HP260 — HPBB
COMPATIBILITY DRAFT : 1986

HP260 TO HP3000
MIGRATION TRAINING
STUDENT WORKBOOK : 1986



"‘DRAFT"'

FyiT rj7) HEwLETT

- PACKARD
- [
SEQM Fule BGD
e Location Code: HP-B200
I .
L .
D Project Number: xxxx-xxxx
(NS e October 14, 1986
® ...z
! Subtitle: Tips and Tricks for the conversion
€V
A e
kw0
én :_’ .. B
I dha Dr. Ulrich Fauser
e AN
e o T A
. ¥ g7y 1R
/

m © 1986 HEWLETT-PACKARD COMPANY



Table of Contents

Section 1
INTRODUCTION

Section 2
DATA TYPES, STRING OPERATIONS

DATES. . . . . e e e e e e e e e e e e e e e e e e e 2-1
Data TyPS .« o o o i e e e e e e e e e et 2-1
SHORT INTEGER EXPIessions. . . . v v v v vt v e et e e et it o eae ot et o it e it e it aa e 2-2
Y8 ¢ 11 S 2-2
SEring OPerations . . . . . . v v v i i e e e et e e e e e e 2-3
Enhanced Strinmgs . . . . . . o vt it e i it e e e e e e e e e e e e e e e e 2-5
Section 3
.

OPERATORS AND FUNCTIONS -7

Section 4

PROGRAM CONTROL STATEMENTS

Structured Statements . . . . . . it it it et e e e ettt e e e e e 4-1
COMMAND . ... . ettt et e e i e e e e e e e e e e e e 4-1
) 0] 2 0 700 ) ;P 4-1
SELECT . . . . it i e e e e e e e e e e e e e e e e e 4-2
Section 5

SUBUNITS

Handling Compiled and Interpreted Routines. . . . . ... ... ... .. . 5-1
SUbProgram NamMeS . . . . . . . it e e e e e et e 5-1
Main COMMON Block for SUBDURILS . . . . . . i ittt e it e e e e et e e e ettt et e ettt e e 5-2
SUBDUIL SIZ8. . -« . o v v e e et e e e e e e e e e e e e e e e e e e e e e e e e e e e e e 5-2
Section 6

DATA FILES

Deleted StatemMentS . . . . . o o ot it et e e e e e e e e e e e e e e e e e e e e e e 6-1
ASSIGN . . . e e e e e e e e e e e e e e e e e e e e e e e e 6-1
File NameS . . . . o i i it e it e e e e e e e e e e e e ettt sttt et ee e I 6-1
Volume IAentifIers. . . - . & o o it e e e e e e e e e e e e e e e e e e e e e e 6-2
SIZE . . . e e e e e e e e e e e e e e e e e 6-2
PRINT #n END . . . . i e e e e et i e e et s e et i it 6-3
Direct WOrd ACCESS . » « o o s e e e e et e e e e e e e e e e e e e e e e e e e e 6-3

Storage Requirements in BDATA Files. . . . . . . ... o i ittt 6-4



HP Computer Museum
www.hpmuseum.net

For research and education purposes only.



Table of Contents

Section 7
ARRAY OPERATIONS

DT . . . e e e e e e e e e e e e e e 7-1
Section 8

SCREEN AND PRINTER 1/O

The CURSOR Statement. . . . . . . vttt ittt e et e et e e e et e et e e e e e e e e e e i 8-1
53 ) 1 A 8-1
RPOS and CPOS . . . . . it e e e e e e e e e e e e e e e e e e e e e e 8-1
LINPUT . . . o e e e s e e e e e e e e e e e e 8-2
Softkeys during INPUT . . . . . . .. i it it e e et e et et et e et e et e aees 8-3
Section 9

USER DEFINED FUNCTION KEYS

Only B SO tKeYS . . . . it e e e e e e e e e e e e e e e e e e e e 9-1
Video ENhancements . . . . . . vttt ittt et e e e e e e e e e e e e e e e e e e e e 9-1
Labeltext Length . . .. . . i e e e e e e e e e e e e e e e 9-1
Real Softkey Interrupts . . . . . . . . it it i it it e e e e e e e e e e e 9-1
Section 10

DATA BASE MANAGEMENT

Deleted Statements . . . . . . . vttt e e e e e e e e e e e e e e e e e e e 10-1
DB CLOSE . . . . it e e e e e e e e e e e e e e e e e e e 10-1
DBEIND . . . . e e e e e e e e e e e e e e e e e e e 10-2
DBGET/DBUPDATE. . . . . ittt e et e e et e et e et e s et e e e e e 10-2
Detail Length. . . . . . o e e e e e e e e e e e e e e e e e e e 10-3
IN DAT A SET . . . o e e e e e e e e e e e e e e e e e e e e e e e e e e 10-3
DBINFO . . . . o e e e e e e e 10-4
DBLOCK . . . e e e e e e e e e e e e e e 10-4
PACK/UNPACK . . . it s it i e e e e e e e e e e s e e e e e e e e e e e e 10-4
PREDICATE . . . . it et e et e e e e e e e e e e e e e e e e 10-§
Database StatUSAITaY . . . . . v v vttt e et e e e e e e e e e e e e e 10-5
Section 11

DATA BASE SEARCH AND SORT

SEARCH/FIND . . . ittt et e e e e e e e e e e e e e e e e e e e 11-1
SOR T . . o i e e e e e e e e e e e e e e e e e 11-2
Hints for SEARCH and SORT . . . . . .. i it i i it e it e e e e e e et e e e e e e e e 11-2
WORKFILE. . . . .. .t e e e e e e e e e e e e e 11-2
ER RN 239 .t e e e e e e e e e e e 11-3
WOrKfile POINterS . . . . . v ottt i e e e et e e e e e e e e e e e e e e e e e e e e 11-3

. Section 12

THE BASIC REPORT WRITER



Table of Contents

PAGE LENGTH. . . . . . e e e e e e e e e e 12-1
RepOrts On the SCreen . . . . . . L i e e e e e e e e e e e 12-1
@ DETALLNEL . S 12-1
LASTBREAK . . . . e e 12-1
HP260 Bug with Page Trailerand Detail Line . . . . .. . . . .. .. . i ittt it 12-2
Additional Screen OutpUL . . . . . . . L. L e e e e e e e e e e e e 12-2
Section 13
USING FORMS IN BASIC
Print Control FunCtions . . . . . . . . . it e e e e e e e e e e 13-1
TENUM . e e e e e e e e e e e 13-1
Video Enhancements in Formfields . . . . . . . . . .. .. .. .. . . e e 13-1
Cursor Behaviour . . . . . . . . e e e e e e e e e e 13-2
Output Buffering . . . . . . . o i e e e e e e e e e e e e e e e e e e e e 13-2
Softkeys During FOrminpuUL. . . . . . . .. it ittt i et et et et e e e e e e e 13-3
Section 14

ERROR HANDLING

Section 15 .
MISCELLANEOUS

. Deleted Statements . . . . . . . . . . i it i e e e e e e e e e e e e e e e 15-1
CHECK PGM . . ...t i ittt et et e ettt e et e et et et ee et e e 15-1
TESTSIZE . . . . . e e e e e e e e e e e e e e e e e e e e e 15-1
Definitions, Packformats and INDATASET Lists . . . . . . . . .. ..t ittt it i e it enenns 15-2
OPTION INPUT LOOPS . . . . .ttt e e e e e e e e e e e e e e e e e e e e e e e 15-2
File Redirection in the Interpreter . . . . . . . . . . i ittt it it et e et e e e e e e e e 15-2
PERFORM for TRANSFER. . . . . . . . . et e e e e e e e e e e et e e et et e 15-3

Section 16 :
USING THE COMPILER

Cleanup of Programs . . . . . . . . . i i e it e e e e e e e e e e 16-1
COPTIONS . . . e e e e e e e e e e e e e e e e e e 16-1
Compiled GET . . . . . . .t e e e e e e e e e e e e e e e e e e e e 16-1
Section 17

