
#### COMPUTER MAINTENANCE COURSE





#### HP Computer Museum www.hpmuseum.net

For research and education purposes only.

### HEWLETT-PACKARD COMPUTER MAINTENANCE COURSE

#### **VOLUME I**



# FUNDAMENTALS OF HARDWARE, SOFTWARE AND PROGRAMMING

(HP STOCK NO. 5950-8703)

#### -NOTICE-

The information contained in this manual is for training purposes only. Consult the Hewlett-Packard documentation supplied with the computer for current information concerning the specific computer system furnished.

The information contained in this publication may not be reproduced in any form without the expressed consent of the Hewlett-Packard Company.

### Hewlett-Packard

# Fundamentals of Hardware, Software & Programming

#### **OBJECTIVES**



- 1. INTRODUCE THE STUDENT TO THE BASIC ELEMENTS OF HP COMPUTER HARDWARE, SOFTWARE AND PROGRAMMING
- 'n MACHINE AND ASSEMBLY LANGUAGE PROGRAMS TEACH THE STUDENT HOW TO CREATE AND EXECUTE SIMPLE
- Ω PROVIDE THE STUDENT WITH "HANDS-ON" COMPUTER EX-PERIENCE
- **ENVIRONMENT.** ACQUAINT THE STUDENT WITH THE COMPUTER USER'S

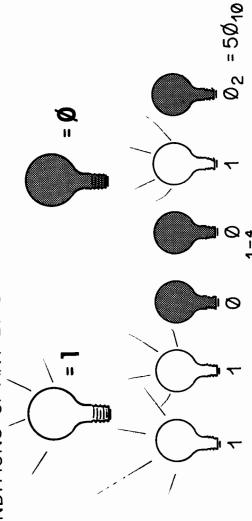
#### LESSON I OBJECTIVES

- INTRODUCE THE STUDENT TO THE BASIC ELEMENTS OF COMPUTER HARDWARE.
- INTRODUCE THE STUDENT TO NUMBER SYSTEMS & NUMBER SYSTEM CONVERSION TECHNIQUES. i H

### HP COMPUTERS ARE COMPACT GENERAL PURPOSE COMPUTERS

COMPUTERS OF THIS TYPE -

- I. CAN DO ARITHMETIC OPERATIONS
- II. CAN MAKE LOGICAL DECISIONS
- III. CAN RETAIN INFORMATION IN A MEMORY
- IV. CAN COMMUNICATE WITH THE OPERATOR IN SOME WAY


# IN ORDER TO COMMUNICATE WITH A COMPUTER,

# We Must Speak It's Language

ALL COMMUNICATION WITH A COMPUTER MUST BE IN BINARY FORM SINCE THE COMPUTER USES BI-STABLE DEVICES TO

STORE INFORMATION.

WE CAN USE THE TWO DIGITS @ 8.1, TO REPRESENT THE TWO CONDITIONS OF ANY BI-STABLE DEVICE.



# INTRODUCTION TO NUMBER SYSTEMS

binary form; therefore, it is essential that we: HEWLETT-PACKARD computers operate on numbers in

- 1. REVIEW THE DECIMAL NUMBER SYSTEM
- INTRODUCE THE BINARY AND OCTAL NUMBER SYSTEMS
- 3. INTRODUCE BINARY ARITHMETIC
- INTRODUCE NUMBER SYSTEM CONVERSION METHODS
- DISCUSS THE LIMITS OF THE COMPUTER'S ABILITY TO HANDLE LARGE NUMBERS

#### **NUMBER SYSTEMS**

DECIMAL SYSTEM. DECIMAL VALUES LARGER THAN 3 REQUIRE MORE THAN ONE DIGIT. FOR EXAMPLE, THE 0,1,2,3,4,5,6,7,8,9 ARE THE TEN NUMERALS OF THE DECIMAL NUMBER 109 REALLY STANDS FOR:

$$\frac{(1 \times 10^2) + (0 \times 10^4) + (9 \times 10^0)}{(\text{HUNDRED'S}) + (\text{TEN'S}) + (\text{ONE'S})}$$

$$(100) + (0) + (9) = 109_{10}$$

IN GENERAL:

ANY NUMBER = 
$$N \times b^n + N \times b^{n-1} + \cdots + N \times b^2 + N \times b^1 + N \times b^0$$
WHERE  $N = DIGIT$ 
 $b = BASE$ 

1-6

 $b^0 = 1$  (BY DEFINITION)

#### **BINARY NUMBERS**

number 1101101 really stands for: Ø and 1 are the TWO numerals of the binary system. Binary values larger than 1 require more than one digit. For example, the BINARY

$$(1 \times 2^6) + (1 \times 2^5) + (0 \times 2^4) + (1 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0)$$
  
 $(SIXTY- (THIRTY- + (SIXTEEN'S) + (EIGHT'S) + (FOUR'S) + (TWO'S) + (ONE'S)$ 

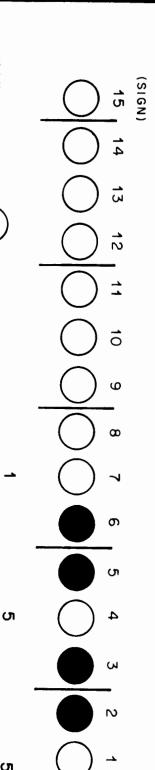
$$(64) + (32) + (0) + (8) + (4) + (0) + (1) = 109_{10}$$

THEREFORE:

#### OCTAL NUMBERS

SYSTEM, OCTAL VALUES LARGER THAN Z REQUIRE MORE THAN ONE DIGIT. FOR EXAMPLE, THE OCTAL NUMBER 0,1,2,3,4,5,6,7 ARE THE EIGHT NUMERALS OF THE OCTAL 155 REALLY STANDS FOR!

$$(1x8^2) + (5x8^1) + (5x8^0)$$


SIXTY ( FOUR'S) + (EIGHT'S) + ( ONE'S )

$$(64)+(40)+(5)=109_{10}$$

THEREFORE -

### BINARY/OCTAL RELATIONSHIP

HEWLETT-PACKARD COMPUTERS HAVE 16 BINARY DIGITS. (BITS) ARE ARRANGED IN GROUPS OF 3, OCTAL VALUES (BIT) WHEN BINARY DIGITS CAN BE READ DIRECTLY.



0

WHERE EACH ( =

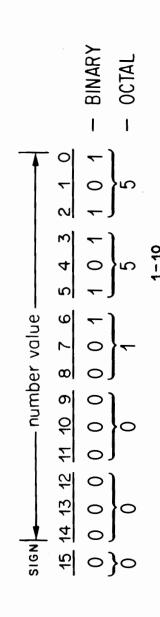
0

58

AND EACH

11

1-9

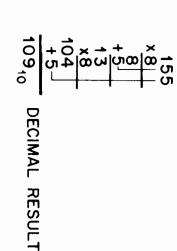

# NUMBER SYSTEM CONVERSION METHODS

PROGRAMMERS MUST LEARN THE FOLLOWING NUMBER SYSTEM CONVERSION TECHNIQUES:

| METHOD     | BY INSPECTION   | BY INSPECTION   | BY FORMULA       | BY FORMULA       |
|------------|-----------------|-----------------|------------------|------------------|
|            |                 |                 |                  |                  |
| CONVERSION | BINARY TO OCTAL | OCTAL TO BINARY | OCTAL TO DECIMAL | DECIMAL TO OCTAL |

REMEMBER;

OCTAL IS USED TO REPRESENT BINARY NUMBERS MORE EFFICIENTLY




# OCTAL TO DECIMAL CONVERSION

- TO CONVERT THE OCTAL NUMBER 155 TO DECIMAL, PROCEED IN THE FOLLOWING WAY.
- 1. Multiply the most significant octal digit by 8
- 'n result by 8 Add the next least significant octal digit, then multiply the
- Ņ Continue using step 2 above until the least significant digit is reached
- 4 The least significant digit is added to the total but the result is NOT multiplied by 8.

EXAMPLE:

CONVERT 1558 TO DECIMAL



# DECIMAL TO OCTAL CONVERSION

TO CONVERT THE DECIMAL NUMBER 109 TO OCTAL PROCEED IN THE FOLLOWING

$$8\frac{\angle 13}{1} + 5$$
 REMAINDER

#### **BINARY ARITHMETIC**

In the computer a special logic circuit performs addition using binary arithmetic. Actual computer numbers are 16"BITS" long, however, for simplicity the following example uses only 6 "BITS."

RULES OF BINARY ADDITION

| 1 | 1 | 1 | 1 | 0  | 0 | 0 | 0 | CARRY<br>(IN)  |
|---|---|---|---|----|---|---|---|----------------|
| 1 | 1 | 0 | 0 | 1  | 1 | 0 | 0 | ×              |
| 1 | 0 | 1 | 0 | 1  | 0 | 1 | 0 | ~              |
|   |   |   |   |    |   |   |   |                |
| 1 | 0 | 0 | 1 | 0  | - |   | 0 | MNS            |
|   |   |   |   |    |   |   |   |                |
| _ | 1 |   | 0 | -> | 0 | 0 | 0 | CARRY<br>(OUT) |

## TWO'S COMPLEMENT NUMBERS

PLEMENT ARITHMETIC TECHNIQUE. THE PROCESS OF "TWO'S COMPLEMENTATION" CHANGES A POSITIVE IN-HEWLETT-PACKARD COMPUTERS USE THE TWO'S COM-TEGER VALUE TO NEGATIVE AND VICE-VERSA. NOTE: IF SIGN = 0, NORMAL FORM (POSITIVE)

IF SIGN = 1, TWO'S COMPLEMENT FORM (NEGATIVE)

|             | A NORMAL NUMBER (POSITIVE) | THE ONE'S COMPLEMENT ALL O'S BECOME 1'S | ADD ONE | THE TWO'S COMPLEMENT (NEGATIVE) |
|-------------|----------------------------|-----------------------------------------|---------|---------------------------------|
|             | _                          | 0                                       | _       | _                               |
|             | _                          | 0                                       | 0       | 0                               |
| -<br>ALUE — | 0                          | ~                                       | 0       | _                               |
| A           | _                          | 0                                       | 0       | 0                               |
|             | _                          | 0                                       | 0       | 0                               |
| SiGN        | 0                          | _                                       | 0       | _                               |

## COMPLEMENTATION TECHNIQUES

as  $155_8$ . The example shows the two's complement operation performed on this value. The decimal number 109<sub>10</sub> when converted to octal appears

#### EXAMPLE:

|                                      | 0                 | <b>_</b>                         | 0                     | SIGN               | 1             |
|--------------------------------------|-------------------|----------------------------------|-----------------------|--------------------|---------------|
| 1 1 1                                | 000               | 111                              | 000                   |                    | L // //// FL/ |
| 111                                  | 000               | 1 1 1                            | 000                   |                    |               |
| 110                                  | 000               | 110                              | 001                   | BINARY             |               |
| 010                                  | 0 000 000 000 001 | 010                              | 0 000 000 001 101 101 | 1~                 |               |
| 011                                  | 001               | 010                              | 101                   |                    |               |
| 111 111 110 010 011 (TWO'S COMPLEMEN | (ADD ONE)         | 111 111 110 010 010 (COMPLEMENT) | (POSITIVE)            | Computer<br>Museum |               |
| MENT) 1 7 7 6 2 3                    | 00001             | 1 77622                          | 0000155               | OCTAL              |               |

NOTE BIT. TO COMPLEMENT WITH OCTAL NUMBERS REMEMBER -THE MOST SIGNIFICANT OCTAL DIGIT REPRESENTS A SINGLE

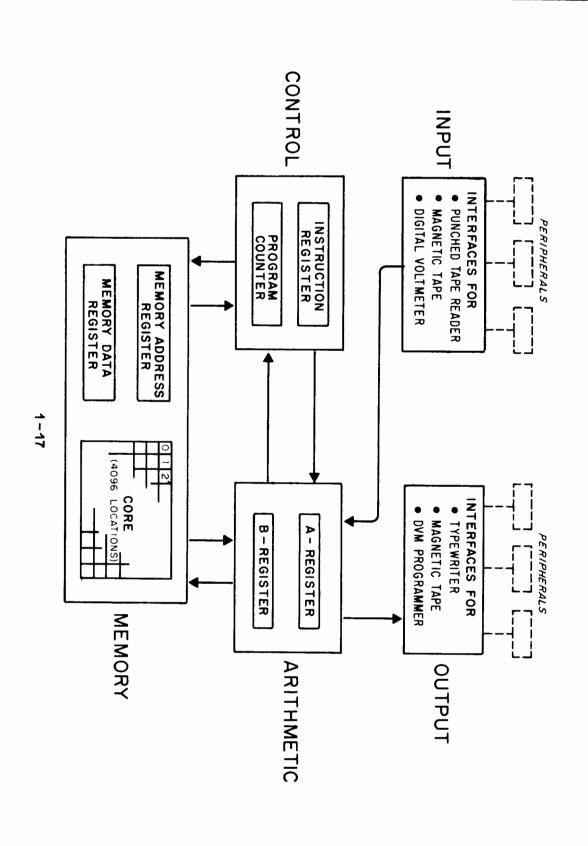
1 - COMPLEMENT THE SIGN DIGIT. (1 or Ø)

TAKE THE EIGHTS COMPLEMENT ON THE REMAINING DIGITS.

Hardware, Software and Programming

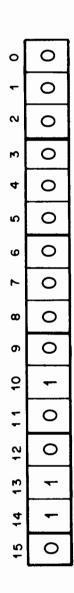
Fundamentals of

# NEGATIVE NUMBER CONVERSIONS


TO CONVERT A NEGATIVE DECIMAL NUMBER TO 16 BIT MACHINE FORM.

- 1. ASSUME THE DECIMAL VALUE IS POSITIVE
- 2. CONVERT TO OCTAL FORM
- TAKE THE TWO'S COMPLEMENT. (OR EIGHT'S COMPLEMENT)

TO CONVERT TWO'S COMPLEMENT NUMBERS TO DECIMAL FORM.


- 1. TAKE THE TWO'S COMPLEMENT.
- 2. CONVERT TO DECIMAL
- 5. AFFIX A MINUS SIGN TO THE DECIMAL RESULT

# BASIC ELEMENTS OF COMPUTER HARDWARE

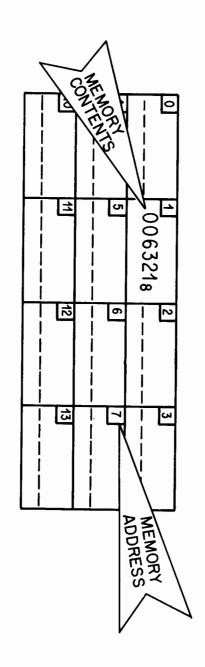


### THE COMPUTER WORD

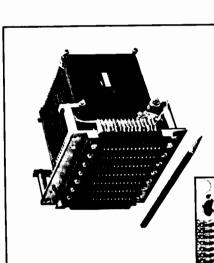
AN -HP- COMPUTER WORD IS A GROUP OF 16 BITS



# COMPUTER WORDS ARE USED TO REPRESENT:


- 1 DATA (NUMERIC AND ALPHABETIC)
- COMPUTER INSTRUCTIONS
- 3 COMPUTER MEMORY ADDRESSES

#### **MEMORY**


THE MEMORY OF A COMPUTER CONSISTS OF SOME NUMBER OF "MEMORY LOCATIONS"

EACH MEMORY LOCATION IS IDENTIFIED BY A"UNIQUE ADDRESS"

EACH MEMORY LOCATION CONTAINS 16 BITS - THE "COMPUTER WORD" SIZE.



#### CORE MEMORY



17 CORE PLANES PER MODULE. EACH CORE PLANE SUPPLIES ONE BIT OF THE COMPUTER WORD. (16 DATA BITS + PARITY BIT).

4096 - Word

Core Module

4096 CORES PER MEMORY
PLANE. ONLY ONE CORE ON
EACH PLANE IS INTERROGAT
WHEN A MEMORY LOCATION

IS ADDRESSED.

Memory Plane



### THREE KINDS OF COMPUTER WORDS IN A MEMORY LOCATION

Data words computations such as: 5, 10, +32767, AB, CD, -32767. — store data used in

Instruction words \_\_\_ are orders data do—such as add, shift or store that tell the machine what to

Address words \_\_\_ are used to specify a 15 bit memory address value in the range  $0 - 32767_{10}$ 

# TYPES OF COMPUTER INSTRUCTIONS

THREE TYPES OF COMPUTER INSTRUCTIONS -ARE THERE

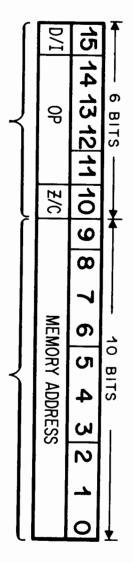
Memory Reference

Register Reference

Input /output

# MEMORY REFERENCE INSTRUCTION

USED FOR


READING DATA FROM MEMORY

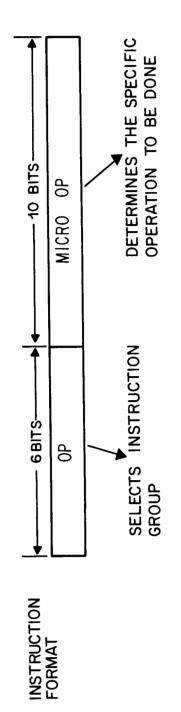
STORING DATA IN MEMORY

ARITHMETIC OPERATIONS

LOGIC OPERATIONS

CONTROLLING PROGRAM LOOPS ALTERATION OF PROGRAM COUNTER

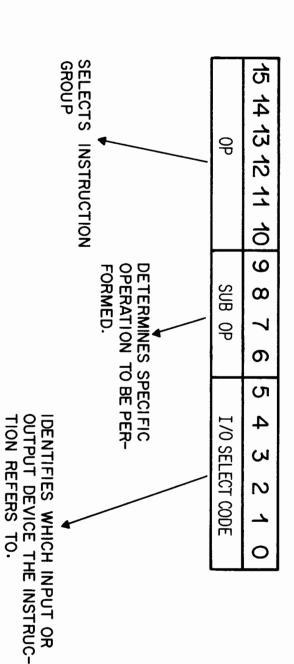



SELECTS 1 OF 14 INSTRUCTIONS

SPECIFIES THE MEMORY WORD ADDRESS

AND DETERMINES ADDRESSING MODE

# REGISTER REFERENCE INSTRUCTION


- MOVE DATA WITHIN AND BETWEEN AC-CUMULATORS
- CLEAR OR COMPLEMENT ACCUMULATORS
- TEST BITS IN ACCUMULATORS



1 - 24

### INPUT OUTPUT INSTRUCTIONS

- READ DATA FROM DEVICES
- OUTPUT DATA TO DEVICES
- CHECK STATUS OF DEVICES



# FIVE BASIC WORD FORMATS-

ARE USED IN HP COMPUTERS TO REPRESENT INSTRUCTIONS, ADDRESSES AND DATA.

### 1. Memory Reference Instruction

| 5 4 3 2 1 0 | WORD ADDRESS |
|-------------|--------------|
| 9 2         | WORD         |
| 8           |              |
| 10          | 2/c          |
| 11          |              |
| 12          |              |
| 13          | O            |
| 14          |              |
| 15          | D/I          |

### 2. Register Reference Instruction

### 3 Input - output Instruction

| CODE |
|------|
|      |

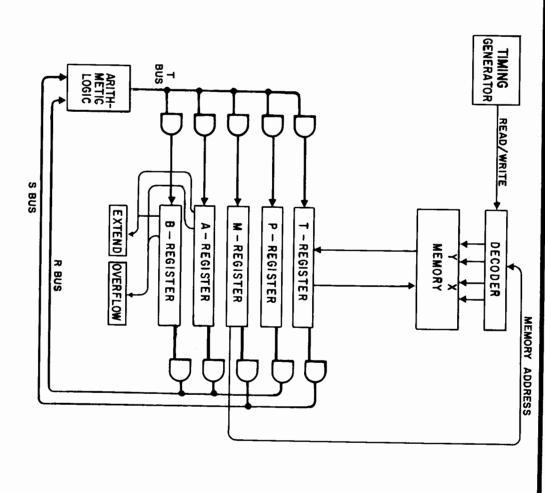
#### 4. Full Address

| _ | 14 | 13   | 12     | 11   | 9 | တ | 8 | 7 | 9    | 2       | 4  | ы | ~ | - |  |
|---|----|------|--------|------|---|---|---|---|------|---------|----|---|---|---|--|
| 1 |    | PAGE | ADDRES | ress |   |   |   |   | WORD | ADDRESS | SS |   |   |   |  |

## 5. Data (single-precision fixed point)

|    | 15   | 14 | 43 | 42 | £ | 9 | ၈ | œ       | ~    | ۵ | က | 4 | m | 2 | - |  |
|----|------|----|----|----|---|---|---|---------|------|---|---|---|---|---|---|--|
| V) | SIGN |    |    |    |   |   |   | INTEGER | EGER |   |   |   |   |   |   |  |

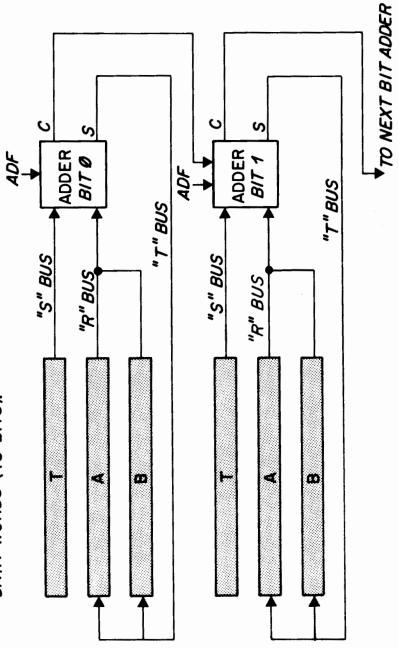
### THE COMPUTER -


CANNOT TELL AN INSTRUCTION WORD APART FROM A DATA WORD. THE PROGRAMMER MUST KNOW WHICH LOCATIONS HOLD INSTRUCTIONS AND WHICH LOCATIONS HOLD DATA. THE PROGRAMMER USES ADDRESS WORDS TO SPECIFY A GIVEN MEMORY LOCATION.

MEMORY LOCATION 102 INSTRUCTION INSTRUCTION INSTRUCTION INSTRUCTION INSTRUCTION INSTRUCTION INSTRUCTION

1000

DATA


Fundamentals of Hardware, Software and Programming



THE R-S-T BUS SYSTEM IS USED TO TRANSFER DATA AND CONTROL BETWEEN VARIOUS COMPUTER UNITS

# APPLICATION OF RST BUS SYSTEM

ADDERS, ONE BUS AND ONE ADDER FOR EACH BIT IN THE COMPUTER THE ADDITION HARDWARE. THERE ARE 16 R,S,T BUSES AND 16 DATA WORDS (16 BITS).



