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A Logic Analyzer Look
at High Level Software

by Gail Hamilton

Abstract

Computer system software is distinctly hierarchical in
nature and measurement interest ranges from the
instruction level to the system level. The first generation
of logic state analyzers had the ability to look at the digital
signal levels on the address and data buses. With the
second generation, the capability to analyze software
was extended through sequential triggering techniques
and assembly language program tracing. Relevant
information concerning the execution characteristics of
software at these various levels can be determined using
one of these second generation analyzers, the HP Model
1610A/B Logic State Analyzer. In addition, the utilization
of a controller and HP-IB provides powerful post-
processing, as well as automated setup. This paper
describes methods of measuring higher level software
modules in a computer system with currently available
instrumentation.

Introduction

In a computer system there are usually many discrete
levels of the software hierarchy that can be observed.
Depending on the complexity of the system, there could
be only one or many levels. A system that could only be
programmed in machine code might possibly have one
level, whereas an operating system such as UNIX would
have five. In a system that has both an operating system
environment and a user environment, the software
hierarchy of interest would have the same basic elements
with a slightly different emphasis. As an example, many
operating systems have the hierarchy depicted in Figure
1. In the domain of the user, the lowest level of interest
would probably be the instruction level, while the highest
level might be the program or job level. The software
hierarchy is built on the reduction of detail and the
increase of abstraction.

| |
STATE | |  SOFTWARE
ANALYSIS | | EXAMPLES
; |
| |
I |
| |
610 With HPIB | / PROCESS |  EDITOR
| { MEMORY MANAGE
. R
1610 With HPIB I / SYSTEM FUNC@ | PROCESS MANAGER
|
1610 | / PRIMITIVES \ | SEND,RECENVE
| ‘|
u
tell | / ASSEMBLY LEVEL INSTRUCTIONS X | ADD , NOP
/
1600 | \ | FFFE HEX
pes / ADDRESS / DATA q\ OO
lr ' |
|
I I
| |
ANALYZER SYSTEM BUS
PROBES

FIGURE |

Example of Software Hierarchy ina Computer System



In order to look at these various levels of abstraction,
logic state analyzers have evolved with a parallel
hierarchy in the measurement domain. They too must
reduce the data by removing the nonessential detail for
the appropriate level of abstraction. The ability to
analyze software depends on how well the instrument
can look at two major areas. The first is qualitative and is
more of the “what” is the software doing. For this type of
information, a dynamic trace or sequential time list of
events is appropriate. The second aspect is quantitative
and answers the question “how”: how much, how often,
and how long.

State analyzers provide passive probing at the hard-
ware level, but they must provide sufficient data to
decode the activity that occurs at the higher levels. The
lowest level in the hierarchy are the addresses and data
that can be derived directly from signal levels on the bus.
For measurements in the software domain, a logic ana-
lyzer must translate the digital signal levels on the compu-
ter system’s bus into three fields. The first field is the
control signals to and from system devices, the second
field is the addresses which refer to specific locations, and
the third field is the data that is associated with the
address.

It was in 1973, when the first parallel logic state
analyzer was introduced, that computer system
designers had a measurement tool that gave them a view
of their software that many had never seen before. The
1601 had the ability to capture a sequence of digital
words, but didn’t attempt to transform them in any way,
but instead displayed the sequence of events as a table of
's and &’s. The 1601 wasn't able to make any
quantitative measurements.

With the introduction of the 1600, the capabilities were
broadened by adding more bits of data, but the data
display did not change significantly. It is interesting to
note, that as early as the time of the 1600, there were
attempts to recognize these higher levels. The MAP
mode was added to the 1600 which gave a more
comprehensive view of the system. In the MAP mode,
each event on the system bus had a unique position on
the CRT display. As a sequence of events was observed,
the instrument traced lines from dot to dot. The MAP
mode also gave an indication of the relative frequency or
occurrence of any state - the more often a state is
repeated, the brighter its dot. This was the first time that
an attempt was made to provide a quantitative
measurement. For example, the mode gave a highly
visible indication of which memory addresses were used
most often and which were not used at all. A user, then,
could recognize a particular pattern of word sequences
as being significant. Even the ability to transform the
binary code into a more compact form, such as octal or
hexadecimal, was not available until the introduction of
the 1611A microprocessor analyzer at the end of 1976.

The 1611 was the first logic state analyzer to actually
transform the sequence of digital words into something
more meaningful than a tabular form of signal levels. The
major contribution of this instrument was its ability to
convert the machine language of a microprocessor into
assembly language (refer to Figure 2). In other words, the
1611 focuses at the second level of the software
hierarchy, namely, the instruction level. The instrument
displays the microprocessor’s instructions and makes it
easier to interpret snapshots of executing program
steps. Two quantitative measurements are provided in
the 1611. The 1611 has the ability to measure the time
between two events and count the number of states
between two events. With the instrument in the
continuous trace mode, it also provides statistical
parameters, such as minimums and maximums.

sA
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FIGURE 2

It certainly was becoming apparent that hardware
measurements of a complicated system had little to offer
the software designer unless they could be related to
events and states at a software level. Similar to all of the
logic state analyzers, the 1610A/B collects data at the
lowest level, but much of the upper level activity can be
inferred using the techniques presented in the paper.
Contributions of the 1610A/B, in terms of sequential
triggering, selective trace, sequence restart, and the
time/state count are crucial to making these higher level
measurements. The time/state count of the 1610 is
similar to what is available in the 1611, but these metrics
are available for every event that is observed.

All of the current state analyzers, then, are optimized
for making measurements at different levels in the
hierarchy. By qualifying the incoming data, the
unnecessary detail is suppressed for the appropriate
level. Essentially, the micro-events are being probed in all
these cases and the only difference lies in the data
reduction and data display portions of the instrument.



What Measurements and Why

One of the first and most important questions that
needs to be answered is what quantitative
measurements need to be made, given that these
software levels can be recognized. In analyzing software
modules of a computer system, the two most significant
quantities to be measured are time and frequency.
Especially of interest is the time required to perform
various functions or the time spent waiting to perform
those functions. For example, you might want to know
the instruction mix of a particular routine; how many
ADD’s, how many NOP’s, etc. It is possible that a
frequently used instruction could be implemented in
microcode differently so as to provide faster execution.
The knowledge of the execution time and frequency of
usage of critical subroutines might be important as well.
Another measurement that has value is a memory map,
similar to what was being done qualitatively with the 1600
MAP mode. By partitioning regions of memory into
buckets of address ranges, the total time or frequency
that a software module spends executing in each
partition can be accumulated.

The second question, and of equal importance, is why
do these measurements need to be made and of what
importance are they? If the utilization of these routines
can be monitored, then a profile of system activity can be
created. Bottlenecks occur when the relationship among
the various resources becomes unbalanced. By knowing
where these areas are that create inefficiencies, a
programming team can concentrate resources on those
regions where the greatest benefit will be gained from the
smallest investment. It should be recognized that the
implications of being able to maximize a programmer’s
utility are overwhelming. Current trends in programming
methodology, such as the increasing use of structured
programming and modular design, have amplified the
need for tools that can detect and tune regions critical to
performance. The question, “Where is the time spent?”
can be answered by these measurement techniques.
Even though these questions can be answered, a
subjective judgement must still be made as to whether
the amount of time spent on a gven function is
acceptable. Knowlege of where system overhead is
located allows a designer to minimize those areas so that
the time spent executing programs is maximized. By
inferring the occurrence of significant logical events from
the myriad of bus activities, higher level software can be
observed and analyzed during actual execution.

How To Make the Measurements

A few years ago HP responded to the need for a
standard bus for their instruments with the Hewlett-
Packard Interface Bus (HP-IB), which has since been
adopted as an industry standard, IEEE-488. Many of the
second generation analyzers are HP-IB controllable via a
short mnemonic language. The ability of logic analyzers

to communicate over HP-IB allows programmable
control of the analyzer, and combining this with an
intelligent controller provides considerable flexibility.
Many of the measurements that have been discussed
previously, can be made using this capability.

There are many advantages to having an intelligent
controller. The calculator can reduce data and provide
statistical summaries with means, standard
deviations,minimums, and maximums. It can also
compile distribution data and calculate parameters such
as correlation coefficients. The calculator can reduce the
collected data before it is stored or displayed and also
facilitate on-line modification of measurements.

There are two ways that the measurement system can
observe the system under test. One choice is to have the
measurement system be completely transparent to the
system that is being observed and the other is to have the
measurement system play an interactive role. For
example, the measurement system could have the ability
to halt the processor to make some real-time
calculations or make changes in the setup based on the
current input.

The block diagram in Figure 3 is one example of how
the measurement system could be configured. In this
case,the system under test is the HP 64000 Logic
Development System. Two instruments, the 1610A/B
and the HP Model 9825 Calculator are required; the
9866B printer can be used to interface to either the
1610AB or the 9825. The printer provides hard copy of
Trace Lists as well as Format or Trace specifications if it
is directly connected to the logic analyzer.

64000 160
T ‘[ r_ )
| | |
| e S
| : ACQUISITION
l i !
| || | I
f ' { |
| |
| S |
I ! i '
| | o
|
I ! !
|
! L | !
! | MENUS :
L3 s | ME AS| !
T ENABLE | !
i I I | HPIB
| i USERS s
Lo - | DISPLAY l
I i
¥ 3
e J
9866 9825 —————W—J
PRINTER CALCULATCR ]

Softwore Measurerment Systern

FIGURE 3



In general, the
sequence of events needed to make some of these
measurements are as follows:

- The calculator sets up the 1610A/B Format and
Trace Specifications.

. The calculator tells the 1610A/B to Run (begin look-
ing for the Trace points).

. When the trace points are found, the 1610A/B gener-
ates a signal telling the processor in the system under
test to halt and displays the results in a Trace List. If

there were no interaction with the system under test,
the 1610A/B would only display the Trace List.

. The calculator then reads the data from the Trace
List, stores the pertinent information, and depending
on the particular measurement, may output to the
98668 printer.

.The calculator then sets up 1610A/B to make
another measurement. The new setup could be
dependent on the data obtained in the previous
trace.

6. After all the measurements are completed, the user
display capability of the 1610A/B is employed to
graph the results.

The 9825 calculator is only one example of the type of
controller that could be used in this measurement sys-
tem. The only requirement is that it be able to communi-
cate over HP-IB. This type of measurement system can
be a valuable tool for the optimization and analysis of
software.

Two Measurement Examples

Two measurement examples will be illustrated in this
section. The first emphasizes how the analyzer
recognizes these higher level software modules. The
second describes measurements made on a system that
led to considerable performance improvement in an
operating system.

In the first example, the computer system under test is
the HP 64000 Development System. The HP 64000 uses
a 16-bit processor, called the BPC, that was designed in-
house. The method used in this operating system to map
external storage to physical main memory is that of
manual segmentation, otherwise known as an overlay
technique. With this type of memory management,
program modules must be mutually exclusive and each
program module must call the operating system to load
and execute the next overlay.

The Assembler for 8080 code was chosen as one of the
high level software modules to be analyzed. Some
measurements were also made on the operating system
module called LOADEXEC. The 8080 Assembler

written for the 64000 System has five overlays.
Depending on the options that were called for by the
user, it is possible that not all five overlays would be
brought into memory. The task of the 1610A/B was to
identify the modules, know when they were executing,
and measure the execution time. Format specifications
on the 1610A/B were set up to look at the 16 bits of
address and the 16 bits of data available on the BPC bus.
Shown in Figure 4 is an example of the Trace
Specification to identify Pass 2 of the assembler. (A) is
the beginning address of the LOADEXEC routine and
(B) is the starting address of the overlay. (C) is an
address that is written to by the assembler module and
identifies which module is being executed. For example,
the data word would be 0003 if the third overlay were
being executed. This was a software testpoint that had
been inserted by the designer. It is also possible to
identify the module by its name, since the name is passed
as a parameter to the LOADEXEC routine. Three
sequence terms would be needed on the analyzer to
recognize the routine in this way since the name is
packed into three 16-bit data words. In this case the three
sequence terms for the name recognition would come
before (B). The last term (D) signals the end of the
overlay since it is the starting address of the
LOADEXEC routine which is called at the end of each
assembler module. A Trace List that was obtained for
the second overlay is shown in Figure 5. Since the Count
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function of Time was selected in the Trace Specification,

the trace list displays a relative time between each SET UP
sequence term. This time information, as well as the data FORMAT SPEC
word identifying the particular overlay, is what is used by ON 1610
the controller. Figure shows the flow of the 9825

program that was written for this example. After the i
measurement is completed, the results are displayed in SET UP
the form of a time histogram (see Figure 7) which is done TRACE SPEC
with the user display capability of the HP-IB interface for ON 1610
the 1610A/B. The execution times of these software

modules were measured during the assembly of a single *
program. An accumulation of these execution times was

also done during the assembly of ten different 8080 TELL I6l0
programs. TO RUN

FIGURE 7
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Measurements were also made on particular subrou-
tines that were called during the assembly process. For
these software modules, the frequency of usage was an
important parameter. Time measurements were still
made, but the distribution of times for the modules was of
special interest. Figure 8 shows a distribution of times for
five software modules that was printed on the 9866B.

Another measurement that has been made on the
64000 System with a similar setup is a memory map of
address space which partitions addresses into eight dif-
ferent buckets. The address range of the buckets is
user-definable and the display is again a histogram (see
Figure 9). The display shows the total number of
addresses acquired, the exact number of addresses
which fell within the specified range, and the number of
addresses as a percentage of the total acquired
addresses for each bucket. For this measurement the
1610A/B traces on the address = XXXX (Don’t Cares)
and the analyzer takes samples of what is happening on
the address bus. There is no interaction with the BPC
processor in this case.

FIGURE 9
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The second measurement example was performed on
the operating system of a product that is currently being
developed at another of our HP divisions. A 1610A logic
state analyzer and the System 45 Computer were used in
the measurement configuration. The measurements
were taken while the system was running in RAM and
certain software test points were inserted to generate
counters that could be sampled with the analyzer. The
assumption was made that these test points were a min-
imal perturbation to the system.

Measurements were made on three different parts of
the operating system. They were: the fixed overhead of
the operating system, the overhead to dispatch a task,
and various primitives. Not only were the execution
times noted, but a count was made of the number of
times each module was called. Other parameters of inter-
est were (1) the number of tasks that became ready each
clock tick, (2) the number of active tasks each clock tick,
(3) the execution time of high priority tasks as a percen-

tage of total execution time, and (4) the execution time of
all tasks as a percentage of total execution time. With the
numbers that were generated for the current operating
system, estimates were made for a new operating sys-
tem. It was predicted that the total O/S overhead could
be decreased approximately 67% by modifications that
could be made on particular software modules. Figure 10
points out the overhead calculations that were made on
the current operating system as well as the calculations
for the new system. The current system uses 73% of the
total available time and based on the estimates, the new
system would only require 20% of the time. The new
operating system has been implemented, and it appears
that the original estimates were valid.

The histograms and distribution data were produced
with the System 45 graphics capability. The on-screen
graphics were then transferred to a built-in thermal prin-
ter for hard-copy output.

REPORT ON OPERATING SYSTEM PERFORMANCE

OVERHEAD CALCULATION FOR CURRENT OPERATING SYSTEM

Catagories of overhead Time/tick % O/H
I. Fixed o/h each tick 377.8 US 11.3%
I1. Overhead to dispatch a task

132.2 US/task * 2.48 tasks/tick 327.9 US 9.8%
I11. Processing active tasks )

102.4 US * 15.03 active tasks/tick 1.539 MS 46.2%
v Primitive calls 172.3 US 5.2%

SUSPEND 45.4 US * 2.05 = 93.1 US

ACTIVATE 44,2 Us * 13 = 5.7 US

ACTIVATE-TIME 51.6 US * .35 = 18.1 US

ACTIVATE IMMED 56.4 US * .34 = 19.2 US

DEACTIVATE 59.0 US * 0= 0

SCHEDULE 88.0 US * .01 = .9 uUs

SYNCP 58.4 US * .34 = 19.9 US

SYNCV 45,2 US * .34 = 15.4 US

TOTAL OVERHEAD 2.417 MSEC 73%

OVERHEAD CALCULATION FOR NEW

Categories of overhead
I. Fixed o/h each tick

1I. Overhead to dispatch a task

47.8 US * 2.48 tasks/tick

IIT1. Primitive calls
SUSPEND 108.4 US * 2,
ACTIVATE 108.4 US *
ACTIVATE-TIME 108.4 US *
ACTIVATE-IMMED 108.4 US *
DEACTIVATE 45 UsS * 0
SCHEDULE 108.4 US *
F—KS——iEL—— SYNCP 58.4 US *
SYNCV 45,2 US *

TOTAL OVERHEAD/TICK

7

OPERATING SYSTEM

Time/tick % O/H
198.2 US 5.9%
118.5 US 3.6%
347.4 US 10.4%
05 = 222.2 US
A3 = 14.1 US
.35 = 37.9 US
.34 = 36.9 US
= 0
.01 = 1.1 US
.34 = 19.9 US
.34 = 15.4 US
664 US 20%



Summary and Conclusion

This paper has described what measurements can be
made on higher level software constructsin a computer
system and why anyone would want to have this type of
analysis available. The ability to relate data on a system
bus to various levels of software was shown to be possible
with a computer or calculator controlled logic state ana-
lyzer. Two actual systems were characterized in the
paper; one example related more of the mechanics
involved in making some of these measurements, and the
other described how the measurements actually led to
the optimization of an operating system.

Even though these new measurement techniques have
provided considerable insight into the software domain,
the possibility for extending these measurements is
extremely exciting. We have the tools available today!
Clearly, much more work is needed to explore this new
measurement domain, as it appears that we have only
scratched the surface.

* UNIX is a trademark of Bell Laboratories.
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BETTER USE OF LOGIC ANALYZERS IN DEDICATED ENVIRONMENTS

INTRODUCTION

Monitoring the operation of digital hardware with logic analysis
tools requires an interface which can transform the representation

of information used in the hardware to one that an analyzer can
understand. In this paper, it is shown that the definition and
realization of this interface should be a consideration during the
design of digital system components. The degree to which this should
be done depends upon the nature of the design and the associated

analysis needs.

Focusing on the interface to analysis is one way to determine the
analysis requirements in a specific situation. An understanding of
the characteristics of general purpose probes, as well as the ways
that a dedicated probing interface can enhance measurement capability,
allows an evaluation of the difficulties that will be encountered
when analysis tools are used. By supporting analysis within a de-
sign, or by implementing a dedicated interface for analysis, these
difficulties can be avoided. 1In addition, specific measurements can

be supported by the interface which could not be made otherwise.

The increasing complexity of machine design, the optimization of
these designs for specific tasks, and the internalizing of informa-
tion due to higher levels of integration have lead to a greater need
for more capable logic analysis tools. Concurrently, there are more
problems in establishing the analysis interface. It is becoming less
practical to build a single analyzer which is able to conform to the
specific requirements of all bus protocols. If a greater part of an
analyzer's resources is spent on this task, then more sacrifices
must be made in the measurement set. For these reasons, the trend
appears to be in the direction of supporting analysis with dedicated
interfaces to overcome the complex mechanical, electrical, and

functional probing problems.
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Figure 1 is a model which describes the major functions of an in-
terface to analysis. There must be a way to mechanically connect
to signals. This may be individual probes, as in the case of

general purpose probing. It may be a mass termination supplied on
a board for cable connection. A plug-compatible board often per-

forms this interface function for dedicated preprocessors.

Once a connection to the signals is made, these signals must be
electrically and functionally interfaced to the analyzer. These
tasks are accomplished in the electrical and functional mapping
blocks. The specific ways. in which these tasks are performed are
described subsequently. Notice that in the diagram there are
arrows shown that travel toward the monitored system. These rep-
resent the control functions which can be implemented into a pre-

processor or embedded interfaca.

It is hoped that this paper will supply ideas and inspiration for
the design of analysis interfaces for the new bus architectures now
being developed. Specific techniques are shown which have been
used for interfaces that have been built, and thoughts for making

analysis more convenient are presented.
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Interfacing Levels

The interface to analysis can be thought of in three levels: general

purpose probing, preprocessing, and embedded analysis.

General purpose probing schemes are made available with general
purpose logic analyzers to allow connection to signals without the
need for a dedicated interface. These schemes consist of probes

for data and clock (in the case of a state analyzer) with provisions
for mechanical connection to the desired signals. The electrical
translation of the waveform to a digital representation for the

analyzer is done by comparing the probed signal with a set threshhold.

Primary uses for GP probing are making guick measurements, and

making measurements when no dedicated interface is available. When
an analyzer is to remain connected for a period of time, it is

often desirable to implement some form of dedicated interface,

even if only to solve the mechanical problem of keeping many wires
connected. When used, however, there are characteristics of GP
probes which should be known, although they may usually be ignored.
These include required signal swings, active signal and threshold
range, loading of the signals, and timing reguirements. The causes
and effects of these factors will be discussed in the section on

general purpose probing.

A dedicated preprocessor is an interface which performs the elec-
trical functional, and mechanical mapping required to transfer in-
formation from a specific system to a logic analyzer. It often
consists of a board which can plug directly into a connector in the
monitored system. Preprocessors have been built for standard buses
with known protocols, and has made probing these buses much more
convenient. It has been possible to add analysis features on these
interfaces, as they operate in a well defined environment. It is
also possible to do this for unique, nonstandard architectures to
handle complex protocols. Techniques used in building existing
dedicated interfaces which have general applicability will be de-

scribed in the section on preprocessors.



In a third section, the idea of embedding the interface to analysis
within system design is examined. Building analysis capability into
a design has been commonly done in the past. Front panel controls,
debug monitors, and system diagnostic routines are examples of this.
The availability of logic analyzers, however, provides an opportunity
to obtain control over system activity in real time with more capa-

bility for recognizing and interpreting complex events.

GENERAL PURPOSE PROBING

When a dedicated interface is not available for the specific logic
that is to be monitored, GP probes must be used. These probes must
translate information from an unknown environment to a form which

an analyzer can accept. Figure 2 is the model for a GP probing

system which will be used in this discussion. It is desirable to
DATA TO B
ANALYZER
SIGNALS FUNCTION [——] COMPARE DELAY [T 2> e DATA FOR

ANALYSIS

DATA CLK
THRESHOLD ]

INPUT CLOCK TO ANALYZER
CLOCKS ) uncTion || COMPARE

I CLOCK
THRESHOLD

FIGURE 2: GP PROBING

keep any disturbances of the signals probed to a minimum, and the
restrictions placed upon the signals for correct passage of infor-

mation should be nonobtrusive to the target system.

It is the information represented by the waveforms, and not the

detailed waveforms themselves, which are important for state analysis.
There is an inherent loss of knowledge about the signal levels and

swings, as well as the exact timing relationships between the probed S
signals. The mapping of information from the external domain to the
analyzer domain should be 1:1 over a large range of these parameters

to avoid limitations in the applicability of the probing system.
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It is not possible to make the mapping of information 1:1 over the

entire range of parameters, such as signal swing. The specification
of the electrical and timing characteristics of a general purpose
analyzer (referenced to the probes) describe over what range of the
input variables this translation is done without degradation cf the
information content. A setup and hold specification, for example,
describes the required timing relationship between data signals and

the analysis clock to guarantee correct data transfer.

Probing specifications, then, define the limitations on the operating
range of an instrument. It is necessary to know which parameters

are critical, as well as their specified limits, so that a judgement
can be made as to whether or not an instrument will operate in a
given application. It is often possible to overcome some limitations
when the component factors leading to a nonideal specificaticn are

known.

Parameters of probing which will be discussed are:
Setup and Hold

Signal Swings and Levels
Signal Loading
Threshold Range

Setup and Hold

The setup and hold specification for a logic analyzer gives the
timing requirements for passage of information into the analyzer
without distortion of data content. It would be most desirable to
know exactly when the input data is sampled with respect to the
clock edge. This would allow some timing information about the
waveforms to be maintained. It would then be possible to determine
if the system under scrutiny was not meeting its own setup and hold
requirements. This could be done by skewing the clock and data by
an amount which makes the analyzer sample at the minimum setup time

to insure that the data was stable.




The actual specifications given are the same as for any logical
storage element. A window of time about the transfer clock edge
during which the data signals must remain stable is given. Because
of this, the signals in a design which can be probed may be limited.
See figure 3. This is a common structure found in pipelined, micro-
programmable machines. Address and data registers are clocked
simultaneously. The clock period is limited by the delay through
the address register and the memory, as well as the setup time re-

gquired for the data register.

ADDRESS DATA
REGISTER {AR) REGISTER

DATA

NEXT > Am“$—> R S—
ADDRESS MEMORY

CLOCK

CLOCK {_L— [ M
ADDRESS j X
DATA ‘ XXX XXXXXXKX
F—'DATA SETUP TIME (DSo)
1 ADDRESS
et SETUP-——3

TIME (Asu) Asu = Tcuk - DAR
L(—CLOCK Dsu = Tcuk - DAR - 80nsu

PERIOD (TCLK)

FIGURE 3 DELAY AND SETUP TIME

Assume that an analyzer is available with a setup time of 20 ns and
a hold time of zero. The output of the address register can be
probed, since the setup time is the clock period minus the delay of
that register, which is about 90 ns. Hold time is derived by the
positive delay through the register. The signals at the input to
the data register, however, do not have the required setup time with
respect to the clock, because of the delay in the memory. Since the
register only requires 10 ns setup, the circuit operates correctly,
while the analyzer will not necessarily see the same data as the

register.

It should be noted that the reason a zero hold time specification for
logic analyzers is necessary is to insure that at least the output of
storage elements can be probed. Whether or not any other signal can

be probed must be determined by its timing relationship with the clock.
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Components of setup and hold are:
Probing point capacitance variations
Analyzer's internal register setup and hold
Compensation delay for zero hold time
Channel skew
Delay variations over temperature

Comparator variations over threshold

Each of these contribute directly to the specified setup and hold.
If temperature is held constant, the only contributor to the window
required is channel skew. Other components will remain constant
for a particular measurement environment. The actual channel skew
for a particular instrument can be calculated by measuring the re-
quired timing window at a constant temperature and threshold, and

may be found to be considerably less than 20 ns.

Signal Swings and Levels

The minimum signal swing and the maximum input level must be given
since there is always some limit for these as a result of nonideal
components. The maximum input is determined by the breakdown voltage
of the comparators used and the input function applied to the signals.

The minimum signal swing is more subtle.

Components of minimum swing are:
Comparator offset voltage
Comparator offset current
Offset skews between comparators
Threshold amplifier error
Input divider error

Hysteresis used for noise immunity

An important point to make is that the minimum swing specification
is affected by the measurement error of setting the threshold. The
swing required about the actual threshold that the comparator sees
is affected only by the offset skew between comparators, the divider
error differences between channels, and the hysteresis used. As an

example, a 600 mV swing requirement can be reduced to about 200 mV



minimum swing if the threshold is adjusted to be centered on the
actual signal limits. This is done by tweaking the threshold while

observing the data displayed by the analyzer.

Signal Loading

The ideal probe would appear as an infinite impedance to the signal

being probed. 1In reality, some capacitance and resistance to ground
is normally seen. The capacitance will cause a change in the actual
(nonprobed) timing by reducing edge speeds. The resistance will have
some timing effect, but its main influence is an increase in DC cur-

rent at any voltage other than ground.

Probing capacitance is undesirable when the signal being probed has
cirtical timing, or if the signal driver is very sensitive to this
type of load. When the last nanosecond is used to advantage in a
design, any incremental delays must be accounted for. The degree
to which the additional capacitive load due to probing will affect

the timing in a specific case should be determined.

The resistive component is a consideration when the existing load
presented to a driver is its maximum fanout. Since TTL is specified
fairly conservatively on their high level fanout specs, this is
rarely seen as a problem with that family. In logic families with
less DC drive capability, the resistive loading should be considered.
The sensitivity of gain and phase of analog circuits to load re-
sistance made this a more critical parameter for oscilloscope probes.
In logic circuits, the capacitive component is more apt to create

problems.

Threshold Range

The active signal range over which the threshold applies should be
known when logic families other than TTL or ECL are to be used.
All general purpose probing schemes with variable threshold will
cover the range required for these. A range of +10 volts to -10
volts is common, and covers all of the standard logic families.

If a signal which switches between 24 volts and 48 volts is to be —



probed, an external translation to the active range of the analyzer

must be performed.

Other Considerations

There are other characteristics of general purpose probing systems
which often affect their usefulness in specific applications. Some

of these are mentioned here.

It is not practical to have separate probes and thresholds for each
channel, as for an oscilloscope, when there are many channels. The
logical division of channels, both mechanically and with respect to
threshold, will determine whether widely separated signals can be
probed and whether signals from different logic families can be
analyzed together. A reasonable tradeoff must be made in the group-

ing of channels.

The clocking function of an analyzer specifies when data is sampled
in the system and when to transfer this data to the analyzer. Multi-

clock schemes are useful for demultiplexing buses, and for aligning

data in pipelined architectures. These capabilities generate more
specifications on the required signal timing, such as minimum clock-
to-clock time and the setup and hold of data with respect to each
clock. Any qualifier bits, which enable and disable clocks, also
have timing requirements. The clocking functions at the front end
of an analyzer should be known since they can be useful in unravel-

ling bus protocols.

A variety of mechanical hookup techniques have been developed which
make connection of many channels to an analyzer more convenient.
Accessories made available for multiple channel hookup should be
considered when a connection is to be made for more than a one-time

measurement.

Comments

To make the best use of general purpose probing, operating ranges

of the important input parameters should be known. If it is necessary,

in a particular situation, to operate an analyzer out of its specified



range, external compensation can sometimes provide a solution. 1In
other cases, knowing the components of the error can generate a
technique to overcome the specified limitation (as in the case of

tweaking the threshold to reduce minimum signal swing).

It is also possible to increase the usefulness of GP probing by
supplying some hooks for analysis in the original design. For ex-
ample, an additional register could be added to the circuit of figure
3 which latches the output of the address register. This would allow
passing address and data to an analyzer in parallel without a setup
time problem. This is exactly the kind of function which could be
built into a preprocessor interface for that architecture. Many
other functions can be performed in this type of interface, and

these are presented in the next section.

PREPROCESSORS

The function of a ‘preprocessor is to transform the representation
of information in a known environment to a representation appro-
priate for an analyzer. Because the environment is well defined,
this type of interface to analysis can compensate for the complex-
itites of the representation, and also perform functions which are
particularly useful far the given architecture. Figure 4 shows

the basic functions of a preprocessor.

DATA BUFFER / ALIGNMENT/ PARALLEL
BITS TRANSLAT ION :> DATA TO
LATCHING ANALYZER
CONTROL ——s‘_‘> TIMING
LINES DECODER o ANALYZER TRANSFER

CLOCK

STATUS STATUS TO
ENCODER ANALYZER

FIGURE 4: MODEL OF PREPROCESSING INTERFACE
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Buffering the data and control signals minimizes loading of the
monitored bus to standard levels. For a specific bus, the maximum
loads that can be applied are usually specified, and the preprocessor
must conform to these. If the logic family used on the monitored
bus is different than that of the interface, then a level trans-

lation is also performed.

The interface must determine when to sample data from the bus, and
when to send this data to the analyzer with a transfer clock. 1In

the simplest case, all data on the bus is valid with sufficient setup
and hold, with respect to a single bus strobe. Then this strobe can
be the transfer strobe and no latching of bus data is needed. More
commonly, data on the bus is valid at different times, with more

than one control line required to determine validity. Each set of
data bits must then be latched when they are valid, and after all

of the bits have been gathered, a transfer strobe is derived to send
them to the analyzer. This function is performed in the alignment/

latching and timing decode blocks of figure 4.

Control lines are assembled into a status word by the status encoder
block. This word is then sent to the analyzer as part of the
parallel data word. Typical types of bus cycles are OPCODE FETCH,
READ, WRITE, INPUT, OUTPUT, DMA IN, DMA OUT, INTERRUPT, etc. Iden-
tifying the type of bus transaction which occurred is used by the
analyzer in such functions as storage qualification and trace point
recognition. As an example, it is then possible to store only OUT-
PUT cycles and ignore all other cycle types. This is a common

measurement need for debugging I/0 problems.

The actual codes which are used to encode the status can affect
analysis features. If a single bit were used for each type of
status, any combination of cycle types can qualify analysis events.
If the eight types given above were coded into three bits, however,
only certain combinations of the eight can be derived, determined
by the coding of bits. It is often desirable to encode status in-
formation to reduce the number of bits required to pass this in-
formation to the analyzer. The affects on analysis of the coding

of status should be considered in the design of a preprocessor.
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Buffering, data alignment, timing decode, and status encoding may
be considered the basic functions of a preprocessor. In addition to
these, many other functions can be added to the interface which en-

hance its usefulness.

Data Selection

An analyzer typically has a fixed number of bits upon which it per-
forms analysis functions. If the bus to be monitored has more bits
of information than the analyzer can accomodate, then the decision
must be made as to which bits to ignore. An alternative is to select

particular bits for the analyzer, either statically or dynamically.

Static selection means that for one measurement a certain set of
bits are analyzed, and the others are not. This is useful if the
sets of bits are really independent, such as in monitoring two
buses with one interface and either bus can be selected without
physically moving the interface. Another case is incorporating the
ability to monitor different sets of status bits on a bus that are
independent. It may be possible to monitor interrupt control lines

or DMA control lines, for example, but not at the same time.

Dynamic selection is a technique of selecting the important sets of
bits as a function of the status of the bus and sending codes to

the analyzer which specify which set of data is being presented.

For a processor with multiple I/0 ports, for instance, a prepro-
cessor may be able to determine which port is active and switch

that port's data onto the analysis bus. The status information sent
to the analyzer would include bits to identify the port through
which the data was transferred. Static selection could also be
used, in which case only one port could be monitored during a

measurement, but the status information would not then be required.
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Error Detection

It is desirable to perform error detection in a preprocessor for
two reasons. First, a state analyzer cannot detect timing or
electrical errors. An opportunity exists in the design of a pre-
processor to pass information about these types of problems to an
analyzer via status bits. Second, by letting the preprocessor do
error detection, state measurements can be done in parallel by the
analyzer. More complete use can then be made of the analyzer's

feature set.

The detection of bus protoccl errors in a preprocessor can often

be done with a simple state machine monitoring activity on the
control lines. An asynchronous circuit may be required for detection
of timing errors, while a synchronous implementation will detect
state flow problems. When an error is found, the condition should

be latched until the next transfer clock to the analyzer. This
guarantees that the analyzer will be able to see that the problem

occurred.

Reconstructing Internal Information

With the increasing capabilities for integration of circuits, buses
which concisely represent the overall activity have been intern-
alized. Such is the case for the 8086 processor. The external bus
activities are isolated from the real process by the on-chip bus
interface unit. For analysis, the ideal place to probe the 8086 is

on the execution bus, which is inside the chip.

A preprocessor can be imagined which reconstructs the operation of
the bus interface unit, and derives the actual instruction flow.
This data could then be passed on to the analyzer. This type of
preprocessing function will become more important as more and more

of the convenient nodes of information are internalized.

Analysis Features

In some cases, it may be found that the available analyzer cannot
perform a particular measurement. It may be possible in this case
to add measurement capability to the preprocessor to perform the

desired function. 1



A simple example is adding the ability to monitor only every Nth
state, to obtain a general picture of state flow. See figure 5.

A counter can be used to derive a clock to transfer data to the
analyzer only when the carry is true. By making the divide con-
stant programmable, the analyzer will receive every Nth state. This
type of preprocessor function is called prereduction. Analysis
features included in preprocessors usually perform some form of
prereduction of the state flow information for an analyzer. Other
examples of prereduction would be passing only certain types of bus
cycles to the analyzer, or generating complex status information.

such as when a processor is in user vs supervisory modes.

BUS

CONTROL:> TgNélhf‘\IG CYCLE CLOCK #g:lﬁ‘gSFIESR

LINES CLOCK

SAMPLE
CLK mop CY——=o0 MODE

COUNTER ON

(+FACTOR )

FIGURE 51 PREREDUCTION OF DATA BY SAMPLING

Control

General purpose logic analyzers typically offer outputs which can
be used to stimulate the monitored system. These may be used to
halt the ongoing process, interrupt the process, or drive other
dedicated functions made available to the interface. The ability

to halt when the analyzer memory is full, for example, allows paging
through the process while obtaining a record of all activity be-
tween halts. This is like single stepping, but the relationship

between many cycles can be seen.

Comments on the Complexity of Information

The design techniques used to get more throughput and features from
a given amount of hardware have become increasingly complex. The
effect on the requirements for analysis is twofold. First, there

is a greater need for analysis due to the higher likelihood of bugs
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in more complex designs, and the difficulty of monitoring activity
without dedicated tools. Second, the analyzer must be tailored to
the dedicated environment of the design since a general purpose
front end cannot begin to encompass all of the new techniques. This

leads to a greater need for dedicated interfaces to analysis.

So, in some cases a dedicated interface is needed just to unravel
the way that the information is represented. Another source of the
need for preprocessors is the increasing tendency toward internal-
izing of information. As IC technology advances, the real nodes of
information are moving inward, where standard analysis tools cannot
reach them. Such is the case for analysis of some of the new 16-bit
processors. Effective monitoring of the activities of such pro-
cessors requires that the internal execution bus be reconstructed.
The external bus not only has the data scrambled in order, but some
of it may not even be valid, and the wvalidity is a function of the
sequence of fetched instructions and data. Surely, a dedicated

analysis tool would greatly improve analysis of such a machine.

And so, with the ever more complex architectures being designed for
more efficiency and throughput, the analysis problem becomes
correspondingly more complex and demanding. The need to consider

analysis problems during design has thus become more critical.

EMBEDDED ANALYS5IS

Embedding analysis tools within a system's design has been done

since the first computers were designed. It was, in fact, the
complexity made possible by such organized and regular designs that

led to the need for analysis tools. The availability of general
purpose logic analyzers, however, provides an opportunity for sup-

porting analysis in all designs.

Consider use of a logic analyzer as an integral part of a system.
The hardware interface to analysis could then include functions
which allow passing information about the activity of the system to

an external instrument, under software control. A debug monitor,
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resident in a separate analysis memory, could allow application
programs to access the analysis features through a monitor level -
interface. A diagram of this type of system integration of analysis

is presented in figure 6.

RESIDENT
SYSTEM
FUNCTIONS PRQCESSOR MEMORY 170 EXECUTIVE
[ [ |
SYSTEM BUS
APPLICATION
AREA
ADDED EREACE]
CONTROL DEBUG INTERFACI EXTERNAL MEMORY MAP
FUNCTIONS MEMORY ANIISYI <:> ANALYSIS

FIGURE 6: ADDING CONTROL OF A SYSTEM FOR ANALYSIS

Some of the hardware added to the basic design performs the same
functions that have been described for external preprocessor inter-
faces. Other tasks can be performed by the hardware interface,
however, when it is built into the design. The debug memory, for
example, is memory space added specifically for the use of analysis
interface routines. The memory space available for application
programs is therefore not reduced. The analysis interface may also
be made hardware-addressable by the system so that the software in-

terface can pass specific information for display to the analyzer.

The software interface, as previously mentioned, resides in the de-
bug memory. The operating system must support these external pro-
grams, so it is not possible to make the existence of the integral
analysis interface transparent. The function of the debug software
would be to allow setting breakpoints via the analyzer's control
outputs, to program the operating mode of the interface to analysis,
and to offer a standard way to send information to the analyzer.
Other utilities could be offered in the debug space, such as pro-
grams which will do prereduction of the information sent to analysis
from an application program or display and alteration of application

memory contents.

An example of integrated analysis is the design of the emulation and

analysis modules which are available for standard microprocessors.
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In these tools, the analysis capability is directly coupled to

functions for control over program flow, giving essentially the same
i%@ architecture as that shown in figure 6. A general purpose logic

analyzer can be used to provide the same conveniences in a dedicated

environment. The requirement is that the analysis functions must

be supported in the system design, and the benefits that can be ob-

tained by such an approach must be weighed against this task.

CONCLUSIONS

The need for dedicated interfaces to analysis tools becomes greater
as the complexity and diversity of new designs increases. It will
become even more difficult to define a general purpose logic analyzer
which can solve the majority of probing and measurement problems.
Through consideration of analysis needs during design, and through
implementing a dedicated interface to analysis, a general purpose
analyzer can be used very effectively to solve specific measurement

problems.