EXTERNAL ROUTINES

External Names . . . ... .. e e e e e e e e 17-1
EXTERNAL Declarations. . . . . . . ittt it it e et e e e e e e et et e e e e et e et e e e 17-1
Section 18

. BUGS AND WORKAROUNDS PROBLEMS *(\




Table of Contents

ASSIGN Bug . . . . e e e e e e e e e e e e e e e 18-1
DBGET Compiler Bug . . . . . . . . .ot e e e e ... 18-1
Decimal Exponentiation . . . . .. ... ... .. e 18-1
JOINFORM BUg . . . . ...t i e et e e e e e e et e e e e e - 18-2
JOINFORM Problem . . . . . ... i it e e e e e e e e e e e e e e e e e e 18-2
IN DATASET BUg. . . . . . ittt e e e e e e e e e e e e e e e e e e e e e 18-2
Labels (Bug). . . . . . o e e e e e e e e e e e e e 18-2
MPE Loader Problem. . . . . . . . . . e e e e e e e e e e 18-2
Report Writer Bug. . . . . . . . . e e e e e e e e e e e e e e e 18-3
Report Writer Bug. . . . . . . . . . e e e e e e e e e e e e e e 18-3
REPORT WRITER Bug . . .. . . i e et e e e e e e e s e e e e e e e 18-3
SORT BUE . . . . . e e e e e e e e e e e e e e e e 18-3

SYSTEMRUN Problem. . . . ... .. . e i e i e e 18-4



SECTION

INTRODUCTION -

This is a technical paper for HP260 customers who are thinking of con-
verting existing programs to the HP3000 with the help of HP BUSINESS
BASIC/V and the existing conversion tools.

It is a summary of the experience known today from the conversion

of existing HP260 applications.

The terms HP BUSINESS BASIC/V and HPBB will be used interchangeably.

Its purpose is to document all the little incompatibilities not
mentioned in the HPBB manuals (programmer and reference manual)
give some tips and tricks gathered from early start users in their
conversion experience and help you around some obstacles still
existing in HPBB by providing possible workarounds.

A special emphasis is put on HP260 users developing new applications
on the HP260 with its known programmer’s productivity but who are also
considering later migration to the HP3000.

This paper will tell you what to watch out for, how to program for
minimal conversion effort, maximum usage of the conversion tools

and also minimizing the codespace generated by compiling your programs
in the HP BUSINESS BASIC/V environment. .

The experience given in this paper reflects the state of HPBB’s
released MR version in fall 1986.
For later versions not everything mentioned might still be true.

The reader is required to have a working knowledge of BASIC/260
and HP BUSINESS BASIC/V as facts documented in the manuals are not
repeated in this paper. '

This manual is built up mostly upon the structure of the HPBB
Programmers Guide for easy crossreference.

An additional chapter 18 is included describing bugs and workarounds
in the current version.

As a final comment please remember that HPBB is running under a
different operating system (MPE) and on a different hardware and
provides an interpreter as well as a compiler. Therefore it was not
possible to achieve a 100% compatibility to BASIC/260.

* Review Copy *
1-1

5




DATA TYPES, STRING OPERATIONS

DATES$

This is a hint for non US customers only. The DATE$ function now
returns the american date format. To get the date format you are used
to use DATE$(<NLS number>) or overwrite the default by setting the
date format in CNFGHPBB.

Computer
Museum

DATA TYPES

In using data types there is one thing to consider. On the HP260 it was
almost normal to leave variables undefined e.g. like FOR variables,
counters etc without too much penalty. Remember these undefined
variables are by default REAL.

Now on the HP3000 in HPBB there are two target data types to choose from
REAL or DECIMAL, with DECIMAL being the exact corresponding type
concerning accuracy in computations.

The conversion program BBCT250 allows you to select your target data
type for HP260 REAL variables with OPTION REAL or OPTION DECIMAL.

Choosing OPTION DECIMAL

SHORT is converted to SHORT DECIMAL
REAL is converted to DECIMAL

In the data base schema this corresponds to K2 and K4 types.

It should be noted that a future version of the TURBO IMAGE schema
processor will accept D2 and D4 but internally these are still treated
as K types.

This choice gives you the exact same behaviour as on the HP260.

The disadvantage is QUERY does not yet recognize K2 and K4.

Other languages cannot interpret these formats

There is a problem sorting DECIMAL values (see SORT).

Performance is quite slow, as the HP3000 has only little hardware
support for DECIMALs, most is done in software.

Choosing OPTION REAL

SHORT is converted to SHORT REAL
REAL is converted to REAL
In the data base schema this corresponds to R2 and R4

* Review Copy *
2-1




Data Types, String Operations

Other languages can read this data base too.

QUERY can handle this variables

Performance is much faster.

But you may have rounding errors in your computations which may
affect your programs behaviour.

As a rule of thumb the performance ratio between the different data
types in HPBB is roughly:

SHORT INTEGER : INTEGER : SHORT REAL : REAL : DECIMAL : SHORT DECIMAL
1 : 1 : 3 : 3 . 3o : 45

So for optimal performance and less codespace use INTEGER on the HP3000
whenever possible.

Do not use DECIMAL for bulk computations.

It it also good programming practice to declare all variables.

Use GLOBAL OPTION DECLARE to enforce it.

SHORT INTEGER EXPRESSIONS

If all operands in an expression are of type SHORT INTEGER then the
result is SHORT INTEGER also, even if the target variable is something
else e.g. REAL.

REAL Date
SHORT INTEGER Year,Month,Day
Date=Year#10000+Month#100+Day - -

results in Short Integer overflow in HPBB, not on the HP260.

To avoid this change one operand to a different data type e.g.
Date=Year#10000.+Month#100+Day

Please realize that this discussion actually applies to all data types

but is most noticeable with SHORT INTEGER due to the restricted range.
Some users may have problems with INTEGER or SHORT DECIMAL too.

STRINGS

Please note that the string concatenation operator on the HP260
is &, in HPBB it is + .

The behaviour of HPBB with empty substrings is different in two ways.
Ex.: A$=""

IF A$[1,3]¢<>"XYZ" THEN
works on the HP260 and results in FALSE

* Review Copy ¥
2-2




Data Types, String Operations

in HPBB this gives you an error 18: SUBSTRING OUT OF RANGE
So to be compatible avoid this construct or add an additional check
e.g. IF LEN(A$)>=3 AND A$[1,3]<>"XYZ" THEN .....

Due to HPBBs partial evaluation of boolean expressions the right hand
side of AND will not be evaluated if the left hand side is FALSE.

Accessing a substring immediately at the end of a string returns
an empty string on the HP260

A$=IO 1 23!!
B$=A$[4] ! this is valid on the HP260

HPBB has implemented this different in that it doesn’t return

an empty string but rather results in error 18 again.

This is quite a nuisance when implementing e.g. recursive string al-
gorithms where an empty string is usually the ending condition.

Or if you program a FIND and REPLACE strategy in a textprocessing
system this is usually done like the following example:

Posold=POS(Line$,0ldstring$)

IF Posold THEN
Line$=Line$[1,Posold-1]&Newstring$&Line$[Posold+LEN(Oldstring$)]

END IF

Again this works ok in both BASIC versions except when the Oldstring$
happens to be at the very end of the line. Then only the HP260 succeeds
as the remainder of the Line$ is the empty string. HPBB gives you an
error 18.

To avoid this kind of stringhandling you have to add quite a few more
statements to check if you have reached the end of the string.

STRING OPERATIONS

The POS function has an undesirable effect when the second parameter is
the empty string.

Ng=""
I=POS("YyNn" ,N$)

returns 0 on the 260 giving the correct answer that "" is not contained
in the first string, HPBB always returns a 1 in this case giving your
program the impression that the user entered a Y.

To be compatible add checks to make sure there is no empty second
stringparameter to POS. :

Besides the above mentioned incompatibilities all string functions are

available in HPBB too but they have a big disadvantage, when compiling

* Review Copy *
2-3




Data Types, String Operations

your program they use up the available codespace very fast. This applies
especially to substring access, string concatenation and RPTS.

It is highly worthwhile to consider a different approach: building

a small string library.

So instead of using the concatenation operator
write a concatenation function.

