HEWLETT-PACKARD

JJOURINAL e

aﬁ

HEWLETT
6P PACKARD

HEWLETT-PACKARD

Articles

6 Discless HP-UX Workstations, by Scott W. Wang

9 Program Management

1 O A Discless HP-UX File System, by Debra S. Bartlett and Joel D. Tesler

1 Discless Program Execution and Virtual Memory Management, by Ching-Fa Hwang
and William T. McMahon

2 The Design of Network Functions for Discless Clusters, by David O. Gutierrez and
Chyuan-Shiun Lin

27 Crash Detection and Recovery in a Discless HP-UX System, by Annette Randel

33 Boot Mechanism for Discless HP-UX, by Perry E. Scott, John S. Marvin, and Robert
D. Quist

37 Discless System Configuration Tasks, by Kimberly S. Wagner

39 Small Computer System Interface, by Paul Q. Perimutter

44 SCSI and HP-IB

4 X: A Window System Standard for Distributed Computing Environments, by Frank
E. Hall and James B. Byers

5 1 Managing the Development of the HP DeskJet Printer, by John D. Rhodes

53 Market Research as a Design Tool
54 Human Factors and Industrial Design of the HP DeskJet Printer

5 Development of a High-Resolution Thermal Inkjet Printhead, by William A. Buskirk,
David E. Hackleman, Stanley T. Hall, Paula H. Kanarek, Robert N. Low, Kenneth E. Trueba,
and Richard R. Van de Poll

Editor, Richard P Dolan ® Associate Editor, Charles L Leath e Assistant Editor, Hans A Toepfer ® Art Director, Photographer, Arvid A Danielson
Support Supervisor, Susan E. Wright @ Administrative Services, Typography, Anne S LoPresti ® European Production Supervisor, Michael Zandwijken

2 HEWLETT-PACKARD JOURNAL OCTOBER 1988 © Hewlett-Packard Company 1988 Printed in U S A

—

62 Integrating the Printhead into the HP DeskJet Printer, by J. Paul Harmon and John
A. Widder

David W. Pinkernell, Steve O. Rasmussen, and John A. Widder

6 DeskJet Printer Chassis and Mechanism Design, by Larry A. Jackson, Kieran B. Kelly,

7 6 Data to Dots in the HP DeskdJet Printer, by Donna J. May, Mark D. Lund, Thomas B.
Pritchard, and Claude W. Nichols

77 The DeskJet Printer Custom Integrated Circuit
79 DeskJet Printer Font Design

8 1 Firmware for a Laser-Quality Thermal Inkjet Printer, by Mark J. DiVittorio, Brian Cripe,
Claude W. Nichols, Michael S. Ard, Kevin R. Hudson, and David J. Neff

82 Silow-Down Mode

87 Robotic Assembly of HP DeskJet Printed Circuit Boards in a Just-in-Time Environ-
ment, by P. David Gast

88 DeskdJet Printer Design for Manufacturability
90 Fabricated Parts Tooling Plan

9 1 CIM and Machine Vision in the Production of Thermal Inkjet Printheads, by Mark
C. Huth, Robert A. Conder, Gregg P. Ferry, Brian L. Helterline, Robert F. Aman, and
Timothy S. Hubley

92 Whole Wafer Assembly of Thermal Inkjet Printheads
96 Production Print Quality Evaluation of the DeskJet Printhead

99 Economical, High-Performance Optical Encoders, by Howard C. Epstein, Mark G.
Leonard, and Robert Nicol

100 Basics of Optical Incremental Encoders
105 A Complete Encoder Based on the HEDS-9000 Encoder Module

Departments

In this Issue
Cover

What’s Ahead
107 Authors

L3 -

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 3

In this Issue

In engineering workstations running under AT&T’s UNIX® operating sys-
tem or one of its many versions, such as Hewiett-Packard's HP-UX, a lot of
disc space is used for system code and standard utilities that every worksta-
tion must have. When several UNIX workstations are clustered on a local
area network, it’s natural to think of lowering disc memory costs by storing
these common programs at only one workstation and allowing the other
workstations to access them over the network instead of having individual
copies. To take the idea a step farther, user disc files can also be concentrated
at a single workstation, so the other workstations don’t need disc drives at
all. This is the objective of the HP-UX 6.0 operating system for HP 9000 Series 300 Computers.
With this system, tightly networked discless graphics workstations on an IEEE 802.3 local area
network can share a single file system server. A simplified, proprietary networking protocol delivers
discless workstation performance that comes close to stand-alone performance, while industry-
standard networking services, such as ARPA/Berkeley and NFS, are provided for intervendor
and intercluster communication and file sharing. HP-UX 6.0 also supports the industry-standard
SCSI and VME interfaces, the X Window System, and high-performance HP 9000 graphics
subsystems. Major features are the single-system view presented to users and the high degree
of network transparency achieved. The system looks the same from any workstation in a cluster,
and network operation is transparent to the user. While the idea behind the HP-UX 6.0 system
is simple, the engineering was not. Following an introduction to the system on page 6, eight
papers discuss the design challenges the development team had to deal with. These include the
implementation of a discless file system (page 10), discless program execution and virtual memory
management (page 15), network function and protocol design (page 20), crash detection and
recovery (page 27), boot mechanism design (page 33), and system configuration (page 37). SCSI
and X Window System support are described in the papers on pages 39 and 46.

The August 1988 issue featured the HP PaintJet Color Graphics Printer and its contributions
to thermal inkjet printing technology, which include a second-generation printhead design, reso-
lution of 180 dots per inch (nearly double that of the ThinkJet printer introduced in 1984), and
full-color printing on paper or overhead transparency film. This issue presents the next chapter
of this story, which stars the HP DeskJet printer. Delivering laser-quality printing at 300-dot-per-inch
resolution on standard office papers, the Deskdet printer is priced competitively with noisier, less
reliable personal printers offering much lower print quality. DeskJet features include merged text
and graphics, multiple fonts, two slots for font or personality cartridges, 120-character-per-second
letter-quality speed, and a built-in cut-sheet paper feeder. Beginning with management issues on
page 51, eight papers in this issue tell the story of DeskdJet development. The third-generation,
high-resolution, thermal inkjet printhead is discussed beginning on page 55. Electrical connections
to the print cartridge, and the systems that hold, move, protect, and maintain the cartridge and
fire the ink drops are described in the paper on page 62. The multifunction chassis, designed
using an HP CAD system, the paper handling system, an unusual transmission that lowers costs
by making one motor perform three functions, and the paper drive motor and its control system
are treated in the paper on page 67, while the paper on page 76 tells how a microprocessor-con-
trolled custom integrated circuit manipulates character dot data to provide various text enhance-
ments and graphics. Firmware design is the subject of the paper on page 81, and two manufacturing
papers, one on robotic circuit board assembly and one on machine vision systems for printhead
production, are on pages 87 and 91.

4 HEWLETT-PACKARD JOURNAL OCTOBER 1988

-

The shaft encoder that provides feedback for the DeskdJet printer paper drive servo system is
available to customers as a separate product line, the HEDS-9000 Shaft Encoder Module family.
Designed for low cost, rapid assembly, and freedom from follow-up adjustments, this encoder
module makes closed-loop operation feasible for low-cost products like the DeskJet printer, where
it translates into higher speed and print quality. The HEDS-9000 design includes elements of
integrated detector circuits, light-emitting diode technology, plastic optics, and high-volume man-
ufacturing. The story begins on page 99.

-R.P. Dolan

Cover

The cover photograph represents the HP-UX 6.0 discless operating system. The photographer
has used a special lens to multiply the image of this HP 9000 Series 300 workstation to simulate
a cluster of workstations on a local area network. All but one of the disc drive images have been
faded back, indicating that in an HP-UX 6.0 discless cluster, only one workstation needs to have
a disc drive.

What’s Ahead

The HP NewWave environment, a state-of-the-art user interface for personal computers, is the
major subject in the December issue. There will also be articles on the HP 64700 Series host
independent emulators for microprocessor-based system development, on the plain paper research
that was done for DeskJet printer development, and on a technique for adjusting dual-channel data
sampled by the HP 5180A Waveform Recorder. The annual index will aiso be presented.

The Hewlett-Packard Journal is published bimonthly by the Hewlett-Packard Company to recognize technical contributions made by Hewlett-Packard (HP) personnel. While |
the information found in this publication is believed to be accurate, the Hewlett-Packard Company makes no warranties, express or implied, as to the accuracy or reliability of |
such information. The Hewlett-Packard Company disclaims all warranties of merchantability and fitness for a particular purpose and all obligations and liabilities for damages,
including but not limited to indirect, special, or consequential damages, attorney’s and expert’s fees, and court costs, arising out of or in connection with this publication

Subscriptions: The Hewlett-Packard Journal is distributed free of charge to HP research, design, and manufacturing engineering personnel, as well as to qualified non-HP
individuals, libraries, and educational institutions. Please address subscription or change of address requests on printed letterhead (or inciude a business card) to the HP address
on the back cover that is closest to you. When submitting a change of address, please include your zip or postal code and a copy of your old label

Submissions: Although articles in the Hewlett-Packard Journat are primarily authored by HP employees, articles from non-HP authors dealing with HP-related research or
solutions to technical problems made possible by using HP equipment are also considered for publication. Please contact the Editor before submitting such articles. Aiso, the
Hewlett-Packard Journal encourages technical discussions of the topics presenting in recent articles and may publish letters expected to be of interest to readers. Letters should
be brief, and are subject to editing by HP |

Copyright © 1988 Hewlett-Packard Company. All rights reserved. Permission to copy without fee all or part of this publication is hereby granted provided that 1) the copies
are not made, used, displayed, or distributed for commercial advantage; 2) the Hewlett-Packard Company copyright notice and the fitle of the publication and date appear on |
the copies; and 3) a notice stating that the copying is by permission of the Hewlett-Packard Company appears on the copies. Otherwise, no portion of this publication may be
produced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage retrieval system without written
permission of the Hewlett-Packard Company

Please address inquiries, submissions, and requests to: Editor, Hewlett-Packard Journal, 3200 Hillview Avenue, Palo Alto, CA 94304, US.A

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 5

—

Discless HP-UX Workstations

HP-UX 6.0 provides low-cost discless workstation operation
over a local area network. It also provides a single file
system view, intervendor file sharing, and conformance to
UNIX® System V Interface Definition (SVID) semantics.

by Scott W. Wang

ware contribution to the HP 9000 Series 300 worksta-

tion platform. This release of the HP-UX operating
system provides discless workstation operation in a net-
work and intervendor file sharing through the Network
File System (NFS*).

The HP-UX 6.0 system enables tightly networked discless
graphics workstations to share a single file system server
transparently in an Ethernet or IEEE 802.3 local area net-
work. Fig. 1 shows a typical HP-UX 6.0 system configura-
tion and defines a few terms that are used here and in other
articles in this issue. The terms discless cnode (cluster
node) and discless workstation are used interchangeably
in this article.

The standard ARPA/Berkeley networking services and
NFS complement the tightly coupled workstations by offer-
ing intervendor and intercluster communication and file
sharing capabilities. In addition to the discless and NFS
capabilities, the HP-UX 6.0 system also offers:
® Industry standard Small Computer System Interface

(SCSI) and VME support
Enhanced graphics support for the new HP 98550A high-

resolution graphics board and displays and the HP

98556A 2D integer-based graphics accelerator
Commands and libraries from Release 1.0 of the HP 9000

Series 800 HP-UX system
® The X Window System

SCSI and the X Window System are discussed on pages
39 and 46, respectively.

T HE HP-UX RELEASE 6.0 SYSTEM is a major soft-

*NFS is a product of Sun Microsystems, Inc
UNIX is a registered trademark of AT&T in the U S A and other countries

Cluster Nodes (Cnodes)

Design Goals
There are many ways to implement a discless worksta-

tion capability. However, our design choices and imple-

mentation techniques were guided by the need to achieve

the highest quality goals of functionality, usability, reliabil-

ity, performance, and supportability. This resulted in the

following design goals for our discless workstation imple-

mentation:

= Low-cost discless workstation operation over a local area
network

u A single file system view

® Conformance to AT&T’s UNIX System V Interface Defi-
nition (SVID) semantics and backward compatibility
with previous releases of HP-UX

® A design that coexists with and complements NFS, HP’s
Network Services (NS), and ARPA/Berkeley network
facilities

u At least 80% of the throughput performance of a stand-
alone system (workstation with a disc)

® Flexible system configuration and dynamic reconfigura-
tion

® Thorough usability and reliability testing.

Low-Cost Discless Workstations

Clustering discless workstations is a way to achieve
lower cost per workstation, to meet certain environmental
conditions (poor environment for discs), and to meet spe-
cific ergonomic requirements. To operate in a discless
mode the workstation needs access to a remote file server
for booting up, for gaining access to files, and for doing
virtual memory swapping from the server’s disc. Remote

Fig. 1. Major components of a
cluster of discless workstations. A
cluster is a group of workstations

connected by a network that share

a single file hierarchy. A cluster
‘ ‘ node (cnode) is one of the nodes,
or workstations in a cluster. Adisc-
Y — less cnode is a cnode that does
not have a local file system; its file
System resides on the root server
A root server is the cnode to which
the disc containing the root file
system is physically attached
There is only one root server for

LAN (IEEE 802.3) ¥ =
3 — L — G —@
L mamm Shered sl J Al =1
atedy . \ : e
i I | |]_ | Discless
= = 57-_-:\! r—:_:,J = == Workstations

- =T

= _! . | ===) T _ﬁ] =

. Root Server Local Swap

. Disc

6 HEWLETT-PACKARD JOURNAL OCTOBER 1988

each cluster. Inthe HP-UX 6.0 sys-
tern release the root server is also
the file server

boot and virtual memory operations are described in detail
in the articles ‘““Boot Mechanism for Discless HP-UX,” and
“Discless Program Execution and Virtual Memory Manage-
ment,” on pages 33 and 15, respectively.

Single File System View

There are two basic computing environment models:
time-shared systems and distributed systems. Time-shared
systems allow multiple users to communicate with each
other easily, and to share a single computer’s environment
and resources. The disadvantages of a time-shared system
are poor response time, limited configuration and scalabil-
ity, limited graphics capability, and limited system avail-
ability. Distributed systems alleviate many of the disadvan-
tages of time-shared systems by distributing the computing
and other resources onto networked full graphics work-
stations that are smaller and less expensive. However, shar-
ing resources and communicating between users on sepa-
rate workstations is usually more complex in a distributed
system. For the HP-UX 6.0 system we wanted the best of
both models: a high degree of network transparency be-
tween workstations and a single-system view.

A single-system view in a workstation cluster means the
user sees a single file system from any workstation and
there is a single point for system administration. A user
can log in to the system from any workstation in the cluster
and see the same environment in the same manner as seen
when logging into a time-shared system from any terminal.
Single-point system administration means the system ad-
ministrator can administer the cluster of workstations from
any workstation in the cluster, and the work involved is
no more complex than a time-shared system with the same
number of users.

Most important, a single-system view in a cluster means
a single global file system. Each workstation user sees and
shares the same file system just as in a multiuser time-
shared system. The implementation of this concept means
solving many interesting technical problems. For example,
file synchronization needs to be maintained between work-
stations in the same standard HP-UX semantic exhibited
in a multiuser HP-UX system. There are subtleties and
implications in performance because of file system buffer
caching that involves file accesses in both synchronous
and asynchronous modes.

A single-system view also means shielding the user from
differences in the workstations in the cluster. In a single
cluster, workstations may have different types of CPU (e.g.,
68010 and 68020), different floating-point processors (e.g.,
68881 versus a floating-point card), and different graphics
displays. To solve this problem the concept of context de-
pendent files (CDF) was defined and implemented for disc-
less workstations. Each workstation has a context file de-
scribing that workstation. CDFs reside in a hidden directory
that holds context dependent objects (text files and execut-
ables), and maintain the same file path name from any
cnode in the cluster. This allows a CDF to be accessed
using the same file name from any cnode, with the system
automatically differentiating and selecting the proper CDF
based on the workstation configuration.

A single-system view in a cluster creates the problem of
process ID (PID) collisions between independently execut-

ing HP-UX environments in the workstations. Collision
must be avoided since HP-UX uses PIDs as unique iden-
tifiers in many places (e.g., temporary file names). Simi-
larly, clocks in individual workstations in a cluster must
be synchronized to have a consistent time in the cluster.
The single file system demands that timestamps on files
be consistent no matter which workstation puts the time-
stamp on the file. This has interesting implications for the
make command if the clocks are not synchronized.
Additional details on the file system can be found in the
article, “A Discless HP-UX File System,” on page 10.

Compatibility

Conformance to AT&T’s UNIX System V Interface Defi-
nition (SVID) and object code compatibility with previous
releases of the HP 9000 Series 300 HP-UX systems were
objectives in all design considerations for the HP-UX 6.0
system. For example, the process ID collision problem men-
tioned above cannot be solved by simply prepending a
cnode ID number to the PIDs to make them unique. Instead,
PIDs must remain five digits (1 to 32768) for compatibility.
The problem is solved by a PID server process that manages
and allocates PIDs in chunks to the discless cnodes while
guaranteeing their uniqueness in a cluster. Other examples
are file synchronization and file locking, which must be
done in a way to preserve standard HP-UX semantics. See
the article “A Discless HP-UX File System” for more de-
tails. Ensuring conformance to the SVID, the HP-UX 6.0
system has passed the System V Validation Suite (SVVS).

Other Network Protocols

While the discless capability is the primary objective of
the HP-UX 6.0 system, another objective was to allow ac-
cess to NFS, HP’s NS, and ARPA/Berkeley network services
concurrently with the discless functions. Implementation
of these capabilities affects the file system and the network
system. For example, the key to a single-system view is
the file system. This means we had to integrate all the
requirements for other network file systems into the same
file system used for the discless implementation.

Discless Performance

In a discless environment, some performance loss is un-
avoidable because of remote file accessing and virtual mem-
ory swapping over the network. The performance goal we
set for the HP-UX 6.0 system was 80% of a stand-alone
workstation’s throughput performance. Three areas were
identified as key to achieving this performance: network
protocol, virtual memory swapping, and file system caching.

A lightweight protocol was defined to handle the kernel-
to-kernel communication between a discless cnode and the
server. Thisresulted in a significant performance advantage
compared to other discless implementations based on stan-
dard network protocols such as TCP/IP. The discless pro-
tocol is discussed in the article “The Design of Network
Functions for Discless Clusters,” on page 20. A perfor-
mance analysis is also included in the article.

To address the performance bottleneck of remote swap-
ping at the file server, we include support for local swap
discs on a discless cnode. For virtual memory intensive
applications running on a discless cnode, the user has the

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 7

options of adding a local swapping disc to improve perfor-
mance while maintaining the single file system view, and
of sharing resources with other cnodes.

Standard HP-UX file system buffer caching is maintained
on the server and the client cnodes, thus maintaining the
performance improvement file caching provides. This is
discussed in more detail in the article “A Discless HP-UX
File System.”

Flexible Configuration

For HP-UX system 6.0, all models of the Series 300 family
of workstations are supported. However, the server is re-
stricted to the Series 350 only. Every workstation, including
the server, runs the same version of the HP-UX 6.0 system.
The server is not a dedicated server, in that it can also be
used as a workstation. In addition, the discless cnodes and
the server retain their ability to support multiple terminal
users if desired. The cluster size and configuration depend
on the requirements of users and applications.

Dynamic reconfiguration

Users can add cnodes to or delete cnodes from a cluster
and move cnodes from one cluster to another. A cluster
can dynamically grow or shrink as necessary.

A cluster can start from as little as two workstations and

expand as required without unloading the file system and
repartitioning the disc. Discless cnodes can join and unjoin
a cluster at boot time without affecting the activity of the
rest of the cluster. The new cnode is immediately recog-
nized by other cnodes in the cluster. When a cnode leaves
a cluster the rest of the cluster will automatically reconfig-
ure and continue operation. Multiple clusters can be de-
fined on a single LAN and each discless cnode on the LAN
can easily choose to join any cluster during boot.

To maintain the single-system view, the configuration
of discless cnodes must be as simple as adding a terminal
to a multiuser time-shared system. Because of the single
file system implementation it is not necessary to partition
the server disc according to the number of discless cnodes
in the cluster. The file system and swap area on the server
disc are shared by all discless cnodes. This allows the
system to pool a large swap area when large swap intensive
application programs are executed.

Easy cluster definition and configuration are ac-
complished through a program called reconfig. This is de-
scribed in the article ‘“Discless System Configuration
Tasks,” on page 37.

Another example of flexibility and ease of configuration
is sharing of peripherals on the server, and the ability to
configure local devices on the discless nodes.

The HP-UX 6.0 system release was a large team effort spanning
many organizations and functional areas. The management of
this release was an excellent example of the concept called
program management. The organizations involved were HP's
System Software Operation (SSO), Technical Workstation Oper-
ation (TWO), Corvallis Workstation Operation (CWO), Information
Systems Operation (ISO), and Colorado Networks Operation
(CND). The functional areas involved included several R&D labs
including operating systems, languages, graphics, commands
and libraries, networking, performance, system integration, and
program management. Other functional areas were product mar-
keting from the various organizations, marketing support,
documentation, quality assurance, and manufacturing. In addi-
tion, there were many applications organizations such as the
Electronic Design Division (EDD) and Logic Systems Division
(LSD) that needed to be kept informed of our progress. These
two organizations and others were collectively called the En-
gineering System Group (ESG*) partners

The program management model centered on what was called
the HP-UX team, which consisted of representatives from the
various organizations and functional areas. The HP-UX team met
weekly for status updates, information, and issue resolution

Program management documents included the team meeting
minutes, a system PERT chart, a program data sheet, a program
requirements document, a delta document, commitment lists,
and a milestone checklist, Several of these documents deserve
| further explanation. The delta document was published early for
i the ESG and other partners. It contained the differences between
Release 55 and Release 6.0 of the HP-UX system, and items
that could affect the partner application and subsystem develop-
ment. For example, the need for a new boot ROM affected header
file changes, object code compatibility issues, and code size
estimates. The commitment list was important because it pro-
vided us with a central list of all known customer commitments

Program Management

in terms of early release requirements, who made the commit-
ments, when they were required, and whether they required a
discless system or just NFS. The milestone checklist was used
to track all major action items and all known major and minor |
milestones. It was reviewed and updated at each team meeting
The checklist not only enabled us to check progress and follow
up on action items, but also showed progress being made. The
checklist was a great supplement to the system PERT chart which
was also reviewed each week

The partners were kept up to date by means of the delta |
document and in some cases the team meeting minutes. We
also had a monthly (later bimonthly) meeting to share status |
This was called the ESG information exchange meeting. It was
an effective way to exchange data and keep each other informed
| also served as the major interface to people in California through
the periodic HP-UX Steering Council meetings

The HP-UX 6.0 system program life cycle included three early
bird (EB) releases that were roughly two months apart. EB1 was
used to tune the processes used to build and put the system
through integration and test. EB1 turned out usable enough for
distribution to pariners and selected customers. EB2 was a func-
tionally complete system for entry into final QA and for partner |
and customer commitment distributions. EB2 was also used in |
the first human factor usability testing. EB3 was the final refine-
ment of the product and the release before the final system |
integration and test process, In essence, the EBs were trial runs ‘

forthe real release and at the same time served as useful systems
*ESG is currently called Engineering and Measurement System Group (EMSG)

Scott W. Wang
R&D Lab Manager |
Information Software Division ‘

8 HEWLETT-PACKARD JOURNAL OCTOBER 1988

Usability and Reliability

Features that contribute to the usability of the HP-UX
6.0 system include the single-system view, ease of config-
uration, and compatibility. We worked with human factors
engineers to test our early releases for usability. This testing
resulted in many changes to the documentation and en-
hancements to the reconfig program.

Reliability is achieved by extensive prototyping, design
reviews, and testing. Besides the typical operating system
testing done in the past, we designed and executed addi-
tional test cases specifically for the discless cluster config-
urations. Test clusters were set up to run a networking test
scaffold at various stress levels. The HP-UX 6.0 system
achieved 120 hours of continuous high-stress operation
without a system crash.

The dynamic reconfiguration capability also enhances
cluster reliability. When a discless cnode crashes, the rest
of the discless cnodes will continue to function unaffected.
This requires extensive crash detection and recovery in the
operating system. However, the entire cluster will cease to
operate if the server with the root file system crashes. To
ensure detection of and recovery from LAN cable discon-
nections without affecting other cluster operations, a cable
break detection mechanism has been incorporated into the
system. Refer to the article “‘Crash Detection and Recovery
in a Discless HP-UX System” on page 27 for more details.

Acknowledgments

The technology for the discless capability started as a
distributed HP-UX (called DUX") project at HP Laboratories
in Palo Alto. This research resulted in a prototype im-
plementation of distributed HP-UX that was developed at
the Information Software Operation in Cupertino, Califor-
nia and the System Software Operation in Fort Collins,
Colorado. DUX incorporated a fully distributed file system
and many advanced distributed operating system features.

I would like to acknowledge the many people who made
the HP-UX 6.0 system a reality. It is not possible to list all

the names here so the list is limited to the core operating
system teams.

Xuan Bui and his kernel group: Drew Anderson, Jack
Applin, Doug Baskins, Paul Stoecker, Paul Perlmutter,
Pamela Marchall. Joe Cowan and his kernel group: Bruce
Bigler, Dave Gutierrez, Bob Lenk, Jack McClurg, Bill McMa-
hon, Perry Scott, Rober Quist. Ken Martin and his system
integration group: Stuart Bobb, Paul Christofanelli, Jim
Darling, Steve Ellcey, Bill Mullaney, Bruce Rodean, Kim
Wagner. Marcel Meier and his kernel group: Debbie
Bartlett, Mike Berry, Barbara Flahive, Ping-Hui Kao, Anny
Randel, Fred Richart. Bonnie Stahlin and her program man-
agement and usability/test group: Rich Dunker, Lois Gerber,
Dave Grindeland, Mike Steckmyer, Ron Tolley. Donn Terry
and his commands and libraries group: Jer/ Eberhard, Gayle
Guidry Dilley, Rob Gardner, John Marvin, Rob Robason,
and Peter van der Steur.

In addition I would like to acknowledge the California
contingent: Ching-Fa Hwang, Joel Tesler, Sui-Ping Chen,
Chyuan-Shiun Lin, Doug Hartman, Jeff Glasson, Mike
Saboff, and Ed Sesek.

I would especially like to acknowledge John Romano
from Logic Systems Division for his early realization that
DUX was a must requirement for his HP 64000 market, and
Ching-Fa Hwang and his team at HP Labs that built the
original DUX: Joel Tesler, Chyuan-Shiun Lin, John Worley,
Sui-Ping Chen, Parviz Afshar, Curt Kolovson, and Ray
Cheng. Their continued moral support for this project was
invaluable.

Steve Boettner, Bill Eads, Gary Ho, Eric Neuhold, and
Mike Kolesar provided management support. Finally, a
special thanks to Sandy Chumbley, then System Software
Operation manager, for sticking with us all the way.

Reference

1. Ching-Fa Hwang,]. Tesler, and Chyuan-Shiun Lin, “‘Achieving
a One-System View for Distributed UNIX Operating Systems,”
UniForum 1987 Conference Proceedings.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 9

A Discless HP-UX File System

by Debra S. Bartlett and Joel D. Tesler

system is a file service capability. All files must be

stored on a file-serving node since the discless nodes
normally would not have a local file system. The goal of
a single-system view for an HP-UX discless cluster imposes
an additional requirement—the file system should appear
the same from all nodes in the cluster.

Several changes were made to the file system portion of
the standard HP-UX kernel to support discless operations.
These changes were made with the requirement of main-
taining stand-alone HP-UX semantics and file system per-
formance in a discless environment. Elements of the file
system that were modified include: file system I/O, named
FIFOs, file locking, and pathname lookup.

