HP Interactive Test Generator for MS-DOSR

HP ITG User’s Handbook

["F HEWLETT

PACKARD

HP Part No. E2020-90000
Printed in USA

The information contained in this document is subject to change without
notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS
FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for
errors contained herein or for incidental consequential damages in connection
with the furnishing, performance, or use of this material.

This document contains proprietary information which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced, or translated into another language without the prior
written consent of Hewlett-Packard Company.

Hewlett-Packard Interactive Test Generator and Microsoft Windows

HP Interactive Test Generator (HP ITG) operates in a graphics environment
called Microsoft Windows, created by Microsoft Corporation. An extension of
the MS-DOS operating system, Microsoft Windows gives a standard look and
feel to HP ITG and all other Windows applications.

The HP Interactive Test Generator package contains all the software necessary
to run HP ITG. You can also run HP ITG under Microsoft Windows version
2.X.

With Microsoft Windows, you can take advantage of these additional features
of the Windows environment:

® Running multiple applications: You can run several applications under
Windows at one time and easily switch between them, creating an integrated
work environment.

m Data exchange between applications: You can transfer data between HP ITG
and other standard DOS applications as well as other Windows applications.

® Windows control of the DOS environment: From the Windows environment
you can easily access all Windows and non-Windows applications, files,
directories, and disks, and control all DOS-related tasks such as directory or
file management and formatting disks.

To run HP Interactive Test Generator under Microsoft Windows, you need to
license and install Microsoft Windows version 2.X.

Copyright (© 1989 by Hewlett-Packard Company.
Portions (¢ Copyright Microsoft Corporation, 1985-1988. All rights reserved.

Microsoft, MS-DOS, and QuickC are U.S. registered trademarks of Microsoft
Corporation.

Lotus is a U.S. registered trademark of Lotus Development Corporation.

Printing History
First Edition - December 1989

iv

Contents

1. About HP ITG

Overviewo e e e e 1-1
A Software Development Tool 1-1
Panels and Drivers 1-2
Development Environment 1-2
Creating Measurement Procedures 1-3
Saving Instrument States Ce e 1-3
Generating Code Ce e 1-4
Completing Your Program 1-5
Editing a Program 1-5
Run-Time Environment 1-6
About This Handbook 1-6
Typefaces L0, 1-6
Names0 1-7
Librarieso L0000, 1-7
2. System Requirements

Overview L ..o o oo 2-1
Development Requirements 2-1
Computer Lo 2-1
Memoryo e 2-1
i286 System 2-1
i386 System L. L0 L. 2-2
Disk Drives e e e e e e .. 2-2
Monitor and Video Adapter 2-2
Interface Standardo oL L. 2-2
Pointing Devices and Printers - 2-2
Programming Language - 2-3
Run-Time Requirements - 2-3
Computero 2-3

Contents-1

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

Memory oo e e e e e e
i286 System L L. L L0 L0
i386 Systemo o L

Disk Driveso

Monitor and Video Adapter

Interface Standardo,

Pointing Devices00

Printers oL L0 0

Quick Environments oL

3. Installing HP ITG
Overviewo oo
Gathering Materialso 000
Preparing Your Computer
Installing the Interface
Installing Memory L.
MS-DOSo e
Installing Support Applications
Installing Microsoft C and QuickC
Installing QuickBASIC
Installing HP ITG
Starting Setup Lo
Microsoft Windows
Selecting the Programming Language
Identifying Directories
Editing WIN.INI
Setting HP ITG Colors
Changing the Programming Language
Editing AUTOEXEC.BAT
Starting HP ITG

4. Getting Started
Overview00
HP ITG System Overview
Learning the Basics
Using the Mouse
Using the Keyboard Ce e
Online Help System

Contents-2

2-3
2-4

2-4

5.

How-to
Instrument Help
ApplicationHelp
Subprograms L.
I[/OStatus
Latest Information
The Working Environment
The Development Environment
Ways to Start HP ITG
Adding Instrument Drivers
Saving the Workfile
Generating Code
Saving the Program
Starting the Quick Program Environment
Completing Your Program e e e
The Run-Time Environment

A Complete Example
Overview

A Frequency-Response Measurement
Step 1: Run HPITG
Step 2: Create a Soft Test System
Step 3: Set Up the Instruments

The Initial State

Multi-Layered Panels

Set Up the HP 3325B Panel

Store an Instrument State

Set Up the HP 3478A Panel
Step 4: Save the Soft Test System
Step 5: Generate Code

Preparing the Editor Window

Set Modes

Generate Initialization Code

Recall States

Adjust Frequency and Take a Reading
Step 6: Editthe Code

QuickBASICo

QuickC

4-3
4-3
4-3
4-3
4-4

4-4
4-4
4-5
4-5

4-6
4-6
4-6
4-6
4-7

Contents-3

Step 7: Save Your Program 1

Step 8: Start Quick Environment 5-18
Step 9: Create an Executable Program 5-19
6. Creating and Using a Soft Test System
Overviewo e . 6-1
Creating a New Soft Test System 6-1
At Startup L. o e .. 6-1
During a Work Session 0.0 6-2
Opening an Existing Test System Coe 6-3
Saving a Soft Test System 6-3
For the First Time 6-3
Resaving a Soft Test System 6-4
Using the Default Workfile e e e e e 6-4
Adding and Configuring Instruments 6-5
Configuring the Instrument 6-6
Name e e e e e e e e e 6-7
Address o o000 oo 6-7
Subaddresso L e e 6-7
Timeout(s) 6-8
Using HPIB.ID 6-8
Deleting Instruments 6-9
Adding Applications e e e e e e e e ... 6-9
Printing the Display 6-10
Configuring Your Printer 6-10
7. Soft Panel Operation
Overview Ce 7-1
Panel Size Ce e 7-1
Panel Layout and Style e e e e 7-1
Controls C e e e e 7-2
Buttons 0000000 o 7-3
Subpanelso 7-3
Displays e e e e e 7-4
Automatic Update 7-4
Reset Button e e e e e e e e e Co. 7-5
Panels and Iconso 7-5
Expanding an Icon L. e e 7-6

Contents-4

Reducing a Panel
Movinga Panel
Getting Help on a Panel

From the Panel

Controlling an Instrument

Overview

Making Adjustments
InaPanel
In a Program

Checking for Errors
Controlling Instruments Directly .
In a Program

Changing Configuration Information

Creating and Using Instrument States
Overview
Creating States
Storing a State
Recalling a State
Maintaining States
Deleting a State
Printing the Contents of a State .
Making a State Library
Saving States to a File
Adding States to a File
Importing a State File
Using States
Incremental State Programming . .
Controlling Instruments Directly .
In a Program

.......... - 7-6
............ 7-6

............ 7-7

............ 7-7

............ 8-1

............ 8-1
............ 8-3

............ 8-3

............ 8-4
............ 8-4

Contents-5

10. The HP ITG Editor

Overview00 e e e e e 10-1
Adjusting the Editor Window 10-2
Storing the Editorasan Icon 10-2
Expanding the Editor Icon 10-2
Expanding the Editor to Full Size 10-2
Adjusting the Editor Window Size 10-2
Moving the Window 10-3
Using the File Commands 10-3
Startinga New File 10-3
Opening an Existing File 10-3
Clearing the Editor and Starting Over 10-4
SavingaFileo 000000 10-5
The Save Command 10-5
The Save As ... Command 10-5
Printinga File00 000 10-5
Using the Edit Commands 10-6
Entering Texto 10-6
ActiveKeyso 000000 10-6
Scrollingo oo 10-6
Generating Initialization Code 10-7
Undoing an Edit 0oL 10-7
Selecting and Replacing Text 10-7
Using Select Al 10-8
Deleting Texto 10-8
Moving Text oo o0 . . . 108
Copying Texto 10-8
Searching for Text o ... 109
Finding the First Occurrence 10-9
Finding the Next Occurrence 10-10
Getting Help on the Editor 10-10
Adding Another Editor Window 10-10

Contents-6

11.

12.

13.

Generating Code Using Panels

Overview oo e e e
LogModeo
The HP ITG Subprograms
The Basics
The Passed Parameters

Editing HP ITG Subprograms
Generating Code

.....

..................

Initialization ...

hptinit

hptassign L. oL

Stepping Through a Procedure
Editing the Procedure
Saving Your Program
Exiting HP ITG

Running Your Program

.........

+ e e

Overview L s

In the Development Environment .

In Microsoft C
In QuickC

.........

.....

In QuickBASIC
In the Run-Time Environment

Fine-Tuning Your Program

Overview L.

The HP ITG Library Reference . .

Using the Driver Documentation

Working With Components . .

Determining the Instrument Descriptor

Choosing the Right Subprogram

Variation

.....

Putting It Together

Uses for the HP ITG Subprograms
Creating and Recalling States
Turning On/Off HP ITG Modes
Controlling Component Values
Improving Efficiency

.........

Reading and Changing HP-IB Addresses

. e e

11-1
111
11-2
11-2
11-3
11-3
11-4
11-4
11-4
11-4
11-5
11-5
11-6
11-6

12-1
12-1
12-1
12-2
12-3
12-4

Contents-7

Setting Array Values 1310
Checking for Errors 1311
Adding Instruments 1311

14. The HP ITG Library: QuickBASIC
Overview e 05 |
hptadddevice 144
hptassign 146
hptassigncomp 14-8
hptassignparm e £ S5 1)
hptassignstate 14-12
hptclose 1414
hptcloseall S 5 15
hptcompdims 1416
hptdevaddr 1418
hptdevsubad 1419
hpterrmsg 1420
hpterrorcheck 1421
hptforget, hptforget2 1423
hptget, hptget2 1425
hptgetary, hptgetary2 1427
hptgetiary, hptgetiary2 1429
hptgetstate, hptgetstate2 1431
hptgetstr, hptgetstr2 1433
hptincremental 1435
hptinit 14-36
hptlivemode 1437
hptlocal 14-38
hptmeminfo 1439
hptmonitor 1440
hptpeek, hptpeek2 1442
hptpeekary, hptpeekary2 14-44
hptpeekiary, hptpeekiary2 14-46
hptpeekstr, hptpeekstr2 1448
hptpoke, hptpoke2 1450
hptpokeary, hptpokeary2 14-52
hptpokeiary, hptpokeiary2 14-54
hptpokestr, hptpokestr2 14-56

Contents-8

hptpush, hptpush2 e e e e e e e 14-58
hptrecall, hptrecall2 1439
hptremote 1461
hptset, hptset2 1462
hptsetary, hptsetary2 14-64
hptsetdevaddr 14-66
hptseterrormode 1467
hptsetiary, hptsetiary2 14-68
hptsetstate, hptsetstate2 1470
hptsetstr, hptsetstr2 1472
hptstatesave 1474

15. The HP ITG Library: C
Overview o . e e e e e e e 151
hpt_add_device 155
hptassigno 0.0 18T
hpt_assigncomp 159
hpt_assignparm 1511
hpt_assignstate 1513
hptclose oo 1515
hptcloseall 1516
hpt_compdims o000 1517
hptdevaddr o000 oL 1519
hptdevsubado o000 1520
hpterrmsgo o000 15-21
hpt_errorcheck oo . 1522
hpt forget, hptforget2 1524
hptget, hptget2 1526
hpt_get.ary, hptgetary2 1528
hpt_get_iary, hpt_getdary2 1531
hpt_get_str, hpt getstr2 1534
hpt_getstate, hpt getstate2 1536
hptincremental 1538
hptinit oo oo oo .. 1540
hptlivemodeo 1542
hptdocal 1544
hpt.meminfo 1545
hpt_monitor 15647

Contents-9

hpt_peek, hpt_peek2
hpt_peek_ary, hpt_peek_ary2
hpt_peek_iary, hpt_peek_iary2
hpt_peek_str, hpt peek.str2
hpt_poke, hpt poke2
hpt_poke_ary, hpt_poke_.ary2
hpt_poke_iary, hpt_pokedary2
hpt_pokestr, hpt_pokestr2
hpt_push, hpt push2
hpt_recall, hptrecall2
hptremote
hptset,hptset2 oo
hpt_set_ary, hptset.ary2
hpt_set_error handler
hpt_set_iary, hpt setdary2
hpt_set_str, hptsetstr2
hptsetdevaddr e e e e e e e
hpt_setstate, hpt setstate2
hptstatesaveo 0L

A. Menus Index

Overview o e e e e e e

System Menuso
System Boxo
File 00
Instruments
Applications oo Lo o
System e e e e e e e e e e
Help e e e e e e e e e

Editor Menus e e e e e e e e e
BoxMenu
File
Edit.
Search
Help
ATTows L o e e e e e e e e e

Instrument Panel Menu
Instrument Panel Box

Contents-10

I/0 Interfaces

Overview
Hewlett-Packard HP-IB Interface
Changing the HP-IB Configuration

National Instruments Corporation GPIB-PCII/IIA

Radix MicroSystems, Inc. EPC-2 System

Expanded and Extended Memory

Overview
i286-Based Computer
i386-Based Computer

Creating a Script

Messages

Overview

Glossary

Index

...... B-1
...... B-1
...... B-3
...... B-3
...... B-4

...... C-1
...... C-1

C-2

...... E-1

Contents-11

Figures

1-1.
1-2.

1-3.
4-1.
5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.
5-10.
6-1.
6-2.
7-1.
7-2.
7-3.
8-1.
8-2.
9-1.
9-2.
9-3.
9-4.
9-5.
9-6.
9-7.

9-8.

The HP ITG Development Environment
Store Instrument Setups as States for Use in Related
Measurements

HP ITG Generates Instrument-Control Code .
The HP ITG Development Environment . . .

HP ITG at Startup

List Box for Instruments

The Instrument Configuration Dialog Box . . .

......

HP 3478A and HP 3325B Are Part of the Soft Test System

The State Store Dialog Box

Saving the Soft Test System to a Workfile
The Device Modes Dialog Box

The State Recall List Box . . . e

The Final Program in QuickBASIC

.....

.....

The Final Programin C

Configuration Dialog Box for an Instrument . .
The Printer Configuration Control Panel
An Instrument Panel

Click on the Query Button to Update the Panel

Panels Stored asIcons

Controlling an Instrument with Live Mode . .

Using the Error Checking Mode

State Store Dialog Box
State Recall Dialog Box
State Maintenance Dialog Box
The Delete State Dialog Box

The Print State Dialog Box
The Save State Dialog Box

The Add State Dialog Box
The Open State List Box

Contents-12

.....

......

9-9.
9-10.

9-11.

9-12.

10-1.
10-2.
10-3.
10-4.
A-1.
A-2.

A-4.
A-5.

A-T.
A-8.

A-10.
A-11.
A-12.

In C, Each Function on Each Instrument is Set Individually . 9-10
In C, Function Settings are Stored as Instrument States and

Then Recalled to Form a Procedure 9-10
In QuickBASIC, Each Function on Each Instrument is Set
Individuwallyo, 9-11
In QuickBASIC, Function Settings are Stored as Instrument
States and Then Recalled to Form a Procedure 9-11
The Editor Window 10-1
The Editor File List Box 10-4
The Search Dialog Box 10-9
An Additional Editor Window 10-11
The System Box Pull-Down Menu A-2
The System File Pull-Down Menu A-3
. The Instrument List Box A-4
The Applications List Box A-5
The System Pull-Down Menu - A-6
. The Help Pull-Down Menu e e e e A-7
The Editor Box Pull-Down Menu A-8
The Editor File Pull-Down Menu A9
. The Edit Pull-Down Menu A-10
The Search Pull-Down Menu A-11
The Editor Help List Box A-12
The Instrument Panel Pull-Down Menu A-13

Contents-13

Tables

13-1. Component Types and Allowable Subprogram Variations . . 13-6
14-1. Call Statements Generated by HP ITG for These QuickBASIC

Subprograms oo e 14-2
14-2. Additional HP ITG Subprograms for QuickBASIC 14-3
15-1. Calls Generated by HP ITG for These C Functions 15-3
15-2. Additional HP ITG Functionsfor C 15-4

Contents-14

About HP ITG

Computer

Museum 1

Overview

Welcome to the HP Interactive Test Generator for

MS-DOS.

Although the HP Interactive Test Generator (HP ITG)
is an easy-to-use system for developing test programs,
you may have to turn to this handbook from time to
time. It can help you get started quickly and is designed

to answer any questions you may have while using
HP ITG.

In addition, HP ITG provides an online Help system
that serves as a quick reference guide. It also includes a
tutorial that demonstrates proper use of HP ITG.

A Software
Development Tool

This version of the HP Interactive Test Generator

is a PC-based application. It simplifies test-software
development by allowing you to generate instrument-
control code without knowing the programming
languages of the instruments in the test system.

HP ITG provides two environments in which to work:
m Development environment:

Using instrument panels displayed in HP ITG,

you can change individual controls as well as an
instrument’s entire configuration, and generate
instrument-control code for your test program.
Using the programming environments for languages

About HP ITG 1-1

supported by HP ITG, you can enhance and debug
your program.

s Run-time environment: ‘

When the test programs you develop are done, you
can create standalone executables that you run on
instrument controllers attached to automated test

systems.

Panels and Drivers HP ITG uses instrument-specific information stored
in a driver. An instrument driver is a text file that
describes the layout of the soft panel for the instrument
and its HP-IB commands. The soft panel appears in
the HP ITG work area and lets you interact with an
instrument.

You must use a driver for each instrument you want to

control with HP ITG. Drivers for many HP instruments

are supplied with HP ITG. If you have a special driver

need, the companion manual, How to Write an HP ITG ‘
Driver, explains how to develop drivers for other

instruments.
]
Development HP ITG provides a flexible program development
Environment environment. When you install HP ITG, you can choose

from the supported programming languages. Then
HP ITG generates the instrument-control code in the
language you selected. The generated code is easily
loaded into the Microsoft? QuickCR or Microsoft
QuickBASIC environments to complete your program
development.

1-2 About HP ITG

o

File Instruments...

fApplications... gystem Help

e B0

|Rexor] r Hain Panel |

Funotson
Freauency[1w |
Amplitude[1w |[Voo] N

prase ———*]

HP3478A

File Edit Search

hpt_init (CFRQ_RESP.WF"');
hp3325b = hpt_assign (“"HP3323B"*, EXPAMNDED);
hp3478a = hpt_assion (“"HP3476A"", EXPANDED);

Figure 1-1. The HP ITG Development Environment

Creating
Measurement
Procedures

Saving Instrument
States

Once HP ITG is set, you can begin to create your
measurement procedure. A procedure includes the
code that recalls instrument states, adjusts instrument
controls, and makes measurements. You can generate
instrument-control code interactively within HP ITG,

even if instruments are not available to connect to the
HP-IB bus.

To avoid setting controls individually each time you

use an instrument, you can store and recall complete
instrument states. The combination of instrument panels
and states is called a soft test system. After creating the
soft test system, you can save it as a workfile for use

in the Quick and run-time environments or return to a
particular soft test system when re-entering HP ITG’s
development environment.

About HP ITG 1-3

ToT

File Jnstruments... #Applications... System Help
- oo B
State Store min Panel
I..r.z'.s.r.z STATE] HP34784
— Sine
HPTINITIALSTATE 4+
TESTL STATE 1 ,,:l
3 STATE
- AR T
e]
((srere N (cancel)
)

—

File Edit gearch

hpt_init (“FRQ_RESP.WF)3
hp3325b = hpt_asslgn (“HP33238°°, EXPANDED);
hp34768a = hpt_assign

("'HPI478A™, EXPANDED);

Figure 1-2. Store Instrument Setups as States for Use in Related Measurements

Generating Code

1-4 About HP

ITG

As you adjust controls and make measurements, HP ITG
can automatically translate your actions into test code
using the programming language you selected during
installation. You can even perform simple editing and
add comments without leaving HP ITG.

The code that HP ITG generates consists of calls to
subprograms in the HP ITG Library. The subprograms
access the instrument drivers. Basically, each
subprogram does one of the following:

m Sets a control.
m Gets a reading (or makes a measurement).
m Recalls a stored instrument state.

To give you the best possible throughput when recalling
a stored state, HP ITG sends the minimum set of
commands needed to change the instrument to the
desired state. HP ITG monitors the current instrument
state and determines the specific commands required

to change to the new state. This eliminates the time
required to send extraneous commands as well as

the time required for the instrument to interpret the
commands and respond.

= K3
File Jnstruments... @Appliocations... System Help
e R
£ 1
HP33258B
HP3478A
=] [o]2
File Edit Search Help
{Set up source. +
hpt_set_str (hDClClZ!b FU'CY[ON’ “"SQUARE'')s
hpt_set (hp3323h, "FREQUENCY'" (doubl.) 1.0..)!
tRecall source ate 1.
hpt_recall (hp3323b, “"TEST1_STATE") I
1Take a reading.|
hpt_get (hp3478a, “"READING, &double_value)s
+
=3

Figure 1-3. HP ITG Generates Instrument-Control Code

Completing Your
Program

Editing a Program

To include features from other applications, you can quit
HP ITG and include calls to routines in other MS-DOS
libraries using your programming language editor or
Quick environment to build a complete test application.
These libraries can provide the routines to accomplish
various tasks such as data acquisition and analysis, and
database and graphics development.

You can integrate the code generated by HP ITG into
new or existing programs using the HP ITG Editor
Window or the editor of your choice. You then can
expand your program to include other subprograms from
the HP ITG Library or other MS-DOS libraries. These
might include a user interface, data acquisition/analysis,
and graphics as required for your test program
specifications.

About HP ITG 1-5

Run-Time
Environment

The run-time environment involves creating the
standalone program, an executable, then running it

on a test station controller. You should do this after
testing and debugging your program. The test station’s
run-time controller should be configured to support the
program you run on it.

About This
Handbook

Typefaces

1-6 About HP ITG

To help you use this handbook, please read about the
following conventions used to describe HP ITG.

The following typefaces are used to help you understand
how terms and phrases are used:

Bold Bold indicates the introduction of an
HP ITG feature. These terms are listed
in the glossary.

Italics Terms are printed in italics for
emphasis. The HP ITG Library
descriptions in chapters 14 and 15 also
use italics to distinguish the names of
variables.

Computer Computer-style type indicates
commands you should type or that
appear in the HP ITG development
environment. Program listings also
appear in this type.

Individual keyboard keys are
distinguished by the keycap-style border
around the key’s name.

Names The following names are used to help you relate written
instructions to symbols appearing on the monitor’s

display:

screen “Screen” refers to the monitor’s display.

display “Display” refers to the area on an
instrument driver’s soft panel that
displays the results of instrument
measurements.

pointer “Pointer” refers to the mouse cursor
appearing in the HP ITG work area.

cursor “Cursor” refers to the indicator where
text is entered during any editing
activity.

Libraries HP ITG provides libraries of subprograms for the
supported programming languages, QuickBASIC and
C. Differences exist between the libraries that require
this handbook to use some conventions to refer to these
libraries in common.

Technically, the HP ITG Library for QuickBASIC uses
subprograms. Their names do not contain underscores,
as in hptrecall. The HP ITG Library for C uses
functions with names that do contain underscores, as in
hpt_recall. When this handbook describes the HP ITG
Library in general, the references are to subprograms,
and the names use underscores. Information specific

to the individual libraries uses their respective naming
conventions.

About HP ITG 1-7

somputer
Museum

System Requirements

Overview

System requirements vary depending on whether you
are using HP ITG in the development environment
to control instruments and generate code, or whether
you are running your test program in the run-time
environment.

Development
‘ Requirements

Computer

Memory

You can develop programs using HP ITG on various
personal computer configurations. The following list
describes the basic requirements to begin using HP ITG
in the development environment:

HP Vectra personal computer or IBM PC-AT or
compatible running with i286 or i386 microprocessor and
MS-DOS 3.0 (or higher) operating system.

i286 System

640 Kbytes plus 1 to 2 Mbytes of expanded

memory. The expanded memory must conform to
LotusR-Intel-Microsoft (LIM) 4.0 Expanded Memory
Specification (EMS).

System Requirements 2-1

i386 System

2 to 3 Mbytes of total system memory. See appendix C
in this handbook for more information about memory
managers. ‘

Disk Drives 20 Mbytes or larger hard disk drive and one 3.5- or
5.25-inch floppy disk drive.

Monitor and Video Enhanced Graphics Adapter (EGA) or Video Graphics
Adapter Adapter (VGA) with compatible color or monochrome
monitor.

Interface Standard You must install at least one interface board if you
want to control any instruments. HP ITG supports the
following IEEE-488 interfaces:

m Hewlett-Packard HP-IB (HP 82335A or HP 82990A).
» National Instruments Corporation GPIB-PCII/IIA.
» Radix MicroSystems, Inc. VXIbus. ‘

HP ITG can support more than one interface board at a
time. Each board must be set to a different select code.
See appendix B in this handbook for more information
about using these interface standards.

Pointing Devices and HP ITG requires you to use a pointing device such as
Printers 2 mouse. You may use any serial or parallel interface
device supported by MS-DOS and Microsoft Windows.

You can use any printer supported by MS-DOS and

Microsoft Windows. You will be able to configure its

interface in HP ITG. Though a printer is not required, it

lets you print the HP ITG screen, as well as the contents

of the Editor window and online Help. See chapter 6 for

more directions about configuring your printer. ‘

2-2 System Requirements

Programming
Language

In addition to HP ITG, you should install software for
the programming language you want to use for test code
generation. HP ITG supports the following programming
languages:

m Microsoft C 5.X
» Microsoft QuickC 2.0
m Microsoft QuickBASIC 4.5

Run-Time
Requirements

Computer

Memory

The run-time computer system should be compatible
with the test program you develop. Generally, the
run-time system requirements are less than those for a
development system. The actual run-time system you
assemble depends mostly on your test program needs.
If you have included features and libraries from other
applications to provide a user interface, data collection,
and analysis, you might need to assemble a more
powerful run-time system. Typically, a test application
that just controls instruments should consist of the
following components:

HP Vectra personal computer or IBM PC-AT or
compatible running with 1286 or 1386 microprocessor and
MS-DOS 3.0 (or higher) operating system.

i286 System

640 Kbytes plus 1 to 2 Mbytes of expanded

memory. The expanded memory must conform to
LotusP-Intel-Microsoft (LIM) 4.0 Expanded Memory
Specification (EMS).

System Requirements 2-3

i386 System

2 to 3 Mbytes of total system memory. See appendix C
in this handbook for more information about memory
managers. .

Disk Drives 20 Mbytes or larger hard disk drive for data storage
and one 3.5- or 5.25-inch floppy disk drive as needed to
transport programs.

Monitor and Video You can use any monitor and video adapter that
Adapter supports the run-time requirements for your test
application.

Interface Standard Use the interface configuration required by test
application.

Pointing Devices Use devices if required by test program. .

Printers Use any printer supported by MS-DOS if required by
test application.

Quick Environments To run your test application in a Quick environment,
you must install the appropriate Quick product in your
run-time system that supports the language you are
using.

2-4 System Requirements

Installing HP ITG

Computer
Museum

Overview

This chapter explains the steps you should follow to
install and use HP ITG. An installation program called
Setup is provided to help you install the HP ITG files
and prepare the development environment.

The chapter’s sections describe each of the following
steps:

m Gathering materials.

m Preparing your computer.

m Installing support applications.
m Installing HP ITG.

m Starting HP ITG.

When you prepare your computer, add accessories, and
install supporting software, use the instructions provided
with each package. The Setup program supplied with
the HP ITG distribution disks installs only those files
required for HP ITG.

Please complete each step in the given order. If you have
already completed certain steps, just jump ahead to the
next one. The HP ITG installation itself takes about 20
minutes and uses about 4 Mbytes of hard disk memory.

Installing HP ITG 3-1

Gathering Before you begin the installation process, gather the
Materials materials you will need:
m Computer’s video adapter, monitor, printer, and .
mouse.

m MS-DOS operating system software.
m Memory board with LIM 4.0 EMS.
m Interface board.

= Support applications software.

m HP ITG software.

The additional memory board is required for computers
equipped with the i286 microprocessor. Computers
equipped with the i386 microprocessor usually have the
additional memory already installed.

Preparing Your Set up your computer by installing its accessories .
Computer and the MS-DOS operating system software. Use
the respective manufacturers’ instructions for these
installations.

Install the boards required for common computer
peripherals such as a printer, the video adapter, pointing
device, and network communications. Be sure to install
the instrument interface and memory boards which are
required by HP ITG. Connect the monitor, keyboard,
mouse, and printer.

Note If you use a printer with an HP-IB interface, the printer
must be configured so it is connected to the LPT1 port.

3-2 Installing HP ITG

Installing the
Interface

Note

Installing Memory

You should install the interface in one of the computer’s
I/O slots now. If you received the HP-IB interface

with your HP ITG software, the guide packaged with
the interface, Installing the HP-IB Interface, explains
configuration and installation procedures. Though the
factory settings are satisfactory for most systems, the
quide’s section, “Setting Switches,” explains how to
reconfigure the interface for your computer. That section
explains how to set the select code and prevent address
space conflict with the memory manager and other
interfaces you might be using in your computer.

If you are using another manufacturer’s interface, be
sure to read the instructions for that interface. Other
manufacturers use different methods to set select codes
and prevent address space conflicts.

For more information about setting select codes for the
interfaces supported by HP ITG, see appendix B in this
handbook, “I/O Interfaces.”

If you are installing additional memory in your
computer, you need to do so before you install the

HP ITG software. For i386-based computers, configure
additional memory as extended. For 1286-based
computers, configure additional memory as expanded.
Additional configuration may be required for the
additional memory to prevent address space conflicts
with the instrument interface. Read the memory
manufacturer’s instructions for details. For information
about memory managers in i386-based computers, see
appendix C in this handbook, “Expanded and Extended
Memory.”

;
|
Installing HP ITG 3-3 }
\

MS-DOS Install the MS-DOS operating system software. Edit
the files, CONFIG.SYS and AUTOEXEC.BAT as needed for
the accessories you have installed in your computer. Be
sure the MS-DOS operating system recognizes all of the
installed accessories.

|nsta||ing Support You should install the support applications you will use

Applications with HP ITG. The programming language software
you will use to develop your test programs is the most
important application to install now.

When you install Microsoft C, QuickC, or QuickBASIC,
please use the guidelines described in the following
subsections.

You may want to add other applications to include
additional functionality to your test programs. These
might include data collection and analysis, and graphics
for a user interface.

Installing Microsoft C
and QuickC

Caution HP ITG only supports version 5.X of Microsoft C and
version 2.0 of Microsoft QuickC.

HP ITG Setup works best if you follow these guidelines.
The QuickC installation program makes it easy for

you to follow them, and HP ITG Setup expects this
configuration:

m Select the emulator library for the math options.

m Select only the medium model when defining the
Memory Model.

3-4 |Installing HP ITG

Installing QuickBASIC

Caution

m You may add the GRAPHICS.LIB library if you plan to
include graphics in your C programs. HP ITG does
not require this library for its operation.

m Accept the default options for the QuickC directories.

m Edit AUTOEXEC.BAT as described in the QuickC
installation instructions to set environment variables
for LIB and INCLUDE and modify the PATH command.

HP ITG only supports version 4.5 of Microsoft
QuickBASIC.

HP ITG Setup works best if you follow these guidelines.
The QuickBASIC installation program makes it easy
for you to follow them, and HP ITG Setup expects this
configuration:

m Use the default choices when installing QuickBASIC.

m Be sure all QuickBASIC files are loaded into directory
QB45.

® Add the QB45 directory to the PATH command in
AUTOEXEC.BAT.

Installing HP ITG

This section explains how to use the HP ITG Setup
program. Setup lets you specify your computer’s
configuration, identify the programming language,
name directories, copy files, and edit the WIN.INI and
AUTOEXEC.BAT files. Setup presents the instructions
you’ll need to complete the HP ITG configuration and
install the required files on your computer’s hard disk
drive. Refer to this section during Setup for more
information.

Installing HP ITG 3-5

When you finish Setup, be sure to store your HP ITG
distribution disks in a safe place.

Starting Setup Before you start Setup, the screen should display the ‘
MS-DOS prompt for the active drive, such as C>.

Note The installation instructions refer to floppy disk drive
A. You may use any compatible floppy disk drive, but
you must be sure to specify the drive as shown in the
following procedure. Then use the same drive for the
remainder of the installation.

. Insert the HP ITG Disk 1 in floppy disk drive A.

1
2. Type a: and press (Enter).

3. Type setup and press (Enter).
4

. Follow the Setup program’s instructions.

Microsoft Windows ‘

Setup can install a portion of Microsoft Windows which
supplies the graphics features for HP ITG. This creates
a single application environment (SAE) for HP ITG.
You will not have all of the features normally available
with the complete Windows application. You can choose
whether or not to install the SAE at this time. If you
install the SAE, Setup asks several questions about

your computer system to configure the Windows SAE
correctly.

If you choose to install the complete Windows

application, you need to purchase and install it

separately, then rerun HP ITG’s Setup. If you install the
complete Windows application, be sure to use the default
directory name offered by the installation program. ‘
Then add the directory name to the PATH command

in the AUTOEXEC.BAT file. The Windows installation

3-6 Installing HP ITG

Note

Caution

program describes how to do this. HP ITG’s Setup
expects to find this same directory name.

You can install the full Windows application after
installing the SAE by using the following procedure:

1. Delete the files HPITG.COM, WIN200.BIN, and
WIN200.0VL from the directory HPITG.

2. Install Windows as instructed.

3. Edit the new WIN.INI file to include the HP ITG
settings added when you installed the SAE.

Selecting the Programming Language

Setup displays Microsoft QuickBASIC as the default
selection. You may select either of the other supported
languages, Microsoft C or Microsoft QuickC. HP ITG
generates code in the language you select.

Identifying Directories

Setup identifies five default directories used during the
installation. The specifications include the hard disk
drive where files will be installed. If you used the default
options when installing the previous applications, Setup’s
default directories will support your current directory
structure.

Prevent losing data on your hard disk drive. Setup

will create needed directories if they do not exist. If a
directory already exists, Setup overwrites existing files
that happen to have the same names as the new files.
Do not use the name of an existing directory unless you
are sure there are no files that will be overwritten.

Installing HP ITG 3-7

Setup copies files to directories based on the following
rules:

m All HP ITG files are put in \HPITG.
m All SAE Windows files are put in \HPITG. .

m If using Windows/286, all Windows files are put in
\WINDOWS.

m If using Windows/386, all Windows files are put in
\WIN386.

m All utilities are put in \BIN.

m If using QuickBASIC, all libraries and include files are
put in \QB45.

m If using QuickC:
a All libraries are put in \QC2\LIB.
a All include files are put in \QC2\INCLUDE.

m If using C: .

a All libraries are put in \LIB.
o All include files are put in \INCLUDE.

Editing WIN.INI

Setup edits the Windows initialization file, WIN.INI,
which was installed with Windows. These required
changes adjust the colors used in the HP ITG
environment and specify the selected programming
language. The additional commands are appended

to WIN.INI in a separate section for HP ITG settings.
These settings do not adversely affect the use of other
applications.

Setup gives you the option to overwrite the existing .
WIN.INI file or to create an alternate file with the file

name, WININI.ITG. If you choose to create the alternate

file, you will need to edit the WIN.INI file so the

commands take effect when you start HP ITG. To edit

3-8 Installing HP ITG

Caution

WIN.INI yourself, add the changes from the WININI.ITG
file.

Setting HP ITG Colors. If necessary, you can edit the
WIN.INI file to change the colors HP ITG uses. The
following explanations apply if you are using a standard
VGA display in color mode. HP ITG uses a color-set
established for the personal computer (PC) environment.
The following command in the WIN.INI file enables that
color-set:

MATCH_COLORS=0

To change the color-set to the same one used by the
HP ITG version that runs on the HP 9000 Series 300
workstation, set the MATCH_COLORS command to 1:

MATCH_COLORS=1

Changing the Programming Language. You can switch
languages HP ITG uses to generate code by editing the
WIN.INI file.

You must have only one programming language selected
in the WIN.INI file.

The language you pick must be supported by HP ITG.
Language selection is done by removing the semicolon
comment marker from in front of the languages=
command line identifying the language you prefer. You
must then insert a semicolon comment marker in front
of all other language= command lines. The following
sample lines from WIN.INI shows QuickBASIC as the
selected language:

; language=msc
language=gb
; language=qc

installing HP ITG 3-9

If you change languages, be sure to set the environment
variable in AUTOEXEC.BAT for the directories where

the HP ITG include files exist for each language. The
following example shows what the command should look
like, assuming the default directories were used during
installation:

set INCLUDE=C:\QC2\INCLUDE;C:\INCLUDE;C:\QB45

Editing AUTOEXEC.BAT

Setup edits the AUTOEXEC.BAT file. The required changes
add the environment variable HPITG. Setup also adds any
new directory created by the HP ITG Setup program
into the MS-DOS search path. The changes should not
interfere with the use of the operating system or other
applications.

Setup gives you the option to overwrite the existing
AUTOEXEC.BAT file or to create an alternate file with the

file name, AUTOEXEC. ITG. If you chose to create the .
alternate file, you will need to edit the AUTOEXEC.BAT by
adding the changes included in the AUTOEXEC. ITG file.

After Setup is finished, reboot your computer so the

new commands take effect. Press (Cin), (1), and

simultaneously.

If, after rebooting, you get the message Out of
environment space, it is because too many environment
variables have been added to AUTOEXEC.BAT. See your
MS-DOS manual to increase the environment space.

3-10 Installing HP ITG

Starting HP ITG

Caution

When the installation is done, you should verify the
status of the instrument interface and expanded memory
before starting HP ITG. Two programs supplied by

HP ITG supply the information for you. Run them from
the MS-DOS command line.

1. To verify the interface status, type hpiostat, then

press (Enter).

2. To verify the memory status, type hpemstat, then

press (Enter).

To ensure proper operation of HP ITG, leave all files
copied from the HP ITG distribution disks in their
current directories.

Before starting HP ITG, you may want to create a
working directory for the files you create while using
the development environment. Start HP ITG from the
MS-DOS command line.

1. Type hpitg.
2. Press (Enter).

To learn about the HP ITG development environment,
please read chapter 4 in this handbook, “Getting
Started.”

Installing HP ITG 3-11

Getting Started

Overview After you install and start HP ITG, use this chapter
to help you begin using HP ITG and understand its
relationship to the working environment used to develop
complete test programs.

HP ITG System The following figure shows the HP ITG development
. environment with an instrument driver soft panel added
Overview to the work area and the Editor Window. Take a few
moments to learn the locations of the various menu and
window controls. Appendix A in this handbook, “Menus
Index,” gives detailed information about the operation of
each command and the menus they provide.

System menu box

System menu bar Ale Jaetiomwnts... peeliestivas... raton

[C=0]

wyreal— lcon

Panel menu box—" | = [resetten | T —

---------] &

sapiirese
Instrument panel — 17 [) — 1 icon area

| —CE—
Editor menu bar
tle E¥iv gusven 1

Editor window

Program name

Figure 4-1. The HP ITG Development Environment

Getting Started 4-1

Learning the Basics You can control the HP ITG development environment
menus and windows using the computer’s keyboard and
mouse.

Using the Mouse

As you move the mouse across a flat surface, notice

its pointer moving across the screen. You can use the
mouse to operate HP ITG by moving the pointer so it
touches a screen element, then pressing the left mouse
button. The following terms are used in the instructions
to describe mouse operation:

point Move the mouse pointer until its tip
touches the element you want to select.

click Press and release the left mouse button.

drag Press the left mouse button, and while
holding it down, move the mouse to a

new location. .

Using the Keyboard

You can use the keyboard to choose commands and
make menu selections. First, activate the window you
want to use, such as the main HP ITG window or the
Editor window, by clicking on the preferred window.
Then use the keyboard to make selections:

m To select a command in a menu bar, press and the
underlined letter in the command name.

s To make a menu selection, press the underlined letter
in the command.

» To activate the different fields in dialog boxes, press

Tab .
s To cancel any menu or dialog box, press (Esc).

4-2 Getting Started

Online Help System

m To select a name from a list, press to access the
list box, press the arrow keys to highlight the name

you prefer, then press (Enter). If you know the name,
you can type it into the text box, then press (Enter).

HP ITG provides an online Help system, which includes
a tutorial that demonstrates the basic operation of

HP ITG. You can run the tutorial using the following
instructions:

1. Click on Help on the System menu bar.
2. Click on Tutorial ...

You might want to take the time to use the tutorial. It
illustrates the major features of HP ITG. The exercise in
chapter 5 of this handbook presents instructions to help
you learn how to develop your own test application.

The HP ITG Help system also includes the following
information:

How-to ...

Provides step-by-step instructions on the most common
tasks you’ll perform with HP ITG.

Instrument Help ...

Provides information on all instrument drivers included
with HP ITG.

Application Help ...

Provides information on the applications distributed
with HP ITG.

Subprograms ...

Provides information on all of the subprograms provided
with the HP ITG Library.

Getting Started 4-3

1/O Status ...

A message box displays the select code for each interface
installed in your computer.

Latest Information . ..

Lists the instrument drivers currently available with
HP ITG, and provides information about HP ITG
revisions not included in the printed documentation.