DEF FNConcat$(A$,8%)
RETURN A$+B$ ! & on the HP260
FNEND
In this way the expensive concatenation operation appears only once in
your programs, i.e. in your library.
To give you some ideas of the savings in HPBB:

C$=A$+B$ uses 68 words of code (with CONCAT=0)
C$=FNConcat$(A$,B$) uses only 35

the same is valid for substring access:

DEF FNSub$(A$,From,Length)
RETURN A$[From;Length]
FNEND

C$=A$[1;5]+B$[6;11] uses 244 words of code
C$=FNSub$(A$,1,5)+FNSub$(B$,6,11)  only 105 words

and

C$=FNConcat$(FNSub$(1,5) ,FNSub$(B$,6,11)) only 69 words

By doing this in a centralized way you can even work around the empty
string problem with the following solution

DEF FNSub$(A$,From,Length)

IF From=LEN(A$)+1 THEN RETURN ""

RETURN A$[From;MIN(Length,LEN(A$)+1-From)] ! may cause error 18
FNEND

For a single character substring there is still another codesaving
solution possible, instead of A$[I;1] use CHR$(NUM(A$[I;1]))

The NUM function is clever enough to know that it always needs only
one character.

Unfortunately the FNSub$ is only usable on the right hand side of an
expression. E.g. you want to change the filename of your temporary
file to get a name for a second workfile:

If Temp$="WRK"&USRID is your general workfile name, you can change it
like:

Work$=Temp$[1;2]&"2"&Temp$[4]
which works fine in both BASIC versions but uses up 299 words of

code in HPBB.
A less costly coding is:

* Review Copy *
2-4



Data Types, String Operations

Work$=Temp$
Work$[3;1]="2"

These two lines use only 41 words of code.

Hint: if you are using special characters in your filenames on the HP260
and take them out in converting to HPBB do not forget to change
substring indexes too, otherwise your results may be surprising.

This also applies to RPT$ and possibly other string functions as well
in a similar way.

A less costly and faster way, but requiring a little bit more effort,
is to include the FN.. functions as single line functions (whenever

possible) in every program where they are needed. This will result in
less code and faster execution compared to using multi line functions.

ENHANCED STRINGS

If you are using video enhanced strings the escapesequences are not
converted correctly. The HP260 uses an CHR$(128) as <end of enhancement>
what the HP3000 terminals do not recognize.

Replace this with ‘27"&d@"

* Review Copy *
2-5



OPERATORS AND FUNCTIONS

This chapter intentionally left blank. Its contents are integrated
into chapter 2.

- ‘Computer
Museum

* Review Copy *
3-1



SECTION

senon |
N

PROGRAM CONTROL STATEMENTS

STRUCTURED STATEMENTS

The HP260 allows you to use some structured statements in an un-
structured way like

IF X THEN NEXT I
or
IF A>9 THEN FOR I=1 TO 15

This is not allowed in HPBB but can easily be changed
IF X THEN Nexti

Nexti: NEXT I

or

IF A>9 THEN
FOR I=1 TO 15

- To be compatible do not use structured statements in the above manner.

COMMAND

COMMAND can only be used in the interpreter. As a mixture of compiled
and interpreted routines is not desirable due to performance reasons
and because the main program then has to stay interpreted too, it is
best to avoid COMMAND at all.

If it is totally unavoidable use it only in a separate son process

by calling the interpreter with SYSTEMRUN and passing information
via INFO or through files.

FOR LOOP

Use only INTEGER or SHORT INTEGER control variables if possible.
This speeds up performance and generates less code.

* Review Copy *
4-]



Program Control Statements

There is a heavy performance penalty and much more code is generated
when using DECIMAL as control variable.

SELECT

A SELECT statement can be very codespace consuming when selecting the
wrong data type

in the following program excerpt Mode is DECIMAL

SELECT Mode
CASE 1

CASE S0
END SELECT
These SO cases can generate around 800 words of compiled code as
because Mode is DECIMAL all numbers are internally stored as DECIMAL
and also all comparisons are made for DECIMAL.
You can improve this by either declaring Mode as SHORT INTEGER or
by typing
SELECT SINTEGER(Mode)

This generates only around 200 words of compiled code '!!! and runs
much faster.

* Review Copy *
4-2



SUBUNITS

5

HANDLING COMPILED AND INTERPRETED ROUTINES

When debugging your subroutines you’ll be using them most certainly
sometimes interpreted, sometimes compiled. In order to make the mixed
usage easier consider the following piece of code:

! MENU Program this is interpreted

CALL Pgma1 ! call the overlay routine

END IMENU

SUB Pgmat ! this is also interpreted
EXTERNAL Pgma1t ! this is the original Pgmal

ON ERROR GOTO Loadsub
Callsub: CALL Pgmat1
@ susxir
Loadsub: ON ERROR GOTO Errorhandling
IF INTERPRETED THEN GET SUB "“PGMA11"
GOTO Callsub

SUBEND

Its benefit is: it will first look if your routine is already loaded

if yes it is calling the interpreted version.

If not and you have an EXTERNAL declaration it will look into your SLs
from grouplevel up to systemlevel, if it still doesn’t find the
subroutine it jumps to the errorhandling routine where it tries to load
the requested subroutine as interpreted code.

So if you already have a compiled version in a SL in order to test an
interpreted version just do a GET SUB before executing the CALL.

SUBPROGRAM NAMES

If you compile your programs in HPBB the SEGMENTER needs unique
entrypoint names. On the HP260 it was quite common to name all sub-
routines identical like Pgm or Prog and distinguish them only through
their filename.

To be compatible use unique subroutine names.

* Review Copy *
5-1

I e e R —————————




Subunits

MAIN COMMON BLOCK FOR SUBUNITS

When you compile a standalone subroutine in HPBB the compiler needs

to know certain information to succeed in compiling COMMON areas.

As in a subroutine no length or dimension information is available

a dummy main program containing only the COMMON definition is required
in front of the subroutine.

Example:

OPTION SUBPROGRAM NONEWCOM

COPTION SEGMENT="DUMMY"

COM String$([512],SHORT INTEGER K(10,15)
END

SUB Pgmat

COPTION SEGMENT="PGMA1"

COM String$,K(»,»)

SUBEND

There are two ways to do this, either merge the dummy main in front
of your subroutine or include it in your HP260 source too. That works
because the LOAD SUB only loads the real subroutine into your workspace.

The only difference then to be changed manually is that the HP260 does
not allow you to specify the number of dimensions of an array in the
subprogram, there you write K(#) only whereas HPBB requires an
asterisk for each dimension or K() as shorthand for K(#).

SUBUNIT SIZE

This is the most crucial point you will encounter when trying to con-
vert an existing application. The HP3000 due to its segmentation poses
more restrictions on the size of 2 subunit (main, subprogram, function)
than the HP260. There you have the 64 KB space and you handle your own
segmentation. On the HP3000 your available space is much larger, you can
have a large number of subunits but the size of a subunit is restricted
by the hardware to the size of a codesegment which is 32 KB.

Now interpreted code being compact by nature has a tendency to grow
when it is compiled. Our experience showed us that the way programs are
written on the HP260 often produces to much code to be successfully com-
pilable. :

To be compatible segment your programs really well. A good rule of thumb
is that if your programs use from 50 to 60 sectors as PROG on the HP260
you have a good chance that it will fit compiled in a code segment.

Of course there should not be too many space consuming statements in

* Review Copy *
5-2



Subunits

that subunit like SEARCH, SORT, PACK, DETAIL LINE 1, excessive string-
. handling and so on.

Unfortunately there is a penalty on the HP260 for having more than
necessary segments. Your performance will decrease because you probably
have to use more LOAD SUBs and your programs may become more error 2
prone. The performance degradation might not be such a problem with

the coming disccaching in operating system B08.0.

* Review Copy ?
5-3




DATA FILES

DELETED STATEMENTS

The following file handling statements are no longer available in HPBB
and should be avoided to be compatible. Most of them are no longer
needed or make no sense under MPE.

