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NewWave environment clearly defines the applications en-
vironment of the future, and the complete range of encap-
sulat ion services provides a clear, well- l ighted path for

today's personal computer users
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Mechanical Design of a New Quarter-lnch
Gartridge Tape Drive
The design of the HP 9145ATape Drive required doubling
both the track density and the lape speed of the existing
HP 91444, thereby doubling the older drive's 67-Mbyte
capacity and 2-Mbyte-per-minute transfer rate.

by Andrew D. Topham

HE EVER-INCREASING VOLUMES OF DATA being
handled by computer systems make i t  mandatory
for backup tape devices to continue to match the

growing disc capacit ies being projected. Both data trans-
fer rate and tape cartridge capacity must continually be
improved.

The HP 91454 ln-lnch Cartridge Tape Drive (Fig. 1) was
developed in response to this need. Before the HP 9145A
was developed, HP's entry level and midrange commercial
computer systems and technical workstations were usually
configured with either an HP 91444 Tape Drive or an HP
35401A Autochanger for backup, depending on disc capac-
ity The HP S144A has a cartr idge capacity of 67 Mbytes
and a data transfer rate of 2 Mbytes per minute. The au-
tochanger uses the same mechanism and has the same
transfer rate, but achieves a capacity of SaG Mbytes by
changing eight tape cartridges without operator attention.

The HP 9145A provides ful l  compatibi l i ty with the HP
9144A and the HP 354014 while also providing twice the
data transfer rate. This is achieved by doubling the tape
speed from 60 to 120 inches per second. As a result,  users
can back up their systems in half  the t ime.

The HP 9145A has twice the data capacity per cartr idge
of the HP 5144A. This is achieved by doubling the number
of recording tracks from 16 to 32. The HP 91454 can read
the older 16-track tapes, but the older drives cannot read

Fig. 1. Ihe L'lP 9145A 1/4-lnch Tape Drive provides a storage
capacity of 133 Mbytes per cartrrdge and a data transf er rate
of 4 Mbytes per mtnute for backrng up disc memory in entry
level and mtdrange computer systems

the new 32-track tapes.

Technical Challenges
When the development team started the task of designing

the HP 9145,{, there were several key areas where major
design changes were required.
Mechanical Design, To achieve the increased capacity, the
number of tracks across the tape width had to be doubled
within the same /q-inch tape width. To achieve the in-
creased data transfer rate, the tape speed had to be doubled.
The design had to accommodate variat ions in components,
manufacturing processes, and operating environments and
remain capable of accurately positioning the read/write
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head within the data tracks to guarantee data reliability.
New Cartridge. An improved cartridge design had to be
introduced to support the increased tape speed and capac-
ity requirements. This implied complete qual i f icat ion and
testing as well as the setup of formatting and certification
lines by the cartridge manufacturers. At the same time, to
maintain compatibi l i ty, the drive design had to guarantee
that HP 9144A-writ ten tapes could be read. The new car-
tr idge features an improved mechanical design and new
tape media. The tape offers higher rel iabi l i ty with a new
oxide formulation, which reduces the signal decay that
occurs each t ime the cartr idge is used. The cartr idge has a
new belt and corner rol lers to accommodate the increased
tape speed, and an extra tape guide for better read/write
accuracy.
Increased Reliabi l i ty. The HP 9145A had to satisfy the user
needs that had been identi f ied. This required designing to
much t ighter tolerances and higher performance. At the
same t ime, we had to ensure that the new product incorpo-
rated the lessons learned from the exist ing I ine and product
range with regard to reliability and manufacturability. Re-
l iabi l i ty issues are discussed in the art icle on page 74.
Time to Market. To meet market needs, reliable prototypes
of the HP S145A had to be ready for test ing with the target
computer systems in under 12 months. Thus the design
team had less than a year to design hardware and firmware
from concept to rel iable implementation.

HP 9144A Design
The HP 91444 Tape Drive's tape transport mechanism

has design concepts common to al l  /s- inch cartr idge tape
drives. The cartridge itself (Fig. 2) provides a reference
plane in the form of the cartridge baseplate against which

the tape path and servo interface are closely aligned. The
drive takes advantage of this by clamping the baseplate
against accurately defined stops within the mechanism.
This ensures that the tape path al igns precisely with the
tape head magnetic cores used to read data from and write
to the tape, and that the servo motor puck aligns with the
drive rol ler within the cartr idge.

Sixteen tracks of data are writ ten across the quarter inch
of tape width. To read and write each of these tracks inde-
pendently, the tape head in the drive is driven vert ical ly
by a stepper motor and leadscrew arrangement.

HP 9145A lmprovements
Because the development cycle had to be short and the

HP 9144A design offered a good start ing point for many of
the design requirements, i t  was decided to leverage off this
product as much as possible. This approach was part icu-
larly pronounced in the mechanism area where, for exam-
ple, the casting used to al ign al l  the mechanical compo-
nents and the cartridge clamping assembly were left totally
unchanged. Fig. 3 shows the HP 9145A drive mechanism
with i ts associated electronics removed.

The development of an enhanced l+-inch cartridge from
the cartr idge manufacturer, dubbed the HP 92245LlS,made
possible the doubling of the track density. Evaluation of
this cartridge was in itself a major task which was run in
paral lel with the drive development.

Tape Speed
The HP 5L44A data transfer rate was identified as a prior-

i ty area to be improved upon. With the HP 9145A providing
double the cartridge capacity, keeping the data transfer rate
constant would have resulted in a doubling of the time for

e>
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Fig. 3.
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reading or writing a cartridge.
One approach that could have been taken would have

been to increase the linear transition density of the data
on the media, resulting in a correspondingly higher data
rate for a constant tape speed. However, this was rejected
for two reasons. First, it would have led to complications
in the read channel filtering and data recovery side of the
drive, because of the need to continue to be able to read
HP 9144A data with its lower transition density. Second,
the media had not been proved able to perform sufficiently
well at the higher transition density. The cartridge man-
ufacturer was actively evaluating the media for this density,
but there would inevitably have been an increased risk to
the project.

The approach taken to improve the data transfer rate was
to double the tape speed while keeping the transition den-
sity the same as in the HP 91444 drive. This led to a twofold
transfer rate improvement, and took the drive from the 60
ips ( inches per second) used bythe HP 9144A to 120 ips.

Running the tape at this speed raised some technical
concerns about the cartridge. Would the mechanics of the
cartridge be able to handle this speed without either in-
stabilities in the tape transport or degradation of cartridge
operating lifetime? Would an air bearing form between the
head and the tape, causing signal loss?

Cartridge Mechanics
The new HP 92245L15 cartridge was developed by the

cartridge manufacturer with one of its major goals being
continuous, reliable operation at a tape speed of 120 ips.
During the testing of the HP 91454 drive the design team
was able to provide valuable feedback to the cartridge man-
ufacturer on the performance of the cartridge, with the
result that several design modifications were made to boost
the long-term reliability.

Critical parameters in the cartridge evaluation were the
tape tension, the drive force, and acoustic noise. The tape
tension had to be high enough to prevent the formation of
an air bearing between the head and the tape, and yet low
enough to prevent excessive head wear and hence short
drive lifetimes. The drive force (the drag applied by the
cartridge on the servo motor) had to be sufficiently low

30 60 90 120
Tape Speed (ips)

Fig. 4. Nolse level of the new HP 92245L15 cartridge com
pared with its predecessor

that the servo drive motor and associated control elec-
tronics that control the tape speed at 120 ips were not
unduly stressed. Doubling the tape speed was found to
have a substantial effect on the audible noise emitted from
the cartridge. The HP 9L44A and HP 9145A drives are
bound by the HP specification for office environment oper-
ation and so have to satisfy a very low noise requirement.
A joint development program, with the drive design team
supplying test data to the manufacturer concerning the
noise emissions from the cartridge in the HP 9145A drive,
allowed the cartridge manufacturer to modify the cartridge
to bring the noise level down to an acceptable level (Fig. a).

