v Computer
Museum

HP-UX Reference
Vol. 2: Sections 1M and 2

Manual Reorder No. 09000-90008

@ Copyright 1985 Hewlett-Packard Company

This document contains proprietary information which is protected by copyright. All rights are reserved. No part
of this document may be photocopied, reproduced or translated to another language without the prior written
consent of Hewlett-Packard Company. The information contained in this document is subject to change without
notice.

Restricted Rights Legend
Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b}(3)B) of
the Rights in Technical Data and Software clause in DAR 7-104.9(a).

@ Copyright 1980, Bell Telephone Laboratories, Inc.
(©) Copyright 1979, 1980, The Regents of the University of California.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license
from the Regents of the University of California.

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525




HP Computer Museum
www.hpmuseum.net

For research and education purposes only.



Printing History

New editions of this manual will incorporate all material updated since the previous
edition. Update packages may be issued between editions and contain replacement and
additional pages to be merged into the manual by the user. Each updated page will be
indicated by a revision date at the bottom of the page. A vertical bar in the margin
indicates the changes on each page. Note that pages which are rearranged due to changes
on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing
date changes when a new edition is printed. (Minor corrections and updates which are
incorporated at reprint do not cause the date to change.) The manual part number
changes when extensive technical changes are incorporated.

July 1985...Edition 1. This manual replaces HP-UX Reference Manual 09000-90007 and
documents HP-UX release 5.0 for HP 9000 Series 200, 300 and 500.
Release 5.0 reflects the following system changes:

« Sections 2 and 3 converged more closely to System V,

« Native Language Support added,

« Real-time features added,

« Process accounting added to Series 500,

« LAN, Virtual memory and window management added for Series 200 and 300,

« LAN option available for Series 200 and 300.

« Starbase graphics library added.

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPQOSE. Hewlett-Packard shall not be liable
for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance, or
use of this material.

WARRANTY

A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local
Sales and Service Office.

ii



TABLE OF CONTENTS

1. Commands

D Lt et e ete e e sar e e et et s eh et eetrae e eaarearre et s ssae e kAaesnarr e e rreaanaaraans debugger
AAJUSE 1. eeere ettt ettt et et et es bt bt n s e e nraesraenraaereenbbeehbe s bae e simpletext formatter
AAIILIIL 1 ettt ettt et e reestaaeabe e abeerae s raenrae s sbaeasaeaana e createand administer SCCS files

archiveand library maintainer
.convertarchives to new format
................. assemblerfor MC68000
888 v interpretASA carriage control characters
executecommands at a later time
general purpose asynchronous terminal emulation
.................................. translateassembly language
textpattern scanning and processing language
makeposters in large letters
..extractportions of path names

bifchmod.
bifchown ...

.changemode of a BIF file
..changefile owner or group
........ copyto or from BIF files
....reportnumber of free disc blocks
............................................................ findfiles in a BIF system
Bellfile system consistency check and interactive repair
Bellfile system debugger
.listcontents of BIF directories
DIIKAIT. ..ttt et ettt e et eeae e makea BIF directory

bifmkfs. ..constructa Bell file system
removeBIF files or directories

DS e et compiler/interpreterfor modest-sized programs
................................................................................................................................................ printcalendar
reminderservice

cat....... .concatenate,copy, and print files
cb.. Cprogram beautifier, formatter
............................ Ccompiler

changeworking directory

CAD ettt C,FORTRAN, Pascal symbolic debugger
CAC ceeit ettt e ettt er e abaaare e changethe delta commentary of an SCCS delta
cflow generateC flow graph
chatr ..changeprogram’s internal attributes
CHINIOA conei ettt ettt e e e e bbb e e e g e reereeat e e sb ekt et rneenrentnaasebebeenns changemode
chown changefile owner or group

changedefault login shell
clearterminal screen
comparetwo files
filterreverse linefeeds and backspaces
COIIUTL Lttt eeeieceeeeateseat e et s e s e eemreembeeansentesieeesrneereeeraessmaesasesanssonrennees select /rejectcommon lines of two files
.compressand uncompress files, and cat them
.......................... copy,link or move files
copyfile archives in and out
Clanguage preprocessor
usercrontab file

...createa tags file
....... ..callanother HP-UX system
cutout selected fields of each line of a file



Table of Contents

CXTE 1ottt generateC program cross—reference
AL 1ottt e et e et b e e abb e st ae s nr e e e et printand set the date
de. deskealculator
dd ... .convert,reblock, translate, and copy a (tape) file
AEIEA coeeieere et makea delta (change) to an SCCS file

AErofl .. oo removenroff/troff, tbl, and eqn constructs
differentialfile comparator
3-waydifferential file comparison
................................................................................................................. markdifferences between files
.............................................................................................................. directorydifference comparison
.................................................................................................................................... summarizedisk usage
.............................................................................................................................. echo(print) arguments
texteditor
texteditor (variant of ex for casual users)
...................................................................................................................... enable/disableLP printers
..................................................................................................... setenvironment for command execution
reporterror information on last failure
texteditor commands

factora number, generate large primes
FORTRAN77 compiler
..... determinefile type

...................... findfiles
findmsg.. ..createmessage catalog file for modification
AIASEE coveenieei e findstrings for inclusion in message catalog
fixman fixmanual pages for faster viewing with man(1)
FOLA it foldiong lines for finite-width output device

.generatea formatted message catalog file
.................... geta version of an SCCS file
......... parsecommand options

............ getspecial attributes for group

searchan ASCII file for a pattern
givefirst few lines of file
askfor help
setor print name of current host system
handlespecial functions of HP 2640 and 2621 series terminals
findhyphenated words

.................................................................................................................... printuser, group IDs and names
.................................................................................. usefindstring output to insert calls to getmsg

TPCIIL ettt e s remove a message queue, semaphore set, or shared memory id
IDCS ettt ittt et e e e reportinter—process communication facilities status

relationaldatabase operator
terminatea process
indicatelast logins of users and teletypes
linkeditor

remindyou when you have to leave
generateprograms for lexical analysis of text
copyto or from LIF files
writeLIF volume header on file
listcontents of LIF directory
TEPEMATIIE ..ottt e ettt ettt et te e reerteeerteeteeens renameLIF files
lifrm. removea LIF file
...readone line from user input




Table of Contents

HNKINO o e objectfile link information utility
TEIE ettt ettt e aat e s r e b s nren e e e nereeane aC program checker/verifier
OCK et e e ettt et e R Rt n e reservea terminal

logname... .
lorder findordering relation for object library
sendor cancel requests to an LP line printer
printLP status information
listcontents of directories
listdevice drivers in the system
MAacroprocessor
MACKIA «oviiiiiiii e providetruth value about your processor type
sendmail to users or read mail
...sendand receive mail
maintain,update, recompile programs
TELATL ¢t eeveees s eeeees ettt e e eaaetaeesbts e san e e e et e e e ent e sat e e et e e sabe s ee b e e e raaatsaare e s ehaaaenaaaes s e tbres on-linemanual command
mediainit . initialize hard disc, flexible disc, or cartridge tape media
mesg .. ..permitor deny messages to terminal
mkdir JE PO PP PP OPR PR PROPIORS makea directory
mkstr.... extracterror messages from C source into a file
. ....printdocuments formatted with MM macros
................................................................................................................ fileperusal filter for crt viewing
magnetictape manipulating program
login to a new group
printnews items
runa command at low priority
linenumbering filter
printname list (symbol table) of object file
runa command immune to hangups, logouts, and quits
formattext
octaland hexadecimal dump
compressand expand files
changelogin password
..mergelines in one or more files
...I’ascalcompiler
................... printfiles
preallocatedisc storage
............... displayprofile data
.printand summarize an SCCS file
................ reportprocess status
.................................................................................................................................. createpermuted index
workingdirectory name
interactivelMAGE database access
...................................................................................................................... rationaFORTR AN dialect
..................................................................................................................................... reverselines of a file
getHP-UX revision information
removefiles or directories
removea delta from an SCCS file
removeextra new-line characters from file
................................................................................................... executeprocess with real-time priority
....................................................................................................... printcurrent SCCS file editing activity
....comparetwo versions of SCCS file
streamtext editor
shell,the standard command programming language
............................................................................................................................................... objectfile size




Table of Contents

SLEED 1.ttt ettt e ettt et e et s rt et eneane suspendexecution for an interval
setprinter options
sortand/or merge files
....findspelling errors
.... splita file into picces
.... removemultiple line—feeds from output
...findprintable strings in binary file
...removesymbols and relocation bits
setthe options for a terminal port
becomeanother user
printchecksum and block count of a file
updatethe super block
settabs on a terminal
...deliverthe last part of a file
tapefile archiver
formattables for nroff or troff
.C8/80Cartridge Tape utility
....pipditting
condltlonevaludtlon command
............ timea command
updateaccess/ modlhcatlon/ change times of file
queryterminfo database
translatecharacters
providetruth values
...terminaldependent initialization
topologicakort
getthe terminal’s name
dounderlining
.setfile-creation mode mask
printname of current HP-UX version
...undoa previous get of an SCCS file
..reportrepeated lines in a file
...... unitconversion program
unpackcplo archives from HP media
HP UXto HP-UX copy; file transfer
listspooled uucp transactions grouped by transaction
showsnapshot of the UUCP system
uucpstatus inquiry and job control
publicHP-UX--to-HP-UX file copy
...HP-UXto HP-UX command execution
validateSCCS file
visualtext editor
.‘makeunprmtable characters in a file visible or invisible
..... ....awaitcompletion of process

word line, and character count
....... ..identifyfiles for SCCS information
locatesource, binary, and/or manual for program
..whichusers are on the system
....printeffective current user id
interactivelywrite (talk) to another user
...constructargument list(s) and execute command
........................................................................................................... yetanother compiler—compiler




Table of Contents

1IM. System Maintenance Utilities

.................................................................................................................. allowor prevent LP requests
overview of accounting and miscellaneous accounting commands

commandsummary from per—process accounting records
................................................................... connect-timeaccounting
acctmerg. ..mergeor add total accounting files
F T a1 83 o O O ST OPOT PP PP PUPPTPRS processaccounting

acctsh .. sheliprocedures for accounting
backup. ..backupor archive file system
bre........ systeminitialization shell scripts
catman. .createthe cat files for the manual
chroot .. ...changeroot directory for a command

.............................. Lhangeto different operating system or version
............................................................................... cleari-node
............................................................................................................ clearx.25 switched virtual circuit
................................ configurean HP-UX system
installobject files in binary directories
clockdaemon
devicename
reportnumber of free disk blocks
generatedisc accounting data by user ID
filesystem consistency check, interactive repair
FSCIEATL ..ottt e determineshutdown status of specified file system
................................................................................................................................... filesystem debugger
...manipulatewtmp records
...setthe modes of a terminal

........................ getx.25 line

it .. .processcontrol initialization
install installcommands
kermit KERMIT-protocolfile transfer program
KILLALL ettt ettt aen e sendsignal to all user processes
HNK e exercigselink and unlink system calls
IDAAINIIL 1eviiiiiiiie ettt ettt es sttt e e s e e et e e e e enbaees administerthe LP spooling system
IPSCHE «o.viieei e start /stopthe LP request scheduler and move requests
TNAKEKEY ...ttt ettt ettt ettt et st s e ea e saeeeeneeenesans generateencryption key
0803 [0 U SO ST OO RO OO ROUPPPUOTRTOURRPOt makedevice files

................ constructa file system
..configurethe LP spooler system
createspecial, fifo, files
...mountand unmount file system
movea directory
...generatenames from i numbers

newfs.... constructa new file system
10705421 T U OO UPU PP executeHALGOL programs
OSCK Lot e checkintegrity of OS in SDF boot area(s)

0sep .. .copy,create, append to, split operating system
osmark. ....markSDF OS file as loadable/unloadable
OSIgT... ..operatingsystem manager package description
PWECK 1ot ...password/groupfile checkers
reboot .. rebootthe system

revek ... checkmternal revision numbers of HP-UX files

rootmark ..mark/unmark volume as HP-UX root volume
runacct rundaily accounting
SAADIE o e initializeStructured Directory Format volume



Table of Contents

110061 R OO OO O OSSR establishmnttab table
setprivgrp ..setspecial attributes for group
SHULAOWIL ..ot ettt n terminateall processing

stopsys stopoperating system with optional reboot
swapon... ..enableadditional devices for swapping and paging
BIC ceiiiiie e, terminfocompiler
BUIIEES 1.ttt ettt e e e e et esr e te e e b e ear s esatesateeant s b e e st ent e at e e st et e et e e nn e e st eenreeeanen tunea file system
uconfig ...8ystemreconfiguration
umodem ... XMODEMprotocol file transfer program
uucico uucpeopy in and copy out

uuclean... uucpspool directory clean-up
monitoruucp network
uucpcommand execution

writeto all users

WHOAO ittt e et e whichusers are doing what

2. System Calls

access .. ..determineaccessibility of a file
alarm ........ setprocess’s alarm clock
....... ...changedata segment space allocation
changeworking directory
changeaccess mode of file
changeowner and group of a file
............ changeroot directory
...closea file descriptor
createnew file, rewrite existing file
duplicatean open file descriptor
...duplicatean open file descriptor
ExtendedMemory System
errorindicator
errno ... .errorindicator for system calls
EXEC 1eveersreenre it eeeeee e n ettt a et e be e eat e et et eaa e et sa e e e R e e R R e e e s e as s Re s sas s eae e b e e hb e e rae s executea file
terminateprocess
filecontrol
createa new process
..synchronizea file’s in-core state with that on disc
..getdate and time more precisely

getgroup access list
getname of current host
...get /setvalue of interval timer
getprocess, process group, and parent process IDs
get /setspecial attributes for group
get /setdate and time
getreal /effective user, real/effective group IDs
controklevice
.sendsignal to process(s)
linkto a file
providesemaphores and record locking on files

getgroups
gethostname

Iseek .... moveread/write file pointer; seek
memadvise... ...adviseOS about segment reference patterns
memallc allocateand free address space

changememory segment access modes
....lock /unlockprocess address space or segment




Table of Contents

TTIETIIVALY ..ottt esetenseeese e s st e ss e eatee ettt emseeeseeas et esse et e e ese e eet e e bt e eneeose et eees e emetemmtaenncontsane modifysegment, length
mkdir createa directory file
makedirectory, special or ordinary file
................................................................................................................................. mounta file system
...................................................................................................................... messagecontrol operations
getmessage queue
messageoperations
changepriority of a process
openfile for reading or writing
..................................................................................................................... suspendprocess until signal
..... createan inter-process channel
Jlockprocess, text, or data in memory

........... preallocatefast disc storage
..executiontime profile
..... processtrace
..readfrom file
..rebootthe system
removea directory file

rtprio changeor read real-time priority
select synchronousI/O multiplexing
semct] semaphorecontrol operations
semget getset of semaphores
semop semaphoreoperations
setgroups setgroup access list
sethostname setname of host cpu

setprocess group ID
SEEUIA ¢ ettt ettt ettt et e be e e et er et oo e ee e s ehasenar s setuser and group IDs
SHITICEL. ..o e et b e sharedmemory control operations
SHINEEL ...t st et getshared memory segment
SHITLOP -ttt e ....sharedmemory operations

3 =00) (010 OO R OO P PP PR TP UPTOUPPURTIONt blocksignals
signal ... ...setup signal handling for program
sigpause... ..automatically release blocked signals and wait for interrupt
SIESEUITIASK oottt ettt e sttt e e s sab et e e bt et re s eae e rae s setcurrent signal mask

sigspace .. assuresufficient signal stack space
BIZVECEOT .. it eiiiteeettitteet e e e eb ittt e st s s et e e s bateear e e eree e e e st e e aa et e e ettt oo e s eba st e oo saan s softwaresignal facilities
............................................................................................................................................... getfile status
settime and date

controldevice
adda swap device for interleaved paging/signalling
updatethe super block

truncatea file to a specified length
| RO USSR U UUOPTURPPN getand set user limits

.................................................................................................................. getand set file creation mask
unmounta file system
..getname of current HP-UX system

uname..

unlink .removedirectory entry; delete file
L] 7 O SO S OO PP UP PP TRPPPPRRUPPPPPPPPNE getfile system statistics
UBHTI® ..ttt ettt b b s setfile access and modification times

vfork.... spawnnew process in a virtual memory efficient way
vsadv ... advisesystem about backing store usage
VBOTL 1.ttt iee ittt reiatte et e s reeaesteeseesraessnssaesseste et eassesseseeatseeserasesbesseensestenssaeis adviseOS about backing store devices



Table of Contents

..waitfor child process to terminate
writeon a file

ABAL Lo convertbetween long and base -64 ASCII
ADOTE ettt e e e e s et b e ae st ree e e generatean 10T fault
BB ettt eetitie sttt e b et e e e e e e et ee s b et e e bt e e e e atbe e s bt e aantraesaaseeeasbbee e aneaeenrees integerabsolute value
ASSETT 1eevtteeetiitte et e et e e et ee s ettt oo b a e b e i e e e e e st e et e s et aaeaa st e aannreeethbaaeennbaanens programverification

besselfunctions
bsearch binarysearch on a sorted table
CALTEAA. ..eeiveeeuiriitee i e rtceereeetie ettt et e st e e sn e e sate et aeeteate et sasanasee e MPE/RTE-stylemessage catalog support
ClOCK .o reportCPU time used

CONV tiitieiiiitieerrree e tettie s r e e eaiansestbbe e s reereaninaes charactertranslation
CTYPE ettt etk et n e oo r b eabeen bt erte st sttt e sene e nneenraaenrae DESencryption
ctermid ... ..generatefile name for terminal
ctime.... ..convertdate and time to ASCIL
(6100 g oL S S PO S ST TP PO PR POTPPRTPN ....characterclassification
curses... .CRTscreen handling and optimization routines

CUSETIA it el characterlogin name of the user
dial....... establishan out—going terminal line connection
directory directoryoperations
Arandd8 ........ocooieeriiieii e generate uniformly—distributed pseudo-random numbers

....................................................................................................................................... outputconversion

lastlocations in program
...errorfunction and complementary error function
XD+ vveeeerreneasaribete et e e et e e et e et et et e e e ae e st e et e e e ar e e e exponential,logarithm, power, square root functions
.............................................................................................................................. closeor flush a stream
streamfile status inquiries
absolutevalue, floor, ceiling, remainder functions
....openor re-open a stream file; convert file to stream
bufferedbinary input/output to a stream file
splitinto mantissa and exponent
.................................... repositiona stream

............ walka file tree
loggamma function
...getcharacter or word from stream file
.getpathname of current working directory

gamma .
getc ...
getewd .

ZOUBTIV .viitteeiie ettt et s e bt e sttt e e b e sttt e s bt s et b ettt e et e e saaaseas valuefor environment name
getfsent... ..getfile system descriptor file entry
BOUETOIIE ottt e e a e e a e e e getgroup file entry

getlogin.
getmsg .
getopt...

................ getlogin name
getmessage from a catalog
...getoption letter from argv
reada. password
getname from UID
.getpassword file entry
geta string from a stream file

accessutmp file entry
...returnstatus lines of GPIO card

gpio__get__status

gpio_set_ctl setcontrol lines on GPIO card
PID _DUS_ SEALUS .o eeeiieriieiiir ettt ettt e a et e returnstatus of HP-1B interface
hpib__card _ppoll_Tesp.......cccoimiiiiiiiiice controlresponse to parallel poll on HP 1B
BDID__@OT__Ctlueeiiiiiiici et et controlEOI mode for HP 1B file



Table of Contents

performI/O with an HP-IB channel from buffers
changeactive controllers on HP-IB

hpib_pass_ctl ....

hpib_ppoll conductparallel poll on HP-IB bus
hpib__ppoll_resp_ctl.......coviverirniieeiiiiieeniieeeeeenns controlresponse to parallel poll on HP-IB
hpib__ren_ ctl controlthe Remote Enable line on HP-1B
hpib__rgst_srvce allowinterface to enable SRQ line on HP-1B

hpib_send__emnd .......cooiiiiiieii e e sendcommand bytes over HP-1B
hpib__spoll conducta serial poll on HP 1B bus
hpib__status_wait wait until the requested status condition becomes true
hpib_wait__on_ppoll waituntil a particular parallel poll value occurs

hsearch managehash search tables

Euclideandistance
IIEEGTOUDS 1ot ivvttiei ittt cee e et ettt e e e b e e e eatea e et et e eae e eatneeseabaesaabsae sttt e e s rareseennaeesesbrees initializegroup access list
10 €0L__Ctl...ooiiiiiiiiii setup read termination character on special file
10__get__terIIL_TEASOIL ....eevvvitiiiiiiiiieiiiiee et sbee e nie e sttt e e sebaae e determinehow last read terminated
io_interrupt_ctl.... enable/disableinterrupts for associated eid

io__on__interrupt ..deviceinterrupt (fault) control
HO_TESBE ...cvvveee it et resetan 1/O interface
io_speed__ctl... ..informsystem of required transfer speed
io_timeout_ctl ..establishtime limit for I/O operations

BT e L s Wt f SO OO R O OO T OO P UUU PO setwidth of data path
13tol....ccc....e .convertbetween 3-byte integers and long integers
langinfo NLSnative language information
JOGIIAINE c...cviiiiiie et et et returnlogin name of user
Isearch linearsearch and update
malloc mainmemory allocator
mathematicalerror handling

memoryoperations

makea unique file name

....................................................................................................................... prepareexecution profile

N COTIV cotiiiiii ettt et translatecharacters for use with NLS
DL CE PR vttt el classifycharacters for use with NLS
o I ) o V- O ST SOV ST UPPPP non ASClIstring collation used by NLS
TS ..o eeett et e et e st e e anr e e e b aaen s sbbaaaanreee getentries from name list
DEITOL ettt et tactteetae e s e e e eon et ek nase s eea ke R e eh e oo bt s reets e b e s s e atemaesaeentaneabbabe s e anin systemerror messages
popen ..initiatepipe I/O to/from a process
634415 O OO OO OO P U SPSSRRPRRNY outputformatters
printmsg .printformatted output with numbered arguments
PULC 1ottt e putcharacter or word on a stream

changeor add value to environment
writepassword file entry
....puta string on a stream file

........................... quickemsort

randomnumber generator

TEECTIID 1oeesntieeetetten ittt aeeaneseebbee et itte e e e abee e e st e saas st entbae e eabnaesebaaessssnsens compileand execute regular expression
SCANT ...t formattedinput conversion, read from stream file

....assignbuffering to a stream file
non-localgoto
.................................................................................................................................... hyperbolicfunctions
....suspendexecution for interval
SPULL 1 eueiiie ettt e accesslong integer data in machine-independent manner
....................................................................................................................................... softwaresignals
standard buffered input/output stream file package
stamdardinter-process communication package
....................................................................................................................... characterstring operations




Table of Contents

SETEOM 1ttt ettt convertstring to double—precision integer
strtol .. convertstring to integer
SWAD 1.ttt et R R e R bR et eE b e eabseebeeetteeeneaeasaeeeteseae swapbytes
system ... ...issuea shell command
termcap.. .accessterminal capabilities in termcap(5)
BINPILE Lottt ettt ettt ettt s createa temporary file
.createa name for a temporary file
............ trigonometricfunctions
ESEATCHL .. vviiieii et s managebinary search trees

ttyname findname of a terminal
ttyslot ...findcurrent user slot in utmp file
UILBEEC ..ot et e e st eeeeeen e e e e et e pushcharacter back into input stream

VPINEE e printformatted output from varargs argument list

CS/80cartridge tape access
directdisc access
informationfor crt graphics devices
hpibinterface information
physicaladdress mapping
printerinformation

.............................................................................................................................................. coranemory
modem ..asynchronousserial modem line control
.magnetictape interface and controls
nullfile ("bit bucket”)
.pseudo—terminaldriver
version6/PWD-compatibility terminal interface

EErMI0. veeiiciiic e ...generalterminal interface
Bl ettt e e controllingterminal interface
5. File Formats

E 10| AP T PO TSP DPO PPN assemblerand link editor output
BCCT ettt e per processaccounting file format

archivefile format
Belllnterchange Format file utilties
listof file systems processed by fsck
collating sequence tables for 8-bit NLS character sets
..................................... collating sequence tables for 16-bit NLS character sets
formatof core image file
formatof cpio archive

col_seq_8....cccoueeen.
col_seq_16

............................................................................................................................. dialupsecurity control
............. SDFdirectory format

................. discdescription file

....................... ...systemerror logging file
OO O O O OO PP URTOUOPPOUIUOTPO formatof system volume
FSPEC 1eeereieees it et e e formatspecification in text files
gettydefs ..speedand terminal settings used by getty(1M)
BTOUD +uuversieenteeereesaeesmeeeanteesteaateaasssastesarsestesatessheeehseeanaeer e sn st enn e e en st en e e n e s e e n e e s e eat s e b b s eobbeeenae rreen grourfile
inittab. ..controlinformation for init(1M)
N0 1.t e ettt et e s formatof an i-node
issue.... ...issueidentification file

—10-



Table of Contents

Logicallnterchange Format description
..magicnumbers for HP-UX implementations
masterdevice information table
.............. createa special file entry
.......... mountedfile system table
HP-UXmachine identification
.nliststructure format
............ passwordfile
......... ...privilegedvalues format
...... setup user’s environment at login time
tableof contents format for object libraries
.................................... formatof SCCS file
.compiledterm file format
....... terminalcapability data base
.................. database of terminal types by port
................................................................................................................... utmpand wtmp eutry format

6. Games

No games are currently supported.

7. Miscellaneous Facilities

mapof ASCII character set
userenvironment
filecontrol options

e filesystem hierarchy
............................................... NativeLanguage Support model

kana8 ..mapof KANAS character set used by NLS
langid Jlanguageidentification variable used by NLS
man... .macrosfor formatting entries in this manual
math. ....mathfunctions and constants
mm........ ..theMM macro package for formatting documents

........................................................... regularexpression compile and match routines
ROMAN8character set used by NLS
...datareturned by stat/fstat system call
conventionaldevice names
primitivesystem data types
machine-dependentvalues
handle—variable-argumentlist

roman8

9. Glossary

11,



INTRO (1M} INTRO (1M)

Computer

-.‘}Mu seum

NAME
intro - introduction to system maintenance commands and application programs

DESCRIPTION
This section describes, in alphabetical order, commands that are used chiefly for system mainte
nance and administration purposes. The commands in this section should be used in conjunction
with other sections of the HP-UX Reference as well as the HP-UX System Administrator Maenual
for your systemn.

COMMAND SYNTAX
Unless otherwise noted, commands described in this section accept options and other arguments
according to the following syntax:

name [option(s)] [crmdarg(s))

where:
name The name of an executable file.
option - noargletter(s) or

- argletter <> optarg
where <> is optional white space.

noargletter A single letter representing an option without an argument.

argletter A single letter representing an option requiring an argument.
optarg Argument (character string) satisfying preceding argletter.
cmdarg Path name (or other command argument) not beginning with - or, - by itself indi

cating the standard input.

SEE ALSO
getopt(1). getopt(3C).
HP UX Reference.
HP-UX System Administrator Manual.

DIAGNOSTICS

Upon termination, each command returns two bytes of status, one supplied by the system and
giving the cause for termination, and (in the case of ‘‘normal” termination) one supplied by the
prograin (see wait(2) and ezit(2)). The former byte is 0 for normal termination; the latter is cus-
tomarily 0 for successful execution and non zero to indicate troubles such as erroneous parame
ters, bad or inaccessible data, or other inability to cope with the task at hand. It is called vari-
ously “exit code’, “exit status”, or *‘return code”, and is described only where special conventions
are involved.

BUGS
Unfortunately, many commands do not adhere to the aforementioned syntax.

Hewlett-Packard 1- July 2, 1985



ACCEPT (1M) ACCEPT{1M)

NAME
accept, reject - allow/prevent LP requests

SYNOPSIS
/usr/lib/accept destinations
/usr/lib/reject [-r[reason]] destinations
HP-UX COMPATIBILITY
Level: HP- UX/STANDARD

Origin: System V
Remarks: Not supported on the Integral PC.
Native Language Support:
8-bit file names and data, customs, messages.
DESCRIPTION

Accept allows Ip(1) to accept requests for the named destinations. A destination can be either a
printer or a class of printers. Use Ipstat(1) to find the status of destinations.

Reject prevents Ip(1) from accepting requests for the named destinations. A destination can be
either a printer or a class of printers. Use Ipstat(1) to find the status of destinations. The follow -
ing option is useful with reject.

-r[reason] Associates a reason with preventing lp from accepting requests. This reason applies
to all printers mentioned up to the next -r option. Reason is reported by Ip when
users direct requests to the named destinations and by Ipstat(1). If the -r option is
not present or the -r option is given without a reason, then a default reason will be
used.

FILES
/Jusr/spool/Ip/*

SEE ALSO
euable(1), Ip(1), Ipadmin(1M), Ipsched(1M). Ipstat(1).

Hewlett—Packard -1- June 28, 1985



ACCT (1M) ACCT (1M)

NAME

acctdisk, acctdusg, accton, acctwtmp - overview of accounting and miscellaneous accounting com
mands

SYNOPSIS

/usr/lib/acct/acctdisk
/usr/lib/acct/acctdusg | —u file | [ —p file ]
/usr/lib/acct/accton [file]

/usr /lib/acct/acctwtmp “reason”

HP-UX COMPATIBILITY

Level: HP-UX/EXTENDED
Origin: System V

DESCRIPTION

FILES

Accounting software is structured as a set of tools (consisting of both C programs and shell pro-
cedures) that can be used to build accounting systems. Acctsh(1M) describes the set of shell pro
cedures built on top of C programs.

Connect time accounting is handled by various programs that write records into /etc/wtmp, as
described in utmp(5). The programs described in acctcon(1M) convert this file into session and
charging records, which are then summarized by acctmerg{1M).

Process accounting is performed by the HP-UX system kernel. Upon termination of a process,
one record per process is written to a file (normally /usr/adm/pacct ). The programs in
acctpre(1M) summarize this data for charging purposes; acctems(1M) is used to summarize com—
mand usage. Current process data may be examined using acctcom(1).

Process accounting and connect time accounting (or any accounting records of the format
described in acct(5)) can be merged and summarized into total accounting records by acctmerg
(see tacct format in acct(5)). Prtacct (see acctsh(1M)) is used to format any or all accounting
records.

Acctdisk reads lines that contain user 1D, login name, and number of disc blocks and convert
them to total accounting records that can be merged with other accounting records.

Acctdusg reads its standard input (usually from find / —print) and computes disc resource con
sumption by login. If —u is given, records consisting of those file names for which acctdusg
charges no one are placed in file (a potential source for finding users trying to avoid disc charges).
If —p is given, file is the name of the password file. This option is not needed if the password file
is /etc/passwd. (See diskusg(1M) for more details.)

Accton with no optional file specified turns process accounting off. If file is given, it must be the
name of an existing file to which the kernal appends process accounting records (see acct(2) and
acct(5)).

Acctwtmp writes a utmp(5) record to its standard output. The record contains a character string
that describes the reason for writing the record. A record type of ACCOUNTING is assigned (see
utmp(5)). Reason must be a string of 11 or less characters, numbers, $, or spaces. For example,
the following are suggestions for use in reboot and shutdown procedures, respectively:

acctwtmp ‘uname’ >> /etc/wtmp
acctwtmp “file save” >> /etc/wtmp

/ete/passwd used for login—name to user conversions

/usr/lib/acct holds all accounting commands listed in
sub—class 1M of this manual

Jusr/adm/pacct current process accounting file

Hewlett-Packard -1- June 28, 1985



ACCT (1M) ACCT (1M)

/ete/wtmp login/logoff history file

SEE ALSO
acctems{1M). acctcom(1), acctcon(1M), acetmerg(1M), acetpre(1M), acctsh(1M), diskusg(1M),
fwtmp(1M). runacct(1M), acct(2), acet(5), utmp(5).

Chapter 6, “System Accounting,” of the HP-UX System Administrator Manual.

Hewlett -‘Packard -2 - June 28, 1985



ACCTCMS (1M) ACCTCMS (1M)

NAME
acctems - command summary from per—process accounting records

SYNOPSIS

/usr/lib/acct/acctems [options] files
HP-UX COMPATIBILITY

Level: HP-UX/EXTENDED

Origin: System V

DESCRIPTION
Acctems reads one or more files, normally in the form described in acct(5). 1t adds all records for
processes that executed identically-named commands, sorts them, and writes them to the stan-
dard output, normally using an internal summary format. The options are:

-a Print output in ASCII rather than in the internal summary format. The output includes
command name, number of times executed, total kcore-minutes, total CPU minutes, total
real minutes, mean size (in K), mean CPU minutes per invocation, ‘‘hog factor”, charac—
ters transferred, and blocks read and written, as in acctcom(l). Output is normally
sorted by total kcore minutes.

-c Sort by total CPU time, rather than total kcore minutes.

-j Combine all commands invoked only once under *‘*+**other”.

-n Sort by number of command invocations.

-8 Any file names encountered hereafter are already in internal summary format.

-t Process all records as total accounting records. The default internal summary format

splits each field into prime and non—prime time parts. This option combines the prime
and non-prime time parts into a single field that is the total of both, and provides
upward compatibility with old style acctems internal summary format records.

The following options may be used only with the —a option.
-p Ountput a prime-time—only command summary.
-0 Output a non-prime (offshift) time only command summary.

When -p and -o are used together, a combination prime and non- prime time report is produced.
All the output summaries will be total usage except number of times executed, CPU minutes, and
real minutes which will be split into prime and non—prime.

A typical sequence for performing daily command accounting and for maintaining a running total
is:

acctems file ... >today

cp total previoustotal

acctems -s today previoustotal >total
acctems -a -s today

SEE ALSO
acct(1IM), acctcon{1M), acctmerg(IM), acctpre(IM), acctsh(IM), fwtmp(1M), runacct(1M),
acctcom(1), acct(2), acct(5), utmp(5).

BUGS
Unpredictable output results if -t is used on new style internal summary format files, or if it is not
used with old style internal summary format files.

Hewlett-Packard -1- June 28, 1985



ACGCTCON (1M) ACCTCON (1M)

NAME

acctconl, acetcon? - connect time accounting

SYNOPSIS

/usr/lib/acct/acctconl [options]
/usr/lib/acct/acctcon2
HP-UX COMPATIBILITY

Level:

Origin:
DESCRIPTION

HP-UX/EXTENDED
System V

Acciconl converts a sequence of login/logoff records read from its standard input to a sequence of
records, one per login session. Its input should normally be redirected from /etc/wtmp. lts
output is ASCII, giving device, user ID, login name. prime connect time (seconds). non—prime con

nect time (seconds), session starting time (numeric), and starting datc and time. The options arc:

-p

-t

-1 file

-0 file

Print input only, showing line name, login name, and time (in both numeric and date/time
formats).

Acetconl maintains a list of lines on which users are logged in. When it reaches the end
of its input, it emits a session record for each line that still appears to be active. 1t nor—
mally assumes that its input is a current file, so that it uses the current time as the ending
time for each session still in progress. The -t flag causes it to use, instead, the last time
found in its input, thus assuring reasonable and repeatable numbers for non-current files.
File is created to contain a summary of line usage showing line name, number of minutes
used, percentage of total elapsed time used, number of sessions charged, number of logins,
and number of logoffs. This file helps track line usage, identify bad lines, and find
software and hardware odditics. Hang-up, termination of login(1} and termination of the
login shell each generate logoff records, so that the number of logoffs is often three to four
times the number of sessions. See init{1M) and utmp(5).

File is filled with an overall record for the accounting period, giving starting time, ending
time, number of reboots, and number of date changes.

Acctecon? expects as input a sequence of login session records and converts them into total
accounting records (see tacct format in acct(5)).

EXAMPLES

These commands are typically used as shown below. The file ctmp is created only for the use of
acctpre(1M) commands:

accteonl -t -1 lineuse -0 reboots <wtmp | sort +1n +2 >ctmp
accteon2 <ctmp | acctmerg >ctacct

FILES

/ete/wtmp

SEE ALSO

acct(IM), acctems(IM), acctcom(l), acctmerg(1M), acctpre(1M), acctsh(1M), fwtmp(1M),
init(1M), login(1), runacct(1M), acct(2), acct(5), utmp(5).

BUGS

The line usage report is confused by date changes. Use wtmpfiz (see fwtmp(1M)) to correct this
situation.

Hewlett—Packard -1 June 28, 1985



ACCTMERG (1M) ACCTMERG (1M)

NAME
acctmerg - merge or add total accounting files

SYNOPSIS
/usr/lib/acct/acctmerg [options| [file] . . .

HP-UX COMPATIBILITY
Level: HP-UX/EXTENDED

Origin: System V

DESCRIPTION
Acctmerg reads its standard input and up to nine additional files, all in the tacct format (see
acct(5)) or an ASCII version thereof. It merges these inputs by adding records whose keys (nor—
mally user ID and name) are identical, and expects the inputs to be sorted on those keys. Options
are:

-a  Produce output in ASCII version of tacct.

-i Input files are in ASCII version of tacct.

-p Print input with no processing.

-t Produce a single record that totals all input.

-u  Summarize by user ID, rather than user ID and name.

-v Produce output in verbose ASCII format, with more precise notation for floating point
numbers.

EXAMPLES
The following sequence is useful for making ‘‘repairs” to any file kept in this format:

acctmerg -v -a <filel >file2
edit file? as desired . ..
acctmerg -i <file2 >filel

SEE ALSO
acct(IM), acctems(1M), acctcom(l), acctcon(iM), acctpre(IM), acctsh(1M), fwtmp(1M),
runacct(1M), acct(2), acct(5), utmp(5).

Hewlett-Packard -1- June 28, 1985



ACCTPRC (IM) ACCTPRC (IM)

NAME

acctprel, acctpre2 - process accounting

SYNOPSIS

/usr/lib/acct/acctprel [ctmp]
/usr/lib/acct /acctpre2

HP-UX COMPATIBILITY

Level: HP-UX/EXTENDED
Origin: System V

DESCRIPTION

FILES

Acctprel reads input in the form described by acct(5), adds login names corresponding to user
IDs, then writes for each process an ASCII line giving user ID, login name, prime CPU time (tics),
non-prime CPU time (tics), and mean memory size (in memory segment units). If ctmp is given,
it is expected to contain a list of login sessions, in the form described in acctcon(1M), sorted by
user 1D and login name. If this file is not supplied, it obtains login names from the password file.
The information in ctmp helps it distinguish among different login names that share the same
user ID.

Acctpre2 reads records in the form written by acctprcl, summarizes them by user ID and name,
then writes the sorted summaries to the standard output as total accounting records.

These commands are typically used as shown below:

acctprel ctmp </usr/adm/pacct | acctpre2 >ptacct

/etc/passwd

SEE ALSO

BUGS

acct(1M), acctems(1M), acctcom(1), acctcon(IM), acctmerg(IM), acctsh(1M), cron(1M),
fwtmp(1M), runacct(1M), acct(2), acct(5), utmp(5).

Although it is possible to distinguish among login names that share user IDs for commands run
normally, it is difficult to do this for those commands run from cron(1M), for example. More pre—

cise conversion can be done by faking login sessions on the console via the acctwtmp program in
acct(IM).

HARDWARE DEPENDENCIES

Series 500:
On the Series 500, memory segment units contain 512 bytes each; therefore, memory
usage statistics are rounded up to 512-byte units.

Hewlett—Packard -1- June 28, 1985



ACCTSH (1M) ACCTSH (1M)

NAME
chargefee, ckpacct, dodisk, lastlogin, monacct, nulladm, prctmp, prdaily, prtacct, runacct, shu-
tacct, startup, turnacct - shell procedures for accounting

SYNOPSIS
Jusr/lib/acct/chargefee login-name number
/usr/lib/acct/ckpacct [blocks]
Jusr/lib/acct/dodisk [-o] [files ...]
/usr/lib/acct/lastlogin
/usr/lib/acct/monacct number
/usr/lib/acct/nulladm file
/usr/lib/acct/prctmp
Jusr/lib/acct/prdaily [-1] [—] [ mmdd ]
Jusr/lib/acct/prtacct file [ "heading” |
/usr/lib/acct/runacct [mmdd [state]]
Jusr /lib/acct/shutacct | “reason” |
/usr/lib/acct/startup
/usr/lib/acct/turnacct on | off | switch
HP-UX COMPATIBILITY
Level: HP-UX/EXTENDED
Origin: System V

DESCRIPTION
Chargefee can be invoked to charge a number of units to login-name. A record is written to
/usr/adm /fee, to be merged with other accounting records during the night.

Ckpacct should be initiated via eron(1M). It periodically checks the size of /usr/adm/pacct. If
the size exceeds blocks, 1000 by default, turnacct will be invoked with argument switch. If the
number of free disk blocks in the /usr file system falls below 500, ckpacct will automatically turn
off the collection of process accounting records via the off argument to turnacct. When at least
this number of blocks is restored, the accounting will be activated again. This feature is sensitive
to the frequency at which ckpacct is executed, usually by cron.

Dodisk should be invoked by cron to perform the disk accounting functions. By default, it will do
disk accounting on the special files in /etc/checklist. If the -o flag is used, it will do a slower
version of disk accounting by login directory. Files specify the one or more filesystem names
where disk accounting will be done. If files are used, disk accounting will be done on these filesys—
tems only. If the -o flag is used, files should be mount points of mounted filesystem. If omitted,
they should be the special file names of mountable filesystems.

Lastlogin is invoked by runacct to update /usr/adm/acct/sum/loginlog, which shows the last
date on which each person logged in.

Monacct should be invoked once each month or each accounting period. Number indicates which
month or period it is. If number is not given, it defaults to the current month (01-12). This
default is useful if monacct is to executed via cron(1M) on the first day of each month. Monacct
creates summary files in /usr/adm/acct/fiscal and restarts summary files in
/usr/adm/acct/sum.

Nulladm creates file with mode 664 and insures that owner and group are adm. It is called by
various accounting shell procedures.

Hewlett-Packard -1- June 28, 1985



ACCTSH (1M) ACCTSH (1M)

FILES

Pretmp can be used to print the session record file (normally /usr/adm/acet/nite/ctmp
created by acctconl (see acctcon(1M)).

Prdaily is invoked by runacct to format a report of the previous day’s accounting data. The
report resides in /usr/adm/acct/sum/rprtmmdd where mmdd is the month and day of the
report. The current daily accounting reports may be printed by typing prdaily. Previous days’
accounting reports can be printed by using the mmdd option and specifying the exact report date
desired. The -1 flag prints a report of exceptional usage by login id for the specifed date. Previ-
ous daily reports are cleaned up and therefore inaccessible after each invocation of monacct. The
-c flag prints a report of exceptional resource usage by command and may be used on current
day’s accounting data only.

Prtacet can be used to format and print any total accounting (tacct) file.

Runacct performs the accumulation of connect, process, fee, and disk accounting on a daily basis.
It also creates summaries of command usage. For more information, see runacct(1M).

Shutacct should be invoked during a system shutdown (usually in /etc/shutdown) to turn pro-
cess accounting off and append a ‘‘reason” record to /etc/wtmp.

Startup should be called by /etc/re to turn the accounting on whenever the system is brought
up.

Turnacct is an interface to accton (see acct(IM)) to turn process accounting on or off. The
switch argument turns accounting off, moves the current /usr/adm/pacct to the next free
name in /usr/adm/pacctincr (where incr is a number starting with 1 and incrementing by one
for each additional pacct file), then turns accounting back on again. This procedure is called by
ckpacet and thus can be taken care of by the cron and used to keep pacct to a reasonable size.

/usr/adm/fee accumulator for fees

/usr/adm/pacct current file for per—process accounting

/usr/adm/pacct* used if pacct gets large and during
execution of daily accounting procedure

/ete/wtmp login/logoff summary

/usr/lib/acct/ptelus.awk contains the limits for exceptional
usage by login id

/usr/lib/acct/ptecms.awk contains the limits for exceptional
usage by command name

/usr/adm/acct/nite working directory

/usr/lib/acct holds all accounting commands listed in
sub-class 1M of this manual

/usr/adm/acct/sum summary directory, should be saved

HARDWARE DEPENDENCIES

Series 500:

The system’s process accounting routine silently enforces a 5000-block limit on the size of
the process accounting file. Therefore, setting the maximum size of /usr/adm/pacct
larger than 5000 blocks will prevent ckpacct from automatically invoking turnacct switch,
since the file size will never reach the specified limit. See acct(2).

SEE ALSO

acct(1M), acctems(1M), acctcom(l), acctcon(1M), acctmerg(1M), acctpre(1M), cron(1M),
diskusg(1M), fwtmp(1M), runacct(1M), acct(2), acct(5), utmp(5).

Hewlett-Packard -2 - June 28, 1985



BACKUP (1M) Series 200 Implementation BACKUP (1M)

NAME

backup - backup or archive file system

SYNOPSIS

/etc/backup [-archive] [-fsck]

HP-UX COMPATIBILITY

Level: HP-UX/NON-STANDARD
Origin: HP
Remarks: This manual page describes backup as it is implemented on the Series 200 computer.

Refer to other backup(1M) manual pages for information valid for other implementa—
tions.

DESCRIPTION

FILES

Backup uses find(1) and cpio(1) to save a cpio archive of all files which have been modified since
the modification time of /etc/archivedate on the default tape drive (/dev/rct). Backup should
be periodically invoked to ensure adequate file backup.

The -archive option causes backup to save all files, regardless of their modification date, and then
update /etc/archivedate using touch(1).

Backup prompts you to mount a new tape and continue if there is no more room on the current
tape. Note that this prompting does not occur if you are running backup from cron(1M).

The -fsck option causes backup to start a file system consistency check (without correction) after
the backup is complete. For correct results, it is important that the system be effectively single-
user while fsck is running, especially if -fsck is allowed to automatically fix whatever inconsisten—
cies it finds. Backup does not ensure that the system is single—user.

You may edit /etc/backup to “customize” it for your system. For example, backup uses tcio(1)
with cpio to backup your files on an HP Command Set 80 disc’s streaming tape. You will need to
modify backup to use cpio(1) if you want to access a standard HP Tape Drive.

Several local values are used which can be customized:

backupdirs specifies which directories to recursively back up (usually /, meaning all direc-
tories);

backuplog file name where start and finish times, block counts, and error messages are
logged;

archive file name whose date is the date of the last archive;

remind file name that is checked by /etc/profile to remind the next person who logs
in to change the backup tape;

outdev specifies the output device for the backed up files;

fscklog file name where start and finish times and fsck output is logged.

You may want to make other changes, such as whether or not fsck does automatic correction
(according to its arguments), where cpio output is directed, other information logging, etc.

In all cases, the output from backup is a normal cpio archive file (or volume) which can be read
using teto and cpto with the ¢ option.

/ete/archivedate
parameterized file names

SEE ALSO

cpio(1), find(1), touch(1), eron(1M), fsck(1M).

Hewlett—Packard -1- June 28, 1985



BACKUP (1M) Series 200 Implementation BACKUP (1M)

BUGS
Refer to BUGS in cpio(1).

When ¢pio runs out of tape, it sends an error to stderr and demands a new special file name from
Jdev /tty.

To continue, rewind the tape, mount the new tape, type the name of the new special file at the
system console, and press RETURN.

If backup is left running overnight and the tape runs out, backup terminates, leaving the find pro-
cess still waiting. You need to kill this process when you return.

Hewlett-Packard -2- June 28, 1985



BACKUP (1M) Series 500 Implementation BACKUP (1M)

NAME

backup - backup or archive file system

SYNOPSIS

/etc/backup [-archive] [-fack]

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: HP
Remarks: This manual page describes backup as it is implemented on the Series 500 computers.

Refer to other backup(1M) manual pages for information valid for other implementa—
tions.

Not supported in the Integral Personal Computer.

DESCRIPTION

FILES

Backup uses find(1) and cpio(1) to save on the default tape drive (/dev/rmt79zz) a cpio archive
of all files which have been modified since the modification time of /etc/archivedate. Backup
should be periodically invoked by cron(1M) at night, or when the system is otherwise idle.

The -archive option causes backup to save all files, regardless of their modification date, and then
update /etc/archivedate using touch(1).

Backup prompts you to mount a new tape and continue if there is no more room on the current
tape. Note that this prompting does not occur if you are running backup from cron(1M).

The -fack option causes backup to start a file system consistency check (without correction) after
the backup is complete. This is the normal mode of nightly operation. For correct results, it is
important that the system be effectively single—user while fsck is running, especially if it is allowed
to automatically fix whatever inconsistencies it finds. Backup does not ensure that the system is
single—user.

You should edit /etc/backup to “customize” it for your system. For example, backup uses
tcio(1) by default. You will need to modify backup to use cpio(1) if you want to access a raw
device.

Several parameters are used which can be customized:

backupdirs specifies which directories to recursively back up (usually /, meaning all direc—
tories);

backuplog file name where start and finish times, block counts, and error messages are
logged;

archive file name whose date is the date of the last archive;

remind file name that is checked by /etc/profile to remind the next person who logs
in to change the backup tape;

rootdev list of places for fsck (usually a character special file that points to the root
device);

fscklog file name where start and finish times and fsck output is logged.

You may want to make other changes, such as whether or not fsck does automatic correction
(according to its arguments), where cpio output is directed, other information logging, etc.

In all cases, the output from backup is a normal cpio archive file (or volume) which can be read
using tcio (if used to generate the backup) and cpio with the -¢ option.

[ete/archivedate
parameterized file names

Hewlett—Packard -1- June 28, 1985



BACKUP(1M) Series 500 Implementation BACKUP (1M)

SEE ALSO

cpio(1), find(1), touch(1), cron(1M), fsck(1M).
BUGS

Refer to BUGS in cpio(1).

When cpto runs out of tape, it sends an error to stderr (which is logged, so it does not appear on
your CRT), and demands a new special file name from /dev/tty. To continue, rewind the tape,
mount the new tape, type the name of the new special file at the system console, and press
RETURN.

If backup is left running overnight and the tape runs out, backup terminates, leaving the find pro—
cess still waiting. You need to kill this process when you return.

Hewlett-Packard -2 - June 28, 1985



BRC (1M) BRC (1M}

NAME
bre, beheckre, re, powerfail - system initialization shell scripts

SYNOPSIS

/ete/bre

/etc/beheckre

/etc/re

/etc/powerfail
HP-UX COMPATIBILITY

Level: HP-UX/STANDARD

Origin: System V

Remarks: Not supported on the Integral PC.
DESCRIPTION

Except for powerfail, these shell procedures are executed via entries in /etc/inittab by init(1M)

when the system is changed out of SINGLE USER mode. Powerfail is executed whenever a system
power failure is detected.

The brc procedure clears the mounted file system table, /etc/mnttab (see mnttab(4)), and loads
any programmable micro-processors with their appropriate scripts.

The bcheckre procedure performs all the necessary consistency checks to prepare the system to
change into multi—user mode. It will prompt to set the system date and to check the file systems
with fsck(1M).

The rc¢ procedure starts all system daemons before the terminal lines are enabled for multi—user
mode. In addition, file systems are mounted and accounting, error logging, system activity log-
ging and the Remote Job Entry (RJE) system are activated in this procedure.

The powerfail procedure is invoked when the system detects a power failure condition. Its chief
duty is to reload any programmable micro- processors with their appropriate scripts, if suitable. It
also logs the fact that a power failure occurred.

SEE ALSO
fsck(1M), init(1M), shutdown(1M), inittab(5), mnttab(5).

Hewlett-Packard -1- June 28, 1985



CATMAN (1M) CATMAN(1M)

NAME

catman - create the cat files for the manual
SYNOPSIS

/etc/catman [ -p | [ -n ] [ -w ] [ sections ]

HP-UX COMPATIBILITY
Level: HP UX/STANDARD

Origin: UCB
Remarks: Not supported on the Integral PC.
DESCRIPTION

Catman creates the preformatted versions of the on-line manual from the nroff input files. Each
manual page is examined and those whose preformatted versions are missing or out of date are
recreated. If any changes are made, catman will recreate the /usr/lib/whatis database.

If there is one parameter not starting with a ‘-’ it is taken to be a list of manual sections to look
in. For example

catman 123

will cause the updating to only happen to manual sections 1, 2, and 3.

Options:
-n prevents creation of /usr/lib/whatis.
-p prints what would be done instead of doing it.
-w causes only the /usr/lib/whatis database to be created. No manual reformatting is
done.
FILES
/usr/man/man?/*.* raw (nroff input) manual sections
/usr/man/cat?/*.* preformatted manual pages
/usr/lib/mkwhatis commands to make whatis database
SEE ALSO
man(1).

Hewlett-Packard -1- June 28, 1985



CHROOT (1M) CHROOT (1M)

NAME
chroot - change root directory for a command

SYNOPSIS
/ete/chroot newroot command
HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: System V
Remarks: Not supported on the Integral PC.

DESCRIPTION
The given command is executed relative to the new root. The meaning of any initial slashes (/)
in path names is changed for a command and any of its children to newroot. Furthermore, the
initial working directory is newroot.

Notice that:

chroot newroot command >x
will create the file x relative to the original root, not the new one.
Command includes both the command name and any arguments.
This command is restricted to the super--user.

The new root path name is always relative to the current root. Even if a chroot is currently in
effect, the newroot argument is relative to the current root of the running process.

SEE ALSO
chdir(2).

BUGS
Command cannot be in a shell script.
One should exercise extreme caution when referencing special files in the new root file system.
Chroot does not search PATH for the location of command, so the absolute path name of com—
mand must be given.

Hewlett-Packard -1- June 28, 1985



CHSYS(1M) Series 500 Only CHSYS(1M)

NAME

chsys - change to different operating system or version

SYNOPSIS

/etc/chsys sysname

HP-UX COMPATIBILITY

Level: HP-UX/NON-STANDARD
Origin: HP
Remarks: Chsys is implemented on the Series 500 only.

DEBCRIPTION

Chsys is a shell script that enables you to boot a different operating system, or a different version
of the same operating system, using only one boot area on one disc. Sysname is one of a number
of operating system names defined within chsys. Chsys uses oscp(1M) to rebuild the boot area on
/dev/rhd with the selected system, reading from ordinary files containing operating system code.
Chsys then invokes osck(1M) to confirm that the new system is “healthy”. (Note that osck per—
forms a redundant check, so its invocation in chsys may be removed if you want to save time.)

Chsys invokes oscp as quietly as possible. Chsys causes oscp to read the new system ID string
from a file selected by the sysname given, and redirects the output from oscp to /dev/null. If oscp
and osck are successful, chsys calls reboot(1M) to switch to the new operating system. Note that
oscp and osck together can take longer than a minute to run. During this time, chsys keeps you
informed as to what actions are being taken.

If you simply want to re-boot the operating system already in the boot area, do not use chsys.
Instead, invoke reboot(1M) directly.

If you want to allocate and use several boot areas on several discs, see osmgr(1M).

You should modify chsys to localize it for your system. You may want to add or delete available
sysnames, change the names or meanings of sysnames, change the name of the character special
file (/dev/rhd) which points to the boot volume, etc. Chsys recognizes four default sysnames.
They stand for:

HP-UX Model 520 single--user minimal system;
HP-UX Model 520 single-user complete system;
BASIC minimal system;
BASIC complete system.

These sysnames serve as examples for any others you may want to add. They may or may not be
useful to you.

Chsys should only be invoked by the effective super user unless both of the following are true:

the special file which points to the boot device must be readable and writable by whoever
invokes chsys;

the reboot command must be owned by root and have the set—user-ID bit set.
If either of the above are not true, either the oscp or the reboot command will fail.

Chsys must be invoked with a $PATH that includes the directories containing the oscp, osck,
reboot, and echo commands.

RETURN VALUES

If any of the invoked commands fails, chsys writes a message to standard error and exits with the
same return value as that returned by the unsuccessful command. Chsys returns 1 if invoked
improperly.

SEE ALSO

sh(1), osmgr(1M), shutdown(1M), stopsys(1M), sync(1M).

Hewlett—Packard -1- June 28, 1985



CHSYS(1M) Series 500 Only CHSYS (1M)

WARNINGS
Chsys does not check that the system is idle, and it does not notify all users that the system is
going down. You should usually execute shutdown(1M) before executing chsys.

Chsys does not ask you to confirm that the intended operating system or version has been selected
before the system is re-booted. However, osck ensures that the system is rebootable, and reboot
performs a sync(1M). Note that new operating systems built in the boot area by oscp are always
marked as loadable (see osmark(1M)).

Hewlett-Packard 2 - June 28, 1985



CLRI(1M) Series 200 Only CLRI(1M)

NAME

clri - clear i-node

SYNOPSIS

/etc/clri file-system i-number ...

HP-UX COMPATIBILITY

Level: HP-UX/NUCLEUS
Origin: HP
Remarks: Clri is implemented only on those systems using the Bell file system.

Clri is currently implemented on Series 200 and the Integral PC only.

DESCRIPTION

Clri writes zeros on the 128 bytes occupied by the i-node numbered (-number. File—system must
be a special file name referring to a device containing a file system. After clri is executed, any
blocks in the affected file will show up as “missing” in an fsck(1M) of the file-system. This com-
mand should only be used in emergencies and extreme care should be exercised.

Read and write permission is required on the specified file—system device. The i-node becomes
allocatable.

The primary purpose of this routine is to remove a file which for some reason appears in no direc—
tory. If it is used to zero out an i-node which does appear in a directory, care should be taken to
track down the entry and remove it. Otherwise, when the i—node is reallocated to some new file,
the old entry will still point to that file. At that point removing the old entry will destroy the
new file. The new entry will again point to an unallocated i-node, so the whole cycle is likely to
be repeated again and again.

SEE ALSO

BUGS

fsck(1M), fsdb(1M), ncheck(1M), fs(4).

If the file is open, clri is likely to be ineffective.

Hewlett-Packard -1- June 28, 1985



CLRSVC(1M) CLRSVC (1M)

NAME
clrsve - clear x25 switched virtual circuit

SYNOPSIS
/usr /lib/uucp/X25/clrsve line pad-type

HP-UX COMPATIBILITY
Level: HP-UX/NON-STANDARD

Origin: HP
DESCRIPTION
Clrsve clears any virtual circuit that might be established on the line specified. The pad-type

indicates to clrsvec what opz25 script to run from /usr/lib/uucp/X25. HP2334A is the only PAD
supported at this time, and results in an opz25 execution of HP2334A.clr.

A typical invokation would be:
Jusr/lib/uucp/X25/clrsve /dev/x25.1 HP2334A

SEE ALSO
Getx25(1C), opx25(1C), getty(1M), login(1), uucp(1C)

AUTHOR
Radek Linhart

Hewlett-Packard -1~ June 28, 1985



CONFIG (1M) Series 200 Only CONFIG(1M)

NAME
config - configure an HP-UX system

SYNOPSIS
/etc/config [-t] [-m master] [-c file] [- 1 file] [-a file] dfile

HP-UX COMPATIBILITY
Level: HP-UX/NON-STANDARD

Origin: HP
Remarks: Config is implemented on the Series 200 only.

DESCRIPTION
Config enables the user to configure the following parts of the operating system:

1. device switch drivers and 1/O cards

2. root and swap devices

3. selected system parameters

4. kernel code that handles messages, semaphores, and shared memory

It takes as input, a user-provided description of an HP-UX system (dfile) and always generates
two files, with an optional third file. The first file is a C program that defines the configuration
tables for the various devices on the system. The second file is a makefile script that will compile
the C program produced and relink the newly configured system. The third file (if specified) con-
tains a mknod command for each device specified in dfile.

The options available:

—t gives a short table of major device numbers for the character and block devices
named in dfile. This can facilitate the creation of special files.

—m master specifies that the file master contains all the information regarding supported
devices. The default file name is /etc/master. This file is supplied with the HP-UX
system and should not be modified unless the user fully understands its

construction.

—c file specifies the name of the configuration table file produced by running the user-
data file, dfile, through config(1M). The default file name is conf.c

-1 file specifies the name of the makefile script that will compile the configuration pro-

gram and relink the newly configured system. The default file name is config.mk
-a file serves two functions:
1. When specified without dfile, a mkdev script of templates is produced.

2. If dfile is given, this indicates that the user will supply addresses for devices so
that config can produce a script that contains both the mkdev templates and a
list of mknod commands for each device specified in dfile. If this option is chosen,
all devices must have addresses. Zero (0) as a dummy address, is valid and
necessary for many of the devices, e.g., the card drivers. The default file name is
mkdev.

Hewlett—-Packard -1~ June 28, 1985



CONFIG (1M) Series 200 Only CONFIG(1M)

The only required argument is either dfile or —a. If dfile is given it must contain device informa—
tion for the user’s system. This file is divided into two parts. The first part contains physical
device and driver specifications; the second part contains system-dependent information. Any line
with an asterisk (*) in column 1 is a comment.

The following devices are not configurable and should not be specified in the system descrition
file, dfile:

;11 swap  cons tty sy mm ite200 iomap graphics r8042 hil nim-
itz

Part 1 of dfile:
This part of dfile allows you to configure:

1. device switch drivers
2. 1/0O cards
3. pseudo- drivers, e.g., ieee802, pty
Each line contains 1, 2, or 3 fields, delimited by blanks and/or tabs in the following format:
devname [address| |specialfilename]
where:

devname is the driver name for the device ( e.g., ¢s80 for the HP7912 64MB disc drive)
or card ( 98629 for the SRM card ) or the name of the pseudo—driver ( e.g.,
iee802 for the ieee802 protocol )} you wish to configure.

address  is the minor number for that device as given to mknod or the select code of
the card if addressing checking is desired. For pseudo—drivers, i.e., iee802, pty,
ethernet, the address field is 0. (in hexadecimal, without the preceding 0x).

specialfilename
is what you want the device’s special file to be called in the afile.

For example, to specify a 7914 disc at select code 14, bus address 0 with mknod name /dev/hd:
¢s80 0E0000 hd

The complete list of configurable devices, cards, and pseudo-drivers is given in the EXAMPLE
section.

It is not necessary to specify the address field, but if you do specify this field and use the —a
option, config will produce a file containing a mknod command for each device you specify. It will
also check for the unique use of addresses. The —a option allows you to name this file.

Part 2 of dfile:
The second part contains four different types of lines; none of these specifications are required.

1. Root device specification lines which have the following form:
root devname address

where devname is the product number (without the suffix) of the device you wish to configure,
e.g., ¢s80 for the HP7912 64MB disc drive, and address is the minor device number (in hexade-
cimal, without the preceding 0x).

Hewlett-Packard -2 June 28, 1985



CONFIG (1M) Series 200 Only CONFIG (1M)

2. Swap device specification lines:/fR

If you want the system to auto configure the swap device but you want to specify the swap size,
then use:

swapsize <#blocks>

If you want to specify both the swap device location and its size then the specification line has the
following form:

swap devname address swplo [nswap)
where:

devname is the product number (with the suffix) of the device you wish to configure,
e.g., ¢s80 for the HP7912 64MB disc drive (in hexadecimal).

address  is the minor device number (in hexadecimal)
swplo is the location (decimal) of the swap area

nswap is the number of disc blocks (decimal) in the swap area. Only the nswap
parameter is optional. Zero is the default for auto—configuration.

swplo:

A negative value (typically —1) for swplo specifies that a file system is expected on the device. At
boot—up, the super block will be read to determine the exact size of the file system, and this
value will be put in swplo. If the swap device is auto—configured, this is the mechanism used. If
the super block doesn’t appear valid, the entry will be skipped, so that the case of a corrupted
super block won’t later cause the entire file system to be corrupted by configuring the swap area
on top of it.

A positive {including zero) value for swplo specifies that at least that much area must be reserved.
Zero obviously means to reserve no area at the head of the device. The case for swplo pointing
beyond the end of the device is gracefully handled.

nswap:
If nswap is zero, the entire remainder of the device is automatically configured in as swap area.

If nswap is non—zero, it’s absolute value is treated as an upper bound for the size of the swap
area. Then, for the case that the swap area size has actually been cut back, the sign of nswap
determines whether swplo remains as is, resulting in the swap area being adjacent to the reserved
area, or whether swplo is bumped by the size of the unused area, resulting in the swap area
being adjacent to the tail of the device.

Hewlett—Packard -3- June 28, 1985



CONFIG (1M) Series 200 Only CONFIG(1M)

3. Parameter specification

These parameters should not be modified unless the user fully understands the
ramifications of doing so. See the Systern Administrator’s Manual for more detail on each
parameter.

