HEWLETT-PACKARD JOURNAL

MR JOHN WARMINGTON

HEWLETT-PACKARD AUSTRALIA PTY. LTD.
22-26 WEIR STREET

GLEN IRIS

VICTORIA 3146, AUSTRALIA

NOVEMBER 1968




The Language of Time Sharing

A computer language designed for the beginner and the once-in-a-while
programmer, BASIC is powerful, yet easy to learn. Try it and see.

By Gerald L. Peterson

SINCE THE INVENTION OF THE FIRST ELECTRONIC COM-
PUTER some 20 years ago, men have been searching for
better ways to communicate with these wonderful think-
ing machines. One approach has been to design computer
languages that can be easily understood both by men and
by computers. The most successful of these languages
has been FORTRAN, in which computations and pro-
gram steps are specified using a mixture of English and
algebra. Other languages, such as ALGOL and PL-1,
while not as widely used as FORTRAN, are good exam-
ples of how computer languages are evolving; they are
becoming more flexible and they are putting more pow-
erful features at the user’s disposal.

Unfortunately, the built-in flexibility and power of
these languages gives them an inherent disadvantage for
the ‘once-in-a-while’ programmer. Generally speaking,
the more flexible a language becomes, the more conven-
tions and options a person has to remember to use the
language efficiently. Often a user finds that, even though
he has once mastered the language, if he hasn’t used it
for a few months he will have forgotten the many rules

In this Issue: BASIC — The Language of Time
Sharing; page 2. BASIC at Hewlett-Packard;
page 9. How to Correct for Errors in High-
Frequency Oscilloscope Measurements; page
14. Extending Precision Oscilloscope Meas-
urements into the High Frequencies; page 17.
Voltage Probe for High-Frequency Measure-
ments; page 19.

PRINTED IN U.S.A.

necessary to write a working program, and will essen-
tially have to relearn the language. What’s more, most
programs are run today in ‘batch’ mode; the program-
mer leaves his program at the computation center with
hundreds of other programs and returns several hours
later to claim the results of his run. Often a simple error
or two has kept his program from executing correctly,
and he has to repeat the cycle. For the beginning pro-
grammer, this can be particularly frustrating.

Time Sharing

In the past five years, a new phenomenon called time
sharing has appeared on the computer scene. The time-
sharing system is a complex system of computer hard-
ware and specialized software which allows several users
to sit at typewriter-like terminals and communicate with
the computer simultaneously. These terminals may be
coupled to a central computer many miles away through
telephone circuits. A user sitting at his terminal has the
illusion that he has the computer to himself, even though
the computer is miles away and several other people are
using it at the same time.

With time sharing, almost anyone can have access to a
computer. However, the computational power available
through time sharing isn’t really useful to someone who
can’t write programs. To make this computational power
useful to large numbers of people, simpler computer
languages had to be developed.

Several time-sharing languages have now been de-
signed. These languages are not only easy to learn but
also conversational, that is, the user can interact with his
program and with the time-sharing system from the re-
mote terminal. The time-sharing system checks the pro-

©HEWLETT-PACKARD COMPANY, 1968



gram for errors as soon as it is composed; then, after it is
‘debugged; it may be run immediately and the answers
obtained.

BASIC

The conversational language that has proved most pop-
ular is called BASIC. It was developed at Dartmouth
College. In September of 1963, Professors John G. Kem-
eny and Thomas E. Kurtz of Dartmouth launched a
project that was to have a major effect on the computer
industry. The project, which was supported in part by
the National Science Foundation, was to build and oper-
ate a time-sharing system using General Electric Com-
pany computers and a language that was to be developed
at Dartmouth as part of the project. Two short-term goals
were in mind at the beginning of the program; the first
was to introduce the computer to a majority of the stu-
dents at Dartmouth, and the second was to make the
computer more readily accessible to the faculty.

Work began on the project and by the spring of 1964,
BASIC, the ‘Beginner’s All-purpose Symbolic Instruction
Code; was born. Students and faculty alike used the new
system so enthusiastically that four years later, in their
final report on the Dartmouth Time Sharing Computing
System, dated June 1967, Kemeny and Kurtz reported
that they had introduced some 2000 students to BASIC
and to the computer, and that 40% of the faculty used
the system for a wide variety of projects.

The underlying motivation for the Dartmouth project
went somewhat deeper than the short-term goals indicate.
With the increased dependence of our modern society on
computers, it is vitally important that the typical attitude

of the intelligent person toward computers be changed.
This attitude, a kind of superstitious awe of the machine,
can best be dispelled by having people use the computer
to solve day-to-day problems, whether they be large or
small. The prerequisite to doing this is to have the com-
puter easily accessible and easily programmable.

At Dartmouth this has been achieved. Even the proj-
ect directors admit to a major change in their approach to
computers. They have learned to work with the computer
in solving a problem, instead of just submitting a problem
to the computer for machine solution.

One factor responsible for the success of the Dart-
mouth project was .the time-sharing concept. However,
the major factor was the easy-to-use language, BASIC.

BASIC was originally designed to be such a simple
language that students could learn to do useful things
with it after two one-hour lectures. The language has
since been expanded into a more powerful, general-pur-
pose programming language, but the simple core has been
retained. The novice can use the simple statements of ele-
mentary BASIC whether or not he is aware of the addi-
tional features available to the more expert programmer.