This paper has presented some of the techniques which have been

used to employ analysis more effectively. This has been an attempt
to generate an awareness of the possibilities, and is not meant to
be all-inclusive. The hope is that the viewpoint of considering
the interface to analysis as a separate'entity will lead to the de-
Velépment of innovative solutions to specific measurement problems

using logic analysis tools.
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INTRODUCTION

The design of a new minicomputer is a long process,
involving the efforts of many engineers, and a process
that brings together many disciplines — product de-
sign, analog design, digital design, LSI design, and
software design. There is no one tool that can meet the
needs of all of these designers; at best we try to use
one to cover as much as possible.

The logic state analyzer has been one tool that has
met the needs of most of the people on our latest effort,
being used by our analog, digital, LSI, and sofiware
design engineers throughout the development phase.
These uses are best illustrated by example; hence this
paper. This paper will attempt to highlight the major
uses to which we have applied logic analyzers in the
course of developing one of HP’s new processors, the
HP 1000 L-Series.

THE HP 1000 L-SERIES

The HP 1000 L-Series is the newest addition to the
1000 family product line. It is based on two custom
Large Scale Integrated (LSl) circuits which were de-
signed as part of the overall project. These LS| devices
were designed using HP’'s advanced Silicon-on-
Sapphire (SOS) technology, to implement a high-
performance processor in the microcomputer area of
the market. Our use of LS| has greatly enhanced the
L-series computer, but also posed additional design
problems, as seen later.

A simplified block diagram of the L-series is shown in
Figure 1. The bus structure chosen has sixteen data
lines, fifteen address lines, and 36 control lines. These
lines are contained on two 50-pin connectors on one
end of the board; the other may be used for connection
to external devices, in the case of the I/O cards.
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MEMORY 10 140
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Figure 1. Simplified L-series block diagram.

There are four major types of bus activity:

. Instruction and operand fetches.

. Direct Memory Accesses (DMA), reads or writes.
. /O instruction processing.

. Interrupt processing.

WA =

Instruction and operand fetches are initiated by the
processor in the normal course of instruction execu-
tion. The backplane protocol is identical to a Direct
Memory Access by an I/O card, with the exception that
the signal RNI (Read Next Instruction) is asserted, to
alert all /O processors that an instruction is being
fetched for possible /O processor execution.

DMA accesses are initiated by any of the /O mod-
ules, since each CMOS/SOS /O Processor contains
all necessary DMA logic as part of its standard circuitry,
a feature unique in the small computer market. The
accesses are prioritized in daisy-chain fashion, and are
the primary method of data transfer into and out of an
L-series computer.

I/O instruction processing may involve interaction
between the processor module and the 1/0 module, as
in the case of a transfer of the desired word counton a
DMA transfer to the 1/O processor chip, or it may be
accomplished solely by the I/O processor chip itself (as
in a start command). If CPU to /O processor communi-
cation is required, it is interleaved with the DMA activity
on a lowest-priority basis.

Interrupt processing is a cooperative effort between
the processor and the highest-interrupting-priority 1/0
device, where the processor initiates an instruction
fetch from the memory location supplied by the 1/O
processor chip. This implements the HP 1000 vector
interrupt feature.

By monitoring the flow of data over the backplane
and the associated control signals, the user has visibil-
ity into the step-by-step operation of the computer.

USE OF LOGIC ANALYZERS IN EACH
DEVELOPMENT PHASE

Every project follows a sequence of well-defined
(and, hopefully, well-implemented) design phases:

Inital product definition.

Breadboarding to verify functionality.
Conversion to prototypes.

Verification of integrated circuits, if any.
System integration.

[ ]
[ ]
[ ]
[ ]
[ ]
e Release to manufacturing.



Logic analyzers were used during each phase of the
L-series, contributing heavily to the speed with which
new designs were checked out. An example of the use
of logic analyzers during each phase has been
selected, showing their power and flexibility.

A. Initial Design-Architecture Definition.

The architecture of the L-Series evolved from its
major objective of implementing a very efficient /O
structure that would allow the Real Time Executive
(RTE) operating system to spend dramatically less
time servicing input-output related events. Experience
with our existing processors showed that as much as
thirty to forty percent of the processor execution time
could be spent on I/O-related activities, primarily re-
lated to interrupt servicing. We attacked the problem in
both hardware and software: The software was de-
signed to more efficiently handie bus-oriented inter-
faces (such as the HP-IB* interface), and the hardware
was designed to allow every interface to directly trans-
fer data to memory, only generating an interrupt on the
completion of a transfer.

Figure 2 shows the difference in overall processor
throughput when this concept is utilized.
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16-bit parallel interface and an asynchronous serial
interface. This uniformity of interface allowed the 1/O
hardware and software designers to concentrate on the
peculiarities of their particular I/O function, while
guaranteeing that overall system performance was
maintained.

Once the backplane definition had solidified, we
worked with the designers at our logic analyzer division
to produce an interface that would allow that division's
logic analyzers to quickly be connected to the com-
puter using a plug-in interface. This has proventobe a
valuable debug aid.

B. Breadboarding

Once the architecture was defined, the individual
designers then produced the detailed designs to
realize the desired functions. In order to produce a
working prototype of the computer, it was necessary to
generate at least a memory, a processor board with the
CPU chip being emulated by its TTL breadboard, and
one I/O interface with the I/O processor being emulated
by its TTL breadboard.

The CPU chip was brought up first. Its block diagram
is shown in simplified form in Figure 3. It was designed
as an algorithmic state machine with a clocked asyn-
chronous interface to the rest of the system, to allow
memory operation to occur in any amount of time from
2 to N cycles (where N is as big as you are willing to
wait for!). The logic analyzer was connected to the
output of the state machine to monitor the transitions
from state to state, and also connected to the data bus
and as many address bus bits as we could. In this
fashion we could manually provide inputs for instruc-
tions and verify that the CPU was correctly executing
these instructions (see Figure 4).

Figure 2. Direct memory access = high performance.

To accomplish these objectives, a standardized
intertace to the L-series backplane was defined, and
the /O Master and 1/O Processor concepts formed.
The 1/O Processor is a custom-designed CMOS/SOS
device that incorporates logic to do I/O instruction
execution, as well as to handle all Direct Memory
Access (DMA) functions. The I/O Master incorporates
the /O Processor and its associated TTL support cir-
cuitry into an identical circuit on each i/O board. Each
I/O board has its basic functions provided by the /O
Master, so the software sees a very uniform structure
to the interface on such widely disparate cards as a

*HP-IB is Hewlett-Packard's implementation of the |EEE 488-1975
interface standard.
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Figure 3. Simplified CPU chip block diagram.



This configuration was used on all instructions, but
was particularly helpful in finding out why the divide
algorithm was failing — it was possible that the control
structure was incorrect, or that the data structure was
at fault. By having the state sequence and the data bus
available, the problem was quickly isolated to an incor-
rect state branch — the correct state sequence for
Figure 4 should have been states 63, 64, 65, €6, 67,
and then 40! Further investigation revealed that a don’t
care on a Karnaugh map was not actually a don’t care.
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Figure 4. CPU chip state machine operation.

As soon as the CPU chip emulator was ostensibly
“working”, our attention then focussed on plugging it
into the processor board with a memory and getting the
jprocessor-memory interface established. This involved
operation of circuitry both internal and external to the
“chip”, so we left the one logic analyzer connected to
the chip emulator and attached a second analyzer to
the backplane, giving us complete visibility as to the
internal and external workings of the machine [Figure
5]. Since the processor-memory interface is very
straight forward and synchronous, the checkout was
done using simple functional checks on the handshake
lines at slow speeds. A sample processor-memory
handshake is shown in Figure 6.

Figure 6. Sample processor-memory handshake.

At this point we were ready to attach our first I/O
interface and device — a serial input/output card to
allow connection to a terminal. The 1/O processor
emulator had been initially checked out manually, in a
fashion similar to the CPU chip (again using a logic
analyzer), so again the interface between functional
modules was the focus of our attention. The /O pro-
cessor is unique in that it serves two roles in the sys-
tem, concurrently. The first role is that of an 1/O instruc-
tion executer — when /O instructions are received
from the backplane, it is the responsibility of the I/O
chip that that instruction addresses to see that the
instruction is executed. At the same time, the 1/O chip
may be performing its direct memory access function,
moving data from the /O device to memory or vice
versa. Since both operations are conducted over the
same backplane lines, they are not simultaneous, but
may be interleaved (see Figure 7). This led to the
second example of logic analyzer use — finding out
why interleaved operation destroyed seemingly ran-
dom memory locations.
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Figure 5. Chip and backplane logic analyzer.

Figure 7. Interleaved instruction and DMA processing.

To check out what was happening, the logic analyzer
was set to record each successive DMA write to mem-
ory, both address and data. One trace that was ob-
served is shown in Figure 9. Only one channel of DMA
was active, so each address should have been the
successor to the previous address. As can be seen, on




one line this was not the case; an interesting observa-
tion is that on the next write the address was correct
again. Something was temporarily destroying the ad-
dress external to the I/O processor chip, since inter-
nally it seemed to be correct. The logic analyzer was
then shifted to the 1/O Processor chip bus (Figure 8),
and the attendant enables.
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Figure 8. |/O processor chip bus.
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Figure 9. Trace list showing bad DMA write (see start +05).

This very quickly revealed that the signals LDMAR
(load memory address register) and Enable Data Bus
In overlapped for one backplane clock just prior to the
defective write (time t2 of Figure 7), with the data bus
buffer overpowering the 1/O Processor chip (see Figure
10). Further paper analysis revealed that a related
signal, MRQ, was the source of the problem; MRQ had
to be removed when RNI appeared, so that the |/O
processor DMA state machine would not assert the
DMA address and the signal LDMAR while the data
bus was still enabled onto the chip bus.

C. Prototype Phase

After some amount of time spent with the bread-
board, running first diagnostics, then the preliminary
operating system, it was time to commit the designs to
actual printed circuit board implementations that could
replace the somewhat awkward wire-wrap boards;
similarly, the two LSI devices were laid out (actually,
the chip layouts overlapped the breadboard phase, due
to the relatively long lead times on LSI designs versus

Figure 10. Trace showing LDMAR and enable data bus in
overlapped.

printed circuit boards, but up until then it had been
largely at the block-level planning stage). The printed-
circuit boards arrived well before the chips, and re-
placed their respective wire-wrap boards; we were
ready to receive the chips so that we could proceed to
the environmental part of our testing and verify our
design margins.

1. Chip Checkout:

At this point one of the project engineers suggested
a way to use the logic analyzer to get visibility into the
inner workings of the CPU chip — an LSI designer's
dream!

Since the CPU chip is bus-oriented (see Figure 11)
and the chip designers had fortuitously chosen the
default state of the data bus transceivers to be enabling
the internal data out, a properly connected logic
analyzer and a copy of the CPU chip state diagram
(see Figure 12 for an example of this) allowed the
engineers to “see” what was happening, even in inter-
mediate states of execution, in the packaged part.
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Figure 12. CPU chip state diagram.

An example of the use of that was to discover the
cause of the failure of several arithmetic and logical
instructions. At first it seemed as if the ALU was per-
forming incorrectly — instead of adding, it appeared to
AND the first operand with the two’s-complement of the
second operand. Closer examination of the bus
waveforms, however, revealed that the bus from the
latch at the output of the ALU was changing value on
both edges of the clock! (See Figure 13.) This problem
was, after much pondering by the LSl designers, attri-
buted to coupling between the clock to the ALU output
latch and the data in the latch. No logical error — it was
a topological one.

2. Environmental Testing:

As part of the design cycle at HP, every new product
must undergo what some of our engineers irreverently
call “shake and bake” testing — subjecting the unit to
temperature, humidity, altitude and vibration extremes
which are more stringent than what will appear on the
final product specifications. We used this opportunity,
also, to verify that at each combination of extremes
(high temperature and humidity, low voltages or high
voltages on the DC supply) that we had sufficient tim-
ing margin to allow operation with a system clock of

higher than normal frequency, and to analyze where
the circuitry stopped working to see what the critical
paths were. Occasionally (should | say usually?) this
testing also reveals a device that does not quite oper-
ate the way it should. An example: Part of the testing
requires operation at elevated temperature for 72
hours continuously. A computer was undergoing this
procedure, running diagnostics and on-line functional
tests using our Real-Time-Executive (RTE-L) software.
This was set up to cycle from initial power-on test,
through the diagnostics, to the system on-line tests.

sek— J 1 L
A1 /SN N

EDGE 1

EDGE 2

ALU QUTPUT RESPDNDING
TO EOGE 1 AND EDGE 2

Figure 13. Trace showing incorrect CPU chip operation.




This cycle was to have run repeatedly overnight, but
was interrupted sometime during the night by the de-
tection of a “break” condition on the Asynchronous
Serial Interface which was connected to the system
console. This break condition activated the computers’
Virtual Control Panel, the equivalent on other machines
of pressing the Halt button.

The logic analyzer was attached to several points in
the path from the RS-232 line received from the termi-
nal to the input of the I/O processor chip which re-
quested the break (see Figure 14). Since the terminal
was quiescent during the entire test, the logic analyzer
was set to trigger on any break indication; the test was
restarted. The trace of Figure 15 was the result!
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Figure 14. Path of the break signal on the ASI card.
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Figure 15. Trace of bad break signal.

The RS-232 receiver had signalled a logic O level
when its input remained at a logic 1 level! Further
investigation showed that noise on the RS-232 line,
even though well above the threshold of the input, got
coupled through to the output — but this mainly
showed up only after the device had been heated to a
high temperature. A call to the manufacturer confirmed
the problem, and obtained the data code of the revised
parts. Caveat Emptor!

3. System Integration:

Now all the individual parts of the computer had been
tested individually — packaging, power supply, and
logic designs; it was time to integrate them into the final
form. And, true to our luck, there was a problem or two.

An example:
The L-Series, like most contemporary computers,
uses semiconductor RAM for its main memory,
necessitating the use of a battery backup card to
sustain the memory during temporary AC power
loss.

Some signalling is necessary to both alert the proces-
sor that a power failure is impending, and to switch the
battery backup card from charge mode to sustain
mode. During the interval between the signalling of the
impending power failure and the time that the power
supplies are no longer valid, the operating system does
as orderly a shutdown as possible, then waits for power
to be re-asserted. As a precaution on power-up, the
software checked to see if a flag had been set indicat-
ing that the power-down routine had run to completion.
If not, the system is probably in some form of disarray,
and needs to be reloaded.

This is exactly the indication we observed when we
simulated a power-outage situation — except that
there shoulc have been no reason that the power-down
routine could fail to finish!

The software engineers called in the logic analyzer
and its backplane connection so as to trace instruction’
flow (the backplane connection of Figure 5). They
quickly observed that the power-fail routine did, indeed,
finish; the power-up routine saw that the flag was set,
but the power-up routine was being entered a second
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time, without an intervening power-down! This was
traced back to a transistor being at the low end of its
beta specification, providing insufficient gain in the
control circuitry. The +5V supply was assuming the
waveform shown in Figure 16. The first upswing only
took the supply to 1.5V, which was just enough for the
power-on signal PON to be asserted twice within a very
short time, an infraction of the supply specifications.
The specification for that transistor is being tightened.

+12v

" _/\/

Figure 16. +5V turn-on caused by marginal component.

SUMMARY

This paper has tried to show that today’s logic
analyzers are powerful tools, fulfilling the needs of a
broad range of engineers, from software designers to
system integrators. The logic analyzers are used in a
variety of modes, to solve:

— asynchronous problems (“break” problem)
— synchronous problems (“LDMAR" problem)
— state flow problems (CPU chip debug)

This paper tried, through examples, to have lent
some credence to the wild-sounding claims of the logic
analyzer manufacturers as to how much you can do
with a logic analyzer — they are true!
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SOFTWARE DEVELOPMENT: WHY USE A DEVELOPMENT SYSTEM?

INTRODUCTION

We are working today in an environment of rapid change. Products are
changing, design methods are changing as well as the basic materials that
we use. It was only a very few years ago that most design labs were primarily
analog orientec and exclusively staffed with hardware design engineers. Few were
skilled in software design techniques and there was 1ittle incentive to learn them.
Computers were used primarily for modeling and computation.

New developments have drastically altered all phases of the electronics
industry and fostered whole new segments of the industry as well. The plunge
in cost of memory and dramatic increase in processing power has made it
essential to consider the use of a microprocessor in new designs. (Figure 1)
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At Hewlett Packard, for example, we have no new designs that do not include a

—
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microprocessor. As a result, the configuration of our design labs has changed
markedly. Most of the hardware design engineers are now digital circuit
oriented, with skill sets that make them proficient in designing both at the
gate Tevel and in systems type work where the functional blocks provided by
semiconductor manufacture are integrated into a desired functional unit. This
doesn't obviate the need for good analog skills to anticipate and analyze
problems such as glitches, coupling, ground loops, etc. In addition to the
new breed of hardware designers, a significant number of software types are
needed on new project design teams. At HP, software designers comprise about
one half of our lab staff.

The nature of the business climate has also changed significantly since
the advent of microprocessors. With today's easy availability of inexpensive
and powerful semiconductors, almost anyone can design, and at least announce,
if not successfully produce, a sophisticated processor-based product. Even
sophisticated products are easily copied and perhaps obsoleted in a short period
of time. Competition is intense and often the largest market share goes to the

producer who introduces a product first.



As a result of these changing parameters, the design process has changed

as well,

design areas are readily identifiable:

In most present day design projects, two distinct, but closely related,
the hardware design that includes

circuit design, layout, breadboard and test, and software design where program

code is written to drive the hardware under design (Figure 2).

These two

design tasks are usually accomplished simultaneously in order to minimize total

design time.

0f the two tasks, the software job is probably the least under-

stood and most subject to delays and cost overruns. The hardware job, although

far from trivial, is usually well understood and well supported by test and
development equipment.

LAB

ALGORITHM ERRORS
DATA DEPENDENT ERRORS
“LOST" PROGRAMS
STUCK-IN~A-LOOP
EXECUTION PROBS

TIME

EPFICIENCY

1w
PROTOCOL VIOLATIONS
DATA TRANSFER PROBS

DIGITAL SYSTEM DEVELOPMENT PROCESS

CKT TIMING
TEST

FUNCTIONAL
DESCRIPTION
{j_ [
ALGORITHM
DESIGN
WRITE |
CODE o
‘ RUN DGM N
TRACE DEBUG
DEBUG SUB-
A ASSEMBLIES

>._

2
x
(=]
x

SYSTEM
INTEGRAT ION

FiX

<

CLOCK PHASING

TIMING RACES

STUCK BITS

GLITCHES, NOISE, COUPLING
TIMING SEQUENCE ERRORS
INTERMITTENT PROBS
DECODING ERRORS
MULTIPLEXING PROBS
IMPEDANCE MISMATCH

HANDSHAKE PROBS .
SERIAL /PARALLEL PROBS
0/A—A/D PROBS

FUNCTIONAL PROBS

PRODUCTION ELECTRICAL TEST PROBS
STOCK BITS TEST MARGINAL PARAMETERS
(NTERMITTENT INTERMITTENT PROBS
"HUNG UP" I’ MARGINAL PERFORMANCE PROBS
FIELD
SUPPORT

FIGURE 2



IDENTIFYING THE PROBLEMS

Since software design often restricts and 1imits the overall design goals
of a project, it might do well to look at some of the roadblocks that often
doom a project to costly delays, overruns and introduction problems.

o Inexperienced staff: The winds of change have blown so

fast that engineering staffs are not yet trained in the
skills of efficient programming. Also, many nontraditional
companies are drawn into the business without having enough
time to accumulate adequate experience.

0 Improper tools: There are a number of ways in which the
software design task may be approached;but,without adequate
tools or design aids, the project can quickly get mired
down in a mass of poorly documented code.

o Staff turnover: This can be a real problem if the design
aids being used do not promote good documentation or if
they are difficult to use and thus consume valuable time
to train new personnel.

¢ Low productivity: This may be the result of inexperienced
staff, poor planning and management, improper tools or some
combination of these factors. The problem is often compounded when,
as things get bad, more staff is added which usually makes
things worse.

o Down time: No matter how efficient the design aids are, if
they are not reliable or cannot be serviced quickly, the
design team is idled while the equipment is down.

THE BASIC ELEMENTS

In order to better understand how the previously mentioned problems can
be minimized, it is essential that we understand what is needed to complete a
software design task and then consider the alternatives available to accomplish
the most cost effective solution.

The complete software design task consists of three basic elements:
(Figure 3) program development, downloading,and analysis or debugging. There
are a number of alternatives available to accomplish the tasks. Doing it all
by hand is possible,but not practical beyond a program size of 1k byte. Given
that the job is not to be done by hand, some program development tools are

needed -usually in the form of application programs.
4
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Editor: provides the ability to enter, modify.and store program
modules under development.

Assemblers and Compilers: enables the user to write in more convenient
and understandable language than the basic executing machine language.

Linkers: allows the user to write programs in modules without
regard to absolute addresses. These relocatable modules are
easier to handle and usually identified by function. They are
then Tinked together and assigned absolute addresses at link time.

These application modules can be found on timeshare systems, mainframe computers,
and minicomputers, (Fiqure 4) all of which provide the necessary console for
user interface, mass storage,and I/0. The question then becomes one of what

to do with the edited, assembled,and linked code in the machine--the download
problem. It can be executed and tested functionally on a simulator ,which

sti11 Teaves open to question the I/0 related or time dependent problems. The
code can be downloaded through a PROM programmer into a PROM and inserted into
the target system and tested using logic analyzers--a very effective solution

in many cases. The difficulty is that there is no 1link between the target
system and the software development facility. Correction of errors can be a

5



SOFTWARE SYSTEM ANALYSIS

DEVELOPMENT EMULATION

HOST PROCESSOR

—PROCESSOR —~EMULATION . PROCESSOR
SYSTEM FAMILIES DEDICATED
CONSOLE
CPU~-MEMORY
UNE PRINTER LQEAMEQ'IY'ION —EXTERNAL
LINE PRINTER EAMICIES

~SOF TWARE PROM

FIGURE 4 PROGRAMMERS

were ,for the most part,products of semiconductor houses and were intended to
support the manufacturer's silicon. This forced the user to make a capital
investment with a very narrow application and reduced his flexibility on

new design starts.

As a result of these Timitations, many design groups who wanted to
apply the contributions of development systems still could not justify their
use. The needs and desires of the industry were articulated by Jerome W.
King and Daniel F. Ferriola of General Electric, Bridgeport, Connecticut, in
a paper presented at Electro 78. (Figure 5) In their paper they summarized
what was needed:

FUTURE REQUIREMENTS OF AN MDF
Support chip sets from various manufacturers
Support multiple users

3. More extensive file systems to permit better software
engineering features

4. High speed rigid disc with matching system software

5. More extensive emulator facilities

6. Standard interface to all peripherals

7. More comprehensive utility software to increase designer

efficiency

A NEW SOLUTION

These needs have for the most part, been addressed by a new introduction
from Hewlett Packard. The HP system is based on a hard disc with more than
10 megabytes of storage. Full advantage 1is taken of this fast mass storage with the
implementation of a high performance operating system and file manager. A
very friendly user interface is maintained using "soft key directed syntax"
where the available commands are displayed on the CRT and selected via keys
whose definition changes as the command structure progresses. New people
can be trained quickly since there is no exhaustive syntax or complex

S)



time consuming process and documentation may suffer. It is this link
between the target system and the source program that represents the
major contribution of microprocessor development systems through emulation.
With properly designed emulation, the program code may be executed in real
time in the target system. As errors are uncovered, the user can quickly
access the source code, modify it with the editor, then assemble, Tink,
and reload and begin execution with a simple command file. With the HP
systems, memory modifications may even be made on the fly, enabling ideas
to be tried immediately. As program modules are perfected, they can be
downloaded into PROM and mapped over to the user system. In summary, the
microprocessor development system provides two major advantages: down-
loading and microprocessor run controls. This tight coupling of the
software writing and debugging, if properly implemented, can provide sub-
stantial productivity and cost benefits to the user.

DEVELOPMENT SYSTEM LIMITATIONS

It would seem then, that a development system might be the ultimate answer
for today's software design problems, but, until recently, their performance
was such that many elected to stay with their computers.

In order to keep costs down, they were usually floppy disc based, which
severely limited the quality of operating systems and overall performance.
Execution of application programs tended to be very slow. Since disc space
was limited, each user kept his files on individual diskettes leading to
fragmentation of the design effort. Since operating systems were primative,
the system tended to be hard to use and required a significant investment

in time to teach newcomers the syntax and procedures--a severe limitation on
design team productivity. Another Tlimitation of the floppy based system was
that they don't support one development station very well, and certainly not
multiple stations--again, because of speed and capacity. This meant that

as the design team grew, new systems had to be added which further fragmented
the design effort. Another problem was created by the fact that developments



procedures to learn. The development station executes application modules
in its own 64k host memory but also uses the disc as a virtual memory.
Multiple stations can share the disc--creating a tightly coupled design team
environment where user files and libraries can be shared and multiple tasks
performed simultaneously. (Figure 6) The user wanting to download and
emulate is not held back by the one needing to edit his source files.
Sharing of the disc by multiple stations reduces the cost per station and
thus the overall system to less than the cost of an equivalent number of
floppy-based systems which provide far less performance. (Figure 7)

FIGURE ©
40k
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COST/STATION
20 k
10 k
1 2 3 4 5 6
FIGURE 7 NUMBER OF STATIONS

The development station architecture is such that the emulator subsystem
is independent of the host processor and memory,eliminating bus and memory
contention problems. (Figure 8) The architecture is also processor bus
width and speed-independent,permitting emulators for all types of processors

to be designed and installed.
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Emulation may be accomplished in real time and transparently due to the
independent emulation memory implemented with fast static RAM and a special
background memory where emulation functions are executed. (Figure 9) Use
of background memory will permit such activites as examination and modifica-

tion of memory while the target system is running.

Application modules are also greatly enhanced through the use of a hard
disc. The editor is fast, easy, and comprehensive; and the assembler runs

at 4000 Tpm on any size program.
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SUMMARY

A system such as this overcomes many of the objections formerly raised
about development systems. It offers the necessary high performance
peripherals to provide a sophisticated operating system,and application
programs to simplify and enhance the software design effort. These features,
plus enhanced emulation and the encouragement of teamwork through a multi-
station network,all work to increase design team productivity and reduce
development time.
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ADVANCED MICROPROCESSOR EMULATICN TECHNIQUES

by Chris Jones

INTRODUCTION

Taken from the standpoint of microprocessor based system de-
veloper's needs rather than known solutions, the current techniques
of in ciruit emulation and real time analysis will be explored as
they meet and fail to meet developer's growing demands. Support
requirements are addressed in terms of the separate and overlapping
requests of the system software and hardware developers as a target
system is developed. Implementations designed to meet these current
needs are discussed and, lastly, a look is taken at what character-
istics of microprocessor development system of today will be im-

portant for their continued viability in the future.

SOFTWARE DEVELOPERS' EMULATION AND ANALYSIS NEEDS

Host and Target System Memory Referencing

Because the software design cycle runs in parallel with that of
the hardware, it typically becomes necessary for software to de-
velop in two phases. One is very basic "test software" developed
soley to aid the hardware designer in checking out prototype hard-
ware. The other is designed in a top-down manner and carefully
thought out in an overall system framework before coding of actual
segments begins. This second phase software is the system software
and is the product of software engineers. Usually, after the system
has been software architected the specific coding tasks will be
assigned individuals and the process of creating and debugging
software begins. As modules of the final system are developed,
they must be executed and debugged on the processor with which the
software will eventually be used. Many of these software modules
will have no interaction with the system hardware at all and will
serve to provide system utilities or user interfaces to the system.
Such modules require emulation capabilities which allow execution

of code prior to, or independent of, any actual system hardware
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being present. The phase one,

or test,

software will provide in-

termediate software support to hardware developers and will even-

tually be upgraded to provide the interface between the system

software and hardware (i.e.,

the hardware drivers).

This software

must be supported by emulation techniques which provide executing

and debugging of software on the actual target system hardware.

The solution of these two distinct needs is the technique

known as "memory mapping”.

from the

Input and Output from Emulation

At its best,

the user selects a mapping

emulated processor's address space to physical memory

either within the emulation system or within the user's

residing
system. Once defined this mapping should become transparent to
the user such that references to a specific address access memory
directly in either area.
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In terms of the two varieties of software defined above, the

system software and the hardware drivers, the system software is

almost surely the bulk of the effort in modern microprocessor based

systems.

For it to be adequately supported in development, the

developer will need to have available a mechanism for providing out-

put from his code prior to integration with system hardware.

output capability actually falls into two categories:

2
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the code which results in a change to data in the system (which may

be observed by emulation techniques) and output which is ex-

plicitly coded into the software (such as that provided by a

WRITE command in a high level language). This latter capability

is far more a convenience than a necessity to the software developer
as ultimately the machine's output will be that of the final system's
hardware. On the other hand, with this capability, one more soft-
ware and hardware effort can be carried out in parallel since

hardware driver software may temporarily be replaced with emulation
output software to allow the system to develop further before hard-

ware is completely developed.

The minimal solution to this need is to provide the user system
a means of output to the emulation system's display. Such output is
immediately observable by the user and thus eminently available
for debug. The complete solution would also allow the user a
means of output to the system's printer and mass storage medium

for permanent storage of user's output.

Carrying the emulation of system output one step farther al-
lows consideration of emulation providing complete system I/O.
Again this increases the possibility of more system software de-
velopment before completion of hardware. Now the system might be
able to fully implement the user interface prior to hardware being
complete. The implementation of "simulated I/0O" is wvaluable to
the user but certainly with the caveat that no I/0 simulation will
exactly duplicate the user's hardware and thus will require spec-
ialized software to be rewritten prior to use with actual I/0
devices. This implies that the communication should be as simple
as possible so as not to require a large software effort to pro-

vide an interim solution.

Easy User Interface

Of course the software developer is very much in need of
sophisticated logic analysis capabilities in debugging all code.
Much of the logic analysis support necessary for software debug
is the same as that which will be required in order for the hard-

ware designers to adequately debug their design. These analysis
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capabilities will be referred to as real analysis since current
technology allows them to be performed in real time and since hard- P
ware development requires analysis up-to-speed. Software developers
require an interface which is easy to use. For them this implies
that the emulation system must speak their language which means
several things. First the developer must be able to reference
memory locations by the names given them in the source programs.
That is to say, using the symbol FIRST-BLOCK which is assigned by

a program to location 1000 hex must be understood by emulation in
the same manner as entering the hex constant. The software de-
veloper may also prefer to refer to a line of interest by the line
number 1in the source listing rather than by a memory address. Both
are examples of the need that emulation speak the developer's
language in its interactions.

This deceptive need for an easy-to-use interface is encountered
throughout computer systems and has neither an accepted nor obvious
solution. Until voice actuated systems come of age, the user will
always be faced with learning how a system wants user inputs. So
the first concern in user interface solutions is ease in learning. S
The second concern is for the user who has learned the system and
now desires that it be convenient for his purposes. To date inter-
faces have taken three distinct forms, namely: 1) Key per function
2) Menu 3) Command language. The key per function interface is a
classical instrumentation approach to the problem. Here the user
selects keys which have dedicated functions in the system. The
oscilloscope is a good example of this approach. It is arguable
that the new user must learn the location of each function but cer-
tainly labelling can decrease this time, and convenience, once
learned, is very great. The limitations of key per function are
associated with physical constraints as the number of functions be-
comes large. Also a design criterion of flexibility is severely
limited since expanded features require physical redesign. The
menu interface approach has several of the advantages of key per
function without the extent of constraints. The learning ease is
still accomplished by displaying to the user the choices available
to him and, similarly, the experienced user is not hampered by any a
lack of convenience in instructing the machine. Here the user may

be assisted by reasonable default menu choices included in the
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system. Ideally the user will be able to use the system in the
"default mode" for many of the more frequent measurements employed.
The menu may share a drawback in common with key per function inter-
faces. That 1is, as choices become large in number, the menu may be-
come cluttered with more information than the user desires. This
has been combatted with more menus and, as features expand, this
software interface approach allows easily implemented changes.
More common in the computer interface world is the idea of command
languages to direct the machine. Typically this approach involves
cost to the beginning user, who must first learn the machine's
language, with the benefit of ease of use and great flexibility to

the experienced user. Here the interface has lost one of the
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Example of oscilloscope's utilization of key per
function user interface.




valuable attributes of the other two approaches, the ability to show
the user the functions available on the system. The user must know
the words, or abbreviations, understood by the system to evoke re-
sponses. Once again, by wutilizing convenient defaults in the

language, the system may make communication more easy for the human
involved.
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Recently Hewlett-Packard has developed a hybrid interface in-
corporating aspects of each of the above interfacing techniques.
This improved interface is fundamentally a command language approach
enhanced to provide the user with information describing both the
capabilities of the system and the words to be used in instructing
it. At the heart of this interface are "soft keys". Used for years
in smart terminal products, a soft key is a keyboard key which has
a redefinable meaning at different voints in the system's operation.
In particular, the software of the system may change the key's
meaning, hence "soft keys". These soft keys are used to display to
the user all command word choices available at any one time in oper-
ation. Now a decided disadvantage to command language interfaces
has been overcome. The soft keys may teach the language of the system

to the new user. Also, because the keys are software controlled,
they may print whole English words at a single keystroke. This makes
possible commands which make better sense to the user ("assemble
FILEA" rather than "RU,ASMB (FILEA)" for example). 1In fact, the soft
keys have been further used to direct the user as to the syntax of
each command. They provide word choices to the user as well as

prompt for data to be entered and even describe its format.
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User interfaces must be judged according to some standard.
' Such a standard may be described by several criterion which should
be listed in order of priority, as trade-offs exist between them.
A good standard for evaluating a system might be:
1) System accuracy, "what you see is what you get"
2) Ease 1in performing frequent operations
3) Convenient for experienced user

4)\Easy for first time user
5) Consistency of system operation

6) The easier the function, the easier it is to perform
7) Meaningful error recovery (words not numbers)
Users will have their own additions, ordering, and ideas regarding
their standards for interfaces. Each 1is as valid as the next and

should be applied to systems uniformly in comparing them.

Real Analysis Capability
Perhaps it goes without saying that the user must be able to
direct analysis to save states (i.e., address, data, and status in-
D formation) which are of interest. The user must be able to qualify
the information stored as to states of interest in terms of their
addresses, data content and status of the processor. For example,
gather all of the states in the address range 100 - 500 hex of data
value nonzero-and status of write. Further the output of the
analysis must again be in the user's language. This involves its
being "disassembled" at a minimum. In the case that the user
coded in a high-level language, the output should relate the user
back to his high-level code. As well as being in words which the
user understands, the analysis output should "look like" the com-
pilation/assembly listing. This implies, in the instance of relocat-
able code, that the addresses be offset by a constant to allow them

to appear as in the unrelocated source listing.

Many implementations attempt to solve these needs. Some sig-
nificant contributions in this area include: the ability to refer
to memory locations by their symbolic name or by source text line

”’ number, offsetting address displays to correspond to unrelocated
compiler/assembly listirgs, providing mnemonic as well as absolute
analysis displays. All are attempts to produce output more closely

related to the software developer's way of understanding data.
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Real analysis for the software user also needs to flag unusual
occurrences, preferably optionally, which may appear in executing
code. Examples of such occurances include showing illegal opcodes

when they occur, breaking the processor's execution, and listing

states leading up to it. The same support is needed for illegal

memory references, such as writes to ROM, or vectoring to undefined

memory spaces. In this same category comes support for observing

states leading up to catastrophic circumstances, such as a slow pro-
cessor clock.
Execution Overview and Performance Monitoring

Another function which emulation should provide the user is
some form of overview of program execution. The software developer
must go through an extensive process in debugging which involves ob-
and

servation of unexpected results, hypothesis as to the cause,

testing to determine the accuracy of the hypothesis. The logic
analyzer is invaluable in the last phase and the emulation capa-

bilities described above go a long ways toward aiding the observa-
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tion of unexpected results; however, the user is left much to his
own insight in formulating a hypothesis as to cause of failure. An
overview of program execution may provide the necessary information
to assist in this area. For example, the knowledge that an unex-
pected code segment is being executed may lead to significantly
faster debug and can be quickly observed by an overview of program

counter values.

Implementations of overview information are wide ranging, from
maps of memory address space showing references to maps showing
states versus time, processor register data overview displays, and
memory data at given locations displayed over time. All of these
functions have then been shown on a sampled or continuous real time

basis and provide different feedback to the user.

A last real analysis need of software developers, that is largely
unaddressed currently, is that of providing functions appropriate to
performance monitoring once the system is regarded as complete. Here
the user needs both real-time information regarding the execution
time of code segments as well as sophisticated post-execution time
data processing to provide in a meaningful format the performance

monitoring information.

Code Patching and Processor Control

Once having analyzed programs under execution, the software de-
veloper needs write access to processor memory allowing patching of
invalid code as well as modifying data values. This is best when
implemented with symbolic referencing and use of assembler mnemonics
when patching instructions. Additional desirable capabilities in-~
clude saving modified copies of memory for later use or further de-

bug.

In the area of processor control, users need to be able to run,
single step, and stop the processor under test. Once the processor
is halted a variety of new information is available which cannot
be obtained otherwise. Namely, once halted, a processor's internal
register values may be included in the state information. Since

such values only appear on buses internal to the processor they
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cannot adequately be emulated in real time by discrete logic without
drastically effecting processor performance. Thus, such information
is only available in non-real time (i.e., when the processor exe-
cution is stopped). To the software user, the ability to analyze
system performance with this added non-real time information may be
more important than executing the code at full speed. When code is
not working at all, it is more critical to be able to find out why
than to restrict its operation to real-time. Then, for software a
new category, non-real analysis,becomes desirable. Such measure-
ments are a logical extension of real analysis to include non-real
state information. The interface is best made to be the same as
that for real analysis. Once made available, the user may now specify
a non-real event (such as the value of register A becoming 7) as a
trigger to allow information to be stored. The user also needs to
be able to update registers and to observe them in an overview

fashion, even at the expense of real-time execution.

HARDWARE DEVELOPERS' EMULATION AND ANALYSIS NEEDS

In Circuit Emulation

Whereas software development may not necessarily need the inter-
face to external hardware to begin development, this is absolutely
necessary to hardware engineers. For them the capability to execute
the phase one, or test, software described above on their hardware
is mandatory. Additionally, two cases exist in this instance. 1In
the first case, the memory destined to be ROM or RAM in the target
system may not be completed, or ready for test, at the time that
another portion of the hardware, say the processor board, is to be
checked out with test software. Here the capability of executing,
with the target processor code which resides in memory outside the
user's system 1is required. In the second case in which target
memory is now available, the emulation system must provide emulation

support for memory inside the user's system.

This need of hardware and software designers has been answered
by emulation systems which provide means for selectively mapping the
address space of the emulated processor to memory physically internal
or external to the emulation system. It is clearly desirable, once

this mapping has been made, to have processor execution occur in
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either physical memory in the same manner and to make it unnecessary
that the user be concerned with which is being used. This trans-
parency of user versus system memory is constrained by the inevit-
able fact that the type of memory in the two systems may have dif-

ferent characteristics.

Timing Analysis of External Data

As was mentioned above, hardware designers are only interested
in analysis of theirsystem at speeds which will ultimately be those
of the completed system. That is, real analysis is the only tool of
interest to themn. The states which this user considers are
slightly expanded over those of the software designer. In addition
to address, data, and status information, the user now desires in-
formation obtained by probing the target system at points of interest
and displaying the logical value of this external data. Because of
the digital nature of the data, this approach satisfies most of the
digital designer's needs. This, together with glitch (multiple tran-
sistions on a line between clock times) detection, may be sufficient
to debug an entire system. Again the hardware designer wants a
system which "talks his language" and, thus, must have displays
formatted in timing diagrams as well as in formats needed by soft-

ware designers.
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This desire on the part of hardware developers to include ex-
ternal data for analysis closely parallels the software developer's
need to have access to register data for analysis. Here, as before,
the external data is a logical extension of the state of the system
as described in terms of address, data, and status information.

Such an extension need not impact user interface to analysis since
more state information is readily enterable and, due to the real
time nature of external data, this analysis extension may be ac-

complished in real time,which is clearly necessary in hardware debug.

Hardware Stimulus Capability

The hardware designer needs not only to observe the user system,
but to provide input to it as well. Certainly the address and data
imformation is user system input and this together with the ability
to provide specific logical stimuli to selected test points in the
target system is necessary for complete hardware debug. In particu-
lar, the user needs the ability to program a hardware stimulus, run

with this input, and analyze the results.