The discless file system operates in conjunction with the
remainder of the kernel and other file systems. In particular,
the discless system is designed to work together with the
Sun Microsystems Network File System (NFS), which pro-
vides transparent access to files on remote machines in a
heterogeneous environment. The discless file system de-
sign is such that it enhances the functionality of both file
systems rather than requiring the user to choose between
them.

To understand the discless file system, the reader should
be familiar with the standard HP-UX file system. Fig. 1
explains several common file system terms used through-
out the remainder of this article.

T HE MOST OBVIOUS REQUIREMENT of any discless

System Appearance

The simplest way to implement a discless system is to
partition the server’s discs into multiple subdiscs. Each
subdisc would be allocated to one client. The client would
treat that disc as if it were local, except that all I/O would
be performed over the network rather than directly to disc.
While this solution does eliminate the need to attach a disc
to each CPU, it fails to meet many of the other needs of a
discless system. It is still necessary to provide just as much
disc space as it would be if each machine had its own
physical disc. Such a system would also provide no file
sharing; each machine would have its own set of files.
Finally, each file system would need to be independently
administered.

Since the above approach has many problems and little
benefit, it is rarely used. Instead, a common approach to
implementing a discless file system is to provide each node
with a small root file system physically located at the disc
server. This root file system is private to the node owning
it, and contains enough files to boot up the system. After
booting, the node issues remote mount requests to mount
other shared file systems from the disc server. A remote
mount is similar to a normal mount in that it mounts one
file system under a directory in another file system. How-
ever, the file system being mounted is remote, and is usu-
ally shared by several clients. Typically some form of re-

10 HEWLETT-PACKARD JOURNAL OCTOBER 1988

mote file service is used to access the files in a transparent
manner.

This approach solves several of the problems of a discless
file system, but there are still some limitations that make
it unsuccessful in meeting the goals of the HP-UX discless
system. Each node still has its own root file system, violat-
ing the single-system view. It is possible that the various
root file systems will differ from one another. In particular,
the disc server’s root file system is likely to differ signifi-
cantly from the client file systems. Each root file system
must be independently administered, eliminating the pos-
sibility of single-machine administration. Finally, each
machine must independently perform the remote mounts.
It is possible that different machines will perform different
mounts, leading to inconsistent views. Even if the system
administrator tries to keep the views the same, it is neces-
sary to guarantee that all updates to the mount table are
propagated to all machines, a task that is error-prone.

In the HP-UX discless system, we have chosen instead
to have a single root file system, residing at the disc server
(also referred to as the root server). All nodes in the cluster
(hereafter referred to as cnodes) share the same root.
Whenever a file system is mounted at the root server, all
other cnodes are notified that the mount has taken place.
When a new cnode joins a cluster, it inherits the complete
mount table from the server. Since the same mount table
is used globally, we refer to it as a global mount table. By
sharing the root and the mount table, we provide a one-sys-
tem view. A user can sit at any cnode and perceive the
same file system. A system administrator has only a single
file system to administer, and need not worry about prop-
agating changes between cnodes.

Providing a global file system is not sufficient to provide
a single-system view. It is also necessary to guarantee that
the semantics of file system access throughout the cluster
are identical to the semantics used when accessing the files
on a stand-alone HP-UX system. Commands to manipulate
files must remain the same, the system call interface to the
operating system should be unchanged, and applications
should not need to know whether they are running on a
discless cnode or on the disc server. Furthermore, the
semantics used to access files from several cnodes should
be the same as if all the accessing programs were running
on the same cnode. For example, if one program is writing
data to a file, a program reading from that file should see
the data immediately after it is written, regardless of
whether the reader is on the same cnode as the writer.

Context Dependent Files

The one-system view presented by the discless system
has been stressed. Every cnode has the same view of the
file system layout, and sees the same files. While this is
an ideal situation, there are a few cases where this is actu-
ally not the ideal behavior. As an example, consider an
application that can make good use of a floating-point co-

processor if it is present, but can run with floating-point
libraries if necessary. Some cnodes may have the coproces-
sor and others may not. It is necessary that the application
be able to run on both. While it is possible to link the
program with a library that checks for the coprocessor and
performs the correct operation for each cnode, this would
be inefficient and would not take advantage of the com-
piler’s built-in floating-point code generation capabilities.
What is really wanted is two versions of the program: one
compiled with the coprocessor code and one compiled
without. The user should not need to determine which
version to run, but should be able to give the same program
name on either type of machine, with the operating system
determining the correct program to run. Although there
will not be an actual one-system view, since users on dif-
ferent machines will see different programs, there will ap-
pear to be a one-system view, since a single program name
will attain the same functionality with only a difference

| |
T ENEE -

(a)

Root Directory

Root File System

ﬂ m s |
::m nm

Mounted File
System

(b)

Fig. 1. Standard HP-UX file system. HP-UX uses a hierarchi-
cal file system. One special type of file is a directory, which
contains a list of files. These files may themselves be direc-
tories, or they may be simple files. The top directory of a file
system is called the root, and is signified by /. A directory
may be empty. (a) shows a miniature HP-UX file system. The
root directory contains three directories, etc, bin, and users.
Etc contains two files, passwd and init. When writing a file name,
the components are separated by slashes, for example /etc/init.
It is possible to attach other file systems by mounting them
on a directory. (b) shows a second file system containing
user files mounted under jusers, Once the mount takes place,
the second file system can be accessed as if it were part of
the first, e.q., /users/ethel/myfile.

in performance.

Another case where each machine may need a different
file is when the file describes the machine configuration.
For example, the file /ete/inittab describes, among other
things, the terminals connected to the CPU. Each CPU may
have a different set of terminals and need a different version
of the file. Although it would be possible to modify the
format of these files, or to rename them to include the
cnode name, various programs depend on the format of
the file and would need to be changed if the format or
name changes. This could potentially include customer-
written programs. Instead, we would like to supply a mech-
anism for automatically selecting the correct version of
fetc/inittab based on the CPU requesting it.

To solve these problems, we have introduced a mecha-
nism called a context dependent file (CDF), based in part
on the hidden directory mechanism used in the Locus sys-
tem developed at the University of California at Los
Angeles.” Each cnode has a set of attributes, defined as the
cnode’s context. The attributes describe the type of
hardware (68010 vs 68020, floating-point processor, etc.)
and the cnode’s name. A context dependent file consists
of a specially marked directory named after the file is made
context dependent. This directory is called a hidden direc-
tory, for reasons that will become obvious. Within the hid-
den directory are entries named after the attributes used
for selecting the file. When a hidden directory is encoun-
tered during a pathname translation, the system searches
the directory for an entry that matches one of the attributes
of the cnode’s context. If it finds one, it automatically “falls
through’ the hidden directory, selecting instead the match-
ing file. An example may make this clearer.

Fig. 2 shows how /ete/inittab can be set up as a CDF. Fig.
2a shows how the file would normally appear within the
fetc directory. Suppose that a cluster has three cnodes
named athos, porthos, and aramis. The CDF would be set up
as shown in Fig. 2b. The + after inittab indicates that the
directory is specially marked as hidden. It is not actually
part of the directory name. If a user on athos tries to open
/etc/inittab the system will actually open the file athos within
the directory. To the user on athos, the file system appears
exactly as shown in Fig. 2a. The user on porthos would also
see a file system that appears as in Fig. 2a, although the
contents of /etc/initab would be different. Thus, under nor-
mal circumstances, the directory is hidden.

Occasionally, the systemn administrator will wish to see
all the contents of the hidden directory. In this case, a
special escape mechanism is provided. If a + is appended
to the CDF name, it will refer to the directory itself rather
than falling through based on the context. Thus, a system
administrator on porthos could modify the inittab belonging
to aramis by editing /etc/inittab+/aramis. The pathname /etc/init-
tab+ refers to the hidden directory itself whereas /etc/inittab
refers to the machine’s own version, in this case porthos.

File System 1/0

The standard HP-UX file system buffers I/O requests to
increase file system performance. The buffer cache is com-
posed of buffer headers which contain pointers to the actual
data. The buffer header data structure also contains a block
number and a pointer to a vnode (a data structure describing

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 11

a particular file). The block number and vnode pointer are
used to identify any block of data pertaining to the file
system. When a user makes a read request to the system,
the file system first checks to see if that particular block
of data is already in the buffer cache. If it is in the buffer
cache, then the data can be transferred to the user without
incurring the overhead and time it takes to read the data
from the disc drive. Likewise, if a user makes a write re-
quest, the system will buffer the data and write it to the
disc at a later time. This allows the system to buffer write
requests into a block size and thus minimize the number
of disc writes.

This design of the buffer cache presents some problems
when dealing with the discless environment. If each cnode
has its own buffer cache, then there is no longer a unique
buffer in the cluster’s memory for a particular block on the
disc. This can lead to synchronization problems. If a user
on cnode A writes to a file and if a user on cnode B is
reading from that same file, then the data written by cnode
A may not be seen by cnode B.

This synchronization problem can be avoided by
eliminating the buffer cache on the client cnodes. However,
this would create performance problems. The HP-UX disc-
less solution is to implement a compromise. Whenever
possible, the discless cnode uses the local buffer cache
(asynchronous I/0). When synchronization problems may
arise, then the discless cnode bypasses the local cache and
reads or writes directly to the server (synchronous 1/O).
The server always uses its buffer cache.

The determination of whether a data request should be
synchronous or asynchronous is calculated on an indi-
vidual file basis. Each currently referenced file in memory
is represented by a data structure called an inode. Part of

= o
1 =

b
T

|

é

(b)

Fig. 2. Example of context dependent files. (a) Directory
structure for /etc/inittab.(b) Directory structure for /etc/inittab with
CDFs.

12 HEWLETT-PACKARD JOURNAL OCTOBER 1988

this data structure contains some fields called cnode maps.
There is a cnode map that describes which cnodes have
this file open and a reference count for each site that has
it open. Likewise, there is a cnode map that describes which
cnodes have this file open for write and a reference count
for each cnode that has it open for write. These cnode maps
are maintained on the server node only. Whenever a file
is opened, the referencing cnode’s identifier is added to
one or both of its cnode maps depending on whether the
file was opened for reading or writing. When the open
condition is added to the cnode map, a file system al-
gorithm calculates whether this file should be in synchro-
nous or asynchronous mode. If there are no cnodes that
have the file open for writing or if the file is being opened
for writing and no other cnode has the file open, then the
file remains in asynchronous mode. However, if opening
this file in the requested mode causes more than one cnode
to have the file open with at least one cnode having it open
for writing, then the file is switched to synchronous mode.
In switching the file to synchronous mode, the system re-
quests that all writing cnodes flush their write buffers to
the server and notifies all open cnodes that the file is now
to be switched to synchronous mode. The file remains in
synchronous mode until a cnode closes the file and that
action causes either no more writing cnodes or there is
only one cnode with the file open. A cnode using the re-
cently closed file will be notified that it can now switch
back to asynchronous mode on the next read or write re-
quest to the server.

In a standard HP-UX system, the buffers associated with
a file may stay in memory even after the file has been
closed. Thus, if a process reopens that file and makes a
read request, it can use the data that is already available
in the cache. In a discless environment, this mechanism
will not work. For example, suppose cnode A opens a file,
reads from the file, and closes the file. Then cnode B opens
the file, writes to the file, and closes the file. Now cnode
A reopens the file. The buffers at site A no longer contain
the correct data because cnode B has modified the data.

To take advantage of buffer caching and avoid this syn-
chronization problem, there is now a version number as-
sociated with each file. When a file that was in asynchron-
ous mode and has been written to is closed, the version
number is changed on the server and at the cnode that
closed the file. When the file is reopened and the inode is
still in memory on the requesting cnode, then the old ver-
sion number is checked with the current version number.
If the version number is the same, then the old buffers can
be used. However, if the old version number is less than
the new version number, then the old buffers are invali-
dated.

Another consideration with buffering in a discless envi-
ronment has to do with disc space allocation. In a standard
HP-UX environment, when a write request is made, the
system first checks to see if there is enough space on the
disc for the write request. If there is not enough space left
for the request, then the write fails with an error message.
In a discless environment, it would help performance if
each write request did not have to go to the server to ask
for a disc block number. However, if it did not do this,
then a user might think that a write has succeeded, but by

the time the actual asynchronous write operation goes to
the server, it may fail because of no disc space. To avoid
this problem, which does not occur on stand-alone systems,
a nearly-full-disc algorithm has been established. The al-
gorithm is based on knowing the number of total buffers
in the cluster. Once the disc gets to the point where it does
not have enough free disc space for all buffers, it notifies
the discless cnodes. After this point, whenever a discless
cnode makes a write request that would require space on
the disc, it makes the write synchronously to the server.

FIFO Files

In standard HP-UX, named FIFO files, also known as
named pipes, are a mechanism for processes on the same
machine to communicate with each other. Each process
opens the same named FIFO file. Then each process uses
the read and write system call to send and receive informa-
tion to and from other processes. The discless implemen-
tation extends this concept so that processes on different
cnodes can communicate via the same named FIFO file.

The in-memory inode for a named FIFO file contains
specific fields related to that FIFO file. The specific infor-
mation associated with a FIFO file consists of the read
count, the write count, the current read pointer, the current
write pointer, and the number of bytes in the current FIFO
file. The FIFO file is maintained as a circular 8K-byte buffer.
On the serving cnode, the inode contains cnode maps
which specify the cnodes using the FIFO file. If only one
cnode is using a particular named FIFO file, then the FIFO
file specific information is maintained on the cnode that
is actually using the named FIFO file. This improves per-
formance, because the cnode does not have to communicate
with the server every time it accesses the FIFO file. If
another cnode opens that same FIFO file, the server recog-
nizes that there is now more than one cnode using the
FIFO file. The server then requests that the current cnode
that is using the named FIFO file send all of its FIFO file
specific information and data to the server and that from
now on it send its read and write requests to the server. In
this way, the server acts as the focal point for all communi-
cation between the cnodes.

Lockf

The discless implementation of file locking maintains
the full standard HP-UX semantics. HP-UX provides a byte-
level locking mechanism for regular files. There are advis-
ory locks and enforced locks. Advisory locks can be used
as semaphores between processes. If a file region has an
enforced lock, then only the process with the lock can read
from that region or write to that region.

Advisory locks are implemented with the lockf or fentl
system call. These system calls allow a user to inquire if
there is a lock on the file, to test and lock a region, to lock
aregion, and to unlock a region. In the nondiscless version
of lockf, file locks for an open file are kept in the inode
structure. In a discless environment, the inode can be on
more than one cnode at any given time. Thus, it must be
decided where the locks will reside for a file so that
everyone will know about them. One possibility is to keep
all locks on the server. This is a simple implementation;
however, it has the disadvantage that if a cnode has a file

open with locks, then all inquiries must go to the server.
The implementation that was chosen is to have each cnode
keep the locks that were originated by that cnode and to
have the server keep track of both the local and remote
locks. Thus, if a cnode with a lock on a remote file makes
a lock inquiry, the lock will be found on that cnode and
it will not be necessary to send a message to the server.

If a file has enforcement mode locks on it, then each read
or write system call must check to see if another process
currently owns a lock in the specified read or write region.
If another process does own a lock, then the requesting
process must wait until the region is unlocked. When
checking for other processes, it is only necessary to check
on the serving cnode when a file is opened by more than
one cnode and there are enforced locks on that file. The
same mechanism used for keeping track of file-open re-
quests for asynchronous and synchronous file /O is used
in this situation as well.

In the standard HP-UX version of lockf, deadlock preven-
tion checks are done before granting a lock to avoid poten-
tial deadlocks. The basic deadlock detection algorithm is
as follows. The code first looks at the status of the process
that owns the lock. If the process is not waiting or is waiting
for something other than a file lock, then there is no dead-
lock. If the owning process is waiting on a file lock, a search
is initiated using the lock this process is waiting on. If the
search finds the lock owned by the calling process, then a
potential deadlock has been found.

In a discless environment, there are more potentials for
deadlock. Therefore, the deadlock detection algorithm was
enhanced to account for these situations. The differences
for finding deadlocks are the result of three conditions.
First, processes in the waiting chain may be distributed
throughout several cnodes. Second, a process may be sleep-
ing on a lock or may be waiting for a cluster server process
on the root cnode that is itself waiting on a lock. Third,
more than one process may simultaneously try to wait on
a given lock as a result of concurrent deadlock searches
happening on more than one cnode.

Pathname Lookup

An important job provided by the file system portion of
the kernel is the translation of a user-specified pathname
into its location on the actual disc file system. For example,
in the open system call, the user specifies the file name to
be opened such as /diri/dir2/dir3/file. The system then inter-
nally translates each component of /diri/dir2/dir3/ffile until it
has found the inode number representing /dir1/dir2/dir3file.
The system then reads this inode from the disc to determine
its characteristics and the location of its data blocks. Many
of the system calls pass a pathname. Examples of pathname
system calls are open, creat, stat, link, and exec.

For the discless implementation, the pathname lookup
code was modified. First, the code recognizes whether any
component of the pathname is remote, that is, it belongs
to a file system physically attached to another cnode. If
the pathname is remote then the code sends the entire
remaining pathname to the serving site.

To reduce the number of messages that must be com-
municated between the server and the requesting client,
the pathname lookup code was also modified to send not

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 13

e |

only the pathname, but also all the necessary information
to complete the system call while it is still operating on
the serving site. This mechanism is table driven. Associated
with each pathname lookup system call there is an opcode
and a structure which describe the request size, the reply
size, the function on the client side that will package the
required information, the function on the server side that
will perform the requested operation, and the function on
the client side that will unpack the request.

For example, the opcode for open is 1. Its packing function
is open_pack(). Its serving function is open_serve(). Its unpack-
ing function is open_unpack(). The function open_pack() estab-
lishes the mode to be used for opening the file and the file
mode to be used if the file needs to be created. The function,
open_serve() handles the requirements for the opening, such
as permission checking on the file and creation of the file
if necessary. The function open_unpack() allocates an inode
for the file, marks it as asynchronous or synchronous, and
opens the device if it is a device file.

Interactions with NFS

In addition to the discless product, another form of re-
mote file sharing is available with the HP-UX 6.0 system,
namely NFS. NFS provides the ability to mount remote file
systems. This raises a couple of questions. First, why are
both NFS and the discless system needed and why can’t
discless be based on NFS? Second, given that both systems
exist, how do they interact?

NFS is a de facto industry standard for sharing files
among heterogeneous machines running different operat-
ing systems. Being general-purpose, however, it tends to
impose constraints. For example, the network protocol
used with NFS needs to be able to deal with routing. Also,
to keep NFS simple, it does not obey full UNIX semantics.
For example, it does not provide file synchronization. Fi-
nally, NFS uses a remote mount model, preventing a true
single-system view. The discless system is designed for a
cluster of machines with a high degree of sharing. It pro-
vides a single-system view within a cluster, but does not
provide any access to machines outside the cluster. Because

14 HEWLETT-PACKARD JOURNAL OCTOBER 1988

it has a specialized purpose, it can be optimized for that
purpose. For example, because it only operates over a single
LAN, it uses a very-low-overhead networking protocol with
minimal need for error detection and routing. Also, the
discless system maintains full HP-UX semantics including
all UNIX semantics.

Since both NFS and the discless system exist within the
same system, they need to coexist, preferably in a mutually
beneficial manner. Indeed, each system complements the
other. A cluster of workstations can replace the traditional
single time-shared machine, with the workstations sharing
the view of the file system, just as users at terminals on a
single machine share that view. In the same manner that
a user can move between terminals on a time-shared
machine without noticing a difference, a user can move
between workstations in a discless cluster without noticing
a difference. NFS can then be used to access machines
outside the cluster, just as it can be used from a time-shared
machine to access other machines. To maintain the single-
system view within the cluster, the NFS mounts must be
global in the same manner that local mounts are: when one
cnode mounts a remote NFS file system all other cnodes
must see that mount also.

Acknowledgments

Sui-Ping Chen, Barbara Flahive, Ping-Hui Kao, Curt
Kolovson, and Fred Richart all contributed to the develop-
ment of the discless distributed file system. Sui-Ping
worked on context dependent files, Barbara worked on lockf
and nonpathname related system calls, Ping-Hui and Curt
worked on pathname lookup and pathname lookup related
system calls, and Fred worked on mount and buffer man-
agement. Mike Berry and Fred Richart developed the dis-
tributed test tools and helped write the distributed test
suites for the file system.

Reference
1. G. Popek and B. Walker, The Locus Distributed System Archi-
tecture, MIT Press, 1985.

Discless Program Execution and Virtual

Memory Management

by Ching-Fa Hwang and William T. McMahon

UNIX® operating system offer some form of remote

file access capability. However, only a few of them
provide discless workstation capability, particularly in the
area of paging, swapping, and execution of programs over
a network. Almost all the remote file access systems assume
a well-defined client/server model. Some of them have been
implemented in a machine or system independent fashion
and adopted as industry standards for porting to different
vendors’ systems. Discless workstations, on the other hand,
have been offered only as proprietary systems up to this
point. It is unclear at this time if any implementation will
be successfully adopted as an industry standard.

The disparity between the remote file access and remote
program execution implementations can be attributed to
several things. Unlike the UNIX file system which has a
well-defined and machine independent structure to facili-
tate the definition of a client/server model, the implemen-
tation of virtual memory (VM) for paging, swapping, and
execution of programs over a network is not isolated from
machine architecture. For example, 4.2BSD and AT&T Sys-
tem V are two primary bases for most vendors’ UNIX im-
plementations, but their virtual memory implementations
are based on quite different machine architectures, and
their performance characteristics are tuned to their native
machine architectures. This creates more difficulties in de-
fining a client/server VM model for implementing paging,
swapping, and execution of programs over a network.

The key technical challenges for implementing paging,
swapping, and execution of programs over a network in
an HP-UX environment include: preservation of the be-
havior and semantics of existing program types (such as
preloading versus demand paging), efficient and flexible
global swap device management, and performance that is
good enough to justify the cost of discless workstations.
This paper describes some of the design issues and our
solutions in overcoming these technical challenges.

MANY DISTRIBUTED SYSTEMS based on the

Overview of the HP-UX Discless Cluster

To support the one-system view, an HP-UX discless clus-
ter has one global file system. The file system on the server
node supplies all the program files that can be executed
from any node (called cnode) in the cluster—as trans-
parently as if they were executed on one system running
the standard HP-UX operating system. To complete the
one-system view, it should be possible to execute program
files from standard HP-UX releases of the past on an HP-UX
discless workstation without a recompilation. This back-
ward compatibility applies to the various types of loading,
paging, and swapping mechanisms available in the stan-

UNIX is a registered trademark of AT&T in the U S A and other countries

dard HP-UX environment. Loading refers to bringing a pro-
gram from the file system and setting up the appropriate
process control and memory mapping structure for program
execution. Swapping refers to copying some of the process
control structure and all the remaining pages to or from a
swap disc. Paging means copying some of the referenced
pages of a program to or from a swap disc.

For the discussion in this paper, an HP-UX discless clus-
ter may consist of two kinds of cnodes: (1) swap servers
with local swap devices to provide swap space to their
clients, and (2) swap clients without local swap discs. A
swap server can also be used just like a client cnode. The
swap server/client relationship is analogous to the file
server/client relationship. The former describes swap space
and device services and the latter file services. The common
swap space pool is shared equally among all clients of a
swap server (including itself as the local client). The com-
mon swap space can be expanded to multiple discs by
using the HP-UX command swapon to add more swap discs.
A swap client can be dynamically added and removed from
the server without bringing down the entire cluster for
swap space or disc reconfiguration. The server dynamically
allocates swap space to its clients when needed and deal-
locates it when not needed. On detecting the failure of a
client site, the server automatically returns the space allo-
cated to the failed client to the common swap space pool.

The features mentioned above are considered design ob-
jectives for supporting the one-system view and achieving
the high performance requirement for HP-UX discless clus-

Bt
Type

! Demand
EASl
407
413

*In Octal

Memory

(a)
407
410 2 —
Programs

Demand
Paging

Entire
Load

413
Programs

File System
Discs

(b)
Fig. 1. (a) Standard HP-UX program types and their execu-

tion characteristics. (b) Loading behavior of the different pro-
gram types

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 15

ters. However, several simplifications and restrictions were
placed on HP-UX 6.0. Specifically, there can be only one
swap server per cluster and the swap server must be the
same cnode as the root/file server. As an option, a nonroot
cnode is allowed to have local swap discs for improving
local swapping performance. In this instance, only the spe-
cific cnode has access to the local swap disc.

Program Execution

To help understand the complexity of handling program
execution and the interactions between the file system and
virtual memory in a discless environment, we use the fol-
lowing scenario to illustrate the interaction in a stand-alone
standard HP-UX environment. The scenario describes what
happens externally in the user environment and internally
in the system when an application program called foo is
updated. In the rest of this paper the term ‘“‘update,” when
used in the context of program or executable files, refers
to the point at which an existing executable file is replaced
with a new version of the program.

To begin the scenario, a programmer has just completed
a new version of foo with the file name of foo.new, and is
ready to release it while some users may still be in the
midst of executing the old foo. Internally the system may
have kept the program data and control information in
several places, depending on the exact stage of execution.
For example, the program file in the file system on disc
may or may not have been fully brought into memory for
execution, and part or all of the program may have been
paged or swapped to a swap disc to free the memory for
other process executions.

To release the new foo, the programmer types in a mv
foo.new foo command. The HP-UX system will detect that
the program is currently busy for execution and therefore
reject the command by returning an error (ETXTBSY). Not
until the last user has completed the execution of foo will
the programmer be allowed to update foo. When the system
detects that no other user is executing foo it will honor the
mv command by copying from foo.new to foo as a normal file
system operation. While doing this, the system will also
invalidate all the memory pages that may still have cached
data of the old foo. If a user tries to execute foo before the
mv replacement operation is finished, the system will pre-
vent execution since foo is in an inconsistent state.

In the HP-UX discless cluster, our goal was to preserve
the features described in the scenario to support the one-
system view and to satisfy performance requirements. This
required us to consider that a program being executed may
have parts paged or swapped out to the swap discs of the
swap server or cached in the memory of different cnodes.
In addition, the program may be requested for update;
therefore, it was necessary for us to consider mutual exclu-
sion as explained later. Many of the standard HP-UX inter-
nal mechanisms and algorithms are not adequate for han-
dling these situations, so enhancements and new algorithms
were added to handle the discless environment.

Program Loading/Swapping/Paging

In the standard HP-UX system, when programs are com-
piled or loaded (through cc or id commands) the control

16 HEWLETT-PACKARD JOURNAL OCTOBER 1988

options 407, 410, or 413 (octal) can be included in the
command string to designate the loading, swapping, and
paging characteristics of the program. A 407 program re-
quires each process invocation to have its own copy of the
program in memory and not be shared by multiple process-
es. 410 and 413 programs can be shared among multiple
processes to save memory space. 407 and 410 programs
need to be loaded in their entirety from the file system
before the execution can begin, while a 413 program can
be loaded in by pages on demand (i.e., page fault). The
loading of a program file in its entirety from the file system
for execution is handled through file system I/O via the
buffer cache, while the paging activities, either with the
file system discs or the swap discs, use device /O directly,
bypassing the file system and buffer cache (see Fig. 1).

To maintain the identical behavior and semantics of the
three program types for backward compatibility and perfor-
mance, the discless file system provides a mechanism for
bringing in remote program files from the file server for
execution. We also implemented a remote device access
mechanism that allows devices at a remote cnode, or the
device server, to be accessed over the network. This remote
device mechanism provides the necessary mechanism for
handling paging /O directly with either the remote file
system discs or the remote swap discs. These two mecha-
nisms provide a means for loading and/or paging the three
program types.