The Working
Environment

The Development
Environment

4-4 Getting Started

To develop test applications, you will be using a
development environment and a run-time environment.
The development environment involves using HP ITG
to generate instrument-control code and your selected
Quick programming language environment to debug the
test application. The run-time environment involves
creating an executable which you can install on other
PCs and run. Generally, all applications you use to
develop and run your programs will start from the
MS-DOS command line and will be used in a certain
sequence.

The development environment uses HP ITG to create a
soft test system and generate instrument-control code.
The soft test system contains the instrument drivers
and their states that simulate the actual test station
hardware your test application will control. The soft
test system is saved in a data file on your computer’s
mass storage. This data file is known as a workfile. The
generated program uses the workfile to control the test
station instruments when running the test application.
To continue test application development, you can
enhance and debug your program using the particular
programming language environment you chose during
installation.

Note

Ways to Start HP ITG

After completing the installation described in chapter 3,
you start HP ITG by entering hpitg at the MS-DOS
prompt. This loads the default program file, HPT_LOG,
into the HP ITG Editor window. It will include a file
name extension, such as .C or .BAS, depending on the
programming language you selected.

If you have created a workfile during a previous
development session, you can automatically load it when
starting HP ITG. For example, if you saved a workfile
under the file name FRQ_RESP.WF, you can load it when
starting HP ITG:

m Type hpitg frq_resp and press (Enter).

Workfile file names must include the .WF extension for
HP ITG to recognize them as workfiles. However, you do
not need to include the extension when starting HP ITG
or when saving workfiles. HP ITG automatically
appends the extension.

Adding Instrument Drivers

Whether you are creating a new workfile or modifying an
existing one, you can add drivers to the soft test system
for the instruments you want to control. The drivers
provide soft panels that let you control instruments and
set up instrument states.

Saving the Workfile

When the soft test system contains the drivers and
instrument states your test program will require, save
the soft test system in a workfile. Saving the workfile
before generating instrument-control code ensures
HP ITG will generate code that supports the specific
workfile.

Getting Started 4-5

Generating Code

Use the HP ITG Editor and the instrument soft panels

to generate the instrument-control code. HP ITG

generates the code in the programming language .
you specified during the installation procedure. The

editor’s features let you observe instrument-control code
generation as you interact with the instrument soft

panels.

Saving the Program

After generating code, save your program. You will
use this program file to complete your test application
development.

Starting the Quick Program Environment

You can start QuickC or QuickBASIC from the MS-DOS
prompt using special batch files supplied by HP ITG.

These batch files start the Quick environment, and load .
your test program. The batch files include the options

to support the calls made to HP ITG subprograms.

For QuickBASIC, the option loads the HP ITG Quick

Library. For QuickC, a make file is created and loaded

with the program. Just execute the batch file for the

language you are using and include the program name as

shown in these examples:

gbstart hpt_log.bas
qcstart hpt_log.c

Completing Your Program

Now you can add the program-control code and other
enhancements to your program. These enhancements can
include calls to additional HP ITG Library subprograms,

or to routines in other libraries to provide data collection .
and analysis, graphics, and a user interface for your

test application. This process involves the development

4-6 Getting Started

Note

The Run-Time
Environment

and debugging required to produce a complete test
application.

If you are using Microsoft C, you should use a

text editor to complete the coding. Then run the
compiler/linker as described in that product’s user’s
guide to debug and run your program. HP ITG provides
the batch file, CMAKE .BAT, to run the compiler/linker.
Enter cmake hpt_log to create an executable.

The run-time environment involves creating the
standalone program to control a test station. You can

create QuickC or QuickBASIC standalone programs from

the MS-DOQOS prompt using special batch files supplied

by HP ITG. These batch files compile your program and
link against the correct HP ITG libraries, then create the
executable. Just run the batch file for the language you
are using and include the program name as shown in the
following examples:

gbmake hpt_log
qcmake hpt_log

You can then distribute the executable, HPT_LOG.EXE,
along with HPITG.ERR to run-time computers at test
stations and run it by entering hpt_log at the MS-DOS
prompt.

Getting Started 4-7

A Complete Example

Overview

A
Frequency-Response
Measurement

The following exercise illustrates the key features of
HP ITG. Before you do the exercise, you must install
HP ITG and its drivers (see chapter 3 for details). See
the glossary for information about unfamiliar terms.

This example illustrates the steps needed to write a
program that measures the frequency-response of a
circuit. The program you write will set the HP 3325B
Function Generator to produce a 1 Vrms sinewave.
Then it will change the frequency in 1 kHz steps from
10 kHz through 20 kHz. The program will also set the
HP 3478A Multimeter to take 4.5 digit, AC voltage
readings at each frequency step. Even if you don’t
actually have an HP 3325B or an HP 3478A attached
to your interface, you can use HP ITG to generate the
example test program.

To complete this example, you will perform the following
steps:

Run HP ITG.

Create a soft test system.

Set up the instruments for the measurement.
Save the soft test system.

Generate the instrument-control code.

Edit the code.

Save your program.

Start the Quick environment.

Create an executable program.

PPN

A Complete Example 5-1

Step 1: Run After you have installed HP ITG and supporting

HP ITG applications (chapter 3), you can run HP ITG and begin
developing your test program. This step sets HPITG as
the working directory and starts HP ITG. By identifying
a working directory now, the files you save while using
HP ITG will be placed in that directory.

Assuming the monitor is displaying the MS-DOS
prompt, C:\, change to the HPITG directory and run
HP ITG:

m Type cd \hpitg and press (Enter).
m Type hpitg and press (Enter).

| HP Interactive Test Generator [<&
File JInstruments... fApplications... Systen Help

R B

oo

File Edit Search

Figure 5-1. HP ITG at Startup

5-2 A Complete Example

Step 2: Create a
Soft Test System

In this step, you add the instrument drivers you need
and specify any necessary configuration information such
as HP-IB addresses and subaddresses, timeouts, and
logical names. This combination of instruments is a soft
test system. You will save this soft test system later as
an HP ITG workfile. Then, when you run your program,
HP ITG uses the workfile to know which commands to
send to which instrument.

To add the HP 33258 to the work area:

1. Click on Instruments ... on the System menu bar.
2. Select HP3325B.1ID and click on Open.

HP3325B.1ID is the name of the driver file for the

HP 3325B Function Generator. If HP3325B. ID is not
listed, scroll to it by clicking on the arrows at the top
and bottom of the scroll bar next to the list.

. = KN
File Instruments... fApplications... System Help
Lo~ l...'”i,.
Open Instrument Name
Name
[wP33258.10]
Files in Ci\NPITE
nggguc.lo 4]
H 14A.10
HP33234. 10
HP332502. 1D
A Y
o] I
File Edit Searoh Help

Figure 5-2. List Box for Instruments

A Complete Example 5-3

HP ITG should now display the dialog box shown in
the following figure. A cursor appears in the Name:

field.
= K
File Instruments... fAoplications... Systen Help

EY ST

Instrument Configuration for WPI323B

ames MEEE |

:ddr"ll] |
uba ress:

Timeourters (€anoe1)

-]

Edit Search

Figure 5-3. The Instrument Configuration Dialog Box

3. Do not edit the Name: field.

The Name: field contains the default logical name
that HP ITG has selected for the instrument. This
field lets you enter a more descriptive name for an
instrument, such as SYNTHESIZER instead of the
default HP3325B. Also, if you should ever use more
than one of the same model instrument in your soft
test system, you could name the first one SRC_1, and
the second, SRC_2.

5-4 A Complete Example

4. Press to select the Address: field.

a. If you do not have an HP 3325B attached to your

interface board, leave the Address: field set to 0.

- This prevents HP ITG from communicating with
the interface board.

b. If you do have an HP 3325B attached to your
interface board, type in the instrument’s
three-digit device select code/address. The select
code identifies the interface board. The address
identifies a particular instrument attached to that
board. For example, if the instrument’s HP-IB
address is set to 17, and it is attached to an
interface board set to select code 7, then type 717
into the Address: field.

c. Click on OK.

5. Repeat steps 1-4 for the HP 3478A. Its driver file
name is HP3478A.1D.

6. Move the HP3478A panel to the side by clicking on its
title bar and dragging the panel.

The display on your screen should resemble the following
figure.

A Complete Example 5-5

{91

Help

N

— HP Interactave Test Generator
File Instruments... Applications... gysten
=T o 10 [=l Dm0
|R.I¢t| | Main Panel | |lolot| | Main Panel |
K|l ? | |runecson
Funorion [voe]
Amplitude 1im
ranae [aurs][=] e
= - o] BTG

fFile Edit Search

Help

Figure 5-4. HP 3478A and HP 3325B Are Part of the Soft Test System

Step 3: Set Up the
Instruments

The Initial State The driver files for the HP 3325B and HP 3478A contain
information that tells HP ITG how to configure their
panels when you add them to your soft test system.
This information is known as the instrument state. The
instrument state refers to the values that appear on
the panel’s control buttons. The particular values that
appear when you add the panels are the initial values

and exist for every driver as the initial state.

Now, notice the Reset button in the top left portion
of each panel. If you get lost while working with the
instrument panels, just click on this button to return the

panel to its initial state.

5-6 A Complete Example

Multi-Layered Panels

Set Up the HP 3325B
Panel

Store an Instrument
State

Many instrument drivers use subpanel layers to define
more instrument features. The control to the right of the
Reset button lets you change subpanels. Each subpanel
gives you access to more controls, displays, and buttons.
You will not need to change subpanels for this exercise.

Set the panel for a 1 volt rms sinewave. You will only
need to change the amplitude setting now, since the
remaining initial values are appropriate for this example.
You will change the frequency later when you generate
code in Step 5.

1. Click on Reset to ensure the panel is set to the initial
state.

2. Set the amplitude to 1 volt rms.
a. Click on the button next to Amplitude.
b. Click on 1, then click on OK.

c. Click on the amplitude units box to the right of
Amplitude.

d. Click on Vrm, then click on OK.

Now that you have the HP 3325B set up as needed,
HP ITG lets you store the setup as a state so you can
use it throughout your program.

1. Click on the instrument panel menu box (top left
corner) to access the panel menu.

2. Click on Store State ...
3. Type newstate and press (Enter).

A Complete Example 5-7

= B> ioieractive oot Goneracor N [T
file JInstruments... @pplications... System Help
_ _ Tr——eeswes T =] wp33250, oSS) bl
Hamet State Store] |R.l.t| Maln Panel
[newstate | =1
5 Ul |renecion
& Amplitude 1 @
Trisser Wola onese L 1
= - oo KK
File Edit Search Help

Figure 5-5. The State Store Dialog Box

Set Up the HP 3478A Set the panel to read AC volts. You will need to change
Panel only the Function control because the multimeter’s
remaining initial values are appropriate for this example.

1. Click on Reset to ensure the panel is set to the initial
state.

2. Set Function to read AC volts.
a. Click on the button next to Function.
b. Click on ACV, then click on OK.

3. Store this instrument setup as a state.

a. Click on the instrument panel menu box (top left
corner).

b. Click on Store State.
c. Type newstate and press (Enter).

5-8 A Complete Example

Note

newstate can be used as the state name for both the
HP 3325B and the HP 3478A because state names are
linked directly to the particular instrument driver. Since
state names are case-sensitive, be sure to use upper and
lower case characters consistently.

Step 4: Save the
Soft Test System

Caution

It is very important to save the soft test system before
you begin generating code. The soft test system is saved
in a workfile. This workfile must exist to provide the
information HP ITG uses to generate the correct code
for the soft test system and its instrument states. Be
sure you have added all of the instruments you will use
and created the instrument states. As an added benefit,
the next time you work with HP ITG, you can reuse the
workfile to generate other test programs.

Before you begin to generate code, save the soft test
system that you created in the previous step. This
ensures that HP ITG will generate the correct code.

1. Click on File on the System menu bar.
2. Click on Save Workfile As ...

3. Type in a workfile name, such as frq_resp, then
press (Enter).

This saves the soft test system in the workfile,
FRQ_RESP.WF. HP ITG automatically appends the .WF
extension to identify these files as workfiles.

A Complete Example 5-9

— HP Interactive lest Gener ator 1 3 [442]
File Instruments... fApplications... System Help
Y RS
N W= N .o .l e T m L -
Save Work File As: Ci\HPITE]
[fra_respl] (oKX
(canser_) [°"
Functlion rY)
ranee [l]
Assigon O
EAED
File Edit Search Help

Figure 5-6. Saving the Soft Test System to a Workfile

Step 5: Generate The code that HP ITG generates is displayed in the

Code HP ITG Editor window. You can edit each line of
code, and add and delete whole lines. As you work in
the HP ITG Editor, your keyboard’s cursor and edit

keys, such as (Home), (End), and the arrow keys are fully

functional.

Note The current file name for your program is displayed
on the Editor title bar. The file name extension is
consistent with the programming language you selected
when you installed HP ITG. If you are using C,
the default file name is HPT_LOG.C. If you are using
QuickBASIC, the default file name is HPT_LOG.BAS.

5-10 A Complete Example

Preparing the Editor
Window

Set Modes

Initially, the Editor’s size can be kept small to allow full
view of the panels. As you change the panel settings,
HP ITG generates code in the Editor regardless of its
size. You can resize the Editor to a convenient size at
any time.

1. Click on the HPT_LOG icon if the Editor window is not
displayed. HP ITG icons appear in the column at the
far right of the work area.

2. Clear the Editor if it contains program code.
a. Click on Edit on the Editor menu bar.
b. Click on Select All.

c. Click on Edit again, then click on Clear.

Each instrument panel provides a mode option called
Log HP ITG Calls. You must enable this mode for

HP ITG to generate instrument-control code. With
Log HP ITG Calls enabled, HP ITG generates calls

to subprograms in the HP ITG Library. The HP ITG
subprograms interpret the panel interactions to control
instruments. The code is generated in your selected
programming language. Turn on Log HP ITG Calls
mode for each instrument. If you entered HP-IB
addresses for instruments connected to the bus, you can
control them as you generate code by turning on Live
mode at this time:

1. Click on the HP3325B panel menu box.
2. Click on Modes ...

3. Click on the box next to Log HP ITG Calls so an X
appears in the box. An X in the box means the mode
is on.

4. Click on the box next to Live so an X appears in the
box if you connected the instrument to the interface
bus.

A Complete Example 5-11

5. Click on OK.

6. Enable Log HP ITG Calls (and Live if the instrument
is connected to the interface) in the HP3478A panel.

HP Interactive Test Generator

[9]

File Jnstruments...

fApplications... System

Help

=T EvTrYSN ¥ Nl LT

e
Xl Inoremental Recall Xlitog WP 176 Galls]

CQ Error Cheoking
[JLive

.11‘ |.41,

{0 automacic Update

(DK Q (Ccance1)

Ndigics

Trigger

a3]
Phase

o

——
——
E—C—

[&1

-]

File Edit

Search

Figure 5-7. The Device Modes Dialog Box

Generate Initialization

Code

5-12 A Complete Example

The HP ITG Editor lets you automatically generate
initialization code. All programs generated with Log
HP ITG Calls require a certain amount of initialization
code. This code includes program statements that
declare certain variables and arrays, assigns HP-1B
addresses to instrument variable names, and identifies
the workfile containing the instruments and their states.
You will enlarge the Editor for this step to view the

initialization code as it’s generated:

1. Point to the Editor’s top border until a bidirectional
arrow appears, then click on the border and drag it

halfway up the screen.

2. Click on Edit on the Editor’s menu bar.

3. Click on Generate Initialization Code.

4. Click on Yes in response to the message, since you
already saved a workfile.

Note After generating the initialization code, HP ITG places
the Editor’s cursor at the line where you should continue
code generation. You can scroll through the code using
the scroll bar at the right side of the Editor. To avoid
moving the cursor when activating the Editor, click on
the Editor’s title bar, not in the edit area.

Recall States Now you need to generate the code that sets up the
instruments to make the measurement. You can do this
by recalling the instrument states you stored in Step 3.

1. Click on the panel menu box in the top left corner of
the HP 33258 panel.

2. Click on Recall State ...

3. Click on newstate, then click on Recall. This
generates a call statement in the Editor window.

4. Repeat this procedure for the HP 3478A and recall its
instrument state, newstate.

A Complete Example 5-13

file JInstruments... fpoplications

T

«aa fvsten Help

D>

5 B
. T weesesssy T - wpazzss, oK ~
State Recall] |' "'l I nain P 1 |
Names ese ane
In.wttnt. I
WPTINITIALSTATE 0] Funotion
nevctate
$ Amplitude 1 EI
Recall (Canocel) [Ql Q
Help
hp3325b = hot_:(llnl-\ (""HP33230"°, EXPANDED)) +
hp3478a = hpt_assign ("HP3478A°, EXPANDED))
hot_recall (hp3325b, 'newstate’’)s
hpt_recall (hp3478a, “‘newstate™)s
hpt_close_all ()3
return (0>
4

Figure 5-8. The State Recall List Box

Adjust Frequency and You aren
Take a Reading

ow ready to generate the code needed to take

the first of 11 voltage readings, from 10 kHz through 20

kHz at 1 kHz intervals. As you change the instrument

panel sett

ings, HP ITG generates code that duplicates

your actions when you run the program. You might
need to adjust the Editor window size to access the
instrument panels, but you will still see the statements
as HP ITG generates them.

1. Change the HP 3325B frequency setting.
a. Click on the button next to Frequency.

b. Click on 1, 0, then kilo.

c. Click on OK to generate the command.

2. Take a reading by clicking on the HP3478A panel’s
display.

3. Enlarge the Editor window to full screen to view the
entire generated program. Click on the up arrow in
the upper right corner of the Editor window. Use the
scroll bar at the right to move through the code.

5-14 A Complete Example

Step 6: Edit the The following instructions explain how to add a loop in
your program to make the other ten measurements, and

. Code print the results. The loop will repeat the calls to the
subprograms that change the HP 3325A frequency and
take reading with the HP 3478A. Please use the section
in this step that describes the programming language
you are using.

QuickBASIC 1. Click on the space just before the call to hptset and
insert the following line:
FOR frequency# = 10000 TO 20000 STEP 1000
2. Insert the following lines after the call to hptget:
PRINT "Frequency:",frequency#,"Voltage:",reading#
NEXT frequency#

. 3. In the line calling hptset, replace the number 10000
with frequency#.

Your QuickBASIC program should look similar to the
following figure.

A Complete Example 5-15

[T

Help

JCOMMON hp3325b%
ICOMMON hp3478ax

ICLEAR , , 8000

NEXT frequenoy®
hptoloseall
[END

File Edit Search
EM SDYNAMIC 4+
JREM SINCLUDE: “hpitg.bi”

basicheapsixe&=SETMEM(-30220) °

Alloocate memory for HP IT6

* Allocate 8K bytes for a stack

ICALL hptlnlt('FRQ_RESP.WF*) I
ICALL hptassign('HP3323B"°, EXPAMNDED, hp3323bx)

ICALL hptasslagn(“"HP3428A, EXPANDED, hp34728ax)

ICALL hptrecall(hp3323bx, °*
ICALL hptrecall(hp3428ay, ‘“‘newstate’')

FOR frequency® = 18000 TO 208088 STEP 1880

CALL hptset(hp3323b%, FREQUENCY”, frequenoy®)
CALL hptget(hp34?8ax, "READING", reading®)

PRINT “Frequenoy:™,frequenoy#,'Voltage:’,reading®

‘newstate’')

Figure 5-9. The Final Program in QuickBASIC

QuickC

for (frequency=10000; frequency<=20000; frequency+=1000) {

printf ("\nFrequency: %u \t Voltage: f", frequency, reading); }

5-16 A Complete Example

1. Click on the space just before the call to hpt_set and
insert the following line:

2. Insert the following line after the call to hpt_get:

3. In the line calling hpt_set, replace the parameter
(double) 10000 with frequency.

4. In the line calling hpt_get, replace the parameter
&double_value with &reading.

5. Add int frequency and double reading to the
variable declarations at the beginning of the main()
function.

Your C program should look similar to the following
figure.

BT

File Edit Searoch

#include (stdlib.h>
#inolude (stdio.h)
#include "hpitg.h"

lint main (argo,
int argos

jchar xsargv;
int frequencys
jdouble readings

<

Step 7: Save Your
Program

[double double_wvalues
jchar string_value [nax BTRING_LENGTH + 113

OEVICE hp3323bs
OEVICE hp3478a)

hpt_init ('FRQ_RESP.WF*');
hp3325b = hpt_assign ("HP3323B"°, EXPANDED):
hp3478a = hpt_assign (T'HP3470A*°, EXPANDED))
hpt_recall (hp3323b, “newstate’’)s
hpt_recall (hp34780a, “"newstate™)
for (frouu.nuv-l....
hpt_set (hp3323b, NCY**, frequenoy)s
hpt_get (hp3470a, “READING', reading);
printf ("\nFroquonovl u \t Voltage: X%Xf"°, frequenoy, reading);

)
hpt_olose_all ()3
return (0)s

1] fro::gnov(-t....l frequenoy+=1800); ¢

Figure 5-10. The Final Program in C

Now that you have generated the initialization and
instrument-control code in HP ITG, you should save
your program and exit HP ITG in preparation for
further program development.

1. Click on File on the Editor menu bar.
2. Click on Save.

3. Click on the bidirectional arrows in the Editor
window’s upper right corner.

4. Exit HP ITG.
a. Click on File on the System menu bar.

b. Click on Exit To DOS to return to MS-DOS.

A Complete Example

5-17

Step 8: Start You are now ready to start the Quick environment
ick Environment for the language you are using so you can debug the
Quick ironme program generated in HP ITG. This step explains ‘
how to use batch files supplied with HP ITG to start

QuickBASIC or QuickC. If you are using Microsoft C,
continue with Step 9.

Since you created a program using the Log HP ITG
Calls mode, you will need to include the HP ITG Quick
Library to use in QuickBASIC, or create a make file

to use in QuickC. The batch files let you start either
environment with the proper options so you can continue
program development.

To start the QuickC environment, enter the batch file
name with the program file name at the MS-DOS
command line:

qcstart hpt_log.c

To start the QuickBASIC environment, enter the batch ‘
file name with the program file name at the MS-DOS
command line:

gbstart hpt_log.bas

After starting either environment, refer to the product’s
manual for information about its operation.

5-18 A Complete Example

Step 9: Create an
Executable
Program

When you have debugged your program and it is running
correctly in the Quick environment, you can create an
executable that you can run directly from the MS-DOS
command line. If you are using Microsoft C, and

have edited your program, you are ready to create an
executable.

This step explains how to use a batch file supplied with
HP ITG to create an executable. The batch file compiles
your program into object code, then automatically links
the object code against the correct HP ITG standalone
library to create the executable, HPT_LOG.EXE.

To create the executable from your Microsoft C program,
enter the batch file name with the program file name at
the MS-DOS command line:

cmake hpt_log

To create the executable from your QuickC program,
enter the batch file name with the program file name at
the MS-DOS command line:

gcmake hpt_log

To create the executable from your QuickBASIC
program, enter the batch file name with the program file
name at the MS-DOS command line:

gbmake hpt_log

A Complete Example 5-19

Creating and Using a Soft Test System

Overview

Creating a New
Soft Test System

At Startup

To develop test software, HP ITG lets you to create

a soft test system onscreen that matches your actual
test system. Your interactions with panels on the soft
test system generate software that runs the actual test
system. When you save a soft test system, HP ITG
saves the panels, their instrument configurations, and
instrument states in a workfile.

By using the HP ITG Instrument Drivers, you can
create many workfiles to support different test systems.
Each system would consist of the instruments for which
drivers exist. You can add instruments to the system
as new drivers become available, and you can delete
instruments from the system.

When you run HP ITG the first time, the Editor window
is displayed at the bottom of the work area, and the icon
area at the right is blank. You can immediately start
building a test system by adding the instruments and
applications you want to use.

Creating and Using a Soft Test System 6-1

During a Work If you have been working with one test system and
Session Want to remove it to create another one, follow these
instructions:

1. Click on File on the System menu bar. .
2. Click on New.

This clears the work area and the icon area. Now you
can start building a new test system by adding the
instruments and applications you need.

You can also create a new test system by modifying an
existing one, then saving the new test system under a
new name. For example, assume the new test system
you are planning includes instruments or application
panels already contained in an existing test system. To
remove an unwanted instrument panel:

1. Click on the panel’s menu box (upper left corner).
2. Click on Close to remove the panel.

3. Begin adding new panels required for the new system
by clicking on Instruments ... on the System menu
bar.

4. To save the modified soft test system, click on File
on the System menu bar, then click on Save Workfile
As ... and enter the new workfile file name.

6-2 Creating and Using a Soft Test System

Opening an If you or someone else have previously created and saved

‘ot a workfile of a soft test system you want to use, you can
‘ EXISttlng Test open the existing workfile. HP ITG will ask you to save
ystem changes made to the current workfile before loading the

next one.

1. Click on File on the System menu bar.
2. Click on Open Workfile...

3. To change directories, click on [..], then Open.
Select the directory name.

4. Click on the correct workfile name or type it in.

5. Click on Open.

Note You can open an existing workfile each time you start
HP ITG by specifying the workfile’s file name in the
MS-DOS command line:

‘ hpitg workfile

If you do not specify workfile, HP ITG automatically
opens DEFAULT.WF if that workfile exists.

Saving a Soft Test
System

For the First Time If you built a new soft test system and you are saving
it for the first time, you need to save it as a particular
workfile:

‘ 1. Click on File on the System menu bar.
2. Click on Save Workfile As ...

Creating and Using a Soft Test System 6-3

3. Type in a new workfile name. To create the
DEFAULT . WF workfile, type in default.

4. Click on OK. ‘
When you type in a workfile name, HP ITG will add the

.WF extension automatically. Be sure that the file name

you enter meets MS-DOS file naming rules. The .WF file

name extension is important because HP ITG displays

only workfile names ending with .WF when you select

the Open and Save Workfile As ... commands in the

system File menu.

Resaving a Soft Test If you are resaving a soft test system, HP ITG saves the
System workfile under the same name you used to open the
workfile.

1. Click on File on the System menu bar.

2. Click on Save Workfile.

Using the Default If a DEFAULT.WF workfile exists, HP ITG opens it
Workfile automatically when you type hpitg at the MS-DOS
command line and press to start HP ITG. If you
want to work with only one soft test system, you may
want to save it as the default workfile, DEFAULT . WF,
instead of giving it a unique name.

Caution If you have generated code using HP ITG’s Log HP ITG
Calls mode, you must save the soft test system used to
generate this code or your program will not work.

6-4 Creating and Using a Soft Test System

Adding and To add an instrument to your soft test system, you
. . need to load the correct driver file for that instrument.

‘ Conflgu"ng The file names for the drivers shipped with HP ITG

Instruments are listed in the online Help system under Latest
Information ... You will notice both driver and !
help file names. These files must be kept in the same i
directory for the instrument help information to be
available.

1. Click on Help on the System menu bar.
2. Click on Latest Information ...

3. Click on the topic HP ITG Instrument Drivers, then
click on OK.

4. Scroll through the list using the scroll bar to the right
to locate the instrument you want to add.

5. Note the file name for that instrument (file name

‘ extension is .ID).

6. Quit the Help window and proceed to add and
configure the instrument.

You can add up to 254 instruments to your test system
if your computer contains sufficient additional memory.
The following instructions explain how to display the
instrument selection list box so you can select and add
instruments.

1. Click on Instruments ... on the System menu bar.

2. Click on the instrument of your choice or type in its
driver file name.

3. Click on OK.

‘ Though HP ITG allows you to add up to 254
instrument/application panels in one soft test system,
the number of panels and icons that HP ITG can display
at any one time depends on the size of your screen.

Creating and Using a Soft Test System 6-5

You can reduce panels to icons by clicking on the arrow

in the top right corner of each panel. If there are more

icons in the icon area than HP ITG can display at one

time, click on the arrows at the top of the icon area to .
scroll through the list.

Configuring the After you have selected an instrument, HP ITG displays
Instrument the instrument configuration dialog box shown in the
following figure. This configuration dialog box is also
available from the panel menu, which allows you to make
changes after you have added the instrument to your soft
test system.

= TR
File Instruments... Applications... Systen Help
R 50
HPY_LOG.
Instrument Confliguration for HP3488A2 HP33258
Name: P | —) HP3478A
Address: L] q
Subaddrassi
Timeout(s): |30 .

Figure 6-1. Configuration Dialog Box for an Instrument

The configuration dialog box contains four fields: name,
address, subaddress, and timeout(s). To edit any field,
press the or click on the character in the field where
you want to place the cursor and begin editing.

6-6 Creating and Using a Soft Test System

Note

Name

In the Name field, enter the name you want to use to
refer to this instrument /address combination.

m The default name is the driver file name with the .ID
extension removed.

HP ITG uses Name to bind a driver to an instrument at
a specific bus address in the current test system. This
allows you to use the same driver to run another unit
of the same instrument model at a different address.
For example, if you have two HP 3478A multimeters in
your test system, you must select HP3478A.ID twice and
provide two different addresses and names.

Address

If the instrument is connected to the interface board,
enter its address in the Address field. If the instrument
is not connected to the interface board, leave Address
set to 0.

The default address is 0.

If you enter an address other than 0 but the instrument
is not connected to the interface board or set to that
address, HP ITG will generate an error. Click on 0K to
continue. HP ITG will reset the address to 0.

Subaddress

In the box labeled Subaddress, enter a subaddress if the
instrument is a module that requires a subaddress.

m Subaddresses are usually only necessary for card-cage
instruments.

HP ITG ignores subaddresses that are specified but not
needed.

Creating and Using a Soft Test System 6-7

Timeout(s)

In the box labeled Timeout(s), enter the amount of time
in seconds you want HP ITG to wait for a response from
an instrument when its panel is in Live mode. This
value is also valid in the run-time environment. You can
set Live mode from the instrument panel menu under
Modes ... Live mode lets you control the instrument
directly from the HP ITG development environment.

m The default time is 30 seconds.

Using HPIB.ID If you want to include an instrument in your test system
but an instrument driver does not exist for it, you can
still control it by using the driver named HPIB.ID. This
driver lets you control simpler instruments without
having to write your own instrument driver. To add
HPIB.ID to your work area:

1. Click on Instruments ... on the System menu bar.
2. Click on HPIB.ID, then click on Open. ‘

3. Complete the instrument configuration box for the
instrument you are using, then click on OK.

To use HPIB.ID, you need to know the instrument’s
HP-IB codes that control its features over the interface
bus. Otherwise, use the panel as you would any other
soft panel to generate your instrument-control code.
See chapter 7, “Soft Panel Operation,” and chapter 8,
“Controlling an Instrument,” for information.

6-8 Creating and Using a Soft Test System

Deleting
‘ Instruments

Caution

Delete an instrument panel from the soft test system
only if you are sure you do not want that instrument
panel. This deletes all stored states for that panel and
removes the panel from the soft test system.

You can delete an instrument from your soft test system:

1. Click on the instrument panel’s menu box (top left
corner of the instrument panel).

2. Click on Close.

Adding
Applications

You can add an application panel to your test system:
1. Click on Applications on the System menu bar.
2. Click on the application of your choice.

HP ITG lists all of the installed application drivers in
the current directory. Applications must end with a .AD
file name extension to be listed.

An application is anything you can control through an
HP ITG soft panel that is not a standalone instrument.
An application is a program written in the HP ITG
driver style. A program written in this way provides a
panel through which you can interact with the program
just as you use an instrument panel to interact with
instruments.

An application may perform simulation, modeling, or
data analysis. Or, it may combine features of one or
more instruments into a virtual instrument.

Creating and Using a Soft Test System 6-9

Printing the
Display

Configuring Your
Printer

Note

To print a copy of the HP ITG display, be sure your
printer is connected to the correct interface bus, turned
on, and properly configured.

1. Click on File on the System menu bar.
2. Click on Print ...
3. Complete the dialog box, then click on OK.

If an error appears when you attempt to print, you may
need to configure your printer. Printer configuration is a
two-step process: first, the printer driver for your specific
printer must be installed; then the printer must be set
up. If you identified your printer during the HP ITG
installation process, you should not have to install a
printer driver, but you probably will need to set up the
printer.

If you are adding a new printer, you will need to install
the printer driver from the HP ITG distribution disks.
Run HP ITG’s Setup program again to install the
printer driver. Be sure to use the same options and to
identify the new printer, then quit Setup when prompted
to identify the directories. After installing the new
printer driver, you are ready to set up the printer.

1. Run HP ITG.

2. Click on System on the System menu bar.
3. Click on Configure.
4

. When Control Panel appears, click on Setup, then
click on Connections ...

5. Click on the printer model and the connection, then
click on OK.

Printers using the HP-IB interface must be connected to
LPT1.

6-10 Creating and Using a Soft Test System

Click on Setup again, then click on Printer...
Click on the printer model, then click on OK.

Complete the printer information, then click on OK.

© o N o

To quit Control Panel, click on the menu control box
in the panel’s upper left corner, then on Close.

] HP Interactive Test Generato: [& [
File Instruments... fppliocations... fystem Help
..ll‘,- ..'l'l,.
HPT_LOG.
—| e HP3323H
Installation e J Preferences HP3476A
Lonneotions...
[Tln. Printer...
Co nications Port...
10:37: 80 A_Copmunio .

Cursor Blink Double Click

Slow Fast 8low Fast
EHN S
" [_‘ [_‘

Figure 6-2. The Printer Configuration Control Panel

Creating and Using a Soft Test System 6-11

[4

Soft Panel Operation

Overview

Panel Size

Panel Layout and
Style

For each instrument or application, HP ITG displays a
panel on the screen through which you can control an
instrument or run an application program. The driver
is a logical representation of the instrument. As such, it
contains information that determines the panel’s size,
layout, operation, and initial state, among other things.
Each driver supplied by Hewlett-Packard is documented
in HP ITG’s online Help system.

Panels provided by Hewlett-Packard come in three sizes:

s Quarter.
m Half.
w Full.

The figure on the following page shows a typical HP ITG
panel.

Soft Panel Operation 7-1

=

R

Display

File Instruments... foeslicatiems... Syvsten Hels

e] od T

Title bar WPT_LOG.

Panel menu box - HPI3258
Button 4.--.!- | | MHain Panel }- Subpanel control

| 7] R

Functiesm (74"
nemee] _=]

- Controls
Trisser Hold

Auto Zero II}__

Toggle

Figure 7-1. An Instrument Panel

7-2 Soft Panel Operation

All panels consist of one or more of the following
elements: controls, buttons, subpanels, and displays.

Controls

Clicking on a control lets you change the panel settings
in the following ways:

m Enter a numeric value.

s Select a value from a list.

s Toggle between two values—the current value is
displayed in the control box.

Some controls provide a Query button. The Query
button is part of the dialog box displayed when you click
on the panel menu box (see following figure). The Query
lets you request the instrument to update the panel with
the current value of the instrument’s control setting,

if the panel is in Live mode. See chapter 8 for more
information about Live mode.

o | HP Interactive Test Generator [< [0

File]Instruments... Applications... Svstem . Help
I
- I:Izlmm l i! HP23238
‘ |l.:.t | I Sratus Panel —|
sra nask NN
SRQ Status . ..;:12’ o 1
::::: Res E []] (c1ear)
@@
@@
oo
OO (Cauees

Figure 7-2. Click on the Query Button to Update the Panel

Note Some controls let you type in a value. Be sure to press
or click on OK after typing in the value.

Buttons

Clicking on a button causes an action. For example, a
Volt Reset button resets the voltage control to a default
value.

Subpanels

Many instruments contain more controls and buttons
than can be displayed on one HP ITG panel. Most

panels provided by Hewlett-Packard have a control in
the top right corner that lets you select from a list of
available subpanels when you click on it. The control
displays the name of the currently selected subpanel.

Occasionally, several parameters must be set when using
‘ a particular feature, such as advanced triggering on

the HP 3458A. In these cases, clicking on the control

displays a dialog box that you must complete.

Soft Panel Operation 7-3

Displays

A display is either a numeric/string readout or an XY
display. Clicking on a display makes a measurement and

displays a reading. ‘

Note An HP ITG XY display is not intended to duplicate the
instrument’s display. Rather, it provides a way for you
to generate the code needed to make a measurement and
send the measured data to the computer for storage and
analysis.

Automatic Update. Some instrument drivers allow
displays to be continuously updated after clicking on
them. You can turn on this mode from the panel control
menu:

1. Click on the panel menu box, then click on Modes ...

2. If the driver supports the mode, Automatic Update
appears in black characters. ‘

3. Click on the box next to Automatic Update so an X
appears.

4. Click on OK.

This mode must also be turned on for the whole soft test
system:

1. Click on System on the System menu bar.

2. If Automatic Update has a check mark beside it, the
mode is on.

3. If no check mark exists, click on Automatic Update to
turn the mode on.

To start the continuous updating for a panel, click on its
display. To stop the updating, click on the display again. ‘
By controlling the mode from the System menu bar

and from the panel menu, you can turn on Automatic

7-4 Soft Panel Operation

Reset Button

Note

Update for individual instruments or for whole soft test
systems.

Panels provided by Hewlett-Packard include a Reset
button that returns the panel, and the instrument (if
connected), to a default state defined in the driver. This
default state may or may not match the instrument’s
power-on state.

HP ITG creates a state called HPTINITIALSTATE
when you load the panel into a soft test system. This
state consists of the initial values of the instrument’s
functions as defined in the driver, and has the

same effect as the panel’s Reset button. You can

recall HPTINITIALSTATE using the panel menu’s
Recall State ... command. You can overwrite
HPTINITIALSTATE by changing the panel values, then
clicking on Store State ... in the panel menu.

Panels and Icons

HP ITG can store the panels you are not currently using
as icons. The icons are displayed along the right side of
the HP ITG work area as shown in the figure on the
following page.

Soft Panel Operation 7-5

15 9%
Help
Ev B
HPT_LOG.

HP33238
HP3470A
HP3488A2

A

HP Interactive Test Generator

—)
File Jnstruments... fpplications... gystem

Figure 7-3. Panels Stored as Icons

Expanding an Ilcon You can expand an instrument icon so that you can work
with the panel by clicking on the icon.

Reducing a Panel You can reduce a panel to an icon by clicking on the
arrow in the top right corner of the panel.

Moving a Panel You can move a panel around the work area:

1. Click and hold on the panel name on the panel’s title
bar.

2. Drag the panel to the new location, then release the
mouse button.

Note When you move a panel, it may be overlaid by another
panel that you expand from an icon. To bring a hidden
panel into better view, you can click anywhere on the ‘
panel to bring it to the top of the stack.

7-6 Soft Panel Operation

Getting Help on a

. Panel

From the Panel

From the System
Menu Bar

Each instrument driver supplied by Hewlett-Packard is
documented in HP ITG’s online Help system. The online
Help system provides a quick reference guide to the
instrument and its panel. You can access the information
from the Help command on the System menu bar and
from the instrument panel menu.

You can access the online reference through the panel
menu box:

1. Click on the panel menu box (top left corner of the
panel).

2. Click on Help ...
3. Click on the preferred topic.
4. Click on OK to display the information.

You can access the online reference through Help on the
System menu bar:

1. Click on Help on the System menu bar.
2. Click on Instrument Help ...

3. Click on the instrument file name from which you
want information.

4. Click on OK.
5. Click on the preferred topic.
6. Click on OK to display the information.

Soft Panel Operation 7.7

Computer
Museum

Controlling an Instrument

Overview

Caution

Making
Adjustments

In a Panel

One of the most powerful features of HP ITG is that

it lets you verify your measurement procedure as you
generate program code. With HP ITG, you can control
an instrument directly as you adjust its soft panel while
generating code. Then, you can verify every step of the
measurement procedure as the code is generated.

You should not adjust the instrument’s front panel
manually while using HP ITG to control an instrument.
When you adjust the instrument manually, HP ITG
cannot detect the adjustment.

You can control an instrument through its panel:

1. Make sure the instrument is properly connected to the
computer’s interface, and that its address matches the
one you assigned to the panel when you added it to
your soft test system.

Controlling an Instrument 8-1

2. Turn on Live mode.
a. Click on the panel menu box.

b. Click on Modes ... ‘

c. Click on the box next to Live so an X appears in
the box (figure 8-1).

d. Click on OK.
3. Verify that everything is connected properly.

a. Click on a panel control and either enter a value or
select a value from the list box.

b. Click on OK.

c. Observe the instrument to confirm that the
change you made on the panel also changed the

instrument.
4. Click on the panel display to take a reading (if
appropriate for the panel). ‘
= — TS T —— T
Fiie Jnstruments... fAoplications... gvstem Help
o EEhYd
HPT_LODS.
Devioce Modes HP33258
[X] Inoremental Recali [JiLos npP ITG Calls
[X] Error Cheoking [J Auctomatioc Update HP3488A2
XIkive]
' DK E , (Canocel ’
wov
e
Ndisits [a3]

Auto Zero

Figure 8-1. Controlling an Instrument with Live Mode

8-2 Controlling an Instrument

In a Program In a program containing calls to HP ITG subprograms,
Live mode is automatically on. You can, however,
insert a call to hpt_livemode to turn off Live mode

‘ for a given instrument. This is useful when you are

developing other parts of the program and don’t want to
execute the instrument control section. For a complete
description of hpt_livemode, see chapter 14 if you are
using QuickBASIC, or chapter 15 if you are using C.