How to Speak BASIC

The best way to learn BASIC is to sit down at the
teletypewriter, Fig. 1, and do some BASIC programming.
The teletypewriter keyboard is similar to a typewriter’s,
but there are no lower-case letters. On some teletype-
writers, zeros have a slash through them to differentiate
them from the letter ‘oh’ There is no backspace key, but
BASIC does allow the programmer to correct errors as
he types. Typing a left arrow («) effectively backspaces

Fig. 1. The computer and the BASIC programmer talk to each other via the teletypewriter.



the teletypewriter one space. For example:
110 FER~«OR I = 1 TO 10

would be recognized as
118 FOR I = 1 TO 10

Hitting the key marked RETURN signifies the end of the
statement and returns the teletypewriter to the left edge
of the paper; the computer will send a LINE FEED to
the teletypewriter to advance the paper one line and indi-
cate that it is ready for the next statement.

Here is an example of a simple program in BASIC;
it’s a program for calculating the hypotenuse of a right
triangle.

10 LET X 5

20 LET Y 10

30 LET H1 = SQR(X12+Y12)

49 PRINT "THE HYPOTENUSE IS'",HI
50 END

Two things are immediately evident in this complete
BASIC program. The first is that all statements begin
with a number which serves to identify that particular
statement and shows the position of that statement in re-
lation to the rest of the program statements. Second, the
statement itself, which follows the statement number,
always begins with an English word that serves to iden-
tify what type of statement it is.

Statements need not be entered in order as the program
is composed, but when the program is executed the state-
ments will be executed in order of ascending statement
numbers. Experienced programmers usually choose state-
ment numbers which are multiples of five or ten; this is
to leave room for inserting additional statements later,
should they be needed.

A statement can be deleted from a program by typing
the statement number and then hitting the RETURN key.

Variables, Constants, and Functions

There are three variables in the above program: X, Y,
and H1. A variable may be named in BASIC with a single
letter of the alphabet or with a letter of the alphabet fol-
lowed by a single digit, O through 9.

The three constants in the program (2, 5, and 10) all
happen to be integers. However, decimal fractions may
also be used as constants, and very large or very small
numbers may be entered in ‘E’ format. For instance, 1.2
E6 is equivalent to 1.2 X 10° or 1,200,000, and 2E-3 is
equivalent to 2 X 1072 or 0.002.

Within the parentheses of statement 30 are the opera-
tions 7 and . Since there is no way of writing X* on

10 LET X = 5

20 LET Y = 10

30 LET H1I = SQR(Xt2+Y12)

48 PRINT "THE HYPOTENUSE IS",HI
5@ END

RUN

THE HYPOTENUSE IS 11.1883

READY

_/

Fig. 2. A complete BASIC program and computer solu-
tion. This program finds the hypotenuse of a right tri-
angle whose sides are 5 and 10.

the teletypewriter the symbol 1 was chosen to signify ex-
ponentiation. Thus X 12 means X*. The - sign, of
course, signifies addition. The arithmetic operators in
BASIC are:

* multiplication
/ division

-}- addition
— subtraction.

The letters SOR in statement 30 identify one of the ten
standard functions in BASIC, the square root function.
The other functions available to the programmer are:

SIN (X) Sine of X

COS (X) Cosine of X

TAN (X) Tangent of X

ATN (X) Arc tangent of X

EXP (X) eX

LOG (X) Natural logarithm of X
ABS (X) Absolute value of X
INT (X) Integer part of X

SGN (X) Sign of X.

The arguments of these functions may be variables, con-
stants, or a combination of variables, constants, and
operators.

Types of Statements

What types of statements are allowed in BASIC? Ac-
tually, there are not very many; this is what makes BASIC

easy to learn. In the example program there are three:
LET, PRINT, and END.

The LET Statement: The form of this statement is:
LET <variable™> — <expression>.

When a LET statement is executed the variable on the
left side of the equals sign is assigned the value of the
expression on the right side. In the sample program LET
statements are used to assign the values 5 and 10 to X
and Y; then H1 is assigned the value /125.



- w
10 READ X»Y

20 PRINT "THE HYPOTENUSE IS5",SQR(Xt2+Y1t2)
30 GO TO 10
40 DATA 15155,10535 4

50 END

RUN

THE HYPOTENUSE IS 1.41421
THE HYPOTENUSE IS 11.1883
THE HYPOTENUSE IS 5

ERROR 56 IN LINE 10

N _/

Fig. 3. The hypotenuse program modified to compute the
hypotenuses of three right triangles having sides (1,1),
(5, 10), and (3, 4). The error message indicates that the
program ran out of data.

The PRINT Statement: This statement causes the system
to print output from the program on the teletypewriter.
Its general form is:

expression expression
PRINT < or > s < or > .
message message

To print a message we simply enclose the message within
quotation marks in the PRINT statement. We may print
the value of any variable, constant, or formula by includ-
ing it in the PRINT statement. Thus, in executing the
example program, the system will first print the message,
THE HYPOTENUSE 1S, and then the value of the
variable H1. The word PRINT followed by no list of

parameters causes the teletype to space one line upon
execution.

The END Statement: Every BASIC program must have
an END statement and it must have the largest state-
ment number of any in the program.

Running the Program

To run the sample program we first get the system’s
attention, using whatever procedure is appropriate to the
particular system. When the system is ready to receive
inputs, it types READY. We then type in the program,
as listed above. After the END statement, we type RUN,
The results are shown in Fig. 2.

More Statements

Let us now change the example program slightly to
demonstrate some new statements.

10 READ X,Y

20 PRINT ""THE HYPOTENUSE IS"» SQR(Xt2+Y12)
32 GO TO 1@

49 DATA 121555105354

50 END

The GO TO Statement: This statement alters the normal
sequential execution of program statements and trans-
fers control to a specified statement number. The gen-
eral form is:

GO TO < statement number>.

In the example, the GO TO statement starts the pro-
gram over again by transferring control to line 10 after
the answer is printed.