THIS REQUIRES 16 A and B FLIP-FLOPS TO MAKE UP THE A and B ACCUMULATORS.

### THE CONTROL UNIT REGISTERS

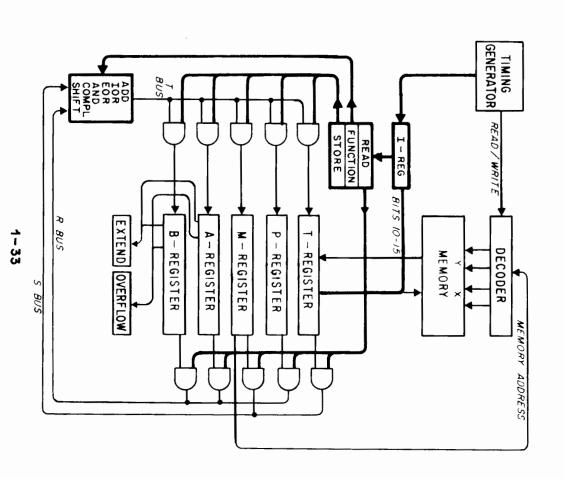
- TRANSFER REGISTER - READS READ FROM OR WRITTEN INTO MEMORY

FROM T-REGISTER THAT ARE USED TO CONTROL MACHINE OPERATION.

M - MEMORY ADDRESS REGISTER - ADDRESSES A MEMORY LOCATION TO FETCH INSTRUCTION AND/OR DATA

P-PROGRAM COUNTER - HOLDS ADDRESS OF NEXT SEQUENTIAL INSTRUCTION

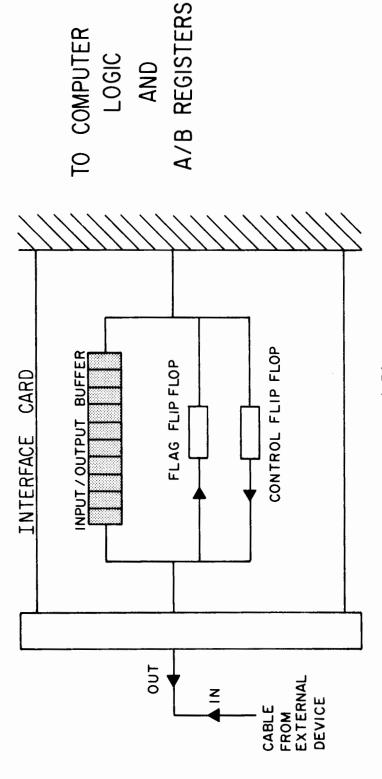
| 1002 | 1001            | 1000 | MEMORY LOCATION |
|------|-----------------|------|-----------------|
| STA  | ADA             | LDA  | INSTRUCTION     |
| 102  | <del>1</del> 01 | 100  | DATA LOCATION   |


#### THE ARITHMETIC UNIT

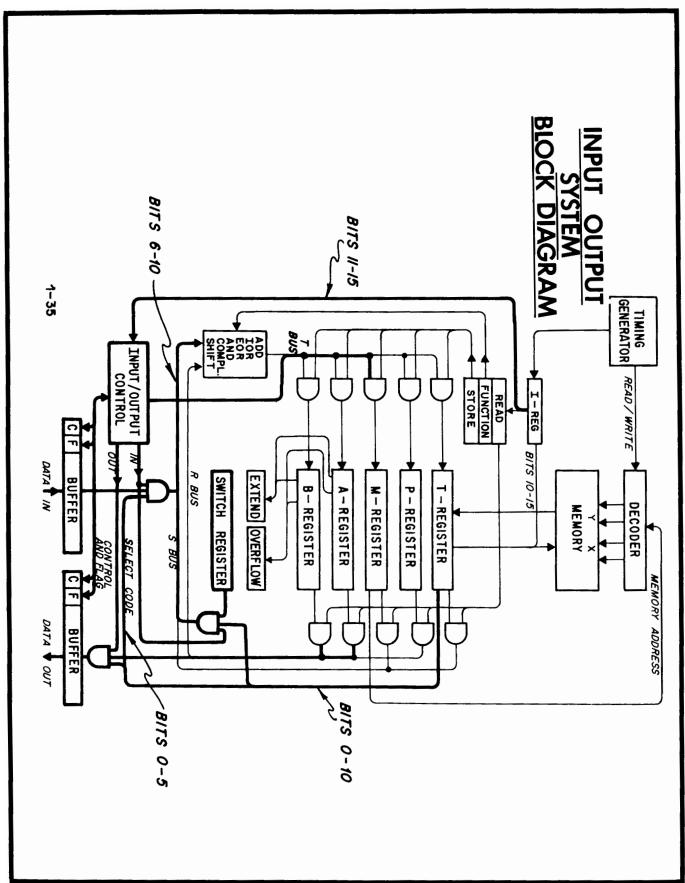
### THE ARITHMETIC UNIT CONSISTS OF

ACCUMULATE DATA AND RESULTS OF ARITHMETIC OPERATIONS. THE A REGISTER MAY ALSO PERFORM THE "AND, IOR AND XOR" LOGIC FUNCTIONS.

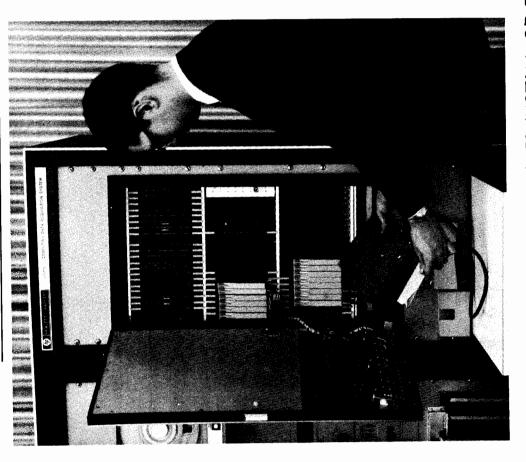
EXCLUSIVE OR, SHIFT, AND COMPLEMENT DATA.


# INSTRUCTION LOGIC BLOCK DIAGRAM

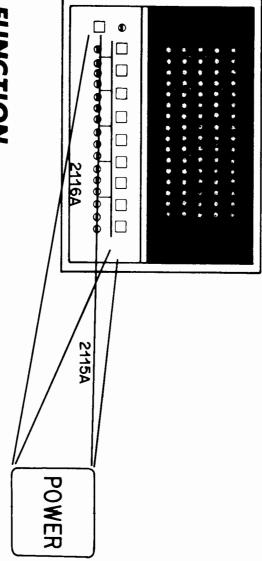





## INTERFACE CARDS CONTAIN

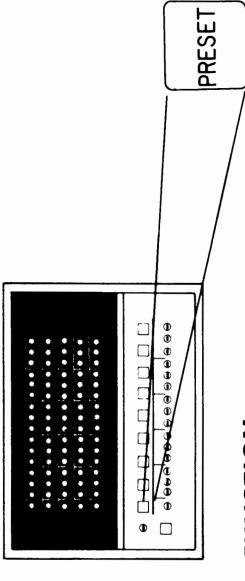

- INPUT/OUTPUT BUFFER FLAG FLIP FLOP
- CONTROL FLIP FLOP




TO COMPUTER 70010 AND

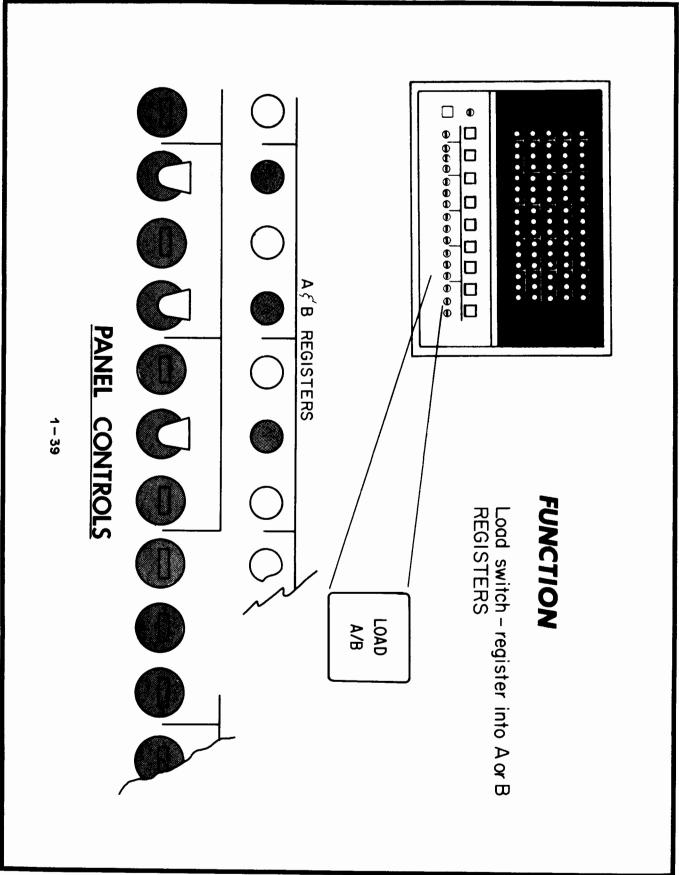


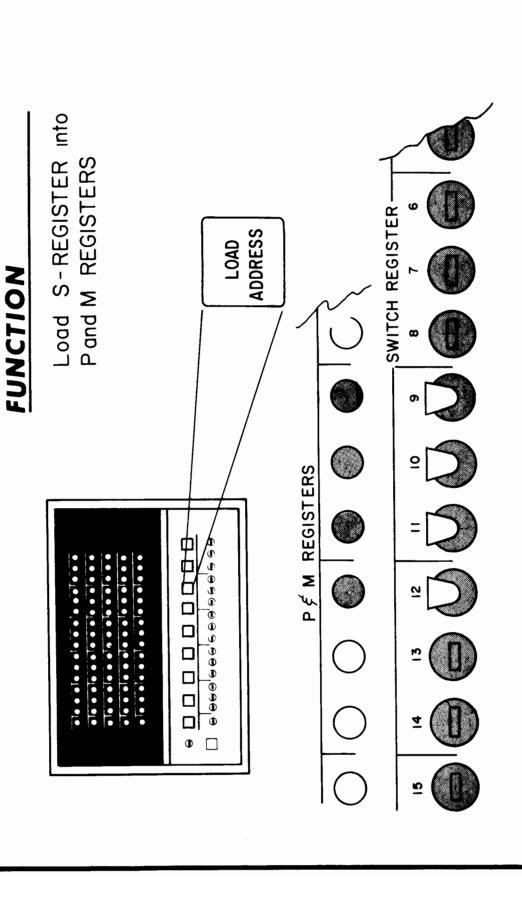
## HP INTERFACE CARD




I/O INTERFACE CARDS ARE SIMPLE TO INSTALL OR REARRANGE




### FUNCTION


- PUSH-ON PUSH-OFF SWITCH FOR COMPUTER POWER ON-OFF
- CONTENTS OF MEMORY NOT AFFECTED BY SWITCHING POWER OFF AND ON.
- POWER GOES OFF CONTENTS OF WORKING REGISTERS ARE LOST WHEN



### **FUNCTION**

- PRESETS COMPUTER TO FETCH PHASE TURNS OFF INTERRUPT SYSTEM
- RESETS ALL INPUT/OUTPUT CONTROL BITS
- SETS ALL INPUT/OUTPUT FLAG BITS RESETS PARITY ERROR INDICATION INTERNAL PRESET PULSE IS GENERATED, WHEN POWER
  - IS TURNED ON





### PANEL CONTROLS

1-40

## **FUNCTION**

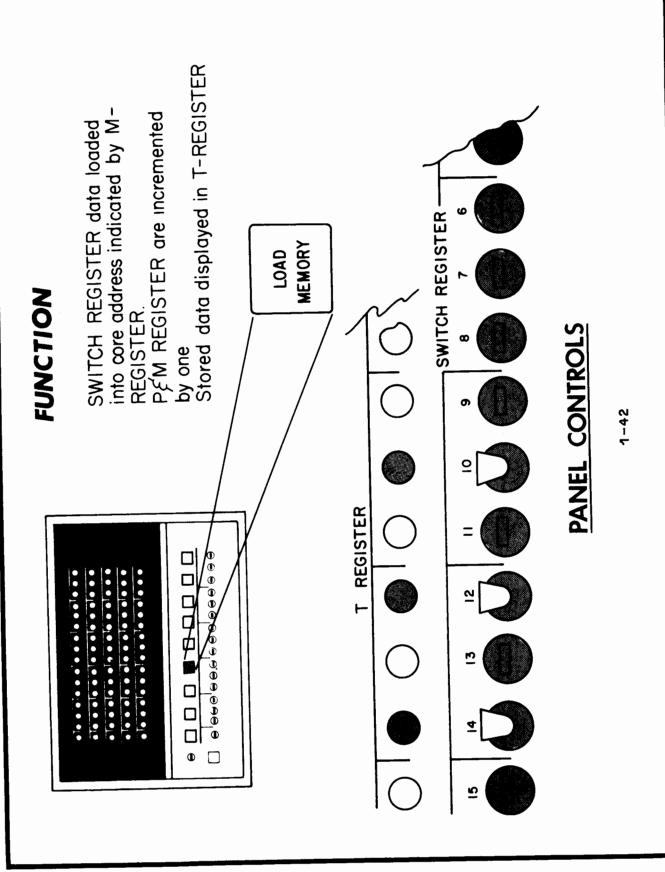
LOCATION OF STORED DATA SPECIFIED BY M-REGISTER

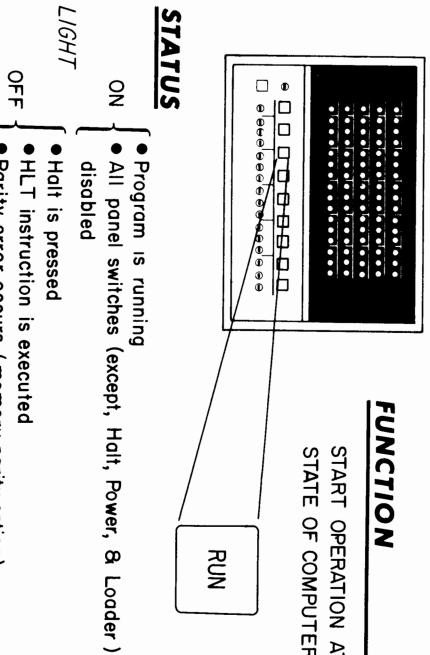
STORED DATA DISPLAYED IN T-REGISTER P&M-REGISTERS ARE INCREMENTED BY ONE

MEMORY DISPLAY \_ \_

5

T REGISTER


SWITCH REGISTER



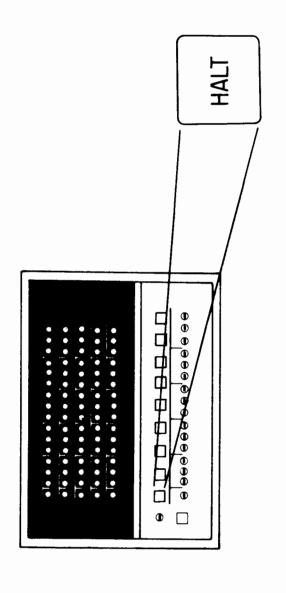



## PANEL CONTROLS

1-41

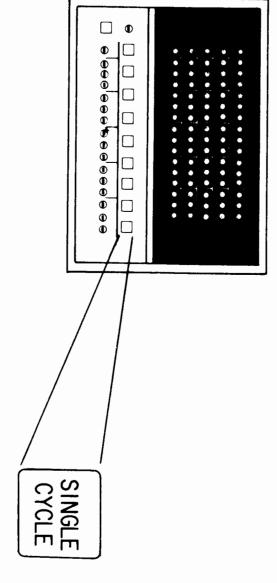





RUN

### **FUNCTION**

STATE OF COMPUTER START OPERATION AT CURRENT


Parity error occurs (memory parity option)

Abnormal change of internal power supplies



### **FUNCTION**

- STOP COMPUTER AT END OF CURRENT PHASE, EXCEPT INTERRUPT
  - WHEN HALTED, ALL PANEL CONTROLS ARE ENABLED



### **FUNCTION**

COMPLETES THE INDICATED MACHINE PHASE EACH TIME THE SWITCH IS DEPRESSED

#### PROTECT LAST 64 LOCATIONS LOADER ENABLED OF MEMORY **FUNCTION** 000,000,000,000,000,000 •••••••••••••

### PROTECTED

### STATUS

-ENABLED-BLOCK OF MEMORY CAN BE READ OR LOADED -PROTECTED-BLOCK OF MEMORY IS DISABLED SWITCH POSITIONS

## PANEL CONTROLS

1-46

#### LOADER PROTECTED 15 POWER D EXTEND A-REGITER ACCUMULATOR O | O O O | O O O O O O O O O O P-REGISTER PROGRAM COUNTER O | O O O O O O O O O O O O M-REGISTER MEMORY ADDRESS O | O O | O O | O O O O O O O 010001000100010001000 PRESET OVERFLOW RUN HALT FRONT PANEL CONSOLE FETCH T-REGISTER MEMORY DATA B-REGISTER ACCUMULATOR INDIRECT LOAD A EXECUTE LOAD ADDRESS DISPLAY INTERRUPT SINGLE POWER

# THE PHASES OF MACHINE OPERATION

FETCH

- COMPUTER WILL FETCH INSTRUCTION FROM

MEMORY.

COMPUTER WILL OBTAIN A 15 BIT ADDRESS FROM

MEMORY. INDIRECT

- COMPUTER WILL OBTAIN A 15 BIT OPERAND FROM

EXECUTE

MEMORY AND COMPLETE THE REQUIRED COM-PUTER INSTRUCTION.

FETCH ITS NEXT INSTRUCTION FROM ONE OF THE SEQUENCE AND FORCES THE COMPUTER TO INTERRUPT - INTERRUPT HALTS THE NORMAL PROGRAM

INTERRUPT ADDRESSES.

# MACHINE PHASES & TIME PERIODS

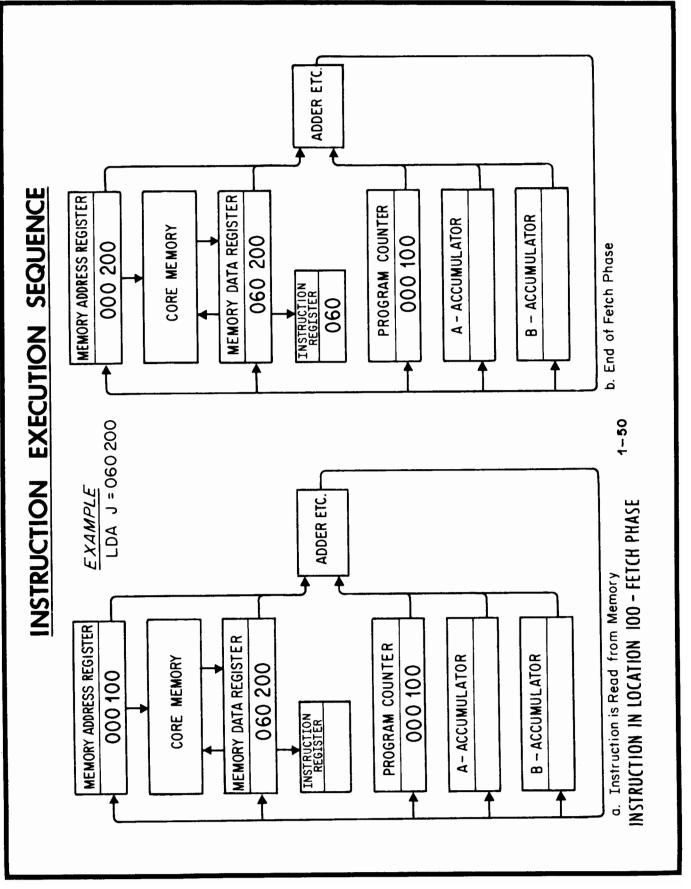
PHASE AND TIME PERIOD. A MACHINE CYCLE IS FURTHER DEFINED BY THE THE BASIC MACHINE CYCLE IS 1.6 MICROSECONDS LONG

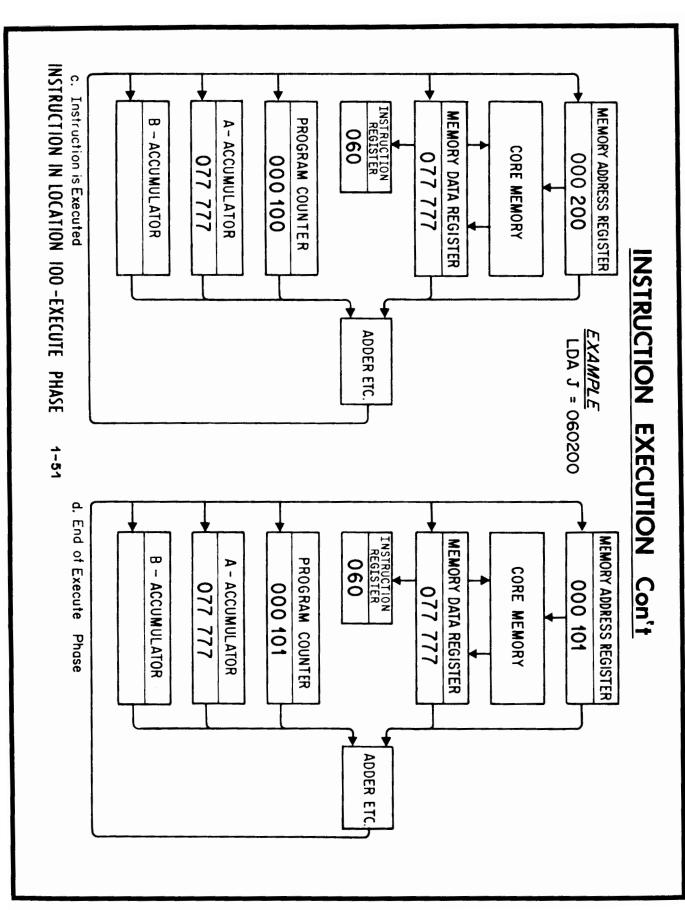
PHASE 1 (FETCH PHASE)

PHASE 2 (INDIRECT PHASE)

PHASE 3 (EXECUTE PHASE) (NOT ISZ)

PHASE 3 (EXECUTE PHASE)(ISZ)


PHASE 4 (INTERRUPT) \*


\* NO MEMORY CYCLE

1.6u SECS

| MEM.READ | MEM. WRITE |
| TO T1 T2 T3 T4 T5 T6 T7 |
| MEM.READ | MEM. WRITE |
| TO T1 T2 T3 T4 T5 T6 T7 |
| MEM.READ | MEM. WRITE |
| TO T1 T2 T3 T4 T5 T6 T7 |
| MEM.READ | MEM. WRITE |
| TO T1 T2 T3 T4 T5 MEM. WRITE |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| TO T1 T2 T3 T4 T5 T6 T7 |
| T0 T1 T2 T3 T4 T5 T6 T7 |
| T0 T1 T2 T3 T4 T5 T6 T7 |
| T0 T1 T2 T3 T4 T5 T6 T7 |
| T0 T1 T2 T3 T4 T5 T6 T6 T7 |
| T0 T1 T1 T2 T3 T4 T5 T6 T6 T7 |
| T0 T1 T1 T2 T3 T4 T5 T6 T6 T7 |
| T0 T1 T1 T2 T3 T4 T5 T6 T6 T7 |
| T0 T1 T1 T2 T3 T4 T5 T6 T6 T7 |
| T0 T1 T1 T2 T3 T4 T5 T6 T6 T7 |
| T0 T1 T1 T2 T3 T4 T5 T6 T6 T7 |
| T0 T1 T1 T2 T3 T4 T5 T6 T6 T7 |
| T0 T1 T1 T2 T3 T4 T5 T6 T6 T7 |
| T0 T1 T1 T2 T3 T4 T5 T6 T6 T7 |
| T0 T1 T1

THE BASIC COMPUTER WILL ALWAYS BE IN ONE AND ONLY ONE MACHINE PHASE AT ANY GIVEN TIME.