Checking for If an instrument has error-reporting abilities, and its
Errors driver supports that feature, you can use HP ITG’s
Error Checking mode for the instrument.

When the Error Checking mode is on, HP ITG checks
the instrument for errors whenever you set a control
or make a measurement. Many HP panels provide a
‘ display, typically labeled Error, in which HP ITG
displays the number of the error that was detected. See
Instrument Help ... in HP ITG’s online Help system
or the instrument’s operating manual for error message
information.

Controlling You can use the Error Checking mode while controlling
Instruments Directly an instrument directly with HP ITG (Live mode is on):

1. Click on the panel menu box.
2. Click on Modes ...

3. Click on the box next to Error Checking so an X
appears in the box.

4. Click on OK.

Controlling an Instrument 8-3

= oo

File Jnstruments... fipplications... fvsten Help

-4 [
HPT_LOG.
Device Modes HP23258

X Inoremental Reosll COtos wP 178 Lalls
Error Cheokin O automatio Update HPI408A2

OLive
(oK w (Canoel)
T wow
Ndigits

Auto Zero

[a3 |
Trigser

Figure 8-2. Using the Error Checking Mode

In a Program To turn on Error Checking for an instrument within
your program, insert a call to hpt_errorcheck into
the program. Be selective about when you use the ‘
Error Checking mode in a program since it may slow
down program execution. For a complete description
of hpt_errorcheck, see chapter 14 if you are using
QuickBASIC, or chapter 15 if you are using C.

Changing You can change an instrument panel’s name, address,

Configuration subaddress, or timeout after adding the panel to the
. k :

Information work area

1. Click on the panel menu box.
2. Click on Config ...

3. Edit the fields in the instrument configuration box as ‘
necessary.

For a complete description about configuring
instruments, see chapter 6 in this handbook.

8-4 Controlling an Instrument

Creating and Using Instrument States

Overview After adjusting a panel as needed for a step in a
measurement procedure, HP ITG lets you store that
setup as an instrument state. This lets you use the
same setup repeatedly without having to reset all of the
controls.

When created, states are maintained in memory while
the instrument driver is open in the HP ITG work area.
The states are retained by the soft test system when you
save the workfile. You can also save states for export to
. other soft test systems.
If many states have been saved in a workfile, you can
recall one state after another in your program. This lets
you change the instrument settings quickly. To optimize
test throughput when recalling states, HP ITG provides
incremental state programming. This lets HP ITG
track the current state and send the minimum set of

commands to put the instrument into the next recalled
state.

Creating and Using Instrument States 9-1

Creating States

Storing a State

Note

Caution

Each state is given a name when created. State names
are unique to a given instrument. Many states can
share the same name as long as each state belongs to a
different instrument. For example, HPTINITIALSTATE
exists for all instrument drivers. This lets you give the
same state name to each instrument involved in a given
measurement procedure.

You can store an instrument state after changing the
panel setup:

1. Click on the instrument panel menu box.
2. Click on Store State ...

3. Type in a name or select from the list of names if you
want to overwrite an existing state.

4. Click on Store.

A name must begin with a letter; only letters, numbers,
and underscores (_) are allowable characters for the rest
of the name.

5. Be sure to save your soft test system before exiting
HP ITG if you have stored any new states.

Closing a panel deletes all stored states associated with
that panel if you then save the workfile. You should
consider creating a state library as a permanent backup.
The state library is described later in this chapter.

9-2 Creating and Using Instrument States

= — TR — ST

File]Jnstruments... fpplications... System Help

RIS

HPT_LOG.
. State Store HP33238
~ne
[FESTZ2_8TATH

Main Panel HP34BBA2
TEST1_STATE :
?
b4

(Store * (Cancel) ocv

»

Auto Zero

Figure 9-1. State Store Dialog Box

Recalling a State You can recall a stored state from a panel:
. 1. Click on the panel menu box.
2. Click on Recall State ...
3. Select from the list of names.
4. Click on Recall.

Creating and Using Instrument States 9-3

— HP Interactive Test Generator

R IR

file JInstruments... fpplications... gysten

Help

State Reoall
Name:s

[TEST1_STaTE |
Main Panel
TIALSTAT +
TEST2_STATE ?

$
Recall (Canocel) pev
R o[]
Mdiglts
Tripper

i

Auto Zero

| B0 B

HWPT_LOG.

HP33238

HP3488A2

Figure 9-2. State Recall Dialog Box

Maintaining States Once you have created instrument states, you can use
the State Maintenance dialog box to increase each state’s

usefulness in various soft test systems.

Save state(s) to a file
Add state(s) to a file
Delete state(s) from memory

Print state(s) from memory
I3 (Sancet)

_II_H_IU |_|—

Trigger

Auto Zero

w— HP Interactive Teot Genevator | & %P
File Instruments... fioplications... gystem Help
R
HPT_LOG.
State Maintenance Main Panel NP33258

Open state(s) from a file
HP3488A2

Figure 9-3. State Maintenance Dialog Box

9-4 Creating and Using Instrument States

Deleting a State You can delete one or more stored states no longer
needed for an instrument:

1. Click on the panel menu box.
2. Click on State Maint ...

3. Click on Delete.

4. Delete state(s).

a. To delete selected states, press and click on
each state to be deleted, then click on Delete
Selected.

b. To delete all states, click on Delete All.

mmnm [HD Interactive lest Generator 14 19Q)

File Jnstruments... fAppliocations... Syvsten Help

R 5
HPT_LOG.
HP33238

Press Bhift and cliok on states to Delete

HPTINITIALSTATE £ Delete Selected)\

4 (caneer)

Ndigits 5]
Trigger
Auto Zero

Figure 9-4. The Delete State Dialog Box

Creating and Using Instrument States 9-5

Printing the Contents You can print the values for panel controls that HP ITG
of a State stores as part of an instrument state:

1. Click on the panel menu box. ‘
2. Click on State Maint ...

3. Click on Print.

4. Print state(s).

a. To print selected states, press and click on
each state to be printed; then click on Print
Selected.

b. To print all states, click on Print All.

= 19 1ntecactive test Generoro N Re2R)
Eile Instruments... @ppliocations... fystem Help
R
HPT_LOG.

Press Shift and oliok on states to Print
L 10 10 M + Print 8¢l.ootod
TEST2_STATE 3
L

Ndisits E
Trisser
Auto Zero

Figure 9-5. The Print State Dialog Box

9-6 Creating and Using Instrument States

Making a State
Library Saving States to a File

You can create a state library file that can be exported
to another soft test system:

1. Click on the panel menu box.
2. Click on State Maint ...

3. Click on Save.

4. Select the state(s) to save.

a. To save selected states, press and click
on each state to be saved, then click on Save
Selected.

b. To save all states, click on Save All.
5. Type in the file name for the state file.
6. Click on OK.

= K3

File Instruments... fpplications... fvstem Help

iy | d3n
HPT_LOG.
HP3II2SB

Press Shifr and oliock on states to Save

TEST1_STATE Save Seleoted
TEST2_STATE
_-m
L

Ndigits E
Trigger
Auto Zero

Figure 9-6. The Save State Dialog Box

Creating and Using Instrument States 9-7

Adding States to a File

You can add a state to an existing state library file:

1. Click on the panel menu box.

2. Click on State Maint
3. Click on Add.

4. Select state(s) to add.

a. To add selected states, press and click
on each state to be added; then click on Add
Selected.

b. To add all states, click on Add All.

5. Type in the file name for the state file you are adding
the state(s) to.

6. Click on OK.

ot Generator TOT
Fiie [Instruments... fipplications... Systen Help
) 5

i
HPT_LOG.
HP33238

Press Shiftr and ollok on states to Add

T LS L

TEST2_STATE

H C_comomr)

Hdisitrs |I|
Trisser
Auto Zero

Figure 9-7. The Add State Dialog Box

9-8 Creating and Using Instrument States

Importing a State File

You can import a state file from another soft test

system:
‘ 1. Click on the panel menu box.

2. Click on State Maint ...
3. Click on Open.
4

. Click on the name of the state file you want to open,
or type the file name into the name field.

5. Click on Open.

When you open a state file, you now have access to all
states stored in that file.

= 0%
File Jnstruments... fpplications... Systen Help

2T 5

WPT N
Open State File 106G
: HP33238
[FRa_reSP. 8L
P
Files 1in C:\NPIT& MNain Panel

|
2
= [
Ndiglrs E
Trigger

Auto Zexo

Figure 9-8. The Open State List Box

Creating and Using Instrument States 9-9

Using States To use the full power of HP ITG, you should create
a state for as many instrument setups as you need to
complete a measurement procedure. Not only does ‘
this streamline the process of stepping through the
measurement procedure when you generate the code, but
it greatly simplifies the code itself.

Figures 9-9 and 9-11 are programs generated by
adjusting each function on each instrument. Figures 9-10
and 9-12 are programs generated by recalling states and
adjusting controls only for looping purposes. Each figure
presents the examples in the programming languages
supported by HP ITG.

hpt_set_str (hp3325b, "FUNCTION", "SINE");

hpt_set (hp3325b, "FREQUENCY", (double) 10000);
hpt_set (hp3325b, "AMPLITUDE", (double) 1);
hpt_set_str (hp3325b, "AUNITS", "RMS"); ‘
hpt_set_str (hp3478a, "FUNCTION", "ACV");
hpt_set_str (hp3478a, "ARANGE", "ON");

hpt_set (hp3478a, "NDIG", 3.5);

hpt_get (hp3478a, "READING", &double_value);

Figure 9-9. In C, Each Function on Each Instrument is Set Individually

hpt_recall (hp3325b, "STATE1");
hpt_recall (hp3478a, "STATE1");
hpt_get (hp3478a, "READING", &double_value);

Figure 9-10.
In C, Function Settings are Stored as Instrument States
and Then Recalled to Form a Procedure ‘

9-10 Creating and Using Instrument States

CALL hptsetstr(hp3325b%, "FUNCTION", "SINE")
CALL hptset(hp3325b), "FREQUENCY", 10000)
CALL hptset(hp3325b), "AMPLITUDE", 1)

CALL hptsetstr(hp3325b%, "AUNITS", "RMS")
CALL hptsetstr(hp3478a),, "FUNCTION", "ACV")
CALL hptsetstr(hp3478al,, "ARANGE", "DN")
CALL hptset(hp3478a),, "NDIG", 3.5)

CALL hptget(hp3478a},, "READING", reading#)

Figure 9-11.
in QuickBASIC, Each Function on Each Instrument is Set
Individually

CALL hptrecall(hp3325bJ,, "STATE1")
CALL hptrecall(hp3478aj,, "STATE1")
CALL hptget(hp3478aj),, "READING", reading#)

Figure 9-12.
In QuickBASIC, Function Settings are Stored as Instrument
States and Then Recalled to Form a Procedure

Incremental State
Programming

When HP ITG controls an instrument, it tracks the
current instrument state and sends the minimum

set of commands needed to put the instrument into
the next recalled state. This is called incremental
state programming. This improves test throughput

by eliminating the time spent sending unnecessary
commands over the HP-IB, as well as the time required
for an instrument to interpret and respond to the
commands.

When a panel’s Incremental Recall mode is on, HP ITG
performs incremental state programming on that
instrument. HP ITG automatically turns on a panel’s

Creating and Using Instrument States 9-11

Incremental Recall mode when you add it to your soft

test system. When you want HP ITG to send all of the
commands associated with a recalled state, you need to

turn off that panel’s Incremental Recall mode. .

Controlling You can turn Incremental Recall mode on or off to
Instruments Directly control instruments directly as needed:

1. Click on the panel menu box.
2. Click on Modes ...

3. Click on the box beside Incremental Recall. An X
in the box means the mode is on.

In a Program To turn off Incremental Recall mode for an instrument
within your program, insert a call to hpt_incremental
into the program. For a complete description of
hpt_incremental, see chapter 14 if you are using

QuickBASIC, or chapter 15 if you are using C. .

9-12 Creating and Using Instrument States

Computer

Museum 1 0

The HP ITG Editor

Overview

HP ITG provides an Editor window that lets you view
and edit the code HP ITG generates. This chapter
explains how to use the HP ITG Editor to generate your
program code.

HP ITG provides one Editor window in every soft test
system. You can add additional Editor windows as
needed. An additional editor is useful for comparing
files, for using one file as a reference while you create
another, or breaking large programs into smaller
modules.

) o0
File Inscruments... fpplications... System Helo
By B

Program file name
Editor menu bar
Title bar

HP 33258
Window size control HP34784
Scroll bars

O, ——]

File Edit Search

#include ¢(stdlib.h>
(Winclude <stdio.h)>
Hinclude “hpitg.h""

double double_values

int arsayp

char wxargu;
int frequencys
double readlnsg:

char strins_value [MAN_STRIMG_LENGTH + 1]

int maln C(arsc. arsv)

F

igure 10-1. The Editor Window

The HP ITG Editor 10-1

Adjusting the You can adjust the Editor window’s size and placement
Editor Window in the HP ITG work area. The adjustments can be
made by clicking on various locations around the Editor .
window or using the the menu available from the Editor
menu box at the left end of the window’s title bar. The
following instructions explain how to adjust the Editor
window by clicking on various locations.

Storing the Editor as You can reduce the Editor window to an icon if you need
an Icon the extra room to display more panels.

m Click on the down arrow in the top right corner of the
Editor title bar.

If you reduce the Editor window to an icon, HP ITG can
still generate code in the Editor. You can view the code
after expanding the icon back to a window.

Expanding the Editor ~ You can expand the Editor window from an icon. This .
Icon restores the window to the same location in the work
area before it was reduced to an icon.

m Click on the Editor icon to expand the Editor window.

Expanding the Editor You can expand the Editor window to full size.
to Full Size 5 (iick on the up arrow in the top right corner of the

Editor title bar.

Adjusting the Editor When the Editor window is visible in the work area, you
Window Size can adjust its size to more convenient proportions.

1. Place the mouse cursor on any Editor window border
so a bidirectional arrow appears.

2. Click and hold on the border, dragging it in the .
arrow’s direction.

3. Release the mouse button when the border is in the
preferred location.

10-2 The HP ITG Editor

Moving the Window

You can move the Editor window to a more convenient
location:

1. Click and hold on the Editor window title bar.
2. Drag the window to the preferred location.

3. Release the mouse button.

Using the File
Commands

Note

Starting a New File

Opening an Existing
File

The Editor menu bar contains the File command that
lets you open, save, and print your program files. See
appendix A in this handbook, “Menus Index,” for a
description of each command.

The default program name is HPT_LOG when the Editor
window first appears. The .BAS extension is added if
you are using the QuickBASIC language or .C for the C
language.

You can clear the Editor window to start a new program

file:
1. Click on File on the Editor menu bar.
2. Click on New.

This deletes the contents of the HP ITG Editor window,
and changes the file name to untitled.

You can open an existing program to edit in the Editor
window:

1. Click on File on the Editor menu bar.
2. Click on Open ...

3. To change directories, click on [..], then Open.
Select the directory name.

The HP ITG Editor 10-3

4. Select from the list of file names or enter the file name
in the Name: field.

5. Click on Open.

= T
File Jnstruments... fApplications... Gystem Help

2R BN
4y Pl

HP33258
HP34784

Figure 10-2. The Editor File List Box ‘

Clearing the Editor and Starting Over

You can clear the contents of the Editor window to
revise the current file:

1. Click on Edit on the Editor menu bar.
2. Click on Select All.
3. Click on Edit, then click on Clear.

The Select Al1/Clear commands work differently than
New. Clear causes HP ITG to retain the current file
name. For example, if you Open a file named FRQ_RESP,
clear the screen, then select Save, the file named
FRQ_RESP becomes empty. However, if you open the

file and select New, the Editor window is cleared, and
(untitled) appears in the title bar. The file FRQ_RESP
remains unchanged.

10-4 The HP ITG Editor

Saving a File

Note

Printing a File

There are two commands you can use to save your
program, Save and Save as

The Save Command

You can save your program under the current file name
which is displayed on the Editor title bar:

1. Click on File on the Editor menu bar.
2. Click on Save.

The Save As ... Command

You can save your program under a file name other than
the default file name, or the file name used to open it:

1. Click on File on the Editor menu bar.
2. Click on Save As ...

3. Type in the file name. Be sure to include the full
path name if the program should be saved in a
specific directory other than the current directory.

4. Click on OK. HP ITG saves your program as an ASCII
file.

If you type an existing file name, HP ITG asks if you
want to overwrite the existing file.

You can print the contents of the Editor window to a
printer already configured for HP ITG. See chapter
6, “Creating and Using a Soft Test System,” for
information about printer configuration.

1. Click on File on the Editor menu bar.
2. Click on Print.

The HP ITG Editor 10-5

Using the Edit The edit commands let you enter and modify text in the
Commands Editor window.

Entering Text To activate the Editor window so you can begin to enter
text, click on the Editor’s title bar. A flashing edit
cursor appears in the window, indicating where text
will appear when you begin typing or generating code.
You can move the edit cursor’s location by clicking on
another character in the text or using the keyboard’s
edit keys.

Active Keys

All of the keyboard’s character keys and the edit keys
|De|ete l, [Home], [End], [Page UpJ, &ge Down], [Backspace],
(Enter), and arrow keys are active in the Editor window.
Since the Editor is always in the insert mode, the

key has no effect. '

Scrolling

As you generate code and the Editor window fills with
text, you can scroll through the text by using the scroll
bars. The scroll bars are located at the right side and
bottom of the Editor window. The right side scroll bar
scrolls the text vertically, while the bottom scroll bar
scrolls the text horizontally. For either scroll bar, use the
scroll arrow and box to view different areas of text:

m Click on an arrow to move one line at a time.

m Click and hold on the scroll box, and drag it to a new
location.

m Click in the scroll bar area outside the box to jump to
a new area in the text. ‘

The edit cursor remains in the same location of the text.
To move it, click on a different character.

10-6 The HP ITG Editor

Generating
Initialization Code

Note

Undoing an Edit

Selecting and
Replacing Text

Every program that calls HP ITG subprograms must
begin with standard initialization code. You can
generate this standard code automatically from the
Editor window. Be sure to save your workfile first.

1. Click on Edit on the Editor menu bar.
2. Click on Generate Initialization Code.

HP ITG generates initialization code for every panel that
has Log HP ITG Calls mode turned on.

Leave the edit cursor in the current position after
generating the initialization code. HP ITG automatically
positions the edit cursor at the line where you should
continue code generation.

You can cancel the last edit made if you undo the change
immediately after the edit:

1. Click on Edit on the Editor menu bar.
2. Click on Undo.

You need to select specific text before you can replace it
or use some of the Edit commands:

1. Click and hold on the character where the selection
begins.

2. Drag the mouse cursor to the end of the selection,
then release the button.

3. Replace the selected text by typing new text. When
you type the first character, all of the selected text is
deleted.

The HP ITG Editor 10-7

Deleting Text

Moving Text

Copying Text

10-8 The HP ITG Editor

Using Select All

You can select all of the text in the Editor window at
one time:

1.
2.

Click on Edit.
Click on Select All.

You can delete text from the program:

1.
2.
3.

Select text to be deleted.
Click on Edit on the Editor menu bar.
Click on Clear.

You can move portions of code to a new location:

1.

o

Select text to be moved.

2. Click on Edit on the Editor menu bar.
3.
4

. Scroll to, then click on the new location to position

Click on Cut.

the edit cursor where you want the text to appear.

Click on Edit again.

. Click on Paste.

You can copy portions of code to a new location:

1.

o

Select text to be copied.

2. Click on Edit on the Editor menu bar.
3.
4

. Scroll to, then click on the new location to position

Click on Copy.

the edit cursor where you want the text to appear.

Click on Edit again.

. Click on Paste.

Searching for Text You can search for text in your program code by using
the Search commands. A search always begins from the

. edit cursor’s location.

Finding the First . Click on the location from where you want the search
Occurrence to begin.
2. Click on Search on the Editor menu bar.

fu—

3. Click on Find ... and enter the information.
a. Type in the text you want to search for.

b. Click on the box next to Match Case to control
searches for capitalization. An X means the search
finds specific capitalization.

c. Click on the box next to Search Backward to
control the search direction. An X means the
search goes backward through the text.

. 4. Click on OK.

=] TR
File Instruments... @Applications... Svstem Help
EV B
HP33258
HP3428A
=T [3T%
File Edit Search Help
Searoh for:
[Fireauency
X Matoh Case
[0 Searoh Baokward

Figure 10-3. The Search Dialog Box

The HP ITG Editor 10-9

Finding the Next
Occurrence

You can find additional occurrences of the text you last
searched for:

1. Click on Search on the Editor menu bar.

2. Click on Find Next.

Getting Help on
the Editor

You can get help information about how to use the
Editor window:

1. Click on Help on the Editor menu bar.
2. Click on the topic name for which you need help.
3. Click on OK.

Adding Another
Editor Window

10-10 The HP ITG Editor

You can add additional editor windows to your work
area to use for file comparisons, for reference while
you create another program, or to break your program
into smaller modules. The default file name for these
additional editor windows is SCRATCH. TXT.

= T
Help

File JInstruments... fApplications... gvsten

= EIER

File Edit §earoh Help HP33258
1+ HP3478A

.."‘,‘ | W3

I
—
File Edit §e n
Winolude <(stdli - =

#include (stdio
#include ""hpite.

double double_value)
char string_value [MAX_STRIMG_LEMAGTH + 11)

int main (arge, argv)

int argcy
chay wmarguvy 4
4= =

Figure 10-4. An Additional Editor Window

1. Click on Applications ... on the System menu bar.
2. Click on EDITOR. AD.
3. Click on Open.

Note HP ITG does not generate code in the EDITOR.AD editor
window, although you can load and save files, and type
text into this window.

The HP ITG Editor 10-11

11

Generating Code Using Panels

Overview

Log Mode

Generating a measurement procedure using HP ITG
involves several tasks, such as turning on the HP ITG
log mode, generating initialization code, stepping
through the measurement, and editing the code. This
chapter explains how to do them. To help you edit the
code generated with HP ITG, this chapter also explains
how HP ITG subprograms are called and what they do
in your programs.

After you have created the states you need for a
particular measurement procedure, you are ready to turn
on Log HP ITG Calls mode. This mode generates calls
to subprograms in the HP ITG Library based on your
interactions with the panels. You can turn this mode on
or off as needed during program generation.

1. Click on the panel menu box.
2. Click on Modes ...

3. Click on the box beside the label Log HP ITG Calls so
an X appears in the box.

Generating Code Using Panels 11-1

The HP ITG
Subprograms

The Basics When you turn on Log HP ITG Calls for a panel,
HP ITG generates calls to subprograms in the HP ITG
Library. These subprograms control an instrument based
on your interactions with its panel.

The three primary subprograms are hpt_set, hpt_get,
and hpt_recall. There are also variations of hpt_set
and hpt_get that pass string and array data (for
example, hpt_set_str and hpt_get_iary).

Any control in a driver file is accessible by hpt_set,
hpt_get, and their variations. A control’s value is
changed by hpt_set. To take readings, hpt_get triggers
the instrument.

Instrument states you stored when working with
the instrument’s soft panel are recalled by using ‘
hpt_recall. Recalling a state sets the instrument

controls to the new settings.

For a complete list and description of the HP ITG
subprograms, please see chapter 14 and 15 in this
handbook, “The HP ITG Library: QuickBASIC” and
“The HP ITG Library: C.” These chapters describe the
library for each language HP ITG supports.

11-2 Generating Code Using Panels

The Passed
Parameters

Editing HP ITG
Subprograms

Most HP ITG subprograms have a set of required
parameters. When HP ITG generates a subprogram

call, it generates variable names or uses values for the
parameters based on how you have the panel set up. The
following examples show the calls HP ITG generates
when you enter the value 10000 for the frequency on the
HP 3325B panel.

mInC:
D hpt_set(hp3325b,"FREQUENCY",10000)

s In QuickBASIC:
o hptset(hp3325b,"FREQUENCY",10000)

hp3325b is a variable name that HP ITG generates
based on the name you assigned to the panel when

you added the instrument to your soft test system.
FREQUENCY is the control name located in the HP 3325B
driver, and 10000 is the value entered from the panel.

To produce a more efficient program, you should
determine if and how you will need to edit the code that
HP ITG generates. In the previous examples calling
hpt_set, you may want to replace the number 10000
with a variable. Then you can include the statement in a
loop and change the variable to other frequency values.

In addition, there are several subprograms in the

HP ITG Library that are not generated automatically.
For a complete list and description of these subprograms,
please see chapter 14 and 15 in this handbook, “The

HP ITG Library: QuickBASIC” and “The HP ITG
Library: C.” These chapters describe the library for each
language HP ITG supports.

Generating Code Using Panels 11-3

Generating Code You will need to complete several steps to prepare
HP ITG to generate and save your instrument-control

code. Be sure to save the current workfile before .
generating the initialization code.

Initialization Every program that generates code using Log HP ITG
Calls, must include calls to the following HP ITG
subprograms.

hpt.nit

This subprogram must be called before all other HP ITG
subprograms. It identifies the workfile where the
instruments and their states are located and puts the
instruments controlled by your program into their initial
states.

hpt_assign .
Your program must call hpt_assign for each instrument
included in a soft test system. You can use HP ITG to
generate these calls in the HP ITG Editor window.

1. Save the workfile after adding all required instruments
to the soft test system.

2. Turn on Log HP ITG Calls mode for each panel.
a. Click on the panel menu box.
b. Click on Modes ...

c. Click on the box beside Log HP ITG Calls if there
is no X in it.

d. Click on OK.
3. Click on Edit on the Editor menu bar. .

4. Click on Generate Initialization Code.

11-4 Generating Code Using Panels

Note

Stepping Through a
Procedure

Editing the Procedure

Leave the edit cursor in the current position after
generating the initialization code. HP ITG automatically
positions the edit cursor at the line where you should
continue code generation.

To continue your planned measurement procedure, do
one or more of the following steps for each instrument in
the soft test system. Log HP ITG Calls mode must be
turned on for each instrument.

1. Recall a previously stored instrument state.

m Click on the panel menu box, then click on Recall
State.

2. Adjust the controls as needed.

m Click on the box in the panel next to the control’s
name, then select or enter the new value.

3. Take a reading, if appropriate.
m Click on the panel’s display.

You can use the HP ITG Editor for simple editing, such
as substituting variable names for values and adding
loops around HP ITG subprogram calls. However, if
you have more complicated program needs and want to
include calls to routines in other libraries, you should
edit the program in the programming environment you
selected when you installed HP ITG.

HP ITG declares variables in the initialization code
and leaves the program statements as comments. You
can uncomment them as needed. You will need to
declare any other string or array variables that are used
in HP ITG subprogram calls. All HP ITG arrays are
two-dimensional, and you must declare them as such
even if you only need one dimension.

Generating Code Using Panels 11-5

To see more of your procedure as you edit it, enlarge the
Editor window to full size:

» Click on the up arrow in the top right corner of the
Editor window. .

Saving Your Program When you are ready to save your program, you can save
it under the current file name or under a different file

name.
1. Click on File on the Editor menu bar.

2. To save your program under the current file name and
path, click on Save.

3. To save your program under a different file name or
to change the path:

a. Click on Save As .

b. Type in the file name and include the path if it is
different from the path displayed in the dialog box. .

c. Click on OK.

Exiting HP ITG When you have finished the code generation, and have
saved your program, you can exit HP ITG.

1. Click on File on the System menu bar.

2. Click on Exit To DOS.

11-6 Generating Code Using Panels

\;omputer
Museum

12

Running Your Program

Overview

This chapter explains how you can run your

HP ITG-generated program to complete its development,
then create a standalone executable for the run-time
environment.

In the
Development
. Environment

In Microsoft C

Using the same development system you used to
generate instrument-control code, you can enhance your
program by adding calls to routines in the HP ITG
Library as well as other MS-DOS libraries. When the
program is debugged, you can then create the executable
to run on the development system, or to be installed on
a run-time system.

If you are using Microsoft C, use a text editor you prefer
to include additional code in your program. To run and
debug the program, use the Microsoft C compiler making
sure to link against the HP ITG Library, HPITG.LIB,
and any other library you are using. The batch file,
CMAKE.BAT, supplied with HP ITG runs the compiler on
the program and links against HPITG.LIB. To use the
batch file for a program named HPT_LOG.C, enter the
following command at the MS-DOS prompt:

cmake hpt_log

HP ITG error messages can appear in MS-DOS as the
program runs if HP ITG errors exist in the program.
The messages include the error number, the HP ITG

Running Your Program 12-1

In QuickC

12-2 Running Your Program

function name, and the message contents. See appendix
E in this handbook, “Messages,” for explanations. When
the program is done, you are ready to use it in the
run-time environment.

If you are using the QuickC environment, you can
start QuickC using a batch file supplied with HP ITG,
QCSTART .BAT. Enter the following command at the
MS-DOS prompt including the program file name:

gcstart hpt_log.c

The batch file loads the program, HPT_LOG.C into the
QuickC environment. It also creates a make file for the
program. When QuickC starts a dialog box appears
asking if you want to use the make file. Click on Yes
to accept the file. Then you are ready to add calls

to functions in the HP ITG Library. HP ITG error
messages can appear in the QuickC environment if HP
ITG errors exist in the program. The messages include
the error number, the HP ITG function name, and the
message contents. See appendix E in this handbook,
“Messages,” for explanations.

When the program is debugged, you are ready to create
the executable. While you can create the executable
within the QuickC environment, HP ITG supplies
another batch file that can do the same task. The batch
file, QCMAKE .BAT, compiles the program, and links it
against the HP ITG Library, HPITG.LIB. This creates an
executable with an .EXE file name extension. To use the
batch file, enter the following command at the MS-DOS
prompt including the program file name:

qcmake hpt_log

You can distribute the executable, HPT_LOG.EXE, to
run-time systems along with the workfile (if required),
instrument driver files, and HPITG.ERR which support
the executable.

In QuickBASIC

Note

If you are using the QuickBASIC environment, you can
start QuickBASIC using a batch file supplied with

HP ITG, QBSTART.BAT. Enter the following command at
the MS-DOS prompt including the program file name:

gbstart hpt_log.bas

QuickBASIC requires 512 Kbytes of free memory. If
QuickBASIC reports an out-of-memory error, reduce
the demand on the computer’s memory. Modify
CONFIG.SYS and AUTOEXEC.BAT, deleting device drivers
for unnecessary peripheral devices or memory-resident
applications such as network servers. Use the MS-DOS
CHKDSK command to read the amount of free memory.
Reboot the computer after modifying these files.

The batch file loads the program, HPT_L0G.BAS, and
the HP ITG Quick Library, HPITGBAS.QLB. Then you
are ready to add calls to subprograms in the HP ITG
Library. HP ITG error messages can appear in the
QuickBASIC environment if HP ITG errors exist in the
program. The messages include the error number, the
HP ITG subprogram name, and the message contents.
See appendix E in this handbook, “Messages,” for
explanations.

When the program is debugged, you are ready to create
the executable. While you can create the executable
within the QuickBASIC environment, P ITG supplies
another batch file that can do the same task. The batch
file, QBMAKE .BAT, compiles the program, and links it
against the HP ITG Library, HPITGBAS.LIB. This creates
an executable with an .EXE file name extension. To

use the batch file, enter the following command at the
MS-DOS prompt including the program file name:

gbmake hpt_log

Running Your Program 12-3

You can distribute the executable, HPT_LOG.EXE, to
run-time systems along with the workfile (if required),
instrument driver files, and HPITG.ERR which support
the executable.

In the Run-Time If you run the HP ITG-based program on the same

Environment system that you used to develop the program, your
system already has the required support files. If you run
the executable on a different run-time system, you must
load the following onto the system controller:

m The executable program.
m The HP ITG error file, HPITG.ERR.

s The soft test system’s workfile (if the program uses a
workfile).

m The instrument driver files named in the workfile (if ‘
used) or added by calls to hpt_add_device in the
program.

To run the executable, enter the program name at the
MS-DOS prompt. If HP ITG errors exist, possibly due
to a difference in systems, messages can appear on the
screen as the program runs. The messages include the
HP ITG error number, the subprogram or function
name, and the message contents. See appendix E in this
handbook, “Messages,” for explanations.

12-4 Running Your Program

13

Fine-Tuning Your Program

Overview

To develop finely-tuned, complex test programs using
HP ITG, you will probably find yourself needing to

edit your program directly to call subprograms in the
HP ITG Library. The subprograms provide access to the
instrument panel controls described by the instrument
drivers. The real strength of HP ITG is that it provides
instrument drivers and access to them.

HP ITG provides two ways that you can access these
drivers. The first is the development environment.

It is designed to let you access drivers automatically
through the interactions with the instrument panels.
The interactions generate calls to HP ITG Library
subprograms.

The second way lets you access the drivers by adding
calls to HP ITG Library subprograms when editing

your program. In fact, calls to over half of the available
HP ITG subprograms must be made by manually adding
calls to them in your program since HP ITG cannot
generate them.

Fine-Tuning Your Program 13-1

The HP ITG Chapters 14 and 15 contain the reference to the HP ITG
ibr Referen Library. Chapter 14 is the reference for the QuickBASIC

Lib ary Reterence subprograms. Chapter 15 is the reference for the C ’
functions. These chapters describe the syntax, variables,

and operation for each subprogram and function.

Certain naming conventions are used in this chapter

to make explanations more clear. Subprogram is used
in a general sense when referring to QuickBASIC
subprograms and C functions. Similarly, subprogram
names such as hpt_recall include underscores, though
the QuickBASIC language does not allow underscores.

Using the Driver To use the subprograms effectively, you need to have
Documentation specific information about the structure of each
instrument driver you will use. To help you find that ’
information, each driver provided by Hewlett-Packard is
documented in HP ITG’s online Help system. You can
access the information using the Help command on the
System menu bar or the instrument panel menu.

From the System menu bar:

1. Click on Help.

2. Click on Instrument Help ...
From the instrument panel:

1. Click on the panel menu box.
2. Click on Help ...

The information summarizes instrument operation,
status bytes, error messages, and driver components. ’

13-2 Fine-Tuning Your Program

Working With
Components

Most of the information you will need when adding calls
to the HP ITG Library is listed under Components.

The following table is a representative portion of

the component table for the HP 3325B driver help
information. As you see, it lists the component names
used in the driver to control such features as amplitude
and calibration, the range of values components can be
set to, and the initial values.

COMPONENT ALLOWED INITIAL
NAME VALUES VALUE
e e 001
Mptdcal T
Kealgnp T
Wniva | Vpp, Ras, amm Vep
Calibrata | Dissble, Bnable Ensble.

The concept of a component is important to your
understanding about how a driver file interacts with

HP ITG to control an instrument. In the driver, a
component is a logical representation of an instrument’s
control or display. Values are listed for a control to
name the possible settings. When many components
are combined, the resulting driver represents the entire
instrument. However, some instrument features may not
be represented in a driver.

Fine-Tuning Your Program 13-3

Most HP ITG subprograms require between one or more
parameters. These parameters identify a particular

driver, the component to change, and its value. Here

is a generalized example that illustrates the type of .
component information a subprogram call needs:

m hpt_set (inst_desc,comp_name,value)

o inst_desc is the instrument descriptor which is an
internal number representing a particular driver.
The number is generated by the hpt_assign
subprogram.

o comp_name is the name of the component in the
driver. The component’s value will be changed by
the hpt_set subprogram.

O value is a variable containing the new value for the

component.
If you want more information about components, see
chapter 3, “The Component Section,” in the HP ITG .

manual, How to Write an HP ITG Driver.

Determining the The subprogram, hpt_assign, establishes the
Instrument Descriptor relationship between an actual instrument at a specific
HP-IB address and the instrument driver. One of the
parameters used by hpt_assign is the logical name
entered for the instrument when you added it to the soft
test system. The name is entered in the Name field of the
instrument configuration dialog box.

The subprogram returns an integer that is unique

to the driver with the particular name. This is an

important distinction since, as you recall, you can add

the same driver to your soft test system more than once

if you give each one a different name. Various other .
subprograms use the returned integer as the instrument
descriptor in their parameter lists.

13-4 Fine-Tuning Your Program

Choosing the Right
Subprogram Variation

If you generated the initialization code for your program
using Generate Initialization Code (see Edit on the
Editor menu bar), then HP ITG generated a default
instrument descriptor for you to use. If you add an
instrument by calling hpt_add_device, then you must
also call hpt_assign to generate the descriptor.

Components use different types of data for the
component values, depending on the component’s
function. In a driver, the TYPE statement identifies
the data type, but you can identify the type by the way
comporent values appear in the component table. The
following list describes the data types and how they
might be used in drivers:

s DISCRETE: An enumerated list of values for the
function settings on a voltmeter.

m INTEGER: A value that is a 16-bit integer defining an
error number.

m CONTINUOQUS: A value that is a 64-bit real number
for a function generator’s frequency range.

m STRING: A string value that is not more than 256
characters for a displayed message.

®» JARRAY: A value that is a two-dimensional array of
integers used for calibration data.

= RARRAY: A value that is a two-dimensional array of
real numbers for an oscilloscope’s trace display.

Fine-Tuning Your Program 13-5

Several subprograms are available in different variations

to accommodate the various data types. As an example,

the following table shows which hpt_set subprogram

variation to use for each TYPE. '

Table 13-1.
Component Types and Allowable Subprogram
Variations

TYPE Subprogram Variation

DISCRETE hpt_set or hpt_set_str
INTEGER hpt_set
CONTINUOUS | hpt_set

STRING hpt_set_str
IARRAY hpt_set_iary
RARRAY hpt_set_ary

Putting It Together To use the HP ITG subprograms, you will need to do the
following;:

1. Determine the instrument descriptor (see the previous
subsections for details).

2. Refer to Instrument Help ... for the component
name whose value you want to change.

3. Note the allowable values for the component.
4. Determine the component’s TYPE.

5. Use the subprogram variation appropriate for the
component TYPE (see table 13-1).

13-6 Fine-Tuning Your Program

Uses for the
HP ITG
‘ Subprograms
Creating and Instrument states can be created and recalled in a
Recalling States program.

hpt_state_save Lets you create a new instrument
state.
hpt_recall Lets you recall an existing

instrument state.

Turning On/Off You can control many of HP ITG’s modes from your
HP ITG Modes program.

hpt_incremental Controls incremental state
programming.

‘ hpt_livemode Lets you disable Live mode within \
your program.

hpt_errorcheck Lets you control Error Checking
mode.

hpt_monitor Lets you control Monitor mode for
program debugging.

Controlling Each component has a value and a status associated
Component Values Wwith it when it is being used in a program. The
component usually represents an instrument’s control,
such as a function generator’s frequency. The value,
such as 10 kHz, represents the control’s setting. A
component’s current value can be set to one of three
status levels. Each status requires certain action from
‘ HP ITG.

|
|
\
|
|
\
\
|
|
Fine-Tuning Your Program 13-7 |
|
|
|
|

s VALID:

This means the component’s value matches the
instrument’s corresponding value, which requires .
HP ITG to take no action.

s INVALID:

This means the component’s value does not match the
instrument’s corresponding value, requiring HP ITG
to determine the correct value and send it to the
instrument.

m DONTCARE:

This means HP ITG should not send a value to the
instrument, whether the instrument and component
values match or not.

You can change any component’s value and status.

hpt_forget Lets you set the status of one or all of
an instrument driver components to .
INVALID.

hpt_getstate Lets you find out whether a component
is currently VALID, INVALID, or
DONTCARE.

hpt_peek Along with its string and array
variations, lets you find out the current
value of the component.

hpt_poke Along with its string and array
variations, lets you change the value
of a component without adjusting the
instrument.

hpt_setstate Lets you set a component’s status to

VALID, INVALID, or DONTCARE. .

13-8 Fine-Tuning Your Program

Improving Efficiency

The subprogram calls generated by HP ITG pass

string parameters for state names, component names,
and for the values of certain component types such as
DISCRETE components. There are several subprograms
that let you convert these string names to internal
numbers. You can then use these internal numbers in
alternate versions of many of the subprograms. Using
the internal numbers in these Version 2 subprograms
can increase your program’s execution speed.

hpt_assigncomp

hpt_assignparm

hpt_assignstate

Lets you assign a component name
to a numeric variable. HP ITG
supplies the number. If you do

this, you will need to change all the
subprogram calls associated with the
component to their alternate version.
For example, if you use a component
name in a call to hpt_get, change
the subprogram name to hpt_get2
to use the assigned number as one of
the arguments.

Lets you replace a DISCRETE
component’s string values with
numbers. HP ITG supplies the
number. If you do use this, you will
need to change all hpt_set_str calls
that use the string values to hpt_set
calls when you set the value of this
component.

Lets you assign a state name to a
numeric variable. HP ITG supplies
the number. If you do this, you
will need to change all calls to
hpt_recall to call hpt_recall2
instead.

Fine-Tuning Your Program 13-9

Reading and You can read and change the HP-IB address in
Changing HP-IB HP ITG’s instrument configuration.

Addresses npt_dev_addr Lets you read the HP-IB address ‘
of a particular instrument.

hpt_devsubad Lets you read the HP-IB
subaddress of a particular
instrument.

hpt_setdevaddr Lets you change the HP-IB

address of a particular instrument
in HP ITG’s configuration.