READ and DATA Statements: The general form of these
statements is:

READ <variable list>
DATA <number list>.

Whenever a READ statement is used in a program there
must be at least one DATA statement in the program.
When the first READ statement is executed, the first
number in the lowest numbered DATA statement is as-
signed to the first variable in the READ list, the second
number to the second variable, and so on until the READ
variable list is satisfied. Subsequent READ statements
will begin reading data where the previous READ Ileft
off. In the example, the program would execute state-
ments 10 through 30 three times, using X and Y values
of (1,1), (5,10), and (3,4). On the fourth attempt to
read data, no more data would be found and the pro-
gram would halt; the system would print a diagnostic
message to indicate that the program ran out of data.

The RESTORE Statement: This statement, which isn’t
illustrated in the example program, is used whenever it
is necessary to read the same data more than once in a
program. When the statement

RESTORE

appears in a program, a subsequent READ statement will
cause the computer to begin reading the data all over
again starting with the first number of the first DATA
statement.

Fig. 3 shows the results of running the second example
program.

Inputs, Branches, and Loops

The INPUT Statement: This statement is used when the
programmer wants to input numbers into his program
from the keyboard as the program executes. The general
form is:

INPUT <variable, variable,

Let us use this statement to write a program that inputs
initial and final values for a table of numbers. The pro-



10 PRINT "INPUT INITIAL AND FINAL VAL UES"
20 INPUT I»F
30 IF 1<@ THEN 10
49 FOR J =1 TOF
50 PRINT J,J12,SQR(J)
60 NEXT J
70 GO TO 10
80 END
RUN
INPUT INITIAL AND FINAL VALUES
?21s5
1 1 1
2 ] 1.41421
3 9 1.73205
4 16 2
S 25 2.23607
INPUT INITIAL AND FINAL VALUES
?

10 DIM AU3,31,B03,31,C(3,11,X(3,1) *\w
20 M™MAT READ A

30 DATA 1,-2,-2

40 DATA 11,1

50 DATA 1s15-6

60 MAT READ C

70 DATA -15:117, 40
80 MAT B=INV(A)

90 MAT X=B*C

100 MAT PRINT X
110 END

RUN
73

33

11

READY J

Fig. 4. This program asks the operator tor initial and tinal
values of a sequence of integers, then prints the integers
and their squares and square roots.

gram will check that the initial value is non-negative and
then print the numbers, their squares, and their square
roots.

10 PRINT "INPUT INITIAL AND FINAL VALUES"
20 INPUT I,F

30 IF 1<@ THEN 10

49 FOR J =1 TO F

50 PRINT J,Jt2, SOR(I)

6@ NEXT J

70 GO TO 10

80 END

When statement 20 of this program is executed the tele-
typewriter will type a question mark, indicating that in-
put is to be typed. We respond with two numbers sep-
arated by a comma, then press the RETURN key. The
program then continues.

The IF-THEN Statement: This statement tests for equal-
ity or inequality between two expressions and transfers
control depending on whether the test is true or false.
The general form is:

IF <expression> relational operator < expression™
THEN < statement number>.

The relational operators allowed are:
< less than
> greater than

<= less than or equal
>=—  greater than or equal
= equal
<> not equal (some systems use #)

If the test is true, control will transfer to the statement
number following the THEN. If the test is false, control
transfers to the next sequential statement.

Statement 30 of the example tests whether I is nega-

Fig. 5. Matrix operations are a powerful feature of BASIC.
Here some of them are used to solve a set of simultane-
ous equations (see text).

tive; if it is, the program asks for new values by jump-
ing back to statement 10.

The FOR and NEXT Statements: Often in a program it
is necessary to loop through a group of statements sev-
eral times to perform a calculation or a printout. The
FOR statement does this with a minimum of program-
ming effort. Upon entry to the FOR loop in statement
40 of the example, the variable J is set to the value I.
Statement 50 is executed, and then the NEXT J state-
ment at 60 directs control back to the beginning of the
loop at statement 40. J is now incremented by 1 and a
check is made to see if J is greater than F; if it is, con-
trol is transferred to the statement following 60; if it is
not, the loop is executed again. The cycle repeats until
J becomes greater than F. The general form of the two
statements is:

FOR <variable™> — < expression> TO <expression>

STEP < expression>
NEXT <variable>.

The values of the expressions for the initial and final
values are computed once upon entry into the loop, as
is the step size. If the step size is omitted, as it was in
the example, it is assumed to be one.

Fig. 4 shows the results of running our third example
program.
Matrix Operations

BASIC has the very powerful feature of having built-in
functions to manipulate matrices. A matrix is defined in
a BASIC program with a DIM statement. Thus, the
statement

19 DIM AL[3,31,B010,10]

tells the BASIC System to allocate storage for a 3-by-3



matrix called A and a 10-by-10 matrix called B. The
name of a matrix is always a single letter. Particular ele-
ments of a matrix may now be referenced by calling out
the desired row and column of that element. For exam-
ple, 20 LET at2,11=0 assigns the value 0 to the element
of matrix A in the second row, first column.

The matrix functions defined in BASIC are listed in
the table at right.

To demonstrate some of these statements, we will solve
the following system of simultaneous equations.
The equations:

X, 2X, —2X,= — 15
X, 41X, - X, =117
X, +X, — 6X, =40

The program:

18 DIM AL3,31,B(3,31,CL3,11,X(3,11
20 MAT READ A

30 DATA 1,-2,-2

43 DATA 15151

50 DATA 1s15-6

60 MAT READ C

78 DATA -155117, 40
80 MAT B=INV(A)

90 MAT X=Bx*C

100 ™MAT PRINT X
110  END

Fig. 5 shows the results of running this program.