### OBJECTIVES

I. INTRODUCE THE STUDENT TO THE BASIC ELEMENTS

Ħ GIVE THE STUDENT PRACTICE IN THE USE OF MACHINE LANGUAGE INSTRUCTIONS.

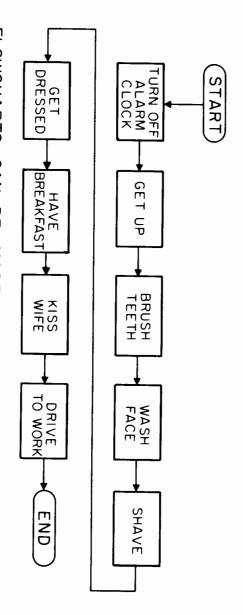
OF MACHINE LANGUAGE PROGRAMMING



## A COMPUTER PROGRAM

TO ITS MEMORY, EACH INSTRUCTION IS EXECUTED IN SEQUENCE ARE THEN STORED IN THE COMPUTER'S MEMORY. BY REFERRING TOLD TO DO EVERYTHING. WE TELL COMPUTERS WHAT TO DO BY WRITING PROGRAMS OF INSTRUCTIONS. THE INSTRUCTIONS FAR FROM BEING A GIANT "BRAIN," A COMPUTER MUST BE UNTIL THE "PROGRAM" IS COMPLETED.

TURN OFF ALARM CLOCK


2- GET UP 3- BRUSH TEETH

4- WASH FACE
5- SHAVE
6- GET DRESSED
7- HAVE BREAKFAST
8- KISS WIFE
9- DRIVE TO WORK

2-2

# INTRODUCTION TO FLOWCHARTING

WRITTEN. HELPS TO REMOVE AMBIGUITY BEFORE THE DEFINING THE MOST EXACTLY WHAT IS TO DIFFICULT PART OF COMPUTER BE DONE. PROGRAMMING IS PROGRAM IS FLOWCHARTING



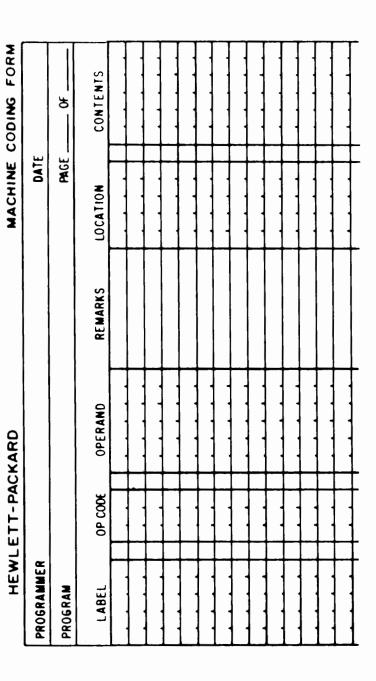
FLOWCHARTS CAN BE MADE MORE MEANINGFUL IF STANDARD SYMBOLS AND TECHNIQUES ARE USED.

Fundamentals of Hardware, Software and Programming

# MACHINE LANGUAGE PROGRAMMING OPERATIONS

INTO A COMPUTER PROGRAM IS THE PROBLEM OF TURNING A FLOWCHART PROBLEM SOLUTION REFERRED TO AS "CODING".

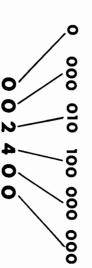
### PROBLEM:


"CODING" <u>DIRECTLY</u> IN MACHINE LANGUAGE IS VERY DIFFICULT.

### THE ANSWER:

AND, AFTER THE COMPLETE SOLUTION IS "CODED", TRANSLATE CODE THE PROGRAM IN MNEMONIC SYMBOLS THE MNEMONICS INTO MACHINE LANGUAGE (BINARY)

ASSEMBLER SOFTWARE PROGRAM. THE MNEMONICS WE WILL USE ARE THOSE THAT CAN BE TRANSLATED BY THE


## THE CODING FORM



ONE INSTRUCTION IS WRITTEN PER LINE. LOCATION REFERS TO MEMORY ADDRESS. CONTENTS REFERS TO MEMORY CONTENTS.

## MNEMONIC CODES

THE MACHINE INSTRUCTION TO CLEAR THE "A" REGISTER SI



THIS INSTRUCTION IS ASSIGNED THE 3 LETTER MNEMONIC CODE CLA SIMILARLY EACH COMPUTER INSTRUCTION IS ASSIGNED A MNEMONIC CODE ----

### **EXAMPLES**

| 3 | <b>=</b> |
|---|----------|
| Ξ | 롣        |
| 3 | Ë        |
| < | ⋽        |
| 1 | ≒        |
| C | >        |

CMA

INSTRUCTION

006400 003000

MEANING
CLEAR "B" REGISTER
COMPLEMENT "A" REGISTER

## SYMBOLIC LABELS

AS: THE TERM LABEL APPEARS ON THE CODING FORM

LABEL OP CODE OPERAND

OF THE INSTRUCTION OR DATA THAT APPEARS ON THE SAME LINE ON THE CODING FORM. SYMBOL, OF 5 CHARACTERS OR LESS, THAT IS USED TO REPRESENT THE MEMORY ADDRESS LABEL - A SYMBOLIC LABEL IS AN ALPHANUMERIC

**EXAMPLE:** 

OPERAND SAM OP CODE LDA LABEL

OCT

SAM

### OP CODE

THE TERM OP CODE APPEARS ON THE CODING FORM AS:

LABEL OP CODE OPERAND

OP CODE - THE OP CODE REFERS TO THE MNEMONIC CODE ASSIGNED TO EACH COMPUTER INSTRUCTION.
ALL MNEMONIC CODES HAVE 3 LETTERS.
THE MNEMONIC CODE "OCT" REFERS TO AN OCTAL CONSTANT.

**EXAMPLE:** 

LABEL OP CODE OPERAND

CLA

OCT

## SYMBOLIC OPERANDS

THE TERM OPERAND APPEARS ON THE CODING FORM AS:

LABEL OP CODE OPERAND

OPERAND - A SYMBOLIC TERM THAT DEFINES THE ADDRESS OF A MEMORY LOCATION, OR A NUMERIC TERM THAT DEFINES A MEMORY CONSTANT VALUE.

**EXAMPLE:** 

LABEL OP CODE OPERAND

LDA SAM

OCT

SAM

## SELECTED INSTRUCTION SHEET

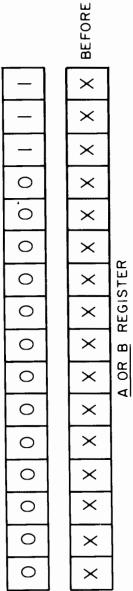
| STB | STA      | LDB      | LDA      | CPB | СРА | ADB  | ADA      | ISZ      | JMP | JSB | AND |              | MNEMONIC |   |
|-----|----------|----------|----------|-----|-----|------|----------|----------|-----|-----|-----|--------------|----------|---|
| *   | *        | *        | *        | *   | *   | *    | *        | *        | *   | *   | *   | D/I          | 5        | ] |
| _   | <b>-</b> | <b>-</b> | 7        | _   | _   | _    | <u> </u> | 0        | 0   | 0   | 0   | 유            | 14       | 1 |
| _   | <u> </u> | ۲        | <b>د</b> | 0   | 0   | 0    | 0        | <b>-</b> | _   | 0   | 0   | OP-CODE      | 13       |   |
| 1   | _        | 0        | 0        | _   | ح   | 0    | 0        | _        | 0   | _   | _   | Ä            | 12       |   |
| 1   | 0        | <b>د</b> | 0        | _   | 0   | 7    | 0        | _        | _   | _   | 0   | A/B Z/C      | 11       |   |
| *   | *        | *        | *        | *   | *   | *    | *        | *        | *   | *   | *   | Z/C          | 10       | l |
| ×   |          |          |          |     |     |      |          | _        |     |     | ×   |              | 9        | 1 |
| ×   |          |          |          |     |     |      |          |          |     |     | ×   |              | 8        | l |
| ×   |          |          |          |     |     |      |          |          |     |     | ×   | _            | 7        |   |
| ×   |          |          |          |     |     |      |          |          |     |     | ×   | VOR          | 6        |   |
| ×   |          |          |          |     |     |      |          |          |     |     | ×   | WORD ADDRESS | 5        |   |
| ×   |          |          |          |     |     |      |          |          |     |     | ×   | DDF          | 4        |   |
| ×   |          |          |          |     |     |      |          |          |     |     | ×   | ?ES          | 3        |   |
| ×   |          |          |          |     |     |      |          |          |     |     | ×   | ľ            | 8        |   |
| ×   |          |          |          |     |     |      |          |          |     |     | ×   |              | 1        |   |
| ×   |          |          |          |     |     |      |          |          |     |     | ×   |              | 0        |   |
|     | A.       | EF       | E        |     |     | R. 1 | <u>P</u> | ĄF       |     |     |     | SL           | SZ       | 8 |

NOTE: D/I, A/B Z/C ARE CODED 0/1

|     | ALIEK - SKIP INS | RUCTION | l Co     |
|-----|------------------|---------|----------|
| CLA | (002400) CLB ((  | CLB     | (006400) |
| CMA | (003000)         | CMB     | (007000) |
| NA  | (002004)         | INB     | (006004) |
| SSA | (002020)         | SSB     | (006020) |
| SZA | (002002)         | SZB     | (006002) |
| SLA | (002010)         | SLB     | (006010) |

MEMORY REFERENCE INSTRUCTIONS

| ALF (    | ELA (    | ERA (    | RAR (    | RAL (    | ALS (    | ARS (    | lu                            |
|----------|----------|----------|----------|----------|----------|----------|-------------------------------|
| (001700) | 001600)  | (001500) | (001300) | (001200) | (001000) | (001100) | SHIF I - ROLAI E INSTRUCTIONS |
| BLF      | ELB      | ERB      | RBR      | RBL      | BLS      | BRS      | ING ROCTIO                    |
| (005700) | (005600) | (005500) | (005300) | (005200) | (005000) | (005100) | S                             |

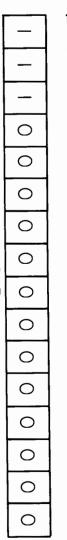

### INPUT-OUTPUT INSTRUCTIONS

| SFS      | STC      | H.       | OTA      | LIA      | MIA      |
|----------|----------|----------|----------|----------|----------|
| (1023XX) | (1027XX) | (1020XX) | (1026XX) | (1025XX) | (1024XX) |
| STF      | STC,C    | CLF      | ОТВ      | LIB      | MIB      |
| (1021XX) | (1037XX) | (1031XX) | (1066XX) | (1065XX) | (1064XX) |

NOTE: XX DENOTES OCTAL SELECT CODE.

## THE LOAD INSTRUCTION

#### MEMORY




### INSTRUCTION

LDA/B Y

LOAD THE SPECIFIED REGISTER WITH THE CONTENTS OF MEMORY LOCATION Y; WHERE Y IS ANY MEMORY LOCATION. PREVIOUS CONTENTS OF THE SPECIFIED REGISTER ARE LOST. THE CONTENTS OF LOCATION Y ARE NOT CHANGED. THE

#### MEMORY



A OR B REGISTER

AFTER

0

0

0

0

0

0

0

0

0

0

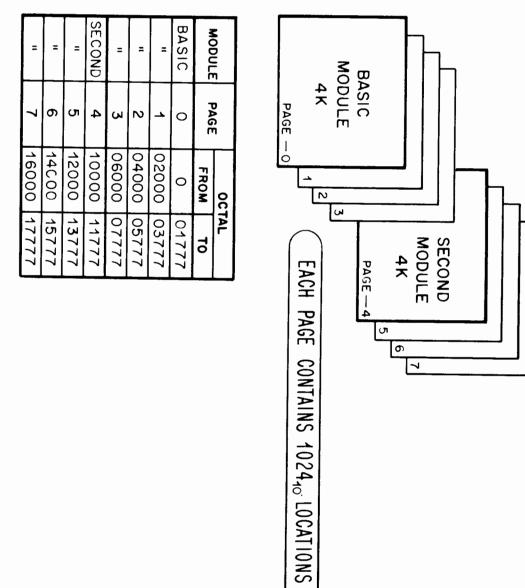
0

0

0

## THE CODING FORM




| Υ Ο, Ο, Τ 7 |     |     | • | L.D.A Y.    | H | LABEL OP CODE OPERAND | PROGRAM DEMO # 1 | PROGRAMMER JOHN DOE | HEWLETT-PACKARD     |
|-------------|-----|-----|---|-------------|---|-----------------------|------------------|---------------------|---------------------|
| 1,1,3       | • • | • • |   | 1.0.3       | Ц | REMARKS LOCATION      | PAGE _           | DATE                | MACHINE C           |
| 000007      | •   | • • | • | 0.6.0.1.1.3 | • | CONTENTS              | 1 OF 1           | 1-2-68              | MACHINE CODING FORM |

# MEMORY REFERENCE INSTRUCTION

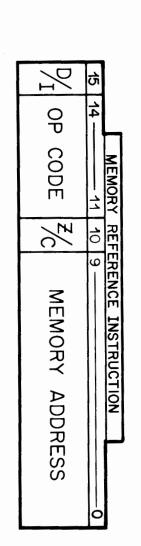
CONTENTS 060113 OPERAND LOCATION
Y 103 OP CODE LDA

SINCE ONLY 10 BITS ARE RESERVED FOR THE OPERAND ADDRESS, WE CAN ONLY DIRECTLY ACCESS  $1024_{10}$  WORDS  $\left[2^{10}=1024_{10}\right]$ 

## MEMORY ADDRESSES (8K)

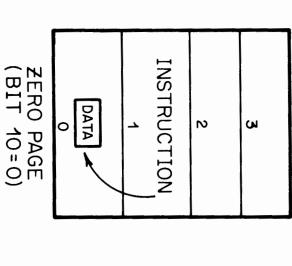


## MEMORY ADDRESS REGISTER

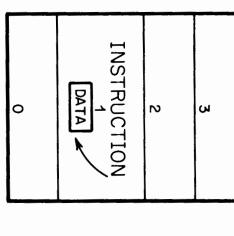

#### MEMORY

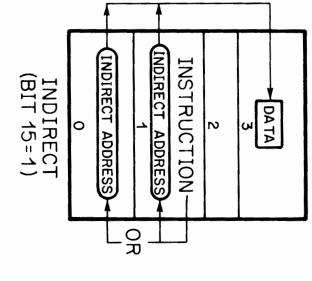
| 7777 - 0000 |
|-------------|
| 2000 - 3777 |
| 4000 - 5777 |
| 6000 - 7777 |

| 5 4 3 2 1 0                         | ADDRESS         |
|-------------------------------------|-----------------|
| 9 2 8 6                             | WORD            |
| 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 | PAGE<br>ADDRESS |
| 15                                  | <u>\</u>        |

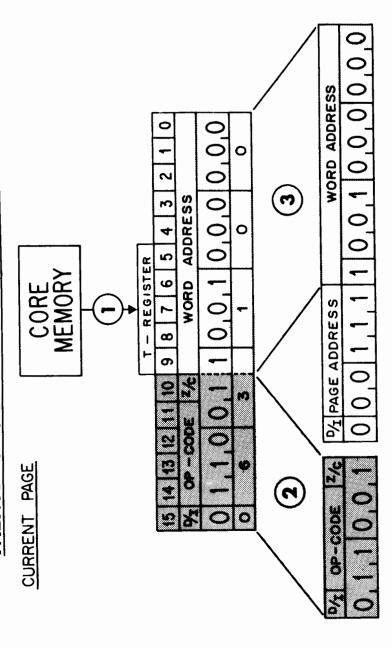

| 0000 - 1777 | 0000 - 1777 | 0000 - 1777 | 0000 - 1777 |
|-------------|-------------|-------------|-------------|
| 3           | 2           | -           | 0           |

## MEMORY ADDRESSING MODES





(b)

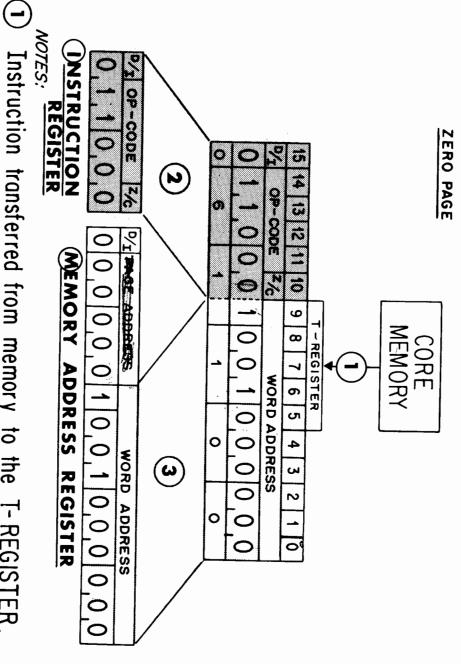
ω



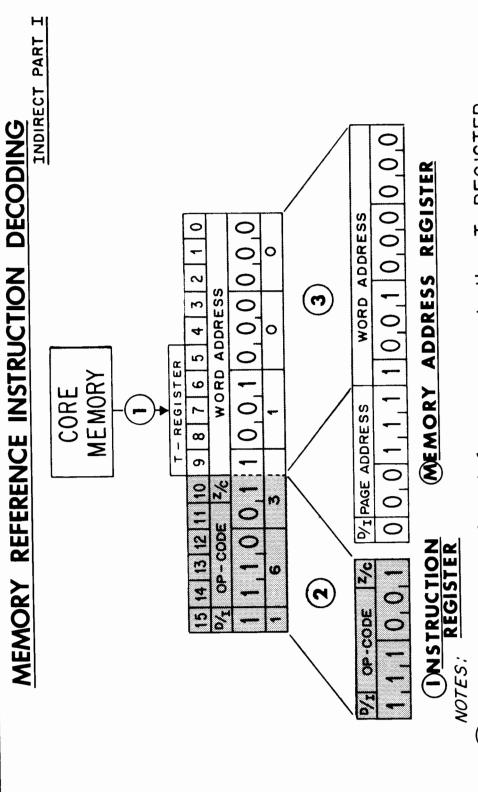

CURRENT PAGE (BIT 10=1)






# MEMORY REFERENCE INSTRUCTION DECODING

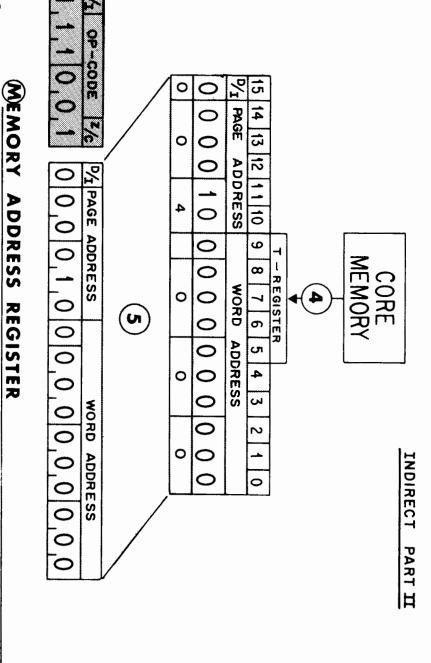



## MEMORY ADDRESS REGISTER INSTRUCTION REGISTER

- $\stackrel{NOTES:}{(1)}$  Instruction transferred from memory to the T REGISTER.
- (2) BITS 10-15 transferred from T-REG. to the I-REG.
- (3) BITS 0-9 from T-REG are merged with BITS 10-15 of the M-REG.

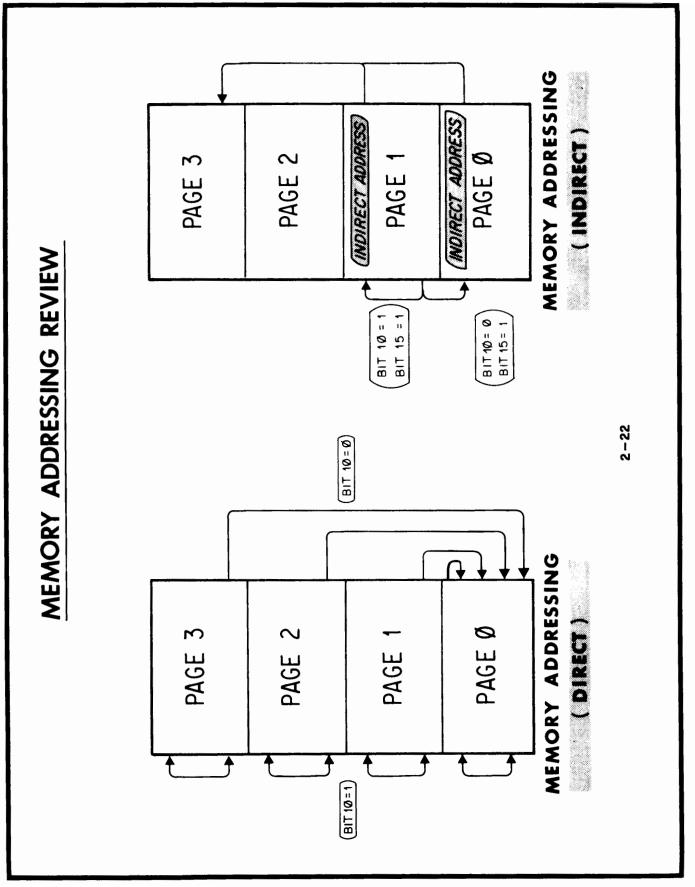
# MEMORY REFERENCE INSTRUCTION DECODING




- Instruction transferred from memory to the T-REGISTER.
- BITS 10-15 transferred from T-REG to the I-REG.
- BITS 0-9 transferred from T-REG to the M-REG BITS 10-15 of M-REG are cleared to zero. AND



- (1) Instruction transferred from memory to the T-REGISTER
  - BITS 10-15 transferred from T-REG. to the I-REG.
- BITS 0-9 from T-REG. are merged with bits 10-15 of the M-REG. BIT 15 of I-REG. = 1 causes another memory cycle to begin.