Mutual Exclusion with File Update

In the standard HP-UX system, executable files are usu-
ally in one of two mutually exclusive states: update and
execute. A file can be brought from disc to memory for
either updating or execution by one or more processes, but
never for both updating and execution at the same time.
However, a file can still be opened for reading while in
either state. Before allowing the execution of a program,
the system internally checks that no process is opening the
file to write to it. Likewise, when a process is ready to open
the file for writing the system also checks to see that the
file is not being executed by any process before it enters
the update state.

In a discless environment maintaining mutual exclusion
is more complex because the processes that want to execute

Interleaved

| Mapping
_-'

| Logical Address Physical Address |

Swap Discs

Physical Disc |
Block Address v

Driver

4 Ak
v

Fig. 2. Mapping from logical address to physical disc blocks
on the swap discs in standard HP-UX

or update the file may come from multiple cnodes in the
cluster. Therefore, mutual exclusion must be enforced in
the context of the entire cluster. To address this issue, the
root server was selected as the place to enforce and coordi-
nate mutual exclusion for the files it serves. For each file
being referenced or executed, the file inode, which is an
internal data structure containing a description of the file,
contains entries called cnode maps. The cnode maps are
used to track program execution and program file updates.
The cnode map for execution keeps track of the cnodes in
the cluster executing the program and keeps a reference
count of the number of instances of execution of a particular
program at each cnode. The execution cnode map and the
write (update) cnode map together provide the root server
with the necessary information to enforce mutual exclu-
sion. For more information about the inode and cnode maps
for file updates refer to the article “A Discless HP-UX File
System’’ on page 10.

Client Caching for Performance

In the standard HP-UX system, caching for program
execution is provided to improve execution performance.
When a process is terminated or when its pages are paged
or swapped to a swap device, the memory pages are freed
but also marked as reclaimable. This denotes that these
pages can be reactivated if the data on the pages is refer-
enced again before the pages are allocated to other pro-
grams. Like the buffer cache for minimizing file system
I/Os, reclaimable pages are intended to minimize I/O over-
head for paging and swapping. The effect is especially sig-
nificant when a file is repeatedly executed by one or more
processes.

To maintain cache consistency, when a program file is
updated, the system automatically invalidates the file’s re-
claimable cache pages left from previous executions. This
ensures that no future executions of the same file will get
out-of-date data from the reclaimable cache pages. Simi-
larly, when a file is to be executed by a process, any file
data remaining in file buffers resulting from delayed or
asynchronous file system writes will be flushed to disc
first. This is necessary to ensure that when the program is
paged in directly from discs, the file on the disc is up to
date.

The standard HP-UX system keeps cached data around
as long as possible. Flushing file buffers or invalidating
reclaimable pages is always delayed until it is absolutely
needed to maintain system consistency. This is the kind
of optimization policy that we wanted to keep for HP-UX
discless clusters. However, cache consistency in a discless
environment is much more complicated than in the stan-
dard HP-UX system because buffers for file updating can
potentially exist on multiple cnodes, and reclaimable pages
for an executing program file can also exist on multiple
cnodes. To maintain cache consistency in a discless envi-
ronment we had to ensure that:

For program file updates, all reclaimable pages for a

particular file are invalidated throughout the entire clus-

ter.

Before a 413 program enters the execute state, all the file

buffers associated with the program file are flushed over

the network to discs at the server.

To improve performance further an extension is included
in our reclaimable page invalidation mechanism. When a
file is updated, instead of starting a global operation to
invalidate all the reclaimable pages on all cnodes, the in-
validation is individually handled and deferred for each
cnode until that cnode is ready to execute the file again.
Basically, we include a version number in the in-memory
inodes at both the server and the clients. The version
number is incremented in the inode at the server whenever
the file is closed for update, but is incremented at a client
only when the client is ready to access the file. When a
client is about to execute a file, the version number of the
file at the server is compared with that at the client. Only
when the two numbers are identical will the local reclaim-
able pages at the client cnode be kept for possible reuse.
All the other cases will cause these reclaimable pages at
the client cnode to be invalidated.

Swap Space Management

In the standard HP-UX system information about swap
discs is set up at boot when the system is reconfigured,
and is kept in the swap device table (swdevt). By default,
swap space is first set up on the root disc and other discs
can be added by the use of the swapon command. The infor-
mation in the swdevt data structure is used to build the
system swap map which is used to represent and keep
track of the pool of available swap space (see Fig. 2). Swap
space is interleaved among all the swap discs, and when
swap space is allocated, the first chunk of swap space is
taken from the first swap disc in the swdewvt, the second
chunk of swap space is taken from the second swap disc,
and so on.

When a process needs swap space it grabs it from the
system swap space pool. When a page is paged out to the
disc the logical address in the swap space pool is mapped
onto a physical disc block using the information in the
swap devices table. When a process requests swap space

Swap Server

ji . 3
w. Swap Disc

Clients

Global
) Swap
Space

Fig. 3. The swap space is physically located on the server
and is allocated to the client cnodes in chunks

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 17

and there is no more space in the swap space pool the
process is killed or an ENOMEM error is returned to the
process.

Design Considerations

One of the primary considerations in designing the re-
mote swap mechanism for the HP-UX 6.0 system was to
maintain as much of the current interface as possible. We
wanted the swap device table to continue to specify the
swap discs, and the use and availability of swap space to
be represented by a swap map. Efficiency was important,
so we had to consider methods to minimize the number
of requests for swap space made from a client cnode. If the
swap maps were maintained only on the server all requests
for swap space would be a remote request, whereas if each
cnode maintained its own swap map it would only need
to make a remote request when its local swap map indicated
that it was out of swap space. For these reasons two new
concepts were introduced: the global swap space and the
local swap space. The global swap space represents the
total amount of swap space that is allocated to all clients
and exists on the root server. The local swap space is the
portion that is allocated to a particular cnode. Each cnode
has a local swap map which is used to map from the local
swap space to the global swap space (see Fig. 3). Efficiency
was also considered in determining the granularity of re-
quests for swap space. In the HP-UX 6.0 system we adopted
a wholesaler/retailer allocation scheme. The swap server,
functioning as a wholesaler, allocates the swap space in
large chunks (in megabytes) to its clients; each client in
turn allocates the space (in tens or hundreds of kilobytes)
to each local process.

Another must objective was to allow dynamic reconfig-
uration of the cluster without bringing the entire cluster
down. We did not want the cluster to be wasteful of space,
and a fixed, permanent allocation of swap space to every
cnode would have been very wasteful. This meant that
allocation of swap space to a client had to be dynamic and
that swap space had to be returned when not used or when
a cnode crashed or rebooted.

We wanted to provide a way to limit the amount of swap
space a cnode can consume and also to provide a way to
ensure that a minimum amount of swap space was always
available. Other design questions that were raised but not
implemented in the HP-UX 6.0 system were whether one
cnode should swap to more than one swap server and
whether a cluster should support more than one swap
server.

Local and Global Space Mapping

To understand how paging and swapping works in a
discless environment it is necessary to understand the di-
vision between local and global swap space, and how the
local swap space maps into the global swap space. A new
data structure called a chunk map was established to rep-
resent the global swap space. The chunk map exists on the
server only and its size and initial swap space information
are derived from the swdevt at the server as had been done
with the swap map in the standard HP-UX system. Each
entry in the chunk map represents one chunk of swap space
on the disc. Mapping from chunk map address to disc block

18 HEWLETT-PACKARD JOURNAL OCTOBER 1988

is done by using the swdevt as it is done in the standard
HP-UX system when mapping from the swap map to the
disc block. The information maintained in the chunk map
consists of the chunk size, the number of the cnode owning
the chunk, a bit to indicate if the chunk is valid, and a bit
to indicate if the chunk is allocated (see Fig. 4). The sizes
of all chunks are defined by a system global variable called
dmmax. The number of the cnode that owns a particular
chunk is kept as a sanity check and for crash recovery. The
valid bit is set when a swapon is done and the chunks on
the new swap disc become available for swapping. The
allocated bit is set when a chunk is assigned to a cnode.

It is still necessary to complete the mapping from local
swap space to global swap space. This is accomplished
through the use of a data structure called a chunk table
which exists on each client cnode. Since the swap discs
are located at the server the chunk table acts as a logical
swdevt for the client cnodes and provides the first step in
the mapping from the local swap map to the global swap
space on the server (see Fig. 5). Each entry in the chunk
table represents one chunk of space in the local swap map.
Conversion from a logical swap address to a chunk table
entry is done by dividing by dmmax. Each entry in the chunk
table contains the chunk size, a chunk map index, a valid
bit, and a reference bit. The chunk size is the same as the
size of the corresponding chunk map entry. The chunk
map index is a pointer to the corresponding entry in the
chunk map on the server. The valid bit indicates if the
entry is valid (and hence represented in the local swap
map}, and the reference bit indicates if it is being used by
any process. The chunk table is maintained at every cnode
including the swap server. The chunk table allows the swap
map to be more easily maintained at each cnode. The refer-
ence bit provides the information to return swap space
from a cnode that is not using it.

The mapping from a client’s local swap map to disc
blocks on the server can be briefly summarized as follows.
When a request is made from a client cnode to send some
data to swap, the system converts the logical address in
the local swap map to an index into the chunk table (divi-

1 = Chunk Is Available

Chunk Map for Allocation
c; I
C: |=:!-1|:J..
e Interleaved
Y Mappin
C. S R 1 = Chunk Is
Logical Address swdevt Allocated
Comouts | - || to a Cnode
Physical m
- Address
4
- .’-"‘g'u't‘\l--l_--u-—‘_—:|
" e
wnver
Vv
e

Fig. 4. The chunk map entry.

sion by dmmax) and an offset (the remainder). The entry in
the chunk table yields the index of the chunk map entry
at the swap server. This index and the offset are sent over
to the swap server along with the data. On the swap server
the system takes the chunk map index and offset and uses
the rules for interleaving swap space and the information
in swdevt to generate the disc block number for the request.
Therequest is then sent to the disc driver for that device.

Allocating Swap Space

When a process requests swap space and does not find
any in its local swap map the process is not immediately
killed or an error returned. Instead, the process makes a
remote request to get more swap space from the global
swap space pool. The swap server allocates another chunk
to this cnode and the cnode adds an entry for this chunk
to its local swap map and grants the process’s request.

When a process makes a remote request for another
chunk of swap space it goes to sleep at that point. It is then
possible for another process to come along and request a
piece of swap space and go to sleep. This could result in
much more swap space being requested than is needed
because client cnodes allocate swap space to local pro-
cesses in sizes that are much less than the chunk sizes from
the server (i.e., 10 or 100 kilobytes versus several mega-
bytes). To prevent this from happening, a lock was intro-
duced to serialize the requests. When the first remote re-
quest is made the lock is grabbed and is not released until
the additional swap space is added to the local swap map.
When each of the other processes acquires the lock, each
one reevaluates whether there is sufficient swap space

Client Cnode
Local Swap Map Chunk Table
e _

e
pps ©1 w)///
] b}

' Logical

Chunk Table
| Address | Entry at CT;
\ 4 \ 4
Send Swap
= 4 Request to
Server

Server Cnode
swdevl
|| De—
Physical Address Compute at CM,
000 P
i e e
IS v
Swap Disc
Drivers
+
ry :
SR A
- W -

Swap Discs Containing Global Swap Space

available.

Returning Swap Space

One of the design decisions was to allow a cnode to
return swap space that it is not using. However, it is not
efficient for a cnode to return swap space immediately
since it may just turn around and request more space. To
prevent this type of thrashing, the reference bit and a
daemon process are used to check for unused chunks. If
an unused chunk is found, the reference bit is cleared. On
the next invocation of the daemon, if the chunk is still
unused, then it is returned to the swap server; otherwise
the reference bit is set. The daemon is set to run once every
30 seconds, so unused swap space is returned between 30
seconds and one minute after it becomes unused.

When a cnode is removed from a cluster either by crash-
ing or by being rebooted, it is necessary to return the swap
space to the swap server. This happens when recovery is
done for that cnode on the swap server. Recovery is very
simple for swap space. When recovery is conducted on the
swap server the system routine simply goes through the
chunk map, and when it finds an entry that was allocated
to the crashed cnode it marks that entry as being available
again (allocate bit = 0). Crash recovery is discussed in the
article “Crash Detection and Recovery in a Discless HP-UX
System” on page 27.

Controlling the Amount of Swap Space

Two configurable parameters are provided for controlling
the amount of swap space allocated to a cnode. These are
MINSWAPCHUNKS and MAXSWAPCHUNKS. MINSWAPCHUNKS

Chunk Map

lCM Offset
Chunk Map Entry e

G 4— oM,
]

Fig. 5. The relationship between
the local swap map and the chunk
table on a client cnode and the
chunk map and swap device table
on the server

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 19

specifies the minimum number of chunks of swap space a
cluster can have even when the space is not actively used.
It is the amount requested at boot and it is never returned.
It ensures that a particular cnode will have at least that
amount of swap space. MAXSWAPCHUNKS specifies the great-
est number of chunks of swap space that a cnode can ever
have.

Summary

In summary, the HP-UX 6.0 system provides a fairly com-
plete implementation for HP-UX discless program execu-
tion and virtual memory management. Among the features
provided to this end are backwards compatibility for
executable files, remote swap services, and HP-UX seman-
tics for executable files. New mechanisms are included to
minimize performance degradation over a network.

The Design of Network Functions for

Discless Clusters

by David O. Gutierrez and Chyuan-Shiun Lin

% M p ITHIN AN HP-UX DISCLESS CLUSTER, the ker-

'.\I- :'“I; i . . .
W/ 4/ nelof the client and server machines uses a sim-

W T ple, fast, and reliable network protocol to com-
municate through a single IEEE 802.3 10-Mbit/s local area
network (LAN). The discless protocol is based on the re-
quesl/reply model and its interface to the HP-UX operating
system is specially tailored for efficient data transfer. To
become a viable product, a discless system must provide
a level of performance comparable to that of systems with
local discs. Measurements on HP 9000 Model 350s show
that remote file I/O throughput performance of the HP-UX
6.0 discless implementation using an HP 7958A Disc Drive
is 91% of stand-alone performance in read operations and
87% of stand-alone performance in write operations when
transferring large files. This performance level is achieved
by a low-overhead network protocol, efficient network buf-
fer management, cluster server processes, and carefully im-
plemented read/write algorithms.

A cluster consists of a single file server and a number of
discless client machines connected by a single LAN cable
or several cables connected by LAN bridges, hubs, or re-
peaters. Multiple clusters may exist on the same cable.
Each node of a cluster is called a cluster node (cnode) and
has its own hostname and internet address. The central
file server is called the root server (shortened to server in
this paper) and is where all file systems and disc storage
reside. The operating system software is designed to handle
up to 255 client machines and each cnode is assigned a
number from 1 to 255. The kernel network functions map
the cnode number to the appropriate source/destination
address.

The discless network protocol is designed specifically
for the HP-UX discless kernel and not for general-purpose
network communication. Experimentation indicates that
packet loss on a single local area network is rare, and by

20 HEWLETT-PACKARD JOURNAL OCTOBER 1988

limiting the design scope to providing intracluster network
service on a single local network, we can function with a
simple network protocol. The discless network functions
and the kernel functions are closely tied together to
minimize the path length for sending and receiving mes-
sages. General-purpose networking services are still avail-
able throughout the discless cluster to provide standard
communications with the outside world.

A major source of communication overhead in normal
network operations is copying data between network buf-
fers and user buffers. It is important to minimize such copy
operations. In most network systems, messages are copied
from an operating system buffer into network software buf-
fers and then into the network I/O hardware buffers. In the

Messages {

»n Messages Messages Messages

% Messages

(b)

Fig. 1. Reducing network communication overhead. (a) Typ-
ical message copying scheme for network communication
(b) Discless implementation

HP-UX discless implementation, data is copied directly
between operating system buffers and hardware buffers,
thus eliminating one level of copy operation. These differ-
ent copying schemes are illustrated in Fig. 1.

Performance measurements on a pair of HP 9000 Model
350 client/server machines indicate that our simple discless
protocol and the buffering scheme have enabled us to meet
the established performance goals for discless machines.
To understand the distribution of overhead among the
operating system and network functions, the kernel was
instrumented, and the processing time spent in the kernel
and network functions on the server during read and write
operations was measured. To compare the implementation
of two distributed systems on the same machine the perfor-
mance and overhead profile of the Network File System
(NFS) functions was also measured under the same condi-
tions. NFS provides transparent access to remote files in a
heterogeneous network. The performance results are dis-
cussed on page 24.

Overview of the Network Functions

The network functions are designed only for the discless
kernel, performing intracluster kernel-to-kernel communi-
cations and linking the client cnodes with the disc facilities
on the server. Users can still use the general-purpose net-
work facilities such as the ARPA/Berkeley services, HP’s
NS network services, and NFS to access resources both
within and outside a cluster. Since the discless cluster
provides a single-file-system view, users have no need to
use any of the general-purpose network functions such as
ftp, rcp, or NFS to access resources within the same cluster.
Intracluster remote process execution can be achieved by
using the functions remsh, rlogin, or rt.

The discless network protocol coexists with other gen-
eral-purpose protocols. The discless messages conform to
the IEEE 802.3 link level protocol header format. Fig. 2
shows the relationship between the discless network pro-
tocol and the NFS protocol stack. The discless implemen-
tation and other general-purpose protocols share the same
network hardware and device driver. Sitting above the
driver level, the discless network functions are completely
independent of other network functions. The network func-
tions use the cnode number and the link level address of
the LAN card for source/destination addresses. The map-
ping of cnode number to the link level address of each
cnode’s LAN card is kept in the root server’s cluster config-
uration file. If a machine has multiple network I/O cards,
only one can be used for discless communications.

In the current implementation, the client and server
machines are all HP 9000 Series 300 machines. Therefore,
the protocol does not need to translate the data representa-
tions from one machine’s format to another. The design is
extensible to accommodate heterogeneous machines
within a cluster.

Discless Message Interface Functions (DM Layer)

The discless message interface functions provide the in-
terface between the HP-UX kernel functions and the HP-UX
discless protocol. To send a message, an HP-UX kernel
function (e.g., read or write) sends a request to a network
function called dm_send. The parameters for dm_send include

the destination cnode number, the message buffer, an op-
tional outbound data buffer, an optional inbound data buffer,
a set of control flags, and the function to be called when
the reply is received back at the client. Fig. 3 shows the
activities involved in processing a message at the client
cnode and at the server, using the discless request/reply
protocol. These activities and the discless protocol are de-
scribed in the following sections.

Message Buffers. A network message may contain a small
message buffer and, optionally, a large data buffer. The
message buffer holds the commands and their associated
parameters. If the request/reply message includes a large
data block (e.g., a file system block), then the data buffer
is used. The discless buffer management functions main-
tain their own pool of message and data buffers.

Before a kernel routine can send a request message it
must allocate a message buffer. The discless buffer manage-
ment functions provide facilities for allocating a buffer
chain depending on the size of the request, and for filling
the buffers with commands and parameters. Buffer manage-
ment functions are discussed in detail on page 23.
Inbound/Outbound Data Buffers. When a file block is writ-
ten to the server, the kernel write function includes the
file system buffer as the outbound data buffer in the send
call. For a file read the kernel read function will preallocate
the file system buffer for receiving the remote file block
and include the file buffer in the send call’s inbound buffer
parameter. This guarantees that reply messages will not be
lost or delayed because of buffer shortage problems.
Control Flags. The control flags contain the information
that enables the discless protocol functions to determine
the protocols for delivering the request messages. For in-
stance, a client may wait (go to sleep) for areply or continue
without waiting, thus enabling the discless protocol to sup-

Network Functions

NFS Protocol Stack

Fig.2. NFSprotocol stack versus HP-UX network functions

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 21

—

port asynchronous or synchronous-mode I/O operations
when accessing remote files. The client can also specify if
the request is idempotent {repeatable) or nonidempotent.
Idempotent messages and discless protocol are discussed
in more detail in the next section.

Arrival at the Server. When a request message arrives at
the server, the request is either processed as part of a net-
work interrupt service function or by a server process, and
then the kernel file system function specified in the com-
mand buffer is invoked and the request is executed. After
the request is processed, the server calls a reply routine to
send back to the client the status and, optionally, the
selected file block.

Return to the Client. When the reply message arrives back
at the client machine, a network function directly copies
the reply messages from the LAN card buffer to the preal-
located receive buffers. After the reply message is fully
reassembled in the receive buffers, a network function
wakes up a sleeping request process (if it had been placed
in the wait state), delivers the reply message, and returns
to the kernel function that made the send call. For asyn-
chronous operations, the network also releases the request/
reply messages automatically. The control flow diagrams
in Fig. 4 show the flow of messages between client and
server.

Discless Network Protocol

The discless network protocol is based on a simple re-
quest/reply model. For each request message, the serving
cnode sends back a reply message to the requesting cnode.

Client Cnode Server Cnode

Kernel File RRRCUGTETR, EEEETEY
System buffers.
(LU 2. Call send function.

Execule request.

There is no acknowledgment for receiving the request;
instead, the reply is used as the acknowledgment. On an
IEEE 802.3 network the maximum packet size is 1514 bytes,
and it may take up to 6 packets to transmit a maximal-sized
discless message (a 1K-byte message buffer plus an 8K-byte
data buffer). Since messages are rarely lost in the local area
network, the protocol does not need to acknowledge each
individual packet. By using the reply message as the
acknowledgment for the multipacket messages, it reduces
a significant amount of overhead in protocol handshakes
used to prevent message loss during transmission.

As mentioned above, there are two types of messages:
idempotent (repeatable) and nonidempotent. These mes-
sage types determine the sending/receiving request/reply
protocol between the client and server cnodes. Fig. 4 shows
the relationship between these two types of messages. For
idempotent messages the requesting cnode continues to
transmit requests until a reply is received from the server.
The nonidempotent requests are processed by the server
exactly once and the server repeatedly transmits replies
until the client acknowledges the reply. This protocol pro-
vides excellent performance and helps handle lost mes-
sages.

For idempotent messages, when the reply is sent to the
client, the server releases both the request and the reply
messages. If the reply is lost, the client machines will re-
transmit the request and repeat the request/reply cycle
again. If the same request arrives at the server just after the
requested operation is finished but before the reply is re-
turned to the client the request is considered a duplicate

Server Cnode Client Cnode

LU RS 1, Allocate reply Process reply.

1. Build message butfer

1. Process request with

1. Bulid buffer chain.

1. Wake up requesting

L

Disois chain and fill either a CSP or an Foinaill 2. Fill roply buffers process ititis in the
: ‘t”‘xg" buffers, interrupt rautine. : f"‘:‘ge with status and wail state.
ikl 2. Preallocate reply 2. Delermine which g data blocks if 2. Determine which
(DM-Layer) SEiisias file systerm function (DM- le necessary. kernel file system
Kernel %o call, Kernel function to call.
1. Determine message 1. Send reply according
protocol. to established
2. i required put the protocol (idempotent et
requesting process or nonidempotent). acknowledge ACK
E:zf;?ﬁ in the wait state. El:fl:;’: for nonidempotent
ad 3. Disassemble message message.
Layer into IEEE 802.3 g
packets.
4. Handle lost requasts.
5. Send request retries.
|
v hd
Network Hw_send function. Handle network Network Hw_send function. Handle network
Driver interrupt. Driver interrupt.
; A

e q | _
(a)

s >
(b)

Fig. 3. Network control flow. (a) Originating a request from the client and receiving a request
at the server. (b) Sending a reply from the server and receiving a reply at the client. CSP =
cluster server process.

22 HEWLETT-PACKARD JOURNAL OCTOBER 1988

and is ignored. For the nonidempotent requests the server
cannot release the request and reply messages until the
client acknowledges that the reply has been received.

Some requests take an indefinitely long time to com-
plete—for example, reading from or writing to a locked file.
A request of this type (called a slow request) is indicated by
the arrival of duplicate requests before the operation re-
quested is finished. To eliminate the unnecessary retries,
the serving cnode sends back a special acknowledgment
to the requesting cnode whenever a slow request is de-
tected. Upon receiving such an acknowledgment, the re-
questing cnode stops retrying. Since the client stops re-
transmitting slow requests, and the reply could be lost, we
use the nonidempotent request protocol to handle the reply
messages of slow requests.

To handle lost message problems, the requesting cnodes
retransmit the request forever at intervals of 2, 3, 4, 5, ...,
5 seconds until the reply is received. Similarly, the server
cnode retransmits the reply messages of nonidempotent
requests every half second until the acknowledgment is
received. The retries continue until the crash detection
function detects that the destination cnode is down and
aborts the requests and retries.

Messages can be lost in a receiving cnode for two reasons:
the LAN card’s /O buffer has overflowed or there is a
shortage of discless networking resources such as network-
ing buffers, data buffers, or protocol table slots for keeping
track of messages. Since the resources for the reply mes-
sages are preallocated, the lost message problem will not
happen to the requesting cnode. To prevent excessive mes-
sage loss on a heavily loaded server, the serving cnode
sends back a special negative acknowledgment message
(NAK) to the requesting cnode whenever it fails to allocate
any network resource for a new request. The message send-
ing functions on the requesting cnode delay sending new
requests or retries to the server cnode when a NAK message
is received.

The discless request/reply protocol model provides a re-
liable message delivery mechanism. However, some disc-
less kernel functions, such as crash detection and distrib-
uted clock synchronization, only need quick access to the
network without the request/reply protocol. These func-
tions are not concerned with the lost message problem. To
support such a requirement, the discless protocol provides
a datagram service, which bypasses the request/reply pro-
tocol and directly calls the network driver to transmit a
datagram over the network.

Discless Networking Buffer Management

A design goal of the discless implementation was to
achieve the highest level of distributed intracluster com-
munication possible. Efficient networking buffer manage-
ment is critical to achieving this goal. Copying network
data is an expensive operation and manifests itself in vari-
ous places. The protocol efforts would suffer if the overall
implementation did not address and attempt to minimize
data copying operations.

The first problem to overcome occurs when the server
receives a write request containing a large data block. In
this case a file system buffer is required, but the standard
HP-UX file system buffer pool cannot be accessed by disc-

less network functions during an interrupt. To solve this
problem, a separate pool of data buffers called fsbuf was
implemented for the discless system. This resource is simi-
lar to the standard HP-UX file system buffer pool except
that it is available to discless network functions during an
interrupt. An fsbuf is used only on a serving cnode, and the
pointers for the file system and fsbuf are identical. Therefore,
when the server starts processing a write request we can
simply switch the fsbuf and file system buffer pointers, in-
stead of doing a buffer-to-buffer copy.

Double-buffering and data copying operations need to
be minimized for discless buffer management. Towards
this end, the LAN device driver has two special, discless
specific functions that provide the necessary support.
These functions allow the protocol layer to copy data di-
rectly between the file system buffers and the LAN card’s
hardware buffers, eliminating intermediate buffering oper-
ations. The first function handles inbound messages result-
ing from read requests, and the second function handles
outbound messages resulting from write requests. For read
requests a file system buffer is preallocated before generat-
ing the request to handle the reply data. This helps to
minimize delays in processing reply messages during an
interrupt.