Miscellaneous Statements

The REM Statement: The REM statement is used to in-
sert comments into programs, for explanation and future

Computer
Museum

MAT READ A

MAT A = ZER
MAT A = CON
MAT A = IDN
MAT PRINT A
MATB=A
MATC=A+ B
MATC=A—-B
MAT C = A-B
MAT C =TRN(A)
MAT C = INV(A)
MAT C = (K)+A4

Read numbers into matrix A row
by row from a DATA statement
Fill A with zeros

Fill A with ones

Set up A as an identity matrix
Print A, row by row

Set B equal to A

Add matrices A and B

Subtract matrix B from matrix A
Multiply matrix B times matrix A
Transpose matrix A

Invert matrix A

Multiply matrix A by K, where
K is any expression

documentation. For example:

18 LET Z=3
20 REM THIS IS A REMARK
38 PRINT Z

The DEF Statement: The DEF statement is used to de-
fine functions in a program. The name of a function must
be three letters, the first two of which must be FN. Thus,
functions may be named FNA, FNB, etc. For example,
if we want to do a cube root calculation several times in
a program we could say: '

10 DEF FNA(X) =

Xt(1/73)

-

10
20
30
49

FOR I=1 TO 1@
PRINT RND(@)3
NEXT 1

END

RUN
1.52602E-05
+522248

READY

+ 500092
«577867

500412

«266971 «90

2@ PRINT INT(2S5%RND(@))+13

RUN
1 13
READY

k

1.64799E-03

1825 +503415

6.17992E-03

Fig. 6. The RND function generates pseudo-random numbers or integers.



Later in the program this function could be called by
writing:

.
.
.
450 LET Z = FNAC3.7)*SQR(Y)
.
.
.
T

575 LET T1 = FNA(It2)

The RND Function: The RND function will automati-
cally generate random numbers in the range from O to 1.
The form of this function requires an argument, although
the argument has no significance. Thus, the program

1@ FOR I=1 TO 1@
20 PRINT RND(Q)3
30 NEXT 1

49 END

will print the first 10 random numbers. Running the pro-
gram twice will produce the same set of numbers; this
is useful for debugging purposes.

As a further example, if we need ten random integers
ranging from 1 to 25 we could change line 20 to:

20 PRINT INT(25%RND(@))+13

Notice that we have ended the last two PRINT state-
ments with semicolons (;). This changes the format of
the printout. Had the semicolon been omitted, each ran-
dom number would be printed on a separate line, where-
as now the numbers will be printed several to a line, as
shown in Fig. 6.

The GOSUB and RETURN Statements: The GOSUB
and RETURN statements allow a part of a program that
must be executed at several points in the overall program
to be executed as a subroutine, so it doesn’t have to be
typed in several times. For example, suppose that the
teletypewriter must be spaced three lines at three different
points in a program. This can be done as follows:

.
.
.

100 GOSUB 900
.

320 GOSuUB 900
.

]
]
540 GOSUB 900
]
]
]
908 PRINT
901 PRINT
982 PRINT
903 RETURN
1000 END

Each time the RETURN is executed, control is trans-
ferred to the statement following the GOSUB which last
called the PRINT routine.

Control Commands

There are several commands that may be given to the
computer by typing the command at the start of a new
line (no line number) and following the command with
a CARRIAGE RETURN.

STOP. Stops all operations at once, even when the tele-
typewriter is typing. When the system is ready to accept
further input, it types READY.

RUN. Begins the computation of a program.

SCRATCH. Destroys the problem -currently being
worked on; it gives the user a ‘clean sheet’ to work on.
When the system is ready to accept a new program, it
types READY.

LIST. Causes an up-to-date listing of the program to be
typed out.

LIST XXXX. Causes an up-to-date listing of the pro-
gram to be typed out beginning at line number XXXX
and continuing to the end.

That’s All There Is To It

Programs written according to the rules given in this
article will run on any system using the BASIC lan-
guage. However, individual systems may have additional
features (statement types, etc.) that will further simplify
programming or perform special functions. This is true
of the Hewlett-Packard version of BASIC. The next arti-
cle explains why and how HP BASIC differs from basic
BASIC. £

Gerald L. Peterson

Developing an acquaintance with
a broad expanse of California has
occupied much of Jerry Peterson’s
leisure time since he arrived from
Wisconsin in July 1967, Church
activities, golf, and tennis help to
fill the remaining free hours.

Currently product manager for the
2000A Time-Sharing System, Jerry
came directly to HP from the
University of Wisconsin (BSEE) to
work in market development for
the 2116 computer family. He is a
member of IEEE and Eta Kappa Nu.




A
Computer-

Museum

BASIC at Hewlett-Packard

Previously available only on large time-sharing systems,
BASIC has been adapted by Hewlett-Packard programmers
for HP computers and instrumentation systems.

By Richard M. Moley

HEWLETT-PACKARD ENGINEERS have long been enthusi-
astic users of computers as engineering design aids. Be-
fore time-sharing services became available, considerable
use was made of the ALGOL and FORTRAN computer
languages on computers operated as batch processors.
The advent of time-sharing systems and the development
of simpler conversational languages, of which BASIC is
an excellent example, provided a great stimulus to the
further use of computers. The growth in the use by HP
engineers of commercially available time-sharing serv-
ices, and particularly the use of the BASIC language, was
phenomenal.

A related development at Hewlett-Packard was that of
a family of 16-bit general-purpose computers particularly
suited for the scientific and

The word ‘compiler’ may be new to some readers. A
compiler is a language-processing computer program
which translates high-level language statements (ALGOL,
FORTRAN, BASIC, or whatever) into a form ‘which
the computer can ‘understand’ and execute directly. This
process is analogous to translating a text from a foreign
language into English so that a person who knows only
English can read and understand it.