2-20

# MEMORY REFERENCE INSTRUCTION DECODING



#### OTES:

- The 15 BIT address is transferred from memory to the "T"-REGISTER
- BITS 0-15 transferred from T-REG, to the M-REG I-REG IS NOT CHANGED 2-21



### ADDRESSABLE REGISTER

"B" SYNONYMOUS WITH MEMORY ADDRESS 1. "A" SYNONYMOUS WITH MEMORY ADDRESS @ AND REGISTER ADDRESS THE "A" OR "B" REGISTERS DIRECTLY. THE METHOD A UNIQUE FEATURE OF H-P COMPUTERS IS THE ABILITY TO USED TO PROVIDE THIS FEATURE WAS TO MAKE REGISTER

#### THEREFORE

MEMORY ADDRESS 0 IS THE "A" REGISTER

#### EXAMPLE

LOAD THE "A" REGISTER WITH THE CONTENTS OF THE "B" REGISTER.

MNEMONIC

MACHINE CODE

LDA 1

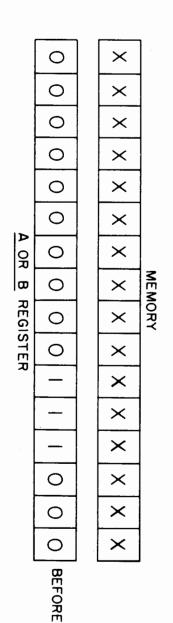
060001

## THE SELECTED INSTRUCTION GROUP

THE HP COMPUTERS HAVE A TOTAL OF 68 BASIC INSTRUCTIONS. THE INSTRUCTIONS ARE CATEGORIZED AS FOLLOWS:

MEMORY REFERENCE (2 MEMORY CYCLE) 14

REGISTER REFERENCE (I MEMORY CYCLE) 41


(I MEMORY CYCLE) 13 INPUT-OUTPUT total 68

A GROUP THAT IS REPRESENTATIVE OF THE TOTAL INSTRUCTION WERE SELECTED FOR THIS COURSE, THESE INSTRUCTIONS FORM IN ORDER TO ELIMINATE CONFUSION AND CONCENTRATE ON PROGRAMMING A SUB-SET OF THE TOTAL INSTRUCTION GROUP

THE SELECTED GROUP BREAKDOWN

12 total 50 REGISTER REFERENCE MEMORY REFERENCE NPUT-0UTPUT

## THE STORE INSTRUCTION



#### INSTRUCTION

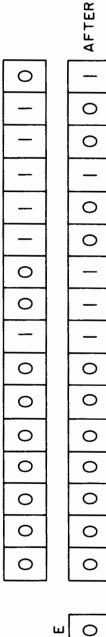
STA/B Y STORE THE CONTENTS OF THE SPECIFIED REGISTER IN MEMORY LOCATION Y; WHERE Y IS ANY MEMORY LOCATION. CHANGED. THE PREVIOUS CONTENTS OF MEMORY LOCATION Y ARE LOST. THE CONTENTS OF THE SPECIFIED REGISTER ARE NOT

#### A OR B REGISTER MEMORY AFTER

## THE ADD INSTRUCTION

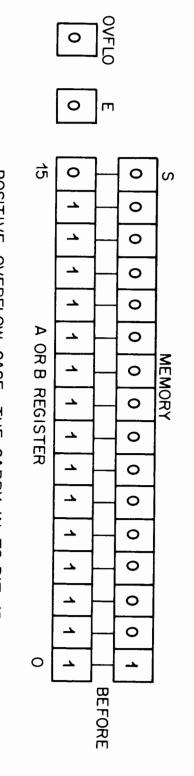





0

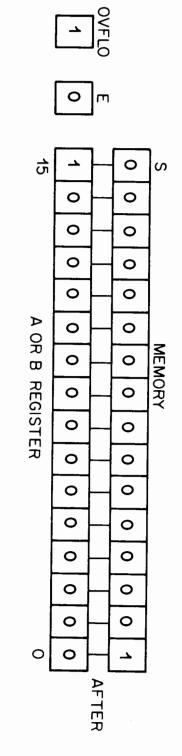
ш

A OR B REGISTER

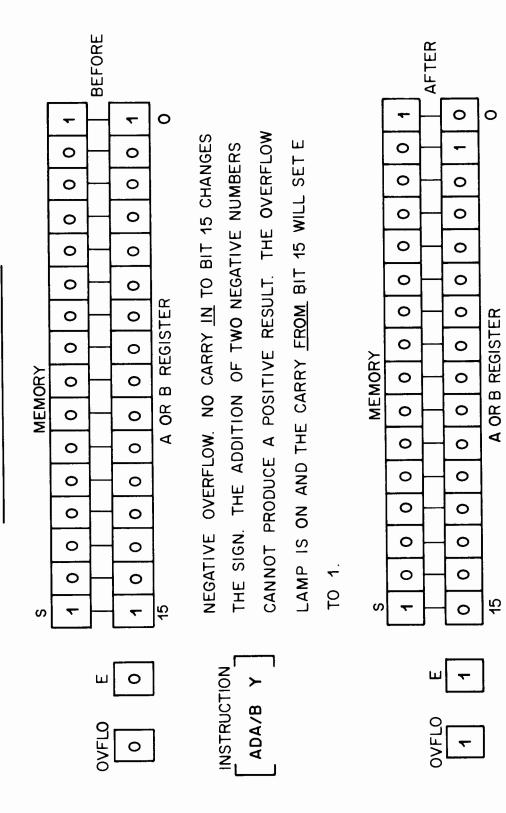

LOCATION Y ARE NOT CHANGED. THE OVERFLOW REGISTER OR THE EXTEND REGISTER MAY BE SET TO I AS A RESULT INSTRUCTION TO THE CONTENTS OF THE SPECIFIED REGISTER ADD THE CONTENTS OF MEMORY LOCATION Y. THE RESULTS ARE LEFT IN THE SPECIFIED REGISTER. THE CONTENTS OF OF THIS INSTRUCTION. ADA/B Y

#### MEMORY

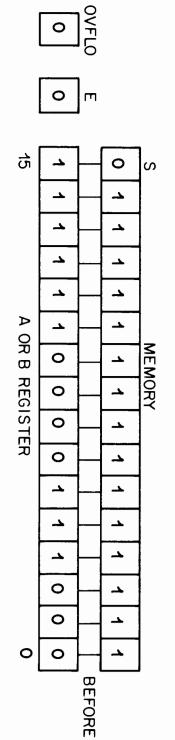



A OR B REGISTER

### POSITIVE OVERFLOW



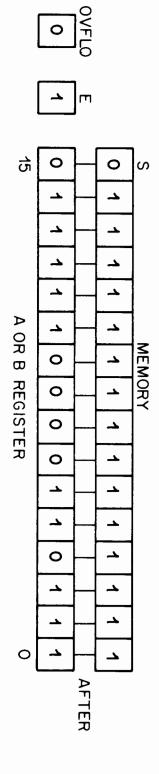

INSTRUCTION
ADA/B Y


POSITIVE OVERFLOW CASE. THE CARRY IN TO BIT 15 CHANGES THE SIGN. THE ADDITION OF TWO POSITIVE NUMBERS CANNOT PRODUCE A NEGATIVE RESULT THE OVERFLOW LAMP IS ON.








## ADDITION OF + AND - NUMBERS

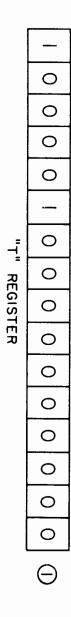


ADA/B Y

A POSITIVE NUMBER ADDED TO A NEGATIVE NUMBER (OR THE CONVERSE) WILL NEVER SET THE OVERFLOW CONDITION. IT IS POSSIBLE HOWEVER TO SET "E"

TO 1 WITHOUT THE OVERFLOW CONDITION.

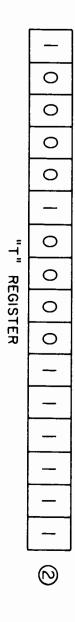



### TABLE OF CONDITIONS

(STATUS OF "OVF" & "E" REGISTERS)

| RY | MEMORY A/B REGISTER | RESULT | "OVFLO" | RESULT "OVFLO" "E"REGISTER |
|----|---------------------|--------|---------|----------------------------|
|    | +                   | +      | ON      | Ø                          |
|    | +                   | I      | YES     | Q                          |
|    | 1                   | +1     | ON      | 1 OR Ø                     |
|    | +                   | +1     | 0       | 1 OR Ø                     |
|    | 1                   | 1      | ON      | <b>~</b>                   |
|    | 1                   | +      | YES     | _                          |

OVFLO, "E" REGISTERS CAN BE SET BY ADD OR IN-CREMENT INSTRUCTIONS.


### THE HALT INSTRUCTION



INSTRUCTION

THIS INSTRUCTION WILL HALT THE COMPUTER. THE INSTRUCTION WILL (SC) WILL BE DISPLAYED IN THE "T" REGISTER. THE (SC) OPTION ALLOWS () SHOWS HALT INSTRUCTION DISPLAY, NO (SC). THE SELECTION OF I/O ADDRESSES 0-778.

2 SHOWS HALT INSTRUCTION DISPLAY (SC=77g).



## THE JUMP INSTRUCTION

#### T REGISTER

BEFORE

INSTRUCTION

ITS NEXT INSTRUCTION FROM MEMORY LOCATION Y. EXECUTION OF THE JMP IS ESSENTIALLY A REGISTER TRANSFER FROM "T" TO "P". IF THE JMP IS DIRECT, THE LOW ORDER IO BITS (0-9) TRANSFER FROM REGISTER "T" TO REGISTER "P". THE JMP INSTRUCTION WILL CAUSE THE COMPUTER TO FETCH M P ⊢

T REGISTER(CONTENTS OF Y)

| $\left[ \times \right]$ |  |
|-------------------------|--|
| ×                       |  |
| ×                       |  |
| ×                       |  |
| ×                       |  |
| ×                       |  |
| ×                       |  |
| ×                       |  |
| ×                       |  |
| ×                       |  |
| ×                       |  |
| ×                       |  |
| ×                       |  |
| ×                       |  |
| ×                       |  |
| ×                       |  |

2-32

## BASIC INSTRUCTION REVIEW

HOW EACH WORKS INDIVIDUALLY. PROGRAMS ARE GROUPS OF INSTRUCTIONS ARRANGED TO DO A SPECIFIC JOB. WE HAVE INTRODUCED 5 BASIC MACHINE INSTRUCTIONS AND

INSTRUCTION REVIEW -

JMP LDA/B Y - LOAD THE A OR B REGISTER FROM MEMORY. STA/B Y - STORE THE A OR B REGISTER TO MEMORY. ADA/B Y - ADD TO THE A OR B REGISTER FROM MEMORY. HLT (SC)- HALT THE COMPUTER. Y - JUMP OR TRANSFER TO MEMORY LOCATION Y.

### A SAMPLE PROBLEM

WRITE A PROGRAM TO COMPUTE I = J+K WHERE J=13728 AND K=23478. PROBLEM

SOLUTION

DRAW A SIMPLE FLOW CHART SOLUTION. Step 1 -Step 2 -

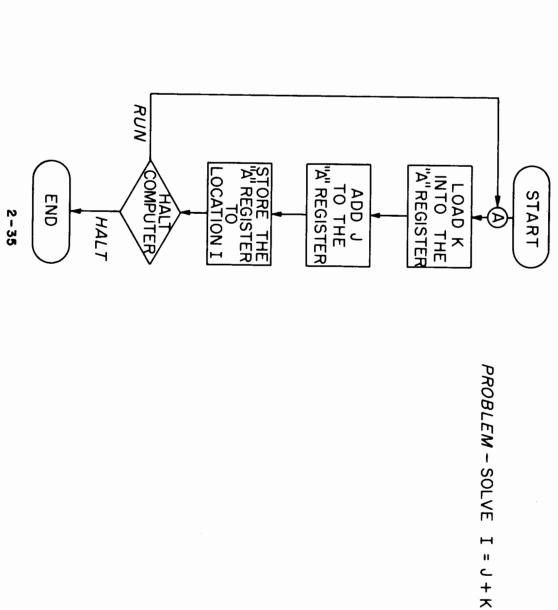
WRITE THE PROGRAM ON THE CODING FORM. MNEMONICS REPRESENT THE INSTRUCTIONS,

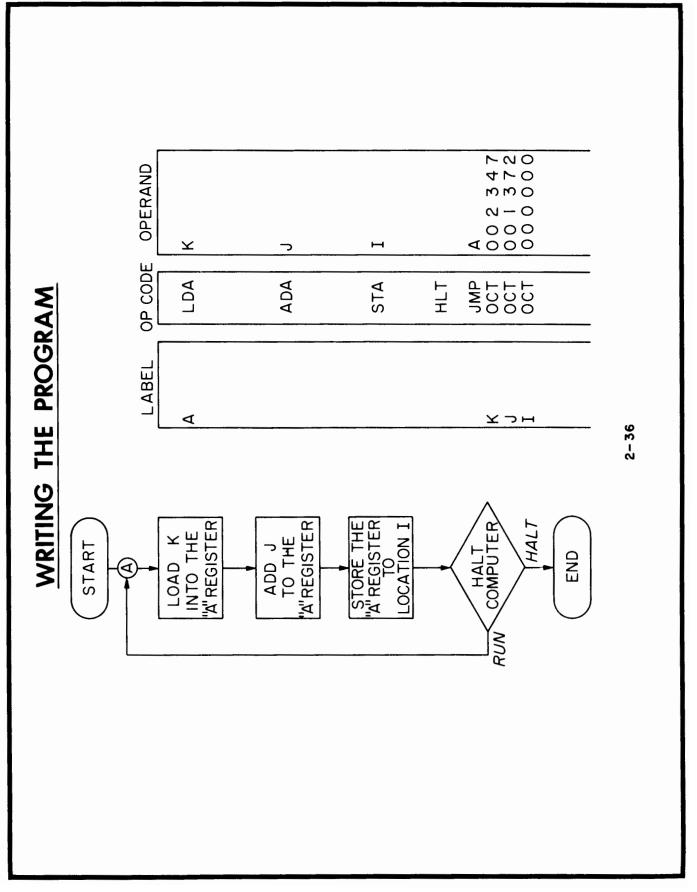
AND LETTERS (SUCH AS J AND I ABOVE)

REPRESENT MEMORY LOCATIONS.

USING THE CODING FORM, CONVERT THE MNEMONICS AND LETTERS FROM STEP 2

INTO THE ACTUAL MACHINE INSTRUCTIONS. LOAD THE PROGRAM INTO THE COMPUTERS


Step 4


1

EXECUTE THE PROGRAM. MEMORY.

Step 5 -

## A SAMPLE FLOW CHART SOLUTION





## **ENCODE THE PROGRAM**

| I       | _       | <b>X</b> |        |        |             |        | Ρ      | LABEL                 |
|---------|---------|----------|--------|--------|-------------|--------|--------|-----------------------|
| ОСТ     | OCT     | OCT      | JMP    | HLT    | STA         | ADA    | LDA    | OP CODE               |
| 0000000 | 0001372 | 0002347  | Α      |        | H           | د      | ス      | OPERAND               |
| 06007   | 06006   | 06005    | 06004  | 06003  | 06002       | 06001  | 06000  | LOCATION <sub>8</sub> |
| 000000  | 001372  | 002347   | 026000 | 102000 | 0 7 2 0 0 7 | 042006 | 062005 | CONTENTS              |

OF 6000<sub>8</sub>. THIS PROGRAM WAS ARBITRARILY ASSIGNED A STARTING ADDRESS

### ENCODE THE PROGRAM

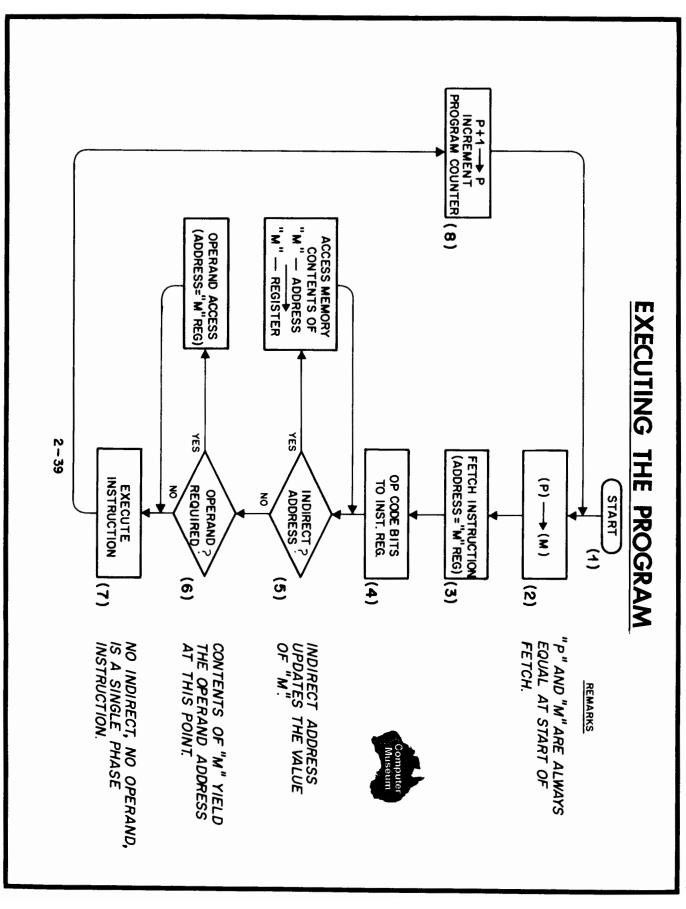
- 1 ASSIGN EACH PROGRAM INSTRUCTION OR DATA VALUE A SEQUENTIAL MEMORY LOCATION.
- FIND THE OCTAL EQUIVALENT OF THE OP CODE
- 3 2 1 1 IF MEMORY REFERENCE, DETERMINE THE OCTAL MEMORY ADDRESS.
- 4 WRITE THE COMPLETE INSTRUCTION USING 6 OCTAL DIGITS.

## **LOADING THE PROGRAM**

| OPERAND | ¥   | ٦   | I   |     | Α   | 002347 | 00137 | 00000 |
|---------|-----|-----|-----|-----|-----|--------|-------|-------|
| OP CODE | LDA | ADA | STA | HLT | JMP | OCT    | OCT   | OCT   |
| LABEL   | ⋖   |     |     |     |     | ¥      | 7     | 1     |

| LOCATIONS | 00090 | 06001 | 06002 | 06003 | 06004 | 06005  | 90090  | 06007  |
|-----------|-------|-------|-------|-------|-------|--------|--------|--------|
| OPERAND   | ~     | ٦     | Н     |       | A     | 002347 | 001372 | 000000 |

| 00090 | C | 0 | 0 | 06004 | 0 | 0   | 0  |  |
|-------|---|---|---|-------|---|-----|----|--|
|       |   |   |   |       |   |     |    |  |
|       |   |   |   |       | 7 | 7 2 | 00 |  |


| 8        | 5 | 9 | 7 | 0 | 0   | 7 | 2 | 0 |
|----------|---|---|---|---|-----|---|---|---|
| LS       | 0 | 0 | 0 | 0 | 0   | 4 | 7 | 0 |
| Z        | 0 | 0 | 0 | 0 | 0   | 3 | 3 | 0 |
| NTENTS 8 | 2 | 2 | 2 | 2 | 9   | 2 | 1 | 0 |
| 8        | 9 | 4 | 7 | 0 | 2   | 0 | 0 | 0 |
| Ö        | 0 | 0 | 0 | 1 | 0 2 | 0 | 0 | 0 |
|          | _ |   |   |   |     |   |   |   |
|          |   |   |   |   |     |   |   |   |

| _                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADDRESS                                                    | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1. SET THE SWITCH REGISTER TO 60008 (THE STARTING AUDRESS) | (CCC) - M OC COLLOCAL MORE COLLOCAL MORE COLLOCAL MARKET COLLO |
| TO 6000g (                                                 | (L)(H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| REGISTER                                                   | 1000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SWITCH                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1. SET THE                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

2. PUSH THE "LOAD ADDRESS" BUTTON. (ŘEGISTERS P.B.M = 6000) 3. SET THE FIRST (NEXT) INSTRUCTION IN THE SWITCH REGISTER. 4. PUSH THE "LOAD MEMORY" BUTTON.

5. REPEAT STEPS 3 AND 4 FOR THE REMAINING INSTRUCTIONS.

NOTE: EACH TIME THE LOAD MEMORY BUTTON IS DEPRESSED REGISTERS P.B.M. ARE AUTOMATICALLY INCREMENTED BY 1.



### CLEAR ACCUMULATOR

BEFORE LSB A OR B REGISTER SIGN

#### INSTRUCTION

CLA / CLB

CLEAR THE INDICATED REGISTER. ALL 16 BITS ARE SET TO 0. OVFLO, 'E' ARE NOT AFFECTED.

A OR B REGISTER

## COMPLEMENT ACCUMULATOR

MSB 0 0 A OR B REGISTER 0 0 0 0 0 LSB 0 BEFORE

INSTRUCTION

CMA/CMB

0'S. OVFLO, 'E' ARE NOT AFFECTED. COMPLEMENT THE CONTENTS OF THE INDICATED REGISTER. THIS IS A 1'S COMPLEMENT. ALL Ø'S BECOME 1'S. ALL 1'S BECOME

MSB 0 0 0 0 A OR B REGISTER 0 0 0 0 LSB AFTER

## INCREMENT THE ACCUMULATOR

OVFLO

A OR B REGISTER

BEFORE

0

0

0

LSB

INSTRUCTION

INA/INB

X = 1 OR Ø

OVERFLOW CAN BE SET AS A RESULT OF THIS OPERATION. IF A INCREMENT THE CONTENTS OF THE INDICATED REGISTER BY 1. CARRY IS GENERATED FROM BIT 15, THE E REGISTER WILL BE SET TO 1 ALSO.