The overall result of the work that went into solving all
the above problems was that the HP S2245L1S cartridge
has emerged as a substantial improvement over its pre-
decessor. Many of the changes that have been implemented
in the HP 92245L15 cartridge are now being adopted for
the HP 91,44A cartridge.

There was concern whether older cartridges used in HP
9144A drives could be read in the HP 9145A drive. These
had only been rated at a maximum tape speed of 90 ips by
the cartridge manufacturer. However, an extensive testing
program during the development of the HP g145A drive
confirmed initial indications that these cartridges !\rere
very conservatively rated, and the majority performed well
in the test program. In a very small number of cases there
was some cause for concern over the longer-term use of
such cartridges at 120 ips. An unacceptable increase in
drive force could occur after running continuously for sev-
eral days at the maximum rated operating temperature.
This problem was avoided by specifying that the new drive
would only be required to offload data from an HP g144A

cartridge once. This is backed up by instructions to this
effect in the user manual.

Head-to-Tape Contact
Intimate contact between the tape head and the media

is essential in any tape drive to provide maximum read
signal and minimum distortion. Head-to-tape contact is
dependent on three factors:
I Tape speed. A higher speed produces greater spacing.
r Tape tension. Higher tension pulls the tape closer to the

head.

0 30 60 90 120 150 180

Tape Speed (ips)

Fig. 5. Steady-state tape tension of the HP g2245LlS data
cartridge, comparing the improved textured drive belt with
the standard belt used in older cartridoes
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r Head profile. The shape of the front face of the head in
contact with the tape has a complex effect on the tape
spacrnS.
The development program for the HP gz245LlS cartridge

resulted in that cartridge having such an excellent tape
tension characteristic that head-to-media separation is not
a problem, even at 120 ips (Fig. 5).

The test ing program showed that for the vast majori ty of
the older HP 9144A cartr idges, there was no problem in
running at 120 ips. A very small  number of exceptions to
this rule were found. The problem cartr idges were from a
few batches that the cartr idge manufacturer was able to
trace back to a t ime when there had been minor problems
in the cartridge production process. These cartridges exhib-
i ted very low tape tension so that, at 120 ips, there was a
tendency for the tape to lift off the read/rn rite head slightly.
This led to reduced read signal ampli tude (spacing loss)
and so occasional ly to read errors.

One attempt to keep the spacing loss to a minimum was
through experimenting with the tape head profi le. This
profi le must be accurately designed and machined to offer
a surface that does not abrade the media, wi l l  withstand a
l i fet ime's use, and maintains int imate contact with the
media. The wear requirement and the intimate contact re-
quirement tend to favor opposing profi le shapes, so that
any solut ion is inevitably a compromise between the two.
Some experimentation with profiles that exhibited radii
both sharper and more gentle than that used on the HP
S144A tape head showed that the existing profile, as shown
in Fig. 6, was a good approximation to the ideal. The adop-
tion of this profile removed another risk area in that this
profile is already well-understood and in large-scale pro-
duc t ion .

The spacing loss problems were overcome by building
into the drive a 90-ips read mode option. Dropping the
speed causes the tape to drop closer to the head, thereby
improving the read signal. This option is automatically
invoked by the drive when it detects that errors are occur-
ring because of the above phenomenon. Extensive testing
has proved the capability of this approach.

Fig.6. HP 9145A tape head profile
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Track Density
The HP 9'1,44A drive places 16 tracks across a l/q-inch

media width. To double the capacity of the drive without
increasing the linear bit density it was necessary to fit 32
tracks across the media. This was achieved by:
I Reduced writ ten track width
r Improved head posit ioning accuracy
I Improved cartr idge tracking specif icat ions
I Improved cartr idge media defect specif icat ions
r A new track layout
r Track seeking
I Improved core al ignment
I Improved tape head mounting.
Track Width. The track width of a tape drive is defined
by the width of the magnetic core within the tape head.
Both the HP 9144.4 and the HP 9145A use a system of wide
write, narrow read, whereby the read core width is less
than the width of the written track. This ensures that the
read core will be over the written track even if there are
posit ional errors between the core and the center of the
track (Fig. 7), I f  the read core fal ls outside the writ ten track,
the signal amplitude from the track will be reduced and
the core may also pick up the remains of previously written
data. This would degrade the drive's signal-to-noise ratio
and compromise its recovery capability.

The track width specif ied for the HP 9145A drive is, as
far as we know, the narrowest used in the industry on
lq-inch cartridges, and is about half that in the HP 91444
drive. To achieve this we need to hold the tape head core
width and core alignment tolerances tighter than in any
comparable head. This was achieved by working very
closely with the tape head vendor to refine their existing
HP 9144A head manufacturing process until it was capable
of producing HP 91454 heads with consistently good
yields. In a year the vendor went from doubting that
adequate yields could ever be achieved to producing heads
that fully met the specification with good yields.
Head Positioning Accuracy. Head positioning to select be-
tween tracks in the HP 9144A drive is achieved by a stepper
motor driving a lead screw. Riding up and down the lead
screw is the head carrier assembly with the tape head
mounted at one extreme.

This approach was maintained for the HP g145A. How-
ever, the resolution of the stepper had to be at least doubled
to place the head accurately over tracks that were half as
far apart. Stepper motors with small angular stepping incre-
ments are now fairly common. However, the real challenges

Unwritten Area Containing Noise Signals
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here proved to be obtaining a leadscrew that maintains a
constant thread pitch along its length and improving the
head carrier movement to minimize the variation in linear
displacement for each step of the stepper motor. This is
essential if the track-to-track spacing is to be constant across
the width of the tape.

After much evaluation of various leadscrews and modifi-
cations to the head carrier system, a head positioning sys-
tem was developed that exhibits minimal errors that are
highly predictable and repeatable across all mechanisms.
Fig. B shows a typical final positioning accuracy plot.
Cartridge Tracking Specifications. The greatest single im-
provement of the HP S2245L|S cartr idge over the HP 9144A
cartridge is the replacement of a simple pin at the front of
the cartridge with a guide roller. This part supports the
tape on one side of the read/write head. This has allowed
the cartridge to be respecified by the manufacturer so that
the maximum vertical tape movement (tracking) is cut in
half.

Clearly, vertical tape movement results in the tape head
being slightly off the data track to be read. The improved
cartridge specification is essential to be able to put 32 tracks
on the tape and repeatably recover the data. Testing both
at the cartridge manufacturer's laboratories and at HP
showed that the new cartridge performs well within the
new specification, as shown in Fig. 9.
Cartridge Media Defect Specifications. The HP 91454
drive is far more prone to data errors arising from media
defects because of its narrow track size. Any drive can
recover a read data signal until it goes below a certain
threshold voltage that is set as a fraction of the peak read
signal amplitude (typically 25 to 50%). The read signal
level is proportional to the effective read track width. This
effective track width is reduced by the presence of any
defect. The drive is sensitive to media defects that occupy
such a large proportion of the track width that the read
signal falls below the threshold voltage (Fig. 10). This
makes the HP 91454 drive, with its smaller track width,
susceptible to smaller defects. In addition, the number of
defects on a given piece of media dramatically increases
as the defect size decreases. Fig. 1 1 shows the defect charac-
teristics for the HP 92245L15 media.