HP BASIC

A project was undertaken in May 1967 to develop a
single-terminal BASIC compiler to run on any HP com-
puter having at least an 8K core memory and an ASR-33
teletypewriter. The design criteria called for the compiler

instrumentation fields (Fig.
1).! Not long after the an-
nouncement of the first of
these computers, serious
consideration was given to
the development of a BASIC
compiler to run on this fam-
ily of machines to satisfy the
following objectives:

m To provide a conversa-
tional compiler to supple-
ment the FORTRAN and
ALGOL compilers de-
veloped for the family.

m To provide a powerful,
flexible, and convenient
method of controlling
complex computer instru-
mentation systems.

PO B R T

BRI

+ K. B. Magleby, ‘A Computer for instru-
mentation Systems,’ Hewlett-Packard Jour-
nal, March 1967. This article describes the
HP 2116A Computer; the 2115A, 2114A, and

21168 Computers were developed later. HP 2114A Computer.

Fig. 1. HP BASIC is a version of the BASIC language which has special commands
for controlling instruments and for making better use of limited memory space, It
can be used on any HP computer which has an 8K memory. Shown here is the



Fig. 2. The thin-film amplifier in the foreground is about
to have its s-parameters measured automatically by the
HP 8541A Automatic Network Analyzer, a computer-
controlled system programmed in BASIC or FORTRAN.
Programs for performing many tests are supplied with
the system. Special tests are programmed by the user.

to occupy less than 6K of the core, leaving at least 2K for
the user, and for the language to be compatible with com-
monly available time-sharing implementations of BASIC,
so that programs developed on one system could be run
on another.

To make the language useful in the instrumentation
environment, it was necessary to expand it. Two state-
ments were added to those described in the preceding
article.

The WAIT statement:  This statement extends BASIC
to allow the introduction of delays into a program. Ex-
ecution of

WAIT (<formula>)
causes the program to wait for the number of millisec-
onds specified by the value of the formula.

The CALL statement: This statement extends BASIC
to allow the transfer of parameters to and from instru-
ment-control subroutines. Such subroutines can be added
to BASIC to create a specialized BASIC which has all the
features of the standard BASIC, along with the capability
to control instruments. Subroutines which have been ap-
pended to BASIC can be accessed through a statement of
the form:

CALL (<subroutine number>, <parameter list> )
The subroutine number is a positive integer specifying the
desired subroutine. The parameter list contains a number
of parameters appropriate to the subroutine being called.

10

An Instrumentation-System Example

An example may help to clarify the use of the CALL
and WAIT statements. Let us suppose we have an instru-
mentation system consisting of a programmable voltage
source and a digital voltmeter (DVM). With these we
wish to test the gain of a slowly settling amplifier. We
connect the amplifier’s input to the voltage source and its
output to the DVM. The voltage source is controlled by
the computer program by means of subroutine number 1,
which has two parameters, voltage and current limit. The
DVM is controlled by means of subroutine number 2,
which has three parameters, the function and range set-
tings for the DVM, and the voltage measured by the
DVM. The test might proceed as follows:

10 INPUT VsIsRsF>G»T

20 CALL (1,V, D)

3 WALT (T

40 CALL (2sR,F,Y)

50 IF Y=v¥G THEN 9@

6@ PRINT ""GAIN CHECK FAILED '3
70 PRINT "INPUT="V3I"OUTPUT="Y
88 GOTO 1@

9@ PRINT "GAIN CHECK PASSED"
100 GOTO 10

110 END

Statement 10 requests input values for the voltage (V)
and current limit (I) for the voltage source, the range (R)
and function (F) settings for the DVM, the specified gain
(G) and the settling time (T) of the amplifier.

Statement 20 sets up the voltage source.

Statement 30 allows time for the amplifier to settle.
Statement 40 causes the DVM to read the voltage on the
output of the amplifier and return its value as variable Y.

Statement 50 checks whether the amplifier output is
equal to its input times the specified gain. If it is, state-
ment 90 is executed and the message ‘Gain Check Passed’
is printed. Statement 100 then returns control to state-
ment 10, and the system awaits the next input values. If
the amplifier output is not equal to the input times the
specified gain, statements 60 and 70 are executed; the
message ‘Gain Check Failed Input — XX Output — XX’
is printed, with the actual values of V and Y inserted in
the XX positions. Statement 80 then returns control to
statement 10.

This program is greatly simplified, of course. It is in-
tended only as an illustration of the use of the CALL and
WAIT statements. In an actual system there would prob-
ably be a switching matrix, controlled by another sub-
routine, which would make it possible to apply the
voltage source and the DVM to any point in the test fix-
ture. The program would also be modified to accept am-
plifier outputs within a specified tolerance of the ideal.



AND, OR, and NOT

The requirement for an error tolerance is common in
instrumentation systems. Tests for combinations of con-
ditions are also common. These can be accomplished in
BASIC by a series of IF statements. However, to make
it simpler to program tolerances and combined tests, the
logical operations AND, OR, and NOT were added to
the HP version of BASIC. These operators have the same
meaning as they do in a Boolean expression. Going back
to our example program, a tolerance band of 10% around
the ideal output could be introduced by changing state-
ment 50 to read

5@ IF (Y<Cl.1%V*G)) AND (Y>(.9%Vy%G)) THEN B@

so that the amplifier gain will be considered acceptable if
0.9VG < Y < 1.1VG.

Interprogram Transfers

In BASIC each program, including its subroutines and
data, is treated as a complete entity. It is not possible to
split a program into separate segments, each of which

Computer

Museum

first processes the data partially and then passes the par-
tially processed data on to another segment. This can be
a crippling restriction on a system which has limited
memory available for the user’s program (for example, an
HP 8K system, which has 2K available for the user). To
overcome this restriction, another statement was added
to HP BASIC.