×

OVFLO

A OR B REGISTER

AFTER

0

0

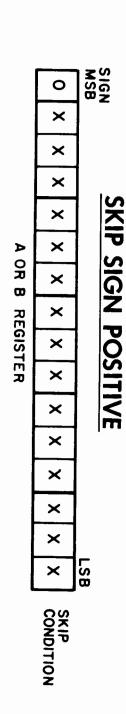
0

0

0

0

0


0

0

0

LSB

2-42



INSTRUCTION

SSA/SSB

X = 1 OR Ø

ARE NOT AFFECTED BY THIS INSTRUCTION. INSTRUCTION IS EXECUTED. THE CONTENTS OF A, B, E OR OVFLO SKIPPED. IF BIT POSITION 15=1 (NEGATIVE) THE NEXT SEQUENTIAL IF 15=0 (POSITIVE) THE NEXT SEQUENTIAL INSTRUCTION IS THIS INSTRUCTION TESTS THE CONTENTS OF BIT POSITION 15.

SIGN × × × × × A OR B REGISTER × × × × × × × × × **ESA** × NO SKIP

2-43

### SKIP ON ZERO

A OR B REGISTER

#### INSTRUCTION

SZA/SZB

THIS INSTRUCTION TESTS THE CONTENTS OF THE INDICATED REGISTER. IF THE TEST CONDITION IS PRESENT (16 0'S) THE NEXT SEQUENTIAL EXECUTED. THE CONTENTS OF THE A, B, E OR OVFLO REGISTERS ARE INSTRUCTION IS SKIPPED. ANY CONDITION OF THE REGISTER OTHER THAN 16 0'S CAUSES THE NEXT SEQUENTIAL INSTRUCTION TO BE NOT AFFECTED BY THIS INSTRUCTION.

NO SKIP CONDITION LSB 0 0 0 A OR B REGISTER 0 0 0 0 0 SIGN

MSB × × × × SKIP ON L.S.B. ZERO × × Þ OR B REGISTER × × × × × × × × × LSB 0 SKIP

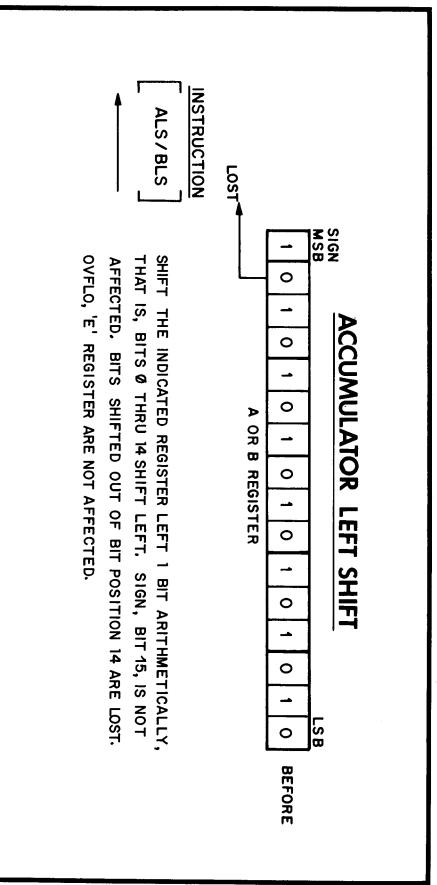
INSTRUCTION

SLA/SLB

BIT POSITION @ CONTAINS A 1 THE NEXT SEQUENTIAL INSTRUCTION AFFECTED BY THIS INSTRUCTION. THIS BIT IS Ø THE NEXT SEQUENTIAL INSTRUCTION IS SKIPPED. IF IS EXECUTED. THE CONTENTS OF A, B, E OR OVFLO ARE NOT THIS INSTRUCTION TESTS THE CONTENTS OF BIT POSITION Ø. IF

MSB × × × × × × × × × × × × × × LSB NO SKIP

A OR B REGISTER


### INSTRUCTION REVIEW

WE CAN NOW ADD 6 REGISTER REFERENCE INSTRUCTIONS TO THE BASIC MEMORY REFERENCE INSTRUCTIONS INTRODUCED PREVIOUSLY.

## ALTER-SKIP GROUP REGISTER REFERENCE INSTRUCTIONS

| CLEAR THE "A" REGISTER | COMPLEMENT THE "A" REGISTER | INCREMENT THE "A" REGISTER | SKIP IF THE SIGN OF "A" IS POSITIVE | SKIP IF REGISTER "A" IS ZERO | SKIP IF THE L.S.B OF REGISTER "A" IS ZERO |
|------------------------|-----------------------------|----------------------------|-------------------------------------|------------------------------|-------------------------------------------|
|                        |                             |                            |                                     |                              |                                           |
| CLA                    | CMA                         | INA                        | SSA                                 | SZA                          | SLA                                       |

REMEMBER, REGISTER REFERENCE INSTRUCTIONS ARE EXECUTED IN ONE MACHINE CYCLE.



MSB

0

0

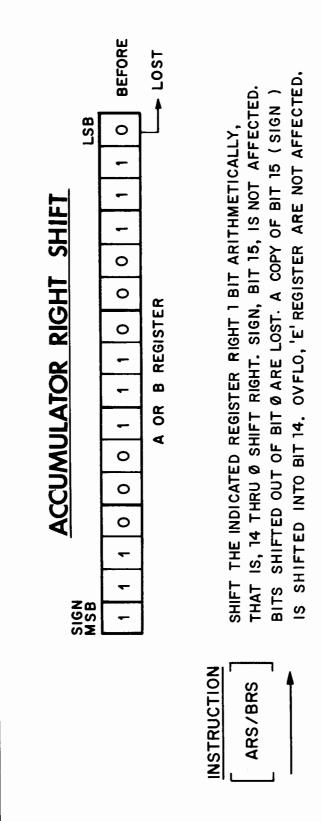
0

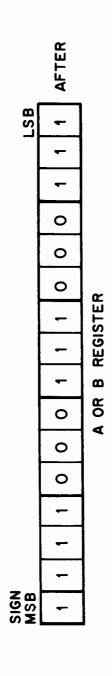
0

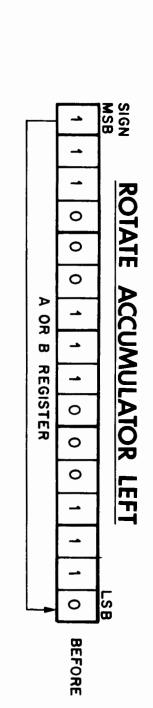
0

0

0


0

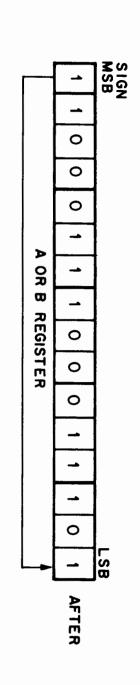

AFTER


LSB

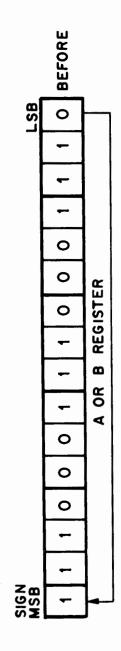
A OR B

REGISTER







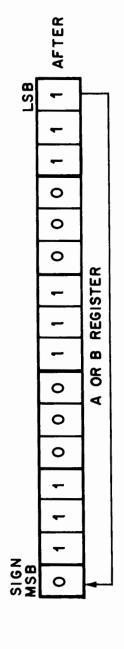


ROTATE THE INDICATED REGISTER LEFT 1 BIT. BIT 15 IS ROTATED AROUND TO BIT POSITION Ø. NO BITS ARE LOST. OVFLO, 'E' NOT AFFECTED.

INSTRUCTION

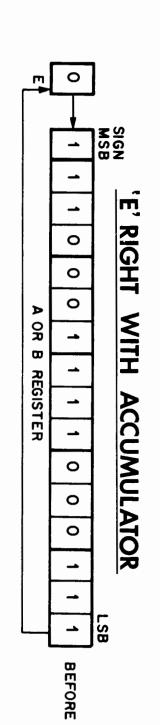
RAL/RBL



## ROTATE ACCUMULATOR RIGHT




#### INSTRUCTION


RAR/RBR

ROTATE THE INDICATED REGISTER RIGHT I BIT. BIT & IS ROTATED AROUND TO BIT POSITION 15. NO BITS ARE LOST.

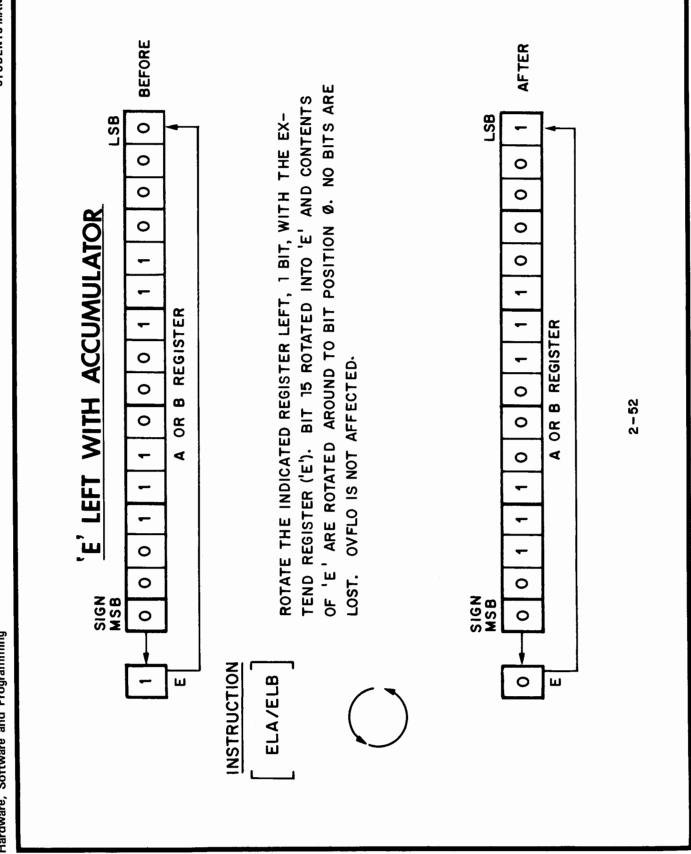
OVFLO, 'E' NOT AFFECTED.



2-50



INSTRUCTION


ERA/ERB

,

ROTATE THE INDICATED REGISTER RIGHT, 1 BIT, WITH THE EXTEND REGISTER ('E'). BIT Ø IS ROTATED INTO 'E' AND CONTENTS OF 'E' ARE ROTATED INTO BIT POSITION 15.

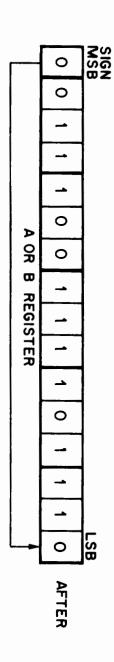
NO BITS ARE LOST. OVFLO IS NOT AFFECTED.

MSB 0 0 A OR B REGISTER 0 0 0 0 **BS**1 AFTER





MSB 0 0 0 A OR B REGISTER 0 0 LSB 0 BEFORE


INSTRUCTION

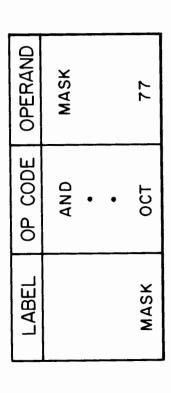
ALF/BLF

4

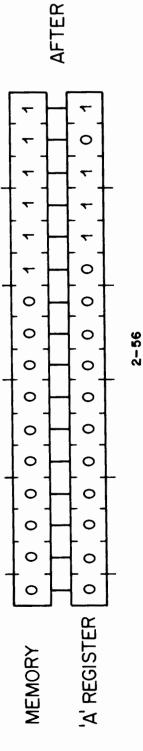
3, 2,1,0 RESPECTIVELY. OVFLO, 'E' ARE NOT AFFECTED. LOST. BIT 15, 14, 13, 12 ARE ROTATED AROUND TO BIT POSITIONS ROTATE THE INDICATED REGISTER LEFT 4 PLACES. NO BITS ARE



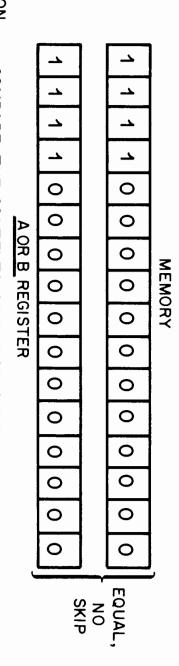



# SHIFT-ROTATE GROUP REVIEW


- **ARS** Arithmetic right shift. A shift right of 1 Bit is equivalent to DIVIDING by 2.
- ALS Arithmetic left shift. A shift left of 1 BIT is equivalent to MULTIPLYING by 2.
- RAL Rotate left 1 BIT. Used for positioning BITS within the register.
- RAR Rotate right 1 BIT.
- ERA Rotate "E" right with accumulator 1 BIT.
- ELA Rotate "E" left with accumulator 1 BIT. The "E" REGISTER instructions can be used to implement a long rotate operation involving REGISTERS "A" and "B".
- The Rotate accumulator left FOUR instruction is used primarily to position 8 BIT alphanumeric char-


## LOGICAL TRUTH TABLE

| 0   |     |     |                    |                 |
|-----|-----|-----|--------------------|-----------------|
|     |     | 0   | 0                  |                 |
| _   | _   | 0   |                    | 0               |
| 0   | 0   | 0   | 0                  | 0               |
| XOR | IOR | AND | MEMORY<br>LOCATION | "A"<br>REGISTER |


## THE AND INSTRUCTION







## THE COMPARE INSTRUCTION



CPA/B Y

COMPARE THE CONTENTS OF THE SPECIFIED REGISTER AGAINST THE CONTENTS OF MEMORY LOCATION Y. IF ALL 16 BITS COMPARE (EQUAL) THE NEXT SEQUENTIAL INSTRUCTION IS EXECUTED. IF THE COMPARE FAILS, (UNEQUAL) THE NEXT SEQUENTIAL INSTRUCTION IS SKIPPED.

# THE COMPARE INSTRUCTION EXAMPLE

A PROGRAM SEGMENT THAT WILL TEST THE STATUS OF BITS THE CONTENTS OF REGISTER "A" ARE UNKNOWN. DEVISE 12, TRANSFER TO A LABEL CALLED TRUE. IF THIS FIELD 3 THROUGH 6. IF THIS FIELD CONTAINS THE OCTAL VALUE CONTAINS ANY OTHER VALUE THE PROGRAM SHOULD CON-REGISTER "A" CONTENTS

|    | $\overline{}$ |
|----|---------------|
| ٩  | _             |
| -  | ×             |
| 2  | ×             |
| 3  | ۲.            |
| 4  | ر.            |
| 5  | ر.            |
| 9  | <u>ر</u> .    |
| 7  | ×             |
| 8  | X             |
| 6  | ×             |
| 10 | ×             |
| 11 | ×             |
| 12 | ×             |
| 13 | ×             |
| 14 | ×             |
| 15 | ×             |

|          | 7        |           | $\dashv$     | $\exists$                                        | 7        | 7                   | 7        | 7        |          |
|----------|----------|-----------|--------------|--------------------------------------------------|----------|---------------------|----------|----------|----------|
| 1        |          |           | $\neg$       | _                                                | 7        | ╛                   | ┪        | _        | 1        |
|          | $\dashv$ | $\dashv$  | _            |                                                  | _        | -                   |          | ┪        | 7        |
| 20       | _        |           | -            | -                                                | ┪        | -                   | -        | $\dashv$ | 4        |
| ഹ        |          | _         | $\neg$       | -                                                | $\dashv$ |                     | -        |          | ┨        |
| - 1      | -        | <u>ر-</u> | $\dashv$     | $\dashv$                                         | $\dashv$ | $\dashv$            | $\dashv$ | ⊣        | ⊣        |
|          |          | E         | -            |                                                  |          | -                   |          | -        | -        |
| 1        | $\dashv$ | 2         | -            | $\dashv$                                         | -        | -+                  |          | _        | -        |
| <b>6</b> | -        | 4         |              |                                                  | _        | 4                   | -        | _        | Ц        |
| 45       |          | A         | _            |                                                  | _        |                     |          | _        | Ц        |
|          |          | 2         | ш            |                                                  | $\dashv$ |                     | -        | _        | Ц        |
| 1        | 9        | Ш         | Z            |                                                  | 4        | _                   |          |          |          |
|          | Η        |           | _            |                                                  | $\dashv$ | 4                   | _        |          |          |
|          | 6        | S         |              |                                                  | _        | _                   | _        | _        |          |
| 6        |          | E         | U            |                                                  |          |                     |          |          |          |
|          | 0        | 1         | 0            | $\mathbf{Z}$                                     |          |                     |          |          |          |
|          | 8        |           | R            | A                                                |          | $\Box$              |          |          |          |
|          | H        | 0         |              |                                                  |          |                     |          | -        |          |
|          | THR      | 7[0       | E            | GR                                               |          | w                   | _        | _        |          |
| 35       |          |           | U            | RO                                               |          | 5                   |          |          |          |
| ۲,       | 3        | E         | T.R          | R                                                |          |                     | _        |          |          |
|          |          | R         | 1            | P                                                |          | ◂                   |          |          |          |
|          | S        | ۷         |              |                                                  |          | >                   |          |          |          |
|          | TS       | Ы         | 0            | E                                                |          |                     | _        |          | Г        |
| 30       | П        | M         | T            | l                                                | X        |                     | ╛        |          | $\vdash$ |
| יח       | В        | 0         | Ţ            | N                                                |          | ST                  | _        | -        | $\vdash$ |
|          |          | 0 2       |              | I                                                | V        | Ü                   | $\dashv$ | -        | ⊢        |
|          | E        | <u>.</u>  | MP           | T                                                | MAS      | $\overline{\vdash}$ | $\neg$   |          | -        |
|          | 1        | ٨         | 1            | -                                                | -        | -                   |          | _        | _        |
| 25       | 1        | _         | 1            | 1                                                | -        | ⊣                   | $\dashv$ | _        | -        |
| 0        | F   A    | ES"       | É            | 0 3                                              | AL       | AL                  | $\dashv$ |          | ⊢        |
|          |          |           | <del>,</del> | Ľ,                                               | Ĺ        |                     |          |          | -        |
|          | 08       | 0         | ES           | 0                                                | S        | CI                  |          |          | ┢╌       |
|          |          | 0         | 7            | $\stackrel{\sim}{=}$                             | 0        | 0                   |          |          | ├        |
| 8        | Щ        | =         | ~            | ~                                                | Н        | 7                   | _        |          | ⊢        |
| 0        |          | ⊢         | -            | -                                                | $\vdash$ | Н                   | _        | -        | ⊢        |
|          | ┝        | -         | -            |                                                  | $\vdash$ | $\vdash$            | -        |          |          |
|          | ⊢        | _         |              | -                                                | $\vdash$ | Н                   | _        | $\vdash$ | Н        |
|          | ╙        | $\vdash$  | _            | _                                                | $\vdash$ | Щ                   |          | _        | Н        |
|          |          | ╙         | <u> </u>     | <u> </u>                                         | _        | Τ                   |          | _        | Н        |
| 15       | _        | ╙         |              | SE                                               | _        | Ш                   |          | _        | Н        |
|          | 0        | 20        | ш            | S                                                |          | L                   |          | L        | Ц        |
|          | 4        | 2         | 12           | <u>_</u>                                         | 0/2      | 20                  |          | L        | Ц        |
|          | 7        | -         | 8            | ⋖                                                | 7        | 2                   |          | L        | Ш        |
| _        | Σ        | Σ         | $\vdash$     | ட                                                | ~        | 7                   |          | L        | Ц        |
| 5        |          |           |              |                                                  |          |                     | 1        |          | Ш        |
|          | ٥        | A         | ٥            | ۵                                                | 上        | T                   |          |          | Ш        |
|          | Z        | ٩         | X            | Σ                                                | ပ        | C                   |          | L        | 1        |
| ~        | A        | ပ         | 7            | 7                                                | 0        | 0                   |          |          |          |
| 567      |          |           |              |                                                  |          |                     |          |          |          |
| S        | Г        | Т         |              | Г                                                | Г        |                     | E        | Г        | n        |
|          | $\vdash$ | 1         |              | Т                                                | 0        | 0                   | S        |          | 11       |
|          |          | 1         | $\vdash$     | 1                                                | 7        | 2                   |          | Г        | 11       |
|          | Н        | <b>†</b>  | $\vdash$     | <del>                                     </del> | =        | F                   | 4        | 1        | T\       |
| _        | $\vdash$ | +         | $\vdash$     | t                                                | Ė        | 1                   | 1        | t        | 7        |
|          | <u> </u> | 1         | ٠            | 1                                                | 4        | _                   | _        | _        | ,        |

### OBJECTIVES

- ASSEMBLER PROGRAM. TEACH THE STUDENT HOW TO OPERATE THE HP
- II. INTRODUCE ADDITIONAL INSTRUCTIONS
- Ħ DR IVERS. TEACH THE STUDENT HOW TO CONFIGURE & USE SIO

# SELECTED INSTRUCTION SHEET

|          |     | •  | į                             | í   | Ĺ       | į   |   | Ļ       | 9   | Ì  |              | 3   | 9  |     |   | INA  | Ö   |
|----------|-----|----|-------------------------------|-----|---------|-----|---|---------|-----|----|--------------|-----|----|-----|---|------|-----|
|          |     | _  | MEMORY REPERENCE INSTRUCTIONS | OR. | 꿈       | FER | ž | بر      | S   | ž  | 2            | 5   | S  |     |   | SSA  | Ö   |
| MNEMONIC | 15  | 14 | 13 12                         |     | +       | 9   | 6 | <u></u> | 9 2 | 9  | 2            | 4 3 |    | 2 1 | 0 | SZA  | Ö   |
|          | I/Q | О  | OP-CODE                       |     | A/B Z/C | Z/C |   |         | 3   | OR | WORD ADDRESS | DRE | SS |     |   | SLA  | 0   |
| AND      | *   | 0  | 0                             | 1   | 0       | *   | × | ×       | ×   | ×  | ×            | ×   | ×  | ×   | × |      |     |
| JSB      | *   | 0  | 0                             | -   | •       | *   |   |         |     |    |              |     |    |     |   |      | ē   |
| JMP      | *   | 0  | -                             | 0   | _       | *   | - |         |     |    |              |     |    |     |   |      | S   |
| ZSI      | *   | 0  | ~                             | -   | ~       | *   |   |         |     |    |              |     |    |     |   | ARS  | Ö   |
| ADA      | *   | -  | 0                             | 0   | 0       | *   |   |         |     |    |              |     |    |     |   | ALS  | Ö   |
| ADB      | *   | -  | 0                             | 0   | •       | *   |   |         |     |    |              |     |    |     |   | RAI  | Ö   |
| CPA      | *   | -  | 0                             | _   | 0       | *   |   |         |     |    |              |     |    |     |   | 2 4  |     |
| CPB      | *   | -  | 0                             | _   | ~       | *   |   |         |     |    |              |     |    |     |   | בל נ | 5 3 |
| LDA      | *   | _  | ~                             | 0   | 0       | *   |   |         |     |    |              |     |    |     |   | EKA  | 5   |
| LOB      | *   | _  | _                             | 0   | _       | *   |   |         |     |    |              | ٠   |    |     |   | ELA  | ĕ   |
| STA      | *   | _  | <del>-</del>                  | -   | 0       | *   |   |         |     |    |              |     |    |     |   | ALF  | ĕ   |
| STB      | *   | -  | -                             | ~   | ~       | *   | × | ×       | ××× | ×  | ×            | ×   | ×  | ×   | × |      |     |
|          |     |    |                               |     |         |     |   |         |     |    |              |     |    |     |   |      |     |

| SI                        | (006400) | (0002000) | (000004) | (000000) | (000003) | (000010) | ONS                       | (005100) | (0002000) | (002500) | (002300) | (002200) | (002600) | (002500) |  |
|---------------------------|----------|-----------|----------|----------|----------|----------|---------------------------|----------|-----------|----------|----------|----------|----------|----------|--|
| STRUCTION                 | CLB      | CMB       | INB      | SSB      | SZB      | SLB      | INSTRUCTI                 | BRS      | BLS       | RBL      | RBR      | ERB      | ELB      | BLF      |  |
| ALTER - SKIP INSTRUCTIONS | (002400) | (003000)  | (002004) | (002020) | (002003) | (002010) | SHIFT-ROTATE INSTRUCTIONS | (001100) | (001000)  | (001200) | (001300) | (001200) | (001600) | (001700) |  |
|                           | CLA      | CMA       | NA       | SSA      | SZA      | SLA      |                           | ARS      | ALS       | RAL      | RAR      | ERA      | ELA      | ALF      |  |

| ARS | (001100) | BRS | (005100) |
|-----|----------|-----|----------|
| ALS | (001000) | BLS | (002000) |
| RAL | (001200) | RBL | (002500) |
| RAR | (001300) | RBR | (002300) |
| ERA | (001200) | ERB | (002200) |
| ELA | (001600) | ELB | (002600) |
| ALF | (001700) | BLF | (002500) |

|     | INPUT-OUTPUT INSTRUCTIONS | INSTRUCT | IONS     |
|-----|---------------------------|----------|----------|
| ΜIΑ | (1024XX)                  | MIB      | (1064XX) |
| LIA | (1025XX)                  | LIB      | (1065XX) |
| OTA | (1026XX)                  | OTB      | (1066XX) |
| HLT | (1020XX)                  | CLF      | (1031XX) |
| STC | (1027XX)                  | STC,C    | (1037XX) |
| SFS | (1023XX)                  | STF      | (1021XX) |
|     |                           |          |          |

NOTE: D/1, A/8 Z/C ARE CODED 0/1

NOTE: XX DENOTES OCTAL SELECT CODE.

