a
library of optional routines that may be required for running the
program, and COBOL2.LIB contains the routines that are always
necessary for running the program. The routines you need are then linked
to the object version of your MS-COBOL program. The routines you need
depend on which MS-COBOL language features you used in the program
and program modules.

MS-LINK can also be used to combine separately compiled program
modules into one program. The modules may be specified individually or
extracted from a library. They may be written in MS-COBOL or in
Microsoft Macro Assembler language (MS-Macro Assembler). See the
paragraph on “Linking Program Modules” for the necessary details.

3-1

Using MS-LINK

Files that are to be linked or which will contain linker output can be
specified in one of three ways:

1. interactively

2. as part of the command line

3. as a command file

To invoke the linker, use one of these procedures which are described ir
more detail in the following pages.

To specity files interactively, enter
A:LINK

(The device specification is necessary because MS-LINK is not in the
default drive.) Then reply to the following prompts:

Object Modules[.O0BJI:

Name(s) of object file(s). If no extension is specified, .OBJ will be used. If
multiple object files are linked, they must be separated by a plus (+).

Files that are to be linked must be in object format. (If they were
compiled with MS-COBOL or generated by MS-Macro Assembler, they
will already be in object format.)

RunFilel<object filename>.EXE]:

Name of file to contain executable code. The object filename is the
default filename. The extension .EXE cannot be overridden.

List File[NUL.MAPI:

Name of list file. Defaults work much the same way as in the compiler.
The default is no list file, unless the run file is followed by a comma (see
discussion of partial command strings, below). If the run file is followed
by a comma, the default list filename is the object filename, with the
default extension .MAP.

Libraries[.LIB1l:

“Libraries” refers to the runtime routines that MS-COBOL may need to
run your program. All these routines are included in COBOL1.LIB and
COBOL2.LIB.

3-2

Normally, you only have to press <<RETURNZ>> in response to this
prompt. The names of the libraries are supplied to the linker by the MS-
COBOL object file. If you wish however, you may specify your own
libraries (see your MS-DOS manual), which will be searched before the
MS-COBOL libraries.

MS-LINK assumes that the MS-COBOL libraries are in the default drive.
If they are not in the default drive, you must enter a drive specification,
regardless of which drive has been selected as the default drive.

In all of our examples, the libraries are on drive A and not the default
drive. Therefore, you need to indicate the drive specification for the
libraries. If you do not, MS-LINK will prompt you for the drive on
which the libraries are located.

Filenames are specified in the same way as they are for the compiler (see
Chapter 2), except that the default extension is always .EXE for the run
file produced by the linker.

Example: The following series of responses links the files CENTER.OBJ

and MYOB].OBJ and searches your library MYLIB1.LIB before searching
COBOLI.LIB and COBOL2.LIB. The linker produces the executable file

MYRUN.EXE and the source listing file MYLISTMAP.

A:LINK

Object Modules[.0BJ]: CENTER+MYOBJ
Run File[CENTER.EXE]: MYRUN

List FilelNUL.MAPI]: MYLIST
Libraries[.LIB]: MYLIB1+

A:COBOL1+A:COBOL2
To use a command string, enter
A:LINK <command string>
where the command string contains
<objfile(s)>,<runfile>,<listfile>,<libfile(s)>
as defined in the preceding example.

An object filename must be specified. For the other files, a default
filename may be selected in the command string by entering only the
comma which would normally follow the filename (see the following
examples).

As with the MS-COBOL Compiler, you may enter a partial command
string or the entire string. If you specify an entry for all four files, or if an
incomplete command string ends with a semicolon (;), linking will
proceed without further prompting. Otherwise, the linker prompts for
the remaining unspecified files. Each prompt displays its default, which
you may either accept (by pressing <<RETURN>>) or override (by
entering another filename or device name).

Examples: (In these examples, the utility disk is in drive A, default drive
is B.) Since the MS-COBOL libraries are in drive A, and the default drive
is drive B, MS-LINK will not find the libraries unless you specify the
drive for the libraries or respond with “A” to the MS-LINK prompts. In
these examples, we have specified the library on drive A, unless
indicated otherwise.

1. A:LINK CENTER;

Links CENTER.OBJ and puts the runfile into CENTER.EXE. No list
file is produced. If CENTER.OB] was produced by the MS-COBOL
Compiler, MS-LINK prompts for the drive on which COBOL1.LIB
and COBOL2.LIB are found. Type “A” in response to the prompt.

2. A:LINK CENTER,, ,A:;

Same as first example, except that a listing is produced in
CENTER.MAP. (The second comma (,) indicates that the object
filename is to be used as the default list filename.) The “A:” at the end
of the command line tells MS-LINK to find the MS-COBOL libraries
on drive A instead of the default drive.

3. A:LINK CENTER+SUBFILE1+SUBFILE2,,,A:;

Same as previous example, except that SUBFILE1.OBJ and
SUBFILE2.0OBJ will be linked with CENTER.

You can also set up one or more command files which contain responses
to the linker prompts. Command files are created by the user. They are
especially useful when you are linking a number of object modules more -
than once (during debugging, for example), or when you are developing
variations of a program. See Chapter 5 of this manual or the MS-DOS
manual.

To specify this option on the command line, use the command:
A:LINK @¢filename>

<filename>> is the name of your command file. You must include the
drive if the file is not on the default drive. You may also specify a file
extension.

Example: A: LINK @RESFIL.CMD

After the command line is entered, the linker starts. If the linker needs
more memory space to link your program than is in the computer, it will
create a file called VM.TMP on the disk in the default drive and will
display a message to that effect. Do not remove this disk during
Iinking. If the additional space in VM.TMP is used up, or if the disk
containing VM.TMP is removed before linking is completed, the linker
will abort.

When the linker has finished, VM. TMP will be erased from the disk, and
any errors that occur during linking will be displayed. The run file will
be stored (with the extension .EXE) on the disk in the default drive or on
the specified drive.

NOTE
If you want to check the contents of your disk to make sure that
VM.TMP has been deleted after the linker aborts, use the DIR operating
system command. Then, to make sure the space has been released, use
the CHKDSK program supplied with your operating system. CHKDSK
will reclaim available space from unclosed files and tell you the total
amount of available space on the disk.

Computer
Museum

3-5

Linking Independent Segments
(Overlays)

The MS-COBOL segmentation facility lets you run programs that are
larger than the computer’s central memory. Segmented programs have
overlays that are referenced by MS-COBOL section numbers greater than
49 (see the chapter on “Segmentation,” in the Microsoft COBOL Reference
Manual). Each section is an independent segment.

No special commands are required for linking a segmented program. The
linker creates a file for each independent segment of the program, with
the filenames in the format:

PROGIDnn.OVL

PROGID is the PROGRAM-ID which you defined in the
IDENTIFICATION DIVISION. If the PROGRAM-ID is less than six
characters, MS-COBOL extends it to six characters by adding
underlines {_) to the end.

nn is a two-digit hexadecimal number that is computed by subtracting 49
(decimal) from the program segment number (decimal).

Example: If the PROGRAM-ID is “SAMPLE” and the program contains
segment number 99 (decimal), an overlay segment will be produced with
the name SAMPLE32.0VL.

Linking Program Modules

If you have developed your program as separately compiled program
modules, the linker can combine the modules into one program.

Before linking, compile or assemble all modules so that you have an object
version of each. Then start the linker, specifying in the command string
each module you want to link.

Example: A:LINK CENTER+SUBFILE1+SUBFILE2,,,A:;

See Appendix B, “Interprogram Communication,” for more information
about linking program modules.

3-6

Linking Large Programs

This discussion assumes that your files are arranged on three disks as
in the “Sample Session” in Chapter 1.

If your system’s disk space will not hold all the object files, required
libraries, the run file, the linker, and the list (MAP) file, you will need
to separate the files. One or a combination of the following space-
saving procedures should take care of this problem.

1.

Do not request a list file (MAP) — i.e., accept the no list default
(.NUL).

. Send the list file (MAP) to the terminal (CON) or printer (PRN).
. Transfer the runtime executor (COBRUN.EXE) from the program

disk to a separate disk. Perform the link. Then copy the run file to
the disk containing COBRUN.EXE, insert the disk (in either
drive), and begin execution as usual.

. Transfer the runtime libraries COBOL1.LIB and COBOL2.LIB

from the utility disk to a separate disk. Invoke the linker with the
LINK command and no command string. After the linker has
been loaded, place the disk containing the runtime libraries in
drive A and the program disk in drive B. Then answer the linker
prompts, specifying that the run file should go to drive A.

. Break the program into several programs which are chained.

Compile and link each program separately. Note that the common
runtime system works very efficiently with CHAIN; it only needs
to be loaded once, rather than once for each program in the chain.
See Appendix B, “Interprogram Communication,” for more
information on chaining.

Break the program into program modules connected by CALL
statements. Compile the modules separately and link them
together using the linker. This procedure is similar to CHAIN,
except that the called program contains a return statement. See
Appendix B, “Interprogram Communication,” for instructions on
linking program modules.

3-7

NOTE
If you want to check the contents of your disk to make sure that
VM.TMP has been properly deleted after the linker aborts, use the
DIR operating system command. Then, to make sure the space has
been released, use the CHKDSK program supplied with your
operating system. CHKDSK will reclaim available space from
unclosed files and tell you the total amount of available space on the
disk.

3-8

Chapter 4

LOADING AND EXECUTING
MICROSOFT COBOL PROGRAMS

After your Microsoft COBOL program has been compiled and linked
successfully, the final step is loading and execution. These functions are
performed by specifying the name of the executable file to the operating
system, as explained below.

Your runtime executor (COBRUN.EXE) is loaded automatically at the
beginning of execution. When you begin execution, COBRUN.EXE must
be in either the default drive or drive A.

To run your program, just enter the name of your run file, without the
.EXE filename extension. For example, type:

CENTER

Execution of CENTER EXE should begin immediately.

4-1

Chapter 5

BATCH COMMAND FILES

The MS-DOS operating system allows you to create a batch file for
executing a series of commands. This file must have the extension .BAT. It
should be kept on either the program disk or the utility disk.

As shown in the example below, the batch file may contain symbols that
refer to parameters in its invocation line. The symbol %1 refers to the first
parameter on the line, %2 to the second parameter, etc. The limit is %9. In
the example which follows, %1 refers to the parameter <<sourcefile>.