In the past, stimulus to systems under development, as well as
sophisticated logic state analysis, has only been available in in-
struments separate from the emulation system. In order to simplify
both the number of interfaces with which the developer needs to become
familiar and the instrumentation necessary to support development,
it is increasingly desirable to incorporate design support in a
single package. To this end, use of the same probing techniques to
observe as well as perturb the system under test will become very

advantageous.

Support for External Measurements

Lastly, despite all the efforts of emulation and analysis, some
portion of hardware debug will undoubtedly require some external in-

strumentation. The user now needs the ability to use the analysis



to determine some operation of external instruments. Such a com-
munication means needs to be provided to complete the debug. This
means is provided by system outputs which provide TTL level signals
to trigger other instruments based on conditions tested in real time

by sophisticated state analysis available in emulation systems.

EVOLVING NEEDS AND SOLUTIONS

Universal Development Systems

As technology continues to provide an expanding and divers-
ifying line of microprccessors, the developer of processor based
systems 1s faced with the problem of inventing or purchasing tools
to support development. As this occurs, an increasing amount of the
developer's time is spent in learning the capabilities and idio-
syncracies of new development systems. Clearly a need has arisen
for systems which are designed with support of yet to be revealed
microprocessor advancements in mind. In the area of software de-
velopment support, software technology currently admits to the de-
sign of compilers, assemblers, and linkers so as to be very readily
upgraded to support processors with varying instruction sets, ad-
dress spaces, addressing modes, and architectures. Similar fore-
sight in emulation software and hardware architectures allows for
adaptability toc new processors. In emulation software designs,
systems can be constructed in a top-down manner so as to exhibit
processor dependence only at the lowermost, hardware driver level.
This allows handling of new processors with a minimal design impact,
and keeps the user interface to changing target processors familiar
and unchanged. In hardware architecture, the use of general purpose
interfaces to real analysis and memory controlling units allows
hardware emulation support for other processiors without redesign

of anything more than processor control.

Emulation of Multiprocessor Systems

Another area of growing importance is emulation support for the
developer of multiprocessor based systems. To date such a de-
veloper has been asked to work with multiple emulation systems or to
resort to having full emulation control of only one processor at a
time. Emulation systems based on the concept of independent buses

for emulation and host orocessors promise the means for emulating
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multiple processors simultaneously with user control or analysis

of either processor by instructions affecting each processor separ-
ately. As the two or more processors need not contend for a shared
resource, in terms of address or data buses, both may execute at
full speed and real analysis be performed on interactions between

pProcessors.

Maximizing System Utilization

As development systems become more universal design aids, the
need to maximize utilization of this resource becomes increasingly
important. Certainly such systems must admit to multiple users
sharing the same data base. No large scale development effort to-
day consists of a single software developer and, thus, systems to
support software development must admit to use by more than one de-
signer simultaneously. Similarly, such systems must minimize con-
flict between the use of the system for real time emulation for
hardware development and use by software developers. The imple-
mentation, mentioned above, of systems in which the target processor
need not use the host system processor's address and data buses to
operate makes possible the simultaneous use of the system to emulate
a processor and execute system developed software in real time
(using only the target processor buses) and use of the system for
software development (using the system's host processor buses).

This implies that now the hardware developer may debug, with ex-
ternal instrumentation, an emulated system running real time while
the emulation station itself is being used by a software developer

to continue code production.

CONCLUSION

Overall, today's microprocessor based system designer faces an
expanding need for support tools which will not be obsoleted as new
technology continues to become available. Much has been accomplished
toward understanding how to support these needs. Emulation and de-
velopment systems continue to anticipate and be designed with expan-
sion and enhanced features in mind and promise to allow the developer
more freedom in choosing new technology processors without fear of
lagging development support. In short, much has been accomplished in
the field of microprocessor software and hardware development support

and there is equally as much to be accomplished in the future.
()
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MAXIMIZE AVAILABILITY OF YOUR
DATA COMMUNICATION NETWORK

Introduction

The goal of data communication testing is to increase system
availability. End users of a data communications network demand
a certain level of system availability. In many instances, being
able to quickly and accurately test the network is the only way

to provide an adequate level of system availability.

As service industries become more dependent on data communications,
their need for high system availability increases. As an example,
consider the resulting customer frustration and dissatisfaction

if an airline reservation system was "down" for several hours, or
if an automatic bank tz=ller could not communicate with the bank's

main computer.

One national drugstore chain has a large national data communica-
tion network to assure availability of prescription drugs. If any
store has run out of a drug or has need of an uncommon drug, the
drug is delviered within 24 hours. Delivery schedules and inven-
tory management at the warehouses are controlled via two large

mainframe computers in California and Mich:igan.

The use of computers by manufacturing companies for inventory
control is another area that is becoming increasingly dependent

on data communications. Managers must be able to control inven-
tory and schedule in Real Time in order to reduce costs and improve

delivery time.

A major semiconductor company uses a worldwide network to improve
delivery times and manage inventories and production schedules.

Sales orders are collected at a central location in Europe and



transmitted to the United States over a wideband channel to the
central computer site in Santa Clara County, California. Domestic
orders are.also transmitted in Real Time to Santa Clara over an
extensive network. The computer processes the orders, adjusts
manufacturing schedules, prepares shipping information, invoices
and acknowledgements. Much of this information is sent to the
manufacturing facilities in the Far East over a wideband channel.
This very elaborate network gives a competitive advantage to this

firm by lowering inventory costs and speeding delivery.

As these and other applications become more critical to the way
companies do business, there is an increased need for high system
availibility. Many companies now require system availability at
98% or better.

System Responsiblity

Responsibility for maintaining a data communications system in a
multi-vendor environment remains with the Data Communications
Manager and not the vendors. The vendor can repair the equipment,
but the vendor cannot be responsible for pinpointing the system
component that is not functioning properly. Only the Data Communi-
cations Manager knows how each component of the system relates

to the entire system. The Data Communications Manager is respon-
sible for isolating network problems to the system component level.
Once this is done, the appropriate vendor can be called to fix the

problem.

Vendors expect the Data Communications Manager to find the faulty
system component. Most vendors charge about $50 per hour for a
service call, whether or not the vendor's equipment is faulty.
Many carriers charge extra for service calls when there is not a

carrier problem.



Survey of Data Communication Managers

Hewlett-Packard has completed a survey of 50 Data Communications
Managers. The survey ascertained how the ability to test a data

communication network increased system availability.

One finding of this survey is that each network has unique main-
tenance problems. Networks are different, testing philosophies
are different, vendor's maintenance capabilities are different.
Even the same vendor has varying abilities to maintain system
components at different locations in the country. Some Data
Communications Managers claim that their carriers MTTR (Mean Time
To Repair) 1s about one hour. Others complain that it takes two
or three days, on the average, for the carriers to return their
lines to a serviceable condition; some examples were given where

it took the carrier weeks to restore service.

A second finding is that there is an extremely high correlation
between maximum system availability and the amount of test equip-
ment owned. In fact, on all networks that had 98% availability,

test equipment is used to maintain the network.

An interesting sidelight is that a return on investment analysis
is seldom used to just:fy purchase of test equipment. There is
generally no attempt made to quantify end-user dissatisfaction

or loss of revenue when the system is down and use that number

to justify the expense of test equipment. The justification for
the purchase of test ecuipment is that end users expect or require
a certain level of system availability. 1In order to achieve a
high level of system availability, the Data Communication Manager

needs test equipment.



Survey Results

1.

The most important way testing capal-iiity increases system
availability is to positively isolate faulty system components.
Calling a vendor in to fix equipment that is working properly
wastes a significant amount of time. Most vendors are able to
restore equipment and service in four to eight hours.

The following is a hypothetical example of the problem;éalling

the wrong vendor first:

Example
Day 1
10:00 a.m.: A user complains his terminal is .0t working.
10:15 a.m. The carrier is called to check the line.
11:30 a.m.: The carrier calls back, "No trcuble found".
11:45 a.m.: The modem manufacturer is called.
Day 2
10:00 a.m.: The modem repair person arrives, verifies
that the modems are working properly and leaves
a bill for $100.
11:00 a.m.: The host computer service engineer is called.
1:00 p.m.: Computer service engineer arrives, makes some
tests, and says the computer is working properly.
2:00 p.m.: The terminal vendor is called to test the remote
terminal.
Day 3
10:00 a.m.: The terminal repair technician arrives, finds a
problem in the terminal and makes the repair.
11:30 a.m.: The system is up and working properly.

Since in many networks, the mainframe computer, modem, line,
and terminal vendors are all different, simply guessing which

vendor to call will decrease system availability. By looking



at the symptoms of a problem and using common sense, the Data
Communication Manager can find the faulty system component
better than 50 percent of the time. Having testing capability
improves the accuracy of troubleshooting. One Data Communica-
tion Manager with some test equipment could isolate the correct
vendor 90% of the time. This was insufficient to provide
adequate service and he was planning to upgrade his testing
capability so he could find the problem the first time 95% of

the time.

Several of the Data Communication Managers surveyed felt that
it was necessary to be able to isolate the faulty system com-
ponent the first time at least 95% of the time to maintain

system availability at 98% or better.

The most difficult problems to find are intermittent failures.
By the time the vencor repairman arrives’, the problem goes
away. The best way to find intermittent problems is to have
test equipment on site at all times so when the problems occur
they can be found immediately. Otherwise, these annoying
intermittent problers can go on indefinitely and are a major

factor in determining system availability.

Many Data Communication Managers feel it is necessary to have
control of their network in order to provide adequate system
availability. With no testing capability, the Data Communi-
cation Manager is not in control but is at the mercy of his
vendors. The vendor's competency, honesty, and work ethic
determine system availability, not the Data Communication
Manager. For example, a number of Data Communication Managers
thoroughly test new lines immediately after the carrier has
brought them up. Usually, one line in ten does not fully
meet specifications. By testing new lines, the Data Communi-
cation Manager is in control of the network and is not dependent

on the carrier.



Starting up new applications and installing new equipment
always has problems. Having the capability to completely

test lines, modems, terminals and software individually,
shortens the start-up time. Systematically testing the new
line, then the line and the modems followed by the line, modems
and terminal, and finally, the line, modems, terminal and
software, is an orderly approach to installation which can

decrease installation time and startup problems.

Also at the time of installation, the test results of the
digital and analog links are recorded. These measurements
serve as a benchmark for future testing needs. For example,
when an end user reports a problem, quick and simple loop-
around tests can be made and compared to the original test
results. Often, this will quickly point to the faulty network

component.

The technicians who install modems and terminals of the San
Francisco Bay Area divisions of Hewlett-~Packard carry with

them an HP 4944A Transmission Impairment Measuring Set for
testing the line and an HP 1640A Serial Data Analyzer for
testing the modem and terminal. They are able to quickly
isolate problems when they occur and, thereby, maximize the

use of their time and travel, as well as speed up the installa-

tion time.

Perhaps the most difficult and uncomfortable problem a Data
Communication Manager has is fingerpointing squabbles among
vendors. Fingerpointing is also very costly in lost system
availability. Fingerpointing problems may last several days

or even weeks.

P
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One company in Oregon had a problem with a link going to a
remote site in California. The carrier was called to check

the line. The next day, the carrier tested the line and
reported "no trouble found"” On the third day, a modem repair-
man was flown to the remote site at the expense of the Oregon-
based company. The modem repairman did some extensive testing
on the modem and concluded the modem was working properly.

The fourth day was spent negotiating with the carrier to retest
the line., Finally, on the fifth day, the carrier did some more
complete testing and found that frequencies around 2200 Hz were
severely attenuated. The signaling frequency of the modem was
2200 Hz. A day later, service was restored to the remote site.
This company periodically has problems of this nature gnd has
just recently upgraded its analog testing capability to mini~-
mize these problems in the future.

These costly outages are minimized or eliminated if the Data
Communication Managasr can positively ideptify the problem in
the first place. Tais is another example of how a Data

Communication Manager profits by being in control of the network.

Analog testing can improve the carrier's mean-time-to-repair.
When the Data Communication Manager is able to consistently
and accurately isolate the line problem, his credibility and
reputation with the carrier improves. When a manager calls

in a trouble report, the carrier will not be prone to "finger-

pointing” and the carrier technicians immediately go to work.

Usually, when a trouble call comes into the carrier, the first
testing that is done is a simple continﬁity, level and noise
test between central. offices. If the line passes these tests
then the carrier reports "no trouble found". If the customer
still reports trouble, then more sophisticated testing is done.
But if the Data Communication Manager can identify a specific
problem, such as "20 degrees of phase jitter", the carrier
technician might test phase jitter first, which may save hours

of down time.



If preliminary testing from central office to central office —~
does not uncover the problem, the carrier typically will

dispatch a technician for on-site testing. Data Communication
Managers are expediting this procedure by doing the on-site

testing with the carrier and eliminating the need for the

several-hour wait for a technician to arrive.

Many Data Communication Managers are able to develop a team
relationship with the carrier as opposed to an adversary
relationship. Since they have the ability to make measurements,
they can talk to the carrier in his own language. Carriers

are becoming much more open about the way they operate, even

to offering visits to carrier facilities. Also, many Data
Communication Managers go out of their way to develop friend-

ships with Carrier Technicians. These three things

1) Being able to test as well as the carriers,

2) Being able to understand the problems and
workings of the carrier,

3) Developing personal relationships

engender a feeling of teamwork and mutual trust and respect.
When the team spirit is accomplished, great improvements in
mean time to repair occur. In fact, several Data Communication
Managers strongly feel that this cooperation is by far

the most important factor in maintaining a high system avail-

ability.

In spite of good relationships with vendors, sometimes it is
necessary to escalate the problem to a higher level of manage-
ment. Even though this is the last resort for the Data
Communications Manager, it may be necessary to get proper

service. To get proper service from a vendor, 2 Data



Communications Manager may ask the upper-level management to
’ call the upper-level management of the vendor. Before the
upper-level manager calls the vendor, he wants to be absolutely
certain the vendor is at fault. Adequate testing capability
gives the data communication manager the assurance needed to

begin the escalation procedure.

8. One way to prevent down time is to catch the problem before
it impairs communications. Routine maintenance testing can
spot a degrading line or modem. When a system component is
found to be deteriorating, it can be fixed at a convenient
time to minimize disruption to the end user. Routine main-
tenance testing is used by Data Communication Managers to
derive the maximum availability out of their data communication

network.

m CONCLUSION

The way companies do business is changing; they are using data
communications to improve service and better manage resources.

As data communication becomes increasingly important to the
performance of the company, system availability becomes increas-
ingly important. A survey of Data Communication Managers indicates
that the use of data comrunication test equipment significantly

increases system availab:ility.
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4. Three Domains of Data
Communication Testing.
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NETWORK ANALYSIS
UTILIZING PROTOCOL, DIGITAL, AND ANALOG TESTING

Introduction

Protocol, digital, anc¢ analog testing all work together to help

a Datacom Network Manager maximize the availability of his network.
Each of these testing techniques has its strengths which enable

it to isolate certain types of faults, but the real value comes

in using all three of them together to be able to quickly and
efficiently isolate network problems. Protocol testing is testing
on the EIA (Electronic Industry Association) digital interface.

Its prime characteristic is that the information content of messages
and protocol control characters 1s retained and analyzed. Digital
testing also tests on the EIA digital interface, but it involves
qguantitive tests of error rate or distortion using a Pseudo Random
Bit Sequence (PRBS). It is typically referred to as Bit Error Rate
Testing (BERT). Analog testing is performed on the analog telephone
circuit typically provided by the telephone company. It involves
the characterization of channel parameters that measure how well’

a modem should transmit over that channel.

The general attributes of each of these testing techniques needs

to be understood before examples of using them together can be
discussed. First, protocol testing is probably the most common
testing technique. Protocol test instruments vary significantly

in terms of price, capability, flexibility and ease of use. Pro-
tocol analyzers start at about $3,000 and extend up to about $25,000.
All units have the ability to monitor data information on a channel
without interrupting tae data flow. In addition, the more expensive
units have abilities to simulate system corponents in the network

to other system componzants and to make performance measurements

such as response time and percentage of blocks having to be re-
transmitted. These can be very useful in tringing up new system

components or troublesnooting more sophisticated problems. The



strengths of protocol analyzers are their ability to monitor the
traffic on an operating data communications channel and to analyze
the information traveling between two logical devices (computer
and a terminal). This allows a technical control operator to look

at a channel when a user reports a problem.

By being able to look at the problem in Real Time, often the situ-
ation can be quickly analyzed and corrective action taken. The
weaknesses of the protocol analyzers are that most of them are not
as portable as one would like, they are somewhat confusing to use
if they are not operated regularly, and they can be expensive if

the more sophisticated units are needed.

Digital testers or BERT testers are strong where protocol analyzers
are weak. They are less expensive with some units available for
under $500 and the more expensive units costing about $4,000. The
more expensive units offer additional features. They can include

a breakout box, and the capability of making EIA digital interface
timing measurements. They can also include longer PRBSs that test -
for pattern sensitivity of modems. Some of the more expensive
units will make simultaneous measurements of several parameters

to show whether errors are occurring in Bursts, are due to a clock
timing problem, or are biased indicating a possible modem thresh-
0ld problem. The strengths of BERT instruments are that they are
inexpensive, they are portable, very easy to use and give a single,
quantitative number for a measurement result. It is possible with
a BERT instrument to talk an inexperienced operator through the
operation over a telephone. The weakness of BERT testing is

that it is normally a static test. It does not excercise the EIA
digital interface leads or turn the datacommunications channel
around in half duplex operation. When used by itself, it is
difficult to isolate modem problems from line problems. Also, it

is an intrusive test which involves taking a channel out of service.



Analog testing addresses only one component of the datacommunica-
tions network - the telephone line. But since this is such an
important building block for the network, it can merit such focus.
Analog test instruments vary in price from about $1,000 to more
than $10,000, with the major difference being how many analog
channel parameters are measured. A general rule is the faster a
network is trying to transmit data, the more analog parameters
that must be measured to assure reliable operation. The strengths
of an analog instrument are its ability to unambiguously identify
a faulty telephone line and the probable channel parameter which
is at fault. This can improve the telephone company's restoration
time. The weakness of analog testing is thet the analog parameters
are difficult for many network personnel to understand, since they
operate in a primarily digital environment. To some network
personnel, the instruments are confusing to use, probably due to
the basic confusion over the parameters themselves. This can be
minimized by using instruments which have Master/Slave capability
(the ability for an ins—zrument at a central site with a skilled
operator to automatically control an instrument at a remote site
where personnel may be less skilled). Finally, the more complete
instruments which measure most of the channel parameters are rather

expensive {(more than $7000) and are less portable than desired.

When a Network Manager combines instruments from these three domains
of data communications testing (analog, digital and protocol), and
adds circuit access patching, he has created a technical control
center. Such a center is the key element in keeping network
availability high. Just establishing a technical control center
will not magically do thtis. The center must be efficiently operated
to obtain maximum benefit from the test equipment. When the equip-
ment benefits are maximized, network downtime is minimized. How
does the Network Manager maximize the benefi: from test equipment?
When should measurements be made? What measurements should be

made? How should the results be interpreted? These are areas

on which this paper will focus.



Three Phases of Testing

To obtain full benefit from a well-equipped technical control

center (one that has instruments capable of making measurements

in all three domains of data communication testing), specific
testing phases and testing methods need to be identified. Three
such phases are commissioning, troubleshooting, and preventive
maintenance. Commissioning testing is done after the analog

circuit has been turned over by the Telephone Company, but before

it is merged into the network. It also includes incoming inspection
of other on-line equipment. This is the Network Manager's oppor-
tunity to use his test equipment to evaluate the analog circuit

and equipment for himself and to insure that they meet all tariffs
and specifications. Once all of the equipment is assembled, a
benchmark or "fingerprint" of each layer of the datacommunications
channel is made. The troubleshooting test phase is done under high
pressure. Part of the network is down and the prime objective is to
restore as much of the network as possible, to isolate the faulty
network component, and to get that component repaired. The preventive
maintenance test phase can be time well invested. Every element

in the network can be periodically checked, under controlled con-
ditions, to insure it meets all network specifications and tariffs.
If network personnel can spot a potential problem before it occurs,

they can keep network availability high.

By putting these three test phases together, the Network Manager
creates a combined test concept. Commissioning tests the network
from the inside out, network component by component, starting with
the analog circuit. Each successive network component is then
added to a proven, solid block until the data channel is assembled.
This prevents the network from being built on weak links. Trouble-
shooting proceeds in the opposite direction, that is outside in.
Network components are tested and eliminated from the suspect list,
starting with the FEP (Front End Processor) and terminals and then
moving in toward the analog circuit. This testing method starts

with quick tests and proceeds to the more thorough and time-consuming



ones. Preventive maintenance is really a repeat of commissioning
testing on the installed equipment and, therefore, starts the inside
out cycle again. To keep all of the test cdata organized, a good
record-keeping system must be established and maintained at the
technical control center. Organized on a datacommunications

channel basis, these records form the backbone of the combined

concept.

Initially, a 3002 grade, point-to-point, private line will be
considered. See Figure 1. After looking at the three testing
phases in this basic s:ituation, special applications to different
network architectures involving multipoint, DDD, DDS and multi-

plexers will be discussed.

FEP MODEM 820 |~ 829 MODEM|— TERM

Figure 1. A simple data channel.

Commissioning Testing

Commissioning testing is the Network Manager's opportunity to
analyze an analog circuit and the on-line equipment before the
circuit is integrated to the network. The objectives of commis-
sioning testing are threefold. First, the Network Manager has
the opportunity to measure and record all of the analog circuit
parameters, end-to-end. By doing so, the circuit can be compared
to the applicable tariffs to insure that the circuit meets the
specifications which have been ordered. Second, loop-around
measurements can be made. Although the loopback measurements are
not subject to tariffs, they provide an excellent benchmark or
"fingerprint"” of the cizcuit. This fingerprint can be very useful
in tracking down future analog circuit problems. Third, complete
diagnostic tests on the equipment can be run to insure all equip-

ment is operating and has the proper options installed.



Since the tariff checking portion of commissioning testing must —_
be done end-to-end (this is how the tariff is written), equipment
capable of making the required measurements must be at each end

of the circuit. This equipment should include an analog test set
and a digital test set (BERT). Some analog test sets offer a

Master/Slave capability which allows the personnel at the central
site unit to control the measurements and to collect the data from
the remote site as well as the central site. See Figure 2. Access
to the analog circuit can either be made at the analog patch field
or the Bell DAS 829 Channel Interface Unit or equivalent. The
standard test tone is 1004 Hz at 0dBm power levell. The following

measurements should be made on each circulit and recorded for future

reference:
® Received level of test tone
® Bandwidth (Attenuation Distortion)
® C-Message Noise
® C-Notched Noise (or signal-to-noise ratio)
e Impulse Noise -
® Envelope Delay Distortion

® P/AR

and if the data rate is greater than 2400 bps:
® Phase Jitter

Non-linear Distortion

Gain Hits

Phase Hits

Drop-Outs

829 VM 829

ANALOG ANALOG
TEST SET TEST SET

Figure 2. End-to-end testing using Analog test sets .



ED Although the P/AR (Peak to Average Ratio) is a non-tariffed

parameter, it is a good quick quantitive ficure of merit for both

bandwidth and envelope delay. Typical P/AR numbers for lines are:

Basic 3002 Circuit >45 P/AK Units
Cl Conditioning 748 P/AER Units
C2 Conditioning >78 P/AER Units
C3 Conditioning 787 P/AR Units
C4 Conditioning >95 P/AR Units

D Conditioning has a minimal effect on P/AR values.

lA companion to this paper is "Analog Testing and its Benefits

to the Data Communications Manager" by Donald A. Dresch and

Thomas R. Graham. Analog measurement techniques are expanded
here.

All of the transmission objectives for these measurements are
available in Bell System Technical Reference, PUB 41004. More
detailed information on making analog measurements is available
in Bell System Technical Reference, PUB 41008, PUB 41009, and

I» operating manuals for the various analog test equipment.

Looping the analog portion of a 4-wire 3002 circuit can be done

in several ways. Since, in this case, the circuit is a non-multi-
drop, the easiest method would be to loop the circuit at the

channel interface, normally a Bell 829. The 829 can be looped
remotely by applying a 2713 Hz tone on the line for 5 seconds,

then removing it. The 829 will put a 16dB cain amplifier into the
loop to keep the signal at its appropriate cata level. The following
analog loopback measuremnents should be made and results recorded

for future use:

Received level of test tone
Bandwidth (Attenaiation Distortion)
Noise

Signal-to-Noise Ratio

Envelope Delay Distortion

P/AR



See Figure 3.

829 ] - 829 j

ANALOG
TEST SET

Figure 3. Testing the Analog line in a loop around configuration using Analog test
equipment. This is a “‘Fingerprint’’ test.

To release the loopback on the 829, the 2713 Hz tone should be
applied for two seconds, then removed. The operator can confirm
the loopback is released by measuring a loop-around loss greater
than 35dB.

A few words of caution are appropriate here. First, the measure-
ments made in the loopback configuration, though not subject to
tariffs, are extremely useful for troubleshooting. They provide

a quick check of the analog circuit that can be made easily when
trouble occurs on the channel. By knowing what the loopback
measurements were at the time of commissioning, a reference point
is established. Similar measurements made during a trouble call
can indicate the source of the problem quickly. Second, many of
the loopback measurements will not be the linear sum of the end-
to-end measurements. Some add nonlinearly, like noise, for example.
Others may cancel completely, such as phase jitter, if the circuits
are routed through the same facility. Again, it must be emphasized
that at the time of commissioning, the telephone company should be
called only if the end-to-end parameters are out of specification.
Once the analog tests on the line have been completed, the first
block of the data communications channel is proven and established.

It is time to proceed outward and look at the modems.



If possible, the modems should be pre-tested and "burned-in" before
installation. This is essential if the far end of the intended
circuit is not close to a service facility. This test is akin to
incoming inspection; the Network Manager should get the quality

for which he is paying. A good test is to run a 24-hour BERT test
on the modems in the analog loop configuration. This allows the
modem transmitter to talk to the receiver. A zero error count is

the goal in this test. If the manager desiress to set a less
stringent count as the ¢oal, then the modems with better performances
should be sent to the remote sites. It will be easier to substitute

modems at the central site as opposed to the remote site.

At installation, the modlems are added to the tested analog circuit
and end-to-end BERT tests performed. See Figure 4. This test
should be done over a fifteen-minute period. The results should

be recorded. Next, place the remote modem in digital loopback

and perform a loop-arourd BERT from the central site. See Figure 5.
This is another line firgerprint. Digital loopback on the modem
connects the received data to the transmit data. This loop-around

test is a good measure cf performance for the modem-line combination.

MODEM 829 "1 829 MODEM

BERT BERT

Figure 4. End-to-end BERT test.



MODEM 829 1 4 829 MODEMj

BERT

Figure 5. Loopback BERT test with the modem in digital loopback. This is a
“Fingerprint” test.

A typical minimum acceptable BERT for both of these tests is one
error in 10° bits transmitted or zero errors in fifteen minutes.

Experience with particular modems may require even different limits.

The prime reason for making each of these loopback tests is to

establish a benchmark or "fingerprint" for each circuit. Knowing —
the loopback circuit parameters at the time of commissioning

(assuming the line meets tariffs) gives a basis for comparison

when similar measurements are made during troubleshooting. Notice

that the fingerprint is used only in comparison which is a relative

term. The objective is to see if anything has changed, and if so,

what.

The terminals and FEP (if new) are the final items to be added to

the datacommunications channel. Again, pretesting of the individual
units should be done, if logistics permit. To perform the terminal
pretest, a protocol analyzer with simulate capabilities is required.
These are the more expensive models, but worth the money spent in
this application. The objective of the terminal pretest is to

insure the device is configured with the proper options and functions
as desired when stimulated with the protocol in use. The protocol

analyzer is programmed to simulate the FEP.

- 10 -



The final installation step is attaching the terminal and FEP to
their respective modems and exercising the terminal. This, of
course, should be done before installation people leave the remote
site. If one of the network components 1is not ready to come on
line (terminal or FEP), the protocol analyzer should be used to

simulate the missing component.

The final step has now been completed. The channel has been
assembled, tested and fingerprinted from the inside out. All
installation data has been acquired and recorded for future
reference. The network is brought up and running smoothly until

a trouble call comes in. It is now troubleshooting time.

Troubleshooting

The troubleshooting phase is done under high pressure. Part of the
network is down and it is the responsibility of the Network Manager
to restore the network as quickly as possible. With data communi-
cation networks constantly growing and the supply of qualified data
technicians decreasing, the Network Manager should rely on good
test equipment and well-documented troubleshooting procedures.
Troubleshooting testing begins on the outside of the network and
moves in toward the analog telephone circuit.

Upon notification of a network problem, be it either through a
phone call or an indication frcm the TP (Telecommunications
Processor) monitor, network personnel patch a protocol analyzer
onto the datacommunications channel. See Figure 6. Key items to
analyze are polls and responses. If transmit data is badly garbled,
or non-existent, the problem is toward the FEP. Network personnel
should be sure that the terminal in question is still in the polling
sequence. If the receive data is badly garbled or non-existent,

the problem is toward the terminal. If the terminal is not res-
ponding to the poll, network personnel should swap in a spare

modem at the central site. This will identify and eliminate

central site modem problems quickly and easily. Now that the

- 11 -



FEP MODEM 820 ] 829 MODEM}— TERM

PROTOCOL
ANALYZER

Figure 6. Monitoring the data channel using the protocal analyzer.

computer, FEP and central site modem are known to be good, the

next step is to move in one layer in the troubleshooting scheme

and check the line-modem combination using digital test equipment.
To do this, the remote end modem is placed in digital loopback.

The loop-around BERT test is performed from the central site.

See Figure 7. The results are then compared with the channel's -
fingerprint. If the BERT test compares favorably, then the termipal
is suspect. If the BERT test is bad, then the remote site 829
should be placed in loopback and another BERT test run. See

Figure 8. A successful test indicates remote site modem problems.
So far, the higher two layers of the channel have been tested.

If poor results are still obtained, then analog loopback tests
should be performed on the telephone circuit. See Figure 9. If

the analog loopback measurements show that the analog circuit has
poorer circuit characteristics than when it was commissioned, then
the telephone circuit is probably at fault. If the loopback analog
measurements show no change in the telephone circuit, then the

remote modem is most likely at fault.

- 12 -
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BERT

Figure 7. Loopback BERT test with the modem in digital loopback. This test
isolates the terminal.

MODEM 829 1 — 829 j

BERT

Figure 8. The BERT test with the remote ClU in loopback mode, used to isolate
a faulty modem during troubleshooting.

829 1 829

ANALOG
TEST SET

Figure 9. The final troubleshooting test is running the analog ‘“Fingerprint’’ test.

- 13 -




Preventive Malintenance

The preventive maintenance phase gives the Network Manager an
opportunity to identify marginal data channels before an outage

on that channel occurs. A marginal channel may be the reason
behind slow response time and decreased throughput. By doing
regular preventative maintenance, a good rapport with the telephone
company can be established. When telephone company personnel see
network personnel willing to devote time, money, and equipment in
preventive maintenance, both parties gain confidence in the other's

ability to make accurate measurements.

What is the preventive maintenance phase? It is really the
commissioning phase all over again. If network time and personnel
availability permits, complete end-to-end testing should be done,
making all applicable measurements for the data rate in use. The
Master/Slave capability on the analog test sets can decrease the
trained personnel requirements and greatly speed the data collec-
tion as can calculator or computer-controlled measurement systems.
If end-to-end tests are not possible, then loopback tests are
acceptable. 1If time is critical, network personnel should make

at least: 1) received level at 1004 Hz, 404 Hz and 2804 Hz,

2) C-message noise, 3) signal-to-noise ratio and 4) P/AR. If time
permits or an automatic data collection system is used, then the
complete set of measurements should be made. Finally, the transient
measurements of impulse noise, phase hits, gain hits and dropouts
should be made. These are time-consuming tests (5 or 15 minutes).
The loopback fingerprint sequence should be run to check for any
variation from the original fingerprint. The BERT test should

also be included in this sequence. All results should be recorded.
As can be seen, one of the keys to this troubleshooting scheme is

the fingerprint. For a network that is currently operating, and

commissioning tests were not made, there are two alternatives for

- 14 -



fingerprinting the network. The first is to assume that since all
lines are operating, they are, by definition, good and a benchmark
fingerprint can be taken. The second is to go through all of the
commissioning tests to insure the integrity of all network com-
ponents and then fingerprint the network. Obviously, the second
method is more comprehensive but takes more network time and is

more expensive.

Record Keeping

So far, many references have been made to recording readings, but
where are these to be recorded? What should be in the circuit
records? What format should be used? The Network Manager must
answer all of these questions. One possible method of record
keeping uses a looseleaf notebook. It can be organized by user
terminal or remote modem. Each entry should include such things
as:

e Make, model and location of all equipment on the
channel
Telephone numbers of vendors for service
Circuit routings
Telephone Company designators for lines
FEP Port
Polling address

Location of circuits on patch panels

Immediately following this identification information should be

the current channel fingerprint followed by the commissioning and
preventive maintenance data. Fach measurement session should have
its own circuit record card, similar to that in Figure 10. Finally,
there should be a chanriel history section where all problems that
have occurred on that particular channel are recorded. This
information can be valvable in tracking down long-term or periodic

problems.
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CIRCUIT DESCRIPTION

TIMS TEST NO.
TRANSMISSION LINE

TEST DATE
PARAMETER RECORD
REASON FOR TEST
FROM 10 FROM T0
1. LEVEL & CONNECTION 1. LEVEL & CONNECTION
VERIFICATION VERIFICATION

1000 HZ RCV ___ DM 60 HZ FILTER 1000 HZ RCV R ): 1Y 60 HZ FILTER
TRMT TLP (FROM SIDE) FREQ SHIFT TRMT TLP (FROM SIDE) FREQ SHIFT

RCV TLP (TO SIDE)

RCV TLP (TO SIDE)

2. LOSS DB 2. LOSS DB
3. P/AR ——UNITS 3. P/AR — _ UNITS
4. NOISE C MSG 3 KHZ 4. NOISE C MSG 3 KHZ
MSSG CRCT __  DPBRN ____ DBRN DESCRIBE NOISE MSSG CRCT _ DBRN ___ DBRN DESCRIBE NOISE
WITH TONE ______ DBRN ____ DBRN WITH TONE DBRN DBRN
S/N RATIO — DB =] S/N RATIO DB DB
TO GROUND —  DBRN ______ DBRN TO GROUND DBRN DBRN
5. PHASE JITTER 5. PHASE JITTER
6. NONLINEAR DSTRTN 2 ND 3 RD 6. NONLINEAR DSTRTN 2 ND 3 RD
TEST DB DB TEST DB DB
CHECK DB DB CHECK DB DB
CORRECTED DB DB CORRECTED DB DB
7. LEVEL/FREQUENCY 8. ENVELOPE DELAY 7. LEVEL/FREQUENCY 8. ENVELOPE DELAY
300 — DB 2000 DB 500 uS [2000 — S 300 DB 2000 DB 500 — 4S8 |2000 — S
500 — DB | 2200 — DB 600 uS | 2200 — S 500 DB |2200 —_____ DB 600 4S8 | 2200 uS
600 — DB |2400 — DB 800 uS | 2400 —— S 600 DB 2400 — DB 800 —  uS [ 2400 — S
800 DB |2500 DB 1000 uS | 2500 — S 800 — DB [2500 DB 1000 — 8 | 2500 xS
1000 DB |2600 DB 1200 uS | 2600 — 1S 1000 DB (2600 DB 1200 — 4S5 2600 — uS
1200 ————_DB (2700 — DB 1400 uS [ 2700 ———— S 1200 DB |2700 DB 1400 a8 | 2700 — «S
1400 — DB | 2800 — DB 1600 uS [ 2800 — 1S 1400 DB (2800 — DB 1600  __uS | 2800 —  uS
1600 DB |3000 DB 1800 uS {3000 — S 1600 DB (3000 DB 1800 w5 |3000 —_ «S
1800 DB |3200 DB 1800 DB (3200 DB
9. IMPULSE NOISE, — DBRN LO COUNTS 9. IMPULSE NOISE, __ DBRN LO COUNTS
PHASE HITS, GAIN +4DB MID COUNTS PHASE HITS, GAIN +4DB MID COUNTS
HITS, DROP OUTS -8DB Ht COUNTS HITS, DROP OUTS 1 8DB HI COUNTS
(BELL STD., C MSG) (BELL STD., C MSG)
PHASE HITS PHASE HITS
DROP OUTS DROP QUTS
CNT TIME ——DB GAIN HITS CNT TIME DB GAIN HITS
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A second method of record keeping is a logical extension of the

D first. Since the data communications center is generally co-located
with a large computer, the computer could maintain the records.
This is a natural application for data-~base management programs.
Everything from troublz ticket generation to vendor response time
evaluation is availablz using this type of record-keeping system.

There is virtually no limit as to what can be done.

Multipoint

Up to this point, discission and examples have been limited to
networks having only 4~-wire private line (3002), point-to-point,
datacommunications channels. Maintaining a network with other
types of channels will require some changes in the techniques

already discussed.

The multipoint data communications channel is often used to help
reduce data communications network expenses. In the process of
reducing the network expenses though, the Network Manager has

ID increased the maintenance problems of the network. First of all,
the severity of an individual failure is increased. For instance,
with a streaming termiral, it is possible for one user's failure
to be felt by everyone who shares that circuit with him. In cases
such as this, the netwcrk maintenance personnel must begin to
troubleshoot the problem without even knowing on which remote

station they should be focusing.

Commissioning testing should be stressed even more in multipoint
situations than in point-to-point situations. Later, troubleshooting
will be based on the process of elimination and inference from the
problem symptoms. The more solid the network is at commissioning,
the less likely it is to fail later and, also, the less likely it

is that there will be the complex problem situation where two mar-

ginal situations are irteracting with one another.
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One of the big differences from the analog testing standpoint is
that the network operator can no longer use loopback testing.

This was a critical measurement in point-to-point channels. It
enabled network personnel to positively identify situations due

to telephore line problems. If the network operator were to place
a 2713 Hz tone on the multipoint analog line, he would activate
multiple remote loopbacks making any loopback measurement meaning-
less. Even worse, he might activate only some, but not all, of
the loopbacks. Now when he alternates back and forth with appli-
cations of 2713 Hz, he will always have some interface channel

units looped back. Therefore, a firm rule is do not use 2713 Hz

activation of remote loopback on multipoint circuits.

The Network Manager should try to maintain circuit record cards

on all of his multipoint circuits which show the telephone company's
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Figure 11. Multipoint communication circuits.
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routing for his circuit. In most cases, the telephone company
b can be convinced to give the Network Manager that information.
This allows a network operator to infer a line problem from a
situation's symptoms; for example, in the multipoint circuit

shown in Figure 11.

Failure of terminals in Philadelphia and Washington to respond to
a poll would fit the symptoms of a New York to Philadelphia line
problem. However, failure of terminals in New York and Washington
to respond to a poll would not fit a line problem for a circuit

routed this way.

In the example just discussed, the network operator is using some
additional information that he did not use in the point-to-point
situation. He used cirxcuit routing, who is having problems, and
who is not having problems to help him reason a problem through.
He must use this extra information to compensate for his inability

to make loopback tests.

Remote (secondary) modem problems should always show up as a single
station being out of service. Remote terminal problems should show
up either as only one terminal having problems or all terminals
having problems (streaming terminal). Analog circuit problems will
tend to take groups of terminals out of service, either all upstream
or downstream from the problem, depending on whether the problem

is on the transmit or receive side of the line.

If the symptoms of the problem do not allow the problem to be
resolved with any certainty and if protocol monitoring (using the
techniques discussed in the basic point-to-point instruction) does
not provide any further information, the critical test will be a
loopback BERT test to each secondary modem. This is an intrusive

test and requires that the network operator has equipped all of

= Computer

L. Museum
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his modems with analog and digital loopback. To run this test,
all remote modems need to be quieted (place them all in analog
loopback). Then each remote modem is placed, in turn, in digital
loopback for a 10-15 second BERT. If a station shows errors and
stations located beyond it (as referred to actual circuit routing)
are not showing errors, then the remote modem is likely at fault.
If all stations beyond a certain point on a circuit station show
errors, then the circuit is likely at fault. If the station is
showing errors and it is the last station on the line, then a
modem self-test will have to be used to isolate a modem problem
from a circuit problem. If all stations are in error, then it is
either the primary modem or the circuit leg to the primary modem
which is at fault. This can be resolved by utilizing the same
technique that was used to identify a defective central site

modem in point-to-point networks (spare modem substitution).