AVAIL

BUFFER#

CATLINE / CATFILE

CHECKREAD ON/OFF

DIRECT / INDIRECT / NOUPDATE
DOOR LOCK/UNLOCK

DUPTEST

HOLE

PRINT / READ 1ABEL

ASSIGN

The returncode of the ASSIGN statement is different, there is no way
to implement it the same in both versions.

To be more compatible use constants for errorcodes and during the
conversion process simply substitute their values.

E.g. HP260 HPBB
Filenotfound= 1 52
etc.

FILE NAMES

The HP3000 filesystem allows you less freedom in choosing your
filenames. First of all no distinction is made between upper and
lowercase characters, so avoid a file naming strategy where names
are only different in casing.

No special characters are allowed in filenames. On the HP260 some
people started e.g. temporary workfiles with a special character

* Review Copy *
6-1



Data Files

like $ or % in order to find these easier with CAT to purge them
when they are no longer used.

To be compatible use only alphabetic characters and digits after
the first letter.

It is worth mentioning that USRID can have up to three digits on the
HP3000. As userspecific filenames are sometimes build with the USRID as
suffix filenames can get longer than 6 characters. But this is no
_problem as MPE-filenames are up to 8 characters long.

However the longer USRID can cause problems if you have reserved
somewhere space to store them and this space is not large enough.

To avoid any such problems the best solution is to allow for 8
character filenames in your storage considerations and make your program
easily changeable to handle 6 chars or 8 after the conversion.

VOLUME IDENTIFIERS

On the HP260 it was very important to distribute your fileload evenly
across the available disc drives, so some techniques have been
developed by adding the volume identifier to the filename thus

having e.g. a separate disc for the databases or for work/spoolfiles
This volid can be up to seven characters on the HP260 plus the comma
to identify it as a volume name.

There are no volumenames on the HP3000. The filesystem itself takes care
of the distribution of files across the available disc space.

It may however be of advantage to keep your strategy to logically
distribute your files. Luckily there is a simple way to do this

without too many changes if you translate HP260 volume identifiers to
HP3000 groupnames.

What we have said about filenames, storage allocation etc applies to
volumenames as well, group names can be up to 8 chars plus the
additional point to separate it from the filename.

So we have an easy conversion if you put your whole application within
one account.

If you want to use accountnames as well to qualify your filenames you
better reserve some additional space in your newly developed system.
Adding things like this later on introduces too many possibilities for
new errors.

SIZE

The SIZE function with argument -1 is no longer available in HPBB.

* Review Copy *
6-2




Data Files

On the HP260 the argument -1 returns the logical recordlength of a
workfile and by dividing this by 2 you get the THREAD length defined
for this workfile.

HPBB does not support the notion of logical recordlength in a workfile.
There is only a physical recordlength and there is no way to find the
THREAD length in a workfile.

To be compatible use other methods to remember the THREAD length e.g.
by assigning a value to a variable Threadlen.

‘PRINT #N;END

On the HP260 you can write

FOR I=1 TO 10
PRINT #1;I,END
NEXT I

and get a file filled with values from 1 to 10.
You can then read this file serially and get all your values back.
The EOF marks are overwritten each time.

In HPBB however you will get a file filled as well with 10 values,
but after every value there is an end of file mark.

By reading it sequentially you can only access the first record, then
you will get an error 59 (EOF).

Only by using direct word access you are able to read the remaining

S values.

To be compatible replace the above program by:

FOR I=1 TO 10
PRINT #1;1

NEXT 1

PRINT #1;END

DIRECT WORD ACCESS

The need for manual conversion may arise if you use direct word access
to data files when you are using SHORT and REAL variables.

On the HP260 these used 4 and 8 bytes in a data file, on the HP3000 in
a BDATA file they use 6 and 10 bytes either as REAL and DECIMAL.

So your wordpointers are no longer the same.

In HPBB now every data item has a descriptor (2 bytes), while on the
HP260 REAL numbers didn’t have them.

To be compatible do not use this feature, so do not program

* Review Copy *
6-3




Data Files

READ #1,1,18;var
o rather use dummy variables to skip over undesired values
READ #1,1;Dummy$,Dummy,Var

This is compatible whatever data types you use.

STORAGE REQUIREMENTS IN BDATA FILES

Length of variables in bytes

Type BDATA File vs  IMAGE/3000
SHORT INTEGER 4 2
INTEGER 6 4
SHORT DECIMAL 6 4
DECIMAL 10 8
SHORT REAL 4
REAL 10 8
String X+4 X

* Review Copy *
6-4




ARRAY OPERATIONS

DET

The matrix function DET is in
To be compatible do not use DE

HPBB only available with parameters,
T without parameters.

* Review Copy *
7-1




SCREEN AND PRINTER 170

THE CURSOR STATEMENT

The following CURSOR options no longer exist
IF, OF, RIF, ROF, PL, UL, PALL, UPALL
To be compatible do not use any of these options.

Hint: IF and OF is something else than IF# and OF%.

If you really need something like PALL or UPALL there is a manual
workaround to achieve similar results on HP3000 terminals.

SUB Pall(SHORT INTEGER Line)
CURSOR (Line)
DISP “27"1";

SUBEND

SUB Upall
DISP "27"m";

“ SUBEND

EDIT

the EDIT statement is not available in HPBB.
To be compatible do not use it.

RPOS AND CPOS

There are some problems in using RPOS and CPOS in combination with
input statements.

Imagine you want to set the current linelength in a textprocessing
program.

On the HP260 :
Line=Defaultlinelen
ON KEY#1:"LINELEN :"&VAL$(Line) GOSUB Set_line_length
LOOP
LINPUT "";Line$

‘I.l' END LOOP

* Review Copy *
8-1




Screen and Printer I/0O

Set_line_length: Line=XPOS
ON KEY#1:"LINELEN :"&VAL$(Line) GOSUB Set_line_length

@ reTure

This lets you set your current linelength easily by moving the cursor
to the desired position first and pressing the softkey.

Not so in HPBB: the input statements all move the cursor to the
beginning of the next line (except TINPUT with NOLF) so that CPOS is
always 1.

RPOS is actual line +1, except when using NOLF option with TINPUT, then
it is the actual line.

The only input statement which gives correct results is ACCEPT which
is of course of no use in above example.

So the only compatible way is using a less userfriendly solution by
inserting an empty line in the current position and actually asking
the user for numeric input of his desired value.

Another workaround in HPBB (tested on 2392A and HP150-11)
Replace above LOOP by

LOOP
DISP “27"&ki1M"; ! Modifx on Computer
ACCEPT Line$ - Museum
DISP “27"&kOM"; ! Modify off '

@ cevoLoor

In this solution CPOS returns the desired cursor position.

LINPUT

LINPUT in HPBB reads only what you type in and not what is already in
that line.
A HP260 example

DIM A$[80]
LINPUT "HELLO ";A$
DISP A$

If the user enters YOU the program displays HELLO YOU,

in HPBB it would only print YOU.

To be compatible do not use this feature of LINPUT. In the above
example an easy workaround is possible, Just do the string
concatenation within the program.

An even more compatible solution is not using LINPUT in this way

at all but doing the actual screen read with LENTER. This gives you
' the complete line in both implementations.

* Review Copy *
8-2

L L e e e e —————




Screen and Printer 1/0

SOFTKEYS DURING INPUT

Consider the following program:

ON KEY#8:"PRESS HERE" GOSUB Softkeyroutine
LOOP
A$=B$=""
INPUT A$,B$
DISP A$,BS$
END LOOP
STOP
Softkeyroutine : RETURN

As on the HP260 softkeys are real interrupts the INPUT sequence can be
interrupted in any situation and returns to the same point where it
came from. I.e. softkeys on the HP260 do not end the INPUT statement.

In HPBB however pressing a softkey terminates an INPUT so if you have
already entered A$ and type half of the second input then decide to
press a softkey the second input is lost, only A$ then has a value.

Upon RETURN INPUT is not continued where it was interrupted.