The HP 9'1,44A and HP 9145A drives have two main
weapons with which to tackle these defects. First, all the
HPlabeled cartridges that are supplied to customers are
certified by the cartridge manufacturer. Certification takes
the form of writing to the tape and then reading the signal
back. Any errors are assumed to be because of media de-
fects; these positions on the tape are marked and "spared
out" so that they will not be used again. If any cartridge
has an unusually high number of blocks spared it is re-
jected. In the case of the HP 92245L15 cartridges supplied
to HP, this certification is performed by the cartridge man-
ufacturer using unmodified HP 9145A drives. This im-
mediately removes any concern about the unknown re-
lationship between the certifying drive and a customer
drive in reading data from the certified cartridge. Second,
when writing data to a cartridge, both the HP 91444 and
the HP 91454 drives immediately read back the written
signal to verify its integrity using their read-after-write
capability.z Any errors cause the drive to mark that area
of tape as bad and then rewrite the affected data farther
down the tape.

The HP 9145A drive's narrow track width makes it more
prone to small-scale media errors than the HP 91aaA. This
is overcome by the higher-quality media in the HP S2245L|S
cartridge, which has a lower proportion of defects at the
HP 9145A read core dimension. To cope with the slightly
inferior media in the HP 91,44A cartridges, all HP 9144A-
written data is read back with the write core of the HP
9145A head. This core is larger than the HP 9145A read
core and so is less affected by the smaller defects. This
write core approaches the size of the HP 91,44A drive read
core and so, when coupled with the HP 914SA's track seek-
ing capabil i ty (discussed later),  results in the HP 9145A's
being able to recover a signal from an HP 91444 cartridge
at Ieast as well as an HP 51,44A drive can.
Track Layout. The HP 5744A drive lays down data on tape
in a serpentine fashion, that is, one track is written in one
direction from one end of tape to the other, then the next
track is written directly above in the opposite direction,
and so on up the tape (see Fig. 12a).

A problem with this format is that the tape has a natural
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tendency to step up or down as the direction is reversed
because of the reversal of direction of tape pull. This leads
to an error in the relative positions of two adiacent tracks
that is at i ts maximum since these tracks are in opposite
direct ions.

In the HP 91454 drive this problem was al leviated by
writing all the tracks in the forward direction in the lower
half of the tape, and al l  the tracks in the reverse direct ion
in the upper half  of the tape (Fig. 12b). Thus, adjacent
tracks are generally written in the same direction and so
do not suffer from this step error.

There is st i l l  a problem in the center of the tape where
tracks 30 and 1 run alongside each other in opposite direc-
t ions. This is overcome by al lowing a sl ightly increased
track spacing between these two tracks. This increased
spacing does not impact the track density, since the al low-
ancc only has to be incurred oncc rather than 32 timcs.
Track Seeking. Both the HP 9144A and the HP 9145A
drives locate the edge of the tape when each new cartridge
is loaded. This edge is found by moving the tape head
down until the read signal disappears. From this edge-of-
tape posit ion, the drive f irmware is programmed with the
number of stepper motor steps needed to reach each track.

This dead reckoning approach for locating any track from
the located edge of tape has been perfectly adequate for
the HP 9'1,44A drive. In addition. it offers sufficient accu-
racy in positioning the head for the HP 9145A during a
write operation. However, during reads, the HP 9145A may
be attempting to read data that has been written by another

Flux Transitions Written
on Tape

Eftective Detect Diameter
Because ot Tent Eftect

Detecl or Asperity
on the Tape

drive. It is possible for the writing drive to have written
the data to one extreme of the allowed tolerances, and then
the reading HP 9145A to have positioned its read head to
the opposite extreme. With the narrower data tracks used
by the HP 9145A, this can lead to such poor al ignment of
the head over the written track that read data errors occur.

The HP 9145A overcomes this track misregistration by
a technique known as track seeking. Initially, the track is
located in the normal way as described above. If read errors
occur, the drive attempts to f ind the track by stepping the
head alternately above the nominal posit ion and then
below the nominal. The step size is progressively increased
unti l  the errors disappear. This new posit ion is then con-
sidered to be the correct posit ion for subsequent reads of
the cartridge.
Core Alignment. To ensure that both the read and write
cores of the appropriate channel in the tape head are always
centered on the data track, the horizontal alignment be-
tween the write core and the read core must be held very
tightly (Fig. z). Although the write core is made slightly
larger than the read core to minimize this problem, a limit
is imposed by the need to fit 32 tracks across the tape. A
tolerance analysis of the existing HP 9144A head manufac-
turing process showed that the write-to-read core alignment
was already at the extremes of the process capability. For
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.DPSI = Oropouts Per Square lnch

Fig. 11. Defect density characteristics for the HP 92245L15
cattridge Defect density is the number of defects per square
inch of readback area The readback area is calculated from
the readtrackwidth,thetape length, and the number of tracks

L

I 0.1
o

o
E
o
o
o
o
b o.o1

I
100%(b)

Threshold
Level

Fig. 10. Effect of a media defect on the read signal, (a) The
tent effect is where a defect on the media (effectively a lump)
causes the media to be lifted away f rom the tape head surf ace
The resulting shape that the media takes (looking af a cross-
section) as it is lifted in the middle and pulled back to the
tape head surface looks like a wigwam, hence the name tent
(b) An analog display of the output of the read head with a
defect on the media A defect resu/ts rn a reduction of the
signal below the threshold level, causing lost read data
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Fig. 12. Track layouts (a) HP 9144A (b) HP 91454

the HP 91454, the tolerances had to be halved, necessitat-
ing a radical approach to the manufacturing process.

Several lengthy meetings with the head vendor resulted
in an agreement to adopt a new manufacturing process that
an exhaustive tolerance analysis showed should achieve
the yields required. Subsequent manufacturing runs indi-
cate that the original analyses were very accurate.
Tape Head Mounting. As previously mentioned, the tape
head uses a read core that immediately follows a write core
to provide read-after-write capability. To minimize pickup
of the write signal through direct flux linkage into the read
core it is desirable to maximize the separation between the
read and write cores. This separation will cause the read
core to be offset from the written track if the head is not
mounted perfectly perpendicular to the tape motion (zero
azimuth angle, see Fig. 13). This problem is twice as acute
in the HP 9145A mechanism because its written track is
half as wide as that of the HP 91444 drive.

In the manufacturing process for the HP 91444 the
azirnuth angle of the tape head is set by running a tape
past the head and measuring the relative times at which
the four cores see patterns prerecorded on the tape. While
this process provides a good method for measuring the
required accuracy, it takes a fairly long time to perform for
each head and the adjustment of the head position to
achieve zero azimuth is extremely difficult.

A design change to the head greatly simplifies this re-
quirement while also speeding the head mounting process.
The central section of the head was increased in size so
that it protrudes above and below the outer sections. Since
the interfaces between these sections define the core gaps
and hence the effective positions of the read and write
cores, a tool was designed that references off the exposed
sides of the central head section to set the azimuth angle
of the head accurately. This design change to the head also

Fig. 13. Aztmuth angle For clarity, only one of the two patrs
of cores is shown

allows a simple mechanical means of verifying the accuracy
of the azimuth angle of the mounted head.

Conclusion
The HP 91454 drive is now shipping to customers. Strict

quality control measures are being used throughout the
manufacturing process and further stressed-environment
audit testing is being applied to the drives produced. So
far these tests have verified the ability of the HP 9145A

drive to achieve its original performance and reliability
goals.
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Reliability Assessment of a Quarter-lnch
Cartridge Tape Drive
Aggressi v e quality standards were verif ied by over 97 ,000
tesf hours before manufacturing release and are audited
continually in production.

by David Gills

HE QUALITY GOALS FOR THE HP e145A Tape
Drive included a failure rate that was half that of
the earlier HP 91444, an error rate performance that

was 10 t imes better than the HP 9144A's, the same useful
l i fe as the HP 9144A, and ful l  backwards compatibi l i ty
with all HP %-inch data cartridges.