Direct Distance Dial (DDD)

Still another arrangement often used in a datacom system is the
use of the DDD network. This is the everyday telephone system
that people use to talk to one another. Networks using this type
of architecture gain flexibility in talking to many stations for
short periods of time very economically. However, in this type

of network, maintenance procedures need to be changed. The main
differences are that the telephone line is no longer a full duplex,
4-wire circuit that can be looped back for testing,and that
generally every time a new call is placed to the remote station,

a new circuit will be assigned to complete the call. Each of

these differences will be analyzed separately.

First, DDD circuits are 2-wire circuits and generally half duplex
(the recent 2-wire, 1200 bps, full duplex modems are an exception
to this). From a testing standpoint, this means that the Network

Manager cannot make analog and digital loopback (BERT measurements)
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to troubleshoot a network problem. The Network Manager should add
a maintenance technique to make up for this. He should insure that
his modems and DAAs (Digital Access Arrangements) are equipped with
certain options. The DAA at all remote sites should be equipped
with a switch-activated tone generator and a speaker. The remote
modems should be equipped with the ability to send a random bit
pattern or at least sorie kind of an idling pattern (to be able to

energize and modulate the remote modem carrier).

With these options installed, the Network Manager will be able

to perform the following checks. First, the remote modem can be
set into a transmittinc mode (sending a random pattern or idling
pattern) and the teleplone line can be bridged at the central site
with an analog test set.. Network personnel can measure the received
level and listen to the signal on the analog test set's speaker.
Network personnel can cbserve if the remote modem is transmitting
properly and if the telephone circuit’'s loss is acceptable. If
the incoming signal is weak, the switch-activated tone generator
on the DAA at the remote site can be activated. However, if the
circuit still shows high loss in the telephone circuit, then the
telephone line would be at fault. If the circuit shows acceptable
channel loss with the tone, then the remote modem would be at

fault.

To test the telephone circuit in the other direction, central
site to remote station (just because it is a 2-wire circuit at
the analog circuit interface does not mean it is not 4-wire
elsewhere), either a tone can be placed on the circuit at the
central site, or the central modem can be set to transmit. Then
an operator at the remote station can turn up his speaker and
listen to the signal. If the remote operator is not trained to
do this, he can hold a telephone close to the speaker and let

network personnel at the central site interpret the sounds. This
check should allow a defective telephone line to be identified if

it affects only the transmit side of the circuit.
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The second difference is that the telephone circuit will generally
change every time the remote station is redialed. This means
variability in analog circuit characteristics. 0On the positive
side, many circuit problems will simply go away if the call is
redialed and another transmission facility is selected to route the
call. This is a straightforward DDD maintenance procedure. One

of the first steps will be to have the network personnel redial

the call. During light traffic periods (the middle of the night),
redialing can consistently get a first-priority route and,
consequently, the same routing and circuit. To force another
circuit, the network operator can place a call to another telephone
in the remote office and while it rings (thus busying the primary

circuit), the computer can dial through and receive another circuit.

The negative aspect to getting a new line each time is that if a
transmission problem is suspected, it is more difficult to get

the telephone company to identify and fix it. If good rapport

is established with the telephone company and if the network
personnel are patient, the network personnel can hold the defective
line for 15 minutes until the telephone company can trace it.

Then the telephone company personnel will proceed to further pin-

point the problem.

There is one portion of the DDD circuit that will never change.
This is the local loop or the portion of the circuit between the
last telephone central office and the network's location. If this
section of the line has problems, then redialing will not be able
to fix the problem. This section of the line can be checked by
dialing a DAA in the same office. This will allow loop-around
analog measurements to be made. As was discussed in the point-
to-point, private line situation, a benchmark of analog parameters
when a circuit was functioning properly will allow measurement-by-

measurement comparison to indicate transmission degradation.
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Testing of remote local loop changes from the central site is not
D possible. It will appear as a consistent telephone line problem
and the Network Manager will have to depend on the telephone

company to isolate the problem.

Digital Data Service (DDS)

In the last several years, the use of DDS has increased dramatically.
When a Network Manager chooses to use DDS, again he must modify his
network maintenance approach. Luckily, the maintenance task in

this situation is simplar than with other network architectures.

With DDS, the customer demarcation point is normally the digital
(RS232) side of the telephone company's D.S.U. (Digital Service
Unit). This eliminates the modem vendor from the finger-pointing
situation because the Network Manager is purchasing a telephone

service that includes modem equivalent functions.

With DDS, there is no need for the network operator to do analog

m testing. First of all, it is not his responsibility to pinpoint
faults to either a digital or analog problem. This is the tele-
phone company's job. Secondly, analog measurements are not possible
between customer demarcation points. Analog continuity is not
maintained through the network. Giving up analog testing on this
type of network should not ieave the network in a more vulnerable
maintenance situation. The telephone company has automatic main-
tenance systems on tlie DDS network. This enables them to provide
a higher quality of service and faster restoration time. In many
cases, they will be aware that a network's circuit is in trouble
and be working to correct the situation even before network

personnel report it.
With DDS service, the network should emphasize commissioning

testing of terminals anc use his protocol analyzer to perform

logical problem isolaticn. Digital BERT instruments can be used

- 23 -



to clearly prove the responsibility for a network problem to the .
telephone company. The use of modem and analog end sections on

a DDS circuit to extend it to areas where DDS is unavailable is

not recommended. This architecture provides maintenance compli-

cations that outweigh any benefit derived from using DDS for a

portion of the circuit.

Multiplexers

The prices charged for multiplexers have significantly decreased
in the last two years. Low-cost statistical multiplexers are now
available, as well as very sophisticated network processors that
multiplex into high-speed interfaces (greater than 9.6 Kbps). At
the protocol and digital levels, there is not that much difference
in maintaining a network with multiplexers than a network using
simpler architectures. There is an additional network component
that can contribute to the fault and, possibly, another vendor
involved. However, at the analog level, the situation has
changed. There is no longer analog continuity between the central
site and the remote station location. Therefore, end-to-end or
full analog loopback tests cannot be performed. Remote multiplexer
locations should be viewed as remote network nodes, not just
stations. This increases their importance from a network stand-

point.

The Network Manager should take greater care in locating remote
nodes than he would remote stations. To be on top of his network
maintenance, a Network Manager will need to consider small tech-
nical control centers for the remote nodes. This is the only way
he can be assured of maintaining the same network availability
that is possible with a point-to-point network and a central
technical control center. Also, patch access and, possibly,

A/B port switching should be provided on both sides of any

multiplexer.
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The overall maintenance approach, with appropriate patch access
and small technical control centers at remote network nodes, uses
all three types of testing equipment. First, protocol analyzers
are used to monitor and analyze individual ports. They will
generally not be used tc look at the high-speed digital interface
of the multiplexer. On this interface, the user's message is

buried in multiplexer protocol and is confusing to interpret.

BERT instruments are used on two interfaces. First, they can be
used on an individual pcrt of the multiplexer to verify if the
port channel is intact. Many channel problems can be identified
by troubleshocoting just one port because the problems will affect
all ports on the channel. Secondly, BERT instruments can be used
on the high-speed digital interface to help :isolate a problem to
either a multiplexer or the remainder of the channel (the analog

circuit) and modems.

Analog testing is used for the telephone line. However, with
small tech control centers at remote sites, end-to-end testing

can be performed on the central site to remote node section of the
circuit. Then the remote tech control center will need to assume
responsibility to troubleshoot the remote anealog sections (remote
node to final customer station). If the size of the network is
not big enough to support test equipment and trained maintenance
operators at remote nodes, the remote technical control center can
patch the analog line through (jumper it around the high-speed
modem, multiplexer, and =nd-section modem). This saves on test
equipment, but requires that all ports on the multiplexer be

taken out of service to troubleshoot a problem that was affecting
only one port of the multiplexer. The network operator will have
to evaluate the economics of increased equiprment investment vs.

decreased network availapility.

- 25 -



CONCLUSION

There are many reasons why Network Managers are choosing to go
with multivendor data communications systems. For whatever the
reasons, the Network Manager will need to consider technical
control centers and test equipment if network availability is
critical in his system. By utilizing good test equipment in con-
junction with good maintenance practices, the Network Manager

can maintain high availability of his system.
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BENEFITS OF ANALOG TESTING FOR DATA COMMUNICATIONS

INTRODUCTION
Analog transmission is fundamental to most data communications systems, and careful,

well planned analog testing can help keep datacom systems fundamentally sound. Analog
testing involves some complications that don't arise in digital testing. There are
more parameters to measure, and the parameters are sometimes not easily related to

error rate and throughput.

The goal of the Datacom Manager is to keep the system up and operating at peak
efficiency. Impairments that reduce efficiency must be identified and corrected.
Circuit outages must be analyzed accurately to identify the fault and restore service
as quickly as possible. Different strategies and test methods can be used to achieve
this goal depending on the system function, datacom network and analog test equip-

ment involved.

The purpose of this paper is to discuss analog impairments and their measurements and
to help the Datacom Manager decide which test methods are most likely to lead to an
early identification of the problem. This is the first step in restoring proper
system operation.

DATA TRANSMISSION

Consider a simple link between a terminal and a computer. Digital pulses are passed

between the two via an intercoainecting cable. This is no problem, but when we extend
the distance between the two pieces of equipment beyond about 50 feet, the received
data pulses are degraded, and the receiving equipment begins to have difficulty dis-
tinguishing a one from a zero. Transmitting data over long distances at an acceptably
low error rate requires two things: an adequate transmission path, or link, and the
proper equipment to match the data signal to the 1link. The solution is obvious: there
exists a huge network of telephone lines and facilities that can connect your location

to almost any other place in the country, if not the world.

Some problems are encountered when the telephone network is used because it was
originally designed to transmit voice signals, not data signals. The 300Hz to 3300Hz
frequency range of a telephone channel will neither support the baseband nature of the

data signal at the low end nor the fast rise times at the high end. The data signal

IID must be adapted to match the voice frequency range of tae channel.



The equipment that is used to adapt data signals to the telephone channel is called

the MODEM. It performs basic functions that resolve the two problems just mentioned:
1) frequency translation (MOdulation) of the data signals at the transmitting end to
remove the baseband. A reverse translation (DEModulation) at the receiving end re-

turns the data signals to the baseband frequency range. 2) frequency spectrum limiting

(filtering) to fit the 300 to 3300Hz range.

The three types of modulation used in data communications are amplitude modulation (AM),
frequency shift keying (FSK), and phase shift keying (PSK). A combination of AM and
PSK which is popular at higher bit rates is called quadrature amplitude modulation (QAM).

FSK modems are low cost, low speed asynchronous modems. They are relatively immune to
most impairments, primarily because they are used at low bit rates. Most FSK modems

are Bell compatible.

AM modems are inefficient in terms of bandwidth and signal power. Single sideband or
vestigial sideband techniques increase the bandwidth efficiency but at higher price and

increased sensitivity to impairments. AM modems are rarely used today.

PSK modems are used in medium speed applications from 2400 to 4800bps. They are syn-
chronous modems; that is, data timing signals (bit clock) are recovered from the re-
ceived signal. PSK modems are fairly immune to most impairments, but phase jitter and

phase hits may be a problem.

QAM modems are used almost exclusively in high speed, synchronous data applications

above 4800bps. QAM modems from different manufacturers are rarely compatible.

PSK and QAM modulation lend themselves to multi-level encoding which allows 2, 3 or 4
bits to be encoded into each signal element. In this manner, 9600bps transmission can
utilize 16 different levels (4 bits for each signal level); the signaling rate in this
case is 2400 per second. This conserves bandwidth but requires higher signal to noise
ratios for acceptable error rates. As bit rates increase so does the susceptibility

to all impairments.



There is a special class of MODEMS called the Limited Distance Modem, or LDM. LDM's
are a particular type of modem that keep the transmitted data in the baseband frequency
range, from DC to 30kHz or above, depending on the bit rate. Because the data is trans-
mitted directly, no modulation of a carrier frequency takes place. Therefore, there

must be a metallic connection between the transmitting and receiving ends.

Although a type of modulation or an encoding scheme can be chosen to provide protection
against a single particular impairment, every transmission line has most impairments
present at all times and almost always has several dominant impairments simultaneously.
So it is impossible to select a particular modem that provides superior performance
under all conditions. Generally speaking, the higher the bit rate, the higher the S/N

ratio required to maintain the same error rate.

Because data sent at higher bit rates is more susceptible to impairments than data at
lower bit rates, automatic equalizers are used in all high speed data sets and most
medium speed sets. Automatic equalizers reduce the effects of envelope delay and
limited bandwidth, and track slow changes in these parameters. But automatic equalizers

do not eliminate your concern with line conditioning; they only reduce it.

IMPAIRMENTS

There are at least eleven impairments to data transmission over voice channels. These
impairments are either steady state or transient in nature. They are listed here in
roughly the order they are considered when troubleshooting a circuit.

Loss

Noise

Impulse Noise (transient)

Amplitude Distortion

Envelope Delay Distortion

Phase Jitter

Intermodulation Distortion

Phase Hits (transient)

Gain Hits (transient)

Drop Outs (transient)

Frequerncy Shift



The first two on the list are almost always checked first to answer the question, ''Do
I have a good clean signal?" After that, the next parameter to be measured depends on

the symptoms, the type of modem and the channel make-up.

Every transmission path has loss, but as long as it is within reasonable bounds the
signal can be maintained at a usable level. If loss does not vary with time it is not
a problem, but it sometimes degrades slowly until the signal is unusable. Or you may

lose the circuit altogether.

Most carriers measure loss in voice channels at 1004Hz. The test signal is applied to
the line at a level of about 0dBm using a 600 ohm signal generator for most private
lines and 900 ohms for dialed lines. The exact level to use depends on the circuit
and should be carefully checked before testing. At the receiving end the signal power
into a 600 or 900 ohm termination is measured. The difference between the transmitted
and received levels is the loss (or gain) in the total circuit. End-to-end loss on

most data circuits is typically 16dB.

There are many phenomena that are measured as noise: cross-talk, echo, single fre-
quency interference, quantization noise, thermal noise, power line pick-up, etc.

Noise, like loss, is an omnipresent phenomenon.

To have any significance a noise measurement must specify the bandwidth over which the
noise is measured and the frequency response (weighting) within that bandwidth. The
C-Message filter 1s used to measure noise in voice channels in the North American
Telephone systems. This is a bandpass filter that limits and shapes the frequency
band to approximate the frequency response of the 500 type telephone in conjunction
with the hearing of the average person. A second noise filter used for voice channels
is the 3kHz flat filter. This is a simple low pass filter with a 3dB point at 3.0kHz;

being low pass, the effects of power line pick up are included in this measurement.

The noise specification for 3002 voice channels is 50dBrnc maximum, where '"dB'" specifies
that the number is in dB, the "rn'" specifies that the 0dB reference is -90dBm, and the
"¢ specifies the C-Message filter (thus 50dBrnc is -90 + 50 or-40dBm).

Noise measurements can be made with several different equipment configurations. Differ-
ential noise across the pair of wires can be measured either with or without tone. To
measure noise with tone, the transmitter sends a 1004Hz tone at the appropriate level.

At the receiver this tone is notched out, and the C-Message noise is measured. This is
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called C-NOTCHED noise. The purpose of the tone is to keep telephone equipment
operating with the same gain that is used when data signals are present. To measure
noise without tone, the line is simply terminated at the transmitter end with a 600

or 900 ohm resistor.

Longitudinal noise, or noise to ground is measured with the transmitter end terminated
as before but at the receiver end the noise on the two wires is summed and measured
with respect to ground. Very high noise to ground readings are usually indicative of
poor shielding or shield grounding of the telephone cable or close proximity to a

strong noise generator, typically a power transmission line.

Impulse noise has many sources; the most common are switches, relays, electric motors,
automobile ignition, lighting, etc. In voiceband circuits an impulse is counted when

an excursion of band-limited noise (usually C-MESSAGE filtered) exceeds a preset thresh-
old. The rate of counting is limited to 7 counts per second. Some impulse noise
counters allow faster counting, but the tariffed impulse noise specification is based

on the 7 count per second rate. The counting threshold is usually set about 68dBrnc.

The exact value in dBrnc depends on the circuit.

Amplitude distortion results when loss is a function of frequency. This impairment is
caused primarily by filters in carrier systems and to some degree by the telephone

cable itself. 1In carrier systems, band pass filters are used to separate one channel
from another. These filters introduce amplitude distortion at the upper and lower ends
of the frequency band. Telephone cable, because it is predominantly capacitive, attenu-
ates the signals at the upper end of the frequency band. Amplitude distortion is
measured in the same manner as loss; the only difference is that the test signal freq-
uency is varied, usually over a band of about 200 to 3400Hz. The amplitude distortion

is the difference in level at any frequency compared to the level at 1004Hz.

In the past, envelope delay distortion (EDD) has been one of the worst impediments to
fast, reliable data transmission. However, with the advent of automatic equalizers it
has become less predominant, 3s long as it remains steady state and within the limits
guaranteed by the channel specification. Envelope delay distortion, like amplitude
distortion, is seen mostly at the edges of the frequency band. EDD occurs because the
phase changes that a signal uadergoes as it passes through a telephone channel is not
proportional to its frequency. The result is that different frequency components of

the signal arrive at the receiver at different times so that components of one pulse



smear over into components of other pulses. This is referred to as intersymbol

interference and can be corrected by circuitry that introduces phase compensation. —

The measurement of EDD is probably the most complex of all impairment measurements.
It is accomplished by comparing the phase of a test signal that is transmitted over
the line being tested with the phase of a reference signal. In North America when
measuring a four wire circuit, the pair of wires being tested carries the test signal,
a variable frequency amplitude modulated with 83-1/3Hz, and the other pair of wires
carries the reference signal, a fixed frequency amplitude modulated with 83-1/3Hz.

The fixed reference frequency is usually chosen to be 1804Hz because this is near the
frequency of minimum delay. The variable frequency is swept or stepped from about

200 to 3400Hz as in the amplitude distortion measurcment. EDD is measured in micro-
seconds and is the difference in the delay at one frequency compared to the delay at

the reference frequency.

Phase jitter is another impairment that originates in carrier transmission. Nolse
interference can be converted to phase modulation (phase jitter) on the data signal

as the signal is multiplexed and demultiplexed in the carrier system. The jitter
frequencies are usually ringing (20Hz) and power line (60Hz) and their harmonics. -
Phase jitter is measured in degrees, peak-to-peak. Phase jitter is usually measured

in a frequency band of 20 to 300Hz but in the last several years, low frequency phase
jitter components in the region below 20H have been found to affect certain high speed

modems.

Phase jitter is measured by examining the phase disturbances of a transmitted test tone
of 1004Hz. This can be done qualitatively using a simple oscilloscope or quantitatively

using a digital phase jitter meter.

Intermodulation distortion also referred to as nonlinear distortion is caused by a
variety of equipment in the telephone network, notably compandors (COMpressor-exPANDOR)
used in PCM systems or other active devices in the channel and is usually considered to
be a problem only with bit rates of 4800bps and above. A harmonic distortion measure-
ment may not give valid results. If several sources of distortion are present in a

channel, but separated by a link with a particular phase shift characteristic, a harmonic



distortion measurement may show no harmonic products are present because the phase
shift can cause one source of distortion to cancel the other one. To overcome this
problem the transmitted signal for the intermodulation distortion measurement is a
set of 4 tones, two centered at 860Hz and separated by 6Hz and two centered at 1380Hz
and separated by 16Hz. The measurement is a three step process. First, the 4 tones
are measured. Second, the 2nd order distortion (centered at 520Hz and 2240Hz) is
measured using narrow bandpass filters and referenced to the level of the 4 tones.
Third, the third order distortion (centered at 1900Hz) is measured using another

narrow bandpass filter and again referenced to the level of the 4 received tones.

Phase hits and gain hits are caused primarily by carrier systems; automatic channel
switchover is an example. Selectable thresholds are provided for gain hits (2, 3 or
6dB) and phase hits (100 to 450, in 5 increments). Fither transient must be at least
4ms long to be counted. The counting rate is limited to 7 counts per second. As with
impulse noise, higher counting rates may be used, but the channel specification is

based on 7 cps.

A dropout is defined by the Bell System as a 12dB or greater loss of signal for 4
milliseconds or more. Dropouts are caused by microwave fade, circuit disconnections
or equipment failures. The count rate for dropouts is also limited to 7 counts per

second.

Frequency shift or frequency offset is caused by transmission through a non-synchronous
carrier system. If the demodulation frequency at the carrier receiver is different

from the modulation frequency at the carrier transmitter, the entire received frequency
spectrum is offset or shifted by the difference. Nearly all carrier systems today are
synchronous, the modulation aad demodulation frequencies are derived from a single source.
In rural areas some non-synchronous systems still exist but it is rare that the fre-

quency offset exceeds 2 or 3H:z, and most modems are unimpaired by this small amount.

Frequency shift can be measur=d using a stable signal generator and a frequency counter,

It is simply the difference between the transmitted and received frequencies.



TROUBLESHOOTING METHODS AND BENEFITS

In the past the Datacom Manager was reluctant to do analog testing. The argument

was, "This modem is specified by the manufacturer to operate over a C2 line, and I've
got a C2 line so why should I have to test it?" The answer became painfully obvious
the first time the system failed and the Datacom Manager was told by the telephone
representative, the modem representative and the terminal equipment representative
(usually each from a different company)}, "There's nothing wrong with our equipment,

it must be the other guy's'". To test or not to test is no longer the question, rather

what should be tested and when?

There are two philosophies that are followed: one is periodic testing or preventative
maintenance, the other is demand testing or testing only when a failure occurs. Each

has its merits and is influenced somewhat by the particular system and its application.

In either philosophy, it is critically important to record the analog test results on
each line prior to its being put into service and immediately following any major
network change or repair. The greater variety of analog tests made, the more valuable
the benchmarks or comparison points obtained for future preventative maintenance or

demand testing.

These benchmarks should include measurements on each transmission path, with end-to-
end as well as loopback test results. Loopback tests can be easily implemented by a
single operator at the control center, and although they may mask the parameters of
each individual link, loop back benchmarks can serve as powerful tools to isolate
problems. End-to-end benchmarks are needed to aid in nailing down the offending link

after the fault has been isolated to a suspected area.

Preventative maintenance coupled with good record keeping practices can provide these

benefits:

1} Early problem detection - before it gets painful.

2) Measurements are made with no duress - fewer human errors are introduced.

3) Records are updated - knowing the time interval when problems recur can be a
valuable clue for the troubleshooter.

4) Personnel do not have to relearn the equipment - this is especially valuable
when a service outage has occurred and the operator is under stress and more

prone to error.



5) Shorter repair times - if you can identify the faulty parameter or tell which
parameters changed, the telephone company can restore service more quickly.

6) It enhances your credibility with telephone personnel - if they know you are
keeping tabs on their system on a regular basis, they are more likely to

believe you when you call in for service.
The disadvantages of preventative maintenance in analog testing are:

1) Analog testing is intrusive testing - data transmission must be interrupted.
2) Inevitably as more humen interaction with the system takes place, the chances
of human error are increased.
3) Preventative maintenance analog testing is time consuming and therefore relatively

expensive in the short run.

The advantages and disadvantages of demand testing, on the other hand, are pretty much
the converse of those for preventative maintenance. Generally, what you lose with one,

you gain with the other.

If the datacom system has built in back-up capability the argument in favor of demand
testing is strengthened. Another aspect is that of the tolerance to an increased error
rate or a service outage. A low tolerance might dictate that a preventative maintenance

program be followed.

Eventually, the system will fail, and at some point in the troubleshooting process,
analog testing will be required. A recommended series of steps to follow when per-

forming either loop around >r end-to-end testing is:

1) Establish signal continuity - measure 1004Hz. Is the received level correct?
If your test set is equipped with a monitor amplifier and speakers, listen care-
fully for interfering <ones, distortion, hum, or high noise levels. Most Datacom
managers will agree than loss of signal continuity is the most frequently occur-
ring problem. This is a convenient time to check the signal level at the band
edges, 404Hz and 2804Hz, to get a quick estimate of the channel bandwidth.

2) Measure signal-to-noise ratio. With some test sets, this is a single step process;
signal and noise are measured and the ratio is calculated automatically. With
other sets, you must measure signal and noise levels separately, then calculate

the ratio.



3) Check the line quality - perform a P/AR measurement. Although P/AR is not a
tariffed measurement, it provides a good, fast check on several parameters .
simultaneously. P/AR is primarily a measure of intersymbol interference and
is therefore most sensitive to envelope delay distortion; however, P/AR also
responds to attenuation distortion, severe noise and high levels of intermodu-
lation distortion. A very low P/AR reading (45 P/AR Units) or a change in the
P/AR reading of 12 units or more, in either direction is a clue that more detailed
testing is required.

4) Measure additional parameters as indicated by the nature of the problem. For
example, a high error rate on a 9600bps circuit that includes PCM carrier in
the channel make-up indicates that intermodulation distortion should be checked.

Or, any link showing error bursts should be checked for transient impairments.

Some analog problems can be difficult to identify. Obviously the more insidious ones
are those that are either soft failures or sporadic, and the worst problems are those
that are both soft and sporadic. With these types of problems, a preventative mainten-
ance program coupled with good record keeping is your best defense and gives you the
best chance of early identification and protection. The longer the history over which
these records are kept, the better established are the bounds for these impairments

and the better the "fingerprint" for each section of your system.

Analog testing can be made easier and more effective through the use of two innovations:
Master/Slave operation and desk top calculator control of the test sets. Master/Slave
provides remote operation with nothing more than the properly equipped test sets. At
the flick of a front panel switch an analog test set can become a master control unit
or a remote slave unit. Only one qualified test person is needed to do detailed end-
to-end testing. Once the test set is connected to the far end of the circuit and the
switch set to SLAVE, all tests are controlled from the master test set, and all results

are displayed there also.

Further benefits can be derived by operating the test equipment under the control of a
desk top calculator. This type of operation is possible in test sets that provide the
IEEE 488 aoption. With this option, analog tests can be automatically sequenced and

all test results formatted and stored as desired.

-



CONCLUSION

Analog testing is an important phase of an overall network maintenance and management
program. Data transmission channels cannot be replacesd as quickly as other components
of the network, therefore, faulty channels must be identified and repaired as quickly
as possible to maintain system integrity. Analog testing is just as successful when

it proves that a suspected line is not the problem as when it proves that it is.

Benchmark testing is a very important part of an analog testing strategy. Even if
benchmarks do not presently exist, they can be established by analog measurements on

lines that are known to be trouble free.

The optimum solution to each particular system problem may vary greatly depending on
system use, network topology, symptoms, etc., and it is up to the Datacom Manager to
know when and where and whicht tests and which methods of testing to apply in each

particular case.

The trend for data communication systems has been, and will continue to be, toward
larger, more complex and sorhisticated systems with higher bit rates and fewer errors.
This in turn increases the need for more powerful and more efficient analog testing
capability. Analog test equipment should be accurate, reliable and easy to use..

Master/Slave operation can benefit the Datacom Manager by more efficient utilization

of personnel, less chance for error and easier record keeping.

The economic trade-off in establishing a preventative maintenance program is the cost
of the analog testing and analog test equipment versus the cost of lower system avail-

ability or efficiency.

Appendix
Table 1
Table 2
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TABLE |

Tariffed Parameters.

Non-Conditioned

With C1

With C2 With C4
3002 Channel Conditioning Conditioning Conditioning
Frequency Range

in Hertz {Hz) 300-3000 300-3200
Attenuation Distoration Frequency Decibel Frequency Decibel Frequency Decibel Frequency Decibel
{Net Loss at 1000 Hz) +Range Variation Response Variation Response Variation Response Variation
300-3000 —3to +12 300-2700 ~2to +6 300-3000 —2 to +6 300-3200 —2to +6
500-2500 —2to 8 1000-2400 —-1to +3 500-2800 —11t0+3 500-3000 —21t0 +3

300-3000 —3to+12

Delay Distortion in
Microseconds (us)

Less than 1750 us
from 800 to 2600 Hz.

Less than 1000 us
from 1000 to 2400 Hz.
Less than 1750 us
from 800 to 2600 Hz.

Less than 500 us

from 1000 to 2600 Hz.
Less than 1500 us
from 600 to 2600 Hz.
Less than 3000 us
from 500 to 2800 Hz.

Less than 300 us

from 1000 to 2600 Hz.
Less than 500 us

from 800 to 2800 Hz.
Less than 1500 us
from 600 to 3000 Hz.
Less than 3000 us
from 500 to 3000 Hz.

Signal to Noise

With D
Conditioning

24 28
(dB)
Non-Linear Distortion 25 35
Signal to 2nd
Harmonic
Signal to 3rd 30 40

Harmonic

- 12 -



TABLE 2 Non-tarrifed parameter limits.

Parameter Specification
1. C-message noise Facility miles Maximum noise at modem receiver (assumes standard design channel)
050 28 dBrnc
51100 31
101 400 34
401 1000 38
1001 1500 40
1501 2500 42
2501 4000 44
4001 8000 47
8001 16000 50
2. C-message notched noise At least 24 dB below received 1004 Hz test tone power
3. Impulse noise 15 or less counts in 15 minutes with a threshold set 6 dB below level of received 1004 Hz test tone
4. Single frequency interferente At least 3 dB below C-message noise limits
5. Frequency shift No more than =5 Hz
6. Phase jitter 20-300 Hz, 10° maximum peak to peak; 4-300 Hz, 15° maximum peak to peak
7. Peak to average ratio (P/AR) Greater than or equal to 48 P/AR units
8. Phase hits 8 or less hits in 15 minutes of greater than 20°
9. Gain hits 8 or less hits in 15 minutes of greater than 3 dB
10. Dropouts 1 or less dropouts in 30 minutes of greater than 12 dB

- 13 -






Signature Analysis for Board Testing
John ‘R. Humphrey
Loveland Instrument Division, Hewlett-Packard

INTRODUCTION

When Hewlett-Packard developed the Model 5004A Signature Analyzer!, the
objective was to provide a way to substantially reduce repair costs on
microprocessor and ROM based products. The board-exchange approach
commonly adopted for field service support of such products has a number
of economic drawbacks. Signature Analysis was viewed to be a viable,
component level repair &lternative for LSI circuit-based equipment that
could stand a few hours of repair downtime. During the past three
years, Hewlett-Packard has introduced more than 50 major products which
include provision for testing with Signature Analysis. Furthermore, by
early 1979, more than half of the top 100 U.S. electronic companies (by
sales volume) had invested in Signature Analysis as a measurement tool.

Implementation of Signature Analysis (SA) capability into an automated
test system with bed-of-nails circuit visibility extends the practicality
and power of the technique from the realm of field service of LSI-based
products to that of production testing of individual circuit boards.

The stimulation, measurement, and fault-isolation aspects of SA within

an automated test syster environment are discussed. Examples of SA
testing of representative memory and microprocessor boards are presented
with sample stimulus approaches, tester interconnection and programming
requirements, and troubleshooting strategies.

LST BOARD TESTING - PROBLEMS AND SOLUTIONS

Considerable space has been allocated within the spectrum of literature
directed toward test problems to the challenges posed by boards designed
around LSI technology.? ® * ® &

Chip complexity has reached the point that a single microprocessor may
contain more gates than a 50 to 100 IC board of MSI devices. The board
on which the processor is placed may contain several other chips of LSI
complexity as well as the original 50 MSI devices. Such complexity
makes the task of generating effective test sequences more difficult.
The simulator-aided programming techniques which have been successfully
applied to MSI technology may also be used for LSI boards. However,
modeling LSI devices may be very difficult and time consuming.

For simulators which utilize algorithmic pattern generation, complex
circuits modeled in terms of nand gate equivalence can easily exceed the
4K to 20K gate capacity of the simulator-even if the detailed, gate

level specifications of the LSI chips in question are available from the
manufacturer. An approach which reduces the severity of the chip complex-
ity problem is to employ a simulator which works with a functional

rather than gate level model of complex LSI devices. Functional modeling
reflects overall data transfer within the device based upon operational
data published by manufacturers. In any case, modeling of LSI devices

is not a trivial task and tester manufacturers have not updated libraries
at pace with the development of new LSI chips.



After the modeling of the LSI devices is complete, a simulator will

model the board and help develop a pattern set for testing the board.

The task of pattern development typically encompasses several steps
involving both automatic and semi-automatic operations. Manually genera-
ted inputs may be required to account, for example, for sequential
functional requirements.

The next problem is stimulation and detection of digital activity on the
board as specified by the simulator-generated data. Boards containing

LSI typically exhibit greater susceptibility to timing related parameters.
Furthermore, many such devices function only at dynamic conditions and
cannot be statically exercised. This means that an LSI board tester

must work at rates corresponding to the sub lusec cycle level. Functional
testers currently on the market may offer high speed pin options to meet
this requirement. Such options are generally configured around a special-
ized controller with RAM memory at each (high speed) driver/sensor pin
and software considerations for loading RAM from and dumping RAM data to
mass storage between test sequences. Depending upon the degree of
sophistication of both tester hardware and software, as well as cost,
dynamic test capabilities of commercially available systems may include
such features as:®

- The capability to change pin function between driver/sensor modes
during program execution without reducing system test rates.

- Capability to synchronize the tester to different clock phases on
the board.

The need for such tools must be considered in view of tester cost and
programming requirements to achieve a level of fault coverage. The
objective of testing is optimization of fault coverage and fault isolation
based upon customer satisfaction and warranty cost parameters factored

by production throughput and production cost.

The question of fault coverage depends upon the adequacy of the functional
test sequence in exciting the various fault modes of the board under

test. Simulators normally provide a calculation which relates faults
detected by the test sequence to the total number of faults modeled for

a particular board. Because LSI devices are complex, board functions

are more complex and it is more difficult to evaluate the quality of an
LSI board test program. Functional modeling techniques or the use of
comparison chips in a reference-system tester’ provide a hardware model,
but they model the correct operation of the LSI chip and do not predict
faults. The use of other test tools, such as in-circuit inspection for
shorts and opens in combination with digital functional tools may signifi-
cantly enhance tester fault coverage capabilities. In the final analysis,
test quality is measured and test approaches are tuned on the basis of
customer feedback.

Fault isolation on many commercial testers is based upon guided probe
and IC clip techniques. The structural characteristics of LSI boards as
related to bi-directional busses and specialized I/0 devices can make
diagnosis of faults to the component level difficult. Although a given
node may be detected faulty, the problem of determining which of five to
ten IC's connected to the bad node is generating the fault is significant.
For a bi-directional bus structure, inputs to one device become outputs
for another and the probing problem becomes one of resolving a feedback
loop condition. Furthermore, because a guided probe method must examine
all inputs associated with several devices which are connected to a
failing node, it generally takes longer to diagnose a fault on a LSI
board.



LSI Boards feature extraordinary functional density. These are simply

too many functions, tco many states, and too much memory to test the
entire spectrum of design operation. Furthermore, there is the problem

of visibility. As chip complexity has increased, visibility has decreased.
Functional capacity has increased, but the number of edge pins on boards
has decre2sed in proportion to functionality.

Complexity, at-speed test requirements, visibility, effective fault
coverage, fault isolation, tester cost effectiveness - these are the
problems associated with testing today's LSI boards. Yet circuit designs
are already evolving from LSI to VLSI technology. Testing may very well
become the major cost associated with the use of *hese technologies. 1In
line with the emphasis on programming support and peripheral chip develop-
ment which were required to make circuit design with LSI practical,
designed in testability will have to be seriously addressed both by the
chip manufacturers and ernd-product designers.

Signature Analysis is one proven method to help solve these problems in
a cost-effective manner end it offers alternatives to simulation, RAM
backed test pins and dynémic reference test systems.

SIGNATURE ANALYSIS - TECHNICAL DETAILS AND CHARACTERISTICS

SA is conceptually simple. It is a synchronous process, whereby activity
at an electrical node, referenced to a clock signal, is monitored for a
particular stimulus condition during a measuremen: time period. The re-
sult of the SA nodal monitoring process is based upon a unique data com-
pression technique which reduces Tong, complex daza stream patterns into
a 16 bit, 4 digit "signature." Correct signatures for a particular
Ccircuit are determined empirically from a known good product. Testing

is performed by probing interdependent nodes to determine the functional
origin of bad signatures.

Stimulus Considerations

The original Signature Analyzer manufactured by Hewlett-Packard requires
that the stimulus for SA testing be generated by the product being

tested. For many boards, the most effective stimulus is indeed derived
internally, within the framework of "designed-in" SA testability.

However, when considering SA with respect to board rather than full
product testing and in conjunction with an automated test system rather
than a portable field service capability, it may be desirable, practical,
and even necessary that stimulus be generated as part of the test environ-
ment.

SA testing relys upon the principle of "exercising" circuit nodes -
changing logic nodes from one state to the other - stimulating the
various fault conditions (stuck-low, stuck-high, pin faults, etc.) that
may exist for a particuler circuit. For combinational circuits it may
not even matter "what" specifically causes a node to be exercised to
provide useful diagnostic information. In fact, psuedo-random pattern
stimulation may be effectively applied in conjunction with SA testing of
combinational logic. However, for circuits such as microprocessor-based
controllers, sequential operational characteristics may reduce the
validity and effectiveness of random stimulation.

One approach to LSI board stimulation for SA testing is to "free-run"
the board. Free-running, for purposes of SA, involves getting the
circuit to run in a repetitive loop with only a minimum number of the



circuits logic elements required to control the process and causing the
maximum number of logic nodes to be exercised. In the case of micropro-
cessors, controllers, sequencers, and algorithmic state machines, free
running is ofter accomplished by opening the data (or instruction) input
bus and forcing in an instruction or control that causes a continuous
cycling through the entire address or control field. The circuitry
performing this cycling function is referred to as the kernel and is
functionally the "heart" of the system. Taking signatures while in the
free-running mode can verify the kernel, much of the combinational
circuitry associated with address and control functions (especially
address decoders and ROM data), and the operation of the data bus.
Free-running alone may not sufficiently exercise all devices and circuit
nodes.

To test board functions not exercised by free-running, specific test
algorithms must be generated to emulate the functional modes of the
board's applications environment. The algorithms applied must also be
designed to make fault isolation as effective as possible. Often the
test algorithm may incorporate subroutines used in normal application of
the product or as part of a self test procedure. In the case of a
microprocessor board, the SA stimulus algorithms are written into a
portion of on-board or externally connected ROM (as part of the auto
test fixture, for example). Stimulus for the test is thus generated
internally which is easier than trying to stimulate devices surrounding
a processor from the board's edge connector I/0 ports. Furthermore, the
intrinsic data manipulative capabilities of microprocessors make this a
powerful stimulus control approach, yet a relatively straightforward
task to implement in the design.

Consider, for example, the stimulation of peripheral 1/0 devices that
accept inputs from a processor and output data to another board. A

short program can be written to increment an accumulator in the processor
and output the data to all devices. Signatures can be taken on each
output Tine to test not only the devices that are connected to the
processor but also the processor itself for several specific instructions
(increment accumulator, test accumulator, jump, etc.).

Signature Measurement

The process by which the signature of a data stream is measured is
controlled by three signals. A START signal is used to trigger the
beginning of a signature measurement time interval. The CLOCK signal
synchronizes the SA data sampling circuitry to signals to be monitored

on a test node. The STOP signal is used to trigger the end of a signature
measurement time interval.

The START and STOP signals which define the data sampling interval can

be taken from address lines, state pointers, software controlled output
ports or any other signals that identify the presence of a unique data
stream. A sophisticated tester may allow the measurement to be made on

the basis of a START signal and a specific number of clock pulses following
START. Special circuitry may also be designed into the production test
fixture to generate measurement window signals.

As with SA stimulus discussed previously, SA was originally designed to
allow the unit under test to run at speed by its own clock with the
tester synchronized to that clock. In the production test environment,
it is likely that some boards will be tested independently of other
boards which normally supply such signals as a clock. In such a case,



the tester may be utilized to generate the clock required to make the
board function. The SA measurement process is likewise synchronized to
the tester-generated clock. The test fixture can be designed te furnish
such signals as a clock as well.