Note You cannot change the subaddress configuration
programmatically.

Setting Array Values HP ITG does not generate calls to the following
subprograms because they are seldom used. If you do
need them, you can include them in your program. ‘

hpt_set_iary Lets you set the value of an JARRAY
component.

hpt_set_ary Lets you set the value of an RARRAY
component.

hpt_compdims Lets you determine an array
component’s dimensions.

Note Though HP ITG generates array variables in the
initialization code, it does generate calls to hpt_get_ary
or hpt_get_iary when you click on an XY display.

13-10 Fine-Tuning Your Program

Checking for Errors

Adding Instruments

You can turn Error Checking mode on for instruments in
the test system and have them display the messages.

hpt_errorcheck

hpt_errmsg

Lets you specify that an
instrument should notify HP ITG
when an instrument error has
occurred.

Lets you display any messages
that HP ITG receives while your
program is running.

You can add instruments to your test system without
having to include them in the workfile. This lets

you develop a program without using the HP ITG
development environment.

hpt_add_device

Lets you add an instrument

to your test system outside of
the workfile. The subprogram
parameters require the same
information as the instrument
configuration dialog box does
when adding an instrument to a
soft test system. You must also
call hpt_assign immediately
after adding an instrument using
this method.

Fine-Tuning Your Program 13-11

Computer
Museum

® 14

The HP ITG Library: QuickBASIC

Overview The HP ITG Library is a set of subprograms provided
with HP ITG. Calls to several subprograms are
generated automatically by HP ITG in the development
environment when you interact with instrument panel
controls. Calls to many other subprograms must be
added to your program when you are ready to edit it.

This chapter describes the subprograms in the HP ITG

Library for the QuickBASIC programming language.

The subprograms are arranged in alphabetical order and
. are described using the following format:

m Syntax.

m Description.
s Parameters.
s Example.

m See Also.

To use these subprograms, you will need information
from instrument drivers about component names and
their values. That information helps you supply the
arguments the parameter lists require. The component
information is located in HP ITG’s online Help system
under Instrument Help ... The manual, How to Write
an HP ITG Driver, describes how instrument drivers and
their components are written.

HP ITG automatically generates calls to subprograms
. when an instrument panel is set to Log HP ITG Calls
mode. There are other subprograms in the library to
which HP ITG cannot generate calls. To use them, you
must edit your program to add the call statements.

The HP ITG Library: QuickBASIC 14-1

The file HPITG.BI is the include file that supports

these subprograms. It declares the subprograms and

the constants required as arguments. The specific
constants (when required) are defined in the subprogram
descriptions. The statement to include HPITG.BI in your
program is added automatically when you generate the
HP ITG initialization code.

Many subprograms have an alternate version, identified
with a 2 appended to the main version subprogram
names. These Version 2 subprograms differ from the
main versions in syntax, but return the same values
with greater execution speed. These subprograms

use HP ITG-assigned integer values for parameter
arguments instead of strings to improve performance.
The subprograms, hptassigncomp, hptassignparm, and
hptassignstate, are used for the integer assignments.

The following tables list the HP ITG subprograms.
Table 14-1 lists the subprograms that HP ITG can
generate calls to automatically. Table 14-2 lists the
subprograms for which calls cannot be generated
automatically.

Table 14-1.
Call Statements Generated by HP ITG for
These QuickBASIC Subprograms

14-2 The HP ITG Library: QuickBASIC

Main Version| Version 2
hptassign

hptget hptget2
hptgetary hptgetary2
hptgetiary |hptgetiary2
hptgetstr hptgetstr2
hptinit

hptpush hptpush2
hptrecall hptrecall2
hptset hptset2
hptsetstr hptsetstr2

Table 14-2.

Additional HP ITG Subprograms for

QuickBASIC

Main Version

Version 2

hptadddevice
hptassigncomp
hptassignparm
hptassignstate
hptclose
hptcloseall
hptcompdims
hptdevaddr
hptdevsubad
hpterrmsg
hpterrorcheck
hptforget
hptgetstate
hptincremental
hptlivemode
hptlocal
hptmeminfo
hptmonitor
hptpeek
hptpeekary
hptpeekiary
hptpeekstr
hptpoke
hptpokeary
hptpokeiary
hptpokestr
hptremote
hptsetary
hptsetdevaddr
hptseterrormode
hptsetiary
hptsetstate
hptstatesave

hptforget2
hptgetstate2

hptpeek2
hptpeekary2
hptpeekiary2
hptpeekstr2
hptpoke2
hptpokeary2
hptpokeiary2
hptpokestr2

hptsetary2

hptsetiary2
hptsetstate2

The HP ITG Library: QuickBASIC

]

hptadddevice

Syntax

Description

Note

Parameters

hptadddevice (instr$, logical$, addr$, subaddr$,
timeout#)

The hptadddevice subprogram lets you add an instr§
to your test system without adding it to the workfile in
the HP ITG development environment. The remaining
parameters are identical to the entries you make in the
instrument configuration dialog box when adding an
instrument to a soft test system in the development
environment. Specify the logical$ name for the
instrument, the HP-IB addr$ and subaddr$ (if needed),
and the timeout#.

The instrument’s compiled instrument driver file
(.CID) must exist for you to add the instrument

using hptadddevice. Whether you add one or more ‘
m

instruments, you need to call the hptassign subprogra
after each call to hptadddevice.

instr$ The instrument driver file name
(8 characters maximum). The .ID
extension must be omitted.

logical$ The logical name for the instrument,
such as source for the HP 3325B (25
characters maximum).

addr$ The instrument’s HP-IB address (16
characters maximum).
subaddr$ The instrument’s subaddress (16

characters maximum). Leave argument
NULL ("") if none.

14-4 The HP ITG Library: QuickBASIC

hptadddevice

timeout # The instrument’s timeout period for the
development and run-time environments.
If the argument for this parameter is
an integer variable, it must include
parentheses and use the % specifier—

(val%).

Example
CALL hptadddevice("HP3488A3", "switch", "708", "2", 30.0)

See Also hptassign

The HP ITG Library: QuickBASIC 14-5

hptassign
Syntax hptassign (inst$, memory%, instdesc%) .
Description
Note A call to the hptassign subprogram is required in all

programs that use HP ITG subprograms. To generate
this code, click on Generate Initialization Code in
the HP ITG Editor window’s Edit menu. Generate this
code at the beginning of your program. Be sure to save
the workfile first.

The hptassign subprogram informs HP ITG you are
using the instrument named inst$ in your test system.
You assign the instrument name when you add it to your
test system. You may have added the instrument to your
test system in the HP ITG development environment or
by calling hptadddevice.

Use one of the following arguments for memory%:

s CONVENTIONAL.

m EXPANDED (default when generated with
initialization code).

If the instrument driver exists, HP ITG opens the driver
file and assigns a positive integer in the return variable,
instdesc%. Use this number in other subprograms to

control the instrument. If a 0 is returned, the assignment
failed.

Note To deallocate the memory used by the instrument states,
you must close all open instruments before exiting an .
application. Use hptclose or hptcloseall to close
instruments.

14-6 The HP ITG Library: QuickBASIC

Parameters

Example

See Also

hptassign

inst$ This variable contains the instrument
name you gave the instrument when you
added it to your test system.

memory% A variable describing the type of
memory where the instrument driver
should be loaded. EXPANDED is
recommended.

instdesc% HP ITG assigns an integer value to this
return variable. This is the instrument
descriptor which you use to refer to the
instrument in other subprograms that
use this variable.

CALL hptassign('scope", EXPANDED, scope’,)

hptadddevice, hptclose, hptcloseall, hptinit,
hptmeminfo

The HP ITG Library: QuickBASIC 14-7

I

hptassigncomp
Syntax hptassigncomp (instdesc %, comp$, compdesc&) .

Description The hptassigncomp subprogram assigns a component
descriptor to compdesc&. compdesc& is a unique number
for the comp$ and instdesc% pair. instdesc% is the
integer that identifies a specific instrument in your
workfile, and is returned by the subprogram, hptassign.

Use the component descriptor in the Version 2
subprograms for higher performance.

Parameters instdesc’ The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

comp$ The string variable that names the .
component in the instrument driver.
This is the component the subprogram
assigns an integer value to.

compdesc& HP ITG assigns a long integer value
to this return variable. This is the
component descriptor which is unique
to this component/instrument pair.
Use this descriptor in the Version 2
subprograms for faster performance.

Example
CALL hptassigncomp(voltmeter’, "RANGE", range_number&)

CALL hptset2(range_number&, 2)

14-8 The HP ITG Library: QuickBASIC

See Also

hptforget
hptget
hptgetiary
hptgetstr
hptgetstate
hptpeek
hptpeekary
hptpeekiary
hptpeekstr
hptpoke
hptpokeary
hptpokeiary
hptpokestr
hptpush
hptrecall
hptset
hptsetary
hptsetiary
hptsetstr
hptsetstate

The HP ITG Library:

QuickBASIC

hptassigncomp

hptassign, hptassignstate, hptassignparm

Many HP ITG subprograms have an alternate version,
identified by the 2 appended to the main version
subprogram names. These Version 2 subprograms
return the same values, and are usually used in
conjunction with hptassigncomp. The following list
names the subprograms that have both versions. See
their descriptions in this chapter for details about each
version.

hptassignparm (instdesc%, comp$, disc$, val%)

The hptassignparm subprogram assigns the internal

ordinal number for disc$, a value name in a component,
to the variable, val%. comp$ names the component that
contains disc$. instdesc% is the integer that identifies a
specific instrument in your workfile, and is assigned by
the subprogram, hptassign.

Use hptassignparm to assign numbers to the values
listed in DISCRETE components. Use the returned
number in calls to the subprogram, hptset or hptset2,
rather than using the value’s name in calls to the
subprogram, hptsetstr.

hptassignparm
Syntax
Description
Parameters instdesc’
comp$
disc$
val%

14-10 The HP ITG Library: QuickBASIC

The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

The string variable that names the
component in the workfile’s instrument
driver.

The string variable that names the
DISCRETE value in the component.
The subprogram assigns an integer to
the return variable for this value.

HP ITG assigns an integer value to this
return variable. The returned result is
unique to the component/instrument
pair specified in the parameter list.

Use the returned value in calls to the
subprogram, hptset or hptset2 for
faster performance.

|
hptassignparm i
|
!
|

Example
CALL hptassigncomp(hp3314a), "Function", comp_desc&) i
‘ CALL hptassignparm(hp3314aj,, "Function", "Sine", comp_vall,) }

CALL hptset2(comp_desc&, comp_vall,)

See Also hptassigncomp, hptassignstate, hptset, hptset?2,
hptsetstr

The HP ITG Library: QuickBASIC 14-11

hptassignstate

Syntax hptassignstate (instdesc%, state$, statedesc&) ‘

Description The hptassignstate subprogram returns the internal
number for an instrument state (state$) to the variable
statedesc& for the instrument specified by instdesc%.
instdesc% is the integer that identifies the specific
instrument in your workfile, and is assigned by the
subprogram, hptassign. The state name is created
when you save a setup state for that instrument in the
development environment.

Use the number returned to statedesc& in calls to the
subprogram, hptrecall2. This improves processing time
over using the state name in calls to the subprogram,
hptrecall.

Parameters instdesc % The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

state$ The string variable that names the
state created for the instrument in your
workfile.

statedescd HP ITG assigns a value to this return
variable. This is the state descriptor
which is unique to the test system.
Use this descriptor in calls to the
subprogram, hptrecall2 for faster
performance.

14-12 The HP ITG Library: QuickBASIC

hptassignstate

Example
CALL hptassignstate(hp3437a),, "HPTINITIALSTATE", statedesc&)

CALL hptrecall2 (statedesc)

See Also hptassign, hptassigncomp, hptassignparm,
hptrecall, hptrecall2

The HP ITG Library: QuickBASIC 14-13

hptclose

Syntax

Description

Parameters

Example

See Also

hptclose (instdesc%)

The hptclose subprogram closes and deallocates all
memory used by the instrument driver and instrument
states associated with instdesc%. It also closes the
monitor file, if applicable. instdesc% is the integer that
identifies a specific instrument in your workfile, and is
assigned by the subprogram, hptassign. Use hptclose
when an instrument is no longer needed in a program to
free memory.

instdesc% The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

CALL hptclose(hp3325b))

hptassign, hptcloseall, hptmeminfo, hptmonitor

14-14 The HP ITG Library: QuickBASIC

hptcloseall '

hptcloseall

. Syntax hptcloseall

Description The hptcloseall subprogram closes and deallocates all
memory used by all instrument drivers and instrument
states in the workfile. It also closes all monitor files, if
applicable. HP ITG generates a call to this subprogram
as part of the initialization code. It should appear at the
end of the program to free memory.

Example CALL hptcloseall

See Also hptassign, hptclose, hptmeminfo, hptmonitor

i
The HP ITG Library: QuickBASIC 14-15 |

hptcompdims
Syntax hptcompdims (instdesc%, comp$, rows%, cols%) ‘

Description The hptcompdims subprogram returns the number
of rows (rows%) and columns (cols%) in an array
component. comp$ names the component which
should exist in the instrument driver associated with
instdesc%. instdesc% is the integer that identifies a
specific instrument in your workfile, and is assigned by
the subprogram, hptassign.

Use this information to determine the array dimensions
of subprogram variables in subsequent calls to other
subprograms affecting arrays, such as hptsetary and

hptgetary.

Parameters instdesc% The instrument descriptor, an integer ‘
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

comp$ The string variable that names the array
component in the workfile’s instrument
driver.

rows% HP ITG returns the number of rows in
the array component in this variable.

cols% HP ITG returns the number of columns

in the array component in this variable.

14-16 The HP ITG Library: QuickBASIC

hptcompdims

Example
CALL hptcompdims(hp54501a),, "ENV_CH1", row),, coll)

See Also hptassign, hptgetary, hptgetiary, hptpeekary,
hptpeekiary, hptpokeary, hptpokeiary, hptsetary,
hptsetiary

The HP ITG Library: QuickBASIC 14-17 |

hptdevaddr

Syntax hptdevaddr (instdesc’%, addr§) ‘

Description The hptdevaddr subprogram returns the current HP-IB
address of the instrument associated with instdesc%.
The instrument descriptor is the integer that identifies
a specific instrument in your workfile, and is returned
by the subprogram, hptassign. See appendix B, “I/O
Interfaces,” for information about interface board select
codes.

Parameters instdesc% The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.
addr$ HP ITG returns the instrument’s ‘

address in this string variable.

Example CALL hptdevaddr (hp3478a¥,, addr$)

See Also hptassign, hptsetdevaddr, hptdevsubad

14-18 The HP ITG Library: QuickBASIC

hptdevsubad

hptdevsubad

Syntax

Description

Parameters

Example

See Also

hptdevsubad (instdesc%, subaddr$)

The hptdevsubad subprogram returns the current
subaddress of the instrument module associated with
instdesc%. The instrument descriptor is the integer
that identifies a specific module in your workfile, and is
returned by the subprogram, hptassign.

instdesc% The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

subaddr$ HP ITG returns the instrument’s

subaddress in this string variable.

CALL hptdevsubad(hp3488a3),, subaddr$)

hptassign, hptdevaddr

The HP ITG Library: QuickBASIC 14-19

hpterrmsg

Syntax hpterrmsg (error§)

Description The hpterrmsg subprogram returns an error message,
which corresponds to the most recent HP ITG error.
The error can be from an instrument or from HP ITG.
For information about specific error codes and messages,
see appendix E, “Messages,” in this handbook.

Note Error Check mode must be enabled for each instrument
that you want to receive an error message from. See the
subprogram, hpterrorcheck.

Parameters error$ HP ITG returns the error message in
this string variable.

Example CALL hpterrmsg(message$)

See Also hpterrorcheck

14-20 The HP ITG Library: QuickBASIC

hpterrorcheck

hpterrorcheck

Syntax

Description

Parameters

hpterrorcheck (instdesc%, switch%)

The hpterrorcheck subprogram uses the values ON or
OFF for switch% to enable or disable Error Checking
mode for the instrument specified by instdesc%. The
instrument descriptor is the integer that identifies a
specific instrument in your workfile, and is returned by
the subprogram, hptassign.

To use hpterrorcheck, the instrument must be able

to report error information, and the instrument driver
must contain an error component. Error Check mode

is disabled by default when running a program using

HP ITG subprograms. You must include hpterrorcheck
in your program to enable error checking. HP ITG then
checks for errors after each call to the subprograms,
hptget, hptrecall, hptset, or hptpush (including the
related subprograms for strings and arrays, and their
Version 2 subprograms).

instdesc % The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

switch% The variable that controls Error Check
mode. Use the argument ON to enable
error checking, or OFF to disable error
checking.

The HP ITG Library: QuickBASIC 14-21

hpterrorcheck

Example CALL hpterrorcheck(hp3325aj, ON)

See Also hptassign, hptget, hptget2, hptgetary, hptgetary2, .
hptgetiary, hptgetiary2, hptgetstr, hptgetstr2,
hptrecall, hptset, hptset2, hptsetary, hptsetary2,
hptsetiary, hptsetiary2, hptsetstr, hptsetstr2

14-22 The HP ITG Library: QuickBASIC

hptforget, hptforget2

hptforget,
‘ hptforget2

Syntax

Description

Parameters

hptforget (instdesc%, comp$)
hptforget2 (compdesc&)

The hptforget subprogram sets the status of one

or all of the components of the instrument specified

by instdesc% to INVALID. If comp$ is specified, the
single component’s status is invalidated. You must
call this subprogram for each specific component you
want to invalidate. If comp$ is NULL (""), then all

of the instrument’s components are invalidated. The
instrument descriptor is the integer that identifies a
specific instrument in your workfile, and is returned by
the subprogram, hptassign.

The hptforget2 subprogram produces the same results.
As a Version 2 subprogram, the parameter compdesc&
replaces instdesc% and comp$ for higher performance.
Its value is assigned by the subprogram, hptassigncomp.

Use hptforget or hptforget2 if you have changed the
instrument’s setup either manually or with a program’s
I/0O statements.

instdesc% The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

comp$ The string variable that names the
component in the workfile’s instrument
driver that you want to invalidate.

The HP ITG Library: QuickBASIC 14-23

hptforget, hptforget2

compdescd The component descriptor that replaces
instdesc% and comp$ in the Version
2 subprogram. Its value is unique
to the instrument/component pair, ’
and is assigned by the subprogram,
hptassigncomp.

Example CALL hptforget (hp3478aj, "TRIGGER")

See Also hptassign, hptassigncomp

14-24 The HP ITG Library: QuickBASIC

hptget, hptget2

hptget, hptget2

‘ Syntax hptget (instdesc%, comp$, val#)
hptget2 (compdescd, val#)

Description The hptget subprogram returns the current value (val#)
of an INTEGER or CONTINUOUS component {comp$)
directly from the instrument specified as instdesc%. The
instrument descriptor is the integer that identifies a
specific instrument in your workfile, and is returned by
the subprogram, hptassign.

The hptget2 subprogram produces the same results.

As a Version 2 subprogram, the parameter compdesc&
replaces instdesc% and comp$ for higher performance.
Its value is assigned by the subprogram, hptassigncomp.

‘ HP ITG generates a call to the hptget subprogram
when you click on an instrument display. To use the
hptget2 subprogram, you will have to modify your test
program after you generate it.

Parameters instdesc % The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

comp$ The string variable that names
the INTEGER or CONTINUOUS
component in the workfile’s instrument
driver.

val# HP ITG returns the current value of the
‘ instrument in this real variable.

The HP ITG Library: QuickBASIC 14-25

hptget, hptget2

compdesc& The component descriptor that replaces
instdesc% and comp$ in the Version
2 subprogram. Its value is unique
to the instrument/component pair, ‘
and is assigned by the subprogram,
hptassigncomp.

Example CALL hptget (hp3437al,, "READING", reading#)

See Also hptassign, hptassigncomp

14-26 The HP ITG Library: QuickBASIC

hptgetary, hptgetary2

hptgetary,
‘ hptgetary2

Syntax

Description

Parameters

hptgetary (instdesc%, comp$, val#())
hptgetary2 (compdesc&, val#())

The hptgetary subprogram returns the current value
(val#()) of an RARRAY component (comp$) directly
from the instrument specified as instdesc%. The
instrument descriptor is the integer that identifies a
specific instrument in your workfile, and is returned by
the subprogram, hptassign.

The hptgetary2 subprogram produces the same results.
As a Version 2 subprogram, the parameter compdesc&
replaces instdesc% and comp$ for higher performance.
Its value is assigned by the subprogram, hptassigncomp.

HP ITG generates a call to the hptgetary subprogram
when you click on an instrument display. To use the
hptgetary2 subprogram, you will have to modify your
test program after you generate it.

instdesc% The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

comp$ The string variable that names the
RARRAY component in the workfile’s
instrument driver.

The HP ITG Library: QuickBASIC 14-27

hptgetary, hptgetary2

val#() HP ITG returns the current value
of the instrument in this real array
variable. This variable must be
properly dimensioned in the program. .
Use hptcompdims to read the array
dimensions.

compdesc& The component descriptor that replaces
instdesc% and comp$ in the Version
2 subprogram. Its value is unique
to the instrument /component pair,
and is assigned by the subprogram,
hptassigncomp.

Example
CALL hptgetary(hp54501a%, "ENV_CH2", meas_values#())

See Also hptassign, hptassigncomp, hptcompdims .

14-28 The HP ITG Library: QuickBASIC

hptgetiary, hptgetiary2

hptgetiary,
. hptgetiary2

Syntax

Description

Parameters

hptgetiary (instdesc%, comp$, val%())
hptgetiary2 (compdesc&, val%())

The hptgetiary subprogram returns the current value
(val%()) of an IARRAY component (comp$) directly
from the instrument specified as instdesc%. The
instrument descriptor is the integer that identifies a
specific instrument in your workfile, and is returned by
the subprogram, hptassign.

The hptgetiary2 subprogram produces the same
results. As a Version 2 subprogram, the parameter
compdesc& replaces instdesc% and comp$ for higher
performance. Its value is assigned by the subprogram,
hptassigncomp.

HP ITG generates a call to the hptgetiary subprogram
when you click on an instrument display. To use the
hptgetiary2 subprogram, you will have to modify your
test program after you generate it.

instdesc % The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

comp$ The string variable that names the
TARRAY component in the workfile’s
instrument driver.

The HP ITG Library: QuickBASIC 14-29

hptgetiary, hptgetiary2

val%() HP ITG returns the current value
of the instrument in this integer
array variable. This variable must be
properly dimensioned in the program. ‘
Use hptcompdims to read the array
dimensions.

compdesc& The component descriptor that replaces
instdesc% and comp$ in the Version
2 subprogram. Its value is unique
to the instrument/component pair,
and is assigned by the subprogram,
hptassigncomp.

Example
CALL hptgetiary(hp5334a},, "CalibrationData", cal_datal())

See Also hptassign, hptassigncomp, hptcompdims ‘

14-30 The HP ITG Library: QuickBASIC

hptgetstate, hptgetstate2

hptgetstate,
‘ hptgetstate2

Syntax

Description

Parameters

hptgetstate (instdesc%, comp$, state%)

hptgetstate2 (compdesc&, state%)

The hptgetstate subprogram returns the current
component (comp$) status for the instrument specified
as instdesc% in the variable, state%. The instrument
descriptor is the integer that identifies a specific
instrument in your workfile, and is returned by the
subprogram, hptassign.

The subprogram returns one of the following status
values in state%:

s COMP_VALID (component is VALID).
m COMP_INVALID (component is INVALID).
s COMP_DONTCARE (component is DONTCARE).

The hptgetstate2 subprogram produces the same
results. As a Version 2 subprogram, the parameter
compdesc& replaces instdesc% and comp$ for higher
performance. Its value is assigned by the subprogram,
hptassigncomp.

instdesc% The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign. |

comp$ The string variable that names the
component in the workfile’s instrument |
driver. ‘

state% HP ITG returns the current component

status in this variable.

|
|
|
The HP ITG Library: QuickBASIC 14-31 |
|
|
|
|

hptgetstate, hptgetstate2

compdesc& The component descriptor that replaces
instdesc% and comp$ in the Version
2 subprogram. Its value is unique
to the instrument/component pair, .
and is assigned by the subprogram,
hptassigncomp.

Example
CALL hptgetstate(hp3325b%, "Function", current_state})

See Also hptassign, hptassigncomp

14-32 The HP ITG Library: QuickBASIC

hptgetstr, hptgetstr2

hptgetstr,
‘ hptgetstr2

Syntax

Description

Parameters

hptgetstr (instdesc%, comp$, val$)
hptgetstr2 (compdesc&, val$)

The hptgetstr subprogram returns the current value
(val$) of a STRING or DISCRETE component (comp$)
directly from the instrument specified as instdesc%. The
instrument descriptor is the integer that identifies a
specific instrument in your workfile, and is returned by
the subprogram, hptassign.

The hptgetstr2 subprogram produces the same results.
As a Version 2 subprogram, the parameter compdesc&
replaces instdesc% and comp$ for higher performance.
Its value is assigned by the subprogram, hptassigncomp.

HP ITG generates a call to the hptgetstr subprogram
when you click on an instrument display. To use the
hptgetstr2 subprogram, you will have to modify your
test program after you generate it.

instdesc% The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

comp$ The string variable that names the
STRING or DISCRETE component in
the workfile’s instrument driver.

val$ HP ITG returns the current value of the
instrument in this string variable.

The HP ITG Library: QuickBASIC 14-33

hptgetstr, hptgetstr2

compdesc& The component descriptor that replaces
instdesc% and comp$ in the Version
2 subprogram. Its value is unique
to the instrument/component pair, .
and is assigned by the subprogram,
hptassigncomp.

Example
CALL hptgetstr(hp3325b)%, "Function", current_function$)

See Also hptassign, hptassigncomp

14-34 The HP ITG Library: QuickBASIC

hptincremental

hptincremental

Syntax

Description

Parameters

Example

See Also

hptincremental (instdesc%, switch%)

The hptincremental subprogram uses the values ON
or OFF for switch% to enable or disable Incremental
mode for the instrument specified by instdesc%. The
instrument descriptor is the integer that identifies a
specific instrument in your workfile, and is returned by
the subprogram, hptassign.

The default setting is ON for this mode in the HP ITG
development environment. Use this subprogram when
you have changed the instrument’s setup manually.

instdesc% The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

switch% The variable that controls Incremental
mode. Use the argument ON to enable
Incremental mode, or OFF to disable
Incremental mode.

CALL hptincremental(hp3478aJ),, OFF)

hptassign

The HP ITG Library: QuickBASIC 14-35

hptinit
Syntax hptinit (workfile$) .
Description
Note A call to the hptinit subprogram is required when

you use a workfile, and the program calls HP ITG
subprograms affecting the instruments in that workfile.
This subprogram must be called before any other

HP ITG subprogram is called. You can generate

this code automatically from the HP ITG Editor
window’s menu bar. Click on Edit, then Generate
Initialization Code. Be sure you have saved the
workfile and the editor cursor is at the beginning of the
file.

The hptinit subprogram names the current workfile .
for HP ITG, and initializes the data used by the rest

of HP ITG. If the argument for workfile$ does not

specify an absolute path name, HP ITG uses the current
directory to find the workfile name. The file name for

workfile$ does not need to include the .WF extension

used to identify workfiles.

Parameters workfile$ The string variable that specifies the soft
test system for HP ITG to read into the
work space. The argument may include
a complete path name.

Example CALL hptinit("FRQ_RESP.WF")

See Also hptassign

14-36 The HP ITG Library: QuickBASIC

hptlivemode

hptlivemode

Syntax

Description

Parameters

Example

See Also

hptlivemode (instdesc%, switch%)

The hptlivemode subprogram uses the values ON or
OFF for switch% to enable or disable Live mode for
the instrument specified by instdesc%. The instrument
descriptor is the integer that identifies a specific
instrument in your workfile, and is returned by the
subprogram, hptassign.

The default setting for this mode in a program is ON.
HP ITG sends HP-IB commands directly to instruments
when Live mode is on. Use hptlivemode to turn

Live mode OFF for some instruments while you are
developing other parts of your program.

instdesc % The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

switch% The variable that controls Live mode.
Use the argument ON to enable Live
mode, or OFF to disable Live mode.

CALL hptlivemode(hp3325bY%, OFF)

hptassign

The HP ITG Library: QuickBASIC 14-37

hptlocal

Syntax

Description

Parameters

Example

See Also

hptlocal (instdesc%)

The hptlocal subprogram puts the instrument specified
by instdesc% into local mode, preventing the program’s
I/O commands from controlling the instrument. The
instrument descriptor is the integer that identifies a
specific instrument in your workfile, and is returned by
the subprogram, hptassign.

instdesc% The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

CALL hptlocal(oscilloscopei)

hptassign, hptremote

14-38 The HP ITG Library: QuickBASIC

hptmeminfo

hptmeminfo

Syntax

Description

Parameters

Example

hptmeminfo (instdesc%, conv%, ems%)

The hptmeminfo subprogram reports the amount of
conventional (conv%) and expanded (ems%) memory
being used by the instrument driver, states, and
configuration information specified by instdesc%. The
instrument descriptor is the integer that identifies a
specific instrument in your workfile, and is returned by
the subprogram, hptassign.

instdesc%

conv%

ems%

The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

HP ITG returns the amount of
conventional memory (in Kbytes) being
used in this integer variable. Typically,
this is between 2-3 Kbytes depending on
the instrument driver size.

HP ITG returns the amount of expanded
memory (in Kbytes) being used in this
integer variable. Expanded memory
usage is expressed as a multiple of 16
Kbytes, even if less memory is actually
used.

CALL hptmeminfo(voltmeter’,, conv_mem_usage), exp_mem_usage¥,)

See Also

hptassign, hptclose, hptcloseall

The HP ITG Library: QuickBASIC 14-39

hptmonitor

Syntax hptmonitor (instdesc%, mode, filename$) ‘

Description The hptmonitor subprogram controls HP ITG’s Monitor
mode for program debugging. If Monitor mode is on,
the type of debugging information specified by mode is
written to filename$. All of the information is written
during program execution for the instrument specified by
instdesc%. The instrument descriptor is the integer that
identifies a specific instrument in your workfile, and is
returned by the subprogram, hptassign.

To report results more immediately, set filename$ to a
printer port. As an example, if a printer is configured to
the computer’s LPT1 port, use "LPT1" for filename$.

Use the following constants as arguments for mode: ‘
m OFF—Monitor mode is off.
m ON—Log I/O transactions to filename$.

s DRIVER_DEBUG—Log I/O transactions and
additional information to filename$.

The default setting is OFF in a program. Use this
subprogram to turn on Monitor mode for debugging

purposes.
Parameters instdesc% The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.
mode Specifies the mode setting. ‘
filename$ Specifies the destination file for the

debugging information.

14-40 The HP ITG Library: QuickBASIC

Example

See Also

hptmonitor

CALL hptmonitor(scope},, DRIVER_DEBUG, "DEBUG.ERR")

hptassign, hptclose, hptcloseall

The HP ITG Library: QuickBASIC 14-41

hptpeek, hptpeek2

Syntax hptpeek (instdesc%, comp$, val#) ‘
hptpeek2 (compdescé&, val#)

Description The hptpeek subprogram returns the current value
(val#) of the INTEGER or CONTINUOUS component
(comp$) for the instrument specified by instdesc%. The
instrument descriptor is the integer that identifies a
specific instrument in your workfile, and is returned by
the subprogram, hptassign. The returned value is read
directly from the results of the most recent call to the
hptget or hptpoke subprograms.

The hptpeek?2 subprogram produces the same results.
As a Version 2 subprogram, the parameter compdesc&
replaces instdesc% and comp$ for higher performance.
Its value is assigned by the subprogram, hptassigncomp.

Parameters instdesc% The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

comp$ The string variable that names
the INTEGER or CONTINUOUS
component in the workfile’s instrument
driver.

val# HP ITG returns the component’s value
in this real variable.

compdesc& The component descriptor that replaces
instdesc% and comp$ in the Version ‘
2 subprogram. Its value is unique
to the instrument/component pair,
and is assigned by the subprogram,
hptassigncomp.

14-42 The HP ITG Library: QuickBASIC

hptpeek, hptpeek2

Example CALL hptpeek(hp3325b), "Phase", current_val#)

‘ See Also hptassign, hptassigncomp, hptget, hptpoke

The HP ITG Library: QuickBASIC 14-43

hptpeekary,
hptpeekary2 .

Syntax hptpeekary (instdesc%, comp$, val#())
hptpeekary2 (compdesc&, val#())

Description The hptpeekary subprogram returns the current value
(val#()) of the RARRAY component (comp$) for the
instrument specified by instdesc%. The instrument
descriptor is the integer that identifies a specific
instrument in your workfile, and is returned by the
subprogram, hptassign. The returned value is read
directly from the results of the most recent call to the
hptgetary or hptpokeary subprograms.

The hptpeekary2 subprogram produces the same

results. As a Version 2 subprogram, the parameter .
compdesc& teplaces instdesc% and comp$ for higher
performance. Its value is assigned by the subprogram,
hptassigncomp.

Parameters instdesc% The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

comp$ The string variable that names the
RARRAY component in the workfile’s
instrument driver.

val#() HP ITG returns the component’s value
in this real array variable. This variable
must be properly dimensioned in the .
program. Use hptcompdims to read the
array dimensions.

14-44 The HP ITG Library: QuickBASIC

hptpeekary, hptpeekary2

compdesc& The component descriptor that replaces
instdesc% and comp$ in the Version
2 subprogram. Its value is unique
to the instrument/component pair,
and is assigned by the subprogram,
hptassigncomp.

Example
CALL hptpeekary(hp54501aj,, "ENV_CH1", comp_val#())

See Also hptassign, hptassigncomp, hptcompdims, hptgetary,
hptpokeary

The HP ITG Library: QuickBASIC 14-45

hptpeekiary,
hptpeekiary2 ‘

Syntax hptpeekiary (instdesc%, comp$, val%())
hptpeekiary2 (compdesc&, val%())

Description The hptpeekiary subprogram returns the current value
(val%()) of the IARRAY component (comp$) for the
instrument specified by instdesc’%. The instrument
descriptor is the integer that identifies a specific
instrument in your workfile, and is returned by the
subprogram, hptassign. The returned value is read
directly from the results of the most recent call to the
hptgetiary or hptpokeiary subprograms.

The hptpeekiary2 subprogram produces the same

results. As a Version 2 subprogram, the parameter ‘
compdesc& replaces instdesc% and comp$ for higher
performance. Its value is assigned by the subprogram,

hptassigncomp.

Parameters instdesc% The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

comp$ The string variable that names the

TARRAY component in the workfile’s
instrument driver.

val%() HP ITG returns the component’s value
in this integer array variable. This
variable must be properly dimensioned ‘
in the program. Use hptcompdims to
read the array dimensions.

14-46 The HP ITG Library: QuickBASIC

hptpeekiary, hptpeekiary2

compdesc& The component descriptor that replaces
instdesc% and comp$ in the Version
2 subprogram. Its value is unique
to the instrument/component pair,
and is assigned by the subprogram,
hptassigncomp.

Example
CALL hptpeekiary(hp5334a),, "CalibrationData", cal_data¥())

See Also hptassign, hptassigncomp, hptcompdims, hptgetiary,
hptpokeiary

The HP ITG Library: QuickBASIC 14-47

hptpeekstr (instdesc%, comp$, val§)

hptpeekstr2 (compdesc&, val§)

The hptpeekstr subprogram returns the current value

(val$) of the STRING component (comp$) for the
instrument specified by instdesc%. The instrument
descriptor is the integer that identifies a specific

instrument in your workfile, and is returned by the

The hptpeekstr2 subprogram produces the same
results. As a Version 2 subprogram, the parameter
compdesc& teplaces instdesc% and comp$ for higher
performance. Its value is assigned by the subprogram,

hptpeekstr,
hptpeekstr2
Syntax
Description
subprogram, hptassign.
hptassigncomp.
Parameters instdesc%

comp$

val$

compdesc&

14-48 The HP ITG Library: QuickBASIC

The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

The string variable that names the
STRING component in the workfile’s
instrument driver.

HP ITG returns the component’s value
in this string variable.

The component descriptor that replaces
instdesc% and comp$ in the Version

2 subprogram. Its value is unique

to the instrument/component pair,

and is assigned by the subprogram,
hptassigncomp.

hptpeekstr, hptpeekstr2

Example
CALL hptpeekstr(source),, "Function", src_comp_func$)

See Also hptassign, hptassigncomp, hptgetstr, hptpokestr

The HP ITG Library: QuickBASIC 14-49

hptpoke, hptpoke2

Syntax hptpoke (instdesc%, comp$, val#) ‘
hptpoke2 (compdesc&, val#)

Description The hptpoke subprogram sets the internal variable of
the CONTINUOUS or INTEGER component (comp$)
for the instrument specified by instdesc% to a value
(val#). The instrument descriptor is the integer that
identifies a specific instrument in your workfile, and is
returned by the subprogram, hptassign. The hptpoke
subprogram adjusts only the component’s value, not the
instrument.

The hptpoke2 subprogram produces the same results.
As a Version 2 subprogram, the parameter compdesc&
replaces instdesc% and comp$ for higher performance.
Its value is assigned by the subprogram, hptassigncomp.

Parameters instdesc% The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

comp$ The string variable that names
the INTEGER or CONTINUOUS
component in the workfile’s instrument
driver.

val# HP ITG changes the component to
this value. If the argument for this
parameter is an integer variable, it

must include parentheses and use the %
specifier—(val%). ‘

14-50 The HP ITG Library: QuickBASIC

hptpoke, hptpoke2

compdesc& The component descriptor that replaces
instdesc% and comp$ in the Version
2 subprogram. Its value is unique
to the instrument/component pair,
and is assigned by the subprogram,
hptassigncomp.

Example CALL hptpoke(voltmeter’,, "RANGE", new_range#)

See Also hptassign, hptassigncomp, hptset

The HP ITG Library: QuickBASIC 14-51

hptpokeary,
hptpokeary2

Syntax hptpokeary (instdesc%, comp$, val#())
hptpokeary?2 (compdesc&, val#())

Description The hptpokeary subprogram sets the internal
variable of the RARRAY component (comp$) for the
instrument specified by instdesc% to a value (val#).
The instrument descriptor is the integer that identifies
a specific instrument in your workfile, and is returned
by the subprogram, hptassign. The hptpokeary
subprogram adjusts only the component’s value, not the
instrument.

The hptpokeary2 subprogram produces the same

results. As a Version 2 subprogram, the parameter

compdesc& replaces instdesc% and comp$ for higher .
performance. Its value is assigned by the subprogram,
hptassigncomp.

Parameters instdesc % The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

comp$ The string variable that names the
RARRAY component in the workfile’s
instrument driver.

val#() HP ITG changes the component to
this value. This variable must be

properly dimensioned in the program.
Use hptcompdims to read the array .
dimensions.

14-52 The HP ITG Library: QuickBASIC

hptpokeary, hptpokeary2

compdesc& The component descriptor that replaces
instdesc% and comp$ in the Version
2 subprogram. Its value is unique
to the instrument/component pair,
and is assigned by the subprogram,
hptassigncomp.

Example
CALL hptpokeary(voltmeter’, "READINGS", new_readings#())

See Also hptassign, hptassigncomp, hptcompdims, hptsetary

The HP ITG Library: QuickBASIC 14-53

hptpokeiary,
hptpokeiary2 ‘

Syntax hptpokeiary (instdesc%, comp$, val%())
hptpokeiary2 (compdescé&, val%())

Description The hptpokeiary subprogram sets the internal
variable of the IARRAY component (comp$) for the
instrument specified by instdesc% to a value (val%).
The instrument descriptor is the integer that identifies
a specific instrument in your workfile, and is returned
by the subprogram, hptassign. The hptpokeiary
subprogram adjusts only the component’s value, not the
instrument.

The hptpokeiary2 subprogram produces the same

results. As a Version 2 subprogram, the parameter ‘
compdesc& replaces instdesc% and comp$ for higher
performance. Its value is assigned by the subprogram,
hptassigncomp.

Parameters instdesc% The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

comp$ The string variable that names the
IARRAY component in the workfile’s
instrument driver.

val%() HP ITG changes the component to
this value. This variable must be

properly dimensioned in the program. ‘
Use hptcompdims to read the array
dimensions.

14-54 The HP ITG Library: QuickBASIC

hptpokeiary, hptpokeiary2

compdesc& The component descriptor that replaces
instdesc% and comp$ in the Version
2 subprogram. Its value is unique
to the instrument/component pair,
and is assigned by the subprogram,
hptassigncomp.

Example
CALL hptpokeiary(switch¥, "SET_CHAN", new_chans’())

See Also hptassign, hptassigncomp, hptcompdims, hptsetiary

The HP ITG Library: QuickBASIC 14-55

hptpokestr,
hptpokestr2

Syntax hptpokestr (instdesc%, comp$, val§)
hptpokestr2 (compdesc&, val$)

Description The hptpokestr subprogram sets the internal variable
of the STRING component (comp$) for the instrument
specified by instdesc% to a value (val$). The instrument
descriptor is the integer that identifies a specific
instrument in your workfile, and is returned by the
subprogram, hptassign. The hptpokestr subprogram
adjusts only the component’s value, not the instrument.