The reliability test plan showed that to be able to halve

the failure rate value within the development time of just

over 1.5 years, then approximately 100 prototype units

would be needed, result ing in an accumulation of 97,000

test hours before manufacturing release. Reliability growth

was monitored using the Duane plot technique,t and there

were interim goals at each of several checkpoints within

the development program.
The reliability of this product is also being continuously

assessed during manufacturing. For this purpose a detailed
manufacturing reliability audit test schedule was de-
veloped. This will be discussed in more detail later in this

article.

Tape Head
As described in the article on page 62, the tape head had

to be totally redesigned because of the reduction in the

track width and the increase in the tape speed. The effect

of the tape head on the track placement accuracy is gov-

erned mostly by the mechanical tolerances of the core sizes
and the positioning of the cores on the head. Shock, vibra-

tion, and temperature can lead to inaccuracies in the track
placement. A full test program was carried out to explore
and quantify all these effects on the performance of the

drive.
The temperature margin above the storage specifications

of the HP s1.44A tape head before damage is incurred is

well-understood from past test data. The elements of the
manufacturing process that affect this margin are also well-

understood.
The first mode of failure of the HP 9144A tape head

when the temperature is increased outside the nonoperat-
ing temperature limits is a deformation of the profile of

the head. This is caused by stress relieving of the plates

that make up the structure of the head. It is a permanent

failure, making the head unsuitable for further service. The

manufacturing process has been radically changed to elimi-
nate this mode of failure, which is now well-understood.
By eliminating this mode of failure in the design of the
new head, a much wider reliability margin has been
achieved, making the head less sensitive to manufacturing
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variat ions. This was clearly demonstrated during the test-

ing. No permanent damage was seen on any of the data

heads following extensive strife (stress + life) testinS.

Head Wear
Wear of the head is accommodated until the depth of

the wear reaches the throat depth of the core. When this
occurs, the head performance drops off dramatically and
without warning.

Since the speed of the tape over the head has doubled
from the existing HP 9144A, head wear characteristics have
become an issue. As the tape speed increases, the frictiorial
forces on the interface increase. However, aerodynaniic
compression of the air behind the tape at these higher
speeds can have the opposite effect on the wear rate. This
phenomenon is very difficult to describe theoretically, so
the relationship had to be confirmed by a controlled exper-
iment.

Testing showed that the rate of wear of the head took on
the standard exponential shape when plotted as a function
of time, as shown in Fig. 1. The measurements were taken
using a Rank Taylor Hobson Talysurf 10 machine. A typical
profile is shown in Fig. 2.

The throat depth of the core is nominally 40 pm, so it
can be seen from Fig. 1 that there is considerable margin,
even based on the small sample of drives tested. Therefore,
head wear is unlikely to be the first mode of wearout failure.
This was confirmed during testing. The capstan motor was
found to be the first mode of wearout failure in the product.
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This will be discussed later in more detail.

Positioning Tolerance
Because of the increase in the requirement for track place-

ment accuracy, the tolerances on the design and manufac-

ture of the leadscrew that drives the head up and down
across the tape had to be tightened significantly.

The leadscrew design for the HP 9145A is the same as
for the HP 91444. However, because of the precision re-
quired, the manufacturing tolerances were tightened signif-
icantly. On the HP 9144A, the thread pitch dimension has
a -f s-g.m tolerance, which is accumulated along the length

of the thread. This will obviously give a large overall toler-
ance on the length of the leadscrew. On the HP 91454, the
thread pitch dimension also has a 1S-pm tolerance, except
that it is not accumulated along the length of the leadscrew.
This gives an overall tolerance for the length of the
Ieadscrew of l5 g,m.

The manufacturing processes that influence this preci-

sion have to be controlled using statistical process control
techniques to maintain the required accuracy. The data
from the control charts is continually being monitored.
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Repeatability of the track placement was critical to the
success of the project, so a rigorous test program was
adopted to assess its impact on the reliability of the drive.
The leadscrew is machined and ground precisely from non-
magnetic stainless steel, but the nut that runs along it is
made out of acetyl. The two main problems that arise are
the accuracy of the leadscrew and the long-term accuracy
of the nut. Since the nut is made of a much softer material
than the leadscrew, we needed to ensure that there was no
significant wear or load deformation. A key factor in the
design of the head positioning system is that the head car-
rier is preloaded with a spring. This ensures that there is
no mechanical hysteresis or backlash in the system, thereby
driving the nut on one face of the thread only.

Shock and vibration testing was carried out to check for
these issues, and it was found that this design has a very
wide margin of safety over the quoted operating specifica-
tions before track placement becomes an issue.

Capstan Motor
Since the tape speed of the HP 91454 is twice that of

the HP 9144A, that is, 120 ips compared with 60 ips, the

Top ol Head+

Top of Head+

Fig. 2. Profile of HP 9145A head
wear after 2000 hours (a) Area
being profiled (b) Left side of
head (c) Right side of head
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capstan motor is required to run faster and have a higher
torque. This allows the tape mechanism to start and stop
more rapidly and accelerate to normal operating tape speed
more quickly. These factors affect the overall life of the
product, and since the goal for the useful life of the HP
91454 is the same as that of the HP 91444, we needed to
assess these parameters.

Working closely with our vendor, we were able to feed
back test data from the development work being carried
out in the laboratory from failures that were uncovered.
The increase in speed and start-up torque showed that the
current density at the brushes of the motor was too high,
resulting in an unacceptable rate of brush wear. It was also
found that the debris from the brushes was finding its way
into the motor bearings, point ing to a need for shielded
bearings.

The vendor was able to change the brush shape and
material to extend the life to meet the goals. This was
subsequently verified by extensive testing by the motor
manufacturer and HP.

Printed Circuit Assemblies
Both the servo control printed circuit assembly and the

main controller printed circuit assembly are newly de-
signed boards, and as such had to be tested by a rigorous
performance and stress test program. Again, working
closely with our vendors, we were able to attack potential
failure modes before the design was put into full produc-
tion. An example of a typical component failure that was
uncovered and eliminated is a crystal oscillator that failed
during strife testing. Subsequent analysis showed that the
failure had been caused by thermomechanical expansion
of the terminals that support the crystal plate within the
device. The movement of the terminals had resulted in a
fracturing of the brittle crystal plate, rendering the compo-
nent unserviceable. Since the vendor was unable to help
in this instance, the component was second-sourced, re-
sulting in much better quality.

Cartridge
The design of the HP 91454 relies very heavily on the

quality of the media that it uses. With the performance of
the drive increased so dramatically, the existing tape was
inadequate. Although the older tape is compatible with the
HP 91454, its longer-term reliability was questionable. A
reduction in defect size was critical to the reliability goals
that were set for data integrity. The media defect size be-
comes far more critical as the width of the track decreases.

The project was discussed with the vendor that supplies
the media, and jointly we agreed that a new tape needed
to be introduced. This was a very extensive development
program, carried out by the media manufacturer in parallel
with the development of the drive at HP. Some of the prob-
lems associated with this development work have already
been outlined in the article on page 67.

The cartridge mechanics were also redesigned to give
better tape handling characteristics, resulting in better tape
tension and drive force control.