The batch file may also pause, display a prompt (defined by the user), and
wait for the user or operator to continue. The PAUSE command, followd
by the user-defined text of the prompt, performs this function.

If your program is already debugged and you are making only minor
changes to it, you can speed up the compilation process by creating a
batch file that issues the compile, link, and run commands.

For example, use the text editor to create the batch file CLGO.BAT (named
for “compile, link, and go”). The text of the file might be:

A:COBOL %1,,:

PAUSE . . .Insert runtime libraries disk in drive A:
A:LINK Z1,,,A:;
%1

5-1

To execute this file, type

CLGO ¢sourcefile>

< sourcefile>> is the name of the source program you want to compile,
link, and run. The first line of the batch file compiles the program; the
second causes a pause followed by a prompt telling you to insert the
runtime libraries disk; the third line links the object file; and the fourth
runs the executable file.

NOTE
A BAT file is only executed if there is neither a COM file or EXE file with
the same name.

For more information about batch command files, see your MS-DOS
manual.

5-2

Chapter 6

DATA INPUT AND OUTPUT

A Microsoft COBOL program can read or write data to files on disk or to
other MS-DOS devices. The instructions for creating and using these files
are entered as part of the MS-COBOL source program. This section
explains disk files and other types of files, and tells you how to use them
with your MS-COBOL programs. See the Microsoft COBOL Reference
Manual for more information.

Using Disk Files

To specity that a disk file is to be used in a program, include the ASSIGN
TO DISK clause in the FILEFCONTROL paragraph of the
ENVIRONMENT DIVISION.

The filename of the disk file must be declared in the VALUE OF FILE-ID
clause in an FD paragraph, in the FILE SECTION of the DATA DIVISION.
The FD paragraph must also include the clause LABEL RECORDS ARE
STANDARD. BLOCK clauses are checked for syntax, but they have no
effect on any file type. The FILE-ID clause should not be specified with a
name that is an MS-DOS device name. (See the paragraph on “Using
MS-DOS and Nondisk Files” for a list of MS-DOS device names.) Giving
the FILE-ID clause an MS-DOS device name would cause the file to appear
on the specified MS-DOS device rather than on a disk drive,

There are four types of disk file organization:

SEQUENTIAL
LINE SEQUENTIAL
RELATIVE
INDEXED

6-1

When an MS-COBOL program reads from or writes to a disk file, the
ORGANIZATION clause in the FILE-CONTROL paragraph of the
program’s ENVIRONMENT DIVISION must specify the file
organization of the disk file, unless it is SEQUENTIAL. Disk files are
assumed to be SEQUENTIAL unless they are declared otherwise.

Note also that only LINE SEQUENTIAL files can be created with an
editor. All others must be created by an MS-COBOL program or
assembly language program. See the Microsoft COBOL Reference
Manual or one of the tutorials recommended in “Learning More
About COBOL,” in the introduction to this manual, for more
information about creating disk files.

The four types of disk files are described below. (All formats are
subject to change without notice.)

1. SEQUENTIAL files have a two-byte count of the record length
followed by the actual record, for as many records as are in the
file.

2. In LINE SEQUENTIAL files, the record is followed by a carriage
return/line feed delimiter, for as many records as are in the file.
No COMP-0 or COMP-3 fields should be written into a LINE
SEQUENTIAL file because these data items may contain the same
binary codes used for carriage return and line feed which

therefore would cause a problem when subsequently reading the
file.

Both SEQUENTIAL and LINE SEQUENTIAL organizations pad
any remaining space in the last physical block with one or two
Control-Z characters (indicating end-of-file), followed by binary
zeros. To make maximum use of disk space, records are packed
together with no unnecessary bytes in between.

Warning
Files created by line editors and non-COBOL programs are often in
LINE SEQUENTIAL format. If you wish to use such a file as input to
an MS-COBOL program, you must include the ORGANIZATION IS
LINE SEQUENTIAL clause in its FILE-CONTROL paragraph. If the
clause is not included, MS-COBOL assumes the file is in
SEQUENTIAL format, and stops with a runtime error when the LINE
SEQUENTIAL file is input.

3. RELATIVE files always have fixed length records of the size of the
largest record defined for the file. Since no delimiter is needed, none
is provided. Deleted records are filled with hex value “00".
Additionally, six bytes are reserved at the beginning of the file to
contain system bookkeeping information.

4. Each INDEXED file declared in an MS-COBOL program will generate
two disk files: a key file and a data file. The file specification in the
VALUE OF FILE-ID clause specifies a file containing data only. The
filename included in the file specification is concatenated with an
extension .KEY to form the file specification of the key file.

The “key file” contains keys, pointers to keys, and pointers to data.
The format of this file is very complicated, but follows the guidelines
for a prefix B+ tree.*

A key file is divided into 256-byte units, called “granules.” There are
five possible granule types. A type indicator is located in the first byte
of each granule. The granule type indicators have the following
values:

Value Type Indicator

Data Set Control Block
Key Set Control Block
Node

Leaf

Deleted granule

Tl W N =

The key file will have only one Data Set Control Block in the first
granule, one Key Set Control Block for the primary file key, and
additional Key Set Control Blocks for alternate keys.

Each Data Set Control Block and Key Set Control Block contains, in the
fourth byte, a “damaged” flag which notifies you when the last file
use was not terminated properly. The runtime executor sets these flags
to nonzero values when the file is opened for updating and restores
them to zero when the file is closed.

The “data file” consists of data records. Each data record is preceded
by a two-byte field and a one-byte “reference count” that indicates
whether a record has been deleted. The data file is terminated by a
control record with a length field containing a 2, followed by two
bytes of high values.

*See Comer, Douglas. “The Ubiquitous B-Tree.” Computing Surveys of
the ACM. Vol. 11, no. 2 (June 1979), pp. 121-137.

6-3

Using MS-DOS and Nondisk Files

Files that will only be output need not be placed on a disk, but should be
considered as a stream of characters going to a printer or other device. No
permanent file is created. Records should be defined as the fields to appear
on the output device. No extra characters are needed in the record for
carriage control. Carriage return, line feed, and form feed are sent to the
output device between lines. Note, however, that blank characters (spaces)
on the end of a print line are truncated to make printing faster.

To send an output file to the printer, use the SELECT < filename>
ASSIGN TO PRINTER clause. Then, in an associated FD, specify the
clause LABEL RECORD IS OMITTED. Do not specify the VALUE OF
FILE-ID clause.

MS-DOS provides special device names for character devices. Data may be
sent to or read from the following devices:

CON or USER display on terminal
AUX or COM1 serial port (R5232)
PRN or LPT1 printer

LPT2 ... additional printer(s)

If you assign these names to the VALUE OF FILE-ID clause, MS-COBOL
treats the files as if they were disk files (see the preceding discussion on
“Using Disk Files”). That is, you assign the files to disk with the SELECT
clause, but the operating system uses the designated device instead of a
disk drive.

Chapter 7

THE INTERACTIVE
DEBUG FACILITY

The MS-COBOL Interactive Debug Facility allows you to control the
execution of a program and to examine or change data items in an
MS-COBOL program. When a program is compiled, a “debug information
file” is created along with the object file. The information file contains line
numbers and data-names from the DATA DIVISION and PROCEDURE
DIVISION of your MS-COBOL program. The debug commands listed
below can use these line numbers and data-names to affect data-items and
program execution in a number of ways.

The compiler will create the debug information file with the filename of
the MS-COBOL source file, but with the extension .DBG. For example,
compilation of a source file named MYFILE would produce MYFILE.OBJ
(object file) and MYFILE.DBG (debug information file).

To suppress creation of a debug information file, use the /D compiler
switch (see Chapter 2).

Using the Debug Facility

To use the debug facility, include the file COBDBG.OB]J in the command
line when you link your program. For example,

LINKMYFILE+COBDBG;

enables the debug facility. When you issue the command to execute your
program (MYFILE, in this example), the following message will be
displayed:

MS-COBOL Interactive DebugFacility v. xxx
Program: MYFILE
Type help for list of commands

*

7-1

The asterisk prompt (*) indicates that the debug facility is ready to accept
any of the debug commands listed below. The debug information file
should be on the current disk. If is it not, the message

**No debug information file found
will follow the messages already displayed.

Note that without a debug information file, limited debugging is
possible. By simply including COBDGB.OB]J in the linker command line,
you can enable the debug facility and execute any of the debug
commands listed at the end of this section except Change, Exhibit, and
Goto <<line-number>. However, without the debug information file,
the debug facility cannot verify that line numbers specified in the
breakpoint command are valid PROCEDURE DIVISION line numbers
that contain statements, or section or paragraph names.

Debug commands may be typed in full or may be abbreviated to the first
letter of the command name (the abbreviations are shown by the
underlined characters in the following list). Uppercase and lowercase
characters are equivalent. Arguments to the commands (line numbers,
data-names, ALL, OFF) must be given in full. Though spaces are shown
below, arguments can be separated from commands by any
nonalphabetic character. When a numeric argument is expected, the
debug facility will scan until the first digit on the line is found. For
example, the following list of commands are all equivalent (i.e., set a
breakpoint at line 100):

Breakpoint 100

BREAK @ 100

b100

break for meat line 100, if youwouldplease

Pressing your terminal’s interrupt key suspends program execution at
the next statement, as if a breakpoint had been set at the next line. The
key used as the interrupt key for the HP 150 is CTRL-C.

The following functions are available with the debug facility:

Function Description

Address <data-name> Displays absolute address
(hexadecimal) of a data-item in
memory.

7-2

Function (cont’d)

Breakpoints

Breakpoint <line-num>

Change <data-name>

Dump [<addr1>[<addr2>1]

Description (cont’d)

Lists all breakpoints.

(A breakpoint is a point at which
execution is interrupted so that you
can insert a debug command.)

Sets breakpoint at <line-num>.

You may have up to 8 breakpoints set
at any given time. Debug verifies that
<line-num> is a PROCEDURE
DIVISION line that contains a
statement or paragraph name.

Displays the contents of <(data-
name> and allows a new value to be
entered.

Change cannot be used on index-
names or on subscripted or qualified
variables.

Displays memory addresses
(hexadecimal equivalents) from
<Caddrl> through <taddr2>.