The format: lines of two fields each (number is decimal). Each line is independent and optional.
System Parameters:

center; 1 1. maxusers number or formula timezone number or formula
dst number or formula procs number or formula inodes number or formula
files number or formula nbuf number or formula ncalloutnumber or formula
texts number or formula unlockable_mem number or formula nflocks number or for—
mula npty  number or formula maxupre number or formula dmmin number or formula
dmmax number or formula dmtext number or formula dmshm number or formula
maxdsiznumber or formula maxssiznumber or formula maxtsiz number or formula
shmmaxaddr  number or formula

System V code: messages (mesg), semaphores (sema) and shared memory (shmem) capability

If mesg, sema, shmem= 1, the kernel code for these features will be included (default); if
they = 0, the kernel code will not be included: they are independent. If they are included any of
the parameters listed below may be modified. center; 1 I. mesg 1 msgmap number or
formula msgmaxnumber or formula msgmnb number or formula msgmni number or for—
mula msgssz number or formula msgtql number or formula msgseg number or formula center; |
l. sema 1 semmapnumber or formula semmni number or formula semmnsnumber or formula
semmnu number or formula semmsl number or formula semvmxnumber or formula
semaem number or formula center; 1 1. shmem 1 shmmax number or formula
shmminnumber or formula shmmninumber or formula shmseg number or formula
shmbrk number or formula

EXAMPLE
The dfile below will configure an HP-UX system with all the drivers that are currently supported
on the Series 200 Release 5.0. The tunable parameters given are the system defaults.

* drivers
cs80

flex
amigo
tape
printer
stape
srm
ptymas
ptyslv
1eee802
ethernet
hpib
gpio
ciper

* cards
98624
98625
98626
98628
98642

* reconfigure the swap area to occupy an entire CS/80 drive at
* gelect code 14 bus address 01

Hewlett -‘Packard -4 - June 28, 1985



CONFIG (1M) Series 200 Only CONFIG (1M)

swap cs80  OE0100 O 0
* tunable parameters
maxusers 8
timezone 420
dst 1
procs (20+-8*MAXUSERS)
inodes ((NPROC+16+MAXUSERS)+32)
files (16*(NPROC+16+MAXUSERS)/10+32+2*NETSLOP)
nbuf 0 /* configure based on memory */
ncallout (164+NPROC)
texts (24+MAXUSERS+NETSLOP)
unlockable__mem 50
nflocks 200
npty 96
maxuprc 25
dmmin 16
dmmax 2048
dmtext 1365
dmshm 512
maxdsiz 0x01000000
maxssiz 0x01000000
maxtsiz 0x01000000
shmmaxaddr 0x00fTt
* configure in messages, semas, and shared memory
mesg 1
msgmap (msgtql + 3)
msgmax 8192
msgmnb 16384
msgmni 50
msgssz 1
msgtql 40
msgseg 16384
sema 1
semmap 10
semmni 64
semmns 128
semmnu 30
semmsl| 25
semvmx 32767
semaem 16384
shmem 1
shmmax (2048*1024)
shmmin 1
shmmni 100
shmseg 10
shmbrk 16
FILES
/etc/master default input master device table
conf.c default output configuration table
config.mk default makefile script
mkdev default mknod script

Hewlett-Packard

5 - June 28, 1985



CONFIG (1M) Series 200 Only CONFIG (1M)

SEE ALSO
master(5)

Hewlett-Packard -6- June 28, 1985



CPSET (1M) CPSET (1M)

NAME

cpset - install object files in binary directories

SYNOPSIS

cpset [—o] object directory [ mode [ owner | group | | |

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V

DESCRIPTION

Cpset is used to install the specified object file in the given directory. The mode, owner, and
group, of the destination file may be specified on the command line. If this data is omitted, two
results are possible:

If the user of cpset has administrative permissions (that is, the user’s numerical ID is less
than 100), the following defaults are provided:

mode - 0755
owner - bin
group - bin

If the user is not an administrator, the default, owner, and group of the destination file will
be that of the invoker.

An optional argument of -0 will force ¢pset to move object to OLDobject in the destination direc—
tory before installing the new object.

For example:

cpset echo /bin 0755 bin bin

cpset echo /bin

cpset echo /bin/echo
All the examples above have the same effect {assuming the user is an administrator). The file
echo will be copied into /bin and will be given 0755, bin, bin as the mode, owner, and group,
respectively.
Cpset utilizes the file /usr/src/destinations to determine the final destination of a file. The
locations file contains pairs of pathnames separated by spaces or tabs. The first name is the
“official” destination (for example: /bin/echo). The second name is the new destination. For
example, if echo is moved from /bin to /usr/bin, the entry in /usr/src/destinations would
be:

/bin/echo /Jusr/bin/echo
When the actual installation happens, cpset verifies that the “old” pathname does not exist. If a
file exists at that location, cpset issues a warning and continues. This file does not exist on a dis-

tribution tape; it is used by sites to track local command movement. The procedures used to
build the source will be responsible for defining the “official” locations of the source.

Cross Generation

The environment variable ROOT will be used to locate the destination file (in the form
$ROOT /usr/src/destinations). This is necessary in the cases where cross generation is being
done on a production system.

SEE ALSO

install(1M), make(1).

Hewlett-Packard -1 - June 28, 1985



CRON (1M) CRON (1M)

NAME

cron - clock daemon
SYNOPSIS

/ete/cron

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System V

Native Language Support:
8-bit filenames.

Remarks: Not supported on the Integral PC.

DESCRIPTION
Cron executes commands at specified dates and times. Regularly scheduled commands can be
specified according to instructions found in crontab files; users can submit their own crontab file
via the crontab command. Commands which are to be executed only once may be submitted via
the et command. Since cron never exits, it should only be executed once. This is best done by
running cron from the initialization process through the file /etc/re (see indt(1M)).

Cron only examines crontab files and at command files during process initialization and when a
file changes. This reduces the overhead of checking for new or changed files at regularly scheduled

intervals.
FILES
/usr/lib/cron main cron directory
/usr/lib/cron/log  accounting information
/usr/spool/cron spool area
SEE ALSO
at(1), crontab(1), sh(1), init(1M).
DIAGNOSTICS

A history of all actions taken by cron are recorded in /usr/lib/cron/log.

Hewlett-Packard 1- June 28, 1985



DEVNM (IM) DEVNM (1M)

NAME

devnm - device name

SYNOPSIS
/etc/devnm [names]

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System V
Remarks: Devnm{1m) is currently implemented on the Series 200 and the Integral PC only.

DESCRIPTION
Devnm identifies the special file associated with the mounted file system where the argument
name resides. (As a special case, both the block device name and the swap device name are
printed for the argument name / if swapping is done on the same disk section as the root file sys—
tem.) Argument names must be full path names.

This command is most commonly used by /etc/rc (see bre(1M)) to construct a mount table
entry for the root device.

EXAMPLE
The command:
/etc/devnm /usr
produces
dsk/0s1 /usr
if /usr is mounted on /dev/dsk/0sl.

FILES
/dev/dsk/*
/etc/mnttab

SEE ALSO
bre(1M), setmnt{1M).

Hewlett—Packard -1- June 28, 1985



DF (1M) DF(1M)

NAME
df - report number of free disk blocks

SYNOPSIS
df [ -t ] [ -f ] [ file-systems |

HP-UX COMPATIBILITY
Level: HP-UX/EXTENDED
Origin: HP

DESCRIPTION
Df prints out the number of free 512-byte blocks and free i-nodes available for on-line file sys—
tems by examining the counts kept in the super-block(s); file—systems may be specified either by
device name (e.g., /dev/dsk/0sl ) or by mounted directory name (e.g., /usr ). If the file-
systems argument is unspecified, the free space on all of the mounted file systems is printed.

The -t flag causes the total allocated block figures to be reported as well.

If the -f flag is given, only an actual count of the blocks in the free list is made (free i-nodes are
not reported). With this option, df will report on raw devices.

The file space reported is the space available to the ordinary user. For more details see MINFREE
in fs(5).
FILES
/dev/dsk/x
/ete/mnttab

SEE ALSO
du(1), fsek(1M), fs(5), mnttab(5).

Hewlett—Packard -1- June 28, 1985



DISKUSG (1M) Series 500 Only DISKUSG (1M)

NAME

diskusg — generate disk accounting data by user ID

SYNOPSIS
diskusg [options] [files]

HP-UX COMPATIBILITY
Level: HP-UX/EXTENDED
Origin: System V
DESCRIPTION

Diskusg generates intermediate disk accounting information from data in files, or the standard
input if omitted. Diskusg output lines on the standard output, one per user, in the following for-

mat:
uid login #blocks
where
uid — the numerical user ID of the user.
login - the login name of the user; and
#blocks —  the total number of disk blocks allocated to this user.

Diskusg normally reads only the i—nodes of file systems for disk accounting. In this case, files are
the special filenames of these devices.

Diskusg recognizes the following options:

-8 the input data is already in diskusg output format. Diskusg combines all lines for a
single user into a single line.

-v verbose. Print a list on standard error of all files that are charged to no one.

—i famlist  ignore the data on those file systems whose file system name is in frmlist. Fnmlist is
a list of file system names separated by commas or enclose within quotes. Diskusg

compares each name in this list with the file system name stored in the volume ID
(see labelit(1M)).

—p file use file as the name of the password file to generate login names. /etc/passwd is
used by default.

—u file write records to file of files that are charged to no one. Records consist of the spe—
cial file name, the i-node number, and the user 1D.

The output of diskusg is normally the input to acctdisk (see acct(1M)) which generates total
accounting records that can be merged with other accounting records. Diskusg is normally run in
dodisk (see acctsh(1M)).

EXAMPLES
The following will generate daily disk accounting information:

for i in /dev/rhdx ; do
diskusg $i > dtmp." basename $i° &

done

wait

diskusg —s dtmp.* | sort +0n +1 | acctdisk > disktacct
FILES

/ete/passwd used for user ID to login name conversions
SEE ALSO

acct{IM), acctsh(1M), acct(5)

Hewlett—Packard -1- June 28, 1985



FSCK(1M) Series 200 Implementation

NAME
fsck - file system consistency check and interactive repair

SYNOPSIS
/ete/fsck -p [file system ...]
/ete/fsck [ -b block#][ -y ][ -n ][ -q ](file system ..

HP-UX COMPATIBILITY

FSCK (1M)

Level: Large Machine/SVID/HFS
Origin: HP

Remarks: This version of fsck applies to the HFS file system. See other fsck manual pages for
other file systems.

DESCRIPTION

fsck audits and interactively repairs inconsistent conditions for HP-UX file systems. If the file
system is consistent then the number of files on that file system and the number of used and free
blocks are reported. If the file system is inconsistent then fsck provides a mechanism to fix these
inconsistencies depending on which form of fsck command is used.

fsck checks a default set of file systems or the file systems specified in the command line. If file
system 1s not specified, fsck reads the table in /etc/checklist to determine which file systems to
check.

If the —p option is used without specifying a file-system, fsck reads the specified pass numbers
in /etc/checklist to inspect groups of disks in parallel taking maximum advantage of 1/0O over-
lap to preen the file systems as quickly as possible. The —p option is normally used in the script
/etc/rc during automatic reboot. Normally, the root file system will be checked on pass 1, other
“root” (‘0" section) file systems on pass 2, other small file systems on separate passes (e.g. the
“section 4 file systems on pass 3 and the “section 7” file systems on pass 4), and finally the large
user file systems on the last pass, e.g. pass 5. A pass number of 0 or a type which is neither "rw”
nor “ro” in checklist causes a file system not to be checked. If the optional fields are not present
on a line in /etc/checklist, or the pass number is -1, fsck will preen the file system on such lines
sequentially after all eligible file systems with positive pass numbers have been preened.

Below are the inconsistencies which fsck with the -p option will correct; if it encounters other
inconsistencies it exits with an abnormal return status. For each corrected inconsistency, one or
more lines will be printed identifying the file system on which the correction will take place, and
the nature of the correction. These inconsistencies are limited to the following:

Unreferenced inodes

Unreferenced pipes and fifos

Link counts in inodes too large

Missing blocks in the free list

Blocks in the free list also in files

Counts in the super-block wrong

fsck without —p option, prompts for concurrence before each correction is attempted when the file
system is inconsistent. It should be noted that some corrective actions will result in a loss of data.
The amount and severity of data lost may be determined from the diagnostic output. The default
action for each consistency correction is to wait for the operator to respond yes or no. If the
operator does not have write permission fsck will default to a -n action. The following options in
the second form are interpreted by fsck.

-b Use the block specified immediately after the flag as the super block for the file system. An
alternate super block will always be found at block ((SBSIZE + BBSIZE)/DEV_BSIZE),
typically block 16.

-y Assume a yes response to all questions asked by fsck; this should be used with great cau-
tion as this is a free license to continue after essentially unlimited trouble has been

Hewlett-Packard -1- June 28, 1985



FSCK (1M) Series 200 Implementation FSCK (1M)

cncountered.

-n Assume a no response to all questions asked by fsck; do not open the file system for writ—
ing.

-q Quiet fsck. Do not print size—check messages in Phase 1. Unreferenced fifos will silently be
removed. If fsck requires it, counts in the superblock and cylinder groups will be automati-
cally fixed.

Inconsistencies checked are as follows:

I.  Blocks claimed by more than one inode or the free list.

2. Blocks claimed by an inode or the free list outside the range of the file system.
3. Incorrect link counts.
4. Size checks:
Directory size not of proper format.
5. Bad inode format.

Blocks not accounted for anywhere.

Directory checks:
File pointing to unallocated inode.
Inode number out of range.

8. Super Block checks:
More blocks for inodes than there are in the file system.

9.  Bad free block list format.
10. Total free block and/or free inode count incorrect.

Orphaned files and directories (allocated but unreferenced) are, with the operator’s concurrence,
reconnected by placing them in the lost+found directory. The name assigned is the inode
number. The only restriction is that the directory lost+found must preexist in the root of the
filesystem being checked and must have empty slots in which entries can be made. This is accom
plished by making lost+found, copying a number of files to the directory, and then removing
them (before fsck is executed).

After fsck has checked and fixed the file system, it will store the correct magic number in the
super block if it is not already there. For a non-root file system, FS_CLEAN will be stored
there. For the root file system, which is mounted at the time of the fsck, if there were no prob-
lems found and if FS__OK was already set, then no changes are required to the super block.

Checking the raw device is almost always faster.

Hewlett—Packard -2- June 28, 1985



FSCK (1M) Beries 200 Implementation FSCK (1M)

HARDWARE DEPENDENCIES

Series 200:
Series 200 5.0 release supports only one section per volume.
FILES
/ete/checklist contains default list of file systems to check.
SEE ALSO

checklist(5), fs(5), fsclean(1M), newfs(1M), mkfs(1M),

Hewlett-Packard -3- June 28, 1985



FSCK (1M) Series 500 Implementation FSCK (1M)

NAME
fsck - file system consistency check and interactive repair

SYNOPSIS
/ete/fsck [-y| [-n] [-s] [-d] [ file system ]

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: HP
Remarks: This manual page describes fsck as implemented on the Series 500 (SDF file system).
Refer to other fsck(1M) manual pages for information valid for other file systems.

Not supported on the Integral PC.

DESCRIPTION
Fsck checks and interactively repairs inconsistent conditions for SDF file systems. If the file sys—
tem is consistent, then the number of files, the number of blocks used, the number of blocks free,
and the percent volume unused are reported. If the file system is inconsistent, the operator is
prompted for concurrence before each operation is attempted. Note that many corrective actions
will result in some loss of data. The amount and severity of the loss may be determined from the
diagnostic output. The default action for each inconsistency correction is to wait for the operator
to respond yes or no. If the operator does not have write permission, fsck will default to a -n
action.

Fsck makes multiple passes over the file system, so care should be taken to ensure that the system
is quiescent. You should unmount the file system being checked, if possible. At the least, the
system should be single--user, and spurious processes (such as cron) should be killed.

The following flags are interpreted by fsck:
-y  Assume a yes response to all questions asked.
-n  Assume a no response to all questions asked; do not open the file system for writing.

-8 Ignore the actual free list and unconditionally reconstruct a new one. This option is useful
in correcting multiply claimed blocks when one of the claimants is the free list. When using
this option, the number of unclaimed blocks reported by fsck includes all the blocks in the
free map. This can produce extensive output if -d is also selected.

-8 should only be selected after a previous fsck indicates a conflict between a file and the free
map. After fsck -s has executed, the integrity of the conflicting file(s) should be checked.

If -8 is used to correct a problem on a virtual memory device, there is a high probability
that the final step in fsck will fail, and you will be forced to reboot. Should this occur, and
appropriate error message will be printed. No damage should occur.

-d Dump additional information. The more d’s that are present, the more information that is
dumped. You may specify up to five d’s. However, using more than two can result in an
overwhelming amount of output.

Fsck also recognizes, and ignores, the -S and -t options found in other versions of fsck. An
appropriate warning is printed.

File system 1s a device file name describing the device on which the file system to be checked
resides (that is, /dev/rhd). If no file system(s) are specified, fsck will read a list of default file
systems from the file /etc/checklist.

Error messages from fsck are written to stderr. Information generated because of the -d option
and normal output is written to stdout. Both are unbuffered.

Inconsistencies checked include:

Hewlett-Packard -1- June 28, 1985



FSCK(1M) Series 500 Implementation FSCK (1M)

Blocks claimed by more than one i-node, or by the free list;

Blocks claimed by an i-node or the free list outside the range of the file system;
Incorrect link counts;

Blocks not accounted for anywhere;

Bad i-node format;

ISR o

Directory checks:

Files pointing to unallocated i-nodes,
I-node numbers out of range,
Multiply linked directories,

Link to the parent directory.

Orphaned files (allocated but unreferenced) with non—zero sizes are, with the operator’s con-
currence, reconnected by placing them in the lost+found directory. The name assigned is the i-
node number. The only restriction is that lost+found must exist in the root of the file system
being checked, and must have empty slots in which entries can be made. This is accomplished by
creating lost+ found, copying a number of files to it, and then removing them (before fsck is exe—
cuted).

Orphaned directories and files with zero size, with the operator’s concurrence, are returned
directly to the free list. This will also happen if the lost+ found directory does not exist.

You should run a backup prior to running fsck for repairs.

FILES
/etc/checklist  contains the default list of file systems to check

SEE ALSO
checklist(5), fs(5).

Sertes 500 HP-UX System Administrator Manual.

DIAGNOSTICS
The diagnostics are intended to be self-explanatory.

BUGS
All file systems must be described by a character special device file.

Do not redirect stdout or stderr to a file on the device being checked. This includes pipes when
checking the root volume.

Fsck cannot check devices with a logical block size greater than 1024.

Hewlett—Packard -2- June 28, 1985



FSCLEAN (1M) Series 200 Only FSCLEAN (1M)

NAME

fsclean - determine shutdown status of specified file system
SYNOPSI1S
/etc/faclean special
HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS
Origin: HP
DESCRIPTION
Fslcean determines the shutdown status of the the file system specified by special. Fsclean reads
the super block to determine whether the file system’s last shutdown was done correctly. If it

was, then fsclean returns 0. If it was not, then fsclean returns 1. All other errors, such as “can—
not open the specified device file,” return 2.

Fsclean can be used in /etc/rc to determine whether fsck should be run on the file system before
continuing with the normal boot of the HP-UX system.

SEE ALSO
rc(1M), reboot(1M).

Hewlett—Packard -1- June 28, 1985



FSDB(1M) Series 200 Implementation FSDB(1M)

NAME
fsdb - file system debugger

SYNOPSIS
/etc/fadb special [ -b  block# | [ - |

HP-UX COMPATIBILITY
Level: HP-UX/NON-STANDARD

Origin: HP
Remarks: This version of fsdb(1M) is implemented only on those machines using the HFS file
systems. Refer to other fsdb(1M) manual pages for information valid for other imple-

mentations.
Always execute fsck(1M) after done with fsdb.

DESCRIPTION
Fsdb can be used to patch up a damaged file system after a crash. It normally uses the first super
block for the file system located at the beginning of the disk section as the effective super block.
If the -b flag is used, the block specified immediately after the flag will be used as the super block
for the file system. An alternate super block will always be found at block ((SBSIZE +
BBSIZE)/DEV_BSIZE), typically block 16.

Fsdb deals with the file system in terms of block fragments, which are the unit of addressing in
the file system and the minimum unit of space allocation. To avoid possible confusion, fragment
is used to mean that, and block is reserved for the larger true block. Fsdb has conversions to
translate fragment numbers and i-numbers into their corresponding disk addresses. Also included
are mnemonic offsets to access different parts of an inode. These greatly simplify the process of
correcting control block entries or descending the file system tree.

Fsdb contains several error—checking routines to verify i-node and fragment addresses. These can
be disabled if necessary by invoking fsdb with the optional - argument or by the use of the O
symbol.

Numbers are considered decimal by default. Octal numbers must be prefixed with a zero. Hexa
decimal numbers must be prefixed with Ox. During any assignment operation, numbers are
checked for a possible truncation error due to a size mismatch between source and destination.

Fsdb reads a fragment at a time. A buffer management routine is used to retain commonly used
fragment of data in order to reduce the number of read system calls. All assignment operations
result in an immediate write-through of the corresponding fragment.

The symbols recognized by fsdb are:

absolute address

convert from i-number to i-node address
convert from fragment number to disk address (historically “block”)
directory slot offset

address arithmetic

quit

save, restore an address

numerical assignment

incremental assignment

decremental assignment

character string assignment

hexadecimal flip flop

error checking flip flop

general print facilities

file print facility

byte mode

Ve +ao =%
A

I
+

W™D oKl

Hewlett-Packard -1- June 28, 1985



FSDB(1M) Series 200 Implementation FSDB(1M)

double word mode

W word mode
D
! escape to shell

The print facilities generate a formatted output in various styles. Octal numbers are prefixed
with a zero. Hexadecimal numbers are prefixed with Ox. The current address is normalized to an
appropriate boundary before printing begins. It advances with the printing and is left at the
address of the last item printed. The output can be terminated at any time by typing the inter—
rupt character. If a number follows the p symbol, that many entries are printed. A check is
made to detect fragment boundary overflows since logically sequential blocks are generally not
physically sequential. If a count of zero is used, all entries to the end of the current fragment are
printed. The print options available are:

i print as i nodes
print as directories
print as octal words
print as hexadecimal words
print as decimal words
print as characters
print as octal bytes

To o X o

The f symbol is used to print data fragments associated with the current i-node. If followed by a
number, that fragment of the file is printed. (Fragments are numbered from zero). The desired
print option letter follows the fragment number, if present, or the f symbol. This print facility
works for small as well as large files except for special files such as fifos, and device special files.

Dots, tabs, and spaces may be used as function delimiters but are not necessary. A line with just
a new-line character will increment the current address by the size of the data type last printed.
That is, the address is set to the next byte, word, double word, directory entry or i-node, allowing
the user to step through a region of a file system. Information is printed in a format appropriate
to the data type. Bytes, words and double words are displayed with the octal (hexadecimal if X
toggle is used) address followed by the value in octal (hexadecimal if X toggle is used) and
decimal. A .B or .D is appended to the address for byte and double word values, respectively.
Directories are printed as a directory slot offset followed by the decimal i-number and the charac—
ter representation of the entry name. I-nodes are printed with labeled fields describing each ele—
ment.

The following mnemonics are used for inode cxamination and refer to the current working i-

node:
md mode
In link count
uid user ID number
gid group 1D number
sz file size in byte unit
a# data block numbers (0 - 14)
at time last accessed
mt time last modified
ct last time inode changed
maj major device number
min minor device number

The following mnemonics are used for directory examination:

di i-number of the associated directory entry
nm name of the associated directory entry
EXAMPLES
3861 prints i-number 386 in an i-node format. This now becomes the current work—
ing i-node.

Hewlett—Packard -2~ June 28, 1985



FSDB (1M)

In=4
In=+1
fc

2i.fd

dbi.fe

1b.px
2i.a0b.d7.di=3

d7.nm="name”

a2b.p0d
SEE ALSO

Series 200 Implementation FSDB (1M)

changes the link count for the working i-node to 4.
increments the link count by 1.
prints, in ASCII, fragment zero of the file associated with the working i-node.

prints the first fragment-size piece of directory entries for the root i-node of
this file system.

changes the current i-node to that associated with the 5th directory entry
(numbered from zero) found from the above command. The first fragment’s
worth of bytes of the file are then printed in ASCII.

prints the first fragment of the superblock of this file system in hexadecimal.

changes the i-number for the seventh directory slot in the root directory to 3.
This example also shows how several operations can be combined on one com-
mand line.

changes the name field in the directory slot to the given string. Quotes are
optional if the first character of the name field is alphabetic.

prints the third fragment of the current i-node as directory entries.

fsck(1M), dir(5), fs(5).

WARNING

The use of fsdb should be limited to experienced fsdb users.

Hewlett-Packard

-3 - June 28, 1985



FSDB(1M) Series 500 Implementation FSDB (1M)

NAME
fsdb - examine/modify file system

SYNOPSIS
fadb file-system

HP-UX COMPATIBILITY
Level: HP-UX/NON-STANDARD
Origin: HP

Remarks: This manual entry describes fsdb as implemented on the Series 500 computers. Refer
to other fsdb(1M) entries for information valid for other implementations. Note that
fsdb on the Series 500 is an experimental utility which could change in future releases.

DESCRIPTION
Fsdb provides you with the ability to perform the following functions for each specified SDF file-
system:
1. Find the inode number of a file, given its full path name. The file-system must
be the root file system, or must be mountable to use this feature.
2. Examine and modify the contents of the superblock (volume header).
3. Examine and modify the contents of any inode or other file attribute file
record.

Integer input to fsdb may be entered in decimal (default), octal (with a preceding “0”), or hexa
decimal (with a preceding "0x”).

File—system is a raw or block special file describing the device on which the file system is located.
Fsdb may be executed only by the super—user.

Fsdb execution is largely self-explanatory. Prompts consist of questions requesting the needed
information. When execution begins, fsdb displays the following menu:

1 - find inode numbers.

2 - examine superblock.

3 - examine inodes.

q - quit.
after which you are requested to enter one of the options shown. Typing 1 causes fsdb to accept
full pathnames of files, in return for which it prints the corresponding inode number. Typing q
returns you to the main menu.

Typing 2 displays the contents of each record in the superblock. Each record is numbered. If a
right parenthesis “)” follows the number, then the record can be modified. If a right curly bracket
“}" follows the number, then the record cannot be modified. You are then asked whether or not
you want to modify the superblock. An answer beginning with n sends you back to the menu; an
initial y causes fsdb to ask for the record number to be modified. If the record number specified
cannot be modified, you are told about it, and prompted for another record number. If you
specify a record number which can be changed, you are prompted for the new data. Typing q
returns you to the main menu.

Typing 3 causes fsdb to prompt you for a file attribute record number. Upon receipt of a valid
number, the contents of that record are displayed, and you are prompted for the information you
want to change. Parentheses and curly brackets have the same meanings as described above.
Typing q returns you to the main menu.

Typing q at the main menu level terminates the command.

A word of caution: fsdb is deceptively easy to use, and therefore should be used with extreme
care. Be sure you know what you are doing before you enter too deeply into options 2 or 3. You
are given the opportunity to abort (by typing q) any operation before you have changed anything,

Hewlett—Packard -1- June 28, 1985



FSDB(1M) Series 500 Implementation FSDB(1M)

so consider carefully what you are about to do before you do it. Fsdb does not provide an “undo”
function - the changes you make are immediate.

SEE ALSO
fsck(1M).

BUGS

If fsdb changes a field that is duplicated in an in-memory OS data structure, the change may be
undone by the OS. Forcing a reboot while still in fsdb sometimes circumnavigates this problem.
Changes to inodes 0 and 1 always fall into this category.

Hewlett-Packard -2- June 28, 1985



FWTMP (1M) FWTMP (1M)

NAME

fwtmp, wtmpfix - manipulate connect accounting records

SYNOPSIS

/usr/lib/acct/fwtmp |[-ic|
/usr/lib/acct/wtmpfix [files]

HP-UX COMPATIBILITY

Level: HP-UX/EXTENDED
Origin: System V

DESCRIPTION
Fwtmp

Futmp reads from the standard input and writes to the standard output, converting binary
records of the type found in wtmp to formatted ASCII records. The ASCII version is useful to
enable editing, via ed(1), bad records or general purpose maintenance of the file.

The argument -ic is used to denote that input is in ASCII form, and output is to be written in
binary form. (The arguments i and ¢ are independent, respectively specifying ASCII input and
binary output, thus -i is an ASCII to ASCII copy and -¢ is a binary to binary copy).

Wtmpfix

FILES

Wimpfiz examines the standard input or named files in wtmp format, corrects the time/date
stamps to make the entries consistent, and writes to the standard output. A - can be used in
place of files to indicate the standard input. If time/date corrections are not performed, acctconl
will fault when it encounters certain date-change records.

Each time the date is set, a pair of date change records are written to /usr/adm/wtmp. The
first record is the old date denoted by the string old time placed in the line field and the flag
OLD_TIME placed in the type field of the <utmp.h> structure. The second record specifies the
new date and is denoted by the string new time placed in the line fleld and the flag
NEW_TIME placed in the type field. Wimpfiz uses these records to synchronize all time stamps
in the file. Wimpfiz nullifies date change records when writing to the standard output by setting
the time field of the <utmp.h> structure in the old date change record equal to the time field in
the new date change record. In this way, wtmpfiz and acctconl will not factor in a date change
record pair more than once.

In addition to correcting time/date stamps, wimpfiz will check the validity of the name field to
ensure that it consists solely of alphanumeric characters or spaces. If it encounters a name that is
considered invalid, it will change the login name to INVALID and write a diagnostic to the stan—
dard error. In this way, wtmpfiz reduces the chance that ecctcont will fail when processing con-
nect accounting records.

Jete/wtmp
/usr/include/utmp.h

SEE ALSO

acct(1M), acctems(1M), acctcom(l), acctcon(IM), acctmerg(1M), acctpre(1M), acctsh(1M),
runacct(1M), ed(1), acct(2), acct(5), utmp(5).

DIAGNOSTICS

Wtmpfiz generates these diagnostics:

Cannot make temporary: xxx
failed to make temp file

Input truncated at offset: xxx
missing half of date pair

Hewlett—Packard -1- June 28, 1985



FWTMP (1M)

BUGS

New date expected at offset: xxx
missing half of date pair

Cannot read from temp: xxx

some error reading
Bad file at offset: xxx

ut_type out of range character only checked)
Out of core

malloc fails. (Saves table of date changes)

No dtab
software error (not seen yet)

Fwtmp generates no errors, even on garbage input.

Hewlett-Packard -2-

FWTMP (1M)

June 28, 1985



GETTY (1M) GETTY (1M)

getty - set terminal type, modes, speed, and line discipline

SYNOPSIS

/etc/getty [ -h ] | -t timeout ] line | speed ]
/etc/getty -c file

HP-UX COMPATIBILITY

Level: HP-UX/NUCLEUS
Origin: System V
Remarks: Not supported on the Integral PC.

DESCRIPTION

Gelty is a program that is invoked by init(IM). It is the second process in the series, (init—
getty-login—shell) that ultimately connects a user with the HP-UX system. Initially, if /etc/issue
exists, getty prints its contents to the user’s terminal, followed by the login message field for the
entry it is using from /etc/gettydefs. Getty reads the user’s login name and invokes the
login(1) command with the user’s name as argument. While reading the name, getty attempts to
adapt the system to the speed and type of terminal being used.

Line is the name of a tty line in /dev to which getty is to attach itself. Getty uses this string as
the name of a file in the /dev directory to open for reading and writing. Unless getty is invoked
with the -h flag, getty will force a hangup on the line by setting the speed to zero before setting
the speed to the default or specified speed. The -t flag plus timeout in seconds, specifies that getty
should exit if the open on the line succeeds and no one types anything in the specified number of
seconds. The optional second argument, speed, is a label to a speed and tty definition in the file
/etc/gettydefs. This definition tells getty at what speed to initially run, what the login message
should look like, what the initial tty settings are, and what speed to try next should the user indi-
cate that the speed is inappropriate (by typing a <break> character). The default speed is 300
baud.

When given no optional arguments, getty sets the speed of the interface to 300 baud, specifies that
raw mode is to be used (awaken on every character), that echo is to be suppressed, either parity
allowed, new-line characters will be converted to carriage return-line feed, and tab expansion per-
formed on the standard output. It types the login message before reading the user’s name a char—
acter at a time. If a null character (or framing error) is received, it is assumed to be the result of
the user pushing the “break” key. This will cause getty to attempt the next speed in the series.
The series that getty tries is determined by what it finds in /etc/gettydefs.

The user’s name is terminated by a new—line or carriage-return character. The latter results in
the system being set to treat carriage returns appropriately (see ioctl(2)).

The user’s name is scanned to see if it contains any lower—case alphabetic characters; if not, and if
the name is non-empty, the system is told to map any future upper—case characters into the
corresponding lower—case characters.

In addition to the standard HP-UX system erase and kill characters (# and @), getty also under—
stands \b and "U. If the user uses a \b as an erase, or "U as a kill character, getty sets the
standard erase character and/or kill character to match.

Getty also understands the ‘“‘standard” ESS2 protocols for erasing, killing and aborting a line, and
terminating a line. If getty sees the ESS erase character, _, or kill character, $, or abort charac—
ter, &, or the ESS line terminators, / or !, it arranges for this set of characters to be used for
these functions.

Finally, login is called with the user’s name as an argument. Additional arguments may be typed
after the login name. These are passed to login, which will place them in the environment (see

login(1)).

Hewlett-Packard -1- July 2, 1985



GETTY (1M) GETTY (1M)

A check option is provided. When geity is invoked with the -c option and file, it scans the file as
if it were scanning /etc/gettydefs and prints out the results to the standard output. If there are
any unrecognized modes or improperly constructed entries, it reports these. If the entries are
correct, it prints out the values of the various flags. See ioct/(2) to interpret the values. Note
that some values are added to the flags automatically.

FILES
/ete/gettydefs
/ete/issue

SEE ALBO
ct(1C), init(1IM), login(1), ioctl(2), gettydefs(5), inittab(5), termio(4).

BUGS
While getty does understand simple single character quoting conventions, it is not possible to
quote the special control characters that getty uses to determine when the end of the line has been
reached, which protocol is being used, and what the erase character is. Therefore it is not possible
to login via getty and type a #, @, /, !, _, backspace, "U, "D, or & as part of your login name or
arguments. They will always be interpreted as having their special meaning as described above.

Hewlett-Packard -2- July 2, 1985



GETX25(1M) GETX25(1M)

NAME
getx25 - get x25 line

SYNOPSIS
/etc/getx25 line speed pad-type
HP-UX COMPATIBILITY
Level: HP-UX/NON-STANDARD
Origin: HP

DESCRIPTION
Getz25 is very similar to getty in function, but is used only for incoming lines that are connected
to an X.25 PAD. It performs special functions such as setting up an initial PAD configuration. It
also logs the number of the caller in /fusr/spool/uucp/X25LOG. The third parameter is the name
of the PAD being used. HP2334A is the only one supported at this time.

A typical invokation would be:
/ete/getx25 x25.1 2 HP2334A

SEE ALSO
getty(1M), login(1), uucp(1C)

Hewlett-Packard -1- June 28, 1985



INIT (1M) INIT (1M)

NAME

init, telinit - process control initialization

SYNOPSIS

HP-UX

/etc/init [0123456S:Qq |
/etc/telinit [0123456s8SQqabc |

COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System V
Remarks: Not supported on the Integral PC.

DESCRIPTION

Init

Init is a general process spawner. Its primary role is to create processes from a script stored in the
file /etc/inittab (see inittab(4)). This file usually has init spawn getty’s on each line that a user
may log in on. It also controls autonomous processes required by any particular system.

Init considers the system to be in a run-level at any given time. A run-level can be viewed as a
software configuration of the system where each configuration allows only a selected group of
processes to exist. The processes spawned by init for each of these run—levels is defined in the
tnittab file. Init can be in one of eight run—levels, 0-6 and S or s. The run-level is changed by
having a privileged user run /etc/init (which is linked to /etc/telinit). This user—spawned inut
sends appropriate signals to the orginal init spawned by the operating system when the system
was rebooted, telling it which run—{evel to change to.

Init is invoked inside the HP-UX system as the last step in the boot procedure. The first thing
init does is to look for /etc/inittab and see if there is an entry of the type initdefault (see init

tab(4)). If there is, nit uses the run—level specified in that entry as the initial run—level to enter.
If this entry is not in nittab or ¢nittab is not found, init requests that the user enter a run level
from the virtual system console, /dev/syscon. If an S (s) is entered, init goes into the SINGLE
USER level. This is the only run—level that doesn’t require the existence of a properly formatted
inittab file. If /etc/inittab doesn’t exist, then by default the only legal run level that init can
enter is the SINGLE USER level. In the SINGLE USER level the virtual console terminal
/dev/syscon is opened for reading and writing and the command /bin/su is invoked immedi-
ately. To exit from the SINGLE USER run—level one of two options can be elected. First, if the
shell is terminated (via an end-of file), init will reprompt for a new run -level. Second, the init or
telinit command can signal init and force it to change the run—level of the system.

When attempting to boot the system, failure of init to prompt for a new run-level may be due to
the fact that the device /dev/syscon is linked to a device other than the physical system tele-
type (/dev/systty). If this occurs, init can be forced to relink /dev/syscon by typing a delete
on the system teletype which is collocated with the processor.

When init prompts for the new run-level, the operator may enter only one of the digits 0 through
6 or the letters S or 8. If S is entered init operates as previously described in SINGLE USER mode
with the additional result that /dev/syscon is linked to the user’s terminal line, thus making it
the virtual system console. A message is generated on the physical console, /dev/systty, saying
where the virtual terminal has been relocated.

When ¢nit comes up initially and whenever it trys to send messages to /dev/syscon, it sets the
focti(2) states of the virtual console, /dev/syscon, to those modes saved in the file
/etc/ioctl.syscon. This file is written by init whenever SINGLE USER mode is entered. If this
file does not exist when init wants to read it, a warning is printed and default settings are
assumed.

If a O through 6 is entered init enters the corresponding run-level. Any other input will be
rejected and the user will be re prompted. If this is the first time init has entered a run-level

Hewlett-Packard ' -1- July 2, 1985



INIT (1M) INIT (1M)

other than SINGLE USER, init first scans enittab for special entries of the type boot and bootwait.
These entries are performed, providing the run-level entered matches that of the entry before any
normal processing of inittab takes place. In this way any special initialization of the operating
system, such as mounting file systems, can take place before users are allowed onto the system.
The inittab file is scanned to find all entries that are to be processed for that run—level.

Run-level 2 is usually defined by the user to contain all of the terminal processes and daemons
that are spawned in the multi-user environment.

In a multi-user environment, the inittab file is usually set up so that init will create a process for
each terminal on the system.

For terminal processes, ultimately the shell will terminate because of an end-of-file either typed
explicitly or generated as the result of hanging up. When init receives a child death signal, telling
it that a process it spawned has died, it records the fact and the reason it died in /etc/utmp and
Jetc/wtmp if it exists (see who(1)). A history of the processes spawned is kept in /etc/wtmp
if such a file exists.

To spawn each process in the inittab file, init reads each entry and for each entry which should be
respawned, it forks a child process. After it has spawned all of the processes specified by the init—
tab file, init waits for one of its descendant processes to die, a powerfail signal, or until init is sig—
naled by init or telinit to change the system’s run—level. When one of the above three conditions
occurs, init re~examines the fnittab file. New entries can be added to the inittab file at any time;
however, init still waits for one of the above three conditions to occur. To provide for an instan—
taneous response the init Q or init q command can wake init to re-examine the inittab file.

If init receives a powerfail signal (SIGPWR) and is not in SINGLE USER mode, it scans inittab for
special powerfail entries. These entries are invoked (if the run-levels permit) before any further
processing takes place. In this way init can perform various cleanup and recording functions
whenever the operating system experiences a power failure.

When énit is requested to change run-levels (via telinit), init sends the warning signal
(SIGTERM) to all processes that are undefined in the target run-level. Init waits 20 seconds
before forcibly terminating these processes via the kill signal (SIGKILL).

Telinit

FILES

Telinit, which is linked to /etc/init, is used to direct the actions of init. It takes a one—character
argument and signals nit via the kill system call to perform the appropriate action. The following
arguments serve as directives to init.

0-6 tells ¢nit to place the system in one of the run—levels 0-6.

ab,c tells inst to process only those /etc/inittab file entries having the a, b or ¢
run -level set.

Q.q tells init to re-examine the /etc/inittab file.

8.8 tells init to enter the single user environment. When this level change is

effected, the virtual system teletype, /dev/syscon, is changed to the terminal
from which the command was executed.

Telinit can only be run by someone who is super-user or a member of group sys.

/etc/inittab
/ete/utmp
/ete/wtmp
/etc/ioctl.syscon
/dev/syscon
/dev/systty

Hewlett—Packard -2- July 2, 1985



INIT (1M) INIT (1M)

SEE ALSO
getty(1M), login(1), sh(1), who(1), kill(2), inittab(4), utmp(4).

DIAGNOSTICS
If 4n4t finds that it is continuously respawning an entry from /etc/inittab more than 10 times in
2 minutes, it will assume that there is an error in the command string, and generate an error mes—
sage on the system console, and refuse to respawn this entry until either 5 minutes has elapsed or
it receives a signal from a user init (telinit). This prevents init from eating up system resources

when someone makes a typographical error in the inittab file or a program is removed that is
referenced in the inittab.

Computer
- Museum

Hewlett-Packard -3- July 2, 1985



INSTALL (1M) INSTALL (1M)

NAME

install - install commands

SYNOPSIS

/ete/install [-c dira] [-f dirb] [-i] [-n dirc] [-o] [-s] file [dirx ...]

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V
Remarks: Not supported on the Integral PC.

DESCRIPTION

Install is a command most commonly used in ‘“‘makefiles” (see make(1)) to install a file (updated
target file) in a specific place within a file system. Each file is installed by copying it into the
appropriate directory, thereby retaining the mode and owner of the original command. The pro-
gram prints messages telling the user exactly what files it is replacing or creating and where they
are going.

Install is useful for installing new commands, or new versions of existing commands, in the stan-
dard directories (i.e. /bin, /etc, etc.).

If no options or directories (dirz ...) are given, install will search a set of default directories
(/bin, /usr/bin, /etc, /lib, and /usr/lib. in that order) for a file with the same name as file.
When the first occurrence is found, install issues a message saying that it is overwriting that file
with file (the new version), and proceeds to do so. If the file is not found, the program states this
and exits without further action.

If one or more directories (dirz ...) are specified after file, those directories will be searched
before the directories specified in the default list.

The meanings of the options are:

-¢ dira Installs 2 new command (file) in the directory specified by déra, only if it is
not found. If it is found, install issues a message saying that the file
already exists, and exits without overwriting it. May be used alone or with
the -s option.

-f dirb Forces file to be installed in given directory, whether or not one already
exists. If the file being installed does not already exist, the mode and
owner of the new file will be set to 755 and bin, respectively. If the file
already exists, the mode and owner will be that of the already existing file.
May be used alone or with the -o or -8 options.

-i Ignores default directory list, searching only through the given directories
(dirz ...). May be used alone or with any other options other than -¢ and
-f.

-n dirc If file is not found in any of the searched directories, it is put in the direc—

tory specified in dirc. The mode and owner of the new file will be set to
755 and bin, respectively. May be used alone or with any other options
other than -¢ and -f.

-0 If file is found, this option saves the ‘“found” file by copying it to OLDfile
in the directory in which it was found. This option is useful when instal-
ling a normally text busy file such as /bin/sh or /etc/getty, where the
existing file cannot be removed. May be used alone or with any other
options other than -c.

-8 Suppresses printing of messages other than error messages. May be used
alone or with any other options.

Hewlett-Packard -1~ June 28, 1985



INSTALL (1M) INSTALL (1M)

SEE ALSO
cpset(1M), make(1).

BUGS
Install cannot create alias links for a command (for example, vi(1) is an alias link for ez(1)).

Hewlett—-Packard -2- June 28, 1985



KERMIT (1M) KERMIT (1M)

NAME
kermit - KERMIT protocol file transfer program

SYNOPSIS
/usr/contrib/bin/kermit | options ] files
HP-UX COMPATIBILITY
Level: HP-UX/NON-STANDARD
Origin: Public Domain
DESCRIPTION

Kermit is a file transfer program in common use on MS-DOS systems. It can also be used to
tranfer files between two HP-UX systems when used in conjunction with cu. Kermat is invoked as

follows:

usage: kermit c [Ibe line baud escapechar] to connect
kermit s [diflb line baud] file ... to send files
kermit r [diflb line baud] to receive files

where: c=connect, s=send, r=receive, d=debug, i=image mode, f=no filename conversion, l=tty
line, b=baud rate, and e=escape char.

For remote Kermit, the format is either kermit r to receive files, or kermit s file ... to send files.

A typical kermut file transfer in conjunction with cu would look something like this:

$ cu —leulb0 —qm dir
Connected

% s

% kermit r

“&kermit slb /dev/culb0 9600 filel file2
Kermit: Sending filel as FILEL
Kermit: Sending file2 as FILE2
Kermit: done.

&

% ls

filel file2

% .

Disconnected

$

SEE ALSO
umodem(1M), cu(1C), uuep(1C).

Hewlett--Packard -1- June 28, 1985



KILLALL (1M) KILLALL ( 1M)

NAME
killall - kill all active processes

SYNOPSIS
/Jetc/killall | signal ]

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III
Remarks: Not supported on the Integral PC.

DESCRIPTION
Killall is a procedure used by /etc/shutdown to kill all active processes not directly related to
the shutdown procedure.

Killell is chiefly used to terminate all processes with open files so that the mounted file systems
will be unbusied and can be unmounted. Killall sends the specified signal to all user processes in
the system, with the following exceptions:

the ¢nit process;

all processes (including background processes) associated with the terminal from which
killall was invoked;

any ps -ef process, if owned by root;
any sed -e process, if owned by root;
any shutdown process;

any killall process;

any /ete/rc process.

Killall obtains its process information from ps(1), and thus may not be able to perfectly identify
which processes to signal.

If no signal is specified, a default of 9 (kill) is used.

Killall is invoked automatically by shutdown(1M). The use of shutdown is recommended over
using killall by itself.

FILES
/etc/shutdown

SEE ALSO
fuser(1M), kill(1), ps(1), shutdown(1M), stopsys(1M). signal(2).

Hewlett—Packard -1~ June 28, 1985



LINK (1M) LINK (1M)

NAME

link, unlink - exercise link and unlink system calls

SYNOPSIS
Jetc/link filel file2
/etc /unlink file

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD

Origin: System 111

Remarks: Not supported on the Integral PC.
DESCRIPTION

Link and unlink perform their respective system calls on their arguments, abandoning most error
checking. These commands may only be executed by the super—user.

RETURN VALUE
0 - successful link.
1 - input syntax error.
2 — link call failed (unlink will never report failure).

SEE ALSO
rm(1), link(2), unlink(2).

Hewlett—Packard - 1- June 28, 1985



LPADMIN (1M)

NAME

LPADMIN (1M)

Ipadmin - configure the LP spooling system

SYNOPSIS

/usr/lib/lpadmin -p printer |options]
/usr/lib/lpadmin -x dest
/usr/lib/lpadmin -d[dest]

HP-UX COMPATIBILITY

Level:
Origin:

HP-UX/STANDARD
System V

Native Language Support:

DESCRIPTION

8-bit file names, 8-bit and 16-bit data, customs, messages

Lpadmin configures LP spooling systems to describe printers, classes and devices. It is used to add
and remove destinations, change membership in classes, change devices for printers, change
printer interface programs and to change the system default destination. Lpadmin may not be
used when the LP scheduler, lpsched(1M), is running, except where noted below.

Exactly one of the -p, -d or -x options must be present for every legal invocation of lpadmin.

-d[dest]

-xdest

-pprinter

makes dest, an existing destination, the new system default destination. If dest is not
supplied, then there is no system default destination. This option may be used when
Ipsched(1M) is running. No other options are allowed with -d.

removes destination dest from the LP system. If dest is a printer and is the only
member of a class, then the class will be deleted, too. No other options are allowed
with -x.

names a printer to which all of the options below refer. If printer does not exist then
it will be created.

The following options are only useful with -p and may appear in any order. For ease of discus—
sion, the printer will be referred to as P below.

-cclass

-eprinter
-h

-iinterface

-1

-mmodel

-rclass

-vdevice

Hewlett-Packard

inserts printer P into the specified class. Class will be created if it does not already
exist.

copies an existing printer’s interface program to be the new interface program for P.

indicates that the device associated with P is hardwired. This option is assumed
when creating a new printer unless the -1 option is supplied.

establishes a new interface program for P. Interface is the pathname of the new pro—
gram.

indicates that the device associated with P is a login terminal. The LP scheduler,
lpsched(1M), disables all login terminals automatically each time it is started. Before
re—enabling P, its current device should be established using lpadmin.

selects a model interface program for P. Model is one of the model interface names
supplied with the LP software (see Models below).

removes printer P from the specified class. If P is the last member of the class, then
the class will be removed.

associates a new device with printer P. Device is the pathname of a file that is writ—
able by the LP administrator, I[p. Note that there is nothing to stop an administrator
from associating the same device with more than one printer. If only the -p and -v
options are supplied, then lpadmin may be used while the scheduler is running.

1- June 28, 1985



LPADMIN (1M) LPADMIN (1M)

Restrictions.
When creating a new printer, the -v option and one of the -e, -i or -m options must be supplied.
Only one of the -e, -i or -m options may be supplied. The -h and -1 keyletters are mutually
exclusive. Printer and class names may be no longer than 14 characters and must consist entirely
of the characters A-Z, a-z, 0-9 and _ (underscore).

Models.

Model printer interface programs are supplied with the LP software. They are shell procedures, C
programs, or other executable programs which interface between Ipsched (1M) and devices. All
models reside in the directory /usr/spool/lp/model and may be used as is with lpadmin -m.
Models should have 644 permission if owned by lp and bin, or 664 permission if owned by bin and
bin. Alternatively, LP administrators may modify copies of models and then use Ipadmin -i to
associate them with printers. See mkip(1M) for details of the printer models provided with your
HP-UX system.

The LP model interface program does the actual printing on the device that is currently associated
with the printer. The LP spooler sets standard in to /dev/null and standard out and standard
error to the device specified in the -v option of Ipadmin. The interface program is invoked then
for printer P from the directory /usr/spool/lip as follows:

interface/P id user title copies options file ...

id is the request returned by Ip.

user is the logname of the user who made the request.
title is the optional title specified with the -t option of lp.
copies is the number of copies to be printed.

options  is a blank separated list of class -dependent or printer—dependent options specified with
the -o option of Ip.

file is the full pathnanie of the file to be printed.

Given the command line arguments and the output directed to the device, interface programs may
format their output in any way they choose.

When the printing is completed, it is the responsibility of the interface program to exit with a
code indicative of the success of the print job. A return value of 0 indicates that the job com-—
pleted successfully. Values of 1 to 127 indicate that some error was encountered. This problem
will not effect future print jobs. ipsched notifies users by mail that there was an error in printing
the request. When problems are detected which are likely to effect future print jobs, the interface
program would be well to disable the printer so that print requests are not lost.

EXAMPLES
1. Assuming there is an existing Hewlett-Packard 2934A line printer named p2, it will use the
hp2934a model interface after the command:

/usr/lib/lpadmin -plp2 -mhp2934a
FILES
Jusr/spool /ip/

SEE ALSO
accept(1M), enable(1), Ip(1), Ipsched(1M), Ipstat(1), mklp(1M), nroff(1).

Hewlett—Packard -2- June 28, 1985



LPSCHED (1M) LPSCHED(1M)

NAME

Ipsched, Ipshut, Ipmove - start/stop the LP request scheduler and move requests

SYNOPSIS

/usr/lib/Ipsched [-v]
/usr/lib/lpshut
Jusr/lib/lpmove requests dest
/usr/lib/lpmove destl dest2

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V

Native Language Support:
8-bit file names, 8-bit and 16-bit data, customs, messages

DESCRIPTION

FILES

Lpsched schedules requests taken by Ip(1) for printing on line printers. Lpsched(1M) is typically
invoked in /etc/rc. This creates a process which runs in the background until Ipshut(1M) is exe—
cuted. The activity of the process is recorded in /usr/spool/lp/log. If the -v option is invoked,
a verbose record of the Ipsched process is captured.

Lpshut shuts down the line printer scheduler. All printers that are printing at the time Ipshut is
invoked will stop printing. Requests that were printing at the time a printer was shut down will
be reprinted in their entirety after Ipsched is started again. All LP commands perform their func—
tions even when Ipsched is not running.

Lpmove moves requests that were queued by Ip(1) between LP destinations. This command may
be used only when Ipsched is not running.

The first form of the command moves the named requests to the LP destination, dest. Requests
are request ids as returned by Ip(1). The second form moves all requests for destination dest! to
destination dest2. As a side effect, Ip (1) will reject requests for desti.

Note that Ipmove never checks the acceptance status (see accept(1IM)) for the new destination
when moving requests.

Jusr/spool/lp/*

SEE ALSO

accept(1M), enable(1), Ip(1), lpadmin(1M), Ipstat(1).

Hewlett—Packard -1- June 28, 1985



MAKEKEY (1M) MAKEKEY (1M)

NAME

makekey - generate encryption key

SYNOPSIS

/usr/lib/makekey

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V

DESCRIPTION

Makekey improves the usefulness of encryption schemes depending on a key by increasing the
amount of time required to search the key space. It reads 10 bytes from its standard input, and
writes 13 bytes on its standard output. The output depends on the input in a way intended to be
difficult to compute (i.e., to require a substantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCII characters. The last two (the
salt) are best chosen from the set of digits, ., /, and upper- and lower—case letters. The salt
characters are repeated as the first two characters of the output. The remaining 11 output char -
acters are chosen from the same set as the salt and constitute the output key.

The transformation performed is essentially the following: the salt is used to select one of 4,096
cryptographic machines all based on the National Bureau of Standards DES algorithm, but broken
in 4,096 different ways. Using the input key as key, a constant string is fed into the machine and
recirculated a number of times. The 64 bits that come out are distributed into the 66 output key
bits in the result.

Makekey is intended for programs that perform encryption. Usually, its input and output will be
pipes.

SEE ALSO

passwd(5).

Hewlett—Packard -1- June 28, 1985



MKDEV (1M) MKDEV (1M)

NAME

mkdev — make device files
SYNOPSIS

/etc/mkdev

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: HP

Remarks: This command is implemented as a shell script, and will differ between the different
implementations of HP-UX. This description applies to all versions.
Not supported on the Integral PC.

DESCRIPTION
This shell script helps the superuser install and maintain an HP-UX system. It consists of a
machine-dependent list of commands which create one of each possible type of device file, with
suggested default device addresses. It also creates mount directories for mountable volumes and
changes permissions as appropriate for the device files.

This command makes it easier to build (or rebuild) special files all at once.
Mkdev automatically changes the working directory (using cd) to /dev before starting execution.

Mkdev is specifically intended for modification before (each) use. Command lines for non-desired
devices should be commented out with “#"” so that they are still available for later use. You may
want to use shorter device names than those suggested, especially for default devices. For HP-UX
naming conventions, see intro(4).

DIAGNOSTICS
Each command line in mkdev is echoed as it is executed. Error messages, if any, are generated by
the commands invoked.

Since the super-user must modify this script before using it the first time, an error is given if it
has not been modified.

SEE ALSO
mknod(1m), mkdir(1), chmod(1).

Hewlett-Packard -1- June 28, 1985



MKFS (1M) Series 200 Only MKFS (1M)

NAME

mkfs - construct a file system

SYNOPSIS

/ete/mkfs special size [nsect ntrack blksize fragsize ncpg minfree rps nbpi
/ete/mkfs special proto [nsect ntrack blksize fragsize nepg minfree rps nbpi]

HP-UX COMPATIBILITY

Level: HP-UX STANDARD
Origin: HP

DESCRIPTION

HFS file systems are normally created with the newfs(1M) command.

Mkfs constructs a file system by writing on the special file special. size specifies the number of
DEV__BSIZE blocks in the file system. Mkfs builds a file system with a root directory and a
lost+found directory. (see fsck(1M)) The FS_CLEAN magic number for the file system is stored
in the super block.

The optional arguments allow fine tune control over the parameters of the file system. Nsect
specifies the number of sectors per track on the disk. Ntrack specifies the number of tracks per
cylinder on the disk. Blksize gives the primary block size for files on the file system. It must be
a power of two, currently selected from 4096 or 8192. Fragsize gives the fragment size for files
on the file system. The fragsize represents the smallest amount of disk space that will be allo-
cated to a file. It must be a power of two currently selected from the range DEV__BSIZE to
MAXBSIZE. Necpg specifies the number of disk cylinders per cylinder group. This number must
be in the range 1 to 32. Minfree specifies the minimum percentage of free disk space allowed.
Once the file system capacity reaches this threshold, only the super-user is allowed to allocate
disk blocks. The default value is 10%. If a disk does not revolve at 60 revolutions per second, the
rps parameter may be specified. nbpi specifies the number of data bytes (amount of user file
space) per i-node slot. The number of i-nodes is calculated as a function of the file system size.
If nbpi is not valid, its value defaults to 2048.

If the second argument is a file name that can be opened, mkfs assumes it to be a prototype file
proto, and will take its directions from that file. The prototype file contains tokens separated by
spaces or new lines. The first token is the name of a file to be copied onto block zero as the
bootstrap program (usually /etc/BOOT). If the name of a file is “” then it is ignored. The
second token is a number specifying the number of DEV__BSIZE byte blocks in the file system.
The next tokens comprise the specification for the root directory. File specifications consist of
tokens giving the mode, the user-id, the group id, and the initial contents of the file. The syntax
of the contents field depends on the mode.

The mode token for a file is a 6 character string. The first character specifies the type of the file.
(The characters -bed specify regular, block special, character special and directory files respec—
tively.) The second character of the type is either u or - to specify set—user-id mode or not. The
third is g or - for the set—group—id mode. The rest of the mode is a three digit octal number giv—
ing the owner, group, and other read, write, execute permissions, see chmod(1).

Two decimal number tokens come after the mode; they specify the user and group ID’s of the
owner of the file.

If the file is a regular file, the next token is a pathname whence the contents and size are copied.

If the file is a block or character special file, two decimal number tokens follow which give the
major and minor device numbers.

If the file is a directory, mkfs makes the entries . and .. and then reads a list of names and
(recursively) file specifications for the entries in the directory. The scan is terminated with the
token $.

Hewlett—Packard -1- June 28, 1985



MKF8(1M) Series 200 Only MKFS(1M)

A sample prototype specification follows:

/ete/BOOT

4872

d--777 3 1

usr d--777 3 1
sh ---755 3 1 /bin/sh
ken d--755 6 1

$
b0 b--644 3100
c0 c--6443100
$

SEE ALSO
chmod(1), dir(5), fs(5), fsck(1M), fsclean(1M), newfs(1M).

BUG
No way to specify links in the proto file.

Hewlett-Packard -2 - June 28, 1985



MKLP (1M) MKLP (1M)

NAME

mklp configure the LP spooler subsystem
SYNOPSIS

/ete/mklp

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: HP
Remarks: This command is implemented as a shell script, and will differ between the different

implementations of HP-UX. This description applies to all versions, and further
details will be found in the commentary in the script.

DESCRIPTION

This shell script helps the superuser configure the printers into the LP spooler which are sup-
ported on the particular HP UX system. The administration of all printers in the LP spooler
subsystem is similar, however in general there are options made available by the printer model
which differ from printer to printer. These are described within the mklp script itself.

This command makes is easier to configure the LP spooler all at once. If desired, it can also be
used to rebuild the subsystem.

While the mklp script gives some indication as to how the device special files are to be defined,
the mkdev script should also be used in determining the major and minor number.

Mklp is specifically intended for modification before (each) use. Command lines for printers
which will not be used should be commented out with "#" so that they are still available for later
use.

SEE ALSO

Ip(1), lpadmin{1M), mkdev{1M}), mknod{1M).

DIAGNOSTICS

Each command line in mklp is echoed as it is executed. Error messages, if any, are generated by
the comrmands invoked.
Since the super user must modify this script before using it the first time, an error is given if it
has not been modified.

Hewlett-Packard -1- June 28, 1985



MKNOD (1M) MKNOD ( 1M)

NAME
mknod - build special file

SYNOPSBIS
/etc/mknod name ¢ | b major minor
/etc/mknod name p

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System V

DESCRIPTION
Mknod makes a directory entry and corresponding i-node for a special file. The first argument is
the name of the entry. In the first case, the second is b if the special file is block-type (disks,
tape) or ¢ if it is character-type (other devices). The last two arguments are numbers specifying
the major device type and the minor device (e.g., unit, drive, or line number), which may be
either decimal or octal.
The assignment of major device numbers is specific to each system. conf.c.
Mknod can also be used to create fifo’s (a.k.a named pipes) (second case in SYNOPSIS above).

SEE ALSO
mknod(2).

The Systern Administrator’s Manual for your system.

Hewlett-Packard -1- June 28, 1985



MOUNT (1M) MOUNT (1M)

NAME

mount, umount - mount and digmount file system
SYNOPSIS

/etc/mount [ special directory [ -r ] [ -f ] ]

/etc/mount —a

/etc/umount special
/etc/umount —a

HP-UX COMPATIBILITY
Level: HP-UX/EXTENDED

Origin: System V

DESCRIPTION
Mount announces to the system that a removable file system is present on the device special.
The directory must exist already; it becomes the name of the root of the newly mounted file sys—
tem. Drrectory must be given as an absolute path name.

These commands maintain a table of mounted devices in /etc/mnttab. If invoked with no argu-
ments, mount prints the table.

The optional argument -r indicates that the file system is to be mounted read-only. Physically
write-protected file systems must be mounted in this way or errors will occur when access times
are updated, whether or not any explicit write is attempted.

Umount announces to the system that the removable file system previously mounted on device
spectal is to be removed.

The -f option indicates that the file system should be mounted even if the file system clean flag
indicates that the file system should be fsck’ed before mounting.

If the -a option is present for either mount or umount , and all of the optional fields in
Jete/checklist are included and supported, all of the file systems described in /etc/checklist are
attempted to be mounted or dismounted. In this case, special and directory are taken from
Jete/checklist. The special file name used is the block special name from /ete/checklist.

HARDWARE DEPENDENCIES
Series 500:
Warning: if virtual memory is brought up on a volume other than the root volume, and if
that volume is then mounted, it cannot be dismounted.

FILES

/etc/mnttab  mount table
/etc/checklist file system table

SEE ALSO
fsclean(1M), mount(2), mnttab(5), checklist(5).

DIAGNOSTICS
Attempts to mount a currently-mounted volume under another name will result in an error
[EBUSY].

special and directory names recorded in /etc/mnitab are truncated to MNTLEN bytes.

Umount complains if the special file is not mounted or if it is busy. The file system is busy if it
contains an open file or some user’s working directory.

BUGS
Some degree of validation is done on the file system, however it is generally unwise to mount gar—
bage file systems.

Hewlett-Packard -1- June 28, 1985



MVDIR (1M) MVDIR (1M)

NAME
mvdir - move a directory

SYNOPSIS
/etc/mvdir dirname name

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System V

Native Language Support:
8-bit filenames.

Remarks: Not supported on the Integral PC.

DESCRIPTION

Mudir moves and/or renames directories within a file system. Dirname must be a directory;
name must not exist. Neither name may be a sub-set of the other (/x/y cannot be moved to
/x/y/z, nor vice versa).

The directory specified by name cannot be a subdirectory of that specified by dirname. The
directory specified by dirname may be a subdirectory of that specified by name, but the notations
. and .. must be used in naming the directories, because muvdir does not allow the names of the
directories to have the property that one is a subdirectory of the other.

Only the super—user can use muvdir.

EXAMPLE
The following moves the directory specified by /x/y/z to /a/b/c:

mvdir /x/y/z /a/b/c
SEE ALSO
mkdir(1).

BUGS
The restriction on names is intended to prevent creation of a (cyclic) sub-tree that cannot be
reached from the root. The test is strictly by name, thus creating such a sub—tree is still possible.
The super-user is cautioned to be very careful in his use of the names . and .. while moving
directories.

Hewlett-Packard -1- June 28, 1985



NCHECK (1M) Series 200 Only NCHECK (1M)

NAME

ncheck - generate names from i numbers

SYNOPSIS
/etc/ncheck [ -i numbers | [-a ] [ -s | [ file-system ]

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: HP
Remarks: Ncheck is implemented only on systems supporting the Berkeley file system.
Not supported on the Integral PC.

DESCRIPTION
Ncheck with no argument generates a path-name vs. i-number list of all files on the volumes
specified by the file /etc/checklist. Names of directory files are followed by /.. The options are

as follows:

-i reduces the report to only those files whose i -numbers are specified on the command line
in the numbers list.

-a allows printing of the names . and .., which are ordinarily suppressed.

-8 reduces the report to special files and files with set—user-ID mode; it is intended to dis-

cover concealed violations of security policy.
A file system may be specified.
The report is in no useful order, and probably should be sorted.

SEE ALSO
fsck(IM), sort(1), checklist(5).

DIAGNOSTICS
When the file system structure is improper, ?? denotes the “‘parent” of a parentless file and a
path-name beginning with ... denotes a loop.