The hubs that support the tape were redesigned from a
new material, so that the cartridge is able to cope with the
additional tape speed without wearing the hubs at an un-
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acceptable rate.
The drive belt that runs on the tape (wound around the

hubs), was also redesigned from a new material, and is
being manufactured with a new process, giving more stable
belt tension.

An additional tape guide was designed in to provide
better tape placement accuracy. Since the tracks on the HP
9145A are half the width of the tracks on the HP 9144A,
this was a critical area in the design of the cartridge.

The guide rollers were also redesigned, since the increase
in tape speed caused the rol lers to become a source of
unacceptable acoustic noise. Resonances were bui l t  up
from out-of-balance forces of the rollers running at high
speed, and were transmitted through the case and baseplate
of the cartridge.

Backwards Compatibility
Since the HP 91454 is intended as a natural upgrade

path from the HP 9L44A, it must be able to read existing
tapes that have been written by the HP 9144A and other
HP %-inch tape drives. Complexity is added by the variety
of revisions of each product and of the %-inch cartridge.
The HP 9145A has to be compatible with the entire /a-inch
tape product family over the operating temperature range,
for any data pattern written by any other compatible drive.
To prove the error rate performance over all possible com-
binations, the testing required would take over five years!

Some of the variables to be considered when concerned
with interchange and backwards compatibility are temper-
ature, humidity, data pattern, length of tape, data source,
tape age, tape type, revision of unit, altitude, shock and
vibration, 12OVl24OV, and age of drive. Using Graeco-Latin
square (statistical design of experiments) techniques,z we
were able to get this test program down from 260 combina-
tions to a program of 16 representative combinations.

On each of the 16 runs, 1011 bits of data was handled by
each drive (the error rate specification is 1 bit in error for
1011 bits of data handled). The tests were designed to find
combinations that did not work at all or any trend or pattern
that could indicate a combination that would potentially
not meet specification.

The program was very extensive, and the testing was not
able to find a combination that indicated that the specifica-
tions could not be met. The HP 91454 showed that it was
able to read data from any combination that it was tested
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against.

Test Program
At the completion of the test program, 97 prototype units

had been tested, accumulating over 97,000 test hours. Over
500 tapes were used during the performance and inter-
change testing, and a total of over 150 failures were found.
These failures can be broken down as follows:

Mechanism related failures: 70%
Controller related failures: 20%
Firmware related failures: 10%

Audit Testing
Although the tests described so far confirmed the relia-

bility of a sample of prototype and early production drives,
they in no way reflect the factors that will affect the relia-
bility of the product in the long term, that is, factors related
to the manufacturing process. Although the HP 91454 has
been highly leveraged from the HP 9144A, with many im-
provements to the product and the process based on the
wealth of information available, the reliability of the prod-
uct in the long term cannot be measured or quantified
unless real data is at hand. The warranty system, which
records the numbers of failures in the field, provides data
that is obviously too late. What is needed is a means of
controlling the reliability of the drives with a closed-loop
system that has a response that is almost immediate. The
only way to do this is by continued unit testing on an audit
basis.

An audit test strategy was devised for the HP 91454 that
will enable manufacturing engineering to keep a tight con-
trol on process variations that affect the reliability of the
product. A secondary objective of the audit testing is to
ensure that the data being collected correlates closely with
the data that is being continually collected from the war-
ranty claims.

Much data is available from the prototype testing, and
this was used as a basis for determining the general content
and duration of each audit test. AIso, a comparison was
made with other divisions of Hewlett-Packard to appreciate
some of the problems encountered in such testing.

The audit testing has three phases: burn-in, customer
environment, and life tests.
Burn-In. This is performed on 100% of all units manufac-
tured, and lasts for approximately 14 hours. This test is
solely designed to catch the dead-on-arrival or infant mor-
tality failures that somehow escape the manufacturing final
test. Although the final test is considered to be adequately
thorough in testing the total functionality of the unit, there
are often intermittent faults or failures caused by weak
materials that survive the final test. These intermittent
faults often appear very early in the product's service Iife.

The format of the burn-in test is based on data from the
prototype testing. It consists of ten cycles of power cycling
and self-tests, Ioading tapes, performing read/write and
read-only error rate tests, performing locate and read and/or
write operations, comparing data with the host system, and
unloading and unlocking the cartridge.

The results from the initial nine months of testing show
that the faults are being uncovered very early in the test

cycles (see Fig. 3). This obviously means that there is a
real opportunity for shortening this test after more confi-
dence is built up from a bigger test history.

Customer Environment. These tests are designed to simu-
late more closely the environment seen by the product
during the warranty period. Hence, the failures found are
intended to mirror the failures found in the warranty sys-
tem. The duration of this test has been established from
an assumed typical use of the product. The test is not
performed on all units, but on a sample of approximately
5% of production, The testing simulates the time from when
the unit leaves the end of the production line to the end
of the warranty period. Therefore, the shipping of the prod-
uct, the end-use handling, and the in-service operation of
the product are simulated. The details of the customer en-
vironment are as follows:
I Book out unit from finished goods.
I Drop unit in packaging onto concrete from a height of

1 . 2  m .
r Make visual and functional inspection for cosmetic dam-

age, accessories completeness, failure to power-up and
pass self-test.

I Thermal cycle between the operating limits of the drive
for 40 hours.

I Apply nonoperating vibration at 1.5 times specification
for one hour.

r Compare data at ambient temperature between host and
drive for 100 hours.

r Interchange data between drives in product family for
24 hours.
The test cycle lasts for one week, after which the units

are returned to the production line for shipment. These
units are considered to be some of the most reliable to leave
the factory, since they have had all the infant mortality
problems removed, and have proved to work reliably for
a significant period of time.
Life. The life testing of the HP 9145A is currently being
carried out by the suppliers of the media. This is because
the media suppliers own many HP 9145As and use them
at a very high duty cycle to certify all the tapes that are
manufactured by them. This enables HP to use this infor-
mation without cost. Obviously we need to be working
very closely with these suppliers to ensure that the infor-
mation that they supply to us is accurate and complete.
The collection of this data will continue into the foreseeable
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future since the data is obtained free and will be needed
to ensure that any changes in the manufacturing process

do not affect the long-term reliability of the drives.

Results of Audit Testing
The first nine months of data has shown some interesting

results. Problems are being uncovered in the burn-in test,

as expected. This justifies its presence and quantifies the

costs saved from warranty claims arising from very early
fai lures, not to mention the hidden costs of customer dis-

satisfaction.
It  can be seen from Fig. 3 that the majori ty of fai lures

that have been uncovered so far have occurred very early

in the test program. After the fourth cycle, which is 1.3

hours after the start of the test, most of the problems seem
to have been found. This data indicates that a reduction
in the test t ime wil l  f ind the same level of faults, but wi l l
save substantial cost in manufacturing overhead (the cost
of the tapes is probably the biggest factor here).

Fig. 4 shows the tests that are most effective in producing

the faults. This data agrees with the test data from the
earlier prototype testing, and is useful feedback for reliabil-
ity planning on future projects.