The hptpokestr2 subprogram produces the same

results. As a Version 2 subprogram, the parameter

compdesc& replaces instdesc% and comp$ for higher
performance. Its value is assigned by the subprogram, .
hptassigncomp.

Parameters instdesc% The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

comp$ The string variable that names the
STRING component in the workfile’s
instrument driver.

val$ HP ITG changes the component to this
value.

14-56 The HP ITG Library: QuickBASIC

hptpokestr, hptpokestr2

compdesc& The component descriptor that replaces
instdesc% and comp$ in the Version
2 subprogram. Its value is unique
to the instrument/component pair,
and is assigned by the subprogram,
hptassigncomp.

Example CALL hptpokestr(voltmeter’, "FUNCTION", "ACV")

See Also hptassign, hptassigncomp, hptsetstr

The HP ITG Library: QuickBASIC 14-57

hptpush, hptpush2

Syntax hptpush (instdesc%, comp$) ‘
hptpush2 (compdesc&)

Description The hptpush subprogram executes the set actions
associated with the component named by comp$ for
the instrument specified by instdesc%. The instrument
descriptor is the integer that identifies a specific
instrument in your workfile, and is returned by the
subprogram, hptassign.

The hptpush2 subprogram produces the same results.
As a Version 2 subprogram, the parameter compdesc&
replaces instdesc% and comp$ for higher performance.
Its value is assigned by the subprogram, hptassigncomp.

Parameters instdesc % The instrument descriptor, an integer ‘
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.
comp$ The variable that names the component

in the instrument driver.

compdesc& The component descriptor that replaces
instdesc% and comp$ in the Version
2 subprogram. Its value is unique
to the instrument/component pair,
and is assigned by the subprogram,
hptassigncomp.

Example CALL hptpush(scope’, "RESET") ‘

See Also hptassign, hptassigncomp

14-58 The HP ITG Library: QuickBASIC

hptrecall,
‘ hptrecall2

Syntax

Description

Parameters

hptrecall, hptrecall2

hptrecall (instdesc%, state$)
hptrecall2 (statedesc&)

The hptrecall subprogram recalls the instrument

state specified by state$ for the instrument specified by
instdesc%. The subprogram changes the instrument
settings to the values contained in the recalled state.
The instrument descriptor is the integer that identifies a
specific instrument in your workfile, and is returned by
the subprogram, hptassign.

The hptrecall2 subprogram produces the same results.
As a Version 2 subprogram, the parameter statedesc&
replaces instdesc% and state$ for higher performance.
Its value can be assigned by the subprograms,
hptassignstate and hptstatesave.

instdesc % The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

state$ The name of the instrument state to be
recalled.

statedesc& The state descriptor that replaces
instdesc% and state$ in the Version
2 subprogram. Its value is unique to
the instrument /state pair, and can
be assigned by the subprograms,
hptassignstate and hptstatesave.

The HP ITG Library: QuickBASIC 14-59

hptrecall, hptrecall2

Example CALL hptrecall(analyzer}, "HPTINITIALSTATE")

See Also hptassign, hptassignstate, hptstatesave .

14-60 The HP ITG Library: QuickBASIC

hptremote

hptremote

‘ Syntax hptremote (instdesc%)

Description The hptremote subprogram puts the instrument
specified by instdesc% into remote mode. An instrument
in remote mode can be controlled by a program’s I/0
commands. The instrument descriptor is the integer that
identifies a specific instrument in your workfile, and is
returned by the subprogram, hptassign.

Parameters instdesc% The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

‘ Example CALL hptremote(voltmeter%)

See Also hptassign, hptlocal

The HP ITG Library: QuickBASIC 14-61

hptset, hptset2

Syntax hptset (instdesc’%, comp$, val#) .
hptset2 (compdesc&, val#)

Description The hptset subprogram sets the CONTINUOUS or
INTEGER component (comp$) and the instrument
specified by instdesc% to a value (val#). The
instrument descriptor is the integer that identifies a
specific instrument in your workfile, and is returned by
the subprogram, hptassign.

The hptset2 subprogram produces the same results.

As a Version 2 subprogram, the parameter compdesc&
replaces instdesc% and comp$ for higher performance.
Its value is assigned by the subprogram, hptassigncomp.

In the HP ITG development environment, HP ITG .
automatically generates a call to hptset when you

adjust an instrument’s soft panel control. To use

hptset2, you have to call hptassigncomp and edit the

call to hptset to change the parameter list’s arguments.

Parameters instdesc% The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

comp$ The string variable that names
the INTEGER or CONTINUOUS
component in the workfile’s instrument
driver.

14-62 The HP ITG Library: QuickBASIC

hptset, hptset2

val# HP ITG sets the component and
instrument to this value. If the
argument for this parameter is an
‘ integer variable, it must include
parentheses and use the % specifier—
(val%). For a list of allowed values, see
the component summary table for the
instrument in HP ITG’s online Help
system under Instrument Help ...

compdesc& The component descriptor that replaces
instdesc% and comp$ in the Version
2 subprogram. Its value is unique
to the instrument/component pair,
and is assigned by the subprogram,
hptassigncomp.

Example CALL hptset(voltmeter’, "RANGE", 5)

See Also hptassign, hptassigncomp, hptpoke

The HP ITG Library: QuickBASIC 14-63

hptsetary,
hptsetary2

Syntax hptsetary (instdesc%, comp$, val#())
hptsetary2 (compdesc&, val#())

Description The hptsetary subprogram sets the RARRAY
component (comp$) and the instrument specified
by instdesc% to a value (val#()). The instrument
descriptor is the integer that identifies a specific
instrument in your workfile, and is returned by the
subprogram, hptassign.

The hptsetary2 subprogram produces the same results.

As a Version 2 subprogram, the parameter compdesc&

replaces instdesc% and comp$ for higher performance.

Its value is assigned by the subprogram, hptassigncomp. .

Parameters instdesc % The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

comp$ The string variable that names the
RARRAY component in the workfile’s
instrument driver.

val#() HP ITG adjusts the component and
instrument to this value. This variable
must by properly dimensioned in the
program. For a list of allowed values,
see the component summary table in
HP ITG’s online Help system under
Instrument Help

14-64 The HP ITG Library: QuickBASIC

hptsetary, hptsetary2

compdesc& The component descriptor that replaces
instdesc% and comp$ in the Version
2 subprogram. Its value is unique
to the instrument/component pair,
and is assigned by the subprogram,
hptassigncomp.

Example CALL hptsetary(hp54501a),, "ENV_CH2", values#())

See Also hptassign, hptassigncomp, hptcompdims, hptpokeary

The HP ITG Library: QuickBASIC 14-65

hptsetdevaddr

Syntax hptsetdevaddr (instdesc%, addr$) ‘

Description The hptsetdevaddr subprogram changes the HP ITG
instrument configuration specified by instdesc% to the
HP-IB address, addr$. The instrument descriptor is
the integer that identifies a specific instrument in your
workfile, and is returned by the subprogram, hptassign.
See appendix B, “I/O Interfaces,” for information about
interface board select codes.

Parameters instdesc% The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

addr$ The string variable containing the HP-IB
address for the instrument. Only 16
characters are significant.

Example CALL hptsetdevaddr (counter’, "703")

See Also hptadddevice, hptassign, hptdevaddr, hptdevsubad

14-66 The HP ITG Library: QuickBASIC

hptseterrormode

hptseterrormode

Syntax

Description

Parameters

Example

See Also

hptseterrormode (mode%)

The hptseterrormode subprogram sets the error mode
(mode%) for generated programs. Three modes are
allowed:

m PRINTITGERROR prints HP ITG errors and
maintains program execution.

s IGNOREITGERROR ignores HP ITG errors.

m STOPITGERROR prints HP ITG errors and
suspends program execution while in the QuickBASIC
environment.

mode% Use one of the following arguments for
the parameter:

s PRINTITGERROR
s IGNOREITGERROR
s STOPITGERROR (default)

CALL hptseterrormode (PRINTITGERROR)

hpterrmsg

The HP ITG Library: QuickBASIC 14-67

hptsetiary,
hptsetiary2

Syntax hptsetiary (instdesc %, comp$, val%())
hptsetiary2 (compdescé&, val%())

Description The hptsetiary subprogram sets the IARRAY
component (comp$) and the instrument specified
by instdesc% to a value (val%()). The instrument
descriptor is the integer that identifies a specific
instrument in your workfile, and is returned by the
subprogram, hptassign.

The hptsetiary2 subprogram produces the same

results. As a Version 2 subprogram, the parameter

compdesc& replaces instdesc% and comp$ for higher
performance. Its value is assigned by the subprogram,
hptassigncomp. .

Parameters instdesc % The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

comp$ The string variable that names the
IARRAY component in the workfile’s
instrument driver.

val%() HP ITG sets the component and
instrument to this value. This variable
must be properly dimensioned in the
program. For a list of the allowed
values, see the instrument’s component
summary table in HP ITG’s online Help .
system under Instrument Help ...

14-68 The HP ITG Library: QuickBASIC

hptsetiary, hptsetiary2

compdesc& The component descriptor that replaces
instdesc% and comp$ in the Version
2 subprogram. Its value is unique
to the instrument/component pair,
and is assigned by the subprogram,
hptassigncomp.

Example
CALL hptsetiary(switchy,, "SET_CHAN", new_chans’())

See Also hptassign, hptassigncomp, hptcompdims, hptpokeiary

The HP ITG Library: QuickBASIC 14-69

hptsetstate,
hptsetstate2 ‘

Syntax hptsetstate (instdesc%, comp§, state%)

hptsetstate2 (compdesc&, state%)

Description The hptsetstate subprogram lets you change the status
(state%) of the component (comp§) in the instrument
specified as instdesc%. The instrument descriptor is
the integer that identifies a specific instrument in your
workfile, and is returned by the subprogram, hptassign.

Set the component status using one of the following
values for state%:

s COMP_VALID (sets component status to VALID).

s COMP_INVALID (sets component status to ‘
INVALID).

s COMP_DONTCARE (sets component status to
DONTCARE).

The hptsetstate2 subprogram produces the same
results. As a Version 2 subprogram, the parameter
compdesc& replaces instdesc% and comp$ for higher
performance. Its value is assigned by the subprogram,
hptassigncomp.

Parameters instdesc% The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

comp$ The string variable that names the
component in the workfile’s instrument
driver.

14-70 The HP ITG Library: QuickBASIC

hptsetstate, hptsetstate2

state% HP ITG changes the component to
the status defined by the parameter’s
argument.

compdesc& The component descriptor that replaces

instdesc% and comp$ in the Version
2 subprogram. Its value is unique
to the instrument/component pair,
and is assigned by the subprogram,
hptassigncomp.

Example
CALL hptsetstate(hp3325a¥,, "Function", COMP_DONTCARE)

See Also hptassign, hptassigncomp

The HP ITG Library: QuickBASIC 14-71

hptsetstr,
hptsetstr2

Syntax hptsetstr (instdesc%, comp$, val§)
hptsetstr2 (compdesc&, val§)

Description The hptsetstr subprogram sets the STRING
component (comp$) and the instrument specified by
instdesc% to a value (val$). The instrument descriptor
is the integer that identifies a specific instrument in your
workfile, and is returned by the subprogram, hptassign.

The hptsetstr2 subprogram produces the same results.
As a Version 2 subprogram, the parameter compdesc&
replaces instdesc% and comp$ for higher performance.
Its value is assigned by the subprogram, hptassigncomp.

In the HP ITG development environment, HP ITG ‘
automatically generates a call to hptsetstr when

you adjust an instrument’s soft panel control. To use
hptsetstr2, you have to call hptassigncomp and edit

the call to hptsetstr to change the parameter list’s

arguments.

Parameters instdesc% The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the
subprogram, hptassign.

comp$ The string variable that names the

STRING component in the workfile’s
instrument driver.

val$ HP ITG adjusts the component and .
instrument to this value.

14-72 The HP ITG Library: QuickBASIC

hptsetstr, hptsetstr2

compdesc& The component descriptor that replaces
instdesc% and comp$ in the Version
2 subprogram. Its value is unique
to the instrument/component pair,
and is assigned by the subprogram,
hptassigncomp.

Example CALL hptsetstr(hp3325bj, "Function", "DCV")

See Also hptassign, hptassigncomp, hptpokestr

The HP ITG Library: QuickBASIC 14-73

hptstatesave

Syntax hptstatesave (instdesc’%, state$, statedesc&) .

Description The hptstatesave subprogram lets you create a new
instrument state with the state name state$ for the
instrument specified as instdesc%. An internal number
corresponding to the new state is returned in the
variable, statedesc&. This state descriptor can be used
in calls to hptrecall2. The instrument descriptor is
the integer that identifies a specific instrument in your
workfile, and is returned by the subprogram, hptassign.

Parameters instdesc% The instrument descriptor, an integer
that specifies the instrument in your
workfile. Its value is assigned by the

subprogram, hptassign. .

state$ The string variable containing the name
for the newly created state.

statedesc& HP ITG returns a descriptor in this

variable corresponding to the new state.

Example
CALL hptstatesave(analyzer),, "read_response", state_descriptorg)

See Also hptassign, hptassignstate, hptrecall, hptrecall2

14-74 The HP ITG Library: QuickBASIC

Computer
Museum

15

The HP ITG Library: C

Overview

The HP ITG Library is a set of functions provided
with HP ITG. Calls to several functions are generated
automatically by HP ITG in the development
environment when you interact with instrument panel
controls. Calls to many other functions must be added
to your program when you are ready to edit it.

This chapter describes the functions in the HP ITG
Library for the Microsoft C and QuickC languages. The
functions are arranged in alphabetical order and are
described using the following format:

s Syntax.

m Description.

m Return Value.

m Error Conditions.
m See Also.

m Example.

To use these functions, you will need information

from instrument drivers about component names

and their values. That information helps you supply

the arguments the function parameter lists require.

The component information is located in HP ITG’s
online Help system under Instrument Help ... The
manual, How to Write an HP ITG Driver, describes how
instrument drivers and their components are written.

HP ITG automatically generates function calls when
an instrument panel is set to Log HP ITG Calls mode.
There are other functions in the library to which

The HP ITG Library: C 15-1

HP ITG cannot generate calls. To use them, you must
edit your program to include the function calls.

The file, HPITG.H, is the include file that supports these
functions. It declares the functions and the constants ‘
required as arguments. The specific constants (when

required) are defined in the function descriptions.

The statement to include HPITG.H in your program is

added automatically when you generate the HP ITG
initialization code.

Many functions have an alternate version, identified
with a 2 appended to the main version function names.
These Version 2 functions differ from the main versions
in syntax, but return the same values with greater
execution speed. HP ITG-assigned integer values for
parameter arguments are used instead of strings to
improve performance. The functions, hpt_assigncomp
and hpt_assignstate, are used for the integer

assignments. .
The following tables list the HP ITG subprograms.

Table 15-1 lists the functions to which HP ITG can

generate calls. Table 15-2 lists the functions to which

calls cannot be generated.

15-2 The HP ITG Library: C

Table 15-1.

Calls Generated by HP ITG for These C

Functions

Main Version

Version 2

hpt_assign
hpt_get
hpt_get_ary
hpt_get_iary
hpt_get_str
hpt_init
hpt_push
hpt_recall
hpt_set
hpt_set_str

hpt_get2
hpt_get_ary2
hpt_get_iary2
hpt_get_str2

hpt_push2
hpt_recall2
hpt_set2
hpt_set_str2

The HP ITG Library: C 15-3

15-4 The HP ITG Library: C

Table 15-2. Additional HP ITG Functions for C

Main Version

Version 2

hpt_add_device
hpt_assigncomp
hpt_assignparm
hpt_assignstate
hpt_close
hpt_close_all
hpt_compdims
hpt_devaddr
hpt_devsubad
hpt_errmsg
hpt_errorcheck
hpt_forget
hpt_getstate
hpt_incremental
hpt_livemode
hpt_local
hpt_mem_info
hpt_monitor
hpt_peek
hpt_peek_ary
hpt_peek_iary
hpt_peek_str
hpt_poke
hpt_poke_ary
hpt_poke_iary
hpt_poke_str
hpt_remote
hpt_set_ary
hpt_set_error_handler
hpt_set_iary
hpt_setdevaddr
hpt_setstate
hpt_state_save

hpt_forget2
hpt_getstate2

hpt_peek2
hpt_peek_ary2
hpt_peek_iary2
hpt_peek_str2
hpt_poke2
hpt_poke_ary2
hpt_poke_iary2
hpt_poke_str2

hpt_set_ary2
hpt_set_iary2

hpt_setstate2

hpt_add_device

hpt_.add_device

Syntax

Description

int hpt_add_device(instr, logical, addr, subaddr,
timeout) ;

char far *instr Names the instrument driver file
name (8 character maximum).
The .ID extension must be
omitted.

char far x*logical The logical name for the
instrument, such as source (25
character maximum).

char far *addr The instrument’s HP-IB address
(16 character maximum).

char far *subaddr The instrument’s subaddress (16
character maximum).

double timeout The instrument’s timeout period
for the development and run-time
environments.

The hpt_add_device function lets you add an instr to
your test system during run-time without adding it to
the workfile in the HP ITG development environment.
The remaining parameters are identical to the entries
you specify in the instrument configuration dialog box
when adding an instrument to a soft test system in the
development environment. You must not include the .ID
file name extension for instr. Specify the logical name
for the instrument, the HP-IB addr and subaddr (if
needed), and the timeout. If there is no subaddr, specify

The HP ITG Library: C 15-5

hpt_add_device

Note The instrument’s compiled instrument driver file
(.CID) must exist for you to add the instrument using
hpt_add_device. Whether you add one or more
instruments, you must call the hpt_assign function for ‘
each instrument.

Return Value The hpt_add_device function returns a 0 if it could not
add the instrument.

Error Conditions A return value of 0 indicates one of the following error
conditions:

m instr is an incorrect driver file name.

m The compiled instrument driver (.CID) file does not
exist or could not be opened.

See Also hpt_assign

Example
hpt_add_device("HP54501A", "SCOPE", "704", "", 30.0);

15-6 The HP ITG Library: C

hpt_assign

hpt_assign

Syntax

Description

Note

int hpt_assign(inst, mem);

char far *inst Instrument soft panel name in
workfile.

int mem Names memory type where
instrument driver file should be
loaded.

A call to hpt_assign is required in all programs that
use HP ITG functions. To generate this code in

HP ITG, click on Generate Initialization Code in the
Editor window’s Edit menu. Generate this code at the
beginning of your program. Be sure to save the workfile
first.

The hpt_assign function informs HP ITG you are using
the instrument named inst in your test system. You
assign the instrument name when you add it to your test
system. You may have added the instrument to the test
system in the HP ITG development environment, or by
calling hpt_add_device.

If the instrument driver file and associated states exist,
HP ITG attempts to open the instrument driver file.
The environment variable, HPITG, defines the directory
that contains the driver file. Otherwise, HP ITG looks in
the directory, C:\HPITG. If the file is opened successfully,
HP ITG assigns an integer descriptor to the instrument.
Other HP ITG functions use this number to control the
instrument.

The HP ITG Library: C 15-7

hpt_assign

Use one of the following arguments to specify where the
driver should be loaded:

s CONVENTIONAL.

m EXPANDED (default when generated with .
initialization code).

Note To deallocate computer memory, you must close all
open instrument drivers before exiting an application.
Use hpt_close or hpt_close_all to close instrument
drivers.

Return Value The hpt_assign function returns an instrument
descriptor (an integer in the range from 1 through 254)
that is unique to inst. The function returns 0 if an error
occurs.

Error Conditions A return value of 0 indicates one of the following error

conditions: .

m inst is not in the workfile specified by hpt_init, or
has not been added by hpt_add_device.

m The instrument driver could not be opened.

m The workfile was not loaded successfully.

See Also hpt_add_device, hpt_close, hpt_close_all,
hpt_init, hpt_mem_info

Example inst_desc = hpt_assign("SCOPE" ,EXPANDED) ;

15-8 The HP ITG Library: C

hpt_assigncomp

hpt_assigncomp

Syntax

Description

Return Value

Error Conditions

See Also

long hpt_assigncomp (inst_desc, comp) ;

int inst_desc Instrument descriptor assigned by
hpt_assign.

char far *comp Component name from instrument
driver.

The hpt_assigncomp function assigns a unique
component descriptor to comp. inst_desc is the integer
that identifies a specific instrument in your workfile, and
is returned by the function, hpt_assign.

The component descriptor is useful when comp is
referenced many times.

hpt_assigncomp returns a component descriptor that is
unique to comp for the instrument driver referenced by
inst_desc. The function returns 0 if it could not assign a
component descriptor.

A return value of 0 indicates one of the following error
conditions:

m inst_desc does not match any assigned instruments in
the workfile.

m comp does not exist in the instrument driver specified
by inst_desc.

hpt_assign

Many HP ITG functions have an alternate version,
identified by the 2 appended to the main version
function names. These Version 2 functions return the
same values, and are usually used in conjunction with
hpt_assigncomp. The following list names the functions

The HP ITG Library: C 15-9

hpt_assigncomp

that have both versions. See their descriptions in this
chapter for details about each.

hpt_forget
hpt_get ’
hpt_get_ary
hpt_get iary
hpt_get_str
hpt_getstate
hpt_peek
hpt_peek_ary
hpt_peek_iary
hpt_peek str
hpt_poke
hpt_poke_ary
hpt_poke_iary
hpt_poke_str
hpt_push
hpt_recall
hpt_set ‘
hpt_set_ary
hpt_set_iary
hpt_set_str
hpt_setstate

Example
function_comp = hpt_assigncomp(inst_desc, "FUNCTION");

hpt_get2(function_comp, &value);

15-10 The HP ITG Library: C

hpt_assignparm

hpt_assignparm

Syntax

Description

Return Value

int hpt_assignparm(inst_desc, comp, parm, discrete) ;

int inst_desc Instrument descriptor assigned by
hpt_assign.

char far *comp Component name from instrument
driver.

char far *parm Component value name.

int far *discrete Receives return value.

The hpt_assignparm function returns the internal
ordinal number for parm, a value name in a component,
in the return variable, discrete. comp names the
component that contains parm. inst_desc is the integer
that identifies a specific instrument in your workfile, and
is returned by the function, hpt_assign. comp must
exist in the instrument driver.

Use hpt_assignparm to assign numbers to the values
listed in DISCRETE components. For improved
performance, use the returned number in calls to the
hpt_set function rather than using the value’s name in
calls to the hpt_set_str function.

hpt_assignparm returns an ordinal number in discrete.
This number is unique to parm which is a component
value in the instrument driver referenced by inst_desc.
The function returns a 0 if it could not assign a number.

The HP ITG Library: C 15-11

hpt_assignparm
Error Conditions A return value of 0 indicates one of the following error
conditions:

m inst_desc does not match any assigned instruments in
the workfile.

m comp does not exist in the instrument driver specified
by inst_desc.

m parm does not exist as a DISCRETE value for this

component.

See Also hpt_assign, hpt_set, hpt_set_str

Example
status= hpt_assignparm(inst_desc, "WAVEFORM", "SINE", &discrete);

15-12 The HP ITG Library: C

hpt_assignstate

hpt_assignstate

Syntax

Description

Return Value

Error Conditions

long hpt_assignstate(inst_desc, state) ;

int inst_desc Instrument descriptor assigned by
hpt_assign.

char far *state Instrument state name.

The hpt_assignstate function returns the internal
number for state. The state name is created when an
instrument setup is saved as a state in the development
environment. inst_desc is the integer that identifies a
specific instrument in your workfile, and is returned by
the function, hpt_assign.

Use the returned number in calls to the function,
hpt_recall2. This improves performance compared
to using the state name in calls to the function,
hpt_recall.

hpt_assignstate returns a number that is unique to
state for the instrument driver referenced by inst_desc.
The function returns a 0 if it could not assign a number.

A return value of 0 indicates one of the following error
conditions:

m inst_desc does not match any assigned instruments in
the workfile.

m state does not exist as a saved state for the instrument
specified by inst_desc.

The HP ITG Library: C 15-13

hpt_assignstate

See Also hpt_assign, hpt_recall, hpt_recall2,
hpt_state_save

Example ‘

setup_state = hpt_assignstate(inst_descriptor, "“SETUP");

hpt_recall2(setup_state);

15-14 The HP ITG Library: C

hpt_close

hpt_close

Syntax

Description

Return Value

Error Conditions

See Also

Example

int hpt_close(inst_desc) ;

int inst_desc Instrument descriptor assigned by
hpt_assign.

The hpt_close function closes the instrument driver
associated with inst_desc. The instrument descriptor is
the integer that identifies a specific instrument in your
workfile, and is returned by the function, hpt __assign.
This activity frees up all conventional and expanded
memory used by the instrument.

hpt_close returns a 0 if the function could not close a
file.

A return value of 0 indicates one of the following error
conditions:

m inst_desc does not match any assigned instruments in
the workfile.

m System memory problems exist.

hpt_assign, hpt_close_all, hpt_mem_info,
hpt_monitor

hpt_close(inst_descriptor);

The HP ITG Library: C 15-15

[

hpt_close._all

Syntax int hpt_close_all(); ‘

Description The hpt_close_all function closes all instrument
drivers opened by hpt_assign. Closing files frees up
all conventional and expanded memory used by the
instrument drivers.

Return Value hpt_close_all returns a 0 if the function could not
close all of the instrument drivers.

Error Conditions A return value of 0 indicates the following error
condition:
m System memory problems exist.

See Also hpt_assign, hpt_close, hpt_mem_info, hpt_monitor ‘

Example hpt_close_all();

15-16 The HP ITG Library: C

hpt_compdims

hpt_compdims

Syntax

Description

Return Value

Error Conditions

int hpt_compdims(inst_desc, comp, rows, cols) ;

int inst_desc Instrument descriptor assigned by
hpt_assign.

char far *comp Component name from instrument
driver.

int far *rows Receives return value.

int far *cols Receives return value.

The hpt_compdims function returns the number of rows
and cols dimensioned for an array component. The
variable comp names the component which should exist
in the instrument driver associated with inst_.desc. The
instrument descriptor is the integer that identifies a
specific instrument in your workfile, and is returned by
the function, hpt_assign.

Use this information to determine the array dimensions
of function variables in subsequent calls to other
functions affecting arrays, such as hpt_set_ary and
hpt_get_ary.

hpt_compdims returns the number of array rows in rows
and the number of array columns in cols. The function
returns a 0 if an error condition exists.

A return value of 0 indicates the following error
conditions:

a inst_desc does not match any assigned instruments in
the workfile.

m comp does not exist in the instrument driver specified
by inst_desc.

The HP ITG Library: C 15-17

hpt_compdims
See Also hpt_assign, hpt_get_ary, hpt_get_iary,

hpt_peek_ary, hpt_peek_iary, hpt_poke_ary,
hpt_poke_iary, hpt_set_ary, hpt_set_iary I

Example
hpt_compdims(inst_descriptor, "DISPLAY", &rows, &columns);

15-18 The HP ITG Library: C

hpt_devaddr

hpt_devaddr

Syntax

Description

Return Value

Error Conditions

See Also

Example

int hpt_devaddr(inst_desc, address) ;

int inst_desc Instrument descriptor assigned by
hpt_assign.

char far *address Receives return value.

The hpt_devaddr function returns the current address of
the instrument specified by inst_desc. The instrument
descriptor is the integer that identifies a specific
instrument in your workfile, and is returned by the
function, hpt_assign. See appendix B, “I/O Interfaces,”
for information about interface board select codes.

The program must allocate sufficient space for the
address. Include a statement in the program using the

constant, ADDRESS_LENGTH, which is defined in the
include file, HPITG.H.

hpt_devaddr returns a number into the string pointed
to by address that is the interface bus address for the
instrument referenced by inst_desc. The function returns
a 0 if it could not read the address.

A return value of 0 indicates the following error
condition:

m inst_desc does not match any assigned instruments in
the workfile.

hpt_assign, hpt_devsubad, hpt_setdevaddr

char address [ADDRESS_LENGTH] ;
hpt_devaddr(inst_descriptor, address);

The HP ITG Library: C 15-19

hpt_devsubad

Syntax

Description

Return Value

Error Conditions

See Also

Example

15-20 The HP ITG Library: C

int hpt_devsubad(inst_desc, address) ;

int inst_desc Instrument descriptor assigned by
hpt_assign.

char far *address Receives return value.

The hpt_devsubad function returns the current
subaddress (address) of the instrument specified by
inst_desc. The instrument descriptor is the integer that
identifies the specific instrument in your workfile, and is
returned by the function, hpt_assign.

The program must allocate sufficient space for the
subaddress. Include a statement in the program using
the constant, ADDRESS_LENGTH, which is defined in
the include file, HPITG.H.

hpt_devsubad returns a number into the string pointed
to by address. The number is the device subaddress for
the instrument module referenced by inst_desc. The

function returns a 0 if it could not read the subaddress.

A return value of 0 indicates the following error
condition:

m inst_desc does not match any assigned instruments in
the workfile.

hpt_assign, hpt_devaddr, hpt_setdevaddr

char subaddress [ADDRESS_LENGTH] ;
hpt_devsubad(inst_descriptor, subaddress);

hpt_errmsg

hpt_errmsg

Syntax

Description

Return Value

Error Conditions

See Also

Example

int hpt_errmsg(error) ;

char far *error Receives error message.

The hpt_errmsg function sets the error pointer to error,
a null-terminated string. The string contains the most
recent HP ITG error message. The message can be from
an instrument or from HP ITG.

The program must allocate sufficient space for the
message. Include a statement in the program using the
constant, MAX_ERR_MSG, which is defined in the
include file, HPITG.H.

hpt_errmsg sets a pointer; it does not return a value.

There are no conditions that can cause this function to
return other than a NULL value or a pointer to an error
message.

hpt_errorcheck, hpt_set_error_handler

char error[MAX_ERR_MSG]; hpt_errmsg(error) ;
printf("Ys\n",error);

The HP ITG Library: C 15-21

hpt_errorcheck

Syntax int hpt_errorcheck(inst_desc, switch) ; ’
int inst_desc Instrument descriptor assigned by
hpt_assign.
int switch Boolean switch turns Error Check

mode ON or OFF.

Description The hpt_errorcheck function turns the Error Checking
mode ON or OFF for the instrument specified by
inst_desc. The instrument descriptor is the integer that
identifies a specific instrument in your workfile, and
is returned by the function, hpt_assign. switch is a
Boolean value that controls Error Check mode. Use the
following constants as arguments for switch:

m OFF (turns Error Check mode OFF).
s ON (turns Error Check mode ON). ’

To use hpt_errorcheck, the instrument must be able

to report error information, and the instrument driver
must contain an error component. Error Check mode is
OFF by default when running a program using HP ITG
functions. You must add hpt_errcheck to your program
to turn Error Check mode ON. HP ITG then checks

for errors after each call to the functions, hpt_get,
hpt_set, or hpt_recall (including the related functions
for strings and arrays, and their Version 2 functions).

Return Value hpt_errorcheck returns a 0 if it could not switch the
Error Check mode for the specified instrument.

15-22 The HP ITG Library: C

hpt_errorcheck

Error Conditions A return value of 0 indicates the following error
conditions:

m inst_desc does not match any assigned instruments in
the workfile.
m The specified instrument cannot report errors.

See Als0 hpt_assign, hpt_get, hpt_set, hpt_recall

Example /* Turn Error Check mode ON */
hpt_errorcheck(inst_descriptor, ON);

The HP ITG Library: C 15-23

hpt_forget,
hpt_forget2 .

Syntax Standard Version
int hpt_forget (inst_desc, comp) ;

int inst_desc Instrument descriptor assigned by
hpt_assign.

char far *comp Component name from instrument
driver.

Version 2
int hpt_forget2(inst_desc, comp_desc) ;

int inst_desc Instrument descriptor assigned by
hpt_assign.

long comp.desc ~ Component descriptor assigned by .
hpt_assigncomp.

Description The hpt_forget and hpt_forget2 functions set
component state(s) of the instrument specified by
inst_desc to INVALID. If comp is specified, the single
component’s state is invalidated. You must call these
functions for each specific component state you want
to invalidate. If comp or comp_desc are left NULL
(""), then all of the instrument’s component states are
invalidated. The instrument descriptor is the integer
that identifies a specific instrument in your workfile, and
is returned by the function, hpt_assign.

Use hpt_forget or hpt_forget2 to set component
states to INVALID that might have been set to

VALID. Component states can be set to VALID using
hpt_setstate if you change an instrument’s setup either
manually or with a program’s I/O statements.

15-24 The HP ITG Library: C

Return Value

Error Conditions

hpt_forget, hpt_forget2

hpt_forget and hpt_forget2 return a 0 if error
conditions prevent them from setting a component state
to INVALID.

A return value of 0 indicates the following error
conditions:

m inst_desc does not match any assigned instruments in
the workfile.

m comp does not exist in the instrument driver specified
by inst_desc.

® comp_desc is an invalid descriptor.

See Also hpt_assign, hpt_assigncomp, hpt_setstate
Example
/* Standard version */
‘ hpt_forget(inst_descriptor, "READING");

/* Version 2 #*/
read_descriptor=hpt_assigncomp(inst_descriptor,"READING");
hpt_forget2(inst_descriptor, read_descriptor);

The HP ITG Library: C 15-25

I

hpt_get, hpt_get2

Syntax Standard Version ‘
int hpt_get (inst_desc, comp, val) ;
int inst_desc Instrument descriptor assigned by
hpt_assign.

char far *comp Component name from instrument
driver.

double far *val Receives return value.
Version 2
int hpt_get2(comp_desc, val) ;

long comp_desc ~ Component descriptor assigned by
hpt_assigncomp.

double far *val Receives return value. ‘

Description The hpt_get function returns the current val of an
INTEGER or CONTINUOUS comp directly from the
instrument specified as inst_desc. The instrument
descriptor is the integer that identifies a specific
instrument in your workfile, and is returned by the
function, hpt_assign.

The hpt_get2 function produces the same results. As
a Version 2 function, the parameter comp_desc replaces
inst_desc and comp for higher performance. Its value is
assigned by the function, hpt_assigncomp.

HP ITG generates a call to the hpt_get function when

you click on an instrument display. To use the hpt_get2
function, you will have to modify your test program after

you generate it. ‘

15-26 The HP ITG Library: C

Return Value

Error Conditions

See Also

‘ Example

hpt_get, hpt_get2

hpt_get and hpt_get2 return the current value of the
instrument’s component in val. Both functions return a
0 if error conditions prevent them from returning the
component value.

A return value of 0 indicates the following error
conditions:

m inst_desc does not match any assigned instruments in
the workfile.

m comp does not exist in the instrument driver specified
by inst_desc.

m comp_desc is not a valid component descriptor.

m An HP-IB error occurred.

hpt_assign, hpt_assigncomp

/* Standard version */
double frequency;

hpt_get(inst_descriptor, "FREQUENCY", &frequency);

/* Version 2 */
double frequency;
freq_comp = hpt_assigncomp(inst_descriptor, "FREQUENCY");

. hpt_get2(freq_comp, &frequency);

The HP ITG Library: C 15-27

hpt_get_ary,
hpt_get_ary2 .

Syntax Standard Version

int hpt_get_ary(inst_desc, comp, val) ;

int inst_desc Instrument descriptor assigned by
hpt_assign.

char far *comp Component name from instrument
driver.

double far *val Receives returned array contents.

Version 2

int hpt_get_ary2(comp_desc, val) ;

long comp.desc ~ Component descriptor assigned by
hpt_assigncomp. .
double far *val Receives returned array contents.

Description The hpt_get_ary function returns the current val of an
RARRAY comp for the instrument specified as inst_desc.
The instrument descriptor is the integer that identifies a
specific instrument in your workfile, and is returned by
the function, hpt_assign.

The program must allocate sufficient space for val.
Use hpt_compdims to read the array component’s
dimensions.

The hpt_get_ary2 function produces the same results.

As a Version 2 function, the parameter comp_desc

replaces inst_desc and comp for higher performance. Its

value is assigned by the function, hpt_assigncomp. .

HP ITG generates a call to the hpt_get_ary function
when you click on an instrument display. To use the

15-28 The HP ITG Library: C

Return Value

Error Conditions

See Also

hpt_get_ary, hpt_get_ary2

hpt_get_ary2 function, you will have to modify your
test program after you generate it.

hpt_get_ary and hpt_get_ary2 return the current
value of the instrument’s component in val. Both
functions return a 0 if error conditions prevent them
from returning the component value.

A return value of 0 indicates the following error
conditions:

m inst.desc does not match any assigned instruments in

the workfile. ‘
\
m comp does not exist in the instrument driver specified

by inst_desc.
m comp_desc is not a valid component descriptor.

® An HP-IB error occurred.

hpt_assign, hpt_assigncomp, hpt_compdims

The HP ITG Library: C 15-29

hpt_get_ary, hpt_get_ary2

Example
/* Standard version */
hpt_compdims (inst_descriptor, "FREQUENCIES", &rows, &cols); ‘

frequencies=(double far *) malloc(rows * cols * sizeof (double));

hpt_get_ary(inst_descriptor, "FREQUENCIES", frequencies));

/* Version 2 */
double frequencies[NUM_VALUES];
freq_comp = hpt_assigncomp(inst_descriptor, "FREQUENCIES") ;

hpt_get_ary2(freq_comp, frequencies);

15-30 The HP ITG Library: C

hpt_get_iary, hpt_get_iary2

hpt_get.iary,
hpt_get.iary2

Syntax

Description

Standard Version

int hpt_get_iary(inst_desc, comp, val) ;

int inst_desc Instrument descriptor assigned by
hpt_assign.

char far *comp Component name from instrument
driver.

int far *val Receives returned array contents.

Version 2
int hpt_get_iary2(comp_desc, val) ;

long comp.desc ~ Component descriptor assigned by
hpt_assigncomp.

int far *val Receives returned array contents.

The hpt_get_iary function returns the current val of an
TIARRAY comp for the instrument specified as inst_desc.
The instrument descriptor is the integer that identifies a
specific instrument in your workfile, and is returned by
the function, hpt_assign.

The program must allocate sufficient space for val.
Use hpt_compdims to read the array component’s
dimensions.

The hpt_get_iary2 function produces the same results.
As a Version 2 function, the parameter comp_desc
replaces inst_desc and comp for higher performance. Its
value is assigned by the function, hpt_assigncomp.

HP ITG generates a call to the hpt_get_iary function
when you click on an instrument display. To use the

The HP ITG Library: C 15-31

hpt_get.iary, hpt_get_iary2

hpt_get_iary2 function, you will have to modify your
test program after you generate it.

Return Value hpt_get_iary and hpt_get_iary2 return the current
value of the instrument’s component in val. Both ‘
functions return a 0 if error conditions prevent them
from returning the component value.

Error Conditions A return value of 0 indicates the following error
conditions:

m inst_desc does not match any assigned instruments in
the workfile.

m comp does not exist in the instrument driver specified
by inst.desc.

m comp_desc is not a valid component descriptor.

» An HP-IB error occurred.

See Also hpt_assign, hpt_assigncomp, hpt_compdims ‘

15-32 The HP ITG Library: C

hpt_get_iary, hpt_get_iary2

Example

/* Standard version x/
hpt_compdims (inst_descriptor, "POINTS", &rows, &cols);

points=(int far *) malloc(rows * cols * sizeof(int));

hpt_get_iary(inst_descriptor, "POINTS", points);

/* Version 2 */
int points[NUM_POINTS];
point_comp = hpt_assigncomp(inst_descriptor, "POINTS");

hpt_get_iary2(point_comp, points);

The HP ITG Library: C 15-33

L

hpt_get_str,
hpt_get_str2 .

Syntax Standard Version

int hpt_get_str (inst_desc, comp, val);

int inst_desc Instrument descriptor assigned by
hpt_assign.

char far *comp Component name from instrument
driver.

char far *val Receives return value.

Version 2
int hpt_get_str2(comp_desc, val) ;

long comp.desc ~ Component descriptor assigned by

hpt_assigncomp. .

char far *val Receives return value.

Description The hpt_get_str function returns the current val of
a STRING or DISCRETE comp for the instrument
specified as inst.desc. The instrument descriptor is
the integer that identifies a specific instrument in your
workfile, and is returned by the function, hpt_assign.

Be sure to dimension the string val large enough to hold
the returned value. Strings can have a maximum length
of 256 bytes.

The hpt_get_str2 function produces the same results.

As a Version 2 function, the parameter comp_desc

replaces inst_desc and comp for higher performance. Its

value is assigned by the function, hpt_assigncomp. .

HP ITG generates a call to the hpt_get_str function
when you click on a DISCRETE or STRING panel

15-34 The HP ITG Library: C

Return Value

Error Conditions

See Also

Example

hpt_get_str, hpt_get_str2

control. To use the hpt_get_str2 function, you will
have to edit your test program.

hpt_get_str and hpt_get_str2 return the current
value of the instrument’s component in val. Both
functions return a 0 if error conditions prevent them
from returning the component value.