Both addresses are optional. If
<<addr2> is omitted, 128 bytes are
dumped, starting at <<addr1>-. If both
addresses are omitted, 128 bytes are
dumped, starting at the last address
dumped.

Dump uses addresses, not data-names,
as arguments. Addresses must start
with a digit, even if it is zero (e.g., 0A02
is valid, but A02 is not).

7-3

Function (cont’'d)

Exhibit ¢<data-name>

Go

Goto <line-numd

Help

Kill ¢<line-num>

Kill ALL

Line

7-4

Description (cont’d)

Displays contents of <data-name>>.

Data-items of less than 77 characters
are displayed within brackets. For data-
items greater than 77 characters, the
field length of the contents is displayed
without brackets.

Group names may be displayed,
although some components may not
be displayable (e.g., binary characters).

Exhibit cannot be used on index-names
or on subscripted or qualified
variables.

Resumes execution from the last
breakpoint or current program
position until a breakpoint or end of
program is encountered.

Begins execution at <line-num>>;
continues until breakpoint or end of
program is encountered.

This command may be used to branch
anywhere within a program, even
from one overlay segment to another.

If a PERFORM is active when Goto is
issued, the debug session may abort.

Displays the list of debug commands.

Removes the breakpoint at <line-
num>-,

Removes all breakpoints from the
breakpoint list.

Displays the <<line-num>> of the
current line.

Function (cont’d) Description (cont’d)

Quit Terminates the program (closing all
open files).

Step [<count>] Executes one or <_count> statements.

Trace Sets trace mode. When trace is set, the
line number of each line will be
displayed as the line is executed.

Trace OFF Turns off trace mode. (See description
of Trace.)

Debugging Subprograms

The interactive debug facility allows you to debug systems of programs
consisting of a main program and any number of subprograms. However,
there are some limitations on what can be debugged in such a system:

1. Assembly language subroutines may be called, but none of the
debugging features will be in effect while the subprogram is
executing. For example, no breakpoints can be set in an assembly
language subroutine.

2. If subroutines are nested to more than five levels, without a return to
an earlier subprogram, the debug facility will not open the debug files
for any subprograms beyond the fifth. If this is attempted, the
message “No debug information file found” will be generated, even
though the information file may actually be present. You may still set
breakpoints and use the trace mode at these deeper levels of nesting,
but you may not examine or change variables. On return to
subprograms nested less than five levels deep, the full debug facilities
will again be available.

This limitation does not hold for systems where a program calls a
large number of subprograms but returns to the main program before
calling each subprogram.

7-5

Appendix A

THE HP 150 TERMINAL INTERFACE

Computer

Museum

Terminal input/output is performed by the ACCEPT and DISPLAY
statements. For the SCREEN SECTION feature and Microsoft
extensions to the interactive ACCEPT and DISPLAY statements to run
correctly on your terminal, the MS-COBOL runtime system needs to
be configured to the characteristics of the terminal. This is already
done for the HP 150 in the runtime executor COBRUN.EXE.
Therefore, programs compiled and linked with the old versions of the
compiler may not run with this new version of COBRUN.EXE. In that
case, you must recompile and relink your programs.

Chapter 6 in the Microsoft COBOL Reference Manual describes the use of
ACCEPT and DISPLAY statements. The following discussion pertains
to Format 1, 3, and 4 ACCEPT statements and DISPLAY statements
which have positioning or SCREEN specifications.

The following paragraphs describe the screen and keyboard features
that have been configured for the HP 150.

Terminal Functions, ASCII Key
Names, and Escape Codes

This section lists functions, ASCII key names, and escape codes for the HP
150 terminal.

Table A.1 lists the escape codes which map to the specified functions
internally. For example, to monitor which function keys have been
pressed, your COBOL program would have to determine which one of the
ten escape codes (02 to 11) has been intercepted.

Table A.1. Escape Codes

Function Escape Code
TERMINATOR KEYS

Backtab 99
Escape 01
Tab 00
Carriage Return 00
Line Feed 00
FUNCTION KEYS

Function 1 02
Function 2 03
Function 3 04
Function 4 05
Function 5 06
Function 6 07
Function 7 08
Function 8 09
Function 9 10
Function 10 11

A-2

Table A.2 lists the HP 150 terminal characteristics.

Table A.2. HP 150 Terminal Interface

Functions

ASCII Key Name

EDITING KEYS

Delete Line
Delete Character

Nondestructive Forward Space
Destructive Forward Space
Nondestructive Back Space
Destructive Back Space

Plus Sign
Minus Sign

TERMINATOR KEYS

Escape

Back Tab

Tab

Carriage Return
Line Feed

FUNCTION KEYS

Function 1
Function 2
Function 3
Function 4
Function 5
Function 6
Function 7
Function 8
Function 9
Function 10

<DELETE LINE>
<DELETE CHAR>
< RIGHT ARROW >
<SPACE BAR>
<LEFT ARROW>
<BACKSPACE>

+

<ESC>
<SHIFT.TAB>
<TAB>
<RETURN>
<CTRL-J>

<f1>
<f2>
<{3>
<f4>
<f{5>
<f6>
<{7>
<{8>
<{9>
<f10>

A-3

All 10 COBOL application softkeys have been implemented (f1-£10). The
function keys f9 and {10 are not labeled on the keyboard, but they are
the left two of a bank of four keys located above the numeric pad. The
application softkeys f1 through {8 are valid touch fields and can be
activated by either pressing the function key on the keyboard or by
touching the function label on the screen.

B—ﬂ e EEEhaas o

e aaacE Gd
GECEREoIEE OG0
a0 NDNEEE aa
B Se0300NadES e
= & S G gac

The following output functions are not provided with the HP 150
interface:

Cursor On
Cursor Off

Also, the high intensity enhancement is not available, since the HP 150 is
normally in high intensity mode. The half-bright enhancement has been
implemented in its place.

Due to the HP 150 screen and keyboard configurations (see Chapter 1
and Appendix A), programs compiled with the M5-COBOL compiler,
when run, will:

— home up and clear the display,

— put the console input device in “raw mode” (MS-DOS I/O control for
devices) and keycode mode (the HP 150 alpha and graphics
I/O system),

— show the application softkeys,

— turn off the touch screen fields, except for the eight function keys (f1-
£8),

— turn off display functions,

— turn off memory lock,

— turn off insert character mode,

— unlock the keyboard,

— set the appropriate straps and modes,

— intercept the following keys: f1-f10, RIGHT ARROW, LEFT ARROW,
Tab, Shift Tab, <{Return>>, Backspace, Delete char, Delete line, and
ESC and translate them into COBOL escape codes (see Table A.1 in
Appendix A).

When the program finishes or is aborted,

— the console input device is returned to normal mode,

— the touch screen fields are turned off except for the eight function
keys (f1-8),

— the “modes” softkeys are displayed.

A-5

Appendix B

INTERPROGRAM
COMMUNICATION

Interprogram communication is accomplished by using the CALL or
CHAIN statements. CALL temporarily transfers control to another
program or assembly language subroutine, and CHAIN permanently
transfers control to another program. In linking, the calling and called
programs or subroutines are linked together, while chained programs are
linked separately. The various communications possible with CALL and
CHAIN are:

1. Temporary transfer of control from one MS-COBOL program to
another (CALL). :

2. Temporary transfer of control from an MS-COBOL program to an
assembly language subroutine (CALL).

3. Permanent transfer of control from one MS-COBOL program to
another (CHAIN).

4. Permanent transfer of control from an MS-COBOL program to an
assembly language program (CHAIN).

In addition to transferring program control, these statements can
transfer data between programs. This is done with the USING and
CHAINING clauses. In a CALL statement, the USING clause lists
parameters which give the addresses of data to be acted on within the
called program. These data are specified in a corresponding USING
clause in the PROCEDURE DIVISION statement of the called program.
The called program makes any necessary changes and then returns
control to the calling program.

When a program is chained, the USING clause of the CHAIN statement
also contains parameters, but in this case the actual values of the
parameters in the chaining program are substituted for those of the

chained program. This happens because the runtime system copies the
data values listed in the chaining program to high memory, loads the
chained program into memory, and copies the data values into their
corresponding parameters in the chained program. These parameters are
specified by a CHAINING clause in the PROCEDURE DIVISION
statement of the chained program.

Note that MS-COBOL programs are limited to passing 12 parameters,
and the maximum number of files that may be open in one run unit (a
program linked together with other programs or subroutines) may be
limited. See the Microsoft COBOL Reference Manual for more information
on space limitations.

Calling Microsoft COBOL Programs

The CALL statement is used to temporarily transfer control to another
MS-COBOL program. The two programs are compiled separately and are
then linked together (see Chapter 3). Control will be returned to the
calling program by an EXIT PROGRAM statement in the called program.

The format of the CALL statement is:

<literal> is the PROGRAM-ID defined in the IDENTIFICATION
DIVISION of a COBOL program. The literal must be non-numeric and
enclosed in quotation marks.

< data-name(s)> are references whose addresses are passed to the
called program. Data-names are discussed below.

The USING clause specifies data-items in the calling program (that can be
used by the called program.) For example, a program that needed
inventory totals could CALL another program to calculate the totals and
place them into designated data-names in the calling program. When this
clause is used, the following requirements must be met:

1. Within the calling program:

The data-names listed in the USING clause must be declared in the
WORKING-STORAGE SECTION of the DATA DIVISION.

2. Within the called program:

The data-names corresponding to those in the USING clause of the
calling program must be declared in the LINKAGE SECTION

of the DATA DIVISION and in a USING clause after the PROCEDURE
DIVISION header. The names in the LINKAGE SECTION and in the
PROCEDURE DIVISION header must be in the same order.

Control is returned to the calling program by an EXIT PROGRAM
statement in the PROCEDURE DIVISION.

The programmer must make sure that the data-items listed in the calling
program and in the called program are equivalent. See the Microsoft
COBOL Reference Manual for more detailed information on data-items.

Example:

Calling Program

DATA DIVISION. _
WORKING-STORAGE SECTION.
01 DATA-NAME PIC 99.

PROCEDURE DIVISION.

CALL PROG2 USING DATA-NAME.

Called Program

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG2.

DATA DIVISION.
LINKAGE SECTION.
01 LOCAL-REFERENCE PIC 99.