Besides fsbuf, two other data structures used for discless
buffer management are mbuf and cbuf (collectively called
network buffers). The number of these buffers is set at boot.
These resources are the fundamental set of data structures
used for all discless messages. The data structure mbuf was
originally developed by the University of California at Ber-
keley as a general-purpose buffer management mechanism.
The complete Berkeley design was deemed unnecessary
for the more limited discless situation. The discless mbuf/
cbut is superficially similar in many respects to the Berkeley
design but is implemented and used in a different manner.
The networking buffers encapsulate the request/reply mes-
sage, which contains the commands and their associated
parameters. The mbuf is relatively small (128 bytes each)

Client Server
» R,
Request . > R,
Retries .
-
» Rn
Stop Reply __
Requests
(a)
Client Server
Request
| 2
%
% Reply
< Retries
.
-
-
-3 Stop
Acknowledgment Replies

(b)

Fig. 4. The relationship between idempotentand nonidempo-
tent messages using the requestireply protocol. (a) Idempo-
tent. (b) Nonidempotent.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 23

and sometimes cannot hold sufficient information. In these
situations, the cbuf (1024 bytes each) is used and mbuf will
contain a pointer to the allocated cbuf. For requests that
involve data blocks for reading or writing, the mbuf/cbuf
combination will contain an optional pointer to the fsbuf
for the data block.

Discless Cluster Server Processes (CSP)

There are many existing networking models that deal
with interprocess communication in distributed environ-
ments. A common paradigm for such applications is the
server/client relationship. In this model a daemon process
normally listens at some well-known address for requests.
Upon receiving a request for service, a daemon process
forks an image of itself to handle the request. Meanwhile,
the original parent server process resumes listening for
additional connections. Forking the new child process and
context switching from the user to the system environments
are expensive operations, and would be unacceptable for
handling requests in a discless environment.

The discless implementation is also based on the server/

client model, but a different method of handling requests
was developed. The serving cnode maintains a small
dynamic pool of kernel processes called general cluster
server processes (GCSPs). GCSPs avoid the overhead of
forking and still satisfy requests from the client cnodes in
the cluster. These processes can be quickly and efficiently
created, destroyed, and context switched. When a request
arrives at the server a GCSP is allocated from the pool to
handle the request. When a GCSP is run it is locked into
memory and cannot be swapped out. GCSPs are created
from user space when the server is initially configured as
the cluster server. The number of GCSPs is also determined
at this time.
Special Types of CSPs. In general, the discless cnodes do
not require GCSPs. However, certain operations must be
performed by the discless cnode to maintain its member-
ship in the cluster, such as synchronizing the mount table
or converting to synchronous I/O on a file. The limited
capability CSP (LCSP) solves this problem. This solitary
LCSP is created when a cnode first joins a cluster.

Most client requests are handled by the GCSPs. However,
in a few instances the server needs to run user-level code
to service a request. For example, the server needs to read
the file-system-resident cluster configuration file to deter-
mine whether to grant a client’s request to join the cluster.
In such cases the server dynamically creates a user-level
cluster server process (UCSP), services the request, and
then exits. Currently, only a single UCSP has been im-
plemented, and it is is used to read the cluster configuration
file mentioned above.

Slow or Indefinite Operations. Certain operations may take
an indefinite amount of time to complete. For example, a
read from a FIFO file could wait indefinitely. During this
waiting period, a GCSP is tied up. If all the GCSPs were
used in such a manner, there would be none available to
service other requests and the system would come to a halt.
One solution would be to dedicate certain GCSPs to slow
operations while others would be available for the fast
operations. In practice, it is difficult or impossible to deter-
mine in advance whether an operation will be fast or slow.

24 HEWLETT-PACKARD JOURNAL OCTOBER 1988

For example, it is impossible to distinguish between a write
to a FIFO file and one to a disc without examining the
message and various file system data structures that may
be implicitly referenced. Even if it can be determined that
the access is to a fast device like a disc, the operation could
still take a long time because of system calls like lockf() and
other system interactions. For the discless implementation,
a more reliable mechanism was chosen. Whenever a GCSP
is invoked it sets a time-out, the duration of which is depen-
dent on the number of free GCSPs. If the GCSP completes
its assigned task before the time-out period, it clears it.
Otherwise, a replacement GCSP is created and the slow
GCSP is set to terminate itself upon completion. This en-
sures that an adequate pool of GCSPs is maintained.

Performance Measurement Results

The environment chosen for evaluating the discless im-
plementation for this paper was a completely isolated two-
cnode discless cluster. Both the root server and the discless
cnode were identically equipped, 16M-byte HP 9000 Model
350 Computers. The server used an HP 7958A Disc Drive
for both the file system and the swap areas. After the disc-
less cnode was remotely booted over the LAN, all unneces-
sary processes were killed on both machines. The root
server had four GCSPs running and standard default-con-
figured kernels were used. Both systems were rebooted
after every benchmark to ensure that no data was cached
from a previous run that might affect the current bench-
mark.

Sequential Write Statistics (10M bytes transferred)

Block Size | Throughput* % of Protocol
(K bytes) | (K bytes/s) | Stand-Alone Path
16 42357 100%
8 423.14 100% Stand-Alone
4 420.76 100% System
1 401.82 100%
16 365.13 86.20%
8 354.80 83.80% Discless
4 372.84 88.60% Protocol Path
i 35947 89.50%
16 77.51 18.30% NFS Protocol
8 78.06 18.45% over an NFS
4 45.30 10.80% Mount Point.
1 43.63 10.90%

“Ali throughput numbers are the result of averaging
10 data transfers

Sequential Read Statistics (100M bytes transferred)

Block Size | Throughput % of Protocol
(K bytes) | (K bytes/s) | Stand-Alone Path
16 428.33 100%
8 426.10 100% Stand-Alone
4 428.30 100% System
1 428.52 100%
16 390.52 91.17%
8 388.67 91.22% Discless
4 388.71 90.76% Protocol Path
1 387.47 90.42%
16 31543 7361% NFS + Discless
8 312.81 7341% Protocol over
4 309.06 72.16% an NFS Mount
1 299.46 69.88% Point

Fig. 5. HP-UX Series 300 release 6.2 discless versus NFS
throughput statistics. (a) Throughput for sequential writes. (b)
Throughput for sequential reads

Two benchmarks were run from the discless cnode. The

first benchmark performs repetitive sequential reads, using
various block sizes, of a 10M-byte file located on the root
server’s file system. The file is read ten times, resulting in
a total of 100M bytes transferred. The second benchmark
performs sequential writes, using various block sizes, to a
file on the server’s disc. The writes continue until a 10M-
byte file has been written. For both benchmarks the user
process allocates an incore buffer of the specified block size.
This buffer is repetitively read into or written from. No
intermediate files are created by the benchmarks.

For comparison, the benchmarks were run in completely
discless and discless-plus-NFS environments. The NFS en-
vironment was established by mounting from the discless
client the root server’s test and data directories across an
NFS mount point. By executing the benchmarks with the
source and target files crossing the NFS mount point, NFS
protocols are used and a clean separation from the other-
wise discless environment is achieved. The benchmark
executables were small and there was enough RAM on both
systems to avoid swapping. For this scenario, four NFS
block I/O daemons {biods) were run on the client and four
network file server daemons (nfsd) were run on the root
Server.

In this way a situation was established for comparing
two different distributed networking implementations. The
HP-UX discless implementation uses special-purpose net-
working protocols, buffer management functions, and
CSPs, whereas NFS is designed for a heterogenous multi-
vendor environment and uses a different protocol stack
and general-purpose HP networking and buffer manage-
ment functions.

Throughput Results
Fig. 5* represents the throughput of the read and write

*These results are for the latest HP-UX Series 300 release, 6 2 The NFS throughput perfor-
mance in release 6 2 1s much better than release 6 0 There are no significant differences
in the discless read or write throughput performances between the two releases

Functional Area Breakdown of Time Spent in the Server’s Kernel
foran NFS Read

benchmarks for the discless and NFS protocol paths. They
are compared to stand-alone results of running the same
benchmarks on just the root server (i.e., no networking
involved). The throughput for the discless system with this
environment is encouraging. The client was able to read
at a rate of approximately 389K bytes/s or 91% of the stand-
alone rate for this disc drive. The write statistics are also
encouraging, achieving a rate of approximately 363K bytes/s
or 87% of the stand-alone numbers. The root server’s file
system buffer cache for this experiment was only 2.4M
bytes, so few if any cache hits occurred.

The more general-purpose NFS networking path was able
to achieve rates of approximately 309K bytes/s on reads,
or 72% of the stand-alone rate. The NFS write statistics are
less encouraging, averaging only 61K bytes/s or 15% of
stand-alone. This can be directly attributed to the lack of
delayed asynchronous writes in the standard implementa-
tion of NFS. Comparisons between discless and NFS writes
are somewhat meaningless, since they represent different
design methodologies.

Given that the benchmarks were tightly controlled, re-
peatable, and run on identical hardware, it can be safely
stated that the overall throughputs for this experiment seem
to favor the discless implementation. Performance mea-
surements are very application dependent. These bench-
marks do not address large-cluster performance and the
resultant clusterwide throughputs. The data should only
be considered within the context of the established exper-
iment. Different hardware, disc drives, and numbers of
discless cnodes all play a role in evaluating clusterwide
performance. It is beyond the scope of this paper to address
these issues.

Kernel Measurement Method

To improve our understanding of the throughput data
for the benchmarks, the server’s kernel was instrumented
and statistics were gathered and examined in great detail.

Functional Area Breakdown of Time Spent in the Server’s Kernel
for a Discless Read

Percentage 95% Percentage 95%
Kernel Total Total Non-ldle Confidence Kernel Total Total Non-ldte Confidence
Functional Elapsed Clock Time Interval Functional Elapsed Clock Time Interval
Area Time Ticks in Kernel (L=P=U) Area Time Ticks in Kernel (L=P=uU)
bcopy: 1m04.40s 3220 30.21% 293 -31.1% bcopy: 1m13.70s 3685 42 65% 416 -437%
General Kernel 0m38.06s 1903 17 85% 171 - 18 6% General Kernel: 0m33 44s 1672 19 35% 185 - 202%
Disc IO — DMA: | 0m23.32s 1166 10.94% 103 -11.5% Disc 1/0 — DMA: | 0m22.40s 1170 13.54% 128 -143%
LAN Driver: 0m30.20s 1510 14.17% 135 -148% LAN Driver: 0m21.02s 1051 12.16% 11.5-129%
Network Buffer File System: 0m09.30s 465 5.38% 49 —-59%
Management: 0m12.52s 626 587% 54-63% Discless Protocol: | 0m08.56s 428 4 95% 45-54%
File System: 0m10.44s 522 4 90% 49-53%
Buffer Mgmnt : 0m02 40s 120 1.39% 11-16%
NFS protocols: | 03262s | 1631 1520% | 14.6 - 16.0% =it OmOtts | B2 S ot 3l
: ° - ° ; 0m00.76s 38 0.44% 03-06%
(UDP, XDR, RPC, DM Layer:
NFS, and IP)
Discless Overhead:| Om01.02s 31 0.29% 2 - 4%
Totals: 3m33.20s 10,660 100.00% Totals 2m53.22s 8641 100.00%
*Kernel Idle: 7m08.08s 21,400 “Kernel Idle: 2m12 06s 6603

(a)

*This is time spent in the kernel idle loop waiting for such things as disc I/O.

(b)

Fig. 6. Kernel server measurements by functional area. (a) NFS read of 100M bytes using
8K-byte blocks. (b) Discless read of 100M bytes using 8K-byte blocks

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 25

At every clock tick (every 20 ms on an HP 9000 Series
300), the system sampled the processor’s program counter
(PC), the active process identifier (PID), the type of process
(CSP versus regular), and other system parameters. The
samples were written to an incore kernel buffer, extracted
from the buffer by a user-level process, and then written
to disc. The data was postprocessed by associating the sam-
pled program counters with specific kernel procedures.
The incremental cost imposed on the system by the
monitoring actions was minimal, approximately one fifth
of one percent of all the time spent in the kernel. The data
was postprocessed on another machine after the entire bench-
mark was completed. Each benchmark was repeated ten
times, and the results were completely consistent. The post-
processed data was segmented into separate kernel func-
tional areas: byte copy (bcopy), disc I/O, LAN device driver,
file system, networking protocol stack(s), and buffer man-
agement.

As a result of using a 20-ms sample rate, some level of
confidence with the derived numbers was required. A 95%
statistical confidence level was chosen and upper and
lower statistical confidence intervals were calculated.! The
confidence intervals were derived on the basis of the
number of observed clock ticks in each kernel functional
area as a function of the total number of samples taken.
All numbers were rounded up to three decimal places. The
95% confidence intervals were derived as follows:

P = (functional_area_ticks) / (total_sample_ticks_N)
Lower Bound L = P — 1.96 * sqrt (P * (1 — P))/N)
Upper Bound U = P + 1.96 * sqrt (P * (1 — P))/N)

Discless Server Kernel Functional Area Profiles

Fig. 6 shows the profiles for the functional areas mea-
sured in the server’s kernel. The profiles show a read bench-
mark (executed from the client) using both the discless and
NF'S protocol paths to transfer 100M bytes of data in 8K-byte
blocks.

The NFS write strategy does not make allowances for
delayed asynchronous writes, while the HP discless im-
plementation does. Since the HP discless and NFS client
write strategies are so different, it seemed unnecessary to
present data that could not be realistically compared.

An enlightening set of observations can be extracted from
the server’s kernel profiles compared with the client
throughput results. Of all the time spent in the server’s
kernel routines, byte-copying data (bcopy) is by far the
largest consumer of CPU resources. This is predominately
the CPU cost of copying data to or from the LAN card’s
hardware buffers and the target networking buffers.

The next interesting set of numbers shows the amount
of kernel time spent in performing discless protocol and
buffer management functions: 4.95% and 1.39% respec-
tively, with a combined elapsed time of 10.96 seconds.
Comparing these numbers with the more general-purpose
NFS path, we get 15.29% for the NFS protocol stack and
5.87% for buffer management with a combined elapsed
time of 45.54 seconds. These comparisons must also be
weighted by acknowledging that the entire 100M-byte read
took 247 seconds for the discless system and 441 seconds
for the NFS path.

26 HEWLETT-PACKARD JOURNAL OCTOBER 1988

The combined total of the discless specific components—
protocol, buffer management, CSPs, and DM layer—ac-
counts for 10.73% of the server’s total kernel time, or an
elapsed time of 13.36 seconds. This is only 41% of the time
spent in just the NFS protocol stack to accomplish an equiv-
alent transfer of data.

Conclusions

High-level algorithms play a key role in the performance
of distributed systems. Special-purpose networking pro-
tocols, server processes, and network buffer management
routines must all play together in the design of such a
system. Good performance requires not only a system view
of the goals, but also an efficient implementation of the
design.

Special-purpose designs like the HP-UX discless im-
plementation have their advantages and disadvantages.
The advantages are considerable in the context of a closely
knit work group where a single-system view, high-speed
intracluster communication, and transparent sharing of
files and access of data are extremely important. As long
as the special-purpose design allows a peaceful coexistence
and complete interconnectivity with the outside world via
standard and evolving networking services (ARPA/Ber-
keley, NFS, etc.), the user is provided with a powerful
combination of capabilities. It is only in the more limited
context of wide-area connectivity for discless cnodes that
the special-purpose design shows disadvantages. Specifi-
cally, the inability to operate across a gateway limits the
range of interconnectivity possible. It is this type of situa-
tion that places undesirable limits on the design of discless
systems and tends to hinder their performance.

Acknowledgments

Special acknowledgments are extended to the following
individuals for their considerable contributions: Joel Tesler
for his efforts in CSPs, DM, and protocol slow requests,
Ching-Fa Hwang for slow request and initial project man-
agement, Bob Lenk for CSPs, Bruce Bigler for DM, Joe
Cowan for project management, Doug Baskins for kernel
instrumentation, and Ray Cheng for early protocol pro-
totype.

References
1. P.Z. Peebles, Jr., Probability, Random Variables and Random
Signal Principles, McGraw-Hill, 1980.

Crash Detection and Recovery in a
Discless HP-UX System

by Annette Randel

nel-to-kernel communication across a local area net-

work to maintain high performance and transparent
file system access. This kernel-to-kernel communication
relies on state information maintained on all nodes of the
cluster. When a cnode is removed from the cluster because
of an expected or an unexpected failure, this kernel state
information must be cleaned up to reflect the new cluster
configuration. Because this state information is at a very
low level in the HP-UX implementation, failure to clean
up state information after a crash can cause other cnodes
in the cluster to hang indefinitely, waiting for the crashed
cnode to complete a transaction. This is unacceptable, and
therefore, prompt and reliable detection and cleanup of
crashed cnodes are required at the kernel level.

For the purpose of this article, a crash or failure can be
defined as the removal of a cnode from an HP-UX cluster.
Two types of crashes or failures can occur on a cnode in
a cluster: an expected failure or an unexpected failure. An
unexpected failure may be caused by a hardware failure,
a loss of power, or a software failure. When an unexpected
failure occurs, the failing cnode may be unable to notify
other members of the cluster of its demise. An expected
failure occurs when a system is intentionally and properly
shut down by the operator. During an expected failure, the
cnode being shut down should notify all other cnodes that
it is leaving the cluster. Reliable detection of both expected
and unexpected failures provides the HP-UX system with
resiliency in the face of an unexpected failure as well as
dynamic reconfiguration around an expected failure.

There are four general requirements for crash detection
and recovery in HP-UX clusters. First, it is required that
the operating system maintain HP-UX semantics in the face
of a failure. This requires that file system consistency and
reliability be maintained, even though a cnode is removed
from the cluster. Second, it is required that a consistent
view of the cluster membership be maintained from all
cnodes. A third requirement is that the detection of a
crashed cnode and the recovery of that cnode’s resources
be transparent to users of other cnodes in the cluster. This
means that no user action is required and the performance
impact on the user is minimized. Finally, it is required
that the rest of the cluster be resilient in the face of a client
cnode failure. This means that the failure does not cause
a chain reaction of failures in other cnodes and that no
data loss occurs on nonfailing cnodes. The exception to
this requirement is the root server cnode. Because client
cnodes cannot recover from the failure of a root server
cnode, a root server failure will cause all nodes in the
cluster to fail.

I I P-UX DISCLESS CLUSTERS depend on close, ker-

Crash Detection
Because of the state dependent nature of communication

in HP-UX clusters, cnode failures must be detected quickly
to prevent long system delays on functioning cnodes need-
ing resources tied up by the failed cnode. In addition, fail-
ures must be recognized before allowing the failed cnode
to rejoin the cluster. If the failed cnode were allowed to
rejoin the cluster before crash recovery had taken place,
valid state information could be improperly cleaned up,
or invalid state information could be acted upon by the
newly clustered node (e.g., it could respond to the retry of
arequest sent before the failure occurred). Neither is accept-
able.

The crash detection mechanism must also ensure a con-
sistent view of cluster membership for all cnodes in the
cluster. All cnodes maintain their own cluster status table,
and, while most cluster communications occur between
the root server cnode and client cnodes, there are some
kernel messages that are passed from one client cnode to
all other cnodes. State information for these messages must
be cleaned up on the client cnodes as well as on the root
cnode after a failure occurs.

One final requirement of the crash detection mechanism
is that it must never incorrectly declare a nonfailed cnode
to have crashed, even in the face of a LAN failure. This
requirement conflicts somewhat with the requirement to
detect unexpected crashes quickly, and multiple detection
mechanisms are employed to fulfill all the requirements.
Detection Mechanisms. Five different mechanisms are em-
ployed to detect both unexpected and expected cnode fail-
ures reliably in a minimal period of time:

m The failing cnode broadcasts a datagram indicating its
expected failure.

m The server and each client cnode exchange status mes-
sages.

m When the server detects a cnode failure, it informs the
cluster by broadcasting a reliable message.

m If a failed cnode attempts to rejoin the cluster before its
failure has been detected, the clustering operation will
be postponed until the crash recovery has been com-
pleted.

m LAN cable failures are detected, and the crash detection
mechanism is disabled until the LAN is correctly config-
ured. This prevents cnodes from being incorrectly de-
clared failed because of LAN cable failures.

When all of these mechanisms are used together, they
provide reliable detection of both expected and unexpected
failures within a reasonable period of time. A more detailed
description of each mechanism and their interactions is
presented below.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 27

Broadcast Failure Datagrams. When an expected failure
or an orderly shutdown occurs, the failing cnode cluster-
casts (broadcasts to the entire cluster) a failure datagram.
This tells the other cnodes that it is about to shut down
and that no further communication from this cnode should
be expected. Since this message is a datagram, we cannot
depend on cnodes receiving this message. The failure data-
gram is an attempt to get the word about the failed cnode
out quickly, rather than a reliable information mechanism.
Server/Client Status Messages. To detect both expected
and unexpected crashes reliably, the server and client ex-
change status messages. This message exchange occurs
only when there has been no communication with a cnode
for a given period of time. A state transition model (see
Fig. 1) is used to track communication with other cnodes
and to determine when a given cnode can no longer be
contacted. This state transition model is based on an inter-
nal data structure, the cluster status table, which maintains
a given cnode’s view of the status of the entire cluster. A
cnode entry in the cluster status table may be in one of the
following states:
B ACTIVE: A message has recently been received from this
cnode.
= ALIVE: No messages have been received from this cnode
in several seconds.
= RETRY: A message has not been received from this cnode
in several seconds, and we are currently requesting status
information from this cnode.
® FAILED: This cnode has failed. If executing on the root
server, all cnodes have not yet been informed of the
failure.
B CLEANUP: This cnode has failed, and its resources are
being recovered.
® INACTIVE: This cnode has never joined this cluster, or it
has failed and recovery is complete.

message Received from Cnoge
—

 E

Status Checking Process

Cnode Joins Cluster

~Initial
State

~. C1,
~Fnyp
""‘*—--H__Dmﬂ.fege
-_“_-‘_"--_._

CSP = Cluster Server Process

28 HEWLETT-PACKARD JOURNAL OCTOBER 1988

Every time a message of any type is received from an
ACTIVE, ALIVE, or RETRYing cnode, that cnode’s status is
updated to ACTIVE in the cluster status table. Every few
seconds a kernel-level status checking process is executed
which downgrades the status of each cnode according to
its current state (see Fig. 2). On the root server cnode, this
process downgrades the status of all cnodes. On discless
nodes, however, this process only affects the state of the root
server cnode. States are affected by this process as follows:
= ACTIVE: Downgraded to ALIVE.

B ALIVE: Downgraded to RETRY.
= RETRY, FAILED, CLEANUP, and INACTIVE: No change.

A status of ALIVE or RETRY may be upgraded at any time
to a status of ACTIVE by the receipt of a message from that
cnode.

When the status checking process downgrades a cnode’s
status from ALIVE to RETRY, it also sends a status request
message to the cnode whose status is being downgraded.
The status request messages are based on the datagram
service. Datagrams are fast, but unreliable, so they must be
retried manually. To do this, another process, the retry
status request process is executed every second (See Fig.
3). This process determines, via a global variable if any
cnodes are currently in the RETRY state. If there are none,
this process simply exits. If, however, one or more cnodes
are in the RETRY state, then the retry status request process
searches the cluster status table for the RETRY cnode entries.
When a cnode in the RETRY state is found, a retry counter
is incremented for that cnode, and another message request-
ing a status update reply is sent. When a cnode whose retry
counter has exceeded its maximum is found, that cnode is
considered to have failed. However, before declaring the
cnode as failed, the LAN failure detection mechanism, de-
scribed below, will be invoked.

When a cnode receives a status request message, a status

20%3

P2

SR
1

ey wnwixey P

Seljan

Fig. 1. States of crash detection
and recovery

reply message, also based on the datagram service, is im-
mediately sent in reply. This message is also unreliable
(i.e., not retried by the networking service), and the crash
detection mechanism relies on retries from the requester
to cover lost messages.
Server Broadcast Failure Mechanism. The broadcast fail-
ure datagram mechanism is unreliable, and because the
server/client status message exchange does not inform the
entire cluster of a failure, another mechanism is needed to
ensure that the entire cluster is aware of a cnode failure.
The mechanism used for HP-UX is a reliable failure mes-
sage which is clustercast (broadcast to the entire cluster)
by the root server.

The root server broadcasts the failure message from the
crash recovery mechanism. In the recovery process on the

Fig. 2. Crash detection: status checking process

root server cnode, if a cnode has a status of FAILED, then
the root server broadcasts a message to all other cnodes
informing them of the failure. The recovery mechanism
uses a single process to clean up the resources of all failed
cnodes. This process is serial, and because multiple cnode
failures may occur simultaneously or close together, the
recovery process cannot sleep waiting for the cnodes to
reply. If it were to do so and if one of the cnodes that had
not yet replied were to fail, then the root server would be
deadlocked, because the recovery process would be waiting
for a failed cnode that would never reply and whose re-
sources would never be recovered. The crash recovery
mechanism is discussed in more detail on page 30.
Failure Detection at Boot. As mentioned, a failure must be
detected and recovered before the failed cnode can be al-
lowed to cluster (rejoin the discless cluster). Since all clus-
ter requests are directed to the root server, the root server
can block the cluster request until all recovery is complete.
When a cluster request is received from a cnode whose
status in the cluster status table is currently ACTIVE, ALIVE,
or RETRY, the server process handling the cluster request
sets the status of the requesting cnode to FAILED and invokes
the recovery process.

Race conditions between the clustering process and the

recovery process are prevented by not allowing more than
one cnode to join the cluster at one time and by not allowing
the joining process to continue until the recovery process
has been completed.
LAN Failure Detection. Because detection of unexpected
cnode failures is based on the exchange of status messages,
an undetected LAN failure could be misinterpreted as a
cnode failure if messages could no longer be received from
a given cnode.

If a LAN failure were misinterpreted as a cnode failure,
it would cause all cnodes on the failed LAN to panic (ex-
perience a system crash) because of loss of contact with
the root server. The root server must detect the failure of
a client cnode to ensure that resources held by the failed
cnode are released, but it is less obvious why a client cnode
must detect the loss of contact with the root server, espe-
cially when the only result is for the client cnode to panic.
The client cnode must detect loss of contact with the root
server because it is possible that, because of a hardware
failure of some sort, the client cnode has become deaf (in-
capable of receiving messages) to the network. If a deaf
cnode were allowed to remain in a cluster, it would con-
tinue to send requests to the root server, which would
continue to mark the cnode as ACTIVE, even though the
cnode could not participate in the cluster. This means that
the deaf cnode could tie up cluster resources indefinitely,
hanging the cluster. Therefore, client cnodes must panic
on loss of contact with the root server to ensure that they
are not tying up cluster resources.

A LAN failure is detected by running the LAN card
hardware diagnostics from a LAN card driver level. These
diagnostics are invoked by the retry status request process
previously described, just before setting a cnode’s status
to FAILED. If the LAN card diagnostics indicate a LAN fail-
ure, a warning message will be displayed on the system
console and the cnode’s status will be upgraded to ALIVE.
The process of downgrading all cnodes’ status to RETRY,

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 29

running the LAN diagnostics, and upgrading all cnodes to
ALIVE will be repeated until the LAN failure is repaired.
All file system access from discless nodes will hang until
the LAN is corrected, and it is possible that the root server
cnode will hang waiting for a resource held by one of the
isolated cnodes. Once the LAN failure is corrected, the
system will continue normally.

The LAN card hardware diagnostics cannot detect a LAN
failure that occurs on the other side of a LAN bridge. If a
cluster is spread across such a bridge, a LAN failure (such
as a break in the cable) on one side of the bridge will cause
all discless cnodes on the other side of the bridge to lose
contact with the root server and panic.

Crash Recovery
Once a cnode failure has been detected, crash recovery

is invoked. Recovery from the crash of a cnode requires
that certain cluster resources being used by that cnode be
released and cleaned up so they can be used by other nodes
in the cluster. There are four basic resources that need to
be cleaned up in the discless HP-UX system:

® File system data structures (inode)

B Swap space

B Process ID blocks

B Discless networking data structures.

In the current release, the root server maintains most of
the cluster’s resources, so most of the recovery function
occurs on the root server. Discless networking resources
are necessary on all cnodes, however, so crash recovery is
invoked clusterwide with the root server performing most
of the work.