When utilizing SA for field service, both the CLOCK and START/STOP
signals are generally derived from circuit test points which are not
changed through many or all signature data probings. In such a case,
with the START/STOP and stimulus running repetitively, the fault isolation
process is a matter of physically moving the Signature Analyzer input
probe from node to node on the circuit under test - searching for compo-
nents with good signatures on the input but bad signatures on the output.
The test system implementation of SA can provide not only automated
multiplexing of the data input connections but also of START, STOP, and
CLOCK connections. This capability in conjunction with properly designed
stimulus signals can simplify the fault isolation process since specific
measurement windows can help isolate devices functionally. Figure 1
illustrates the timing involved in a signature measurement window.
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Processing of the nodal activity measured by SA is accomplished using a
compression technique known as cyclic redundancy check (CRC) which has
been commonly used in the communication's industry for error checking.®
Compression of potentially long streams of data into a unique 16-bit re-
sult (the signature) obviates the need for RAM and mass storage for per-
forming dynamic tests. This reduces usage complexity and tester cost.

Signatures are captured using an n-bit linear shift register with multiple
feedback taps that are modulo-2 summed with the input data as shown in
Figure 2. Feedback is selected so that the shift register produces
deterministic and maximal length bit sequences. The deterministic
characteristic refers to the fact that if the shift register is initialized
with a particular word and shifted using a particular bit sequence, the
remaining residual word (signature) is always the same. For a shift
register with feedback that is characterized by the maximal length
propeﬁty, any bit stream that is shifted into the register will exhibit
all 2'-1 possible states before repeating a state. (See reference 9 for

a discussion of shift register properties.)
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The selection of shift register feedback taps to establish these proper-
ties is not unique and varijous choices for different length shift regis-
ters are described in reference 9. For SA, a 16-bit register with feed-
back from the 7th, 9th, 12th, and the 16th bits has been selected.

This CRC implementation yields a 100 percent detection of all single-bit
errors in a bit stream and 99.998 percent detection of multiple faults
in a data stream regardless of length.® Note that these percentages
indicate probabilities of detecting faults that may exist in the data
under test. The effectiveness of the fault coverage is a function of
the stimulus pattern and propagation of faults to a measurement node.

The 16-bit shift register residue from a data stream measurement is
displayed and processed in a hexadecimal format. This representation of
the result is what is referred to as the "signature" of the measured bit
stream. HP Signature Analysis products utilize a nonstandard hexadecimal
character set (0123456789ACFHPU) which was chosen for easy readability
and compatibility with 7-segment displays.

The table in Figure 3 shows how a signature is generated from the 20-bit
secuence 11111100000111111111. Initially (time O through 7) the register
acts merely as a shift register. At time 7, the first 1 of the input
sequence has reached the first feedback tap (tap 1, Figure 3). It is

fed back and mixed with the input 0, with the result that a 1, not a 0,
is next clocked into the register (time 8). This behavior continues
until the end of the measurement when a residue of 16 bits, 1101100101010-
011 (time 20), is all that is left from the 20-bit input sequence.

(Note the total dissimilarity in appearance between this residue and the
original 11111100000111111111 input sequence.) This residue is displayed
in hexadecimal format as H953, the signature of the 20-bit sequence.'®

Fault Isolation With Signature Analysis

Signature Analysis is a nodal analysis technique. As such, it is very
effective at yielding pass/fail decisions. In fact, SA can help minimize
the cost of testing good circuitry. This is due to the fact that a sin-
gle signature measurement at one node can accurately reflect the correct
or incorrect operation of a logic structure consisting of a large number
of devices and many nodes. This is dependent upon effective fault
stimulation of the various nodes feeding the cardinal measurement nodes.
Examples will be presented later to show how this may often be accom-
plished in a straightforward manner.

In the event of a nodal signature fault, the effectiveness of using SA
to isolate the device(s) causing the fault is dependent upon the logic
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structure of the node it-
self factored by testa-
bility features designed
into the board. In the
ATE system test environ-
ment, fault isolation
effectiveness also depends
upon test system hardware
and software tools.

For combinational logic,
without feedback, fault
isolation is largely a
simple comparison of the
measured and known good
signatures for the board.
If a bad signature is
found, the signatures of
lower order nodes are
checked until a component
can be located with good
signatures on the input but
bad signatures on the out-
put. For an ATE system,
with either bed-of-nails or
Juided probe visibility,
the tracing algorithm may
be easily built into look-
up tables which reflect
circuit topology. Tracing

may be based upon binary half-splitting, inside-out checking of all sig-

natures, or by straight back-tracing.
are illustrated in Figure 4.

These methods of fault probing

Isolation of faults to the component level on circuit boards which
employ feedback connect’ons is dependent upon hardware and software

capabilities for breaking the feedback paths. This consideration applies
both to the test system and the board under test. For example, the most
common loop associated with microprocessor-based boards consisting of

the processor, address bus, memory elements, and data bus may be broken
by including a data bus jumper plug capability within the design.

During production test, the board may be tested before the jumper is
installed. After the kernel is tested using a free-run stimulus as
described earlier, test system relays can be closed to emulate the

normal "jumper-in" data bus connections. Then, additional test cycles

in which typical operations of the board are verified may be run.

Feedback could also be disabled electrically by designing the board with
buffers to tristate selected paths upon command from the test system.
This approach may dictate extra hardware cost for the product and the
need to test the states of the devices in question. However, significant
return may be realized on such testability investments.

Feedback Toop failures may also be analyzed by measuring signatures
during periods when the feedback signal(s) take on constant zero or one
states. This may be accomplished by designing stimulation software so
as to provide sequences in which feedback signals are constant. In some
cases, IC's may permit shorting to ground for the brief period in which
signatures are measured in order to set feedback paths to zero.
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Within a bed-of-nails test environment, the capability to select START,
STOP, and CLOCK signals automatically from anywhere on the board and to
perform measurements using START and CLOCK pulse count can contribute
significantly to effective fault isolation. Use of such tools is illus-
trated with the examples in the following section.

SA_IN PRODUCTION TEST ATE

In this section, the general concepts of SA testing which have been pre-
sented will be related to specific test problems and their solutions. -
To accomplish this, hardware and software capabilities of an automated
test system currently on the market will be described. These capabil-
ities will then be applied to two representative LSI board test problems.

On the sample test system, SA is featured as an at-speed digital func-
tional test technique.!! The system is utilized in conjunction with
bed-of-nails type fixturing and provides a full spectrum of test capabil-
ity. Shorts/opens, in-circuit component tests, static digital tests,

and considerable general purpose analog/hybrid functional test in addition
to SA may be performed with this ATE. It is important to note that the
objective of thorough test of a board is, in general, best accomplished
by taking advantage of all of these capabilities in an integrated test
sequence. It is best to resolve passive short/open conditions prior to
application of power for functional testing. Discrete component fault
and loading errors are best diagnosed using passive state in-circuit
testing. Static digital test tools are useful for checking for simple
active logic faults and for controlling signals during SA-based dynamic
functional testing.

The hardware components of the sample test system typically utilized for
SA testing are represented by the simplified block diagram of Figure 5.
General system multiplexing is implemented in a row-column matrix config-
uration in which any individual test point may be switched to none, one,
or any combination of signal busses in a seven bus multiplexing scheme
These busses may be programmed for use with both in-circuit and functional
testing as required. For example, the bus structure can be configured

to route any one of up to approximately 500 nodes into the SA data

stream processor. In addition, columns or individual relays may be
configured to multiplex START, STOP, and CLOCK signals.

The signature analysis hardware option for the system includes additional
multiplexing dedicated to SA as represented in the large block of Figure 5.
Forty low capacitance test pins and four each START, STOP, and CLOCK
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inputs are provided. Note that the cost of the SA option is on the
order of $100 per pin for the dedicated pins with no additional cost for
utilizing standard in-circuit test pins for SA testing.

With respect to software, the sample test system features a BASIC-like
interpreter structure enhanced by approximately 40 programming statements
designed especially for board test programming. Loops, variable manipula-
tion and branching typical of BASIC and FORTRAN processor-based systems
may be applied freely with the special board test language (BTL). For

SA testing, six of the 3TL statements are commonly used. Of the six,

two are statements dedi:cated to SA processing while the remaining four

are useful in several of the available system test modes and are general
purpose in nature.

The first of the two SA statements "saset", is used to select input pins
for START, STOP, and CLJICK, and to set up processing on the basis of
rising or falling edge conditions of these signals. The second SA
statement, "sig", is usad to measure signatures and its parameters
include provision for l2arning signatures (from the reference assembly)
or for measurement of signatures from the board under test with or
without automatic fault message print out. Whether a signature is
measured on the basis of a START/STOP ccmbination or START and a specified
number of clock pulses is also controlled by "sig" statement parameters.
The SA processor can be set up to test on the basis of a repetitive
stimulus or a single cycle stimulus sequence with "sig".

The remaining four BTL statements which will be utilized to illustrate
automated SA testing include a test pin multiplex statement (mcon), a
statement for generating a clock signal (clock), a statement for setting
digital levels (apply), and a statement for programming the logic "1"

and "0" voltage levels for SA signal processing. All of the BTL statements
used in following illus:rations appear in Figure 6 with a description of
their programmable func:ional parameters.

Testing a Memory Board

Consider the problem of testing the memory board shown in Figure 7. The
board consists of both ROM's and RAM's and the data and address busses
are accessible via a front panel connector. Each memory element is
selected via a chip enable 1line which is decoded from address bus data.



Statement

Purpose/Description

saset

Select START, STOP, CLOCK input connections and whether
signatures are to be taken on rising or falling edges
of these control signals., Initializes SA processor.

saset 1, "R", 3 ,"F", 4, "F" CLOCK input #1 - rising edge
START input #3 - falling edge
STOP input #4 - falling edge

sig

Measure a signature.
sig "Ul-pin 6", "3961", 32767, S, S$[7]

Fault Expected Number of Variable to Alphanumeric
Message Signature clocks af- which mea- variable to
ter START. surement which measured
code is signature is
returned. returned.

mcon

Close multiplexer test point relay.

mcon N, M Close relays N and M where N, M are row/column
positions given by X.RlRZCIC2

X = Node; RIRZ = Row Number; CICZ = Column Number

apply

Set digital driver patterns.

apply "INTRPT" 3, 0, 3 Set the two-bit digital
or apply "INTRPT", "11", contro) signal named "INTRPT
"00™, "11" high, low, then high again.

rcv ref

Set SA or static digital reference voltage levels.

rcv ref 1, 0.2, 2, 3.2 Set SA reference voltages for:

<0.2V for Tow; >3.2V for high

clock

Set up digital clock stimulus.

clock 1, le6, leS Set up clock number 1 to output a 1 MHz
signal for 10,000 pulses.

clock  frequency Number of pulses or
output free-run

Figure 6. An ATE system with software designed for the particular problem of

circuit testing can make the test programming job easier. The
statements shgwn are used to program SA functional testing in one
commercially available ATE system.

driven via a test system clock.
the CLOCK input of the SA processor.

Two control lines are used
to direct data flow.
Read/write (R/W) determines
the direction of data flow
while Enable (ENA) con-
trols timing-specifying
when each device is to
drive the data bus.

In this case, there is no
source of internal stimulus
for the board. An external
stimulus is to be designed
into the test fixture.
Censider first, test of
only the ROM portion of the
board. The decoder Togic

is stimulated by the various
combinations of address
lines All through A15.
Particular addresses of the
decoded ROM are selected by
the address lines AP through
Al@. An externally applied
16-bit counter may be con-
veniently utilized to stim-
ulate the address lines.

The counter itself will be

This clock signal is also supplied to
The R/W control line will be

controlled via a static digital drive signal from the test system.

The RAM's will also be exercised by the counter.

However, before taking

meaningful signatures involving RAM output data, the RAM's must be ini-

tialized.
memory with

its own address.

One way to accomplish this is to fill each Tocation in RAM
Figure 7 illustrates how this may be
implemented with the same counter stimulus as described above.

The R/W

line is set to the write state, the buffers are enabled and address

data, bits AP through A7, is applied to the data bus.

As the counter is

cycled through all possible addresses, each writable Tocation is initial-
ized with its particular address. With the RAM's so initialized, they
are treated like ROM's for signature tests.

A GO/NO-GO test may be performed on the board by collecting just the
eight data bus signatures. The counter is set up to cycle continuously
and the SA measurement window is set to monitor all 2'® possible states.
The most significant bit of the counter is connected tc both the SA
START and STOP inputs. In less than one second all decode and data
functions may be checked as reflected in the eight data bus signatures.
Figure 8 shows both the hardware connections and software required to
perform this test.

Suppose one or more faulty signatures are measured during the GO/NO-GO
test described above. Fault isolation may be easily performed using
inside-out tracing. First, the 16 address lines driven by the counter
are verified over the entire count cycle. If a bad signature is measured,
there is a problem with the stimulus circuitry which must be corrected.

If the stimulus is verified to be working properly (16 signatures in ap-
proximately one second), the decoder logic outputs are checked. In the
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event of a bad decoder signature, back tracing is performed through the
decoder logic until a circuit element with good input signatures but bad
output signature(s) is implicated as the faulty device.

Correct signatures at the decoder outputs imply a faulty memory device.
Individual memory device functions may be isolated by varying the source
of the START signal, broadening the address range for successive measure-
ments of the data bus 1ine where the faulty node was found during GO/NO-
GO testing. The faulty device is easily determinad on the basis of the
START signal being used when the failure occurs. Another possibility is
to continue using a STAR”/STOP which encompasses the entire range of
addresses but to select the enable pulses of individual memory elements
for use as the CLOCK signal. 1In such a case, only data bus output for
the single device will be monitored by the SA processor. A third possi-
bility for isolating the faulty memory element is to take signatures on
specified clock counts with or without varying the START signal source.
The count parameter may be set to the number of addresses of the device(s)
being tested with the START signal derived from the counter bit repre-
senting the first address to be monitored.

Figure 9 illustrates sample test system software to isolate a faulty
memory device in a 32K memory system consisting of eight 4K devices.
Variable arrays are used to tabulate test node locations, expected sig-
natures and to set the order of the fault isolation sequence.

In summary, it has been shown that a typical memory board can be fully
tested at speed with SA. Fixturing requirements include a simple counter
circuit for SA measurement stimulation and provision for writing RAM
data. A GO/NO-GO test can be conducted in less than one second by



Provisions which have been made within the design requirements for SA

testability include

- Signal lines which may be programmed via switches or ATE system
digital drivers to select vectors to run particular programs in
ROM. Used in conjunction with a non-maskable interrupt (NMI) to
cause the microprocessor to jump to a firmware test sequence.

- Special firmware included in on-board ROM and accessible as de-
scribed above for exercising board elements during signature mea-

surements.

- A signal 1ine which may be driven by the ATE system to disable the
data bus buffers and break the feedback path to the microprocessor
for “free-run" testing.

- Pull-up and pull-down resistors which may be applied to the micro-
processor input to provide a no-operation (NOP) instruction during
"free-run" testing.

The test strategy for the board includes first in-circuit shorts/opens
and discrete component testing followed by a functional test sequence
including both free-run and internal stimulus driven tests:

- Free-run tests

- Verify that microprocessor can address memory properly
- Verify contents of ROM which contains SA stimulus firmware

Figure 9.

Sample ATE software for isolating faulty memory elements on

a memory board using signatures taken only ove
memory addresses for each 4K memory device.
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- Data relays set to monitor node where data bus failure occurred

during

- Array
dicates first address of each device
- Array U$[ ] holds designators for each memory element; S$[ ] holds
good signature data from reference device.
- RAM previously initialized.

0/no-go test encompassing all addresses.
S? ] holds relay data corresponding to address

line which in-

Program Statement Description
151: for J = 1 to B Set up loop to test 8 devices
152: mcon S[J], N[1] Close start signal relay and data node relay .
153: sag "', S$[J], 4096 Take signatures for 4096 clock pulses
154: (total memory of currept device), compare
155: to reference signature S$[J].
156: if flgll; gsb “PRINT Test flag to see if signature test passed.
FAULT"
157: If not, go to subroutine to print fault
message.
158: pext J End of fault jsolation loop
159: gto "RESTART" After all tests, start new bcard test
160:
161: "PRINT FAULT": Entry point of subroutinme to print fault
message
162: wrt "PRINTER", "RE- Write device replacement message.
PLACE", US[J]
163: ret Return from fault message subroutine.



HARDWARE CONFIGURATION
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Figure 8. Exam>le of hardware connections and software required 1o
perfirm a GO/NO-GO test for a memory board using Signature

Analssis.
Test Program for Go/No-Go Test
Line #  Progran Statement Description

1: "Go/No-Go test for memory board": Comments for Documentation

2 “Tests signatures of B data bus™:

3 "Lines for all possible addresses":

4 "RAM's have been initialized":

5: recv ref 1,0.4,2,3.2 Set SA low, high reference
voltages

6 saset 1,"2",1,"F",1,"F" Set SA to process clock 1

7 input, rising edge, start 1,

8 stop 1, falling edges
Initializes SA Processor

9: clock 1,]1:6,1e? Set clock to 1 MHz, free run

10: apply "R/4", 1 Set RAM's to Read

11: for 1 =1to8 Start of loop for 8 signature
measurements

12: mcon N [ Close test node relay speci-
fied by variable N[1]

13 sig "', (1] Measure and check sigrature

against stored reference
signature S$[1]

1 if flgll, gto "DEBUG" Test pass/fail flag; if fail,
branch to debug subroutine

15:  next | End of measurement toop
16: dsp "BOAR[' PASSED"; gto "START" Display PASS message
17 v

"DEBUG": Start of debug orocedure

monitoring data bus signatures and fault isolation can be performed,
typically in 5 to 15 secords to the component level.

Testing a Microprocessor Eoard

The second SA test example is the board represented by the diagram of
Figure 10. It consists of a Motorola 6800 microprocessor, an onboard
clock, power-up support circuitry and various I/0 circuitry. On board
memory elements include both ROM and RAM. There are both hardware and
software elements included to enhance Signature Anglysis testability.

Architecturally, the board utilizes a 16-bit address bus, an 8-bit data
bus. There are buffers on the address bus 1ines ard bi-directional buf-
fers on the data bus lines. Control Tines employec by the board include
read/write (R/W), valid memory address (VMA), data bus enable (DBE), and
interrupt request (IRQ). ROM and RAM elements are driven by combinatorial
address decoder logic.

The I/0 circuits include a peripheral interface adapter (PIA) for parallel
I/0 devices such as printers, displays and keyboards, and an asynchronous
communication interface adapter (ACIA) for serial I/0 devices such as a
terminal.
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- Internal SA stimulus tests
- Verify contents of all ROM's
- Test RAM's
- Test PIA
- Test ACIA

The free-run tests are initiated by electrically disabling the data bus
buffers and applying a NOP instruction to the microprocessor via the
pull-up/pull-down resistors. This has the same effect as applying a 16-
bit counter to the address bus - the program counter of the processor
will cycle through all possible addresses. The valid memory address
(VMA) Tine is multiplexed to serve as SA CLOCK while the address line
A15 (most significant bit of address bus) is applied to both SA START
and STOP. As in the previous example, all addressing functions and all
data storage functions except RAM functions (which must be initialized)
may be verified by checking the eight data bus lines during free run.

In this case, a different approach will be taken to illustrate alternative
SA test procedures.

First, address functions including the address bus, buffers, and decoder
logic is verified by taking signatures on the address bus on both sides
of the buffer and at the output nodes of the address decoder Togic.
Then, the contents of ROM's is verified by selecting START and STOP
lines from the address bus corresponding to the Tow and high addresses



different paths depending upon whether a PASS or FAIL condition occurs.
If the signature of a constant high condition is monitored during this
RAM write/read procedure, a different signature will be registered for
each pass/fail condition (since the test signature will reflect the
number of clock pulses required to execute the firmware-based procedure).

A table of signatures for all pass/fail conditions may be established
within the ATE test program. The RAM's can also be checked by monitoring
the data bus during the read/write sequence. This would require eight
Signature measurements over eight identical stimulation cycles. By
monitoring the high-level signal and having the microprocessor perform
the data check function, the same test is executed on the basis of one
signature, one stimulation cycle. In the event of a RAM failure, a
troubleshooting procedure may be executed as described for the memory
board example to isolate to the faulty device.

The PIA provides two eight-bit ports which may be programmed for either
input or output functiors. The two ports act 1ike latches. Control
lines define the data direction and handshaking schemes for passing
data. The PIA is effectively stimulated via "PIA" routines in the SA
stimulus ROM. Test system relays can be used to connect the two I/0
ports together at the bcard edge connector. Then, one port can be
programmed to output while the other is configured as input. Signatures
may be taken directly on data bus lines to verify proper activity for
virtually all possible combinations of the data and control signals, or
the processor itself can be programmed to perform data check functions
while the high line signature is monitored as for the RAM tests. After
tests are completed for one combination, the input/output functions can
be reversed and the test procedure repeated. The PIA test firmware can
be written to stimulate the device as its used ir the final application.

The ACIA is similar in nature to the PIA except that data transfer may
be asynchronous to the processor clock and one pcrt is dedicated for the
transmit functions and a second port is dedicatec to receive functions.
Again, if the two ports are connected together, firmware in the SA ROM
may be used to exercise the device. However, it will be necessary to
make the test synchronous to some reference clock in order to use the
normal SA test mode. If this is not possible, then nodal activity may
be characterized by taking a high level signal signature while using the
test node signal as SA CLOCK. The signature will thus test that the
correct number of transistions occur on the test node.

The ATE test program can be written to perform an efficient GO/NO-GO
test on the board by using a free-run test to verify the board kernel
and ROM's. Thepr RAM and peripheral firmware may be executed while
monitoring the high level signature as described to quickly verify
correct or incorrect operation. If faulty signatures occur, some faults
will be directly specifiad by the high line signature. In other cases,
tracing algorithms will e required to isolate to the faulty component
level.

In summary, SA can be effectively applied at normal operating speeds to
test a board with a microprocessor and auxiliary peripheral chips. A

few hundred bytes of firmware, in conjunction with the processing capabili-
ties of the microprocessor, can be used to verify normal operating modes
without knowledge of the internal logic structure of the devices used in
the board design.
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of the ROM's and monitoring signatures on the eight data bus lines. All
of this is accomplished in the free-run mode and would require Tess than
five seconds to run. Any failures which occur are handled as discussed

in the previous example. One exception to this might be a test of the
board clock in the event of an apparent microprocessor failure as reflec-
ted in a faulty signature on the address bus. The clock into the proces-
sor could be checked with amplitude/frequency measurements or by measuring
a constant high condition signature over the free-run window. Such a
signature is a function of the number of clock pulses in the measurement
window only.

Given that the ROM containing the SA stimulus tests "good", then that
stimulus may be used for further tests on the board. The firmware for a
particular test sequence is executed by controlling interrupt and vector
address data to the processor as described previously. The firmware may
be written to perform individual tests or to string individual tests
together in any desirable sequence - all controlled by vectoring to the
appropriate location in the ROM.

To perform RAM tests, the firmware-based sequence of Figure 11 may be
effectively utilized. First, the processor writes alternating 1's and
0's into each word of RAM. Complementary patterns are used in even/odd
locations. These are well established patterns for testing RAM's for
adjacent bit and adjacent address shorts. Each word is read back and
tested by the processor. After all addresses are checked, the patterns
in each address are complemented and the procedure is repeated. If any
cell fails, a flag is set to register the failure. At the end of each
RAM test, the flag will be checked and the firmware will take one of two



SA FOR LST BOARD TESTING - IN SUMMARY

Signature Analysis is an effective method for ATE-based testing of
printed circuit assemblies which include LSI devices. When using SA,
the tester is synchronized to the device under test and the testing is
typically performed at MHz rates. A large number of microprocessor
instructions can be tested using a short ATE test program and the entire
contents of RAM/ROM verified without much sacrifice to the total test
time. LSI devices may, thus, be thoroughly exercised to achieve high
operational confidence--encompassing at speed, timing related faults
which are often more difficult and costly to detect in the production
test flow.

SA imposes no pattern length limitations. Since a compression technique
is used, the measurement unit performs no comparisons on the input data
stream until the end of the test sequence. This obviates the need for
RAM-backed receivers and minimizes both tester memory requirements and
the processing time in achieving pass/fail decisions. Thus, SA may help
minimize both tester and test time costs. In an ATE environment, test
stimulation may be effectively generated either internally or externally
to the device under test. Test patterns are often directly related to
the application software. With the measurement capabilities of ATE, the
stimulus may be either a repetitive or single cycle signal.

The measurement techniqua of SA is not dependent upon the logic structure
of the circuit being tested. Although the stimulus may vary somewhat
depending, for example, Jpon the processor type (one processor test may
generate START/STOP on the basis of address decoding whereas a test for
another processor may use an I/0 line for the same purpose), the ATE
software, the measurement approach, and fault isolation processes are
largely the same for all types of a generic class of circuits.

In general, SA can be most effectively utilized when the designer of the
board is knowledgeable of the technique and plans for the fact that SA
production testing is to be employed. Considerations for accomplishing
this objective and examples of SA designed-in testability may be found
in references 11, 12, and 13. Designing SA into a microprosscr-based
board may require dedicazing a small portion of the on-board memory for
the "SA ROM". This memory space can be utilized by the processor to
exercise itself and other devices on the board.

"Designed-in" SA testabiiity, such as on-board stimulus, can make SA an
effective test technique for both production test and field service test
applications. With stimulus generated by the unit under test itself or

a simply connected external ROM, SA lends itself to use with portable

field service instrumentation. The compatability of SA in production

and field service can minimize the cost of developing product test
approaches. SA can often reduce warranty costs by eliminating the need

for board exchange with its inherent service-module inventory and typically
high administrative and handling costs.

SA is not, however, without its limitations. Designing in SA testability
may add to product cost, although this cost may well be recovered in re-
duced testing cost. SA is a synchronous technique. Any bit stream that
is examined during a measurement period has to be synchronized to a

clock. Hazards which exist in the board or logic races generated by the
stimulus could cause unstable signatures. Obviously, it is far preferable
to eliminate such hazards and races from the board before testing. If
this is not possible, the user must choose the measurement window in a



way that will exclude these uncertain data from entering the measurement

cycle. Don't care conditions on data or address busses may be handled

by choosing a clock that is gated by a data valid signal. Asynchronous —
signals can be measured using SA processor hardware for transition

counting.

As in any other technique of testing, Signature Analysis requires a set
of stimulus patterns that functionally test various components and
propagate any possible faults to a measurement point. For devices that
are directly connected or are readily accessible to the stimulus, it is
usually quite simple to generate a high confidence test pattern. For
devices that are not readily accessible by the stimulus or are a part of
a deep sequential circuit, it requires careful effort to generate a high
confidence test pattern. However, by using test sequences directly
related to the applications environment, a high confidence level can
usually be obtained.

SA is being effectively employed as an ATE-based test tool for LSI-based
board testing by a variety of users. It offers unique alternatives to
other test methods and can provide high test confidence at reasonable
cost for both production and field testing.
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One of the first applications of high speed switching
technology dates back to the advent of television. A 16kHz
flyback circuit utilizing a beam power pentode switch and a
vacuum diode damper was used to generate both the second
anode CRT high voltage and the horizontal scan ramp. The
original system operated off the secondary circuit of a 60H=z
power supply transformer. Today, this flyback system is
still used, with the variation that it is operated "offline"
with the cost, weight and size savings due to the elimination
of the 60Hz power transformer. Also, other bias voltages
are derived from the flyback circuit to supply DC power to

all other circuits in the receiver.

Little attention was paid to this method of power con-
version until about 20 years ago in commercial power supply

design. Looking back, the switching frequency in commercial

switching regulators went from 800Hz to 3kHz during the 1960's,

to 10-40kHz in the 1970's. The prospects of switching rates
from 200kHz to 1MHz exists for the 1980's The driving force
behind increased speed results from the development of new
components such as high speed, high voltage and high current
power transistors. Also, high speed SRC's, high frequency
switching rectifier diodes, Schottky rectifiers, and new
developments in VFET technology and gate controlled switches
are contributing to increased switching rates. Concurrent
with semiconductor improvements are the improvements of

magnetics and capacitor technology.

During the last several years, acceptance of the switch-

ing power supply, especially in the computer industry, has



increased significantly. This is due to the reduction in the
size and weight of the switcher. Also, increased efficiency
and reliability make them an attractive alternative to the
traditional linear power supply. As on-going improvements

in LST technology allow the computer industry to perform

more functions in a given size box, the advantage of switch-
ing regulators mentioned above shall become more obvious in
the 1980's. The reasons behind these switching power supply
improvements and the design criteria involved in their im-

plementation shall be explored in this paper.

A regulated DC power supply of any architecture has at

least three basic building blocks:

1. A source of DC power
2. A current passing device

3. A control system

LINE be
CURRENT AANA
> POWER 1 PASSING >
SOURCE DEVICE LOAD

)

CONTROL
SYSTEM

FIG. 1 - BASIC LINEAR POWER SUPPLY BLOCKS



First, we shall take a casual look at the traditional
linear power supply{ in order to develop similarities and
contrasts to switching power supply design. The DC power
source in a linear power supply consists of a 60Hz power
transformer, a rectifier and an energy storage device,

usually a capacitor.
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60Hz POWER iﬁ ~
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RECTIFIER
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FIG. 2 - BASIC LINEAR POWER SJPPLY INPUT MESH

The load is ccnnected to the DC power source by way of a
current passing device which varies the conductive path between
the two. The control system samples thes output voltage or out-
put current, compares it to a fixed voltage reference, and sig-
nals the current passing element to provide the required conduc-

tive path to the lcad. This system has two key features:

1. Isolation is established between line input

and DC outuput.

2. The system provides an output voltage or
current which is almost indepeadent of input

line variations or output load variations.
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FIG. 3 - BASIC LINEAR POWER SUPPLY CONTROL SYSTEM

The amount of ripple on the output and the degree of
regulation is largely a function of the amount of amplication
provided by gainblock A. Because of the simplicity of the
linear topology, very high gain can be used, with relatively -
simple compensation networks employed to stabilize the system
at high frequencies. The result is that the linear power
supply can provide excellent regulation characteristics, with
low PARD (Periodic & Random Deviations) and fast load effect
transient recovery times. On the negative side of things, the
linear supply is large in physical size and heavy for a given
output wattage. This is due to the fact that a linear supply
achieves isolation with a 60Hz power transformer which must
be large and heavy due to the low operating frequency. Also,
the linear suffers from poor efficiency due to the necessity of
maintaining a voltage drop across the current passing device as
current is also passing through it. The product of the Vce
drop and Ic produce heat and substantially limit the efficiency
of this architecture. Some attempts have been made to improve
linear efficiencies with the use of a phase controlled pre-

regulator circuit. This circuit is used to maintain a constant



and relatively small voltage drop across the series pass device,
but still can't approach the efficiency of switching regulator
architecture. Also, this technique cannot eliminate the neces-
sity for a 60Hz power transformer, as isolation between line and
load must be maintained. Now we shall take a look at some switch-

ing techniques.

A simple example of a switching power control cirucit
would be that of an electrical light connected to an on/off
switch. When the switch is on, the voltage drop across the
switch is ideally zero, and when the switch is off the current
through the switch is ideally zero. When the state of the
switch is changed, —:the electrical state of the switch is changed

instantaneously in —-he ideal case.
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FIG. 4 - IDEAL SWITCH CHARACTERISTICS

One can readilv see that in all three states of the ideal
switch; on, off and transition, the power dissipated by the

switch is zero.



If we now add a third component to the system mentioned, -
the human eye, and then turn the switch on and off rapidly, the
brightness of the bulb shall be proportional to the on state
duty cycle of the switch. The eye is, in this case, acting as

an integrator to the photonic energy being supplied to it.

1 T ON TIME | OFF TIME | ON TIME

ty t2 t
—_—
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FIG. 5 - SWITCH ON STATE DUTY CYCLE

If we start with a 100 Volt source, and a 100W incandescent
bulb (with constant resistance), the on state power should be
100 Watts applied to the bulb. If we set t1=t2, or we switch
at a 50% duty cycle and then integrated through the interval
(t1+t2), the apparent power seen by the human eye would be the
photonic output of the bulb proportioned by only 50W of input
power. It can be seen, that varying the duty cycle T, would
vary the apparent brightness of the bulb, with no power loss in
the control element, the switch. In theory this system is 100%
efficient if we neglect the energy required to turn the switch
on and off. A real switch has three terms involved with
switching loss. They are on state resistance, off state leakage,
and transitional delay or storage time. Off state leakage is

negligible in todays devices, so attention is paid mostly to the



on state resistance of devices and device storage time. These

characteristics shall be discussed in more detail later.

In developing a model for a switching regulator, we must
expand on our original regulated DC power supply building blocks
with the addition of an energy storage system. The basic build-

ing blocks of a switching power supply, are therefore:

1. A source of DC power
2. A switching network
3. An energy storage system
4. A control system
DC POWER CONTROL ENERGY STORAGE
AC LINE SOURCE SWITCH SYSTEM LOAD

\

Y
—MA—
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L T
—Dl%—ﬂ—o/o— 0
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CONTROL. SYSTEM

FIG. 6 — BASIC SWITCHING POWER SUPPLY BLOCKS

The energy storage system in most topologies serves as an
integrator, such that the output voltage of the sytem under a
given load is a function of the switches "on'" time duty cycle.
The control system, therefore, must sample the output voltage
or current, compare them to a fixed reference, and generate an
on state duty cycle proportional to the amount of time required
to ramp the voltage or current up to the established output

demands of the supply.
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FIG. 7 - SWITCHING POWER SUPPLY STORAGE SYSTEM

Figure 7 shows a representative energy storage system

utilizing a two pole L-C filter. Some minimum
maintained on the output L-C when this network
a control loop in order to prevent the control

unstable under no load conditions. The output

load must be
is enclosed in
loop from going

voltage ripple

in certain control schemes (V ripple) is a constant irrespec-

tive of load. This is a result of double ended

regulation which shall be discussed later. It

limit cycle
may be noted

that a certain amount of output ripple is required for single

loop double 1limit cycle control.



In a real power supply, as was mentioned earlier, two
basic criteria must be satisfied, that of output regulation
and line input to load output isolation. Offline switching
techniques take advantage of the high speed characteristics
of devices by installing the switching network before the
power transformer. This requires the addition of a line input
rectifier and filter network, but results in substantially
smaller power transformer size and weight. The basic block
for the power mesh of a switching inverter circuit are shown

in Figure 8.
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FIG. 8 - SWITCHING POWER SUPPLY POWER MESH

We shall now look at several specific circuit topologies
used in switching regulator power supplies. The first one is
referred to as a voltage driven push-pull circuit and is shown
in Figure 9.
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FIG. 9 - SWITCHING POWER SUPPLY PUSH-PULL TOPOLOGY




When Q-1 turns on, T-1's primary magnetizes in one direction
as current is pulled through Q-1's collector to emitter. In
short turn, Q-1 is turned off while Q-2 is turned on, reversing
the flux in T-1 as current flows in Q-2. These commutations are
coupled by the mutual inductance of T-1 to T-1's secondary where
they are rectified by CR-1 and CR-2. The output of the rectifier
is applied to an energy storage network for integration and
smoothing purposes. This circuit is considered to be of the

voltage fed type, in that the current in the switches is only
_V supply )

Xy, )
Because of the voltage fed input to the switches, if both tran-

limited by the inductance of the transformer (I

sistors were to be in conduction at the same time, a result of

an extraneous transient appearing at both bases at the same time,
transformer saturation could occur and collector currents would
be limited only by circuit resistance. Because circuit resis-
tance is extremely small, this situation would probably destroy
both switches. Another mechanism by which switch destruction
could occur would involve too short of a dead zone between
switching cycles. Because of storage time in the transistors,
they do not turn off immediately after base drive is removed.
Even using the method of actively pulling current out of the
transistor base does not eliminate the finite switch transistion
time. Because of this transistor characteristic, one switch
must be allowed to settle down before the other adjacent tran-
sistor is turned on, adding to control circuit complexity. This
is accomplished with what is known as a dead zone generator,

the waveform of which appears in Figure #10.
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FIG. 10 - BI-POLAR TRANSISTOR SWITCHING CHARACTERISTICS
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This dead or transition zone must be guaranteed to remain
at a constant time (t-3) irrespective of duty cycle. 1t also
limits the duty cycle to less than 50% for any one of the
switches. Another inherent disadvantage of this type of circuit
is the extremely high Vceo required of the switching transistors.
In the case of an off-line switcher, nominal voltage stress on
the switches ignoring switching transient would be (Vacrms) JE-(2).
For a 120 Volt ac input line, this would necessitate the use of
a device with a Veceo of 340 Volts minimum. For 240 Volt operation
the stress becomes 680 Volts, which is too high when considering
the cost of transistors wi‘h a breakdown characteristic of that
order. When considering the transient condition, the voltage
stress can be significantly worse without the use of a voltage

snubbing device.

When one of the switching transistors turns off, the induc-
tance of the associated transformer winding generates a voltage
opposing the direction of current turn off. This spike appears

across the transistor collector to emitter as shown in Figure #11.

TRANSIENT CAUSED BY

-2 TURN-OFF
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FIG. 11 - PUSH-PULL CIRCUIT TRANSISTOR VOLTAGE STRESSING
CHARACTERISTICS



Not only is this a source of Possible switching transistor
failure, but it is also a source of RFI due to the high dv/dt

and assoclated harmonic content of the spike.

There are two possible solutions to the excessive voltage
stressing on push-pull circuit switches. The first circuit
solution‘also reduces the possibility of transistor switching
crossover destruction. The first solution requires the addition

of a third transistor as shown in Figure 12.
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FIG. 12 - CURRENT DRIVEN PUSH-PULL TOPOLOGY

This third transistor is generally switched at twice the
inverter switching rate and in sync with it. This acts as a
current feed for the push-pull inverter, limiting the maximum
current available to the main switches, due to the action of L-1
This topology also reduces the voltage stress on the inverter
transistors. Because Q-1 can be connected in the voltage
control loop, this topology maintains a comparatively smaller

voltage across the push-pull transistors in the inverter circuit.




Another solution to excessive voltage stressing of the main
switches employs a pre-regulator circuit of phase controlled
architecture. For example, as in Figure 13, a triac could be
inserted between the line and the input rectifier to reduce the
inverter input voltage to a value less than the line voltage. A
sample of the voltage input to the inverter circuit is compared
to a fixed voltage reference. The error voltage (the difference
between the two mentioned) establishes the appropriate firing
angle for the triac to make the correction. This firing angle
determines the peak voltage that appears on C-1. It should be
noted, however, that this scheme does not solve the problem of
output transistor switching crossover destruction, as C-1 appears

as a voltage source.
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FIG. 13 - PHASE CONTROL PRE-REGULATOR



Another elementary switching regulator power mesh topology

is the half bridge configuration shown in Figure 14. —
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FIG. 14 - SWITCHING POWER SUPPLY HALF BRIDGE TOPOLOGY

It utilizes a split supply consisting of a rectifier, two
filter capacitors C-1 and C-2, two voltage balancing resistors
R-1 and R-2, two switches Q-1 and Q-2, and a non-center tapped
transformer. Because of the use of the non-center tapped trans-
former, the voltage stress on the switches is half that of the
push-pull configuration described earlier. For 240 Volt opera-
tion, S-1 is open and the rectifier operates as a standard
bridge. TFor 120 Volt operation S-1 is closed and the rectifier
in conjunction with C-1 and C-2 operates as a voltage doubler in
a clamp and rectify mode of operation. In either case, 120
Volts or 240 Volt line input, the voltage presented to the
switches is JTT(240) or 340 Volts, a significant improvement
over the push-pull voltage stress. One problem encountered with
this circuit results from a possible net voltage x time inbalance
between one switch half cycle and the other. If an inbalance
in pulse width, within a duty cycle is repeated a number of
times, or an inbalance in transistor conduction characteristics .
exists between the two switching transistors, the core of the !
transformer could eventually "pump up'" flux in the direction of

the inbalance. Eventually this can result in transformer

- 14 -



core saturation, leaving only intrinsic circuit resistances to
limit switch current. This condition will result in overcurrent
in the switches causing their destruction. Two solutions to

this problem are possible. The first one involves the insertion
of a capacitor in series with the transformer primary in order

to block the dc offset created by any inbalance. The disadvan-
tage to this solution is that the capacitor must have a large
voltage and current rating, must have a small capacitive reac-
tance at the frequency of switching, and must be bi-polar. These
capacitors are generally large and costly. Another solution
involves the cycle by cycle sampling of current in each switch.
When an inbalance is detected in one leg, the adjacent tran-
sistors on time can be adjusted to generate a volt-second balance
to correct for the transformer flux inbalance. This method can
increase the complexity of the control circuit significantly,

and may; therefore, become impractical in all but high power

applications.