The COM Statement: The COM statement makes it pos-
sible for one program to store information in memory for
retrieval by a subsequent program. The form of the state-
ment is the same as that of the DIM statement described
in the preceding article. Thus the common-area informa-
tion is accessible only as a matrix. If the COM statement
is present in a program, it must be the first entered and
the lowest numbered statement of the program.

Using the COM statement, it is possible to run a pro-
gram which, although too large to fit into 2K of memory
when written as a complete program, is of such a nature
that it can be split into separate segments which commu-
nicate through the COM statement. Such a problem
might be encountered in an instrumentation system. The

. N
‘ FORTRAN BASIC
PROGRAM EXAMP 1 CcoM D(1@1,C(53,3]
COMMON D(18),CAL(3,125) 12 PRINT "CONN DEVICE",
12 WRITE (2,11) 290 CALL (7,Al) .
11 FORMAT (//"CONN DEVICE«") 38 PRINT "FREQ™,"VSWR"
NDMY = NYES1(NDMY)) 48 PRINT
WRITE (2,12) 50 LET M=l
12 FORMAT (//" FREQ",5X,"VSWR"//) /////r GOSUB 9880
M= it IF F<@ THEN 12
20 CALL CALF3(2,M,F) sa GOSUB 99080
IF (F) 18,30 Find 98 CALL (16,R,V1,A)
Rt R R L
- oefficient
VSWR = (1.8+T1)/C1.8-T1) 120 LET M=m+1
WRITE (2,31) F,VSWR T Coment 138 GOTO 5@
31 FORMAT ¢ F§.1, F18.3 ) VSWR
M=M+ 1 4
G0 T0 20 T frimtand 9829 REM: FIND F GIVEN M
END Frequency 9813 IF M<l THEN 985@
982¢ IF M>D[3) THEN 9858
9838 LET F=D[ 1 J+M%D( 2]
9848 RETURN
9856 LET F=-1
9868 RETURN
9982 REM: FIND CORR REFL AT FREQ F
9918 CALL (6,F,X,Y)
9920 CALL C(14,R,X,Y)
9932 CALL C11.,R.C(M, 11,R)
9948 CALL (12,R,C{M,31,T1)
9958 CALL (18,CiM,21,T1,T1)
9968 CALL C13.R,TI,R)
9978 RETURN
‘ 9999 END j
. o 7/

Fig. 3. FORTRAN and HP BASIC listings of the same program. This program directs the
HP 8541A Automatic Network Analyzer to measure and list the corrected VSWR of the
device being tested.

11



first program segment might acquire data and convert the
data to engineering units while a second segment analyzes
the converted data.

To use the COM statement, a program must be or-
ganized into separate segments, each of which starts with
a similar COM statement. The first such program seg-
ment is entered into the computer and executed. Upon
completion, this program segment will have stored the
variables of interest in the common area. Subsequent pro-
gram segments can then be entered into the computer,
each one retrieving information left in the common area
by a previous segment. A two-segment problem requiring
one hundred common variables might be organized as
follows:

Segment Number 1 Segment Number 2

10 COM AL1001] 10 COM AlL1001]
] ]
] ]
] ]
100 LET AllIl=Xt2+Y12 300 MAT PRINT A
] ]
] ]
] ]
500 END 400 END

Ignored or Deleted Lines

A powerful feature of BASIC is that it is conversa-
tional; it is always listening to the teletypewriter and will
interpret anything typed in as either a system command
or a program statement. If it is neither of these a diagnos-
tic message is printed. This can be annoying if the pro-
grammer merely wants to type something on the sheet for
his own information but not for the computer’s. For ex-
ample, the programmer might want to type his name, the
date, or the serial number of a device under test. To make
this possible, a further extension was made to the normal
operating characteristics of BASIC. HP BASIC will
ignore any message terminated by pressing the ESC or
ALT key on the teletypewriter. When this key is pressed
BASIC responds with a ‘\’, CARRIAGE RETURN,
LINE FEED to indicate that the line has been ignored.
This feature is also useful for suppressing an erroneous
program statement when the programmer realizes an
error has been made and wants to avoid the diagnostic
message.

An Interpretive Compiler

When the development of HP BASIC started, the only
conversational BASIC systems were those provided by
the commercial time-sharing systems. These generally
use very large computers, with large fast-access core

12

memories, large bulk memories in the form of disc or
drum, and sophisticated instruction repertoires and mem-
ory-protection schemes. Such systems typically store the
program statements on a disc as they are entered. Then,
when the complete program has been entered and the
RUN command given, they compile the program into a
machine-executable form. If any errors are detected in
the form of the statements (syntax errors) during the com-
pilation process, the compilation is terminated and an
error diagnostic is printed on the teletypewriter. The user
must then correct the errors and attempt to run again.

In these large systems there are two versions of the
user’s program: one is the original, stored on the disc, and
the other is the translation, which is executed in the com-
puter’s main core memory. The original must be retained
for editing and listing purposes.

To keep a logical error in a user’s program from de-
stroying the BASIC system during a program’s execution,
the large computer’s memory-protection scheme auto-
matically terminates the user’s program should it try to
destroy the system.