A separate recovery function is called for each basic re-

source to be cleaned up after the failure of a cnode. The
general tasks performed by each function are described
below.
File System Recovery. When a failure occurs, the crashed
cnode may have file system resources locked up, or those
resources may be in an inconsistent staté. Each currently
referenced file (including named FIFO files, directories,
and regular files) in memory is represented by a data struc-
ture called an inode. There are two situations where file
system cleanup must be performed after a cnode fails, both
of which must be performed on the inode:

B The file is locked by the failed cnode, either via a kernel
inade lock or by a lockf(2) or fenti(2) call. An inode lock is
indicated by two fields in the inode, one that indicates
that the inode is locked and another that indicates what
cnode is responsible for the lock. If the file is locked by
the failed cnode, then the recovery routine unlocks it.
A lock created by lockf(2) or fentl(2) is indicated by a lock
list in the inode structure. If the lock list indicates that
the file is locked by the failed cnode, then the recovery
routine frees the lock.

B A cnode map field in the inode indicates that the file:
O is being referenced by the failed cnode
O is opened by the failed cnode
O is opened for write by the failed cnode
O is a FIFO file opened for read by the failed cnode
O is a FIFO file being executed by the failed cnode.

A cnode map field in an inode is a table that maintains
a count for each cnode in the cluster. Cnode maps only

30 HEWLETT-PACKARD JOURNAL OCTOBER 1988

No Cnode =) ‘Eo Cnode Status
Root Scs ve Table
?
Yes+ < |

CSP = Cluster Server Process m

Fig. 3. Crash detection: retry status request process

appear in inodes on the root server. Five different types of
cnode maps may be present in an inode, one for each of
the cases listed above. The recovery function checks each
applicable cnode map {there is no point in checking the
FIFO read count if the file is not a FIFQ file) and, if the
cnode map entry for the failed cnode is nonzero, then the
appropriate action (e.g., closing the FIFO file or releasing
the text segment) is taken, and the cnode map entry is
cleared.

The file system recovery function looks through the
memory-resident inode table and cleans up each inode that
was being used or referenced by the failed cnode.

Swap Space Recovery. The swap space recovery function
looks through the table of allocated swap space on the root
server cnode and releases any swap space that was allo-
cated to the failed cnode.

Process ID Recovery. In the discless HP-UX system, the
root server cnode acts as a process ID (PID) allocator to
guarantee unique PIDs throughout the cluster. The process
ID recovery function goes through the PID allocation table
on the root server cnode and marks any PIDs allocated to
the failed site as available for use.

Discless Networking Recovery. Three basic discless net-
working resources must be cleaned up when a cnode
crashes: cluster server processes (CSPs), networking state
information on outstanding requests to other cnodes, and
outstanding requests from other cnodes.

CSPs acting on behalf of the failed cnode are killed by
a routine that scans the table of active CSPs for those with
a cnode ID field matching the failed cnode. All such CSPs
are sent a signal indicating that they should abort the cur-
rent process. Since it may take some time for all the CSPs
to abort, this routine is reinvoked until it does not find any
CSPs acting on behalf of the failed cnode. The CSP cleanup
routine also removes requests for CSP service by the failed
cnode from the CSP service queues.

Networking resources for requests to the failed cnode
and for remote requests being serviced on behalf of the
failed cnode must be recovered. The list of outstanding
networking requests is scanned, and all requests destined
for the failed cnode are marked undeliverable. Retries on
these requests are stopped, associated resources are freed,
and a local reply is generated. Requests being serviced on
behalf of the failed cnode are cleared, and replies to these
requests are stopped and all associated resources are freed.

The Recovery Mechanism

When a failure is detected, a cluster server process (CSP)
is invoked in the kernel to execute the recovery functions.
This process will be referred to as the recovery CSP. When
more than one failure occurs simultaneously, or when a
failure occurs while the recovery CSP is still cleaning up
a previous failure, the same CSP is used to clean up the
resources of all the failed cnodes. The cleanup of each
failed cnode’s resources is done serially. This means that
we cannot allow any recovery function to sleep waiting for
a resource that may be held by another cnode that may
have failed, or we risk a possible deadlock situation.

To prevent this potential deadlock situation, each recov-
ery function can return an error code that indicates that it
was blocked from completing cleanup of a cnode because

wy Yes

Clean Up Networking State Informs on
All Outstanding Requests from Falled Cnode

v
l— L Status =
FAILED
?

W Yes

Were
All Recovery
Functions
Successtul

Decrement Number of Failed Cnodes
‘¢

Fig. 4. General crash recovery mechanism (recovery CSP)

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 31

of a locked resource. When such an error code is returned,
the failed cnode is not marked as cleaned up and the recov-
ery functions will be rescheduled for that cnode after the
recovery CSP has had an opportunity to execute the recov-
ery functions on other crashed nodes in the cluster.

In addition, to prevent another deadlock situation, we
must always guarantee that a CSP will be available to exe-
cute the recovery function. This is done by allowing the
recovery function to be executed by a special CSP called
the limited CSP. This CSP is limited because it only exe-
cutes processes that are necessary to maintain membership
in the cluster. None of the processes that are allowed to
execute on the limited CSP should cause the limited CSP
to sleep indefinitely waiting on a failed cnode. Therefore,
we can always assume it will eventually become available
for use in crash recovery. The recovery functions can also
be executed on a general CSP if one is available.

The mechanism for crash recovery (see Fig. 4) is closely
tied to the crash detection mechanism. Both use the state
transition model (see Fig. 1) based on the cluster status
table. To execute the recovery mechanism, a CSP is invoked
by the crash detection function unless one is already run-
ning. This CSP checks a global variable, set up by the crash
detection function, to see if there are any failed cnodes. If
there are failed cnodes (there is always at least one on the
first pass), then the process looks through the cluster status
table searching for cnodes with a status of FAILED or
CLEANUP (for the first pass for a given cnode, its status is
always FAILED). When such a cnode is found, all outstand-
ing kernel networking requests from the failed cnode are
cleaned up. This must be done before the failed cnode’s
CSPs can be successfully aborted. The failed cnode’s CSPs
must be aborted before any other cleanup can be done to
ensure that these CSPs do not make changes after the re-
source recovery has been executed.

If the failed cnode has a status of FAILED, then a discless
cnode will update the failed cnode’s status to CLEANUP.
On the root server cnode, however, the root server will
notify all discless cnodes of the failure and wait for all
clustered cnodes to respond to this notification before it
updates the failed cnode’s status to CLEANUP.

The recovery CSP will then attempt to kill all the CSPs
serving requests on behalf of the failed cnode. If all such
CSPs have been killed, and if the failed cnode’s status is

32 HEWLETT-PACKARD JOURNAL OCTOBER 1988

now CLEANUP, then the rest of the cleanup functions will
be invoked. Otherwise, the recovery CSP will return to the
top of the loop and search the cluster status table for the
next failed cnode. If the cleanup functions are successful,
then the cnode’s status will be updated to INACTIVE and
the global count of failed nodes will be decremented. How-
ever, if some cleanup function was blocked from complet-
ing because of a potential deadlock situation, then the
cnode’s status will remain at CLEANUP and the recovery
functions will be reexecuted for this cnode on the next
pass through the cluster status table.

When a pass of the cluster status table is complete, the
recovery CSP once again checks the global count of failed
cnodes. If this count is nonzero, then the cluster status
table is rescanned and the recovery algorithm above is re-
peated. When there are no more cnodes left in the FAILED
or CLEANUP state, the recovery CSP terminates. When the
recovery CSP terminates, the resources of all failed sites
have been recovered and normal execution continues.

Summary

Crash detection and recovery are an important part of
making HP-UX clusters dynamic and resilient. Fast and
reliable detection of failures allows users to add and remove
cnodes dynamically without affecting users on other
cnodes. LAN cable failure detection allows changes in the
LAN configuration to be made without shutting down the
cluster. Different mechanisms work together to make crash
detection and recovery in HP-UX clusters both reliable and
fast.

Acknowledgments

Chyuan-Shiun Lin and Joel Tesler (then of HP Labs) did
the initial design and implementation of crash detection
and recovery on which the final implementation is based.
Dave Gutierrez did the design and implementation of the
LAN failure detection mechanism and was very helpful in
the refinement of the networking resource recovery. Bob
Lenk, Debbie Bartlett, Barb Flahive, and Fred Richart were
all a great help in the refinement of various areas of resource
recovery. Mike Berry and Fred Richart developed distrib-
uted, coordinated failure simulations, which were invalu-
able in the testing of this functionality.

Boot Mechanism for Discless HP-UX

by Perry E. Scott, John S. Marvin, and Robert D. Quist

STATION requires three distinct services: a remote

file system, a remote swapping capability, and the
ability to load and initialize the operating system from a
remote source. All of these services are implemented for
the HP-UX 6.0 system with the goal of maintaining a single-
system view. For the boot mechanism this means that al-
though the operating system and its loader are on a remote
system (i.e., the root server), a user can power up any work-
station in a cluster and get the same boot sequence that is
experienced with a stand-alone system. A stand-alone sys-
tem is a workstation that uses a local disc for booting and
file system operations. This article describes how the stan-
dard HP-UX boot mechanism works, and the modifications
made for the HP-UX 6.0 discless implementation.

T HE IMPLEMENTATION OF A DISCLESS WORK-

Overview
The major modules and interfaces involved in the HP-UX

system boot mechanism are shown in Fig. 1. Fig. 1a shows

the boot components for a conventional stand-alone HP-UX

system and Fig. 1b shows the components for a discless

configuration. The following sequence outlines what hap-

pens when a discless workstation is powered on and booted.

A more detailed description of these steps and the compo-

nents shown in Fig. 1 is given later.

® After power-up, the boot ROM searches for and assigns
an input device (keyboard) and an output device (dis-
play) to use as a console.

® The boot ROM checks for and tests interface cards, RAM,
and other internal peripherals. It then displays the infor-
mation shown in the left side of Fig. 2. This is called
self-test.

& The boot ROM loader polls all supported mass storage

Stand-Alone System
Boot ROM Loader and Self-Test

Boot ROM Read Interface

ﬂ:opyright 1987,

Hewlett-Packard Company.
All Rights Reserved

\

System
Files

:LAN 21, hpxyyy
1H SYSHPUX
1D SYSDEBUG}
1B SYSBCKUP

BOOTROM Rev, C

Bit Mapped Display
MC68020 Processor
MC68881 Coprocessor
Keyboard

HP-IB

RAM 1572704 Bytes
HP98625 (HPIB) at 14
HP98643 (LAN) at 21 08000900ABCD

Server Host Name

SEARCHING FOR A SYSTEM (RETURN To Pause)
RESET To Power-Up

n)
Fig. 2. A typical screen the user sees during the boot
process.

devices and LANs connected to the computer for an
operating system, and the message SEARCHING FORA SYS-
TEM (RETURN To Pause) appears on the display (see Fig. 2).

u If the user strikes the keyboard during self-test the boot
ROM assumes the user wants to control the selection of
the operating system to boot. This is called the attended
mode. When this is done a list of available operating
systems appears on the right side of the display (see Fig.
2). The user selects a system by entering one of the two
character codes (e.g., 1H). If a key is not struck the boot
ROM loader automatically selects the first bootable sys-
tem it finds. This is called the unattended mode.

(a)

Server

(b)

Boot ROM Read Interface

Discless Workstation
Boot ROM Loader

and Sell-Test Fig. 1. (a) The major components

involved in the boot process for a
stand-alone HP-UX system (b)
The major components involved in
the boot process in a discless en-
vironment.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 33

® Once the operating system is chosen (assume 1H) the
boot ROM retrieves the secondary loader from the server
and loads it into RAM on the discless cnode. Control is
then transferred to the secondary loader.

® The secondary loader retrieves the operating system (e.g.,

/hp-ux) from the server, loads it and transfers control to

the operating system.
® The operating system initializes the discless kernel.

The first five steps in this sequence are called the boot
ROM phase, and the last two steps are called the secondary
loader phase and the HP-UX initialization phase, respec-
tively.

Except for searching the LAN connection and loading
the secondary loader from the server, these same actions
also take place when a stand-alone HP-UX system is booted.
The difference is that the stand-alone system accesses files
directly from its local disc instead of going over the LAN.
From the user’s perspective, the boot process looks the
same.

There may be more than one cluster of workstations con-
nected to a LAN cable, and therefore more than one server
may exist on the LAN. One of the main features of the
discless boot mechanism is that when a booting cnode is
polling the LAN connection for an operating system it is
able to select the correct server. The mechanism for doing
this is explained later.

Discless Workstation Boot Moduies
Boot ROM Loader. The HP 9000 Series 300 boot ROM
loader is one of the boot ROM modules located in EPROM
on the CPU board. After self-test the boot ROM loader ini-
tiates communication with the server to retrieve the boot-
able system files. During the boot sequence, when the boot
ROM loader finds a LAN interface it broadcasts a server
identify request packet. Typically a cnode belongs to one
server; however, there is the possibility for a cnode to be
configured with more than one server. Each server has a
process called /etc/rbootd listening to the LAN. Based on the
information in the server’s configuration file (/etc/clusterconf),
ete/rbootd decides whether to respond with the server’s host
name. The host name is then displayed on the cnode’s
system console. The process /etc/rbootd, which is discussed
later, is a server daemon that handles communication with
discless cnodes during boot.

For each server responding, the boot ROM loader sends
a file list request packet containing a file number. The file
number is incremented for each file list request sent to a
particular server. As the file names are sent to the request-
ing cnode they are displayed on its system console (see
Fig. 2). This is done until the file number exceeds the
number of boot file names the server has available to send.
At this point the server responds with a reply packet that
indicates there are no more file names to send. When a
bootable file is selected (e.g., 1H) the boot ROM sends a
request to open the file. This file (e.g., SYSHPUX) is the sec-
ondary loader and resides on the server as /usr/boot/SYSHPUX.

In addition to opening the boot file, the boot ROM records
several global variables in RAM that are used by the second-
ary loader and the HP-UX kernel. These values include:
B MSUS (mass storage unit specifier). Information about

the boot device, such as the directory format, device

34 HEWLETT-PACKARD JOURNAL OCTOBER 1988

type, and select code.

= SYSNAME. The name of the selected operating system
(e.g., SYSHPUX).

= SYSFLAG2. The name of the processor type on the cnode
(e.g., 68020).

= LOWRAM, HIGHRAM. The low and high limits of system

memory.

® F_AREA. A driver scratch area where the LAN link level
address of the server is stored. The link level address is
retrieved from the IEEE 802.3 packet containing the
server’s host name.

After the boot file is opened, the boot ROM loader issues
a read request packet to the server to read the secondary
loader into the discless cnode’s memory. When the second-
ary loader has been loaded, a boot complete packet is sent
to close the boot file and terminate the session. The boot
ROM then passes control to the secondary loader.

Boot ROM User Interface. The displays produced during
boot and the handling of user input are the responsibilities
of the boot ROM user interface modules. When a key is
struck during self-test (attended mode) the interface mod-
ule is responsible for assigning the two-character codes
(e.g., 1H, 2B) to each bootable operating system that is
found. All prompts and error messages go through the user
interface routines.

Boot ROM Read Interface. The read interface provides file
open, read, and close facilities to the boot ROM loader and
the secondary loader, and it functions as an interface to
the driver modules. The boot ROM loader uses the read
interface to load the secondary loader, and the secondary
loader uses it to load the HP-UX system.

The read interface operates in either an absolute mode
or a file mode. In file mode, file relative addressing is used
to access files on the server. The booting cnode relies on
the server to resolve the logical address into physical disc
blocks. In absolute mode, device relative addressing is used
and the calling routine is responsible for performing the
logical-to-physical disc block mappings.

For the discless implementation one of the design goals
was to make the read interface to the LAN driver look like
other devices so that existing secondary loaders would not
have to change. The original HP-UX loader was built on
the assumption that it was always booting from a local
disc; therefore, it uses the absolute mode. The absolute
mode proved impractical for the LAN driver. The HP-UX
secondary loader was modified to recognize nondisc de-
vices and use the file mode. We already had secondary
loaders for our BASIC and Pascal workstations which use
the file mode for boot over the Shared Resource Manager
(SRM). The SRM has characteristics similar to the LAN.

Root Server Boot Modules

/etc/rbootd (remote boot daemon). /etc/rbootd is a process that
runs on the root server and handles all of the boot protocol
requests between the server and the discless workstations.
Rbootd uses two files to determine how it should respond
to requests from the discless cnodes: a configuration file
fetc/clusterconf and a boot table /etc/boottab. The configuration
file contains the names and link level addresses of the
cnodes associated with the server. /etc/boottab contains a list
of boot files available to each cnode in the cluster. Rbootd

detects when changes are made to either of these files and capability missing was the ability to obtain a list of files
reconfigures itself using the new information. from the server. Investigation showed that special interpre-

To allow context dependent boot files (files tailored to tation of certain fields in the boot request packet would
the capabilities of the workstation), rbootd emulates the allow this feature to be implementated.

pathname lookup code used by the HP-UX 6.0 kernel to Rbootd services five types of requests: server identify, boot
handle context dependent files.The emulation is not per- file list, boot request, read request, and boot complete. The
fect since rbootd cannot determine some of the hardware- boot request, read request, and boot complete packet types

specific context (e.g., whether the discless cnode has an are standard RMP requests. The server identify and boot
MC68881 floating-point coprocessor installed). Therefore, file list packet types are extensions to the RMP boot request

hardware-specific context elements are not supported for packet.
boot files. Context dependent files (CDF) are discussed in ~ ® Server Identify Request. In the boot ROM phase the disc-

detail in the article “A Discless HP-UX File System,” on less cnode uses the server identify request to get a server’s
page 10. hostname. At the same time the server’s link level net-
Rbootd supports four levels of error and information log- work address is obtained from the IEEE 802.3 packet
ging, ranging from logging only fatal errors to recording header sent by the server’s LAN driver.
the beginning and end of every boot session. The logging ® Boot File List Request. The boot file list request is sent
level is set with a command line option. by the boot ROM to obtain the names of the files listed
The communication protocol used by rbootd is based on in /etc/boottab. The request packet contains an index
a simple request/reply model. When a packet arrives, rbootd number that is used by rbootd to respond with the name
wakes up and processes the packet, usually by sending a of the file. If the number is greater than the number of
reply, and then goes back to sleep. Requests are queued by files available, rbootd responds with a packet indicating
the link level access driver in the kernel. Because queue that there are no more boot files.
space is limited, rbootd uses HP’s real-time priority feature =~ m Boot Request. A boot request opens the requested boot
to ensure that boot (especially unattended boot) does not file and allocates a session number. This session number
fail because of dropped packets. is used by the discless cnode for the read request and
Several boot protocols were investigated for our discless boot complete request. Session numbers are used to sup-
implementation. The Trivial File Transfer Protocol (TFTP) port concurrent boot requests.
was considered, but could not be used. First, the boot ROM m Read Request. A read request is used to read a boot file.
read interface is random-access and TFTP is sequential- The request packet contains an offset and the number
only access. Second, TFTP is built on top of IP, which of bytes to be read from the file. This enables the discless
would require more code in the boot ROM. Finally, the cnode to access data randomly from the boot file. Rbootd
boot ROM must obtain a list of file names, which is not responds with a packet containing the number of bytes
provided by TFTP. We could have worked around many actually read.
of these limitations; however, we decided to use a version =~ ® Boot Complete Request. Boot complete causes rbootd to
of the Remote Maintenance Protocol (RMP) boot capability. close the boot file and deallocate the session number.

This protocol was already in use within HP and the only = Secondary Loader. In a stand-alone system the secondary

Secondary
Loader Secondary Secondary
l Loader Loader
|
v v
upen_(_] read {) close | |

File Mode " " Absolute Mode jje Mode . Absolute Mode File Mode __— —__Absolute Mode

1 - = — y
[y

v
e
v h 4

S ron e
open read -
v ; |

|
LAN [. Disc
Driver | Driver
' | ‘ |
Boot | | Read I | Complete
Request | | Request " Re
| quest |
| . | |
v | hp-ux * | v
To server | To server [To server |
and rbootd I and rbootd | and rbootd :
Discless ' Stand-Alone Discless : Stand-Alone Discless | Stand-Alone

(a) (®) (c)

Fig. 3. Secondary loader control flow on discless and stand-alone system during a) a file open,
b) a file read, and c¢) a file close.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 35

loader resides in Logical Interchange Format (LIF) in the
first 8K bytes of the boot disc. It is transferred to memory
by the boot ROM interface routines at the end of the boot
ROM phase.The purpose of the secondary loader is to load
the /hp-ux a.out file (i.e., the HP-UX operating system) into
low memory and execute it. Fig. 3 shows the secondary
loader’s flow of control and the processes involved for
discless and stand-alone loading situations. The open(),
read(), and close() routines emulate the behavior of the HP-
UX system routines by the same name, and provide the
secondary loader with an interface to the boot ROM read
interface open, read, and close routines. The file system
parser is a routine that understands the HP-UX file system
structure and is responsible for resolving HP-UX path-
names during a boot file open in the absolute mode. Book-
keeping functions include the activities performed to keep
track of data being transferred from disc (for instance, keep-
ing a count of the number of blocks and current file offset
and size, or processing partial or multiblock data transfers).

The secondary loader starts the loading process by exam-
ining the LOWRAM variable to determine the load point for
the HP-UX kernel, and then uses the variable MSUS to de-
termine the boot device. The name of the boot file is re-
trieved from the variable SYSNAME and the boot file name
is translated to an HP-UX pathname and the open() routine
is called. For instance, the boot file SYSHPUX is translated
to /hp-ux.

The open() routine selects either the absolute or the file
mode of the open operation depending on the type of boot
device. For local boot the file system parser resolves the
HP-UX pathname by using the boot ROM read interface
read routine to perform pathname lookup. For a remote
boot, as in the discless situation, the LAN driver is invoked
through the boot ROM read interface open routine and a
boot request is sent to the server where it is processed by
rbootd.

The read() routine makes the same selection as the open()
regarding absolute or file mode and uses the boot ROM
read interface read routine to access the drivers. For abso-
lute mode the loader uses the bookkeeping function to keep
track of character counts, number of blocks read, and block
addressing. For the discless situation a read request is sent
to the server to be processed by rbootd. The read() operation
results in transferring the selected operating system (/hp-ux)
to the discless cnode’s memory. The loading sequence for
the operating system proceeds as follows: first the /hp-ux
a.out header, which contains the sizes of the text, data, and
uninitialized data areas, is read into a temporary area, and
then the file /hp-ux is read into memory in two read calls,
one for text and one for data.

When the operating system is loaded the close() routine
is called. For the discless situation this results in a boot
complete request being sent to rbootd. For the stand-alone
situation the loader does some internal bookkeeping with-
out calling the boot ROM. When the close operation is
complete the secondary loader transfers control to the HP-
UX kernel.

Kernel Debugger Considerations

The above process changes slightly if SYSDEBUG is cho-
sen instead of SYSHPUX. The kernel debugger is loaded just

36 HEWLETT-PACKARD JOURNAL OCTOBER 1988

like the HP-UX kernel. When the debugger is started, it
opens the a.out file /SYSDEBUG to find its relocation informa-
tion, then moves itself into high RAM, adjusting all of its
jump points. It then adjusts the HIGHRAM boot ROM vari-
able, effectively protecting itself from being overwritten.

The debugger uses the secondary loader open(), read(),
and close() routines, which are left in high RAM. After the
user selects the kernel to boot, the debugger loads the HP-
UX kernel like the secondary loader loads the HP-UX ker-
nel.

HP-UX Discless Kernel Initialization

The HP-UX discless kernel finds its server’s LAN card
address in the boot ROM F_AREA. This value is used to
initialize several discless kernel pointers, which effectively
turns on the discless message interface. The discless mes-
sage interface provides the protocol for communication
between a discless workstation and the server. The discless
message interface is described in detail in the article “The
Design of Network Functions for Discless Clusters” on page
20. Once the discless message layer is operational the disc-
less cnode sends a cluster request message to the server.
The cluster message contains the discless cnode’s LAN
address, which is used for security purposes, and its kernel
release number, which is used to prevent server or client
kernel mismatch.

The server validates the discless cnode’s request by com-
paring the cnode’s LAN address against the list kept in
fetc/clusterconf. If it is not there the request is rejected.
Likewise, the request is rejected if the kernel release num-
bers do not match. Otherwise, the server broadcasts a mes-
sage to the rest of the cluster and the discless cnode is
admitted. The server then sends a message to the cnode
that contains the current system time, a description of the
rest of the discless cnodes in the cluster, and the ID of the
cnode’s root and swap servers. At this point, the discless
cnode can use the root server’s file system, and control is
passed to the /etc/init program. The discless file system is
used to execute programs started by /etc/init, and kernel ini-
tialization is complete.

Acknowledgments

The authors would like to thank the following individu-
als who contributed to the discless boot mechanism: Anny
Randel for her work on the original /etc/rbootd design and
prototype, David O. Gutierrez for his patient explanation
of the HP-UX LAN driver, discless messages, and kernel
initialization, and Joe Cowan for project management in
bringing together the resources to complete the discless
boot mechanism.

Discless System Configuration Tasks

by Kimberly S. Wagner

a clustered environment is not a particularly dif-

ficult task, but because of the large number of steps
required to configure the system, an automated tool called
reconfig is provided with the HP-UX discless system to
simplify the process. Reconfig enables the system adminis-
trator to set up the cluster server node and add or delete
cluster nodes {cnodes) as necessary.

Reconiig was originally developed for the HP 9000 Series
200 and 300 Computers’ HP-UX 5.1 operating system. The
tool contains a collection of monotonous and terse system
administration tasks within a user-friendly menu-driven
environment. Basic tasks such as setting up user access
to the system and reconfiguring kernels can be easily ac-
complished. With the advent of discless workstations in a
clustered environment, changes were made to enhance the
original reconig tool.

G OING FROM A GROUP of stand-alone machines to

Cluster Setup

For creating a cluster configuration, the minimum system
includes an HP 9000 Model 350 for the root server with at
least 8M bytes of RAM, at least a 130-Mbyte disc drive,
and the HP-UX 6.0 operating system (or later). The setup
process begins by running /etc/reconfig, and when the main
menu appears selecting the option Cluster Configuration. This
selection will bring up the menu shown in Fig. 1, which
shows the four values required to set up a cluster server:
the server node name, the link level LAN address, the in-
ternet address, and the number of cluster server processes
(CSPs).
Cluster Node Name. The server’s cnode name is the sys-

ﬂ

~

Reconfig—Set Up a Cluster Environment

Root Server's Cluster Node Name:
LAN Card’s Link Level Address:
NS-ARPA internet Address:

Min. # of Cluster Server Processes: 4

Root Server’s Cluster Node Name? -

---W-E-J

Fig. 1. Reconfig menu for creating a cluster environment

tem’s hostname and it is used to identify the server cnode
within the cluster. All discless cnodes refer to the root
server by this name.

LAN Card’s Link Level Address. Each LAN interface card
has a unique link level address. This value is set by the
factory and cannot be changed. Reconfig will display the
address for each LAN attached to the system. If there is
only one LAN card on the system its address is used by
default; otherwise, one of the available cards must be
selected using the NEXT, PREVIOUS, and SELECT softkeys.
NS-ARPA Internet Address. The internet address enables
communication with other networks and uniquely indenti-
fies the server within a network. The internet address is
not required for discless interaction, but provides a mini-
mal NS-ARPA networking capability within the cluster to
handle remote process execution for system administrative
tasks. If a value is automatically displayed, that value is
the internet address associated with the cnode name that
already exists in the system’s /etc/hosts file.

Cluster Server Process (CSP). The CSP is a special process
that is used to handle interprocess communication in a
discless envrionment. Except for one limited CSP (LCSP)
which exists on each discless cnode, all the other CSPs
exist on the server. The default value is 4 and the amount
entered will be the minimal number of CSPs running at all
times. If more CSPs are needed they will be created auto-
matically. For an in-depth discussion of CSPs see the article
“The Design of Network Functions For Discless Clusters”
on page 20.