A variation on the theme of the half bridge is the full

bridge configuration shown in Figure 15.
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FIG. 15 - SWITCHING POWER SUPPLY FULL BRIDGE TOPOLOGY



The input rectifier and filter network functions identically
to that of the half bridge input circuit. Both transistors Q-1
and Q-2 are triggered simultaneously, applying the rail voltage
to T-1, with the dot side polarized in the positive direction.
During the second half of the switching cycle, Q-2 and Q-4 are
triggered, again applying the rail voltage to the transformer
only with the dot side polarized in the negative direction. Due
to the intrinsic symmetry of the bi-phasic voltage waveform
applied to the transformer, transformer core saturation is not
a problem. The peak voltage stress on the transistors is V line x
Ig-with S-1 open, or 340 Volts. This configuration, therefore,
has many advantages over the others mentioned thus far with the
exception that four switching transistors are required. The
full bridge is more commonly found in high power switching
circuits, (> 1000 Watts), whereas the half bridge is found in

low and medium power switching circuits.

Up to now, we have considered all of the multiple switching
transistor topologies. We will now consider two more economical,
single transistor solutions to switching regulator applications

that of the flyback converter, and the forward feed converter.
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FIG. 16 - BASIC FLYBACK TOPOLOGY
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When Q-1 is energized, energy from C-1 is dumped into T-1's
primary and stored in its core. During this part of the switch-
ing cycle, flyback diode CR-1 and rectifier diode CR-2 are reverse
biased. When Q-1 turns off, the tertiary and secondary winding
of T-1 builds up a voltage in a direction opposing turn off, put-
ting CR-1 and CR-2 into conduction. The tertiary winding then
returns the unused energy which was stored in the transformer
inductance to the supply capacitor during the Q-1 off state. In
short, energy was stored in the transformer inductance during
transistor turn on, and then released during the off state of
the switching cycle. The voltage stress on Q-1 in the flyback
circuit shown is 2 JE- (V line rms). The principle disadvantages
to this realization are the poor RFI characteristics it exhibits
as well as the high degree of ripple voltage contained in its

output.

In the forward feed through circuit shown in Figure 17

energy is supplied to the load during the conductance state of

Q-1.
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FIG. 17 - BASIC FORWARD FEED TOPOLOGY

- 17 -



When Q-1 is conducting, CR-2 conducts current into the L-C
filter comprised of L-1 and C-2. During the off state, flyback
diode CR-1 conducts, returning the demagnetizing current of T-1
back into C-1. Flywheel diode CR-3 maintains a path for current
flow in the output circuit during the off state of Q-1. As with
the flyback circuit, voltage stress on Q-1 is 2 JE-(V line rms).
The principle advantage of this circuit over the flyback single
transistor topology is the reduction of high frequency output

ripple content due to the addition of L~1 in the output mesh.

One last topology, that of resonant conversion, deserves mention.
Although this technique is not in common usage today, it shall
be seen in the future, particularly as switching frequencies in-
crease. Basically, the technique utilizes transistor switches
to dump current into a resonant tank circuit which is similar
to the topology of a class C RF amplifier circuit. By varying
the frequency of the switching a varying envelope voltage will
appear across the tank circuit. For example, with a series
resonant tank, the voltage across the capacitor shall decrease
with increased frequency when operating above the resonant fre-
quency of the tank. In this type of system, energy is stored in
the tank and as load demands increase, the switching frequency
is brought closer to the resonant frequency of the tank, tending
to regulate the output voltage. A chief advantage to this
topology is the sinusoidal current waveform present inthe front
end mesh. Squarewaves with their associated steep %%'s generates
significant odd order harmonic RFI (H field), as compared to that
of a relatively undistorted sinewave. With increased attention
being payed to RFI emissions due to FCC and European regulations,

more serious attention will be paid to sine wave power conversion,

in the near future.

With the exception of ferroresonance, all switching power
supplies employ either limit cycle control, or slow feedback
loop control, and some employ a combination of both to achieve

output regulation. The simplest system employs limit cycle



control, which is capable of high speed operation, and is,
therefore, sometimes referred to as fast loop control. Basically
a limit cycle system consists of a switch, an energy storage

system, and a voltage detector as shown in Figure 18.
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FIG. 18 - BASIC SINGLE ENDED LIMIT CYCLE CONTROL SCHEME

Operation is as follows: FEach time a clock pulse occurs,
switch S-1 is placed in the on state. Voltage comparator A
monitors the output voltage, and when it exceeds V ref. it turns
off S-1. Specifically this method is referred to as single ended
limit cycle control, because switch turn on is initiated by a
free running clock at a fixed frequency. A variation on the
single ended limit cycle is the double ended limit cycle control.
The only difference is that switch S-1 is not activated by a
clock; it is activated when another comparator sees an output
voltage below a pre-set reference. In this type of control,
switching frequency shall vary as a function of load, whereas
the single ended limit cycle operates at a constant frequency.

A big advantage to the 1limit cycle control, is that instability,
is a normal function of operation resulting in the fact that the
feedback loop does not need compensation. The result is that
transient response is excellent with this system because this
parameter is primarily a function of the outpur L-C filter

characteristics.



A second system of control involves the use of a slow loop
or proportional control. This circuit takes and average value
of the output voltage and establishes a pulse width which would
provide the necessary voltage output for zero correction in the
comparator circuit. This system is very difficult to stabilize,
unless the unity gain crossover occurs fairly low in frequecny.
This 1imits the load effect transient recovery response of the
supply, but canh provide more precise regulation than the limit

cycle control.

In order to get the best of both worlds, a combination of
the 1imit cycle and slow loop control may be used. Basically,
a second L-C filter is installed after the limit cycle. The
output of the second filter is also the power supply output, and
is connected to a comparator. This comparator is designed to
have a substantially limited upper bandpass and provides the

voltage reference for the 1limit cycle control cycles.

Control system theory in switching power supply design is
a rigorous study. Many trade offsare carefully weighed when

designing the control loop, and the details of its design are

beyond the scope of this paper. As we see advances in semi-
conductor technology, especially in the area of high speed high
power MOSFET's, component selection shall become increasingly

more critical especially in the area of transformer specification
and capacitor ESR (Effective Series Resistance) characteristics.
Adding another design plaque to the switching power supply Engineer,
are the increasingly more stringent RFI standards which must be
complied with. The net result, is that unlike linear supply design,

switching power supply design is anything but trivial.
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SECTION A—INTRODUCTION

The costs of troubleshooting digital products in final
assembly and field service are becoming increasingly
visible, and are often perceived to be out of control. Strat-
egies have been advanced which reduce these costs, but
which also involve some initial investment in:

Product Setup

Test Equipment

Documentation

Materials

Combinations of These Elements

For example, in order to implement Signature Analy-
sis, "' and take advantage of its savings in labor, proces-
sing and test equipment, a product usually needs to be set
up, by design or retrofit, to utilize the technique. Therefore,
the management decision to adopt or change atest/service
strategy for a digital product hinges on the question:

Will expected cost reductions in final assembly and
field service earn sufficient return on the setup in-
vestment, and how do the returns for different strat-
egies compare?

1. Return on Investment. The comparison of two digital
test/service strategies can be considered a return on
investment (ROI) exercise. The incremental costs of
one strategy over the other are negative cash flows
during the investment phase of the project. The in-
cremental savings of that strategy are positive cash
flows during the return phase of the project.
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There are several common ROI calculations which
allow comparisons of cash flows. This paper utilizes
IRR (internal rate of return).

Costs and Savings. While the ROI calculation is
straightforward, the estimation of the cash flows
(costs and savings) is not. Existing costs are difficult
to measure and proposed savings are difficult to pre-
dict. This paper attempts to simplify the exercise by
offering some rules of thumb for cost/saving estima-
tion. The rules are very conservative, resulting in
higher costs and lower savings than our experience
indicates. The effect is a tough comparison, assuring
that adoption of a strategy will earn the target ROI.

Model. The model, then, consists not only of the ROI
calculation, but also of a set of simple guidelines for
cash flow estimation. It should allow comparison of
alternatives in very short study times (one to two
days), with minimum research. It is suitable for a wide
range of digital products. All calculations are per-
formed on a pocket caiculator.

Sample Product. The paper presents the model via a
sample product. The product represents a composite
of our experience on hundreds of applications at
Hewlett-Packard and other companies.

Organization. In order to help the reader apply the
model to other products, the paper is organized as
follows:

Section B — Initial assumptions on the sample
product which affect outcome:

Product Type

Selling Price

Cost Structure

Production Life

Service Life

Number of Parts

Forecast

Field Failure Rate

Section C — Alternatives to be analyzed and
their flow charts:

e Before (or current)

e After (or new)

Section D — Analysis of incremental costs:
¢ Engineering

¢ Documentation

¢ Test Equipment

e Component Stock

¢ Ongoing Materials

Section E — Analysis of incremental savings.
® Production Labor

e Warranty

o Field Service



SECTION B — INITIAL ASSUMPTIONS
In order to build a realistic economic model, we selected

a sample product, and analyzed all of the cost and savings
considerations for its digital test and service. So that the
process may be applied to other products, this section
details the assumptions we made concerning the sample
product. It also discusses ways in which these assumptions
may affect the results, if varied to accommodate other prod-
ucts. The section concludes with a summary table of the
assumptions, with space to state assumptions for another
product.

1. Product Type. We chose a relatively sophisticated
graphic terminal as the sample product, because it
incorporates a wide variety of digital troubleshooting
chatlenges: microprocessor, ROM, dynamic RAM,
keyboard, CRT controller, character generators,
communication ports, etc. The analysis has been ap-
plied equally well to both simpler and more complex
products.

2. Selling Price. The sample product sells for $5,000.
The analysis has been used on products ranging from
a $300 instrument to a $100,000 ATE system.

3. Cost Structure. Any analysis of cost savings depends
heavily on the cost breakdown of the product. The
larger an existing cost category is, the higher the im-
pact of savings in that category on ROI. For the
sample product, we estimated each cost element on
the low side, in order to be conservative and lessen
the impact of cost savings on ROI.

ELEMENT {

COST
Direct Material $1,000
Direct Labor $ 250 (25 hours)
Factory Overhead $ 750
Research and Development $ 500
Marketing $ 400
Sales and Service S 500
Warranty S 100
Other $1,000

4. Production Life. The sample product has an esti-
mated production life of four years. The longer the
production life, the greater the impact of cost savings
on the ROl model. However, the earlier years have
the greatest impact on ROI.

5. Service Life. The time during which a product is sup-
ported in the field, after production is discontinued,
depends on company policy. We assumed a ten-year
service life. However, the length of this period has
only a minor impact on the ROI calculation.

6. Number of Parts. The sample product has 315 IC's,
distributed over 5 PC boards. The largest board has
150 IC’s, the smallest has 20. There does not appear
to be any upper limit on the number of IC’s involved.
However, it is difficult to show any savings on products
of less than 5 IC's.

7. Sales Forecast. Assumption of an annual volume
forecast over the procduct life is necessary in order to
calculate production, service, and warranty costs
and savings. The sample product uses this forecast:

, QTY | SERVICE| WARRANTY
YEAR | sHippeD | S$VOLUME| gagE BASE
0 0 0 0 0

1 600 $3M 600 600

2 1200 $6M 1800 1200

3 1200 $6M 3000 1200

4 600 $3M 3600 600
5-10 0 ¢ 3600 0

The analysis has been used on products with both
higher and lower volumes.

8. Field Failure Rate. We assumed a yearly failure rate
of 10% of the total installed base for the 10-year
service life of the sample product. This is conser-
vatively low, since the higher the failure rate, the
greater the savings which can be realized in cutting
service costs.

IN OUT OF
YEAR | FAILURES | wWARRANTY | WARRANTY
0 0 0 0
1 60 60 0
2 180 120 60
3 300 120 180
q 360 60 300
5-10 360 0 360
SUMMARY OF MODEL ASSUMPTIONS
Item Sample Product Under Study
Product
1. Product Type Terminal
2. Selling Price $5,000
3. Cost Structure
Material $1,000
Labor 250
Overhead 750
R&D 500
Marketing 400
Sales/Service 500
Warranty 100
Other 1,000
4. Production Life 4 Years
5. Service Life 10 Years
6. Number of Parts
Boards 5
IC's 315
7. Forecast
Year 1 600 units
Year 2 1200 units
Year 3 1200 units
Year 4 600 units
8. Field Failure Rate 10% Per Year

SECTION C — ALTERNATIVES
TO BE ANALYZED

The analysis may be used to generate the incremental
ROl between any two alternative digital test and service
strategies. We chose to compare two strategies which meet
these criteria:
1. Before: The most common strategy now used by

companies with digital products.
2. After: The simplest, first-step improvement over the
current strategy.

Here is an outline of each of the alternatives studied.
1. Before:

e -~ FACTORY — —— o] Hf— ——— FIELD ———— —{
SUB- FINAL FIELD CUSTOMER
ASSEMBLY |~ ASSEMBLY OFFICE SITE
BOARDS PRODUCTS BOARDS
BOARDS
i ! ' ! I |
COT:\?:ENT; B8OARD | NO | 1 BOARD |
L SWAP ' REPAIR ' SWAP
REPAIR | 1 |




This alternative represents the most common strat-
egy for digital test and service. Products which fail in
the final assembly area (turn-on, heat-run, final test,
QA, etc.) are repaired by swapping PC boards. Bad
boards are returned to a subassembly test area for
component level troubleshooting and repair. Prod-
ucts which fail in the field are repaired by swapping
PC boards at the installation site. Bad boards are
returned to the subassembly test area, via the field
office, for component level troubleshooting and re-

patr.
After:
et — FACTORY — —»1 ~-————  FIELD -
SUB- FINAL FIELD CUSTOMER
ASSEMBLY ASSEMBLY > OFFICE SITE
BOARDS PRODUCTS BOARDS
COMPONENTS
| | : |
COMPONENT COMPONENTI COMPONENT
| LEVEL ! ©Lever | LEVEL | Bscx:‘:‘
REPAIR | . REPAIR REPAIR |

After:

SUB- FINAL FIELD CUSTOMER
ASSEMBLY ASSEMBLY OFFICE SITE

This alternative represents a strategy which
could be implemented by setting up the product to be
repaired to the component level. Products which failin
the final assembly area are troubleshot and repaired
to the component level, without disassembly. Prod-
ucts which fail in the field are repaired by swapping
PC boards at the installation site. Bad boards are
returned to the field office for component level trouble-
shooting and repair. No boards return to the factory.
We implemented this strategy on the sample product
by incorporating the Signature Analysis technique.
This required some incremental expenses, over and
above what we would have spent to set up the product
for straight board-swap repair. However, the savings
in repair labor, materials and handling yielded a very
attractive ROI. Expenses and savings are detailed in
the following sections.

Note: This alternative specified board-swap repair
on-site. Additional savings could be generated, with
no additional costs, by repairing products on-site, to
the component level. There are many examples of
this. However, we chose not to take advantage of
these savings in the model, since many installation
sites are not suitable for replacing components on
boards.

Product Under Study. Here is some space to model
comparative test/service strategies for another
product.

Before:

SUB- FINAL FIELD CUSTOMER
ASSEMBLY ASSEMBLY OFFICE SITE

Note: Just fill in the appropriate product flows to
describe each strategy.

SECTION D — ANALYSIS OF INCREMENTAL
COSTS

In order to implement the new strategy for digital test and
service in the sample product, we incurred some incre-
mental costs, compared to those for the current strategy:

Engineering
Documentation
Test Equipment
Component Stock
Ongoing Materials

O

Here is a detailed analysis of each of the incremental cost
areas. Theresults are summarized at the end of the section,
and space is provided to analyze incremental costs for
another product.

1. Engineering

a. Description. |n order to set up a product to be
repaired to the component level with Signature
Analysis, some engineering time is required. The
time is devoted to minor hardware re-layout and
software modification. If implemented in the de-
sign phase, the design team handles it. If imple-
mented as a retrofit, the time generally is spent in
the manufacturing engineering area.

b. General Rule. A good, conservative rule is to use
1% incremental engineering time.

c. Actual Experience. We have reported estimates
of 1-4 man-weeks of incremental engineering
time. This rarely amounts to 1% of the entire de-
sign project. The time appears to be the same,
whether spent in design or in retrofit. However,
there is room for reporting error here, since these
are estimates.

d. Sample Product. This product required the equiv-
alent of 5 engineers (all types) for 3 years of design.
This is 180 man-months, total. Of this, assume that
2 man-months (1%) were devoted to setting up the
product for component-level repair. We used a
conservatively high figure of $7,500 per month
for fully loaded design time, for a total incremental
cost of $15,000.
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Timing. The engineering time is spent at the end
of the design cycle, just before production. We
show it in year 0.
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Documentation

a.

Description. Troubleshooting procedures are more
thorough for component level repair, than for
board-swap. Signature Analysis greatly reduces
the burden: however, there is some incremental
time involved:

e gathering signatures.
e writing procedures.
® verifying both.

The time is spent in product support engineering,
manufacturing test engineering or service en-
gineering.

. General Rule. A good, conservative guidelineis to

use 2 man-months for incremental documentation
time.

Actual Experience. We have reported estimates of
2-4 man-weeks of incremental documentation
time, so the general rule is quite conservative.
Remember that this is only the incremental time
spent to add Signature Analysis instructions to
the procedures which would have been prepared
under the current strategy.

. Sample Product. Two man-months of documenta-

tion effort were targeted at a loaded cost of $5,000
per month, for a total incremental cost of $10,000.

. Timing. The docurnentation time is spent in the

pre-production and early production life of the
product. We show it in year Q.
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INCREMENTAL DOCUMENTATION COST

Test Equipment
a. Description. Utilizing the Signature Analysis tech-

nique requires purchase of Signature Analyzers,

at $1,000 each, in these locations:

(1) Lab — for aiding in the design or retrofit of
Signature Analysis into the product.

(2) Service or Test Engineering — for document-
ing the troubleshooting procedure.

(3) Production — for troubleshooting in the final
assembly area.

(4) Field Offices — for field service troubleshoot-
ing of returned boards.

. General Rule. Plan on one Signature Analyzer

for the lab for design, and one for service/test
engineering for documentation. In the final as-
sembly area, plan on one unit per test position or,
if the unit can be shared, one per 3 final test tech-
nicians. In the field, plan on one unit per office,
initially. (The upper limit for field service will vary.
One guideline is to put one unit in the field for
each field service technician. Another guideline
would be to put one unit into each field office for
each 50 projected repairs per year.) Each Signa-
ture Analyzer, of course, is usable on any future
products which utilize the same technique.

. Actual Experience. Individual companies have im-

plemented component-level repair programs, uti-
lizing Signature Analysis, with from5 to 400 Signa-
ture Analyzers. We find the general rules, above,
conservatively high.

d. Sample Product. For the sample product, we used

one Signature Analyzer each, in design and serv-
ice/test engineering. We used 5 units to cover 10-
12 final test technicians in production, and used
10 units to cover the five offices for field service.
The total was 17 units, or $17,000.



e. Timing. These 17 Signature Analyzers were ac-
quired over 4 years, as shown.

INCREMENTAL SIGNATURE ANALYZER COST

-

YEARS

LOCATION|UNITS| O 1 2 3 4 |5-10
Lab 1 1 0 0 0 0 0
Serv_icef(esl 1 1 0 0 0 0 0
Engineering

Production 5 0 3 2 0 0 0
Field Service 10 0 5 3 2 0 0
Total Units 17 2 8 5 2 0 ")
Cost @ $1,000 | $17,000 | $2,000 | $8,000 | $5,000 | $2,000 1] 0
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INCREMENTAL TEST EQUIPMENT COST

Component Stock

Description. Since the new strategy calls for
component-level repair in field offices, we re-
quire parts kits, which would not have been
stocked currently. These are startup parts kits,
which are added during the life of the product,
as required by the growing installed base. We
do not show factory parts stock here, since it
is approximately the same under either strategy.

. General Rule. Itemize one of each IC per kit.

Plan on enough kits to handle 2 months’ fail-
ures, at the predicted mature failure rate.

This is very conservative, since successive fail-
ures rarely require the same part at the same
location.

Actual Experience. Most service groups have
found that they do not require all electronic
parts to be in a kit, and that they can under-
stock multiple usage parts. Actual stocking
requirements come in well under the generai
rule.

d

€.

. Sample Product. The sample product has 315

IC's (Section B-6), the costs of which are:

300 IC's at $1.00 each = $300.00
15 IC's at $10.00 each = $150.00
Total cost per kit. ... .. $450.00

The mature failure rate was projected at 30 per
month (Section B-8), so two months’ failures
are covered by 60 kits, or $27,000.

Timing. We acquire the 60 kits over a period of
3 years, keeping well ahead of the projected in-
stalled base, as follows:

INCREMENTAL COMPONENT COST

INCREMENTAL CASH FLOW. SK

YEARS
QTyY
-1
REQUIRED 0 1 2 3 4310
Field Parts Kits 60 ( 0 20 20 20 0 0
I

Kit Costs |
at $450.00 $27,000 0 J59,000 $9,000 | $9,000 0 0
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INCREMENTAL COMPONENT COST

Ongoing Materials

a.

Description. When setting up a product for
Signature Analysis troubleshooting, there are
generally some additional parts required in the
product itself. These usually consist of switches,
jumpers, test points, a socket, etc. (Active com-
ponents are rarely required.) These parts then
contribute to a small incremental material cost.

. General Rule. Add 1% of the standard material

cost.



c. Actual Experience. Incremental material costs

(assuming no additional ROM space is re-
quired) range from 0-$5.00 per unit.

d. Sample Product. Using the 1% rule on the

$1,000 material cost (Section B-3), we have a
conservatively high incremental material cost
of $10.00 per unit. This is then applied to the
forecast (Section B-7) to obtain the annual
incremental cost.

e. Timing. Material costs are incurred as follows:

INCREMENTAL MATERIAL COST

YEARS
0 1 2 3 4 |5-10

Forecast, Units 0 600 1,200 1,200 600 0
Annual Cost at $10.00 | 0 | $6,000 | 12,000 | $12,000 | $6,000| 0O
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TOTAL INCREMENTAL COSTS

INCREMENTAL COSTS, PRODUCT UNDER STUDY

YEARS

COSTITEM | 0 1 2 | 3 4

5-10

iy

. Engineering

N

. Documentation

. Test Equipment

&

.Component Stock ‘

m

. Material

Totals

YEARS
COST ITEM 0 1 2 3 4 5-10

‘. Engineering 15,000 0 0 0 0 0
2. Documentation 10,000 0 1] 0 1] 0
3. Test Equipment 2,000 | 8,000 5,000 | 2,000 0 0
4. Component Stock 0 9,000 | 9,000 | 9,000 0 0
5. Ongoing Materials 1] 6,000 | 12,000 {12,000 | 6,000 o]

Totals | $27,000 | $23,000 | $26,000 | $23.000 | $6,000 0
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SECTION E — ANALYSIS OF INCREMENTAL
SAVINGS

By implementing the new digital test/service strategy. we
experience significant incremental savings over the current
strategy, in these cost areas:

1. Production Labor
2. Warranty

3. Field Service

4. PC Board Stock

Here is a detailed analysis of each of the incremental
savings areas. The results are summarized at the end of
the section, and space is provided to analyze incremental
savings for another product.

1. Production Labor
a. Description. The new strategy utilizes Signa-

ture Analysis to generate substantial savings in
the final assembly troubleshooting area. This is
because a final test technician can now make
component level repairs in about the same time
as it formerly took just to locate and verify a
bad board.

. General Rule. Isolate the average time per

unit normally spent on troubleshooting and
repairing an assembled product on the line,
and reduce it, 2:1.

Actual Experience. Most cases do not generate
“before/after” data since, when Signature Anal-
ysis is employed. the "before” case is never
practiced. However, those cases we have stud-
ied show time improvements from 4:1 to 8:1.
Therefore, the general rule, above, is very con-
servative.

d. Sample Product. Using the 2:1 rule, and a cost

breakdown for the sample product (Section B-
3), we calculate production labor savings of
$50.00 per unit.

’7 HOURS PER UNIT
TYPE OF LABOR BEFORE T AFTER SAVED
SUBASSEMBLY 4 ’ [} 0
FINAL ASSEMBLY 6 w 6 0
TEST 5 5 0
TROUBLESHOOTING 10 5 5
TOTAL HOURS 25 20 5
COST AT $10.00 PER HOUR $250.00 $200.00 $50.00

This unit saving is then applied to the forecast
(Section B-7) to obtain the annual incre-
mental saving.

e. Timing. Production labor savings are realized

as foltows:

INCREMENTAL PRODUCTION LABOR SAVING

D
YEARS
0 1 2 3 4 T5—10
IE— . -
FORECAST 0 600 | 1200 | 1,200 | 600 0

ANNUAL SAVINGS
AT $50.00

$30,000 | $60,000 | $60.000 | $30,000 0

INCREMENTAL CASH FLOW. 5K
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Warranty

a.

C.

Description. By repairing PC boards in the
field, instead of at the factory, we generate
savings in the operation of a board exchange
program in the areas of:

e inventory.

e administration.

e |ogistics/distribution.

® no-trouble-found boards.

The repair cost reduction impacts both war-
ranty and field service savings.

. General Rule. This can be a complex area in

which to make estimates. However, the follow-
ing formula is conservatively safe:
Savings per repair =
Average board exchange price (before).
Less: Average repair parts price (after).
Less: Incremental field repair labor (after).

Some rules of thumb are:

(1) Average board exchange price - $100.00.

(2) Average repair parts price - $10.00.

(3) Average incremental field repair labor -
1 hour = $10.00.

Therefore, a conservatively low saving figure

would be $80.00 per repair. This assumes that

the former board exchange fee was set in such

a way as to just cover the costs of running

the program.

Actual Experience.

(1) Board exchange prices range from $50.00
to $500.00.

(2) Repair component prices range from $.50 to
$50.00. )

(3) Incremental labor is often well below the
minimum charge, since boards can usually
be repaired at the field office in the same
time it formerly took to verify the bad board,
process paper work and handle shipping.

(4) The $80.00 figure is conservative.



d. Sample Product. We applied the $80.00-per-

repair figure to the projected warranty failure
rate (Section B-8) to obtain the annual incre-
mental saving.

e. Timing. Warranty savings are realized as follows:

INCREMENTAL WARRANTY SAVING

YEARS
0 1 2 3 4 5-10
WARRANTY 0 60 | 120 | 120 | 60 0
FAILURES
1
SAVINGS AT o | sa800 | $9,600 | 59,600 | sa,.800 | ©
$80.00
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Field Service

a.

b.
C.
d.

Description. Same as 2-a, above.

General Rule. $80.00 per repair.

Actual Experience. Same as 2-c, above.
Sample Product. We applied the $80.00-per-
repair figure to the projected non-warranty
failure rate (Section B-8) to obtain the annual
incremental saving.

. Timing. Field service savings are realized as

follows:

INCREMENTAL FIELD SERVICE SAVING

YEARS
0 1 2 3 4 5-10
NON—WARRANTY
300 360
FAILURES 0 0 50 180
SAVINGS AT $80.00| 0 0 | $4,800 |$14,400 | 524,000 | $28,800
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PC Board Stock

a.

Description. The new strategy requires parts
kits in field offices for component-ievel repair
(Section D-4). Because of that, fewer board kits
will be required in field offices. Board kits will
be required only for on-site repair, with the bad
boards being repaired at the field office. The
reduction in startup board kits constitutes an
incremental saving for the new strategy.

. General Rule. Calculate the number of board

kits required under the current strategy, enough
to cover 2 months’ failures at the projected
mature failure rate. Calculate the number of
board kits required under the new strategy,
about one-third of the current figure. The dif-
ference in numbers of kits is the saving. A good
approximation of kit cost is the product's
material cost. Usually, with Signature Analysis,
a stripped mainframe of the product is required
in each office, in order to power the board for
troubleshooting. So, from the board kit saving,
be sure to deduct the cost of a mainframe for
each office. Again, the product material cost
should cover this.

c. Actual Experience. Reports indicate that the

d.

reduction of board kits is usually more than
outlined above. The current strategy often re-
quires 3 months’ failure coverage, due to pipe-
line and turnaround problems. The new strat-
egy often requires only 1 board kit per field
office.

Sample Product.

(1) “Before” — Projected mature failure rate is
30 per month (Section B-8). Two months’
coverage would be 60 kits. Cost per kit
(material cost in Section B-3) is $1,000,
for a total of $60,000.



(2) “After” — One-third of the “before” figure

is 20 kits, or $20.000.

(3) Mainframes — One stripped mainframe, at
material cost, for each of the five field

offices amounts to $5,000.

(4) Total Saving — $60,000 less $20,000, less

$5.000 = $35,000.

e. Timing. The $35,000 saving in board kits is dis-
tributed over 3 years, as the kits would have
flowed into the field pipeline with the growing
service base.

INCREMENTAL BOARD KIT SAVING

—

YEARS (
R
0 1 2 3 4 | 5-10
KITS REQUIRED. | o | 59 20 2 ol o
BEFORE
LESS KITS REQUIRED,
[} -10 -10 0 0 [}
AFTER
KITS SAVED [} 10 10 20 ¢ 0
COST SAVING
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AT $1,000
LESS SERVICE MAIN-
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SUMMARY OF INCREMENTAL SAVINGS

YEARS
SAVINGSITEMS |0 | 1 | 2 | 3 | 4 |510
1. Production Labor 0 30,000 | 60,000 | 60.000| 30,000 [}
2. Warranty [s} 4,800 | 9,600 9,600 4,800 0
3. Field Service 0 0 4.800 14400 | 24,000 | 28,800
4. PC Board Stock 0 5,000 | 10,000 | 20.000 0 0
| Totals 0 | $39.800 | $B4.400 |$104.000 $58,800 | $28,800
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SECTION F — RETURN ON INVESTMENT

Once the incremental costs and savings are determined
(Sections D and E}, we can use them as data for any of the
common return-on-investment calculations. We chose the
IRR (internal rate of return) function of the Hewlett-Packard
Model 38E Calculator. IRR is the compound interest rate
which returns a series of positive and negative cash flows
to zero present value. The cash flows for the sample
product are:

ANNUAL INCREMENTAL CASH FLOW

INCREMENTAL | INCREMENTAL NET
YEAR COSTS SAVINGS CASH FLOW
0 $27,000 0 $-27,000
1 23,000 $ 39,800 +16,800
2 26,000 84,400 +58,400
3 23.000 104,000 +81,000
4 6,000 58,800 +52,800
5 0 28,800 +28,800
6 0 28,800 +28,800
7 0 28,800 +28,800
8 0 28,800 +28,800
9 0 28,800 +28,800
10 0 28,800 +28.800

NET CASH FLOW
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LlRR = 132,6%j

Note that, even though every effort was made to be con-
servative in the cost and saving estimates, the IRR is still
very high for implementing the new digital test/service
strategy. Here is space to calculate the cash flows and IRR
for another product:
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The IRR calculation, above, was based on implementing

a digital test/service strategy which took advantage of all

the possible areas of savings offered by Signature Analysis.

However, sometimes it is necessary to investigate the return

of only a partial implementation of the technique. Here are

two cases of interest:

Case 1—Include only production and warranty savings. Do
not include field service savings, sincethe savings
here may be passed on to customers via lower
service charges. Or, the savings may be realized
by a third-party service organization, not by the
manufacturer.

Case 2—Include only production savings. This case as-
sumes that Signature Analysis is used only in
final assembly test, not in field service at all.




Case 1—All incremental costs are included (Section D)

but only the following incremental savings are
included:

e Production Labor (Section E-1)
e Warranty (Section E-2)
e PC Board Stock (Section E-4)

Field service savings are not included.

ANNUAL INCREMENTAL CASH FLOW, CASE 1

Case 2—Only those incremental costs are included which

are required to set up a product for Signature
Analysis in final assembly test:

¢ Engineering (Section D-1)

® Documentation (Section D-2)

e Test Equipment (Section D-3), reduced from 17
units to 7.

e Ongoing Materials (Section D-5).

Only those incremental savings are included
which are realized in final assembly test:

o Production Labor (Section E-1).

Warranty, field service and PC board stock
savings are not included.

ANNUAL INCREMENTAL CASH FLOW, CASE 2

INCREMENTAL | INCREMENTAL NET
YEAR COSTS SAVINGS CASH FLOW
0 $27.000 0 $-27,000
1 23,000 $39,800 +16,800
2 26,000 79,600 +53,600
3 23,000 89,600 +66,600
4 6.000 34,800 +28,800
5 0 0 0
6 4] 0 0
7 0 0 0
8 0 4] 0
9 0 0 0
10 0 0 0

INCREMENTAL | INCREMENTAL NET
YEAR COSTS SAVINGS CASH FLOW
0 $27,000 0 $-27,000
1 11,000 $30,000 +19.000
2 12,000 60,000 48,000
3 12,000 60,000 +48,000
4 6,000 30,000 124,000
5 0 0 4]
6 0 0 0
7 0 0 0
8 0 0 4]
9 0 0 0
10 0 0 0

NET CASH FLOW, CASE 1
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IRR = 116.8%

In this case, eliminating field service savings still results
in a very attractive IRR.
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IRR = 107.4%

Even in this case, IRR is over 100%, in a situation where
20-30% is considered attractive.




SECTION G — CONCLUSION 2. Next Step. The reader may apply the model to another
product by utilizing the blank tables and plots in
the paper. Here is an index to them:

1. Summary. The use of the model to compare two

digital test/service strategies can also show the IRR Table/Plot Section Page
derived by switching from one (current) strategy to Summary of Assumptions .......... B 3
another (new) one. A significant finding was that, Strategy Flow Chart

even when the new Signature Analysis strategy was Before ... C 4
only partially implemented, the IRR was over 100%. After ... . C 4
This can be important in getting a new strategy Summary of Incremental Costs ..... D 7
started, by reducing the number of departments Plot of Incremental Costs .......... D 7
which must collaborate. In Sample Case 2, the Summary of Incremental Savings ... E 10
Production Department could have justified the Plot of Incremental Savings ........ E 10
project on production savings alone. The Service Incremental Cash Flow ............ F 1
Department would have had the option of adopting Plot of Net Cash Flow ............. F 11
it later. IRR F 11
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SECTION A—INTRODUCTION

The Signature Analysis Technique

By designing or retrofitting the Signature Analysis (SA)
technique into a microprocessor-based digital product, a
manufacturer can provide simplified field service and
production line procedures for component level repair of
the product using a Signature Analyzer for troubleshoo-
ing. Use of a Signature Analyzer requires that some test
features be designed or retrofitted into the product to be
tested. This article assumes some familiarity with these
features. A series of Hewlett-Packard Application Notes
on Signature Analysis? provide the basics on how to add
these features to a product to be serviced with a Signature
Analyzer.

The Application

This application shows how SA was retrofit into a per-
sonal computer to test and troubleshoot il on the manu-
facturer’'s production line, customer service centers, and
eventually at their distributor’s service centers. Here is the
strategy for testing the computer on the production line
where SA is used to troubleshoct a complately unknown
board. This means:

¢ No shorts or opens testing is done on blank boards.

e No incoming inspection testing of RAMs is performed,
including 4K and 16K dynamic RAMs. :

¢ Visual inspection is used to find most process faults of
an assembled board such as solder splashes and
bridges, and incorrectly instalied ICs and components.
No ATE is used.

e Boards are powered-up in an unknown state im-
mediately after assembly and inspection.

¢ When a board does not operate correctly when power is
applied, diagnostics separate from SA are used in an
attempt to isolate failures down to small blocks of the
circuit (e.g. it will indicate that the failure seems to be in
ROM or RAM or the supporting address decodes and
control circuits), but not to the comporent or process
fault level in most cases.

'Application Note 222, A Designer's Guide to Signature
Analysis; 222-1, Implementing Signature Analysis for
Production Testing; 222-2, Application Articles on
Signature Analysis.

e SA is used tc find the components or process faults
using SA stimulus routines on those boards that the
diagnostic routine can indicate where to begin
troubleshooting.

e SA s also used to troubleshoot boards that won't allow
the diagnostic to run using a technique called FREERUN.

The distributors still plan on board exchange with the
customer’s failed unit, then bringing the board back to the
shop for repairs with SA. The SA documentation is not yet
available to the customer so that he could make his own
after-warranty repairs easier with SA.

The Computer

This article assumes a working knowledge of
microprocessor-based systems and raster-scan CRT text
generators. Hardware and software manuals on the com-
puter are available from the manufacturer?. Theyinclude a
theory of operation and detailed schematics.

Figures 1 and 2 show the block diagram and memory
map of the standard computer unit. The standard com-
puting system incorporates the circuits of the block
diagram within a single housing around the keyboard.
Optional equipment is available which expands the
capabilities of the computer but exists as separate items.
They are a CRT display, a line printer, a floppy disc, and a
S5-100 bus expansion module. SA has been retrofitinto the
standard computer unit. It has not yet been implemented
in any of the optional peripherals.

The Article

This article shows the details of implementing SA into
the standard computer unit in terms of the hardware,
software and test connections. The figures show how SA
was ratrofit into the computer while the accompanying
text discusses the major decisions and tradeoffs associ-
ated with retrofitting SA into the product and the effects
some of those decisions had on the ease of troubleshoot-
ing the computer. The SA stimulus routines for the com-
puter are effective in finding faults with SA. However, the
way in which they are implemented is not necessarily the
only way nor the most efficient way it could be done.

“The personal computer is called the SORCERER Il and is
manufactured by Exidy Corporation of Sunnyvale, Cali-
fornia.
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Figure 1. This personal computer contains a Z80 microproces-
sor, an operating system contained in MONITOR ROM, space for
user created programs in PROCESSOR RAM, and a slot on the
side of the computer to insert a ROM PAC that contains ROM-
based applications programs. Also included is a VIDEO TEXT
GENERATOR that outputs to a CRT tor display. It includes mem-
ory space for ASCII text characters in SCREEN RAM, character
font in ASCIl FONT ROM, user defined graphics font in

GRAPHICS RAM, and discrete VIDEO TIMING GENERATOR cir-
cuits. The interfaces to the computer consist of two SERIAL 1/O
channels for a cassette tape unit and a general purpose RS-232
link, both supported by atUUART, an 8-bit PARALLEL I/O channel of
discrete logic, a KEYBOARD with associated scan mechanism
and a S-100 BUS EXPANSION port that is a buffered extension of
the Z80 microprocessor bus. Optional equipment is outlined in
dashed lines.



MEMORY MAP

FFFF FFFF
GRAPHICS | _—
FE0O RAM _ . SCREENRAM | pooo
FDFF - EFFF
° ASCII -~ MONITOR
ROM
F800 FONT ROMS // £000
F7FF . / / DFFF
SCREEN P
F000 RAM 2 ROM _| Dooo
PAC CFFF
EFFF MONITOR [~ el
E000 ROMS o~ €000
DFFF
APPLICATIONS /ﬂ ~ BFFF
ROMPAC
c000 1 _| B000
BFFF AFFF
A000
48K -1 =
9FFF
48K | so000
8FFF
4 | __ 8000
< 7FFF
800 | _ ___ _] z
7FFF = _| 7000
Qv
E ow 6FFF
2 E
o)
32K ]
w0
3Z5 | 5000
goN 4FFF
Ink
s00 | ] E . __] 4000
3FFF =} 3FFF STACK ALLOCATION
16K ok o 00
‘ 2FFF
MONITOR
RAM
2000 | | I —
IFFF s
MONITOR
8K 8K 1 STACK
00 | | < —
OFFF USER
4K 4K SPACE
0000 0000
NOTTO SCALE TO APPROX SCALE NOT TO SCALE
ADDRESSES SHOWN IN HEXADECIMAL
Figure2. Thisdiagram shows the Z80's 64K biyte memory space memory requirements. The KEYBOARD, PARALLEL and SERIAL
divided among the circuits cf the personal computer. All memory I/O devices reside within the input/output space of the Z80 while
assignments are fixed except for the PROCESSOR RAM which the S-100 BUS EXPANSION memory devices automatically map
can vary from 4K bytes to 48K bytes depending upon the user's over the PROCESSOR RAM as needed.



SECTION B—FREERUNNING THE Z80

When the Z80 is placed into the FREERUN mode using
the FREERUN fixture of the figures below, the Z80's con-
tinuous cycling of the address bus stimulates the kernel,
or heart, of the computer system. SAis then used to isolate
kernel circuit failures. The kernel is defined as those cir-
cuits required to be functional so that the microprocessor
can execute ROM-based SA stimulus programs for SA
troubleshooting of circuits beyond the kernel. The kernel
circuits consist of:

. The power supply and Z80’s clock.