Hewlett—Packard -1- June 28, 1985



NEWFS(1M) (Series 200 Implementation ) NEWFS (1M)

NAME
newfs - construct a new file system

SYNOPSIS
/etc/newfs [ —v | [ —n | [ mkfs—options ] special disk—type

HP-UX COMPATIBILITY
Level: HP-UX/EXTENDED
Origin: UCB

DESCRIPTION
Newfs is a “friendly” front-end to the mkfs(1M) program. Newfs will look up the type of disk a
file system is being created on in the disk description file /ete/disktab, calculate the appropriate
parameters to use in calling mkfs, then build the file system by forking mkfs and, if the file system
is a root section, install the necessary bootstrap programs in the initial 8192 bytes of the device.
The -n option prevents the bootstrap programs from being installed. special is the character
special file for the disc and disk—type is the type of the disc as specified in /ete/disktab.

If the -v option is supplied, newfs will print out its actions, including the parameters passed to
mkfs.

Options which may be used to override default parameters passed to mkfs are:

-3 size The size of the file system in DEV__BSIZE blocks.

-b block-size
The block size of the file system in bytes.
-f frag—size
The fragment size of the file system in bytes.
-t #tracks/cylinder
The number of tracks per cylinder.
-¢ #cylinders/group
The number of cylinders per cylinder group in a file system. The default value used is
16.

-m free space %
The percentage of space reserved from normal users; the minimum free space thresh
hold. The default value used is 10%.

-r revolutions/minute
The speed of the disk in revolutions per minute (normally 3600).

-i number of bytes per inode
This specifies the density of inodes in the file system. The default is to create an inode
for each 2048 bytes of data space. If fewer inodes are desired, a larger number should
be used; to create more inodes a smaller number should be given.

FILES
/ete/disktab  for disk geometry and file system section information

SEE ALSO
disktab(5), fs(5), fsck(1M), mkfs(1M), tunefs(1M).

Hewlett-Packard -1- June 28, 1985



OPX25(1M) OPX25(1M)

NAME

opx25 - execute HALGOL programs

SYNOPSIS

opx25 |-fscriptname]| [-cchar] [-ofile-descriptor] [-ifile-descriptor| [-nstring] [-d] [-v]

HP-UX COMPATIBILITY

Level: HP-UX/NON-STANDARD
Origin: HP

DESCRIPTION

HALGOL is a simple language for communicating with devices such as modems and X.25 PADs.
It has simple statements like send xxx and expect yyy which are descibed below.

Options:

-f script
Causes opz25 to read script as the input program. If —f is not specified, then opz25 reads
stdin for the script.

-¢ char Causes opz25 to use char as the first character in the input stream instead of actually
reading it from the input descriptor. This is sometimes useful when the program that calls
opzx25 is forced to read a character but then cannot "unread” it.

-0 number
Causes opz25 to use number for the output file descriptor (i.e., the device to use for
send). The default is 1.

-i number
Causes 0pz25 to use number for the input file descriptor (i.e., the device to use for
expect). The default is 0.

-n string

Causes 0pz25 to save this string for use when “\#" is encountered in a send command.
-d Causes 0pz25 to turn on debugging mode.
-v Causes 0pz25 to turn on verbose mode.

An opz25 script file contains lines of the following type:

{empty)

Empty lines are ignored.
/ Lines beginning with a slash “/” are ignored (comments)
1D ID denotes a label. ID is limited to alphanumerics or “_".

send STRING
STRING must be surrounded by double quotes. The text is sent to the device specified
by the —o option. Non-printable characters are represented as in C, i.e., as \DDD, where
DDD is the octal ASCII character code. "\#" in a send string is the string that followed
the —n option.

break Send a break “character” to the device.

expect NUMBER STRING
Here NUMBER is how many seconds to wait before giving up. 0 means wait forever, but
this isn’t advised. Whenever STRING appears in the input within the time allotted, the
command succeeds. Thus, it isn’t necessary to specify the entire string. For example, if
you know that the PAD will send several lines followed by a "@" prompt, you could just
use "@” as the string.

run program args
The program (sleep, date, or whatever) is run with the args specified. Don’t use quotes

Hewlett-Packard -1~ June 28, 1985



OPX25(1M) OPX25(1M)

here. Also, the program is invoked directly (with ezecp), so wild cards, redirection, etc.
are not possible.

error ID
If the most recent expect or run encountered an error, go to the label ID.

exec program args
Like run, but doesn’t fork.

echo STRING
Like send, but goes to stderr instead of to the device.

set debug
Sets the program in debug mode. It echoes each line to /tmp/opz25.log, as well as giving
the result of each expect and run. This can be useful for writing new scripts. The com-
mand “set nodebug” will turn off this feature.

set log Sends subsequent incoming characters to /fusr/spool/uucp/X25LOG. This can be used in
the *.in file as a security measure, since part of the incoming data stream contains the
number of the caller. There is a similar feature in gefz25: it writes the time and the login
name into the same logfile. The command “set nolog” will turn off this feature.

set numlog
Like “set log,” but better in some cases, because it sends only digits to the log file. The
command “set nonumlog” will turn off this feature.

timeout NUMBER
Sets a global timeout value. Each expect uses time in the timeout reservoir; when this
time is gone, the program gives up (exit 1). If this command isn’t used, there is no global
timeout. Also, the global timeout can be reset any time, and a value of 0 turns it off.

exit NUMBER
Exits with this value. 0 is success, anything else is failure.

You can crudely test configuration files by running opz25 by hand, using the argument —f followed
by the name of the script file. The program in this case sends to, and expects from, standard
output and input, so you can type the input, observe the output, and see messages with the
“echo” command. See the file fusr/lib/uucp/X25/ventel.out for a good example of HALGOL pro-
gramming.

SEE ALSO
getx25(1C), uucp(1C).
Serial Network Communications Guide

Hewlett-Packard -2- June 28, 1985



OSCK (1M) Series 500 Only
NAME

osck - check integrity of OS in SDF boot area(s)
SYNOPSIS

/ete/osck [ -v | volume

HP-UX COMPATIBILITY
Level: HP UX/NON-STANDARD

Origin: HP

Remarks: Qsck is implemented on the Series 500 only.

DESCRIPTION

OSCK (1M)

Osck checks one operating system in the boot area on the volume specified by volume (a character

special file).

The OSF must be the first section of an n-section operating system. If n is greater than one, osck

prompts for additional volumes as needed. The volumes must be mounted in order.

The -v (verbose) option causes osck to print additional information about each volume and each
code segment as they are encountered. If -v is not specified, it is silent except for warnings,

errors, and prompts for new volumes.

Osck checks the following:

OSF headers are valid and consistent across multiple volumes;
the first code segment is a power up segment;

the code segment chain contains correct headers and lengths;

all segment checksums are correct;

the system terminates correctly after the last segment.

SEE aL8O
osep(1M), osmark(1M), osmgr(IM), sdfinit(1M).

DIAGNOSTICS

QOsck gives an appropriate error message and returns a non-zero value if volume cannot be
accessed or is not an SDF volume, there is no boot area, or the boot area contents appear invalid.
Error messages are also given if any integrity violation is found. See osmgr(1M) for a complete

list of return values.

Hewlett-Packard -1-

June 28, 1985



O8CP(1M) Series 500 Only OSCP(1M)

NAME

oscp - copy, create, append to, split operating system
SYNOPSIS

/ete/oscp [ -0 ] [ -v | fromvolume tovolume

/ete/oscp -m [ -v | file ... tovolume
/ete/oscp -a [ -v | file ... tovolume
/etc/oscp -s [ -v | fromvolume

/etc/oscp -f | -v | fromvolume tofile

HP-UX COMPATIBILITY

Level: HP-UX/NON-STANDARD
Origin: HP

Remarks: Oscp is implemented on the Series 500 only.

DESCRIPTION

Oscp enables you to perform:

boot-to-boot copy
Copy an operating system from the boot areas on one or more SDF volumes to the boot
area on one SDF volume;

files—to-boot copy (-m, -a options)
Create a new operating system or append to an existing operating system from a list of
ordinary files, and put the resulting system in one boot area;

boot-to—files copy (-s option)
Split up the segments in an operating system from one or more boot areas to one or more
ordinary files.

boot-to-file copy (-f option)
Split up the segments in an operating system from one or more boot areas to a single ordi—
nary file.

Fromwvolume and tovolume are usually character special files.

Boot-to-Boot Copy

If -m, -a, -s, and -f are not specified, oscp does boot-to-boot copy. For normal, multi-volume
boot-to-boot copy, oscp requires that the OSF on the first fromvolume be the first section of an
n—section operating system. If n is greater than one, oscp prompts you for additional volumes as
required. The additional volumes must be mounted in order.

Before starting the copy, oscp clears the OSF header on tovolume. The OSF header values are
corrected on tovolume after the copy is done. This new header may include a new system ID
string that you enter when you are prompted (the same ID string displayed by the boot loader).

The -0 (one volume only) option tells oscp to copy only one OSF (which may be part or all of a
system) from fromvolume to tovolume, without changing the OSF header.

The -v (verbose} option tells oscp to print additional information about each volume as it is
encountered. Otherwise, oscp is silent except for warnings, errors, and prompts for new volumes
and new system 1D strings.

Files—to-Boot Copy

If the -m (merge) option is given, oscp does a files—to—boot copy from the specified files. The
source files may be BASIC/9000 BIN files or HP-UX ordinary files. The files must all be accessible
and contain valid code segments. The code segments must all be of the same system type. The
last code segment in each file must be followed by two null bytes.

Note that segments of unknown type, and old power-up segments (before February 1983) are
“generic donors”, and may be merged with any other type. Also note that, when creating a new

Hewlett—Packard -1- June 28, 1985



OSCP (1M) Series 500 Only OSCP (1M)

system, 0scp uses the first OSF header magic number in its internal list (i.e. 0xE9C28206).

Once you enter the new system ID string, oscp destroys the old OSF (if any) in the boot area
before writing the new system.

The -a (append) option allows you to append code segments from ordinary files to an existing
OSF on tovolume. There must be enough unused space in the boot area after the OSF, and the
OSF must be a complete system in itself (i.e. volume 1 of 1). The existing OSF is not invalidated
until the last segment is copied to the boot area.

In conjunction with -m or -a, the -v (verbose) option gives you additional information about the
boot area and each segment as it is encountered.

Boot-to—Files Copy

The -s (split) option allows you to split an operating system into one or more ordinary files (HP-
UX ordinary files only, not BASIC BIN files). For each code segment in the operating system, you
are prompted for a file name to which the code segment is appended. If you enter a null line, the
code segment is appended to the same file as was used in the previous append operation.

If the size of the specified file is greater than zero, oscp backs up two bytes from the end of the file
to overwrite the previous terminator before appending the code segment to the file.

The -v (verbose) option gives you additional information about the boot area and each segment as
it is encountered.

Note that the resulting ordinary files may be owned by the owner of the oscp command, depend—
ing on its permissions.

Boot—to—File Copy

The -f option allows you to split an operating system into a single ordinary file (tofile), eliminat—
ing any user interaction (except possibly to change certain types of media, if that is where the
boot area is located). Otherwise, this option behaves exactly like the -8 option.

Copying to Boot Areas

Before beginning the copy, oscp prompts you for the 80—character operating system ID string to
use for all volumes.

Before writing to tovolume, oscp first checks that it contains a boot area with sufficient unused
space.

SEE ALSO

osck(IM), osmark(1M), osmgr(1M), sdfinit(1M).

DIAGNOSTICS

BUGS

Oscp prints an appropriate error message and returns a non—zero value if fromvolume or tovolume
cannot be accessed or is not an SDF volume, there is no boot area, the boot area contents appear
invalid, or the source OSF is not section 1 of an n-section system.

Errors are also given if:
fromvolume and tovolume are the same (by name);
fromvolumes are mounted out of order;
a specified ordinary file is inaccessible or has invalid contents;
the first segment is not a power—up segment;
any segment has a mismatching system type.

See osmgr(1M) for the exact list of return values.

Oscp -a checks that all appended segments are mutually compatible, but it does not check them
against the segments in the existing OSF.

Hewlett-Packard -2- June 28, 1985



OSCP (1M) Series 500 Only OSCP (1M)

Performing an oscp -a to a boot area with less than 1024 free bytes results in an error before the
copy completes.

Before appending, oscp -s backspaces over the existing two-null-byte terminator at the end of
each ordinary file, but it does not check that the bytes overwritten were actually two null bytes.

A boot area of less the 1024 bytes, at the end of a volume, results in a read error.

Hewlett—Packard -3- June 28, 1985



OSMARK (1M} Series 500 Only OSMARK (1M}

NAME

osmark - mark SDF volume boot area as loadable/non-loadable
SYNOPSIS

/etc/osmark [ -m | -u ] [ -v | volume

HP-UX COMPATIBILITY
Level: HP-UX/NON-STANDARD

Origin: HP
Remarks: Osmark is implemented on the Series 500 only.
DESCRIPTION

Osmark marks an operating system file (OSF) in a boot area as loadable (-m option) or non-
loadable (-u option). Volume is usually a character special file specifying the SDF volume on
which the boot area is found.

If neither -m nor -u are specified, osmark reports the status of the OSF.

The -v (verbose) option causes osmark to print additional information about the volume in the
same format as that used by osck and oscp.

When dealing with a multi-volume operating system, be sure that each OSF in the system is
properly marked, not just the first.

SEE ALSO
osck(1M), oscp(1M), osmgr(1M).

DIAGNOSTICS
Osmark outputs an appropriate error message and returns a non—zero value if filespec cannot be
accessed or is not an SDF volume, there is no boot area, or the boot area contents appear invalid.
Refer to osmgr(1M) for a list of possible return values.

Hewlett—Packard -1- June 28, 1985



OSMGR (1M) Series 500 Only OSMGR (1M)

NAME

osmgr - operating system manager package description

HP-UX COMPATIBILITY

Level: HP-UX/NON-STANDARD

Origin: HP

Remarks: This entry describes the operating system manager package, which is implemented on
the Series 500 only.

Not supported on the Integral Personal Computer.

DESCRIPTION

This group of three commands helps you manage the operating systems which reside in the boot
areas on your Structured Directory Format (SDF) volumes. The package includes:

oscp copy systems or create them from ordinary files;

osck check operating system integrity;

osmark mark an operating system file as loadable or not loadable, or inquire about current
state of operating system file.

Oscp, osck, and osmark are multiple links to a single program.

Boot Areas:

Each SDF volume has one boot area consisting of zero or more contiguous logical blocks. The
boot area is completely outside the file area. Its size is determined when the volume is initialized.
To change the size of a boot area, you must re-initialize the volume.

Each boot area may contain at most (one part of) one operating system.

The logical block size for a boot area is the same as that for the rest of the volume (i.e., whatever
size you request when you initialize the volume).

Operating Systems:

Every HP 9000 operating system consists of a series of code segments. An operating system may
reside in the boot area on one volume, or it may be distributed in sections over several volumes
(not necessarily with a whole number of segments per volume).

An operating system can also reside in a number of ordinary files, each containing a whole number
of segments, and terminated by two null bytes. This is the same format used for BASIC/9000 BIN
files. In this form, the system is not loadable, but its files can be combined into a loadable system
by oscp.

Operating System Files:

Each boot area contains zero or one operating system files (OSF’s). If an operating system resides
in sections in several boot areas, each section occupies one OSF on one SDF volume.

Operating System File Headers:

Each OSF starts with a header that includes a "loadable” flag, a volume number, and the total
number of volumes over which this operating system is distributed. The loader only boots an
OSF 1if it is marked loadable. If required, it requests additional volumes until it has loaded from
all volumes in the set. You should ensure that all parts of a multi-volume operating system are
marked loadable.

Each OSF header also includes an 80-character identification string. The loader displays this
string before it starts to load from each volume.

RETURN VALUES

The following list contains all the possible return values, mnemonics, and meanings given by OS
manager commands:

0 no error;

Hewlett-Packard -1- June 28, 1985



OSMGR (1M)

USAGE
FILESYS
VOLSEQ
VOLCONT
HEADER
FIRSTSEG
SEGTYPE
SEGLEN

9 CHECKSUM
10 TERM

SEE ALSO

o~ OO e WD =

Series 500 Only OSMGR (1M)

bad argument list;

error during file system access;

volumes mounted out of order;

bad volume {not SDF, no boot area, etc.);

invalid or inconsistent OSF header(s);

first segment is not a power--up segment;
incompatible segment system types or revisions;
segment length out of range or not whole words;
segment checksum does not match reference value;
system terminator (”-1” word) missing.

osck(1M), oscp(1M), osmark(IM), sdfinit(1M).

Hewlett-Packard

-2- June 28, 1985



PWCK (1M} PWCK (1M)

NAME
pwck, grpck - password/group file checkers
SYNOPSIS
/etc/pwck [file]
/etc/grpek [file]
HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: System V
Remarks: Not supported on the Integral PC.
DESCRIPTION
Pwck scans the password file and notes any inconsistencies. The checks include validation of the
number of fields, login name, user 1D, group ID, and whether the login directory and optional pro-

gram name exist. The criteria for determining a valid login name are taken from HP-UX System
Admanistrator’s Manual for your system . The default password file is /etc/passwd.

Grpck verifies all entries in the group file. This verification includes a check of the number of
fields, group name, group 1D, and whether all login names appear in the password file. The default
group file is /etc/group.
FILES
/etc/group
/ete/passwd
SEE ALSO
group(5), passwd(5).
The HP-UX System Administrators Manual
DIAGNOSTICS
Group entries in /etc/group with no login names are flagged.

Hewlett-Packard -1- June 28, 1985



REBOOT (1M) Series 200 Only REBOOT (1M)

NAME
reboot - reboot the system
SYNOPSIS
/etc/reboot [ -h | -r | [-n | -8 ] [ -d device | [ -f lif_filename

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: HP
Remarks: Reboot is implemented on the Series 200 only.
DESCRIPTION

Reboot brings down the system and then halts or re-boots system. Reboot with no argument
syncs all disks and does proper shutdown before re-booting the system. The options are as fol-

lows:

-h shutdown the system and halt.

-r shutdown the system and re-boot automatically. (default)

-n no sync before shutdown.

-s sync before shutdown. (default)

-d specified the device will be used when re-boot. The device has to be a lif volume. (can’t
use with —h)

-f the name/id of the system to start. If the it is a NULL string then the powerup search

sequence will be made for a system. Otherwise, the filename has to follow lif file name
convention. (can’t use with ~h)

All the processes excluding proc0, procl and reboot itself will be killed before shutdown.
Reboot can be executed by root only and should be executed in single-userstate.

SEE ALSO
init(1}, 1if(1}, stopsys(1M), reboot(2).

Hewlett—Packard -1- June 28, 1985



REVCK (1M) REVCK (1M)

NAME

revek - check internal revision numbers of HP-UX files

SYNOPSIS

Jetc/revek ref_files

HP-UX COMPATIBILITY

Level: HP-UX/NON-STANDARD
Origin: HP

Remarks: Not supported on the Integral Personal Computer.

DESCRIPTION

FILES

Revck checks the internal revision numbers of lists of files against reference lists. Each ref file
must contain a list of absolute path names {each beginning with “/") and whatstrings (revision
information strings from wha#(1)). Path names begin in column one of a line, and have a colon
appended to them. Each path name is followed by zero or more lines of whatstrings, one per line,
each indented by at least one tab (this is the same format in which what(1) outputs its results).

For each path name, revck checks that the file exists, and that executing what(1) on the current
path name produces results identical to the whatstrings in the reference file. Only the first 1024
bytes of whatstrings are checked.

Ref_files are usually the absolute path names of the reviist files shipped with HP-UX. Each
HP-UX software product includes a file named /system/product/revlist (for example,
/system/97070A /revlist). The revlist file for each product is a reference list for the ordinary files
shipped with the product, plus any empty directories on which the product depends.

/system/product/revlist lists of HP-UX files and revision numbers

SEE ALSO

what(1).

DIAGNOSTICS

Reuvck is silent except for reporting missing files or mismatches. If a ref file is not in the right
format, you will get unpredictable results.

Hewlett-Packard - 1= June 28, 1985



ROOTMARK (1M) Series 500 Only ROOTMARK (1M)

NAME

rootmark - mark/unmark volume as HP-UX root volume

SYNOPSIS
/etc/rootmark [ -m | -u | filespec

HP-UX COMPATIBILITY
Level: HP-UX/NON-STANDARD

Origin: HP
Remarks: Rootmark is implemented on the Series 500 only.
Not supported on the Integral PC.

DESCRIPTION
Rootmark enables you to control which mass storage device contains your HP-UX root (/) direc—
tory. The HP-UX operating system searches mass storage devices and uses the first root volume
it finds.

Filespec is usually a character special file which points to a mass storage volume initialized with
Structured Directory Format (SDF). If invoked with no option, rootmark tells the current state
of the specified volume. If -m is specified, then the specified volume is marked as a root volume.
If -u is specified, the specified volume is marked as not a root volume. Rootmark is silent if suc—
cessful.

RETURN VALUE
Rootmark sends an error message to standard error and returns a non-zero value if it cannot read
or write a volume, or if a volume is not SDF. Rootmark returns 1 for incorrect syntax, 2 for a file
system problem, and 3 for a volume that is not in SDF.
EXAMPLE
The following example makes /dev/rhd usable as root; you must super-user to execute the
example:
# rootmark /dev/rhd  # check if /dev/rhd is a root volume
/dev/rhd is marked as NOT a root volume.
# rootmark —m /dev/rhd # mart it as the root volume
# rootmark /dev/rhd  # check results
/dev/rhd is marked as a root volume.

SEE ALSO
mount (1), osmgr(1M), sdfinit(1M).

WARNINGS
A volume must not be marked as a root volume unless it contains all the directories and files that
HP-UX requires for system initialization.
Never mark any media shipped from Hewlett—Packard as not a root volume, in case you need to
re—install HP-UX from that media.

Hewlett -Packard -1 June 28, 1985



RUNACCT (1M)

NAME

RUNACCT (1M)

runacet - run daily accounting

SYNOPSIS

/usr/lib/acct/runacct [mmdd [state]]

HP-UX COMPATIBILITY

Level: HP-UX/EXTENDED
Origin: System V
DESCRIPTION

Runacct is the main daily accounting shell procedure. It is normally initiated via cron(1M).
Runacct processes connect, fee, disk, and process accounting files. It also prepares summary files
for prdaily or billing purposes.

Runacct takes care not to damage active accounting files or summary files in the event of errors.
It records its progress by writing descriptive diagnostic messages into active. When an error is
detected, a message is written to /dev/console, mail (see mail(1)) is sent to root and adm, and
runaect terminates. Runacct uses a series of lock files to protect against re-invocation. The files
lock and lockl are used to prevent simultaneous invocation, and lastdate is used to prevent
more than one invocation per day.

Runacct breaks its processing into separate, restartable states using statefile to remember the
last state completed. It accomplishes this by writing the state name into statefile. Runecct then
looks in statefile to see what it has done and to determine what to process next. States are exe—
cuted in the following order:

SETUP Move active accounting files into working files.

WTMPFIX Verify integrity of wtmp file, correcting date changes if necessary.

CONNECT1 Produce connect session records in ctmp.h format.

CONNECT2 Convert etmp.h records into tacct.h format.

PROCESS Convert process accounting records into tacct.h format.

MERGE Merge the connect and process accounting records.

FEES Convert output of chargefee into tacet.h format and merge with
connect and process accounting records.

DISK Merge disk accounting records with connect, process, and fee
accounting records.

MERGETACCT Merge the daily total accounting records in daytacct with the
summary total accounting records in
/usr/adm/acct /sum/tacct.

CMS Produce command summaries.

USEREXIT Any installation—dependent accounting programs can be included
here.

CLEANUP Cleanup temporary files and exit.

Hewlett-Packard

To restart runacct after a failure, first check the active file for diagnostics, then fix up any cor-
rupted data files such as pacet or wtmp. The lock files and lastdate file must be removed
before runacct can be restarted. The argument mmdd is necessary if runacct is being restarted,
and specifies the month and day for which runacct will rerun the accounting. Entry point for
processing is based on the contents of statefile; to override this, include the desired state on the
command line to designate where processing should begin.

June 28, 1985



RUNACCT (1M)

EXAMPLES

FILES

To start runacct.
nohup runacct 2> /usr/adm/acct/nite/fd2log &

To restart runacct.
nohup runacct 0601 2>> /usr/adm/acct/nite/fd2log &

To restart runacct at a specific state.
nohup runacct 0601 MERGE 2>> /usr/adm/acct/nite/fd2log &

Jetc/wtmp

Jusr /adm/pacct*
/Jusr/adm/acct/nite/active
/usr/adm/acct/nite/daytacct
/Jusr/adm/acct /nite/lock
/usr/adm/acct/nite/lockl
/usr/adm/acct/nite/lastdate
/usr/adm/acct/nite/statefile
/usr/adm/acct/nite/ptacct*.mmdd

SEE ALSO
acct(IM), acctems(1M), acctcom(1), acctcon(1M), acctmerg(1M), acctpre(IM), acctsh(1M),

cron{1M), fwtmp(1M), mail(1), acct(2), acct(5), utmp(5).

Chapter 6, "System Accounting,” of the HP-UX System Administrator Manual.

RUNACCT (1M)

BUGS
Normally it is not a good idea to restart runacct in the SETUP state. Run SETUP manually
and restart via:
runacct mmdd WTMPFIX
If runacct failed in the PROCESS stafe, remove the last ptacct file because it will not be com-
plete.
Hewlett-Packard -2- June 28, 1985



SDFINIT (1M) SDFINIT ( 1M)

NAME

sdfinit - initialize Structured Directory Format volume

SYNOPSIS

/etc/sdfinit [-i] pathname [blocksize [bootsize [interleave]]]

HP-UX COMPATIBILITY

Level: HP-UX/NUCLEUS
Origin: HP
Remarks: Not supported on the Integral PC.

DESCRIPTION

Pathname refers to a character or block special file, which must be accessible and not mounted.

Blocksize is the number of bytes per logical block. It is rounded up, if necessary, to the next mul-
tiple of the physical record size for the volume. If absent or less than one (1), the system sets a
reasonable default for you.

Bootsize is the number of bytes to allocate for the boot area on the volume. It is rounded up to a
whole number of logical blocks. It defaults to zero (no boot area).

Interleave is the sector interleave factor. It defaults to one (not necessarily the best value for all
devices).

The root directory on the newly-initialized volume is always owned by the super—user and has
permissions of 777.

The —i option inhibits formatting and certification, so the volume is only initialized. That is, only
a directory structure is written. This saves a considerable amount of time in most cases. How-
ever, the —i option is NOT RECOMMENDED for most removable media, unless it was
recently formatted and certified in the same type of drive.

RESTRICTIONS

The effective user ID must be zero (super-user). The disc must not be mounted.

DIAGNOSTICS

Appropriate error messages are given if the argument list is incorrect, pathname cannot be initial-
ized or any other error occurs.

SEE ALSO

osmgr(1M), sections on device drivers

Hewlett—Packard -1- June 28, 1985



SETMNT (1M) SETMNT (1M)

NAME

setmnt - establish mount table mnttab
SYNOPSIS

/etc/setmnt

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS
Origin: System V
Remarks: Not supported on the Integral PC.

DESCRIPTION
Setmnt creates the /etc/mnttab table (see mnitab(5)), which is needed for both the mount(1M)
and umount commands. Setmnt reads standard input and creates a mnttab entry for each line.
Input lines have the format:

filesys node

where filesys is the name of the file system’s special file (e.g., “dsk/?s?”) and node is the root
name of that file system. Thus filesys and node become the first two strings in the mnttab(5)
entry.

FILES
/etc/mnttab

SEE ALSO
mount(1M), re(1M), mnttab(5).

BUGS
Filesys and node are truncated to MNTLEN bytes. The minimum value for MNTLEN is 32.
Setmnt silently enforces an upper limit on the maximum number of mnttab entries.
It is unwise to use setrnt to create false entries for mount(1) and umount(1).

Hewlett—Packard -1- June 28, 1985



i
i

SETPRIVGRP(1M) , ./ (. . SETPRIVGRP (1M)

NAME

setprivgrp - set special attributes for group

SYNOPSIS

setprivgrp —g| —n| group-name [ privileges |

setprivgrp —f file

HP-UX COMPATIBILITY

Level: HP-UX/RT
Origin: HP

DESCRIPTION

FILES

Setprivgrp associates a group with a kernel capability. This allows subsetting of super-user-like
privileges for members of a particular group or groups. In the first form, the first argument to
setprivgrp is either a group-name, —g, or —n which specifies a particular group, all groups, or no
groups, respectively. The optional second and subsequent arguments are symbolic names indicat—
ing kernel capabilities. In the second form, the —f option is used to specify a file, typically
/ete/privgroup, from which group capabilities are set. The group access privileges are changed to
reflect the specified kernel capabilities.

RTPRIO gives access to the riprio(2) system call for setting real-time priorities.

MLOCK gives access to the plock(2) system call for locking process text and data into
memory, and the SHM__LOCK command used with shmcti(2) system call.

CHOWN gives access to the chown(2) system call.

Specifying no access privileges removes any privileges that may currently be assigned. Note that
capabilities set by this command are not additive. If you wish to add a capability for a particular
group, you need to respecify all capabilities that were already set for that group in addition to the
new capability.

The file named using the —f option should contain one or more lines in the following format:
—g|-n| group-name [ privileges |

Only the super user may use this command.

/ete/privgroup
/ete/group

ERRORS

Setprivgrp returns 1 if caller is not super user, and 2 if there is not enough table space to hold a
new privileged group assignment,.

SEE ALSO

getprivgrp(1), getprivgrp(2), rtprio(2), plock(2), shmetl(2), chown(2)
f

e 4y

e

Hewlett-Packard -1- July 2, 1985



SHUTDOWN (1M) SHUTDOWN (1M)

NAME
shutdown - terminate all processing

SYNOPSIS
/etc/shutdown [grace]

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System 111
Remarks: Not supported on the Integral PC.

DESCRIPTION
Shutdown is part of the HP-UX system operation procedures. Its primary function is to terminate
all currently running processes in an orderly and cautious manner. The procedure is designed to
interact with the operator (i.e., the person who invoked shutdown). Shutdown may instruct the
operator to perform some specific tasks, or to supply certain responses before execution can
resume. Shutdown goes through the following steps:

All users logged on the system are notified to log off the system by a broadcasted message.
The operator may display his/her own message at this time. Otherwise, the standard file-save
message is displayed.

If the operator wishes to run the file-save procedure, shutdown unmounts all file systems.

All file systems’ super blocks are updated before the system is to be stopped (see sync(1M)).
This must be done before re-booting the system, to insure file system integrity. The most
common error diagnostic that will occur is device busy. This diagnostic happens when a par
ticular file system could not be unmounted. See umount(1M).

Grace specifies, in seconds, a grace period for users to log off before shutting down. The default is
60 seconds. If grace is zero, shutdown runs more quickly and gives the user very little time to log
out.

HARDWARE DEPENDENCIES
Series 500:
A file-save procedure is not implemented.

SEE ALSO
killall(1M), mount(1M), sync(1M).

Hewlett-Packard -1- June 28, 1985



STOPSYS (1M) Series 500 Ouly STOPSYS(1M)

NAME

stopsys - stop operating system with optional reboot

SYNOPSIS

/ete/stopsys [ -r ]

HP-UX COMPATIBILITY

Level: HP-UX/NON -STANDARD
Origin: HP
Remarks: Stopsys is implemented on the Series 500 only.

DESCRIPTION

Stopsys dumps all system I/O buffers to mass storage volumes (i.e. performs a sync(1M)), and
shuts down all virtual memory activity. Then, stopsys either stops the operating system so that
the hardware may be powered down (no option), or it reboots the system (resets the machine’s
processor(s) to the power—on state) (-r option). The reboot (-r) option results in the activation of
the system boot loader, almost exactly as if the power was just turned on, except that I/O cards
are not power—cycled.

Just before it stops the system, stopsys writes a message to /dev/console indicating that the sys-
tem is stopped and can be safely powered down.

Stopsys may be invoked only by the effective super—user. However, it may be made public by set—
ting the set-user-ID bit and assigning ownership to root.

Stopsys does not ensure that the system is idle. If any user processes are running, the sync(1M)
may be ineffective. You should execute shutdown(1M), or at least kill all non-essential processes,
prior to running stopsys.

SEE ALSO

chsys(1IM), killall(1M), shutdown{1M), sync(1M).

DIAGNOSTICS

BUGS

Stopsys returns only if a non—fatal error occurs, in which case it writes a message to standard
error and returns 1. Non-fatal errors include:

invocation with improper arguments;
invocation by other than the effective super-user;
any failure to stop the system, as long as the system is still usable.

If stopsys fails to stop the system for any reason, but the system is then not in a usable state,
stopsys writes an error message to /dev/console and then attempts to reboot (if -r was specified).
If -r was not specified, or if the reboot attempt fails, stopsys writes “system stopped” on
/dev/console, and you must reboot the system yourself (using the power switch or the front
panel).

Note that if the reboot fails it indicates a hardware problem with the HP 9000 Model 20 keyboard
on select code 6, or the HP 9000 Model 30/40 system control module on select code 7.

At this time, stopsys does not shut down Local Area Net (LAN) activity.

Hewlett—Packard -1- June 28, 1985



SWAPON (1M) SWAPON (1M)

NAME
swapon - enable additional device for paging and swapping
SYNOPSIS
/etc/swapon -a
/etc/swapon name ...
HP-UX COMPATIBILITY
Level: HP-UX/EXTENDED
Origin: UCB
DESCRIPTION
Swapon is used to enable additional devices on which paging and swapping are to take place. The
system begins by swapping and paging on only a single device so that only one disk is required at
bootstrap time. Calls to swapon normally occur in the system multi-user initialization file /etc/r¢

making all swap devices available, so that the paging and swapping activity is interleaved across
several devices.

Normally, the -a argument is given, causing all devices marked as ‘“‘sw”’ swap devices in
/etc/checklist to be made available.

The second form announces individual block devices to be used for paging and swapping. These
block devices must have been setup at system configuration time.

HARDWARE DEPENDENCIES
Series 200: Series 200 does not support swapping on multiple devices.
FILES
/dev/dsk/#s# Normal paging devices.
HARDWARE DEPENDENCIES
Not implemented on Series 500 and Integral PC.
SEE ALSO
swapon(2).

BUGS
There is no way to stop paging and swapping on a device. It is therefore not possible to make use
of devices which may be dismounted during system operation.

Hewlett-Packard -1- June 28, 1985



TIC (1M) TIC(1M)

NAME

tic - terminfo compiler

SYNOPSIS

tic [ -v(n| | file ...

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V
Remarks: Not supported on the Integral PC.

DESCRIPTION

FILES

Tic translates terminfo files from the source format into the compiled format. The results are
placed in the directory /usr/lib/terminfo.

The -v (verbose) option causes tic to output trace information showing its progress. If the
optional integer is appended, the level of verbosity can be increased.

Tic compiles all terminfo descriptions in the given files. When a use= field is discovered, tic
searches first the current file, then the master file, which is *“. /terminfo.src”.

If the environment variable TERMINFO is set, the results are placed there instead of
/usr/lib/terminfo.

Some limitations: total compiled entries cannot exceed 4096 bytes. The name field cannot exceed
128 bytes.

/usr/lib/terminfo/?/* compiled terminal capability data base

SEE ALSO

BUGS

curses(3X), terminfo(5).

Instead of searching ./terminfo.src, it should check for an existing compiled entry.

Hewlett—Packard -1~ June 28, 1985



TUNEFS(1M) Series 200 Only

NAME
tunefs - tune up an existing file system

SYNOPSIS
/etc/tunefs tuneup-options speciall filesys

HP-UX/COMPATIBILITY
Level: HP-UX/EXTENDED

Origin: UCB

TUNEFS (1M)

Remarks: Tunefs(lm) is implemented only on those machines implementing the HFS file sys—

tems.

DESCRIPTION

Tunefs is designed to change the dynamic parameters of a file system which affect the layout poli-
cies. The parameters which are to be changed are indicated by the flags given below:

-a maxcontig

This specifies the maximum number of contiguous blocks that will be laid out before forc—
ing a rotational delay (see -d below). The default value is one, since most device drivers
require an interrupt per disk transfer. Device drivers that can chain several buffers
together in a single transfer should set this to the maximum chain length.

-d rotdelay

This specifies the expected time (in milliseconds) to service a transfer completion inter—
rupt and initiate a new transfer on the same disk. It is used to decide how much rota-
tional spacing to place between successive blocks in a file.

-e maxbpg

This indicates the maximum number of blocks any single file can allocate out of a cylinder
group before it is forced to begin allocating blocks from another cylinder group. Typically
this value is set to about one quarter of the total blocks in a cylinder group. The intent is
to prevent any single file from using up all the blocks in a single cylinder group, thus
degrading access times for all files subsequently allocated in that cylinder group. The
effect of this limit is to cause big files to do long seeks more frequently than if they were
allowed to allocate all the blocks in a cylinder group before seeking elsewhere. For file
systems with exclusively large files, this parameter should be set higher.

-m minfree

This value specifies the percentage of space held back from normal users; the minimum
free space threshold. The default value used is 10%. This value can be set to zero, how—
ever up to a factor of three in throughput will be lost over the performance obtained at a
10% threshold. Note that if the value is raised above the current usage level, users will be
unable to allocate files until enough files have been deleted to get under the higher thres—
hold.

special | filesys

This is the name of the file system which will be tuned. It is either a block or character
special file for a mountable volume or volume section, or it is the pathname of a directory
on which a file system is mounted.

SEE ALSO
fs(5), newfs(1M), mkfs(1M)

BUGS

This program should work on mounted and active file systems. Because the super-block is not
kept in the buffer cache, the program will only take effect if it is run on dismounted file systems.

(if run on the root file system, the system must be rebooted)

You can tune a file system, but you can’t tune a fish.

Hewlett—Packard -1-

June 28, 1985



UCONFIG (1M)

NAME

Series 500 Only UCONFIG (1M)

uconfig - system reconfiguration

SYNOPSIS

/etc/uconfig | option boot_device ]
HP-UX COMPATIBILITY

Level:

Origin:

Remarks:
DESCRIPTION

HP-UX/NON-STANDARD
HP
Uconfig is implemented on the Series 500 only.

Uconfig enables you to reconfigure certain system parameters. When invoked with no arguments,
uconfig lists the current system configuration. The following options are recognized:

-f file

Hewlett—Packard

reconfigures the system parameters in the boot area according to the specifications
given in file. File may contain any combination of system parameters. Each line in
file has the following format:

id value [#comment]

where id is a pre -defined system parameter name, value is one or more values associ-
ated with the parameter, and comment is a descriptive comment for that line. All
characters between the comment delimiter (#) and a new-line are ignored. The id,
value, and comment fields are delimited by one or more blanks and/or tabs.

The valid 7ds and values are:

vim_device driver_name addrl addr2 addr3 addr4
where driver_name is an integer specifying the virtual device driver, and addr? -
addr4 are integers specifying the device select code, HP-IB address, unit, and
volume, respectively.

cache_buf_size size
where size is an integer in the range 256 to (maximum memory) divided by
(minimum number of cache buffers), specifying the number of bytes in each indi-
vidual cache buffer. Size is rounded down to the closest multiple of 256.

cache_buf num num
where num is an integer in the range 1 to (maximum memory) divided by
(minimum size of cache buffers), specifying the number of individual cache
buffers forming the cache.

read_ahead_level level
where level s an integer in the range 1 to the value of cache_buf_num, speci-
fying the number of buffers that can be filled in one sequential read operation.

interactive_time time
where time is an integer in the range 1 to 32 767 ticks (a tick equals 10 msecs),
specifying the amount of CPU time a process can consume after an interactive
terminal read before it is no longer favored as interactive.

swap__time time
where time is an integer in the range of 1 to 32 767 ticks (a tick equals 10msec),
specifying the time a virtual segment remains memory resident before being
swapped to disc.

page_size size
where size is an integer in the range 512 to 8 192, specifying the size of paged

data in bytes. If size is an odd number, it is rounded down to the next even
number.

~1- June 28, 1985



UCONFIG (1M)

-d

Hewlett—Packard

Series 500 Only UCONFIG (1M)

page_swap_time time
where time is an integer in the range 1 to 32 767 ticks (a tick equals 10 msecs),
specifying the time a page remains memory resident before being swapped to
disc.

vm__pool_size size
where size is an integer in the range 16 384 to maximum memory, specifying the
maximum size in bytes of the virtual memory page pool.

scroll_pages num__pages
where nrum__pages is an integer in the range 1 to 10, specifying the number of
pages of display buffering (one page = 24 lines of display). The actual number of
pages allocated depends on current available memory. This parameter applies to
the Model 520 only.

stack_size size
where stze is an integer in the range 16 384 to maximum memory, specifying the
maximum stack size in bytes for any partition.

work_set_ratio ratio
where ratio is a floating—point number in the range 0 to 1, specifying the
minimum virtual memory working set ratio.

max__proc__per__usr max_user__process
where maz_user_process is an integer specifying the maximum number of
processes a single user can have.

reconfigures the system parameters in the boot area to their default values. The
default values, as contained in the file /etc/uconfigtab, are:

vm_device
0 000 0; root device as determined by the system at power—up;

cache_buf_size
1 024 bytes;

cache__buf num
0; this value is dynamically computed;

read_ahead_level
0; this value is dynamically computed;

interactive__time
300 ticks; (one tick = 10 msecs);

swap__time
0; this value is dynamically computed;

page_size
1 024 bytes;

page_swap_ time
50 ticks; (one tick = 10 msecs});

vm__pool_size
0; this value is dynamically computed;

scroll_pages
2%;
stack size
0; this value is dynamically computed;

work_set_ratio
0.002;

a9 June 28, 1985



UCONFIG (1M) Series 500 Only UCONFIG (1M)

max__proc_per_usr
500.

The -f and -d options are mutually exclusive.

Boot__device is the path name of a character special file containing a boot area. The new
configuration is written out to the boot area on bootdevice, and takes effect the next time the
system is booted.

FILES
/ete/uconfigtab list of default system configuration parameters

WARNING
Do not use uconfig to change the system parameters of an operating system in a boot area unless
that operating system is identical to the operating system you are currently running. If the two

operating systems differ, uconfig will execute successfully, but the new operating system will either
fail to boot, or, if it boots successfully, exhibit strange behavior.

Hewlett—Packard -3- June 28, 1985



UMODEM (1M) UMODEM (1M)

NAME
umodem - XMODEM protocol file transfer program

SYNOPSIS
/usr/contrib/bin/umodem [ -options | files
/usr/contrib/bin/umodem -¢

HP-UX COMPATIBILITY
Level: HP-UX/NON-STANDARD

Origin: Public Domain

DESCRIPTION
Umodem is a file transfer program that incorporates the well known XMODEM protocol used on
CP/M systems, as well as on the HP110 portable computer.

Options:

-1 Employ TERM II FTP 1.

-3 Enable TERM FTP 3 (CP/M UG).
-7 Enable 7-bit transfer mask.

-a Turn on ARPA Net flag.

-1 Turn on entry logging.

-m Allow overwriting of files.

-d Don’t delete umodem.log before starting.
-p Print all messages.

-r[tb] Receive file. Specify t for text, or b for binary.
-s[tb] Send file. Specify t for text, or b for binary.
-y Display file status only.

-c Enter command mode.

The usual way to invoke umodem is:

umodem -rt7 file
Receive a text file.

umodem —rb file
Receive a binary file.

umodem —st7 file
Send a text file.

umodem -sb file
Send a binary file.

SEE ALSO
Kermit(1M), cu(1C), uucp(1C).

Hewlett-Packard -1~ June 28, 1985



UUCICO (1M) UUCICO (1M)

NAME
uucico - uucp copy in and copy out

SYNOPSIS
Jusr /lib/uucp/uucico | -r1 ] { -ssys | | -xnum )

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System V
Remarks: Not supported on the Integral PC.

DESCRIPTION
Uucico scans the /usr/spool/uucp directory for work files. If such files exist, a connection to a
remote system is attempted using the line protocol for the remote system specified in the L.sys
file. Uucico then executes all requests for work and logs the results.

The options are as follows:

-rl Start wucico in the MASTER mode; The default is SLAVE mode.

-89Ys Do work only for the system specified by sys. If there is no work for sys on the local
spool directory, initiate a connection to sys to determine if sys has work for the local
system.

-xXnum Use debugging option. Num is an integer in the range 1 - 9. More debugging infor-

mation is given for larger values of num.

Uucico is usually started by a local program (cron(1M), uucp(1C), wuc(1C); wuzgi(1C), or
uucico(1C)). It should only be directly initiated by a user when debugging.

When started by a local program, uucico is considered the MASTER and attempts a connection to
a remote system. If uucico is started by a remote system, it is considered to be in SLAVE mode.

For the wuucico connection to a remote system to be successful, there must be an entry in the
/ete/passwd file on the remote system of the form:

uucp::5:5:: /usr/spool /uucppublic: /usr/lib/uucp/uucico

FILES
Refer to Uucp File System chapter in the HP-UX Serial Networks Guide, part number 97076-
90001.

SEE ALSO
HP-UX Asynchronous Communications Guide, part number 97076-90001.

Hewlett—Packard -1- June 28, 1985



UUCLEAN (1M)

NAME

UUCLEAN (1M)

uuclean - uucp spool directory clean—up

SYNOPSIS

/usr/lib/uucp/uuclean | options ]
HP-UX COMPATIBILITY

Level:

Origin:

Remarks:
DESCRIPTION

HP-UX/STANDARD
System V
Not supported on the Integral PC.

Uuclean will scan the spool directory for files with the specified prefix and delete all those which
are older than the specified number of hours.

The following options are available.

-ddirectory Clean directory instead of the spool directory. If directory is not a valid spool direc-

-ppre

-ntime

-wfile

-85ys

-mfile

tory it cannot contain "work files” i.e., files whose names start with "C.”. These files
have special meaning to uuclean pertaining to uucp job statistics.

Scan for files with pre as the file prefix. Up to 10 -p arguments may be specified. A
-p without any pre following will cause all files older than the specified time to be
deleted.

Files whose age is more than time hours will be deleted if the prefix test is satisfied.
(default time is 72 hours)

The default action for uuclean is to remove files which are older than a specified time
(see -n option). The -w option is used to find those files older than time hours, how—
ever, the files are not deleted. If the argument file is present the warning is placed in
file, otherwise, the warnings will go to the standard output.

Only files destined for system sys are examined. Up to 10 -s arguments may be
specified.

The -m option sends mail to the owner of the file when it is deleted. If a file is
specified then an entry is placed in file.

This program is typically started by cron(1M).

FILES

/usr/lib/uucp directory with commands used by uuclean internally
/usr/spool/uucp spool directory

SEE ALSO

cron(1M), uucp(1C), uux(1C).

Hewlett~Packard

-1 June 28, 1985



UUSUB(1M) UUSUB (1M)

NAME

uusub - monitor uucp network

SYNOPSIS

/usr/lib/uucp/uusub [ options ]

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V
Remarks: Not supported on the Integral PC.

DESCRIPTION

Uusub defines a uucp subnetwork and monitors the connection and traffic among the members of
the subnetwork. The following options are available:

-asys  Add sys to the subnetwork.
-dsys  Delete sys from the subnetwork.

-1 Report the statistics on connections.
-r Report the statistics on traffic amount.
-f Flush the connection statistics.

-uhr Gather the traffic statistics over the past Ar hours.
-Cc8ys Exercise the connection to the system sys. If sys is specified as all, then exercise the
connection to all the systems in the subnetwork.

The meanings of the connections report are:
sys #call #ok time #dev #login #nack ffother

where sys is the remote system name, #call is the number of times the local system tries to call
sys since the last flush was done, #o0k is the number of successful connections, time is the latest
successful connect time, #dev is the number of unsuccessful connections because of no available
device (e.g., ACU), #login is the number of unsuccessful connections because of login failure,
#nack is the number of unsuccessful connections because of no response (e.g. line busy, system
down), and #other is the number of unsuccessful connections because of other reasons.

The meanings of the traffic statistics are:
sfile sbyte rfile rbyte

where sfile is the number of files sent and sbyte is the number of bytes sent over the period of
time indicated in the latest uusub command with the -uhr option. Similarly, rfile and rbyte are
the numbers of files and bytes received.

The command:
uusub -¢ all -u 24

is typically started by cron(1IM) once a day.

FILES
[usr/spool/uucp/SYSLOG system log file
/usr/lib/uucp/L_sub connection statistics
{usr/lib/uucp/R__sub traffic statistics
SEE ALSO

uucp(1C), uustat(1C).

Hewlett-Packard -1- June 28, 1985



UUXQT(1M) UUXQT (1M)

NAME
uuxqt - uucp command execution

SYNOPSIS
Jusr/lib/uucp/uuxqt | -xnum |

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: System V
Remarks: Not supported on the Integral PC.

DESCRIPTION
The wuuzqt daemon performs local command execution of execution files (X.x) on the
/usr/spool/uucp directory. Uuz generates work files with an execution (X) grade which become
execution files when transferred to the remote system. The command requested by the execution
file is checked against the list of remotely executable commands in the L.cmds file. The USERFILE
is then searched to find the first NULL system field for path access permission.
The option -xnum is a parameter specifying debugging information. Num is an integer in the
range 1 - 9. The amount of debugging information increases as the value of num increases.

FILES
Refer to the Uucp File System chapter in the HP-UX Serial Networks Guide, part number
97076-90001.

SEE ALSO
HP-UX Asynchronous Communications Guide.

Hewlett—Packard -1- July 4, 1985



WALL (1M) WALL (1M)

NAME
wall - write to all users

SYNOPSIS
/etc/wall

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System V

Native Language Support:
8-bit data.

Remarks: Not supported on the Integral Personal Computer.

DESCRIPTION
Wall reads its standard input until an end-of-file. It then sends this message to all currently

logged- in users preceded by:
Broadcast Message from ...
It is used to warn all users, typically prior to shutting down the system.

The sender must be super—user to override any protections the users may have invoked (see
mesg(1)).
Wall has timing delays, and will take at least 30 seconds to complete.

FILES
/dev/ttyx

SEE ALSO
mesg(1), write(1).

DIAGNOSTICS
*Cannot send to ...”" when the open on a user’s tty file fails.

Hewlett—Packard -1- June 28, 1985



WHODO (1M) WHODO (1M)

NAME

whodo - which users are doing what

SYNOPSIS
/ete/whodo

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System ITI
Remarks: Not supported on the Integral Personal Computer.

DESCRIPTION
Whodo produces merged, reformatted, and dated output from the who(1) and ps(1) commands.

FILES
/Jete/passwd

SEE ALSO
ps(1), who(1).

Hewlett—Packard -1- June 28, 1985



INTRO(2) INTRO(2)

Computer

Tusaum

NAME
intro - introduction to system calls

HP-UX COMPATIBILITY
Level: This entry describes where in the HP-UX compatibility model this capability appears.

Origin: The system or systems from which this facility is derived.

DESCRIPTION
This section describes all of the system calls. All of these calls return a function result. This
result indicates the status of the call. Typically, a zero or positive result indicates that the call
completed successfully, and -1 indicates an error. The individual descriptions specify the details.
An error number is also made available in the external variable errno (see errno(2)). Errno is not
cleared on successful calls, so it should be tested only after an error has been indicated.

The descriptions of the facilities in this section depend on the definitions of several terms. See
glossary(9) for precise definitions.

HARDWARE DEPENDENCIES
Series 500:
A second error indicator, errinfo, is implemented in addition to errno. See errinfo(2).
SEE ALSO
intro(3), glossary(9).

Hewlett-Packard -1- June 28, 1985



ACCESS(2) ACCESS(2)

NAME

access - determine accessibility of a file
SYNOPSIS

int access (path, amode)

char spath;

int amode;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION
Path points to a path name naming a file. Access checks the named file for accessibility accord-
ing to the bit pattern contained in amode, using the real user ID in place of the effective user ID

and the real group ID in place of the effective group ID. The bit pattern contained in amode is
constructed as follows:

04 read

02 write

01 execute (search)

00 check existence of file

Access to the file is denied if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] Read, write, or execute (search) permission is requested for a null path name.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a component of the path prefix.

[EROFS] Write access is requested for a file on a read-only file system.

[ETXTBSY] Write access is requested for a pure procedure (shared text) file that is being
executed.

[EACCES] Permission bits of the file mode do not permit the requested access.

[EFAULT] Path points outside the allocated address space for the process.

The owner of a file has permission checked with respect to the ‘‘owner” read, write, and execute
mode bits. Members of the file’'s group other than the owner have permissions checked with
respect to the “‘group” mode bits, and all others have permissions checked with respect to the
“other’” mode bits. Access will always report accessibility when executed by the super—user.

Access will report that a file currently open for execution is not writable, regardless of the setting
of its mode.

RETURN VALUE
If the requested access is permitted, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

HARDWARE DEPENDENCIES
Integral PC:
The Integral PC allows normal user processes all capabilities previously reserved for the
super user.

A file currently open for execution is writable.

SEE ALSO
chmod(2), stat(2).

Hewlett-Packard -1- June 28, 1985



ACCT(2) ACCT(2)

NAME
acct - enable or disable process accounting
SYNOPSIS
int acct (path)
char *path;
HP-UX COMPATIBILITY
Level: HP-UX/EXTENDED - Multi-User
Origin: System V

DESCRIPTION
Acct is used to enable or disable the system’s process accounting routine. If the routine is
enabled, an accounting record will be written on an accounting file for each process that ter—
minates. Termination can be caused by one of two things: an ezit call or a signal; see ezit(2) and
stgnal(2). The effective user ID of the calling process must be super- user to use this call.

Path points to a path name naming the accounting file. The accounting file format is given in
acct(5).

The accounting routine is enabled if path is non-zero and no errors occur during the system call.
It is disabled if path is zero and no errors occur during the system call.

Acct will fail if one or more of the following are true:

[EPERM] The effective user ID of the calling process is not super—user.

[EBUSY] An attempt is being made to enable accounting when it is already enabled.
[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] One or more components of the accounting file path name do not exist.
[EACCES] The file named by path is not an ordinary file.

[EROFS] The named file resides on a read-only file system.

[EFAULT] Path points to an illegal address.

[ETXTBSY] Path points to a text file which is currently open.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

HARDWARE DEPENDENCIES
Series 200/500:

The system’s process accounting routine will ignore any locks placed on the process
accounting file.

A child process which is created by vfork(2) but which does not call ezec(2) before ter—
minating will not generate a process accounting record.

If the size of the process accounting file reaches 5000 blocks, records for processes ter—
minating after that point will be silently lost. However, in that case the turnacct com-
mand would still sense that process accounting is enabled. This loss of records can be
prevented by the use of ckpacct (see acctsh(1M)).

Integral Personal Computer:

Process accounting is not supported on the Integral Personal Computer.

SEE ALSO
acct(1M), acctsh(1M), exit(2), lockf(2), signal(2), vfork(2), acct(5).

Hewlett-Packard -1- June 28, 1985



ALARM (2) ALARM(2)

alarm - set a process’s alarm clock

SYNOPSIS

unsigned long alarm (sec)
unsigned long sec;

HP-UX COMPATIBILITY

Level: HP -UX/RUN ONLY
Origin: System V

DESCRIPTION

Alarm instructs the alarm clock of the calling process to send the signal SIGALRM to the calling
process after the number of real time seconds specified by sec have elapsed; see signal(2). Sec
must be less than 2°32. Specific implementations may place further limitations on the maximum
alarm time supported. The constant MAX_ALARM defined in <sys/param.h> specifies the
implementation—specific maximum. Whenever sec is greater than this maximum but less than
2732, it is silently rounded down to this maximum. On all implementations, MAX_ALARM is
guaranteed to be at least 31 days (in seconds).

The alarm will be signaled within a 0.5 second tolerance. For example, if you specify an alarm
time of 1 second, the alarm will be signaled between 0.5 seconds and 1.5 seconds later. Due to
variations in scheduling, the receipt of the signal may be delayed, particularly if the process is not
running at the time the signal occurs.

Alarm requests are not stacked; successive calls reset the alarm clock of the calling process.
If sec is 0, any previously made alarm request is canceled.
Alarms are not inherited by a child process across a fork, but are inherited across an ezec.

On systems which support the getitimer(2) and setitimer(2), the timer mechanism used by alarm
is the same as that used by ITIMER_REAL. Thus successive calls to alarm, getitimer, and setiti-
mer will set and return the state of a single timer.

RETURN VALUE

Alarm returns the amount of time previously remaining in the alarm clock of the calling process.

SEE ALSO

sleep(1), pause(2), getitimer(2), signal(2), sleep(3).

Hewlett—Packard -1- June 28, 1985



BRK (2) BRK (2)

brk, sbrk - change data segment space allocation

SYNOPSIS

int brk (endds)
char *endds;

char *sbrk (incr)
int incry

HP-UX COMPATIBILITY

Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION

Brk and sbrk are used to dynamically change the amount of space allocated for the calling
process’s data segment; see ezec(2). The change is made by resetting the process’s break value
and allocating the appropriate amount of space. The break value is the address of the first loca—
tion beyond the end of the data segment. The amount of allocated space increases as the break
value increases. The newly allocated space is set to zero.

Brk sets the break value to endds and changes the allocated space accordingly.

Sbrk adds incr bytes to the break value and changes the allocated space accordingly. Incr can be
negative, in which case the amount of allocated space is decreased.

Brk and sbrk will fail without making any change in the allocated space if one or more of the fol-
lowing are true:

[ENOMEM] Such a change would result in more space being allocated than is allowed by a
system-imposed maximum (see ulimit(2)).

[ENOMEM] Such a change would cause a conflict between addresses in the data segment and
any attached shared memory segment (see shmop(2)).

HARDWARE DEPENDENCIES

Series 500:
Brk and sbrk will fail without making any change in the allocated space if such a change
would move the program break below the beginning of the process’ indirect data area. Note
that it is not possible to release the direct data area with this system call.

If the process’ indirect data area is paged, then the size of that data area changes in incre—
ments of the page size, which is configurable. Consequently, increasing a paged process data
area by one byte may cause it to increase by one page, and decreasing it by one byte may
do nothing. If the process’ data area is not paged, then the size of the process data area
changes similarly in increments of 32 bytes.

The pointer returned by sbrk is not necessarily word-aligned. Loading or storing words
through this pointer could cause word alignment problems.

RETURN VALUE

Upon successful completion, brk returns a value of 0 and sbrk returns the old break value. Other—
wise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO

exec(2), end(3), malloc(3), shmop(2), ulimit(2).

Hewlett—Packard -1- June 28, 1985



CHDIR (2)

NAME
chdir - change working directory

SYNOPSIS
int chdir (path)
char #path;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V
DESCRIPTION

CHDIR (2)

Path points to the path name of a directory. Chdir causes the named directory to become the
current working directory, the starting point for path searches for path names not beginning with

/.

Chdir will fail and the current working directory will be unchanged if one or more of the following
are true:

[ENOTDIR] A component of the path name is not a directory.

[ENOENT)] The named directory does not exist.

[EACCES]| Search permission is denied for any component of the path name.

[EFAULT)] Path points outside the allocated address space of the process.

[ENOENT] Path is null.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and

errno is set to indicate the error.

SEE ALSO
cd(1), chroot(2).

Hewlett—Packard

June 28, 1985



CHMOD(2) CHMOD (2)

NAME

chmod, fchmod - change access mode of file
SYNOPSIS

int chmod (path, mode)

char *path;

int mode;

fchmod (fd, mode)
int fd, mode;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V
DESCRIPTION

Path points to a path name naming a file. Fd is a descriptor for a file. Chmod sets the access

permission portion of the file’s mode according to the bit pattern contained in mode.

Access permission bits are interpreted as follows:

04000  Set user ID on execution.
02000  Set group ID on execution.
02000  Set file locking mode to enforced (shared with set group ID on execution bit)
01000  Save text image after execution

00400 Read by owner

00200  Write by owner

00100  Execute {or search if a directory) by owner
00070  Read, write, execute (search) by group
00007  Read, write, execute (search) by others

The effective user ID of the process must match the owner of the file or be super—user to change

the mode of a file.

If the effective user ID of the process is not super user, mode bit 01000 (save text image on execu-

tion) is cleared.

If the effective user ID of the process is not super—user and the effective group 1D of the process
does not match the group ID of the file and none of the group IDs in the access group list match
the group ID of the file, mode bit 02000 (set group ID on execution and enforced file locking mode)

is cleared.

The set group ID on execution bit is also used to cause file locking mode (see lockf(2)) to be

enforced. Files with this bit set that are not group executable will have enforcement set.

If an executable file is prepared for sharing then mode bit 01000 prevents the system from aban—
doning the swap-space image of the program-text portion of the file when its last user terminates.
Thus, when the next user of the file executes it, the text need not be read from the file system but

can simply be swapped in, saving time.

Chmod will fail and the file mode will be unchanged if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a component of the path prefix.

[EPERM] The effective user ID does not match the owner of the file and the effective user

ID is not super—user.

Hewlett- Packard -1- June 28, 1985



CHMOD (2) CHMOD (2)

[EROFS] The named file resides on a read-only file system.
[EFAULT] Path points outside the allocated address space of the process.
[ENOENT] Pgth is null.
HARDWARE DEPENDENCIES
Series 500:

Chmod changes the mode of files created only in the HP-UX environment (that is, not
those created by the HP 9000 BASIC Language System).
Fehmod is not implemented on Series 500.

Integral PC:
The Integral PC allows normal user processes all capabilities previously reserved for the
super -user.

The “save text image after execution” bit is not supported.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

S8EE ALSO
chmod(1), chown(2), mknod(2), lockf(2).

Hewlett—Packard - 2- June 28, 1985



CHOWN (2) CHOWN (2)

chown, fchown - change owner and group of a file

SYNOPSIS

int chown (path, owner, group)
char *path;
int owner, group;

fchown (fd, owner, group)
int fd, owner, group;

HP-UX COMPATIBILITY

Level: chown: HP-UX/RUN ONLY
fchown: HP-UX/STANDARD

Origin: System V and UCB

DESCRIPTION

Path points to a path name naming a file. Fd is a descriptor for a file. The owner ID and group
ID of the file are set to the numeric values contained in owner and group respectively. Note that
owner and group should be less than or equal to 65535, since only the least significant 16 bits are
used.

Only processes with effective user ID equal to the file owner or super—user may change the owner—
ship of a file. If privilege groups are supported, the owner of a file may change the ownership only
if he is a member of a privilege group allowing chown, as set up by setprivgrp. The default gives
the chown privilege to all users.

The group ownership of a file can be changed to any group in the current process’s access list or
to the real or effective group id of the current process. If privilege groups are supported and the
user is permitted the chown privilege, the file can be given to any group.

Chown will fail and the owner and group of the named file will remain unchanged if one or more
of the following are true:

[ENOTDIR| A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a component of the path prefix.

[EPERM] EPERM is set when the effective user ID is not super—user and one or more of

the following conditions exist:
The effective user ID does not match the owner of the file.

When changing the owner of the file, if the owner of the file is not a member of a
privilege group allowing chown.

When changing the group of the file, if the owner of the file is not a member of a
privilege group allowing chown and the group number is not in the current
process’s access list.

[EROFS| The named file resides on a read—only file system.
[FAULT] Path points outside the allocated address space of the process.

HARDWARE DEPENDENCIES

Series 500:
Chown changes the owner and group of files created only in the HP-UX environment (that
is, not those created by the HP 9000 BASIC Langauge System).

Fehown is not implemented on Series 500.

Hewlett—Packard -1- June 28, 1985



CHOWN (2) CHOWN (2)

Integral PC:
32-bit device numbers and 24-bit minor device numbers are supported.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
chown(1), chmod(2).

Hewlett-Packard -2 - June 28, 1985



CHROOT (2) CHROOT (2)

NAME
chroot - change root directory

SYNOPSIS
int chroot (path)
char *path;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V
DESCRIPTION
Path points to a path name naming a directory. Chroot causes the named directory to become

the root directory, the starting point for path searches for path names beginning with /. The
user’s working directory is unaffected by the chroot system call.

The effective user ID of the process must be super-user to change the root directory.

The .. entry in the root directory is interpreted to mean the root directory itself. Thus, .. cannot
be used to access files outside the subtree rooted at the root directory.

Chroot will fail and the root directory will remain unchanged if one or more of the following are

true:

[ENOTDIR] Any component of the path name is not a directory.
[ENOENT) The named directory does not exist.

[EPERM] The effective user ID is not super—user.

[EFAULT] Path points outside the allocated address space of the process.
[ENOENT] Path is null.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.
HARDWARE DEPENDENCIES
Integral PC:
Super-user capabilities are provided to the normal user.
SEE ALSO
chroot(1), chdir(2).

Hewlett-Packard -1- June 28, 1985



CLOSE(2) CLOSE(2)

NAME
close - close a file descriptor

SYNOPSIS
int close (fildes)
int fildes;

HP-UX COMPATIBILITY
Level: HP UX/RUN ONLY
Origin: System V

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, fentl, or pipe system call. Close closes
the file descriptor indicated by fildes. All associated file segments which have been locked by this
process with the lockf function are released (i.e., unlocked).

[EBADF] Close will fail if fildes is not a valid open file descriptor.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
creat(2), dup(2), exec(2), fentl(2), open(2), pipe(2), lockf(2).