PROCEDURE DIVISION USING LOCAL-REFERENCE.

EXIT PROGRAM.

Calling Assembly Language
Subroutines

An MS-COBOL program may call assembler subroutines. (See your
MS-DOS manual for instructions on writing assembly language
programs.) The runtime system transfers execution to a subroutine by
means of a machine language FAR CALL instruction. Execution
should return via the MS-Macro Assembler RET instruction.

Parameters are passed by reference (i.e., by passing the address of the
parameter). Parameter addresses are passed on the stack (see Figure
B.1).

T High memory Main Program Stack
Program Module Stack
Parameter 1
Parameter n-1
Parameter n

Return address

SP > Return segment

Intersegment return vector

Figure B.1. Contents of Stack at Entry to a Routine

The called routine must preserve the BP register contents and remove
the parameter addresses from the stack before returning.

The subroutine can expect only as many parameters as are passed, and
the calling program is responsible for passing the correct number of
parameters. It is up to the user to determine that the type and length
of arguments passed by the calling program are acceptable to the
called subroutine; neither the compiler nor the common runtime
system checks for the correct number of parameters. Numeric values
to be passed should be declared as binary (i.e., USAGE IS COMP-0 in
the WORKING-STORAGE SECTION of the calling program).

B-4

Because the stack space used by an MS-COBOL program is contained
within the program boundaries, assembler programs that use the stack
must not overflow or underflow the stack. The best way to assure safety
is to save the MS-COBOL stackpointer upon entering the routine and to
set the stackpointer to another stack area. The assembler routine must
then restore the saved MS-COBOL stackpointer before returning to the
main program.

To call an assembler program module, use the name of the module in the
CALL statement. The name of an assembler program module is defined
by a PUBLIC directive and is declared as PROC FAR. Compile and/or
assemble the program(s) and assembly language subroutine(s). Then
link the called program module to the calling program using MS-LINK,
as described in Chapter 3 in this manual and in your MS-DOS manual.

Example:

COBOL Program

IDENTIFICATION DIVISION.

PROGRAM-ID. EXAMPLE.
*DEMONSTRATE CALLING AN ASSEMBLY LANGUAGE PROGRAM
ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

77 PARM1 PIC 99 COMP-0 VALUE 50.
77 PARM2 PIC 99 COMP-0 VALUE 45.
77 PARM3 PIC 99 COMP-0 VALUE 0.

77 PAR1 PIC 99.

77 PAR2 PIC 99.

77 PAR3-DIF PIC 99.

PROCEDURE DIVISION.

MAIN.
CALL ‘SUBIT’ USING PARM1, PARM2, PARM3.
MOVE PARM1 to PAR1.
MOVE PARM2 1o PAR2.
MOVE PARM3 to PAR3-DIF.
DISPLAY PAR1 * - * PAR2 ’ = ‘' PAR3-DIF.
STOP RUN.

Assembly Language Program

parm
savebp

parm3
parm2
parmi

codeseg

subit

subit
codeseg

B-6

assume
struc
dw

dw

dw

dw

dw

dw
parm

segment
public
proc
push
mov
mov
mov
mov
sub
mov
mov
Pop
ret
endp,
ends
end

cs:codeseq

?
?
?
?
?
2
e

nds

para

subit

far

bp

bp,sp
bx,[bpl.parmt
ax,[bx]
bx,[bpl.parm2
ax,[bx]
di,[bpl.parm3
[dil),ax

bp

6

istack definition
;saved caller’s bp

;caller’s
scaller’s
saddr 3rd
saddr 2nd
saddr 1st

ip reg
€s reg
parameter
parameter
parameter

;entry point
;long call
;save bp of caller

sset
;get
sput
sget
ssub
;get
sput

up stack frame
addr of parmt
value in ax
addr of parm2
values

addr of parm3
result

;restore caller’s bp
srestore stack

into parm3

Chaining MS-COBOL Programs

The CHAIN statement is used to permanently transfer control to a
separately compiled and separately linked program, which is loaded
into memory and executed. The chained program can issue its own
CHAIN statement or may even issue a CHAIN statement to its
original chaining program, but it cannot issue an actual return to the
original program.

The format of the CHAIN statement is:

CHAIN {Hteral [USING identifier-2 ...]
identifier-1

<literal> or <<identifier-1> is the file-name of an executable
program. The only difference between them is that the literal must
be enclosed in quotation marks, while the identifier does not use
quotation marks. Both must be alphanumeric. <lidentifier-1> must
contain a terminating space.

<Cidentifier-2> is a data-item identified in the WORKING-
STORAGE SECTION of the chaining program.

For more details about CHAIN format, see the Microsoft COBOL
Reference Manual.

If the USING clause is included, the values of the data-items listed
there will be copied to high memory, and when the chained program
is loaded and run, they will be substituted for the equivalent values in
the chained program. This allows the user to run a new program using
values established in an earlier program. When this clause is used, the
following requirements must be met:

1. Chaining Program

The data-items listed in the USING clause must be declared in the
WORKING-STORAGE SECTION of the DATA DIVISION.

2. Within the Chained Program

The data-items corresponding to those in the USING clause of the
chaining program must be declared in the WORKING-STORAGE
SECTION of the DATA DIVISION and in a CHAINING clause
after the PROCEDURE DIVISION.

B-7

Example:

Chaining Program

DATA DIVISION.
WORKING-STORAGE SECTION.
01 DATA-ITEM PIC 99.

PROCEDURE DIVISION.

CHAIN PROG2 USING DATA-ITEM.

Chained Program

DATA DIVISION.
WARKING-STORAGE SECTION.
01 LOCAL-REFERENCE PIC 99.

PROCEDURE DIVISION CHAINING LOCAL-REFERENCE.

B-8

Chaining Assembly Language
Programs

Assembly language programs are chained the same way as
MS-COBOL programs (see the section on “Chaining MS-COBOL
Programs”). The following additional information will be useful when
you are writing assembly language programs that will be chained.

When the USING clause is included in the CHAIN statement, the
parameters passed between programs are stored at the highest available
memory address. This address is determined from byte 2 of the program
header (see your MS-DOS manual for more information).

The memory layout is as follows, starting at the highest available address
and proceeding toward location zero (see Figure B.2):

1. 256 bytes are reserved for stack space.

2. The first parameter in the USING list follows, preceded by its length
in bytes. The parameter length is stored in two bytes, high-order byte
first. The parameter itself is stored as a string of bytes in the same
order as the bytes were stored in the DATA DIVISION, beginning at
the address of the length minus the length itself (see Figure B.2).

3. Each parameter in the USING list follows in order, each preceded by
its length in bytes.

The chained program must expect the same number and format of
parameters as were passed. No checking will be done by the compiler or
the common runtime system.

B-9

13}

Stack space

j 4——— Highest memory location
256 bytes T

4——— Length of parameter 1 {(high byte)

4———- Length of parameter 1 {low byte)

4——— Last byte of parameter 1

«—— First byte of parameter 1

4+——— Length of parameter 2 (high byte)

4——— Length of parameter 2 (low byte)

B-10

4——— Last byte of parameter 2

Figure B.2. Memory Layout for Chained Programs

Appendix C

CUSTOMIZATIONS

This appendix is intended for those who are proficient with a
debugger and/or assembly language and would like to change some
of the built-in parameters of Microsoft COBOL.

Source Program Tab Stops

If tab characters (hex 09) are used in the MS-COBOL source program,
the compiler converts them into enough spaces to reach the next tab
stop as defined in its internal TAB table. The table originally defines
ten stops at the following columns (counting from column 1):

8, 12, 20, 28, 36, 44, 52, 60, 68, and 73

These may be changed by patching the table. The address is 15 bytes
from the start of COBOL.COM. There is one byte in the table for each
tab stop. You may supply any values you like, provided that:

1. the numbers are in ascending order
2. no more than 10 stops are defined

3. the last tab stop is 73

Compiler Listing Page Length

One byte in the compiler defines the page length of the listing as 55
(hex 37) lines. Its location is 14 bytes from the start of COBOL.COM,
and it may be patched to any value between 1 and 255.

C-1

Appendix D

COMPILER PHASES

Microsoft COBOL Compiler creates an object code program from your
source program. This is done in five “phases,” consisting of the root
portion of the compiler, COBOL.COM, and four overlays,
COBOLI1.OVR through COBOL4.OVR. These are the phases
referenced by an error message such as “?Compiler error in phase n.”

Compilation is performed in two passes:

The first pass creates an intermediate version of the program, which is
stored in a binary file called COBIBE.TMP. This is done in three steps:

Phase 0 (the root portion of the compiler) compiles the
IDENTIFICATION and ENVIRONMENT DIVISIONS of
the source program.

Phase 1 (COBOL1.OVR) compiles the DATA DIVISION of the
source program.

Phase 2 (COBOL2.OVR) compiles the PROCEDURE DIVISION of
the source program.

The compiler’s second pass reads the intermediate file and creates the
object code:

Phase 3 (COBOL3.0OVR) reads the intermediate file and creates the
object code.

Phase 4 (COBOL4.0OVR) allocates file control blocks and finalizes
the object code.

Appendix E

REBUILD: INDEXED FILE
RECOVERY UTILITY

Please read the enhancements to REBUILD version 1.21 in the front of
this manual first.

The Indexed File Recovery Utility (REBUILD) can be used to recover
or restore information contained within indexed files. The indexed
files that are compatible with this utility are those that have been
created by a program compiled under MS-COBOL Version 1.00 or
later.

Overview

REBUILD works by reading the data file portion of an indexed file
and generating new key and data files for that indexed file. The new
indexed file has the same structure as the old one. The utility will skip
over all deleted records and any other control records within the data
file.

Use of REBUILD is recommended in the following situations:

1. When space is exhausted during a WRITE operation to the disk on
which the indexed file resides.

2. When electrical power to the computer system is interrupted or
the operating system is rebooted while an indexed file is open in
I-O or OUTPUT mode.

3. When the data file portion of the indexed file contains large areas
of unused space, usually as a result of numerous record DELETE
and REWRITE operations, and especially when records within the
file have varying lengths.