The customer environment testing is currently showing
a very similar trend in the results. One year after introduc-
t ion over 8,000 units have been shipped to customers. The
warranty data shows that the actual failure rate of the HP
9145A is better than the failure rate goal at introduction.
As a result of the audit testing strategy, the warranty failure

rate continues to fall to a point where today the warranty

failure rate is half of that measured a year ago.
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Use of Structured Methods for
Real-Time Peripheral Firmware
HP's Computer Peripherals Bristol Division made sorne
signif icant changes in their f irmware development process
to ensure thatthey met a demanding development schedule
and still produced a quality product.

by Paul F. Bartlett, Paul F. Robinson, Tracey A. Hains, and Mark J. Simms

RODUCTIVITY AND CONCERNS about quality may
seem to be opposing concepts when product develop-
ment time is short. However, with planning, the

proper tools and a good development method, productivity
and quality objectives can be achieved and still meet the
time-to-market goals. In the development of the HP 9145A
Cartridge Tape Drive at HP Computer Peripherals Bristol
Division (CPB) the firmware was always on the critical
path during the entire product development time. We had
to produce reliable prototypes of the HP 91454 for testing
with the target machines one year after the project start
date. We realized at the beginning of the project that if we
used the firmware development process we had at the time,
we could not meet the schedule and still produce a quality
product. Some of the problems we had in our development
process at the time included:
r Total reliance on text for firmware specifications. There

were very few graphical representations for the system
architecture, data, and module organizations.

r Firmware testing was different for each project and the
effectiveness of testing was not measured. Also, there
was no overall test planning process.

r Except for the number of noncomment source statements
(NCCS), no metrics were collected.

I Tool support consisted of emulation, source code con-
trol, and editing on HP 64000 Logic Development Sys-
tems. There were some tools for text documentation and
structured design which existed on a variety of systems.
Improvements were made to our development process

in thc areas of planning, methods (analysis, design, and
testing), and metrics fprocess measurement). The most sig-
nificant changes involved the use of structured analysis,
structured design, and structured testing. Structured design
had been used on past projects for module design and the
technique had worked well.

Each engineer on the project was equipped with an HP
9000 Series 300 workstation which was used for program
development and emulation. A network of workstations
was created with one workstation dedicated as a central data
base for configuration management (i.e., keeping track of
all versions of our documentation and code). To enable us
to use the structured analysis and structured design (SA/SD)
methods effectively, HP Teamwork/SA was installed on
each workstation. This product allowed us to produce all
of the real-time structured analysis and structured design

documentation for the HP 91454 firmware, and assisted
in ensuring analysis and design consistency between the
members of the team. Other software tools that we used
included a code-efficient cross compiler from C to 68000
assembly language and a 68000 emulator.

This paper describes our experiences with applying SA/SD
techniques and tools to the development of the HP 9145A
firmware.

Real-time Structured Analysis
Structured analysis is a method that enables designers

to partition a system into manageable component process-
es. It helps to identify the system requirements and func-
tionality so that consideration about implementation de-
tails, such as system architecture and module design, is
delayed until necessary. This allows the designer to keep
as many design options open as possible. Structured
analysist has been successfully applied to business and
commercial systems where the emphasis is primarily on
data flows and processes. In real-time systems, in addition
to data flows and processes, control and timing are also
major considerations. For the HP 9145A firmware develop-
ment we used some parts of the structured analysis real-

Data Store

\-st"t*

- - - - - |  Control  F low

-> Data Flow

Fig. 1, Modelling control flows and data flows in real-the
structured analysis The function of a process is to perfom
the operation implied by its name The vertical bar represents
the interface to a state machine
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time extensions described in references 2 and 3.
Real-time systems have two features that nonreal-time

structured analysis cannot model. One is the ability to dis-
tinguish between the flow of control signals such as inter-
rupts, and simple data flow such as flags or values. In
real-time structured analysis, information flow between
processes is represented by control flows for control signals
and events and data f lows for plain data (see Fig. 1). The
control flows shown in Fig. 1 send a signal to activate or
deactivate a process. For example, when a user presses the
Unload button on the front panel, the state machine sends
the TapeUnloadOommand signal to activate the process pre-
pareToUnload. The data flows represent information a pro-
cess must retr ieve from elsewhere in the system (e.g., a
data store or another process) to perform its operation. For
example, in Fig. 1 the process PrepareToUnload retrieves data
about the Cartridgestatus from the Status data store.

The other deficiency of ordinary structured analysis is
in modeling sequences of real-time operations. These are
situations where timing or the order of responding to events
and actions is very important. Starting a servo motor and
waiting until it is up to speed before proceeding, or enabling
DMA transfer of data to tape, are examples where timing
and sequence are critical. One method used in real-time
structured analysis to model sequence control is the state
transition diagram (STD). State transition diagrams are
used to model state machine behavior and to show how
different system states are influenced by control signals.
Fig. 2 shows the state transition diagram for the model
shown in Fig. 1. This state machine is designed to respond
to events such as Unload button pressed, Self Test button
pressed, cartridge inserted, and so on, and still read com-
mands from the HP-IB.

Real-time structured analysis can be used to help parti-
tion the hardware and software functionality for a whole
system. In our situation the division between the hardware
and firmware functions had already been decided before
we began using the method. Therefore, we concentrated
on using the methods only on the firmware.

Context and Data Flow Diagrams
Our first task was to define a context diagram for the HP

9145A firmware. A context diagram enables the designer
to identify all the external entities such as other systems,
users, and peripherals, with which a system must com-

Fig.2. A portion of the state transition diagram for the model
shown in Fig 1 The number in each block is a state identifier
There are al /east 78 states in this state machine, but for
clarity, only four essential ones are shown

municate. The context diagram for the HP 9145A firmware
is shown in Fig. 3. There are three components to a context
diagram: terminators, data and control flows, and a single
process. Terminators represent external entities that can
be either sources or sinks depending on whether they trans-
mit or receive data. The data and control flows represent
the communication paths between the terminators and the
single process. The single process defines the central role
of the system being designed. In our case the firmware is
used to control and monitor the HP 914bA tape drive.

From the context diagram we developed a top-level data
flow diagram (DFD) which defines the main firmware tasks
and the interfaces between them (see Fig. a). The interfaces
between the tasks consist of messages passed via an inter-
process communication module in the operating system.
The effort involved in developing the data flow diagram
enabled us to understand how to divide the system into
manageable pieces for development and further analysis.
Our development plan was refined so that the analysis
phase was divided into smaller stages in which functions
within each task could be analyzed. This enabled us to
plan reviews to occur whenever one of these stages was

SwilchPressed

OisplayControls

HP-lBlntertace

DDCCommandOrStalus

ServoCommandOrstatus

OataTranslercontrols
I

DalaTransterslatus I
t - - - - - -

Fig, 3. Context diagram for the
HP 9145A firmware
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SwitchStatus

BufferCommand

completed. We could review a small amount of documen-
tation every two or three weeks, instead of waiting for
months to review a vast amount of information.

The tasks shown in Fig. 4 perform the following func-
t ions:
I Channel Task. The channel task controls the interface

between the operator, the host computer system, and the
HP 9145A firmware.

I Buffer Task. The buffer task controls the flow of data
between the HP-IB interface, an internal data buffer, and
the magnetic medium (tape).

r Device Task. The device task controls the read/write cir-
cuitry and the tape mechanism.

I Utility Task. The utility task contains functions used to
perform switch and button debouncing and control the
operation of the lights on the front panel of the drive.
The data and control flows in Fig. 4 represent the inter-

process communication between the tasks. Interprocess
communication in the HP S145A firmware is implemented
by a number of mailboxes used for holding messages or
commands.