. The Z80 microproceéssor.

. The Z80 control lines including gating and buffers.
Address and data buses including buffers.

Address decode circuits that create the ROM and RAM
chip selects.

6. ROMs, including those that contain the SA stimulus
programs.

SIS

The power supply and Z80's clock are troubleshot with
conventional equipment such as voltmeters, frequency

counters or oscilloscopes instead of SA.

Although FREERUN uses the Z80 to stimulate other
circuits of the kernel, FREERUN does not check the Z80's
ability to execute code. Here are several ways to verify the
Z80's health with increasing levels of confidence.

1. Since most failures internal to the Z80 show up as
incorrect signatures on the address bus during
FREERUN, assume that further testing of the Z80 be-
fore it is used to execute the SA stimulus code is not
required.

2. Assume that if the Z80 can execute any of the SA
stimulus routines, it is operating correctly and doesn’t
need to be tested further.

3. Add aZ80instruction settest to the SAstimuluslibrary.
However, since a complete test consumes many bytes
of code, and it is difficult to write and can't test the
Z80’s AC parameters, it could be unjustified consider-
ing the amount of circuitry it tests.

It was assumed here that FREERUN and the Z80's ability
to execute the SA code was a sufficient test of the
microprocessor.

HARDWARE

Z80 FROM J 40
DEVICE UNDER TEST - ATl A0 %0
- 2/ A12 Ag |39 .
o 3l a3 Agl38
280 FREERUN FIXTURE o 4| Ata A7|37
COMPOSED OF FOUR IC 5 36
SOCKETS. #11S THE ZIF P Y A6l36
SOCKET ON TOP. el asles
oX-GND 7| pa A4 34—,
..)(_GN[)__8 D3 A3[33
ex GND— 2| D5 A2l82
1 Z80 31
o% GND—Y D6 cpu AP
o Ml .sv a0|30
o GND—12] D2 GND|29

MICROPROCESSOR
SOCKET ON PC BOARD
OF DEVICEUNDER TEST

Z80 FREERUN FIXTURE

ox GND_13/D7 RFSH|28
O-X—GND——JL Do mi | 27

% GND_13/ D1 RESET|26
o - 5V_ﬁl INT BUSRQ|25 . 5V —xe
ey .5v_TINMI waIT|24

e 18|HaLT BUSAK|23

e 19/MREO WR[22Z
e 20/10Ra RD|21
SCHEMATIC

Figure 3. This fixture, quickly constructed from available IC
sockets, allowed FREERUN to be easily retrofit into the computer.
Modifications to the four sockets that make up this fixture
break the data bus between the system and the Z80 and apply a
NOP instruction to cause it to FREERUN. Socket #1 is a zero-
insertion-force socket that allows the Z80 to be removed from the
computer and placed into the fixture without damage. Socket #2
is altered by bending pins on the socket to open the data bus as
indicated by the ‘X' on the schematic. The NOP instruction is
applied to the Z80 by wiring the open data bus to ground on
socket #2. Similar treatment was done to several of the 280
control pins by opening them and wiring to +5vdc or ground as
required to force them to a known state during FREERUN inde-
pendent of the computer's response.

.
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Figure 4. FREERUN stimulates the fundamental circuits of the
computer system so that SA can be used to isolate failures of the
kernel, or heart, of the system. The kernel circuits are checked
with four setups of the signature analyzer as shown. a.) Thefirst
setup checks the integrity of the address bus and related address
decode circuits. b.) The second setup verifies that code within
ROM is correct and that the data bus is free and clear so that
instructions can pass from the ROM to the Z80. c.) The third
setup is used only when there is an apparent failure in the Z80’s
control signal outputs. d.) The fourth setup checks the dynamic
RAM refresh circuits of the PROCESSOR RAM, but not the RAM
itself. The RAM cannot be troubleshot with FREERUN because it
powers-up in a random state. There is no way to initialize it with
the processor because the data bus has been opened up. All other
circuits beyond the kernel are troubleshot using SA stimulus
programs contained in ROM.
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SECTION C—SA TEST STORAGE,
ACCESS AND SELECTION

Storage

The external applications ROM PAC provides the most
convenient and quick means to store the SA test stimulus
for several reasons.

1. No other ROM needs to be removed as in most retrofit
situations in which ROM-substitution is used. The
operator simply inserts the SA ROM PAC into a slot on
the computer to run them.

2. It's harder to damage a ROM PAC than it is a ROM
because the ROM PAC intérfaces to the computer with
a PC board edge connector instead of fragile IC pins.

3. Production technicians, customer service personnel
and distributors of the computer already know how to
use the ROM PAC. The SA tests simply become one of
many applications ROM PACs available for the com-
puter.

The disadvantages of storing the SA tests in the ROM
PAC occur because of the method the computer uses to
access programs stored there.
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Figure 5. The SA stimulus routines (SA tests) are stored in a 2K
X 8 EPROM within an applications ROM PAC that is inserted into
the side of the computer. The SA tests are 944 bytes long of which
534 bytes are the ASCIl characters of a test seiection menu, 110

bytes are a branch table for test selection and 300 bytes form the
actual SA tests. The program starts at the first address within the
applications ROM PAC memory space, address CO00H.
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Access

When power is first applied to the computer, the Z80
CPU s reset to address 0000H and begins execution there.
Since the ROM PAC resides at address CJ00H, a means is
provided to cause the Z80 to jump there to begin execu-
tion of the SA tests. However, a ROM PAC is not always
inserted into the computer. The prograrn must also rec-
ognize the presence or absence of the ROM PAC and jump
to the ROM PAC program if :t's there by means of an
operating system stored in the monitor ROMs.

The monitor ROMs reside at memory address EOOOH,
not at address 0000H. (The first address executed by the
280 at power-on.) To compensate, a special circuit that
resets to zero at power-on temporarily maps the monitor
ROMs to location 0000H. The first three locations of the
monitor ROMs contain an unconditional jump instruction
to location EOO3H. When the ZB0 addresses EOO3H for the
next instruction, the special circuit remaps the monitor
ROMs back to their true address space of EQOOH to
EFFFH so that further operating system code in the moni-
tor ROMs can be executed.

The operating system then tries to establish a stack in
any available functional RAM so that monitor subroutines
can be accessed by the user. The operating system first
checks processor RAM to see if enough locations behave
like RAM. If the RAM is functional, the operating sysiem
establishes a stack and proceeds to do several house-
keeping chores to set up the computer for interactior by
the user. If processor RAM is not functioning, the com-
puter will continue to search memory for the next avail-
able RAM locations (e.g. SCREEN or GRAPHICS RAM)
until a stack can be established. if no RAM is functional,
the operating system will continue to search forever and
never release control to the user.

If a stack can be established, the operating system then
checks for the presence of a ROM PAC to see if program
execution should continue there. The process of deter-
mining this requires several subroutines within the operat-
ing system that uses the stack. Finally, the operating sys-
tem sees that the SA ROM PAC has been inserted and
jumps to the first location (address CO0CH) to put up the
SA test selection menu. Once the SA tests have been
selected and are executing, neither the operating sys-
tem nor the stack are used.

With this background of how the SA tests are accessed,
we can now discuss the tradeotfs of storing the SA tests in
the ROM PAC versus storing them in a ROM which cari be
substituted in place of the monitor ROMs. {Substitution is
the more common approach to retrofitting SA.) By placing
the programs in the ROM PAC, all kernel circuits must be
functional in order to run any SA tests. FREERUN is used
to check them when they aren’t. However, this application
also contains circuits that cannot be troubleshot with
FREERUN, but must also be functional. They are:

1. RAM, so that the operating system can establish a
stack. This includes RAM chip selects and support cir-
cuits.

2. The special circuit that maps the monitor ROM to loca-
tion 0O000H at power-on.

An assumption was made that one of the three sections
of RAM (either PROCESSOR, SCREEN or GRAPHICS

o
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Figure 6. The SA tests are automatically accessed by the com-
puter upon power-on when an SA applications ROM PAC is in-
serted. The system first goes through a power-up test of RAM to
find a place for the operating system'’s stack to reside. The pro-
gram then checks for the presence of a ROM PAC by checking the
first few locations of ROM PAC memory space for non-zero
entries. If the ROM PAC is present, the program then jumps to the
first ocation of the ROM PAC to begin execution. The first steps
of the SA tests put up a test selection menu on the CRT. See the
next figure.



RAM) would be functional so that even bad RAM at one of
the locations could be troubleshot with the SA testsonce a
stack was established in another section of RAM and the
programs were accessed. However, it turned out that this
assumption was not good in practice because of a high
percentage of process faults such as solder splashes,
open circuit traces and incorrectly installed components.
The RAMSs, including the dynamic 4K and 16K parts, were
not pretested before loading. Their failure rate, combined
with the process faults resulted in the majority of boards
having no functional RAM.

Another assumption was made about the special circuit
of item #2. Since the circuit consists of one IC, it was
assumed that the circuit could be easily troubleshot by
other means such as logic probes.

If the program had been stored in ROM to be substituted
in place of a monitor ROM instead of placed in the ROM
PAC, then RAM would not need to be functional in order to
run the SA tests. Remember that the operating system
would be replaced with the SA ROM which is then acces-
sed directly at power on (if the mapping circuit is func-
tional). With this substitution technique, it would be pos-
sible to troubleshoot RAM even if none was functional.
However, there are some problems with the monitor ROM
substitution method for this product because of the re-
trofit situation.

1. The monitor ROM is masked and an EPROM version
could not be directly substituted into the product with-
out cutting traces and rewiring a small section of the
board. This was not acceptable. However, a masked
ROM version of the SA test was equally not acceptable.
The volume was not judged to be high enough to justify
amask charge because additions to the test repertoire
are still planned. Note that monitor EPROM substitu-
tion could have been planned in the design stage by
making the circuit easily switched between ROM and
EPROM. Or the SA tests could have been designed into
the monitor ROM so that it would always be available in
the product without substitution or ROM PACs.

2. Since the monitor ROMs contain the keyboard and
video CRT driver subroutines that allow easy operator
interaction with the test selection menu, the drivers
would need to be duplicated in the ROM that would
substitute the monitor ROM. It was easier to keep the
monitor routines in tact so that the SA tests in the ROM
PAC could use the drivers as subroutines to put up the
menu and allow the keyboard to be used to select the
tests. The drivers could have been avoided if a less
elaborate test selection method had been designed
into the product such as DIP switches that could be
read by the microprocessor.

Selection

The keyboard provides an easy means for the trou-
bleshooterto quickly selectatest. It is probably the easiest
method when combined with the test selection menu on
the CRT. However, should the keyboard fail, the operator
cannot run any SAtests, including any that might help him
troubleshoot the keyboard itself. Here it was decided that
if the keyboard should fail, the operator would unplug the
failed unit and exchange it with another one. However,
this brings up two problems:
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1. It assumes that all logic associated with the keyboard
function exists on the keyboard PC board which is not
the case here. The keyboard PC board contains only
the key switches and one IC. Several other IC’s associ-
ated with detecting a key closure are on the main
board. The result is that exchanging the keyboard may
not fix the probiem.

2. Someone has to troubleshoot the keyboard when it
fails, and SA cannot help if the tests are selected by
means of the keyboard. Even FREERUN cannot help
because the keyboard is treated as an I/O device that is
not stimulated by FREERUN. It was assumed in this
case that the keyboard could be fixed by other means.

SIGNATURE ANALYSIS TEST LDOPS

0----MONITOR ROM #1
1----MONITOR ROM #2

2----4K PROCESSOR RAM, ROW #1
3----4K PROCESSOR RAM, ROW #2
4----16K PROCESSOR RAM, ROW #1
5----16K PROCESSOR RAM, ROW #2
6----16K PROCESSOR RAM, ROW #3
7----BOTTOM SCREEN RAM
8----TOP SCREEN RAM
9----GRAPHICS RAM

A----STATIC VIDEO PATTERN
B----PARALLEL PORT

C----SERIAL RS-232 PORT
D----5-100 EXPANSION BUS
SELECT >>_

Figure 7. This menu appears on the CRT to prompt the user to
select the number of the desired SA test with one keystroke. Once
a test is selected it runs continuously and further keyboard
entries are ignored. A reset from the keyboard, like power-on,
stops the test and recalls the menu to the CRT for a new test
selection. The details (code, flowcharts, and circuits) of tests 0-9
are shown in the remaining sections. Tests A-C are in separate
sections with headlines that match the circuit they test and the
menu number. For exampie, the PARALLEL PORT test is found in
the section headlined " PARALLEL PORT, TEST B". TEST D is
not implemented at this time.

=

Figure 8. Here is the flowchart and Z80 assembly language code
that allows program selection. These are the mnemonics particu-
lar to the computer’'s assembler. PRTX is a monitor subroutine
which transfers the ASCII characters of the menu from SAROM to
the CRT, starting at "“MENU" (address CO6CH) to “DEFB" (ad-
dress C282H). Subroutine KEYBRD places a key entry into the ac-
cumulator with the zero flag reset. If no key is pressed, the zero
flag is set. VIDEO writes the key entry on the CRT by the menu
prompt “SELECT >>". If the entry matches a test number, the
program branches to the test with the same label. (e.g. 3
branches to “"THREE”.) Invalid entries are erased from the CRT
and the program returns to wait for a new key.
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€039 (D CEFB 13
C09A (D CEFB 13
\\ €038 20202020 CEFM ¢ 0----MONITORROM #1
cop7 (D LEFB 13
coB8 20202020 CEFM 7 1----MONITORROM#2
cobd (D CEFB 13
Cops  £0 CEFM ¢ 2----4K PROCESSOR RAM, ROW #1
COFB (D CEFB 13
COFC 20202020 CEFm - 3----4K PROCESSOR RAM, ROW #2
¢122 (D LEFB 13
123 20 CEFM - 4---- 16K PROCESSOR RAM, ROW #1
C14A (D CEFB 13
YES C14B 20202020 CEFM 7 S----16K PROCESSOR RAM, ROW #2
¢172 (D LEFB 13
; €173 20202020 CEFM 7 6----16K PROCESSOR RAM, ROW #3
Co11 Clea (D CEF8 13
€198 20202020 CEFM ¢ 7----BOTTOMSCREEN RAM
1B CD LEFB 13
C1BB  £0202020 CEFM ¢ 8- ---TOP SCREEN RAM
QD7 D e LEFB 13
3 2 H LEFM  * 9- - - -GRAPHICS RAM
s|ND|CATE ez LEFB 13
i 20202020 LEFM ¢ A----GTATICVIDEQPATTERN
ELECTION C215 (D CEFB 13
ON CRT €216 20202020 LEFM - B----PARALLEL PORT
€231 (D [EFB, 13
£232 20202020 LeFm C----GERIAL RS-232 PORT
£252 D [EFB 13
£253 20202020 [EFM ¢ D----5-100 EXPANSION BUS
¢27a oD LEFB 13
€275 (D DEFB 13
cere b EEB 3
£277 20534542 DEFM * SELECT >’
Co14 ¢282 00 DEFB 0
—— ONE
BRANCHTO —— TWO
SELECTED .
TEST .
DEE
SELECTION
NOT ON MENU
CO5A
ERASE
SELECTION
FROM CRT
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SECTION D—THE HARDWARE AND
SOFTWARE BEHIND START, STOP
AND CLOCK

Creating START and STOP

For tests 0-9 and B-C, the START and STOP edges were
created by writing code that controlled available hard-
ware. This combination of hardware and software is calied
program controlled gating. Figures 9-12 show the pro-
gram controlled gating used in the computer. The START,
STOP and CLOCK connections for FREERUN and test #A
are shown in the corresponding sections of this article
because they are NOT examples of program control gat-
ing and do not require any code to be written. The discus-
sion here deals with some of the considerations in choos-
ing an 1/O register's output as the START and STOP con-
nections for program control gating in the computer.

Here are some general guidelines for creating START
and STOP. Create successive START and STOP connec-
tions that build on the kernel. That is, considering the
START and STOP connections used in FREERUN as the
first and most basic set, then the second set should be
able to be troubleshot with the set used in FREERUN. The
third set should be able to be troubleshot with the second
and so on. Here are some suggestions for building a set of
START and STOP connections for the Z80 from FREERUN
to more complicated circuits.

1st set: FREERUN connections. Generally the most
significant address bit of the Z80. Used to trou-
bleshoot the next set.

Chip selects and address decodes within the
memory space of the processor that are stimu-
lated during FREERUN to allow troubleshoot-
ing of them with START and STOP of the first
set. Also controlled by software to create the
required START and STOP edges for trou-
bleshooting the next set.

Bitsin I/O registers that can be troubleshot with
an SA stimulus routine that uses the START and
STOP connections of the 2nd set. When the 3rd
set is used as START and STOP, the software
sets and resets the bit to create the required
edges.

START and STOP for this computer fall into the 1st and
3rd sets. The 3rd set cannot be troubleshot with
FREERUN, noristhere another test that can be run should
START and STOP fail. This has caused the troubleshooter
to resort to other methods such as shotgunning when the
circuits creating START and STOP fail.

2nd set:

3rd set:

Detecting START, STOP and DATA with the
CLOCK

Here are some guidelines for choosing a CLOCK.

1. A clock edge must occur both before and after the
START and STOP edges to assure detection and cor-
rect GATE action. Be sure this is met when gated
CLOCKSs (defined below) are used.
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2. The CLOCK must be synchronous tothe START, STOP
and DATA inputs it samples. This guideline is gener-
ally metif RD or WR from the Z80 is used as the CLOCK
when testing any circuits that are accessed by the Z80.

. Chose a CLOCK that will avoid sampling a 3-state node
when it is in the 3rd state. This is generally done by
creating or using a gated CLOCK.

A gated CLOCK is defined as combining or gating a
constantly occurring clock such as the Z80's RD or WR
lines with other signals such as address decodes so that
the signature analyzer is synchronized to the data of inter-
est during the test. Tests 0-6 and B-C do not require a
gated CLOCK. They use RD and WR directly from the Z80
as their CLOCK as shown in figures 9 and 10. When RD
was tried as a CLOCK for tests 7-9, the GATE light was
flashing indicating that the START and STOP edges were
being detected properly, but unstable signatures were
also occurring because:

1. The SCREEN and GRAPHICS RAM are both dual-
ported and are accessed by two processes that are
asynchronous to each other. The 280 occasionally ac-
cesses the RAMSs to store characters and graphics font
for eventual display on the screen. The VIDEO
GENERATOR TIMING circuits also gain access to the
RAM so that the characters and font stored there are
displayed on the CRT on a continuing basis.

2. RD is active during the Z80's op-code fetches from
ROM PAC as well as during a read of the RAM during
the SAtest. When RD is used as a CLOCK while probing
the circuits of the RAM, databits wiil be entered into the
signature analyzer that are associated with the CRT
refresh process (because of the CLOCK during op-
code fetch) when what's really wanted is the data bits
associated with the test.

To get stable signatures, a gated CLOCK is required to
sample RAM data only when the Z80 has access to the
RAMs and not when the screen refresh process takes
place nor when op-code is fetched. To "window out’ this
unwanted data during the signature measurement cycle,
RD is gated with the address decode of the RAM being
tested. As is often the case, the gated CLOCK was already
available in the address decode circuits for the RAM. No
modifications to the circuit were required.

The resulting gated CLOCK occurs only when the RAM
is accessed by the Z80. This should have resulted in stable
signatures, but when actually tried, there wasn't even a
GATE. Changing to a gated CLOCK also eliminated the
CLOCK edges around both the START and STOP edges.
To solve the problem, a CLOCK cycle (an access to the
RAM being tested) has been added between the genera-
tion of the START and STOP edges in tests 7-9 to ensure
their detection as shown in figure 12.

One final note of interest. Because the SCREEN RAM
and GRAPHICS RAM have different address decodes, two
separate CLOCKS are used depending upon which RAM is
being tested. It would be convenient for the trou-
bleshooter not to have to move the clock if at all possible.
But because of the retrofit situation, it was not possible to
do this here.
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FLOW CHART
ENTER

SETBITTO
— OPEN GATE

ASSEMBLY BUS
MNEMONIC ADDRESS

INC A €295
out (FE)>, A C296

CLOCK=RD

WR

=BITOIN EDGE
KEYBOARD SCAN
LATCH AT
/O PORT FEH
GATE
CLOSES

| START
EDGE

GATE MONITOR ROM

OPENS CONTENTS ON

START/STOP °
STOP _—,

BUS HERE

Figure 10. Here is the Z80 code that creates the START and
STOP edges by setting and resetting bit 0 in the KEYBOARD
SCAN LATCH at l/O port FEH. For tests 0-6 and B-C, two CLOCKS
(RD and WR) are used to detect the START and STOP edges. ARD
CLOCK occurs with every op-code fetch of the Z80 which is more
than adequate to detect the START and STOP edges. (A clock
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edge must occur both before and after both the START and STOP
edges to ensure detection.) A WR CLOCK occurs when the 1/O
port FEH and the device being tested are written. The code shown
is for MONITOR ROM tests 0-1. AWR CLOCK does not occur for
these tests. Similar code applies to tests 0-6 and B-C.
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ADDRESS

SCREEN REFRESH
ADDRESS
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ROM
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DATA

GRAPHICS
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PARALLEL
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DATA
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DATA
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BCREEN
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Figure 11. These five block diagrams show the signal flow when
the 280 or the VIDEO GENERATOR accesses the SCREEN RAM,
GRAPHICS RAM or FONT ROM. a.) The Z80 gains access to the
SCREENN RAM to modify or examine the ASCIl characters that
appear on the CRT. b.) The Z80 accesses GRAPHICS RAM to
modify or examine the user-defined font stored there. c¢.) The
VIDEO GENERATOR accesses SCREEN RAM and FONT ROM
simultaneously to covert the ASCII characters in SCREEN RAM
into standard text font that's displayed on the
CRT. d.) GRAPHICS RAM is accessed only if non-ASCII charac-
ters are stored in SCREEN RAM. e.) These nodes are shared
between the Z80 and the VIDEO GENERATOR. The signature
analyzer requires a CLOCK that will sample data on the node only
when the Z80 has access to RAM. Gating the Z80's RD control
signal with the corresponding address decode for the RAM cre-
ates the required CL.OCK. If RD alone were used to sample the
asynchronous data on these nodes, then VIDEO GENERATOR
data would also be sampled resulting in unstable signatures.



FLOW CHART

ALL

|

GET FIRST
RAM ADDRESS

SETBITTO
OPEN GATE

L
(7”‘ { TZ%%-S |

{

(

i

WRITE AND READ ODD

WRITE AND READ EVEN - ‘
RAM LOCATION 1]
- P
J

RAM LOCATION

ASSEMBLY
MNEMONIC

BUS
ADDRESS

LD

ouT

HL, O

(FE), A

ceF3
cera AND
C2FS5 | sTOP

C2FA
Ce2fB
00FE

INC

HLE
ML
A, B

(HLY , A

A, (HL)
HL
A, L
(HL) A

A, (HL)

C306
c307
0XXYy
c308
CxXxy
c309
C30A
C30B
OXXY .3
c30cC

OF GATED RD CLOCK.

— THIS READ OF RAM HAS BEEN
ADDED SO THAT A
CLOCK OCCURS BOTH BEFORE
AND AFTER THE START AND
STOP EDGES.

RD
CLOCK =_
GATED RD
WR :
op
START/STOP sTOP [ start
EDGE EDGE
GATE WOULD GATE WQULD OPEN 1 GATE OPENS HERE BECAUSE
CLOSE HERE IF HERE IF RD WERE OF GATED RD CLOCK. FIRST
RD WERE USED USED AS CLOCK. DATA BIT FOR SIGNATURE
AS CLOCK SAMPLED SIMULTANEOUS
|- GATE CLOSES HERE BECAUSE WITH GATE OPENING.

‘— START OF SA TEST.
RAM CONTENTS READ ONTO
DATA BUS HERE

Figure 12. Generation of the START and STOP edges for tests
7-9 is similar to tests 0-6 and B-C of figure 10. In this case, extra
code has been added between the generation of START and
STOP because of the gated CLOCK. The gated RD CLOCK used in
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these tests occurs only when the device being tested is read. The
extra code adds both a read and a write access to the device
under test between the STOP and START edges to ensure
detection.



SECTION E—FAULT ISOLATION OF
BUSED DEVICES

SA Test Organization Makes the Difference

The way the SA tests are organized can make a dif-
ference in the ease of isolating a fault in a device that
communicates over a data bus. SA tests are generally
written two different ways depending upon the trou-
bleshooting environment.

1. Go/No-go indication of all bused devices.

Allbused devices are tested at the same time within one

SA test loop so that:

a. If there is no fault, further testing is not required.

b. Ifthereis afault, the failure is indicated to be within
a limited area of the PC board. '

2. Fault isolation of a specific bused device.

The troubleshooter knows within which area of the
board the fault lies, and now he’s trying to locate the
device or process fault causing the problem.

For example, consider the MONITOR ROM tests 0-1.
They are written to test each MONITOR ROM separately.
But imagine for a moment that both ROMs are tested
within the same SA Loop. That is, the contents of both
ROMs are read back onto the data bus between the same
START and STOP. When the test is run, a go/no-go indica-
tion can be obtained from eight signatures taken on the
data bus. Correct signatures indicate thal everything is
correct for both ROMs. Incorrect signatures would indi-
cate a failure in one of the ROMs or in the supporting
circuitry. Butit’'s not known which ROM has failed until the
contents of each ROM is individually examined with
signatures. There are severa! ways to do this:

1. Remove all ROMs from their sockets or disable all chip
selects. Then add one ROM at a time to the circuit until
incorrect signatures reoccur on the data bus.

2. FREERUN the Z80 and “window’ around each ROM'’s
data by moving START and STOP to each chip select
until incorrect signatures occur.

3. Create a separate test for each ROM sc that only that
ROM'’s data is placed on the bus. START, STOP and
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CLOCK can remain connected to the same signals if
under program control.

Separate tests were written for several reasons:

1. The health of each ROM and supporting circuitry is
determined quickly by running each test and taking
only eight data bus signatures.

2. Diagnostics other than SA stimulus routines had al-
ready limited the failure to ROM. The troubleshooter
was now looking for the device or process fault causing
the failure.

3. ltwassimplerto select a new test to run than to remove
parts from the board or move START, STOP and CLOCK
around from chip select to chip select.

4. No modifications to the board or hardware could be
added to allow the ROM chip selects to be disabled
because of the retrofit situation.

Separate tests have also been written for the PRO-
CESSOR RAM of tests 2-6. They are also implemented to
find the one bused RAM out of several that could be
causing the fault. Separating the tests also made easy
testing of optional sizes of PROCESSOR RAM. Each
socket for a RAM can accept a 4K or 16K dynamic RAM
part, or no part at all, allowing PROCESSOR RAM to vary
from 4K to 48K bytes total. Each variation of PROCESSOR
RAM requires a new signature set. Since the PROCESSOR
RAM tests are independent of the configuration, so is the
signature documentation.

READ and WRITE as CLOCK
Help Find the Faults

The SA test both reads and writes devices such as RAM,
so that the Z80 s RD and WR outputs can be used as the
CLOCK to determine if the fault is caused by the RAM
being incorrectly read or written. When RD is used as the
clock, and signatures on the data bus are correct, the RAM
is both being read and written correctly. When signatures
are incorrect, the CLOCK is moved to WR to check the
signatures on all inputs to the RAM including control
lines. If all signatures are correct, the problem exists with
reading RAM. The CLOCK is moved back to RD to isolate
the problem caused by reading of the RAM. It may be the
RAM tself, control line inputs to the RAM and the support
circuits that generate them, or a process fault.
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SECTION F—STATIC VIDEO PATTERN,
TEST A —_
TESTA - STATIC VIDEO PATTERN
CO34A AY
ZERO PATTERN
Cc34C l
GET SCREEN FIRST VISIBLE
RAM STARTING (- - CHARACTER POSITION
ADDRESS ONCRT
C34F ANOTH
WRITE PATTERN
TO CURRENT
ADDRESS
C351 1’
INCREMENT
PATTERN AND
ADDRESS
Figure 14. The static video pattern is written into RAM by this Cas3 [~
program. All possible characters and all possible patterns of NO / ALL POSSIBLE
user-defined font are written into SCREEN RAM and GRAPHICS —( DONE? >-—— -+ %T;LELR:DSDV;ELTSTESN")
RAM respectively. The program then enters a small loop that \ )
keeps the Z80 from further interaction with either RAM. This YES —
keeps the node activity limited to the CRT refresh process so that C35E _
signatures are stable. \
'd GET GRAPHICS FIRST LINE OF
RAM STARTING |- — FONT OF FIRST
ADDRESS W CHARACTER
HEX C361 AN1

ADRS  CONTENTS LABEL  INSTRUCTICON
WRITE PATTERN

gg:: 0600 o LD B, 0 TO CURRENT
c34C 2180F0 LD HL , OF 080H ADDRESS
C34F ANOTH:
C34F 78 LD A,B C363 l
€350 77 LD (HLY, A
351 23 INC  HL INCREMENT
€352 04 INC B PATTERN AND
€353 7D LD A, L ADDRESS
€354 B? OR A
€355 C24FC3 JP NZ, ANOTH
€358 7C LD A, H P _
€359 FEF8 cP 0F8H €365
€35B C24FC3 JP NZ, ANOTH NO / ALL POSSIBLE
C3SE 21000FC LD HL, OFCOOH L———~« DONE? ) - - - - PATTERNS WRITTEN
C361 AN : TO ALL ADDRESSES?
c361 78 LD A, B N
c362 77 LD (HLY, A —
€363 23 INC  HL YES
€364 04 INC B C36A ITSELF
€365 7D LD A, L —
€366 B4 OR H
DO STOP 280 ACCESS
€367 C261C3 JP NZ, ANT R
ID c36A C36AC3 ITSELF  JP ITSELF NOTHING é%i&ﬁ.%%“n‘k'&”

I |
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Z80
ADDRESS

Z80

DATA

BUFFER v v BUFFER
ELEMENT LINE
COUNTS COUNTS
VIDEO HORIZONTAL VERTICAL
SCREEN CLOCK TIMING TIMING
RAM GENERATOR GENERATOR GENERATOR
SA
cLocK
__/"'
LATCH LOAD
GRAPHICS FONT | START _/~
RAM ROM sTOP
BUFFER BUFFER
D D LOAD
q 4 l 1 Hsvnc] 1 VSYNC
PARALLEL AEQVLS_G
TO 1 TRANS- _’I:
SERIAL
LATORS

Figure 15. These nodes are stimulated by the CRT refresh pro-
cess while the static video pattern is displayed on the CRT. These
START, STOP and CLOCK connections form a GATE that is open
for one complete refresh cycle of the CRT, allowing the signature

GENERATORS fail, START and STOP are no longer generated. In
that case, START and STOP are moved to the connections shown
in the next figures, closer to the kernel circuits of the VIDEO

analyzer to detect errors in any of the circuits including all the
font patterns in ASCII FONT ROM. When the TIMING

20

TEXT GENERATOR.
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SECTION G—PARALLEL PORT, TEST B

External hardware was required to stimulate the INPUT
PORT. Wires on an external connector loop the patterns
that are written to the OUTPUT PORT back to the INPUT
PORT. Timing requirements of the HANDSHAKE control
lines made it impossible to simply loop their outputs back
to the inputs with similar wires on the ccnnectors. It was
decided not to add the ICs that would be required to fully
stimulate the HANDSHAKE circuits. Two things deter-
mined this. First, the extra hardware would not be avail-
able to the distributors or field service personnel. Second,
the HANDSHAKE circuits consist of one IC that can be
easily troubleshot with other means such as logic probes.

Figure 18. This program stimulates both *he OUTPUT and
INPUT PARALLEL PORTS by continuously writing all possible
patterns to the OUTPUT PORT. The program also reads the INPUT
PORT whether it is stimulated or not. The INPUT PORT is stimu-
lated by looping the OUTPUT PORT back to the INPUT PORT
using the connector shown in the following figure.

TESTB

\-
C36D BEE

ZERO PATTERN

C36F LOOP9

CLOSE SA
GATE

carz ¢

OPEN SA
GATE

HEX
ADRS  CONTENTS LABEL  INSTRLCTION

Cc36D BEE:

Cc36D 0600 LD B, 0

C36F LaoPa.

C36F AF XOR A

C370 D3FE out CIFEH), A
C372 3C INC A

€373 D3FE ouT CIFEH) , A
€375 MORER:

C375 78 LD A,B

C37%6 D3FF out (IFFH), A
Cc378 DBFF IN A, (OFFH)
C374 10F9 DJUNZ MIREB-$
C37¢ D36FC3 JP L(JOPS

Ci75 MOREB

OUTPUT PATTERN
TO OUTPUT PORT

C378 |

INPUT DATA
FROM INPUT PORT

Ci7A }

DECREMENT
PATTERN

C37A

NO

YES

— DONE? »-—---

PARALLEL PORT

SA GATE CONTROL
EXPLAINED IN
START, STOP, CLOCK
SECTION OF ARTICLE

IFLOOPBACK
CONNECTOR
ISON,

DATA PATTERN

ALL PATTERNS
WRITTEN TO
OUTPUT PORT?
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SECTION H—SERIAL RS-232 PORT, TEST C

This test stimulates the UART so that it can be trou-
bleshot with conventional means such as an oscilloscope.
However, unstable signatures on the serial output line
make it impossible to troubleshoot.it with SA. Unstable
signatures result basically because the UART is an asyn-
chronous device with respect to the Z80. SA cannot be
used to troubleshoot asynchronous devices in general.
Here are the details why SA cannot be used here.

¢ With START and STOP controlled by the program and
RD or WR used as a CLOCK, unstable signatures occur
on the UART. This is because the UART s serial output is
asynchronous to the RD or WR CLOCK. However, the
output is synchronous to the serial word transmission
clock.

e If the CLOCK is moved to the UART transmitter clock
input, then signatures might be stable if a START and
STOP connection could be made that was synchronous
to the CLOCK. This is not possible without limiting the
UART’s serial output to a continuous one-word trans-

' mission.

The serial transmission of this test consists of two
words, 55H and AAH. If 55H were the only word transmit-
ted, START could be connected to the serial output line
itself and trigger on the falling edge of the start bit of the
serial word. STOP could be connected to an output of the
UART that signals the serial transmission is complete
when at least one stop bit has been detected. CLOCK
could be connected to the UART's serial transmission
clock input. This one-word transmission technique should
work but has not been tried as of the publication of
this article.

SERIAL RS-232
PORT

HEX

ADRS  CONTENTS LABEL  INSTRUCTION

C37F SEE: ;SERIAL RS-232 PORT
C37F AF XOR A

€380 D3FE OUT  (DFEH), A ;CLOSE S.A.GATE

€382 3C INC A

€383 D3FE OUT  C(OFEH), A ;OPENS. A, GATE

€385 3eCt LD A, OC1H ;1200 BAUD, RS-232 PORT
€387 D3FE OUT  COFEH), A

€389 3E0F LD A, OFH ;8BITS/CHAR, 2 STOP BITS,
€388 D3FD OUT  (OFDH>, A ;EVENPARITY.

£38D 3EAA LD A, DAAH

C38F 57 LD D, A

€390 TWICE:

€390 74 LD A, D

C33 D3FC OUT  (OFCH), A

€393 01DCOS LD BC, 0SDCH ;10 MS DELAY CONSTANT
C3% WAIT

C3% oD DEC C

€397 C296C3 JP NZ,WAIT  ;21010T-STATES LATER
€394 0s DEC B

€398 C29%6C3 N NZ, WAlT

C39%E DBFD IN A, (OFDH)

C3A0 DBFC IN A, (OFCH)

c3A2 DBFD IN A, (OFDH)

C3A4 78 LD A,D

C3AS FESS cpP S5H

C3A7 CA7FC3 JP 2, SEE

C3An 1655 LD D, SSH

€3AC  C390C3 N TWICE

C37F SEE
) GATE CONTROL
CLOSESA GATE |- - { DELANEDINSTART,
OF ARTICLE
C382 {
OPEN SA GATE
C385 l
WRITE CONTROL
S S s
TRANSMISSION |- -+ | A
PARAMETERS EVEN PARITY O
2STOPBITS
casp |
SET AAH AS
WORD TO BE
TRANSMITTED
C390 TWICE
WRITE WORD TO
UART FOR
TRANSMISSION
C393 { WAIT
WAIT 10 MS
WHILE UART
TRANSMITS
WORD
C39E l
READ UART PUTS STATUS WORD ON
STATUS  |-— zggg‘.%;; E{%ﬁ;@g?ﬂ?
REGISTER ‘Feri%mme ERRORS)
C3A0 l
READ RECEIVED
WORD
C3A2 {
READ UART F
STATUS |- — | RECEVED FLacHAS
REGISTER BEEN CLEARED
C3A4 r
YES WAS LAST WORD
A\ MVNE )T T TRANSMITTED 5547
C3AA NO
SET 55H AS
WORD TO BE
TRANSMITTED

Figure 20. The serial inputs and outputs of a UART are stimu-
lated by this program along with the control and status registers.
The UART is first set to send and receive serial words with eight
data bits, even parity and two stop bits at 1200 baud. Next. the
program writes the word AAH into the UART and waits for its
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transmission to complete. Then the status word is read onto the
data bus along with the serial word received, and then the status
word again. Finally 55H is loaded for transmission similar to the
word AAH. The program jumps back to the beginning of the loop
upon completion.
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SECTION I—A DESIGNER’S CHECKLIST FOR
GETTING STARTEND WITH SA

Here’s a summary of this article that can be used as a

checklist when designing or retrofitting SA into a micro-
processor based system. It is not limited to Z80-based
systems or personal computers.

1.

Provide a means to FREERUN the microprocessor by
using a FREERUN fixture or by designing in a way to
open the data bus and force the NOP or FREERUN
instruction into the processor. Find START, STOP and
CLOCK connections on the processor.

Provide a means to store, access, and select the SA
stimulus programs. Try to find a way that depends
only upon circuits that can be troubleshot with
FREERUN or logic probes in a simple manner.
Create START and STOP using software to control
hardware that's already available or hardware that is
specially designed into the product for SA testing. Use
circuits that can be checked by FREERUN, a previous
SA test, or other easy means such as logic probes.
Choose a CLOCK that is synchronous to START, STOP
and DATA on all nodes being tested. Be sure there’s a
CLOCK edge both before and after the START and
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10.

STOP edges. Avoid CLOCKing DATA from a node
when it's in the 3rd state.

Create software test loops that can give both a go/
no-go indication of all bused devices (like a diagnos-
tic) and also allow fault isolation of a bad component
or process fault even with bused devices. The tests
can be separate.

Be sure your test can isolate a failure because of
either a read or write problem with the device (e.g.
RAM).

Provide a way to stimulate uncontrolled inputs of /O
devices in a synchronous fashion using loop-back
connecters or external stimuli.

Provide meansto open feedback loops. Usually only a
concern in circuits that are independent of the pro-
cessor.

One-shots and UART serial outputs generally cannot
be tested with SA, so find a way to bypass them (elimi-
nate their effect on other circuit elements) during the
SA test so that all nodes operate synchronous to the
CLOCK.

Be sure yourtestsdon’t depend upon circuits working
that are being tested. Usually done by running the SA
tests open-loop (i.e. the tests only stimulate the de-
vices but don’t check the results to see if it was ac-
complished. The signature analyzer will check the
results.). Sometimes can happen inadvertently when
controlling START and STOP with software.
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Abstract:

Applying Modern Data Generators to Design and
Production Problems of Digital ICs and Printed
Circuit Boards.

This paper will investigate the testing require-
ments during the design and production of
digital ICs and printed circuits. Solutions
using data generatcrs in a stimulus-DUT-response
system will be presented. Individual examples
for functional and parametric tests will provide
further insight into problems, present general
solutions and hp contributions.

A brief outlook of trends in this area will con-
clude this paper.
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I INTRODUCTION

Todays digital products include ICs, instrumentation and
systems. Reflecting the demands of the application, they
range from simple to highly complex devices which offer the
user revolutionary capabilities. Engineers responsible for
digital products demand economical, efficient test equip-
ment to evaluate and troubleshoot their designs.

As microprocessors - and, indeed, all forms of digital
circuitry - become more complex and widespread with their
penetration of new applications, the need for versatile,
cost-effective equipment is of increasing importance.