Situation 1 (in the preceding list) occurs when WRITE produces a
boundary error (file status “24”), indicating that the disk is full.
When this happens, you should perform a CLOSE in order to write as
much information as possible to disk. It is likely, however, that the
CLOSE will also return with a boundary error. As in the case of a
system failure during the addition of records, the last 256 bytes of
information will not be present within the data file, and is therefore
not recoverable by REBUILD.

Recovery from situation 2 (in the preceding list) may also be limited,
because without a transaction file to rebuild the indexed file,
recovery from some types of system failure is problematic. Because of
the high degree of disk file buffering in memory, a system failure
may leave the data file with partially written data records. This may
cause REBUILD to fail to completely recover an indexed file for two
reasons:

1. Because a good deal of information is kept in memory, if the
system failure occurred during a file update job, the file may
contain records with both original and new information. The
recovery utility cannot determine which part of the data was
written during the aborted job, and therefore cannot exclude the
new, incomplete data from the rebuilt file. Adding a current date
field to data records may help discriminate between original and
new data.

2. If the system failure occurred while records were being added to
the indexed file, the last 256 bytes of data will not be written to
disk. The recovery utility will detect that information is missing
from the end of the file but cannot add it to the recovered file.

E-2

Running REBUILD

REBUILD is itself an MS-COBOL program. Therefore, when you are
running REBUILD, COBRUN.EXE must be present on a disk in the
default drive or drive A.

Invoke the recovery utility by entering:
REBUILD
in response to the operating system prompt.
The utility will respond with the following header information:

REBUILD by Microsoft Corporation
Indexed File Recovery Utility

V. xxx

Use this utility to recover indexed files when they are damaged, or to
reorganize indexed files by removing unused space. Compatible
indexed files are those generated by MS-COBOL (C) for versions 1.00
and later.

The recovery utility will then ask a series of questions. Your answers
will provide the information necessary for rebuilding a new indexed
file from the original data file. The flow of control within the recovery
utility, as it relates to the operator, is diagrammed in Figure E.1.
Following the diagram are detailed descriptions of the individual
recovery steps and a sample REBUILD session.

E-3

E-4

—— Input key length

—— <RETURN> —l— valid

Input target filename 4—‘
l————— <RETURN> —J— valid

Display title

l

<RETURN> — Terminate run

valid

Input key position

|—— <RETURN> —-J— valid

|

tnput source filename <

not found

no space

!

Recover files

Figure E.1. Control Flow Within REBUILD

1. Input Key Length
Enter the key length in reply to the prompt:

Input the key length Cinbytes) or
<RETURN> to terminate program---->

Enter a key length or press <RETURN> to immediately terminate
the program. If you enter a key length, the program will proceed to
the next prompt.

The key length should be a positive integer that represents the
number of bytes contained in the item specified by the RECORD KEY
clause of an MS-COBOL program. Failure to enter the correct key
length may not hamper the execution of REBUILD, but programs will
not be able to access the generated indexed file.

2. Input Key Position
Enter the key position in reply to the prompt:

Input the byte positionof the key field,
startingat 1, or <RETURN> toreturn to
the Key Length prompt ---->

Enter the position of the key data item within the record; or press
<RETURNZ> to move back to the Input Key Length prompt in order
to correct information or terminate the program. If you enter a key
position, the program will proceed to the next prompt.

The key position should be a positive integer that represents the
position within the record of the data item specified by the RECORD
KEY clause of an MS-COBOL program. As with the key length,
REBUILD does not check whether an incorrect response has been
entered; but the result of an incorrect response will be that programs
will not be able to access the generated indexed file.

3. Input Source Filename
Enter the filename of the source file in reply to the prompt:

Input the filename of the source data
file (should not haveextensionof .KEY)
or <RETURN> toreturnto theKey Length
prompt ---->

Enter a filename; or press <<RETURN>> to move back to the Input
Key Length prompt so that you can correct and re-enter previous
information or terminate the program.

E-5

The source filename should be the name that is used in the VALUE OF
FILE-ID clause in MS-COBOL programs that refer to the indexed file.
The filename used here should be the name of the data file. The key
file, which has the same name but an extension of .KEY, will not be
used in the recovery operation and should not be entered in response
to this prompt.

The source filename may contain a drive specifier.

After the source filename is entered, REBUILD will check for the
presence of the file. If it is not present, the following message will be
displayed:

***Source filenot found
and the Input Source Filename prompt will be redisplayed.
. Input Target Filename

Enter the filename of the indexed file to be generated in reply to the
prompt:

Input the filename of the target data
file

(should not haveextensionof .KEY)

or <RETURN> toreturnto theKeylength
prompt ---->

Enter a filename or press <<RETURN>. As usual, <<RETURN>
moves you back to the Input Key Length prompt so that you can
re-enter information or terminate the program.

As with the source file, this name is the name of the data file. Do not
enter the key file, which has the same name but the .KEY extension.

The target filename should be unique within a directory. Therefore, if
you wish to use a name identical to the source filename, you should
send the target file to a different disk by including a drive specifier in
the filename. The target file can be generated on the same disk as the
source file, but you will have to use a different name. Once the
recovery operation is complete, you can then rename the target
filename to the source filename.

If the recovery utility cannot successfully create a new indexed file,
either because the disk directory is full or because of insufficient space

E-6

on the disk, the program will display the message:
*** No space for target file
and will redisplay the Input Target Filename prompt.
5. Recover File

After you have answered all questions, the recovery utility will
display:

Now reading <source-file>
and creating <target-file>

The program will begin building the new indexed file from the old
data file. When this process is finished, the following message will be
displayed:

Conversion successfully completed.
Source records read: XXX, XXX
Target records read: XXX, XXX

The record counts should match. If they do not, some type of input-
output error occurred during the recovery operation.

Regardless of whether the record counts match, REBUILD will then
display another Input Key Length prompt. You can begin another file
recovery operation (or redo the one that had an input-output error) or
terminate the program.

E-7

Sample REBUILD Session

The following program fragment accesses the indexed file IXFILE.DAT:

ENVIRONMENT DIVISION.
INPUT-0OUTPUT SECTION.
FILE-CONTROL
SELECT IX-FILE
ASSIGN TO DISK
ORGANIZATION INDEXED
ACCESS DYNAMIC
RECORD KEY IX-KEY
FILE STATUS IX-STAT.
DATA DIVISION.
FILE SECTION.
FD IX-FILE
LABEL RECORD STANDARD
VALUE OF FILE-ID "IXFILE.DAT"™
RECORD CONTAINS 75 CHARACTERS
DATA RECORD IX-REC.

01 IX-REC.

05 IX-DATE PIC X(©).

05 IX-TIME PIC X(B6).

05 IX-KEY.
10 IX-STATE PIC XX.
10 IX-CITY PIC X(20).
10 IX-STREET PIC X(30).

05 IX-ZIP PIC X(5).

05 IX-Z0NE PIC X(&).

For this program fragment, the responses to the REBUILD utility would
be:

Input Key Length: 52

Input Key Position: 13

Input Source Filename: IXFILE.DAT
Input Target Filename: NEWIX.DAT

The result of the recovery operation would be to generate a new indexed
file with the key filename NEWIX.KEY and the data filename
NEWIX.DAT.

E-8

Appendix F

DEMONSTRATION PROGRAMS

P> Computer
“Museum

The following demonstration programs are included with MS-COBOL
Compiler.

CRTEST

CRTEST is a test program for the terminal interface, as modified for the
HP 150. CRTEST must be compiled and linked before it can be run.
(Follow directions for compiling and linking in Chapter 1, “Sample
Session.”) When you run the program, it will prompt you for input.

CENTER

CENTER is a program that centers a line of text or aligns it with the left or
right margin. It is a simple MS-COBOL program that does not use
sophisticated screen handling features. Like CRTEST, it must be compiled
and linked before execution. It will also prompt you for input.

F-1

MS-COBOL Demonstration System

The MS-COBOL demonstration system consists of three MS-COBOL
programs:

DEMO.COB
BUILD.COB
UPDATE.COB

Linked versions of these programs are also included on your disks
(DEMO.EXE, DEMO_01.0VL, UPDATE.EXE), so you can run the
demonstration system immediately.

DEMO is the executive program of the system. It asks if you would like a
demonstration of the MS-COBOL SCREEN SECTION, or whether you
would like to create or update an indexed (ISAM) file of names, addresses,
and phone numbers.

Use the following procedure to run DEMO.

1. Either copy COBRUN.EXE onto the disk containing the files
DEMO.EXE, UPDATE.EXE and DEMO_01.OVL; or insert a disk
containing COBRUN.EXE into drive A.

2. Type
B:
to make drive B the default drive.
3. Now type:
DEMO

When DEMO has been loaded, it will ask you if INSTALL has been
run. Since the HP 150 screen and keyboard characteristics have
already been confgured into COBRUN.EXE, you can disregard this
message and go on with the rest of the DEMO program.

The COBOL source files for DEMO, BUILD, and UPDATE are included to
allow you to see the code that produces screens and system files. To
recreate the system from the source files, perform the following steps:

1. Insert a disk containing the compiler (COBOL.COM) and COBOL
overlays (COBOL1.OVR -COBOL4.OVR) into drive A. Insert the disk
containing DEMO.COB, DEMO.CPY, BUILD.COB, and UPDATE.COB
into drive B. We recommend that you copy these files onto a blank
disk to allow room for object (OBJ) and executable (EXE) files on the
disk.

Make drive B the default drive by typing:
B:
2. Now type:
A:COBOL DEMO, ,CON;

This compiles DEMO.COB and produces DEMO.OBJ. The use of CON
in the command line directs the compiler listing to the terminal
screen (console); this allows you to watch the program compile. You
should receive the message, “No errors or warnings” when the
compilation process is finished.

3. Type
A:COBOL BUILD, ,CON;
to compile BUILD.COB.
4. When the compilation process is finished, type
A:COBOL UPDATE, ,CON;

to compile UPDATE.COB. When that compilation process is finished,
type
<DIR *.0BJ>»

You should find the files DEMO.OBJ, BUILD.OB]J, and UPDATE in the
directory listing.

5. Replace the disk in drive A with your utility disk containing
LINK.EXE, COBOL1.LIB, COBOL2.LIB, and COBRUN.EXE.

Link DEMO.OBJ and BUILD.OBJ together by typing:
A:LINK DEMO+BUILD,,,A:;
Note that both DEMO.EXE and DEMO_01.OVL are produced.
6. Link UPDATE.OB]J by typing:
A:LINK UPDATE,, ,A:;

Command file CLDEMO.BAT will compile and link these programs as a
batch process. This file uses the /D (debug) compiler switch, so the .DBG
files, used by the debug facility, will not be produced.