Each of the tasks has its own context diagram and its
own set of external entities. Fig. 5 shows the context dia-
gram for the device task. From these context diagrams de-
tailed DFDs were generated for each task. Fig. 6 shows a
portion of the DFD for the device task and Fig. 7 shows a
portion of the DFD for the process ReadMrite Operations which
appears in Fig. 6. When the DFDs were leveled to primitive
processes (processes that cannot be decomposed any
further) process specifications were created like the one

DDCCommandOrstatus

Fig.4. Data flow diagram for the
HP 91454 firmware

shown in Fig. B for the process ExecsingleShotRead which
appears in Fig. 7. The number and complexity of the data
and control flows increased as the design became more
detailed. For example, the data flow diagram in Fig. 6 ac-
tually contains 24 control flows and 46 data flows between
the processes. HP TeamworlJSA was used to create and
maintain a central data dictionary data base for the whole
firmware system. A data dictionary is a method for defining
every data flow, control flow, and data store used in a
system. The central data base allowed us to maintain data
consistency between the various tasks. Because we were
putting a great deal of effort into analysis, the data dic-
tionaries became colossal. HP Teamwork/SA was really
helpful here because it provides a checking facility that
makes sure the data and control flows are consistent be-
tween levels of the system model. We ran the checking
facility before each review so that the reviewers could con-
centrate on checking for correct functionality instead of
spelling and consistency errors. Fig. 9 shows some of the
data dictionary entries for the context diagram shown in
Fig. 5.

A large proportion of the analysis of the firmware for the
project involved the analysis of control. State transition
diagrams served as a major part of this analysis. These
diagrams allowed us to concentrate our control structures
in a small number of places. To ensure manageability and
readability most of our STDs consist of less than 20 states.
An STD with more than 20 states becomes very confusing
and hard to read. A portion of of an STD for the process
ExecSingleShotBead from Fig. 7 is shown in Fig. 10.

Devicecommand

OverthresholdReset

Overthreshold

DDCCommsndOrstatusOrBusY

I
OataTransterstatus i

T - - -
I I

Fig. 5. Devlce task context dia-
gram
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Lessons Learned
Five months had been allocated for the structured

analysis portion of the firmware development and we man-
aged to finish on time with two weeks to spare. Had we
been more experienced with the methods and tools we
would have finished sooner. Some of the observations and
lessons we learned from using real-time structured analysis
include:
r A lot of effort, maybe too much, was expended at the

very top level of each task. One reason for this is that
we had to do some informal lower level analysis to de-
cide whether the top level solution produced was good
enough. Having spent this effort early we found that
when it came time to do formal lower level analysis the
task was much easier.

r In some areas of the analysis we found that it was very
difficult to produce a solution because of the amount of
fan-in" to most processes associated with hardware de-
pendent areas. We encountered some difficulty with
using structured analysis for analyzing functionality as-
sociated with time-critical control of hardware. There
are some techniques in the SA/SD real-time extensions3
that can be used to analyze critical hardware/software
timing situations. However, we did not get a chance to
use these methods. In addition, we were trying to specify
detailed algorithms using data flow diagrams, which is

'Fan-in is defined asa large numberofprocessesallmaking calls toonecommon process

DDCCommandOrslalusOrBusy

not the intention of the method.
r Too much effort was expended considering the im-

plementation aspects of the system instead of defining
the system functionality. This resulted in process specifi-
cations that tended to be trivial and not very useful.

r By the end of the structured analysis phase all of the
engineers on the team thoroughly understood what their
portion of the firmware was expected to do as well as
what some of the rest of the firmware was doing.

r Because of the thorough analysis that had taken place a
large number of anomalies were discovered and fixed in
the original project specifications (external reference
specif icat ions).

r After structured analysis there were very few changes
to the functionality of the product, except in areas where
the characteristics of the mechanism or the tape were
not ful ly understood.

Structured Design
In this phase of the development the data flow diagrams

developed during the structured analysis phase were used
to design the architecture and hierarchy of functions for
the HP 9145A firmware. In most cases this process resulted
in structure charts like the one shown in Fig. 11 for the
process ExecsingleshotRead. In one task we found that there
was no need to develop structure charts because the struc-
tured analysis produced such a flat structure, all based on

PhysicalTrackKeyAddress

Clock

Seryocommand

SeruoStatus

Resetc lock{ - - - r

I,€vicecommand

lPCOeviceFlags

DeviceReport

--|

Global Slatus
lntormation

Fig. 6. A portion of the detailed data flow diagram for the device task There are actually 24
control flows and 46 data flows assoc,ated with this DFD. The number within each process

bubble is used for identification and traceabilitv.
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SingleShotCommand

SingleShotcommand

Fig.7. The data flow diagram for tuvo of the processes as-
sociated with the process Bead/vvrite Operations shown in Fig 6.

calls from a state machine, that we felt that the exercise
would not yield any useful extra information.

The production of structure charts was limited only by
the speed with which information could be put into HP
Teamwork/SA. This was because there was so much detail
from the structured analysis phase that the design came
together with very little effort. Also, as in the structured
analysis phase, the data dictionary proved to be invaluable
and the HP Teamwork/SA checking facility helped to en-
sure that consistent designs were produced.

In parallel with producing structure charts, detailed mod-

N a m c :  2  2 i 2

T r !  l c  :  E x e c S i n g  l a S h o t R c a d

I n p u t  / O u ! p u t  :

'  - c n t r o l  o u !  * c o n t r o l  f l o w  o u t .
S S O p e r a t  l o n C o h F l e t e  :  c o n t r o l _ i n  . c o n t r o l  f l o w  i d *
D e v i c e c o n n a n d Q u e u e  : d a t a _ i n o u t  . b i d i r e c t i o n a l d a t a f l o w .

S i n g I e s h o l c o m m a n d  :  d a t d  _ i n  . d a t a  f  l o w  r n .
S i n g l c s h o r - R c p o r !  :  d a t a  o u t  ' d a ! a  f l o w  o u t .
G l o b a l S t a i u s l n f  o r n a t  i o n :  d a t a  i n o u t
G o o d B l o c k s R e q u i r c d  :  d a t a _ o u t

R e a d w r i ! e I n f o  :  d a l a  i n o u L

B o d y :

T r a n s l a t c  p a r a n e t e r s  i n l o  t h e  a p p r o p r i a t e  c o m m a n d  q u a u e  s e t !  r n g s
a n d  o ! h e r  s t o a e d  i n f o r m a t i o n

T r l g g a r  l h e  s i n g l c  s h o t  r e a d  s ! a t e  m a c h i n c

W a i t  f o r  c o m p l e t  i o n

C o m p i  l e  s t a t u s  r a l u r n  v a l u e  d e r i v e d  f r o n  C o m f a i ' ,  a n d  a b o r t
c o n d i  t  r o n s

R e s e t  C o n f a i l  a n d  a n y  o t h c r  a b o r t  c o n d i t i o n s  g c n e r a t e d  d u . t n g  L h e

G e t  m o r o  s t a t u s  f r o n  R e a d l l r i t e l n f o  ( H a i n t c n a n c e T r a c k o v c r f l o w  a n d
T a p c N o t Q r i t t € n T o  )

G a t h a r  s t a t u s

Fig. 8. fhe process
SingleShotBead

ule specifications were written for all the procedures. These
module specifications were written so that they could be
used as procedure headers for the code. Fig. 12 shows the
module specification for the state machine SsReadlnitialize
shown in Fig. 10. In many instances part of the module
specification was extracted directly from the process
specifications written during the structured analysis phase.
At this point of the project module specifications became
the most important documentation. All changes that were
made to the code were documented in the module specifi-
cation for the affected function. Keeping the structured
analysis documentation up to date was relatively tedious
and time-consuming. However, towards the end of the test-
ing phase this documentation was updated to match the
final design of the firmware. This showed that even with
an automated tool to enter a design, there must be a mech-
anism to update the design documentation automatically
when changes are made during implementation.