To have at least a similar behaviour situations like this in HPBB are
usually coded as follows: (BBCT250 does the same)

ON KEY 8 GOSUB Softkeyroutine;LABEL="PRESS HERE"
LOOP
A$,B$=""
LoopP
INPUT A$,B$
EXIT IF RESPONSE > 1
END LOOP
DISP A$,B$
ENDLOOP
STOP
Softkeyroutine:RETURN

Please note that this is closer to the above example but still not
exactly the same as INPUT is simply repeated from the beginning,
meaning the user has to redo the whole input again.

NOTE

If you are printing graphic characters or enhancements to the printer
your output string gets quite long if there are many escapesequences

in the output stream.

However in a usual configuration a printer is configured with length
132 chars. If the string is longer an automatic CRLF is inserted making
your output look different than you wish.

* Review Copy *
8-3

[




Screen and Printer 1/0

So make sure your system manager reconfigures the printer to your needs
. e.g. to 300 - 400 characters.

* Review Copy *
8-4




USER DEFINED FUNCTION KEYS

o |

ONLY 8 SOFTKEYS

HPBB has only 8 user definable softkeys available.
To be compatible do not develop new programs with multiple and
different softkey levels.

VIDEO ENHANCEMENTS

There are no videocenhancements possible in the softkeylabel.

On the HP260 it is common to highlight selected goftkeys with
some videoenhancements. '

To be compatible do not use enhancements in the softkeylabel, use
well recognizable characters instead e.g. an %,

‘ LABELTEXT LENGTH

The HP260 allows an 18 chars string (2#9) as text in a softkeylabel,

the HP3000 has only 16 chars.

To be compatible use exactly 16 chars on the HP260 in the label. The key
display algorithm breaks this in two parts of 8 chars each.

REAL SOFTKEY INTERRUPTS

On the HP260 a softkey can interrupt a program after every statement
or during all INPUT statements in their idle status.
I.e. pressing a softkey can take you right out of the middle of a
processing sequence.
Ex. ON KEY#8:"abort" GOTO Exit

LOOP

do some print processing
END LOOP

This allows a user to stop the actual processing, here printing a
list.

* Review Copy *
9-1

[




User Defined Function Keys

The HP3000 does not have real softkey interrupts, it traps pressed keys
only in an input state. The only real interrupt is CTRL-Y or HALT
which can be acted upon with the ON HALT statement.

To be compatible use no dynamic softkeys, use them only together
with an input statement or WAIT. WAIT is automatically converted to
LOOP

ACCEPT
END LOOP
to have the same effect in HPBB.

If you really need a dynamic softkey like in the above example use

ON HALT as well, otherwise you have to change it manually later on.
Pressing softkey 8 in the example under HPBB has absolutely no effect,
the LOOP continues until end of processing is reached. :

* Review Copy *
9-2



DATA BASE MANAGEMENT
1

DELETED STATEMENTS

The following statements are no longer existing and there is no
one to one workaround so do not use them.

IN DATA SET DIM ALL

IN DATA SET USE ALL

IN DATA SET IN COM

IN DATA SET USE REMOTE LISTS

IN DATA SET LIST

IN DATA SET FREE

DBINFO mode 4xx (there are no more volumes) B

READ Lock (a READ lock is automatically converted to a WRITE

lock, thus decreasing throughput)

Check if you really need the READ lock.

X variables longer than 254 bytes

DBCLOSE mode 4

DBCREATE

DBERASE

DBMAINT

DBPASS

DBPURGE

DBRESTORE

DBSTORE

READ/WRITE DBPASSWORD

XCopPY

There are no QUERY controlnumbers and no DBINFO for them

Some of the deleted functions are now available through DBUTIL or
other utilities provided by MPE.

DBCLOSE

To be compatible do not use an empty string as the data base
parameter. HPBB gives you an error.
DBCLOSE mode 4 is not available in IMAGE/3000.

* Review Copy *
10-1




Data Base Management

DBFIND

In HPBB DBFIND requires that the argumentvalue (KEY) be exactly of the
same type as the key item in the data base, otherwise you will get a
status error 53.

So you might have to add some conversion statements before passing your
value to the DBFIND statement. '

DBGET/DBUPDATE

There is a compatibility problem in a DBGET/DBUPDATE sequence. The
HP260 usually has an IN DATA SET active for the variables the program
needs, mostly not the whole dataset and DBGET reads the IMAGE buffer
into the program buffer and does implicit unpacking. Then you change
the variables to their new values and do an update eventually with a
different IN DATA SET list.

IN DATA SET "XYZ2" USE A,B,SKP 5,¢C
DBGET (Dbas$,Dset$,..... yBuff$)

‘ <update variables>

IN DATA SET "XYZ" USE <changed variables only>
DBUPDATE (Dbas$,Dset$,...... sBuffs)

This is ok on the HP260 as long as your program does not destroy the
buffer variable.

In HPBB however DBGET allows you either to use the USING clause or the
INTO clause but not both simultaneously. As DBGET USING does not keep
an internal buffer yo: can be in trouble because when your program
reaches the DBUPDATE ::atement you no longer have all your variables
neither is an unpacked buffer available.

To be compatible do not use above technique in a DBGET/UPDATE sequence.
Use DBGET without an IN DATA SET and do explicit unpacking and then for
DBUPDATE an explicit PACK. This is fully compatible.

Attention: a very common source of error with PACK is to forget to
SKIP to the end of the buffer after the last variable. This clears
the remainder of the buffer to blank instead of keeping the old
contents.

The second solution is just an enhancement to the first. There you need
to lock your record from the DBGET to the DBUPDATE to get consistent

‘ results what can severely degrade your multiuser performance because
the sequence can be quite long , could be even asking for user input
who of course is just out having his lunch break.

* Review Copy *
10-2

D e e e, ——




Data Base Management

It is a better technique to DBGET the record without locking but keeping
it an a buffer too. Then do your changes but before the UPDATE do a

. reread of the record with a lock and check if it is still the original
one on which you worked, if yes then update otherwise redo your com-
putations.

DETAIL LENGTH

Minimum record length in a detail is 4 bytes, not 2 like on the HP260.

INDATA SET

On the HP260 programmers mostly use DIM ALL or USE ALL for all
DB statements of a certain data set without considering its cost.
These two statements are no longer available in HPBB but it is not a
good solution to simply replace them with a IN DATASET LIST using all
variables of the set or a PACK/UNPACK doing all variables as well.
There is one reason even for the HP260 not to do this: performance.
It can speed up your program if you use in a certain DB statement only
those variables you really need. Also DIM ALL and USE ALL are very cpu
intensive operations requiring some time to execute.

. IN DATA SET USE <list> is much better.
In HPBB this has a second even more important benefit: savings in
compiled codespace. The fewer variables you have in an IN DATASET LIST
or a PACKFMT the smaller your DB and PACK/UNPACK statements are.
The same applies to SEARCH (FIND) and SORT.
This is a point which cannot be stressed enough as the savings are
really enormous. '
And to help you do this IN DATASET itself generates no code at all so
be really generous using it.

By the way if you are using IN DATASET LIST remember when changing
your program to run under HPBB the SKIP option on the HP260 counts
variables, in HPBB it counts bytes.

The dynamical relationship between IN DATA SET and DBGET/PUT/UPDATE

is no longer available in HPBB.

On the HP260 you can write centralized routines for generalized database
access, like:

Dbread: DBGET(Dbas$,Dset$,mode,$('),Buf$,Arg)
RETURN

and depending from where you call it, how your variables are set and
which IN DATA SET definitions are currently active this statement
can access totally different databases and datasets.

. In HPBB with the USING clause this kind of flexible relationship is no
longer possible as for the sake of the compiler the statement needs

* Review Copy *
10-3

R




Data Base Management

to know statically which formatting list (IN DATA SET, PACKFMT)
. belongs to this access.

To be compatible do not use this dynamic way of database access or
use it only in combination with explicit PACK/UNPACK.

DBINFO

When converting to HPBB check all your programs containing DBINFO
very carefully as the returned information is not always in the same
format and coding as on the HP260.

There is no way to really be compatible. The best you can do is keep
your DBINFOs in well defined places, maybe libraries or only in some
special well documented programs.