This completes the demonstration programs.

F-3

Appendix G

MICROSOFT COBOL
ERROR MESSAGES

This appendix lists all the error messages you may encounter while
compiling and executing a Microsoft COBOL program. Errors fall into the
categories described in the following paragraphs.

Compile Time Errors

Compile time errors can be:

1. Command input errors and operating system input/output errors.
These errors will be displayed as the errors occur during compilation.
When you receive one of these messages, correct the problem and
recompile.

2. Program syntax errors in the MS-COBOL source program. These
messages are placed at the end of the listing file and are also shown
on the terminal. They consist of:

The source program line number, which is four digits followed by a
colon (3).

An explanation of the error. If the explanation begins with an

/F/ (inconsistent file usage) or a /W/ (warning), then the message
is only a warning; if not, the error is severe enough to prevent you
from linking and executing the object file.

Whether or not a listing has been requested, the syntax error messages
will always be listed on your terminal at the end of compilation. A
message displaying the total number of errors or warnings is also
displayed. This feature allows you to make a simple change to a
program, recompile it without a listing, and still receive any error
messages at your terminal.

G-1

Program syntax error messages in this manual are listed in
alphabetical order, with /F/ and /W/ warnings placed at the end
of the list. The number included with an /F/ warning represents
the order in which files are entered in the FILE SECTION of the
MS-COBOL program.

Runtime Errors

Runtime errors can be:
1. MS-COBOL execution errors

Some programming errors cannot be detected by the compiler but
cause the program to end prematurely during execution. These
runtime errors are displayed in the format:

**RUN-TIME ERR:

reason

line number®*

program-id

2. MS-COBOL program load errors

Chained programs, independent segments (i.e., overlays), and the
common runtime executor need to be loaded by the MS-COBOL
runtime system. During the loading process, the normal
mechanism for reporting runtime errors may have been overlayed

by the new program. Therefore, the MS-COBOL loader generates
its own error messages. The format is:

**COBOL: problem

MS-LINK Errors

A list of MS-LINK error messages may be found in the manuals that
are supplied with your MS-DOS software. For your convenience, we
have also listed them in the last part of this appendix.

All linker errors cause the link session to abort. After the cause has
been found and corrected, MS-LINK must be rerun.

*See the compiler switch /D, in Chapter 2.

G-2

Command Input and Operating
System I-O Errors

?Bad filename

A filename is not constructed according to the rules of the operating
system.

?Bad switch:/X

You have entered a switch parameter that the compiler does not
recognize.

?Can’t create file

An output file cannot be opened. For example, the output disk is
write-protected.

’

?Command error: ‘X

You have an invalid character (X) in the command line. For example,
a filename contains an @.

?Compiler error inPhase nat address

Usually caused by a damaged source program or damaged compiler
or overlay file. In the latter case, try your backup copy.

If this does not work, you can sometimes determine the cause of the
error by compiling increasingly larger portions of the program,
starting with only a few lines, until the error recurs.

See Appendix D for a discussion of compiler phases.
7Disk X full

The disk in the specified drive is full. If X is blank, it refers to the
default drive.

?File not found

You have specified a filename for input that does not exist.

G-3

?Memory full

Occurs when there is insufficient memory for all the symbols and
other information obtained from the source program. It indicates
that the program is too large and must be decreased in size or split
into modules and compiled separately.

The symbol table of data-names and procedure-names is usually the
largest user of space during compilation. All names require as many
bytes as there are characters in the name, with an overhead
requirement of about 10 bytes per data-name and 2 bytes per
procedure-name. On the average, each line in the DATA DIVISION
uses about 14 bytes of memory during compilation, and each line in
the PROCEDURE DIVISION uses about 3 1/4 bytes.

?0verlay nnot found

One of the MS-COBOL Compiler overlay files (COBOLn.OVR) is not
on the disk. It may have been written to another disk or destroyed.
Recompiling and relinking may eliminate the problem.

Program Syntax Errors

AFILE-IDNAME IS UNDEFINED.

A data-name specified in a VALUE OF FILE-ID clause is not defined.
A PARAGRAPH DECLARATION IS REQUIRED HERE.

An EXIT statement is not followed by a section or paragraph header.
AREA A NOT BLANK IN CONTINUATIONLINE.

A character was encountered in Area A.

AREA-AVIOLATION; RESUMPTION AT NEXT PARAGRAPH/SECTION/
DIVISION/VERB.

The entry starting in one of columns 8-12 cannot be interpreted as a
division header, section name, paragraph name, file description
indicator, or 01 or 77 level number.

CLAUSES OTHER THAN VALUE DELETED.

The data-description of a level 88 item includes a descriptive clause
other than VALUE IS.

ELEMENT LENGTH ERROR.

The length of the quoted literal is over 120 characters; or the
numeric literal is over 18 digits; or the identifier/name is over 30
characters.

ERRONEDOUS FILENAME IS IGNORED.

An entry which has not been declared as a filename appears where a
filename is required.

ERRONEOUS QUALIFICATION; LAST DECLARATION USED.

The qualifiers used with a data-name are incorrect or are not unique.
ERRONEQUS SUBSCRIPTING; STATEMENT DELETED.

Too few or too many subscripts are provided for a data-name.
EXCESSIVE LITERAL POOL ORDISPLAY STRING LENGTH.

The total length of the literals contained within a single paragraph is
greater than 4096 bytes.

G-5

EXCESSIVE NUMBER OF FILES/4KB WORKING-STORAGE BLOCKS.

The sum of (number of files declared) + (size of WORKING-

STORAGE divided by 4KB and rounded up) + (number of level 01
and level 77 entries in the LINKAGE SECTION) is greater than 14.

EXCESSIVE OCCURS NESTING IS IGNORED.

OCCURS clauses are nested more than three deep.
EXCESSIVE SEGMENT NUMBER.

A section header contains a section number greater than 99.
EXCESSIVE SEGMENT NUMBER IN DECLARATIVES.

A section header in the DECLARATIVES region contains a section
number greater than 49.

FILE NOT SELECTED; ENTRY BYPASSED.

An FD is given for a filename which does not appear in any SELECT
sentence.

FILL CHARACTER CONFLICT.

In a Format 3 ACCEPT statement, SPACE-FILL and ZERO-FILL are
both specified.

FRACTIONAL EXPONENT OR NEGATIVE SCALED BASE (99P).

In a COMPUTE statement, an exponent is a numeric literal with a
decimal point or a numeric data-item described with a digit to the
right of an assumed decimal point; or the PICTURE of an
exponentiation base (entry preceding **) contains the character P as
the rightmost digit.

GROUP ITEM, THEREFORE PIC/JUST/BLANK/SYNC IS IGNORED.

A phrase which is only allowed for elementary data-items is used in
the description of an item that is followed immediately by an item of
a higher level number.

GROUP SI2E GREATER THAN 4095; LENGTHSET TO 1.

The size of an item at a level other than 01 is declared to be greater
than 4095 bytes.

ILLEGAL CHARACTER.

An invalid character has been encountered.

G-6

ILLEGAL COPY FILENAME.
The filename for the copy file is invalid.
ILLEGAL MOVE OR COMPARISON IS DELETED.

The operands of a MOVE statement or relational condition are
incompatible.

IMPERATIVE STATEMENT REQUIRED. STATEMENT DELETED.

A conditional statement is contained within a conditional
statement other than IF.

IMPROPER CHARACTER IN COLUMN 7.

An invalid character in column 7 has been encountered.
IMPROPERPICTURE. PIC X ASSUMED.

An invalid PICTURE clause has been encountered.
IMPROPER PUNCTUATION.

Incorrect punctuation has been encountered. For instance, a
comma or period must be followed by a space.

IMPROPER REDEFINITION IGNORED.

The data-name specified in a REDEFINES clause is not at the
same level as the current data-name, or it is separated from it by
an item with a lower level number.

IMPROPERLY FORMED ELEMENT.

Incorrect syntax for an item has been encountered. For instance,
you may have ended a word with a hyphen or used multiple
decimal points in a numeric literal.

INCOMPLETE (DR TOD LONG) STATEMENT DELETED.

A verb immediately follows a partial statement form, or an
otherwise acceptable statement is too large for the compiler to
read.

INDEXED/RELATIVE REQUIRES DISK ASSIGNMENT.

A file assigned to PRINTER is described as having indexed or
relative organization.

INVALIDKEY SPECIFICATION.

The key item for a relative or indexed file should not be
subscripted, or it is inconsistent with the file organization in
class or USAGE. This message is issued when the OPEN
statement is processed.

G-7

INVALID QUOTED LITERAL.

A literal of zero length, improper construction, or missing end
quotes has occurred.

INVALID SELECT-SENTENCE.

The syntax of a SELECT sentence in the FILE-CONTROL
paragraph is incorrect.

INVALID VALUE IGNORED.

The value specified in a VALUE IS phrase is not a properly
formed literal.

JUSTIFICATION CONFLICT.

In a Format 3 ACCEPT statement, LEFT-JUSTIFY and RIGHT-
JUSTIFY are both specified.

KEY DECLARATIONOF THISFILE IS NOT CORRECT.

The RELATIVE KEY clause is missing for a relative file, or the
RECORD KEY clause is missing for an indexed file.

KEYS MAY ONLY APPLY TGO AN INDEXED/RELATIVE FILE.

A RECORD KEY or RELATIVE KEY clause was specified for a file
with sequential or line sequential organization.

LITERAL TRUNCATED TO SIZE OF ITEM.

The literal specified in a VALUE IS phrase is larger than the data-
item being declared.

MISORDERED/REDUNDANT SECTION PROCESSED AS IS.

A section in the IDENTIFICATION, ENVIRONMENT, or DATA
DIVISION is out of order or repeated.

NAME OMITTED; ENTRY BYPASSED.
The data-name is missing in a data description entry.
NON-CONTIGUOUS SEGMENT DISALLOWED.

Two sections with the same number, larger than 49, are
separated by one or more sections with a different number.