When all the entries in the menu have been entered
reconfig will tell the user what it is about to do to build the
system and then ask if the user wants to continue. A yes
will cause reconfig to begin configuration. Reconfig performs
five steps in transforming the stand-alone system to a clus-
tered environment. The steps are done in a particular order,

noEm e
m o
m

EE— &

m
| server |

__I

Fig. 2. Partial system model for the server cnode. “Server”
is the cnode name given to the root server

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 37

so if an error occurs during the process, the user can correct
the problem and then reexecute reconfig from where it left
off. Generally, each step in the process will complete with-
out error unless certain required files and/or directories are
missing. The activities that take place at each step_are as
follows:

® Context dependent files (designated by a + appended
to the file name) are created for the cluster and root server
based upon a predetermined system maodel (see Fig. 2).
Context dependent files (CDF) are used to describe the
various attributes (e.g., machine type, coprocessors) of
a particular cnode. For more information on CDFs see
the article ““A Discless HP-UX File System” on page 10.

B A fully loaded root server kernel is built. The directory
/hp-ux is turned into a CDF and the new version of the
kernel resides in /hp-ux+/<cnode_name>. Cnode_name is the
name entered earlier for the cluster node name.

® The NS-ARPA files for remote process execution are set
up and an entry is made for the root server for the follow-
ing files: /etc/hosts, /etc/hosts.equiv, and $HOME/.rhosts (root’s
home directory).

B The cluster configuration file /etc/clusterconf is created and
the following information is entered in the file for the
root server: the root server’s cnode name, the server’s
link level LAN address, and the number of CSPs to start
at boot.

® Thercfile, which initiates the boot service for the discless
cnodes, is modified to state which LAN device file to
use if the default LAN device file is inappropriate.

B Reboot system.

Adding and Deleting Cnodes

Once the root server of the cluster has been set up, disc-
less cnodes can be added or deleted at will by running
fetc/reconfig and selecting the Cluster Configuration option from
the main menu. If the root server has already been set up
(e.g., /etc/clusterconf exists), reconfig will present two menu
choices for adding or deleting discless cnodes.

Adding a Cnode
The input required for adding a cluster node is similar

==tr==i==l
= e
|_sorver]| _cnode1] remoteroat | locairoot |

Fig. 3. Partial systern model for a client cnode. “Cnode1” is
the cnode name given to the new discless cnode.

38 HEWLETT-PACKARD JOURNAL OCTOBER 1988

to that required for initial cluster setup: the cnode name,

an internet address, and the link level address of the

cnode’s LAN card. Each discless cnode always runs exactly
one limited cluster server process (LCSP) so there is no
need to prompt for the number of cluster server processes.

The process for adding a cnode is similar to that for setting

up the clustered environment on the root server. The four

steps are as follows:

® Context dependent files are created for the new discless
cnode based on the system model for client cnodes (see
Fig. 3).

® A minimally loaded discless cnode kernel is built.
The directories /hp-ux+/<cnode_name> and /etc/cont/dfile-+/
<cnode_name> are created.

m NS-ARPA files for remote process execution are set up
for the discless cnode. The files /etc/hosts, /etc/hosts.equiv,
and $HOME/ rhosts (root’s home directory) are modified
to include the new cnode.

® The cluster configuration file (clusterconf) is modified to
include an entry for the discless cnode. The entry in-
cludes the new cnode’s name and its link level LAN
address.

Removing a Discless Cnode
Only the discless cnodes can be removed with reconfig.
All that is required to remove a discless cnode with reconfig
is the cnode name. The menu shown in Fig. 4 is used to
select the cnode to be removed. There is an option to re-
move or not to remove all CDFs associated with the cnode.
Unless there is a good reason for leaving the CDF elements
around, the CDFs should be removed when the discless
cnode is removed. The cnode removal process involves the
following steps:
® Remove the ability to do remote process execution by
deleting the entries for the cnode from the NS-ARPA
files /etc/hosts.equiv, and $HOME/.thosts. The cnode name
and its associated internet address remain in the file
fetc/hosts for later use.
B Remove the entry in the cluster configuration file (/etc/
clusterconf) for the deleted cnode.

-

Reconfig—Remove a Discless Cluster Node

Cluster Node Name: Cnode1
Remove Cluster Node Specific CDF’s: No

The cluster nodes currently defined within your cluster are:

Cnode1 Cnode2 Cnode3

Cluster Node Name? > Cnode1

\m-mmmm-/

Fig. 4. Reconfig menu for deleting a cnode

® If requested, remove all context dependent file elements
of the form : <file>+/<cnode_name>.

Conclusion

The Reconfig tool provides features that make the tasks
of setting up and maintaining an HP-UX discless cluster
much easier. In addition, the time required for reconfigura-
tion is much lower with Reconfig than it would be to ad-
minister each system individually. This is one of the advan-
tages of the HP-UX discless system.

Acknowledgments

Special thanks go to Stuart Bobb and Dave Grindeland
for their usability testing efforts, and to Paul Christofanelli
and Paul Van Farowe for their invaluable NS-ARPA net-
working assistance.

Small Computer System Interface

The SCSI standard is the newest interface for the HP 9000
Series 300 family of HP-UX workstations. It offers improved
performance, simplicity in design, a wide choice of
controller chips, and wide acceptance in the UNIX®

community

by Paul Q. Perimutter

small computer systems and intelligent peripheral

devices realized the need for an industry standard
1/0 interface for their systems. This interest resulted in the
Small Computer System Interface (SCSI) standard. HP in-
troduced an SCSI interface in April of 1988 for a family of
high-performance disc drives. The SCSI standard is the
newest interface for the HP 9000 Series 300 family of HP-
UX workstations. It offers improved performance, simplic-
ity in design, a wide choice of controller chips, and most
important, wide acceptance in the UNIX community. Mar-
keting data predicts that by mid-1989, approximately one
half of all UNIX workstations will have an SCSI interface.
This article provides an overview of the SCSI standard and
the implementation of SCSI on the Series 300.

D URING THE PAST FEW YEARS manufacturers of

What is SCSI?

The Small Computer System Interface—or SCSI—is an
intelligent, general-purpose I/O bus. The entire spectrum
of requirements for SCSI is specified in one document:
ANSI committee standard X3.131. This standard defines
the physical layer, the logical interface layer, and the device
command set level for peripherals used with small comput-
ers. SCSI is very popular partly because all levels were
UNIX is a registered trademark of AT&T in the US A and other countries

designed and specified together, resulting in an /O system
that is integrated in a consistent and homogeneous style.

A critical design goal for SCSI was to provide the host
computer with device independence within a certain class
of peripheral devices. For direct-access drives (i.e., discs)
this means the features that distinguish different discs are
hidden from the software. The disc dependent characteris-
tics such as the disc geometry, timing, protocol, and feature
set are elements that make a disc less compatible. SCSI
tries to hide these elements from the software without com-
promising product performance or quality. This signifi-
cantly simplifies the development of the disc software
driver, and enables the software to achieve a high degree
of autoconfigurability. It also improves plug-and-play pos-
sibilities between different vendors’ disc drives. For in-
stance, many disc drive manufacturers have developed
command sets that have many common features. SCSI ex-
tracts the common ingredients. of these command sets and
creates an industry standard format, command syntax, and
command set. To simplify addressing, SCSI discards the
older 3-vector addressing mode (sector, track, cylinder) and
adopts the simpler single-vector addressing mode. In
single-vector addressing, the disc is viewed as a logical
single-dimensional array of blocks, and the software merely
specifies the block offset from the beginning of the device.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 39

This approach serves to bring divergent disc-like peripher-
als such as write-once-read-many optical discs (WORMs),
CD ROMs, and flexible discs much closer together.

The Series 300 interface card (host adaptor in Fig. 1)
uses the Fujitsu MB87030 controller chip to interface to
the SCSI bus. This chip simplifies the software interface
to the bus. It contains an 8-byte FIFO buffer, and provides
DMA, asynchronous, and sychronous methods of data
transfer.

Our SCSI disc driver is very flexible and highly autocon-
figurable. Almost no assumptions are made about the disc.
When a command first accesses the device, the driver
checks to determine if the disc is alive (test_unit_ready com-
mand), then asks who it is (inquiry command), and finally,
asks the disc drive for two basic geometric parameters: the
logical block size in bytes, and the size of the drive in
logical blocks. These two values are saved in the buffer
header associated with the device, and are used for the
duration of the transaction.

The SCSI Bus

Only two devices are allowed to communicate on the
SCSI bus at any time. Up to eight devices can be connected
to the bus and a unique SCSI ID bit (0-7) is assigned to
each device. One of the devices must be the host or initiator.
When two devices communicate on the bus, one acts as
the initiator and the other acts as the target. The initiator
(usually a host system) originates an operation (e.g., read
or write) and the target (e.g., disc controller) performs the
operation. This operation is similar to the HP-IB talker/
listener protocol. An SCSI device usually has a fixed role
either as an initiator or a target. However, some devices
can perform both roles. A typical SCSI configuration is
shown in Fig.1.

An important assumption made by SCSI forces the target
to drive the bus phases, and the target is allowed to discon-
nect from the bus when it anticipates a significant delay
during data transfer. This fundamental assumption allows
multiple drives to be active simultaneously, enhancing
total bus bandwidth. The idea is this: since we can have
only one initiator and one target active at any given time,
we do not want a device to tie up the bus unless data is
actively being transferred. Thus, devices are allowed to
disconnect while internal-only activities (such as seeks or
command parsing) are occuring. Typically, after a com-
mand has been transferred, a device will disconnect while
it parses and decodes the command, seeks to the appro-
priate cylinder, and prepares itself for data transfer. In ad-
dition, if in the middle of a data transfer the drive antici-
pates dead time (such as a seek to a spared track), the
device will get off the bus to allow other peripherals to
access the host. As soon as the target is ready to resume
data transfer, it can actively arbitrate for the bus (when the
bus is free) to reattach to the host. The disconnect/reconnect
option in SCSI can boost overall system performance.

SCSI Bus Signals

The SCSI bus consists of eighteen signal lines. Nine are
used for control and nine for data. The control signals are
used to establish the logical bus phases (discussed in the
next section) for the SCSI bus protocol, and control the

40 HEWLETT-PACKARD JOURNAL OCTOBER 1988

transfer of data. These bus signals are shown in Table L.

Table |
SCSI Bus Signals

Driven by
Signal Description Host Target

REQ (Request) Data handshake line: X
requests data byte on bus.

ACK (Acknowledge) Data handshake line: X
acknowledge data byte on bus.

BSY (Busy)Indicates the busisbusy. X X

SEL (Select) Used during selection and X X
reselection to establish communication
link.

1o (Input/Output) Indicates direction X
of data flow on the data bus. If /O is true
the flow is from target to initiator.

MSG (Message) Indicates the data on bus X
is a message (only valid if C/D asserted).

C/D (Control/Data) Determines whether X
control or data information is on bus.

ATN (Attention) Requests message out X
phase (initiator has message for target).

RST (Reset) Hard reset of all devices. X X

In addition there are 8 data lines and one parity line that
are driven by both devices.

SCSI Bus Phases
The SCSI architecture defines eight distinct bus phases

that define the logical characteristics of the SCSI bus:

¥ BUS FREE phase. Indicates when no SCSI device is ac-
tively using the bus.

B ARBITRATION phase. Allows one SCSI device to gain con-
trol of the bus.

® SELECTION phase. Allows an initiator to select a target.

B RESELECTION phase. Allows the target to reconnect to
the initiator.

B COMMAND phase. Allows the target to request command
information from the initiator.

scsl
Bus

® DATA phase. Provides data transfer between the initiator
and the target.

m STATUS phase. Provides status information from the
target to the initiator.

® MESSAGE phase. Allows the transfer of messages between
the initiator and the target.

The first four phases allow devices to contend for access
to the bus and establish the physical data path between
the initiator and the target. The last four phases are called
the information transfer phases because they are used to
transfer data and control information over the data lines.
The SCSI bus can never be in more than one phase at any
given time. However, all devices can arbitrate for access
to the bus. The following is a simple example of phase
sequencing during a disc transaction:

Phase Comments

BUSFREE No device on bus.

ARBITRATION Initiator (host) arbitrates for bus.

SELECTION Host establishes contact with target.

MESSAGE OUT Host identifies itself to the target.

COMMAND Host issues command (e.g., read or
write).

MESSAGE IN Target indicates it will disconnect
and then drives the bus to
BUSFREE.

BUS FREE Target is detached from the bus
while a seek is in progress.

ARBITRATION Target isread and reestablishes

and RESELECTION alink to the host.

MESSAGE IN Target identifies itself to host.

DATAIN or OUT Data is transferred.

STATUS Target reports on transfer status.

MESSAGE IN Command complete (done).

BUS FREE

Bus Access Phases

BUS FREE Phase. This phase indicates that no device is
using the bus and that it is available for use. BUS FREE is
detected by the BSY (busy) and SEL (select) signals being
false.

ARBITRATION Phase. Arbitration allows a device to gain
control of the bus to initiate a transaction such as a data
transfer, or to send a message or command. To gain control
of the bus, a device (the initiator) first checks to see if the
bus is free. If the bus is free the device asserts the BSY
signal and sets its own device ID on the data lines. If more
than one device is contending for the bus, the device with
the highest priority gains access to the bus. The device that
loses arbitration starts all over again and the device that
wins asserts the SEL signal to end arbitration.

SELECTION Phase. After a device has gained control of the
bus the SELECTION phase is entered by selecting the target
device for the transaction. Target device selection is ac-
complished when the initiator sets the data bus lines to
the OR of its SCSI ID bit and the target’s SCSI ID bit, and
asserts the ATN signal. The target will respond by asserting
a MESSAGE OUT phase requesting an Identify message from
the initiator. The Identify message establishes the physical
data path between the initiator and the target. The initiator

replies with a message indicating to the target whether it
can handle target disconnection, and it determines if the
target can handle synchronous data transfer. If an SCSI
implementation does not support messages the target will
go directly to the COMMAND phase.
RESELECTION Phase. When the target decides to disconnect
from the bus temporarily, the RESELECTION phase is used
to reestablish connection with the initiator to continue a
transaction. The target device disconnects to free the bus
for other devices to use when it anticipates a significant
delay during the next data transfer. For instance, during a
disc /O operation the disc can disconnect from the bus
while it switches heads, does a seek, or empties its control-
ler’s buffers. Before disconnecting from the bus, the target
sends the messages Save Data Pointers and Disconnect to the
initiator. The Save Data Pointers message tells the initiator to
save the pointers to the current locations in its memory
where the data is being transfered. The pointers are restored
when the target reconnects to the initiator. When the target
is ready to resume data transfer it must wait for BUS FREE,
arbitrate for the bus, and then reselect the initiator. In imple-
mentations where there is no ARBITRATION phase the RE-
SELECTION phase cannot be used. This also implies that
the target device is not allowed to disconnect from the bus.
Series 300 and Bus Access. The Fujitsu chip controller
used on the Series 300 interface card provides a very flex-
ible SELECT command. For the host (initiator) to arbitrate
and select a target, the host first writes the target ID bit to
the TEMP register on the chip, and then issues the SELECT
command to the chip. The chip handles the ARBITRATION
and SELECTION phases, and will interrupt with one of three
possible conditions:

B Command complete interrupt (selection completed).
This indicates that the arbitration was successful and
the target device responded to the SELECTION phase.

® Command complete interrupt (arbitration for the bus
failed).

® Time-out interrupt (the target device did not respond,
possibly because the device was powered off, or the de-
vice at the bus ID is not present).

Information Transfer Phases

The information transfer phases are used to transfer data
or control information over the data lines. These four log-
ical phases are distinguished by three control lines: MSG,
C/D, and I/0 (see Table II).

Table I
SCSI Information Transfer Phase Coding

Control Line Phase Direction of Transfer
MSG CD 1O

0 0 0 Data Out Initiator to target
0 0 il Data In Target to initiator
0 1 0 Command Initiator to target
0 1 1 Status Target to initiator
1 1 0 Message Out Initiator to target
1 1 1 Message In

Target to initiator

An important characteristic of SCSI is that the target
drives the three control lines, and therefore controls all

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 41

changes from one information transfer phase to another.
The initiator can request a MESSAGE OUT phase by asserting
ATN. The initiator might use this feature to gain the attention
of the target under special circumstances. For instance,
suppose the host has decided that some type of catastrophic
failure has occurred during the DATA phase (e.g., a parity
error). The host (initiator) will assert ATN, and when the
target recognizes the ATN condition, it switches the bus
phase to MESSAGE OUT and allows the host to send a mes-
sage. When this situation occurs for the Series 300 an Abort
message is sent that tells the target to clear the current
command and all status and data buffers, and allow the
bus to go to BUS FREE immediately. The host may then
attempt to retransmit the entire transaction or issue an error
to the process that made the transaction request.

The REQ/ACK signal lines provide the handshake protocol
used to control the asychronous and synchronous transfer
of information during the information transfer phases. Each
REQ/ACK handshake allows the transfer of one byte.
Asynchronous Data Transfer. The target uses the 1/O signal
to control the direction of transfer. If /0 is true the direction
is from target to initiator (e.g., read), and if /O is false the
direction is from initiator to target (e.g., write). Fig. 2 illus-
trates the REQ/ACK handshake protocol which is repeated
for each byte transferred. The SCSI asynchronous data rate
is 1.5 Mbytes/s.

Synchronous Data Transfer. Asynchronous data transfer
is the primary mode available in SCSI. However, synchro-
nous data transfer is possible during DATA IN and DATA OUT
if before transfer the initiator and target agree to this mode.
When the synchronous mode is established the devices
also agree on a minimum period between REQ and ACK
signals and the maximum REQ/ACK offset. The REQ/ACK
offset is used to determine the number of REQs the target
will send in advance of the number of ACKs received from
the initiator. During synchronous transfer the target does
not wait for the ACK signal from the initiator before sending
the next REQ signal to send or receive the next byte. The
target will continue in this loop until the specified REQ/ACK
offset. It will then compare the number of REQs with the
number of ACKs to verify that all data has been transfered.
The SCSI synchronous data rate is 4 Mbytes/s.

COMMAND Phase. When the target is ready to accept a com-
mand from the initiator it will drive the SCSI bus to COM-
MAND phase. The initiator will then send a command such
as a read or write to the target.

DATA Phase. When data flows from the target to the host,
we refer to this as the DATA IN phase, while DATA OUT indi-
cates that data is going from the host to the target. This is
the only information transfer phase that allows the synchro-
nous data transfer option described above. For all other
phases data must be transferred asynchronously.
MESSAGE Phase. When the MSG line on SCSI is asserted
the data on the bus is interpreted as message bytes. Like
the DATA phases, MESSAGE IN indicates that the target is
sending a message to the host, while MESSAGE OUT indicates
the message is going from the host to the target. Message
bytes are used to help establish and coordinate the environ-
ment for data transfer. For instance, the Identify byte sent
by the host during MESSAGE OUT identifies the host to the
target and also indicates to the target whether it can handle

42 HEWLETT-PACKARD JOURNAL OCTOBER 1988

disconnects and reconnects during data transfers. In a simi-
lar way, the target sends the host a Disconnect message
to alert the host that it will immediately disconnect from
the bus and drive the bus to BUS FREE. Messages are usually
single bytes, but under certain situations are multiple bytes.
For instance, extended messages are sent by the initiator
to the target to determine whether synchronous transfer
is feasible, and if so, to establish the synchronous data rate.
During a transaction the MESSAGE OUT phase is initiated
by the target in response to the ATN signal.

STATUS phase. The STATUS phase enables the target to in-
form the intitiator of the status of a transaction. After the
target has completed a data transfer it sends one status byte
back to the initiator. If the target sends a zero, the transac-
tion completed normally. A nonzero status indicates that
the target has additional status to send.

In the Series 300 implementation, if the status byte re-
turned by the target is nonzero, we always request extended
status. The Request_Sense command provides complete
diagnostic results of the previous transaction.

In addition to bad status, other types of problems may
occur. The Fujitsu chip may report parity errors or
hardware errors that occurred during a transfer. Another
error occurs when a time-out occurs. Whenever any hard-
ware activity is initiated, a timer is started, and if the timer
times out we assume a hardware failure has occurred.

Our error recovery philosophy is to give most transac-
tions a second chance and no more. For instance, if at any
point during a transaction a parity error occurs or a timer
times out we always retry the transaction. We do not try
again after a failure on the retry. The only exception to this
second-chance rule is when the target reports through ex-
tended status that it could not recover from a drive error.
In this situation we assume that the device’s controller is
smart enough to retry the transaction itself.

Series 300 and Information Transfer. The controller chip

provides three methods of data transfer:

® Manual transfer. The host processor controls handshake
lines.

® Hardware transfer with fast handshake. The chip con-
trols the data transfer and the processor feeds the bytes
to the controller’s buffers.

® Hardware transfer with DMA.

Manual transfer is currently used for transferring mes-
sages and status bytes over the SCSI bus. The fast hand-
shake option of the Fujitsu chip is used for transferring
commands, while the hardware transfer with DMA is used
for transferring data buffers. When a DMA channel is un-
available, the hardware fast handshake option is used to
transfer data buffers.

A Disc Transaction

The following discussion summarizes the interactions
that occur in the operating system (HP-UX), in the disc
driver, and on the SCSI bus when a typical disc transaction
is performed.

A disc transaction starts with a disc /O request from the
file system or other higher-level portion of the operating
system. The request is passed to the driver via a buf header.
This structure includes such information as the system
device identifier, the data buffer address in memory, the

block offset on the disc, and the byte count of the buffer.
The system device identifier encodes the major and minor
numbers that are used by the UNIX system to specify spe-
cial device files. The major number selects the appropriate
device driver (in this case SCSI) and the minor number
specifies the select code, bus ID, and unit number. The
block offset on the disc is the logical offset viewing the
disc as a linear array of blocks. The byte count given in
the buf must be converted to a block count appropriate for
that device.

When the system begins to service the /O request and
the driver gets permission to use the interface, the driver
goes through the ARBITRATION and SELECTION phases to
gain access to the disc. The disc (now the target) responds
with a MESSAGE OUT and gets the Identify message trom the
host (initiator). Through the Identify message the driver tells
the disc whether it can handle disconnect and reconnect
during subsequent DATA phases. The driver asserts the ATN

Target Initiator Target
v v
Lines REG
v Y

'
REQ |
| |
[!
! 'REQ No | l
) True — |
| ? I
[Yes |
| » |
| Aead Data Lines |
| v '
Assert ACK B
b4
v
> < e No
- pL
| Yes $ | +‘|’es
No ' Read Data
v : 4 Lines
¥
v Release
| | |
v v v

(a) Read (target to initiator, IO signal = true)

___i* i

(b) Write (initiator to target, /O signal = false)

line to maintain the MESSAGE OUT phase and determines
whether the disc is capable of synchronous data transfer.

Once the environment for data transfer is established,
the driver issues to the disc the 6-byte or 10-byte command
(COMMAND phase) that designates whether the operation is
a read or write. When the disc receives the command it
sends Disconnect and Save Data Pointers messages to the host,
and then disconnects from the bus. The driver frees the
interface for other processes to use while the disc is busy
processing the command. The disc controller decodes the
command to determine if it is a read or write operation,
and then causes the physical mechanism to perform a seek
operation. When the disc is ready to start the data transfer
it reselects (RESELECTION) the host and data transfer begins.
The disconnect (MESSAGE OUT), reconnect (RESELECTION)
and data transfer (DATA IN, DATA OUT) phases may happen
several times during the transaction. When all the data has

Initiator

Y

N_o.
7

Yes
v

Change or Release
Data Lines

v

Release
ACK

Fig. 2. REQ/ACK handshake protocol.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 43

SCSI and HP-IB

People are often comparing the HP-IB interface bus that is the
standard bus for HP 9000 Series 300 Computers with our newest
interface: SCSI. Both buses have many features in common, as
well as some significant differences. The following is a short
summary comparing the two interfaces

HP-1B SCSI
DesignGoal Instrument Bus Disc Interface
(later adapted for
high-speed interface)
Transfer Asynchronous only Asynchronous and
Protocol Synchronous
Bandwidth ~1.2 Mbytes/s burst Async ~1.5 Mbytes/s
rates Sync. ~4 0 Mbytes/s
burstrates
Features Devices may be Devices must always
powered off be powered on
8 devices per bus 7 devices perbus
Parity No Yes
Bus Any style (e.g, star) Must be linear
Topology except closed loop
Physical One connector per Two connectors per
device device: one forinput
and one for output
Connectors are Connectors have
sexless male and female
ends
Devices can be daisy- Devices must be
chained; connectors daisy-chained
are stacked serially
Termination not Bus mustbe
required (open- terminated
collector drivers
eliminate need for
terminators)
Cable Maximum cable Maximum cable
Length length 8 meters total length 6 meters—
and at most 1 meter single-ended only The
perdevice differential option
offersupto 25
meters but is
unavailable on
the Series 300
Handshake 3handshake lines: 2 handshake lines:
single talker and single talker and
multiple listeners single listener
High-speed
peripherals
only use single talker
and single listener
Addressing Only hosts can select Hosts can select
devices Devices can targets, and targets
respond to parallel canreselect hosts
polls Thus, no bus Bus arbitration is
arbitration is required required
Primary HP-1B addressing
establishes point-to-point
communication

In addition to the interface comparison, we can also compare
the two disc protocols. In fact they are quite similar, Command
Set 80 (CS-80), which is the HP-IB disc protocol, uses a command
packet of variable size that allows a combination of transparent
commands, addressing commands, and CS-80 commands
SCSI uses a fixed-format packet of either 6, 10, or 12 bytes
Message bytes are used in SCSI to complement the command
by establishing the environment

Example comparing read commands:

CS-80(HB-IB) SCsl
Device Unlisten Bus Arbitrate
Addressing Talk (controller) Select device

Listen (device) Identify Message In

byte

byte 0 Setunit0 Read Command
byte 1 Setvolume 0 Address byte (set unit)
byte 2 Setaddress Logical block address
byte 3 Dataaddress Logical block address
byte 4 Dataaddress Logical block address
byte 5 Dataaddress Logical block address
byte 6 Dataaddress Reserved
byte 7 Dataaddress Transfer length (upper byte)
byte 8 Dataaddress Transfer length (lower byte)
byte 9 No-Op Control byte
byte 10 Setlength
byte 11 Datalength
byte 12 Datalength
byte 13 Datalength
byte 14 Datalength
byte 15 Read command

The HP-IB device addressing is almost equivalent to the ARBI-
TRATE and SELECTION phases of SCSI. The Message In byte in
SCSI selects the unit and also indicates to the target whether
the host can accept disconnects Although CS-80 commands
appear longer, the difference in system performance is negligi-
ble. The No-Op in CS-80 is required because of the HP-UX C
compiler. CS-80 uses a transfer length defined in bytes and SCSI
uses the number of blocks

been transferred, the status (STATUS phase) is sent to the
host.

A requested data transfer may be broken into a series of
shorter requests based on the device’s requirements. The
target device drives the bus phase and the host must be
prepared for a phase change anywhere during a data trans-
action. Typically phase changes occur on logical block
boundaries, but this is not guaranteed, and no assumptions

44 HEWLETT-PACKARD JOURNAL OCTOBER 1988

can be made by the host when the phase change may occur.
A typical transaction is shown in Fig. 3.