Hewlett—Packard -1- June 28, 1985



CREAT(2) CREAT(2)

NAME
creat - create a new file or rewrite an existing one

SYNOPSIS
int creat (path, mode)
char spath;
int mode;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V
DESCRIPTION

Creat creates a new ordinary file or prepares to rewrite an existing file named by the path name
pointed to by path.

If the file exists, the length is truncated to 0 and the mode and owner are unchanged. Otherwise,
the file’s owner ID is set to the effective user ID, of the process, the group ID is set to the effective
group ID, of the process, and the low—order 12 bits of the file mode are set to the value of mode
modified as follows:

All bits set in the process’s file mode creation mask are cleared. See umask(2).
The "save text image after execution” bit of the mode is cleared. See chmod(2).

Upon successful completion, the file descriptor is returned and the file is open for writing (only),
even if the mode does not permit writing. The file pointer is set to the beginning of the file. The
file descriptor is set to remain open across ezec system calls. See fentl(2). No process may have
more than a system defined maximum number of files open simultaneously. This is discussed
under open(2).

Creat will fail if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] A component of the path prefix does not exist.

[EACCES] Search permission is denied on a component of the path prefix.

[EACCES] The named file has active locks on it (placed by lockf(2) facililty) that are owned
by other processes.

[ENOENT] The path name is null.

[EACCES] The file does not exist and the directory in which the file is to be created does
not permit writing.

[EROFS] The named file resides or would reside on a read-only file system.

[ETXTBSY] The file is a pure procedure (shared text) file that is being executed.

[EACCES)] The file exists and write permission is denied.

[EISDIR] The named file is an existing directory.

[EMFILE] More than the maximum number of file descriptors are currently open.

[EFAULT] Path points outside the allocated address space of the process.

[ENFILE] The system file table is full.

RETURN VALUE
Upon successful completion, a non-negative integer, namely the file descriptor, is returned. Oth-
erwise, a value of -1 is returned and errno is set to indicate the error.

HARDWARE DEPENDENCIES

Hewlett-Packard 1- June 28, 1985



CREAT (2) CREAT(2)

Integral PC:
_NFILE is equal to 20.

A file does not exist on a disc for which it is intended until a close operation is performed
on that file.

SEE ALSO
chmod(2), close(2), dup(2), fentl(2), lockf(2), lseek(2), open(2), read(2), truncate(2), umask(2),
write(2).

Hewlett—Packard -2- June 28, 1985



DUP(2) DUP (2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
int dup (fildes)
int fildes;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V
DESCRIPTION

Fildes is a file descriptor obtained from a creat, open, dup, fentl, or pipe system call. Dup
returns a new file descriptor having the following in common with the original:

Same open file (or pipe).

Same file pointer (i.e., both file descriptors share one file pointer).

Same access mode (read, write or read/write).

Same file status flags (see fentl(2), F_DUPFD).
The new file descriptor is set to remain open across ezec system calls. See fentl(2).
The file descriptor returned is the lowest one available.

Dup will fail if one or more of the following are true:

[EBADF] Fildes is not a valid open file descriptor.
[EMFILE] The maximum number of file descriptors (defined by _NFILE) are currently
open.

RETURN VALUE
Upon successful completion a non-negative integer, namely the file deseriptor, is returned. Other—
wise, a value of -1 is returned and errno is set to indicate the error.

HARDWARE DEPENDENCIES
Integral PC:
_NFILE is equal to 20.
SEE ALSO
close(2), creat(2), exec(2), fentl(2), open(2), pipe(2).

Hewlett-Packard -1- June 28, 1985



DUP2(2) Series 200 Only DUP2(2)

NAME
dup? - duplicate an open file descriptor to a specific slot

SYNOPSIS
int dup2(fildes, fildes2)
int fildes, fildes2;

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD - Version 7 compatibility and UCB compatibility

Origin: Version 7

Remarks: This facility is provided for backwards compatability with Version 7 and BSD systems.
Fentl should be used for all new code.

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, fentl, or pipe system call. Fildes2is a
non-negative integer less than the maximum value allowed for file descriptors. Dup2 causes
fildes? to refer to the same file as fildes. If fildes? already referred to an open file, it is closed first.
The file descriptor returned by dup? has the following in common with the original:

Same open file (or pipe).
Same file pointer (i.e., both file descriptors share one file pointer.)
Same access mode (read, write or read/write).
Same file status flags (see fentl(2), F_DUPFD).
The new file descriptor is set to remain open across ezec system calls. See fentl(2).

This call can be accessed by giving either (for Version 7) the -1V7 or (for 4.1 or 4.2bsd) the —
IBSD option to ld(1).

DIAGNOSTICS
Dup?2 will fail if one or more of the following are true:

[EBADF] Fildes is not s valid open file descriptor.
[EINVAL] Fildes2 is not in the range of legal file descriptors.

RETURN VALUE
Upon successful completion a non-negative integer, namely the file descriptor, is returned. Other-
wise, a value of -1 is returned and errno is set to indicate the error.

HARDWARE DEPENDENCIES
Series 500:
Dup2 is not currently supported on the Series 500.

Integral PC:
_NFILE is equal to 20.

SEE ALSO
close(2), creat(2), dup(2), exec(2), fentl(2), open(2), pipe(2).

Hewlett-Packard -1- July 4, 1985



EMS(2) EMS(2)

NAME
ems - Extended Memory System

SYNOPSIS
#include <sys/ems.h>

HP-UX COMPATIBILITY
Level: Extended Memory - HP-UX/EXTENDED

Origin: HP
Remarks: The Extended Memory System is not available on the Series 200.
DESCRIPTION

Extended Memory System consists of intrinsics which allocate and deallocate address space, map
files into address spaces, support shared memory, and change the protection of address spaces.
There are separate manual pages for the intrinsics. This page describes features in common to all
the intrinsics in EMS.

Definitions
memory space
This is the actual physical memory of a machine.
address space

This refers to the logical memory of a process. Memory space is shared by having
processes’ address space refer to the same memory space.

segment
A contiguous piece of address space.

Properties of a Segment
During the allocation of a segment, the following types of segments can be requested:

MEM_SHARED
The address space is to be sharable with other processes. The data is shared across
fork(2) (i.e. not copied on a fork).

MEM__PRIVATE
The address space is process local, and is copied on a fork(2). All memory segments will
be either MEM_SHARED or MEM_PRIVATE; the default is MEM_PRIVATE.

MEM __CODE
The address space may, at some time in its lifetime, be made executable.

MEM_DATA
The address space may, at some time in its lifetime, be read and/or written. A segment
may be MEM__CODE, MEM_DATA, or both. The default type is derived from the ini-
tial access permissions:

MEM_R | MEM_W — MEM_DATA

MEM_X — MEM_CODE

(MEM_R | MEM_W) && MEM_X —MEM_CODE | MEM_DATA.
MEM_PAGED

Requests that a segment be created as a paged object. (This is ignored if not significant
for a particular implementation).
File Mapping
EMS provides the facility for mapping a file into process address space. This is done via
memalle(2). Files can be either private or shared.

For private file mapped segments, the address space will contain an image of the file as it existed
at the time of the memallc(2) call. Subsequent alterations of the file will have no effect on the
contents of the address space, and vice—versa.

Hewlett—Packard -1- June 28, 1985



EMS(2) EMS(2)

For shared file mapped segments, the address space is identically the file (at least the mapped
portion thereof). Changes to the address space represent changes to the file, and vice—versa. For
example, a write or read to or from the address space is, in all ways, equivalent to a file system
write or read. Similarly, re-creating (using creat(2)) the file will result in the address space con—
taining all zeros.

The access permissions (e.g. read, write) applied to a shared mapped file are established by the
first memallc(2) referencing that file. Subsequent mappings of the same file by other processes
must request identical access permissions.

File mapping, as described above, is only guaranteed to apply to regular local files and block
structured device files. File mapping is not applicable to remote files at this time. Attempting to
map an unsupported file type will result in error EINVAL.

Note that file mapping, either MEM__PRIVATE or MEM_SHARED, alwaeys requires read per—
mission on fileid. Access modes cannot exceed those on fileid for shared, mapped files.

Shared Memory
Shmget(2) is the preferred intrinsic for sharing memory space between processes. Avoid using
when shmget is available.

By using ems, it is also possible to share a memory space between processes. Access to shared
memory can occur in two ways. The first way is to associate a file name as the name of the
shared memory space. Each related or unrelated process performs a memallc(2) to gain access to
the shared memory through mapping the file.

Another method of sharing, without the file, is for related processes: a process can allocate a
non-file-mapped shared segment; upon a fork(2), the child process will have access to the same
memory space as the parent.

SEE ALSO
memadvise(2), memalle(2), memchmd(2), memlck(2), memvary(2), vsadv(2), vson(2) malloc(3C),
shmget(2), shmop(2}, shmetl(2).

Hewlett—Packard -2- June 28, 1985



ERRINFO(2)

NAME

Series 500 Only ERRINFO (2)

errinfo - error indicator

SYNOPSIS

extern int errinfo;

HP-UX COMPATIBILITY
Level: HP-UX/EXTENDED

Origin: HP

Remarks:
DESCRIPTION

Errinfo is implemented on the Series 500 only.

When an error occurs in a system call, the external variable errno is set to the standard HP-UX
error number, and more detailed information is stored in the external variable errinfo. Errinfo
obtains its value from the escape code returned by the underlying HP-UX kernel.

Errinfo is not cleared on successful system calls, so it should only be checked after an error has

been indicated.

Software that is intended to be portable across HP-UX implementations should not reference

errinfo.

The errinfo values and their meanings are as follows:
VALUE MEANING

*4

5

6
*7
*10
*11
*12
*13
*14
*20
*21
*22
*23
*24
*30
*31
*32
*33
*34
*35
*36

*37
40
41
42
43
44
45
46

Hewlett-Packard

NVM address out of range;

buffer request is not within valid range;

buffer address space overflow;

address specified does not reference a valid buffer;

specified process priority level out of range;

a non-existent code segment is specified;

attempt to delete non-existent partition;

system parameter not addressable;

system parameter cannot be referenced with an EDS pointer;
invalid message link;

invalid message link;

message limit exceeded;

link limit exceeded;

link being deleted contains processes waiting for messages;
timer canceled;

timer stopped;

cancel already done for specified timer ID;

stop already done for specified timer ID;

timer ID not stopped before cleared;

timer ID not canceled before cleared;

attempt to set time and date to a value outside accessible range (midnight Janu-
ary 1, 1900 to midnight December 31, 25599);

stack extension error;

memory overflow (private partition);

memory overflow;

no free partition available for allocation;

segment table overflow;

memory controller block overflow;

partition overflow;

pointer passed as an argument does not, point to a valid segment;

-1- June 28, 1985



ERRINFO (2)

47
*48
*49

*51
56
57

*59

*60

*63

*64

*65
66

*67

*69
*70
*73
*74
*75
*76
*77
*78

80

81
82
83
84

85
86
*89
*90
91
*94
95
97
98
*99
100
*101
102

*103
105

Hewlett—Packard

Series 500 Only ERRINFO(2)

segment size is out of range;

free space chains are inconsistent, segment map corruption;

free space chains are inconsistent, block map corruption;

pointer passed as an argument does not point to a valid segment;

block address within a segment is invalid;

device or interface card timed out;

system call aborted by signal(2);

improper resource management in operating system;

improper resource management in operating system;

routine called for wrong I/O device or at wrong time;

routine called for wrong I/O device or at wrong time;

used in BASIC only;

hardware or firmware error in interface card;

1/0 transaction aborted by device or interface card;

an HP-1O interface card failed its self test;

used during power—up, produces “System halted - incompatible IOP’s” message;
no such object;

out of timer ID’s;

timer ID out of range;

start__partition parameters not consistent;

parameter to start_partition not addressable;

attempt to change to non-existent partition;

must be a system process to change to partition;

device not ready for request, may be busy with some other operation, or power
may be off;

media is write-protected and cannot be altered;

media has been mis-inserted;

format switch disables driver from doing a media format operation;

media error was detected, usually a CRC, parity, or checksum error; data may
not be valid;

cannot find record on media; usually indicates trouble in reading the
header/servo information on the media;

the read check of data written to a record has failed;

media may have been changed since last access; buffered data may have to be
thrown away:

used to implement internally generated re-tries;

software fajlure was detected; perhaps data structures were corrupted, or an
unexpected event occurred;

unknown error; indicates some type of device or interconnect malfunction;
media_active (true) request must be made before first access;

a parameter for a particular request is not supported by this driver; usually indi-
cates that the type of card does not support a special function;

termination mode is not supported by this device driver;

EOI must have a data byte associated with it before it can be written;

driver must be opened for request;

record number out of allowed range; usually indicates corrupt directory struc-
ture;

the transfer length was negative, zero, or odd for a halfword read or write
request; can also indicate a transfer past the end of the media volume;

halfword or byte mode transfers are not supported by this driver;

cannot close a locked driver; this is a fault of the calling code;

the argument specified for this ioct! request is out of range or points to the
wrong type of structure;

-2- June 28, 1985



ERRINFO (2)

106
107

108
109
110

*111

Hewlett—Packard

112

113

114
115
116
117
118
119
120
121

122

123

124

125

126

127

128
129

130
131
132
133
134
135

136
137
138
139

140

Series 500 Only ERRINFO(2)

The ioctl command given is not recognized by this device;

an attempt was made to attach two different drivers to the same device; these
drivers are incompatible and cannot co—exist; the new driver is not attached, but
the old driver remains unchanged;

the size of the string is not correct for this string register access;

interleave factor not supported by disc; it is either zero, negative, or too big;
invalid address was detected by the driver, or the interface card occupies the
same subaddress as the device;

capacity of disc exceeds 32-bit record address range assumed by driver;

reference to an unsupported pseudo-register was made; if the request accessed
multiple registers, the previous (if valid) register accesses were made;

HP-IB TCT byte must be at the end of the ATN sequence because you have
passed control;

a request is not supported by this driver;

no driver with that name was found;

no driver is available for that card, or the device address value is out of range;
write verify is not supported for this mass storage device;

length of -1 specifying that a transfer should be used is invalid;

an invalid value was assigned to a pseudo-register;

data transfer was terminated due to the reception of a secondary address;

for buffered devices, a data transfer cannot be satisfied due to un-transferred
data from the other direction; for example, a write may not be possible if there is
still unread data present on the device;

device cannot satisfy this request because of a previous request or the current
state of the device;

the beginning of the tape was encountered before the operation could be com-—
pleted;

the interface cannot be the HP-IB active controller when doing this operation;
synchronous data rate could not be met to complete the operation; system may
be too heavily loaded, or the specified bandwidth parameters for this or another
device may be wrong;

a hardware fault was detected; controller/status card should be examined for
further information;

the device/interface was not found at the specified address; power may be off, or
the address could be wrong;

the end of tape was encountered before the operation was complete;

the device failed its self test or a diagnostic; no further access to this device
should be attempted;

the HP-IB interface is too slow for this synchronous device;

tape end of file was encountered before request could be completed;

the device was busy and could not handle the request;

the media is absent from the device;

the media is not formatted, and must be formatted before use;

too many media errors prevent formatting to complete; formatting operation
may be only partially done;

the media has no more spares left but had to spare some data; the sparing was
not done;

the HP-IB interface must be the active controller to execute this operation;

the HP-IB interface must be the system controller to execute this operation;

no data seen on media after a device specific length of media; this is a sequential
tape error;

more data was found in the record than was requested for the read operation;
the remaining data was lost, and cannot be read by the next read request;

-3- June 28, 1985



ERRINFO (2)

141
142
143
144
145
146

147
148

149

*150
*151

157

158

160
161

162

163

164

165

166

167
168

169

170
171
172
173
174

*175

Hewlett—Packard

176
177
178
179

181

Series 500 Only ERRINFO(2)

the media physical format is incorrect for this disc;

media failure has occurred, or the media has deteriorated such that replacement
is suggested; writing is no longer allowed; media may only last long enough for a
back—up;

the HP-IB interface is not addressed to read or write as requested, and because
it is active controller, it cannot become addressed;

the read or write request data transfer was aborted by an HP-IB IFC or an
HP-IB device clear operation;

not all the data (or commands) were accepted by the device;

not all the data was sourced by the device;

controller or unit fault was reported by the device;

some failure occurred in receiving the device status result; usually means that
not all the status was returned, or the controller reported a failure when the
driver attempted to receive the status;

the operation cannot be completed because a user programmed hold off has
occurred;

system problem or failure;

successful completion of task; should not be visible;

the volume label specified in the volume specifier does not match the volume
label on the volume;

links may not be removed if the file has been opened with the “no purge link”
option;

cannot open a directory with write access;

two or more volumes have the same volume label and the file system is unable to
distinguish between them for this request;

an attempt was made to access an open file in a way forbidden by the file sys-
tem,;

the disc format does not support the requested operation;

the file cannot be opened for writing because it is currently being ezeced, or the
file may not be opened with execute access because it is currently opened for
writing;

the file/device could not be opened because the system open file table is full; this
is caused by a memory overflooverflow

a file may not be opened in both “shared” and "exclusive” modes; your access
mode conflicts with the current mode;

a signal was received while waiting to read or write to a pipe;

the request cannot be performed because the designated file is open or in use at
the current time;

an attempt was made to purge a link to the file without obtaining the necessary
access rights;

not enough disc space could be allocated to satisfy the request;

a file with the same name already exists in the directory;

the file ID passed to the system was bad;

an attempt was made to read beyond the physical end of the file;

tried to write to a pipe for which there are no readers;

the request made is not supported by the file system;

same as error 162, except that the file may not be open;

a “position” (lseek) request was made on a pipe;

the device driver specified in the volume specifier does not match the current
device driver being used for the volume;

the disc format specified in the volume specifier does not match the disc format
on the volume;

some file in the file path could not be found;

_4- June 28, 1985



ERRINFO (2)

182
183
184
185

188
189
193
198

201
204

*210
216

*217
*218

*219
221

222
*223
*224
*225
*226
*227
*228

229

230

231
232
233
234

235
236

237
238

241
242
244

249
*252

Hewlett-Packard

Series 500 Only ERRINFO(2)

the device specified is not a random access blocked device;

the disc format on the disc does not support volume labels;

the disc format on the disc does not support file passwords;

the disc does not contain a recognizable disc format; the disc format name given
for an initialize request is not known to the system;

the region of the file that was accessed is currently locked;

a volume may not be initialized while there are open files on it;

a non-directory was specified where a directory was required;

the request cannot be satisfied because another file cannot be added to the direc—
tory; no i-nodes were available;

the request cannot be satisfied because the directory is not empty;

the file system was unable to extend a “contiguous” file without creating another
extent;

invalid file code;

the select code in the device address in the volume specifier is not within the
acceptable range for this hardware configuration;

an attempt was made to remove or change a password which does not exist;

an attempt was made to put two identical passwords on a file with different
capability sets;

a simple deadlock was encountered when locking a file;

the file name is too long (LIF discs support 10 characters, HP 9845 format discs
support 6 characters, and SDF discs support 16 characters);

invalid character in LIF or HP 9845 format disc file name;

invalid character in LIF or HP 9845 format disc password,;

volume label is too long on a LIF or HP 9845 format disc;

password too long on a LIF or HP 9845 format disc;

invalid character in volume label on a LIF or HP 9845 format disc;

invalid date on L1F or HP 9845 format disc;

invalid record size on LIF or HP 9845 format disc;

invalid record mode on LIF or HP 9845 format disc;

a file name was expected and none was specified, or an attempt was made to
purge the ".” or ”..” links from a directory;

a subdirectory was specified when the disc format does not support subdirec—
tories;

links not supported on LIF or HP 9845 format discs;

non-UNIX systems are not allowed to establish duplicate links to a directory;
the device (file) specified for the mount/umount request is not a block special
device;

the device (file) specified for the umount request is not currently mounted,;

a volume could not be unmounted because it is currently being used (there are
open files or working directories established on the mounted volume); a volume
could not be mounted because it is already mounted; the directory being
mounted on is open or is the root directory;

an attempt was made to establish a link from one volume to another;

raw discs must be Iseeked and read/write sizes must be multiples of the device’s
physical sector size (256 bytes for discs, 1024 bytes for cartridge tapes).

the byte address on a file access was outside the acceptable range for the file; the
byte address must be non-negative;

the file system saw a directory, i-node, or bit map record which contains incon—
sistent data;

an attempt was made to read beyond the logical end of the file;

an attempt was made to unlock an unlocked file;

time value out of range;

-5- June 28, 1985



ERRINFO(2)

*253
*254
*255

Hewlett-Packard

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
323
324
325
327
328
329
330
331

Series 500 Only

hours, minutes, or seconds value out of range;
day, month, or year value out of range;

invalid date;

specified segment does not exist;

page table has not been initialized;

page has not been initialized;

lock count has overflowed;

lock count has underflowed;

entire working set cannot be locked;

lock length is invalid;

segment is not locked;

locked segment cannot be extended; -

page is not locked;

segment is not paged;

segment is not shared;

requested segment lengths are inconsistent;
minimum working set request cannot be satisfied;
frame pool cannot be expanded;

virtual memory device table overflow;

virtual memory device index is invalid;

default virtual memory device cannot be removed;
virtual memory device index is inactive;

virtual memory device index is in use;

a locked page was encountered;

escape through user code for ezec;

target process not found in kill call;

target process has the wrong real user ID in kill call,
no processes found in a broadcast signal attempt;
signal number out of range;

not super—user; requires super—user permission;

a bad argument was supplied to a system call;

an attempt was made to wait with no children;
an intrinsic was aborted by a signal;

process stack overflow;

unrecognized ulimit command;

your DB relative argument had an offset greater than 512 Kbytes;
fix-up offset exceeds segment size (see a.out(5));
stack pointer passed to brk;

invalid segment number in user pointer;

an attempt was made to kul(0,sig) with no current process group;
file number out of range;

specified file ID not open;

toctl call not implemented;

inappropriate foct! command for device;

ID not in the range 0 to 65535;

floating point divide-by—zero;

floating point overflow;

floating point underflow;

wrong number of system call parameters;
inconsistent executable file;

front panel timeout (series 500, models 30 and 40 only);
graphics to internal CRT timed out;

graphics hardware does not respond;

ERRINFO(2)

June 28,

1985



ERRINFO(2)

*332
*333
334
335
336
337
343
345
346
347
348
349
350
358
359
360
361
362
363
364
365
366
367
368

369
370
31
372
373

374

375
376
377
378

379
380
381
382
383
384
385

386
387
388
389
390
391
392

Hewlett-Packard

Beries 500 Only ERRINFO(2)

unexpected error when performing an open;

unexpected error when performing a close;

illegal mode of driver was requested;

a buffer was passed to an intrinsic that is too large;

DMA terminated abnormally;

received one more x coordinate than y coordinate;

user program called missing kernel segment;

attempt to execute a file which is too small;

attempt to execute a file with a bad magic number;

unimplemented configure function;

maximum stack exceeded;

fatal stack overflow;

the requested heap size is too big;

there is no tty device at this address;

this request is not supported by this device;

semid, msqid or shmid is not a valid IPC identifier;

semnum in semctl(2) or mtype in msgsnd(2) out of range;

invalid cmd to semctl(2), msgetl(2), or shmetl(2);

nsems out of range in semget(2);

ID for key exists but nsems or size inconsistent with existing ID;

mtext is greater than msgsz and msg_noerror is false in msgrev(2);

IPC key exists but operation permission denied;

IPC operation permission denied;

operation requires caller to be super-user or owner or creator of specified IPC
1D;

ID does not exist and IPC_CREATE not specified;

system-imposed limit on number of IDs exceeded; ID not created;

ID exists for key, but IPC_CREATE and IPC_EXCL both specified;

nsops is greater than the system-imposed maximum;

sem_num is less than zero or greater than or equal to the number of semaphores
in the set associated with semid;

operation would result in suspension of the calling process but IPC_NOWAIT
specified;

operation would cause semval or semadj value overflow;

specified semaphore or message queue ID has been removed from the system;
insufficient memory for IPC structure;

message queue does not contain message of desired type and IPC_NOWAIT
specified;

shared memory size or message size (msgsz) out of range;

shmaddr is invalid (non-zero);

number of shared memory segments per user exceeded;

shmflg is invalid (SHM_RDONLY set);

no line discipline of the requested value was found;

the ioctl command given is not recognized by this device;

the argument specified for this ioct]l request is out of range or points to the
wrong type of structure;

an attempt was made to enable process accounting when it was already enabled.
the file specified for process accounting is not an ordinary file;

lockf deadlock detected;

lockf no more free locks;

plock permission invalid (not superuser);

PROCLOCK is invalid (PROCLOCK, TXTLOCK, or DATLOCK exists);

TXTLOCK is invalid (PROCLOCK

or TXTLOCK exists);

-7~ June 28, 1985



ERRINFO(2) Series 500 Only ERRINFO(2)

393 DATLOCK is invalid (PROCLOCK or DATLOCK exists);
394 UNLOCK is invalid (no lock exists);
395 op is invalid (not PROCLOCK, TXTLOCK, DATLOCK, or UNLOCK);

396 plock invalid in [vfork,exec] window;

397 get/ setitimer invalid in [vfork,exec] window;

398 timer specification is invalid;

399 timeval is invalid;

400 no interrupt packet for this file descriptor;

401 illegal mode mask used in hpib__io function call;

*440 internal error;

441 protection modes do not match with existing segment;

442 device is not a ‘CS80’ device;
443 attempt to add a device not specified with a device file;

444 attempt to pass an EMS intrinsic a parameter which is out of range;

445 attempt to memchmd segment codes which are shared by more than one process;
446 attempt to filemap a file which has already been filemapped by process;

447 insufficient memory available to complete memallc request;

448 the specified memory address is invalid;

449 attempt to use EMS intrinsic on memory not allocated by memallc;

450 super—user capability is required to create this kind of file;
451 specified file or directory does not exist;

452 an invalid RPM program descriptor was used;

453 an RPM child process was interrupted;

455 attempt to close file failed;

456 abortive file close occurred; data may have been lost;
457 attempt at an abortive file close failed;

458 incorrect select code; device or address does not exist;
459 too much data was given for an RPM request;

460 a string is too long;

461 a name used for RPM is too long;
462 an invalid file ID was used;

463 an open file could not be found;

464 attempt to create a process has failed;

465 connection limit set by the super-user was reached;
466 login not allowed;

467 RPM was not allowed to create a remote process;
470-483

not enough memory could be found; check the network memory limit set with
npowerup;

490 TCP security mismatch;

491 remote login failed;

493 an RPM login is invalid;

494 consumer login sequence is invalid;

496 login sequence is invalid;

497 connection attempt was not accepted by the remote system;

498 new inbound path rejected, possibly due to lack of local resources;
500 RPM cannot set up the login environment;

501 RPM service is denied;

502 service instance is denied;

503 login on the producer system is invalid;

505 illegal socket name length was used for IPC;
506 illegal node name length was used for IPC;
507 too many file name sets were given for RFA;

Hewlett—Packard - 8- June 28, 1985



ERRINFO (2)

508
510
511

513-516

517
518
519
520
521
522

*523-524

525
526
529
530
532
533
535
536
537
540
541
543
544
545
546
547
548
559

*560-685

690

691-692

*694
695
700
701
705
706
707
708

709-710

711

720-722

723

724-725

726

Hewlett-Packard

Series 500 Only

too many node names were given in an RFA path specifier;
attempt was made to copy a directory;
parameter contained an illegal value;

register number or value is unacceptable;

internal error; contact qualified HP support personnel;
incorrect file type; cannot create RFA remote file;
flag specified for RPM is invalid;

an option specified for RPM is invalid;

unacceptable format for an RPM option;

address given could not be used;

internal error; contact qualified HP support personnel;
illegal characters in an IPC name;

incorrect IPC socket descriptor used;

illegal IPC flag value was used;

illegal IPC data length was used;

illegal IPC control request was used;

illegal IPC option structure was used;

illegal IPC request value was used;

illegal IPC timeout value was specified;

IPC receive size too big;

IPC send size too big;

data unit is too large;

IPC socket specified is not a virtual circuit socket;
illegal address format;

nested remote path names are not allowed;

IPC socket specified is not a destination socket;
IPC socket specified is not a source socket;

error in field endpoint;

1o local IPC socket descriptors are available;

internal error; contact qualified HP support personnel;
network is already up;

network is down;

internal error; contact qualified HP support personnel;
network is going down;

incorrectly formatted network directory was specified;
2285A LAN Unit download file is bad;

a LAN Interface hardware problem has been detected;
LAN Interface failed its selftest;

LAN Interface failed during a transmit attempt;

LAN Interface failed during a receive attempt;

2285A LAN Unit failed during a download;
HP-IB Interface failed;

network transport timeout occurred;
remote system did not respond to retransmission attempts;

no activity on a connection; the connection has been aborted;
attempt to establish a connection has failed;

ERRINFO(2)

June 28, 1985



ERRINFO(2) Series 500 Only ERRINFO(2)

730-732
remote system has violated network protocol;
733 a message is too long;
734 request was made that is unacceptable to the transport or to a remote service;
735 unrecognized RFA request;
736 request is unserviceable at this time;
737 unrccognized RFA request;
738 invalid response from the remote system;
739 remote RPM process has violated network protocol;
740 remote RPM process has reported an unrecognized error;
*741 an unrecoverable network protocol error has occurred;
745 requested service cannot be supplied;
747 system cannot support an interchange operation;
748 system cannot support a restart operation;
749 checkpointing not supported;
750 system cannot support a transient operation;
751 unknown system type;
752 buffer too small;
753 invalid remote file request;
754 an error response was received;
755 RPM does not support the requested feature;
756 remote node’s version of IPC is incompatible;
*757 internal error; contact qualified HP support personnel;
761 incorrect or unknown path name;
762-763

destination is unreachable;
764 file specified is not a network special file;
*765 internal error; contact qualified HP support personnel;
*767 internal error; contact qualified HP support personnel;
768 system name used is unknown to the local node;
770-774

connection has been lost;
777 IPC connection request failed,;

778 connection to producer is down;

780 name specified for the producer system could not be found;
782 name specified for the consumer system could not be found;
784 insufficient resources on the producer system;

785 insufficient resources on the consumer system;

786-787

not enough memory could be obtained on the remote system. The remote system
could be out of physical memory or the network memory limit on the remote
node could be too small;

788 IPC socket already exists;

790 TPC socket name could not be found;

792 IPC virtual circuit connection was killed;

794 IPC virtual circuit socket cannot, be named;

796 IPC connection is pending;

798 IPC process does not own the socket;

800 IPC operation would block;

804 the program for RPM is invalid;

806 the program for RPM could not be loaded;

808 LAN Interface failed. If resetting the Interface does not eliminate the problem,
contact qualified HP personnel.

Hewlett—Packard - 10 - June 28, 1985



ERRINFO (2) Series 500 Only ERRINFO(2)

All errinfo values marked with an asterisk (*) indicate a serious system problem which should be
checked by qualified HP support personnel.

For errinfo values 360 382, IPC refers to the interprocess communications facilities provided by
message queues, shared memory, and semaphores. For errinfo values 450-999, IPC refers to the
interprocess communications facilities provided by local area networking.

SEE ALSO
err(1), errnet(2), errno(2), perror(3C).

WARNING

Errinfo is intended for diagnostic purposes only. Values and meanings may change in future
releases of HP-UX.

Hewlett—Packard -11- June 28, 1985



ERRNO(2) ERRNO(2)

- [ A .
PR A IR Ar Y

errno - error indicator for system calls

SYNOPSIS

#include <errno.h>
extern int errno;

HP-UX COMPATIBILITY

Level: HP-UX/RUN ONLY
Origin: System V, HP

DESCRIPTION

Errno is an external variable whose value is set whenever an error occurs in a system call. This
value can be used to obtain a more detailed description of the error. An error condition is indi-
cated by an otherwise impossible returned value. This is almost always -1; the individual descrip—
tions specify the details. Errno is not cleared on successful system calls, so its value should be
checked only when an error has been indicated.

Each system call description attempts to list all possible error numbers. The following is a com
plete list of the error names. The numeric values can be found in <sys/errno.h> but should not
normally be used.

EPERM Not owner
Typically this error indicates an attempt to modify a file in some way forbidden except to its
owner or super-user. It is also returned for attempts by ordinary users to do things allowed
only to the super—user.

ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but doesn’t, or when
one of the directories in a path name does not exist. It also occurs with msgget, semget,
shmget
when key does not refer to any object and the IPC_CREAT flag is not set.

ESRCH No such process
No process can be found corresponding to that specified by pid in kill, ptrace, or rtprio, or
the process is not accessible.

EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has elected to catch,
occurred during a system call. If execution is resumed after processing the signal, it will
appear as if the interrupted system call returned this error condition unless the system call
is restarted (see sigvector(2)).

EIO I/0 error
Some physical I/O error. This error may in some cases occur on a call following the one to
which it actually applies.

ENXIO No such device or address
I/0 on a special file refers to a subdevice which does not exist, or is beyond the limits of the
device. It may also occur when, for example, a tape drive is not on-line or no disk pack is
loaded on a drive, or when a read or write is attempted beyond the physical limit of a dev—
ice.

E2BIG Arg list too long
An argument and or environment list longer than maximum supported size is presented to a
member of the ezec family. Other possibilities include: message size or number of sema-
phores exceeds system limit (msgop, semop), or too many privileged groups have been set up
(setprivgrp).

ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate permissions, does

Hewlett-Packard -1- June 28, 1985



ERRNO(2) ERRNO(2)

not start with a valid magic number (see a.out(5)), or the file is too small to have a valid
executable file header.

EBADF Bad file number
Either a file descriptor refers to no open file, a read (respectively write) request is made to a
file which is open only for writing (respectively reading), or the file descriptor is not in the
legal range of file descriptors.

ECHILD No child processes
A wait was executed by a process that had no existing or unwaited—for child processes.

EAGAIN No more processes
A fork failed because the system’s process table is full, the user is not allowed to create any
more processes, or a semop or msgop call would have to block.

ENOMEM Not enough space
During an ezec, brk, sbrk, shmget, shmctl, or plock system call, a program asks for more
space than the system is able to supply. This may not be a temporary condition; the max—
imum space size is a system parameter. The error may also occur if the arrangement of
text, data, and stack segments requires too many segmentation registers, or if there is not
enough swap space during a fork.

EACCES Permission denied
An attempt was made to access a file or IPC object in a way forbidden by the protection
system.

EFAULT Bad address
The system encountered a hardware fault in attempting to use an argument of a system call;
can also result from passing the wrong number of parameters to a system call.

ENOTBLK Block device required
A non-block file was mentioned where a block device was required, e.g., in mount.

EBUSY Device or resource busy
An attempt to mount a device that was already mounted or an attempt was made to
dismount a device on which there is an active file (open file, current directory, mounted—on
file, active text segment). It will also occur if an attempt is made to enable accounting when
it is already enabled. The device or resource is currently unavailable, such as when a non-
shareable device file is in use.

EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g., link.

EXDEV Cross—device link
A link to a file on another device was attempted.

" ENODEV No such device

An attempt was made to apply an inappropriate system call to a device; e.g., read a write-
only device.

ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in a path prefix or
as an argument to chdir(2).

EISDIR Is a directory
An attempt to open a directory for writing.

- {EINVAL Invalid argument

Some invalid argument (e.g., dismounting a non-mounted device; mentioning an undefined
signal in signal, or kill; reading or writing a file for which Iseek has generated a negative

pointer). Also set by the math functions deseribed in the (3M) entries of this manual.

Hewlett-Packard -2- June 28, 1985



ERRNO(2) ERRNO(2)

ENFILE File table overflow
The system’s table of open files is full, and temporarily no more opens can be accepted.
EMFILE Too many open files
No process may have more than a system defined number of file descriptors open at a time.
For systems below HP-UX STANDARD the minimum number is 20. For systems at or above
HP-UX STANDARD the minimum number is 60.
ENOTTY Not a typewriter
The (foctl(2)) command is inappropriate to the selected device type.
ETXTBSY Text file busy
An attempt to execute an executable file which is currently open for writing (or reading).
Also, an attempt to open for writing an otherwise writable file which is currently open for
execution.
EFBIG File too large
The size of a file exceeded the maximum file size allowed by the file system, ULIMIT; was
exceeded (see ulimit(2)), or bad semaphore number in semop(2) call.
ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on the device; or, no space in
system table during msgget(2), semget(2), shmget(2), or semop(2) while SEM_UNDO flag
is set.
ESPIPE Illegal seek
An lseek was issued to a pipe.
EROFS Read only file system
An attempt to modify a file or directory was made on a device mounted read-only.
EMLINK Too many links
An attempt to make more than the maximum number of links {1000) to a file.
EPIPE Broken pipe
A write on a pipe for which there is no process to read the data. This condition normally
generates a signal; the error is returned if the signal is ignored.
EDOM Math argument
The argument of a function in the math package (3M) is out of the domain of the function.
ERANGE Result too large
The value of a function in the math package (3M) is not representable within machine pre -
cision.
ENOMSG No message of desired type
An attempt was made to receive a message of a type that does not exist on the specified
message queue; see msgop(2).
EIDRM Identifier Removed
This error is returned to processes that resume execution due to the removal of an identifier
from the file system’s name space (sec msgctl(2), semctl(2), and shmetl(2)).
ENAMETOOLONG File name too long
A component of a path name exceeded the maximum number of characters for a file name,
or an entire path name exceeded 1023 characters. Not all file systems always detect this
error.
ENOTEMPTY Directory not empty
An attempt was made to remove a non-empty directory.
EDEADLK Resource deadlock would occur
A process which has locked a system resource would have been put to sleep while

Hewlett—Packard -3- June 28, 1985



ERRNO(2) ERRNO (2)

attempting to access another process’ locked resource.
ENET Local area network error
An error occured in the software or hardware associated with your local area network.

HARDWARE DEPENDENCIES
Series 500:
In the definition of ENOMEM, the maximum space size is not a system parameter. Also, the
terms “text, data, and stack segments”, “segmentation registers”, and “swap space” are
invalid.

In the definition of EMLINK, the maximum number of links is 32767.

One additional errno values is implemented:

EUNEXPECT Unexpected error
An unexpected error was returned from the system, indicating some type of system
problem. This error should never occur; if it does, it indicates a system bug.

A second error indicator, errinfo, is implemented in addition to errno. See errinfo(2).

SEE ALSO
On the Series 500: err(1), errinfo(2).

Hewlett-Packard -4 - June 28, 1985



EXEC(2) EXEC(2)

NAME
execl, execv, execle, execve, execlp, execvp - execute a file

SYNOPSIS
int execl (path, arg0, argl, ..., argn, 0)
char *path, #arg0, xargl, ..., *argn;

int execv (path, argv)
char spath, sargv| J;

int execle (path, arg0, argl, ..., argn, 0, envp)
char spath, sarg0, *argl, ..., #argn, senvp| |;

int execve (path, argv, envp)
char spath, sargv[ ], *envp| |;

int execlp (file, arg0, argl, ..., argn, 0)
char =file, *arg0, *argl, ..., *rargn;

int execvp (file, argv)
char sfile, sargv| |;

HP-UX COMPATABILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION
Ezec, in all its forms, loads a program from an ordinary, executable file onto the current process,
replacing the current program. This file is either an executable object file, or a file of data for an
interpreter, called a script file.

An executable object file consists of a header (see a.out(5)), a text segment, and a data segment.
The data segment contains an initialized portion and an uninitialized portion (bss). For ezeclp
and ezecvp the shell (/bin/sh) may be loaded to interpret a script instead. There can be no
return from a successful ezec because the calling program is overlaid by the new program.

When a C program is executed, it is called as follows:

main (argce, argv, envp)

int argce;

char s#argv, **envp;
where arge is the argument count and argv is an array of character pointers to the arguments
themselves. As indicated, arge is conventionally at least one and the first member of the array

points to a string containing the name of the file. (The exit conditions from main are discussed in
exit(2)).

Path points to a path name that identifies the executable file containing the new program.

File (in ezeclp or execvup) points to a file name identifying the executable file containing the new
program. The path prefix for this file is obtained by a search of the directories passed as the
environment line "PATH =" (see environ(7)). The environment is supplied by the shell (see
sh(1)). If file does not have an executable magic number (magic(5)), then it is passed to /bin/sh
under the assumption that file is a shell script.

Arg0, argl, ..., argn are pointers to null-terminated character strings. These strings constitute
the argument list available to the new program. By convention, at least arg0 must be present
and point to a string that is the same as path (or its last component).

Argy is an array of character pointers to null-terminated strings. These strings constitute the
argument list available to the new program. By convention, ergv must have at least one member,
and it must point to a string that is the same as path (or its last component). Argv is terminated
by a null pointer.

Hewlett-Packard -1- June 28, 1985



EXEC(2) EXEC(2)

Envp is an array of character pointers to null-terminated strings. These strings constitute the
environment in which the new program will run. Envp is terminated by a null pointer. For ezec!
and ezecv, the C run-time start—off routine places a pointer to the environment of the calling pro—
gram in the global cell:

extern char *xenviron;
and it is used to pass the environment of the calling program to the new program.

File descriptors open in the calling process remain open in the new program, except for those
whose close-on—exec flag is set; see fentl(2). For those file descriptors that remain open, the file
pointer is unchanged.

Signals set to terminate the calling program will be set to terminate the new program. Signals set
to be ignored by the calling program will be set to be ignored by the new program. Signals set to
be caught by the calling program will be set to their default value in the new program; see sig-
nal(2).

If the set—user-ID mode bit of the executable file pointed to by path or file is set (see chmod(2}),
ezec sets the effective user ID of the new program to the owner ID of the executable file. Simi-
larly, if the set—group-ID mode bit of the executable file is set, the effective group ID of the new
program is set to the group ID of the executable file. The real user ID and real group ID of the
new program remain the same as those of the calling program. Note that the set-user(group)-id
function does not apply to scripts, and thus if ezeclp or ezecup executes a script, even if it has the
set—user(group)—id bits set, they will be ignored.

The shared memory segments attached to the calling program will not be attached to the new
program (see shmop(2}).

Profiling is disabled for the new program; see profil(2).
The new program also inherits the following attributes from the calling program:

nice value (see nice(2))

process ID

parent process ID

process group ID

real-time priority (see rtprio(2))

interval timers (see getitimer(2))

semadj values (see semop(2))

tty group ID (see ezit(2)} and signal(2))

trace flag (see ptrace(2) request 0)

time left until an alarm clock signal (see alarm(2))
current working directory

root directory

file mode creation mask (see umask(2))

file size limit (see ulimit(2))

utime, stime, cutime, and csttme (see times(2))

Computer
 Museum

A script file begins with a line of the form “#! interpreter” or “#! interpreter argument’’, where
#! must be the first two bytes of the file. The interpreter name begins with the first character
other than space or tab following the #!. When such a file is ezec’d, the system ezec’s the
specified interpreter, as an executable object file, in its place. Even in the case of ezeclp or
ezecup, no path searching is done on the interpreter name.

The argument is anything after any tabs or spaces following the interpreter name on the #! line,
including any imbedded tabs or spaces. If there is an argument, it is passed to the interpreter as
argv[l] and the name of the script file is passed as argv[2]. Otherwise, the name of the script file
is passed as argv(1]. argv[0] is passed as specified in the exec call. All other arguments specified
in the exec call are passed following the name of the script file (that is, beginning at argv(3] if
there is an argument; otherwise at argv[2]}.

Hewlett—Packard -2- June 28, 1985



EXEC(2)

EXEC(2)

If the #! line exceeds some system defined maximum number of characters, an error will be
posted and ezec will not succeed; the line is terminated by either a new line or null character.
The minimum value for this limit is 32.

Set—user id and set—group—id bits are honored for the script and not for the interpreter.

Ezec will fail and return to the calling program if one or more of the following are true:

[ENOENT)

[ENOTDIR]

[EACCES]

[FACCES]
[EACCES]

[EACCESS)]

[ENOEXEC)

[ETXTBSY)

[ENOMEM]

[E2BIG]

[EFAULT]

[EFAULT)
[ENOENT)
[ENOEXEC]

One or more components of the executable file’s path name or the interpreter’s
path name do not exist.

A component of the executable file’s path prefix or the interpreter’s path prefix is
not a directory.

Search permission is denied for a directory listed in the executable file’s or the
interpreter’s path prefix.

The executable file or the interpreter is not an ordinary file.

The file pointed to by path or file is not executable. The super—user cannot exec
a file unless at least one of the three execute bits is set in the file's mode.

Read permission is denied for the executable file or the interpreter, and the
process’s trace flag (see ptrace(2) request 0) is set.

The exec is not an ezeclp or ezecvp, and the executable file has the appropriate

access permission but there is neither a valid magic number nor a #! in its
header.

The executable file is currently open for writing. Note: normal executable files
are only open for a short time when they start execution. Other executable file
types may be kept open for a long time, or indefinitely under some cir-
cumstances.

The new program requires more memory than is available, or than is allowed by
the system-imposed maximum MAXMEM.

The number of bytes in the new program’s argument list is greater than the
system—imposed limit. This limit will be at least 5120 bytes on HP -UX systems.

The executable file is not as long as indicated by the size values in its header, or
is otherwise inconsistent.

Path, argv, or envp point to an illegal address.
Path is null.

The number of bytes in the #! line of a script file exceeds the system’s max—
imum.

HARDWARE DEPENDENCIES

Series 500:

References to memory, such as "text segment”, "data segment”, “initialized portion”,
"uninitialized portion”, and "bss”, are invalid. See a.out(5) for the Series 500.

Script files are not supported on Series 500.

Integral PC:

The super—user capabilities are provided to the normal user.

RETURN VALUE

If exec returns to the calling program, an error has occurred; the return value will be -1 and errno
will be set to indicate the error.

SEE ALSO

sh(1), alarm(2), exit(2), fork(2), nice(2), ptrace(2), semop(2), signal(2), times(2), ulimit(2),

Hewlett-Packard

-3- June 28, 1985



EXEC(2) EXEC(2)

umask(2), a.out(4), environ(5).

Hewlett—Packard -4 - June 28, 1985



EXIT(2)

NAME

EXIT(2)

exit, _exit - terminate process

SYNOPSIS

void exit (status)
int status;

void _exit (status)
int status;

HP-UX COMPATIBILITY

Level:
Origin:
DESCRIPTION

HP-UX/RUN ONLY
System V

Ezit terminates the calling process and passes ezit’s argument to the system for inspection; see
wait. Returning from main in a C program has the same effect as ezit; the ezit value is the func—
tion value RETURNed by main. (This value will be undefined if main does not take care to return
a value or explicitly call ezit.)

Exzit is equivalent to _exit, except that ezit flushes stdio buffers, while _ezit does not. Both ezt
and __ezit terminate the calling process with the following consequences:

SEE ALSO

All open file descriptors found during the calling process are closed.

If the parent process of the calling process is executing a wait it is notified of the calling
process’s termination and the low order eight bits (i.e., bits 0377) of status are made
available to it; see wait(2).

If the parent process of the calling process is not executing a wast and does not have
SIGCLD set to SIG.IGN, the calling process is transformed into a zombie process. A zom-
bie process is a process that only occupies a slot in the process table. It has no other
space allocated either in user or kernel space. Time accounting information is recorded
for use by times(2).

The parent process ID of all of the calling process’s existing child processes and zombie
processes is set to 1. This means the initialization process (procl, see glossary(9)) inherits
each of these processes.

Each attached shared memory segment is detached and the value of shm nattach in
the data structure associated with its shared memory identifier is decremented by 1 (see
shmop(2)).

For each semaphore for which the calling process has set a semadj value (see semop(2)),
that semadj value is added to the semval of the specified semaphore.

If the process has a process, text, or data lock, an unlock is performed (see plock(2)).

An accounting record is written on the accounting file if the system’s accounting routine
is enabled; see acct(2).

If the process ID, tty group ID, and process group ID of the calling process are equal, the
SIGHUP signal is sent to each process that has a process group ID equal to that of the
calling process.

Exit conditions ($?) in sh(1), acct(2), plock(2), semop(2), shmop(2), signal(2), times(2), vfork(2),

wait(2).

Hewlett—Packard -1~ June 28, 1985



FCNTL(2)

NAME

FCNTL(2)

fentl - file control

SYNOPSIS

#include <fentl.h>

int fentl (fildes, cmd, arg)
int fildes, cmd, arg;

HP-UX COMPATIBILITY

Level:

Origin:
DESCRIPTION

Basic calls: HP-UX/RUN ONLY
Real time extensions: HP-UX/STANDARD - Real Time
System V, UCB, and HP

Fentl provides for control over open files. Fildes is an open file descriptor obtained from a creat,
open, dup, fentl, or pipe system call.

The c¢mds available are:

F_DUPFD

F_GETFD

F_SETFD

F_GETFL
F_SETFL
ERRORS

Return a new file descriptor that has the following characteristics:
Lowest numbered available file descriptor greater than or equal to arg.
Same open file (or pipe) as the original file.

Same file pointer as the original file (i.e., both file descriptors share one file
pointer).

Same access mode (read, write or read/write).
Same file status flags (i.e., both file descriptors share the same file status flags).

The close-on-exec flag associated with the new file descriptor is set to remain
open across ezec(2) system calls.

Get the close-on-exec flag associated with the file descriptor fildes. If the low—
order bit is O the file will remain open across ezec(2), otherwise the file will be
closed upon execution of ezxec(2).

Set the close-on-exec flag associated with fildes to the low—order bit of arg (see
F_GETFD).

Get file status flags; see fentl(7).
Set file status flags to arg. Only certain flags can be set; see fent!(7).

Fentl fails if one or more of the following conditions are true. errno is set accordingly:

[EBADF]
[EMFILE]
[EINVAL]

RETURN VALUE

Fildes is not a valid open file descriptor.
Cmd is F_DUPFD and the maximum number of file descriptors is currently open.

Cmd is F_DUPFD and arg is negative or greater than the maximum number of
file descriptors.

Upon successful completion, the value returned depends on ¢md as follows:

F_DUPFD A new file descriptor.

F_GETFD Value of close-on—-exec flag (only the low—order bit is defined).
F_SETFD Value other than -1.

F_GETFL Value of file status flags.

F_SETFL Value other than -1.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

Hewlett-Packard

-1- June 28, 1985



FCNTL(2) FCNTL(2)

SEE ALSO
close(2), exec(2), open(2), fentl(7).

Hewlett-Packard -2- June 28, 1985



FORK (2) FORK (2)

NAME
fork - create a new process

SYNOPSIS
int fork ()

HP-UX COMPATIBILITY
Level: HP -UX/RUN ONLY

Origin: System V, HP

DESCRIPTION
Fork causes creation of a new process. The new process (child process) is an exact copy of the
calling process (parent process). This means the child process inherits the following attributes
from the parent process:

environment

close-on exec flag (see exec(2))

signal handling settings (i.e., SIG_DFL, SIG_IGN, function address)
set-user-ID mode bit

set—group—ID mode bit

profiling on/off status (see profil(2))

real-time priority (see rtprio(2))

nice value {see nice{2))

all attached shared memory segments (see shmop(2))
process group ID

tty group ID (see exit(2) and signal(2))

trace flag (see ptrace(2) request 0)

current working directory

root directory

file mode creation mask (see umask(2))

file size limit (see ulimit(2))

The child process differs from the parent process in the following ways:
The child process has a unique process ID.

The child process has a different parent process ID (i.e., the process ID of the parent pro-
cess).

The child process has its own copy of the parent’s file descriptors. Each of the child’s file
descriptors shares a common file pointer with the corresponding file descriptor of the
parent.

All semadj values are cleared (see semop(2)).
Process locks, text locks and data locks are not inherited by the child (see plock(2)).

The child process’s utime, stime, cutime, and cstime are set to 0; see times(2). The time
left until an alarm clock signal is reset to zero, and all interval timers are set to zero (dis—
abled).

Fork will fail and no child process will be created if one or more of the following are true:

[EAGAIN] The system—imposed limit on the total number of processes under execution
would be exceeded.

[EAGAIN] The system-imposed limit on the total number of processes under execution by a
single user would be exceeded.

The parent and child processes resume execution immediately after the fork call; they are
identified by the value returned by fork (see below).

Hewlett-Packard -1- June 28, 1985



FORK (2) FORK (2)

Note that standard I/O buffers are duplicated in the child. Thus, if you fork after a buffered I/0
operation that was not flushed, you may get duplicate output.

Vfork is provided as a higher performance, limited version of fork on some systems. See vfork(2)
for details.

HARDWARE DEPENDENCIES

Series 200:
[ENOSPC] Fork will fail if there is not enough swapping memory to create the new
process.
[ENOMEM] Fork will fail if there is not enough physical memory to create the new
process.
Series 500:
[ENOMEM] Fork will fail if there is not enough physical memory to create the new
process.

profil(2) is not supported on Series 500 Computers.

RETURN VALUE
Upon successful completion, fork returns a value of 0 to the child process and returns the process
ID of the child process to the parent process. Otherwise, a value of -1 is returned to the parent
process, no child process is created, and errno is set to indicate the error.

SEE ALSO
exec(2), nice(2), plock(2), ptrace(2), semop(2), shmop(2), signal(2), times(2), ulimit(2), umask(2),
vfork(2), wait(2).

Hewlett—Packard -2- June 28, 1985



FSYNC(2) FSYNC(2)

NAME
fsync - synchronize a file’s in—core state with its state on disk

SYNOPSIS
fsync(fildes)
int fildes;

HP-UX COMPATABILITY
Level:  Basic Calls: HP-UX/RUN ONLY
Real Time extensions: HP-UX/STANDARD — Real Time

Origin: UCB and HP

DESCRIPTION
Fsync causes all modified data and attributes of fildes to be moved to a permanent storage device.
This normally results in all in—core modified copies of buffers for the associated file to be written
to a disk. Fsync applies to ordinary files, and applies to block special devices on systems which
permit I/O to block special devices.

Fsync should be used by programs which require a file to be in a known state; for example in
building a simple transaction facility.

ERRORS
Fsyne will fail if one of the following conditions is true and errno will be set accordingly:
[EBADF) Fildes is not a valid descriptor.
[EINVAL] Fildes refers to a file type to which fsync does not apply.

RETURN VALUE
A 0 value is returned on success. A -1 value indicates an error.

WARNING
If the process has multiple file descriptors open on a file and the file descritpors have asynchro-
nous writes pending, then the process cannot be guaranteed that the buffers associated with these
writes will be flushed by the fsync(2). The process must wait until all of the writes have com-
pleted before performing an fsyne(2) call.

BUGS
The current implementation of this call is expensive for large files.

SEE ALSO
fentl(2), fentl(7), open(2), select(2), sync(2), sync(8).

Hewlett—Packard -1- June 28, 1985



FTIME (2) Series 200 Only FTIME(2)

NAME

ftime - get date and time more precisely

SYNOQPSIS
#include <sys/types.h>
#include <sys/timeb.h>
ftime(tp)
struct timeb *tp;
HP-UX COMPATIBILITY
Level: HP-UX/STANDARD - Version 7 compatibility

Origin: Version 7
Remarks: This facility is provided for backwards compatibility with Version 7 systems. Either
time or gettimeofday should be used for all new code.
DESCRIPTION
Ftime entry fills in a structure pointed to by its argument, as defined by <sys/timeb.h>:
*

* Structure returned by ftime system call
*
struct timeb {

time_t time;

unsigned short millitm;

short timezone;

short dstflag;
h
The structure contains the time in seconds since 00:00:00 GMT, January 1, 1970, up to 1000 mil-
liseconds of more—precise interval, the local timezone (measured in minutes of time westward from
Greenwich), and a flag that, if nonzero, indicates that Daylight Saving time applies locally during
the appropriate part of the year. Gettimeofday should be consulted for more details on the mean-
ing of the timezone field.

This call can be accessed by giving the -1V7 option to ld(1).
Ftime can fail for exactly the same reasons as gettimeofday(2).

HARDWARE DEPENDENCIES
Series 500:
Ftime is not supported on the Series 500.

SEE ALSO
date(1), gettimeofday(2), time(2), stime(2)}, ctime(3)

BUGS
The millisecoud value usually has a granularity greater than one due to the resolution of the sys—
tem clock. Depending on any granularity (particularly of one) will render code non—portable.

Hewlett—Packard -1~ July 4, 1985



GETGROUPS(2) Series 200 Only

NAME
getgroups - get group access list
SYNOPSIS
#include <sys/param.h>
getgroups(ngroups, gidset)
int ngroups, *gidset;
HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: UCB

Remarks: Not available on Series 500.

DESCRIPTION

GETGROUPS(2)

Getgroups gets the current group access list of the user process and stores it in the array gidset.
The parameter ngroups indicates the number of entries which may be placed in gidset . No more

than NGROUPS, as defined in <sys/param.h>, will ever be returned.

RETURN VALUE

A non-negative value indicates that the call succeeded, and is the number of elements in grdset .
A value of -1 indicates that an error occurred, and the error code is stored in the global variable

errno.

The possible errors for getgroups are:

[EFAULT] gidset specifies an invalid address.
[EINVAL] ngroups is less than the number of groups in the current group access list of the
process.

HARDWARE DEPENDENCIES
Not available on Series 500.

SEE ALSO
setgroups(2), initgroups(3C)

Hewlett—Packard

July 4, 1985



GETHOSTNAME((2) GETHOSTNAME (2)

NAME

gethostname - get name of current host

SYNOPSIS
char hostnamel};
gethostname(hostname, sizeof (hostname));

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: ucB

DESCRIPTION
Gethostname returns the standard host name for the current processor, as set by sethostname(2).
The name is truncated to sizeof(hostname)-1 and is null-terminated.

Gethostname can fail of:
[EFAULT] Hostname points to an illegal address.

SEE ALSO
hostname(1), uname(1), sethostname(2), uname(2).

Hewlett—Packard -1- June 28, 1985



GETITIMER (2) GETITIMER (2)

NAME

getitimer, setitimer - get/set value of interval timer

SYNOPSIS

#include <sys/time.h>

#define ITIMER_REAL 0 /* real time intervals */

#define ITIMER_VIRTUAL 1 /* virtual time intervals */
#define ITIMER_PROF 2 /* user and system virtual time */

getitimer(which, value)

int which;

struct itimerval *value;
setitimer(which, value, ovalue)

int which;
struct itimerval *value, *ovalue;

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: UCB

DESCRIPTION

NOTES

The system provides each process with three interval timers, defined in <sys/time.h>. The geti-
timer call returns the current value for the timer specified in which, while the setitimer call sets
the value of a timer (optionally returning the previous value of the timer).

A timer value is defined by the itimerval structure:

struct itimerval {
struct timeval it_interval; /* timer interval */
struct timeval it_value; /* current value */
h
If it_walue is non—zero, it indicates the time to the next timer expiration. If ¢t_interval is non—
zero, it specifies a value to be used in reloading it value when the timer expires. Setting it__value
to 0 disables a timer. Setting it__interval to 0 causes a timer to be disabled after its next expira—
tion (assuming ¢t value is non-zero).

Time values smaller than the resolution of the system clock are rounded up to this resolution.
The machine-dependent clock resolution is 1/HZ seconds, where the constant HZ is defined in
<sys/param.h>. Time values larger than an implementation-specific maximum value are
rounded down to this maximum. The maximum values for the three interval timers are specified
by the constants MAX_ ALARM, MAX VTALARM, and MAX PROF defined in
<sys/param.h>. On all implementations, these values are guaranteed to be at least 31 days (in
seconds).

The ITIMER_REAL timer decrements in real time. A SIGALRM signal is delivered when this
timer expires.

The ITIMER_VIRTUAL timer decrements in process virtual time. It runs only when the process
is executing. A SIGVTALRM signal is delivered when it expires.

The ITIMER. PROF timer decrements both in process virtual time and when the system is run—
ning on behalf of the process. It is designed to be used by interpreters in statistically profiling the
execution of interpreted programs. Each time the ITIMER_PROF timer expires, the SIGPROF
signal is delivered. Because this signal may interrupt in—progress system calls, programs using
this timer must be prepared to restart interrupted system calls.

Three macros for manipulating time values are defined in <sys/time.h>. Timerclear sets a time

Hewlett—Packard -1- June 28, 1985



GETITIMER (2) GETITIMER (2)

value to zero, timerisset tests if a time value is non-zero, and timeremp compares two time values
(beware that >= and <= do not work with this macro).

The timer used with ITIMER__REAL. is the same as that used by alarm(2). Thus successive calls
to alarm, getitimer, and setitimer will set and return the state of a single timer.
RETURN VALUE

If the calls succeed, a value of 0 is returned. If an error occurs, the value -1 is returned, and a
more precise error code is placed in the global variable errno. Getitimer or setitimer can fail if:

[EFAULT] The value structure specified a bad address.

[EINVAL] A walue structure specified an invalid time.

[EINVAL] Which does not specify one of the three possible timers.
HARDWARE DEPENDENCIES

Series 500

An error is generated if a call is made to getitimer or setitimer in the [vfork,exec] window.
[EINVAL]} Call not allowed in [vfork,exec] window

SEE ALSO
alarm(2), signal(2), gettimeofday(2)

Hewlett-Packard -2- June 28, 1985



GETPID (2) GETPID(2)

NAME
getpid, getpgrp, getppid - get process, process group, and parent process 1Ds

SYNOPSIS
int getpid ()
int getpgrp ()
int getppid ()

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION
Getpid returns the process ID of the calling process.

Getpgrp returns the process group ID of the calling process.
Getppid returns the parent process ID of the calling process.

SEE ALSO
exec(2), fork(2), setpgrp(2), signal(2).

Hewlett-Packard -1- June 28, 1985



GETPRIVGRP (2) Series 200 Only GETPRIVGRP(2)

NAME

getprivgrp, setprivgrp - get and set special attributes for group

SYNOPSIS

#include <sys/privgrp.h>

int setprivgrp(grpid, mask)
int grpid, mask[PRIV_MASKSIZE];

int getprivgrp(grplist)
struct privgrp_map grplistPRIV_MAXGRPS];

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: HP

DESCRIPTION

NOTES

Setprivgrp associates a kernel capability with a group id. This allows subsetting of super-user like
privileges for members of a particular group or groups. Setprivgrp takes two arguments: the
integer group id and a mask of permissions. The mask is created by treating the access types
defined in <sys/privgrp.h> as bit numbers (using 1 for the least significant bit). Thus, privilege
number 5 would be represented by the bit 1<<(5-1) or 16. More generally, privilege p is
represented by:

mask[((p-1) / BITS _PER_INT)] & (1 << ((p-1) % BITS_PER_INT)).

As it is possible to have more than word size distinct privileges, mask is a pointer to an integer
array of size PRIV_MASKSIZ.

Setprivgrp privileges include those specified in the file sys/privgrp.h. A process may access the
system call protected by a specific privileged group if it belongs to or has an effective group id of a
group having access to the system call.

Specifying a grpid of PRIV_NONE causes privileges to be revoked on all privileged groups hav-
ing any of the privileges specified in mask. Specifying a grpid of PRIV_GLOBAL causes
privileges to be granted to all processes.

The constant PRIV_MAXGRPS in <sys/privgrp.h> defines the system limit on the number
of groups which can be assigned privileges. One of these is always the psuedo—group
PRIV_GLOBAL, allowing for PRIV_MAXGRPS-1 actual groups.

Getprivgrp returns a table of the privileged group assignments into a user supplied structure.
Grplist points to an array of structures of type privgrp_map associating a groupid with a
privilege mask. Privilege masks are formed by oring together elements from the access types
specified in <sys/privgrp.h>. The array may have gaps in it distinguished as having a
priv_groupno field of PRIV_INONE. The group number PRIV_GLOBAL gives the global
privilege mask. Only information about groups which are in the user’s group access list, or about
his real or effective group id, is returned to an ordinary user. The complete set is returned to the
super—user.

Only the super user may use setprivgrp.

ERRORS

Setprivgrp returns —1 and an error code in errno if:
[EPERM] The caller is not super user.
{EFAULT] Mask points to an illegal address.

Hewlett -Packard -1- July 4, 1985



GETPRIVGRP (2) Series 200 Ounly GETPRIVGRP (2)

[EINVAL] Mask has bits set for one or more unknown privileges.

[E2BIG] The request would require assigning privileges to more than
PRIV_MAXGRPS groups.

Getprivgrp returns —1 and an error code in errno if:
[EFAULT] Grplist points to an illegal address.
Both calls return 0 on success.

HARDWARE DEPENDENCIES
Not implemented on Series 500 or Integral PC.

SEE ALSO
getprivgrp(1), setprivgrp(1M), setgroups(2), privgrp(5)

Hewlett—Packard -2 - July 4, 1985



GETTIMEOFDAY (2) GETTIMEOFDAY (2)

NAME
gettimeofday, settimeofday - get/set date and time

SYNOPSIS
#include <time.h>

gettimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;

settimeofday (tp, tzp)
struct timeval *tp;
struct timezone *tzp;

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: UCB

DESCRIPTION
Gettimeofday returns the system’s notion of the current Greenwich time and the system’s notion
of the current time zone. Time returned is expressed relative in seconds and microseconds since
midnight January 1, 1970.