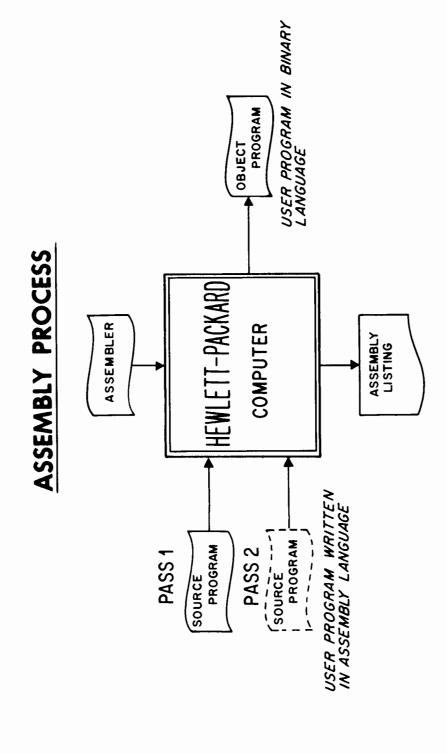
# THE 8 STEPS FROM PROBLEM TO PROGRAM

- STEP 1 DEFINE THE PROBLEM
- STEP 2- PREPARE A FLOWCHART SOLUTION
- STEP 4- KEYPUNCH THE SOURCE LANGUAGE TAPE USING A TELEPRINTER STEP 3- WRITE AN ASSEMBLY LANGUAGE PROGRAM
- STEP 5- LOAD THE ASSEMBLER PROGRAM INTO THE HP COMPUTER
- STEP 6 ASSEMBLE THE SOURCE PROGRAM
- STEP 7-  $\frac{\mathsf{LOAD}}{\mathsf{TAPE}}$  THE ASSEMBLER PRODUCED BINARY OBJECT
- STEP 8-EXECUTE THE OBJECT PROGRAM

## ABSOLUTE BINARY LOADER

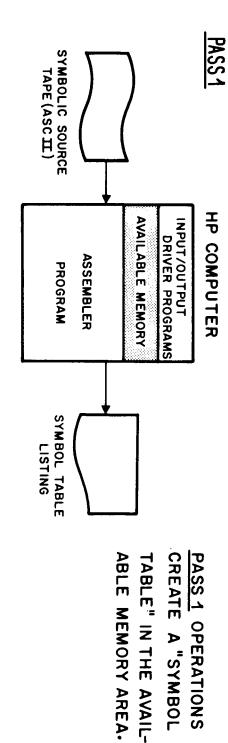
### DEFINITION

A 64-WORD PROGRAM USED TO "LOAD" ALL ABSOLUTE BINARY PROGRAM TAPES INTO THE COMPUTER'S MEMORY


### **CHARACTERISTICS**

- THIS PROGRAM IS CORE RESIDENT IN THE HIGHEST NUMBERED 64 LOCATIONS IN MEMORY
- THESE 64 LOCATIONS CAN BE "PROTECTED" WHEN NOT IN USE. κi
- SHOULD THIS PROGRAM BE ACCIDENTLY DESTROYED, IT MUST BE RELOADED INTO THESE 64 LOCATIONS AGAIN VIA THE CONSOLE SWITCH REGISTER. 3

## ASSEMBLER CODING FORM




| Programmer   I.R. SMART                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SMART                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Page   Program SAMPLE PROG   Program SAMPLE PROG   Program SAMPLE PROG   Program SAMPLE PROG   Statement   State   |
| SMART                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Page   Program SAMPLE PROGRAM    Page   Program SAMPLE PROGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Page   Program SAMPLE PROGRAM    Page   Program SAMPLE PROGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Page   Program SAMPLE PROGRAM    Page   Page   Program SAMPLE PROGRAM    Page      |
| Page   Program SAMPLE PROGRAM    Statement   Stateme   |
| Date 5-27-68   Program SAMPLE PROG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Date 5-27-68   Program SAMPLE PROG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Date 5-27-68   Program SAMPLE PROG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Date 5-27-68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Date 5-27-68 Program SAMPLE PROGRAM SEMBLER CODING FORM  SEMBLY LANGUAGE PROGRAM FORM  NDICATES "COMMENT" STATEMENT FIELD FOR IS DEFINED AS A DEC CONSTANT FIELD FOR STORE FIE |
| Date 5-27-68 Program SAMPLE PROGRAM PLE PR |
| Dote 5-27-68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Date 5-27-68 Program SAMPLE PROGRAM  Statement 45 40 45 50 CATES "COMMENT" STATEMENT   CATES "COMMENT" STATEMENT   SR = J+K, WHERE J= 15726, K = 9279   SR DEFINED AS A DEC CONSTANT   SD DEFINED AS A DEC CONSTANT   SD DEFINED AS A DEC CONSTANT   STHE ENTRY POINT   CONTENTS OF K TO REG. "A"   THE COMPUTER   STARTH I ANSR   THE COMPUTER   STARTH I ANSR   SFER CONTROL TO STARTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Date 5-27-68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Dote 5-27-68 Program SAMPLE PROGRAM PLE PR |
| Date 5-27-68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ASSEMBLER CODING FORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Program SAMPLE PROG   Statement   40   45   50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Program SAMPLE PROG<br>  Statement   45   50   10   10   10   10   10   10   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Program SAMPLE PROG<br>  Statement   45   50   10   10   10   10   10   10   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Program SAMPLE PROG<br>  Statement   45   50   10   10   10   10   10   10   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Program SAMPLE PROG<br>  Statement   40   45   50   10   10   10   10   10   10   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Program SAMPLE PROG<br>  Statement   45   50   10   10   10   10   10   10   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Program SAMPLE PROG<br>  Statement   45   50   10   10   10   10   10   10   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Program SAMPLE PROGrement  45  A M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SAMPLE PROG.  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MPLE PROG. 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| APLE PROG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TR NTT 9 50 FROG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| E PROG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PROG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



- 1. ASSEMBLER PROGRAM IS LOADED INTO THE COMPUTER.
- 2. SOURCE PROGRAM IS PROCESSED BY THE ASSEMBLER, PRODUCING THE OBJECT PROGRAM TAPE AND THE ASSEMBLY LISTING IN A TWO PASS OPERATION.

# ASSEMBLER PROGRAM OPERATIONS



CREATE A "SYMBOL PASS 1 OPERATIONS

ASSEMBLER PRODUCED OUTPUT IS OPTIONAL. DRIVER PROGRAMS HP COMPUTER SYMBOL TABLE ASSEMBLER PROGRAM OBJECT TAPE (BINARY) ASSEMBLY LISTING SEMBLY LISTING. PASS 2 OPERATIONS DATA TO THE SYMBOL RELATE THE SOURCE TAPE AND THE AS-THE BINARY OBJECT TABLE, AND PRODUCE

SYMBOLIC SOURCE

TAPE (ASCII)

PASS 2

3-7

NOTE:

|                      |        | OPERAND                   | 2001B                   | 9279                           | 15726      | 0              |                | ~    | <b>Y</b> | IANSR | 77B  | START+1 |     |
|----------------------|--------|---------------------------|-------------------------|--------------------------------|------------|----------------|----------------|------|----------|-------|------|---------|-----|
| ASSEMBLER PROCESSING |        | LABEL OP CODE             | ASM B,A, B, L, 1<br>ORG | K DEC                          | J DEC      | IANSR OCT      | START NOP      | LDA  | ADA      | STA   | HLT  | GM.     | END |
| LER PRO              | PASS 1 | PLC,                      | 2001                    | 2001                           | 2002       | 2003           | 2004           | 2005 | 2006     | 2007  | 2010 | 2011    |     |
| ASSEMB               |        | PROGRAM LOCATION COUNTER= | ASSEMBLER SYMBOL TABLE  | "K" IS ASSIGNED THE VALUE 2001 | 'J" " 2002 | "IANSR" " 2003 | "START" " 2004 |      |          |       |      |         |     |

NOTE: ONLY STATEMENTS WITH LABELS CREATE SYMBOL TABLE ENTRIES THE SYMBOL VALUE IS ASSIGNED BY THE PROGRAM LOCATION COUNTER.

## ASSEMBLER PROCESSING

### PASS >

|     | 2011    | 2010   | 2007   | 2006   | 2005   | 2004   | 2003   | 2002   | 2001        | 1 | 2001  | LOCATION <sub>8</sub> |        |
|-----|---------|--------|--------|--------|--------|--------|--------|--------|-------------|---|-------|-----------------------|--------|
|     | 026005  | 102077 | 072003 | 042001 | 062002 | 000000 | 000000 | 036556 | 022077      |   |       | CONTENTS              |        |
|     |         |        |        |        |        | START  | IANSR  |        | \<br>\<br>X |   |       | LABEL                 | PASS Z |
| END | JMP     | HLT    | STA    | ADA    | LDA    | NOP    | O CT   | DEC    | DEC         |   | ORG   | OP CODE               |        |
|     | START+1 | 77B    | IANSR  | 자      | ·<br>다 |        | 0      | 15726  | 9279        |   | 2001B | OPERAND               |        |

NOTE: MEMORY REFERENCE INSTRUCTIONS SEARCH THE SYMBOL TABLE TO FIND THE PROPER OPERAND VALUE.

MNEMONIC CODES ARE CONVERTED TO THEIR BINARY EQUIVALENT.

### ASSEMBLY LISTING

|           |                                         | 000            |    | _  |                                         |   |
|-----------|-----------------------------------------|----------------|----|----|-----------------------------------------|---|
| _         |                                         | 88             |    | _  | ·                                       | _ |
|           |                                         | ***            |    |    | 200000000000000000000000000000000000000 |   |
|           |                                         | ***            |    |    | 200000000000000000000000000000000000000 |   |
|           |                                         |                |    |    | *************************************** |   |
|           |                                         | 8888           |    |    | ************                            |   |
|           | E + O + Great                           | <b></b>        |    |    |                                         |   |
|           |                                         | <b>22</b>      |    |    | *************                           |   |
|           |                                         | <b>**</b>      |    |    | ***********                             |   |
|           |                                         |                |    |    |                                         |   |
|           |                                         | 88             |    |    |                                         |   |
|           |                                         |                |    |    |                                         |   |
|           |                                         | <b>200</b>     |    |    | 900000000000000000000000000000000000000 |   |
|           |                                         |                |    |    |                                         |   |
|           |                                         | ***            |    |    | ***********                             |   |
|           |                                         | 200            |    |    |                                         |   |
|           |                                         | 220            |    |    |                                         |   |
|           |                                         | ~~             |    |    | *************************************** |   |
|           |                                         | <b>30</b> 0    |    |    | *************************************** |   |
|           |                                         | 288            |    |    |                                         |   |
|           |                                         | <b>200</b> 0   |    |    | *************************************** |   |
|           |                                         |                |    |    |                                         |   |
|           | **********                              | 888E           |    |    | 200000000000000000000000000000000000000 |   |
|           |                                         | 888<br>-       |    |    |                                         |   |
|           |                                         | 888            |    |    |                                         |   |
|           |                                         | <b></b>        |    |    | 300000000000000000000000000000000000000 |   |
|           |                                         | ***            |    |    | ***********                             |   |
|           |                                         | <b></b>        |    |    | *************                           |   |
|           |                                         | <b>***</b> *** |    |    | *************************************** |   |
|           | **********                              | ***            |    |    |                                         |   |
|           |                                         | <b>‱∧1</b>     | _  | כא | 6.° 600. 5000000                        |   |
|           |                                         |                |    | _  |                                         |   |
|           |                                         | <b>~~~</b>     | 10 | 0  |                                         |   |
|           | *************************************** | ₩9             | =  | ~  |                                         |   |
|           |                                         | <b>O</b>       | 0  | 63 |                                         |   |
|           |                                         | <b>₩</b> ₩     | ~. | Λī |                                         |   |
|           |                                         | ₩X.V           | w  | ~  |                                         |   |
| ↽         |                                         |                | 0  | O  |                                         |   |
| Ó         |                                         | ****           | 2  | =  |                                         |   |
| 0         |                                         | <b>.</b>       | 0  | 0  |                                         |   |
| 2         |                                         | <b>₩</b>       | _  | _  | 002004<br>ERRORS*                       |   |
| ੁ         |                                         | ****           |    |    | *************************************** |   |
| O         | ***********                             | <b></b>        |    |    | ************                            |   |
| _         |                                         | 888            |    |    |                                         |   |
|           |                                         | 8888 - T       |    | ~  |                                         |   |
| ш         |                                         | <b></b>        |    | Ľ  |                                         |   |
| ᅏ         | *****                                   | 0000           |    | m  |                                         |   |
| ب         | ****                                    | 988            |    | ~  |                                         |   |
| PAGE 0001 |                                         |                |    | Z  | 4 ************************************  |   |
| _         |                                         |                |    | =  |                                         |   |
| ᅀ         |                                         |                |    | ٩  |                                         |   |
| _         | 7000                                    | ~              | ¥  | ت  | START<br>** NO                          |   |
|           |                                         | - W            | _  |    |                                         |   |
|           |                                         | ***            |    |    |                                         |   |
|           |                                         | ***            |    |    |                                         |   |
|           | ************                            | <b>***</b>     |    |    |                                         |   |
|           |                                         |                |    |    |                                         |   |

|              | PROGRAM<br>ENT' STATEMENT<br>ERE J=15726, K=9279           | REMARKS FIELD DEFINE MEMORY ORIGIN K IS DEFINED AS A DEC CONSTANT | DEFINED AS A DEC C<br>NES A MEMORY CELL<br>IS THE ENTRY POINT | LOAD J INTO REGISTER "A" ADD CONTENTS OF K TO REG. "A" STORE J+ K TO MENORY CELL TANSR | HALT THE COMPUTER<br>TRANSFER CONTROL TO START+1 |            |
|--------------|------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------|------------|
| T HO B HINGS | SSEMBLY LANGUAGE INDICATE COMME                            | ORG ZØØ1B<br>DEC 9279                                             | J DEC 15726<br>IANSR OCT Ø<br>START NOP                       | LDA J<br>ADA K<br>STA HANSR                                                            |                                                  |            |
| E 0002 #01   | * THIS IS A SAMP.<br>* ASTERISK IN COL<br>* PROGRAM TO COL | # 02001<br>02001 022077                                           | <b>02002 03</b> 6556<br>02003 000000<br>02004 000000          | 02005062002<br>02006042001<br>02007072003                                              | 02010<br>02011                                   | NO ERRORS* |
| PAGI         | 0000<br>0000<br>0000                                       | *0000<br>0000<br>1000                                             | 0000<br>0000<br>00000<br>0000                                 | 200<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100                     | 9044<br>9045<br>9045                             | *          |

# THE ASSEMBLER CHARACTER SET

- A THROUGH Z
- Ø THROUGH 9
- PERIOD
- \* ASTERISK
- + PLUS
- NINUS
- COMMA
- () PARENTHESES

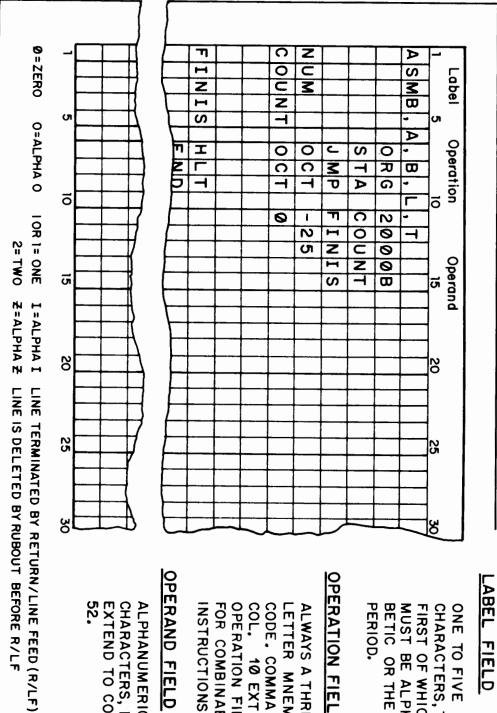
SPACE

ALL CHARACTERS ARE ASCII CODE

## THE CONTROL STATEMENTS

| AND REMARKS |              | <b>B</b> |       | LNI   |     |     |       | CONTINUATION |     |
|-------------|--------------|----------|-------|-------|-----|-----|-------|--------------|-----|
| OPERAND     |              | 100B     |       | COUNT | 9   | -12 | 0     | 8            |     |
| OP CODE     | <b>-</b>     | ORG      | NOP   | LDA   | JMP | OCT | OCT   | PROGRAM      | END |
| LABEL       | ASMB,A,B,L,T |          | BEGIN |       |     | WOW | COUNT | 09           |     |

THE CONTROL STATEMENT MUST BEGIN IN COLUMN 1, AND IT MUST BE THE FIRST PHYSICAL STATEMENT OF A


SOURCE PROGRAM.

IDENTIFIES ASSEMBLY INPUT ABSOLUTE OR RELOCATABLE PROGRAM. ASMB A/R

BINARY OBJECT TAPE REQUESTED മ

ASSEMBLY LISTING REQUESTED
LISTING OF SYMBOL TABLE REQUESTED
MUST BE THE LAST PHYSICAL STATEMENT OF A PROGRAM

### USING THE ASSEMBLER CODING SHEET



### LABEL FIELD

PERIOD. BETIC OR THE FIRST OF WHICH
MUST BE ALPHA-CHARACTERS, THE ONE TO FIVE

### OPERATION FIELD

COL. 10 EXTENDS INSTRUCTIONS. FOR COMBINABLE OPERATION FIELD LETTER MNEMONIC **ALWAYS A THREE** 

### OPERAND FIELD

EXTEND TO COL CHARACTERS, MAY **ALPHANUM ERIC** 

## **EXAMPLES OF LABELS**

| OPERAND            |                                                            |  |
|--------------------|------------------------------------------------------------|--|
| OP CODE            |                                                            |  |
| LABEL<br>1 2 3 4 5 | A · · A ·  A · ·  B · ·  C ·  D ·  D ·  D ·  D ·  D ·  D · |  |
|                    | VALID<br>LABELS                                            |  |

FIRST CHARACTER NUMERIC 6 CHARS., TRUNCATED TO ABC 12

2

↽

ပ အ

4

8

4

~

ASTERISK ILLEGAL

NO LABEL, FIRST BLANK TERM INATES LABEL FIELD.

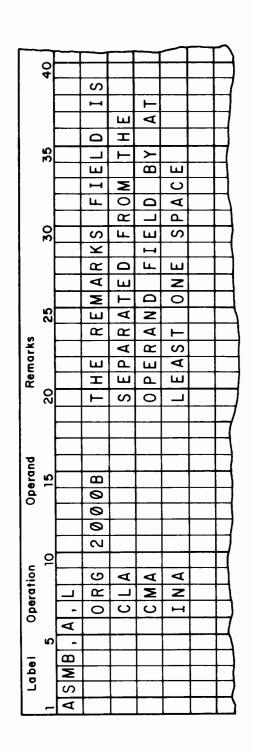
A B C

ა \*

B

INVALID LABELS

# SPECIAL USE OF THE ASTERISK IN THE LABEL FIELD


- Asterisk in column 1 identifies a comment statement.
- Positions 2 -80 are available for comments.
- \*Comments appear in the assembly listing exactly as they appear in the source program.
- Comments are not processed by the assembler and use no storage.

NOTE: POSITIONS 1 — 68 ONLY WILL BE PRINTED ON THE 2752A TELEPRINTER.

### **EXAMPLE**:

|                                          | COLUMN        |
|------------------------------------------|---------------|
| * *                                      | 14            |
| S                                        | 2             |
|                                          | ABE 1         |
|                                          | 18E L<br>2345 |
| *THIS IS AN EXAMPLE OF WRITING A COMMENT |               |
| ENT AN                                   |               |
| ĹÚ.                                      | 무             |
| ×                                        |               |
| <u> </u>                                 |               |
| Ę                                        | OP CODE       |
| 유                                        | ı,            |
| €                                        | • -           |
| - 2                                      | 유             |
| 를                                        | ļΨ̈́          |
| ଜ                                        | OPERAND       |
| P                                        | Z             |
| 8                                        | P             |
| <u> </u>                                 |               |
| <u>m</u>                                 |               |
| Z                                        |               |

### REMARKS FIELD



80th CHARACTER. THE ENTIRE STATEMENT LENGTH SHOULD NOT EXCEED 52 CHARACTERS. REMARKS SHOULD BE OMITTED IF THE FOLLOWING STATEMENTS ARE USED WITHOUT OPERANDS: NAM, THE REMARKS FIELD EXTENDS FROM THE OPERAND FIELD TO THE END, HLT, SOC, SOS.