A return value of 0 indicates the following error
conditions:

= insi_desc does not match any assigned instruments in
the workfile.

m comp does not exist in the instrument driver specified
by inst_desc.

s comp_desc is not a valid component descriptor.

w An HP-IB error occurred.

hpt_assign, hpt_assigncomp

/* Standard version */
char string[STRING_SIZE];

hpt_get_str(inst_descriptor, "STRING_COMP", string);

/* Version 2 x/
char string[STRING_SIZE];
string_comp = hpt_assigncomp(inst_descriptor, "STRING");

hpt_get_str2(string_comp, string);

The HP ITG Library: C 15-35

hpt_getstate,
hpt_getstate2

Syntax Standard Version
int hpt_getstate(inst_desc, comp) ;

int inst_desc Instrument descriptor assigned by
hpt_assign.

char far *comp Component name from instrument
driver.

Version 2
int hpt_getstate2(comp_desc) ;

long comp.desc ~ Component descriptor assigned by
hpt_assigncomp.

Description The hpt_getstate function returns the status of
comp for the instrument specified as inst_desc. The
instrument descriptor is the integer that identifies a
specific instrument in your workfile, and is returned by
the function, hpt_assign.

The hpt_getstate2 function produces the same results.
As a Version 2 function, the parameter comp_desc
replaces inst_desc and comp for higher performance. Its
value is assigned by the function, hpt_assigncomp.

Return Value Both functions return the following status values:

s COMP_VALID (component is VALID).
s COMP_INVALID (component is INVALID).
s COMP_DONTCARE (component is DONTCARE). .

Both functions return a 0 if error conditions prevent
them from reading the component’s status.

15-36 The HP ITG Library: C

Error Conditions

See Also

Example
/*

hpt_getstate, hpt_getstate2

A return value of 0 indicates the following error
conditions:

m inst_desc does not match any assigned instruments in
the workfile.

® comp does not exist in the instrument driver specified
by inst_desc.

m comp_desc is not a valid component descriptor.

hpt_assign, hpt_assigncomp

Standard version */

status = hpt_getstate(inst_descriptor, "MODE");
switch (status) {

}
/*

case COMP_VALID: printf("valid\n");

break;

case COMP_INVALID: printf("Invalid\n");
break;

case COMP_DONTCARE: printf("Don’t Care\n");

Version 2 x/

mode_comp = hpt_assigncomp(inst_descriptor, "MODE");
int status;

status = hpt_getstate2(mode_comp);
switch (status) {

case COMP_VALID: printf("valid\n");

break;

case COMP_INVALID: printf("Invalid\n");
break;

case COMP_DONTCARE: printf("Don’t Care\n");

The HP ITG Library: C 15-37

T

hpt_incremental

Syntax int hpt_incremental(inst_desc, switch) ; .
int inst_desc Instrument descriptor assigned by
hpt_assign.
int swiich Boolean switch turns Incremental

mode ON or OFF.

Description The hpt_incremental function turns Incremental mode
ON or OFF for the instrument specified by inst_desc.
The instrument descriptor is the integer that identifies a
specific instrument in your workfile, and is returned by
the function, hpt_assign. switch is a Boolean value that
controls Incremental mode. Use the following constants
as arguments for switch:

w OFF (turns Incremental mode OFF). ‘
m ON (turns Incremental mode ON).

The default setting is ON for this mode in both the
HP ITG development environment and in a generated
program. When Incremental mode is ON, HP ITG
sends only the specific commands needed to put the
instrument into the state recalled by the hpt_recall
function.

Use this function to turn Incremental mode OFF if you
have changed the instrument’s setup manually or with
I/O program statements. HP ITG cannot track such
instrument setting changes. When Incremental mode is
OFF, HP ITG sends all of the commands needed to put

the instrument into the state recalled by the hpt_recall

function. .

15-38 The HP ITG Library: C

hpt_incremental

Return Value hpt_incremental returns a 0 if an error condition exists.

Error Conditions A return value of 0 indicates the following error
condition:

m inst_desc does not match any assigned instruments in
the workfile.

See Also hpt_assign, hpt_recall

Example /* Turn on Incremental mode */
hpt_incremental(inst_descriptor, ON);

The HP ITG Library: C 15-39

hpt.init
Syntax int hpt_init(workfile) ; .
char far *workfile Path name for soft test system
workfile.
Description
Note A call to the hpt_init function is required when you

use a workfile, and the program calls HP ITG functions
affecting the instruments in that workfile. This function
must be called in the program before any other HP ITG
function. You can generate this code automatically from
the HP ITG Editor window’s menu bar. Click on Edit,
then Generate Initialization Code. Be sure you
have saved the workfile, and the editor cursor is at the

beginning of the file. .

The hpt_init function names the current workfile for
HP ITG and initializes the data used by the rest of
HP ITG. If the argument for workfile does not specify
an absolute path name, the current directory is used to
find the file name. The file name used as the argument
for workfile does not need to include the .WF extension.

Return Value hpt_init returns a non-zero value if the workfile is
loaded successfully. The function returns a 0 if the
workfile could not be loaded.

Error Conditions A return value of 0 indicates the following error
conditions:

m workfile does not exist in the current or specified .
directory.

s workfile file name exists but is not a valid workfile.

15-40 The HP ITG Library: C

hpt_init

See Also hpt_assign

. Example hpt_init("WORK.WF");

The HP ITG Library: C 15-41

hpt_livemode

Syntax int hpt_livemode (inst_desc, switch) ; .
int inst_desc Instrument descriptor assigned by
hpt_assign.
int switch Boolean switch turns Live mode ON
or OFF.

Description The hpt_livemode function turns Live mode ON or
OFF for the instrument specified by inst_desc. The
instrument descriptor is the integer that identifies a
specific instrument in your workfile, and is returned by
the function, hpt_assign. switch is a Boolean value
that controls Live mode. Use the following constants as
arguments for switch:

s OFF (turns Live mode OFF). .
m ON (turns Live mode ON).

The default setting is ON for this mode in a program.
This means all instruments addressed in your program
will answer commands as they are received. To eliminate
interface bus activity for a particular instrument,

use hpt_livemode to turn Live mode OFF for that
instrument while you are developing other parts of your
program.

Return Value hpt_livemode returns a 0 if the operation failed.

Error Conditions A return value of 0 indicates the following error
conditions:

m inst_desc does not match any assigned instruments in .
the workfile.

m switch is not a legal value.

15-42 The HP ITG Library: C

hptlivemode

See Also hpt_assign

‘ Example /* TurnonLivemode */

hpt_livemode(inst_descriptor, ON);

The HP ITG Library: C 15-43

hpt_local
Syntax int hpt_local(inst.desc); ‘
int inst_desc Instrument descriptor assigned by
hpt_assign.

Description The hpt_local function puts the instrument specified by
inst_desc into local mode, which prevents the program’s
I/0O commands from controlling the instrument. The
instrument descriptor is the integer that identifies a
specific instrument in your workfile, and is returned by
the function, hpt_assign.

Return Value hpt_local returns a 0 if it could not set the instrument
to local mode.

Error Conditions A return value of 0 indicates the following error ‘
conditions:

m inst_desc does not match any assigned instruments in
the workfile.
s The instrument does not respond to the interface bus.

See Also hpt_assign, hpt_remote

Example hpt_local(inst_descriptor);

15-44 The HP ITG Library: C

hpt_mem_info

hpt_mem._info

Syntax

Description

Return Value

Error Conditions

int hpt_mem_info(inst_desc, conv, ems);

int inst_desc Instrument descriptor assigned by
hpt_assign.

int far *conv Receives return variable.

int far *ems Receives return variable.

The hpt_mem_info function reports the amount of

conventional (conv) and expanded (ems) memory being
used by the instrument driver, states, and configuration
information specified by inst_desc. The instrument |
descriptor is the integer that identifies a specific !
instrument in your workfile, and is returned by the }
function, hpt_assign.

hpt_mem_info returns the amount of conventional
memory (in Kbytes) being used by an instrument driver
in conv. Typically, this is between 2-3 Kbytes depending
on the instrument driver size. The function returns the
amount of expanded memory (in Kbytes) being used by
an instrument driver in ems. Expanded memory usage is
expressed as a multiple of 16 Kbytes, even if less memory
is actually used. A 0 is returned if memory usage could
not be reported.

A return value of 0 indicates the following error
conditions:

m inst_desc does not match any assigned instruments in
the workfile.

® The function could not read the current memory
usage.

The HP ITG Library: C 15-45

hpt_mem_info

See Also hpt_assign, hpt_close, hpt_close_all

Example ’

hpt_mem_info (instr_descriptor, &conv_mem_usage, &ems_mem_us age) ;

15-46 The HP ITG Library: C

hpt_monitor

hpt_monitor

Syntax

Description

int hpt_monitor(inst_desc, mode, filename) ;

int inst_desc Instrument descriptor assigned by
hpt_assign.
int mode Controls Monitor mode status.

char far *filename Specifies destination for
debugging information.

The hpt_monitor function controls HP ITG’s Monitor
mode for program debugging. The information type
specified by mode is written to filename during program
execution. All of the resulting debugging information
applies only to the instrument specified by inst_desc.
The instrument descriptor is the integer that identifies a
specific instrument in your workfile, and is returned by
the function, hpt_assign.

To report results more immediately, set filename to a
printer port. As an example, if a printer is configured to
the computer’s LPT1 port, use "LPT1:" for filename.

You can set the Monitor mode status using the following
arguments for mode:

s OFF (Turn Monitor mode OFF).
s ON (Log I/O transactions to filename).

s DRIVER_DEBUG (Log I/O transactions and
additional information to filename).

The default setting is OFF for this mode in a program.
This means HP ITG will not produce any debugging
information while your program is running. Use this
function to turn Monitor mode on for debugging
purposes.

The HP ITG Library: C 15-47

hpt_monitor

Return Value

Error Conditions

See Also

Example
/*

hpt_

15-48 The HP ITG Library: C

hpt_monitor returns a 0 if it could not change the
Monitor mode status.

A return value of 0 indicates the following error
conditions:

m inst_desc does not match any assigned instruments in
the workfile.

m filename could not be opened to receive debugging
information.

m mode is not one of the allowed values.

hpt_assign, hpt_close, hpt_close_all

Send information to line printer */

monitor (inst_descriptor, DRIVER_DEBUG, "LPT1: "),

hpt_peek,
hpt_peek2

Syntax

Description

hpt_peek, hpt_peek2

Standard Version
int hpt_peek(inst_desc, comp, val) ;

int inst.desc Instrument descriptor assigned by
hpt_assign.

char far *comp Component name from instrument
driver.

double far *val Receives return value.
Version 2
int hpt_peek2(comp_desc, val) ;

long comp_desc Component descriptor assigned by
hpt_assigncomp.

double far *val Receives return value.

The hpt_peek function returns the current val of the
INTEGER or CONTINUOUS comp for the instrument
specified by inst_desc. The instrument descriptor is
the integer that identifies a specific instrument in your
workfile, and is returned by the function, hpt_assign.
The returned value is read directly from the results

of the most recent call to the hpt_get or hpt_poke
functions.

The hpt_peek2 function produces the same results. As
a Version 2 function, the parameter comp_desc replaces
inst_desc and comp for higher performance. Its value is
assigned by the function, hpt_assigncomp.

The HP ITG Library: C 15-49

hpt_peek, hpt_peek2

Return Value hpt_peek and hpt_peek2 return the current value of the
instrument’s component in val. Both functions return a
0 if error conditions prevent them from returning the

component value. .

Error Conditions A return value of 0 indicates the following error
conditions:

m inst_.desc does not match any assigned instruments in
the workfile.

m comp does not exist in the instrument driver specified
by inst_desc.

m comp is not an INTEGER or CONTINUOUS type
component.

m comp_desc is not a valid component descriptor.
See Also hpt_assign, hpt_assigncomp, hpt_get, hpt_poke .

Example

/* Standard version */
double voltage;

hpt_peek(inst_descriptor, "VOLTAGE", &voltage);
printf ("Voltage currently is %1fV\n",voltage);

/* Version 2 */
double voltage;
voltage_comp = hpt_assigncomp(inst_descriptor, “"VOLTAGE");

hpt_peek2(voltage_comp, &voltage);
printf("Voltage currently is %1fV\n",voltage);

15-50 The HP ITG Library: C

hpt_peek_ary, hpt_peek_ary2

hpt_peek_ary,
‘ hpt_peek_ary2

Syntax

Description

Standard Version
int hpt_peek_ary(inst_desc, comp, val) ;

int inst_desc Instrument descriptor assigned by
hpt_assign.

char far *comp Component name from instrument
driver.

double far *val Receives returned array contents.
Version 2
int hpt_peek_ary2(comp_desc, val) ;

long comp_desc Component descriptor assigned by
hpt_assigncomp.

double far *val Receives returned array contents.

The hpt_peek_ary function returns the current val of
the RARRAY comp for the instrument specified by
inst_desc. The instrument descriptor is the integer that
identifies a specific instrument in your workfile, and is
returned by the function, hpt_assign. The returned
value is read directly from the results of the most recent
call to the hpt_get_ary function.

The program must allocate sufficient space for val.
Use hpt_compdims to read the array component’s
dimensions.

The hpt_peek_ary2 function produces the same results.
As a Version 2 function, the parameter comp_desc
replaces inst_desc and comp for higher performance. Its
value is assigned by the function, hpt_assigncomp.

The HP ITG Library: C 15-51

hpt_peek_ary, hpt_peek_ary2

Return Value hpt_peek_ary and hpt_peek_ary2 return the current
value of the instrument’s component in val. Both
functions return a 0 if error conditions prevent them
from returning the component value. .

Error Conditions A return value of 0 indicates the following error
conditions:

m inst_desc does not match any assigned instruments in
the workfile.

m comp does not exist in the instrument driver specified
by inst_desc.

m comp is not an RARRAY type component.

m comp_desc is not a valid component descriptor.

See Also hpt_assign, hpt_assigncomp, hpt_compdims,

hpt_get_ary .

15-52 The HP ITG Library: C

hpt_peek_ary, hpt_peek_ary2
Example

/* Standard version */
double reading[20];

hpt_peek_ary(inst_descriptor, "READING", reading);
for (i = 0; i < 20; i++)
printf("Reading %d currently is ¥1f\n",i,reading[i]);

/* Version 2 x/
double voltage[20];
voltage_comp = hpt_assigncomp(inst_descriptor, "VOLTAGE");

hpt_peek_ary2(voltage_comp, voltage);
for (i = 0; i < 20; i++)
printf(“Voltage %d currently is %1fV\n",i,voltage[il);

The HP ITG Library: C 15-53

hpt_peek_iary,
hpt_peek_iary2

Syntax

Description

15-54 The HP ITG Library: C

Standard Version

int hpt_peek_iary (inst_desc, comp, val) ;

int inst_desc Instrument descriptor assigned by
hpt_assign.

char far *comp Component name from instrument
driver.

int far *val Receives returned array contents.

Version 2
int hpt_peek_iary2(comp_desc, val) ;

long comp_desc Component descriptor assigned by
hpt_assigncomp.

int far *val Receives returned array contents.

The hpt_peek_iary function returns the current val

of the IARRAY comp for the instrument specified by
inst_desc. The instrument descriptor is the integer that
identifies a specific instrument in your workfile, and is
returned by the function, hpt_assign. The returned
value is read directly from the results of the most recent
call to the hpt_get_iary function.

The program must allocate sufficient space for val.
Use hpt_compdims to read the array component’s
dimensions.

The hpt_peek_iary2 function produces the same
results. As a Version 2 function, the parameter
comp_desc replaces inst_desc and comp for higher
performance. Its value is assigned by the function,
hpt_assigncomp.

Return Value

Error Conditions

See Also

hpt_peek_iary, hpt_peek_iary2

hpt_peek_iary and hpt_peek_iary2 return the current
value of the instrument’s component in val. Both
functions return a 0 if error conditions prevent them
from returning the component value.

A return value of 0 indicates the following error
conditions:

m inst_desc does not match any assigned instruments in
the workfile.

m comp does not exist in the instrument driver specified
by inst_desc.

m comp is not an JARRAY type component.

m comp_desc is not a valid component descriptor.

hpt_assign, hpt_assigncomp, hpt_compdims,
hpt_get_iary

The HP ITG Library: C 15-55

hpt_peek_iary, hpt_peek_iary2

Example
/* Standard version */

int ireading[10]; ‘

hpt_peek_iary(inst_descriptor, "IREADING", ireading);
for (i = 0; i < 10; i++)
printf ("IREADING %d currently is %d\n",i,ireading[i]);

/* Version 2 */
int count[5];
count_comp = hpt_assigncomp(inst_descriptor, "COUNT") ;

hpt_peek_iary2(count_comp, count);
for (i = 0; i < 5; i++)
printf ("Count %d currently is %dV\n",i,count [i1); ‘

15-56 The HP ITG Library: C

hpt_peek_str,
hpt_peek_str2

Syntax

Description

hpt_peek_str, hpt_peek_str2

Standard Version

int hpt_peek_str(inst_desc, comp, val);

int inst_desc Instrument descriptor assigned by
hpt_assign.

char far *comp Component name from instrument
driver.

char far *val Receives return value.

Version 2
int hpt_peek_str2(comp_desc, val);

long comp_desc ~ Component descriptor assigned by
hpt_assigncomp.

char far *val Receives return value.

The hpt_peek_str function returns the current val

of the STRING comp for the instrument specified by
inst_desc. The instrument descriptor is the integer that
identifies a specific instrument in your workfile, and is
returned by the function, hpt_assign. The returned
value is read directly from the results of the most recent
call to the hpt_get_str function.

Be sure to dimension the string val large enough to hold
the returned value. Strings can have a maximum length
of 256 bytes.

The hpt_peek_str2 function produces the same results.
As a Version 2 function, the parameter comp_desc
replaces inst_desc and comp for higher performance. Its
value is assigned by the function, hpt_assigncomp.

The HP ITG Library: C 15-57

hpt_peek_str, hpt_peek_str2

Return Value hpt_peek_str and hpt_peek_str2 return the current
value of the instrument’s component in val. Both
functions return a 0 if error conditions prevent them
from returning the component value. ‘

Error Conditions A return value of 0 indicates the following error
conditions:

m inst_desc does not match any assigned instruments in
the workfile.

m comp does not exist in the instrument driver specified
by inst_desc.

m comp is not a STRING type component.

m comp_desc is not a valid component descriptor.

See Also hpt_assign, hpt_assigncomp, hpt_get_str,

hpt_poke_str ‘
Example

/* Standard version */
char error_string[100];

hpt_peek_str(inst_descriptor, "ERROR_STRING", error_string);
printf("Instrument reports \"%s\"\n",error_string);

/* Version 2 */
char error_string[100];
string_comp = hpt_assigncomp(inst_descriptor, "ERROR_STRING") ;

hpt_peek_str2(string_comp, error_string);
printf("Instrument reports \"%s\"\n",error_string);

15-58 The HP ITG Library: C

hpt_poke, hpt_poke2

hpt_poke,
. hpt_poke2

Syntax Standard Version

int hpt_poke(inst.desc, comp, val) ;

int inst_desc Instrument descriptor assigned by
hpt_assign.

char far *comp Component name from instrument
driver.

double val New component value.

Version 2
int hpt_poke2(comp_desc, val) ;

long comp_desc ~ Component descriptor assigned by

. hpt_assigncomp.

double val New component value.

Description The hpt_poke function sets the internal variable of
the CONTINUOQOUS or INTEGER comp to val for the
instrument specified by inst_desc. The instrument
descriptor is the integer that identifies a specific
instrument in your workfile, and is returned by the
function, hpt_assign. hpt_poke changes only the
component’s value, not the instrument.

The hpt_poke2 function produces the same results. As
a Version 2 function, the parameter comp_desc replaces
inst_desc and comp for higher performance. Its value is
assigned by the function, hpt_assigncomp.

The HP ITG Library: C 15-59

hpt_poke, hpt_poke2

Return Value hpt_poke and hpt_poke2 return a 0 if error conditions
prevent them from setting the component’s value.

Error Conditions A return value of 0 indicates the following error ‘
conditions:

m inst_desc does not match any assigned instruments in
the workfile.

s comp does not exist in the instrument driver specified
by inst_desc.

m comp is not an INTEGER or CONTINUOUS type
component.

m comp_desc is not a valid component descriptor.

See Also hpt_assign, hpt_assigncomp, hpt_set

Example ‘

/* Standard version */
hpt_poke(inst_descriptor, "FREQUENCY", 1000.0);

/* Version 2 x*/
double frequency;
frequency_comp = hpt_assigncomp(inst_descriptor, "FREQUENCY") ;

hpt_poke2(frequency_comp, 1000.0) ;

15-60 The HP ITG Library: C

hpt_poke_ary,
‘ hpt_poke_ary2

Syntax

Description

hpt_poke_ary, hpt_poke_ary2

Standard Version

int hpt_poke_ary(inst_desc, comp, val) ;

int inst_desc Instrument descriptor assigned by
hpt_assign.

char far *comp Component name from instrument
driver.

double far *wval New component value.
Version 2
int hpt_poke_ary2(comp_desc, val) ;

long comp_desc Component descriptor assigned by
hpt_assigncomp.

double far *wval New component value.

The hpt_poke_ary function sets the internal variable of
the RARRAY comp to val for the instrument specified
by inst_desc. The instrument descriptor is the integer
that identifies a specific instrument in your workfile, and
is returned by the function, hpt_assign. hpt_poke_ary
sets only the component’s value, not the instrument.

The program must allocate sufficient space for val.
Use hpt_compdims to read the array component’s
dimensions.

The hpt_poke_ary2 function produces the same results.
As a Version 2 function, the parameter comp_desc
replaces inst_desc and comp for higher performance. Its
value is assigned by the function, hpt_assigncomp.

The HP ITG Library: C 15-61

hpt_poke_ary, hpt_poke_ary2

Return Value hpt_poke_ary and hpt_poke_ary2 return a 0 if error
conditions prevent them from setting the component’s

value. ‘

Error Conditions A return value of 0 indicates the following error
conditions:

» inst_desc does not match any assigned instruments in
the workfile.

w comp does not exist in the instrument driver specified
by inst_desc.

m comp is not an RARRAY type component.

s comp_desc is not a valid component descriptor.

See Also hpt_assign, hpt_assigncomp, hpt_compdims,
hpt_set_ary

Example ‘

/* Standard version */
double points[40];

hpt_poke_ary(inst_descriptor, "POINTS", points);

/* Version 2 */
double points[40];
points_comp = hpt_assigncomp(inst_descriptor, "POINTS");

hpt_poke_ary2(points_comp, points); ‘

15-62 The HP ITG Library: C

hpt_poke_iary, hpt_poke_iary2

hpt_poke_iary,
‘ hpt_poke_iary2

Syntax

Description

Standard Version

int hpt_poke_iary(inst_desc, comp, val);

int inst_desc Instrument descriptor assigned by
hpt_assign.

char far *comp Component name from instrument
driver.

int far *val New component value.

Version 2
int hpt_poke_iary2(comp_desc, val);

long comp.desc ~ Component descriptor assigned by
hpt_assigncomp.

int far *val New component value.

The hpt_poke_iary function sets the internal variable of
the IARRAY comp to val for the instrument specified by
inst-desc. The instrument descriptor is the integer that
identifies a specific instrument in your workfile, and is
returned by the function, hpt_assign. hpt_poke_iary
changes only the component’s value, not the instrument.

The program must allocate sufficient space for val.
Use hpt_compdims to read the array component’s
dimensions.

The hpt_poke_iary2 function produces the same
results. As a Version 2 function, the parameter
comp_desc teplaces inst_desc and comp for higher
performance. Its value is assigned by the function,
hpt_assigncomp.

The HP ITG Library: C 15-63

hpt_poke_iary, hpt_poke_iary2

Return Value hpt_poke_iary and hpt_poke_iary2 return a 0 if error
conditions prevent them from setting the component’s

value. ‘

Error Conditions A return value of 0 indicates the following error
conditions:

s inst_desc does not match any assigned instruments in
the workfile.

m comp does not exist in the instrument driver specified
by inst_desc.

m comp is not an IARRAY type component.

m comp_desc is not a valid component descriptor.

See Also hpt_assign, hpt_assigncomp, hpt_compdims,
hpt_set_iary

Example ‘

/* Standard version */
int points[40];

hpt_poke_iary(inst_descriptor, "POINTS", points);

/* Version 2 */
int points[40];
points_comp = hpt_assigncomp(inst_descriptor, "POINTS");

hpt_poke_iary2(points_comp, points); ‘

15-64 The HP ITG Library: C

hpt_poke_str, hpt_poke_str2

hpt_poke_str,
hpt_poke_str2

Syntax

Description

Standard Version

int hpt_poke_str(inst_desc, comp, val);

int inst_.desc Instrument descriptor assigned by
hpt_assign.

char far *comp Component name from instrument
driver.

char far *val New component value.

Version 2
int hpt_poke_str2(comp_desc, val);

long comp.desc ~ Component descriptor assigned by
hpt_assigncomp.

char far *val New component value.

The hpt_poke_str function sets the internal variable of
the STRING comp to val for the instrument specified by
inst_desc. The instrument descriptor is the integer that
identifies a specific instrument in your workfile, and is
returned by the function, hpt_assign. hpt_poke_str
changes only the component’s value, not the instrument.

The hpt_poke_str2 function produces the same results.
As a Version 2 function, the parameter comp_desc
replaces inst_desc and comp for higher performance. Its
value is assigned by the function, hpt_assigncomp.

The HP ITG Library: C 15-65

hpt_poke_str, hpt_poke_str2

Return Value hpt_poke_str and hpt_poke_str2 return a 0 if error
conditions prevent them from setting the component’s
value.

Error Conditions A return value of 0 indicates the following error
conditions:

m inst_desc does not match any assigned instruments in
the workfile.

m comp does not exist in the instrument driver specified
by inst.desc.

m comp is not an STRING type component.

B comp_desc is not a valid component descriptor.

See Also hpt_assign, hpt_assigncomp, hpt_set_str

Example .
/* Standard version */

char name[] = "STRING";

hpt_poke_str(inst_descriptor, "INST_STRING", name) ;

/* Version 2 */
char name[] = "STRING";
string_comp = hpt_assigncomp(inst_descriptor, "INST_STRING");

hpt_poke_str2(string_comp, name);

15-66 The HP ITG Library: C

hpt_push, hpt_push2

hpt_push,
hpt_push2

Syntax

Description

Return Value

Standard Version
int hpt_push(inst_desc, button) ;

int inst_desc Instrument descriptor assigned by
hpt_assign.

char far *button Button component name from
instrument driver.

Version 2
int hpt_push2(button_desc) ;

long button_desc Button descriptor assigned by
hpt_assigncomp.

The hpt_push function executes a set of actions
associated with the component named, button, for the
instrument specified by inst_.desc. The instrument
descriptor is the integer that identifies a specific
instrument in your workfile, and is returned by the
function, hpt_assign.

The hpt_push2 function produces the same results. As a
Version 2 function, the parameter button_desc replaces
inst_desc and button for higher performance. Its value is
assigned by the function, hpt_assigncomp.

hpt_push and hpt_push?2 return a 0 if error conditions
prevent them from executing the set of actions.

The HP ITG Library: C 15-67

hpt_push, hpt_push2
Error Conditions A return value of 0 indicates the following error
conditions:

m inst_desc does not match any assigned instruments in .
the workfile.

m button does not exist in the instrument driver.

m button_desc is not a valid component descriptor.
See Also hpt_assign, hpt_assigncomp

Example

/* Standard version */
hpt_push(voltmeter, "RESET");

/* Version 2 */
button_comp = hpt_assigncomp(inst_descriptor, "RESET");

hpt_push2(button_comp) ;

15-68 The HP ITG Library: C

hpt_recall, hptrecall2

hpt_recall,
hpt_recall2
Syntax
Description

Return Value

Standard Version
int hpt_recall(inst_desc, state);

int inst_desc Instrument descriptor assigned by
hpt_assign.

char far #*state Instrument state name to be
recalled.

Version 2
int hpt_recall2(state_desc) ;

long state_desc State descriptor assigned by
hpt_assignstate.

The hpt_recall function recalls the state for the
instrument specified by inst_desc. The instrument
components are set according to the recalled instrument
state. The instrument descriptor is the integer that
identifies a specific instrument in your workfile, and is
returned by the function, hpt_assign.

The hpt_recall2 function produces the same

results. As a Version 2 function, the parameter
state_desc replaces inst_desc and state for higher
performance. Its value can be assigned by the functions,
hpt_assignstate and hpt_state_save.

hpt_recall and hpt_recall?2 return a 0 if error
conditions prevent them from recalling the instrument
state.

The HP ITG Library: C 15-69

hptrecall, hpt_recali2
Error Conditions A return value of 0 indicates the following error
conditions:

m inst_desc does not match any assigned instruments in
the workfile.

m state does not exist for the instrument.
m state_desc is not a valid descriptor.

s An HP-IB error occurred.

See Also hpt_assign, hpt_assignstate, hpt_state_save

Example

/* Standard version */
hpt_recall(inst_descriptor, "INIT_STATE");

/* Version 2 */
init_state = hpt_assignstate(inst_descriptor, "INIT_STATE"); ‘

hpt_recall2(init_state);

15-70 The HP ITG Library: C

hpt_remote

hpt_remote

Syntax

Description

Return Value

Error Conditions

See Also

Example

int hpt_remote(inst_desc) ;

int inst_desc Instrument descriptor assigned by
hpt_assign.

The hpt_remote function puts the instrument specified
by inst_desc into remote mode. An instrument in remote
mode can be controlled by a program’s I/O commands.
The instrument descriptor is the integer that identifies a
specific instrument in your workfile, and is returned by
the function, hpt_assign.

hpt_remote returns a 0 if the function could not put the
instrument into remote mode.

A return value of 0 indicates the following error
conditions:

m inst_desc does not match any assigned instruments in
the workfile.

m An HP-IB error occurred.

hpt_assign, hpt_local

hpt_remote(inst_descriptor);

The HP ITG Library: C 15-71

hpt_set, hpt_set2

Syntax Standard Version .

int hpt_set (inst_desc, comp, val) ;

int inst_desc Instrument descriptor assigned by
hpt_assign.

char far *comp Component name from instrument
driver.

double val New value for component and
instrument.

Version 2
int hpt_set2(comp_desc, val) ;

long comp_desc Component descriptor assigned by

hpt_assigncomp.
double val New value for component and .
instrument.

Description The hpt_set function sets the CONTINUOUS or
INTEGER comp and the instrument specified by
inst_desc to val. The instrument descriptor is the integer
that identifies a specific instrument in your workfile, and
is returned by the function, hpt_assign.

The hpt_set2 function produces the same results. As
a Version 2 function, the parameter comp_desc replaces
inst_desc and comp for higher performance. Its value is
assigned by the function, hpt_assigncomp.

In the HP ITG development environment, HP ITG
automatically generates a call to hpt_set when you .
adjust an instrument’s soft panel control. To use

hpt_set2, you have to call hpt_assigncomp and edit

the call to hpt_set to change the parameter list’s

arguments.

15-72 The HP ITG Library: C

hpt_set, hpt_set2

Return Value hpt_set and hpt_set?2 return a 0 if error conditions
prevent them from setting the component and
instrument to the value.

Error Conditions A return value of 0 indicates the following error
conditions:

® inst_desc does not match any assigned instruments in
the workfile.

m comp does not exist in the instrument driver specified
by inst_desc.

m comp is not a CONTINUOUS or INTEGER type
component.

m comp_desc is not a valid component descriptor.

m An HP-IB error occurred.

See Also hpt_assign, hpt_assigncomp, hpt_poke

Example

/* Standard version */
hpt_set(inst_descriptor, "FREQUENCY", 1.5E6);

/* Version 2 x/

freq_comp = hpt_assigncomp(inst_descriptor, "FREQUENCY");
hpt_set2(freq_comp, 1.5E6);

The HP ITG Library: C 15-73

|

hpt_set_ary,
hpt_set_ary2

Syntax Standard Version
int hpt_set_ary(inst-desc, comp, val);

int inst_desc Instrument descriptor assigned by
hpt_assign.

char far *comp Component name from instrument
driver.

double far *val New value for component and
instrument.

Version 2
int hpt_set_ary2(comp_desc, val) ;

long comp_desc Component descriptor assigned by
hpt_assigncomp. .

double far *val New value for component and
instrument.

Description The hpt_set_ary function sets the RARRAY comp
and the instrument specified by inst_desc to val. The
instrument descriptor is the integer that identifies a
specific instrument in your workfile, and is returned by
the function, hpt_assign.

The program must allocate sufficient space for val.
Use hpt_compdims to read the array component’s
dimensions.

The hpt_set_ary2 function produces the same results.

As a Version 2 function, the parameter comp_desc .
replaces inst.desc and comp for higher performance. Its

value is assigned by the function, hpt_assigncomp.

15-74 The HP ITG Library: C

hpt_set_ary, hpt_set_ary2

Return Value hpt_set_ary and hpt_set_ary2 return a 0 if error
conditions prevent them from setting the component and
instrument to the value.

Error Conditions A return value of 0 indicates the following error
conditions:

m inst_desc does not match any assigned instruments in
the workfile.

m comp does not exist in the instrument driver specified
by inst_desc.

m comp is not an RARRAY type component.
m comp_desc is not a valid component descriptor.
m An HP-IB error occurred.

See Also hpt_assign, hpt_assigncomp, hpt_compdims,
hpt_poke_ary

Example

/* Standard version */
double cont_array[SIZE] = {0};

hpt_set_ary(inst_descriptor, "REAL_DATA", cont_array);

/* Version 2 x*/
double cont_array[SIZE] = {0};
array_comp= hpt_assigncomp(inst_descriptor, "REAL_DATA");

hpt_set_ary2(array_comp, cont_array);

The HP ITG Library: C 15-75

hpt_set_error

‘handler
o

Syntax int hpt_set_error_handler(function) ;

int (*function)() Pointer to user-written error
handler function.

Description The hpt_set_error_handler function sets the error
handler for HP ITG functions. This overrides the default
handler which prints the error message to STDERR and
exits the program.

Return Value hpt_set_error_handler returns a 0 if the function
could not change the program’s error mode.

Error Conditions A return value of 0 indicates the following error
condition:

m function is not a valid function.

See Also hpt_errmsg

15-76 The HP ITG Library: C

Example

hpt_set_error _handler

/* User-written error handler function */
int handler() {
char buffer[256];

hpt_errmsg(buffer) ;

fprintf(stderr, "%s\n",buffer);

return 0;

/* Program initialization code goes here */

hpt_set_error_handler(handler);

The HP ITG Library: C 15-77

c

hpt_set.iary,
hpt_set.iary2

Syntax Standard Version

int hpt_set_iary (inst.desc, comp, val);

int inst_desc Instrument descriptor assigned by
hpt_assign.

char far *comp Component name from instrument
driver.

int far *val New value for component and
instrument.

Version 2
int hpt_set_iary2(comp_desc, val);

long comp_desc ~ Component descriptor assigned by
hpt_assigncomp.

int far *uval New value for component and
instrument.

Description The hpt_set_iary function sets the IARRAY comp
and the instrument specified by inst_desc to val. The
instrument descriptor is the integer that identifies a
specific instrument in your workfile, and is returned by
the function, hpt_assign.

The hpt_set_iary2 function produces the same results.
As a Version 2 function, the parameter comp_desc
replaces inst_desc and comp for higher performance. Its
value is assigned by the function, hpt_assigncomp.

The program must allocate sufficient space for val. .
Use hpt_compdims to read the array component’s
dimensions.

15-78 The HP ITG Library: C

Return Value

Error Conditions

See Also

Example

hpt_set_iary, hpt_set_iary2

hpt_set_iary and hpt_set_iary2 return a 0 if error
conditions prevent them from setting the component and
instrument to the value.

A return value of 0 indicates the following error
conditions:

m inst_desc does not match any assigned instruments in
the workfile.

m comp does not exist in the instrument driver specified
by inst_desc.

® comp is not an JARRAY type component.
m comp_desc is not a valid component descriptor.
m An HP-IB error occurred.

hpt_assign, hpt_assigncomp, hpt_compdims,
hpt_poke_iary

/* Standard version */
int int_array[SIZE] = {0};

hpt_set_iary(inst_descriptor, "INT_DATA", int_array);

/* Version 2 */
int int_array[SIZE] = {0};
array_comp= hpt_assigncomp(inst_descriptor, "INT_DATA");

hpt_set_iary2(array_comp, int_array);

The HP ITG Library: C 15-79

hpt_set_str,
hpt_set_str2

Syntax Standard Version

int hpt_set_str(inst_desc, comp, val);

int inst_desc Instrument descriptor assigned by
hpt_assign.

char far *comp Component name from instrument
driver.

char far *val New value for component and
instrument.

Version 2
int hpt_set_str2(comp_desc, val);

long comp_desc Component descriptor assigned by
hpt_assigncomp. .

char far *wval New value for component and
instrument.

Description The hpt_set_str function sets the STRING or
DISCRETE comp and the instrument specified by
inst_desc to val. The instrument descriptor is the integer
that identifies a specific instrument in your workfile, and
is returned by the function, hpt_assign.

The hpt_set_str2 function produces the same results.
As a Version 2 function, the parameter comp_desc
replaces inst_desc and comp for higher performance. Its
value is assigned by the function, hpt_assigncomp.

In the HP ITG development environment, HP ITG .
automatically generates a call to hpt_set_str when

you adjust an instrument’s soft panel control. To use
hpt_set_str2, you have to call hpt_assigncomp and

15-80 The HP ITG Library: C

Return Value

Error Conditions

See Also

hpt_set_str, hpt_set_str2

edit the call to hpt_set_str to change the parameter
list’s arguments.

hpt_set_str and hpt_set_str2 return a 0 if error
conditions prevent them from setting the component and
instrument to the value.

A return value of 0 indicates the following error
conditions:

m inst_desc does not match any assigned instruments in
the workfile.

m comp does not exist in the instrument driver specified
by inst_desc.

m comp is not a STRING or DISCRETE type
component.

m comp_desc is not a valid component descriptor.

m An HP-IB error occurred.

hpt_assign, hpt_assigncomp, hpt_poke_str

The HP ITG Library: C 15-81

hpt_set_str, hpt_set_str2

Example

/* Standard version */
char *string = "STRING";

hpt_set_str(inst_descriptor, "STRING_DATA", string) ;

/* Version 2 */
char *string = "STRING";
string_comp = hpt_assigncomp(inst_descriptor, "STRING_DATA");

hpt_set_str2(string_comp, string);

15-82 The HP ITG Library: C

hpt_setdevaddr

hpt_setdevaddr

Syntax

Description

Return Value

Error Conditions

See Also

Example

int hpt_setdevaddr (inst_desc, address) ;

int inst_desc Instrument descriptor assigned by
hpt_assign.

char far *address New address for HP ITG
instrument configuration.

The hpt_setdevaddr function changes the HP ITG
instrument configuration specified by inst_desc to the
new address. The instrument descriptor is the integer
that identifies a specific instrument in your workfile, and
is returned by the function, hpt_assign.

hpt_setdevaddr returns a 0 if the function could not
change the address configuration.

A return value of 0 indicates the following error
conditions:

m inst_desc does not match any assigned instruments in
the workfile.

@ address is not a valid instrument address.

hpt_add_device, hpt_assign, hpt_devaddr,
hpt_devsubad

hpt_setdevaddr(inst_descriptor, "703");

The HP ITG Library: C 15-83

hpt_setstate,
hpt_setstate2

Syntax Standard Version

int hpt_setstate(inst_desc, comp, state);

int inst_desc Instrument descriptor assigned by
hpt_assign.

char far *comp Component name from instrument
driver.

int state Component’s new status.

Version 2
int hpt_setstate2(comp_desc, state) ;

long comp_desc Component descriptor assigned by
hpt_assigncomp. .
int state Component’s new status.

Description The hpt_setstate function lets you change the status of
comp for the instrument specified as inst_desc to state.
The instrument descriptor is the integer that identifies a
specific instrument in your workfile, and is returned by
the function, hpt_assign.

Use one of the following constants as the argument for
state:

m COMP_VALID (component is VALID).
s COMP_INVALID (component is INVALID).
s COMP_DONTCARE (component is DONTCARE).

The hpt_setstate2 function produces the same results.
As a Version 2 function, the parameter comp_desc
replaces inst_desc and comp for higher performance. Its
value is assigned by the function, hpt_assigncomp.

15-84 The HP ITG Library: C

Return Value

Error Conditions

See Also

Example

hpt_setstate, hpt_setstate2

hpt_setstate and hpt_setstate2 return a 0 if error
conditions prevent them from changing the component’s
status.

A return value of 0 indicates the following error
conditions:

m inst_desc does not match any assigned instruments in
the workfile.

m comp does not exist in the instrument driver specified
by inst_desc.

m state is not a valid value.

m comp_desc is not a valid component descriptor.

hpt_assign, hpt_assigncomp, hpt_forget,
hpt_getstate

/* Standard version */
hpt_setstate(inst_descriptor, "FREQUENCY", COMP_VALID);

/* Version 2

*/

frequency_comp = hpt_assigncomp(inst_descriptor, "FREQUENCY");

hpt_setstate2(frequency_comp, COMP_VALID);

The HP ITG Library: C 15-85

hpt_state_save

Syntax

Description

Return Value

Error Conditions

See Also

Example

int hpt_state_save(inst_desc, state) ;

int inst_desc Instrument descriptor assigned by
hpt_assign.

char far *state State name to create and save.