On a small computer with restricted core memory size
and no bulk memory (remember that the design criteria
called for the HP system to occupy no more than 6K on
an 8K computer), it is not possible to store both the orig-

Fig. 4. The HP 9500A is a computer-controlled system
designed to test a variety of electronic components,
modules, and assemblies, over a frequency range of
dc-500 MHz, It provides stimuli, measures responses,
processes data, and records results, all automatically. It
is programmed in HP BASIC.



inal and translated versions of the user’s program. There-
fore, for HP BASIC, an interpretive technique was
adopted. The computer stores only the original copy of
the program (or a version very close to it), and executes
one statement at a time by calling subroutines which
perform the operations requested by the statements. This
process is analogous to that of a foreign-language inter-
preter who translates sentence-by-sentence for an Eng-
lish-speaking person. This technique is slower than the
conventional technique, but for many problems it is not
markedly so. Another advantage of the interpretive tech-
nique is that the interpreter can preserve the integrity of
the system by making sure before performing each opera-
tion that the operation will not destroy the system. This
eliminates the need for a hardware memory-protection
feature.

Deleting Spaces Saves Space

To make its use of core memory more efficient, the
HP BASIC system deletes the spaces from incoming
statements and converts the condensed statements into a
compact form, shorter than the original and convenient
for interpretation. When the programmer calls for a list-
ing of his program, the original program is reconstructed
from the compact form and made readable by the inser-
tion of spaces at appropriate places.

The HP system was made more convenient for the user
by having it check each statement for syntax errors as it
is entered, instead of waiting for the entire program to be
entered, as do many large-scale systems. Errors are diag-
nosed as soon as a statement is entered, so the user can
correct them immediately.

To take advantage of the high-speed photoreaders and
tape punches which exist in many small computer in-
stallations, special commands were included in HP
BASIC to enable a program to be read in via a photo-
reader or to be listed on a high-speed tape punch. Using
tape, large programs can be entered and punched at
speeds up to 30 times that of the teletypewriter.

Uses of HP BASIC

The single-terminal HP BASIC system has been avail-
able since March 1968 and is being used extensively both
within HP and by purchasers of our computers. It pro-
vides an attractive alternative to the use of a time-shared
terminal for those who have access to a computer which
is not entirely dedicated to another function. It is being
used within HP in the control of experiments, in the in-
coming inspection of parts, and in the testing of instru-

ments. The HP 8541 A Computerized Network Analyzer

13

Computer
Museum

Richard M. Moley

A 1961 graduate of the University
of Manchester with a B.Sc. (Honors)
in electrical engineering, Dick
Moley designed computers and
developed process control
software systems before joining
HP in 1966. At HP he served as
project manager for a data
acquisition executive program
and the HP BASIC system prior
to his appointment as manager
of general purpose systems
programming. Dick, a member of
IEEE and ACM, received his
MSEE from Stanford this year.

Dick enjoys golf, bridge, reading,
and sea travel. A veteran of three
transatlantic crossings by ship,
he hopes someday to spend a
long vacation cruising from San
Francisco to Southampton.

(Fig. 2 and 3) is programmed in BASIC, as are several
HP automatic test systems (Fig. 4).

One of the most exciting outgrowths of the BASIC
project has been its extension into a special-purpose time-
sharing system which services up to sixteen active users.?
This system has an executive control program, a commu-
nication control program, and program library capabili-
ties. Its version of BASIC doesn’t have CALL and WAIT
statements because there are no instruments to be con-
trolled, and it doesn’t have the COM statement because
there is much more memory available for the user; how-
ever, it has other features, not found in standard BASIC,
that are particularly useful for scientific computation.

Acknowledgments

The fine efforts of the people who worked on the de-
velopment of HP BASIC ensured a smooth running proj-
ect, completed very close to schedule, and produced a
system remarkably free of ‘bugs’ I would like to express
my appreciation for the enthusiastic participation of
Thomas G. Ellestad, who implemented the system com-
mands and device drivers, Lewis Leith, who implemented
the matrix statements, and Gerould Smith, who contrib-
uted greatly to all phases of the development. Both
Gerould and Lewis are currently working on the develop-
ment of the special-purpose time-sharing system. )

tT, C. Poulter, Jr., ‘A Practical Time-Shared Computer System,” Hewlett-Packard
Journal, July 1968.




Voltage Probe for
High-Frequency Measurements

By Eddie A. Evel

WHEN MEASURING HIGH-FREQUENCY SIGNALS, accuracy
can be adversely affected by circuit loading caused by the
measuring instrument. Since loading may change the
characteristics of the circuit under test or the waveform of
the signal, it is often necessary to use a high-impedance,
low-capacitance input device. The new HP Model
1123A Voltage Probe, Fig. 1, is a wide-bandwidth, ac-
tive probe designed for making accurate high-frequency
measurements.

Low Input Capacitance

Using active circuitry in the probe tip, Fig. 2, the probe
input capacitance is approximately 3.5 pE Because of the
low capacitance, it has a high input impedance at high
frequencies. Thus it allows accurate measurement of high
frequency signals having a high source impedance.

50 Q Output Impedance

Output impedance of the probe is 50 ohms, making it
useful for driving a variety of instruments. A matched
output impedance is necessary to maintain good pulse
fidelity over a variety of load conditions. If the probe is
used to drive a pulse into improperly terminated 50 Q
coax, the reflection will be absorbed by the probe and not
reflected again. Therefore the reflection will not appear at

the coax output. With the 50 ohm output impedance,
long lengths of cable may be used to connect the probe to
the instrument as a remote signal input, while still pre-
serving good signal fidelity.

DC Output Level Control

An external screwdriver adjustment adjusts dc offset
at the probe output over a =£0.5 volt range. The output
dc level may be adjusted to —0.5 volts for example, in
which case the dynamic range at the probe input is shifted
to 0 to 41 volt. Thus by setting the offset control to the
appropriate level, 2 0 to 1 volt or 0 to —1 volt signal
can be observed with the probe even though the dynamic
range is restricted to ==0.5 volts at the probe output.