The structures pointed to by tp and tzp are defined in <sys/time.h> as:

struct timeval {

unsigned long  tv_sec; /* seconds since Jan. 1, 1970 */
long tv__usec; /* and microseconds */
I3
struct timezone {
int tz__minuteswest; /* of Greenwich */

int tz__dsttime; /* type of dst correction to apply */
I8
The timezone structure indicates the local time zone (measured in minutes of time westward from
Greenwich), and a flag that, if nonzero, indicates that Daylight Saving time applies locally during
the appropriate part of the year (the value of the flag identifies the algorithm to be used for Day-
light Saving time). Programs should use this timezone information only in the absence of the TZ
environment variable.

Only the super—user may set the time of day.

RETURN
A 0 return value indicates that the call succeeded. A -1 return value indicates an error occurred,
and in this case an error code is stored into the global variable errno.

The following error codes may be set in errno:

[EFAULT] An argument address referenced invalid memory.

[EPERM] A user other than the super—user attempted to set the time.
SEE ALSO

date(1), stime(2), time(2), ctime(3)

BUGS
The microsecond value usually has a granularity much greater than one due to the resolution of
the system clock. Depending on any granularity (particularly of one) will render code non-
portable.

Hewlett-Packard -1- June 28, 1985



GETUID (2) GETUID (2)

NAME
getuid, geteuid, getgid, getegid - get real user, effective user, real group, and effective group IDs

SYNOPSIS
unsigned short getuid ()

unsigned short geteuid ()
unsigned short getgid ()
unsigned short getegid ()

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION
Getuid returns the real user ID of the calling process.

Geteuid returns the effective user ID of the calling process.
Getgid returns the real group ID of the calling process.
Getegid returns the effective group ID of the calling process.

SEE ALSO
setuid(2).

Hewlett—Packard -1- June 28, 1985



JOCTL(2) I0CTL{2)

NAME

ioctl - control device

SYNOPSIS

#include <sys/ioctl.h>

ioctl (fildes, request, arg)
int fildes, request;

HP-UX COMPATIBILITY

Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION

Toctl performs a variety of functions on character special files (devices). The write-ups of various
devices in Section 4 discuss how ifoctl applies to them. The type of Arg is dependent on the
specific soctl call, as described in Section 4.

Toctl will fail if one or more of the following are true:

[EBADF] Fildes is not a valid open file descriptor.

[ENOTTY)] The request is not appropriate to the selected device.
[EINVAL] Request or arg is not valid.

[EINTR] A signal was caught during the foct! system call.

Request is made up of several fields. They encode the size and direction of the argument (refer
enced by arg ), as well as the desired command. An enumeration of the request fields are:
IOC_IN (Bt 31)
Argument is read by the driver. (That is, the argument is copied from the appli—
cation to the driver.)
I0C_OUT (Bit 30)
Argument is written by the driver. (That is, the argument is copied from the
driver to the application.)
IOCSIZE_MASK
Number of bytes in the passed argument. A nonzero size indicates that arg is a
pointer to the passed argument. A zero size indicates that arg is the passed
argument (if the driver wants to use it), and is not treated as a pointer.
I0CCMD_MASK (Bits 15-0)
The request command itself.
When both IOC_IN and IOC_QUT are zero, it can be assumed that request is not encoded for
size and direction, for compatibility purposes. Requests which do not require any data to be
passed and requests which use arg as a value (as opposed to a pointer), have the IOC_IN bit set
to one and the IOCSIZE_MASK field set to zero.

Note: any data structure referenced by arg may not contain any pointers.

RETURN VALUE

If an error has occurred, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO

Section 4.

Hewlett—Packard -1- June 28, 1985



KILL(2) KILL(2)

kill - send a signal to a process or a group of processes

SYNOPSIS

int kill (pid, sig)
int pid, sig;

HP-UX COMPATIBILITY

Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION

Kill sends a signal to a process or a group of processes. The process or group of processes to
which the signal is to be sent is specified by pid. The signal that is to be sent is specified by sig
and is either one from the list given in signal(2), or 0. If sig is O (the null signal), error checking
is performed but no signal is actually sent. This can be used to check the validity of pid.

The real or effective user ID of the sending process must match the real or saved effective user ID
of the receiving process, unless the effective user ID of the sending process is super—user.

The processes with a process ID of 0 and a process ID of 1 are special processes (see glossary(9))
and will be referred to below as proc0 and procl, respectively. The value KILL_ALL_QTHERS
is defined in the file <sys/signal.h> and is guaranteed not to be the ID of any process in the sys-
tem or the negation of the ID of any process in the system.

If pid is greater than zero and not equal to KILL_ALL_OTHERS, sig will be sent to the process
whose process ID is equal to pid. Pid may equal 1.

If pid is 0, sig will be sent to all processes excluding proc0 and proci whose process group ID is
equal to the process group ID of the sender.

If pid is -1 and the effective user ID of the sender is not super-user, sig will be sent to all

processes excluding proc0 and procl whose real user ID or saved effictive ID is equal to the real or
effective user ID of the sender.

If pid is -1 and the effective user ID of the sender is super—user, sig will be sent to all processes
excluding proc0 and procl.

If pid is KILL_ALL_OTHERS the behavior is the same as for pid equal to -1 except that sig is
not sent to the calling process.

If pid is negative but not -1 or KILL_ALL_OTHERS, sig will be sent to all processes (exclud-
ing procO and procl) whose process group ID is equal to the absolute value of pid, and whose real
and/or effective uid meet the constraints described above for matching wuids.

Kl will fail and no signal will be sent if one or more of the following are true:

[EINVAL] Sig is not a valid signal number or zero.

[EINVAL] Sig is SIGKILL and pid is 1 (procl).

[ESRCH] No process can be found corresponding to that specified by pid.

[EPERM] The user ID of the sending process is not super—user, and its real or effective user

ID does not match the real or saved effective user ID of the receiving process.

HARDWARE DEPENDENCIES

Series 500:
References to proc0 above are invalid because proc0 does not exist on Series 500.

Series 200:
A special process known as the pagedaemon has process ID 2. All references to proc@ and
procl apply to it as well.

Hewlett-Packard -1- June 28, 1985



KILL(2) KILL(2)

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
kill(1), getpid(2), setpgrp(2), signal(2), and sigvector(2).

Hewlett—Packard -2- June 28, 1985



LINK (2) LINK (2)

NAME
link - link to a file

SYNOPSIS
int link (pathl, path2)
char *pathl, spath2;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DEBCRIPTION
Path1 points to a path name naming an existing file. Path?2 points to a path name naming the
new directory entry to be created. Link creates a new link (directory entry) for the existing file.

Link will fail and no link will be created if one or more of the following are true:

[ENOTDIR] A component of either path prefix is not a directory.

[ENOENT] A component of either path prefix does not exist.

[EACCES] A component of either path prefix denies search permission.

[ENOENT] The file named by path1 does not exist.

[EEXIST) The link named by path?2 exists.

[EPERM] The file named by path! is a directory and the effective user ID is not super—
user.

[EXDEV] The link named by path?2 and the file named by path! are on different logical
devices (file systems).

[ENOENT] Path?2 points to a null path name.

[EACCES] The requested link requires writing in a directory with a mode that denies write
permission.

[EROFS) The requested link requires writing in a directory on a read—only file system.

[EFAULT)] Path points outside the allocated address space of the process.

[ENOENT] Patht or path?is null.

[EMLINK] The maximum number of links to a file would be exceeded.

HARDWARE DEPENDENCIES
Series 500:
For Structured Directory Format (SDF) discs, if path2 is ”..”, then that directory’s i-node

will be altered such that its "..” entry points to the directory specified by pathl. In this
way, the super—user can establish the parent directory of an existing directory.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
cp(1), link(1), unlink(2).

Hewlett—Packard -1- June 28, 1985



LOCKF (2) LOCKF (2)

lockf - provide semaphores and record locking on files

SYNOPSIS

#include <unistd.h>

lockf(fildes, function, size)
long size;
int fildes, function;

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: /usr/group

DESCRIPTION

Lockf will allow regions of a file to be used as semaphores (advisory locks) or accessable only by
the locking process (enforcement mode record locks). Other processes which attempt to access the
locked resource will either return an error or sleep until the resource becomes unlocked. All the
locks for a process are removed when the process closes the file or terminates.

Fildes is an open file descriptor.

Function is a control value which specifies the action to be taken. The permissible values for
function are defined in <unistd.h> as follows:

#define F_ULOCK 0 /* Unlock a region */
#define F_LOCK 1 /* Lock a region */

#define F_TLOCK 2 /* Test and Lock a region */
#define F_TEST 3 /* Test region for lock */

All other values of function are reserved for future extensions and will result in an error return if
not implemented.

F_TEST is used to detect if a lock by another process is present on the specified region.
F_TEST returns zero if the region is accessable and minus one (1) if it is not; in this case errno
will be set to EACCES. F_LOCK and F_TLOCK both lock a region of a file if the region is
available. F_ULOQOCK removes locks from a region of the file.

Size is the number of contiguous bytes to be locked or unlocked. The resource to be locked starts
at the current offset in the file, and extends forward for a positive size, and backward for a nega-
tive size (the preceding byte(s), up to but not including the current offset). If size is zero the
region from the current offset through the end of the largest possible file is locked (i.e., from the
current offset through the present or any future end—of-file). An area need not be allocated to the
file in order to be locked, as such locks may exist past the end of the file.

The regions locked with F_LOCK or F_TLOCK may, in whole or part, contain or be con-
tained by a previously locked region for the same process. When this occurs or if adjacent regions
occur, the regions are combined into a single region. If the request requires that a new element be
added to the table of active locks and this table is already full, an error is returned, and the new
region is not locked.

F_LOCK and F_TLOCK requests differ only by the action taken if the resource is not avail-
able: F_LOCK will cause the calling process to sleep until the resource is available, and the
F_TLOCK will return an [EACCES] error if the region is already locked by another process.

F_ULOCK requests may, in whole or part, release one or more locked regions controlled by the
process. When regions are not fully released, the remaining regions are still locked by the process.
Releasing the center section of a locked region requires an additional element in the table of active
locks. If this table is full, an {[EDEADLK] error is returned, and the requested region is not
released.

Hewlett-Packard -1- June 28, 1985



LOCKF (2) LOCKEF (2)

Regular files with the file mode of S_ENFMT not having the group execute bit set will have an
enforcement policy enabled. With enforcement enabled, reads and writes which would access a
locked region will sleep until the entire region is available. File access by other system functions
like ezec are not subject to the enforcement policy. Locks on directories, pipes, and special files
are advisory only; no enforcement policy will be used.

A potential for deadlock occurs if a process controlling a locked resource is put to sleep by access—
ing another process’s locked resource. Thus calls to lockf, read, or write scan for a deadlock prior
to sleeping on a locked resource. Deadlock is not checked for the wait and pause system calls, so
potential for deadlock is not eliminated. A creat call or an open call with the O_CREATE and
O_TRUNC flags set on a regular file will return [EACCES] error if another process has locked
part of the file and the file is currently in enforcement mode.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS

Lockf will fail if any of the following occur:

[EACCES]| Will be returned for requests in which the region is already locked by another
process.

[ENOENT] The named file does not exist.

[EBADF) If is not a valid, open file descriptor.

[EDEADLK] Will be returned by lockf if a deadlock would occur; or if the number of entries in
the lock table would exceed a system dependent maximum. HP-UX guarantees
this value to be at least 50.

[EINVAL] Will be returned if:
function is not one of the functions specified above.
The resulting upper bound of the region to be locked will be greater than 2°30.
The current offset is greater than 2°30.
The resulting lower bound of the region to be locked will be negative.

WARNINGS

BUGS

Deadlock conditions may arise when either the wait or pause system calls are used in conjunction
with enforced locking; see watt(2) and pause(2) for details.

File and record locking using file descriptors obtained through dup(2) or fink(2) may not work as
expected, e.g. unlocking regions which were locked using either file descriptor may also unlock
regions which were locked using the other file descriptor.

The shell will wait for locked files with enforcement mode set to become unlocked before executing
them.

As a side effect of the definition of enforcement mode, it is possible to have files which are execut—
able for the owner and others, but which result in an error if executed by a groupmember.

Unexpected results may occur in a process that does buffering in the user address space. The
process may later read/write data which is/was locked. The standard I/O package, stdio(3), is
the most common source of unexpected buffering.

In a hostile environment locking may be misused by holding key public resources locked. This is

Hewlett—Packard -2- June 28, 1985



LOCKF (2) LOCKF(2)

particularly true with public read files that have enforcement mode enabled.

HARDWARE DEPENDENCIES
Series 200 and 500:
The system’s process accounting routine will ignore any locks put on the process account—
ing file.

SEE ALSO
open(2), creat(2), read(2), write(2), close(2), chmod(2), stat(2), wait(2), pause(2), acct(2) link(2),
dup(2).

Hewlett-Packard -3- June 28, 1985



LSEEK (2) LSEEK (2)

NAME
Iseek - move read/write file pointer; seek

SYNOPSIS
#include <unistd.h>
long lseek (fildes, offset, whence)
int fildes;
long offset;
int whence;

HP-UX COMPATIBILITY
Level:  HP-UX/RUN ONLY

Origin: System V
DESCRIPTION

Fildes is a file descriptor returned from a creat, open, dup, or fentl system call. Lseek sets the
file pointer associated with fildes as follows:

If whence is 0, the pointer is set to offset bytes.
If whence is 1, the pointer is set to its current location plus offset.
If whence is 2, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location, as measured in bytes from the begin
ning of the file, is returned.

Lseek will fail and the file pointer will remain unchanged if one or more of the following are true:
[EBADF]| Fildes is not an open file descriptor.
[ESPIPE] Fildes is associated with a pipe or fifo.
[EINVAL and SIGSYS signal]
Whence is not 0, 1 or 2.
[EINVAL)] The resulting file pointer would be negative.

Some devices are incapable of seeking. The value of the file pointer associated with such a device
is undefined.

RETURN VALUE

Upon successful completion, a non-negative integer indicating the file pointer value is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
creat(2), dup(2), fentl(2), open(2).

Hewlett—-Packard -1 June 28, 1985



MEMADVISE (2) MEMADVISE (2)

memadvise - advise OS about segment reference patterns

SYNOPSIS

#include <sys/ems.h>
#include <sys/types.h>

memadvise(addr, len, behav, adrtype)

caddr_t addr;
int len, behav;
enum memtype {mem_code, mem_data} adrtype;

HP-UX COMPATIBILITY

Level: Backing Store Control - HP-UX/EXTENDED
Origin: HP

Remarks: Memaduvise is not currently implemented on the Series 200.

DESCRIPTION

The purpose of this call is to allow an application program to notify the system of its known pat—
terns of reference in specific areas of process memory. The intent is to allow the system to then
adapt its memory management algorithms and/or policies based on this knowledge to maximize
the performance of the program. For example, a program that uses a very large hash table might
inform the system of its random patterns of reference to this area. The system might, then, elect
not to do any pre—fetching or clustered reads in this area.

Addr is the starting address of the area in question and len is the length in bytes. Addr may be
any legal address in the process’s address space. Since some implementations use different (and
indistinguishable) addressing formats for code and data space, adrtype is used to indicate whether
addr is a code or data address. On systems with a uniform addressing format for code and data,
adrtype will have no effect.

The boundaries of the address space for which the advice is applied may be rounded up and/or
down to appropriate system dependent values (e.g. pages, segments, blocks, etc).
Variable behav describes the reference pattern in the specified area:

MEM_NORMAL
No known extraordinary patterns of reference.

MEM_SEQ
References are highly sequential in nature.

MEM_RANDOM
References are totally random and unpredictable.

MEM_NEEDED

Area is expected to be highly referenced in near future.
MEM_NOTNEEDED

Area is not expected to be referenced in the near future.

Memaduvise may be reduced to a no—op, or some of the behavior types may be ignored (treated as
no—ops).

HARDWARE DEPENDENCIES

This system call is supported on Series 500 only.

SEE ALSO

ems(2), memallc(2)

Hewlett—Packard -1- June 28, 1985



MEMALLC (2) MEMALLC (2)

NAME

memallc, memfree - allocate and free address space

SYNOPSIS

#include <sys/ems.h>
#include <sys/types.h>

caddr_t memallc(fileid, offset, len, maxlen, type, mode);
int fileid, offset, len;

int maxlen, type, mode;

int memfree(addr);

caddr_t addr;

HP-UX COMPATIBILITY

Level: Extended Memory - HP-UX/EXTENDED
Origin: HP

Remarks: Memallc and memfree are not currently implemented on the Series 200.

DESCRIPTION

Memallc allocates a memory segment (i.e. a contiguous piece of process address space) and returns
a pointer to it. The memory segment may be shared (i.e. accessible by other processes) or
private. Private segments are copied on fork(2), giving separate, per -process images of the seg-
ment. Shared segments are not copied across fork(2) but, instead, both processes have access to
the same memory space. The segment may optionally be initialized to the contents of a specific
open file (private mapped file) or can be made equivalent to a specific file (shared mapped file).

Fileid is the HP-UX file id of an open file which will be mapped into the process’s address space.
Fileid must refer to a file on a CS—80 disc. If fileid is -1, the allocated address space will be ini—
tialized to zeros. A mapping of a file (either shared or private) generates an implicit reference to
the file (similar to the result of dup(2)). Subsequent to the mapping, fileid may safely be closed.

Offset specifies the starting point in fileid (i.e. byte offset) where mapping is to begin. The value
returned by memallc is a pointer to the byte in the new address space that corresponds to byte
offset. If fileid is not specified (i.e. set to —1), offset is ignored.

Len specifies the size (in bytes) of the address space. The guaranteed range of accessibility is from
ptr thru ptr+-len—1 (where ptr is the value returned by the memallc call). Depending on the value
of offset, len, and the specific implementation, additional data space MAY be accessible at
addresses less than ptr and/or greater than ptr+len—1 but the effects of reading and/or writing
these areas are undefined.

If len+offset is greater than the size of the file, the additional address space is initialized to zeros.
If the segment is shared, the file is extended to the required size (if fileid is not writable, the call
fails). A creat(2) call on a file that has a shared mapping applied to it will zero the file but will
not alter the file size.

Mazlen specifies the maximum length to which a segment may grow using memuvary(2).

Type specifies the attributes assigned to the segment, which is constructed by taking the union of
the desired attributes: MEM_SHARED, MEM_ PRIVATE, MEM_ PAGED, MEM_DATA, or
MEM__CODE (see ems(2)).

Mode specifies the access permissions assigned to the segment for the requesting process.
MEM_R, MEM_W, MEM_X:

Initial access modes to be assigned to segment (see memchmd(2)).

Note that all MEM__SHARED mappings of a specific file must use identical access modes. An
attempt to map a file with access modes different than those already in effect will return an error
[EACCES].

Hewlett—Packard -1~ June 28, 1985



MEMALLC (2) MEMALLC (2)

Memfree deallocates a memory segment created by memallc. It takes, as an argument, a pointer
returned by memallc. When the segment is shared, the memory will not be deallocated until the
last reference to the memory is removed.

The number of segments allocated to a given process at any one time may be limited to a system
dependent maximum of MAXSEGS found in ems.h.

RETURN VALUE
Upon successful completion, memallc returns the byte pointer to the address space. Otherwise, a
value of —1 is returned and errno is set to indicate error.

HARDWARE DEPENDENCIES

This system call is supported by Series 500 only.
SEE ALSO

ems(2), memvary(2), memchmd(2).

BUGS
Non-paged segments can be extended past maxlen using memuvary(2).

Hewlett—Packard -2 - June 28, 1985



MEMCHMD (2) MEMCHMD (2)

NAME
memchmd - change meniory segment access modes

SYNOPSIS

#include <sys/ems.h>
#include <sys/types.h>

int memchmd (addr, mode);
caddr_t addr;
int mode;

HP-UX COMPATIBILITY
Level: Extended Memory HP UX/EXTENDED

Origin: HP
Remarks: Memchmd is not currently implemented on the Series 200.
DESCRIPTION

This procedure may be used to change the access mode of a memory segment created by
memallc(2). The procedure returns the previous access mode (or —1 if there is an error).

Addr is the segment pointer returned by memallc(2).

The access modes for a shared segment is an attribute of the segment and is the same for all
processes sharing the segment or any portion thereof. The access mode of a segment may not be
changed if it is being shared with any other process (e.g. more than one memallc of a peculiar file,
or a memalle followed by a fork(2)). An attempt to memchmd such a shared segment will return
an error [EACCES)].

The access mode of a MEM__PRIVATE segment may be changed without restrictions.

The definition of the access modes are:

MEM_X Execute capability
MEM_W Write capability
MEM_R Read capability

An error is returned if addr is not a valid segment pointer.

Access modes granted to a MEM_SHARED file mapped segment may not exceed the access
modes granted to the user of the file when it was opened.

RETURN VALUE
Upon successful completion, memchmd(2) returns the old set of access modes. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

HARDWARE DEPENDENCIES
This system call is supported on Series 500 only.

SEE ALSO
ems(2), memalle(2), memvary(2).

Hewlett—Packard 1- June 28, 1985



MEMLCK (2) MEMLCK (2)

NAME

memlck, memulck - lock/unlock process address space or segment

SYNOPSIS

HP-UX

#include <sys/ems.h>
#include <sys/types.h>

int memlck (addr, len, adrtype);

caddr_t addr;

int len;

enum memtype {mem_code, mem_data} adrtype;
int memulck (addr, len, adrtype);

caddr_t addr;

int len;

enum memtype {mem_code, mem_data} adrtype;
COMPATIBILITY

Level: Backing Store Control - HP-UX/RUN ONLY

Origin: HP

Remarks: Memick and memulck are not currently implemented on the Series 200.

DESCRIPTION

Memlck is used to lock a section of process address space into physical memory. This call may
take a substantial amount of time to complete, but the address space in question is guaranteed to
be in memory and locked upon successful completion of the call. The locked address space will
not migrate to backing store regardless of process state and will, furthermore, remain at the same
physical address space for the duration of the lock. Locks are not inherited across fork(2). Multi-
ple locks on any address range can occur (unlocking requires that as many unlocks as locks occur).
The locks will be segment local, and unlocking may be done by a process unrelated to the one
which did the locking. A locked segment will be released when there are no processes with refer—
ences to the locked segment. (This may occur either via memfree(2) or process death.)

Addr is the starting address of the area in question and len is the length in bytes. Addr may be
any legal address in the process’s address space. Since some implementations use different (and
indistinguishable) addressing formats for code and data space, adrtype is used to indicate whether
addr is a code or data address. On systems with a uniform addressing format for code and data,
adrtype will have no effect.

The boundaries of the locked address space may be rounded up (on the upper end of the address
range) and down (on the lower end of the address range) to appropriate system dependent values
(e.g. pages, segments, blocks, etc). Locking will not cross segment boundaries. For example, one
memick call cannot lock part of a text segment and part of a data segment.

Memulck undoes the effects of a memick.
The use of this call is restricted to the super—user.

This call may be reduced to a no—op.

RETURN VALUE

Upon successful completion, memlck and memulck return a value of 0. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

HARDWARE DEPENDENCIES

This system call is supported on Series 500 only.

SEE ALSO

ems(2), memalle(2).

Hewlett—Packard -1- June 28, 1985



MEMVARY (2) MEMVARY (2)

NAME
memvary - modify segment length
SYNOPSIS
#include <sys/ems.h>
#include <sys/types.h>

int memvary (addr, len);
caddr_t addr;
int len;

HP-UX COMPATIBILITY
Level: Extended Memory - HP-UX/EXTENDED

Origin: HP
Remarks: Memuary is not currently implemented on the Series 200.
DESCRIPTION

Memuary allows the modification of the size of the memory space allocated by memallc(2).

Addr is the pointer to the address space which can be either shared or private. If the address
space has been file mapped and is extended beyond the the end of the file, then the file will also
reflect the change in length. When the file mapped address space is reduced, the actual file length
will be unchanged and the file space after the end of the mapped file space will also remain
unchanged. A change in length for a private file mapped address space will have no effect on the
source file.

Len specifies the new length of the address space. In the case of an error, the address space and
file space will be the same as before the intrinsic call.

When private file mapped address space is extended, the additional address space is initialized to
zeroes. When shared file mapped address space is extended, the additional space is initialized to
the contents of the file, or zeros if the file is extended.

The address space cannot be extended beyond the 'maxlen’ specified during the memallc(2)
intrinsic call.

RETURN VALUE
Upon successful completion, memuvary returns 0. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

HARDWARE DEPENDENCIES
This system call is supported by Series 500 only.

SEE ALSO
ems(2), memalle(2), memchmd(2).

Hewlett-Packard -1- June 28, 1985



MKDIR (2) MKDIR (2)

NAME
mkdir - make a directory file

SYNOPSIS
mkdir(path, mode)
char *path;
int mode;
HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: UCB
Remarks: Not all systems implement this as a system call; some use a library call to the
mkdir(1) command to achieve the same effect. The errors documented below will
appear in any case, and no error messages will ever be printed.
DESCRIPTION
Mkdir creates a new directory file with name path. The mode of the new file is initialized from
mode. (The protection part of the mode is modified by the process’s mode mask; see umask(2)).

The directory’s owner ID is set to the process’s effective user ID. The directory’s group ID is set
to the process’s effective group ID.

The low—order 9 bits of mode are modified by the process’s file mode creation mask: all bits set in
the process’s file mode creation mask are cleared. See umask(2).

RETURN VALUE
A 0 return value indicates success. A -1 return value indicates an error, and an error code is
stored in errno.

ERRORS
Mkdzir will fail and no directory will be created if:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] A component of the path prefix does not exist.

[EROFS] The named file resides on a read-only file system.

[EEXIST] The named file exists.

[EFAULT] Path points outside the process’s allocated address space.

[EI0] An 1/0 error occured while writing to the file system.
SEE ALSO

chmod(2), stat(2), umask(2)

Hewlett—Packard -1- June 28, 1985



MKNOD (2) MKNOD (2)

NAME
mknod - make a directory, or a special or ordinary file

SYNOPSIS
#include <mknod.h>
int mknod (path, mode, dev)
char *path;
int mode;
dev_t dev;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION
Mknod creates a new file named by the path name pointed to by path. The mode of the new file
is initialized from mode, where the value of mode is interpreted as follows:
0170000 file type; one of the following:

0010000 fifo special
0020000 character special
0040000 directory
0060000 block special
0100000 or 0000000 ordinary file
0110000 network special

0004000 set user ID on execution

0002000 set group ID on execution

0001000 save text image after execution

0000777 access permissions; constructed from the following:

0000400 read by owner

0000200 write by owner

0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group

0000007 read, write, execute (search) by others

Values of mode other than those above are undefined and should not be used.

The owner ID of the file is set to the effective user ID of the process. The group ID of the file is
set to the effective group ID of the process.

The low—order 9 bits of mode are modified by the process’s file mode creation mask: all bits set in
the process’s file mode creation mask are cleared. See umask(2).

Dev is meaningful only if mode indicates a block or character special file, and is ignored otherwise.
It is an implementation and configuration dependent specification of a character or block 1/0 dev—
ice. A device name is created by using the makedev macro defined in mknod.h. The arguments
to makedev are the major and minor device numbers, the value and interpretation of which are
implementation dependent. The result of makedev is an object of type dev__t.

Mknod may be invoked only by the super—user for file types other than FIFO special.

Mknod will fail and the new file will not be created if one or more of the following are true:

[EPERM] The effective user ID of the process is not super-user.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT) A component of the path prefix does not exist.

[EROFS] The directory in which the file is to be created is located on a read—only file sys—
tem.

Hewlett~Packard -1- June 28, 1985



MKNOD (2) MKNOD (2)

[EEXIST] The named file exists.

[EFAULT] Path points outside the process’s allocated address space.

[ENOENT] Path is null.

[EACCES] Path is in a directory that denies write permission, mode is for fifo special file,

and the caller is not super—user.
HARDWARE DEPENDENCIES
Series 200 and 500:

An additional value is available for network special files under file type. Its value is
0110000.

Integral PC:
The super-user capabilities are provided to the normal user.
RETURN VALUE

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
mkdir(1), chmod(2), mkdir(2), exec(2), umask(2), fs(5), mknod(5), mknod(8).

Hewlett—Packard ~2- June 28, 1985



MOUNT (2) MOUNT (2)

NAME
mount - mount a file system

SYNOPSIS
int mount (spec, dir, rwflag)
char *spec, *dir;
int rwflag;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION
Mount requests that a removable file system contained on the block special device file identified
by spec be mounted on the directory identified by dir. Spec and dir are pointers to path names.

Upon successful completion, references to the file dir will refer to the root directory on the
mounted file system.

The low -order bit of rwflag is used to control write permission on the mounted file system; if 1,
writing is forbidden, otherwise writing is permitted according to individual file accessibility.

Mount may be invoked only by the super—user.

Mount will fail if one or more of the following are true:

[EPERM] The effective user ID is not super—user.

[ENOENT] Any of the named files does not exist.

[ENOTDIR] A component of a path prefix is not a directory.

[ENOTBLK] Spec is not a block special device.

[ENXIO] The device associated with spec does not exist.

[ENOTDIR] Dir is not a directory.

[EFAULT] Spec or dir points outside the allocated address space of the process.

[EBUSY] Dir is currently mounted on, is someone’s current working directory, or is other-
wise busy.

[EBUSY] The device associated with spec is currently mounted.

[EBUSY] There are no more mount table entries.

[ENOENT] Spec or dir is null.

[EACCES] A component of the path prefix denies search permission.

RETURN VALUE
Upon successful completion a value of 0.is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.
BUGS
If mount is called from the program level (i.e. not called from mount(1)), the table of mounted
devices contained in /etc/mnttab is not updated.
HARDWARE DEPENDENCIES
Integral PC:
The super-user capabilities are provided to the normal user.
If a file system is mounted via this kernel call on the Integral PC, it can be unmounted
only using the umount kernel call. The unmount(l) and mount(l) commands do not
operate on a file system mounted via the mount kernel call.

Hewlett-Packard -1- June 28, 1985



MOUNT (2) MOUNT (2)

The unmount command is unable to unmount any file system mounted with the mount
kernel call. The Integral PC file system utilities cannot properly deal with file systems
mounted with the mount kernel call.

SEE ALSO
mount(1}, umount(2}.

Hewlett—Packard -2 - June 28, 1985



MSGCTL (2)

NAME

MSGCTL(2)

msgetl - message control operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl (msqid, cmd, buf)

int msqid, cmd;

struct msqid__ds *buf;
HP-UX COMPATABILITY

Level: HP-UX/STANDARD

Origin: System V

DESCRIPTION

Msgctl provides a variety of message control operations as specified by emd. The following cmds

are available:

IPC_STAT

IPC_SET

IPC_RMID

Place the current value of each member of the data structure associated with msqid
into the structure pointed to by buf. The contents of this structure are defined in
glossary(9). {READ}

Set the value of the following members of the data structure associated with msqid
to the corresponding value found in the structure pointed to by buf:

msg__perm.uid

msg__perm.gid

msg__perm.mode /+ only low 9 bits */

msg__gbytes

This ¢md can only be executed by a process that has an effective user ID equal to
either that of super user or to the value of either msg perm.uid or
msg perm.cuid in the data structure associated with msqid. Only super user
can raise the value of msg gbytes.

Remove the message queue identifier specified by msgid from the system and des-
troy the message queue and data structure associated with it. This ¢md can only
be executed by a process that has an effective user ID equal to either that of
super—user or to the value of either msg_perm.uid or msg_perm.cuid in the
data structure associated with msqid.

Msgctl will fail if one or more of the following are true:

[FINVAL]
[FINVAL)
[EACCES]

[EPERM]

[EPERM]

[EFAULT]
RETURN VALUE

Msqid is not a valid message queue identifier.
Cmd is not a valid command.

Cmd is equal to IPC_STAT and {READ} operation permission is denied to the
calling process (see glossary(9)).

Cmd is equal to IPC_RMID or IPC_SET and the effective user ID of the calling
process is not equal to that of super user and it is not equal to the value of
msg_perm.uid in the data structure associated with msgqid.

Cmd is equal to IPC_SET, an attempt is being made to increase to the value of
msg__qgbytes, and the effective user ID of the calling process is not equal to that
of super user.

Buf points to an illegal address.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and

Hewlett-Packard

-1- June 28, 1985



MSGCTL(2) MSGCTL(2)

errno 1s set to indicate the error.

SEE ALSO
msgget(2), msgop(2), stdipe(3).

Hewlett Packard -2- June 28, 1985



MSGGET (2) MSGGET (2)

NAME
msgget - get message queue

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key, msgfig)
key_t key;
int msgfig;

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System V

DESCRIPTION
Masgget returns the message queue identifier associated with key.

A message queue identifier and associated message queue and data structure (see glossary(9)) are
created for key if one of the following are true:

Key is equal to IPC_PRIVATE.

Key does not already have a message queue identifier associated with it, and (msgflg &
IPC_CREAT) is ‘‘true”.

Upon creation, the data structure associated with the new message queue identifier is initialized as
follows:

Msg perm.cuid, msg_perm.uid, msg perm.cgid, and msg perm.gid are set
equal to the effective user ID and effective group ID, respectively, of the calling process.

The low-order 9 bits of msg_perm.mode are set equal to the low-order 9 bits of
msgflg.

Msg__gnum, msg_lspid, msg_Irpid, msg_stime, and msg_rtime are set equal to 0.
Msg_ ctime is set equal to the current time.

Msg_gbytes is set equal to the system limit.

Msgget will fail if one or more of the following are true:

[EACCES] A message queue identifier exists for key, but operation permission (see glos—
sary(9)) as specified by the low—order 9 bits of msgflg would not be granted.

[ENOENT] A message queue identifier does not exist for key and (msgfly & IPC_CREAT)
is “false’.

[ENOSPC] A message queue identifier is to be created but the system-imposed limit on the
maximum number of allowed message queue identifiers system wide would be
exceeded.

[EEXIST] A message queue identifier exists for key but { (msgflg & IPC_CREAT) & (

msgfly & IPC_EXCL) ) is “true”.

RETURN VALUE
Upon successful completion, a non-negative integer, namely a message queue identifier, is
returned. Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
msgetl(2), msgop(2), stdipe(3).

Hewlett-Packard -1- June 28, 1985



MSGOP (2) MSGOP (2)

NAME

msgop - message operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgflg)
int msqid;
struct msgbuf *msgp;
int msgsz, msgflg;
int msgrev (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;
struct msgbuf *msgp;
int msgsz;
long msgtyp;
int msgflg;
HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System V
DESCRIPTION
Msgsnd is used to send a message to the queue associated with the message queue identifier

specified by msgid. {WRITE} Msgp points to a structure containing the message. This structure
is composed of the following members:

long mtype; /* message type */
char mtext(]; /* message text */

Mtype is a positive integer that can be used by the receiving process for message selection (see
msgrcv below ). Miext is any text of length msgsz bytes. Msgsz can range from 0 to a system—
imposed maximum.

Msgflg specifies the action to be taken if one or more of the following are true:
The number of bytes already on the queue is equal to msg_gbytes (see glossary(9)).
The total number of messages on all queues system-wide is equal to the system—imposed
limit.

These actions are as follows:

If (msgfly & IPC_NOWALIT) is “true”, the message will not be sent and the calling pro—
cess will return immediately.

If (msgfly & TIPC_NOWAIT) is “false”, the calling process will suspend execution until
one of the following occurs:

The condition responsible for the suspension no longer exists, in which case the
message is sent.

Msqid is removed from the system (see msgetl(2)). When this occurs, errno is
set equal to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught and the signal handler
does not specify that the call is to be restarted (see sigvector(2)). In this case
the message is not sent and the calling process resumes execution in the manner
prescribed in signal(2).

Msgsnd will fail and no message will be sent if one or more of the following are true:

Hewlett-Packard -1- June 28, 1985



MSGOP (2) MSGOP (2)

[EINVAL) Msqid is not a valid message queue identifier.

[EACCES] Operation permission is denied to the calling process (see glossary(9)).

[EINVAL] Mtype is less than 1.

[EAGAIN) The message cannot be sent for one of the reasons cited above and (msgfly &
IPC_NOWAIT) is “true”.

[EINVAL] Msgsz is less than zero or greater than the system-imposed limit.

[EFAULT] Msgp points to an illegal address.

Upon successful completion, the following actions are taken with respect to the data structure
associated with msgid (see glossary (9)).

Msg__gnum is incremented by 1.
Msg_lspid is set equal to the process ID of the calling process.
Msg_stime is set equal to the current time.

Msgrev reads a message from the queue associated with the message queue identifier specified by
msqid and places it in the structure pointed to by msgp. {READ} This structure is composed of
the following members:

long mtype; /* message type */
char mtext|]; /* message text x/

Mtype is the received message’s type as specified by the sending process. Mtezt is the text of the
message. Msgsz specifies the size in bytes of miert. The received message is truncated to msgsz
bytes if it is larger than msgsz and (msgfly & MSG_NOERROR) is “‘true”. The truncated part
of the message is lost and no indication of the truncation is given to the calling process.

Msgtyp specifies the type of message requested as follows:
If msgtyp is equal to 0, the first message on the queue is received.
If msgtyp is greater than 0, the first message of type msgiyp is received.

If msgtyp is less than 0, the first message of the lowest type that is less than or equal to
the absolute value of msgtyp is received.

Masgflg specifies the action to be taken if a message of the desired type is not on the queue. These
are as follows:

If (msgfly & TPC_NOWAIT) is “true”, the calling process will return immediately with a
return value of -1 and errno set to ENOMSG.

If (msgfly & TPC_NOWAIT) is “false”, the calling process will suspend execution until
one of the following occurs:

A message of the desired type is placed on the queue.

Msqid is removed from the system. When this occurs, errno is set equal to
EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught and the signal handler
does not specify that the call is to be restarted (see sigvector(2)). In this case a
message is not received and the calling process resumes execution in the manner
prescribed in signal(2).

Msgrev will fail and no message will be received if one or more of the following are true:
[EINVAL] Msqid is not a valid message queue identifier.
[EACCES] Operation permission is denied to the calling process.

Hewlett—Packard -2- June 28, 1985



MSGOP (2) MSGOP (2)

[EINVAL) Msgsz is less than 0.

[E2BIG) Mtext is greater than msgsz and (msgfly & MSG_NOERROR) is ‘“‘false”.

[ENOMSG] The queue does not contain a message of the desired type and (msgtyp &
IPC_NOWALIT) is “true’’.

[EFAULT] Masgp points to an illegal address.

Upon successful completion, the following actions are taken with respect to the data structure
associated with msgid (see glossary (9)).

Msg__qgnum is decremented by 1.
Msg_Irpid is set equal to the process ID of the calling process.
Msg_rtime is set equal to the current time.

RETURN VALUES
If msgsnd or msgrcv return due to the receipt of a signal, a value of -1 is returned to the calling
process and errno is set to EINTR. If they return due to removal of msgid from the system, a
value of -1 is returned and errno is set to EIDRM.

Upon successful completion, the return value is as follows:

Msgsnd returns a value of 0.

Msgrev returns a value equal to the number of bytes actually placed into mtezt.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
msgetl(2), msgget(2), signal(2), stdipe(3).

Hewlett—Packard -3- June 28, 1985



NICE({2) NICE (2)

nice - change priority of a process

SYNOPSIS

int nice (incr)
int incr;

HP-UX COMPATIBILITY

Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION

Nice adds the value of tncr to the nice value of the calling process. A process’s nice value is a
positive number for which a more positive value results in lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are imposed by the system. Requests
for values above or below these limits result in the nice value being set to the corresponding limit.

[EPERM] Nice will fail and not change the nice value if iner is negative or greater than 40
and the effective user ID of the calling process is not super—user.

RETURN VALUE

Upon successful completion, nice returns the new nice value minus 20. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Note that nice assumes a user process priority value of 20. If the super—user of your system has
changed the user process priority value to something less than 20, certain increments can cause
nice to return -1, which is indistinguishable from an error return.

HARDWARE DEPENDENCIES

Integral PC:
The super—user capabilities are provided to the normal user.

SEE ALSO

nice(1), exec{2), rtprio(2).

Hewlett—Packard -1- June 28, 1985



OPEN(2) OPEN (2)

NAME

open - open file for reading or writing

SYNOPSIS
#include <fentl.h>
int open (path, oflag [ , mode | )
char *path;
int oflag, mode;

HP-UX COMPATIBILITY
Level: Basic calls: HP-UX/RUN ONLY

Real time extensions: HP-UX/STANDARD - Real Time
Origin: System V, UCB, and HP

DESCRIPTION
Path points to a path name naming a file; it may not exceed 1024 bytes in length. Open opens a
file descriptor for the named file and sets the file status flags according to the value of oflag.
Oflag values are constructed by OR-ing flags from the list below.

Note that exactly one of the first three flags below must be used. Several of the other
flags can be changed during the time the file is open using fentl. See fentl(2) and fentl(7)
for details.

mode specifies the low—order 12 bits of the files mode when the file did not previously exist and is
being created by this call.

O_RDONLY
Open for reading only.

O_WRONLY
Open for writing only.

O_RDWR  Open for reading and writing.

O_NDELAY This flag may affect subsequent reads and writes. See read(2) and write(2).
When opening a FIFO with O_RDONLY or O_WRONLY set:
If O_NDELAY is set:

An open for reading-only will return without delay. An open for writing-
only will return an error if no process currently has the file open for read—
ing.

If O_NDELAY is clear:

An open for reading-only will block until a process opens the file for writ
ing. An open for writing-only will block until a process opens the file for
reading.

When opening a file associated with a communication line:
If O_NDELAY is set:
The open will return without waiting for carrier.
If O_NDELAY is clear:
The open will block until carrier is present.
O_APPEND If set, the file pointer will be sct to the end of the file prior to each write.

O_CREAT If the file exists, this flag has no effect. Otherwise, the owner ID of the file is set to
the effective user ID of the process, the group ID of the file is set to the effective
group ID of the process, and the low—order 12 bits of the file mode are set to the
value of mode modified as follows (see creat(2)):

Hewlett-Packard 1-- June 28, 1985



OPEN(2)

O_TRUNC

O_EXCL
O_SYNCIO

OPEN (2)

All bits set in the file mode creation mask of the process are cleared. See
umask(2).

The “save text image after execution”, set-user-id and set-group—id bits of
the mode is cleared. See chmod(2).

If the file exists, its length is truncated to 0 and the mode and owner are
unchanged.

If O_EXCL and O_CREAT are set, open will fail if the file exists.

If a file is opened with O_SYNCIO or is set with the F_SETFL option of fentl, file
system writes for that file will be done through the cache to the disc as soon as
possible, and the process will block until this is completed. This flag is ignored by
all I/0 calls except write, and is ignored for files other than ordinary files and block
special devices on those systems which permit I/O to block special devices.

The file pointer used to mark the current position within the file is set to the beginning of the file.

The new file descriptor is set to remain open across ezec system calls. See fentl(2).

ERRORS

Open will fail and the file will not be opened if one of the following conditions is true. Errno will
be set accordingly:

[ENOTDIR]
[ENOENT]
[EACCES]
[EAGAIN]

[EACCES]
[EISDIR]
[EROFS]

[EMFILE]
[ENXIO]

[ETXTBSY]

[EFAULT]
[EEXIST]
[ENXIO]

[EINTR]
[ENFILE]
[ENOENT)
[EINVAL]

RETURN VALUE

A component of the path prefix is not a directory.
O_CREAT is not set and the named file does not exist.
A component of the path prefix denies search permission.

One or more segments of a pre-existing file have been locked with lockf by some
other process, and O_TRUNC is set.

Oflag permission is denied for the named file.
The named file is a directory and oflag is write or read/write.

The named file resides on a read-only file system and oflag is write or
read /write.

More than the maximum number file descriptors are currently open.

The named file is a character special or block special file, and the device associ—
ated with this special file does not exist.

The file is open for execution and oflag is write or read/write. Normal execut—
able files are only open for a short time when they start execution. Other exe-
cutable file types may be kept open for a long time, or indefinitely under some
circumstances. The conditions are described m HARDWARE DEPENDENCIES
below.

Path points outside the allocated address space of the process.
O_CREAT and O_EXCL are set, and the named file exists.

O_NDELAY is set, the named file is a FIFO, O_WRONLY is set, and no process
has the file open for reading.

A signal was caught during the open system call.
The system file table is full.

Path is null.

Oflag specifies both O_WRONLY and O__RDWR.

Upon successful completion, the file descriptor is returned. Otherwise, a value of -1 is returned

Hewlett-Packard

-2 - June 28, 1985



OPEN(2) OPEN (2)

and errno is set to indicate the error.
HARDWARE DEPENDENCIES

Series 500:
Execute and write access are mutually exclusive.

Shared program files remain open for execution as long as there exists a process executing
the program.

Once a shared program file with its sticky bit set has been loaded, it appears to be open
indefinitely, even if the actual number of processes executing the program drops to zero.
Refer to the System Administrator Manual for a discussion of the sticky bit.

Demand loaded program files that are not shared remain open until all of the code and
data have been loaded. Then they are closed.
Integral PC:
_NFILE is equal to 20.
SEE ALSO
chmod(2), close(2), creat(2), dup(2), fentl(2), lseek(2), read(2), select(2), umask(2), write(2),
lockf(2).

Hewlett-Packard -3 - June 28, 1985



PAUSE(2) PAUSE(2)

NAME

pause - suspend process until signal
SYNOPSIS

pause ()

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION
Pause suspends the calling process until it receives a signal. The signal must be one that is not
currently set to be ignored by the calling process.

If the signal causes termination of the calling process, pause will not return.

If the signal is caught by the calling process and control is returned from the signal-catching
function (see signal(2)), the calling process resumes execution from the point of suspension if the
signal-catching function does not specify restart of the pause (see sigvector(2)). The return value
is -1 from pause, and errno is set to EINTR.

SEE ALSO
alarm(2), kill(2), signal(2), wait(2), sigpause(2).

Hewlett-Packard -1~ June 28, 1985



PIPE(2)

NAME
pipe - create an interprocess channel

SYNOPSIS
int pipe (fildes)
int fildes[2];

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V
DESCRIPTION

PIPE(2)

Pipe creates an 1/O mechanism called a pipe and returns two file descriptors, fildes[0] and

fildes(1]. Fildes[0] is opened for reading and fildes(I] is opened for writing.

Writes up to a system dependent maximum number bytes of data are buffered by the pipe before
the writing process is blocked. HP-UX guarantees a minimum value of 4096 for this number. A
read only file descriptor fildes{0] accesses the data written to fildes[l] on a first in first-out

(FIFO) basis.

[EMFILE] Pipe will fail if NFILE - 1 or more file descriptors are currently open.
[ENFILE] The system file table is full.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and

errno is set to indicate the error.

HARDWARE DEPENDENCIES
Integral PC:

Writes of up to 10240 bytes of data are buffred by the pipe before the writing process is

blocked.
__NFILE is equal to 20.

SEE ALSO
sh(1), read(2), write(2), popen(3S).

Hewlett-Packard

June 28, 1985



PLOCK (2) PLOCK (2)

NAME
plock - lock process, text, or data in memory

SYNOPSIS
#include <sys/lock.h>

int plock {op)
int op;

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Qrigin: System V

DESCRIPTION
Plock allows the calling process to lock the text portion of the process (text lock), its data portion
(data lock), or both its text and data portion (process lock) into memory. Locked segments are
immune to all routine swapping. Plock also allows these segments to be unlocked. The effective
user ID of the calling process must be super—user, or the user must have PRIV_MLOCK (see set-
privgrp(2)) to use this call. Op specifies the following:

PROCLOCK - lock text and data segments into memory (process lock)
TXTLOCK - lock text segment into memory (text lock)

DATLOCK - lock data segment into memory (data lock)

UNLOCK - remove locks

Plock will fail and not perform the requested operation if one or more of the following are true:

[EPERM] The effective user ID of the calling process is not super user and the user does
not have PRIV_ MLOCK.

[EINVAL]J Op is equal to PROCLOCK and a process lock, a text lock, or a data lock
already exists on the calling process.

[EINVAL] Op is equal to TXTLOCK and a text lock, or a process lock already exists on the
calling process.

[EINVAL] Op is equal to DATLOCK and a data lock, or a process lock already exists on
the calling process.

[EINVAL] Op is equal to UNLOCK and no type of lock exists on the calling process.

[EINVAL]J Op is not equal to either PROCLOCK, TXTLOCK, DATLOCK, or UNLOCK.

All locks are released by fork and ezec.

RETURN VALUE
Upon successful completion, a value of 0 is returned to the calling process. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

HARDWARE DEPENDENCIES
Series 200 and 500:
Plock is not allowed in the [vfork,exec|] window.
[EINVAL] Plock not allowed in [vfork,exec] window

SEE ALSO
exec(2), exit(2), fork(2).

Hewlett—Packard -1- June 28, 1985



PREALLOC(2) PREALLOC (2)

NAME

prealloc - preallocate fast disk storage

SYNOPSIS
#include <realtime.h>

int prealloc (fildes, size)
int fildes;
unsigned size;

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD - Real Time

Origin: HP
Remarks:
Not supported on the Integral Personal Computer.

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup or fentl system call for an ordinary file
of zero length. Size is the size in bytes to be preallocated for the file specified by fildes, at least
size bytes will be allocated. The space will be allocated in an implementation dependent fashion
for fast sequential reads and writes. The EOF in an extended file will be left at the end of the
preallocated area. The current file pointer is left at zero. The file is zero—filled.

Using prealloc on a file does not give the file an attribute which is inherited when copying or res—
toring the file using a program like ¢p(1) or ter(1). It simply guarantees that the disk space has
been preallocated for size bytes in a manner suited for sequential access. The file can be extended
beyond these limits by write operations past the original end of file, however this space will be not
necessarily be allocated using any special strategy.
HARDWARE DEPENDENCIES

As the exact effect, and performance benefits, to be obtained by using this call vary with the
implementation of the file system, the performance-related details are described in the System
Administrator Manual for each specific machine.

ERRORS
Prealloc will fail and no disk space will be allocated if one or more of the following are true:

[EBADF] Fildes is not a valid open file descriptor.

[ENOTEMPTY] Fildes not associated with an ordinary file of zero length.

[ENOSPC] Not enough space left on device to allocate the requested amount; no space
was allocated.

[EFBIG]| Size exceeds the maximum file size or the process’s file size limit. See
ulimit(2).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

SEE ALSO
creat(2), dup(2), fentl(2), open(2), read(2), ulimit(2), write(2), prealloc(1).

BUGS

The allocation of the file space is highly dependent on the current disk usage. A successful return
does not tell you how fragmented the file actually might be if the disk is reaching its capacity.

Hewlett-Packard -1- June 28, 1985



PROFIL(2) Series 200 Only PROFIL (2)

profil - execution time profile

SYNOPSIS

void profil (buff, bufsiz, offset, scale)
char *buff;
int bufsiz, offset, scale;

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V

Remarks: Not available on Series 500 or on Integral Personal Computer.

DESCRIPTION

Buff points to an area of core whose length (in bytes) is given by bufsiz. After this call, the user’s
program counter (pc) is examined each clock tick, offset is subtracted from it, and the result is
multiplied by scale. If the resulting number corresponds to a byte offset inside buff, that
unsigned short, 16-bit counter is incremented. The number of samples per second for a given
implementation is given by HZ as found in <sys/param.h>.

The scale is interpreted as a 16-bit unsigned, fixed—point fraction with binary point at the left:
0177777 (octal) gives a 1-1 mapping of pc’s to counters in buff; 077777 (octal) maps each pair of
instruction words together.

Profiling is turned off by giving a scale of 0. It is rendered ineffective by giving a bufsiz of 0.
Profiling is turned off when an ezec is executed, but remains on in child and parent both after a
fork. Profiling will be turned off if an update in buff would cause a memory fault.

HARDWARE DEPENDENCIES

Series 500:
Profil is not currently available.

Integral PC:
Profil is not currently available.

RETURN VALUE

Not defined.

SEE ALSO

prof(1), monitor(3C).

Hewlett—Packard -1- July 4, 1985



PTRACE(2) Series 200 Only PTRACE(2)

NAME
ptrace - process trace

SYNOPSIS
int ptrace (request, pid, addr, data);
int request, pid, addr, data;

HP-UX COMPATIBILITY
Level: HP-UX/DEVELOPMENT

Origin: System V

Remarks: Series 200 only. Much of the functionality of this capability is highly dependent on the
underlying hardware. An application which uses this intrinsic should not be expected
to be portable across architectures or implementations.

DESCRIPTION

Ptrace provides a means by which a parent process may control the execution of a child process.
Its primary use is for the implementation of breakpoint debugging; see adb(1). The child process
behaves normally until it encounters a signal (sec signal(2) for the list), at which time it enters a
stopped state and its parent is notified via wait(2). When the child is in the stopped state, its
parent can examine and modify its “core image” using ptrace. Also, the parent can cause the
child either to terminate or continue, with the possibility of ignoring the signal that caused it to
stop.

The request argument determines the precise action to be taken by ptrace and is one of the fol-
lowing:

0 This request must be issued by the child process if it is to be traced by its parent.
It turns on the child’s trace flag that stipulates that the child should be left in a
stopped state upon receipt of a signal rather than the state specified by func; see
signal(2). The pid, addr, and date arguments are ignored, and a return value is not
defined for this request. Peculiar results will ensue if the parent does not expect to
trace the child.

The remainder of the requests can only be used by the parent process. For each, pid is the pro—
cess ID of the child. The child must be in a stopped state before these requests are made.

1, 2 With these requests, the word at location addr in the address space of the child is
returned to the parent process. If instruetion (I} and data (D) space are separated,
request 1 returns a word from I space, and request 2 returns a word from D space.
If I and D space are not separated, either request 1 or request 2 may be used with
equal results. The data argument is ignored. These two requests will fail if addr is
not the start address of a word, in which case a value of -1 is returned to the parent
process and the parent’s errno is set to EIO.

3 With this request, the word at location addr in the child’s USER area in the
system’s address space (see <sys/user.h>) is returned to the parent process.
Addresses in this area are system dependent, but start at zero. The limit can be
derived from <sys/user.h>. The data argument is ignored. This request will fail
if addr is not the start address of a word or is outside the USER area, in which case
a value of -1 is returned to the parent process and the parent’s errno is set to EIO.

4,5 With these requests, the value given by the data argument is written into the
address space of the child at location addr. Request 4 writes a word into I space,
and request 5 writes a word into D space. Upon successful completion, the value
written into the address space of the child is returned to the parent. These two
requests will fail if addr is not the starting address of a word, or if addr is a location
in a pure procedure space and either another process is executing in that space or
the parent process does not have write access for the executable file corresponding

Hewlett—Packard -1 July 4, 1985



PTRACE(2)

Series 200 Only PTRACE(2)

to that space. Upon failure a value of -1 is returned to the parent process and the
parent’s errno is set to EIO.

With this request, a few entries in the child’s USER area can be written. Data gives
the value that is to be written and addr is the location of the entry. The few entries
that can be written are dependent on the architecture of the system, but include the
user data registers, auxiliary data registers, and status register (the set of registers,
or bits in registers, which the user’s program could modify).

This request causes the child to resume execution. If the data argument is 0, all
pending signals including the one that caused the child to stop are canceled before it
resumes execution. If the data argument is a valid signal number, the child resumes
execution as if it had incurred that signal, and any other pending signals are can-
celed. The addr argument must be equal to 1 for this request. Upon successful
completion, the value of date is returned to the parent. This request will fail if
data is not 0 or a valid signal number, in which case a value of -1 is returned to the
parent process and the parent’s errno is set to EIO.

This request causes the child to terminate with the same consequences as ezit(2).

This request causes a flag to be set so that an interrupt will occur upon the comple-
tion of one machine instruction, and then executes the same steps as listed above for
request 7. If the processor does not provide a trace bit, this request returns an
error. This effectively allows single stepping of the child.

Whether or not the trace bit remains set after this interrupt is a function of the
hardware.

To forestall possible fraud, ptrace inhibits the set-user-id facility on subsequent erec(2) calls. If
a traced process calls ezxec, it will stop before executing the first instruction of the new image
showing signal SIGTRAP.

GENERAL ERRORS

Ptrace will in general fail if one or more of the following are true:

[E10]
[ESRCH]

Request is an illegal number.

Pid identifies a child that does not exist or has not executed a ptrace with
request 0.

HARDWARE DEPENDENCIES
Series 200 only; not supported on Series 500.

SEE ALSO

adb(1), exec(2), signal(2), wait(2).

Hewlett-Packard

2- July 4, 1985



READ(2) READ(2)

NAME

read, readv - read input

SYNOPSIS

int read (fildes, buf, nbyte)
int fildes;

char sbuf;

unsigned nbyte;

#include <sys/types.h>
#include <sys/nio.h>

int readv (fildes, iov, iovent)
int fildes;

struct iovec *iov;

int iovent;

HP-UX COMPATIBILITY

Level: read: HP- UX/RUN ONLY
readv: HP-UX/STANDARD
Origin: System V, UCB, and HP

DESCRIPTION

Fildes is a file descriptor obtained from a creat, open, dup, fentl, or pipe system call.

Read attempts to read nbyte bytes from the file associated with fildes into the buffer pointed to
by buf. Readv performs the same action but scatters the input data into the iovcnt buffers
specified by the elements of the fovec array: iov[0], iov[1], ..., lov{ dovent — 1].

For readv the iovec structure is defined as

struct iovec {
caddr_t iov_base;
int iov_len;
h
Each fovec entry specifies the base address and length of an area in memory where data should be
placed. Readv will always fill one area completely before proceeding to the next area. The iovec
array may be at most MAXIOV long.

On devices capable of seeking, the read starts at a position in the file given by the file pointer
associated with fildes. Upon return from read, the file pointer is incremented by the number of
bytes actually read.

Devices that are incapable of seeking always read from the current position. The value of a file
pointer associated with such a device is undefined.

Upon successful completion, read returns the number of bytes actually read and placed in the
buffer; this number may be less than nbyte if 1) the file is associated with a communication line
(see toctl(2) and termio(4)), or 2) if the number of bytes left in the file is less than nbyte bytes.
A value of 0 is returned when an end-of-file has been reached.

When attempting to read from an empty pipe (or FIFO):
If O_NDELAY is set, the read will return a 0.

If O_NDELAY is clear, the read will block until data is written to the file or the file is no
longer open for writing.

When attempting to read a file associated with a tty that has no data currently available:

Hewlett-Packard -1- June 28, 1985



READ(2) READ (2)

If O_NDELAY is set, the read will return a 0.
If O__NDELAY is clear, the read will block until data becomes available.

ERRORS
Read will fail if one of the following conditions is true and errno will be set accordingly:
[EBADF] Fildes is not a valid file descriptor open for reading.
[EFAULT) Buf points outside the allocated address space.
[EINTR] A signal was caught during the read system call.
[EDEADLK] A resource deadlock would occur as a-result of this operation (see lockf(2)).
In addition, readv may return one of the following errors:
[EINVAL] Tovent was less than or equal to 0, or greater then MAXIOV.
[EINVAL]) One of the iov len values in the iov array was negative.
[EINVAL]) The sum of iov len values in the iov array overflowed a 32-bit integer.

RETURN VALUE
Upon successful completion a non-negative integer is returned indicating the number of bytes
actually read. Otherwise, a -1 is returned and errno is set to indicate the error.

CAVEATS
Record locking may or may not be enforced by the system depending on the setting of the file’s
mode bits (see lockf(2)).

BUGS
The character special devices, and raw discs in particular, apply constraints on how read can be
used. See the specific Section 4 entries for details on particular devices.

HARDWARE DEPENDENCIES
Series 500:
Readv is not currently supported on the Series 500.

Integral PC:
Information read from a disc by the operating system is cached in memory to speed up
access to information in files. Consequently, not every read operation causes the system
to access the physical medium. If it becomes necessary to access the physical medium,
you should execute sync before executing read.

SEE ALSO
creat(2), dup(2), fentl(2), ioctl(2), open(2), pipe(2), select(2), ustat(2), tty(4), lockf(2).

Hewlett—Packard -2 - June 28, 1985



REBOOT(2) Series 200 Only REBOOT (2)

NAME

reboot - boot the system
SYNOPSIS

int reboot (howto, device_file, filename)

int howto; char *device_file; char *filename;
HP-UX COMPATIBILITY

Level: HP -UX/NON:- STANDARD

Origin: ucCB
Remarks: Reboot is implemented on the Series 200 only.
DESCRIPTION

Reboot causes the system to be rebooted. Howto is a mask of reboot options (see
<sys/reboot.h> Only RB_HALT, RB_AUTOBOOT, RB_NOSYNC, RB_NEWDEVICE, and
RB_NEWFILE are recognized options.

The howto options are:

RB_AUTOBOOT
a filesystem sync is performed (unless RB_NOSYNC is set) and the processor is
rebooted from the device and file from which it was previously booted.

RB_HALT
the processor is simply halted. A sync of the filesystem will be done unless the
RB_NOSYNC flag is set. RB_HALT should be used with caution.

RB_NOSYNC
a sync of the filesystem is not to be performed.

RB_NEWDEVICE
the device_file argument to the system call is to be used as the filename of the device
from which to reboot.

RB_NEWFILE
the filename argument to the system call is to be used as the name of the file to be
rebooted.

Dewvice_file specifies the device from which the reboot is to take place. Dewvice_file must be a
block or character special file name and is used only if the RB_ NEWDEVICE option is set.

Filename specifies the name of the file to be rebooted (only used if the RB_NEWFILE option is
set). This file will be loaded into memory by the bootstrap and control passed to it. Filename
must be one of the files listed by the boot rom at power up.

Only the super—user may reboot a machine.

RETURN VALUES
If successful, this call never returns. Otherwise, a -1 is returned and an error is returned in the
global variable errno

Hewlett—Packard -1- July 4, 1985



RMDIR (2) RMDIR (2)

NAME
rmdir - remove a directory file

SYNOPSIS
rmdir(path)
char *path;

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: UCB

Remarks: Not all systems implement this as a system call; some use a library call to the rmdir(1)
command to achieve the same effect. The errors documented below will appear in any
case, and no error messages will ever be printed.

DESCRIPTION
Rmdir removes a directory file whose name is given by path. The directory must be empty before
it can be removed.

RETURN VALUE
A 0 is returned if the remove succeeds; otherwise a -1 is returned and an error code is stored in
the global location errno.

ERRORS
The named file is removed unless one or more of the following are true:
[ENOTEMPTY]
The named directory is not empty (it contains files named other than *.” and
“L.
[ENOENT)] The pathname was too long.
[ENOTDIR] A component of the path prefix is not a directory, or the named file is not a
directory.
[ENOENT] The named file does not exist.
[EACCES] A component of the path prefix denies search permission.
[EACCES] Write permission is denied on the directory containing the link to be removed.
[EBUSY] The directory to be removed is the mount point for a mounted file system.
[EROFS] The directory entry to be removed resides on a read-only file system.
[EFAULT) Path points outside the process’s allocated address space.
[ELOOP] Too many symbolic links were encountered in translating the pathname.
[EINVAL] “.” and ”..” are not allowed as directory names.
HARDWARE DEPENDENCIES

Series 500:
The directory identifiers “.” and “..” are recognized by Series 500 HP-UX, but files of the
same names do not appear in the directory structure.

Series 200:
An empty directory contains two files named ".” and “..”, respectively ( Is -a option is
used to display them).

SEE ALSO
mkdir(2), unlink(2)

Hewlett—Packard -1- June 28, 1985



RTPRIO(2) RTPRIO(2)

NAME

rtprio - change or read realtime priority

SYNOPSIS

#include <sys/rtprio.h>

int rtprio (pid, prio)
int pid, prio;

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD - Real Time
Origin: HP

DESCRIPTION

Riprio is used to set or read the realtime priority of a process. If pid is zero, it names the calling
process; otherwise it gives the pid of the process. When setting the realtime priority of another
process, the real or effective user ID of the calling process must match the real or effective user ID
of the process to be modified, or the effective user ID of the calling process must be that of
super—user. The calling process must also be a member of or have an effective group id of a group
having PRIV_RTPRIO access to be a realtime process (see getprivgrp(2)) or be super user.
Simply reading realtime priorities requires no special privilege.

Real time scheduling policies differ from the normal timesharing policies in that the realtime
priority is used to absolutely order all realtime processes; this priority is not degraded over time.
All realtime processes are of higher priority than normal user processes, although some system
processes may run at realtime priorities themselves. If there are several eligible processes at the
same priority level, they will be run in a round robin fashion as long as no process with higher
priority intercedes. A realtime process will receive cpu service until it either voluntarily gives up
the cpu or is preempted by a process of equal or higher priority. Interrupts may also preempt a
realtime process.

Valid realtime priorities run from zero to 127. Zero is the highest (most important) priority.
This realtime priority is inherited across forks and ezecs.

Prio specifies the following:
0-127 Set process to this realtime priority.

RTPRIO_NOCHG
Do not change realtime priority. This is used for reading the process
realtime priority.

RTPRIO_RTOFF
Set this process to no longer have a realtime priority. It will resume a
normal timesharing priority. Any process, regardless of privilege, is
allowed to turn off its own realtime priority using a pid of zero.