This paper will concentrate on instrumentation that fulfills

the measurement requirements in digital computation and

digital data processing. Particular attention will be paid

to performance evaluation of a device rather than to its design.

In development as well as production or maintenance testing,
word generators and logic analyzers are used alongside the
traditional oscilloscope mainly in bench applications, but also
in systems.



IT Phases and Activities in Design and Production

Before looking into the various types of data generators and
their applications, a brief review of the main departments
of electronics companies shall characterise the phases and
activities, in which data generators ease the work.

Typically an electronics company is organized in a vertical
structure of departments (R&D, Production, Marketing, QA,
Services, Sales, etc.) headed by general management.

MANAGEMENT

........ :

MARKETING R &D PRODUCTION Q A

T
T

Fig. 1: Vertical Structure of Companies

Although companies producing ICs are visually organized in
a similar way to instrument manufacturers, there are significant
differences in the test equipment they use.

The activities carried out by an IC manufacturer’s R&D and pro-
duction departments can be represented by the following figure:



PROCESS CAD PRODUCTION
DEVELOP TEST
PROTOTYPE
TEST
BASIC HARDWARE PRODUCTION
CIRCUITS MODEL ENGINEERING
DESIGN

Fig. 2: Model of IC Manufacturers activities in R&D
and Production

Process Development and Basic Circuit Design are responsible
for new semiconductor technologies and for new and better
processes. This activity can be part of a single R&D lab or
concentrated in a central research facility. Thelr equip-
ment is mainly of physical and chemical nature plus instrumen-
tation for measurements of capacitance, voltages and low
currents.

The second column in the figure represents IC development.
Here large computers with powerful software have recently
become major design tools for engineers. CAD (Computer Aided
Design) programs and simulators do most of the circuit design
work, while CAA (Computer Aided Artwork) helps the engineer
with the circuit layout. Nevertheless, hardware models will



hold places in future where high speed or complex circuit design
could be critical. Ewvaluation of the model is carried out by
measuring its performance when stimulated by a pulse or data
generator. After design and layout work has been finished proto-
types are manufactured and tested. In most cases prototypes are
tested on wafer with commercially available IC-test systems.

Only in high speed functions are the IC’s packaged and tested
with self-tailored systems which include high-frequency pulse and
data generators.

In the majority of production facilities the high volume of IC’s
are tested either before packaging, at wafer stage, or after
packaging.

Automatic tesgt systems, which fit all the needs required, are used.
In some cases these test systems are tailored to a specific

task. They are assembled either with available instruments

(where again pulse and data generators are found) or with self-
developed circuits.

As a summary, an IC manufacturer’s R&D and production departments
work on the same DUT (the IC). As will be seen, this contrasts
with the instrument manufacturer’s situation.

IC MANUFACTURER

DEPARTMENT R &D PRODUCTION

pur I1C I

Fig. 3a: Device types tested in different departments: IC
Manufacturer



CIRCUIT DESIGN [/INSTRUMENT MANUFACTURER

DEPARTMENT ‘ IL l R &D | PRODUCTION

PC BOARD /
SUB~-ASSEMBLY

DUT ] e {C/PC BOARD

Fig. 3b: Device types tested in different departments:
Instrument Manufacturer

The instrument manufacturer buys his components from vendors.
In many cases he makes an Incoming Inspection in order to
find out defective parts and thus minimise failure costs in
production cycle. IC-test-systems are found here, only if
high volume of few components justify it. If system invest-
ment is not justified, bench instrumentation is used. This
may include pulse and data generators, logic analyzers and
computers/calculators for automatic operation.

In R&D, engineers take IC’s from the companies component
stock for the development of their circuits. They will also
evaluate new IC’s which promise a solution - or a better or
more cost effective solution. This evaluation is done with
existing lab equipment because the task is unique and not
repeated.

When a new instrument is to be developed a functional descrip-
tion, with all specifications, is first established. To assure
that the functional modules will work together later on, a
thorough, (hopefully) complete and correct definition of inter-
face signals and perhaps of interface hardware is done. Each
functional module with its related interface definition then
becomes a design task for an engineer.



g +—

PROJECT: INSTRUMENT DESCRIPTION

DIVIDE INTO FUNCTIONAL MODULES

RIGOROUS INTERFACE DEFINITION

DEVELOPMENT DEVELOPMENT
MODULE | MODULE 2
VERIFY TEST VER|FY TEST
V4
L oK
NO NO N\
YES YES

INTEGRATE MODULES

FINAL TEST

A

|
S
NO

DESIGN
MODIFICATION

YES

Fig.

4: Simplified R&D flow diagram of an instrument’s develop-
ment



Very soon the engineer will come to a point where he needs the
interface signals from the other modules. But these modules
are also in development, forcing their engineers to the same
problem. Here a data generator can substitute the missing
modules by simulating the data required by the module of
interest. The simulated data is determined by the bit pattern
loaded into the data generator.

FUNCT. FUNCT.
MODULE1  f—— — — J} MODULE 2
——————— "4
INTER FACE

DATA GENERATOR

T T

Fig. 5: Data Generator substituting and simulating the accompany-
ing functional module

After final development of each module, the verification of all
functions and measurement of all parameters, the modules are
integrated to one instrument or system and an overall final test
checks all functions where again data generators or pulse
generators can simulate the outside world.

In production a similar picture emerges: a production run for an
instrument 1s started, material ordered from compcnent stock.

The individual PC-boards are loaded, soldered and pretested.
Consequently, this pretest also requires signals to be fed to
the PC-edge connector as well as power, which again is a wide
application area for pulse and data generators. After pretest of
the simple boards the instrument is assembled and tested as an
entity.



2.1 Functional and Parametric Testing

Circuit test can be carried out in two fundamentally different
ways: functional and parametric.

Functional testing is the logic verification of the DUT's
operation: the logic validity of the DUT is verified against a
known truthtable or flow <chart, with uncritical timing and safe
logic levels.

Parametric testing evaluates the DUT's performance under marginal
conditions, e.g.: slow or fast pulses, late or early synchroni-
zation, duty cycle, logic levels.

The test requirements of these two areas put different demands on
data generators, although the basic block diagram of Fig. 8 is
still valid for both types. A data generator designed mainly for
functional test applications will have fixed output pulse and
timing characteristics. As functional testing requires wide and
deep data patterns the memory size is generally larger than for
data generators in parametric test applications. The charac-
teristic of generators for parametric test is that electrical
parameters, like timing edges and logic levels, can be varied

to permit worst-case testing and also, for example, to investigate
set-up times, hold times and critical levels.



ITT DUT Stimulation

3.1. Computers and I/O Cards

Now the question may arise "Why not use a computer output card
for stimulating circuits?". The computer has a great amount of
intelligence for generating data arithmetic or algorithmic

(for instance a PRBS-Algorithm can be programmed) or outputting
data from memory or any mass storage (paper tape, disc etc).
This method is sometimes used when speed and driving require-
ments arenot critical. The driving capability of an I/O card
is typically specified as a fan-out of a number of TTL loads.
Output speed will significantly exceed 1 megahertz only if DMA
technique (Direct Memory Access) is provided. Today'’'s semi-
conductor devices and circuits, however, now require faster
data rates. Furthermore, circuit stimulation and test need a
better DUT interface than that provided (if provided at all)

by I/0 cards;, control over level, timing etc, 1s needed, and
outputs must be protected against shorts to ground and supply.

3.2. Electronic Tools

Lab-built toggle switch boxes present another extreme im com-
parison to the computer I/O method. Used for setting input lines
high or low, the function of a subassembly is verified by
comparing its output patterns with the truth table. Unfortunately
switch boxes are capable only of static testing. Furthermore,
contact bounce may generate an uncontrolled number of clock
pulses. Consequently investigations of complex devices over
several clock cycles are awkward and time consuming.

3.3. Self-Tailored Equipment

As an alternative, many users build their own data generators.
These, however, generally have limited sets of words and are
usually restricted in bit rates and output levels, quite apart
from the costs of building them and their one time use for a
particular task.

3.4. Data Generators

For logic users with a variety of applications, the data
generator is convenient for bench and system use in R&D and
production. Very likely used by engineers, the data generator’s
flexibility is invaluable for stimulating a wide range of
circuitry. This does not mean that in some cases problems can-
not be solved with computer I/0’s or switch boxes.



IV Data Generators Gomputer
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4,1. What is a Data Generator?

Before discussing various aspects and applications of data
generators, first consider the question "What is a Data
Generator?". The answer may lock like this: A data
generator is an instrument that generates a stream of ones
(high level in positive logic) or zeros (low level). The
operator has complete control over bit position, bit/word
frequency, amplitude etc. (A word being a combination of any
number of serial or parallel bits.)

4.2 Data, Word ... etc.

In literature and in conversation many words are used to name
the logical output sequences: pattern, word, data, data
pattern, (data-) vector. They are all used to denote the same:
a combination of logic ones and logic zeros either serial or
parallel or as a whole block.

4,3. Generator Families

Some families of data generators are presented so that their
use in some applications following later can be more easily
understood.

4.3.1. Time Linear versus Status ‘Linear
4,3.1.1. Time Linear

Most data generators output their data as shown in Fig. 8 and
Fig. 9, a clock oscillator determines the preset or programmed
interval time between consecutive readouts. This is called a
T ime Linear Data Generation because
all clock periods have the same length. In other words, the
clock provides a constant time axis. Pulse durations in NRZ
format of more than one period are generated by storing a cne
in consecutive addresses (see Fig. 9, periods 2, 3, 4).

4.3.1.2. Status Linear
In contrast to that, the S t a t u s Linearcw Te ch -

n igque defines the time between transitions as shown in
Fig. 6.



B DATA DEPTH—————ad
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et i
| X [
— |
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C — | ;ﬁ > VARIABLE
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Fig. 6: 'Status Linear' Data Generation

An occurance-related structure is thus established which can
give adequate resolution to short events whilst saving memory

space during longer events. Furthermore the need to program
consecutive ones (or zeros) where no transitions occur can be
avoided. This technique is used for multichannel logic

activities of extreme duty cycles, for instance in the develop-
ment of electronics for machine control.

4.3.2 Parallel (Multichannel) Sources versus Serial (Single
Channel) Sources

4,3.2.1 Serial Output Generators:
Data Generation and Application Area

To satisfy very different application areas, two different types
of data generators are found. Test equipment requirements for
communication, fiber optic, and other serial data transmission
require data generators with a single output. As these data
generators generally simulate a data source feeding into a trans-
mission channel or data link, they have to meet a variety of data
transmission protocols and standardized levels.



Two ways of generating serial data are found: first a RAM type
where the user has full control over each single bit and the

memory part for readout. Second there is a shift register type
where a data sequence is gener a t e d during output time.
This type of data sequence is also known as PRBS (Pseudo Random

Binary Sequence). The method is shown in Fig. 7.
Jﬁ) ‘;‘3 G
Lo ¢ oD o [T
FF r - r ‘—'v 1 —p FFy

CLOCK

Fig. 7: PRBS Generator. Feedback taps around a shift register
generate long pseudo random binary seguence. Length is
calculated as 2"-1 (n = number of FF).

Sometimes RAM and PRBS types are combined in order to generate
preamble-data-postamble protocols. The data part - whose
actual content is immaterial for DUT purposes - is generated by
the PRBS. All combinations of n bits are generated except n
consecutive zeros.

4.,3.2.2. Parallel Output Generators:
Data Gereration and Application Area

Parallel data generators serve as data source for data bus appli-
cation, stimulation of parallel input digital circuits etc.

Data generation in nearly all cases is done by readout of pre-
viously stored data out of a read-write random access memory as
described in the next Chapter. Data generators with several
parallel outputs are also used in uni- or bidirectional data
transmission if they are tailored to that purpose. Protocols
like 3-wire handshake on an 8 bit data bus (GPIB, hp-IB,

IEC-Bus, IEEE 488-1975) or 2-wire handshake on an 8 or 16 bit
data bus of computer I/O are performed. Parallel output data



generators for digital applications are generally most versatile:
output levels are settable over a wide range, frequency and other
timing parameters are adjustable, bits and sequence length are
programmable as needed. Thus the needs of nearly all applications
can be met directly. This type 0of data generator may also be
found in very high speed communication applications including
fiber optics where the high speed data stream is generated from
parallel inputs by time division multiplexing. In serving the
needs of most applications, the parallel data generator has a
large market in the growing field of complex digital develop-
ment.

4.3.3. Details on Data Generators

Figure 8 illustrates a typical data generator block diagram:

MC-CONTROL (INCL. KEYBOARD , DISPLAY, REMOTE 1/0)
ADDRESS
DATA
CLOCK ADDRESS RAM | PULSE [ OuTPUT

GENERATOR IFORMATTING AMPLIFIER
(TIMING)

our

SES S A

CONTROL LOGIC

e —

Fig. 8: Block diagram of a data generator



The heart of a data generator is a read-write random access
memory (RAM). The semiconductor memory is chosen from which-
ever technology provides the requirements of speed, magnitude,
non-volatility etc. Apart from some exceptions the organisa-
tion of the RAM reflects the data generating capabilities in
terms of number of worés and bits per word. Readout of the
data content is done by an ascending address generator (counter)
being (re-) started and stopped at predetermined values (First
Address, Last Address). A clock generator gives the interval
between consecutive readouts. In most cases the output of the
RAM is latched for gooc¢ skew, amplified to the desired high- and
low levels and brought to the output connectors. In some cases
the pulses are formatted from the NRZ (NON-Return to Zero) to
the RZ (Return to Zero) format by adding width and/or delay as
shown in Fig. 9.

| NRZ FORMAT

_____J——I_J_W__[_] gf-T ; RZ FORMAT
—» I‘_ . |‘_ : [SHOWN WITH DELAY)

'DELAY WIDTH -

P2 3 L i 5 6 - 7 i 8 9 10 CLOCK PERIOD

0 | | | 0 0 0 0 0 DATA

Fig. 9: NRZ and RZ Format. The same data 1s shown in two formats.
In NRZ format, if the output is a 1, the output stays high

until a 0 is encountered. In RZ format, if the output

is a 1, the high level returns to 0 within the same period.

Delay and Width characterize a pulse in RZ format.

Whereas a microcomputer does all sophisticated controls, program-
ming, calculations as well as human and remote interfacing to

the user, some function and control switching requires high speed
logic.



V Test Pattern Generation

Except for PRBS generators in which the sequence is
generated arithmetically during readout the user has
to initialize the data generator by s t o r i n g bits in the
memory as required by the test task.

The easiest way to get words, patterns or whatever would be in
an application where a DUT is to be tested to parametric worst
case margins by replacing the existing data source by a data
generator. The user reads the data by means of an oscilloscope
or other data collector (logic analyzers etc) and keys them into
the data generator. Alternatively he can do it automatically
by use of remote I/0’s in a calculator/computer controlled en-
vironment. Thus, when he outputs from the generator, he has

the same data but he now also has full control over each bit

and over all parameters.

Data-gathering differs slightly depending on the type of data
source, For example, verifying the logical function of simple
SSI/MSI IC’s merely requires ones and zeroes of the known truth-
table to be transferred to the data generator memory.

In the above case, the user did not have to concern himself with
data generation because his source is error-free and the only
mistake he can make is a wrong reading error resulting in a one
converted to a zero or vice versa or skipping a number of words.

Other laboratory and production experience shows that, in most
cases, the user has to work out the data by himself. While flow
charts or circuit diagrams are a basis for generating the data,
the users know-how about a circuit and its inspiration are
required. The intelligence of a microcomputer within a data
generator can only help the user in keying in data conveniently,
editing it in terms of inserting/deleting lines, changing bits
and giving him a quick overview. A check out of the data on

the DUT for debugging then ends the data generation. Non-volatile
RAM’s or magnetic mass storage keeps data alive for multiple use.

5.1 Circuit Simulation

Computer aided circuit simulation and data generation may provide
solutions which relieve the user. However, results up to now
are not very encouraging because only circuits with few nodes

can be simulated and data generation is very limited. Simulation
of medium size circuits require the largest and fastest computers
and very sophisticated software. But development is going on and
the future will tell more.



VI Applications

6.1. Application Examples of Seriel Data Generators
6.1.1. Serial Interface Design

Serial buses are of:ten used to exchange information in digital
systems. .In aircraft, copper or fiber optic cables link

radar and navigation systems with central computers and cockpit
displays. In data processing and transmission systems a
central computer is often linked to its peripherals via serial
buses. The interface between a disc and its controller is also
serial. Design of such serial systems, especially their
interfaces can be simplified a lot if a data source is available
to the designer which gives him complete control over the data
generation. He can then get his interface operable and test
its pattern sensitivity. When functional operation of the
device has been established, bit rate may be varied to verify
operation over a band of frequencies and establish worst case
limits. Signal voltage can also be varied to determine ampli-
tude sensitivity.

SDLC Data Transmission

Data interchanges between computers and peripherals are

governed by various serial protocols. The SDLC protocol (for
Synchronous Data Link Control) is typical of the many protocols
currently in use. The SDLC message begins with a 24 bit
preamble which includes synchronizing, address, and control
bits. The message continues with a free-form information field
0of user selectable length and ends with a 24 bit postamble. The
postamble contains error detecting bits and an end-of-message
delineator.

Fig. 10 illustrates the combination of the three fields in the
transmitted signal.

FRAME CHECK
FLAG  ADDRESS (ONTROL INFORMATION SEQUENCE FLAG
-

SDLC DDATA
MESSAGE I DIIIIIIOJ: K BITS

X BITs J 16 BITS ‘ 01111110 ‘

L FRE AMBI.L INFORMATION POSTAMBLE |

Fig. 10: SDLC Data Transmission



A generator designed for the serial data needed to test trans-
mission lines and systems, sending and receiving hardware of
serial interfaces, and telecommunication equipment is the hp
8018A Serial Data Generator.

It meets all the requirements for serial stimulus up to

50 Mbit/s. 2048 individually programmable memory bits combined
with Pseudo Random Binary Sequences (PRBS) allows generation of
the most complex data patterns to be generated. DC to 50 MHz
clocking rates and a well defined 15 V output pulse provide
speed and signal levels to work directly with logic families
from ECL to CMOS.

Adding to the versatility of this generator are variable word

and pattern lengths and dual data output channels. PRBS and
programmable data words can be combined into a single data
stream, perfect for simulating preamble-data-postamble

patterns. A full complement of cycling modes and trigger signals
provides easy synchronization to the circuit under test. For
production and other systems environments, an optional HP-IB
programming interface provides remote control of data generating
functions.

Coming back to the SDLC Transmission protocol with its 24 bit
preamble, free-form field of user selectable length and 24 bit
postamble the 8018a’s MIXED mode neatly simulates this message.
Two 24 bit words are programmed and data is entered as preamble
and postamble. In MIXED mode, a PRBS sequence 1s automatically
inserted between the two programmed words and represents the
information field as shown in Fig. 11. The pseudo random signal
is a good simulation of actual traffic that the network is likely
to encounter and helps to isolate pattern sensitive errors.

PRAME ( H{PCK

HLAG ADDRESS ( ONTROI INFORVMATION SEQUENCE F1AG

KBTS w In BITS } o110

’V PREAMHKL } INFORMATION POSTAMBL b

K0TS & WORD ) PRES WOIRD 2
MINED MODE ——— “e

sl baTa

MESsVGH [ [ARTRRNT KRITS

Fig. 11: Generation of SDLC Protocol by hp 8018A SERIAL DATA
GENERATOR in MIXED MODE: generation of two 24 bit
Data Words with a PRBS Sequence inserted.



_21_

The pseudo random signal also contains long, predictable

strings of consecutive logic ones eand thus can be used to check
for proper zero insertion and deletion as prescribed by the

SDLC protocol. Simply by varying bits in the preamble and post-
amble, data can be routed to other address points in the network,
and system errors can be simulated.

6.1.2. Telecommunications

In PCM (pulse code modulation) telephone networks and electronic
switching systems, voice, dialing, billing and related informa-
tion are encoded as blocks of serial data. A typical PCM testing
example might look like the following.

In a 30 channel system, a basic data frame consists of 32 eight
bit words. Words 1 and 17 are synchronizing characters. The
remaining 30 words are eight bit, analog-to-digital converted
samples of the 30 voice channels. The frame is transmitted at a
2 MHz bit rate.

FRAME
SYNCH 15 INFORMATION CHANNELS SYNCH 15 INFORMATION CHANNELS
Ao A

I R R I R

I 256 BIT FRAME 1

Fig. 12: ©PCM Data Frame

The 8018A's capability of generating large amounts of serial
data makes it a useful laboratory test tool in the design of
these systems.



Using DATA mode, up to 8 such frames can be stored and output
by the 8018A. 1Incorrect synchronizing characters may be
entered in some of the frames to test susceptibility of the
system to this error. The words representing voice informa-
tion can be randomly programmed to simulate actual voice and
data traffic in the network. If a crystal related bit rate is
required, it can be entered via the clock input.

6.1.3. Coding

Specific testing applications very often require data formats
other than RZ and NRZ. In most applications the 8018A’'s very
large reserves of both speed and memory can be used to directly

simulate these required formats. A typical example is described
below.

Manchester ccde always has a transition in the middle of the bit
period. A logic zero starts low and ends high, and a logic one
is the reverse, as shown in Fig. 13:

MANCHESTER
CODE

‘ 0 ‘ 1 ! 0 0 ‘

DATA
BIT \ ‘

Fig. 13: Manchester Code. Timing graph of the pattern 01100.

Simulating one Manchester bit with two 8018A bits, data entry
is as follows. A Manchester logic zero is programmed as 01 and
a logic one as 10. The 8018A’'s clock is set to twice the
frequency of the desired bit stream. The DATA B output, when
programmed to an alternating ones and zeros pattern, simulates
the Manchester clock signal.



MANCHESTER
CODE

8018A DATA A
(MANCHESTER DATA) ° 1 ! | ° | 1 l ° 0 1 0 1

8018A DATA BB
{(MANCHESTER CLOCK) ! l ° ] ! | ° [ 1 * ° [ ! LO_J ! -IL
8018A CLOCK I I

Fig. 14: Manchester Code Simulaticon by use of 2 channels A and
B of 8018A SERIAL DATA GENERATOR and proper programming

Using this technique, Manchester coded data streams can be gene-
rated at rates up to 25 MHz and with sequence lengths to 512 bits.
The same code generating technique applies to a wide variety of

other coding formats. In all cases, several 8018A bits simulate
one bit of the required data format, and the 8018A’s second
channel simulates the clock. The 8018A's large reserves of speed

and memory are responsible for the viability of this valuable
technique.

6.2. Functional Testing and Parametric Evaluation of Components:
A high speed RAM Test

Often users of monolithic and hybrid IC’s have to test these
components functionally and parametrically. This requirement
can arise either in:

R&D - in order to investigate a component for a special
use
materials engineering department - where component evaluation

tests are to be made, or

receiving department - wherc an incoming inspection by full
screering or by sampling must be made, or where a component
must be selected to a tichter parameter but the guantities
don't justify an IC test system.



Bench type measurement set-ups assembled for a specific purpose
can provide the customer with a low cost, gqguick solution because
of the use of general purpose instruments which can be used
elsewhere after completion of a particular task.

The following application deals with a typical LSI device, the
Random Access Memory (RAM). Employed where data needs to be
stored, read out or overwritten, data is properly accessed or
entered only when appropriate delays exist between its data,
address, and write enable signals. More specifically defined in
Figure 15 as set-up time, hold time, and access time (propagation
delay), these delays are significant for evaluating typical RAM
performance, in that their specified minimum values provide the
check-list for dynamic testing.

WRITE CYCLE
—_— e — 3V
MEMORY
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—— — e — 3V
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ANY | l \
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-7 - | N — —0 \Y}
| Iﬂ-’}— thoid
|‘|—tsetup—>| 3V
DATA 15V | 1.5V
INPUT ! |
, A — ov
4P ‘hold
| —— "ty —— 3v
WRITE ) 15V
ENABLE
- ———ov

Fig. 15a: RAM Timing Parameters: Write Cycle
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READ CYCLE

MEMORY .&5v Misv
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—J’ | l ¥---— O \v}
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le—>-tp
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——— VoL

Write enable is high.

Fig. 15b: RAM Timing Parameters: Read Cycle

Whether a RAM needs to be tested functionally or parametrically,
the 8016A Word Generator 1is capable of delivering the required
signal configuration for precise evaluation.

The 8016A Word Generator has eight data output channels, each
supplying an independently selectable 32-bit word at clock

rates from dc to 50 MHz. Where longer data streams are called
for, a serializer cascades the 32-bit outputs up to a maximum
256-bit sequence length. A ninth output is designated STROBE.

In addition to the STROBE, the 8016A generates three other
auxiliary outputs. The CLOCK output provides pulses at the
selected repetition rate, and the FIRST BIT/LAST BIT outputs pro-
vide framing pulses as trigger aids for viewing the data sequence.
A significant feature of the 8016A is its delay capability, where
the clock can be delayed with respect to the data channels, and
data channels can be delayed with respect to each other. Output
levels can be selected either TTL or ECL compatible.



- 26 -

By selective assignment of 8016A outputs to RAM inputs, the
8016A memory can be programmed toO generate the necessary data,
address and control signals for functional testing, variable
delay and variable RZ-width then supply the dynamic test
capability. Where the storage capacity of the RAM precludes a
thorough functional test with the 8016A’'s 256-bit memory, the
word generator can still make a valuable contribution in
dynamic analysis. Two 8016A’s in parallel may even be used to
fulfill extra channel needs.

A typical test set-up with a 64-bit RAM as DUT is shown in
the following Figure 16.
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Fig. 16: RAM Test Set-Up

Here again a Word Generator assumes the role of signal source,
programmed via a Card Reader; RAM response is verified using a
Logic State Analyzer and an oscilloscope. Particularly impor-
tant to this test set-up is the connective sequence from the
8016A to the RAM. Non-delayable channels 1, 3, 5 and 7 are
used to supply RAM address signals. Delayable channels 2, 4, 6
and STROBE supply RAM data signals. The WRITE ENABLE input re-
quires a low-going pulse, and this command is then delivered by
the complement output of channel 8.



An extract from the RAM truth table (F:igure 17(a)) is transferred
onto the marked card as shown in Figure 17 (b). Two cards are
required here to completely load the 8016A’s data memory and
strobe channel,

o 3 1]

= fr;E[ RAM ]A\(;;E[ RAM | N

< SE :: CE S0 PENGIL- ERASE cwﬂ;‘['_;(' - - - b wrtsonpe-:,rs;nsf c‘w=,.‘:'- - - -

¥ = T e e

z L - - 8323 — 22 — 2" — 2° — avvaess
g 2 ¥ ACORESS DATA DATA zasa;;z[z;;;me NCA ENEN CRC RPN CRE EYFT-)
Jw - e - o o - | M— -l Oew > olco el | Mpk
€3 2 23222020 23222 20| 2322 2

DOl - | o o |- - EBE Iojcs amlco o o 2| ame| (TR
P | 1 ST T | e e o a»|c | = o - 1D - O o o oo|em ==
21 1 1 S| e e o» - ww OO || e = - o o e O e
31 1 1 ¥DD(:<:----.-:N’;'( o - - = e o= =
4 1 1t 1 Ee] == ] e O o o e - == | =
51 1 1 - I> D E || em oo ew o oofc oo|oo|az ==
6 1 1 1 11 - o EDE |- e - -w o oo e =)=
71 11 1 19 S - —| > e e el (= ) P
8 1 1 1 1 L | o === ;-&:—-—-——:$
9 1 1 11 1 1 = == e B L e e e I
10 1 1 1 1 11 ES) BRI eI L W e e =] [ ==
LRI | 1 1 11 M-} D o || e e o e S|o|co|—
12 1 1 1 1 1 ) Do Lo e O O em|co em|co|=|—
13 1 1 1 1 =) R I - EE EEIES
14 1 11 1 1 - > DD | e e e o oo aw| (el —=
15 1 1 1 1 1 C ol en | = e e e e o=
16 1 11 1 1 1 > OloD || e e e ||
17 1 1 1 1 1 = =l o | oo o o oo oo =
18 1 1 1 1 1 1 ) Sl | oo oo o o o e t—=
19 t 1 1 1 11 _=|s =les o oo o oo o|lo|e]—=
20 1 1 11 1 11 = =lo o Lo o o o el ewlo| =]
21 1 1 1 t 1 P O o oo o . o o oo
22 11 1 1 11 ) =l o ook e o oo e|lo|=|=
23 1 1 11 1 5 =l [P o e o o o ==
24 1 1 1 1t — === Do DS e S el ww o=
25 1t 1 PR = | o e o o oo ooz e
26 1 v 1 1 1 P =l :D-DEDED-D’_—‘&:
227 1 1 1 1 1 1 s> = oo o] e o o e|o o=, =
28 1 1 1 1 1 1 t 1 = === IO e o O emc oo =
29 1 1 1 1t 1 1 1 ) S o | T e eae o oo O || >
30D 1 1 1 1 11 1 1 1 LD oD |t emlce e o ol alo|=—| =
31 111 11 1 1 1 = Do ol el e O we|o olc|s =
2111 11 111 = b e~ vt e Fredbrrit i v iired o i, e
L P8l alsufEsanil T )& e T T J

: (a) RAM Truth—-Table
(b) Markesd Card Program

—_
~J
[}

Fig.

The GTP (Go To Parallel) for parallel-loading of the
data channels;, the SBF (Strobe Byte Follows) command

for loading the strobe channel, and the SDG (Start

Data Generation) command for starting 8016A memory read-

out.

Note:
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After programming the 8016A memory, time positioning of the
channel outputs must be correctly adjusted before proceeding with
any functional test of the RAM. To simplify this, the 8016A is
set to generate RAM data/address information in NRZ format and
the WRITE ENABLE command in RZ format, as indicated in Figure 15.
By operating the channel 8 delay control, the appropriate set-up
times for normal RAM operation can then be set.

with the 8016A suitably adjusted, functional testing of the RAM
proceeds as indicated in the Figure 17(a) truth-table. The first

16 clock markers comprise a write-cycle (WRITE ENABLE command pulsed
low), with 4-bit word cells 0 through 15 being sequentially
addressed and data entered. During the next 16 clock cycles,

WRITE ENABLE is held high, and word cells 0 through 15 are again
sequentially addressed. As each cell is addressed, the 4-bit

complement of its data content should be read out. (This readout
can be true or complement of the stored data. It varies
according to the tested RAM.) RAM response is then easily veri-

fied by comparing the 1600A Logic State Analyzer display (Figure
17(c)) to the Figure 17 (a) truth-table. Should a worst-case
pattern exist for a particular RAM, the 8016A memory can be
correspondingly programmed via the marked card reader, and the
response of the RAM thoroughly checked out.

Fig. 17: (c) Logic Analyzer Display of
RAM Response
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Having verified RAM operation, its parametric limits can be
determined by adjusting the appropriate 8016A controls until
malfunction is observed on the Logic Analyzer Display. Which
controls should be adjusted can be deduced from Figure 15.
Address set-up time, for example, is analogous to a delay
between 8016A channel 8 and the address channels (1, 3, 5 and
7). By adjusting the channel 8 delay potentiometer until RAM
operation fails. The minimum set-up time can be measured on a
scope.

Similarly, data hold time can be considered analogous to a delay
between channel 8 and one of the data channels (2, 4, 6 and
STROBE). Adjust the channel 8 delay potentiometer for RAM
failure, and read the minimum value from the scope display. The
third important parameter, access time, is easily determined by
using the scope to measure the delay between a RAM data output
and its corresponding address input from the 8016A. As a con-
cluding example, if RZ format is selected for channel 8, the
WRITE ENABLE pulse width can be controlled by the 8016A’s RZ
width potentiometer. With the RZ-width decreased until the RAM
fails to respond correctly, the absolute value measured on the
scope display is the actual operating minimum of the WRITE
ENABLE command width.

6.3 Functional Testing of Circuit Blocks, Boards and Sub-
assemblies

This task opens a wide variety of applications for data
generators. Numerous examples of applications could be given
which are either typical for a certain task and found nearly
everywhere or which are specific for a single user. Two
examples will be presented here showing the application of
modern data generators in state-of-the-art circuits.

6.3.1. Data loading into a Scanning Display Hardware during
Development Phase

Alpha-numeric or graphic CRT displays are examples of equipment
where parallel development of microcomputer and control circuits
can cut R&D time drastically, eliminate lengthy reiteration to
correct hardware and firmware. A typical case is represented by
experience gained on the development of a logic analyzer display
hardware.

32 lines of information, each 64 characters long are displayed

on a CRT. The 2048 character-locations are represented by RAM
addresses, cach RAM location having 8 bits for defining the
character to be displayed. Six of these bits address a ROM which
contains digitized pattern information for 64 different characters,
the seventh and eighth bits permit blanking and luminance inver-
sion. The ROM is also addressed by 4 additional bits from an
address counter. Thus, just the digitized character information
for the current CRT scan is accessed (10 scans equal the height
of one character including vertical spacing, see Fig. 18). This
information parallel loads a shift register which performs a
serial conversion for CRT beam modulation.
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Fig. 18: Character Synthesis

The address counter (Figure 18) is responsible for synchronizing
CRT deflection with RAM readout. In the fully-assembled

system, the micro-computer will load the RAM at intervals with
new information. When this occurs, RAM read-out 1s inhibited and
each RAM location is addressed in sequence by the micro-computer.
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To thoroughly test the display, the RAM recuires 256 different bit

combinations for each address. While a formidable if not impossible

task manually, the hp 81702 Logic Pattern Generator not only
generates the necessary data depth for a complete display but

can be easily reprogrammed for a different order of symbols.
Furthermore, the 8170A also generates address and write enable
(DAV) signals. Thus, everything necessary for loading the RAM is
available. Moreover, the jinterface functions in exactly the

same manner as that envisaged for the microcomputer.

The Hewlett-~Packard Model 8170A is a programmable word dgenerator
designed for reliable functional testing of rnulti-channel hard-
ware.

It generates parallel 8 bit or 16 bit patterns at a memory

depth of 1024 or 512 words, optionally extendable to four times
that capacity. The clock rate of up to 2 MHz makes the 8170A
suitable for real time bus stimulation. Its output levels are
well-defined for dependable stimulation of TTL or CMOS circuitry.
Output pods are specially designed for efficient bus connection
to the test device, making testing faster and easier.

A logic device or subassembly might be part of a complete digital
system, for example. During all developmert stages it serves as
an easy-to-use and reliable stimulus that supplies logic patterns
for thorough functional check-out of this multi-channel hardware.

In the event of display malfunction, the 8170A data pattern loaded
into the RAM provides an ideal basis Zor logic analyzer
measurements at the RAM, ROM and shift register outputs.

Additional advantages using the 8170A are the automatic coding

and data programmability. Automatic coding allows data and
addresses to be entered directly in the same codes to be used by
the microcomputer. Data programmability allows every possible

bit pattern in every single RAM location to be checked out. 1In
addition to easy HP-IB prodramming, a choice of several fixed data
patterns are available for quick verification, and manual program-
ming is useful for close examination of suspect areas.

This test method is generally applicable to any output device
where parallel data is handled. In many cases, as with the
alpha-numeric/graphic CRT, the read-out device itself will be
serial in nature but with built-in parallel/serial conversion.
Thus teleprinters with RAM backing (text storage) and line
printer output systems as well as logic analyzer displays can be
rapidly and thoroughly tested using the 8170A as bus stimulu-.



6.3.2. PROM Elimination speeds development of heart rate
correlator

A new fetal heart rate monitor uses a correlator to extract in-
stantaneous heart rate accurately from complex signals containing

large maternal heart beat and noise components. The complex
signal is first digitized, then stored in a RAM. From here the
data is accessed for correlation. To meet near-realtime require-

ments, a hard-wired controller is used to supervise RAM and
correlator.

Fig. 20: States. This state diagram illustrates an algorithm
that sequences through eight states. The five control
variables (B, C, D, E, and F and their complements)
instruct the controller where and when to branch.

The numbers in the circles indicate the number of
micro commands generated in each state. (see also -+ 5.)

Normally, the design cycle of the controller would have included
the use of a PROM for storing the control algorithm so that hard-
ware development on controller and correlator could go ahead.
With design maturity, the PROM would provide the data for the

ROM used in production. However, the complexity of reprogramming
PROMs, and the uncertainties after several erasures, could have
led to delays in the main project.
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Fig. 21: With a PROM microcontroller, any complex algorithm can
be realized with two programmable read-only memories
and a storage register. (see also - 5.)

To eliminate these problems, an alternative to the PROM was
sought. As the main factor in streamlining this activity would

be convenient, fast programming, the 8170A Logic Pattern Generator
was chosen. Its external address mode provides PROM-like
capability with data rates up to 2 Mbit/s. This is adequate for
the functional testing of synchronous devices - even if this means
slowing the system clock. Manual, HP-IB or RS232C (CCITT V.24)
programming gives keyboard data loading in a selectable code and -
important for developing algorithm and hardware - unlimited edit-
ing capability.

The mature algorithm, secure in the 8170A’s non-volatile memory, can
be accessed by internal addressing, HP-IB or RS232C. Thus the

most suitable data transfer method for the ROM masking process can
be chosen, and possible manual errors avoided.
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Fig. 23: State diagram and memory contents



Hard-Wired Controller for Correlator

The RAM and correlator are controlled by a serial algorithm
which has 10 different states and three branches. This
algorithm is executed by a controller whose major components
are a 32-byte ROM and a latch. When the latch is clocked, the
ROM is forced to the address which was defined by its data out-
put during the previous clock interval. Thus, by suitable pro-
gramming the last 4 bits of each byte, any desired progression
through the memory can be made. Branching is controlled by
Address Bit 4 which depends on the status of the decoder, the
RAM address counter, and an external start signal.
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Fig. 24: Simplified circuit diagram of the controller

In addition to reducing controller and correlator development
time, the use of the 8170A gave complete independence from PROMs,
and was a significant contribution to the prompt delivery of the
heart rate monitor.



VII Outlook and Trends

Recent developments and trends in data communications, data
processing and technology show that the amount of data

increases more and more. Thus data handling capabilities at

any point - especially here for data stimulating instrumentation -
must be extended and more flexible. Data storage capacities

must be expanded, and stored data has to be available for
processing etc. in less time. Consequently tomorrow’s data
generators will have larger memories so that more data can be
generated in a single block. As the cost per bit of semicon-
ductor memories drops, together with an increase in size and

speed, more memory capacity can be easily implemented. This
then will make it possible to output much longer data streams on
wider busses. 16, 32 or more parallel outputs will no longer be

impeded by memory restrictions.

Additionally, any kind of mass storage (cassette, floppy disc,
bubble, high density semiconductor memories) will be necessary
so that quick access to different data blocks can be provided.
Mass memories also allow several users within a department to

share one data generator and store individual data.

Larger amounts of data require much more intelligence and data
manipulation capabilities. The implementation of microcomputers
made it possible to have user friendly displays and keyboards and
programmable instruments.

Indeed, a more widespread readiness to accept the microprocessor
when first introduced could have led to a greater exploitation

of the advantages today. Data manipulation - bit editing, line
insertion/deletion, block move/copy, label assignment, coding,
etc. - as well as menu concepts for setting up parameters and
functions, are features which will make future data generators

not only more powerful but easier to operate, parallel to extended
hardware features.

Increasing memory capacity is one aspect of meeting tomorrow’s
requirements. More intelligence in g e n e r a t i n g data will
be a further characteristic of the next generation’s data
generators. Arithmetic data generation (address sequencing) and
real-time algorithmic data generation (data generation with
microcontroller by program) are techniques known from IC-test-
systems. With them, extremely long data streams can be

generated; the memory is more effectively used because one data
word needed several times has only to be stored once. These tech-
niques could be adopted for data generators thus providing sub-
routining, looping, jumping capabilities within data memory. With
external qualifier inputs, the data generator can be made to
branch, i.e. to react on commands, or data processing results.



The development of technology, especially in the speed of
transistors and ICs, makes 1t possible to increase generator
rate. Thus, it will be possible to meet the high speeds
required for parallel data transmission on busses as well as
for serial communiication lines where bit rates exceed 1 GHz.
Among the new techniques under discussion for inclusion in
high-speed systems are Gallium Arsenide (Ga As) and Josephson
Junctions. At such speeds, it is difficult to bring clean
signals to the interface port of the DUT.

Interfacing (or Probing) will become a general point of concern
because of speed and the increasing number of ccnnections. The
near future will show what customer needs must be satisfied
and the form the solutions will take.
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