NOPICTURE; ELEMENTARY ITEM ASSUMED TO BE BINARY.
No PICTURE is given for an elementary data-item.
OCCURS DISALLOWED AT LEVEL 01/77, OR COUNT TOOHIGH.

An OCCURS clause appears in a data-description entry at level
01 or 77; or the number of occurrences specified is greater than
1023.

G-8

OMITTED WORD “SECTION’ IS ASSUMED HERE.

The required word SECTION is missing from the header of a section
in the DATA DIVISION.

PROCEDURE-NAME IS UNRESOLVABLE.

A reference to a section name or procedure-name is not sufficiently
qualified or is not unique.

PROCEDURE RANGE NOT IN CURRENT SEGMENT.

A PERFORM statement in a section with a number greater than 49
refers to a procedure in a section with a different number greater
than 49.

PROCEDURE RANGE SPANS SEGMENTS.

A procedure range (procedure-name-1 THRU procedure-name-2)
mentioned in a PERFORM statement contains paragraphs in
sections with different section numbers greater than 49, or in
sections numbered both less than or equal to 49 and greater than 49.

REDUNDANT FD PROCESSED AS IS.
The same filename appears in more than one file description.
REWRITE VALID ONLY FORADISK FILE.

The filename entry in a REWRITE statement is a file assigned to
PRINTER.

SEMANTICAL ERROR IN SCREEN DESCRIPTION.
This message can be caused in five different ways:

The SCREEN SECTION does not begin with a level 01 screen item
description.

A level 01 screen item description does not include a screen name.

A group screen item is described with a clause which is allowed
only for elementary items.

An elementary screen item description is missing FROM, TO,
USING, or VALUE clauses.

A screen item description contains inconsistent clauses (such as
USING and VALUE).

G-9

SIGN CLAUSE IGNORED FOR UNSIGNED ITEM.

The PICTURE of a numeric item with USAGE IS DISPLAY describes
it as unsigned, but a SIGN IS clause is present.

SINGLE-SPACING ASSUMED DUE TO IMPROPER ADVANCING COUNT.

The operand of the BEFORE or AFTER phrase of a WRITE statement
is not numeric, or it is outside the range 0-120.

SOURCE BYPASSED UNTIL NEXT FD/SECTION.
An error in a file description prevents further analysis.
STATEMENT DELETED BECAUSE INTEGRAL ITEM IS REQUIRED.

A numeric data-item whose PICTURE specifies digits to the right of
the decimal point is used where an integer is required.

STATEMENT DELETED BECAUSE OPERAND IS NOT A FILENAME.

A name appearing where a filename is required has not been
declared as a filename.

STATEMENT DELETED DUE TO ERRONEOUS SYNTAX.

A syntax error, to which no more specific message applies, is
present.

STATEMENT DELETED DUE TO NON-NUMERIC OPERAND.

" An alphanumeric or alphanumeric-edited item is used as an operand
of an’ arithmetic statement; a numeric-edited item is used as an
operand other than the result; or a number is longer than 18 digits.

SUBSCRIPT 0 OR OVER MAX. NO. OCCURRENCES; 1 USED.

A literal used as a subscript is inconsistent with the range defined by
the associated OCCURS clause.

SUBSCRIPT OR INDEX-NAME IS NOT UNIQUE.
A name which requires qualification is used as a subscript.
SYNTAX ERROR IN SCREEN DESCRIPTION.

A screen item description contains a clause which is unrecognizable,
improperly constructed, or redundant.

UNRECOGNIZABLE ELEMENT IS IGNORED.

A required keyword is missing, or a data-name or procedure
name is unidentified.

USING-LIST ITEMLEVELMUSTBE 01/77.

A name used in the PROCEDURE DIVISION header USING list
is not declared at level 01 or level 77.

VALUE DISALLOWED--O0CCURS/REDEFINES/TYPE/SIZE CONFLICT.

The VALUE IS clause is specified for a data-item described with
(or included within an item described with) an OCCURS or
REDEFINES clause; or the literal given in a VALUE IS clause is
not compatible with the PICTURE of the declared item.

VALUE OF FILE-ID REQUIRED.

The VALUE OF FILE-ID clause is not specified in the file
description of a file assigned to DISK.

VARYING ITEMMAY NOT BE SUBSCRIPTED.

The data-item controlled by the VARYING phrase of a
PERFORM statement is subscripted.

File Usage Errors

/F/ FILE NEVER CLOSED.

No CLOSE statement is present for the file.
/F/ FILE NEVER OPENED.

No OPEN statement is present for the file.
/F/ INCONSISTENT READ USAGE.

An OPEN INPUT statement is present for a file, but no READ
statement; or vice versa.

/F/ INCONSISTENT WRITE USAGE.

An OPEN OUTPUT statement is present for a file, but no WRITE
statement; or vice versa.

G-11

Warning Errors
/W/ BLANK WHEN ZERO 1S DISALLOWED.

The BLANK WHEN ZERO phrase appears in the description of
an alphanumeric or alphanumeric-edited item.

/W/ DATA DIVISION ASSUMED HERE.
The DATA DIVISION header is missing.
/W/ DATA RECORDS CLAUSE WAS INACCURATE.

The record-name(s) given in a DATA RECORDS clause are not
consistent with the record descriptions following the file
description.

/W/ ERRONEDUS RERUN-ENTRY IS IGNORED.

A RERUN clause of the I-O-CONTROL paragraph contains a
syntax error.

/W/ FD-VALUE IGNORED SINCE LABELS ARE OMITTED.

The VALUE OF FILE-ID clause is used in the description of a file
which is assigned to PRINTER.

/W/ FILE SECTION ASSUMED HERE.

The FILE SECTION header is missing.
/W/ INVALID BLOCKING IS IGNORED.

The BLOCK clause of an FD contains an error.
/W/ INVALID RECORD SIZE(S) IGNORED.

The RECORD clause of an FD contains an error.
/W/ *LABEL RECORD STANDARD’ REQUIRED.

The LABEL RECORD(S) STANDARD phrase is not present in the
FD of a file assigned to DISK.

/W/ LABEL RECORDS OMITTED ASSUMED FOR PRINTER FILE.

The LABEL RECORDS OMITTED clause is missing in the file
description of a file assigned to PRINTER.

/W/ LEVEL 01 ASSUMED.

A record-description begins with a level number other than 01.
/W/ PERIOD ASSUMED AFTER PROCEDURE -NAME DEFINITION.

A section or paragraph header does not end with a period.
/W/ PICTURE IGNORED FOR INDEX ITEM.

A data-item described with USAGE IS INDEX phrase also has a
PICTURE phrase.

/W/ PROCEDURE DIVISION ASSUMED HERE .
The PROCEDURE DIVISION header is missing.

/W/ RECORD MAX DISAGREES WITH RECORD CONTAINS; LATTER SIZES
PREVAIL.

The record size specified in the RECORD CONTAINS clause of
an FD is inconsistent with the sizes of the associated record-
descriptions.

/W/ REDUNDANT CLAUSE IGNORED.

The same clause is specified more than once in a file description.
/W/ RIGHT PARENTHESIS REQUIRED AFTER SUBSCRIPTS.

The closing parenthesis for a subscript is missing.
/W/ TERMINAL PERIOD ASSUMED ABOVE.

A data-description entry or paragraph does not end with a
period.

/W/ WORKING-STORAGE ASSUMED HERE.
The WORKING-STORAGE header is missing.

Runtime Errors
CURSOR POSITION

You tried to position the cursor beyond the line or column limits
of the screen. A format 3 or 4 ACCEPT statement or a DISPLAY
statement with a position-spec or screen-name is the statement
responsible for the error. If a screen has been displayed or
accepted, one or more fields within the screen have starting
positions outside the maximum screen line or column.

DATA UNAVAILABLE.

You tried to reference data in a record of a file that is not open or
has reached the AT END condition.

DELETE; NO READ.

You tried to DELETE a record of a sequential access mode file
when the last operation was not a successful READ.

FILE LOCKED.
You tried to OPEN after an earlier CLOSE WITH LOCK.
GO TO (NOT SET).

You tried to execute a null GO TO statement which has never
been altered to refer to a destination.

ILLEGAL DELETE.
Relative or indexed file not opened for I-O.
ILLEGAL READ.

You tried to READ a file that is not open in the INPUT or I-O
mode.

ILLEGAL REWRITE.

You tried to REWRITE a record in a file not open in the I-O
mode.

ILLEGAL START.
File not opened for INPUT or I-O.
ILLEGAL WRITE.

You tried to WRITE to a file that is not open in the OUTPUT
mode for sequential access files, or in the OUTPUT or I-O mode
for random or dynamic access files.

INPUT/0UTPUT.

Unrecoverable I-O error, with no provision in the user’s
MS-COBOL program for acting upon the situation by way of an
AT END clause, INVALID KEY clause, FILE STATUS item, or
DECLARATIVES SECTION.

NEED MORE MEMORY .

The indexed file manager has ended abnormally because of
insufficient dynamically allocatable memory.

NON-NUMERIC DATA.

Whenever the content of a numeric item does not conform to the
given PICTURE, this condition may arise. Always check input
data, if it is subject to error (because input editing has not yet
been done) by using the NUMERIC test.

0BJ. CODE ERROR.

An undefined object program instruction has been encountered.
This should occur only if the absolute version of the program has
been damaged in memory or on the disk file.

PERFORM OVERLAP.

An illegal sequence of PERFORMs, as, for example,when
paragraph A is performed and another PERFORM A is initiated
prior to exiting from the first.

REDUNDANT OPEN.
You tried to open a file that is already open.
REWRITE; NO READ.

You tried to REWRITE a record of a sequential access mode file
when the last operation was not a successful READ.

SEG nn LOAD ERR.

An error occurred while you were attempting to load an
overlayed segment. nn is 31 hex (49 decimal) less than your
overlay segment number.

SUBSCRIPT FAULT.

A subscript has an illegal value. This error may be caused by an
index reference whose value is less than 1.

Program Load Errors

**COBOL: Attempt touse non-updated runtime module
(COBRUN.EXE)

This message appears when the version number in the runtime
libraries is not the same as that in the runtime interpreter
(COBRUN.EXE).

*+*COBOL: ERROR INEXEFILE.
Error in loading chained or common runtime EXE file.
**COBOL: FILE “filename’ NOT FOUND. ENTER NEWDRIVE LETTER.