RETURN VALUE

If no error occurs, riprio will return the pid’s former (before the call) realtime priority. If the pro-
cess was not a realtime process, the value RTPRIO_RTOFF will be returned. If an error does
occur, -1 is returned and errno is set to one of the values described in the ERRORS section.

ERRORS[EINVAL] Prio is not RTPRIO_NOCHG, RTPRIO_RTOFF or in the range 0 to 127.
[ESRCH] No process can be found corresponding to that specified by pid.
[EPERM] The calling process is not the super-user and neither its real or effective user-id
match the real or effective user-id of the process indicated by pid.
[EPERM] The calling process is not a member of a group having PRIV_RTPRIO capabil-

ity and prio is not RTPRIO_NOCHG, or RTPRIO__RTOFF with a pid of zero.

Hewlett—Packard -1~ June 28, 1985



RTPRIO (2) RTPRIO (2)

HARDWARE DEPENDENCIES
Series 500:

Some of the work done by the system on behalf of users is done with daemon processes
which have varioius priorities. Some functions such as copying user space on a fork, vir-
tual memory swapping, and LAN activity are done at a priority lower than any of the
réprio(2) priorities.

Other functions, such as terminal I/O, disc I/O, DIL interrupts, signals, select(2) wake—

ups, and system timers, are done at a priority level equivalent to an réprio(2) priority of
64.

If there is a real-time process that is consuming all available CPU time, the system will
not be able to accomplish any other system activities that have a lower priority, even if
the function is on behalf of the real-time process. In the case of multi-CPU systems, it
will take multiple real-time processes to lock out the system.

The user of rtprio(2) must decide whether the task requiring real-time priorities needs to
have an effective priority greater than or less than the system functions provided.

SEE ALSO
rtprio(1), getprivgroup(2), plock(2),nice(2).

NOTES
Normally, compute bound programs should not be run at realtime priorities, because all time
sharing work on the cpu would come to a complete halt.

Hewlett-Packard -2- June 28, 1985



SELECT (2) SELECT (2)

NAME
select - synchronous I/Q multiplexing

SYNOPSIB
#include <time.h>

int select(nfds, readfds, writefds, exceptfds, timeout)
int nfds, *readfds, *writefds, *exceptfds;
struct timeval *timeout;

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD - Real Time

Origin: HP and UCB

DESCRIPTION
Select examines the file descriptors specified by the bit masks readfds, writefds and exceptfds.
The bits from 0 through nfds-1 are examined. File descriptor fis represented by the bit 1<<f in
the masks. More formally, a file descriptor is represented by:

fds{(f / BITS_PER_INT)] & (1 << (f % BITS_PER_INT))

When select completes successfully it returns the three bit masks modified as follows: For each
file descriptor less than nfds, the corresponding bit in each mask is set if the bit was set upon
entry and certain conditions prevail. The bit is set if the file descriptor is ready for reading, writ-
ing or has an exceptional condition pending.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the selection to com—
plete. If timeout is a zero pointer, the select waits until an event causes one of the masks to be
returned with a valid (non-zero) value. To poll, the timeout argument should be non-zero, point-
ing to a zero valued timeval structure. Specific implementations may place limitations on the
maximum timeout interval supported. The constant MAX ALARM defined in <sys/param.h>
specifies the implementation-specific maximum (in seconds). Whenever timeout specifies a value
greater than this maximum, it is silently rounded down to this maximum. On all implementa
tions, MAX_ALARM is guaranteed to be at least 31 days (in seconds). Note that the use of a
timeout does not affect any pending timers set up by alarm(2) or setitvmer(2).

Any or all of readfds, writefds, and exceptfds may be given as 0 if no descriptors are of interest.

ERRORS
An error return from select indicates:

[EBADF] One or more of the bit masks specified an invalid descriptor.

[EINTR] A signal was delivered before any of the selected for events occurred or before the
time limit expired.

[EFAULT] One or more of the pointers was invalid.

[EINVAL] The timeout value specified a time outside of the acceptable range.

RETURN VALUE
Select returns the number of descriptors contained in the bit masks, or -1 if an error occurred. If
the time limit expires then select returns 0 and all the masks are cleared.

HARDWARE DEPENDENCIES
Series 500:
Select(2) supports the following devices and file types:

pipes

fifo special files (named pipes)
Model 520 Internal Terminal Emulator (ITE)

Hewlett—Packard -1 June 28, 1985



SELECT (2) SELECT(2)

HP 98700H ITE and HP-HIL input devices
(such as HP 46020A Keyboard and HP 46086A Button Box)
HP 27128A ASI tty driver
. HP 27140A Modem MUX tty driver
pty(4) special files
HP 27125A LAN interface card driver (LLA)
+ HP 27130A/B port MUX (with appropriate firmware revision)

Ordinary files always select true whenever selecting on reads, writes, and/or exceptions.

The convention for device files that do not support select(2) is to always return true for those
conditions the user is selecting on.

Series 200:
Select(2) supports the following devices and file types:

pipes

fifo special files (named pipes)

Model 520 Internal Terminal Emulator (ITE)
HP 98643 LAN interface card driver

All serial interfaces

pty(4) special files

All ITEs and HP -HIL input devices

Ordinary files always select true whenever selecting on reads, writes, and/or exceptions.
File types not supporting select(2) always return true.

SEE ALSO
fentl(2), read(2), write(2). .

Hewlett—Packard -2- June 28, 1985



SEMCTL(2)

NAME

SEMCTL(2)

semect! - semaphore control operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl (semid, semonum, cmd, arg)

int semid, cmd;

int semnum;

union semun {
int val;

struct semid ds xbuf;

ushort *array;

} arg;
HP-UX COMPATIBILITY

Level: HP-UX/STANDARD

Origin: System V

DESCRIPTION

Semectl provides a variety of semaphore control operations as specified by emd.

The following ¢mds are executed with respect to the semaphore specified by semid and semnum:

GETVAL
SETVAL

GETPID
GETNCNT
GETZCNT

Return the value of semval (see glossary(9)). {READ}

Set the value of semval to arg.vaD {ALTER} When this c¢md is success-
fully executed, the semadj value corresponding to the specified semaphore
in all processes is cleared.

Return the value of sempid. {READ}
Return the value of semncnt. {READ}
Return the value of semzcnt. {READ}

The following emds return and set, respectively, every semval in the set of semaphores.

GETALL
SETALL

Place semvals into array pointed to by arg.array. {READ}

Set semvals according to the array pointed to by arg.array. {ALTER}
When this ¢md is successfully executed the semadj values corresponding
to each specified semaphore in all processes are cleared.

The following ¢mds are also available:

IPC_STAT

IPC_SET

Hewlett--Packard

Place the current value of each member of the data structure associated
with semid into the structure pointed to by arg.buf. The contents of this
structure are defined in glossary(9). {READ}

Set the value of the following members of the data structure associated
with semid to the corresponding value found in the structure pointed to
by arg.buf:

sem_perm.uid

sem__perm.gid

sem._perm.mode /* only low 9 bits «/

This c¢md can only be executed by a process that has an effective user ID
equal to that of super-user, or equal to the wvalue of either

sem__perm.uid or sem__perm.cuid in the data structure associated
with semid.

-1- June 28, 1985



SEMCTL(2)

IPC_RMID

SEMCTL(2)

Remove the semaphore identifier specified by semid from the system and
destroy the set of semaphores and data structure associated with it. This
cmd can only be executed by a process that has an effective user ID equal
to either that of super—user or to the value of either sem__perm.uid or
sem__perm.cuid in the data structure associated with semid.

Semctl will fail if one or more of the following are true:

[EINVAL)
[EINVAL]
[EINVAL)
[EACCES]
[ERANGE]

[EPERM]

[EFAULT]
RETURN VALUE

Semid is not a valid semaphore identifier.

Semnum is less than zero or greater than sem nsems.

Cmd is not a valid command.

Operation permission is denied to the calling process (see glossary(9)).

Cmd is SETVAL or SETALL and the value to which semval is to be set
is greater than the system imposed maximum.

Cmd is equal to IPC_RMID or IPC_SET and the effective user ID of
the calling process is not equal to that of super—user and it is not equal
to the value of either sem__perm.uid or sem__perm.cuid in the data
structure associated with semid.

Arg.buf or arg.array points to an illegal address.

Upon successful completion, the value returned depends on ¢md as follows:

GETVAL
GETPID
GETNCNT
GETZCNT
All others

The value of semval.
The value of sempid.
The value of semnent.
The value of semzcent.
A value of 0.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO

semget(2), semop(2), stdipe(3).

Hewlett-Packard

-2~ June 28, 1985



SEMGET(2)

NAME

SEMGET (2)

semget, - get set of semaphores

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key, nsems, semflg)

key_t key;

int nsems, semflg;

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System V

DESCRIPTION

Semget returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set containing nsems semaphores (see
glossary(9)) are created for key if one of the following are true:

Key is equal to IPC_PRIVATE.

Key does not already have a semaphore identifier associated with it, and (semflg &
IPC_CREAT) is ‘“true”.

Upon creation, the data structure associated with the new semaphore identifier is initialized as

follows:

Sem__perm.cuid, sem__perm.uid, sem__perm.cgid, and sem__perm.gid are set equal
to the effective user ID and effective group ID, respectively, of the calling process.

The low-order 9 bits of sem__perm.mode are set equal to the low—order 9 bits of semflg.

Sem__nsems is set equal to the value of nsems.

Sem__otime is set equal to 0 and sem__ctime is set equal to the current time.

Semget will fail if one or more of the following are true:

[EINVAL]

[EACCES]

[EINVAL)]

[ENOENT]

[ENOSPC]

[ENOSPC]

[EEXIST)

RETURN VALUE

Nsems is either less than or equal to zero or greater than the system-imposed
limit.

A semaphore identifier exists for key, but operation permission (see glossary(9))
as specified by the low-order 9 bits of semflg would not be granted.

A semaphore identifier exists for key, but the number of semaphores in the set
associated with it is less than nsems and nsems is not equal to zero.

A semaphore identifier does not exist for key and (semfly & IPC_CREAT) is
“false”.

A semaphore identifier is to be created but the system-imposed limit on the
maximum number of allowed semaphore identifiers system wide would be
exceeded.

A semaphore identifier is to be created but the system-imposed limit on the
maximum number of allowed semaphores system wide would be exceeded.

A semaphore identifier exists for key but ( (semfly & IPC_CREAT) & ( semflg
& IPC_EXCL) ) is “true”.

Upon successful completion, a non-negative integer, namely a semaphore identifier, is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

Hewlett-Packard

-1- June 28, 1985



SEMGET (2) SEMGET (2)

SEE ALSO
semctl(2), semop(2), stdipe(3).

Hewlett—Packard -2- June 28, 1985



SEMOP (2) SEMOP (2)

NAME

semop - semaphore operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;

struct sembuf *sops;

int nsops;

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V

DESCRIPTION

Semop is used to atomically perform an array of semaphore operations on the set of semaphores
associated with the semaphore identifier specified by semid. Sops is a pointer to the array of
semaphore—-operation structures. Nsops is the number of such structures in the array. The con-
tents of each structure includes the following members:

ushort sem_num; /+ semaphore number */
short  sem_op; /* semaphore operation */
short sem__flg; /* operation flags */

Each semaphore operation specified by sem _op is performed on the corresponding semaphore
specified by semid and sem_num. Semaphore array operations are atomic, in that none of the
semaphore operations will be performed until blocking conditions on all of the semaphores in the
array have been removed.

Sem__op specifies one of three semaphore operations as follows:,
If sem_op is a negative integer, one of the following will occur: {ALTER}

If semval (see glossary(9)) is greater than or equal to the absolute value of
sem__op, the absolute value of sem__op is subtracted from semval. Also, if
(sem_flg- & SEM_UNDO) is ‘“true”, the absolute value of sem_op is added to
the calling process’s semadj value (see exit(2)) for the specified semaphore.

If semval is less than the absolute value of sem_op and (sem_flg &
IPC_NOWAIT) is ‘““true”, semop will return immediately.

If semval is less than the absolute value of sem_op and (sem_flg &
IPC_NOWAIT} is ‘“false”, semop will increment the semncnt associated with
the specified semaphore and suspend execution of the calling process until one of
the following conditions occur.

Semval becomes greater than or equal to the absolute value of sem_op.
When this occurs, the value of semncent associated with the specified sema-
phore is decremented, the absolute value of sem__op is subtracted from sem—
val and, if (sem_fly & SEM_UNDO) is “true”, the absolute value of
sem_op is added to the calling process’s semadj value for the specified sema—
phore.

The semid for which the calling process is awaiting action is removed from
the system (see semctl(2)). When this occurs, errno is set equal to EIDRM,
and a value of -1 is returned.

The calling process receives a signal that is to be caught and the signal
handler does not specify that the call be restarted (see sigvector(2)). When

Hewlett—Packard -1- June 28, 1985



SEMOP (2)

SEMOP (2)

this occurs, the value of semncnt associated with the specified semaphore is
decremented, and the calling process resumes execution in the manner
prescribed in signal(2).

If-sem__ap is a positive integer, the value of sem_op is added to semval and, if (semflg &

SEM_UNDO) is “true”, the value of sem_op is subtracted from the calling process’s semadj
value for the specified semaphore. {ALTER}
1f sem op is zero, one of the following will occur: {READ}
If semval is zero, semop will proceed to the next semaphore operation specified by sops, or
return immediately if this is the last operation.

If semval is not equal to zero and (sem_flg & IPC_NOWAIT) is ‘‘true”, semop will
return immediately.

If semval is not equal to zero and (sem_flg & IPC_NOWAIT) is “false”, semop will
increment the semzcent associated with the specified semaphore and suspend execution of
the calling process until one of the following occurs:

Semval becomes zero, at which time the value of semzcnt associated with the specified
semaphore is decremented.

The semid for which the calling process is awaiting action is removed from the system.
When this occurs, errno is set equal to EIDRM, and a value of -1 is returned.

The calling process receives a signal that s to be caught and the signal handler does
not specify that the call be restarted (see sigvector(2)). When this occurs, the value of
semzent associated with the specified semaphore is decremented, and the calling pro—
cess resumes execution in the manner prescribed in signal(2).

Semop will fail if one or more of the following are true for any of the semaphore operations
specified by sops:

[EINVAL)
[EFBIG)

[F2BIG]
[EACCES]
[EAGAIN]

[ENOSPC]
[FINVAL)

[ERANGE]
[ERANGE)
[EFAULT)

Semid is not a valid semaphore identifier.

Sem_num is less than zero or greater than or equal to the number of semaphores
in the set associated with semid.

Nsops is greater than the system-imposed maximum.
Operation permission is denied to the calling process (see glossary(9)).

The operation would result in suspension of the calling process but (sem_flg &
IPC_NOWAIT) is “true”.

The limit on the number of individual processes requesting an SEM__UNDO
would be exceeded.

The number of individual semaphores for which the calling process requests a
SEM_UNDO would exceed the limit.

An operation would cause a semval to overflow the system-imposed limit.
An operation would cause a semad) value to overflow the system-imposed limit.

Sops points to an illegal address.

Upon successful completion, the value of sempid for each semaphore specified in the array pointed
to by sops is set equal to the process ID of the calling process. The value of Sem__otime in the
data structure associated with the semaphore identifier will be set to the current time.

RETURN VALUE

If semop returns due to the receipt of a signal, a value of -1 is returned to the calling process and

errno is set to EINTR. I it returns due to the removal of a semid from the system, a value of -1 is
returned and errno is set to EIDRM.

Hewlett—Packard

9 June 28, 1985



SEMOP (2) SEMOP (2)

Upon successful completion, a value of zero is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), semctl(2), semget(2), stdipe(3).

Hewlett—Packard -3 - June 28, 1985



SETGROUPS (2) SETGROUPS(2)

NAME
setgroups - set group access list

SYNOPSIS
#include <sys/param.h>
setgroups(ngroups, gidset)
int ngroups, *gidset;
HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: UuCB
Remarks: Not available on Series 500.
DESCRIPTION
Setgroups sets the group access list of the current user process according to the array gidset. The

parameter ngroups indicates the number of entries in the array and must be no more than
NGROUPS, as defined in <sys/param.h>.

Only the super-user may set new groups by adding to the group access list of the current user
process; any user may delete groups from it.

RETURN VALUE
A 0 value is returned on success, -1 on error, with a error code stored in errno.

ERRORS
The setgroups call will fail if:

[EPERM] The caller is not the super—user and has attempted to set new groups.
[EFAULT} The address specified for gidset is outside the process address space.
[EINVAL] ngroups is greater than NGROUPS or not positive.
[EINVAL] An entry in gidset is not a valid group ID.

SEE ALSO

getgroups(2), initgroups(3C)

Hewlett—Packard -1- June 28, 1985



SETHOSTNAME (2) SETHOSTNAME (2)

NAME
sethostname - set name of host ¢cpu

SYNOPSIS
sethostname(name, namelen)
char *name;
int namelen;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: UCB

DESCRIPTION
This call sets the name of the host processor to be name, which has a length of namelen charac—
ters. The maximum value of namelen is determined by the uname structure. This is normally

executed when the system is bootstrapped, executed out of the file /etc/rec. This intrinsic sets the
nodename field in the utsname structure returned by uname(2).

Sethostname will fail and return an error if:
[EPERM)] It is not executed by the super-user.
[EFAULT] Name points to an illegal address.

HARDWARE DEPENDENCIES
Integral PC:
The super—user capabilities are provided to the normal user.

SEE ALSO
hostname(1), uname(1), gethostname(2), uname(2).

Hewlett-Packard -1- June 28, 1985



SETPGRP (2) SETPGRP (2)

NAME
setpgrp - set process group ID
SYNOPSIS
int setpgrp ()
HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION
Setpgrp sets the process group ID of the calling process to the process ID of the calling process and
returns the new process group ID.

Setpgrp breaks the calling process’s terminal affiliation unless it is already the process group
leader. See termio(4).

RETURN VALUE
Setpgrp returns the value of the new process group ID.

SEE ALSO
exec(2), fork(2), getpid(2), kill(2), signal(2).

Hewlett-Packard -1- June 28, 1985



SETUID (2)

NAME
setuid, setgid - set user and group IDs

SYNOPSIS
int setuid (uid)
int uid;
int setgid (gid)
int gid;
HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: System V
DESCRIPTION

SETUID (2)

Setuid sets the real, effective, and/or saved user ID of the calling process ("ruid”, "euid”, and
”suid”, respectively).

If wid is not equal to the super—user’s ID, and is equal to ruid, then setuid sets euid to uid.

Otherwise, if utd is not equal to the super—user’s ID, and is equal to euid, then setuid sets
rutd to uid.

Otherwise, if uid is not equal to the super—user’s ID, and is equal to suid, then setuid sets
eutd to uid.

Otherwise, if euid is equal to the super—user’s user ID then setuid sets ruid, euid, and suid
to uid.

Setgid sets the real, effective, and/or saved group ID of the calling process (“rgid”, “egid”, and
“3gid”, respectively).

If gid is equal to rgid then setgid sets egid to gid.
Otherwise, if gid is equal to egid then setgid sets rgid to gid.
Otherwise, if gid is equal to sgid then setgid sets egid to gid.

Otherwise, if euid is equal to the super—user’s user ID then setgid sets rgid, egid, and sgid
to gid.

Setuid and setgid will fail and return -1 if:
[EPERM] None of the conditions above are met.
[EINVAL] Uid (gid) is not a valid user (group) ID.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

HARDWARE DEPENDENCIES
The Integral PC does not currently support saved user IDs or saved group IDs.

SEE ALSO

exec(2), getuid(2), setgroups(2).

Hewlett-Packard -1- July 2, 1985



SHMCTL (2)

NAME

SHMCTL(2)

shmctl - shared memory control operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmetl (shmid, ¢cmd, buf)

int shmid, cmd;

struct shmid__ds *buf;

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD

Origin: System V

DESCRIPTION

Shmetl provides a variety of shared memory control operations as specified by ¢emd. The following

¢mds are available:

IPC_STAT

IPC_SET

IPC_RMID

Place the current value of each member of the data structure associated
with shmid into the structure pointed to by buf. The contents of this
structure are defined in glossary(9). {READ}

Set the value of the following members of the data structure associated
with shmid to the corresponding value found in the structure pointed to by
buf:

shm__perm.uid

shm._perm.gid

shm _perm.mode /* only low 9 bits */

This emd can only be executed by a process that has an effective user ID
equal to either that of super—user or to the value of either shm__perm.uid
or shm_ perm.cuid in the data structure associated with shmid.

Remove the shared memory identifier specified by shmid from the system
and destroy the shared memory segment and data structure associated with
it. This emd can only be executed by a process that has an effective user
ID equal to either that of super-user or to the value of either
shm_ perm.uid or shm_ perm.cuid in the data structure associated with
shmid.

Shmetl will fail if one or more of the following are true:

[EINVAL]
[EINVAL]
[EACCES]

[EPERM]

[EFAULT]
RETURN VALUE

Shmid is not a valid shared memory identifier.
Cmd is not a valid command.

Cmd is equal to IPC_STAT and {READ} operation permission is denied
to the calling process (see glossary(9)).

Cmd is equal to IPC_RMID or IPC_SET and the effective user ID of
the calling process is not equal to that of super—user, nor is it equal to
the value of shm__perm.uid or shm__perm.cuid in the data structure
associated with shmid.

Buf points to an illegal address.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

Hewlett-Packard

-1 - July 2, 1985



SHMCTL (2) SHMCTL (2)

HARDWARE DEPENDENCIES
Series 200 and 500:
Two additional shared memory control operations as specified by c¢md are available:

SHM_LOCK Lock the shared memory segment specified by shmid in memory. This ¢md can
only be executed by a process that either has an effective user ID equal to
super—user or has PRIV_MLOCK privilege (see setprivgrp(2)).

SHM_UNLOCK
Unlock the shared memory segment specified by shmid. This ¢md can only be
executed by a process that either has an effective user ID equal to super—user or
has PRIV_MLOCK privilege (see setprivgrp(2)).

Shmctl will fall if one or more of the following are true:

[EPERM] Cmd is equal to SHM_LOCK or SHM _UNLOCK and the effective user ID of
the calling process is not equal to that of super-user and the calling process does
not have PRIV_MLOCK privilege (see setprivgrp(2)).

[EINVAL]J Cmd is equal to SHM_UNLOCK and the shared-memory segment specified by
shmid is not locked in memory.

SEE ALSO
shmget(2), shmop(2), stdipc(3).

Hewlett—Packard -2 - July 2, 1985



SHMGET (2)

NAME

SHMGET (2)

shmget - get shared memory segment

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key, size, shmflg)

key_t key;

int size, shimflg;
HP-UX COMPATIBILITY

Level:
Origin:
DESCRIPTION

HP-UX/STANDARD
System V

Shmget returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and shared memory segment of size size
bytes (see glossary(9)) are created for key if one of the following are true:

Key is equal to IPC_PRIVATE.

Key does not already have a shared memory identifier associated with it, and (shmflg &
IPC_CREAT) is “true”.

Upon creation, the data structure associated with the new shared memory identifier is initialized

as follows:

Shm__perm.cuid, shm_perm.uid, shm_perm.cgid, and shm_perm.gid are set
equal to the effective user ID and effective group ID, respectively, of the calling process.

The low—order 9 bits of shm_perm.mode are set equal to the low—order 9 bits of
shmflg. Shm__segsz is set equal to the value of size.

Shm__lpid, shimn__nattch, shm__atime, and shm__dtime are set equal to 0.

Shm__ctime is set equal to the current time.

Shmget will fail if one or more of the following are true:

[EINVAL)|
[EACCES]
[EINVAL)
[ENOENT]

[ENOSPC]

[ENOMEM|

[EEXIST)

Hewlett-Packard

Size is less than the system-imposed minimum or greater than the system—
imposed maximum.

A shared memory identifier exists for key but operation permission (see glos-
sary(9)) as specified by the low—order 9 bits of shmflg would not be granted.

A shared memory identifier exists for key but the size of the segment associated
with it is less than size and size is not equal to zero.

A shared memory identifier does not exist for key and (shmflg & IPC_CREAT)
is “false’.

A shared memory identifier is to be created but the system—imposed limit on the
maximum number of allowed shared memory identifiers system wide would be
exceeded.

A shared memory identifier and associated shared memory segment are to be
created but the amount of available physical memory is not sufficient to fill the
request.

A shared memory identifier exists for key but ( (shmflg & IPC_CREAT) && (
shmflg & IPC_EXCL) ) is “true”.

-1- June 28, 1985



SHMGET (2) SHMGET (2)

HARDWARE DEPENDENCIES
Series 500:

Shared memory segments larger than 16384 bytes are virtual paged segments; otherwise
they are virtual non—-paged segments.

RETURN VALUE
Upon successful completion, a non-negative integer, namely a shared memory identifier is
returned. Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
shmetl(2), shmop(2), stdipe(3).

Hewlett-Packard -2~ June 28, 1985



SHMOP (2) SHMOP (2)

NAME
shmop - shared memory operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char sshmat (shmid, shmaddr, shmflg)
int shmid;

char *shmaddr

int shmflg;

int shmdt (shmaddr)
char *shmaddr

HP-UX COMPATABILITY
Level: HP-UX/STANDARD

Origin: System V Release 2

DESCRIPTION

\,,Shmatxittaches the shared memory segment associated with the shared memory identifier specified
by shmid to the data segment of the calling process. If the shared memory segment has not
already been attached shmaddr must be specified as zero, and the segment will be attached at a
location selected by the operating system. That location will be the same in all processes access—
ing that shared memory object. If the shared memory segment has already been attached a non-
zero value of shmaddr will be accepted as long as the specified address is the same as the current
attach address of the segment. Some implementations may permit the specification of a non—zero
value as a machine dependent extension, as discussed in HARDWARE DEPENDENCIES below.
Systems which do this do not necessarily guarantee that a given shared memory object will appear
at the same address in all processes which access it, unless the user specifies an address.

The segment is attached for reading if (shmfly & SHM_RDONLY) is “true” {READ}, otherwise
it is attached for reading and writing {READ/WRITE}. It is not possible to attach a segment for
write only.

Shmat will fail and not attach the shared memory segment if one or more of the following are

true:

[EINVAL] Shmid is not a valid shared memory identifier.

[EACCES] Operation permission is denied to the calling process (see intro(2)).

[ENOMEM] The available data space is not large enough to accommodate the shared memory
segment.

[EINVAL] Shmaddr is not zero and the machine does not permit non zero values or
shmaddr is not equal to the current attach location for the shared memory seg-
ment.

|[EMFILE] The number of shared memory segments attached to the calling process would

exceed the system-imposed limit.

Shmdt detaches from the calling process’s data segment the shared memory segment located at the
address specified by shmaddr.

Shmdt fails if the following is true.

[EINVAL] Shmdt will fail and not detach the shared memory segment if shmaddr is not the
data segment start address of a shared memory segment.

HARDWARE DEPENDENCIES
Series 500:

Hewlett-Packard -1- June 28, 1985



SHMOP (2) SHMOP (2)

Shmaddr must be zero in all cases for shmat. Otherwise, an error is generated. In addition,
SHM_RDONLY is not supported, and if it is set in shmflg, an error is generated.

[EINVAL] Shmflg has SHM_RDONLY set.
Series 200:

Shmaddr may be non-zero. If it is, the segment is attached at the address specified by one of the
following criteria:

If shmaddr is equal to zero, the segment is attached at the first available address as
selected by the system. The selected value will vary for each process accessing that
shared memory object.

If shmaddr is not equal to zero and (shmflg & SHM_RND) is ‘‘true”, the segment is
attached at the address given by (shmaddr — (shmaddr modulus SHMLBA)).

If shmaddr is not equal to zero and (shmfly & SHM_RND) is “false”, the segment is
attached at the address given by shmaddr.

Shmat will fail and not attach the shared memory segment if one or more of the following are

true:

[EINVAL) Shmaddr is not equal to zero, and the value of (shmaddr — (shmaddr modulus
SHMLBA)) is an illegal address.

[EINVAL]J Shmaddr is not equal to zero, (shmfly & SHM_RND) is ‘“false”, and the value

of shmaddr is an illegal address.

RETURN VALUES
Upon successful completion, the return value is as follows:

Shmat returns the data segment start address of the attached shared memory segmert.
Shmdt returns a value of 0.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), shmetl(2), shmget(2), stdipe(3).

Hewlett—Packard -2~ June 28, 1985



SIGBLOCK (2) SIGBLOCK (2)

NAME
sigblock - block signals

SYNOPSIS
long sigblock(mask);
long mask;
HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: UCB
DESCRIPTION
Sigblock causes the signals specified in mask to be added to the set of signals currently being
blocked from delivery. Signal ¢ is blocked if the i~th bit in mask is a 1 (that is, if (mask & (1L
<< (i-1))) 1=0).
It is not possible to block those signals which cannot be ignored, as documented in signal(2); this
restriction is silently imposed by the system.
Sigsetmask(2) can be used to set the mask absolutely.

RETURN VALUE
The previous set of masked signals is returned.

SEE ALSO
kill(2), sigvector(2), sigsetmask(2), sigpause(2)

Hewlett—Packard -1- June 28, 1985



SIGNAL(2) SIGNAL(2)

NAME

signal - specify what to do upon receipt of a signal
SYNOPSIS

#include <signal.h>

int (xsignal (sig, func))()

int sig;

int (sfunc)();

func(sig [, code, scp | )
int sig, code;
struct sigcontext *scp;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V, HP

DESCRIPTION
Stgnal allows the calling process to choose one of three ways in which it is possible to handle the
receipt of a specific signal. Sig specifies the signal and func specifies the choice.

Sig can be assigned any one of the following except SIGKILL:

SIGHUP 01 hangup

SIGINT 02 interrupt

SIGQUIT 03* quit

SIGILL Odxe illegal instruction

SIGTRAP 05%e trace trap

SIGIOT 06+ software generated (sent by abort(3C))
SIGEMT 07 software generated

SIGFPE 08x floating point exception

SIGKILL 091+ kill

SIGBUS 10+ bus error

SIGSEGV 11% segmentation violation

SIGSYS 12x bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock

SIGTERM 15 software termination signal

SIGUSRI1 16 user defined signal 1

SIGUSR2 17 user defined signal 2

SIGCLD 18t death of a child (see details below)
SIGPWR 19e1 power fail (see details below and hardware dependencies)
SIGVTALRM 20 virtual timer alarm; see getitimer
SIGPROF 21 profiling timer alarm; see getitimer
SIGIO 22 Reserved for future use
SIGWINDOW 23t A window change or mouse signal; see the windowing package

*+ Indicates that a core dump may be generated.

t+ Indicates that the action on SIG_DFL is to ignore the signal, rather than terminate the pro-
cess.

o Indicates that the signal is not reset when it is caught by signal.
t Indicates that the signal cannot be ignored.
+ Indicates that the signal cannot be caught.

Details follow.

Hewlett—Packard -1- June 28, 1985



SIGNAL(2)

SIGNAL (2)

Func is assigned one of three values: SIG_DFL, SIG_IGN, or a function address. The actions
prescribed by these values are as follows:

SIG_DFL - (usually) terminate process upon receipt of a signal.

For those signals not flagged with a dagger (1) above, upon receipt of the signal sig,
the receiving process is to be terminated with all of the consequences outlined in
exit(2). In addition a ‘“core image” will be made in the current working directory of
the receiving process if sig is one for which an asterisk appears in the above list and
the following conditions are met:

The effective user ID and the real user ID of the receiving process are equal.

An ordinary file named core exists and is writable or can be created. If the
file must be created, it will have the following properties:

a mode of 0666 modified by the file creation mask (see umask(2))

a file owner ID that is the same as the effective user ID of the receiv—
ing process

a file group ID that is the same as the effective group ID of the
receiving process

The semantics of those signals that are flagged with a dagger are discussed below.

SIG_IGN - ignore signal

function

Hewlett—Packard

The signal stg is to be ignored.

When signal(2) is called with func = SIG_IGN, and a sig signal is pending, the pending
signal is cleared (except for a pending SIGKILL signal).

Note: the signal SIGKILL cannot be ignored.

address - catch signal

Upon receipt of the signal sig, the receiving process is to execute the signal-catching
function pointed to by func. The signal number sig will be passed as the first parameter
to the signal-catching function. The HP-UX kernel will also pass two additional
(optional) parameters to signal handler routines. The complete parameter list for func
is:

sig signal number
code  a word of information usually provided by the hardware.

scp a pointer to the machine dependent structure sigcontert defined in the include
file signal.h.

Depending on the value of sig, code may be zero and/or scp may be NULL. The mean-
ings of code and scp and the conditions upon which they are other than zero or NULL
are implementation dependent. It is permissible for code to always be zero, and scp to
always be NULL.

The pointer scp will only be valid during the context of the signal handler.

The optional parameters can be omitted from the handler parameter list, in which case
the handler is exactly compatible with System V UNIX. Truly portable software should
not use the optional parameters in signal-catching routines.

Before entering the signal-catching function, the value of func for the caught signal will
be set to SIG_DFL unless the signal is one of those flagged with a bullet (e) above.

Upon return from the signal-catching function, the receiving process will resume execu—
tion at the point it was interrupted.

When a signal that is to be caught occurs during calls such as (but not limited to) read,
write, readv, writev, open, or an foct! system call on a slow device such as a terminal

-2- June 28, 1985



SIGNAL(2) SIGNAL(2)

(but not a file); during a select, semop, msgsnd, msgrcv, pause, or sigpause system call;
or during.a wait system call that does not return immediately due to the existence of a
previously stopped or zombie process, the signal catching function will be executed. The
interrupted system call may return a -1 to the calling process with errno set to EINTR.

Note: The signal SIGKILL cannot be caught.

SIGKILL may be sent by the system in the event of an unsuccessful ezec, if the original program
has already been deleted.

SPECIAL SIGNALS
SIGCLD, SIGPWR, and B SIGWINDOW signals have special characteristics described below and
in hardware dependencies.

For these signals, func is assigned one of three values: SIG_DFL, SIG_IGN, or a function
address. The actions prescribed by these values of are as follows:
SIG_DFL - ignore signal (applies to SIGWINDOW as well)
The signal is to be ignored.
SIG_IGN - ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the calling process’s child
processes will not create zombie processes when they terminate; see ezit(2).

function address - catch signal

If the signal is SIGPWR, the action to be taken is the same as that described
above for func equal to function address. The same is true if the signal is
SIGCLD, except that when signal(2) is called to install a signal-catching function,
and the calling process currently has terminated (zombie) children, the SIGCLD
signal will be immediately sent to the calling process.

NOTE: If a signal-catching routine is used to catch SIGCLD, wait(2) must be
called in the catching routine to clear out the pending zombie before signal(2) is
called to reinstate the signal-catching routine. Otherwise, the process will enter
the signal-catching routine recursively until the process runs out of stack space.

The SIGCLD signal affects two other system calls (wast(2), and ezit(2)) in the following ways:

wait If the func value of SIGCLD is set to SIG_IGN and a watt is executed, the
wazt will block until all of the calling process’s child processes terminate; it
will then return a value of -1 with errno set to ECHILD.

extt If in the exiting process’s parent process the func value of SIGCLD is set to
SIG_IGN, the exiting process will not create a zombie process.

When processing a pipeline, the shell makes the last process in the pipeline the parent of the
preceding processes. A process that may be piped into in this manner (and thus become the
parent of other processes) should take care not to set SIGCLD to be caught.

FAIL CONDITIONS
Stgnal will fail if one or more of the following are true:
[EINVAL]
Sig is an illegal signal number, or is equal to SIGKILL.
[EFAULT]
Fune points to an illegal address.

HARDWARE DEPENDENCIES
Series 200:
The signal SIGPWR is not currently generated.

The code word is always zero for all signals except signal 4 (SIGILL) and signal 8
(SIGFPE). For SIGILL, code has the following values:

Hewlett-Packard -3~ June 28, 1985



SIGNAL(2)

SIGNAL(2)

illegal instruction;
check instruction;
TRAPV;

privilege violation.

W~ O

For SIGFPE, code has the following values:

0 floating point exception;
5 divide-by-zero.

Refer to the MC68000 processor documentation provided with your system for more
detailed information about the meaning of these errors.

Series 500:

Core image files are currently files with zero length.

The SIGEMT signal means “out of memory”, and is generated by the HP-UX Operating
System. When sent by the system, this signal is always fatal to the process, and cannot
be caught or ignored.

SIGIOT can be sent if an invalid string operation is attempted, or if a bounds range
check trap is encountered.

The signal SIGBUS is not currently generated by the operating system.

The signal handler parameter code contains the trap number provided by the hardware in
the event a trap occurs in the user’s program; see trapno(2) for a list of these trap
numbers. The structure pointer scp is defined when a trap occurs in the user’s program,
and points to the structure sigcontezt defined in signal.h.

A zero value is returned on floating point underflow. Floating point overflow, divide-
by-zero, integer divide-by—zero, and illegal floating point operation exceptions result in
the signal SIGFPE being sent to the process. An undefined value is returned as the
result of the operation if the signal SIGFPE is ignored or caught.

SIGFPE is not sent on integer overflow. Instead, a wrapped integer result is returned.

The signal SIGPWR is generated by the operating system for the HP 9000 Model 550
only, provided that the system is equipped with a standby power supply. Series 500
models 520, 530, and 540 do not currently generate SIGPWR.

When the computer standby power supply is activated due to a loss of line voltage, the
operating system determines whether a power glitch or power outage has occurred. The
determination is made by waiting about five seconds then re-examining the state of the
standby power supply. If the normal line voltage has been restored, code is set to
PWR_GLITCH,; otherwise, it is set to PWR_OUTAGE. The SIGPWR signal is then
sent to all user processes (excluding the INIT process) with the appropriate code value.
When normal line power is restored following a power outage, SIGPWR is sent to all user
processes (again excluding the INIT process) with code set to PWR_NORMAL.

Integral PC:

The Integral PC implements the signal SIGMOUSE with a value of 20.

The Integral PC does not create core files.

RETURN VALUE
Upon successful completion, signal returns the previous value of func for the specified signal sig.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

Hewlett—-Packard -4- June 28, 1985



SIGNAL(2) SIGNAL (2)

SEE ALSO
kill(1), kill(2), lseek(2), pause(2), sigvector(2), trapno(2), wait(2), abort(3C), setjmp(3C).

Hewlett-Packard -5~ June 28, 1985



SIGPAUSE(2) SIGPAUSE (2)

NAME
sigpause - atomically release blocked signals and wait for interrupt

SYNOPSIS
long sigpause(sigmask)
long sigmask;

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: UCB

DESCRIPTION
Sigpause assigns stgmask to the set of masked signals and then waits for a signal to arrive; on
return the set of masked signals is restored to the sigmask value which existed before the sigpause
call. Sigmask is usually OL to indicate that no signals are now to be blocked.

Normally, at the beginning of a critical code section, a specified signal(s) is blocked using sig—
block(2). When the process has completed the critical section and needs to wait for the previously
blocked signal(s), it pauses by calling sigpause with the mask that was returned by the sigblock
call.

RETURN VALUE
Sigpause always terminates by being interrupted, returning —1 and setting errno to EINTR.

SEE ALSO
sigblock(2), sigvector{2)

Hewlett -Packard -1- June 28, 1985



SIGSETMASK (2)

NAME
sigsetmask - set current signal mask

SYNOPSIS
long sigsetmask(mask);
long mask;

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: UCB
DESCRIPTION

SIGSETMASK (2)

Sigsetmask sets the current signal mask (those signals which are blocked from delivery). Signal ¢
is blocked if the i-th bit in mask is a 1 (that is, if (mask & (1L << (i-1))) !=0).

It is not possible to mask those signals which cannot be ignored, as documented in signal(2); this

restriction is silently imposed by the system.

Sighlock(2) can be used to add elements to the set of blocked signals.

RETURN VALUE

The previous set of masked signals is returned.

SEE ALSO

kill(2), sigvector(2), sigblock(2), sigpause(2)

Hewlett-Packard

June 28, 1985



SIGSPACE(2) SIGSPACE(2)

sigspace - assure sufficient signal stack space.

SYNOPSIS

#include <signal.h>

long sigspace(ss);
long ss;

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: HP

DESCRIPTION

Stgspace allows users to define additional space for stack use which is guaranteed to be available if
signals are to be processed. If ss is positive, it specifies a space, in bytes, which the system
guarantees will be available when processing a signal. A zero value removes any guarantee of
space and any negative value leaves the guarantee unchanged, and may be used to interrogate the
current guaranteed value. When a signal’s action indicates its handler should use the guaranteed
space (specified with a sigvector(2) call), the system checks to see if the process is currently using
that space. If the process is not currently using that space the system arranges for that space to
be available for the duration of the signal handler’s execution. If that space has already been made
available (due to a previous signal) no change is made. The normal stack discipline is resumed
when the signal causing the use of the guaranteed space is exited.

The guaranteed space is inherited by child processes after a fork but the guarantee of space is
removed after an ezec.

The guaranteed space may not be increased in size automatically, as is done for the normal stack.
If the stack overflows the guaranteed space unpredictable results may occur.

Guaranteeing space for a stack may cause interference with other memory allocation routines, in
an implementation dependent manner.

During normal execution of the program the system checks for possible overflow of the stack.
Guaranteeing space may cause the space available for normal execution to be reduced.

Leaving the context of a service routine in an abnormal way, such as by longjmp(3), may remove
the guarantee that the ordinary execution of the program will not extend into the guaranteed
space. It may also cause the program to forever loose its ability to automatically increase the
stack size, and the program may then be limited to the guaranteed space.

RETURN VALUE

Upon successful completion, the size of the old guaranteed space is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

ERRORS

Sigspace will fail and the guaranteed amount of space will remain unchanged if one of the follow—
ing occurs.

[ENOMEM] Enough space cannot be guaranteed because of either hardware limitations or
because some software imposed limit would be exceeded.

HARDWARE DEPENDENCIES

Series 500:
Sigspace is ignored (as a no-op) by Series 500. The return value is always zero.

Series 200 and 300:
The guaranteed space is allocated with malloc(3). This call may thus interfere with other
heap management mechanisms.

Hewlett—Packard -1- July 2, 1985



SIGSPACE(2) SIGSPACE(2)

The kernel overhead taken in the reserved space is 148 bytes on Series 200 computers and
440 bytes on Series 300. This overhead must be included in the requested amount. These
values are subject to change in future releases.

BUGS
Methods for calculating the required size are not yet well developed.

SEE ALSO
sigvector(2), setjmp(3)

Hewlett—Packard -2- July 2, 1985



SIGVECTOR (2) SIGVECTOR.(2)

NAME
sigvector - software signal facilities

SYNOPSIS
#include <signal.h>

sigvector(sig, vec, ovec)
int sig;
struct sigvee *vee, *ovec;

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: UCB and HP

DESCRIPTION
The system defines a set of signals that may be delivered to a process. The set of signals is
defined in signal(2), along with the meaning and side effects of each signal. This manual page,
along with those for sigblock(2), sigsetmask(2), sigpause(2), and sigspace(2) define an alternate
mechanism for handling these signals that assures the delivery of signals and integrity of signal
handling procedures. The facilities described here should not be used in the same program as sig—
nal(2) without a thorough understanding of the interactions between the two mechanisms.

With this interface, signal delivery resembles the occurrence of a hardware interrupt: the signal is
blocked from further occurrence, the current process context is saved, and a new one is built. A
process may specify a handler to which a signal is delivered, or specify that a signal is to be
blocked or ignored. A process may also specify that a default action is to be taken by the system
when a signal occurs. It is possible to assure a minimum amount of stack space for processing
signals using the sigspace(2) call.

All signals have the same priority. Signal routines execute with the signal that caused their invo-
cation blocked, but other signals may yet occur. A global signal mask defines the set of signals
currently blocked from delivery to a process. The signal mask for a process is initialized from that
of its parent (normally 0). It may be changed with a sighlock(2), sigsetmask(2), or sigpause(2)
call, or when a signal is delivered to the process.

When a signal condition arises for a process, the signal is added to a set of signals pending for the
process. If the signal is not currently blocked by the process then it is delivered to the process.
When a signal is delivered, the current state of the process is saved, a new signal mask is calcu-
lated (as described below), and the signal handler is invoked. The call to the handler is arranged
so that if the signal handling routine returns normally the process will resume execution in the
context from before the signal’s delivery. If the process wishes to resume in a different context,
then it must arrange to restore the previous context itself.

When a signal is delivered to a process a new signal mask is installed for the duration of the pro-
cess’ signal handler (or until a sigblock or sigsetmask call is made). This mask is formed by taking
the current signal mask, adding the signal to be delivered, and or’ing in the signal mask associ-
ated with the handler to be invoked. When the user’s signal handler returns normally, the origi-
nal mask is restored.

Sigvector assigns a handler for a specific signal. Vee and ovec are pointers to sigvec structures
which include the following elements:

int (*sv_handler)();
int sv_mask;
int sv_onstack;

If vec is non—zero, it specifies a handler routine and mask to be used when delivering the specified

signal. Further, if su_onstack is 1, the system will use, or permit the use of, the space reserved
for signal processing in the sigspace(2) call. If ovec is non—zero, the previous handling information

Hewlett-Packard -1- July 2, 1985



SIGVECTOR (2) SIGVECTOR (2)

for the signal is returned to the user. If vec is zero, signal handling is unchanged; thus, the call
can be used to enquire about the current handling of a given signal.

Once a signal handler is installed, it remains installed until another sigvector call is made, or an
exec(2) is performed. The default action for a signal may be reinstated by setting su_handler to
SIG_DFL; this default is usually termination. If su_handler is SIG_IGN the signal is usually
subsequently ignored, and pending instances of the signal are discarded. The exact meaning of
SIG_DFL and SIG_IGN for each signal is discussed in signal{(2). Unlike signal(2) there is no
category of “reset when caught” signals.

Certain system calls can be interrupted by a signal, the remainder will complete before the signal
is serviced. The scp pointer described in signal(2) is always non—null if sigvector is supported.
Scp points to a machine-dependent sigcontezt structure. All implementations of this structure
include the field

int sc_syscall;
char sc_syscall_action;

The value SYS_ NOTSYSCALL for the sc_syscall field indicates that the signal is not interrupt-
ing a system call; any other value indicates which system call it is interrupting.

If a signal which is being caught occurs during one of the interruptable calls, the signal handler is
immediately invoked. If the signal handler is exited in a normal way, the value of the
sc_syscall__action field is inspected; if the value is SIG_RETURN, the system call is aborted and
the interrupted program continues past the call with the result of the interrupted call being -1
and errno set to EINTR. If the value of the sc_syscall action field is SIG_RESTART, the call is
restarted. Other values are undefined and reserved for future use.

Exiting the handler abnormally (such as with longjmp(3)) will abort the call, and the user is
responsible for the context of further execution. The value of scp—>sc_syscall is ignored when
the value of scp—>sc__syscall is SYS_NOTSYSCALL.

When a signal interrupts a read, write, readv, or writev call that has transferred a non-zero por-
tion of the requested data, the call is considered to have completed with a partial transfer. In this
case, the signal handler is invoked with scp->sc__syscall set to SYS_NOT_SYSCALL and, fol-
lowing return from the handler, the system call returns the number of bytes actually transferred.

When an interruptable call is interrupted by multiple signals, if any signal handler returns a value
of SIG_RETURN in scp—>sc_syscall__action, all subsequent signal handlers are passed a value
of SYS_NOTSYSCALL in scp—>sc__syscall. scp—>sc_syscall_action is always initialized to
SIG_RETURN before invocation of a signal handler.

The interruptable system calls, and corresponding values for scp—>sc_syscall are listed below.

Call

sc_syscall value

SYS_READ

read
(slow devices)

readv SYS_READV
(slow devices)

write SYS_WRITE

(slow devices)
writev
(slow devices)

SYS_WRITEV

open SYS_OPEN
(slow devices)
ioctl SYS_IOCTL
(slow requests)
wait SYS_WAIT
Hewlett-Packard -2~ July 2, 1985



SIGVECTOR (2) SIGVECTOR (2)

select SYS_SELECT
pause SYS_PAUSE
sigpause SYS_SIGPAUSE
Semop SYS_SEMOP
msgsnd SYS. MSGSND
msgrev SYS_MSGRCV

Note that read, readv, write, writev, open, or ioctl on fast devices (discs) is not interruptable, but
1/0 to a slow device (terminal) is. Additional system calls such as those used for networking may
also be interruptable on some implementations. In these cases, additional values may be specified
for sep—>sc__syscall. Programs that look at the values of sep—>se__syscall should always compare
them to these symbolic constants; the numerical values represented by these constants vary
among implementations.

After a fork(2) or yfork(2) the child inherits all signals, the signal mask, and the reserved signal
stack space.

Ezec(2) resets all caught signals to default action; ignored signals remain ignored; the signal mask
remains the same; the reserved signal stack space is released.

NOTES
The mask specified in vec is not allowed to block those signals which cannot be ignored, as defined
in signal(2). This is enforced silently by the system.

If sigvector is called to catch SIGCLD in a process which has currently terminated {zombie) chil-
dren, a SIGCLD signal is delivered to the calling process immediately, or as soon as SIGCLD is
unblocked if it is currently blocked. Thus, in a proecess which spawns multiple children and
catches SIGCLD, it is somtimes advisable to re~install the handler for SIGCLD after each invo—
cation in case there are multiple zombies present. This is true even though the handling of the
signal is not reset by the system as with signal(2); otherwise, the presence of the zombie which
caused the first signal will always cause another signal to be sent.

RETURN VALUE
A 0 value indicated that the call succeeded. A -1 return value indicates an error occurred and
errno is set to indicate the reason.

ERRORS
Stgvector will fail and no new signal handler will be installed if one of the following occurs:

[EFAULT] Either vee or ovec points to memory which is not a valid part of the process
address space.
[EINVAL] Sig is not a valid signal number.
[EINVAL] An attempt is made to ignore or supply a handler for a signal which cannot be
caught or ignored. See signal (2).
SEE ALSO
kill(1), ptrace(2), kill(2), sigblock(2), sigsetmask(2), sigpause(2), sigspace(2), setjmp(3), signal(2),
termio(4)
WARNING

Restarting a seleci(2) call can sometimes cause unexpected results. If the select call has a timeout
specified, the timeout is restarted with the call, ignoring any portion which had elapsed prior to
interruption by the signal. Normally this simply extends the timeout and is not a problem. How-
ever, if a handler repeatedly catches signals and the timeout specified to select is longer than the
time between those signals, restarting the select call effectively renders the timeout infinite.

Hewlett—Packard -3 - July 2, 1985



STAT(2) STAT(2)

stat, Istat, fstat - get file status

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>
int stat (path, buf)
char *path;

struct stat *buf;

int Istat (path, buf)
char *path;

struct stat xbuf;

int fstat (fildes, buf)
int fildes;

struct stat xbuf;

Level: Stat and fstat: HP-UX/RUN ONLY
Lstat: HP-UX/EXTENDED

Origin: System V Release 2

DESCRIPTION

Path points to a path name naming a file. Read, write, or execute permission of the named file is
not required, but all directories listed in the path name leading to the file must be searchable.
Stat obtains information about the named file.

Similarly, fstat obtains information about an open file known by the file descriptor fildes, obtained
from a successful open, creat, dup, fentl, or pipe system call.

Lstat is like stat except in the case where the named file is a symbolic link, in which case Istat
returns information abont the link, while stat returns information about the file the link refer—
ences. Not all HP -UX systems provide symbolic links.

Buf is a pointer to a stat structure into which information is placed concerning the file.

The contents of the structure pointed to by buf include the following members:

dev__t st_dev; /*ID of device containing a */
/* directory entry for this file ¥/
ino_t st_ino; /* Inode number */

ushort st_mode; /* File mode; see mknod(2) */
short  st_nlink; /* Number of links */
ushort st_uid; /* User ID of file owner */
ushort  st__gid; /* Group ID of file group */
dev_t st_rdev; /* Device ID; this entry defined */
/* only for char or bik spec files */
off_t st_size;  /* File size (bytes) */
time_t st__atime; /* Time of last access */
time_t st_mtime; /* Last modification time */
time_t st_ctime; /* Last file status change time */
/* Measured in secs since */
/* 00:00:00 GMT, Jan 1, 1970 */

st__atime Time when file data was last accessed. Changed by the following system calls:
creat(2), mknod(2), pipe(2), utime(2), and read(2).

st__mtime
Time when data was last modified. Changed by the following system calls: creat(2),
mknod(2), pipe(2), utime(2), and write(2).

Hewlett-Packard -1- June 28, 1985



STAT(2) STAT(2)

st_ctime Time when file status was last changed. Changed by the following system calls:
chmod(2}, chown(2), creat(2), link(2), mknod(2), pipe(2), unlink(2), utime(2), and
write(2).

The touch(1l) command can be used to explicitly control the times of a file.

Stat will fail if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES]) Search permission is denied for a component of the path prefix.
[EFAULT]| Buf or path points to an invalid address.

[ENOENT] Path is null.

Fstat will fail if one or more of the following are true:

[EBADF) Fildes is not a valid open file descriptor.

[EFAULT] Buf points to an invalid address.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

HARDWARE DEPENDENCIES
Integral PC:
The bstat and bfstat calls are identical to stat and fstat except that the st_dev and
st__rdev fields in the bstat structure are larger than the st_dev and st_rdev fields in the
stat structure. Bstat and bfstat are used in place of stat and fstat on HP-UX implementa—
tions with long device numbers (such as the Integral PC). This difference is relevant only
to applications which examine the st__dev or st_rdev fields of the stat (bstat) structure.
int  bstat (path, buf)
char  *path;
struct bstat *buf;

int  bstat (fildes, buf)

int fildes;

struct bstat *buf;
Series 200 and 500:

Symbolic links are not supported on Series 200 and Series 500 computers.
SEE ALSO

touch{1), chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read(2), time(2), unlink(2),
utime(2), write(2), stat(7).

Hewlett-Packard -2- June 28, 1985



STIME(2) STIME(2)

NAME
stime - set time and date

SYNOPSIS
int stime (tp)
long *tp;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: System V
DESCRIPTION

Stime sets the system’s idea of the time and date. Tp points to the vaiue of time as measured in
seconds from 00:00:00 GMT January 1, 1970.

[EPERM] Stime will fail if the effective user ID of the calling process is not super—user.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.
HARDWARE DEPENDENCIES
Integral PC:
The super—user capabilities are provided to the normal user.

SEE ALSO
date(1), gettimeofday(2), time(2).

Hewlett-Packard -1- June 28, 1985



STTY (2) STTY(2)

NAME
stty, gtty - control device
SYNOPSIS
#include <sgtty.h>
stty(fildes,argp)

int fildes;
struct sgttyb *argp;

gtty(fildes,argp)
int fildes;
struct sgttyb *argp;
HP-UX COMPATIBILITY
Level: Version 6 and PWB Compatibility - HP-UX/STANDARD
Origin: Version 6

Remarks: This system call is preserved for backward compatibility with Bell Version 6. It pro—
vides as close an approximation as possible to the old Version 6 function. All new
code should use the TCSETA/TCGETA ioctl calls described in termio(4). Note that
these calls are incompatible with the Version 7 calls of the same names.

Not supported on the Integral Personal Computer.

DESCRIPTION
For certain status setting and status inquiries about terminal devices, the functions stty and gtty
are equivalent to

ioctl(fildes, TIOCSETP, argp)
ioctl{fildes, TIOCGETP, argp)

respectively; see sttyV6(4).
SEE ALSO
stty(1), exec(2), sttyV6(4), termio(4).

DIAGNOSTICS
Zero is returned if the call was successful; 1 if the file descriptor does not refer to the kind of file
for which it was intended.

Hewlett—Packard -1- June 28, 1985



SWAPON(2) Series 200 Only SWAPON(2)

NAME
swapon - add a swap device for interleaved paging/swapping

HP-UX COMPATIBILITY
Level: Large Machine/HP Extension/HFS

Origin: UCB

SYNOPSIS
swapon(special)
char *special;

DESCRIPTION
Swapon makes the block device spectal available to the system so it can be allocated for paging
and swapping. The names of potentially available devices are known to the system and defined at
system configuration time. See the System Administrator’s Manual for information on how the
size of the swap area is calculated.

HARDWARE DEPENDENCIES
Not implemented on Series 500 or Integral PC.

SEE ALSO
swapon(1M)

BUGS
There is no way to stop swapping on a disc so that the pack can be dismounted.

Hewlett-Packard -1- July 4, 1985



SYNC(2) SYNC(2)

NAME
sync - update super-block

SYNOPSIS
void sync ()
HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: System V
DESCRIPTION

Sync causes all information in memory that should be on disc to be written out. This includes
modified super blocks, modified i-nodes, and delayed block I/0.

sync should be used by programs which examine a file system, for example fsck, df, etc. Bync is
mandatory before stopping the system (such as when rebooting) in order to ensure the preserva—
tion of file system integrity.

The writing, although scheduled, is not necessarily complete upon return from sync.

In some HP-UX systems, sync may be reduced to a no-op. This is permissible on a system which
does not cache buffers, or in a system that in some way ensures that the discs are always in a
consistent state.

SEE ALSO
sync(8), reboot(2), reboot(1M).

Hewlett-Packard -1- June 28, 1985



TIME (2) TIME(2)

NAME
time - get time
SYNOPSIS
long time ((long ) 0)
long time (tloc)
long *tloc;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V
DESCRIPTION
Time returns the value of time in seconds since 00:00:00 GMT, January 1, 1970.

If tloc (taken as an integer) is non-zero, the return value is also stored in the location to which
tloc points.

[EFAULT] Time will fail if tloc points to an illegal address.

RETURN VALUE
Upon successful completion, time returns the value of time. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

SEE ALSO
date(1), gettimeofday(2), stime(2).

Hewlett—Packard -1- June 28, 1985



TIMES (2) TIMES (2)

NAME
times - get process and child process times

SYNOPSIS
#include <sys/types.h>
#include <sys/times.h>

long times (buffer)
struct tms xbuffer;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION
Times fills the structure pointed to by buffer with time-accounting information. The structure
defined in sys/times.h looks as follows:

struct tms {

time_t tms_utime; /* user time */

time_t tms_stime; /* system time */

time_t tms_cutime; /* user time, children */

time_t tms_cstime; /* system time, children */
b
This information comes from the calling process and each of its terminated child processes for
which it has executed a wait. The times are in units of 1/HZ seconds, where HZ is processor
dependent (see <sys/param.h>).

Tms_utime is the CPU time used while executing instructions in the user space of the calling pro—
cess.

Tms__stime is the CPU time used by the system on behalf of the calling process.
Tms_cutime is the sum of the tms_utimes and tms_cutimes of the child processes.
Tms__cstime is the sum of the tms__stimes and tms_cstimes of the child processes.
[EFAULT] Times will fail if buffer points to an illegal address.
HARDWARE DEPENDENCIES
Series 500:
For computers with multiple CPU’s, the child CPU times listed can be greater than the
actual elapsed real time, since the CPU time is counted on a per-CPU basis. Thus, if all
three CPUs are executing, the CPU time is the sum of the three execution times of the
CPUs.
RETURN VALUE
Upon successful completion, times returns the elapsed real time, in units of 1/HZ of a second, since
an arbitrary point in the past (e.g., system start-up time). This point does not change from one
invocation of fimes to another. If #imes fails, a -1 is returned and errno is set to indicate the
€rror.
SEE ALSO
exec(2), fork(2), time(2), wait(2).
BUGS

Not all CPU time expended by system processes on behalf of a user process is counted in the sys—
tem CPU time for that process.

Hewlett—Packard -1~ June 28, 1985



TRAPNO(2) Series 500 Only TRAPNO(2)

NAME
trapno - hardware trap numbers

HP-UX COMPATIBILITY
Level: HP-UX/NON STANDARD

Origin: HP
Remarks: The following description of hardware trap numbers is valid for the Series 500 only.
DESCRIPTION

The following trap numbers refer to hardware traps occurring on the HP 9000 Series 500 comput-
ers. Trapno values are reported by the err(1) command, and are passed to signal handlers (see
stgnal(2)) when hardware traps cause signals to be sent to the current process.

The trapno value, trap name, and description are listed below for each possible trap condition.
By convention, trap numbers are shown in octal.

VALUE NAME: DESCRIPTION

01 Bounds Violation: An address is outside the limits for the program,
stack, or global data segments. [2]

02 Check Trap: A user value is outside a prescribed range. [1]

03 Breakpoint Trap: Debugging trap. [1]

04 Machine Instruction Trap: Used by the operating system.

05 String Trap: Illegal string operation or data. [2]

06 Unused.

07 Unused.

010 Reset: Used by the operating system.

011 Page Table Violation: The page table entry referenced is beyond the
current length of the page table. [2}

012 Inconsistent Registers: An attempt was made to set up an inconsistent

set of registers describing the global data segment, stack segment, or
program segment. [2]

013 External Data Segment Bounds Violation: An address is outside the
limits of an external data segment. [2]

014 System Error: Used by the operating system.

015 External Data Segment Pointer Violation: Illegal data segment
pointer; probably a pointer between 0 and 524287 decimal. [2]

016 Pointer Conversion Violation: An attempt was made to form a data

segment pointer with an offset which is too large for the type of
pointer being used. (2]

017 External Program Pointer Violation: Illegal procedure pointer. [2}

020 Unimplemented Instruction: Attempt to execute an undefined instruc-
tion. (1]

021 STT Violation: Illegal procedure pointer. [2]

022 CST Violation: Illegal procedure pointer. [2]

023 DST Violation: Illegal segment number in an external data segment
pointer. (2]

024 Stack Overflow: The operating system normally handles this trap by
extending the stack segment.

025 Stack Underflow: An attempt to pop a word from the local stack when
the local stack is empty. [2]

026 Privileged Mode Violation: An attempt to execute a privileged
instruction or return to a privileged procedure while in unprivileged
mode. (2]

Hewlett—Packard -1- June 28, 1985



TRAPNO(2)

027
030

031
032

033

034

035

036

037
040
041

042
043
044
045
046
047
050
051
052
053
054
055

056
057

060
061
062
063
064

Series 500 Only TRAPNO (2)

Privileged Mode Data Violation: An attempt to reference a privileged
data segment while in unprivileged mode. [2]

Unexpected Pointer Type: An instruction has encountered a pointer
type which it cannot handle. [2]

User Traps: Integer divide by zero. [1]

Tllegal Decimal Number: A decimal math instruction has been sup-
plied an illegal operand. [2]

Exponent Size Trap: Exponent too large during a number conversion
instruction. [2]

Floating Point Operand Trap: Attempt to operate on illegal numbers,
divide by zero, or convert a 64 bit number to a 32-bit number which
cannot accommodate the exponent. [1]

Floating Point Result Trap: Floating point overflow; also caused by
an explicit request to trap on an inexact result. [1]

Unexpected External Data Segment Type: A paged external data seg—
ment was encountered when an unpaged segment was expected, or
vice versa. 2]

Absent Code Segment: Handled by the operating system.

Absent Page: Handled by the operating system.

Uncallable Procedure: Attempt to call an uncallable privileged pro
cedure while in unprivileged mode. [2]

Absent Data Segment: Handled by the operating system.

Absent Page Table: Handled by the operating system.

Start-of-Line: Debugging trap. [1]

Variable Trace: Debugging trap. [1]

Start-of-Procedure: Debugging trap. [1]

End-of-Procedure: Debugging trap. [1]

Start-of-Subroutine: Debugging trap. [1]

End-of-Subroutine: Debugging trap. (1]

Code Segment Violation: Attempt to modify a code segment. [2]
Branch Violation: Illegal branch instruction. [2]

Message Trap: Used internally by the operating system.

Instruction Sequencing Bounds Violation: Program destination is out
of bounds; probably a stack marker has been incorrectly modified.
Start-of-Line-Check Trap: Debugging trap. (1]

Data Segment Write Violation: Attempt to modify a write-protected
data segment. [2]

System semaphore trap on up; relative pointer. [1]

System semaphore trap on up; absolute pointer. [1]

System semaphore trap on down; relative pointer. [1]

System semaphore trap on down; absolute pointer. [1]

Invalid internal math transformation. [1]

The footnotes are as follows:

[1]: If the program returns from the trap (signal) handler, execution will resume with the
next instruction.

12]: If the program returns from the trap (signal) handler, execution will resume at the
current instruction.

SEE ALSO

err(1), signal(2).

Hewlett—Packard

-2- June 28, 1985



TRAPNO(2) Series 500 Only TRAPNO(2)

WARNING
Trapno is intended for diagnostic purposes only. Values and meanings may change in future
releases of HP-UX.

Hewlett-Packard -3 - June 28, 1985



TRUNCATE (2) TRUNCATE (2)

NAME
truncate - truncate a file to a specified length

SYNOPSIS
truncate(path, length)
char *path;
int length;

ftruncate(fd, length)
int fd, length;

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: UCB
Remarks: Not supported on the Integral Personal Computer.
DESCRIPTION

Truncate causes the file named by path or referenced by fd to be truncated to at most length bytes
in size. If the file previously was larger than this size, the extra data is lost. With ftruncate, the
file must be open for writing; for truncate the user must have write permission for the file.