DBLOCK

The HP3000 does not automatically allow successive calls to DBLOCK

without prior DBUNLOCK. To do this the program and its group must have

MR capability which is something not everybody likes because it can

lead into a deadlock situation. The affected processes wait forever
' and cannot be aborted, only a system shutdown helps.

There is however a possibility to do multiple locks within one DBLOCK
even on the HP260. Have a closer look at the syntax of the PREDICATE
statement, it allows for multiple predicates.

To write programs not requiring MR use multiple locks.

A small incompatibility exists when issuing a second DBLOCK

with a finer granularity and the process has already locked on

a higher level. E.g. the first lock has locked a complete dataset

8 second lock then does a PREDICATE lock on a single entry.

The HP260 recognizes that the lock is already fullfilled and grants
it. In IMAGE/3000 the statusword returns a 23 meaning already locked
by another process.

To be compatible do not use this contruction or do a DBUNLOCK before
you require the finer lock.

PACK/UNPACK

variables into a database buffer. You can use it in a one to one
way in both implementations.

. PACK/UNPACK provide the most compatible way of packing and unpacking

* Review Copy *
10-4

R e e e e ———————————




Data Base Management

To be compatible use only PACK/UNPACK and not the USING clause.

. Realize however that PACK/UNPACK is one of the really costly
statements considering generated codespace when compiled.

PREDICATE

There is a minor restriction in that the relational operator can
only be >=, <= or =.

To be compatible restrict the usage to these three operators.

If you have implemented a central database locking routine you will
certainly have to change it in HPBB because two features keep you
from doing it the HP260 way.

- the relational operator is no longer a string expression, it is built
into 'the syntax, so you will need a SELECT block probably.

- the expression for the itemvalue must be exactly the same type as the
item itself, so you may have to add an additional parameter for the
itemtype and some conversion statements before the PREDICATE.

@ DATABASE STATUSARRAY

The following array indexes are valid for a statusarray defined as
S$(1:10) or S(10) using OPTION BASE 1

In the case of a database statuserror S(7) no longer returns the
erroneous line of your program as IMAGE/3000 is no part of HPBB but
rather a standalone subsystem.

The HP260 with its 16 bit address space did not use the complete array.
As IMAGE/3000 uses 31 bits for recordaddresses neighbour fields in the
array are also used. Fortunately the HP260 does not use these fields
and leaves them 0, so there is a way to implement a compatible

record address calculation scheme.

Instead of accessing the current recordpointer via S(4) use
S(3)#*2 * 16 + FNCorrect(S(4)).

(FNCorrect is the correctionroutine for negative numbers, see HP260
IMAGE manual)

The same applies to S(6): number of found records in chain

S(8): backwardspointer in chain
‘ $(10):forwardspointer in chain

* Review Copy *
10-5

I e e ——




Data Base Management

Instead of substituting the above expression for every occurence of
S(4), s(6), S(8) or S(10) you better write a little function doing

. this calculation. Necessary parameters are the statusarray and an
index with value 4,6,8 or 10.

* Review Copy *
10-6



SECTION

DATA BASE SEARCH AND SORT %

SEARCH/FIND

If you are using a function in the SEARCH expression which accesses the
same workfile as SEARCH itself the behaviour in HPBB is different
than on the HP260.

Consider the following piece of code:

WORKFILE IS #1

SEARCH USING Thread;FNSomething(#1)

DEF FNSomething(#1)

READ #1;Pointer

FNEND

The HP260 obviously keeps two different file control blocks so FIND does
not disturb the user’s file pointers and on the first call to the
function the first record of the workfile is read too.

In HPBB this is not the case, SEARCH is reading the first pointer
then calls the function which then is reading sequentially the second

pointer.

Workaround: use direct read by adding another parameter to the function
call thus keeping track of where you are.

Record=1
SEARCH USING Thread;FNSomething(#1,Record)

DEF FNSomething(#1,Record)
READ #1,Record;Pointer
Record=Record+1

FNEND

* Review Copy *
11-1

I e —————,————




Data Base Search and Sort

SORT

Right now the MPE sortroutine does not know how to handle decimal
data and therefore cannot sort it. In order to provide a workaround
for the most common needs the SORT statements treats decimal sortkeys
internally as strings and sorts them in sequence of their binary
representation.

This works fine as long as all decimal values are »>={ or 0.
All other values will be in the wrong sequence.

HINTS FOR SEARCH AND SORT

As both statements are very expensive in terms of compiled codespace
do not use them extensively within one subunit. There are several ways
to decrease their number:

- for identical SEARCH/SORT statements use a GOSUB routine
- move the complete SEARCH/SORT block out to a separate subunit.

- in the referenced IN DATASET USE statement define only the variables
you really need here saving you tremendous amounts of codespace.

- if you are searching an already existing workfile use FILTER
- if you are sorting an already existing workfile use SORT ONLY

FIND in SORT/260 can be used in the same flexible way like DBGET
( see there ) in respect to IN DATASET and THREAD. Whatever is
active at the time FIND/SORT is executed is used.

In HPBB however SEARCH and SORT for the sake of the compiler
require well defined backreferences to their THREAD and IN DATASET
statements.

To be more compatible do not use this flexibility in new programs.

WORKFILE

The WORKFILE IS statement does not define an empty workfile per se.

If a SEARCH results in no records found then there is a marker in
. the file saying this file was used in SEARCH but is empty.

A following SORT or SORT ONLY recognizes that.

* Review Copy *
11-2

I e i e ————




Data Base Search and Sort

However if you do searching with your own tools and PRINT your
qualifiing pointer in the workfile and you do not find any records

. at all this marker is missing.
A subsequent SORT then thinks it is first and sorts the whole thread-
list out of the database.
A subsequent SORT ONLY however fails because it expects a valid workfile

ERRN 239

Errornumber 239 (Workfile too small) no longe exists in HPBB, there
it is replaced by 59 (EOF found).

Programs dealing with this kind of error have to be changed.
To be more compatible use a constant in your program header like:

Wftoosmall=239

IF ERRN=Wftoosmall THEN
WORKFILE POINTERS

. The only supported data types in workfiles are 32 bit INTEGERs. There
is no way to program fully compatible as the HP260 does not have 32 bit
integers.

To be more compatible document the occurence of workfiles well and do a
manual change during the conversion.

* Review Copy *
11-3

D e e ——————




THE BASIC REPORT WRITER
1

PAGE LENGTH

The default values for <blank top> and <blank bottom> are different,
as well as for <pagelength>

HP260 HP3000
Page length 66 60
top/bottom 2 0

Even if the conversion takes care of that it is good practice to
define all values in the PAGE LENGTH statement explicitly.

REPORTS ON THE SCREEN

. If printing a report to the screen do not print beyond column 79 as
the HP3000 terminal does an automatic linefeed and besides that your
report might look strange, the line counting gets out of order and
your program may result in an error 260 which does not appear when you
output to a printer. This is especially true if you do double printing
of a line to enhance it on the paper, if you print it on the screen
beyond column 79 you have two identical lines there.

DETAIL LINE 1

Use DETAIL LINE 1 only if necessary, i.e. only when break and totals
have to be controlled, otherwise use DETAIL LINE 0O or PRINT.

See the HPBB programmers manual page 12-60 on hints on reducing code
size for DETAIL LINE 1 and also TRIGGER BREAK

LASTBREAK

LASTBREAK has a slightly different behaviour in HPBB.
. If executed outside of a report it returns a value of -1
meaning no report is active. On the HP260 it caused an error

* Review Copy *
12-1

[ .



The BASIC Report Writer

when executing it before a report actually started and it kept
its value 10 after END REPORT processing. In HPBB it returns
the value 10 only during the actual END REPORT processing.

This difference should not affect any program.

HP260 BUG WITH PAGE TRAILER AND DETAIL LINE

On the HP260 it is possible to write a detail line in the page trailer
area due to a bug. When you are using format specifications like:

IMAGE #,/........

a detail line can be printed in a page trailer line and the trailer
line is then added to the same line.

HPBB has not implemented this bug.
To be compatible do not rely on this to work any longer.

Add a line to the DETAIL LINE WITH n LINES statement because in reality
you are printing n+1 lines what the HP260 does not recognize.