Structured Testing
Structured testing encompasses the planning, design,

documentation, and execution of tests. It is a method for
managing the overall testing process and for providing
traceability between the various types of test documenta-

c l o c k  ( d a ! a  f I o w ,  c e 1  )  .
* A  c o n t i n u o u s  d a t a  f l o w  i n d i c a t i n g  t h e  n u m b e r  o f  t i c k s  o f  t h e

c  I o c k  *
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Fig.9. A portion of the data dictionary definitions for the data
and control flows for the process ExecsingteshotBead.

specification for the process Exec-
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NoiEnoughGoodBl@ks/SSOperationComplete

TriggersingleShotRead/TrlggerSSBoadtnitiatize

AbortReed/ Inlllelizedolg

Fig. 10. A pottion of the state transition diagram for Ex*,-
SingleShotRead.

tion. Structured testing tends to minimize the cost of prod-

uct development by finding problems as early as possible

before the cost of rework is high. An example of this might
be when a test designer is writing a test and discovers that

a specification is incomplete or ambiguous. If the specifi-
cation defect is removed before coding takes place the cost
of defect removal is low.

Our test strategy was based on traditional structural and
functional test techniquesa and well-coordinated test plan-
ning.s A hierarchy of test plans (Fig. 13) was produced for
the whole product. Each sector of the system, mechanical,
electronics, and firmware, had a similar hierarchy of test
plans. These test plans were produced from the top down
so that the overall firmware test plan was produced before
the test plans of any individual tasks. Once the code had
been written, the tests described in the test plans were
executed starting from the bottom. By writing the test plans
in parallel with designing the firmware we found a lot of
problems that otherwise might have been overlooked.

To minimize the effort required during the testing phase
an automatic test package was developed to run most of
the tests. This test package accepted test scripts, exercised
the product, checked for correct responses, and reported
any anomalies to the test engineer. This enabled us to run
tests during periods when there were no engineers available
to monitor the tests.

All problems were recorded in a defect tracking system.
This system was used to monitor the number of defects
found, their severity, and the reason for each defect. Itwas
also used to monitor the current status of each defect so
that we could determine how many defects still had to be
resolved. From this information we were able to monitor
the progress of the project, and to tell whether the defect
rate was under control.
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Results
As mentioned earlier, the firmware for this project was

on the critical path from the beginning. As it turned out,
our progress was so good that we were able to meet all
major deadlines. Table I shows that our original estimates
were very accurate and we achieved very respectable fig-
ures for our estimation quality factors (EQFs). for each
phase of the project.

Table I
Project Estimation Quality Factors (EAFs)

Activity EQF Estimated Actual Estimated Actual
Elapsed Elapsed Engineer Engineer
Months Months Months Months

/ *  M o d u l e  N a m e
/ *  F u n c t  i o n

/ *  F a r a m c t e r 5  :  N o n c
/ r  .  

// - - - * . * - * - * * - - -
/ '  * /

d e v l c e _ r c p o r t _ ! y p e  * /

w r i t e  c o n m a n d _ r e c o r d  -  /

/ .  F r r h . r  i ^ h  P . r L r l r

:  d _ s s _ r e a d , i n i ! i a l  i s e  F i l e  :  k  s n c  i n i t  r  /
:  S e t  u p  t h e  h e a d  c o n m a n d  f o r  a  s i n g l e  s h o t  * /

t  c a d  f r o m  t a p c  C h e c k  t h e  n D C  t o  m a l , e  s u r -
i l  1 s  w o a k i n g  |  /

/ *  C l o b a l s  :

/ *  c l o b a l  N a m e

/ *  d _ h e a d c o m

I / O  S t a t u s  T y p "

/ -  a S S R e a d I n i t O K
F a 1  l c d T o I n i t S S R e a d

Analysis 9.0 4.5
Design 7.5 7.7
Coding 9.3 1, .1,
Funct ional  11.5 4.2

Testing
System 5 0 4.O

Integration
TotalProject  8.1 15.5

20.o 22.5
6 .5  7 .5

6 .25  7 .O
2 1 . O  2 3 . O

5 .0
2 .O

L . 2 5
4 .6

/ .  d , h e a d c o m  > c o m n a n d  s t a t u s , r c a d _ f l a g  .  T R U E  - /

/ .  d  h e d d c o m _  c o m n a n d _ s t a t u s  w r i l e _ f l a g  =  F A L S E  . /
/ .  a . r  r h .  h - d o  f - r  d A r  h a : d  . i  1 a . r  a . . - r i r h d  + ^  r- -  - a p o  r y p o -  ' /

F o r  o l d  H C  t a p e s ,  r e a d s  s h o u l d  u s e  t h e  w r i t e  h e a d s ,  ,  /

/ *  P r o c e s s  r

/ .  U s e  d , s s _ i n j . l i a l i s e  ! o  d o  m o s t  o f  t h e  i n i t i a l i s a t l o n
/ 1  I f  t h l s  s u c c e e d s .  t h e n

, . . . r . r . r + , r . r r r r r r i  /

/ '  o t h o r w i s e  u s e  l h c  r c a d  h e a d s

/ .  R E T U R N  I n i t r a l i s e d o K

/ "  o t h e r w t  s e
/ .  , . r  i  I  n n n - r  r o r - r d  d p v i c e  5 r d r u , .  c o m l a r l  =  T R U E
/ -  r o r r r r .  F r i r F d T r  

- r r r r i  
i s e

5.0  ' t z .o  15 .0

17.85  65 .75  75 .O

During the analysis phase we defined over 420 processes
on the data flow diagrams which resulted in about S70
procedures in the final product. The final code consisted
of 24 KNCSS (thousand lines of noncomment source state-
ments), and 123 ki lobytes of object code.

Defects were tracked and a chart maintained to show the
cumulative number of defects detected as a function of
elapsed time. A code path monitor, which kept a count of
the number of code statements tested, was run while the
regression test package was being run. When the total test
package was run, 85% of the statements were being exer-
cised. The code path monitor enabled us to verify that
100% of the most critical areas of the code were being
'EOF gives the reciprocal of  the average discrepancy between the est imated and the
actual durat ion of a phase An EQF of 8 is considered to be good for software est imates
See relerence 6 for more information about EOF

Mechanism

Mechanism Integration
Test Plan

/ '  N o t e s :

/ *  A u t h o r  :  K e v i n  J o n e s

,/ ".
.- Acceptance:....

Test Planz -
'  

i  I  ' .

System Test
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i' 
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Oevice Test Plan/
t l

System Integration .. Test Plan
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,  l { '  .  i  '
I

Controller Firmware

Controller Integration
Test Plan

* /
' .  

H o d i f l . a t  r o n  H r s t o r y  - /-  * /
/ .  M o d r f i e r  V e r s i o n  D a t e  R e a s o n  ' /

/ *  * /

Fig. 12. One of the module specifications for the state tran-
sition diagram shown in Fig 10

exercised. These figures do not take into account the extra
code coverage that individual engineers achieved during
their module testing activities. Our expectation at the outset
of the project was that we would achieve 70% code cover-
age. Fig. 14 shows the cumulative number of defects found
and the known code coverage, and compares the actual

D a t e  :  5  J u n e  1 9 8 7  - /

H""di s"*o 
, illl='* ffi:' l!::liffir, ffi;:cont,o'er 

Miqocomputer ilrtj,,i*,, tt*

Firmwarelntegration \.
Test Plan 

'\

Fig. 13. Hierarchy of test plans
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Fig. 14. Cumulative defect and code coverage

figures against the expected figures. This data illustrates
the completeness of testing performed.

Conclusion
Structured methods really are appropriate for the de-

velopment of firmware on major projects. The mistakes
that we made were mainly caused by our inexperience
with the methods and tools. Access to an experienced prac-

titioner as a consultant or as a member of the team would
have eliminated many of our problems. We carried out
these firmware development process changes to meet the
needs of a particular product development. Our challenge
now is to continue to improve our firmware development
process and extend what we have learned to future projects.
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