The hpt_state_save function lets you create a new
instrument state named state for the instrument
specified as inst_desc. The instrument descriptor is
the integer that identifies a specific instrument in your
workfile, and is returned by the function, hpt_assign.

hpt_state_save returns an internal number (state
descriptor) corresponding to the new state. The state
descriptor can be used in calls to hpt_recall2. The

function returns a 0 if it could not create the new state.

A return value of 0 indicates the following error
conditions:

m inst_desc does not match any assigned instruments in
the workfile.

m state could not be created.

hpt_assign, hpt_assignstate, hpt_recall,
hpt_recall2

state_descriptor = hpt_state_save(inst_descriptor, "NEWSTATE"); ‘

15-86 The HP ITG Library: C

Menus Index

A

Overview

Note

HP ITG is controlled through commands contained in
pull-down menus. Menus are grouped into three sets:

m System menus

The system menu names are displayed in HP ITG’s
System menu bar located across the top of the
window. Click on a menu name, and HP ITG displays
either a pull-down menu from which you can select
commands that control system operations, or a dialog
box. The box on the left side of the title bar (above
the System menu bar) also contains a window system
menu.

Editor menus

The editor menu names are displayed across the top
of HP ITG’s Editor window. Click on a menu name
or the box in the left corner, and HP ITG displays
pull-down menus from which you can select commands
that control window and Editor operations.

Instrument panel menu

Click on the box in the top left corner of the
instrument panel so HP ITG displays the panel menu.
It contains commands that control panel operation.

Menu commands that appear grayed cannot be used.

Menus Index A-1

System Menus

System Box

These menus control HP ITG operation as well as the
soft test systems you create.

HP Interactive Test Generator 191
Restore ALT+FS - Applications... System Help
Move BILF? s
Slze MlLeFQ L =
Mipinize ALt+F9 %
Maximlze Alc+Flo HP33258

47280
Close ALt+F4 w3
£

file Edit Gearoh Help

hpt_init (T"FRQ_RESP.WF'')3
3323b = hpt assign (° 3

A-2 Menus Index

Figure A-1. The System Box Pull-Down Menu

Restore sets the window back to its previous size.
Move lets you reposition the window.

Size lets you resize the window.

Minimize lets you reduce the window to an icon.

Maximize lets you enlarge the window to its maximum
size.

Close exits the window application.

File

= o1
file | Instruments... AQpplications... System Help
45w [.gz,
Open Workfile...
Save Workfile
Save Workfile As... HP3325B
Print... k HP3478A

Exit WP ITE
Exit To QOS Fa

Apoutr HP ITG...

(o1

File Edit Search

Help

hpt_init ("FRQ_RESP.WF
3323b_= _hpt_ass

BT
“HP3323

Figure A-2. The System File Pull-Down Menu

m New clears the test system from the screen and lets you
build a new soft test system.

m Open Workfile ... lets you open an existing workfile.
HP ITG displays the instruments and applications
that constitute the soft test system contained in the
workfile.

m Save Workfile replaces the existing test system file
with the current test system data. All workfile file
names include the .WF extension.

m Save Workfile As ... saves the current soft test
system’s instruments and their states in the designated
file. A dialog box prompts you for a file name.

m Print ... prints the contents of the screen.

m Exit HP ITG exits the HP ITG program. This
command is available only if you are using the full
Microsoft Windows application.

Menus Index A-3

m Exit To DOS exits the Microsoft Windows graphics
environment that supports HP ITG and returns to

MS-DOS.

m About HP ITG ... displays copyright information, .
version number, and memory usage. (For more
detailed expanded memory usage information, run the
HPEMSTAT .EXE program from the MS-DOS command

line.)
= ST0%
File]Instruments... Applications... System Help
R B
Open Instrument Name WP33258
Nawme:
[HP3488A2.10 | Hp34764
Files in C:\HPITE
Hp3437a. ID
HP Al
He333en: 10
.
=] o] ¢
File Edit Search Helo
hot_init ("FRQ_RESP.WF'')3
hp3325b = hpt_assign ("HP3II238'", EXPANDED);

Figure A-3. The Instrument List Box

Clicking on this command displays a list box of all
available instrument drivers. You add an instrument

to your test system by selecting a driver and providing
instrument configuration information. Instrument drivers
must use the .ID file name extension to be listed here.

A-4 Menus Index

Applications ...

= T
File]Instruments... M#Applications... Svstem Help
etm [2,
1 .
Open Application Name
Mawe: HP33258B
HP3478a8

[FRQ_RESP.aD

Files in C:\HPITE
EDITOR. AD n

| m
]
— o1¢]
File Edit Search Help

hpt_init (“FRQ_RESP.WF ')}
hp3325b = hot_assign

“HP3323B'°, EXPANDED):

Figure A-4. The Applications List Box

This menu displays a list box with all installed
applications. You add an application to your test system
by selecting an application and providing configuration
information. Application drivers must use the .AD file
name extension to be listed here.

Menus Index A-5

System

File Jnstruments...

File Edit Search

hpt_4
hp332

nit (T"FRQ_RESP.WF))
3325b = hpt_assign

HP Interactive Test Generator [QIW
fApplications... Help
Configure ZFSS 5
Record On...
Rgoord Off Q HP33258
Playback... HP3478A
JAutonatic Update
EIKR
Help
“"HP33238°°, EXPANDED

Figure A-5. The System Pull-Down Menu

A-6 Menus Index

Configure lets you select and configure system entities .
such as a printer.

Record On ... turns on HP ITG’s Record mode.
Clicking on Record On ... displays a dialog box.
Enter the file name for the script file using the .DS
extension, and click on 0K. HP ITG then begins
recording your interactions in this script file.

Record 0ff turns off HP ITG’s Record mode. All the
movements you made with the mouse after you turn
on Record mode until you turn it off are saved in the
file you created.

Playback ... lets you select from the .DS files in the
current directory so that you can see the movements

that were recorded and saved. .

Automatic Update controls the Automatic Update
mode for instruments in your soft test system. Click
on the menu command to turn the mode on or off.
A check mark beside the command means the mode

is turned on. The mode must also be controlled for
each instrument in the soft test system. Click on the
instrument panel menu box, then Modes ...

Help
= ST
File |Instruments... fAoplicatvions... fysten Help

Instrument Help...
fivplloatlion Help...
Subprograms...

179 Status...

k Jutorial...

atest Information...

Mo o K3

File Edi

t Searoh

Help

hpt_in
hp332%

it ("FRQ_RESP.W™"")3
b = hpt_assign

"HP3I323B°, EXPANDED);

Figure A-6. The Help Pull-Down Menu

m How-to ... describes how to perform common tasks
with HP ITG.
® Instrument Help ... provides a quick reference on all

instrument panels installed with HP ITG.

m Application Help ... provides a quick reference on

the available applications.

® Subprograms ... provides the syntax and a brief

description of the subprograms in the HP ITG Library
for the programming language you are using.

m I/0 Status ... displays the select code setting for

each IEEE-488 interface installed in your computer.

m Tutorial ... demonstrates HP ITG’s basic operation.

Menus Index A-7

Editor Menus

m Latest Information ... lists the instrument drivers
currently available with HP ITG, and provides
information about HP ITG features added after this
handbook was printed.

These menus control your interaction with the contents
of the HP ITG Editor window and the editor available
from Applications ... The HP ITG Editor displays
the current program file name in the center of its title
bar. HPT_LOG is the default file name with a .C or .BAS
extension, depending on the programming language you
are using. The default application editor file name is
SCRATCH.TXT.

— [T 107
File Jnstruments... fAvplications... System Help
R B
HP33258
HP3478A
. 0 (o] ¢
Help
Hove ALt +F? ry
gize Alt+FB
Mipimlize Alt+F9
Maximlze Alt+F10 k
Close hlreFa
4
=)

A-8 Menus Index

Figure A-7. The Editor Box Pull-Down Menu

m Restore sets the Editor window back to its previous
size.

m Move lets you reposition the Editor window in the
. work area.
m Size lets you resize the Editor window.

m Minimize reduces the Editor window to an icon,
placing it in the icon area at the far right of the
HP ITG window.

m Maximize enlarges the Editor window to full size.

m Close closes the Editor window, removing it from the
work area. This works only in the editor application

window.
File
= T
. Eile Instruments... @pplications... System Help
_ﬂ\; 1.41,

HP33258B
HP3478A

o oo

Figure A-8. The Editor File Pull-Down Menu

. m New deletes all text in the Editor window, and changes
the current file name to untitled.

Menus Index A-9

m Open ... loads a file into the Editor window. To select
a file, click on the file name in the list box and click on

0K
m Save replaces the file that was opened with the current .
contents of the Editor window.

m Save As ... saves the contents of the Editor window
in the designated file. A dialog box prompts you for
the file name.

m Print prints the contents of the Editor window.

Edit
— 1%
File Jnstruments... fApplications... Systen Help
I
HP33258
HP34784
— E3K?
File | Edit | §earoh Help
+
Cug Shlfte+Del
Cooy Ctrl+ins
Paste Shift+ins k
Clear Del
felectr All
fjenerate Initialization Code
L 2

Figure A-9. The Edit Pull-Down Menu

s Undo cancels the last edit made if you undo the change
immediately after the edit.

places it in a storage buffer. You can Paste this text

m Cut removes selected text from the edit window and
in another location in the edit window. I

A-10 Menus Index

m Copy copies the selected text into a storage buffer. You

Search
= [T
File Instruments... Applications... Syvsten Help

can Paste this text in another location in the edit
window.

Paste places text from the storage buffer in the
current location of the edit cursor. Text is placed in
the storage buffer using Cut or Copy.

Clear deletes all selected text from the edit window
but retains the file name.

Select All selects all text in the file whether it
currently appears in the edit window or not. You can
then Cut, Copy, or Clear the text.

Generate Initialization Code generates the
initialization code for all instruments in the current
test system that have Log HP ITG Calls mode on.

-4~ |~41,

HP33258
HP347284

w01 106 c KK

File Edir | Search

Find

xt

R

Figure A-10. The Search Pull-Down Menu

Menus Index A-11

m Find ... lets you search the current file for a number,
word, or phrase starting from the cursor’s current
position. A dialog box lets you specify the criteria
including the search direction and capitalization. .
HP ITG puts the cursor at the beginning of the first
occurrence it finds.

m Find Next lets you repeat the previous search
operation to find the next occurrence.

= O
Fiie JInstruments... fpplications... fvsten Help

[

HP3I23B
HP3478A

=] uo1_coc.c K
@

editor.AH ry

Topios

Seieot a topic

Ouerview
the Editor Window
File Commands
Edit _Commands

Searching for Text

Figure A-11. The Editor Help List Box

Clicking on this command displays a list box listing
topics that describe the Editor operation. Click on a
topic, then click on OK to display the information.

A-12 Menus Index

Arrows m Clicking on the up arrow increases the Editor window
to full screen.

‘ m Clicking on the down arrow reduces the Editor window

to an icon.

m When the Editor window is full screen, clicking on the
bidirectional arrow icon reduces the Editor window
from full screen to partial screen.

Instrument Panel The instrument panel title bar contains the panel menu
Menu box, the panel name and address, and an arrow.

Instrument Panel Box

= [TT%

File Jnstruments... fppliocations... System Help
-4~ 1 3
HPT_LOG.

HP33238

(=1 __ DCEEFTTHY [0

Minimize

- Help... —
§tore State... §
Recall State...

% Modes...

Confls...
State Malnt...
Memory Information...

Close
Ndigits 4.3
Trisger

Auto Zero

Figure A-12. The Instrument Panel Pull-Down Menu

‘ Click on the panel menu box in the top left corner of the
panel and HP ITG displays the panel menu.

m Minimize reduces the soft panel to an icon.

Menus Index A-13

m Help ... displays a list box with topics of information
about the instrument and its driver.

m Store State ... saves the current panel setup as a
single instrument state. HP ITG prompts you for a
name. If the name selected already exists, the old data
are overwritten with the current data.

m Recall State ... recalls an instrument state from the
stored set of states.

m Modes ... displays a dialog box with the different
modes that can be toggled on/off for the individual
instrument panel. A mode is on when an X is
displayed in the box next to the given mode. The
modes include:

Incremental When on, Incremental Recall minimizes

Recall the number of commands sent to an
instrument to cause it to go from one
state to the next recalled state. ‘
Error When on, Error Checking checks the
Checking instrument for errors whenever a control

is set or a measurement is made. Not all
instruments have an Error Checking
mode.

Live When on, Live mode sends HP-IB
commands directly to the instrument,

allowing you to control an instrument
through HP ITG.

Log HP ITG When on, Log HP ITG Calls generates

Calls calls to HP ITG subprograms that you
can use as the basis of a measurement
procedure. HP ITG displays this code in

the Editor window. ‘

A-14 Menus Index

Automatic When on, Automatic Update lets an

Update instrument that provides a display to
continuously update that display with
measurement readings. The mode name
is grayed if the instrument driver does
not support Automatic Update. To
start updating a panel’s display, click
on the display, then click on it again
to stop updating. You must also turn
on Automatic Update (in the System
menu) for the HP ITG development
environment.

m Config ... displays a dialog box containing
configuration information for the instrument,
including its HP ITG name, HP-IB address, card cage
subaddress, and timeout.

The Name and Address you select for the instrument
are displayed in the middle of the panel’s title bar.

Timeout is the amount of time allowed for the
instrument to respond to commands in the
development and run-time environments. The default
time is 30 seconds.

m State Maint ... displays a dialog box that allows you
to further control states (that is, in addition to Store
State and Recall State). The dialog box presents the
following options:

Open This lets you open a state file whether
created in the current test system or in a
different test system.

Menus Index A-15

A-16 Menus Index

Arrow

Save

Add

Delete

Print

Cancel

You can save one or all of an
instrument’s stored states from the
current soft test system into a state
file. The name you create for the state
file must end with the .SL file name
extension. You can use this state file in
other test systems.

You can add one or all of an
instrument’s stored states to an existing
state file. State files are created using
the Save command.

You can delete a stored state from your
current soft test system. It does not
affect states saved in a state file.

You can obtain a printout of the values
HP ITG has stored for one or all of

an instrument’s stored states in your
current soft test system

This works like all other HP ITG Cancel
buttons. Clicking on it removes the
dialog box from the screen and no action
is taken.

m Memory Information ... displays the amount of
conventional and expanded memory being used by
the instrument driver, states, and configuration
information. The values are rounded to the nearest

1 Kbyte.

m Close closes the panel, which removes it from the
current test system. Closing the panel deletes all the
stored states associated with it, but does not affect the
states saved in a state file.

Clicking on the arrow in the upper right corner reduces
the panel to an icon, and places it in the icon area at the
far right of the HP ITG work area.

1/0 Interfaces

Overview

Note

HP ITG currently supports the following IEEE-488 and
VXI interfaces:

m Hewlett-Packard’s HP-IB (Models HP 82335A and
HP 82990A)

m National Instruments Corporation’s GPIB-PCII and
GPIB-PCIIA

m Radix MicroSystems, Inc. VXIbus

Your test system may need two interface boards. One
board should be reserved for instrument control. Use the
other to support computer peripherals such as printer,
plotter, or external disk drive.

If you install more than one interface board in your
computer, each board requires a separate select code.

Hewlett-Packard
HP-IB Interface

The HP-IB interface is addressed using the following
numeric scheme:

/O Interfaces B-1

B-2

SDA[SA]
Where:

S = Select code of the HP-IB interface (HP ITG

supports select codes 3 - 7).

DA = Device Address of instrument or mainframe

(allowed range is 00 - 29).

SA = Optional Secondary Address for module

(allowed range is 00 - 31).

With this scheme, you can control instruments from
HP ITG through an HP-IB board. You can use more
than one HP-IB interface using the range of addresses
listed in the following table for each supported select
code. Select code 7 is the default switch setting and is
recommended for HP ITG. If another interface in your

computer is using that code, use 6.

Select Code | Address [Secondary Address] Range | PC Address Segment

3

-~ Oy e

300[00] - 329[31]
400[00] - 429[31]
500[00] - 529[31]
600[00] - 629(31]
700[00] - 729[31]

CC00
D000
D400
D800
DCO00

Caution

1/O Interfaces

The LIM 4.0 EMS driver may conflict with address space
for HP-IB select codes 3 - 7. See the installation guide
for your HP-IB interface for information about switching

settings to prevent address space conflict.

Changing the HP-IB
Configuration

National
Instruments
Corporation
GPIB-PCIUI/IIA

The configuration switches for the HP-IB interface
shipped with your HP ITG are factory set for select
code 7. If you need information about changing the
configuration switches and installing the interface,

see the guide, “Installing the HP-IB Interface” that
comes with the interface. Read the sections, “Setting
Switches,” “Installing the Interface,” and “Connecting
Peripherals.”

The National Instruments Corporation GPIB-PCII and
GPIB-PCIIA interfaces are addressed using the following
numeric scheme:

SDA[SA]
Where:

S = Select code of the GPIB-PCII/IIA interface
(HP ITG supports select codes 8 and 9).

DA = Device Address of instrument or mainframe
(allowed range is 01 - 30).

SA = Optional Secondary Address for module
(allowed range is 00 - 31).

With this scheme, you can control instruments from
HP ITG through a GPIB-PCII/IIA interface. You can
use more than one GPIB-PCII/IIA interface using the
following range of addresses for each supported select
code:

Select Code | Port Address | Address [Secondary Address] Range

8 0x2B8 801[00] - 830[31]
9 0x2C0 901[00] - 930[31]

1/O Interfaces B-3

You should use select code 8 for the first GPIB-PCII/IIA
interface you install in your computer. Use select code

9 for the second interface. See the GPIB-PCII/IIA

interface’s installation manual for details on setting the ‘
port address.

Radix The EPC-2 system from Radix MicroSystems, Inc. uses
Micr ms. Inc. 2" alpha-numeric addressing scheme for instruments
EII)%_OZS§Stet S, Inc using the VXIbus interface standard. When the EPC-2

ysiem is turned on, it assigns default names to any VXI
instruments it recognizes.

The default name is vdev followed by unique digits
representing the instrument’s position in the card cage.
If there are several VXI instruments in the card cage, the
EPC-2 assigns the name vdevO to the first instrument,
vdev1 to the second, and so on. HP ITG uses these
addresses to control the VXI instruments. You can view
and change the default addresses by using the Radix
MicroSystems Start-up Resource Manager program,
SURM.EXE.

The EPC-2 system also provides an interface compatible
with National Instruments Corporation’s GPIB-PCII
interface. HP ITG supports that interface at select

code 8, but only with the EPC-2 system designated as
Controller in Charge.

B-4 1/O Interfaces

Expanded and Extended Memory

C

Overview

The type of computer you use, whether i286-based

or i386-based, affects the way you configure the
additional memory in the computer and the memory
manager you use to control it. Chapter 3 in this
handbook, “Installing HP ITG,” explains the basic
installation requirements for HP ITG running in the
single application environment (SAE) for Microsoft
Windows. This appendix explains memory configuration
information for development systems that may use the
complete Windows application.

i286-Based
Computer

The complete Windows version for an i286-based
computer is Windows/286. Whether you use
Windows/286 or continue using the SAE, the additional
memory in the computer should remain configured as
expanded, and use the same memory manager shipped
with the memory board.

Expanded and Extended Memory C-1

i386-Based The complete Windows version for an i386-based
r computer is Windows/386. For the SAE, the additional
ComPUte memory (usually preinstalled) should be configured as
extended memory and use the memory manager shipped
with it.

i you use Windows/386, you will need to remove the
original memory manager. Windows/386 provides

its own memory manager. It is important that you
remove any other memory manager, or Windows /386
will not run correctly. The memory itself should

remain configured as extended memory. By using the
Windows/386 memory manager, you gain the advantage
of running HP ITG and other applications in the
Windows/386 multitasking environment.

C-2 Expanded and Extended Memory

Creating a Script

D

HP ITG provides a way for you to record and playback
your interactions with HP ITG. Interactions include
keystrokes as well as the movements you make with the
mouse. This lets you demonstrate a measurement or
procedure.

To create a script:

1. Turn on Record mode.
a. Click on System on the System menu bar.
b. Click on Record On ...

c. Enter a file name using the extension .DS, then
click on 0K. HP ITG now records every interaction,
saving the data in the file you specified.

2. Perform the procedure.

3. Turn off Record mode.
a. Click on System on the System menu bar.
b. Click on Record 0ff.

4. Play back the script.
a. Click on System on the System menu bar.
b. Click on Playback ...

c. Click on a file name, then click on Open; or type in

a file name, and press (Enter).

Creating a Script D-1

Messages

E

Overview

Conventions

The HP ITG messages described in this appendix may
appear while you use HP ITG, QuickC, or QuickBASIC
environments; or during run-time. In HP ITG, the
error number appears with the message. In QuickC,
QuickBASIC, and run-time, the HP ITG subprogram
name is also included to help identify the statement
where the problem exists.

For reference information about HP ITG subprograms
identified in the messages, see chapter 14, “The HP ITG
Library: QuickBASIC” or chapter 15, “The HP ITG
Library: C.” For reference information about instrument
driver components and their allowable values, see the
component summary tables for the instrument drivers

in HP ITG’s online Help system under Instrument
Help ...

The following initials at the beginning of each message
explanation help identify where the error can occur:

m D means the error can occur in the HP ITG
Development environment.

m R means the error can occur while Running your
program in QuickC, QuickBASIC, or run-time.

w ID means the problem described by the message exists
in the Instrument Driver file. The error can occur in

D or R.

Messages E-1

E-2 Messages

1000: Undefined component comp_name in device
dev_name

the component named in the parameter list. Verify the
component name spelling and that the component
exists in the instrument driver identified in the
message.

R—A call to an HP ITG subprogram cannot access

1001: Device descriptor number is invalid

R—Your program is using an unrecognized device
descriptor in a call to an HP ITG subprogram. Check
your program code to ensure hpt_assign is called to
assign the descriptor and open the device, and that
you are using the correct device descriptor.

1002: Component descriptor number is invalid

R—Your program is using an unrecognized component
descriptor number in a call to a Version 2 HP ITG
subprogram. Either the descriptor has not been ‘
assigned by the subprogram, hpt_assigncomp, or

the device is closed. Check your program code to

ensure hpt_assigncomp is called and you are using the
correct component descriptor. Verify that the device is
open.

1003: State number invalid for component
comp_name

R—The hpt_setstate2 subprogram uses an incorrect
value for the state parameter. Be sure your program
uses one of the following constants for the status
parameter:

COMP_VALID
COMP_INVALID
COMP_DONTCARE ‘

These constants are defined in the include files,
HPITG.H (for C) and HPITG.BI (for QuickBASIC).
Be sure the correct file is included in your program.

1004: Improper type for component comp_name in
device dev_name

R—Your program calls a subprogram that does
. not match the type of component specified in the

instrument driver. Revise your program to call the

correct subprogram for the component type.

1005: Undefined discrete value val_name for
component comp_name in device dev_name

R—Your program calls a subprogram to change a
component value, but the value does not exist in the
driver. Verify the value name’s existence and spelling.

1006: Undefined discrete value number for
component comp_name in device dev_name

R—Your program calls the HP ITG subprogram,
hpt_set, using an invalid discrete number for a
discrete component. Check your program to ensure

. that hpt_assignparm is called and you are using the
correct value name.

1009: Inconsistent array dimensions number number
for comp_name, should be number number

R—This occurs in QuickBASIC programs only.
Double-array dimension in call to an HP ITG
subprogram is inconsistent with the component’s
dimensions defined in the instrument driver. Verify
that array dimensions are not transposed in your
program and they match the component’s defined
array size. Use the hpt_compdims subprogram to
determine the component’s array dimensions.

Messages E-3

1010: You need to Install and Setup a printer using
the Control program

D—HP ITG could not find the following line in the
Microsoft Windows initialization file, WIN.INI, which
configures a printer:

DEVICE= ...

To configure a printer in HP ITG, click on System on
the system menu bar, then click on Configure. See
chapter 6, “Creating and Using a Soft Test System,”
for information about printer configuration.

1011: Out of disk space during the print

D—HP ITG ran out of hard disk space while writing
temporary files during printing. Remove unneeded
files to make room on your hard disk.

1012: Out of memory during the print

D—HP ITG ran out of conventional memory while .
printing. To provide adequate memory, quit running

other Microsoft Windows applications, close some

HP ITG devices, or reconfigure your computer to use

less conventional memory during startup.

1013: Error during print

D—A general error occurred during printing which
was caused by one of several conditions. Check your
printer for a paper jam or for enough paper supply. Be
sure your printer is properly connected and configured.
If the problem is not with the printer, you may have
run out of hard disk space or conventional memory.

E-4 Messages

1014: You must close the Spooler application
before dumping to the HP PaintJet printer

D—When HP ITG performs a screen dump to an

HP PaintJet printer, data is sent directly to the
printer, bypassing the printer spooler. To prevent an
output conflict, close the spooler application running
in Microsoft Windows. You may have to wait for it to
finish printing a file.

1015: A floating point number is required

D—HP ITG expects a valid floating point number
such as 1.2 or 12. Do not use a comma for the radix.

1016: Could not load device -- too many active
windows

D—HP ITG ran out of conventional memory while
creating the windows for an instrument driver. Quit
running some other Microsoft Windows applications,
close some HP ITG devices, or reconfigure your
computer to use less conventional memory on startup.

1017: File not found: file_name

D—You tried to open a nonexistent file in the
development environment’s work space or HP ITG
Editor. In a dialog box, if you type in a file name for
an instrument driver, workfile, or program, verify the
file name spelling and directory path.

1018: A name is required

D—Each instrument driver loaded into the HP ITG

workfile must have a name. Be sure to enter a name

in the Instrument Configuration dialog box when you
add an instrument driver.

Messages E-5

1019: Could not create file: file.name

D—In the development environment, HP ITG could

not create a program file, workfile, or instrument

state file. Be sure that the filename meets MS-DOS ‘
requirements, and that there is no other file of the

same name which is protected or locked by networking
software.

1020: Error writing to demo script file

D—An error occurred writing to the demonstration
script file. Be sure there is enough hard disk space.

1021: Syntax error reading back demo script file

D—There is a syntax error in your demonstration
script file. Be sure that the file is a valid
demonstration script file.

1022: Error while playing demo file: could not

find device dev_name ‘

D—A demonstration file requested a MOVE or PUSH
relative to the given device, but no device with that
name exists. Load a device of that name and rerun
the script.

1023: Error while playing demo file: menu command
could not be executed

D—A demonstration file with a PUSH ... MENU
referenced a nonexistent menu item. Check the menu
numbers given in the file.

1024: Error while playing demo file: DIALOG
keyword used without a dialog box

D—A demonstration file tried to reference a dialog
box, but no dialog box was present. Check the ‘
demonstration file.

E-6 Messages

1025: Error while playing demo file: MINIMIZE or
MAXIMIZE error

D—A demonstration file tried to minimize or
maximize a window which has no minimize or
maximize arrows. For example, dialog boxes never
have minimize or maximize arrows in HP ITG. Check
the demonstration file.

1026: Error while playing demo file: LISTBOX error

D—A demonstration file tried to pick a string from a
list box, but the string is not in the list box. Check
the demonstration file.

1027: Error while playing demo file: COMP error

D—A demonstration file tried to reference the
given component name in a device, but that device
has no such component, or that component has no
visible panel elements attached to it. Check the
demonstration file.

1028: Error while playing demo file: could not
find a button labeled button_name

D—A demonstration script file tried to click on the
indicated button, but the window specified in the
demonstration file did not contain the button. When
writing a demonstration file, you must match spaces
exactly; case does not matter. If the button label
contains underline characters, precede the underlined
characters with an ampersand. For example, to match
Open, where the O is underlined, you must type
&Open. Correct the demonstration script file.

1029: This string cannot contain character values
above 127: string

D—A string must consist only of characters with
decimal values equal to 127 or less.

Messages E-7

1030; Device dev_name not found

R—The program calls the subprogram, hpt_assign,

using a device name in the parameter list that does

not match any name in the current workfile. Check ‘
the workfile in the development environment to verify

the contents. The device name is specified in the

Instrument Configuration dialog box when you add a

device to the workfile.

1031: Descriptor number does not refer to an open
device

R—The program uses an unrecognized device

descriptor in a call to an HP ITG subprogram. Check

the program to ensure hpt_assign is called at the
beginning, and that the correct device descriptor

is used. The hpt_assign subprogram assigns the

descriptor and opens the device. This error can also

occur if hpt_close or hpt_close_all are called
prematurely. ‘

1032: Device table full (254 devices maximum)

D or R—You have added more than 254 devices to the
HP ITG environment’s work space, or the program
adds 255 devices using hpt_add_device.

1033: file_name not found

D—You tried to open a nonexistent file in the
development environment’s work space or HP ITG
Editor. In a dialog box, if you type in a file name for
an instrument driver, workfile, or program, verify the
file name spelling and directory path.

1034: Error reading file_name header

D or R—The compiled instrument driver file exists, .
but contains an error in the file header. Recompile the
instrument driver file using HPIDC.EXE.

E-8 Messages

1035: file_name is not an HP ITG compiled instrument
driver file

D or R—The indicated file does not exist as a
compiled instrument driver.

1036: Error reading file_name object size table.

D or R—The compiled instrument driver exists, but
does not have a correct size table.

1038: file_name is an old format HP ITG compiled
instrument driver file

D or R—A newer version HP ITG cannot read older
version compiled instrument drivers. Recompile the
old instrument driver source file using the most recent
version of HPIDC.EXE.

1039: file_name is incompatible with workfile
file_name

D or R—The compiled instrument driver named in
this message is different from the compiled instrument
driver referred to by the workfile.

1040: Driver unsupported with this system’s
expanded memory configuration

D or R—The expanded memory used is inadequate
to support the large memory requirements of the
instrument driver.

1041: Device dev_name assigned before hpt_init was
successfully invoked

R—The program calls the hpt_assign subprogram
before calling the hpt_init or hpt_add_device
subprograms. Be sure hpt_init or hpt_add_device is
called before hpt_assign.

Messages E-9

1042: Address io_address for device dev.name invalid

D or R—The address for the instrument is outside

the range for valid addresses. The range for

HP-IB interfaces is 00-29. The range for National ‘
Instruments GPIB-PCII/IIA interfaces is 01-30.

Check the instrument configuration in HP ITG for the
address setting,.

1044: Could not run program file_name

D—HP ITG found, but could not run, the instrument
driver compiler or the Control program for printer
configuration. If an instrument driver has been
revised, HP ITG recompiles the source file using
HPIDC.EXE when loading the instrument into the
test system. When configuring a printer in HP ITG
(click on System, then Configure), HP ITG runs
CONTROL.EXE. Try to run the indicated program
from the MS-DOS command line to verify that the

program is not corrupted. ‘

1045: The program file_name was not found in the
current PATH

D—The indicated program file name could not be
found. Be sure the file exists in the current directory.
If the file is in a different directory, you should

add that directory name to the PATH command

in the AUTOEXEC.BAT file. If you change the
AUTOEXEC.BAT, reboot the computer so the new
command takes effect.

1046: There is not enough memory to run program
file_name

D—HP ITG could not run the indicated program

because insufficient memory was available. Reduce

memory usage by closing unnecessary instrument .
panels and other windows. If insufficient memory

remains a problem, add more memory.

E-10 Messages

1047: Cannot find: search_string

D—The HP ITG Editor cannot find any occurrence
(or the next occurrence) of the search text. If you
think the text does exist, verify that the spelling and
search options are correct.

1048: Editor out of memory

D—The test program is larger than the HP ITG
Editor’s memory buffer can hold. This message can
appear when you open an existing file or while you
are entering text in the Editor window. Break the
program into smaller modules.

1049: Cannot open file file_name

D—HP ITG cannot open the indicated file. Check the
file name spelling, or if the file is write-protected.

1050: Cannot create file file_name

D—A file for the program you are trying to save
cannot be created. Check for a full hard disk, an
illegal file name, or a write-protected file.

1051: Device dev_name reported error number

D or R—The instrument reported the indicated error
number during an error checking sequence. Look up
the error number in the instrument’s manual.

1053: Floating point error in device dev_name

ID—A floating point error occurred while executing
an action list in the given device. This particular
message indicates that problems exist in the
instrument driver.

Messages E-11

1054: Floating point overflow in device dev.name

ID—A number larger than 1.79769E+308 was

generated while executing an action list in the

instrument driver. The instrument driver’s action list ‘
needs revision so numbers larger than this are not

generated.

1055: Division by zero in device dev_name

ID—Division by zero occurred in the indicated
instrument driver. The instrument driver needs
revision to prevent such operations.

1056: Floating point underflow in device dev_name

ID—A number smaller than 2.22E-308 was generated
while executing an action list in the instrument driver.
The instrument driver’s action list needs revision so
numbers smaller than this are not generated.

1057: HP ITG stack underflow in device dev_name,
component comp_name ‘

ID—The instrument driver tried to pop a value off of
the top of the HP ITG stack, but no item was there.
The instrument driver is probably missing a FETCH
statement and needs revision. This error is not related
to MS-DOS stack allocations.

1058: HP ITG stack overflow in device dev_name,
component comp_name

ID—The instrument driver tried to push a value onto
the stack, but the stack was full. The stack holds only
20 items. Of these items, it can hold 15 floating point
numbers and five 256-character strings. This error is
not related to MS-DOS stack allocations.

E-12 Messages

1059: Array indexing not permitted in device
dev_name, component comp_name

‘ ID—The instrument driver tried to use an array
component type where one is not allowed, such as in
a non-array ENTER or OUTPUT statement. The
instrument driver needs revision.

1060: Value out of range in an OUTPUT TABLE
statement in device dev_name, component comp_name

ID—The OUTPUT TABLE statement used an index
into the table that was too large. The instrument
driver needs revision to add more items to the
OUTPUT TABLE statement or generate smaller
indexes.

1061: Array component needed in device dev_name,
component comp_name

ID—Commands such as MATSCALE, OUTPUT
‘ array, or ENTER array, require an array component
type. The instrument driver needs revision.

1062: No CASE was matched in a SELECT statement in
device dev_name, component comp_name

ID—The SELECT statement in an instrument driver
did not have any matching CASE statements. The
instrument driver needs revision to add a CASE
statement or a CASE ELSE statement.

1063: Floating point overflow in device dev_name,
component comp-name

ID—A number larger than 1.79769E+308 was

generated while executing an action list in the

instrument driver. The action list in the instrument
‘ driver needs revision to avoid generating such values.

Messages E-13

1064: Attempted LOG or LGT of nonpositive number in
device dev_name, component comp_name

ID—The instrument driver tries to take the LOG or
LGT of a nonpositive number. The instrument driver
needs revision to prevent such operations.

10685: Wrong type of value on the top of the stack in
device dev_name, component comp_name

ID—The instrument driver tried to perform some
operation on the top of the stack using the wrong type
of data. For example, a string cannot be subtracted
from another string. The instrument driver needs
revision to prevent such operations.

1066: Overflow converting a real value to an
integer value in device dev_name, component
comp_name

32767 was used as a 16-bit integer. The instrument
driver code needs revision so it generates smaller
numbers or uses a continuous component type to hold
the value.

ID—A value outside the range between -32768 and .

1087: Array index out of bounds in device dev_name,
component comp_name

ID—An array component type was indexed with a row
or column less than one or greater than the number of
rows or columns declared in its TYPE statement. The
array component TYPE statement or the array index
operation in the instrument driver need revision.

1068: Division by zero in device dev_name,
component comp_name

ID—Division by zero occurred in the indicated .
instrument driver’s component. The instrument driver
needs revision to prevent such operations.

E-14 Messages

1069: Invalid reference to component in device
dev_name, component comp_name

ID—Hit actions or update actions were executed

with no default component, yet the instrument

driver referred to the current component, probably
through SELF or DEFAULT. The instrument driver
needs revision to remove the reference to the default
component in the action list, or to make the action list
a SET ACTIONS list.

1070: Improper type matching in device dev_name,
component comp_name

ID—In a component, a string is used where a number
is required, or a number is used where a string is
required. For example, the skip field in an ENTER
array cannot be a string component. The instrument
driver needs revision.

1071: String overflow error in device dev_name,
component comp_name

ID—In a component, a string with more than 256
characters was attempted. The instrument driver
needs revision so all strings in the instrument driver
are 256 characters long or less. This includes any
temporary strings on the stack.

1072: Attempted SQRT of a negative number in device
dev_name, component comp_name

ID—The square root operation was attempted on a
negative number in a component. The instrument
driver needs revision.

1073: Value outside of valid domain of function in
device dev_name, component comp_name

ID—The arcsine or arccosine was attempted on
a number less than —1 or greater than 1 in a
component. The instrument driver needs revision.

Messages E-15

E-16 Messages

1074: Numeric field specifier is too large while
trying to format number in device dev_name

ID—A numeric format, such as DDD.DDD, specified
more than 250 characters. The instrument driver
needs revision so the specifier uses fewer characters.

1075: Numeric field specifier is too small while
trying to format number in device dev_name

ID—A numeric format, such as DDD.DDD, specified
fewer characters than were in the number, as in
7123.444. The instrument drivers needs revision to
specify more characters in the format string or use the
K format specifier.

1076: Sign specifier missing from format while
trying to format number in device dev_name

ID—A numeric format such as DDD.DDD specified
fewer characters than were in the number, eliminating
the minus sign. The instrument driver needs revision
to specify more characters or use the K format
specifier.

1077: Insufficient data for ENTER in device
dev_name

ID—A linefeed or EOI was received before the entire
array was entered. The instrument driver may need
revision to ensure that the format and array size in
the ENTER array statement matches the data size
from the instrument.

1078: No ENTER terminator found in device
dev_name. See the # specifier in FORMAT.

ID—The data was entered, but no linefeed or EQI was
received in the next 256 characters. The instrument
driver needs revision to include the # format specifier.
This specifier allows the ENTER statement in the
instrument driver to terminate right after the data is
entered.

1079: Numeric data not received in device dev_name

ID—When entering data for a numeric field, a comma,
linefeed, or EQI was received before a number was
received. The format used on the ENTER statement
may need revision in the instrument driver.

1080: Image specifier greater than dimensioned
string length in device dev_name

ID—An image specifier for a string demanded more
characters than were allowed in the string component
used in the ENTER statement of the instrument
driver. The instrument driver needs revision to adjust
the length of the string component, the FORMAT
used in the ENTER statement, and the data from the
instrument.

1081: Exponent field specifier too small while
trying to format number in device dev_name

ID—Not enough exponent characters are specified

to represent the number. The FORMAT in the
OUTPUT statement needs revision in the instrument
driver.

Messages E-17

1082: Size mismatch in array output or enter in
device dev_name

ID—The number of rows in an OUTPUT or ENTER
array statement in the instrument driver does not ‘
match the declaration of the array component. The
instrument driver needs revision so the number of rows

in the OUTPUT or ENTER array statement matches

either the rows declared in the array component, or

the columns declared in the array component.

1083: Overflow of I/0 buffer in device dev_name

ID—OUTPUT statements in the instrument driver
caused the output buffer to fill up. The instrument
driver needs revision so it includes FLUSH statements
that cause the output to be sent to the device more
often.

1084: String value applied to a numeric format in

device dev_name
ID—An OUTPUT or ENTER statement in the ‘
instrument driver tried to output or enter a string
component using a numeric format such as DDD.
The OUTPUT and ENTER format strings may need
revision in the instrument driver.

1085: Numeric value applied to a string format in
device dev_name
ID—An OUTPUT or ENTER statement in the
instrument driver tried to output or enter a numeric
component using a string format such as *AAA’.
The OUTPUT and ENTER format strings may need
revision in the instrument driver.

E-18 Messages

1086: Format string calls for more than 1 value to
be output or entered in device dev_name

ID—A format string in an ENTER or OUTPUT
statement in the instrument driver tried to use two or
more values, such as K,K, which would output or enter
two values. The instrument driver needs revision so
the format string uses only one value.

1087: Attempt to enter a number with number
characters in device dev_name, limit is number

ID—The instrument sent a very long number that
overflowed the HP ITG enter buffer. The instrument
driver needs revision so it uses a different format
specifier, or commands the instrument to send the
data in a different format.

1088: Device descriptor number invalid

R—The first parameter in a call to an HP ITG
subprogram uses an incorrect device descriptor.
Be sure to use the device descriptor assigned by
hpt_assign.

1089: Descriptor number invalid

R—Calls to Version 2 HP ITG subprograms require
preassigned component descriptors and state
descriptors. Be sure the program includes calls to
hpt_assigncomp to assign component descriptors, and
hpt_assignstate to assign state descriptors.

1090: Device number not open

R—The program tries to access an instrument and
its driver that are not open. Be sure your program
calls the hpt_assign subprogram before accessing an
instrument.

Messages E-19

1096: Device number still open

R—The program calls the hpt_assign subprogram

twice. Check the program for duplicate calls

to hpt_assign for the same instrument, or call ‘
hpt_close to close the extra instrument.