ADDITIONAL SCREEN OUTPUT

It should be mentioned that in HPBB DISP and system output no longer
counts as REPORT WRITER output thus making tracing and debugging
easier. This difference should not affect any program.

* Review Copy *
12-2



USING FORMS IN BASIC
1

PRINT CONTROL FUNCTIONS

The functions LIN, TAB, PAGE and CTL have no effect when they are
printed into an active form in HPBB. On the HP260 they acted in a
strange way, it was not planned to use them within forms.

To be compatible do not use this functions in a form at all.

TFNUM

TFNUM which becomes TFLD in HPBB behaves different in that in HPBB
the TAB key is not recognized. So, if you are placing the cursor in
inputfield 5 and the user presses TAB twice TFLD does not return 7
like on the HP260 but 5 instead.

When the user hits <RETURN> TFLD returns the number of the last input-
field which was entered legally using the CURSOR function or normal
field sequencing, but not via TAB.

To be compatible train your customers not to use the TAB key in a
form at all.

It should be also noted that back tabbing does not work either.

If you want to allow your user to use TAB also your program must read
the screen in blockmode style..

I.e. program an INPUT loop which simply gives the user the ability to
enter his data values and provide an ACCEPT DATA softkey and then
reread the screen using ENTER,

If you are using field by field data entry provide a FIELD BACK soft-
key.

VIDEO ENHANCEMENTS IN FORMFIELDS

When simulating graphic output to a form like barcharts you could use
videoenhanced characters on the HP260 like inverse, blinking etc.

The same is possible in HPBB but not to the full extent as the
enhanced characters contain escapesequences which count fully as

* Review Copy *
13-1



Using Forms in BASIC

printed characters within the field, so very fast you will get an
. error 120 (output field overflow).

To be more compatible do not use DISP with enhanced characters but
rather use the CURSOR statement with the enhancement options.

Instead of:

CURSOR OF#20
DISP RPT$("<inv. blank>" ,Full)&RPT$("<halfbr. blank>" Half)

use:

CURSOR OF#20,IV(Full)
CURSOR (XPOS+Full), IV(Half),HB(Half)

which is converted in HPBB to:

CURSOR OFLD(20),("I",Full)
CURSOR (,CPOS+Full), ("I",Half), ("H" ,Half)

This unfortunately does not completely behave like the HP260 and has to
be manually changed to:

CURSOR OFLD(20),("1",-Full)
CURSOR (,CPOS+Full), ("IH" »~Half)

. otherwise one enhancement overwrites the other.
The minus sign is for optimization and not required.

CURSOR BEHAVIOUR

When the user reaches the end of a field in a form the cursor auto-
matically skips to the beginning of the next field, maybe creating the
impression that the input was already entered and processed. This is not
the case, additional input is ignored.

This is a little area where the customer needs training to get used to
this feature.

OUTPUT BUFFERING

If you use a PRINT statement ending with a semicolon the output is
buffered to allow to append more output. Remember that the effect of
the semicolon is to be able to print several variables in one formfield.

‘ The buffered output is not printed before a PRINT without ending semi-
colon appears.

* Review Copy *
13-2

O e




Using Forms in BASIC

This may affect you in error situations or if you end the last output
to the form with a semicolon. Then your output may not appear at all.

SOFTKEYS DURING FORMINPUT

Pressing a softkey during an INPUT e.g. after you have already entered
some characters terminates the input state without assigning the input
to the variable.

NOTE

Do NOT have the MODIFY mode ON during input from a form.

Do NOT type or press softkeys while output into a form is in progress,
or while your form is painted on the screen, this may destroy your
form.

Also do NOT have the INSERT CHAR key set when a form is painted
to the screen. On some terminals not supported by JOINFORM anyhow
your form may be destroyed. ’

* Review Copy *
13-3




ERROR HANDLING

This chapter intentionally left blank.

* Review Copy *
14-1

[




MISCELLANEOUS
15

DELETED STATEMENTS

No longer available are the following statements:

ON / OFF DELAY

REQUEST / RELEASE

RES

SET DATE / SET TIME
SYSID$

all TASK statements
all PERFORM statements
all TIO statements

all MEDIA statements

If you are using ON/OFF DELAY only for timed INPUT, manually convert
these programs and use the TINPUT statement with the TIMEOUT option
instead. The RESPONSE function returns a 2 in case of a timeout.

® CHECKPGM

This is a utility which roughly estimates the amount of code
generated by the compiler before you really compile it by looking at
an ASCII version of your program (SAVE LIST).

The utility uses a file CODESPCE which contains constants for the
amount of code most of the statements generate.

When you receive this utility from your SE these values may not be
uptodate but you can easily change them using an editor.

TESTSIZE

This is a real helpful utility for finding out statements in your
program using up a2 lot of your precious codespace. In order to be able
to use this routine your program must be already small enough to be
compilable. If it is not Just take out a part of the program,
recompile and identify large statements.

. Testsize was developed by a member of the HPBB team and is probably
avajlable through your local SE.

* Review Copy *
15-1

I L e i e ,——




Miscellaneous

DEFINITIONS, PACKFORMATS AND IN DATASET LISTS

For replacing DIM ALL and USE ALL during the conversion it is quite
helpful to write a few simple routines for automatic generation of
MERGE files for variable definitions, PACKFMT lists and IN DATASET
lists instead of rewriting them by hand everytime.

These routines can be implemented very easily using DBINFO and
formatting the returned information accordingly. This is also a good
exercise to get acquainted with the DBINFO differences.

OPTION INPUTLOOPS

If you are using softkeys do not forget to enable OPTION INPUTLOOPS
in the conversion utility BBCT250.PUB.SYS. Otherwise your converted
program will behave strangely.

FILE REDIRECTION IN THE INTERPRETER

A very efficient way is available to write own tools doing more
specific conversions and changes than BBCT250 is able to do.

HPBB allows you to redirect its input command file to your own data
file.

Let us suppose you have the following UDC:

CONV prog file=help.pub.<acct>
file bascom=!file
run HPBB.PUB.SYS;PARM=1;INFO="infile$=""1prog"""

Then your help file can contain things like:

COPY ALL OUTPUT TO "eL"

DISP "Conversion analysis for "+infile$

get infile$

! get rid of all the comments BBCT250 adds to the source
changeq "!## SYNTAX CHANGE" to "" in all

changeq "!## UNTRANSLATABLE" to "" in all

changeq "!## ADDED LINE" to "" in all

! add additional lines and dummy main

1 GLOBAL OPTION BASE 1,DECIMAL,SUBPROGRAM NONEWCOM
MERGE MAIN,2

101 COPTION SEGMENT="'XXXXXX"

! do some very specific changes .

changeq "DATE$" to "DATE$(1)" in all

changeq "! RE-STORE" to "! RESAVE" in all

* Review Copy *
15-2




Miscellaneous

changeq "Prt=8" to "Prt=888" in all

cwarnings

verify

ren

indent 5,3

resave

! find some more statements for further considerations

find "IN DATASET"

find "REQUEST"

find "UPALL"

find "239"

find "DBINFO"

find "THREAD"

find "Pointer" ! could be your workfile pointer , replace with
! INTEGER variable

! Hunan

! and whatever else you want to have checked
t Hunase

copy all output to display

exit

In this command file you can put all your little personal changes
which are so specific to your programs that BBCT250 cannot take care
of them. After careful investigation of a few of your programs you
should be able to do almost all necessary manual changes via this
command file giving you more time to break up your big programs into
smaller segments.

Besides redirection of BASCOM HPBB allows you to redirect all its
files by providing a certain PARM value.

Here are the HPBB parameter/file equations:

:file bascom= parm=1
:file basin= parm=2
:file bascom and basin . parm=3
:file basout= . parm=4
:file bascom and basout parm=5
:file basin and basout parm=6
:file bascom and basin and basout parm=T7
BASCOM = command file, which is read when the > appears
BASIN = data input

BASOUT = program output

PERFORM FOR TRANSFER

The task of DBUNLOADing your data bases on the HP260 and doing all the
TRANSFER can be rather tedious and timeconsuming. Do not even consider
to do it manually step by step. Before you do any conversion at all

* Review Copy *
15-3



Miscellaneous

write some PERFORM files for the different steps of the conversion
. which can then run over night or over the weekend.