Conclusion

Our objective in implementing SCSI on the Series 300
was to provide an industry standard interface that added
flexibility, expandability, and improved performance to
our product family. Our customers wanted to use peripher-

als unavailable from HP, and in some cases, SCSI enables
them to do this. As an example, CD ROM support came
without any change in the driver. Other customers hoping
for plug-and-play compatibility wanted to buy inexpensive
peripherals to lower their system cost. Here caution is
necessary. SCSI does not automatically imply plug-and-
play compatibility. SCSI merely sets up some basic framie-
works for hardware and software designers. Options and
vendor-specific commands are plentiful. Within com-
mands there are frequently vendor-specific fields or op-
tions. In hardware, SCSI allows two different types of trans-
fer, single-ended for short distances and differential for
longer distances, which are incompatible. SCSI allows a
variety of connectors and cabling. With this type of variabil-
ity, any two devices may not be mutually compatible.

Perhaps the greatest advantage afforded by SCSI is its
simplicity in design. This goal is admirably achieved. It
simplifies the design and development of software drivers,
and most important, it expedites testing and system integra-
tion.

Acknowledgements

The SCSI product on the Series 300 was to some extent
a “‘grass roots”’ effort. My thanks to John Byrnes as the key
person in helping to get the project off the ground. Adding
a second disc interface to the long tradition of HP-IB was
not easy and John worked hard in achieving this success.
Evan James came onto the SCSI project as product market-
ing manager and turned out to be a tremendous success in
keeping the project moving and balancing the lab’s require-
ments with those of marketing. Evan and John did an excel-
lent job driving the team to get the job done.

Thanks to Shaw Moldauer for slipping an SCSI interface
into the Model 319 almost undetected and thanks to Dave
Kinsell for designing the Model 350 board.

The debugging of the software during critical moments

v * v
Disc Comm‘lﬂd Dltl Dltu - Dah Status
Transaction Pac Pm
Identify DATA Save Data Disconnect
Message In Phase Pointers Message]

anate to '-°9'°a| Logical Loglcal
Controller Block Block Block
Below "/_J n\‘
this Line
Physical i Physical (R Physical
Block Block Block

(One or More Physical Blocks)

Fig. 3. Data packets for a typical disc transaction on the
SCSI bus. The Command packet contains the information for
setting up the environment for data transfer. Information such
as the Identify and the Synchronous messages are contained in
this packet

in its life cycle was helped by Steve Wolf and Drew Ander-
son. The bugs that are found when hardware and software
are being developed simultaneously are sometimes very
difficult to contend with. When megabytes of data are flow-
ing over the bus every second and only one or two bytes
are occasionally wrong, it is a challenge beyond belief.
Steve’s help at some of these moments of despair was in-
valuable.

People who are able to straddle that magical wall that
separates hardware from software are special people to HP
indeed. I was fortunate to work with an excellent team.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 45

X: A Window System Standard for
Distributed Computing Environments

The X Window System allows applications running in
different environments and on different machines to
communicate high quality, graphical user interfaces over

a network.

by Frank E. Hall and James B. Byers

try standard for supporting windowed user inter-

faces across a computer network. It was originally
developed at the Massachusetts Institute of Technology
(MIT) as part of Project Athena, a large research project
investigating networks of computing systems from multiple
vendors. MIT has facilitated the acceptance of X as a stan-
dard by placing it in the public domain, distributing the
standards definition documents and the source code of
sample implementations for public use for anominal fee.

The X Window System is network transparent, which
means that an application running on one vendor’s com-
puter can display a high-quality, graphical user interface
to a user sitting either at that same system or at another
computer across the network, perhaps made by a different
vendor. The location of the application’s target display is
not material to the application, and is determined by a
parameter when the application is run.

X is virtually independent of the underlying hardware
and operating system. The X software adjusts for differ-
ences in display or computer architecture automatically as
the packets of interactive graphical information are ex-
changed between application and display according to a
well-researched, efficient protocol. This protocol forms the
heart of the X Window System standard. Since applications
participate in this protocol through a standard programmat-
ic interface library, applications written to the X library
are highly portable to other computer systems that support
X.

These features combine to make the X Window System
a significant enabling technology that allows application
developers, end users, and computer hardware vendors to
explore the possibilities of the distributed computer envi-
ronment relatively unencumbered by proprietary barriers
that have prevented such seamless integration in the past.
For application developers, X promises easier porting,
which can allow them to reach a wider market while spend-
ing less time on porting and more time on writing better
software. For end users, X promises more and better soft-
ware, and more choice in hardware.

Accordingly, support for X has gained rapid momentum
among hardware vendors. HP was among the very first
computer manufacturers worldwide to sell X as a product

T he X WINDOW SYSTEM* has emerged as the indus-

*The X Window System is a trademark of the Massachusetts Institute of Technology

46 HEWLETT-PACKARD JOURNAL OCTOBER 1988

when in March 1987 it began shipping the X Window
System for HP-UX, HP’s version of the UNIX® operating
system. X is now publicly endorsed as a standard by over
40 computer vendors in the U.S.A., Europe, and Japan,
including virtually every major manufacturer of UNIX
work-stations.

The increasing power of the distributed computing envi-
ronment, as demonstrated by the other articles in this issue,
makes X a very timely technology. It has integrating impli-
cations for the areas of user interface, graphics, and net-
working. It also presents new challenges for addressing the
emerging distributed computing market.

In this paper, we will compare the architecture of X to
conventional window systems, and describe the industry
efforts to support X as a standard.

The Basics of Window Systems

A window system is a low-level set of interactive
graphics primitives that provide an application with effi-
cient means to create, manipulate, and destroy communi-
cation regions or windows on the user’s display.! The ap-
plication uses the primitives to send simple graphics or
multifont text in color or black and white to the window.

The basic unit out of which the window system builds
both text and graphics is the pixel, which is the smallest
directly accessible graphical element of the display, usually
a very small squarish dot. On a monochrome display the
pixel’s value can be represented by a single bit. On a color
display, the pixel contains an integer color value consisting
of multiple bits, depending on the color depth of the dis-
play. For high performance, the pixels are typically ac-
cessed by memory mapped IO techniques. Displays of this
type are generally referred to as bit-mapped displays.

The window system allows an application to own many
windows on the bit-mapped display at the same time, and
several applications to share access to the display simul-
taneously. The window system provides such basic output
functions as clipping, drawing, text placement, color map
management, and output multiplexing to multiple win-
dows. It provides basic input functions by collecting and
routing to the appropriate applications any events received
from the user’s input devices, which typically consist of
at least a keyboard and a pointing device such as a mouse.
This allows the applications to share the input devices

without having to engage in explicit arbitration among
themselves.

Since user interface style is an evolving field, it is desir-
able that the window system remain free of a specific user
interface policy so that it can efficiently implement alterna-
tives. For example, the methods by which the user employs
the input devices to direct the placement, movement, siz-
ing, and shuffling of windows on the display, or to desig-
nate which window shall receive keyboard input, is a ques-
tion of user interface policy that can be delegated to a
higher level of software called a window manager. Simi-
larly, the window system need not contain specific user
interface components such as menus or scroll bars. These
style building blocks can be delegated to a higher level of
software called a user interface toolkit. Finally, the window
system should not unduly restrict the type or number of
simultaneous terminal emulators through which the user
accesses window-dumb applications that were written to
talk with a serial terminal. The ideal window system is
able to support a wide variety of possible window mana-
gers, toolkits, and terminal emulators.

These items often accompany a window system and oc-
casionally become entangled with its design. We will return
to these items in more detail below with regard to window
system architecture.

Convential Window Systems

Conventional window systems allow window applica-
tions to access the display device directly through calls to
the operating system kernel, which is often extended to
facilitate arbitration of display resource conflicts and win-
dow system communication. These applications must
therefore reside on the local system.

A schematic of a conventional window system architec-
ture is shown in Fig. 1. Here window applications A and
B, linked with the window system library, share access to
the display while terminal-based application C, which nor-
mally talks to a serial terminal, appears through a window
provided by a terminal emulator module for backwards
compatibility with the time-sharing environment. While
the terminal emulator must reside locally, C may reside
either locally or on a remote system that has been accessed
through a network service that simulates a serial connec-
tion. In either case, C has no knowledge that it is talking
to anything other than an ordinary serial terminal. User
operations to shuffle and arrange the visible windows are
provided by the window manager module, which is tightly
coupled to the kernel and communicates with the window
system library code linked with each window application.

The window manager and terminal emulator modules
are often so closely integrated with the window system
that alternatives cannot easily be substituted. User interface
components such as scroll bars or menus, while they may
be present in the window manager and terminal emulator,
are often not available to the application developer.

Conventional window system architecture is more varied
and complex than this simple diagram can indicate. For
example, the window manager and terminal emulator may
be completely implemented in the kernel, or window man-
agement may be supported by redundant code linked with
the window system library into each application.

While conventional window systems were a great leap
forward from the terminal-based time-sharing environ-
ment, their greatest problem in a distributed computing
environment stems from their greatest strength, which is
the direct display access that they provide for applications.
Since this requires that window applications reside locally
with the display, they cannot be accessed on a remote
system. To access a remote application the user must go
through a termina! emulator, thereby dropping back to the
previous era’s user interface paradigm.

Conventional window systems are therefore inherently
limited in the distributed computing environment by their
stand-alone, non-networked design.

The X Window System

The principal feature that distinguishes X from a conven-
tional window system is its network transparency.” The X
Window System allows window applications, or clients,
to access the display only through the display server, which
is a separate process that arbitrates resource conflicts and
provides display, keyboard, and mouse services to all
clients accessing the display. X can support a spectrum of
hardware displays ranging from small monochrome units
to advanced graphics systems with up to 32 bits of color
per pixel.

The client and the display server exchange information
only by means of the X Window System protocol which
can be implemented via any reliable byte stream. In the
HP-UX implementation of X, as in most others, this byte
stream is implemented as a socket, which is a logical data
connection between two processes on the network. Clients
may reside locally with the display server, or on a remote
system across the local area network (LAN). A performance
optimization bypasses physical LAN access when the client
and display server are local to each other.

Because the client program and the display server are
two separate entities, the target display can be specified at
the time an application is run. The client program is indif-
ferent. It sends out X protocol commands, which the net-
work services route to the target display server, which then
executes the command.

Fig. 1. Conventional window system architecture.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 47

Note that the notion of a display server complements the
notion of servers as commonly used in discussions of net-
works. Servers aon the network provide applications with
access to resources such as files, printers, or computational
power. The display server rounds out that picture by mak-
ing a given display on the network available to applications
as a user interface resource.

In Fig. 2, window applications A and B, linked with the
X Window System library, share access to the display while
terminal-based application C again appears through a win-
dow provided by a terminal emulator client. User opera-
tions to shuffle and arrange the visible windows are pro-
vided by the window manager, which is an otherwise ordi-
nary client whose function is to communicate with the
display server to provide user interface policy for the user
to manage the display layout. By definition the window
manager does not specify how the user interacts within an
application. In fact, applications can be written to execute
properly with no window manager present. Sometimes this
is desirable.

The window manager, user interface toolkit, and termi-
nal emulator are cleanly separated from the X window
system, so the user can substitute an alternative if desired,
or even omit the item. Note that application B has chosen
to use a user interface toolkit, while A has not.

Applications A, B, and G, the window manager, and the
terminal emulator may be either local to the display server
or on a remote system, or in any combination thereof. The
only restriction is that the underlying operating system
must support multitasking if the display server and a client
are to reside on the same system.

For multitasking systems, it is customary for the window
manager and display server to reside locally, and for the
terminal emulator to reside on the system where its termi-
nal-based application resides. A single-tasking system can
execute only the display server or a single client at a time.
In this case the display server can be used as a viewport
onto the network. The window manager and all other
clients can reside on computational servers elsewhere on
the network.

The components of the X Window System standard itself
are small in number. At the lowest level, it is simply a
document that defines the X protocol.® At the programmatic
level, it is a document that describes a standard program-
matic interface, or window system library, by which an
application participates in the protocol.* To facilitate ports
of the X system, the MIT distribution contains source code
of sample implementations of the X library and display
server.

While the X library description distributed by MIT is
defined for access from the C programming language, pro-
grammatic interfaces for other languages can be and have
been developed. HP supplies a Fortran bindings package
for the X library as part of its X Window System product.

Window Manager

At the outset, students of window systems sometimes
confuse a window manager with the window system. The
following scenario illustrates the role played by the win-
dow manager working in conjunction with the capabilities
of the X Window System. Fig. 3 shows how the display

48 HEWLETT-PACKARD JOURNAL OCTOBER 1988

might look after the activities described in the scenario.

Suppose that the user has just brought up the X Window
System through a script that will later start some client
programs. At this point, only the X Window System is
running, so the display shows only blank background,
which is referred to as the root window. The system cursor,
controlled by the mouse, rests in the center of the display.
When the script starts the window manager for that display,
the appearance of the display does not change. The script
also starts two other client programs at the beginning of
the session. One is a simple clock program that displays
the current time in a corner of the screen. The second is a
terminal emulator that opens a window on the display and
waits for the user to type a command.

When the user presses the right mouse button, the win-
dow manager, which has requested the display server to
notify it of all mouse events that occur when the cursor is
directly over the root window, receives a notification of
the event in its input queue. Let us assume that the user
interface policy of this window manager honors a right
button press over the root as a command to present a menu,
the contents of which the user has specified in a start-up
file. In actuality the meaning of this button event could be
changed through the start-up file, which would allow a
left-handed person, for example, to reverse the window
manager’s meaning for the left and right buttons.

After notification, the window manager prepares the
menu contents and presents it on the display using a com-
ponent from a popular user interface toolkit. Since this
toolkit is also used by many applications, the user is famil-
iar with the operation of this type of menu. The title of the
menu is Launch, and it contains the names of the programs
the user most often wants to start up. The user selects a
program name from the menu. The window manager exe-
cutes the instructions that the user specified in the start-up
file as corresponding to that selection, which in this case
is to start up a program directed to the local display that
provides the user with a control panel that is used to

Client

U.l. Toolkit = User
Interface Toolkit

Fig. 2. X Window System client-server architecture

monitor and direct various processes across the network.

The new program establishes contact with the display
server, opens a window on the screen, and draws the con-
trol panel. When the user clicks the mouse over the appro-
priate buttons on the control panel, a simulation program
begins on a large mainframe computer. The simulation pro-
gram sends its graphical output across the network to a
new window that it opens on the user’s display.

While watching the simulation, the user uses the Launch
menu to select a program that enables the user to browse
through the contents of a remote file system, and then later
the user brings up an application to read electronic mail.
At this point the screen is too cluttered so the user iconifies
one window by bringing up a menu specific to the window
manager, and selecting the iconify option. This changes the
appearance of the system cursor to indicate that the user
needs to pick the window to iconify. The user does this
by moving over to the terminal emulator window and click-
ing on it. The window manager immediately unmaps (re-
moves without destroying) the terminal emulator window
from the display, and as a placeholder puts in a convenient
spot on the display a small, named, meaningful symbol of
the application, called an icon. In this way the user also
iconifies the electronic mail program. The user can restore
these windows later and continue interacting with these
applications.

User Interface

User interface toolkits offer the programmer higher-level
tools than the X library with which to program. As an
example, in the X Window System itself there are primi-
tives to draw lines, move rectangles of pixels, and so forth.
Toolkits, on the other hand, provide the programmer with
easy ways to create and manipulate useful interactive
gadgets such as menus, buttons, scroll bars, text entry

fields, and so on. These tools greatly reduce the effort that
the programmer must put into creating the user interface
portion of a program.

To promote acceptance of the X Window System as a
standard, HP developed a user interface toolkit based on
X, called Xrlib, and contributed it to the MIT public distri-
bution of X Version 10.4 in December of 1986. HP sub-
sequently enhanced this toolkit and ported it to the next
revision, X Version 11. It provides a useful set of 13 interac-
tive components called field editors, including pop-up
walking menus, panels, scroll bars, title bars, a variety of
buttons, and fields for entering, editing, and displaying
text or graphical data.

Several user interface toolkits have now been contributed
to the MIT public X distribution, offering a wide range of
capability. Perhaps the most significant is Xt which is a
set of low-level toolkit procedures called intrinsics. The
Xt intrinsics were developed in a collaborative effort by
Digital Equipment Corporation, Hewlett-Packard, Mas-
sachusetts Institute of Technology, and others. The intrin-
sics provide a flexible, powerful foundation upon which
to construct interactive components, such as buttons, scroll
bars, menus, and other items which are collectively called
widgets. The X Consortium has voted to accept Xt as part
of the X standard. HP is developing a useful set of widgets,
based partly on the Xrlib functionality, that has been con-
tributed to the MIT public distribution to promote accep-
tance of the Xt intrinsics.

Terminal Emulator

The HP X Window System product includes hpterm, a
terminal emulator that approximates an HP terminal, com-
plete with softkeys. This allows the HP workstation user
to access a broad range of terminal applications that are
compatible with this generation of HP terminals.

& menupanel b menupanel d

Boton
Chlnn mmgr2 unpo
o [Goonae w2 1
S
Qunu bottom H/L

Fig. 3. Final screen for the sce-
nario presented in the text. The
Launch menu and the menu con-
taining the iconify command are
pop-up menus, they are called up
by clicking the proper mouse but-
ton and go away after a selection
is made. The two icons for the ter-
minal emulator and electronic mail
applications are in the upper right
corner.

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 49

The MIT X distribution contains source code for a Digital
Equipment Corporation VT100 and a Tek 4010 terminal
emulator called xterm, which is also included in HP’s X
Window System product. It allows applications written for
these older Digital Equipment Corporation and Tektronix
Inc. terminals to be accessed directly from the HP worksta-
tion display.

The HP workstation user can activate any number of
these terminal emulators in any combination, choosing the
right one for the application to be accessed.

Support

The 1986 release of X, Version 10.4, was the first version
with multivendor support. While this has allowed solution
creators to begin development of X Window System solu-
tions, developers soon recognized that to make X a solid
standard, there was a need for increased capability and
backwards-compatible extensibility of the X protocol to
incorporate new functionality that might arise. This pro-
tocol extensibility would allow X to improve without
breaking applications written earlier. Such enhancements
to the design of the protocol, X library, and display server
resulted in Version 11 of X, the sample implementation of
which MIT formally released in March, 1988.

While the technical innovations in X are quite impres-
sive, what really sets X apart from other window systems
is its openness as a standard and its broad base of sup-
port.>®78 in coordination with MIT, a consortium of com-
panies has been formed to define enhancements and to
divide the engineering effort needed to develop standard
descriptions and sample implementations of those en-
hancements. MIT chairs the consortium but the consortium
defines the extensions to X. This should ensure the stability
and broad support of X for the foreseeable future.

MIT and the X Consortium administer the release of the
public-domain X Window System code as well as the con-
tributions of the various supporting vendors. In this way
the software and enhancements are available to all in-
terested parties at the same time.

X Consortium membership includes HP, Apollo Com-

50 HEWLETT-PACKARD JOURNAL OCTOBER 1988

puter Inc., Apple Computer Inc., American Telephone and
Telegraph Co., Control Data Corp., Digital Equipment
Corp., International Business Machines Corp., Sun Micro-
systems Inc., Tektronix Inc., and Xerox Corp. This list rep-
resents a large segment of computer vendors in the techni-
cal market. Software vendors formally supporting the X
Window standard include Adobe Systems Inc., ApplixInc.,
and Cognition Inc.

X has been chosen by the X/Open committee, a group
that adopts UNIX operating system standards for a consor-
tium of U.S.A. and European computer vendors. Following
this lead, the recently formed Open Software Foundation
has adopted X as its window system standard. Work is also
occurring for formal acceptance of X by other standards
groups.

X is the beginning of a new generation of software and
systems design that takes a significant step forward in the
era of distributed computing environments. A seamless
integration of services in these multivendor environments
now appears possible, allowing the scaling of computers
to their appropriate tasks while maintaining open, produc-
tive access to their functions. A standard user interface
style, which would allow the easy porting of users between

computing systems and between applications, may not be
far behind.

References

1. D.S Rosenthal, “Toward a More Focused View,” UNIX Review,
June 1986, pp. 54-63.

2. R.W. Scheifler and J. Gettys, “The X Window System,” ACM
Transactions on Graphics, Vol. 5, No.2, 1986, pp. 79-109.

3. R.W. Scheifler, X Window System Protocol, X Version 11, Re-
lease 2, Massachusetts Institute of Technology, September 1987.
4. J. Gettys, R. Newman and R.W. Scheifler, Xlib - C Language X
Interface, X Version 11, Release 2, Massachusetts Institute of Tech-
nology, September 1987.

5. “11 Companies Back Windowing Standard,” Electronic En-
gineering Times, January 19, 1887, pp. 1,16.

6. “The Advantages of X,” Computer Graphics World, August
1987, pp. 57-60.

7. “DEC, HP, Nine Others Adopt MIT X Window as Standard,”
Electronic News, January 19, 1987, pp.1,6.

8. E. Lee, “Window of Opportunity,” UNIX Review, June 1988,
pp. 47-61.

Authors

October 1988

6 — Discless HP-UX

Scott W. Wang

Scott Wang served as proj-
ectmanager for a variety of
calculator software proj-
ects before he joined HP's
UNIX development team
Successively, he was a
project manager and R&D
scction manager involved
in HP-UX development for
the HP 9000 Series 300
Scott now is R&D manager at the Information Soft-
ware Division of HP and continues to be responsi-
ble for HP-UX software He came to HP in 1972,
when he joined the Calculator Products Division in
Loveland, Colorado. His BSEE degree is from the
Massachusetts Institute of Technology (1971) and
his MSEE degree is from the University of Michigan
(1972) Scottis amember ofthe IEEE He has con-
tributed two previous articies to the HP Journal He
was bornin Taipei, is married and has two children
He is an afficionado of high-fidelity audio, video,
and photography

10 " Discless File System
Debra S. Bartlett

Debbie Bartlett was re-
sponsibte for the HP-UX 6 0
fite system, particularly
the I/O and FIFO scheme.
She has since become a
project manager for the file
system and discless test-
ing Debbie attended Pur-
due University, where she
obtained a BS degree in
mathematicsin 1977 Her MS degree in computer
science is from Colorado State University (1982)
She was bornin Indianapolis, Indiana, is married,
and has two small daughters. Debbie's husband
is aproject manager atHP's Colorado IC Division
She residesinFt Collins, Colorado, and enjoys out-
door activities with her family

Joel D. Tesler

As the lead engineer of the
team that conceived and
builtthe original distributed
HP-UX environment, Joel
Tesler designed most of the
initial file system code and
the message interface Ina
' previous project, he de-

| signed a softkey package
and other environments for
the HP 84000-UX system. Joel came to HP in 1980,
when he joined the Logic Systems Division Heis
the coauthor of a paper on HP-UX operating sys-
tems presented at Uniforum 87, and he has previ-
ously contributed to the HP Journal He attended
the University of California at Davis, where he re-
ceived his BS degree in computer sciencein 1980
Joelwas borninLos Angeles and lives in Cuper-
tino, California. His favorite pastime is orienteering,
across-country race in which contestants navigate
through unfamiliar territory using only a compass
and a map

15 —Discless Program Execution

I Ching Hwang initiated and
i . managed the DUX project

Ching-Fa Hwang

| atHP Laboratories He can-
tinued to manage kernel
and integrated systems at
HP’s Information Software
Division and led their inte-
® gration into HP-UX prod-
ucts. He coauthored a
paper on the subject at
Uniforum 87, and a patent application describing
the DUX network pratocol includes his ideas Pre-
viously, Ching led two projects aimed at develop-
ing distributed data bases Before joining HP
Laboratories in 1979, Ching's professional activi-
ties included real-time process control, computer
architecture and processors, and multiple-proces-
sor operating systems. His BSEE degree is from the
National Taiwan University (1971), and his MS de-
greein computer science is from the University of
Utah (1974) Ching and his wife, who also works
for HP, have two sons and live in Cupertino, Califor-
nia. He is building a koi pond with waterfalls and
enjoys playing the piano

William T. McMahon

. The remote swapping
’{ scheme for the discless

Al

workstations was Bill
McMahon's primary proj-
ect. His previous develop-
ment assignments include
the graphics ROM for the
HP 9826 BASIC Release
1.0, and the linker and
assembler for Release 20
of the HP 9000 Series 200 HP-UX system He holds
a BA degree in philosophy from Ohio University
(1971) and an MS degree in computer science from
Colorado State University (1979) He came to HP
in 1979 Billis married and has two children Among
his favorite recreational activities are Tai-Chi,
cross-country skiing, hiking, and backpacking

20 —_Discless Network Functions

David O. Gutierrez

. As a member of the team

. developing the HP-UX 6 0
. software, David Gutierrez’
responsibilities included
the network functicns and
| transport, protocol and buf-
termanagement, and con-
figurability. Before joining
HP in 1985, he worked for
! Digital Equipment Corpora-
tion, Western Electric Company, and Bell Labora-
tories. David's main professional interests are the
UNIX operating system, special-purpose network-
ing protocols, and distributed operating systems
He attended the University of New Mexico, where
he received his BS degree in 1980, and did
graduate work in computer engineering at the
Ilinois Institute of Technology He has taught a proj-
ectbusiness class in a middle school and serves
as treasurer of the Parent/Child Education Center
inWindsor, Colorado, where he lives He was born
in Pueblo, Colorado, is married, and has two
daughters He has designed his ownhouse and en-
Joys woodworking, golf, skiing, camping, and “any-
thing that doesn't deal with computers

Chyuan-Shiun Lin

Distributed operating sys-
tems, data base systems,
and communications are
Chyuan-Shiun Lin's focal
professional interesis Be-
fore working on the distrib-
uted HP-UX system, his re-
2\ sponsibilities included data
base research at HP
Laboratories and work on
the HP-UX Release 2 0 for the HP 9000 Series 800
Before coming to HP in 1981, he worked in the data
processing field He has published anumber of pa-
pers on a variety of computer subjects and has
contributed to a protocol design for which a patent
is pending Chyuan-Shiun is a member of ACM His
BSEE degreeis fromthe National Taiwan University
(1970), and his master's degree in comptter sci-
ence (1976) is from the University of Utah Bomin
Taipei, he is married and has three children He
lives in Cupertino, California

27 __ Discless Crash Recovery

Annette Randel

‘ Crash detection andrecov-
ery, system reboot, self-
test, and the file system
cnode maps were among
Anny Randel's projects for
the HP-UX 6 0 system Pre-
vious responsibilities in-
clude work on the boot
ROMs for the HP 3000
Series 200/300 Computers
and the assembler and commands for the Series
200 She first joined HP in a summer-student posi-
tion in 1981, and two years later joined full-time

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 107

Anny's BS degree in computer science and com-
puter engineering is from Graceland College
(1981) and her MS degree in computer science is
from Colorado State University (1983). Born in
Roseville, California, she is married and lives in Ft
Collins, Colorado She sings for a pop/jazz group
and plays both clarinet and baritone saxophone
Her other hobbies include bicycling, triathions, run-
ning, skiing, softball, and water skiing

33 — Discless Boot Mechanism

John S. Marvin

A software engineer on the
HP-UX Release 6 0 project,
John Marvin developed a
number of commands for
discless operation. Before
he came to HP in 1984,
Johnworked as aprogram-
mer analyst for his aima
mater, the University of Vir-
ginia. Both his BS and his
MS degrees are in computer science (1981 and
1983, respectively). He was born in Brooklyn, New
York, ismarried, and lives in Ft. Collins, Colorado
Among his favorite off-hours activities are skiing
and ballroom dancing

Perry E. Scott
L] Perry Scott's primary
responsibilities for HP-UX
Release 6.0 were the sec-
ondary loader, discless
kernel initialization, disc-
less context for CDF, and
system clock synchroniza-
< tion He had previously
worked on Releases 50,
51, and 52 He has been
with HP since he earned his bachelor's degree in
electrical engineering from North Dakota State Uni-
versity in 1980 Perry has served in the Air National
Guard for six years He was born in Fargo, North
Dakota. is married, and lives in Ft. Collins, Col-
orado. Gardening and bicycling are among his
favorite leisure activities