1097: Out of conventional memory

D or R—The program requested allocation of
conventional memory (the computer’s 640 Kbytes of
base memory), but insufficient conventional memory
was available. Such a request can be made when
loading an instrument driver. Reduce conventional
memory usage by not installing drivers such as
networking software. Increase expanded memory usage
by specifying the expanded memory option in the
hpt_assign subprogram when loading instrument

drivers.
1098: Out of expanded memory
D or R—The program requested allocation of ‘

expanded memory but insufficient expanded memory
was available. Such a request can be made when
loading an instrument driver. Remember, once
expanded memory is allocated, you must deallocate

it to make it available. You can do this in HP ITG

by closing unnecessary instrument panels. In your
program, use the hpt_close or hpt_close_all
subprograms. If the problem persists, you may need to
add more expanded memory to your computer.

E-20 Messages

1099: No expanded memory detected

R—The program called the hpt_assign subprogram
using the option to load an instrument driver

into expanded memory, but no expanded memory
manager was detected. If your computer contains
expanded memory, check the hardware and software
configurations. If your computer does not have
expanded memory, you should add it, or only access
conventional memory.

1101: Out of statically allocated expanded memory
for states

D or R—The program requests more expanded
memory for instrument states than has been allocated.
This can happen if your computer contains the LIM
3.X version of the Expanded Memory Specification
instead of LIM 4.0. HP ITG allocates fixed amounts
of memory when using the LIM 3.X EMS. HP ITG
dynamically allocates memory as needed when using
the LIM 4.0 EMS.

1105: State descriptor number invalid

R—The program uses the hpt_recall2 subprogram
with an invalid descriptor for an instrument state. Be
sure to use the hpt_assignstate subprogram in the
program to assign a state descriptor for hpt_recall2.

1107: Error writing state state_name in device
dev_name to vworkfile file_name

D—This error happens when trying to save a workfile
with its associated states to a hard disk. If the hard
disk is full, save the workfile to a floppy disk, then
make space on the hard disk.

Messages E-21

1108: Error reading states for device dev_name
from workfile file_name

D or R—HP ITG could not read the instrument states
in the indicated workfile. The file may be corrupted.
Recreate the instrument states and resave the workfile.

1109: State state_name not defined for device
dev_name

D or R—The program tried to recall a nonexistent
state for an instrument. Verify the state names
created for that instrument in the workfile.

1110: Undefined component comp_name in state file

D—HP ITG tried to use a nonexistent component
name in the current state file for the workfile. Be sure
to use the same instrument driver for which the state
file was created.

1111: Expected name, received name .

D—HP ITG could not find the state name in the state
maintenance file. Verify the state name in the state
maintenance file.

1112: Illegal discrete value val_name for
component comp._name

D—HP ITG could not find the value name for

the instrument driver’s component in the state
maintenance file. The state maintenance file is
incompatible with the driver. Be sure to use the state
file created for the particular driver.

1113: Out of memory--could not allocate number

bytes
D or R—Insufficient conventional memory was
available to load a workfile or load an instrument

driver. Delete other applications or close some
HP ITG instrument drivers.

E-22 Messages

1115: Overflow converting number to an integer
value

ID—The indicated real number is larger than 32767 or
smaller than -32768, so it could not be held as a 16-bit
integer. This occurs most often with OUTPUT and
ENTER of arrays as integers. The instrument driver
needs revision of OUTPUT and ENTER statements
for array components to prevent such overflows.

1116: Timeout of device dev_name -- Live mode
disabled

D or R—The instrument, with Live mode enabled,
was addressed but did not respond to the command
within the timeout period. In the development
environment, HP ITG disabled Live mode. Be sure
the instrument is plugged in, turned on, connected to
the computer, and in the correct mode. (For example,
a multimeter requiring an external trigger will timeout
if the external trigger never arrives.) Failing all that,
change the instrument configuration timeout value in
the instrument configuration dialog box.

1117: 1/0 failure of device dev_name -- Live mode
disabled

D or R—The instrument, with Live mode enabled,
was addressed but did not respond to the command.
In the development environment, HP ITG disabled
Live mode. This is a general I/0 failure and can have
many causes due to a system or instrument failure.

Messages E-23

1118: Device dev_name not present -- Live mode

disabled
D or R—HP ITG could not detect an instrument
at the specified address. In the development ‘

environment, HP ITG disabled Live mode. The
specified address is valid, but no instrument
responded. Be sure that the instrument is plugged
in, turned on, connected to the computer, set to the
expected address, and in the correct mode.

1119: Address io_address of device dev_name invalid
-- Live mode disabled

D or R—The instrument’s address is the same as the
interface address. In the development environment,
HP ITG disables Live mode. Address 30 is reserved
for HP-IB interfaces. Address 00 is reserved for
National Instruments Corporation GPIB-PCII/IIA
interfaces. Set the instrument to another address.

1120: Timeout value number for device dev_name is ‘
out of range -- Live mode disabled

D or R—The timeout value entered in the instrument
configuration dialog box is either less than zero, or
greater than 1000. In the development environment,
HP ITG disables Live mode. A value of 0 disables
timeouts and is valid for any interface, but should be
used with caution. Timeout values up to 1000 seconds
are acceptable. For Radix MicroSystems VXIbus
devices, timeout values entered in the dialog box are
ignored.

E-24 Messages

1122: Interface card or driver not present for
device dev_name -- Live mode disabled

D or R—The interface address for an instrument uses
the wrong select code. For example, the select code of
704 is 7. In the development environment, HP ITG
disables Live mode. Be sure the interface select code is
configured correctly. The valid select codes are:

HP-IB: 3,4,5,6,0r 7
GPIB-PCII/ITA: 8 or 9

If the address given is the name of a VXI instrument,
this error indicates that the required interface

driver, BIMGR.SYS, was not detected. This driver

is available with the EPC-2 system from Radix
MicroSystems, Inc. Make sure the following command
is in your CONFIG.SYS file:

DEVICE=C:\EPCONNEC\BIMGR.SYS

If you add the command, be sure to reboot your
computer.

1123: Could not open workfile file_name

R—The program tried to load a workfile during a

call to the subprogram, hpt_init, but the workfile
could not be opened. Be sure the workfile exists in the
directory path and the file name spelling is correct.

1124: Error reading header of workfile file_name

D or R—The workfile’s file name exists, but the file’s
header could not be read. The file may not be a valid
workfile. You need to recreate the workfile.

1125: file_name is not an HP ITG workfile

D or R—The file name exists, but the header
information indicated the file is not a valid workfile.
You need to recreate the workfile.

Messages E-25

1126: Error reading device table in workfile
file_name

be read. The device table lists the instruments and
their states saved in the workfile. The table may have
been corrupted while saving the workfile. You need to
recreate the workfile.

D or R—The device table in the workfile could not I

1127: Error creating workfile file_name

D—HP ITG could not resave an existing workfile or
create a new workfile. The destination disk may be
full. You may need to recreate the workfile if you
cannot save the file to a different file name, directory,
or disk.

1128: Error writing header of workfile file_name

D—HP ITG could create or access the file, but could
not write data to it. Check to see if the file or disk is
write-protected.

1129: Error writing device table in workfile
file_name

D—HP ITG could create or access the file and write
header data to it, but could not write the device table
data. Check to see if the disk is full.

1130: You must call hpt_3852_init before using
USERSUB in device dev_name, component comp.name

R—The program tried to run a user-defined
subprogram contained in an HP 3852 instrument
driver before calling hpt_3852_init. HP ITG can
generate a call to hpt_3852_init as part of the
HP ITG initialization code if an HP 3852 driver is

saved in a workfile. ‘

E-26 Messages

1131: Error mode number invalid

R—While running the program in QuickBASIC, the
wrong error mode number was used. The number is
set by the HP ITG subprogram, hptseterrormode.
See the QuickBASIC documentation to resolve the
QuickBASIC error. Check the program to verify that
the error mode is set correctly.

1132: Error in the ID--too many levels of recursion

ID—A statement in a SET ACTIONS action list
calls the component that contains the statement.
The instrument driver needs revision to correct such
recursion.

Messages E-27

Glossary

applications

An application is anything you can control through
an HP ITG soft panel that is not a standalone
instrument. An application can be written using
the HP ITG Instrument Driver Language to
perform simulation, modeling, or data analysis.

An application can act as a virtual instrument,
combining the features of several other instruments
to perform a specific measurement task such as
collecting frequency response data.

development environment

The HP ITG development environment is

displayed when you run HP ITG. The development
environment includes the QuickC and QuickBASIC
environments when used to continue program
development. In the HP ITG environment you

can control instruments directly by adjusting
instrument panels, and you can generate code based
on your interactions with the panels. In the QuickC
and QuickBASIC environments, you can run the
generated code to debug your program.

Glossary-1

dialog box
A dialog box is displayed when you have selected
a command that requires you to provide more
information about what you want to do. For ‘
example, when you select Config ... in the panel
menu, HP ITG displays the instrument configuration
dialog box, which lets you modify the instrument
configuration.

When a dialog box appears that has more than one
edit field, press until the edit cursor appears

in the field where you want to enter information,

or simply click on the desired field. The cursor, a
vertical line, indicates where the text will appear.
After completing a dialog box, press or click on
OK.

driver
An instrument driver is an ASCII text file written
in the HP ITG Instrument Driver Language. This ‘
file determines how the instrument’s panel will
be displayed by HP ITG. It also contains the
HP-IB commands that HP ITG uses to control the
instrument.

Editor menu bar
The Editor menu bar is the second bar from the top
in the HP ITG Editor window. The commands on
the menu bar provide menus that let you control the
HP ITG Editor.

Glossary-2

Editor window
The HP ITG Editor window is normally displayed
across the bottom of the HP ITG development
environment. It can be expanded to full-screen,
moved to other locations in the work area, and it can
be stored as an icon. The code HP ITG generates is
written to the Editor whether it is a window or an
icon. You can edit this code, as well as insert and
delete lines. The Editor window is controlled through
the menus available on the Editor menu bar that
spans the top of its window.

HP ITG Library
The HP ITG Library is a set of subprograms
provided with HP ITG. When an instrument panel is
in the Log HP ITG Calls mode, HP ITG generates
calls to these subprograms based on your interactions
with the panel. When you run your program that
is based on this code, you must link the HP ITG
Library with your program.

Language-specific libraries are provided for the
programming languages HP ITG supports. The
libraries are installed when you run the HP ITG
Setup program.

HP ITG Quick Library
The HP ITG Quick Library is a version of the HP
ITG Library designed for use in the QuickBASIC
environment during program development. The
library file is installed when you run the HP ITG
Setup program.

Glossary-3

Glossary-4

icon

An icon is a representation of a panel or editor
window. The icons are displayed along the right side
of the HP ITG development environment. You click
on an icon to expand it to full size. You can scroll
through the icons by clicking on the up/down arrows
at the top of the icon area.

incremental state programming

HP ITG tracks an instrument’s current state, then
sends the minimum number of commands to put
the instrument into the next state. This is called
incremental state programming.

instrument state

The instrument drivers contain information that sets
panel controls to specific values. Different states can
be created and saved individually. A program can
call each state instead of changing each control. Use
the Store State ... command in the instrument
panel menu.

list box

A list box provides a list of choices. File names are
listed by their names, while drives and directories are
indicated with brackets (example: [-C-] means drive
C). The parent directory is indicated with two periods
within brackets ([..]). Use the vertical scroll bar to
see more choices in the list.

There are three ways to make a selection from a list
box:

1. Click on your choice, then click on Open or press
(Enter).

2. Double-click (click twice quickly) on your choice.

3. Click on the Name box, type in your choice, then

press (Enter).

measurement procedure
A measurement procedure refers to the
instrument-control code you can generate using
HP ITG. Typically, a measurement procedure
consists of recalling stored states, adjusting the
controls of the panels, and making a measurement.

overwrite
Overwrite means to replace the information in a file
(or a state) with new information.

pointer
The HP ITG pointer is the arrow that is displayed
in the development environment. You can move this
pointer by moving the mouse.

run-time environment
The run-time environment includes the system used
to run a completed program. The system should
contain the following files:

m The executable program.
m The HP ITG error file, HPITG.ERR.
m The workfile (if used by program).
m The instrument driver files.

soft panel
A soft panel is a representation of an instrument’s
programming language. HP ITG uses information in
an instrument’s driver to display a soft panel in the
HP ITG development environment. You can control

an instrument and generate code that controls the
instrument by interacting with this soft panel.

Glossary-5

soft test system
A soft test system is the set of instrument panels
and their states that you have used in the HP ITG
development environment. You can save any number ‘
of systems with different combinations of panels. Soft
test systems are saved in workfiles.

state library
A state library is a file that contains one or more
instrument states. A state library file can be used in
any soft test system that can use a state stored in
the file. Use the State Maint ... command in the
instrument panel menu.

subpanel
A subpanel is a panel within a panel. Most
instrument panels consist of many subpanels.

System menu bar
The System menu bar is the second bar from the ‘
top in the HP ITG development environment. The
commands on the System menu bar provide menus
that let you control HP ITG and create a soft test
system.

timeout
Timeout is the amount of time HP ITG waits for an
instrument to respond when controlling it from the
HP ITG, QuickC, or QuickBASIC environments; or
from an executable program.

work area
This is the area in the HP ITG environment, below
the System menu bar, where instrument panels are
added.

workfile ‘

A workfile is a file in which HP ITG saves a soft test
system. Workfiles should end with the .WF file name
extension.

Glossary-6

Index

A

About HP ITG ... , A4

active keyboard keys, 10-6

adding
additional Editor windows, 10-1
a loop, 5-15
a panel, 6-5

applications, 6-9

instrument drivers, 4-5

other applications, 3-4
Address, A-15

field, 5-4, 6-7
address of instrument, 6-7
Add (State Maint), A-15
adjusting a panel

caution, 8-1
adjusting the Editor window, 10-2
allowable subprogram variations, 13-5
Application Help ... , A-7
applications

adding, 6-9, A-5

definition, Glossary-1

description, 6-9

Editor windows, 10-10

Microsoft Windows, 3-6

viewing list, A-5
Applications ...
arrays

declaring, 11-5
ASCII file, 10-5
AUTOEXEC.BAT, 3-10
Automatic Update, 7-4, A-6, A-14

(System menu), A-5

backup instrument states, 9-2
batch files, 5-18
buttons, 7-3

Cc

C, 1-7
Cancel (panel menu), A-16
caution
adjusting a panel, 8-1
closing a panel, 9-2
deleting instruments, 6-9
directory names, 3-7
Log HP ITG Calls, 6-4
soft test system, 5-9
changing
directories, 10-3
status of a component, 14-70
the HP-IB select code, B-3
the programming language, 3-9
changing instrument configuration
address, 8-4
subaddress, 8-4
timeout, 8-4
checking for errors, 13-11
Clear, A-11
clearing the editor, 10-4
Close
Editor box, A-9
(panel menu), A-16
system box, A-2

Index-1

code
generating, 4-6, 5-10, 11-1
generating initialization, 10-7, 11-4
instrument-control, 4-6
program control, 4-6
colors
setting for HP ITG, 3-8
completing your program, 4-6
comp_name, 13-3
component names, 15-1
components
working with, 13-3
Components, 13-2
component values, 13-5, 15-1
getting a printout, 9-6
setting, 13-7
Config ... (panel menu), A-15
CONFIG.SYS, 3-4
configuration dialog box, 6-6
Configure (System menu), A-6
configuring instruments, 6-6, 8-4
CONTINUOUS, 13-5-6
controller, 1-6
controlling
an instrument, 8-1
an instrument directly, 8-3
an instrument through its panel, 8-1
component values, 13-7
modes, 13-7
controls, 7-2
conventions
functions, 1-7
subprograms, 1-7
used in this book, 1-6
Copy, A-10
copying text, 10-8
creating
a soft test system, 6-1
instrument states, 9-2, 13-7
measurement procedures, 1-3
creating a new test system

Index-2

by deleting old one, 6-2
by modifying existing one, 6-2

creating a script, D-1
Cut, A-10

data types used in drivers, 13-5
declaring variables, 11-5

default instrument descriptor, 13-4
DEFAULT. WF, 6-3

default workfile, 6-3

definitions

applications, Glossary-1
development environment, Glossary-1
dialog box, Glossary-2

driver, Glossary-2

Editor menu bar, Glossary-2

Editor window, Glossary-3

HP ITG Library, Glossary-3

HP ITG Quick Library, Glossary-3
icon, Glossary-4

incremental programming, Glossary-4
instrument state, Glossary-4

list box, Glossary-4

measurement procedure, Glossary-5
overwrite, Glossary-5

pointer, Glossary-5

run-time environment, Glossary-5
soft panel, Glossary-5

soft test system, Glossary-6

state library, Glossary-6

subpanel, Glossary-6

System menu bar, Glossary-6
timeout, Glossary-6

work area, Glossary-6

workfile, Glossary-6

Delete (State Maint), A-15
deleting

caution with instruments, 6-9
instruments, 6-2
states, 9-5

text, 10-8
development environment, 1-1-2, 2-1, 4-1,
4-4-6, 13-1
definition, Glossary-1
Live mode, 6-8
development requirements, 2-1
dialog box, 4-2
definition, Glossary-2
directories
changing, 10-3
directory names
caution, 3-7
DISCRETE, 13-5-6
display
Automatic Update, 7-4
continuously updated, 7-4
numeric/string readout, 7-4
XY, 7-4
DONTCARE
description, 13-8
driver
accessing, 13-1
adding, 4-5, 5-3
components, 13-2
definition, Glossary-2
description, 1-2
help files, 13-2
linking to an instrument, 6-7

E

editing
a field, 6-6
a program, 1-5
AUTOEXEC.BAT, 3-10
code (example), 5-15
subprograms, 11-3
the procedure, 11-5
WIN.INI, 3-8

Edit menu, A-10

EDITOR.AD, 10-11

Editor, HP ITG

clearing, 10-4
using, 5-14
Editor menu bar, 5-11, 10-1, 10-3
definition, Glossary-2
Editor window, 1-5, 5-11, 11-5
adding another, 10-10
adjusting, 10-2
clearing, 10-4
copying text, 10-8
definition, Glossary-3
deleting text, 10-8
edit commands, 10-6
entering text, 10-6
expanding, 10-2
getting help, 10-10
menus, A-1
moving text, 10-8
moving the window, 10-3
printing, 10-5
replacing text, 10-7
searching for text, 10-9
selecting text, 10-7
size adjustment, 10-2
starting over, 10-4
storing as an icon, 10-2
undoing edits, 10-7
entering text, 10-6
environments
development, 1-1-2, 2-1, 4-1, 4-4
QuickBASIC program, 4-6
QuickC program, 4-6
run-time, 1-2, 1-6, 4-7
working, 4-4
Error Checking mode, 8-3-4, 13-7, 13-11,
14-21, 15-22, A-14
error messages, 8-3, 14-20, E-1
address, 6-7
in MS-DOS, 12-1
in QuickBASIC, 12-3
in QuickC, 12-2
in run-time environment, 12-4

Index-3

example
creating a soft test system, 5-3
creating executables, 5-19
editing code, 5-15
generating code, 5-10
generating initialization code, 5-12
preparing the HP ITG Editor, 5-11
recalling instrument states, 5-13
running HP ITG, 5-2
saving a program, 5-17
saving workfile, 5-9
setting Live mode, 5-12
setting Log mode, 5-12
setting up the instruments, 5-6
starting Quick environment, 5-18
storing instrument states, 5-7
example of writing a program, 5-1-19
executables
creating, 4-7, 5-19, 12-1
Exit HP ITG, A-3
exiting HP ITG, 5-17, 11-6
Exit to DOS, A-3
expanding an icon, 7-6
expanding the Editor icon, 10-2

F

fields in configuration dialog box, 6-6
File (Editor menu), A-9
File (System menu), A-3
Find ... , A-11
Find Next, A-12
fine-tuning the program, 13-1-11
floppy disk drives, 3-6
frequency-response measurement, 5-1
functions
alternate versions, 15-2
C list, 15-3
hpt_add_device, 15-5
hpt_assign, 15-7
hpt_assigncomp, 15-9
hpt_assignparm, 15-11

Index-4

hpt_assignstate, 15-13

hpt_close, 15-15

hpt_close_all, 15-16

hpt_compdims, 15-17

hpt_devaddr, 15-19

hpt_devsubad, 15-20

hpt_errmsg, 15-21

hpt_errorcheck, 15-22

hpt_forget, hpt_forget2, 15-24

hpt_get_ary, hpt_get_ary2, 15-28

hpt_get, hpt_get2, 15-26

hpt_get_iary, hpt_get_iary2, 15-31

hpt_getstate, hpt_getstate2, 15-36

hpt_get_str, hpt_get_str2, 15-34

hpt_incremental, 15-38

hpt_init, 15-40

hpt_livemode, 15-42

hpt_local, 15-44

hpt_mem_info, 15-45

hpt_monitor, 15-47

hpt_peek_ary, hpt_peek_ary2, 15-51

hpt_peek, hpt_peek2, 15-49

hpt_peek_iary, hpt_peek_iary2, 15-
54

hpt_peek_str, hpt_peek_str2, 15-57

hpt_poke_ary, hpt_poke_ary2, 15-61

hpt_poke, hpt_poke2, 15-59

hpt_poke_iary, hpt_poke_iary2, 15-
63

hpt_poke_str, hpt_poke_str2, 15-65

hpt_push, hpt_push2, 15-67

hpt_recall, hpt_recall2, 15-69

hpt_remote, 15-71

hpt_set_ary, hpt_set_ary2, 15-74

hpt_setdevaddr, 15-83

hpt_set_error_handler, 15-76

hpt_set, hpt_set2, 15-72

hpt_set_iary, hpt_set_iary2, 15-78

hpt_setstate, hpt_setstate2, 15-84

hpt_set_str, hpt_set_str2, 15-80

hpt_state_save, 15-86

G

Generate Initialization Code, 11-4,
A-11
generating code, 1-4, 4-6, 10-7, 11-1, 11-4
example, 5-10-12
modes used, 5-11

H

Help
Editor window, A-12
instrument panel menu, A-13
system, A-7
Help
component information, 15-1
Editor window, 10-10
error messages, 8-3
how to, 4-3
instrument drivers, 4-3, 7-7, 13-2
latest information, 4-4
online system, 4-3
subprograms, 4-3
System menu, A-7
How-to ... | A-7
HP-1B
address scheme, B-2
caution, B-2
changing the select code, B-3
HPIB.ID, 6-8
HP ITG
automatic code generation, 5-12
changing the programming language, 3-
9
conventions used, 1-6
description, 1-1
development requirements, 2-1-3
Editor, 10-1, 11-5
Error Checking mode, 8-3-4
exiting from, 5-17, 11-6
getting started, 4-1
installing, 3-1, 3-5
installing support applications, 3-4

interfaces supported, 2-2, 2-4, B-1
key features, 5-1
Library, 1-4
Library reference, 13-2
memory requirements, 2-1, 2-3
menus, A-1
Messages, E-1
printing the display, 6-10
running, 5-2
run-time requirements, 2-3-4
Setup program, 3-1, 3-4
starting, 3-1, 3-11, 4-5
subprograms, 4-3, 11-2
verify measurement procedure, 8-1
working environments, 1-1
HP ITG Editor, 11-5
clearing, 10-4
Save as ... command, 11-6
Save command, 11-6
HP ITG functions, 15-3
HP ITG Library, 13-7
definition, Glossary-3
hpt_init, 11-4
HP ITG Quick Library
definition, Glossary-3
HPITGBAS.QLB, 12-3
HPITG.QLB, 12-2
HP ITG subprograms, 11-3-4, 14-3-4
hpt_add_device, 13-4, 15-5
hptadddevice, 14-4
hpt_assign, 11-4, 13-3-4, 15-7
hptassign, 14-6
hpt_assigncomp, 13-9, 15-2, 15-9
hptassigncomp, 14-8
hpt_assignparm, 13-9, 15-2, 15-11
hptassignparm, 14-10
hpt_assignstate, 13-9, 15-2, 15-13
hptassignstate, 14-12
hpt_close, 15-15
hptclose, 14-14
hpt_close_all, 15-16

Index-5

hptcloseall, 14-15

hpt_compdims, 13-10, 15-17
hptcompdims, 14-16

hpt_dev_addr, 13-10

hpt_devaddr, 15-19

hptdevaddr, 14-18

hpt_devsubad, 13-10, 15-20
hptdevsubad, 14-19

hpt_errmsg, 13-11, 15-21
hpterrmsg, 14-20

hpt_errorcheck, 8-4, 13-7, 13-11, 15-22
hpterrorcheck, 14-21

hpt_forget, 13-7

hpt_forget, hpt_forget2, 15-24
hptforget, hptforget2, 14-23
hpt_get, 11-2

hpt_get_ary, 13-10

hpt_get_ary, hpt_get_ary2, 15-28
hptgetary, hptgetary2, 14-27
hpt_get, hpt_get2, 15-26

hptget, hptget2, 14-25
hpt_get_iary, 13-10
hpt_get_iary, hpt_get_iary2, 15-31
hptgetiary, hptgetiary2, 14-29
hpt_getstate, 13-7

hpt_getstate, hpt_getstate2, 15-36
hptgetstate, hptgetstate2, 14-31
hpt_get_str, hpt_get_str2, 15-34
hptgetstr, hptgetstr2, 14-33
hpt_incremental, 9-12, 13-7, 15-38
hptincremental, 14-35

hpt_init, 11-4, 13-4, 15-40
hptinit, 14-36
HPTINITIALSTATE, 7-5
hpt_livemode, 8-3, 13-7, 15-42
hptlivemode, 14-37

hpt_local, 15-44

hptlocal, 14-38

HPT_LOG, 4-5, 10-3, A-8
hpt_mem_info, 15-45

hptmeminfo, 14-39

index-6

hpt_monitor, 13-7, 15-47

hptmonitor, 14-40

hpt_peek, 13-7

hpt_peek_ary, hpt_peek_ary2, 15-51
hptpeekary, hptpeekary2, 14-44
hpt_peek, hpt_peek2, 15-49
hptpeek, hptpeek2, 14-42
hpt_peek_iary, hpt_peek_iary2, 15-54
hptpeekiary, hptpeekiary2, 14-46
hpt_peek_str, hpt_peek_str2, 15-57
hptpeekstr, hptpeekstr2, 14-48
hpt_poke, 13-7

hpt_poke_ary, hpt_poke_ary2, 15-61
hptpokeary, hptpokeary2, 14-52
hpt_poke, hpt_poke2, 15-59
hptpoke, hptpoke2, 14-50
hpt_poke_iary, hpt_poke_iary2,15-63
hptpokeiary, hptpokeiary2, 14-54
hpt_poke_str, hpt_poke_str2, 15-65
hptpokestr, hptpokestr2, 14-56
hpt_push, hpt_push2, 15-67
hptpush, hptpush2, 14-58
hpt_recall, 11-2, 13-7

hptrecall, 14-59

hpt_recall, hpt_recall2, 15-69
hptrecall, hptrecall2, 14-59
hpt_remote, 15-71

hptremote, 14-61

hpt_set, 11-2, 13-3, 13-5, 13-9

hpt _set_ary, 13-5, 13-10
hpt_set_ary, hpt_set_ary2, 15-74
hptsetary, hptsetary2, 14-64
hpt_setdevaddr, 15-83
hptsetdevaddr, 14-66
hpt_set_error_handler, 15-76
hptseterrormode, 14-67

hpt_set, hpt_set2, 15-72

hptset, hptset2, 14-62
hpt_set_iary, 11-2, 13-5, 13-10
hpt_set_iary, hpt_set_iary2, 15-78
hptsetiary, hptsetiary2, 14-G8

hpt_setstate, 13-7

hpt_setstate, hpt_setstate2, 15-84
hptsetstate, hptsetstate2, 14-70
hpt_set_str, 11-2, 13-5, 13-9
hpt_set_str, hpt_set_str2, 15-80
hptsetstr, hptsetstr2, 14-72
hpt_state_save, 15-86
hptstatesave, 14-74

IARRAY, 13-5-6
icon, 6-5
definition, Glossary-4
expanding, 7-6, 10-2
reducing, 7-6
storing Editor, 10-2
storing panels, 7-5
identifying data type, 13-5
importing a state file, 9-9
include files
HPITG.BI, 14-1
HPITG.H, 15-2
Incremental mode, 14-35, 15-38
Incremental Recall mode, 9-11, A-14
controlling directly, 9-12
controlling in a program, 9-12
incremental state programming, 9-11, 13-
7
definition, Glossary-4
initialization code, 5-12, 10-7, 11-4
initial values, 5-6
installing
default directories, 3-7
HP ITG, 3-1, 3-5
memory, 3-3
Microsoft C, 3-4
Microsoft Windows, 3-6
MS-DOS software, 3-4
preparing your computer, 3-2
QuickBASIC, 3-5
QuickC, 3-4

Setup program, 3-1
support applications, 3-4
the interface, 3-3
tnst_desc, 13-4
instrument address, 13-10, 14-18, 15-19,
A-15
instrument-control code, 4-4, 4-6, 5-11
instrument descriptor, 13-4
instrument drivers, 1-2, 13-1
listed, A-8
viewing list, A-4
Instrument Help ... , A-7
instrument panel menu, A-1
instruments
adding to system, 6-5, A-4
address, 6-7
configuring, 6-6
controlling through panel, 8-1
deleting, 6-2, 6-9
direct control, 8-3
display and select, 6-5
error-reporting abilities, 8-3
Help, 4-3
HP documentation, 7-7
moving panels, 7-6
online help, 13-6
panel size and layout, 7-1
recalling states, 11-2
Reset button, 7-5
setting up, 5-6
states, 9-1
Instruments ... (System menu), A-4
instrument state, 5-6
creating in a program, 13-7
definition, Glossary-4
recalling, 5-13
recalling in a program, 13-7
storing, 5-7
instrument subaddress, 15-20
INTEGER, 13-5-6
interface bus address, 15-83

Index-7

interfaces supported, 2-2
interfaces supported by HP ITG, B-1
INVALID

description, 13-8

set through hpt_forget, 15-24
1/0O interfaces, B-1

I/0 Status ... , 4-4, A-T
L
Latest Information ... , A-7

latest information on Help, 4-4
layout of panel, 7-1
libraries, 1-7
list box, 4-2, 5-3
definition, Glossary-4
Live mode, 5-12, 6-8, 7-2, 8-3, 13-7, 14-37,
15-42, A-14
Log HP ITG Calls mode, 5-11, 11-2, 14-1,
15-1, A-14
caution, 6-4
turning on/off, 11-1
logical name, 5-4
loop
repeating subprogram calls, 5-15

making adjustments, 8-1
Maximize

Editor box, A-9

system box, A-2
measurement

frequency-response, 5-1
measurement procedure, 1-3

definition, Glossary-5
memory

conventional, 14-39, 15-45

expanded, 14-39, 15-45, C-1

extended, C-1

requirements, 2-1
Memory Information ...
memory status, 3-11

, A-16

Index-8

menus
controls, 4-1
editor, A-1
grayed commands, A-1
instrument, panel, A-1
system, A-1
Microsoft Windows, 3-6
Minimize
Editor box, A-9
instrument panel menu, A-13
system box, A-2
modes
Automatic Update, 7-4, A-6, A-14
controlling, 13-7
error, 14-67, 15-76
Error Checking, 8-3-4, 13-7, 13-11, 14-
20-21, 15-22, A-14
Incremental Recall, 9-11, 13-7, 14-35,
15-38, A-14
Live, 5-11-12, 6-8, 7-2, 8-1, 8-3, 13-7,
14-37, 15-42, A-14
Log HP ITG Calls, 5-11, 11-1-5, 14-1,
15-1, A-14, Glossary-3
Monitor, 13-7, 14-40, 15-47
Record, A-6
remote, 14-61, 15-71
turning on/off log mode, 11-1
Modes ... (instrument panel menu), A-
13
modifying an existing test system, 6-2
Monitor mode, 14-40, 15-47
Move
Editor box, A-9
system box, A-2
moving text, 10-8
moving the Editor window, 10-3
MS-DOS, 3-4
multi-layered panels, 5-7

N
Name, 13-4, A-15

Name field, 5-4, 6-7
naming conventions
functions, 1-7
Library reference, 13-2
storing states, 9-2
subprograms, 1-7
workfiles, 4-5
New, A-3
Nevw file (Editor menu), A-9
number of instruments possible, 6-5

o

online Help, 4-3
from the panel, 7-7
from the System menu bar, 7-7
instrument drivers, 13-2
Open
file from the Editor menu, A-9
State Maint, A-15
opening
an existing file, 10-3
an existing test system, 6-3
Open Workfile ... , A-3
overwrite
definition, Glossary-5

P

panel
controls, 7-2
deleting, 6-9
Help, 7-1
layout, 7-1
list of elements, 7-2-5
moving around work area, 7-6
name, A-15
sizes, 7-1
storing as icons, 7-5
style, 7-1
passed parameters, 11-3
Paste, A-11
Playback, A-6, D-1

pointer
definition, Glossary-5
possible number of instruments, 6-5
preparing the Editor window
example, 5-11
Print ... , A-3
printers
configuration, 6-10
Print file (Editor menu), A-10
printing
a file, 10-5
contents of a state, 9-6
the display, 6-10
Print (State Maint), A-15
program
control code, 4-6
editing, 1-5
fine-tuning, 13-1
running, 1-6, 5-18, 12-1
programming languages
C, 1-7
QuickBASIC, 1-7, 2-3
QuickC, 1-7, 2-3
selecting, 3-7
switching, 3-9
pull-down menus, A-1

Q

gbmake, 5-19, 12-3

QBMAKE.BAT, 12-3

gbstart, 5-18, 12-3

QBSTART.BAT, 12-3

qcmake, 5-19, 12-2

QCMAKE.BAT, 12-2

gcstart, 5-18, 12-2

QCSTART.BAT, 12-2

Query button, 7-2

QuickBASIC, 1-7, 2-3-4, 3-5, 3-7, 4-6, 13-
2, 14-1

QuickC, 2-3-4, 3-4, 4-6, 13-2

Quick environment

Index-9

starting QuickBASIC, 5-18, 12-3
starting QuickC, 5-18, 12-2

R
RARRAY, 13-5-6

recalling instrument states, 1-3, 5-13, 9-3,

11-2, 11-5, 13-7, 14-59
Recall State, 5-13, 11-5
instrument panel menu, A-13
Record 0ff, A-6, D-1
Record On, A-6, D-1
reducing a panel to an icon, 7-6
removing a panel, 6-2
replacing text, 10-7
required parameters, 11-3
resaving a soft test system, 6-4
Reset button, 5-6, 7-5
Restore
Editor box, A-8
system box, A-2
running a program, 1-6, 12-1
in the run-time environment, 12-4
running HP ITG, 5-2
run-time environment, 1-1, 1-6, 4-7
definition, Glossary-5
error messages, 12-4
required files, 12-4
run-time requirements, 2-3

S

Save
file from the Editor menu, A-10
State Maint, A-15

Save As ... file (Editor menu), A-10
Save Workfile, A-3

Save Workfile As ... , A-3

saving

instrument states, 1-3

the program, 4-6, 5-17, 11-6
the soft test system, 5-9, 6-3
the workfile, 4-5

Index-10

using Save as ... command, 10-5
using Save command, 10-5
SCRATCH.TXT, 10-10, A-8
script file, D-1
scrolling, 10-6
Search command
finding first occurrence, 10-9
finding next occurrence, 10-10
searching for text, 10-9
Select All, 10-4, A-11
selecting
programming language, 3-7
text, 10-7
setting
array values, 13-10
Log HP ITG Calls, example, 5-11
select codes, 3-3
Setup, 3-5
installing default directories, 3-7
installing Microsoft Windows, 3-6
starting, 3-6
Setup program, 3-5
single application environment, 3-6
Size
Editor box, A-9
system box, A-2
size of panel, 7-1
soft panel, 4-1
definition, Glossary-5
description, 1-2
operation, 7-1-7
soft test system, 1-3, 4-4, Glossary-6
caution, 5-9
creating, 5-3, 6-1
definition, Glossary-6
opening existing one, 6-3
saving, 5-9
saving for first time, 6-3
starting
a new file, 10-3
HP ITG, 3-1, 3-11, 4-5

starting QuickBASIC, 4-6
starting QuickC, 4-6
state
library, 9-2, 9-7
name, 9-2, 14-12, 15-13, 15-86
state library
definition, Glossary-6
State Maint, A-15
states
adding to an existing file, 9-8
creating, 9-2
deleting, 9-5
importing, 9-9
printing contents, 9-6
recalling, 9-3
storing, 9-2
using, 9-10
stepping through a procedure, 11-5
Store State, 5-7
instrument panel menu, A-13
storing
an instrument state, 5-7
Editor as an icon, 10-2
instruments, 9-2
instrument states, 1-3, 5-7, 9-2
STRING, 13-5-6
string variables
declaring, 11-5
style of panel, 7-1
subaddress, 6-7, 13-10, 14-19, 15-20
subpanel, 7-3
definition, Glossary-6
layers, 5-7
subprograms, 11-2, 13-1, 13-3
alternate versions, 14-1, 14-3, 14-9
calls to, 5-11
contained in libraries, 1-7
discussion, 14-1
editing, 11-3
Help, 4-3
hptadddevice, 14-4

hpt_assign, 11-4, 13-3
hptassign, 14-6
hpt_assigncomp, 13-9, 15-2
hptassigncomp, 14-8
hpt_assignparm, 13-9, 15-2
hptassignparm, 14-10
hpt_assignstate, 13-9, 15-2
hptassignstate, 14-12
hptclose, 14-14

hptcloseall, 14-15
hpt_compdims, 13-10
hptcompdims, 14-16
hpt_dev_addr, 13-10
hptdevaddr, 14-18
hpt_devsubad, 13-10
hptdevsubad, 14-19
hpt_errmsg, 13-11

hpterrmsg, 14-20
hpt_errorcheck, 8-4, 13-7, 13-11
hpterrorcheck, 14-21
hpt_forget, 13-7

hptforget, hptforget2, 14-23
hpt_get, 11-2

hpt_get_ary, 13-10
hptgetary, hptgetary2, 14-27
hptget, hptget2, 14-25
hpt_get_iary, 13-10
hptgetiary, hptgetiary2, 14-29
hpt_getstate, 13-7
hptgetstate, hptgetstate2, 14-31
hptgetstr, hptgetstr2, 14-33
hpt_incremental, 9-12, 13-7
hptincremental, 14-35
hpt_init, 11-4, 13-4

hptinit, 14-36

hpt_livemode, 8-3, 13-7
hptlivemode, 14-37

hptlocal, 14-38

hptmeminfo, 14-39
hpt_monitor, 13-7
hptmonitor, 14-40

Index-11

hpt_peek, 13-7

hptpeekary, hptpeekary2, 14-44
hptpeek, hptpeek2, 14-42
hptpeekiary, hptpeekiary2, 14-46
hptpeekstr, hptpeekstr2, 14-48
hpt_poke, 13-7

hptpokeary, hptpokeary2, 14-52
hptpoke, hptpoke2, 14-50
hptpokeiary, hptpokeiary2, 14-54
hptpokestr, hptpokestr2, 14-56
hptpush, hptpush2, 14-58
hpt_recall, 11-2

hptrecall, hptrecall?2, 14-59
hptremote, 14-61

hpt_set, 11-2, 13-3, 13-5, 13-9
hpt_set_ary, 13-5, 13-10
hptsetary, hptsetary2, 14-64
hptsetdevaddr, 14-66
hptseterrormode, 14-67

hptset, hptset2, 14-62
hpt_set_iary, 13-5, 13-10
hptsetiary, hptsetiary2, 14-68
hpt_setstate, 13-7
hptsetstate, hptsetstate2, 14-70
hpt_set_str, 13-5, 13-9
hptsetstr, hptsetstr2, 14-72
hptstatesave, 14-74

located in library, 1-4

not generated automatically, 11-3
parameters, 13-3

QuickBASIC, 13-2

QuickBASIC list, 14-3-4

required parameters, 11-3

Subprograms ... , A-7
subprogram variation, 13-5
system

menus, A-1-2, A-6

requirements, 2-1
System menu bar, 6-2

definition, Glossary-6

Index-12

T
test code, 1-4
timeout, 6-8
definition, Glossary-6 ‘
Timeout(s), A-15
Tutorial ... , A-7
tutorial on Help, 4-3

U

Undo, A-10

undoing an edit, 10-7

using
a soft test system, 6-1
default workfile, 6-4
edit commands, 10-6-8
Editor window, 11-5
file commands, 10-3
states, 9-10

v
VALID ‘

description, 13-7
value, 13-3
variable names, 11-3
verifying
instrument interface, 3-11
memory status, 3-11

w

window controls, 4-1
Windows/286, C-1
Windows/386, C-2
WIN.INI, 3-8
work area
definition, Glossary-6
description, 1-2
workfile, 1-3, 5-9, 6-3, 14-36, 15-40 ‘
definition, Glossary-6
names, 4-5
naming extensions, 6-4
saving, 4-5, 5-9

working environment, 4-4 writing a program
working with components, 13-3 a complete example, 5-1-19

Index-13

HEWLETT
PACKARD

K

o
((II(IVIllll((lllIIIIIlllllIIIHIIIIIIIIIIIIllIIJWIIII!IIUIII!

Reo
00000000000000000000