As an example how to do this here is a PERFORM file which selects all
files from a certain volume starting with FB (financial bookkeeping)
copies them to a different volume whereby PROG files are converted to
DATA files and files are given a new name according to their type.
Another interesting feature is that this PERFORM file runs the EDITOR
in a secondary task and at the same time when it copies the files
creates a batch file for the use of TRANSFER where it can be used by
selecting the BATCH softkey.

The little program WAIT does nothing else than dimensioning the A$
variable and waiting for the parallel process to be in INPUT state.

! WAIT

DIM A$[80]

LOOP -
EXIT IF TSTAT(7)=1

END LoOOP

END

Here is the PERFORM example:

REQUEST #7
SEND CONTROL HALT #7
. SEND COMMAND#7, “RUN "&CHR$(34)&"EDITOR"&CHR$(34)
RUN “wWAIT"
SEND INPUT#7,"S LENGTH=160" .
RUN "WAIT" .-
SEND INPUT#7,"A"
RUN "wAIT"
:DIM PARM(8)
:SET PARM(1) TO 0
: LOOP
:SET PARM(1) TO PARM(1)+1
CATLINE PARM(1) ON ":8",A$
:EXIT IF A$[1,3]="EOD"
:IF A$[1,2]="FB" THEN
:IF A$[14;4]="PROG" OR A${14;4]="DATA" OR A$(14;4]="FORM" THEN
:SET PARM(S) TO NUM(A$[4;1])
:SET PARM(8) TO NUM(A$[5;1])
:SET PARM(7) TO NUM(A$[6;1])
< IF A$[14;4]="PROG" THEN
LOAD A$[1;6]&":S"
B$="FBP"&CHR$(PARM(5))&CHR$(PARM(6))&CHR$(PARM(7))&":M"
SAVE BS$
SEND INPUT#?,"DATA_FILE_TRANSFER "&B$&" TO FBH"&B$[4,6]
RUN “WAIT" .
:ELSE
:IF A$[14;4])="DATA" THEN .
B$="FBD"&CHR$(PARM(S))&CHR$(PARM(6))&CHR$(PARM(7))&":M"
. :END IF
:IF A$[14;4]="FORM" THEN

* Review Copy *
15-4

[




Miscellaneous

B$="FBF"&CHR$(PARM(5))&CHR$(PARM(6))&CHR$(PARM(7))&":M"
:END IF

SEND INPUT#T,"ARCHIVE_TRANSFER "&B$&" TO FBH"&B$[4,6]
C$="FBH"&B$[4,6]&":S"

COPY C$ TO BS$

RUN "WAIT"

:END IF

:END IF

:END IF

:END LOOP

SEND INPUT#7,"//"

RUN "wWAIT"

SEND INPUT#7,"K "&CHR$(34)&"<filename>:M"&CHR$(34)&",UNN"
RUN "wAIT"

SEND INPUT#7,"E"

:END

Computer
s Museum

* Review Copy *
15-5




USING THE COMPILER
1

CLEANUP OF PROGRAMS

Very often modified programs tend to be larger than necessary as some
internal table entries are kept even if the program code or variable
definitions have been removed from the program. To clean that up do:

GET <programfile>
SAVE LIST <name>

GET <name>

RESAVE <programfile>

COPTIONS

In addition to all the codespace ééving techniques described in the
various chapters you can of course use all the different COPTIONs
to further reduce the amount of space you need.

These COPTION are not described here. For further details look into
chapter 16 of the programmers manual or appendix D in the reference
manual.

COMPILED GET

There is no compilable GET in HPBB , however there is an easy
workaround for something quite similar. For details see the programmers
manual chapter 16.

* Review Copy *
16-1



EXTERNAL ROUTINES

EXTERNAL NAMES

The HP3000 SEGMENTER handles only external names up to 15 chars so
there is no problem for HP260 users as their names are at most 15 chars
long. This is a point to remember when you invent subroutine names

in HPBB, distinguish them within the first 15 chars.

EXTERNAL DECLARATIONS

There is no way to include the necessary EXTERNAL declarations for
compiled subroutines as code in your HP260 programs. You have to add

them manually during the conversion or you can already include them in
your HP260 programs as comments.

* Review Copy *
17-1

D L e ————




SECTION

BUGS AND WORKAROUNDS,PROBLEMS %

The following bugs are still existing in revision 1359.

If possible workarounds are provided.

If you have a newer revision parts of this chapter may no longer
be true.

ASSIGN BUG

ASSIGN currently cannot handle file equations to terminal devices.

10 SYSTEM "FILE X;DEV=32" ! 32 is a 2392 or 3081A terminal
20 ASSIGN #1 to "=x"

does not work.

Workaround: add the following lines:

1S SEND OUTPUT TO "ax"
25 SEND OUTPUT TO DISPLAY

DBGET COMPILER BUG

When DBGET incorrectly backreferences a THREAD statement instead of
a IN DATASET statement the compiler crashes.

Workaround: correct the DBGET statement

DECIMAL EXPONENTIATION

A statement like A=(A+1)~(A<S5) crashes a compiled program with
bounds violation.

Workaround: change the statement using multiplication instead of
exponentiation

* Review Copy *
18-1

[




Bugs and Workarounds Problems

JOINFORM BUG

The # IMAGE option is not recognized when DISP USING “#... is done
in a form. The following DISP output in the next field of the form.

Workaround: use a single combined DISP for output.

JOINFORM PROBLEM

When using a JOINFORM below the first window on the display the
screen is jumping a lot when format mode is enabled. The results
are correct but the behaviour is not acceptable for a customer.

There is no simple workaround. If possible avoid forms below the
first screen window or paint your form explicitly with DISP or
LDISP in your program without using format mode.

IN DATASET BUG

A bug like in SORT exists with IN DATASET if a stringvariable
ugsed in the variablelist is passed as a parameter to the subroutine.
In this case the compiled IN DATASET does not work properly.

Workaround: assign the parameter to a local variable first and use
this in the variablelist.

LABELS (BUG)

VERIFY in HPBB does not recognize if you define more than one label
with the same name. When jumping to a label it uses the first one
encountered. So if your program doesn’t behave like you want check
this bug as a possible source of failure.

The HP260 has the same behaviour except that LOAD and RUN give a
warning (doubly defined label).

MPE LOADER PROBLEM

Due to the fact that HPBB has a lot more runtime routines than other
languages the MPE loader has to resolve many more externals than
usual. As all entries are kept internally the available space of

* Review Copy *
18-2




Bugs and Workarounds,Problems

. runnaple.

Workaround: Put everything in your program USL even the HPBB runt ime
libraries so the SEGMENTER can already take care of the references
during PREP time.

REPORT WRITER BUG

checks the REPORT DESCRIPTION and if it contains
BREAK WHEN String$[1,6] CHANGES
and String$ actually is less then & chars long it causes an error 18,

Workaround: before executing BEGIN REPORT assign to String$ a string
of at least the length asked for in the BREAK statement.

REPORT WRITER BUG

‘ PAGE LENGTH 0 in a compiled HPBRB program is not yet working correctly,
80 instead of 0 use a large number.

REPORT WRITER BUG

If a PAGE TRAILER contains something like
WITH 3#((A=0) AND (B=1)) LINES
the compiler crashes at the BEGIN REPORT statement.

Workaround: use LAND instead of AND

SORT BUG

There is a bug still existing in compiled HPBB when you pass a string
as a parameter to a function or subroutine and use this parameter as
a sortkey. This does not work because the compiler does not know

how long this string is at compiletime.

There is however a gsimple workaround: assign this parameterstring to
‘ a local variable and use that as sortkey, eventually reassign the
changed value to the parameter before returning.

* Review Copy *
18-3

e



Bugs and Workarounds Problems

SYSTEMRUN PROBLEM

This is a MPE feature, only one process running on a specific terminal
can have control over CTRL-Y.

* Review Copy *
18-4

R ——————...