RETURN VALUES
A value of 0 is returned if the call succeeds. If the call fails a -1 is returned, and the global vari-
able errno specifies the error.

ERRORS
Truncate succeeds unless:
[ENOENT] The pathname was too long.
[ENOTDIR] A component of the path prefix of path is not a directory.
[ENOENT] The named file does not exist.
[EACCES)] A component of the path prefix denies search permission.
[EACCES] Write permission is denied on the file.
[EISDIR] The named file is a directory.
[EROFS] The named file resides on a read—only file system.
[ETXTBSY] The file is a pure procedure (shared text) file that is being executed.
[EFAULT] Name points outside the process’s allocated address space.
Ftruncate succeeds unless:
[EBADF] The fd is not a valid descriptor.
[EINVAL] The fd references a file that was opened without write permission.
SEE ALSO
open(2)

BUGS
Partial blocks discarded as the result of truncation are not zero filled; this can result in holes in
files which do not read as zero.

These calls should be generalized to allow ranges of bytes in a file to be discarded.

Hewlett—Packard -1~ June 28, 1985



ULIMIT (2)

NAME
ulimit - get and set user limits

SYNOPSIS
long ulimit (¢cmd, newlimit)
int cmd;
long newlimit;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION

This function provides for control over process limits. The e¢md values available are:

ULIMIT (2)

1 Get the file size limit of the process. The limit is in units of 512-byte blocks and is inherited

by child processes. Files of any size can be read.

2 Set the file size limit of the process to the value of newlimit. Any process may decrease this
limit, but only a process with an effective user ID of super—user may increase the limit. Note

that the limit must be specified in units of 512-byte blocks.

3  Get the maximum possible break value. See brk(2).

following conditions is true.

[EINVAL) ¢md is not in the correct range.

Ulimit will fail if one or more of the

[EPERM] Ulimit will fail and the limit will be unchanged if a process with an effective user

ID other than super-user attempts to increase its file size limit.

RETURN VALUE

Upon successful completion, a non-negative value is returned. Errors return a —1, with errno set

appropriately.

SEE ALSO
brk(2), write(2).

Hewlett-Packard

June 28, 1985



UMASK (2)

NAME
umask - set and get file creation mask

SYNOPSIS
int umask (cmask)
int cmask;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V
DESCRIPTION

UMASK (2)

Umask sets the process’s file mode creation mask to cmask and returns the previous value of the

mask. Only the low—order 9 bits of emask and the file mode creation mask are used.

The bits that are set in emask specify which permission bits to turn off in the mode of the created
file. For example, suppose a value of 007 is specified for emask. Then, if a file is normally created

with permissions of 0777, its mode after creation would be 0770.

RETURN VALUE

The previous value of the file mode creation mask is returned.

SEE ALSO

mkdir(1), sh(1), chmod(2), creat(2), mknod(2), open(2), mknod(8).

Hewlett—Packard

June 28, 1985



UMOUNT (2) UMOUNT (2)

NAME

umount - unmount a file system

SYNOPSIS
int umount (spec)
char #spec;
HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: System V
DESCRIPTION
Umount requests that a previously mounted file system contained on the block special device
identified by spec be unmounted. Spec is a pointer to a path name. After unmounting the file

system, the directory upon which the file system was mounted reverts to its ordinary interpreta-
tion.

Umount may be invoked only by the super—user.

Umount will fail if one or more of the following are true:

[EPERM] The process’s effective user ID is not super—user.
[ENOENT] Spec does not exist.

[ENOTBLK] Spec is not a block special device.

[EINVAL] Spec is not mounted.

[EBUSY] A file on spec is busy.

[EFAULT] Spec points outside the process’s allocated address space.
[ENXIO] The device associated with spec does not exist.
[ENOTDIR] A component of spec is not a directory.

[ENOENT] Spec is null.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

HARDWARE DEPENDENCIES
Integral PC:
The super—user capabilites are provided to the normal user.
SEE ALSO
mount(1), mount(2).
BUGS

If umount is called from the program level (i.e. not from the mount(1) level), the table of mounted
devices contained in /etc/mnttab is not updated.

Hewlett-Packard -1- June 28, 1985



UNAME (2) UNAME(2)

NAME

uname - get name of current HP- UX system

SYNOPSIS

#include <sys/utsname.h>

int uname (name)
struct utsname *name;

HP-UX COMPATIBILITY

Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION

Uname stores information identifying the current HP-UX system in the structure pointed to by
name.

Uname uses the structure defined in <sys/utsname.h> whose members include:

#define UTSLEN 9

#define SNLEN 15
char sysname[UTSLEN];
char nodename[UTSLEN];
char release[UTSLEN];
char version[UTSLEN];
char machine[UTSLEN];
char idnumber[SNLEN];

Uname returns a null-terminated string in each field. Sysname contains "HP-UX”. Similarly,
nodename contains the name that the system is known by on a communications network and is
accessible via hostname(l), sethostname(2), and gethostname(2). Release contains the release
number of the operating system, e.g. "1.0” or "3.0.17. Version contains additional information
about the operating system. Machine contains a standard name that identifies the hardware on
which the HP-UX system is running. Idnumber contains an identification number which is
unique within that class of hardware, possibly a hardware or software serial number. This field
may return the null string to indicate the lack of an identification number.

[EFAULT]| Uname will fail if name points to an invalid address.

HARDWARE DEPENDENCIES

Series 200/500:
The first character of the version field is set to “A” for single user, and “B” for 16—user.

Series 500 only:
The first character of the version field is set to “C” for 32-user systems, and “D” for 64-user
systems.

RETURN VALUE

Upon successful completion, a non-negative value is returned. Otherwise, -1 is returned and
errno is set to indicate the error.

SEE ALSO

hostname(1), uname(1), gethostname(2), sethostname(2).

Hewlett-Packard -1- June 28, 1985



UNLINK (2)

NAME

UNLINK (2)

unlink - remove directory entry; delete file

SYNOPSIS

int unlink (path)

char xpath;

HP-UX COMPATIBILITY

Level:
Origin:
DESCRIPTION

HP-UX/RUN ONLY
System V

Unlink removes the directory entry named by the path name pointed to by path.

The named file is unlinked unless one or more of the following are true:

[ENOTDIR]
[ENOENT]
[EACCES]
[EACCES]
[EPERM]

[EBUSY]
[ETXTBSY]

[EROFS]

[EFAULT]
[ENOENT]
[ENOENT]

A component of the path prefix is not a directory.

The named file does not exist.

Search permission is denied for a component of the path prefix.

Write permission is denied on the directory containing the link to be removed.

The named file is a directory and the effective user ID of the process is not
super—user.

The entry to be unlinked is the mount point for a mounted file system.

The entry to be unlinked is the last link to a pure procedure (shared text) file
that is being executed.

The directory entry to be unlinked is part of a read-only file system.
Path points outside the process’s allocated address space.
Path is null.

A component of path does not exist.

When all links to a file have beeu removed and no process has the file open, the space occupied by
the file is freed and the file ceases to exist. If one or more processes have the file open when the
last link is removed, the removal is postponed until all references to the file have been closed.

HARDWARE DEPENDENCIES

Series 500:

The last link to a directory cannot be unlinked if the directory is not empty.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO

rm(1), close(2), link(2), open(2).

Hewlett—Packard

-1- June 28, 1985



USTAT(2)

NAME
ustat - get file system statistics

SYNOPSIS
#include <sys/types.h>
#include <ustat.h>

int ustat (dev, buf)
dev_t dev;
struct ustat xbuf;

HP-UX COMPATIBILITY

Level: HP-UX/RUN ONLY
Origin: System V
DESCRIPTION

USTAT(2)

Ustat returns information about a mounted file system. Dev is a device number identifying a
device containing a mounted file system. Buf is a pointer to a ustat structure (defined in

ustat.h) that includes the following elements:

daddr_t f_tfree; /* Total free blocks*/
ino_t f tinode; /+ Number of free inodes */

char f_fname[6]; /+ Filsys name */

char f_fpack[6]; /# Filsys pack name */

int f_blksize;  /* Block size */
Ustat will fail if orre or more of the following are true:
[EINVAL)] Dev is not the device number of a device containing a mounted file system.
[EFAULT] Buf points outside the process’s allocated address space.

HARDWARE DEPENDENCIES
Series 500:

In the above structure, { fnamel6] is the driver name, not the file system name.

Series 200:
f_tfree and f_blksize are reported in fragment size units.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and

errno is set to indicate the error.

SEE ALSO
touch(1), stat(2), f5(5).

Hewlett-Packard -1-

June 28, 1985



UTIME (2) UTIME (2)

NAME

utime - set file access and modification times

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>
int utime (path, times)
char *path;
struct utimbuf *times;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION
Path points to a path name naming a file. Utime sets the access and modification times of the
named file.

If times is NULL, the access and modification times of the file are set to the current time. A pro—
cess must be the owner of the file or have write permission to use utime in this manner.

If times is not NULL, times is interpreted as a pointer to a utimbuf structure and the access and
modification times are set to the values contained in the designated structure. Only the owner of
the file or the super-user may use utime this way.

The times in the following structure, found in <unistd.h>, are measured in seconds since 00:00:00
GMT, Jan. 1, 1970.

struct utimbuf {
time_t actime; /% access time */
time_t modtime; /+ modification time */

b

Utime will fail if one or more of the following are true:

[ENOENT] The named file does not exist.

[ENOTDIR] A component of the path prefix is not a directory.

[EACCES] Search permission is denied by a component of the path prefix.

[EPERM] The effective user ID is not super-user and not the owner of the file and times is
not NULL.

[EACCES] The effective user ID is not super—user and not the owner of the file and times is
NULL and write access is denied.

[EROFS] The file system containing the file is mounted read-only.

[EFAULT) Times is not NULL and points outside the process’s allocated address space.

[EFAULT] Path points outside the process’s allocated address space.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
touch(1), stat(2).

Hewlett—Packard -1- June 28, 1985



VFORK (2) VFORK (2)

NAME

vfork - spawn new process in a virtual memory efficient way

SYNOPSIS

int vfork()

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: UCB

Remarks: Vfork is provided as a higher performance version of fork on those systems which
choose to provide it and for which there is a performance advantage.

Vfork differs from fork only in that the child process may share code and data with
the calling process (parent process). This speeds the cloning activity significantly at a
risk to the integrity of the parent process if yfork is misused.

The use of vferk for any purpose except as a prelude to an immediate ezec or ezit is
not supported. Any program which relies upon the differences between fork and vfork
is not portable across HP-UX systems.

All implementations of HP UX must provide the entry ufork, but it is permissible for
them to treat it identically to fork. Some implementations may not choose to distin-
guish the two because their implementation of fork is as efficient as possible, and oth-
ers may not wish to carry the added overhead of two similar calls.

DESCRIPTION

Vfork can be used to create new processes without fully copying the address space of the old pro-
cess. If a forked process is simply going to do an ezec(2), the data space copied from the parent to
the child by fork(2) is not used. This is particularly inefficient in a paged environment. Vfork is
useful in this case. Depending upon the size of the parent’s data space, it can give a siguificant
performance improvement over fork.

Vfork differs from fork in that the child borrows the parent’s memory and thread of control until
a call to ezec or an exit (either by a call to ezit(2) or abnormally.) The parent process is
suspended while the child is using its resources.

Vfork returns 0 in the child’s context and (later) the pid of the child in the parent’s context.

Vfork can normally be used just like fork. It does not work, however, to return while running in
the child’s context from the procedure which called ufork since the eventual return from ufork
would then return to a no longer existent stack frame. Be careful, also, to call __ezit rather than
exit if you can’t ezec, since ezst will flush and close standard I/O channels, and thereby mess up
the parent processes standard I/O data structures. (Even with fork it is wrong to call exit since
buffered data would then be flushed twice.)

Vfork will fail and no child process will be created if one or more of the following are true:

[EAGAIN] The system-wide limit on the total number of processes under execution would be
exceeded.

EAGAIN| The system—imposed limit on the total number of processes under execution by a sin-
Y
gle user would be exceeded.

HARDWARE DEPENDENCIES

Series 200 and 500: The [vfork,exec] window begins at the vfork call and ends when the child
completes its ezec call.

Series 500:

Process times for the parent and child processes within the [vfork,exec] window may be inaccu-
rate.

Hewlett—-Packard -1- June 28, 1985



VFORK (2) VFORK (2)

Shared memory segments generated with the EMS intrinsics will be inherited over vfork.
Private memory segments will not be copied over vfork.

Vfork will also fail in the following cases:

[ENOMEM]
There is not enough physical memory to create the new process.

[EAGAIN] The child process attempts to do a second vfork or a fork while in the
[vfork,exec] window.

The parent and child processes share the same stack space within the [vfork,exec] window.
If the size of the stack has been changed within this window by the child process (return
from or call to a function, for example), it is likely that the parent and child processes will
be killed with signal SIGSEGV.

A child process which does not call ezec will not generate a process accounting record.

Series 200:
A call to signal(2) in the [vfork,exec] window which is used to catch a signal can affect
handling of the signal by the parent. This is not true if the signal is set to SIG_DFL or
SIG_IGN, or if sigvector(2) is used.

Integral PC:
On the Integral PC, vforked children have a unique 2K-byte stack allocated to them.
Any stack space used beyond this 2K limit is shared between the child and the parent.

RETURN VALUE
Upon successful completion, vfork returns a value of 0 to the child process and returns the process
ID of the child process to the parent process. Otherwise, a value of -1 is returned to the parent,
no child process is created, and errno is set to indicate the error.

SEE ALSO
fork(2), exec(2), exit(2), wait(2), acct(2).

Hewlett—Packard -2~ June 28, 1985



VSADV (2) VSADV (2)

NAME
vsadv - advise system about backing store usage

SYNOPSIS
#include <sys/ems.h>

vsadv (index);
int index;
HP-UX COMPATIBILITY
Level: Backing Store Control - HP-UX/STANDARD
Origin: HP
Remarks: Vsadv is not currently implemented on the Series 200.

DESCRIPTION
This call requests that all future backing store space allocated for this process be placed on the
backing store device specified by indez (see vson(2)). It may be used to tune an application to
the local system environment. This request remains in effect until the next call to vsadv by this
process. An indez of -1 will set backing store allocation back to the default system policy.

This call is advisory in nature and will never cause subsequent program failures (e.g. if the device
has no room, the system will simply override the request and use another device).

This characteristic is inherited across fork(2) and ezec(2).
This call may be reduced to a no-op.

HARDWARE DEPENDENCIES
This system call is supported on Series 500 only.

SEE ALSO
ems(2), vson(2).

Hewlett—Packard -1- June 28, 1985



VSON (2) VSON(2)

NAME

vson, vsoff - advise OS about backing store devices

SYNOPSIS

#include <sys/ems.h>

int vson(pathname, size, q);
int size, q;
char spathname;

int vsoff(index, force);
int index, force;

HP-UX COMPATIBILITY

Level: Backing Store Control - HP-UX/STANDARD
Origin: HP

Remarks: Vson and vsoff are not currently implemented on the Series 200.

DESCRIPTION

Vson is used to make the block special file pathname available for use by the system as a backing
store device for whatever form of backing store is needed by the system. The call returns an id by
which the backing store device may be referenced in subsequent vsoff or vsadv(2) calls. Multiple
vson calls for the same device will return the same id (here "same device” means identical devno -
major and minor — and not necessarily the same file name).

Pathname specifies a block special device file, which may or may not contain a mounted file sys—
tem, and which must be a CS-80 device. If device does not contain a file system (i.e. an "empty”
disc), size specifies the available backing storage space (in blocks) to be made available (the
storage space is assumed to start at block 0 in this case). If size is set to -1 and the device does
not contain a file system, the whole block special device will be used for backing store.

@ is a quality (i.e. performance) factor for the device. It is used by the system in load balancing
decisions. Higher values suggest secondary choices for backing store devices. There is no inherent
significance to the value of ¢ other than its value relative to the g factor of the other devices in the
list. This parameter may be ignored on some implementations.

Vsoff is used to remove a device from the list of backing store devices available to the system.
Indez is the value returned by vson when the device was added to the list.

If force is not set (i.e. is 0) the system attempts to “gracefully” eliminate backing store usage of
device by migrating backing store space onto other devices. If jorce is set (if, for instance, the
device has failed) no attempt is made to salvage images stored on the disc. Processes with images
on the device will, in all probability, be rather ungracefully terminated in the near future (i.e.
when the images are required).

Only the super-user may add or remove backing store devices. A normal user may call vson to
get the id for a device already known to the system as a backing store device (for subsequent use
in a vsadv(2) call).

RETURN VALUES

Upon successful completion, vson returns the index for the device and wsoff returns 0. If there is
an error, a value of -1 is returned and errno is set to indicate the error.

HARDWARE DEPENDENCIES

This system call is supported on Series 500 only.

SEE ALSO

ems(2), memalle(2), vsadv(2)

Hewlett-Packard -1- June 28, 1985



WAIT(2) WAIT (2)

NAME

wait - wait for child process to stop or terminate

SYNOPSIS

int wait (stat_loc)
int *stat_loc;

int wait ((int *)0)

HP-UX COMPATIBILITY

Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION

NOTE

Wait suspends the calling process until one of the immediate children terminates or until a child
that is being traced stops, because it has hit a break point. The wait system call will return
prematurely if a signal is received. If a child process stopped or terminated prior to the call on
watt, return is immediate.

If stat_loc (taken as an integer) is non-zero, 16 bits of information called status are stored in the
low order 16 bits of the location pointed to by stat loc. Status can be used to differentiate
between stopped and terminated child processes. If the child process is terminated, status
identifies the cause of termination and passes useful information to the parent. This is accom-
plished in the following manner:

If the child process stopped, the high order 8 bits of status will contain the number of the
signal that caused the process to stop and the low order 8 bits will be set equal to 0177.

If the child process terminated due to an ezit or — ezst call, the low order 8 bits of status
will be zero and the high order 8 bits will contain the low order 8 bits of the argument
that the child process passed to ezit; see ezit(2).

If the child process terminated due to a signal, the high order 8 bits of status will be zero
and the low order 8 bits will contain the number of the signal that caused the termina-
tion. In addition, if the low order seventh bit (i.e., bit 0200) is set, a "core image” will
have been produced; see signal(2).

If a parent process terminates without waiting for its child processes to terminate, the parent pro—
cess ID of each child process is set to 1. This means the initialization process inherits the child
processes; see glossary(9).

Wait will fail if one or more of the following are true:

[ECHILD] The calling process has no existing unwaited—for child processes. In this case,
watt returns immediately.
[EFAULT] Stat__loc points to an illegal address.

The behavior of wait is affected by setting the SIGCLD signal to SIG_IGN. See Special Signals
section of signal(2)fordetails.

RETURN VALUE

If wait returns due to the receipt of a signal, a value of -1 is returned to the calling process and
errno is set to EINTR. If wast returns due to a stopped or terminated child process, the process
ID of the child is returned to the calling process. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

SEE ALSO

Exit conditions ($?) in sh(1), exec(2), exit(2), fork(2), pause(2), ptrace(2), signal(2).

Hewlett—Packard -1- June 28, 1985



WRITE (2) WRITE (2)

NAME

write, writev - write on a file

SYNOPSIS

HP-UX

int write (fildes, buf, nbyte)
int fildes;

char *buf;

unsigned nbyte;

#include <sys/types.h>
#include <sys/uio.h>

int writev (fildes, iov, iovent)
int fildes;

struct iovec *iov;

int iovent;

COMPATIBILITY
Level: write: HP-UX/RUN ONLY

writev: HP-UX/STANDARD
Origin: System V

DESCRIPTION

Fildes is a file descriptor obtained from a creat, open, dup, fentl, or pipe system call.

Write attempts to write nbdyte bytes from the buffer pointed to by buf to the file associated with
the fildes. Writev performs the same action, but gathers the output data from the iovlen buffers
specified by the elements of the fovec array: iov(0], iov([1], ..., lov{ tovent - 1].

For writev the iovec structure is defined as

struct iovec {
caddr__t iov_base;
int iov_len;
J%
Each iovec entry specifies the base address and length of an area in memory where data should be
copied from. The fovec array maybe at most MAXIOV long.

On devices capable of seeking, the actual writing of data proceeds from the position in the file
indicated by the file pointer. Upon return from write, the file pointer is incremented by the
number of bytes actually written.

On devices incapable of seeking, writing always takes place starting at the device's current posi-
tion. The value of a file pointer associated with such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file pointer will be set to the end of the file
prior to each write.

If a write requests that more bytes be written than there is room for (e.g., the ulimit (see
ulimit(2)) or the physical end of a medium), only as many bytes as there is room for will be writ-
ten. For example, suppose there is space for 20 bytes more in a file before reaching a limit. A
write of 512 bytes will return 20. The next write of a non-zero number of bytes will give a
failure return (except as noted below).

If the file being written is a pipe (or FIFO), there is a system dependent maximum number of
bytes which it can store (NPIPE). The minimum value of NPIPE on any HP-UX system is 4096.
In writing a pipe, the following conditions apply:

If the O_NDELAY flag of the file flag word is set:

Hewlett -Packard -1 June 28, 1985



WRITE (2) WRITE (2)

If nbyte is less than or equal to NPIPE and there is sufficient room in the pipe or
FIFO, then the write is successful and returns the number of bytes written;

If nbyte is less than or equal to NPIPE but there is not enough room in the pipe
or FIFO, the write returns without error, having written nothing, and with a
return value of 0.

If nbyte is greater than NPIPE the write fails and returns -1. [EINVAL]
If the O_NDELAY flag of the file flag word is clear:

the write always executes correctly (blocking as necessary) and returns the
number of bytes written.

ERRORS
Write will fail and the file pointer will remain unchanged if one of the following conditions is true
and errno will be set accordingly:
[EBADF] Fildes is not a valid file descriptor open for writing.

|[EPIPE and SIGPIPE signal]
An attempt is made to write to a pipe that is not open for reading by any pro-

cess.
[EFBIG] The current file position (as set by lseek) is less than zero.
|[EINTR] A signal was caught during the write system call.
[EDEADLK]| A resource deadlock would occur as a result of this operation (see lockf(2)).
In addition, writev may return one of the following errors:
[EINVAL|
Iovent was less than or equal to 0, or greater then MAXIOV.
[EINVAL]
One of the iov len values in the iov array was negative.
[EINVAL|

The sum of iov len values in the iov array overflowed a 32-bit integer.
Write or writev will fail and the file pointer will be updated to reflect the amount of data
transferred if one of the following conditions is true and errno will be set accordingly:
|[EFBIG]
An attempt was made to write a file that exceeds the process’s file size limit or the max—
imum file size. See ulimit(2).

[EFAULT]
Buf points outside the process’s allocated address space.

RETURN VALUE
Upon successful completion, the number of bytes actually written is returned. Otherwise, -1 is
returned, and errno is set to indicate the error.

HARDWARE DEPENDENCIES
Series 500:
If you perform a write operation following an lseek past the previous end—of-file, all
“unused” bytes from the previous end-of-file up to your new position are zeroed—out
before writing your data.

Writev is not implemented on this release.
The size of a pipe (NPIPE) is currently 5120 bytes.

Series 200:
The size of a pipe (NPIPE) is currently 8192 bytes.

Hewlett-Packard -2- June 28, 1985



WRITE (2) WRITE (2)

Integral PC:
Under the conditions for which O_NDELAY is set, nbyte can be less than or equal to
10240 bytes.

BUGS
The character special devices, and raw discs in particular, apply constraints on how write can be
used. See the specific Section 4 entry for details on particular devices.

SEE ALSO
creat(2), dup(2), Iseek(2), open(2), pipe(2), ulimit(2), ustat(2), lockf(2).

Hewlett—Packard -3~ June 28, 1985



PERMUTED INDEX

absolute value, floating point
absolute value, integer...
access
access long integer data in machine-independent manner..
access modes, change memory segment..............ccocoeu..
access terminfo database...
access utmp file entry
accessing discs, description of blocked/unblocked disc interface
accounting commands, miscellaneous
accounting commands, overview.......
accounting: connect—time ...........ccccccoeerrvnnnes
accounting, convert binary wtmp records to ASCII .....
accounting, correct time/date stamps on wtmp records
accounting: daily
accounting file format
accounting files: merge or add total ...
accounting: generate disc usage data by user ID
accounting: process accounting...........coeeeveeeninns
accounting, record login names and times .......
accounting records command summary
accounting: shell procedures
acctems

access(?)
..sputl(3X)

.acctems(1M

)
accteon... .acctcon(1M)
acctdisk . ...acct(1M)
acctdusg ... ....acct(1M)
acctmerg acctmergEIM))
accton acct(1M
acctpre acctpre(1M)
acctsh )

)

add a swap device for interleaved paging/signalling . .swapon(2)
add backing store devices.....
add or change environment value.
add or merge total accounting files...
address space, allocate and free
address space, lock/unlock for process
addresses, get for program....
adjust .......... .adjust(1)
ETd ettt ettt ee ettt ettt st et e et eteeeeae et et e e ataaer et e e err et aae et eueeuera et et ea et e et et r et e enaaenn admin(1)
............ regexp(7)

memadvise(2)
...alarm(2)
.alarm(2)

allocate a block of memory ..... malloc(3C)
allocate and free address space... memallc(2)
allocate backing store space to backing store device vsadv(2)
allocate data segment SPACE fOT PIOCESS ...c..c.iieiiiiiiiiiiiiieii ettt ettt sbeaees brk(2)
a.out file format, description Of .........ccoooeviiiiiiiii a.out(5)
append to an existing operating SySteIN ............ocociiiiiiiiiiiiic e oscp(1M)



Permuted Index

.................... calendar(1)

arc cosine function. ...trig(3M)
arc sine function trlg(SM)
arc tangent function
archive, conversion to new format ..
archive file format, description of..........ccocooieiceinnneen.

archive file format, description of cpio archive file format
archive files on tape
archive library, find ordering relation for
archive, table of contents format description
archives and libraries, create and maintain
archives, copy out to media ........cc.ooeervennnn,
archives, extract archive files from media

argument list handling facility, variable
argv, get next option letter from
array, allocate memory space for....
array, print formatted data into.....
array, read and format data from

ASCII, convert base 64 ASCII to long integer .. ..a641(3C)
ASCH, convert binary wtmp records £0 ....cooovvvirierianiniiiinias fwimp(1M)
ASCII, convert floating point value to. ..ecvt(3C)

ASCIL, convert non-ASCII to ASCII conv(3C)
BSCEIIMIE ...ttt e e a s e r et ctime(3C)
ASIM.eceiec e trig(3M)
assembler for MC68000 ...............cocoovinnenne . ..as(1)
assembler/linker executable output file, description of a.out(5)
assembly language, translate ..........ccocoiiiiiiiiiii e atrans(1)

assert(3X)
setbuf(3S

assign buffering to an open file
assistance, get for SCCS
assure sufficient signal stack space..
asynchronous terminal emulation...

)

)
..sigspace(2)
aterm(1)

attributes, change program’s internal ...
automatically release blocked signals and wait for interrupt ..
AWK Lo e
backing store devices, add/remove device from those available
backing store devices, allocate backing store space to

backing store usage, advise system about ..................... vsadv(2)

backspaces and reverse line—feeds, interpret for nroff(1) .......cccocoomiiiiiiiiiiinnc col(1)
DACKUP ..ottt backup(1M)
backup Command Set 80 cartridge tape vt teio(1)
backup or archive file system backup(1M)
banner banner(1)
banners, make using 1arge 1etters .........cccoviiiiiiiiii banner(1)



Permuted Index

base—64 ASCII, convert t0 100g INTEGET.......c.iiiiiiiiieii ettt ebe e a641(3C)
DASEIAINIE ...coviiii ettt ettt e e esa e n b et basename(1)
baud rate, settings for LETIMINAL ............eeriiriiiiiiiie ettt e s se e s reestresare e sresssteenenanessraenniie tty(4)
beheckre

Bell file system consistency check and interactive repair.............c.ccovvvviiiiiiiiiiiniiii biffsck(1)
Bell file system, construct .
Bell file system debugger-........... ..biffsdb(1)
Bell Interchange Format file utilities.........cccocoooieeinnn ..bif(5)
Berkeley compatibility for magnetic tape, description of............ccooiiiiii mt(4)
bessel functions..........cceviveirniiviiiicienii s )

BIF files or directories, remove.
bifchmod.......ccccvevviiiiiiviinnnen.
bifchown ...

bifmkdir.

DIIIRES .ttt ettt et e e ek st e s ettt e ae e e st e aae s

DIFTTI et e b e et b e en e er e

big file scanner

binary search on a sorted table........cooeoiiiiiiniiiiii e e bsearch(3C)
bit bucket, special file qUIVAIENT 10 .....c..ioviieiieiiriei ettt s et e null(4)
block of memory, allocate................. malloc(3C)
block of memory, change Siz€ of ......oooiiiiiiiiie e ...malloc(3C)
block of MemMOTY, AEAOCALE.......coevevveeeeeieeiereieet it ettt te et et st eesessees s easne ...malloc(3C)
block signals ........c.ccccoviiineiinnnnne. .sigblock(2)
block size, find for mounted file SYSLEIM.........ccccciriiiiiiniiiiiiecaireceeeeeee e ere s st et ene e ustat(2)
block special file, create ................ .mknod(2),mknod(1M)

blocked disc interface, deSCrIPtiOn Of ........ccccoiiiiiiiiiiiiieiiir ettt e e disc(4)
blocked signals, release and wait for interrupt.................. ...sigpause(2)
blocks, find number of free blocks for mounted file system.. ....ustat(2)
blocks, report number of free diSt BIOCKS .....c.o.coviiiieerriciicieec et df(1M)
boot area, allocate bytes for.........coociniiiiiiniicniiiiice ...sdfinit(1M)
boot area, copy OS from one or more SDF boot areas to another .......... e oscp(1M)

boot area, set or get current settings for system parameters in............... ....uconfig(1M)
DT e b et et eb e st e st bre(1M)
BTRAK . .ot e a e eaen e sh(1)
break value, get mMaximum fOr ProCESS.......ccceiriiiiiiiiicei et ulimit(2)
break value, set or get

break—point debugging, enable for child PrOCESS .......cceveeiiiiriiiiieii it ptrace(2)
DK e bbbt et et s brk(2)
bsearch ......ooveviivieiiiiiieee e ..bsearch(3C)
buffered file I/O package, deSCIiPLON Of...........cucciecmiireirnmnns et rrciien et narsse s essass s snsssesnss stdio(3S)
buffering, assign t0 0PeN fIle .......oocimiiii et e setbuf(38)
buffers, flush those associated with an open file .. .

byte offset of next I/O operation on file, Set ........ccoeviiiririieiiiriei ettt




Permuted Index

DYEe SWAPDING .ovtveiii ittt st e e sttt e et et e ereas etk eeabennas swab(3C)
O COMPILET 1.ttt et e b s e s s b s f o s et b er e se et h e st e nees ce(1)
C compiler, preprocessor for
C flow graph, generate

C preprocessor 1)
C program checker/verifier (1)
C program, error message generator for.... ....perror(3C)
C Program FOTIIALTET ....c.coveeiiii ittt st cte sttt see ke etr st e she et et emna ke s st easesreemeeraesseearasetessnesrenes cb(1)
cache buffers, specify size and number of . ..uconfig(1M)
calendar ....ccoovoviiciii .calendar(1)
call another UNIX/HP-UX system cu(l)
calloc malloc(3C)
carriage control characters, interpret ASA............ccovniiiiiincn e asa(l)
cartridge tape, Command Set 80 utility e eereeee et traaaa b beearreee ettt aaaeeees teio(1)
cartridge tape initialization............cccooeiniae ..mediainit(1)
cartridge tape, perform input/output from/to teio(1)
cartridge tape, unpack/extract files from Command Set 80 ...upm(1)

change bars, create file CONAININEG. . .....cciieereerreciiaiiie et ee e te st saa et ebe e seeanneeeenees diffmk(1
change data segment space allocation....
change delta commentary of SCCS delta.......ccoooiveriiiiininniiie e e
change file mode.............ccoevveiiinins
change file owner or group
change file owner or group
change group ID of user
change login password 1)
change memory segment access modes )
change mode of a BIF file ............ bifchmod(1)
change or add value to environment putenv(3C)
change or read real—time Priority ........ccocooviiiiiiiiiii e rtprio(2)
)
)
)

chown(1),chown(2)
newgrp(1),sh(1)
passwd(

memchmd(2

change or set real-time priority rtprio(1
change program'’s internal attributes (1
change root directory for a command ...........ccooooiiiiiiiii chroot(1M
change root directory for duration of command. ..chroot(1), chroot(2)
change SCCS file PATAIMELETS ........covviiiiiiiiiiicc s admin(1)
change size of previously-allocated block of memory .. .malloc(3C)
change system state init(1M)
change to another user
change to different operating system or version ettt e chsys(1M)
change working directory..........cooeeiiiiiiivieieniininice et ...ed(1),sh(1), chdir(2)

character ClassifiCAtiON. ... .cc..ioiiiici ittt et ne ctype(3C)
character conversion, lower-case to upper—case. .conv(3C)
character conversion, non-ASCII to ASCII conv(3C)




Permuted Index

character conversion, upper-case to lower-case
character count
character, description of special characters in terminal interface
character, push back into input stream
character, read from buffered open file gete(38)
character, search fOr I STEIME ........ioiviiiiiic it ettt e e et e s e senna e neensaens string(3C)
character sets, NLS..........c.ccoeiie .ascii(7),kana8(7), roman8(7)
character size, settings for terminal..
character special file, create
character, write on buffered open file or standard output
characters, count number contained in file
characters, process characters from regular expression
characters, translate into other characters...................

ungetc(3S)

check C program ...
check file for accessibility

check file system consistency.... .. fsck(1M)
check integrity of OS in SDF boot area(s) ..osck(1M)
check internal revision numbers of HP-UX files . revck(1M)
check password and group flles ..ot pwek(1M)
checklist, list of file systems to be checked by fsek(I1M)....ocoooiiiiiiniiiiiic i checklist(5)
CRIBID o bbbk a s et chown(1)
child process, enable break—point debugging of ptrace(2)
child process, time execution of...........cccooeee. ....times(2)

child process, wait for termination of...
chmod(1},chmod(2)
....chown(1),chown(2)
CHIOOT . ..ttt ettt et h ettt e b ettt eat bt h ekt et et et s re et eresiae chroot(1) chroot(2)
chroot chroot(1M)
chsys(1M)
.nl__ctype(3C)
uuclean(1M)
clear(1)

clear i-node by zeroing it out...
clear terminal SCreEM ... ..ot clear(1)
clear x.25 switched virtual circuit .. ...clrsve(1M)
Clearerr . ......ocoeiiuriiiieiiiec e, .ferror(38)

ClOBE ot e e .close(2)
close a file deSCTIPLOT .oueiiiiiiiie e e close(2)
close group file ............ getgrent(3C)
close or flush a stream.... felose(3S)
close password file getpwent(3C)
close pipe between process and command popen(3S)

fent}(2)
..clri{(1M)

close-on—exec flag, get/set
elri ...

clrsve .clrsve(1M)
emp...... ...cmp(1)
code portability between HP- UX implementations, typedefs for ... ...model()
code segments, specify maximum number of .... uconfig(1M)




Permuted Index

collation, non-ASCII string, used by NLS. . ettt et bbbt resarers nl_string(3C)
colon (:) command.......c..c.cceieurrinieninnes ....sh(1)
combine object files into program

command, create/close pipe between process and command
command, execute from program
command, execute on another system.............
command, execute uucp commands on local system .
command, execute with different root directory ...... ..chroo
command interpreter, standard
commAand [INe OPLIOTIS, PAISE ......vvveieiiieeeiiii ittt cerireeeiiee s e e e seb e e e s eeneaesteesaennaassasreeaeasbaessreneaessnnne

command, report error INformation for..........ccooviiiiiiiiiii err(1)
command, run at lower or higher priority .................. .nice(1),nice(2)
command, run immune to hangups, logouts, and qUIts.........ccccccviivvieirianiinicieceee e nohup(1)

Command Set 80 Cartridge Tape Utility
command, set environment for
command substitution
command summary: per-process accounting records
command, time the execution Of...........coecriiiiii time(1)
commands, execute at specified date(s) and time(s) at(1),cron(1M)
commands, install in file system ............cccoceennne ....install(1M)
common lines, find after comparing two files
common logarithm
communication, establish interactive communication with another UNIX/HP-UX system
compact

acctems(1M)

compact(1)

compare tWO diT€CtOTIES .. .ouviiiiiiiiiiii e e e diremp(1)
compare two files ............ bdiff(1),cmp(1), diff(1)

compare two Strings........cooveeereeennn string(3C)
compare two versions of SCCS file scesdiff(1)
COMPILE 1.ttt ettt et sttt eh ettt regexp(7)

compiled term file format.
compiler, C......c.cc.ceo.
compiler development ...
compiler, FORTRAN 77
compiler, Pascal
compiler: terminfo ..
compiler-compiler
complementary error function and error function
compress and uncompress files, and cat them....
compress and uncompress files, and cat them.
concatenate, copy, and/or print files
concatenate lines in one or more files
concatenate two strings ..........cccecveeenine

conditional expressions, evaluate and test...

....term(5)

dial(3C)
connect-time accounting accteon(1M)
constants and functions, TALH . ... oottt e e ettt saesaa e raaae saeera e saaarnens math(7)
construct a Bell file system.......... ..bifmkfs(1)

construct file system on special file..
construct new file system
contents of directory, list
CONLEXt—{Tee BIAINIIIAT, CTEALE ...vivevriveereriveereseeacsieterest s ean bt asesrsesese et s esessasesseseseeasessssesasnasasaseesaresserens yace(1)

...mkfs(1M)




Permuted Index

COMBITIUE ...ttt st et e e sae e s ae e et e e an e e st eset e s et aneee e eseeeneesaseenbbeemsanesresomeeanneesmnennne
control characters, interpret ASA carriage.
control device......ooviiviiiiiniiii
control-flow constructs, shell programming language
conventional terminal names
convert archives to new format
convert between 3-byte integers and long integers
convert between long and base-64 ASCII ...........
convert binary wtmp records into ASCII
convert date and time to ASCIL................
convert floating point value to ASCII string....
convert, reblock, translate, and copy a (tape) file
convert string to double—precision integer
convert string to integer
convert tape file.................
copy an open file descriptor..
copy, concatenate, and/or print files.
copy files between two systems
copy files out to media
copy files while simultaneously editing them.......
copy line from standard input to standard output.
copy, link, or MoVe fileS ......c..cccvviiiiiiiiiiicesreee e

copy operating system from one or more SDF boot areas to another ..............coocvieeeveiiivrcvrninvenennnnns oscp(1M)
copy string
copy tape file....
copy to or from BIF files
copy to or from LIF files
core image, examine and/or modify for child process.
core image file, deSCrIPUION OF ...cc.oiiiiieiiiieie et ereeeteeete s et e reeeabeesne e rme e srteasbaesibeentennnean

cosine function ....
COSINE, NYPEIDOLIC....vieiiiiriie ettt ettt e a e sae e e e e ba e neenrne

cplo archives, unpack/extract from 5.25” flexible discs ...
cpio archives, unpack/extract from Command Set 80 cartridge tape

machid(1)
creat(2)
create a directory mkdir(1)
create a directory file mkdir(2)
create a name for a temporary file...........c.cccooeen. tmpnam(3S)
create a new process...................
create a special file NIV ......cccoooiiiiiiiiiiiicrt e e

create an interprocess channel ...........ccoooviceiieniiinie e

create and open teMPOTArY fle.......coceiiirrceiiiioiiiiite ettt ettt e e eesr e e e eene e
create cat files for the manual
create delta (change) for SCCS file
create device files .

create directory, block/character special .mknod(2), mknod(1M)
CTEALE ENCTYPLION KEY ..o.viiirieuiiiiitiiietceit ettt ettt ettt ettt et e st et e be e bt ebenaesassens makekey (1M)
create Iibraries, archives .........coooiiiiiiiiiii et bt ar(1)




Permuted Index

create link to file

link(1M) link(2)

create message catalog file for modification findmsg(1)
create mnttab table ..setmut (1M)
create new file, overwrite existing file.. creat(2)

create new operating system from ordinary files
create or change parameters of SCCS files......

...admin(1})

create unique file name .mktemp(3C)
creation mask, get/set for file .........coocooiciiiiininicniiinnn ...sh(1}), umask(l), umask(2)
cron(1M)

CRT, facilitate viewing of continUous tEXt ON....ccc.erveiriiiiioieinirii et more(1)
CRT, information about graphics devices with.. ...graphics(4)
CRT screen handling and optimization routines ....curses(3X)
crypt crypt(3C)

ctime.. ctime(3C)
CUiiieereeeee et ....cu(1)
current directory, print name of
current events, print
current user id ....whoami(1)
current user in utmp file, find ......coocoiveeiiiciennrencnn. ...ttyslot(3C)
current working directory, change......... ..cd(1), sh(l) chdir(2)
current working directory pathname......
current working directory, print name of
_curses
cursor handling and optimization routines
cuserid

cut out selected fields of each line of a file
daily acCoOUnting .....ceoveerevrrreaerereenenriarieneen ..runacct(1M)

data access, long integer, machine independent sputl(3X)
data base, relational data base OPEIAtOT...........coiivivieirrvriiiriiieiitcci ettt join(1)
Data Encryption Standard ...crypt(3C)

data segment, change space allocation for
data segments, specify maximum number of
data types, include file defining data types for system code
database access
datacomm, accept/reject files received through uucp or uuto
datacomm, copy files between two systems
datacomm, execute command on another system .
datacomm, list of known system names....
datacomm, log of uucp and uux transactions.. .
QBEE 1.ttt et e e ettt e e e et e na e e e et e ne e a e b et re et teaneenaaeeneee s
date and time, convert to ASCII string

date and time, get more precisely ftime(2)
date, get/set... gettimeofday(2)
AEE, SBE..ivieiirieiii e e e e stime(2)

date, set and/or prmt ................ date(1)
dates, reminder service for important . calendar(1)
[T = o L OO O P OO U O UPPUUUPTRTRSIPRRIINt ctime(3C)

ctime(3C)



Permuted Index

delta, add to SCCS file ................
delta, change commentary of SCCS.......ccooiiviiiiiieiieieceieeieeeene ..cde(1
delta, inform user of any deltas being created for specific SCCS file. 3

DES password @NCTYPEION. ... .coviirireitt ettt ettt et cneeeneeneeeereeerae e s e s e e e et et enaaeeenreea crypt(3C)
deseription Of eNVIFONMIMENE ......cciuiiieiitetieeiiirt ettt e e environ(7)
description of /etc/passwd, pwd.h files. ...passwd(5)
description of group file............ccoceiiinenee group(5)
description of magic.h and magic NUMDBETS .........ccccoviiiiiiiii e magic(5)
description of OS management COMMANAS ........c.cocvvviiiiiiiiiiiiii e osmgr(1M)
deSCriptor, CloSE fI1€ . c..oiioiiiiiiiie e e es
descriptor, copy/duplicate file ..

descriptor, get Valie OF file........o.viiiiiriiiiieee ettt e e e e e s s eaetbaee s ntaae s

device, description of hpib INEErfACE £0...uiiieciii ittt ettt e st e et e e e e e e e enneen

device driver, select virtual device driver .
device drivers, list
device file, create block/character............ocovvvvviiaiecieieec
device files, create .......ccccoevrniiinnnns
device files, perform functions on...........
device names, pack/unpack for mknod(2)
device I/O HDIary.......ooooioiiiiii e

devices, DACKINE SLOTE .....eeiiiiiiiiriie ettt et st ea ettt et cnaneesane e
devices, information about those with graphics crt's..
16 0514 1) o ¢ TP OO PP U PP PP PPOPPE

A e ettt b et h ekttt be s e e he bt e e r et et s et bansaeneenbenbassaeereennenrel
diagnostics, add to program . ..assert(3X)
QIAL e et et e ...dial(3C)
dial out to a remote terminal...........ccccocvvieiiiiiiiii ...dial(3C)
dialup security control.......... .dialup(5)
HE e ...diff(1)
.diffmk (1)

directory, change root for duration of command... ...chroot(1), chroot(2)
directory, change Working............coccoeeivivveeninne. .cd(1),sh(1), chdir(2)
directory clean—up for uuep spool directory.........coccoviiiiiiiiiiniiii e uuclean({1M)
ITECLOTY, COIMIPATE BWO ..viriiietiiie ittt ettt st eb ettt b e s s b s eabe b e e bt be b et e eeen e e dircmp(1)
QIFECLOTY, CTOALE . ..ecuiiiiiieiiti ettt ettt ettt ettt et e e et stk se et be b et aae mkdir(1),mknod(2)

directory, description of internal SDF format of .......cccccoeoiiiiiiiiiiiiiiiii e dir(5)
directory, extract from path NAme . ......c.ccocccciiiiiii e basename(1)
directory, list CONENES Of .....ciiiiiiiiiieie ettt bbbttt ettt sae b eabeneee Is(1)
directory, list contents of LIF ...t lifls(1)
directory, Move ....ccooceeereeeeiinieiiiinieeeenn ..mvdir(1M)
directory, print name of current working ...pwd(1)
AITECLOTY, TEIMOVE....eiviiiiitiitiitiiicct e et et s e s s b et b et besn e s bt seenaesaenes rm(1)



Permuted Index

directory, remove
dirname....
disc blocks, report number of free
disc description file
disc drivers, information about blocked/unblocked interface..

rmdir(2)
..basename (1)
)

)

disc initialization (1)
disc storage, preallocate prealloc(l)
disc usage accounting by user ID . ..diskusg(1M)
diSC USAZE, SUIMIMATIZE ... vtovtiiieti ittt e er ettt eb e s h e b b st e e e s e ab e e s eassam e e s s e an s du(1)
disc, write current contents of memory to ..sync(2),sync(1)

QISKUSE ..t diskusg(1M)
display buffering, specify number of pages of uconfig(1M)
documentation, ON=NNe..........ccoerevriiiiniiiei e ....man(1)
documents, print USING MIN MACTOS. .. vviievierererriis vt iiececere et renens ..mm(1)
Ot (L) COMIMANA ....iiiiiinieii et et bttt eb e r et eaane e n et re e sh(1)
drand48 )

drand48(3C
driver, information about blocked/unblocked disc interface... ....disc(4)

drivers, list device

duplicate an open file descriptor...
duplicate open file descriptor

editing activity, print for SCCS file
editor, stream text......c.cccceeereennes
editor, text

effective current user id........cococevvcniicnnen ..whoami(1)
.......... getu1d(2)

EMS, deSCrIPION OF ....ooveiiiiiiiiiiiiiiei ittt sttt ems(2
emulation of asynchronous terminal.......ocoocoiiiii aterm(1)
enable swapping and paging
encrypt passwords ..............
encryption key, generate..

endgrent
endpwent ...

environment, description of parameters and usage
environment, install parameters in ...................

environment, print current................
environment, set for duration of one command
environment, set up at login time .
environment variable, get value of ...

- 10 -



Permuted Index

EOF (end-of file) character, deseription Of ....c.c..ocooioiiiiiiiiincineeceni e tty(4)
EOQF, indicate receipt of when reading file )
EOL (end--of-line) character, description of ...........ociviiiiiiiiiiiiiiiiniieecte e s tty(4)
eqn, tbl, nroff, troff constructs, remove from text.. deroff(1)
erase character, description of tty(4)

errfile(5
..errinfo(2

.err(1)
.errno(2)

error function and complementary error function
error handling, mathematical
error indicator ......................
error indicator for system calls.
error indicator, reset status of ....
error indicator while reading file
error information on last command failure
error logging file for system..........ccocceevvcenirecnennnne
error message generator from C programs....
etext....

exec] .
execle...
execlp
executable file, extract symbol table (name list) entries from ... nlist (3C)
executable file, get size Of......cccovvveriiiiiiiiiiniieiece .

executable linker/assembler output file, description of .
execute a file in current process.....c...coeeeveuenees
execute command at lower or higher priority ..
execute command immune to hangups, logouts, and QUItS ...........cccccovviiiiiiiicc nohup(1)
execute command 0N aNOther SYSLEIN .. ....cooviiiiiiiiiiii e uux(1)
execute command using different root directory chroot(1)
execute commands at specified date(s) and time(s) .at(1),cron(1M)
execute commands from file ..o sh(1)
execute new program in existing process.
execute process with real-time priority
execute HALGOL programs
execute uuep commands on local system
execute work requests on remote system
execution profile, create for program
execution, suspend process execution for time interval...

..sh(1) exec(2)
..exec(2)

11 -



Permuted Index

EXD) ereueeruent ettt ek eh R e h et a e et s a s aen e et e r etk eu ekt e aer et a e R s s na et nee exp(3M)
exXpand .....coooieiii e ...expand(1)
expand tabs to spaces, and VICE VEISA........ccccovviiiiiiiiiiiiiiiiniirii e expand(1)
€XPONENT, TAISE 2 £0 8 POWET «.evitieiitiotanirntitraarereerteareastesesesssaestasstsaessaaseessessesssasserssassassersasersssacassone frexp(3C)

exponential function ..exp(3M)

EXPIESEIVE.c.veeeeeeareerrererereasensnes
expression, evaluate arguments as...
EXTECOVET ..oveeentanrenneeereeerasreneeneeseees
Extended Memory System description
external symbols, examine execution profile for.............coooii
extract entries from symbol table (name list) of executable file
extract error messages from C source Into a file.......cccooiieiiioiiioiiiiiiiii e
extract files from 5.25" fexible dISCS ... oo
extract files from Command Set 80 cartridge tape archives
extract files from media...........c..ocoiieiiinnniniiinins
extract portions of path names .

fentl(2), description of requests and arguments fOr.........c.cooveiviieniiiniici i
fentlh, description of......oocveiiiiii ...fentl(7)

fevt... ..ecvt(3C)
fdopen. fopen(3S)
BROE e bbb ettt e ferror(3S)
FOITOT ...ttt ettt e r et e et h s et b ket bt b et stk b ek b e ke s s ebe ket ettt re e ferror(3S)
felose(38)
..................................................................................................................................................... getc(39)
...................................................................................................................................................... gets(3S)
....................... grep(1)
mknod(2),mknod(1M)
file, assign another file name to already open file ..., fopen(3S)
file, assign buffering t0 OPen ... e setbuf(3S)
file attributes file, descriPtion Of .........ociiiiiiiiii e fs(5)
file, buffered read from fread(3S)
file, buffered WIIte £ ..cooviiiiiiiiiiii i fread(38)
file, change group ID of ......cccoiiiiiiiiiiii s chown(1),chown(2)
file, change mode of ..... ..chmod(1),chmod(2)
file, change owner ........ ...chown(1),chown(2)
file, change permission bits.... ..chmod(1),chmod(2)
file, check revision number for ... revck(1M)
file, close a buffered open flle ..........cccoiiiiiiiii e felose(3S)
file comparison, three-way differential .. ...diff3(1)
10 COMBIOL .. ettt ettt st s et cat e ehe et ekt ab e sa ek em e e s e e e s s e esbesaaessaaneseeenee et e neaneene fentl(2)
file control constants, file containing definitions of ... fentl(7)
file, copy LIF in OF 0Ub..evociiviiviiiciiciiic e lifep(1)
file, copy to tape while performing certain conversions...... ...dd(1)
file, count words, lines, and characters contained therein............ccoccoviiiiiieiiiiiiii e we(l)
file, create and OPEN tEIMPOTATY ....ooviiviiiiiiiiiiiii ittt sttt ees e sba st s sttt e e atasae e eneetbsovensees tmpfile(3S)
file, create device/SPecial ......coiuiiviiiiiniiiiiici e mkdev(1M)

,12,



Permuted Index

file, create or OVEIWIItE OTAINATY «..iiiciiiiiiiieieiiiii ittt b e oo e sb e creat(2)
file, create or remove link to/from. .link(1M), link(2), unlink(2)

file, create OrdINATY .......c.ooioiiiiiiii e mknod(2)
file creation mMask, SEb.........cccoiiiiiiiiiiiiei e sh(1),umask(1), umask(2)

file, description of buffered I/O.......ccccoviriiiiieiiiiii e e s stdio(35)
file, description of password file, /etc/passwd.. ....passwd(5)
file, description of SCCS file format...........ccooiiiiiiiii scesfile(5)
file descriptor, aSsign SETEAIN B0 wvviveeiiviiioiecriirceerit ittt fopen(38)
file desCriptor, ClOSE .......ooiviiiiciii i s close(2)
file descriptor, copy/duplicate.............. ..dup(2),fentl(2)

file descriptor, create file POINLET WSINE ... coierirrirircriierieereeieesi ettt fopen(3S)
file descriptor, determine if associated with terminal.........c.cocooiveiiniiicniiiiiiiineccc ttyname(3C)
file descriptor, get vale Of ..o s ferror(38)
file, determine accessibility of ...access(2)
file, error 1ogging file fOr SYSTOIM - .ccveoviruerieeiiiiei ittt et bbb s errfile(5)
file, find and/or remove duplicate NS I .........ccocveviiiiiiiiiiii e unig(1)
file, find spelling errors in.........c.ccoceeveee. ..spell(1)
file format, per-process ACCOUNTINE ....cutiiiiiirritrirt ittt cr et err ettt ettt esae e s nas senesraeeetneeubaebsaeareann acct(5)
file, generate name for temporary . tmpnam(33)
file, get Information AbOUL ..........cceiieiiiiiiiii stat(2)
file, get/set status flags for ..., _fentl(2)
file, indicate the occurrence of an error while reading...... ferror(38S)
file, indicate when EOF is encountered when reading from............cocoviniiiciiinncinniiicc ferror(3S)

file, 10CAtE IN fI1€ SYSLOIM. .. .eivreieeriieeiiaetceeite et esteeeie s e e e b e e sraesseee e e eetaataesraeeesaestbeeteeenneennesansnesneensee
file, move to new position in
file name, create file name vs. i-10de LISt ....coreeiiiiiiniiiii e ncheck(1M)
file NAMNE, CTEALE UMIQUE -....vevieeeereeetrenieecierieeteereeee sttt ebt e et e seeresarsasbesseesee st e beeseeseeamacseesreenteneesnaentan mktemp(3C)
file name, extract from path name .basename(1)
file name, find special file for mounted file system on which file lies .. .devnm(1M)
file name, generate for temporary file.......c..ooovevieeriieiniiciinnce tmpnam(38)
file name, generate for terminal
file, open for reading Or WITEINE. ....c..veeiiiiiiiiiiiii ettt ettt
file, open with assigned buffering ..
file owner or group, Change ..........cccovviiiiiiiiii e

file pointer, create using file deSCIIPLOT .......covviiiireeiieciie ettt fopen(3S)
file pointer, move read/write (seek)....
file pointer, ObLAIN fOr FLE ..voiiiciici i ettt e eeaae e
file pointer, re—assign to aNOther file.........cceiiiiiiriiiii ettt a e
file, print last part of...........coceereeeienniennne
file, put line length specifications in text files...

file, put margin specifications in text files .... .fspec(5)
file, put tab specifications N text fI1ES .....cooiiiiiioi et fspec(5)
file, read and execute commands frOI ...........c.occoiiiiiiiiiiii s sh(1)
file, read and format data from ...scanf(38)
file, read Character frOM . ....ccoiiiiii it ettt s getc(3S)

AL, TEAA FTOMI. 1.t euvieivie ittt ettt e e eese e et eeat e enseenaeesaesereeaae e e eeee st e e et teeerarens
file, read string from..
file, read word from
file, remove..............
file, remove a LIF ..cccovvvveiiiiiciiiireee

file, remove extra new—line characters from..
file, remove selected fields from each line in.....
file, remove selected table column entries from
file, TENAIME LIF ..coiiiiiiiiiieetii ettt ettt et e e e e te e et b e etaeea s e st e e saesaaeeseeeseesraeenteesntaensseeaseens
file, rewind before next 1/O operation

- 13



Permuted Index

fle SCAIIMET, DIE c..ovuiiceiicriiieiic s et ettt bfs(1)

file, search contents of for specified SETINE(S) . ..ocvrvrveviirvreeirceris ettt sae e grep(1)
file, set/clear set—user -1D, set group-1D, sticky bits .chmod(1), chmod(2)
file 8ize lIMit, et FOI PIOCESS ..oouuviiieeiiiritit ettt ettt ee st eees e e rreeesaaa e e e eaates e et treesensaanes ulimit(2)
file, SOTt COMBENES OF ...uvvviieiiiiiii bbbt sort(1)
£11€, SPIL INTO PIBCES ueerririitieiieriis e te e et e et eetr et et et eareases e e s sastesstssessee s earesssestenrsasse st anranssesteerensaarsens split(1)
file system, backup file system on ¢pio archivVe........oooccviieiiiiriiiiiniiee ettt backup(1M)
file system (Bell) consistency check and interactive repair.......c...ccooeiecireniniic v biffsck(1)
file system (Bell) debugger........cooovviviiiniininn, ..biffsdb(1)

file system consistency check and interactive repair..........ccocviciiiiiiiniiiii .fsck(1M)
file system, construct on special file.........ccovieiiiiiiiiiiiii e ..mkfs(1M)
file system debugger...........ceeeeeeririens ...fsdb(1M)
file system descriptor file entry ................. getfsent(3X)
file system, find special file associated with . .devnm(1M)
file SYSEIM NIETATCIY «...eitii ettt ettt ettt et et asaesae e en s e sbt e e i
file system, install COMMANAS IML...cceeouiriiiieiieiiiir et ere e ettt e e s e i s

file system, list of those to be checked by fsck(1M)
file system, mount O UNIMOUI.....c.eiviiiiiirriiiiee et

file system name, get for MOUNtEd.....cccveeiiiiiiiiiii et et
file system pack name, get for mounted.
file system shutdown status................
file system, table of mounted file system:
file, system’s "bit bucket” special file........
file transfer: XMODEM protocol....
file transfers: KERMIT—protocol. .
fle BTEE WAIK.....oitiiie ittt ekt ekt e etk b et e e ba e et seea e sae e n s
file, update access/modification/change times of.........c....ccoiiiiiiiiiii e,

file utilities, Bell Interchange Format
file, write character onto....cceevevvineeenienns

file, write formatted data onto ......ccccooeeiieiiiiviiiiii e
file, write LIF volume header on...
file, write string onto .
file, write to ..c...........

fI1E8, AFCRHIVE OI1 LADE «.viviii i iiiiiities ettt e e e e e ettt ar e s e sttt aata e e s ettt e rae s e e et e s raatsee s e e rasatvneneeeaaasssansnnnns
files, check password and group flleS. ...t

files, compare twWo ..o
files, compare two and create change bars
files, compare two and find lines common to both. .
files, compare two and find lines unique t0 €aCh.....c.cocviiiieiiiiieii e

files, CONCALENALE tWO OF TNIOTE ...eoviiiiiiiiiiiiie ittt ettt sae e saceen e et g easneaa

files, copy .

files, copy and simultaneously €dit ...........ccocoiiiiiiiii e

files, copy between tWo SYSLEIMS......c.coiviiiiiiiiii i

files, copy out to media .........c.coooiiiiiiii,

files, description of /etc/profile and $HOME/ profile... .

files, extract from media.......c.oevvurocrivenericiiercrineees ....cpio(1)
files, fOrmat And DI ....o.oveiiiiiet ettt eb b st s b st es s st ea b e rennras pr(1)
files, merge liNes IN ONE OF IMLOTE ...iiccviiirririie ittt ettt eeeete e et ree s beeeereessubaesaabcessstneenraneeesnanes paste(1)
files, move, link, or copy ........... ..ep(1)
FL1ES, DIIIIE ettt ettt ettt et eeaae e o2 e beesaeaeeate b e esea s essesssane et b et beseeere et eereeresaeserenenenseeraeens cat(1)
files, unpack/extract from 5.25" flexXible dISC8.....corverrririiereieiiieceie et rees upm(1)
files, unpack/extract from Command Set 80 cartridge tape archives .....o..o.oovevviceeivereriniii e upm(1)

,14,



Permuted Index

find current user slot in UtMP file. ... e ttyslot(3C)
find duplicate Hnes in fle ..o e s unig(1)
find files ....ccovvviiiinnn ..find(1)
find files in a BIF system... .biffind(1)
find name of a terminal................oeei ..ttyname(3C)
find strings for inclusion in message catalog .. ....findstr(1)

findmsg . ...findmsg(1)

..... findstr(1)

flags, set shell
flexible discs, unpack/extract files from ..........coccoveerciininne.
floating point number, split into integer and fractional parts.
floating point to ASCII conversion.......coo.uveeernvrerrrereenrenes

FIOOT .ttt e h e sttt e er ettt tn e s e nane st

How Braph, C, BEIETALe. .....oiiciieeiiiii ettt et e e et s e e ree s s sab b e s taa e e anar e
flush buffers associated with an open file.
FINOA L. e e e e bbb et b e cnaanis

fold long lines for finite—width output device ........o.ocvicieiiiiiiiiiiei it fold(1)
FOPEI . cveeniiretce e ..fopen(3S)
for loop, exit from enclosing. ettt eteeeeeeeteeteteeeesbeeryeeeteeteebeeehaearee et s e ehbeentee et ee e baentaeasreesbsaseeeanaeannen sh(1)
for loop, resume the next iteration of ... sh(1)
fOrk .o fork(2)
format and print files .. .pr(1)
fOrmat C PIOBTAIIL ....c.icuiiuiriiiiiiieiiit ittt et ns e ne et cb(1)
format, compiled term flle..........cocoiiiiiiiiiii e term(5)
format data IO SEING ....coviiviiiiiiic i e e printf(3S)
format data on buffered open file ....printf(3S)
format data on standard OULPUL........c.ocioeiiiiii s printf(3S)
format, ISt SEIUCTUTE......ccviiiiiiii ittt eea e sttt s r e nlist(5)
format of an i-node, description of inode(5)
format of a.out file, deSCTIPtION Of ... .oviviiiiiiiiiiiee it reearee s a.out(5)
format of core image file, deSEription Of ...........c..coiiiriiiiii e core(5)
format of ¢pio archive, description of...... ..cpio(B)
format of library/archive file, description of ..........ccocoiiiiiiiiiiii e ar(5)
format of SCCS file, description of .......... scesfile(5)
format, Privileged VAIUES......occviiiiiiiiieitii ettt ettt baeasae st baeebe e s e nraeaseeeebeeenre s privgrp(5)
format SDF VOIUINE .......cccoiiiiiiiiiiiiicc e sdfinit(1M)
format specifications, put in text file ....fspec(5)
format tables for nroff or trof........c.cocoiiiiiiii e tbl(1)
FOTTNAL LEXE vvvieeiei ettt et e s nroff(1)
formatted output from varargs argument LSt ........ooooeverveiiioninienii e e vprintf(3S)
formatted output with numbered arguments .

formatter, text, simple .......cccoveevreiinieienen.

formatting text with the man macros
formatting text with the mm macros
FORTRAN 77 compiler .................
fprintf

,15,



Permuted Index

BTRE 1o e malloc(3C)
free blocks, find for mounted file SYStEIM ......c.ccooiiiiiiiiiiiiic e ustat(2)
free disc blocks, report number of
free disc blocks, report number of
free i-nodes, find for mounted file SYSLEIM .........coiiviiiiiiiiiici s ustat(2)
free MEMOTY SPACE ..eeecovervrerrerrinrnarinsrens ...memallc(2)
freopen.. ..fopen(38)
.frexp(3C)

checklist(5)
fsclean(1M)
..fsdb(1M)
...fseek(3S)
....stat(2)

...fread(38)
............................ fwtmp(1M)

GAIMMA. ..eeveeieeiireeeire v BRSO U TS OSSOSO TP OV OUPP TSRO PRUPPRPO gamma(3M)
gevt...... ....ecvt(3C)
EENCAt .veeviriieie e ...gencat(1)
general terminal interface....................... .termio(4)
generate a formatted message—catalog file ... gencat(1)
generate C flow GIaPhl.. .ottt
generate encryption key .

generate uniformly—distributed pseudo-random nUmMbBErs .............ccveeeeiiiiircieniiiiie e e drand48(3C)
BEL ettt Lo Lo ea oAb e b SRR n e e R ek et ean bR saesaserac e arae s get(1)
get date and time more precisely...........cccooeeiiciiiiiiiiininns ftime(2)
get entries from symbol table (name list) of executable file ... weeernen.11list(3C)
get file system descriptor file entry ......occecvevvviiciiiirirnennn. ....getfsent(3X)
get group access Nst .....ccooinrieenene. .getgroups(2)
get message from a catalog .. ..getmsg(3C)
FoS 7 e oT Y0 1L L P O P SO PPN msgget(2)
get name Of CUITENE HOSt......ccccviiiiiet ettt e eat e ses b e bt s e sbsemcsreesaeens gethostname(2)
et PASSWOTA fI1€ EIIETY...eveiceiteiirie ettt be b er ke sa sk s aene bt e s et esarebes getpwent(3C)
get pathname of current Working dir€Ctory ........ccoviiiierieiiiiiie i eee et eees getewd(3C)

get real/effective user, real/effective group IDs ... ..getuid(2)

get set of semaphores..........c..ocvcceivcieininnn. ..semget(2)
get shared MEIMOTY SEZIMEIIE .. ....ccoiieiiiiiiieie ittt ettt st et e sar e et e stae s rteesaaranseeenraesneeeree s shmget(2)
get special attributes for group........ getprivgrp(1)
get .25 Hne......cocoovevieeriinnnes ..getx25(1M)
L O O OO OO OO PP O PP PVPPPIT TR

GETC oot r et b et e b ettt e st

getchar.

getcwd

getegid

getenv .. getenv(3C)
BEEEUIA. vttt ettt e a e et en b b getuid(2)
getfsent .getfsent(3X)
BREEIA Lottt be et e ete et et e s s ee bt b an e e be e ebenrenr s eebaaneennt e baens getuid(2)

- 16 —



Permuted Index

getgrent .............cooeeenl
getgrgid ...
getgrnam
getgroups
gethostname...........ocoeevieniieniieieceees
getitimer
getlogin .

getpass ...
getpgrp..
getpid ....
getppid
getprivgrp
getpw
getpwent
getpwnam .
getpwuid ..

get/set date And LIMe.......oo.ivieieiiic ettt e
get/set special attributes for group
get/set value of interval timer....
gettimeofday gettimeofday(2)

.............. getty(1M)

getuid(2)

getut(3C)

...................................................................................................................................................... getc(3S)
BOEX2D .t bbb e b e b e a et b et er st e getx25(1M)
gmtime......... ...ctime(3C)

setjmp(3C)

)
BIOUD vt teeeveetuaaeesseaseesaessseaseesenaseanee s easeamae seaeeanresameseeemseantanbenban st eneeaEseat s aa e s R enteabe s e e n e e saeeReesteaneeneenere group(5)
group access list, set ...... ..setgroups(2)
group, change ID Of USET ......ccvviviiiiiiiiiiee ettt et es s s eeb e e e s raaaaeas newgrp(1)
group file, close getgrent (3C)
group file, description of /etC/BIOUP «...corvuevrereiiriuiieericeric e group(5)
group file, read one line from......cc.ocrvieiiciiiiiic i getgrent(3C)
Group file, TEWINA .o.viveeiiieiirieit et e getgrent (3C)
group file, search for matching group ID... .getgrent(3C)
group file, search for matching group NAMe ........ccovveviiiiiiiiiii e getgrent(3C)
group ID, change for file.........ccocciiiiiiiiiiic i chown(1),chown(2)

group ID, change for user
group ID, get for process
group ID, print ......ccccovvcciiiciiiniens
group ID, search group file for matching

.getgrent(3C)

group ID, Set ...occcoveiiirrieene e ....setuid(2)
ErOUP ID), St fOr PrOCESS...cciiiiiiiiiiiiieeetiee ittt eee ettt b e et aas e te e s sran e s snns s e saeaes setpgrp(2)
group name, search group file for matching .........coooovieii e getgrent(3C)
group special attriDULES, SOt ....cooiiiiiiiiiit ettt et et getprivgrp(1)

setprivgrp(1M)
pwck(1M)

group special attributes, set
group/password file checkers

,17,



Permuted Index

a0 SO U OSSOSO USSR OSSOSO USSR TP SPSOOPROU pwck(1M)
TP e ettt eh bbbk et r e et b et enr e group(5)
gsignal... ..ssignal(3C)
Y et ettt ettt ettt ettt ehe ekt ekt e a et e e st h e e b st e A e b et Rt e hea et e e e h e b et e a bt ebe £ bttt be ke b a et s stty(2)
handling facility, variable argument 1St .........cccccooiiiiiriioiiiic e varargs(7)
hangups, run cOMmAand IMINMUNE $0 ......vveereeiiiriieeicriteenieee et s s reeeassrees s b eeesbea e et reeessrsaeessasseeens nohup(1)
hardWare NAINE, b .......cccviiiiiieiioeieet sttt ettt ettt et ettt e ebe e uname(1),uname(2)

hardware trap NUMDbers, LSt Of..........oiiioieiiieiii e e trapno(2)
hash search tables ... -hsearch(3C)
header, write LIF volume on file.... .

heap size, change for program..

hierarchy, file SYSEEIN ....cooviiiiiiii i e e i
host name, get ......... .gethostname(2)

host name, set .........ccccreccrnecerneninnnnne sethostname(2)
host system, set/print name of current ...hostname(1)
hostname(1)

................................................................................................................ hpib(4)
....hpnls(7)

HP-UX implementations, conditional compilation depending on...........cceviviiiiiinniiiiiiicnnn, model(5)
HP-UX implementations, definition of constants which identify ............cccoviiiiiiiniin, model(5)
HP-UX machine identification...........c.cccococvviiiniiinicnnnn. ..model(5)
HP-UX revision Information, Bt ..........ccoviiiiiiiiiniiiiiiniii i revision(1)
HP-UX version name, get ....... (1),uname(2)
hsearch ........cocovveiiicininnnn hsearch(3C)
DYPErDOLIC FUNCEIONS ....vveeveeiiicieir ettt et ere st et saesr et sseesbe s b an e sreemaesbenmnesreenas sinh(3M)
......................................... hypot(3M)
hypot(3M)
................................................................................................................................................................ id(1)
..setuid(2)
0000000000000 OOOo OO OO oOos oSO init(1M)
................................................................................................................................................... regexp(7)
init(1IM), control information for ....Inittab(5)
INIEEIOUPS covvceeveeerivieieeeeiere e initgroups(3C)
initialization of system state and Processes ...........coiiiiiiiniiiiniiei init(1M)
INitialize roup ACCESS LISL.....cooiiriiiiee ettt cre e st ese et eesae s bt sreeabens initgroups(3C)
initialize hard disc, flexible disc, or cartridge tape media ............ccocoovcvniiiiiiicniiiie e mediainit(1)
initialize SDF volume sdfinit(1M)
initialize terminal type and mode on IOgIN ........cccoiviiiiiiiiiiiiiii e tset(1)
INIEEAD Lot e s inittab(5)
i-node, clear i-node by zeroing it out ..clri(1M)
i-node, description of i-node format.................... ...inode(5)
i-node, enable access to i-node for file system repair.. fsdb(1M)
i-nodes, create file name vs. i-node LS. ..oooiiiiini el ncheck(1M)
i-nodes, find number of free i-nodes in mounted file System .......c...coovecmniiiiiniin ustat(2)
input and format data from buffered open file ..scanf(3S)
input and format data from standard INPUL.........cccoooereeiiniiniecni it scanf(3S)
input and format data from SEIIIE ..o e scanf(3S)
InPut commAands t0 SHEIL..........ceiieuiiiiiici ittt ettt r ettt ae s sh(1)
input control, description of input control for terminal . ..tty(4)
input/output between process and command............. popen(3S)
input/output, description of buffered file ..........ccccooeriiiiiiiiiiiii e stdio(3S)

,18,



Permuted Index

input/output operation, get current byte offset of ..........cocooiiiiiiineii fseek(3S)
input/output operation, reposition next fseek(3S)
input/output, output character/word to open file or standard output .........ccccoeveveiiiiiivniiininnnn, (38)

input/output, push character back into input stream
input/output redirection ........c.cooeveeiiieiiioiencieiee

input/output, write string to open file or standard output .
insert calls to getmsg using findstring output ...Insertmsg(1)
install ..o ..install(1M)
install commands into file system...... ..install(1M)
install object files in binary directories .... cpset(1M)
integer, get largest integer smaller than x ....Hoor(3M)
integer, get smallest integer larger than x floor(3M)
integers, convert between 3-byte and long 13tol(3C)
integrity check of operating system in SDF boot area(s).... osck(1M)
mteractive IMAGE database access......cc.ccovvviiiienn. ..query(1)
interactively write (talk) to another user .write(1)
interface, description of hpib.........ccoccceune.
interface to blocked/unblocked disc, description of.
interface to terminal 1/O, description of.
interleave factor, establish for SDF volume......
interprocess communication, create ........c.........
inter—process communication facilities status.
inter—process cOmMmMUNICAtioNn FOULINES. .......ccvevuveeriniierrieaeeneens
interrupt character, description of.....
I/0 between process and command ..
1/0, description of buffered file

..sdfinit(1M)
..pipe(2)
...ipes(1)

I/0 operation, get current byte offset of . . fseek(3S)
I/O operation, reposition NEXt .......cccovcverreeerenrmrecrerererens . fseek(3S)
1/0, output character/word to open file or standard output. ..pute(38)

1/0, push character back into input stream
1/0 redirection
I/0: GPI1O routines (device 1/O library)

I/O: HP: IB routines (device I/O HDIAry) .....cocooiiiierienieiieiiieeit sttt hpib__*(3D)
I/0: 1/0 routines (device 1/0 library)............... ..io_*(3D)
1/0, write string to open file or standard OUEPUL .........eoiiiiiiiiiiieeeie et puts(3S)

ioctl ...foctl(2)
ioctl(2) system calls, description of

iomap

iperm iperm(1)

ipes ~-ipes(1)
isalnum .ctype(3C)
isalpha

isascii

isatty ...