Robert D. Quist
=S Among the HP projects
Robert Quist has worked on
since he joined HP in 1971
are a Lisp workstation,
third-party support, a Pas-
cal workstation and a boot
! ROM for the HP 9000 Series
200 system To the HP-UX

Y a Release 6 0 system he con-
AN tributed boot ROM revi-
sionsBand C Specialty boot ROMs, Pascal work-
stations, low-level drivers, and human interfaces
are Robert's special interests. His BE degree in
computer science is from Brigham Young Univer-
sity (1971) Born in Lethbridge, Alberta, Robert is
married and has eight children He lives with his
family in Loveland, Colorado. He is active in the
Cub Scouts and teaches Pascal programming
Robert enjoys birdwatching, camping, and reading
science fiction

37 _—Discless System Configuration

Kimberly S. Wagner
~' Kim Wagner's respon-
sibilities on the HP-UX Re-
lease 6 0 project included
the discless administration
tools and system software
integration. She came to
HPin 1986 She holds aBS
degree in computer sci-
ence and mathematics
v from the University of
California at Davis (1983) and an MS degree from
Colorado State University at Ft. Collins (1986). Kim
isamember of ACM and SIGGRAPH. She was born
in Redwood City, California, and now lives in Ft
Coliins, Colorado

39— S8CSsl

Paul Q. Perimutter

Paul Perlmutter's respon-
sibilities in the HP-UX Re-
lease 6 0 project included
the mass storage software,
the driver support, and
backup strategies High-
performance mass storage
devices for UNIX systems
were the main focus of the
positions Paul held before
joining HP in 1985 His PhD and MS degrees in
mathematics are from the University of Colorado
(1975and 1971) He has held a position as a col-
lege professor of mathematics and has published
several articles on the subject Paul serves as pres-
ident in his synagogue in Ft Collins, Colorado,
where he lives He was bornin New York and has
two daughters His favorite pastimes are bicycling,
photography, and hiking, but he spends most of
his spare time with his children

46 — X Window System

Frank E. Hall

Frank Hall is a project man-
ager for user interface pro-
ductivity tools and has hetd
a similar position inthe de-
velopment of the Xrlib and
HP X Widget user interface
libraries for HP-UX. Before
coming to HP in 1979, he
worked as a system analyst
for the Computer Sciences
Corporation, where he helped develop aworldwide
computer network for communications with the
space shuttle and geosynchronous satellites. At
HP, Frank has worked as a software engineer on
operating system firmware for the HP 71B Hand-
held Computer and application software for the HP
Portable PLUS laptop computer He has published
three articles in the proceedings of the HP Software
Engineering Productivity Conference. Frank holds
aBA degree in mathematics from Florida State Uni-
versity (1972) and an MA degree in anthropology
from the University of Texas at Austin (1979). He
isamember of the ACM He was borninFt Myers,
Florida, is married, and lives in Corvallis, Oregon
His leisure interests include bicycle touring, bird-
watching, folk music, skiing, white water rafting,
and fishing

James B. Byers

With marketing user inter-
face technology his focal
interest, Jim Byers is the
product marketing en-
gineer involved with HP’s
release of the X Window
System Version 11 He

] ’ joined the Indianapolis

; a ~ sales office of HP in 1982
e L = and has served as the mar-
keting representative for the HP 9000 and HP 1000
Computers Jim's BSEE degree is from Purdue Uni-
versity (1980) and his MBA degree in marketing is
from Indiana University (1982). He was born in
South Bend, Indiana. He's married, has a small
daughter, and lives in Corvallis, Oregon In his off-
hours, he likes skiing, camping, and exploring the
outdoors with his family

51 —— Managing DeskJet Development ———

John D. Rhodes

When he joined the Micro-
¥ wave Division of HP in
I 1966, John Rhodes had
just received his MBA de-
| greefrom Stanford Univer-
. sity. He also holds a
bachelor's degree inindus-
™ trial technology from Long
a b 1 Beach State College

: e R (1964). In his varied career
at HP, John served in many different engineering
and managerial positions. As project manager of
the mechanical team working on the DeskJet proj-
ect, he originated several patents. John was born
in San Jose, California He is married, has a daugh-
terand a son, and lives in Vancouver, Washington
For seven years, he served on the board of direc-
tors for a puppet theater which tours extensively
throughout the United States His hobbies include
astronomy, photography, and piloting light aircraft

55 —_ High-Resolution Printhead

Kenneth E. Trueba

The printhead firing
chamber, the ink feed pro-
cess, and a method for
bubble observation were
among Ken Trueba’s de-
sign assignments for the
DeskJetpen Earlier design
work included the thermal
printheads for the HP
2621P Terminal, the HP
2671 Thermal Printer, and the HP 85A/B Personal
Computers On the DeskJet development team,
Ken was responsible for process, assembly, and
architectural design of the printhead He cameto
HP after receiving his BS (1974) and MSEE (1976)
degrees from the South Dakota School of Mines
Ken has presented papers and published a journal
article on the subjects of thin-film techniques and
thermal inkjet devices. Three patents based on his
designs are pending. Ken was born in Boise,
Idaho, is married, and lives with his wife and two
daughters in Corvallis, Oregon. He enjoys pholog-
raphy, skiing, playing the guitar, and psychology

108 HEWLETT-PACKARD JOURNAL OCTOBER 1988

Richard R. Van de Poll
A process engineer in the
team developing the Desk-
Jet printer, Rich Van de
Poll worked on printhead-
related assignments. He is
now a projectleader atthe
. Inkjet Components Opera-
% tion. His BS degree in
chemical engineering is
from the University of Col-
orado. Before he joined HP’s Logic Systems Divi-
sion in 1986, he had been a process engineer at
Eastman Kodak, where he participated in develop-
ing photographic emulsions. Bornin Surabaja, In-
donesia, Rich served three yearsinthe U S. Army
He is married, has two children, and serves as a
cubmaster inthe Boy Scouts. He lives in North Al-
bany, Oregon, and spends his leisure time with
photography and scuba diving

Paula H. Kanarek

A statistician and R&D proj-
ect manager for the Desk-
Jetproduct, Paula Kanarek
came to HP in 1982 Her
bachelor's degree is from
the University of Michigan
. (1967), and her ScM (1969)
- and ScD (1973) degreesin
o biostatistics are from Har-
vard University. Before join-
ing HP, Paula held positions as an assistant profes-
sor in statistics and biostatistics, respectively, at
the University of Washington and at Oregon State
University. Statistical applications and reliability in
engineering are her focal interests and provide the
subjects of some 20 of her publications. She is a
member of the American Statistical Association,
the American Society of Quality Control, and the
Society of Women Engineers. Paula is active in
local school advisory committees at Salem, Ore-
gon, where shelives. She is married and has two
children. For recreation, she likes hiking, bicycling,
and cross-country skiing

Robert N. Low

Starting as a temporary hire
during summer recess,
Bob joined HP permanently
in 1977, when he received
his BS degree in metallurgi-
cal engineering from Pur-
due University His first as-
signment involved the hy-
brid development for the
HP-41C Calculator He
wenton to other projects, participated in develop-
ment of the ThinkJet printer, and eventually be-
came project manager for pen assembly and man-
ufacturing technology for the DeskJet printer
Bob’'s work has resuited in four patents for DeskJet-
related devices His professional interests focus on
high-precision, high-volume manufacturing tech-
nology, and he has previously contributed to the
HP Journal. He was born in South Bend, Indiana
Bobis married, has two small daughters, and lives
in Corvallis, Oregon. His leisure interests include
sailing, scuba diving, skiing, hiking, and sports
cars

William A. Buskirk

Bill Buskirk came to HP in
1977 with a BSEE degree
from the University of Col-
orado at Boulder Beforehe
- became a project manager
for the DeskJet printhead,
he handled a variety of as-
signments as a production
engineer and R&D en-

= gineer, including work on
the HP 821 61 A Digital Tape Drive. The DeskJet de-
velopment provided the subject of two papers Bill
published in conference proceedings. He recently
was appointed R&D section manager at the Inkjet
Components Operation. Bill was born in
Bloomington, Indiana, is married, and now lives in
Albany, Oregon. He has three young children. His
favorite recreational activities are hiking, windsurf-
ing, alpine skiing, and sailing

Stanley T. Hall

After joining HP in 1976 at
the Corvallis Component
Operation, Stan Hall spent
over five years as a man-
ufacturing engineer work-
ing on tooling for HP 33, 10,
and 75 Series calculators
and an HP-IL printer. He
moved (o Inkdet develop-
ment in 1983 and became
a project manager in production engineering
Stan’s BS degree in industrial technology is from
California Polytechnic University. His previous pro-
fessional experience includes positions as a
supplier quality engineer for ISS-SperryUnivac and
Intel. Stanis amember of the Society of Manufac-
turing Engineers He was bornin Oakland, Califor-
nia, and now resides in Corvallis, Oregon. He is
married and has two daughters. His leisure activ-
ities include woodworking in the winter, sailing and
gardening in the summer

David E. Hackleman

As R&D project manager at
HP's Inkjet Components
Operation, the inks and
media used in ThinkJet,
PaintJet, and DeskJet print-
ers have been the focus of
David Hackieman'’s in-
terests in recent years He
came to HP with a BSEE de-
gree from Oregon State
University (1979) and a PhD in analytical elec-
trochemistry from the University of North Carolina
at Chapel Hill (1978). His previous design work at
HP includes a variety of integrated circuit pro-
cesses at the InkJet Component Operation. His
workinIC processing, thermal inkjetinks, and mul-
tiplexing has resulted in six patents, with several
more in application David is a member of the
American Chemical Society and the Electrochem-
ical Society. He is a National Youth Science Camp
lecturer and serves as a control station operator of
the amateur radio emergency service. David was
bornin Coos Bay, Oregon, is married, and lives in
Monmoth, Oregon, where in his off-hours he oper-
ates atree farm “onforty acres way out of town "

62 —— Printer/Printhead Integration

John A. Widder
Author's biography appears elsewhere in this
section

J. Paul Harmon

As a development engineer
on the DeskJet project,
Paul Harmon was responsi-
ble for carriage, service
station, and interconnect
design A patentis pending
for the DeskJet intercon-
nect support structure Paul
developed. He came to HP
£ after receiving his BMSE
degree from the University of Washington in 1981
and has since earned his MSME degree from Stan-
ford University (1988). Paul has previously
coauthored an article for the HP Journal (May
1987). Bornin Hermiston, Oregon, Paul is married
and has a child. He now lives in Washougal,
Washington. Paul's spare time is taken up by
motorcycles, sports cars, and church activities

67 —— Chassis and Mechanism Design

David W. Pinkernell
Mechanical design of the
servo control for paper feed
and carriage drive was
Dave Pinkernell's focal
contribution to the DeskdJet
development, With the proj-
ect since he joined HP in
1981, he worked as a de-
X sign engineer until the con-
clusion of the design
phase, when he joined a team of manufacturing en-
gineers in the task of setting up production
facilities. He is coinventor of a pending patent for
the printer mechanism. Dave attended the Califor-
nia Polytechnic State University at San Luis Obispo,
where he received his BSME degree in 1981 His
MSME degree is from Stanford University. He was
born in Santa Barbara, California, and makes his
home in Pullman, Washington, His recreational in-
terests include photography and traveling, both of
which he recently combined in a trip to East
Africa

John A. Widder

The design of the carriage
servo system, linefeed
motor control, and print-
head driver printed circuit
. boards are among John
Widder's contributions to
the DeskJet printer As a
J| % development engineer at
Y £ ~ the Vancouver Division, he
| also worked with the
suppliers of the power supply. Now a manufactur-
ing engineer, John has shifted his attention to the

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 109

DeskJet production line Inthe past, he has worked
on the design of thermal printers such as the HP
2675A, HP 2671/3A, and HP 2674A . John cameto
HP's Boise Division in 1978, after receiving his
BSEE degree from the University of Portland. He
is a member of the IEEE and the American Associ-
ation forthe Advancement of Science He'salsoac-
tive In the City Club of Portland and the World Af-
fairs Council of Oregon John was born in
Bethesda, Maryland, and now makes his home in
Brush Prairie, Washington. His favorite pastimes in-
clude backpacking and cross-country skiing

Kieran B. Kelly

The DeskdJet printer was not
the first product to use a
paper path design by
Kieran Kelly With mechan-
ical design his main profes-
sional interest, he has pre-
viously worked on the
QuietJet printer, the tilt/
swivel base for the HP 150
Computer, and the HP
9826 and HP 9836 Controller/Computers His work
on the QuietJet paper drive resulted in a patent
application Kieran joined HPin 1979, the year he
received his BS degree from the University of Vir-
ginia He aiso holds an MS degree from Stanford
University (1984) He lives in Vancouver,
Washington, where he is presently renovating a
turn-ot-the-century Victorian house Other hobbies
include sailing, skiing, bicycling, and hiking

Steve O. Rasmussen

The paper path, carriage,
and transmission of the
DeskJet printer were the
focal points of Steve Ras-
mussen'’s design work He
has contributed to designs
for the DeskdJet printer that
resulted in a patentand five
patent applications He
came to the Vancouver Di-
vision in 1982, after receiving his BSME degree
from lowa State University. Steve also holds an
MSME degree from Stanford University (1987) He
was bornin Fort Dodge, lowa Heismarried, has
aninfant son, and lives in Vancouver, Washington
Steve likes to spend his off-hours with church
activities, working on his house, bicycling, and
woodworking

Larry A. Jackson
- Larry Jackson coordinated
the design of DeskJet
paper handling parts, such
as the chassis, carriage
guide, pinch rollers, pinch
springs, and gear trains. An
R&D engineer at the HP
Vancouver Division, his
- past product involvement
includes the ThinkJet
printer, the HP-01 Watch, the HP-41C Calculator
an IC tester. a laser interferometer, and a mul-
tichannel analyzer He has managed the hybrid

laboratory at Santa Clara Division. A patent and
four patent applications are based on Larry's de-
signs He attended Utah State University from
which he received BS (1965) and MS (1966) de-
grees in mechanical engineering He was bornin
Ogden, Utah, is married and has four children He
resides in Vancouver, Washington. Larry’s spare
time interests include camping, boardsailing,
downhill skiing, and church activities

76 —— Data to Dots —

Donna J. May

As adevelopment engineer
at the Vancouver Division,
Donna May worked on the
firmware for the DeskJet
printer. On other assign-
ments, she has worked on
the HP 2934A Business
Printer and a landscape
upgrade cartridge for the
DeskJet printer. Donna
came to the Vancouver Division in 1983, after re
ceiving her BS degree in compulter engineering
from lowa State University. Born in Cedar Rapids,
lowa, she is married and resides in Vancouver,
Washington She plays piano and bassoon and
likes backpacking and bicycling

Claude W. Nichols

After joining HP in 1980 as
a development engineer,
Claude Nichols worked on
avariety of printers, includ-
ing the HP 2675A, the HP
2671A/G, the HP 2674A,
and the HP 2932A In the
' design of the DeskJet
printer, he was involved in
[various aspects of the
firmware Claude's BS degree in computer science
is trom Brigham Young University, earnedin 1979
He was born in Reno, Nevada, but grew up in
Cheney, Washington He is married and has three
children Claude is active inthe Boy Scouts and in
his church in Vancouver, Washington, where he
lives He enjoys cross-country skiing, bicycling,
and hiking

Mark D. Lund

One of the patents pending
for the DeskJet printer re-
sulted from Mark Lund's
design work An R&D en-
gineer atthe Vancouver Di-
vision, he joined HP in 1977
after receiving his BSEE
degree from the University
¢ of California at Irvine
Among the projects Mark
has worked onare the electronics architectures of
the HP 2621A Terminal and the HP 2671A and HP
2673A Thermal Printers He was born in Santa
Monica, California, and now lives in Vancouver,
Washington Heis married and has a daughter and
triplet sons. He enjoys camping, backpacking,
scuba diving, and woodworking He also likes fish-
ing. especially salmon and steelhead

Thomas B. Pritchard
- As a development en-
gineer for the Deskdet
printer, Tom Pritchard's re-
sponsibilities included de-
sign of a custom IC and
testing and correction of
electrostatic discharge
conditions. His past as-
signmepts include both
- firmware and electronics
design on HP 2934A, HP 2932A, and HP 2671A
Printers and work as a production engineer for the
HP 3000 Business Computer System. Tom is the
primary author of an article describing a micro-
processor-based signal processing system for
biomedical measurements and also has previously
contributed to the HP Journal. A patentis pending
for a character generator he developed. Born in
Ann Abor, Michigan, Tom is married and has a
three-year-old child He now lives in Vancouver,
Washington. He enjoys hiking and playing tennis

81— DeskdJet Firmware ——______——

Mark J. DiVittorio

Mark DiVittorio is a project
manager at the Vancouver
Division, where his respon-
sibitities included develop-
ment of the DeskJet
firmware In the past, he
has served as develop-
ment engineer, production
engineer, and R&D en-
gineer His EE and MS de-
grees in computer science (1974 and 1978, re-
spectively) are fromthe University of Santa Clara
Born in Chicago, lllinois, Mark is married, has a
seven-year-old son, and lives in Vancouver,
Washington n his off-hours, he likes to go fishing

Claude W. Nichols
Author's biography appears elsewhere in this
section

Michael S. Ard

As a project manager atthe
Vancouver Division, Mike
Ard directed the develop-
ment of the Epson FX-80
printer emulation firmware
for the DeskJet. His past re-
sponsibilities as a develop-
ment engineer include
work on the HP 300 Busi-
ness Computer System
and the HP 2675A, HP 2673A, and HP 2934A
printer systems He also managed the printer sys-
tems group, focusing on printer solutions to system
and application support He holds a BS degree
(1975) and an MS degree (1978) in computer sci-
ence, both from Brigham Young University. Mike
is active in his church and in youth sports. Bornin
St Anthony, Idaho, he is married and has six chil-
dren He lives in Vancouver, Washington. Mike en-
joys outdoor activities and has been busy design-
ing, building, and landscaping his new home

110 HEWLETT-PACKARD JOURNAL OCTOBER 1988

Kevin R. Hudson
[Fe Development of the Epson
FX-80 printer emulation
firmware, specifically the
graphics and parser, was
Hud Hudson’s focal in-
terest on the DeskJet proj-
ect. In previous years, he
has worked on printhead
b and character set develop-
ment for the Thinkdet
printer and hardware for the QuietJet. Hud earned
his BS degree at lowa State University in 1981 and
shortly thereatter joined HP, where he now is a de-
velopment engineer at the Vancouver Division. He
was born in Vinton, lowa, is married, and lives in
Vancouver, Washington. His recreational interests
include softball, golf, and science fiction

Brian Cripe

Development of the Desk-
Jet formatter was among
Brian Cripe’s most recent
projects. Presently, he is
working on the X Window
System at the Corvallis
Workstation Operation, and
past assignments include
the mechanism controller
code for the Thinkdet
printer. Brian has originated a text scaling system
forwhich a patent is pending. His BSCE and BACS
degrees are from Rice University (1982). Brian was
born in Anapolis, Brazil, is married, and lives in Cor-
vallis, Oregon. His favorite pastimes are bicycling,
telemark skiing, and tending his prize-winning
roses

David J. Neff

David Neff's respon-
sibilities for the DeskdJet
printer included develop-
ment of the Epson FX-80
emulation firmware. In the
past, he has worked onthe
RTE-L and RTE-XL operat-
ing systems and landscape
cartridge firmware. He also
developed CAD/CAM soft-
ware links used internally in HP’s Vancouver Divi-
sion. David attended Harvey Mudd College, where
in 1979 he earned his BS degree in mathematics
He was born in Portland, Oregon, is married, and
has two children. He now resides in Vancouver,
Washington

87 —— Robotic Assembly -
P. David Gast

® As a manufacturing
engineer at the Vancouver
Division, Dave Gast de-
veloped an automated
high-volume assembly line
for mixed-mode production
of DeskJet and Rugged-
Writer 480 printed circuit
boards He also designed
the mechanical hardware

for the robotic workcell that builds the boards. In
a previous position, Dave worked for the Research
Center of Weyerhaeuser Company. He holds a
BSME degree from Texas A&M University (1982)
and an MBA degree from Oregon State University
(1984) He was born in Minneapolis, Minnesota,
and now lives in Vancouver, Washington. Windsuri-
ing, bicycling, telemark skiing, and photography
are Dave’s favorite leisure activities.

91 __CIM and Machine Vision

Robert F. Aman

As a production engineer
and later as a procurement
engineer, Bob Aman has
shared responsibility for
production, procurement,
and materials selection for
the HP-85 Series personal
computers and other poria-
ble computers. More re-

- cently, at HP's Inkjet Com-
ponents Operation, he served as a project leader
for design and fabrication of the equipment used
for wafer assembly and its integration in the man-
ufacturing process of the DeskJet pen. Bob came
to HP in 1980, after working for some three years
as a manufacturing engineer at Boeing Commer-
cial Airplane Company. He earned a BSME degree
from Oregon State University in 1977 and was
awarded a professional engineering license in
1981. Bob was born in Silverton, Oregon. He is mar-
ried, has two sons, and lives in Albany, Oregon. His
hobbies include radio-controlled modei airptanes,
canoeing, fishing, and bow hunting

Brian L. Helterline

Just after receiving his
BSEE degree from Mon-
tana State University in
1987, Brian Helterline
joined the Inkjet Compo-
nents Operation of HP. As
aproduct engineer, he was
responsible for print quality
testing of DeskdJet print car-
tridges, ownership consid-
erations for the print quality tester, and machine vi-
sion algonthms used for testing. Vision software
and computer-control applications are his main
professional interests. Born in Plains, Montana,
Brian now makes his home in Salem, Oregon. He

is married and enjoys playing basketball and ten-
nis

Gregg P. Ferry
- An engineer at HP's Inkjet
Components Operation,
Gregg Ferry participatedin
the design of vision appli-
cations for the DeskJet
printer. The project con-
tinues to be central to his
design activities as he con-
centrates on electronic
tools and computer-inte-
grated manufaclunng for the product. Both his
BSEE (1973) and his master’'s (1976) degrees are
from the California Polytechnic Institute at San Luis

Obispo. Gregg was born in Minneapolis, Min-
nesota, and now lives in Corvallis, Oregon. He
serves as a volunteer instructor for the Saturday
Academy, an organization offering extracurricular
instruction for high school students. Gregg likes
traveling and bicycling, two avocations he once
combined in a two-year biycycle trip around the
world

Timothy S. Hubley

A vision applications en-
gineer and project leader at
the HP Inkjet Components
Operation, Tim Hubley has
focused on evaluation of
Deskdet print gquality. In
previous projects, he has
worked as a product en-
gineer on the chips for the
HP 71B Handheld Com-
puter and as an electrical tooling engineer for test
equipment. He earned BS and ECE degrees from
the University of Massachusetts in 1981 and joined
HP the same year. He is a member of the Society

of Mechanical Engineers and the Machine Vision
Association. Tim was born in St. Charles, llinois
He is married, has two children, and lives in Corval-
lis, Oregon. Among his favorite activities, Timlists
volleyball, tennis, and fatherhood.

Mark C. Huth

" In the over seven years
since he joined HP, Mark
Huth has worked on man-
ufacturing development
and tool design for the HP
85 Computer, the HP 75C
and HP 718 Handheld
Computers, and inkjet print
cartridges. Onthe DeskJet
team, Mark helped design
the optics system and develop the machine vision
software. He received his BS degree in mechanical
engineering from Virginia Tech in 1981 He was
bornin Boston, Massachusetts, and now lives with
his wife and two sons in Corvaliis, Oregon. Bicy-
cling, volleyball, and rock climbing are Mark’s fa-
vorite sporting activities, but he also likes potluck
parties and enjoys the "small-town atmosphere of
Corvallis.”

Robert A. Conder

Vision applications and
computer-integrated man-
ufacturing are Bob Con-
der's focal professional in-
terests. Since he joined HP
in 1975, his product in-
volvements have included
a wide variety of HP cal-
culators, handheld com-
puters, and the ThinkJet
and DeskJet printers Bob is now a project man-
ager and has been responsible for the coordination
of vision projects and control systems associated
with the DeskJet product He is the author of an ar-
ticle about inkjet cartridges, and three patents are

OCTOBER 1988 HEWLETT-PACKARD JOURNAL 111

pending on optics and alignment procedures he
developed Bob’s BSEE degreeis from the Univer-
sity of Utah (1975) He was bornin Salt Lake City,
Utah, and served four years as a sergeant in the
U S Air Force He is married, has a son and a
daughterand lives in Corvallis, Oregon His recre-
ational interests include dirt-bike riding, sailing,
and fishing

99 " Optical Encoders

Robert Nicol

As a manufacturing en-
gineer, Rob Nicol de-
veloped a number of pro-
duction methods for the
HEDS-9000 encoder Prior
to that, he contributed to
the development of the
HEDS-9000 as an R&D en-
gineer. He is now working
~ onnew optical-encoder ap-
plications Before joining HP as an R&D engineer
in 1983, Rob worked for the Santa Barbara Re-
search Center, a subsidiary of GM/Hughes His
BSME degree is from the University of California at
Santa Barbara (1983) He was born in Walnut
Creek, California, is married and has two sons. He
resides in Fremont, California Rob is a member of

the Society for Automotive Engineers and, in his
spare time, has converted a conventional auto-
mobile to electric operation. He also enjoys sericus
music, sailing, and making beer

Mark G. Leonard

. Mark Leonard was one of
the designers of the original
HP encoder, and his col-
laboration with other de-

~ velopment engineers led to
product definition and de-
sign of the HEDS-3000 His
professional interests are
interdisciplinary and en-
compass electronics, com-
puter science, and reliability physics In the past,
Mark has been involved in the design of a fiber
optic receiver and high-voltage optocouplers Be-
fore coming to HP in 1975, his responsibilities in-
cluded failure analysis and computer program-
ming He is a senior member of the IEEE and a
registered professional engineer and has pub-
lished articles about optical encoders Four U S
patents are based on his designs. Mark attended
Macalester College at St Paul, Minnesota, where
he received his BA degree in 1965 He was born
in San Jose, Costa Rica, is married, and has three

sons Helivesin Los Altos, California, His hobbies
include woodworking and photography

Howard C. Epstein

Since coming to HP in
1976, Howard Epstein has
been responsible for the

~ development of shaft en-
- codertechnologies. Onthe
HEDS-9000 encoder, he
led the definition and pro-
totype stages and was the
architect of the emitter/de-
tector/lens system. Howard
has since concentrated on extensions of the HEDS-
9000 product. Before joining HP, he developed
piezoelectric and piezoresistive transducers. Sen-
sors and transducers are the focus of his profes-
sional interests, and he has published four papers
about electromechanical and optical sensors He
is a named inventor on five patents. A registered
proféssiona! engineer, Howard holds BA and MS
degrees in physics (1965 and 1975) from the
California State University at Los Angeles. Bomnin
Los Angeles, he is married, has three teenage
daughters, and lives in Los Altos, California. How-
ard serves on the board of the American Associa-
tion for Ethiopian Jewry, an organization dedicated
to the rescue of the ancient Ethiopian Jewish com-
munity. He enjoys playing handball, roller-skating,
and surf fishing

Hewlett-Packard Company, 3200 Hillview
Avenue, Palo Alto, California 94304

HEWLETT-PACKARD JOURNAL

CHANGE OF ADDRESS: & ien e

5953-8571

r

T E TR
wd Coity
e

i~

d [2 = AL

Bulk Rate
U.S. Postage
Paid
Hewlett-Packard
Company
3127 APJ 87838
GE PINTIS
o407
SAaND HILL D
ALTDs CA I432%