## RELATIVE ADDRESSING



| ORE<br>N IT IS | 2003 THEREF | IN THIS EXAMPLE THE * HAS A VALUE OF 2003 THEREFORE * + 3 = 2006. * EQUALS THE VALUE OF THE P.L.C. WHEN IT ENCOUNTERED IN THE ASSEMBLY. | *EQUALS TI | IN THIS EXAMPLE THE * HAS A V.  * + 3 = 2006. * EQUALS THE VAL  ENCOUNTERED IN THE ASSEMBLY. |
|----------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------|
|                |             |                                                                                                                                         |            |                                                                                              |
|                |             | нст                                                                                                                                     |            | 2006                                                                                         |
|                | -25         | DEC                                                                                                                                     | COUNT      | 2005                                                                                         |
|                | 0           | OCT                                                                                                                                     |            | 2004                                                                                         |
|                | *+3         | JMP                                                                                                                                     |            | 2003                                                                                         |
|                | COUNT-1     | STA                                                                                                                                     |            | 2002                                                                                         |
|                | COUNT       | LDA                                                                                                                                     |            | 2001                                                                                         |
| REMARKS        | OPERAND     | OP CODE                                                                                                                                 | LABEL      | PROGRAM<br>LOCATION<br>COUNTER                                                               |

# INTRODUCTION TO INPUT/OUTPUT

SELECT CODE INSTRUCTION 0 0

### I/O INSTRUCTION FORMAT

INPUT/OUTPUT DEVICE

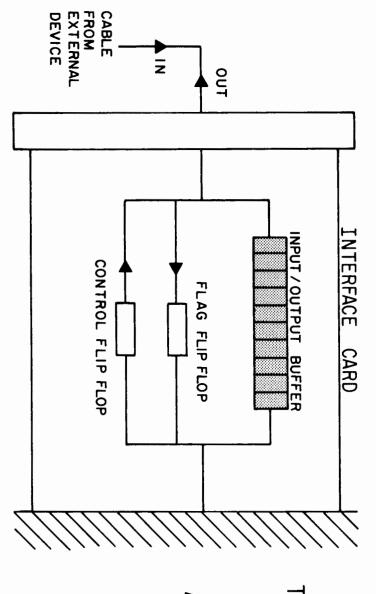
I/O INTERFACE CARD

A PHYSICAL DEVICE CAPABLE OF TRANSMITTING AND/OR RECEIVING COMPUTER DATA.

A COMPUTER ELECTRONICS CARD THAT PROVIDES

THE PHYSICAL AND ELECTRICAL CONNECTION

BETWEEN THE DEVICE AND THE COMPUTER. THE RECEPTACLE IN THE I/O CARD CAGE


THAT HOLDS THE I/O INTERFACE CARD.

IDENTIFIES A PARTICULAR I/O CHANNEL. SELECT CODE

I/O CHANNEL

# INTERFACE CARDS CONTAIN

- INPUT/OUTPUT BUFFER FLAG FLIP FLOP
- CONTROL FLIP FLOP



TO COMPUTER LOGIC

A/B REGISTERS

AND

# THE STC INSTRUCTION (INPUT DEVICE)

INSTRUCTION

POWER FOR CLUTCH

OFF

STC (sc), C

CONTROL BIT

FLAG BIT

DEVICE (sc) BUFFER REGISTER

×

×

×

×

BEFORE INSTRUCTION EXECUTION ×

CONTROL SET, FLAG CLEAR, DEVICE STARTS READ CYCLE

**8** 

Ø

× × ×

×

×

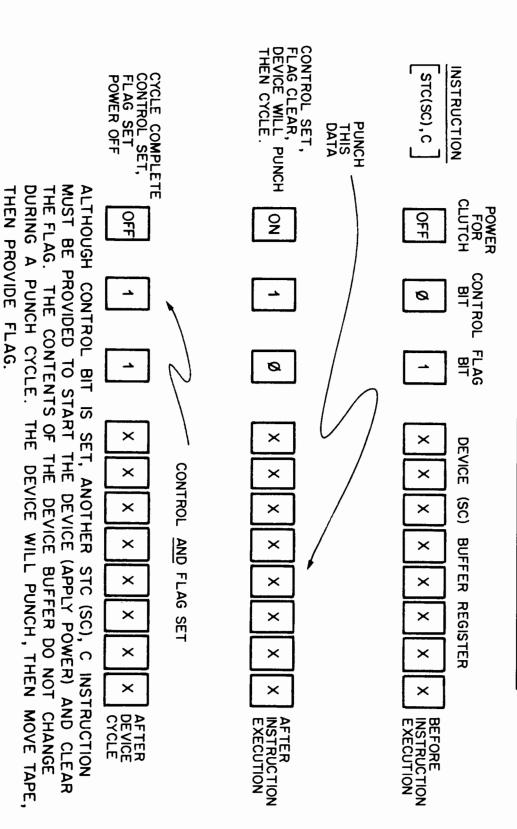
AFTER INSTRUCTION EXECUTION × ×

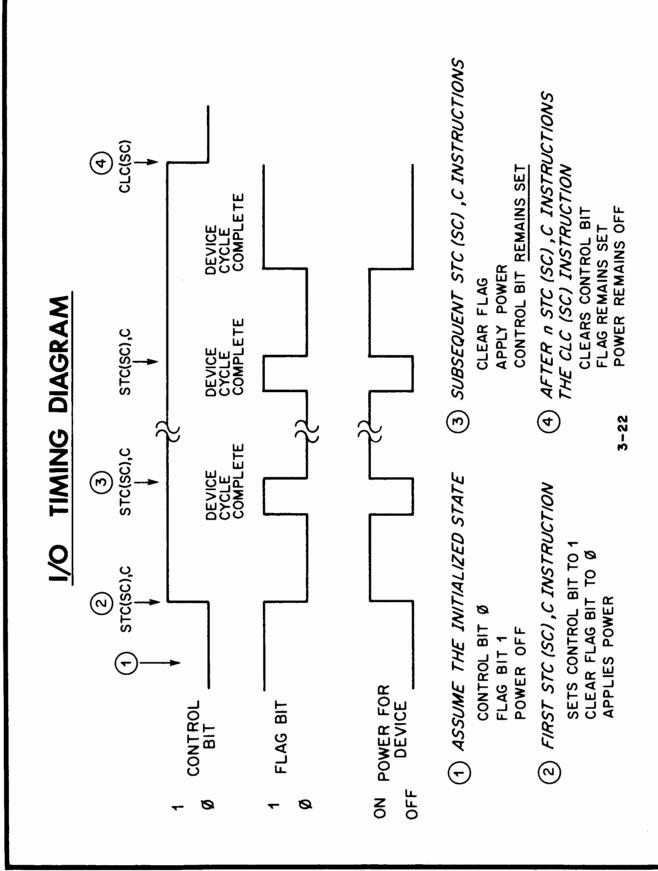
CYCLE COMPLETE FLAG SET, CONTROL SET, DATA IN BUFFER O POWER OFF

OFF

0

CONTROL AND FLAG = 1


AFTER DEVICE CYCLE


0

0

BIT IS SET, ANOTHER STC (SC), C INSTRUC-TO START THE DEVICE (APPLY POWER) ALTHOUGH THE CONTROL TION MUST BE PROVIDED AND CLEAR THE FLAG.

# THE STC INSTRUCTION (OUTPUT DEVICE)





## THE CLF INSTRUCTION

INSTRUCTION

CLF (sc)

CONTROL FLAG BIT BIT

×

× × × × ×

×

×

×

Ø

× × ×

× ×

× ×

ANY OTHER I/O INSTRUCTION BY USING (,C). 1/0 DEVICE. THIS INSTRUCTION CAN BE COMBINED WITH THIS INSTRUCTION CLEARS THE FLAG BIT OF THE SPECIFIED

### THE SFS INSTRUCTION

INSTRUCTION

SFS (sc)

CONTROL FLAG

×
×
×

X SKIP CONDITION

×

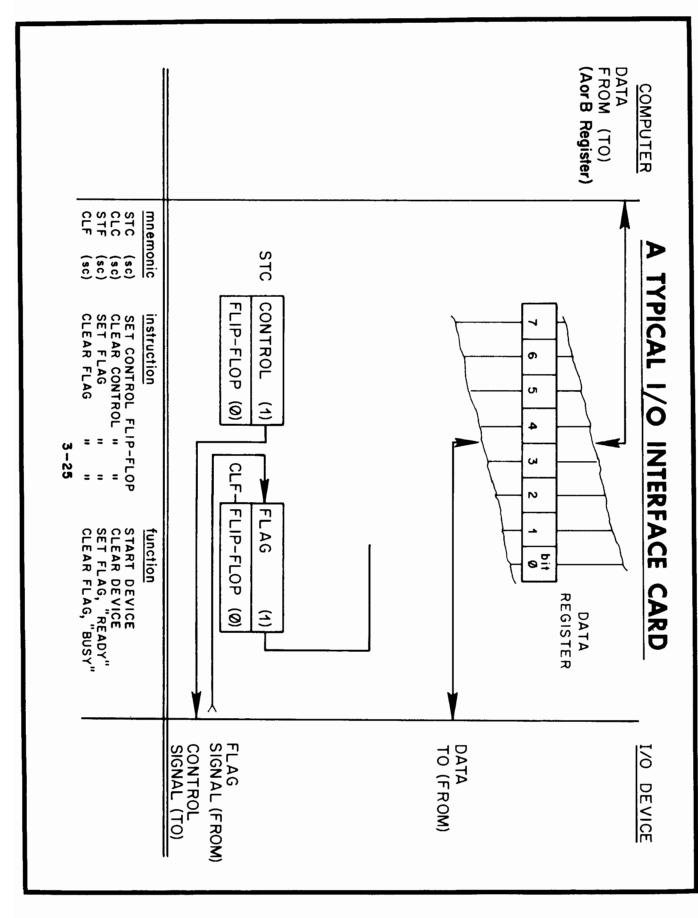
×

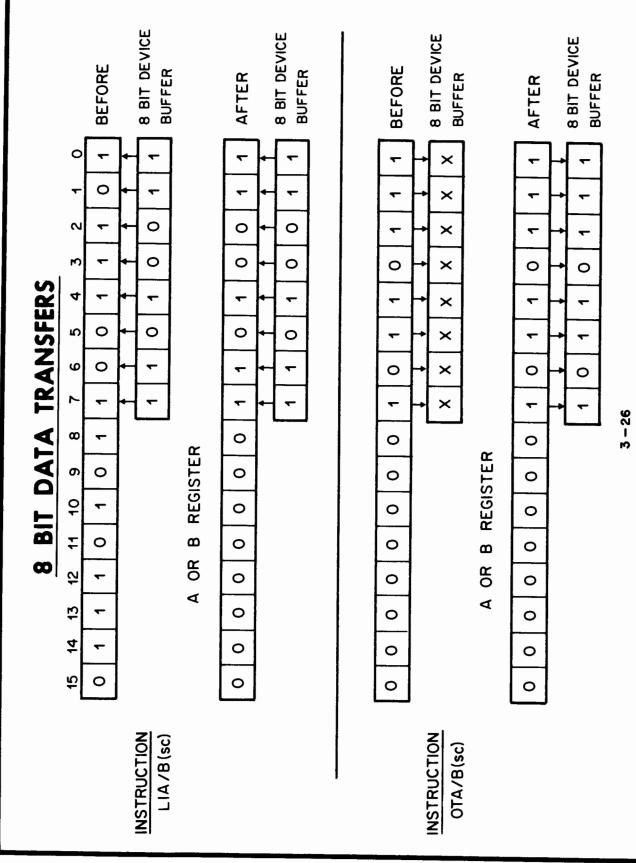
×

×

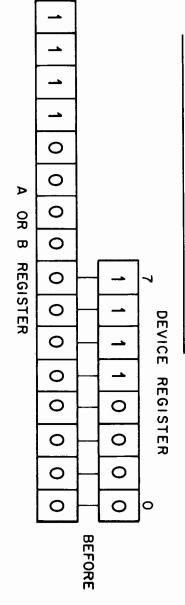
Ø

× × ×


X NO SKIP CONDITION


×

×

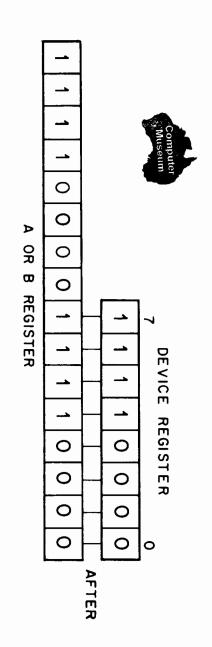

×

THIS INSTRUCTION WILL TEST THE STATUS OF THE FLAG BIT ON THE SPECIFIED I/O DEVICE. IF THE FLAG BIT IS SET (1), THE NEXT SEQUENTIAL INSTRUCTION IS SKIPPED. IF THE FLAG BIT IS CLEAR (Ø) THE NEXT SEQUENTIAL INSTRUCTION IS EXECUTED.





## THE MIA/B INSTRUCTION




INSTRUCTION

MIA/B(sc)

SPECIFIED DEVICE REGISTER INTO THE A OR B REGISTER IN AN INCLUSIVE 'OR' OPERATION. OVFLO, E, ARE THIS INSTRUCTION COMBINES THE CONTENTS OF THE

NOT AFFECTED.



## A DATA TRANSFER EXAMPLE

THE PROGRAM BELOW WILL READ TWO (8 LEVEL) PAPER TAPE CHARACTERS AND PACK THEM INTO ONE 16 BIT WORD. THE PROGRAM ASSUMES A PHOTO READER IS AVAILABLE AND ASSIGNED A SELECT CODE OF 178

| CONTENTS | 103717<br>102317<br>025002<br>102517<br>004727<br>103717<br>102317<br>025007<br>102417                                                                 |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOCATION | 1001<br>1002<br>1003<br>1005<br>1006<br>1010<br>S 1011                                                                                                 |
| REMARKS  | START READER IS FLAG SET? NO, STAY IN LOOP YES, LOAD 1ST 8 BITS ROTATE TO HI "A" START READER IS FLAG SET? NO, STAY IN LOOP YES, MERGE 2ND 8 BITS HALT |
| OPERAND  | 178,C<br>178<br>A<br>178<br>178,C<br>178<br>B<br>178                                                                                                   |
| OPCODE   | STC<br>SFS<br>JMP<br>LIA<br>ALF, ALF<br>STC<br>SFS<br>JMP<br>MIA                                                                                       |
| LABEL    | <b>⊲</b> ®                                                                                                                                             |

# **BOOTSTRAP LOADER PROGRAM**

### **DEFINITION** A F

A PROGRAM USED TO <u>LOAD</u> THE ABSOLUTE BINARY LOADER PROGRAM INTO MEMORY

I. ENTER THE FOLLOWING 12 INSTRUCTIONS IN MEMORY BY USING THE FRONT PANEL CONTROLS

| RA = OCTAL | 00033    | 00032  | 00031    | 00030                | 00027    | 00026                | 00025                     | 00024    | 00023                | 00022    | 00021                | 00020                     | ADDRESS OCTAL |
|------------|----------|--------|----------|----------------------|----------|----------------------|---------------------------|----------|----------------------|----------|----------------------|---------------------------|---------------|
| ADDRESS    | 024020   | 006004 | 170001   | 1024RA               | 024026   | 1023RA               | 1037RA                    | 001727   | 1025RA               | 024021   | 1023RA               | 1037RA                    | CODE OCTAL    |
| OF READER  | JMP (20) | INB    | STA(B),I | MIA (READER ADDRESS) | JMP (26) | SFS (READER ADDRESS) | STC, CLF (READER ADDRESS) | ALF, ALF | LIA (READER ADDRESS) | JMP (21) | SFS (READER ADDRESS) | STC, CLF (READER ADDRESS) | INSTRUCTION   |

ILOAD THE B-REGISTER WITH 77700

# THE INCREMENT -SKIP ZERO INSTRUCTION

### MEMORY

(NO SKIP CONDITION) AFTER \_ \_ ~ ~ ~ ~ \_ 7 ~ ~ ~ <u>\_</u> <del>-</del>

### MEMORY

INSTRUCTION

ISZ

INCREMENT THE CONTENTS OF MEMORY LOCATION Y AND TEST FOR ZERO. IF Y IS EQUAL TO ZERO THE NEXT SEQUENTIAL INSTRUCTION IS SKIPPED. IF Y IS NOT EQUAL TO ZERO, THE NEXT SEQUENTIAL INSTRUCTION IS EXECUTED.

#### MEMORY

BEFORE Ĺ \_ <del>-</del> ~ 7 ~ 7 7 ~ ~ ~ \_

MEMORY

3-30

# THE B. S. S. PSEUDO INSTRUCTION

BLOCK STARTING SYMBOL

BLOCK CAN NOT BE DETERMINED WHEN THE OBJECT PROGRAM IS LOADED FOR EXECUTION AND MUST BE TAKEN INTO CONSIDERATION BY THE PROGRAMMER. ALLOCATE A BLOCK OF MEMORY LOCATIONS TO A PROGRAM. THIS PSEUDO WILL CAUSE THE ASSEMBLER TO THE CONTENTS OF THE MEMORY

#### FOR EXAMPLE:

### INDIRECT ADDRESSING

THE ASSEMBLER PROGRAM WILL SET THE INDIRECT ADDRESSING BIT (15) FOR ALL MEMORY REFERENCE OPERANDS TAGGED WITH THE ",I" DESIGNATOR.

#### FOR EXAMPLE:

| LOCATION                        | CONTENTS       | LABEL   | OPCODE | OPERAND  | REMARKS                  |
|---------------------------------|----------------|---------|--------|----------|--------------------------|
| 2999                            | 002021         | ADRES   |        | 2021     | OCTAL CONSTANT           |
| 2 Ø 1 Ø                         | <b>Ф62ФФ</b>   |         | LDA    | ADRES    | PICK UP OCTAL CONSTANT   |
| 2 Ø 1 1                         | 162000         |         | L D B  | ADRES, I | PICK UP DECIMAL CONSTANT |
| 2021                            | 777770         |         | • • •  | 32767    | DECIMAL CONSTANT         |
| NOTE: AFTER EXECUTION OF CODING | CUTION OF CODI | NG<br>N | EN •   |          |                          |

REGISTER "A" = 002021 REGISTER "B" = 077777

## THE DEF PSEUDO INSTRUCTION

THE DEF PSEUDO <u>DEFINES</u> THE MEMORY ADDRESS OF A PROPERLY DEFINED SYMBOL. THE ASSEMBLER GENERATES A 15 BIT MEMORY ADDRESS IN THE <u>OBJECT PROGRAM</u> WHEREVER THE DEF APPEARS.

#### FOR EXAMPLE:

| 00114       | • | • | • | •                       | 00103             | 00102                | 00101  | 00100<br>00100       | LOCATION |
|-------------|---|---|---|-------------------------|-------------------|----------------------|--------|----------------------|----------|
| 000000      | • | • | • | •                       | 160001            | 066000               | 000000 | 000114               | CONTENTS |
| TABLE       |   |   |   |                         |                   |                      | START  | ADRES                | LABEL    |
| <b>EN</b> D | • | • | • | •                       | LDA               | L DB                 | NOP    | ORG<br>DE F          | OPCODE   |
| 100         | • | • | • | •                       | 1, I              | ADRES                |        | 1008<br>TABLE        | OPERAND  |
|             |   |   |   | (GET FIRST TABLE VALUE) | LOAD "A" THRU "B" | GET ADDRESS OF TABLE |        | DEF ADDRESS OF TABLE | REMARKS  |

## ADDRESS MODIFICATION

ADDRESS MODIFICATION IS AN IMPORTANT PROGRAMMING TECHNIQUE.

FOR EXAMPLE: A PROGRAM TO SUM THE CONTENTS OF 10 SEQUENTIAL MEMORY LOCATIONS.

# THE JUMP SUBROUTINE INSTRUCTION (JSB)

"MAIN PROGRAM". TO PERFORM THIS FUNCTION 3 DISTINCT OPERATIONS EXECUTE A "SUBROUTINE" AND RETURN TO THE PROPER POINT IN THE ARE REQUIRED. THE JUMP SUBROUTINE INSTRUCTION (JSB) PROVIDES A METHOD TO

- 1 PRESERVE THE RETURN ADDRESS.
- ② TRANSFER CONTROL TO THE SUBROUTINE.
- 3 RETURN TO THE "MAIN PROGRAM".

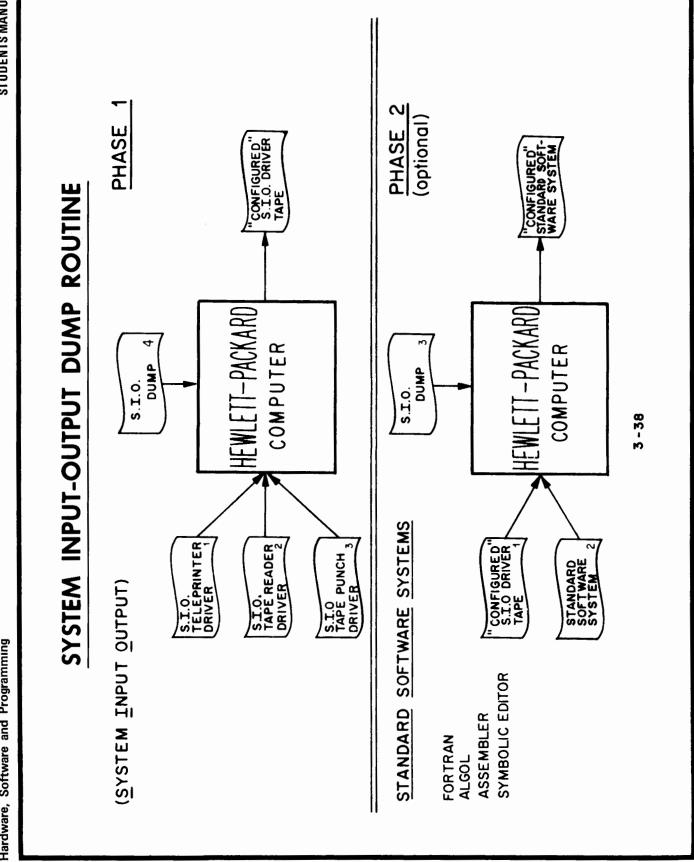
#### EXAMPLE:

| 105 J OCT 7 | 104 I OCT 1 | 103 HLT | 102 ADA J | 101 JSB CMP | 100 LDA I | • | LOCATION LABEL OF CODE OPERAND | MAIN PROGRAM |
|-------------|-------------|---------|-----------|-------------|-----------|---|--------------------------------|--------------|
|             |             |         |           | 201 CMA     | CM        |   | LOCATION                       | SUBROUTINE   |

#### **JSB EXAMPLE**

A SUBROUTINE TO CLEAR THE "A" AND "B" REGISTERS IS SHOWN AS AN EXAMPLE, THE SUBROUTINE IS "ENTERED" FROM 3 DIFFERENT POINTS IN THE "MAIN PROGRAM".

|            | OCATION LABEL OP CODE OPERAND | CLEAR, I             |                      |              |
|------------|-------------------------------|----------------------|----------------------|--------------|
| UTINE      | OP CODE                       | NOP<br>CLA<br>CLB    |                      |              |
| SUBROUTINE | LABEL                         | CLEAR                |                      |              |
|            | LOCATION                      | 3002<br>3002<br>3003 |                      |              |
|            |                               | d b                  | 2                    |              |
|            | OPERAND                       | CLEAR /              | CLEAR<br>J<br>K      | CLEAR        |
| PROGRAM    | OP CODE                       | SSA<br>JSB<br>INA    | JSB<br>ADA<br>ADA    | JSB          |
| MAIN       | LOCATION LABEL                | 2000<br>2001<br>2002 | 2077<br>2100<br>2101 | 2500<br>2501 |


# SYSTEM INPUT OUTPUT SUBROUTINES (SIO DRIVERS)

DEFINITION: A"DRIVER" IS A SUBROUTINE PROGRAM USED TO PERFORM I/O OPERATIONS ON A SPECIFIC DEVICE.