ISEntTl. e

isdigit ... ..ctype(3C)
ISETaph .occeceeiviieieieccct ..ctype(3C)
islower ..ctype(3C)
isprint ctype(3C)
ispunct.... ctype(3C)
isspace ..ctype(3C)
issue identification file........ccv.... ..issue(5)
isupper .... ..ctype(3C)
ISXAIGIL ovevievieti e e e .ctype(3C)
J0 et e b sttt et ek b ettt h b s e e st ate b e s ant ekt ebtaneaa bessel(3M)

- 19 —



Permuted Index

Tttt ettt es e et et b L ee et es SRt e b ek r et e Ao b oAt et eh R a s s A e s R as s be bR et ettt et et et rarernaeen bessel(3M)
T e e e et R ek bbb bR e bbb en e bessel(3M)
JOIIL t ettt e ea s ea L s r e bk en s LRt e e s e e st e e et s e join(1)

kill(1)
kill character, description of . ..tty(4)
KTTALL ..ttt ettt bttt bt e et etk e en e killall(1M

language identification variable ... e
[ANgUAZEE INFOTTIALION ...oovireie ettt ettt et ek ab e e s ke ere s seesbeemsaansesbaesee e langinfo(3C

last—accessed time, update for file.........c.ociiiiiniiiiiiiiii touch(1),utime(2)
last—changed time, update for file..........c...cocooiiiiiii touch(1)
last-modified time, update for file ..

LAEXD et et frexp(3C)
....Jleave(1)
...string(3C)

length of string, get..

lexical analysis of text, generate programs for...

libraries and archives, create and AT ...t ar(1)
library file format, desCriptiOn Of .. ..ccoviiiiie ittt e e et e rae e e ette e ar(5)
library file format, description of ¢pio archive fOTMIAt ......c.vocciicirviiiiiiir it eer et erae e cpio(5)
library, find ordering relation for ObJECt......ccoivvieciiiiiiiiiie e lorder(1)
library, table of contents format description.. ..ranlib(5)
LIF directory, list cONLENS OF ....cuiiiiiroiieiiii ittt e ettt seee e enne s i

LIF file, TOIMOVE ...ttt e bbbttt e lifrm(1)
LIF file, rename........... lifrename(1)

LIF £le8, COPY I OF OUb c..ceviiieeriiiatieeitaat e eete st te st ee ettt s ciceas omssanaseesssetn s et bt s et e s saeesbesan e lifep(1)
LIF volume header, write on file. . ifinit(1)
.............. lifep(1)

......... ... lifinit(1)

....... lifis(1)
LHTENAINE. ..ot et lifrename(1)
...................................................................................................................................................... lifrm(1)
...line(1)
line, copy from standard input to standard output. .line(1)
1IN COUN ceiriiiiieiieii et e e
line length, put line length specifications in text files..
linear search and update
lines, count number contained in file

link, copy, or move files.............

link, create to or remove from file ..
link editor «....cooovvereernieireeiiciree
link information utility, object files

~ 20—



Permuted Index

HIIKET .o e e e 1d(1)
linker/assembler executable output file, deseription Of ........ccoevvviriiiiiiiiiiiiii e a.out(5)
linkinfo ..linkinfo(1)
LIIIE ot ekt re s lint(1)
liSt ACEIVE PIOCESSES 1M SYSTOIIL ..veuveeueeniiieereeientiatcieeetremcareenseestenteraeasaesraeteeraesreereeneeseesssenssiresbsensessssbasanas ps(1)
list contents of BIF directories. .bifls(1)
list contents of direCtOries .....coovvivriiriiiieiee e Is(1)
list contents of LIF directory .....cccoiiiiviiiiiiiiiiiiiicc e lifls(1)

list current users on system .. .who(1)
list device drivers........cocoovviiiiiinns ..Isdev(1)
..................... ncheck(1M)

lock process, text, or data IN MEIMIOTY ...c..ocoviiiiiiiii s plock(2)
Lock terminal..... ... s lock(1)
lock/unlock process address Space Or SEZIMEIIE .......cucuvviiiiiiieiiieiisiesciesccnc et memlek(2)
L0 ettt h e bbbtk b ke b ta e bt he b st e sta bbbt b e r et exp(3M)
log gamma function ... ...gamma(3M)
log results of work requests on remote system... ....uucico(1M)
TOZL0 ..ot
logarithm, COMIMOTL ... ....iiiiiiiii e s
Joarithin, NATUTAL......ooiviiieriiir e et et a et e b e e e s sabae e en e et e e e e e e e eenene

logging file for system errors..

................................................................................ login(1)
login, establish baud rate and communication with terminal during ...........ccoccevivveiiniiiniieieene getty(1M)
login name, get ..ot .logname(1),getlogin(3C)

login name, get ASCII String repreSenting .......occceiieiieeiiieeiiitiiniireeiretieriiieeeieeesir et reessrenteessnee cuserid(3S)
1OGIN DMAINE, DPIANE «eeovreeiiiireii ittt ettt ettt eh et eobesaee e atevessae ekt emac b e s eemnessas s eene s et seeeaneseeraee s id(1)
login name, record for each user (accounting) .........ccccecvvvivieviiineniininniniciiiicieen .utmp(5)
login time, record for each user (accounting)...........coccooiiiiiiiiiiiiciiii e ...utmp(5)
LOGNAIME. ...ttt .logname(1)
logouts, run cOmMmMANd IIMINUNE B0 ..ivivviiiiirii ittt ettt et nohup(1)
long integer, convert to base-64 ASCII.......c..coiiiiiiiiiiiiiiiiiiiic e e a641(3C)
long integer data access, machine independent.. sputl(3X)
long integers, convert to/from 3-byte INEers..........ccocciiiiiiioici e e 13t01(3C)
JOMUEJITID 1.ttt et ettt r etk b et r ettt eb e e r ettt setjmp(3C)

- 21 -



Permuted Index

machine ID, get..........
machine processor type
machine-dependent values
INACro Processor
macros for formatting entries in the HP-UX Reference manual
macros for formatting text .....
magic numbers, description of
magic.h, description of
magnetic tape, description of raw interface and controls
magnetic tape, manipulate and/or position
4073 | OO S T S TS O T T PP O T U EP O O T O PO PSR TPPPPPOPRRRPPINS
mail, read or send to other users..
maintain libraries, archives ...............
maintain, update, recompile programs .
TELAKE ¢ttt ettt e e s et en e e s bt ae et e te e s e e e e e st e ek E et e e aes s b et ee e besee s arnees

MAake @ BIF dir@CtOIY .cooiuiieiiiiiiiiei ittt ettt et ettt eeerabae s

make file system on special file........ ...mkfs(1M)
make posters in large letters.........coccovviiiiienieniinincnen, banner(1)
make unprintable characters in a file visible or invisible ... i
makekey
malloc...

man macros, description of
manage binary search trees
manage hash search tables.. ...hsearch(3C)
manipulate wtmp records............c.... fwtmp(1M)
mantissa, get from floating point value .... frexp(3C)
manual, create preformatted manual pages for on-line catman(1M)
manual, on-line
manual page (on-line), locate for program
map characters into other characters during copy to standard outpub.........ccoeevveveiiiiiecieeiiiinee e
mapping, physical address
margins, put margin specifications in text files
mark Command Set 80 cartridge tape
mark SDF operating system file as loadable/non-loadable
mark/unmark volume as HP-UX root volume .................
mask, get/set file-creation ........
master device information table

....sh(1),umask(1), umask(2)
..master(5)

math functions and constants ..............c...... ettt e eaaeea e
mathematical error handling
matherr
MC68000 assembler
mediainit ....
memadvise..

memory(3C)
.malloc(3C)
....malloc(3C)

- 922 -



Permuted Index

memory, change size of previously-allocated block malloc(3C)
memory, deallocate block of. ...malloc(3C)
memory management, inform operating system about segment reference patterns.................. memadvise(2)

memory management, modify segment length memvary{2)
memory operations memory(3C)
memory segment access modes, change memchmd(2)
memory space, allocate and fTee..............couiiiieiiieiiieii ettt memallc(2)
memory, write to disc.... .syne(2),syne(1)

memulek..........o.o... ....memlck(2)
memvary
merge contents of several files
merge lines in one or more files
merge or add total accounting files

message catalogs: MPE/RTE ...
message control operations...
message operations
messages, permit/deny to your terminal
messages, read or send to other users
MESSAZES, SEILA 1O Al LSEIS ..o vvetieiiietiiit i et eete ettt e e sttt e ettt enn e et eabaee s amaateeet b e eenaeerae e senereas
messages, send to another user interactively

..catread(3C)
...msgetl(2)

(2),mknod(1M)
..mknod(5)
mkstr ....mkstr(1)

mm macros, description of
mm macros, print documents formatted With........cccccoeiiiiiiiiin et mm(1)
mnttab table, create ...
mnttab.h, description of....
mod function, floating point
mode, change for file
model, Native LANgUAZE SUDPPOIT ........ccvvruiiiieiieeiieiiiistescr et eerreettsebtaeteeete e aaesseeeenneenaaeenbrensneanne hpnls(7)
model.h, description of .......... ....model(5)
modem ......ccoecveeeeiieennnan. ..modem(4)

)

frexp(3C)
modify parameters of SCCS files admin(1)
modify segment length memvary(2)

boole) 111 7e) NUOURUUURRTON
monitor uucp network ...

........................... more(1)

mount(1M),;mount(2)

mount or unmount file system mount(1M), mount(2), umount(2)
mounted devices, create table Of .....c..ooceeviiiiii setmnt(1M)
mounted devices, table of those mounted by mount(1M) .. ....mnttab(5)
mounted file system, find special file associated with... ..devnm(1M)
mounted file system statistics.........ccooiviiiiiiinne ettt ettt ustat(2)
MOVE 8 AITECTOTY ..oouiiiiiiriiiiii it et e b s .mvdir(1M)
move, link, or copy files ep(1)

- 23



Permuted Index

move read/Write file POIMEEr; SEEK ....cvvvcvr it bbb Iseek(2)
move t0 new WOrking dir€CtOIy ......c.cvciiioiiiiiiiniiiie ettt cd(1),sh(1), chdir(2)
INSECEL . eeeee ittt et ettt rn et e et e e et e e e e

msgget..

TDISGOP 1t vevtreventmeerentetasbes st bt ebes s saams e eheh e ee b e L a e s b et oS e s a e e st een s eeereeneneee et r e rareas
0L U P PP I PPPRTPPORS
multiple line feeds, remove from output .

mv ... ...cp(1)
mvdir....... G OO PSPPI mvdir(1M)
NAME, et LOGIN .eouviiiiiiiiiiii i e e logname(1),getlogin(3C)
name list (symbol table), extract entries from executable file’s name list.........ccoecirveveiiniinnn, nlist(3C)
name list (symbol table), print from object file.........c...ccooniiiiiiini. . )
Native Language Support model.........ccoocviiiiiiiiiiiiiiiiiii e

.ncheck(1M)

network, monitor UUCP ACIVILY OI1..iciviiviiieie e e ...uusub(1M)
network special file, create............ mknod(2),mknod(1M)

NEW Il SYSEOIM.....oiviiiiiiiiiiiieii et et newfs(1M)
DEWES ..o ...newfs(1M)
newfs..... ....newfs(1M)
newgrp

new-line character, description of ...........cccovviiiiiiiiiiii tty(4)

new-line characters, remove extras from file

.......news 1
.nice(1) pice(2)
.nlist(3C)

nlist structure fOrmat. ... nlist(5)
NLS character classifleation .........ccocoiiiiiiiiiiec e e st e nl__ctype(3C)
NLS character set collating sequence tables ...........ccoovevieeiieeiienieniiieictce e col_seq_8,col_seq_16

NLS character sets ascii(7),kana8(7), roman8(7)

INLS INOGEL......coe i eeterieereite et st e et eat et ebeestesstsaesbesseessessesaesssassasssassassssasesssessessssssanesssnseeeasareeren hpnls(7)
NLS native language Information............ccoovviiiiniiiiii langinfo(3C)
NLS non-ASCll string collation.... ..nl_string(3C)
NLS translate characters ........... ...nl_conv(3C)
nl_string......ccoooeeee .nl_string(3C)

NOAENAINE, ZOb..vvvveeeiiieiiiiiiiiiiiii e erra e s
nodename, set/print name of current..

Nroff e

nroff, format tables for............cccoeeiiniine .

nroff, interpret output from nroff for Printing ........ccoveiriiniiiiiiiiiiiii e
nroff, troff, tbl, eqn constructs, remove from teXt......cocccrviiiiiicienn e ....deroff(1)
numbered-argument print output formatting. ..printmsg(3C)
object code, locate for program..................... .whereis(1)
object file, AEDUZEET TOT ..oouiiiiiiiiriiis ettt sa e ae s esbe s e essssse et st eneesraenesraennean adb(1)
object file, extract symbol table (name list) entries from ..........cccoiniiiiiiiiiniie e nlist(3C)
object file, et SI1Z€ Of ...ooviiiiiiiiii e ettt et size(1)
object file link information Utility........coooviiiiiii linkinfo(1)
object file, print symbol table (name list) Of .......cccooviriiriiineiiieiiece e e nm(1)
object file, remove symbol table and relocation bits from .........ccccooieviiiiiiiiiii strip(1)
object files, combine MO PIOGIAIL.....cc.oviiviiiiiiiiiiiiiii ittt ettt sbs e s e eaees 1d(1)
object library, find ordering relation for...........ccccoiiiviiiiiiiiiiiii e lorder(1)

,24,



Permuted Index

open a file and assign buffering to it ....fopen(38)

open file, assign buffering to ....setbuf(33)
open file desCriptor, dUPLICALE .......coeeriiiiiiiiic ettt ettt rrerteasaa e eeatesaeetssaeesseeesessaeanis dup2(2)
open file for reading or writing.... open(2)
operating system, append to an existing operating system....... .oscp(1M)

operating system, change to different OS or different version of same OS..
operating system, check integrity of OS in SDF boot area(s)
operating system, copy from one or more SDF boot areas to another
operating system, create new operating system from ordinary files
operating system management package description
operating system, mark as loadable or non—loadable ....
operating system, shut down OS with optional re-boot ..

operating system, split into one or more ordinary files.............cccoocoviiiiiiiiiin oscp(1M)
OPLATE ettt et d e e et b e h b n et eaa s eb e getopt(3C)
OPBEIT <.ttt ettt e et e e bbb e a R e R bR R e e r s ab s e eee s see e b a e eaa s getopt(3C)

...curses(3X)

optind......ccceeeiirnnne. ...getopt(3C)
option letter, get from argv .. ...getopt(3C)
options, parse command line getopt(1)

options, set for terminal ....
options, set shell

ordering relation, find for object library or archive file. ...Jorder(1)
ordinary file, create ..mknod(2)
ordinary file, create or overwrite ............. ....creat(2)
08, append to an existing OPErating SYSLEIM .......coivveeriiiiieereerireeiieieeeeesreete et e essrresresneaseeeenressrreas oscp(1M)
08, change to different OS or different version of same OS ...........cccoocciimiiiniiiiiiii chsys(1M)
OS, check integrity of operating system in SDF boot area(s)..........cccecvevnerieeiineiiininiiseinene osck(1M)

0OS, copy from one or more SDF boot areas to another.........c..cc.o.......
08, create new operating system from ordinary files....
OS management package description
0S, mark as loadable or NON—10adable............cocveeiiiioiiiiieiet e
08, shut down operating system with optional re boot ........cccceeeiiiiiiieieninniiicicreeeeie
08, split operating system into one or more ordinary files

osck ...osck(1M)
08CP..... ...oscp(1M)
osmark. .osmark(1M)
osmgr osmgr(1M)
output character or word to open file or standard output putc(3S)

output, description of formatted/unformatted output to printer
output, description of system handling of terminal output ....
output, print formatted data into string........c.cccceeeeu.
output, print formatted data on buffered open file
output, print formatted data on standard output..
output string to open file or standard output
overlay program onto existing process and eXeCULE ...........occeivereeiririiinaieeieeei e reeesrenes sh(1),exec(2)
overview of acCOUNting COIMIMANGAS....oiiiiiiiiieriiiiiiiieer et e st bt st re st bte st reeanaesbbbeesstreeenssns acct(1M)

owner, change for file... .chown(1),chown(2)

.printf(3S)
.printf(38)
.printf(38)

page size, set for paged data.... .uconfig(1M)

_ 25—



Permuted Index

paged data, set for program
paging and swapping enable
parameter substitution
parameters, environment..
parameters, install in env1r0nment
parameters, mark as readonly .............
parameters, perform left—shift on positional
parameters, set for terminal
parameters, set for terminal on login
parent process 1D, get for process
parity, settings for terminal....
parse command line options ....
Pascal compiler ................
PASSWA ..veeenitieeeiieees it e e s sttt et e e et s e e e n et e e e ea st ek Ea e e he st s e h e tabaeeen L LS e e n et e bra e st e s e e sabaeseenarne e e bbbes
password, change login
password encryption ...
password file, close............ getpwent(3C)
password file, deseription Of ...t e e passwd(5)
password file, get line containing matching user ID ....getpw(3C)
password file, output line similar to those contained in putpwent(3C)
password file, read one line from getpwent(3C)
PassWOrd file, FEWING ..o.covccviiiiiiiiiiccieiriee e e e getpwent(BC)
password file, search for matching user ID ..
password file, search for matching user name.
password, read from /dev/tty or standard input
password/group file checkers
paste
path name, get for terminal.......

path name, isolate directory name from
path name, isolate file name from..........
pattern, find and process within text
pattern, search contents of file for

...................................... regexp(7
permission bits, change for file... (1),chmod(2)
per—process accounting file format acct(5)
perror perror(3C)
physical address mapping iomap(4)

....pipe(2)

pipe, create/close between process and command .
pipe, get intermediate data from ............c........
pipeline, create
pipeline, get intermediate data from
place error messages from C source into a file.
plock ...
plotter, description of hpib interface to..

port, database listing terminal type connected to each..........cccoovvieeiinninennee.
portable code between HP- UX implementations, typedefs for
position magnetic tape
positional parameters, perform left-shift on .
posters, make using large letters....

,26,



Permuted Index

power function
powerfail .........

prealloc
preallocate disc storage
preprocessor for C compiler
print and format files.................... .
print and summarize an SCCS fIle .....coooiiiiiiirieiieee e e et s a e e oo er e s
print arguments after shell INterpretation .........cocccocviiiiiiieiii ettt

print, copy, and/or concatenate files
print current SCCS file editing activity

print documents formatted with mm macros.. ....mm(1)
print effective current user id..........cocoviiecccnn .whoami(1)
print formatted data on standard output, open file, Or StTING .c.occovieviiiviiiere e printf(3S)
print formatted output from varargs argument list vprintf(3S)
print formatted output with numbered arguments printmsg(3C)

print last part of file
print list of users and their current processes
print name list (symbol table) of object file.
print name of current working directory ..
print NEWS Items.....cooeeevrverrieeiaiineens

print time and date
print user, group IDs and names
printer, description of formatted /unformatted output.
printer, description of hpib interface to..

printmsg printmsg(3C)
priority, run command at lower or higher ... nice(1),nice(2)
privileged values format privgrp(5)

procedures: shell procedures for accounting.
process accounting
process and system state initialization ...

process, change data segment space allocation for
process, change root directory of ...
process, create a new
process, create/close pipe between process and command.
process, enable break—point debugging of child process ..
process, format of core image of terminated ProCess............coccocviviiiiiieniiiniiic e
process, get ID, group ID, and parent process ID of
process, get real/effective user and real/effective group ID’s for
process, get/set file size limit for
process group ID, set .......ccvcvviiieverirereennnne. ..setpgrp(2)
process, lock/unlock address space or segment ....memlck(2)
PrOCESS MIUIMIDET, BEE ...iitiiviiiiiiitir it eiree ettt s e bbb bt e et s n e ennane getpid(2)
process, overlay new program onto existing
process, print accumulated user and system time elapsed for
process, send SIGIOT 10 ...c..coviiiiiiiiiiiie e ..abort(3C)
process, send signal t0.........cococoiiviiiiniiiiicc kill(1),kill(2), abort(3C)
Process, Set GrouD ID fOT....o..iiiiiiiiei ettt setpgrp(2)
Process SEALUS, TEPOTT c.vveiiiiiiiiiiiiee i e ebae et st e abae s st be st sbas e ssbnies
process, suspend execution for interval of time
process, suspend until signal
Process, tEerIMINAtE ....iuviiiiiiiiiiiiiiiiit et e e

...acctsh(1M)

ulimit(2)

_927 _



Permuted Index

PTOCESS, EIME EXECUEION OF ........ovsieeiceeieee st sb e e times(2)
process, wait for completion of .. .sh(1),wait(1), wait(2)

DPTOCESSES, LIST ACTIVE 1.eeiiieiiiiiiiiii it eeetee ettt s ettt et e e e s bt e e ettt s e easb e e ettt et e s st e e e ebe et e aaetbeneann s ps(1)
processes, send signal to all user processes killall(1M)
processes, specify maximum number of processes per user uconfig(1M)
processes, terminate all user processes shutdown(1M)
PTOCESSOT LY Do etiuterarreesereessaasaseseseerteesstesasessatesaeeaattesatesstesteesssas st sess e nseesaseeantensaranaessraesnneensnesannes machid(1)
PTOL bbbt prof(1)
Profil oo profil(2)
profile, create for program during execution .profil(2), monitor(3C)

profile data, dISPIAY.........ccooiieiiriiiiiii e e prof(1)
profile files, description of /etc/profile and SHOME/.profile ...........ccccciiininiimiiiiiice, profile()
program, add diagnOSEICS 10 ...c..ceieceriirrerererierieireeiieeecreereeer s e esieae s ..assert(3X

program, change internal attributes of.
program, check/verify C .....................
program, create execution profile for
program, create from object files
program, debugger for
program, execute command from )
program, force action associated with signal to be taken ssignal(3C)
program, format C
program, generate for lexical analysis of text ....

program, get particular addresses associated with...
program, get size of
program, locate source, binary, and/or on-line manual page for
program, maintain, update, and recompile
program, overlay onto existing process and execute
program, run immune to hangups, logouts, and quits ...
program, set up signal handling for............cccocceiinnie
Program VErifCatlon. .. ...cooiiiiiiiii ettt
provide semaphores and record locking on files
provide truth value about your processor type..

...prs(1)

drand48(3C)
....drand48(3C)

public UNIX to- UNIX file copy ....
push character back into input stream..

)

)

............................................................................................................................................. putenv(3C)
..putpwent(3C)

puts.... )
putw... )
pwck .. )
)

Pythagorean theorem function
gsort ..

28 -



Permuted Index

quoting, as used by the shell.............oocoiiiiii e sh(1)
raNd e 3C)
random number generator C)

random number generator
randomized library/archive, table of contents format description
ranlib.h, description of
raw interface to disc, description of..
raw mode, description of raw mode interface to maguetic tape

2 Q

—~
o
—

raw mode, description of raw output to printer...........c.........
OO PO OO PO PO OO POROPR TR bre(1M)
TEA ...ttt et sh(1)read(2)
read and format data from buffered open file..........ccceevurreiiiiiiiiiiiiien e scanf(3S)
read and format data from standard input

read and format data from string............

read character from buffered open file .

read error indicator on open file .......

read from a file using buffers
read from file
read from standard input
read operation, reposition Next .........cccceeeerurrecennce
read password from /dev/tty or standard input....
read text in convenient chunks on soft—copy terminal
read word from buffered open flle ........c..ooeiiiiiiiiiiiii e
read-ahead, set number of buffers allocated 10 ......oeevivriiiiiieeiiiiieeer e
TEAAONLY 11 vttt ettt e bbbttt ettt en e e e bbb s et e et s eba b e s e baa s s e e bt s e sea bbb
read/write file pointer, move (seek)..

real group ID, get for process .. . (2)
real user ID, get for process.. ...getuid(2)
TOALIOC .. vttt et malloc(3C)
real-time priority, change or read ...rtprio(2)
real-time priority, execute process with ..rtprio(1)

reblock tape file
reboot ........... reboot(1M)

reboot.. ...reboot(2)
re-boot operating system after shut—down. .stopsys(1M)
reboot system reboot(1M)
TED0O the SYSLITL «..e.viiiitiiet ittt ettt b et be bbb et reboot(2)
record locking and semaphores on filles ... lockf(2)
record login names, login times, and tty names for user . ....utmp(5)
regexp.h, description of ......cccoceeviriiiiiiiii e regexp(7)
regular expression compile and Match TOULINES ......ccoiiiiiiiiiiirii e e regexp(7)
relational database OPErator ..........ccoieiirieriiiii e join(1)
release blocked signals and wait for INtErrupt ......cooccoiieiiiiivni sigpause(2)
release Command Set 80 cartridge tape

release number, get current ........c..........
relocation bits, remove from object file .
remind you when you have to leave .... .leave(1)
remind you when you have to leave leave(1)
TEIMNAET SETVICE...eiuiiiiii ittt ittt e e e s e e era et er e sbae s be s st e e eae e e aneeaneeanns calendar(1)
remote system, execute work requests on .. ..uucico(1M),uux(1)
remove a directory file
remove a LIF file............... .. lifrm(1)

remove backing store devices .. vson(2)
remove BIF files or directories bifrm(1)
remove delta from SCCS file ...o.ivuiiiiiiiiiicr ettt ens rmdel(1)

,‘29 -



Permuted Index

remove duplicate 1ines in file ... e uniq(1)
remove extra new-line characters from file

remove files or directories..............ccooe.

remove link t0 file ...

TEINOVE INESSAZE QUEUE ...coveeereuieniiiereatastereireetessiasesereae et et es s er s sbestsse st e s et e s s see e an s e eaner s sn st saeen e saeeananens

remove multiple line-feeds from output ..
remove nroff/troff, tbl, and eqn ConStIUCES ..vvvicviiiiiiiiiiciiciecccc e deroff(1)
remove selected fields from each line of a file..............oooooiiiii cut(1)
remove selected table column entries from file. ....cut(1)
remove semaphore set..................cccooiinnnn ...iperm(1)
remove shared memory id ...iperm(1)
remove symbol table and relocation bits from object file ..., strip(1)

rename LIF fIles ....ccooooiiiiiiii e lifrename(1)
repair file system inconsistencies............ccocoeenie. .Jsck(1M),fsdb(1M)
report inter—process communication facilities StAtUS. ......c.ociieriiriiinivierieee s ipes(1)
report number of free dise DIOCKS .....ccooeiiiiiiiiiiiiiiccicr et e bifdf(1)
report CPU time used

TESEIVe & LEITIINAL. .. cuueiiiiiiiiiiiiiiit ettt e e s e s e nee e

reset error indicator on open file

RETURN.....cccooooviiiiinn ...regexp(7)

TEVCK . .ooviiiiieiiie et .revek(1M)
reverse line—feeds and backspaces, interpret for nroff(1) ........c.coooiniiiiniiiiiiiic e col(1)

reverse previous get{1) of SCUS flle ..o unget(1)
TOVISIOIL .ottt ettt ettt e et e st et e e em e ena e emtemee s rer e eat ot eae e et s emtnasess b e b b e aes e e eeteane s reeme naeentenbenabannis revision(1)
revision information, get HP-UX ....revision(1)
revision numbers, check for HP—UX flles ...c...cvoieiiriiirininieeeeencc e revek (1M)

FEWIIIA .ottt st bbb eae e n e fseek(3S)
...fseek(3S)

rewind group file ..
rewind magnetic tape.
rewind password file ... getpwent(3C)
.rm(1)

...mail(1)
.................................................................................................................................................... mdel(1)
........................................................................................................................................................ rm(1)
.rmdir(2)
....................................................................................................................................................... rmnl(1)
TOINANS ....oivivrrreterettett ettt ittt s s b e s et b e b e s e bbb 4 e s e b e ke eb ke bbb bR s AR e S E 1SS ae et eb st roman8(7)
root directory, change for duration of command..............ccocccooeenee .chroot(1}), chroot(2)
root volume, mark/unmark volume as HP-UX root volume........... rootmark(1M)
rootmark .... .rootmark (1M)
rtprio rtprio(1)
run a command at 10W PIIOTIEY .....oooiiiiiiriiiiiciite ettt ettt b nice(1),nice(2)
run a command immune to hangups, logouts, and quits . nohup(1)
run daily acCoUNtINg.......c.ocooiiiiiiiiii s runacct(1M)
TUNACCH.eeeureriiir e ....runacct(1M)
CPU time report .........cccceeeunn. ..clock(3C)
CS/80 cartridge tape special file..... .
GPIO routines (device 1/0 library)
HALGOL DIOZTAIIIS ..ccuvtiiiiiiiiiiitiit ittt iant et ine st e e e s s san e s easaeesabs e emataees s iaa e e sabassassabbenssennessanns
HP-IB routines (device I/0 IIDFAIY) ...o.coiieciiiiiiirnciiereeerectserrreee et eves e
IMAGE database access.................

1/0 routines {device 1/0 library)
KERMIT-protocol file transfer program .
LP spooler sySteIm, CONTIBUIE ........ccveirrerriiiiiiiiii ettt et et st e e esesenn s annees

-30 -



Permuted Index

MPE/RTE-style message Catalog SUPPOTT «.cvvvieiiirieriietiieeereeeteetties e esabresesaseseesaesesss et reenarressneans catread(3C)
MPE/RTE-style message catalog SUDPPOTT «....ccueveireerienrirrrerieerresiearnesreetseseesnarmressesseansranesressssssenns catread(3C)
UUCP SYStem SIAPSIOb.....oviveeuiriiitiireeicriiiiee ettt er st ine uusnap(1)
XMODEM protocol file transfer program .. umodem(1M)
XMODEM protocol file transfer program ..... umodem(1M)
BACH +oviet ettt ettt e e a e b e R e s bR r e b et b nan et s ebare e sact(1)
SBEK 1o vvvo e eevseee e eeees st es et b et brk(2)
scan text fOr PALLEIN AN PIOCESS..........cceeiiiiiiiieetieee ettt etteeereeeceeebeeeeressseeeeseeenreeenteaaseesereesnreessesanns awk(1)
SCANT .o ciieireee e .scanf(38)
SCCS, ask fOr DEIP COMEEIMINE ....ovioviiiiri ettt ettt et seare et help(1)
SCCS file, change delta cOmMMENTATY Of .......cociiiiiiiiiiiiiriei e e cde(1)
SCCS file, check for validity ................. ..val(1)
SCCS file, compare two versions of. ...scesdiff(1)
SCCS file, create delta (Change) fOr.......coomvmiceiiiiiircicniicrrc e e delta(1)
SCCS file, description of SCCS file format ...........cceeoveericerreerienenans e ...scesfile(5)

SCCS file, get identification information from ...........cceeeveciniinneee. what(1)
SCCS file, get version of .........cocovceveecnnnne. ...get(1)
SCCS file, print and SUMIATIZE .........coiiiioiiii ittt st nes b sesaar e seeas b eranenen prs(1)
SCCS file, print current editing activity fOr.......ccoioiveniieriiriii e sact(1)
SCCS file, print delta summary of ...get(1)
SCCS file, remove delta fTOIm ......iviiiciriiiiiiicei s rmdel(1)

SCCS file, reverse previous get(1) Of ....covoiciirieiiiiiiiec e s unget(1)
SCCS files, create or change parameters of . .admin(1)

SCESAIfE ..o e scesdiff(1)
schedule commands at specified date(s) and time(s) at(1),cron(1M)

screen handling and optimization FOULINES. ......c..ooovieiiieiiiioceicctceie et curses(3X)
8DF boot area, copy OS from one or more SDF boot areas to another ...........cccocceeevrceiiinicncerinnn oscp(1M)
SDF, description of ....dir(5)
SDF, description of SDF VOIUME .....c.oc.eiiiiiiiiiieiicoiiei ettt sttt abe e fs(5)
SDF volume, format, initialize, and €ertify.......ccccovvrieeiiiiririiei et sdfinit(1M)
SAADIE e ..sdfinit(1M)
search an ASCII file for pattern ... ....grep(1)
search tables, hash—coded ........ search(3C)

seek to new position in file.... veee..Iseek(2)
segment length, modify ............. ..1memvary{2)
segment, 10ck /UDIOCK fOT PIOCESS ...cccvveuirvrerrieiriistiterteste ettt ebnae s seeeensa et nenesnsaessrens memlck(2)

select/reject common 1ines of tWo flleS......covvvreeiiiiiioiieiiiii e comm(1)
semaphore coONtrol OPEIatioNS ..........ccoiiiiiiciiiii ittt e s seeeesas et semctl(2)
semaphore operations............cc...covvue. .semop(2)

semaphores and record locking on files . ....lockf(2)
semaphores, get..........ccovvverenrncreneenn. .semget(2)
semetl. ..o e e eR oL b e e e b stk semctl(2)
semget ...

semget(2)
Semop ... .

set current signal MAsK ..........ocooeiiiiiiiiiii sigsetmask(2)
56t GTOUDP ACCESS 1IBh 1.vveuiiiiiiiiic it et eae setgroups(2)
set name of host cpu............. et e b e b et et e s e et e e st e e et naee e eree s sethostname(2)
set options for terminal POTT ......ccivcciiiiiioiicei ettt er et e aae b s e cenne s stty(1)
set or change real—time PIIOTILY ....cocoveeviiiiriiiieniii et et e b ea e rtprio(1)

— 31 -



Permuted Index

set or print name of current host SYSEeIN ........ccoocoiiiiiiiiii e hostname(1)
SO DIITIEET OPBIOTIS 1.vveentievtesrereeertasressrseesebessreseeeaeetearseeseesaaseassess e sesssesseseesbessssssesseessessaansanssesbsssessensnens slp(1)
set, Process’s alarm lock.... ... alarm(2)
set special attributes for group ..setprivgrp(1M)
set System Parameters...........cooveceiicniirernecnnns e e uconfig(1M)
set tabs on a terminal ... OO POV SR TUPRON

set the modes of a terminal...

set time and date..... ..date(1)stime(2)
St USET ANA ZIOUD IDS ....eiuiititiiiitieitreeei ettt ettt et st b et s e st ees bt es e bt as bt et et es b et ebeaaeeneatesbanaensend setuid(2)
SEEDUL ..o e et et setbuf(38)
1L OSSOSO OO O OSSO OO SRUTOPORR setuid(2)
getgrent(3C)

set—group—ID bit, set/clear for file..........ccoouviniiiiimeiec chmod(1),chmod(2)
SREETOUDS ... e1veiestettettateetease s sttetea b e et eseee e bemtebeeh et ea e ke sttt eoteaas s eh e r et sk abteb e sttt es s eb e ek enb e b e et s eneene e en] setgroups(2)
sethostname. ..sethostname(2)

setitimer...... ..setitimer(2)
setjmp...

BOEKEY vvveeeeettter s ittt e e ettt e e et a e e sttt e et e s e be s e e s ebb et e et e eba e aeen et S eta e e e et e et b ae e s rete e e abbbaeen et e aanaabee
SEEITIIIT .ottt et a e e e r e e s b e
setpgrp
SEEDIIVETP - eetrveteteriieeirreetiteer et es e r e e eesee s e s aeaeteat e eneemmemetsuaerees s e sassaeeateanesaeentaantsreetbesanesrennes setprivgrp(1M)
SEEDTIVETD - eevvvvvirreereeaeeasrasseacesransreeeestescsssanseessensraneaneastenseasessasstsenseanesseensrsersens setprivgrp(1M) setprivgrp(2)
.................... getpwent(3C)
settimeofday(2)
L0 et bkt b e et a e R e u et s sa ettt e enes setuid(2)
hmod(2)

....... sh(1)
shareable, mark or unmark program code as. chatr(1)
shared memory CONtIOl OPEIALIONIS .. vecrecveciiirercnuiiiretreertieasaasseeresesesseseeeosessasssreseesaesssessesrsrannessess hmeti(2)

Shared IMeIMOTY OPETALIONS. .. ecc.ttieeiiettieiiae ittt erteas ittt e s et assebessbreeaasbaeesseatteatbbessnraesesansaessnsssnsaannse

shared memory segment, get

SREIL . e e e de s e e e e e e e e e re e saana e s

shell command, iSSue frOM PrOZTAIIL ....cccviiiiiiiieiiie ettt st r e esecaabae s s enesen

shell, input commands to ...............

shell procedures for accounting

shell programming language........

shell scripts, system initialization......

shell, set/clear flags to.......

Shift oo
................................................................................................................................................. shmet](2)
............................................................................................................................................... shmget(2)

..... shmop(2)

shut down operating system with optional re-boot. ...stopsys(1M)
ShUtdOWIL..eov e ...shutdown(1M)
shutdown status of specified file SYSEeIm ........ccoviiriiireiiiite et fsclean(1M)
SEEDLOCK - tevearee ittt et ettt e ettt a et e fe e e a e ee b eae s es e et e ke s Rttt esas e st et s arenn sigblock(2)
SLBTL OI1 ..ttt ettt et oLt h b ket b bR bbbt sttt e e b e b abe st r e login(1)
signal..... signal(2)
Signal facilities, SOMEWATE .......eviiiiiiceiit ettt e ettt et st esea e e e mteta e e sigvector(2)
signal, force action associated with signal t0 be taKen..........civvvveririiiiieiiieri et sne e ssignal(3C)
signal handling for program, set up........cccccccovicvinnenranans ..signal(2),ssignal(3C)

SIZNAL INASK, SEE..ereiviiiiietiiei ettt etttk s e s b sttt teras sigsetmask(2)
signal, $end SIGIOT 0 PrOCESS ....vvrveeueuirirrerreeriestitersiesesistasenssssesesissesestssasesessesesessesersanessssssarasans abort(3C)
signal, send t0 all USET PIOCESSES.....c...iciiiiieiieie ettt re ettt st seee e e reae e eeaeesatasannes killall(1M)
SIENAL, SETIA £0 PLrOCESS......ivveeieiirietirieneeecetee ettt et eea st ereeeenseteebert e e enesseas st eseenserssnens kill(1),kill(2}, abort(3C)

- 32 -



Permuted Index

signal, set trap for
signal stack space..............

signal, suspend process until receipt of
signgam
signs, make using large letters
SIEPAUSE....vvviviiireriiniiriinn s ecrnee s

Sigsetmask .......oovvvervvinveeinenn s1gsetmask
sigspace ..... ...sigspace
sigvector sigvector
simple text formatter

(
(
(
(
(

sine function
sine, hyperbolic ..
sinh...

snapshot of the UUCP system . 1
SOTtWare SIgnal FACIIIEIES ...uurieeeiieiiii ettt e e et 2

sort algorithm
sort and/or merge files
sort, topological.........ccceevrnenen.

source code, locate for program ..... )
spaces, convert to tabs, and vice versa ..........c..c...... .expand(l)
special characters in terminal interface, description of.........c.ocoiieiiiiniiiiiincc e tty(4)

special file, create block/character /network
special file, create fifo
special file, identify for file name on mounted file system
special file, modem control ...........ccccocerceeniee

special file, CS/80 cartridge tape.
special file, system “bit bucket” ....

mkdev(1M), mknod(2), mknod(1M)
mknod(2),mknod(1M)
devnm(1M)

spelling errors, find ..
spellout
split
split a file into pieces
split operating system into one or more ordinary files
spool directory clean—up for uucp ....

SPINtE covvvveeieeeciee e

sputl ...

sscanf ..
ssignal .

[15) 1 U

stack size, spec1fy SIZ€ DN DY LOS. .o iiiiet ittt e a e st raas 1M)
standard input, copy one line from to standard OULPUL .....cceevievviireeireieie i ettt ere et sieere e eveeveeeveans line(1)
standard INPut, Tead fTOIML ..ottt sttt sa et enen sh(1)

— 33 -



Permuted Index

standard inter—process commMuNIcAtion PACKAGE. .........oveveviviieieeeiecteteee et aee e stdipe(3C)
start character, resume output, description of.

stat(2)/fstat(2), description of structure returned by these calls..
state, defining system states for init(1IM) ..........cocevvviernnniis
state, initialization of system state and processes
stat.h, description of
status flags, get/set for file .
SEALUS, ZL FOT FL@. . iiiiiiiiiieir ittt e e sttt e e e e b e e e et e e eanneesa bt beaeaarr e s satnaneeerbaneaaarns
status, inter—process communication facilities i

stime(2)

stop character, suspend output, description of ........... .ty (4)
stop operating system with optional re-boot .... stopsys(1M)
SEOPSYS. et veurrieetetiieer ettt ...stopsys(1M)
strcat.... ...string(3C)
strchr string(3C)

string(3C)
strepy ... ...string(3C)
SEICSPI..cvviieeiicinenn ...string(3C)
stream, close or flush. fclose(38)

stream text editor
string collation, non-ASCIL, used by NLS......cooooiiiiiiiiiiiiieiietitrrte et cree s eree et e seee e nl_string(3C)
SUFIIIE, COPY Leenvireeresieeit et cnte sttt estte s eates b e e e st s e beeee e b et b e emtemsssee e eenne s b aace e sabeaecntonsssen i ressesecaaeerneie string(3C)
string, get length of.....ccc.ccccov.ee ...string(3C)
string, print formatted data into. i
string, read and format data from.......ccooeiiiiiii e
string, read from buffered open file
string, search contents of file for specified
string, search for particular Character in ..........cocoiieriiiiiiiiii et vee e e

string to double -precision integer conversion. ..strtod(3C)
string, write to open file or standard output.. ..puts(3S)

strings, compare two string(3C)
SETINES, CONCATENATE EWO L.eiviiiiiiiiiiieeiii ettt ee e ee e e e naaeese e saned string(3C)
string-to—integer conversion strtol(3C)

strip(1)
strip multiple line—feeds from output ...
strlen

strncat..

strnemp

strnepy ...string(3C)
strpbrk .... ..string(3C)
strrehr . ...string(3C)
strspn ... string(3C)
strtod ... strtod(3C)
strtok.... string(3C)
SETEOL ettt ettt b b een .strtol(3C)

structure, definition of structure returned by stat(2) and fstat(2)
Structured Directory Format, description of



Permuted Index

summarize and print SCCS file
superblock, description of superblock in SDF volume .
suspend process execution for interval of time .............
suspend process until signal

...sleep(1),sleep(3C)
pause(2)

swab swab(3C)
swap bytes swab(3C)
SWAD dEVICE, AAA onviiieiiii ittt e e ..swapon(2)
swap time, set for virtual SEEIMent ...........cccooieiriiiieiieiit et .uconfig(1M)
SWAPOIL .ovveneeiaeireeeereancene e .swapon(1M)
SWADOIL ..ttt iae sttt s s s st ee et b b e e r et b ek a bR e R et b e essh e swapon(2)
swapping and paging enable swapon(1M)

symbol table, extract entries from executable file's symbol table (name list)
symbol table, print from object file
symbol table, remove from object file .

symbols, examine execution profile for... <eeeeprof(1)
SYIIC oot ..sync(2) sync(1)

synchronous I/O multiplexing select(2)
sys__errlist perror(3C)
SyS_Terr ... .perror(3C)
SYSEOITL 1ttt ....system(3S)
system activity, terminate all current activity shutdown(1M)
system calls, error indicator for errno(2)
SYStEIM COMMGUIALION ..ottt ettt ettt b ettt e te e et ebeeba e b ens config(1M)
system error logging file

System IIT compatibility for magnetic tape, deseription oOf..........cccveeevieoiiriineiiiin e mt(4)
system initialization shell SCIIPLS.......cccuvoiiiiiiiiieici et bre(1M)

system name, get .....cccooveiicereennnn. ...revision(1),uname(1), uname(2)
system names, list of those known to uucp
system parameters, set or list
system reboot
system reconfiguration ...
system state, defining states for init(1M)
system state, initialization of
table of contents format description for archives/libraries
table of devices mounted by mount(1M)
table of mounted devices, create
table search, binary
tables, format for nroff/troff
£ADS o
tabs, expand to spaces, and vice versa...
tabs, put tab specifications in teXt flES ......coivevieiiieiieeiiei ettt e e e
tabs, set on terminal

..uconfig(1M)
.Inittab(5)
.init(1M)

tail(1)
trig(3M)
..trig(3M)
sinh(3M)

tape, archive files on ...
tape, Command Set 80 cartridge utility
tape density, how to set for magnetic tape
tape, description of magnetic tape raw interface and controls ........ccccooiiieeieniiiiiieiiic e mt(4)
tape file ArChIVET ......coiiiiii e e tar(1)

,35,



Permuted Index

tape file, convert, reblock, translate and/or COPY.......ccreiiriieriirieriiniene ettt et dd(1)
tape initialization
tape, manipulate and/or position
tape,-unpack/extract files from Command Set 80 cartridge .

...deroff(1)
..teio(1)

......... tee(1)
temporary file, create and open..... ...tmpfile(38)
temporary file, generate name for tmpnam(3S)
termecap termcap(3C),terminfo(5)
terminal capabilities, database for vi editor terminfo(5)
terminal capabilities in terminfo(5), ACCESS ...ccooriiivericiiii e termcap(3C)
terminal commands, description of ioctl(2) system call commands..........c.ccoooiniiiiiiiiiini tty(4)
terminal, database listing terminal type for each port ..... ttytype(5)
terminal dependent INItIAlZALION ....ooeiiiiiiiriicii e 1)

terminal, description of general interface to
terminal driver, pseudo-
terminal emulation, asynchronous
terminal, establish communication with terminal for login
terminal, facilitate viewing of continuous text on ..............
terminal, find baud rate of terminal during login process
terminal flags, mapping between pwb/V6 UNIX and current HP-UX......c.cococviniiiiiiniiciieniinnnes tty(4)
terminal, generate file name for ctermid(38)
terminal, get path name of ...ttyname(3C)
terminal, get path name of user’s ..
terminal input control, description of ..
terminal interface, general..........cc..ecocenrenne

terminal interface, version 6/PWD-compatibility
terminal, permit/deny messages to

terminal screen, clear clear(1)
terminal screen handling and optimization routines curses(3X)
terminal, set options for .............cccoviii ....stty(1)

terminal, set tabs on.... tabs(1)
terminal, set type and MOAe 0N IOZIM ..c...oveveiiuiiiiiriie ettt ettt ettt ne e anenes tset(1)
terminal, test file descriptor for association with ttyname(3C)
terminals, list of recognized terminal names term(7)
terminals, list of supported terminals in terminfo(5)......... term(7)
terminate a process kill(1),sh(1), exit(2), kill(2), abort(3C)
terminate all users’ processes..
terminfo compiler
terminfo database access .

BBBE et e ek e e b et e be ke e e sh(l) test(1)
test conditional expressions.. sh(1),test(1)
text editor.. . ...ed(1) ex(1)
text editor, database of terminal capabilities for vt
text editor, stream
text editor (variant of ex for casual users)
text editor, visual
text, facilitate CRT viewing of continuous
text file, put format specifications in......

text, find spelling errors in .
text format specifications, put in text ﬁle

36 -



Permuted Index

text formatter..
text formatter, simple.
text formatting, description of man macros
text formatting, description of mm macros
text formatting, remove nroff/troff/tbl/eqn constructs from text ........c...ococeevniiniiiiiiiiiiiics deroff(
text, generate programs for lexical analysis of
text pattern scanning and processing language
text, print using mm macros
tgetent ...
tgetflag ..

time and date, convert to ASCII string .
time and date, Zet MOTE PrECISELY. ... .eiiviiiiiiieieice vttt et et et e s et e e see e s aesaaestaeeeasaenneeen ftime(2)
time, corrected for daylight saving time and time zone .ctime(3C)
time execution of a process and its child processes
time, get seconds since 00:00:00 GMT, January 1, 1970
time, get/set
time, print elapsed user and system time for process...
time, set and/or Print.......c..cceceiveiieniicninienene.
time to leave .......cccevuueennn.

time zone, time corrected for...........cocecveineennn.

(IM)
sh(1) times(2)

.............. ctime(3C)
...tmpfile(3S)
.tmpnam(38)
conv(3Q)
...conv(3C)
...conv(3C)

tmpnam .
toascii..
__tolower
tolower
topological sort ...
touch............
__toupper
toupper...

transfer files between two systems
translate assembly language
translate characters during copy from standard input to standard output ...
translate characters for NLS....

trapno(2)
.sh(1),signal(2), ssignal(3C)

ETAPIO v vevrveeirerereresenieseeereessscasesenssnnennans trapno(2)
trapno, report value for last command failure ...........cccoveeriiiiiiiniiii e err(1)
trigonometric functions trig(3M)

troff, format tables for

,37,



Permuted Index

....deroff(1)

..... true(1)
truth value about your processor type ..machid(1)
truth values true(1)

tset(1)

....tsort(1)

............................................................................................................................................................ tty (1)

.utmp(5)
tty port, database listing terminal type connected to each ttytype(5)
ttyname .ttyname(3C)
ttyslot ttyslot(3C)
tune a file system tunefs(1M)
type declarations, data type definitions for system code ..., types(7)
typedefs for code portability between HP-UX implementations model(5)
types.h, description of ... ..types(7)
BETIAIIIE .ttt et h e ettt b bbb h e R e b e s e ctime(3C

.sh(1),umask(1), umask(2)
................... umodem(1M)
mount(1M),umount(2)

uname(1),uname(2)

unblocked disc interface, deSCIIPION Of .......c.vveiriiriiiiiieiiii e et rer e e ee disc(4)
UNCOMPACE vttt ettt saeer oo .compact(1)
underlining, translate underscores to terminal escape sequence.....

underscores, translate to terminal escape sequence for underlining

UDIEXDAIIA 1.ttt ettt b et e et e b e ae et b et R e et et ea e eb ettt R b s beneae e ie s expand(1)
UIZE ettt bbb e bR e a bR e b e unget(1)
UNGETC regexp(7)
LN A0 PO OO OO PSSP PO POUSROTOTOPORPOON ungetc(3S)

uniformly- distributed pseudo-random number generator.

unique lines, find after comparing two files

UNIX/HP ‘UX system, establish communication with another ... cu(l)
UDTTIK et link(1M) unlink(2)
unlock/lock process address Space O SEZIMENT ....oviviuiiciiieiiirie i memlek(2)

unmount or mount file system..................... .mount{1M), mount(2), umount(2)
unpack cpio archives from HP media....
unprintable characters in a file visible or invisible.........
update access/modification/change times of file........cccoccoiininiiiiiiniel
update, maintain, recompile programs
update super block
upm....
upper—case to lower--case character conversion ..
use findstring output to insert calls to getmsg

user crontab file crontab(1)
user environment, description of environ(7)
user ID, get line from password file with matching getpw(3C)
USET I, PIINE cotieiiteceeetiteet ettt ettt ettt ettt etttk ebeeae b et e st b e ettt eearane e id(1)

user ID, search password file for matching .. getpwent(3C)
USET ID, SEh eeutiiiiiiiiit ettt sttt ce et e ettt et e e et e st asbt et et e e ba e tb e e st e e s bt e et e eaaesearseaate e te s erreenbeeenteannnas

user nanie, print

user name, search password file for Matching .........cccciieriiriiaiiriiiir e getpwent(3C)

,38,



Permuted Index

user processes, terminate all
user, switch to another

users, print list of current ...
users, print list of users and their current processes

utmp accounting file, description of
UtmP flle CUTEIE USET SLOb c..voveeeiiiiiieceiiici ittt e ettt sbeeeeea

UtMP.h, dESCIIPLION OF «..ooveiiieiiiiiieie e ettt cb et et es e e e esne st e
uucico .
uuclean . uuclean(1M)

uucp command execution....
uucp network, monitor activity
uucp spool directory clean--up
uucp system names, list of ........cccoiiiiniiini
uucp transactions grouped by transaction, list..
uuep/uux transactions, log of ..........ccooee.

....uucp(1)
.uuls(1)

uusnap . )
uusub ... .uusub(1M)
L o D OO

validate password and group files... .
VAlIAALE SCCS FI ..ovveeeiiiiieiitie ettt e ettt et e et tees e esteebeeeteeassessbaeestassteeeseessreenasscassaassassrsasssaracssanas

values, machine—dependent...........c..ccoiiiiiiniiii values(7)
VATATES ..veveeteueritisise et st s eaeases seeaes et s eaes s e b e e e s s b ee et a b e st e R oAbk bbb a b varargs(7)
varargs argument list, print formatted output from ..o vprintf(3S)
variable argument list handling facility

verify C program......c....ccocevvieeeenicannnnns

verify Command Set 80 cartridge tape.

verify file S8ySteIm CONSISTENCY ....vveeviiiiiieiieiieti ittt et ettt et sessete s aree s esaneennnes

verify password and group files

version 6/PWD-compatibility terminal iInterface ..o sttyv6(4)
version name, get for HP-UX... ..uname(1),uname(2)

VETSION TIUIMIDET, GO .. eeeeiiieriiiiteiiireenitee e ittt s ettee s e rteeasttaeesoaar e et reesansaeeabeseassaaeassaresensbbeassrbaaessaneeeens

viewing text, facilitate on soft-copy terminals ..
virtual memory page pool, specify maximum size of ..
virtual memory usage, set or clear for Programi..........ccociieiiiiiicciiiiiiiii e

virtual memory WOTKINg Set TALI0, SEL.... .ot eree ettt s s s

virtual segment, establish time segment remains memory resident.......c....cocceevvenrcearnenieevnnneeennn uconfig(1M)

_ 39—



Permuted Index

volume, description of SDF volume SUpPerblock ...........cccoriiraiiioiiieineiiiiciiees vt cvcceiiieacsiirensinanesssnn fs(5)
volume, format, initialize, and certify SDF volume.................. ...sdfinit(1M)
volume header, write LIF on file...........occooiiiiii lifinit(1)
volume, mark/unmark as HP-UX root voIume ...........cccoiriiiiimiiiiiiic e rootmark(1M)
VDTIIEE 1ottt ettt eb bbbt bbbt h bt ee btk eb Rt et eh st ekt ettt es vprintf(3S)
vsadv... ..vsadv(2)
VSOTE 1overi e bbb vson(2)

..sh(1)wait(1), wait(2)
wait for completion of process ... ..sh(1),wait(1), wait(2)
WALK A BIl@ BTOC....oiieeii e e

WELETCIS ...ttt ettt et b e R bt e n e en s ene s whereis(1)
while 100D, eXit frOmM NCIOSIMIE .cviiveioviitiriieie sttt te e st s et e e an e sse st e eseasssaseeanbeaeenbaens sh(1)
while loop, resume the next iteration of.

word count
word, read from buffered open file ..........c.ccooiiiiiiiiiii gete(39)
word, write on buffered open file or standard oUtPUL ......ccooviiiiiieiic s pute(3S)
words, count number contained in file
WOrking directory, ChaNEE . ....c..oooiioiiiit ettt e
working directory, print name of ..

write character on buffered open file or standard OUEPUL ....c...cocveiiiiieiiieriinii e

write current contents of memory to disc.........covvvuernne. ..syne(2),sync(1)
write interactively t0 another USer ... write(1)
write LIF volume header on file........coooiiiiiiiiiiic e lifinit(1)
write on a file ...write(2)
Write Operation, TePOSILION TEXE .. ..ceiiiereiiiiieeieiiieiite e eibeeseeerreeteesrtesareeetesree e anaesseeaneessbaeanneeavereseeas fseek(3S)
write PasSWOTrd fIle @DEIY.....ooiiriiiiiiiii i e putpwent(3C)
write string to open file or standard output. ....puts(38)

write to a file using buffers................... fread(33)
write t0 all USErS ......c.coovviveviiniiieien e ...wall(1M)
write word on buffered open file or standard GUEDUL ...oc.eveeiiiiirieee e putc(3S)
wtmp accounting file, desSCription OF ......c.viciiiiie ettt ereanes utmp(5)
wtmp records, convert from binary to ASCII.. . fwtmp(1M)
wtmp records, correct time/date Stamps O ........cccovevevrierininiiieeeiinn ..fwtmp(1M)
WEINDEX i e ...fwtmp(1M)

...getx25(1M)

FBCC wentititeer ettt ettt ettt h e R e et et ebe et £ ek s e s e st eb e Rt et e ar e ke aae et e s e ar et se s aarenantenreereeeseaaeeeareneen yace(1)

— 40 -