DC Stabilization Circuit

By utilizing a unique dc stabilization circuit, the dc
vs. temperature drift common in most active probes is
almost eliminated. In addition the circuit requires no ad-
justment to optimize temperature drift performance.

The stabilization circuit (Fig. 3) consists of amplifiers
1 and 2 connected such that the input signal being fed
through R1 is compared to the output signal being fed
back through R4. If the input voltage is different than the
output voltage, amplifier 2 generates a correction signal

Fig. 1. Various tips (left) may be used with the HP Model 1123A Voltage Probe to increase

dynamic range or ac couple the probe. The spring mounting of the amplifier assembly

reduces the possibility of connector damage. Fig. 2. By mounting a FET in the probe tip
and using miniature components, the input capacitance is kept low,

19



SPECIFICATIONS

HP Model 1123A
Active Probe

BANDWIDTH

DC to greater than 220 MHz (3 dB down).
RISETIME

Less than 1.6 ns (10% to 90%), ovar full dynamic range.
GAIN

Adjustable 10 X 1 into 50-ohm load.
DYNAMIC RANGE

AT OUTPUT: +-0.5 V peak.

AT INPUT: + 0.5 V peak around a reference voltage which

can be offset with variable control from 0 to +0.5 V dc.

DRIFT

PROBE TIP ASSEMBLY: Less than 100 xV/°C.

AMPLIFIER ASSEMBLY: Less than 1 mV/°C.

INPUT IMPEDANCE
100 k oshms shunted by approximately 3.5 pF.
OUTPUT IMPEDANCE
50 ohms.
MAX|MUM INPUT
+50 V (dc + peek ac}.
POWER
Supplied by various HP instruments. HP Model 1122A
Power Supply may be used to power up to four Model
1123A Active Probes.
ACCESSORIES FURNISHED
MODEL 10214A 10:1 DIVIDER
MODEL 10215A 100:1 DIVIDER
MODEL 10217A BLOCKING CAPACITOR
MODEL 10228A BLOCKING CAPACITOR
MODEL 10229A HOOK TIP
PRICE
Mode! 1123A (including accassories), $325.00.

10020A MINIATURE RESISTIVE DIVIDERS

Division Input R*  Input C  Max. Vt Division
Ratio {(ohme) {rF) (rme) Accuracy
1:1 50 6
5:1 259 0.7 9 +3%
10:1 500 0.7 12 +3%
20:1 1000 0.7 15 +3%
50:1 2500 0.7 25 +3%
100:1 500" 0.7 35 +3%

* When terminated in 50 ohms.
t Limited by power dissipation of resistive element.
PRICE
Model 10020A: $100.00.
MANUFACTURING DIVISION:

COLORADO SPRINGS DIVISION
1900 Garden of the Gods Road

Colorado Springs, Colorado 80907

which is fed to amplifier 4. Therefore, dc temperature
drift is determined by amplifiers 1 and 2 only. At high
frequencies, R5 and C1 cut off the output of amplifier 2
and the input signal is amplified by 3 and 4 only.

This circuit permits the probe to be designed with no
active circuitry in the probe tip that will affect dc tem-
perature drift. Further, amplifiers 3 and 4 can be opti-
mized for high frequency performance without regard for
dc drift performance.

Mechanical Features

The amplifier assembly is spring mounted, Fig. 1, by
its output BNC connector to keep it conveniently out of
the way while providing stress relief for the BNC con-
nector to which it is mounted. The probe tip pin is de-
signed to be easily replaceable.

Accessories

Accessories which can be used with the 1123 A Voltage
Probe include a 10:1 Divider Tip and a 100:1 Divider

Tip. These slip over the tip of the probe to increase
dynamic range. Also included are two blocking capacitors
to allow observation of signals which have a large dc
component. A hook tip may be used which facilitates at-
tachment of the probe to a circuit component.

Acknowledgments

The assistance and guidance of our group leader, Don
Watson, and the product design done by Dan Paxton are
gratefully acknowledged. I would also like to thank Al
DeVilbiss for his helpful suggestions and Bob Beamer for
his assistance in the electrical design, and all others who
contributed to the Model 1123A Project. £

Probe Tip

Eddie A. Evel

Ed Evel is a graduate of Kansas
State University where he received
his BSEE in 1962. After graduation
he worked on missile guidance
systems. Since joining HP in 1965,
he has worked on the design of the
Models 191A and 193A TV Wave-
form Oscilloscopes. Ed was
responsible for the electrical
design of the Model 1123A Voltage
Probe.

Fig. 3. This dc stabilization circuit provides excellent dc
vs. temperature drift performance. The system uses a
feedback amplitier arrangement.

1969 UTC Offset Announced

The International Bureau of Time, Paris, has announced
that the fractional frequency offset for Coordinated Uni-
versal Time for 1969 will continue to be —300 parts in
10, This offset from the atomic time (and frequency)
scale is annually selected so that Coordinated Universal
Time (UTC) can approximate UT2, a time scale related
to the rotation of the earth.

For the past three years the offset has also been —300
parts in 10 Before that it was —150 parts in 10" and,
earlier still, —130 parts in 10",

HEWLETT-PACKARD JOURNAL /® NOVEMBER 1968 Volume 20 - Number 3

TECHNICAL INFORMATION FROM THE LABORATORIES OF THE HEWLETT-PACKARD COMPANY PUBLISHED AT 1501 PAGE MILL ROAD, PALO ALTO, CALIFORNIA 94304
Editorial Staff: F. J. BURKHARD, R. P. DOLAN, L. D. SHERGALIS, R. H. SNYDER  Art Director: R, A. ERICKSON