The chained file, segment file, or common runtime file could not
be found.

*#C0OBOL: PROGRAM TOOBIG TOFIT IN MEMORY.

There is not enough memory available to load a chained program
or common runtime file.

MS-LINK Errors

The following error messages are displayed by MS-LINK.

Attempt to access dataoutside of segment®ounds, possibly
bad object module

There is probably a bad object file.
Bad numeric parameter

Numeric value is not in digits.
Cannot open temporary file

MS-LINK is unable to create the file VM.TMP because the disk
directory is full. Insert a new disk. Do not remove the disk that
will receive the LIST.MAP file.

Error: duprecordtoo complex

DUP record in assembly language module is too complex.
Simplify DUP record in assembly language program.

Error: fixupoffset exceeds fieldwidth

An assembly language instruction refers to an address with a
short instruction instead of a long instruction. Edit assembly
language source and reassemble.

Input file readerror
There is probably a bad object file.
Invalidobject module

An object module(s) is incorrectly formed or incomplete (as
when assembly is stopped in the middle). Check for errors and
recompile the module.

Symbol definedmore thanonce

MS-LINK found two or more modules that define a single
symbol name.

Programsize or number of segments exceeds capacity of linker

The total size may not exceed 384K bytes and the number of
segments may not exceed 255.

Requested stack size exceeds 64K

Specify a size greater than or equal to 64K bytes with the STACK
switch.

Segment size exceeds 64K
64K bytes is the addressing system limit.
Symbol table capacity exceeded

Very many and/or very long names were entered, exceeding the
limit of approximately 25K bytes.

Too many external symbols in onemodule

The limit is 256 external symbols per module.
Too many groups

The limit is 10 groups.
Toomany libraries specified

The limit is 8 libraries.

Too many PUBLIC symbols

The limit is 1024 PUBLIC symbols
Too many segments or classes

The limit is 256 {(segments and classes taken together).
Unresolved externals: ¢<list>

The external symbols listed have no defining module among the
modules of library files specified.

VM readerror
This is a disk error; it is not caused by MS-LINK.
Warning: No stack segment

None of the object modules specified contains a statement
allocating stack space, but the user typed the STACK switch.

Warning: Segment of absolute or unknown type

There is a bad object module or an attempt has been made to link
modules that MS-LINK cannot handle {e.g., an absolute object
module).

Writeerror inTMP file
No more disk space remains to expand VM. TMP file.
Writeerroronrunfile

Usually, there is not enough disk space for the run file.

G-18

INDEX

A
ACCEPT statement i, 1-4
Assembly language sub-routines 0 oL B-4
Address function o o 7-2
ASCIIKeymames o iiiiiiii .. A-3
ASSIGN TODISK clause ... 6-1
ASSIGN TOPRINTER clause 6-4
AUX 2-3, 64

B
B tree ... 6-3
Batch command files o il 5-1
BAT file 5-2
Bibliography Intro-6
BLOCK clauses i 6-1
Breakpoints function 7-2
BPregister B-4
BUILD.COB 1-3

C
CALL statementt e 3-7, B-2
CENTER e F-1

Index-1

CENTER.COB e e 1-2, 1-7-1-9

CENTERDBG e 1-9
CENTEREXE ... 19
CENTERLST ... 1-9
CENTERMAP 1-9
CENTER.OBJ ... o 1-9
CENTERPRN i 19
CHAIN statement ...ttt 3-7,B-1, B7
CHAINING clause i B-1
Change function i i 7-3
CHKDSK 2-8, 3-5, 3-8
CLDEMO.BAT 1-3
COBDBG.OBJ ... i 1-2,7-1
COBIBETMP ... e . 14,25
COBOL commandsoiiiiiiiiiiee i, 1-9
COBOL.COM ... e 1-2,1-4, 1-6
COBOLLLIBo 1-2, 1-6, 3-1, 3-7
COBOLLOVR .. 1-2,1-6
COBOL2LLIB ... 1-2,1-6, 3-1, 3-7
COBOL2.OVR .. oo e e 1-2,1-6
COBOL3.OVR ..o e 1-2,1-6
COBOLA.OVRo e 1-2,1-6
COBRUNEXE...........cooo i 1-2,1-5, 1-6, 3-7, A-1
COMLI .. 2-3, 6-4
Commandfile...........o i i 34
COMP-0 .. 6-2
COMPP-3 L 6-2
Compilation process i 1-4
Compile time errors i G-1
Compilerdisk i 1-6
Compiler switches o 2-5
Compiling the source program 1-8
CON .. 2-3,6-4
COPY utility ... 1-3
Creating the source programo i, 1-7
CRTEST .. F-1
CRTEST.COBo e e 1-2
Customizations........... i C-1

Index-2

Damaged flags 6-3
DATADIVISION 6-1,7-1, B-7
Datafile 6-3
Data Set Control Blockl 6-3
Debug information fileol 7-1
file .o 7-1
Debugging subprograms oo 7-5
Deleted granule 6-3
DEMO.COB 1-3
DEMO.CPY ... 1-3
DEMO.EXE 1-3
DEMO_O0L.OVL ... e 1-3
Demonstration programso 1-2, F-1
Device 2-3
DIR . 3-5, 3-8
Disk backup 1-3
Disk file organizationo 6-1
Disk files 6-1
DISPLAY statementoo i i i 1-4
Distribution disks 1-1
Dump function i 7-3
E

Editing keys A-*3
ENVIRONMENT DIVISION 6-2
Error messages oo G-1
command input o G3
compile time......... G-1
fileusage G-11
MS-LINK ... G-2, G-16
operating system-dependent I-O G-3
programload ool G-16

o deTza 1 1183 11 - AP G-5
TUNEIME .. G-2, G-14
WAITUIE . .. e G-12
Escapecodeso i A-2
EXEfile o i 3-2
Executable file i 1-9
EXIT PROGRAM statementcooiiiiinnnnna.... B-2

Index-3

Exhibit function e 7-4

Extensions
COB . 2-3
LT 2-3
OB 2-3
F
FAR CALL . ..o e B-4
B o 6-4
FD paragraph 6-1
FILE-ID clausecoiiii i e 6-1
FILE SECTION e 6-1
FILE-CONTROL paragraphcoiiiiiiiiiieeonn.. 6-1
File-name
COMVENEIONS ... i i et it et e 2-3
EXEENSION e 2-3
FIPS flaggingo 2-6
Function keys i A-2, A-3
G
Granules e e 6-3
Go fUNCHION 7-4
Goto fUNCHON oo 7-4
H
Help function 7-4
HP 150 Terminal Interface i .. A-1
I
Indexed File Recovery Utility, See REBUILD
INDEXED fileso e 6-3
Interactive Debug Facility 7-1
Intermediate versiont e 1-4
Interprogram communication B-1

Index-4

Keyfile 6-3
Key Set Control Block i L 6-3
Kill function 7-4
Kill ALL function, 7-4
L
LABEL RECORD ISOMITTED clause 6-4
LABEL RECORDS ARE STANDARD clause 6-1
Leaf ... 6-4
Libfile(s)o 3-3
Libraries[LIB]:oue et 3-2
Line function 7-4
LINE SEQUENTIAL files it 6-2
LINKEXE ... e 1-2, 1-6
LINKAGE SECTION e B-2
Linking
large programs 3-7
overlays e 3-6
programmodules oo 3-6
Listfile 2-7,3-4, 3-7
List FilefNULMAPL e 3-2
Listing pagelengthl C-1
Loading and executing COBOL programs 4-1
LT L 2-3, 6-4
LT 2-3, 6-4
M
MAP file ... 3-2
MS-COBOL demonstration system F-2
MS-LINK 1-4,3-2
MS-Macro Assembler i B-4
N
Node 6-3
Nondisk files e 6-4
NUL . e 2-3

Index-5

Objectcode i 1-5
Object Modules[.OBJ]: ... 32
Objfile(s) 3-3
ORGANIZATION clauseo, 6-2
Organizing disks il 1-6
Output files 6-4
Overlay files 1-2, 1-8
P
Pagelength C-1
PRN 2-3, 6-4
PROCFAR . . e B-5
PROCEDUREDIVISION i 7-1,7-2
PROCEDURE DIVISION Header
incalled programs............ il B-3
in chained programs B-3
PROGID ... 3-6
PROGIDNN.OVL e 3-6
Program developmento 1-5
Programdisk 1-6
Program load errors o oo G-16
Program moduleso oo 3-1,3-7
assembly language oo 3-1
COBOL ..o 3-1
linking 3-1, 3-6
Program syntax errors oo G-5
PROGRAM-ID e 3-6
PUBLIC directive i B-5
Q
Quit function e 7-5
R
REBUILD e E-1
REBUILDEXE e i 1-3
RELATIVEfiles. i 6-3
RET . B-4

Index-6

RO232 2-3, 64

Run file e 3-2,3-7
Run Fle[.LEXE] o 3-2
RUNtIMe €ITOTS .. .ot i e et et ettt et ea e G-14
Runtime executor i 3-7, 4-1
Runtime system i i 1-5
S
Sample SesSION 1-5
Segmentation 3-6
SELECT clause PP 6-4
SEQUENTIAL filest 6-2
Stack contents, at entry to subroutine B-4
Stackpointer B-5
Step function 7-5
Switches
JC e 2-5
D e e 2-6,2-7,7-1
25 2-6
J e 2-5
2 O 2-5,2-7
Syntax notation ool Intro-5
System requirements iiiiiiiiiii Intro-2
T
Tab StOPs ... e C-1
Terminator keys A-2, A-3
Trace function e 7-5
Trace OFF functioniiiiiiiin i eiinenn.. 7-5
Trial compilationo 1-8
U
UPDATE.COB ... e et et 1-3
UPDATEEXE e e 1-3
USAGEISCOMP-0o e e B-4
USER .. 2-3, 6-4
USING Clause ...ttt e B-2, B-7, B9
Using disk files......... 6-1
USING list .o e e e B-9
Utility disk ... e 1-6

Index-7

VALUEOF FILE-ID clausettt iiiiennn 6-3, 6-4

VALUEOF FILE-IDclauseo 6-1

VM M e 3-5
w

WORKING-STORAGESECTIONt B-2, B-7

Index-8