- SIO DRIVERS ARE ABSOLUTE PROGRAMS USED TO PROVIDE THE STANDARD SOFTWARE SYSTEMS WITH I/O CAPABILITY.
- THE "CONFIGURED" ASSEMBLER TAPE INCLUDES PRODUCE THE LISTINGS AND BINARY OBJECT TAPES. REQUIRED TO READ THE SOURCE PROGRAM TAPE AND BOTH THE ASSEMBLER PROGRAM & THE SIO DRIVERS

NOTE: SIO DRIVERS OPERATE WITHOUT INTERRUPT CONTROL





### S.I.O. MEMORY MAP

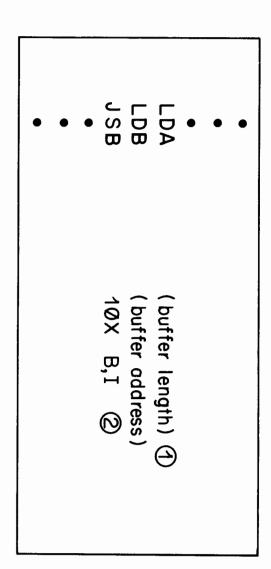
| 0                      | 100                            | 101                  | 102                        | 103                         | 104                           | <b>SYSTEM</b> 105       | 106                     |                            | 2000 |                          |                   | DRIVERS)            |                    | 07700 OR 17777      |  |
|------------------------|--------------------------------|----------------------|----------------------------|-----------------------------|-------------------------------|-------------------------|-------------------------|----------------------------|------|--------------------------|-------------------|---------------------|--------------------|---------------------|--|
| I/O RESERVED LOCATIONS | STND SOFTWARE SYSTEM JMP INST. | INPUT DRIVER ADDRESS | LIST OUTPUT DRIVER ADDRESS | PUNCH OUTPUT DRIVER ADDRESS | KEYBOARD INPUT DRIVER ADDRESS | FWA OF AVAILABLE MEMORY | LWA OF AVAILABLE MEMORY | BASE PAGE AVAILABLE MEMORY |      | PROGRAM AVAILABLE MEMORY | TAPE PUNCH DRIVER | PHOTO-READER DRIVER | TELEPRINTER DRIVER | BASIC BINARY LOADER |  |

# CONFIGURING A PROGRAM SYSTEM

## THE SYSTEMS TO BE CONFIGURED

- ASSEMBLER SYSTEM
- SYMBOLIC EDITOR SYSTEM
- FORTRAN COMPILER SYSTEM-PASS 1 TAPE ONLY
  - ALGOL COMPILER

### (ONLY PROVIDED WHEN I/O DEVICE ORDERED) THE S.I.O. DRIVERS


- TELEPRINTER
- TAPE READER TAPE PUNCH

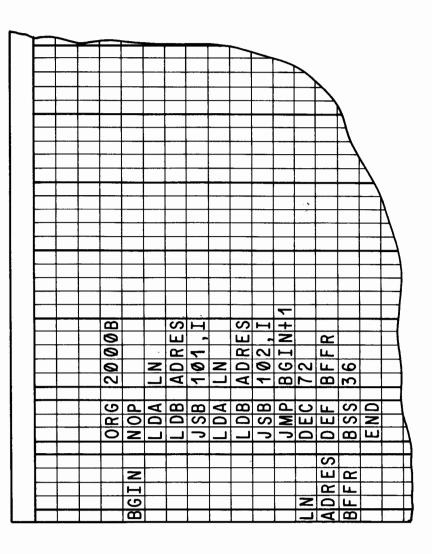
# THE PROCEDURE (BASIC BINARY LOADER USED FOR ALL MODULE LOADING)

- LOAD A DRIVER. (THE TELEPRINTER MUST BE LOADED FIRST)(PHOTOREADER SECOND)(PUNCH LAST)
- PLACE THE ADDRESS 2 INTO THE P-REGISTER; SET SWITCHES 5-0 OF THF SWITCH REGISTER TO THE CHANNEL NUMBER ASSOCIATED WITH THAT DEVICE AND PRESS RUN
- REPEAT ABOVE STEPS FOR EACH DRIVER TO BE INCLUDED.
- LOAD THE PERTINENT PROGRAMMING SYSTEM. 4.
- LOAD THE S. I.O. DUMP ROUTINE.
- PLACE THE ADDRESS 2 INTO THE P-REGISTER & SET SWITCH 15 OF THE SWITCH REGISTER TO OBTAIN THE FOLLOWING OPTIONS:
- 0 = 0UTPUT TO CONTAIN ONLY S.I.O. DRIVERS AND SYSTEM LINKAGE TABLE. 1 = PROGRAM SYSTEM IS TO BE INCLUDED ON OUTPUT.
- PRESS RUN TO COMMENCE PUNCH-OUT.
- MULTIPLE COPIES MAY BE OBTAINED BY REPEATING FROM SWITCH 15 SETTING OF STEP 6. <u>.</u>

# SIO DRIVER USE FOR ABSOLUTE PROGRAMS

AS FOLLOWS: THE USER "CALLS" AN S.I.O. DRIVER FROM HIS MAIN PROGRAM




OPERATION IS COMPLETED CONTROL IS RETURNED TO THE MAIN PROGRAM WHEN THE I/O

- Use positive numbers for characters, negative numbers for words.
- 2 10X= the systems linkage table address which contains the address of the proper driver

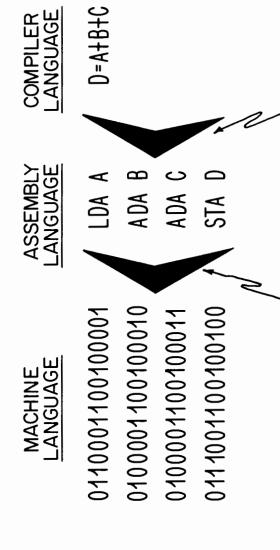
NOTE: REMEMBER THE DRIVERS MUST BE "CONFIGURED" TO THE PROPER I/O CHANNEL ASSOCIATED WITH THE DEVICE

## EXAMPLE - S.I.O. DRIVER USE

RECORD FROM THE PHOTOREADER AND THEN TYPES THOSE SAME CHARACTERS ON THE TELEPRINTER. WRITE A PROGRAM WHICH "READS" A 72 CHARACTER ASC II



LOADING THE REQUIRED SIO DRIVERS PRIOR TO THIS PROGRAM ASSURES THAT THE LINKAGE WORDS WILL BE IN 101 & 102, 3-42


#### OBJECTIVE

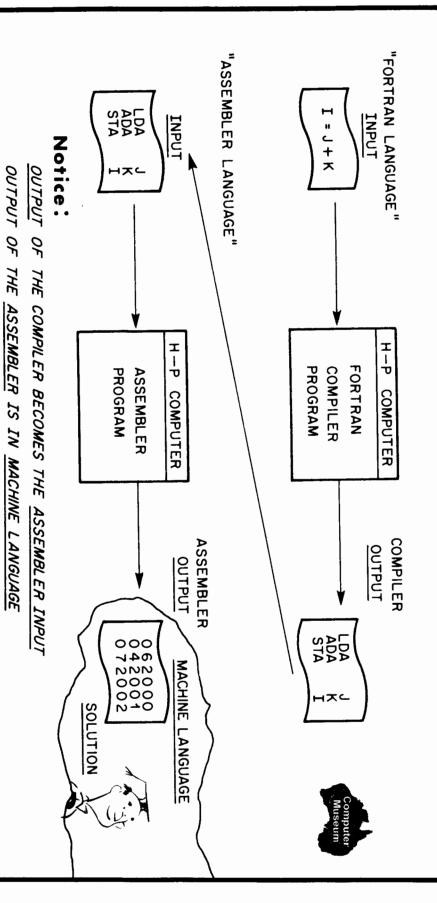
INTRODUCE THE STUDENT TO THE USER PROGRAMMING ENVIRONMENT.

YOU WILL LEARN ABOUT:

- 1. FORTRAN CONCEPTS AND OPERATING PROCEDURES
- 2. BASIC CONTROL SYSTEM (BCS) CONCEPTS AND CONFIGURATION
- 3. INTERRUPT SYSTEM HOW AND WHY

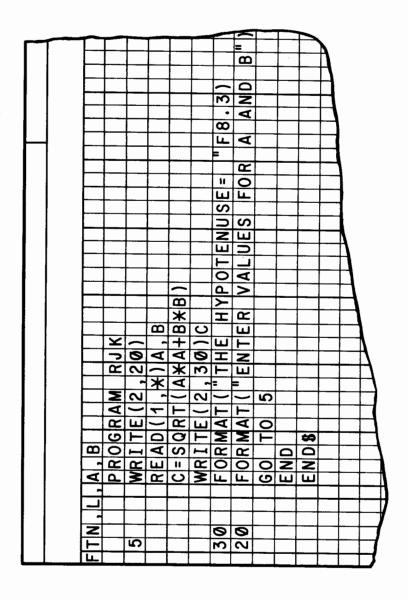
## PROGRAMMING LANGUAGES



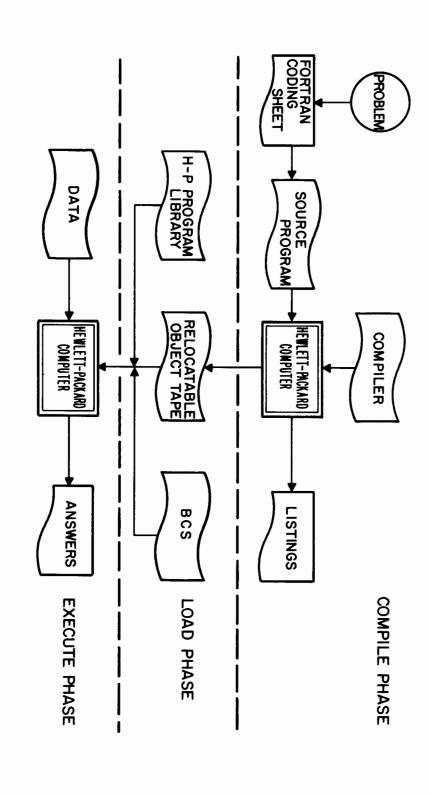

THE COMPILER PERFORMS
THIS TRANSLATION
(MANY FOR ONE)

THE ASSEMBER PERFORMS THIS TRANSLATION

(ONE FOR ONE)


## COMPILERS AND ASSEMBLERS

## SHOWN. FORTRAN STANDS FOR FORMULA TRANSLATION. THE FORTRAN SOLUTION TO A TRIVIAL PROBLEM IS




# A SAMPLE FORTRAN PROGRAM

FORTRAN EXAMPLE - READ IN VALUES FOR SIDES OF A RIGHT TRIANGLE. CALCULATE THE HYPOTENUSE & PRINT OUT THE VALUE ON THE TELEPRINTER,



# FORTRAN OPERATING ENVIRONMENT



## BASIC CONTROL SYSTEM (BCS)

#### WHAT IS IT?

LOADING AND EXECUTION OF RELOCATABLE PROGRAMS AN ABSOLUTE PROGRAM WHICH "CONTROLS" THE

## WHAT ARE ITS FUNCTIONS?

- LOADS AND LINKS RELOCATABLE OBJECT PROGRAMS
- CREATES INDIRECT & BASE PAGE ADDRESSING WHERE NECESSARY
- SELECTS & LOADS REFERENCED LIBRARY ROUTINES PROCESSES I/O REQUESTS & SERVICES I/O INTERRUPTS

### WHAT ARE ITS PARTS?

- INPUT/OUTPUT CONTROL SUBROUTINE (IOC)
- I/O DRIVERS
- RELOCATING LOADER

# RELOCATABLE OBJECT PROGRAM

#### WHAT IS IT?

AND DATA ABSOLUTE MEMORY ADDRESSES FOR ITS INSTRUCTIONS A PROGRAM WHICH SPECIFIES RELATIVE RATHER THAN

### HOW IS IT LOADED?

THE BASIC CONTROL SYSTEM DETERMINES WHERE A RELOCATABLE OBJECT PROGRAM WILL BE LOADED INTO MEMORY.

### THIS PAGE INTENTIONALLY BLANK

## HP PROGRAM LIBRARY



#### WHAT IS IT?

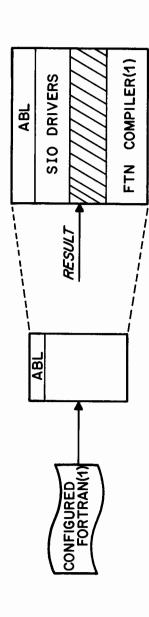
A GROUP OF RELOCATABLE OBJECT PROGRAM SUB-ROUTINES WHICH THE CUSTOMER MAY USE TO PERFORM SPECIFIC TASKS, THEREBY REDUCING HIS OWN PROGRAM-MING EFFORT

#### EXAMPLES

SQRT A Subroutine Which Takes The Square Root Of A Number

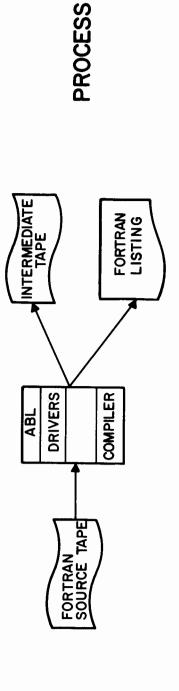
A Subroutine Which Finds The Trigonometric Sine Of A Number

A Subroutine Which Calculates The Natural Logarithm Of A Number


ALOG

SZ

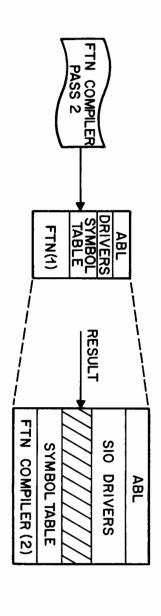
THERE ARE OVER 50 OF THESE SPECIAL PURPOSE ROUTINES ON OUR PROGRAM LIBRARY TAPE.


# COMPILER OPERATING PROCEDURES (I)

LOAD THE FORTRAN COMPILER (PASS 1) TAPE USING THE ABSOLUTE BINARY LOADER.

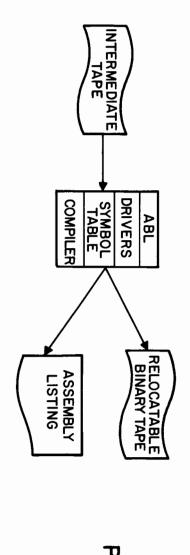


OAD


THE COMPILER THEN PROCESSES OUR FORTRAN SOURCE TAPE AND PUNCHES OUT AN ASSEMBLY LANGUAGE VERSION ON PAPER TAPE. Ħ



4-10


# COMPILER OPERATING PROCEDURES(II)

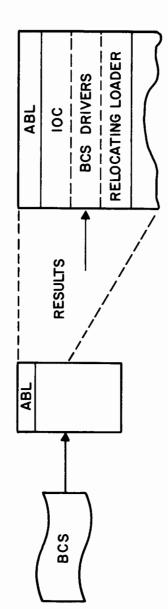
III. LOAD THE FORTRAN COMPILER (PASS 2) TAPE USING THE ABSOLUTE BINARY LOADER



LOAD

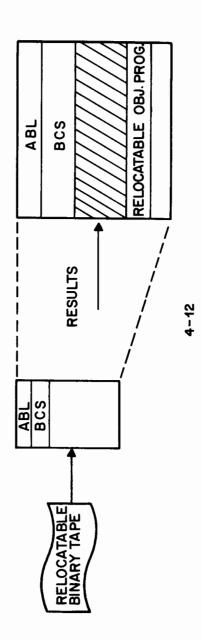
Ħ THE COMPILER THEN PROCESSES THE INTERMEDIATE TAPE & PUNCHES OUT A RELOCATABLE BINARY TAPE OF OUR PROGRAM.




4-11

**PROCESS** 

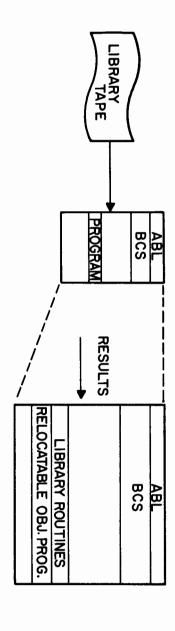
# **BCS OPERATING PROCEDURES (I)**


### LOADING THE SYSTEM

LOAD THE BASIC CONTROL SYSTEM TAPE USING THE ABSOLUTE BINARY LOADER:



### LOADING THE PROGRAM


THE RELOCATING LOADER THEN LOADS OUR RELOCATABLE OBJECT TAPE STARTING AT PAGE 1; LOCATION 20008.



# BCS OPERATING PROCEDURES (II)

## LOADING THE LIBRARY ROUTINES

THE RELOCATING LOADER THEN LOADS THE LIBRARY ROUTINES CALLED BY THE USER PROGRAM.



## RELOCATABLE ASSEMBLY

ASSEMBLY LANGUAGE PROGRAMS MAY ALSO BE WRITTEN IN "RELOCATABLE MODE"

#### RELOCATABLE

ASMB, R,B,L,T

NAM RJK

#### ABSOLUTE

ASMB,A,B,L,T ORG 200B •••

THE PROGRAM ON THE LEFT WILL PRODUCE A <u>RELOCATABLE</u> BINARY TAPE THAT MAY REFERENCE LIBRARY ROUTINES.

USERS WILL PRIMARILY USE THE RELOCATABLE MODE WHEN PROGRAMMING IN ASSEMBLY LANGUAGE.

#### **BCS DRIVERS**

THE INPUT/OUTPUT DRIVERS ASSOCIATED WITH THE BASIC CONTROL SYSTEM MAKE USE OF THE COMPUTER'S PRIORITY INTERRUPT FEATURE.

IN ORDER TO UNDERSTAND MORE ABOUT THE OPERATION OF THE BASIC CONTROL SYSTEM, IT IS ESSENTIAL THAT WE EXAMINE THE INTERRUPT STRUCTURE IN SOME DE-

# NON-INTERRUPT METHOD REVIEW

THE USER COMMANDS THE I/O DEVICE TO CYCLE AND THEN PROGRAMS A LOOP THAT "WAITS" FOR THE DEVICE CYCLE TO COMPLETE.\*

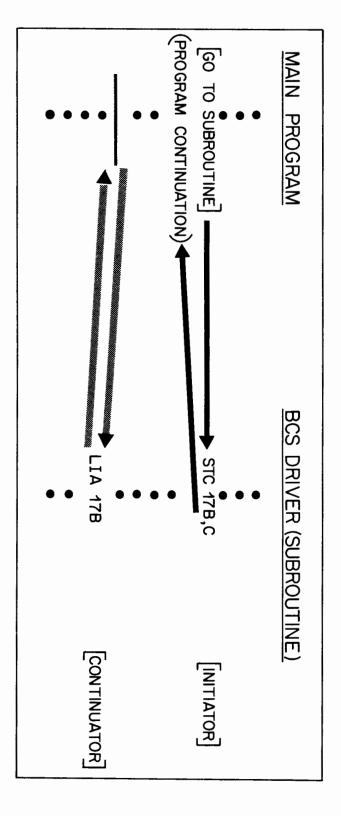
EXAMPLE:

178,0

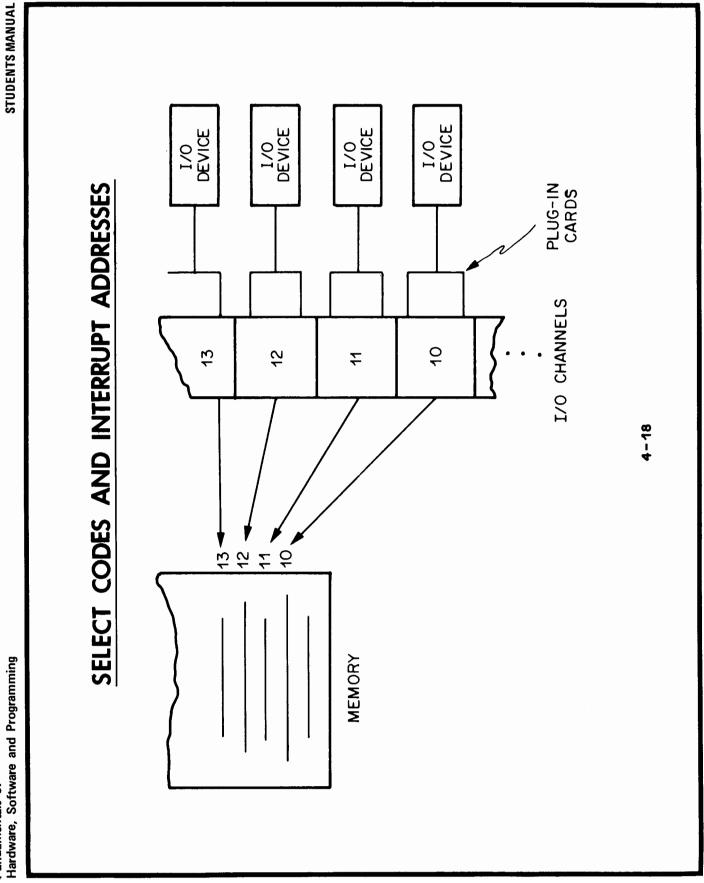
FS 178

IA 178

START READER

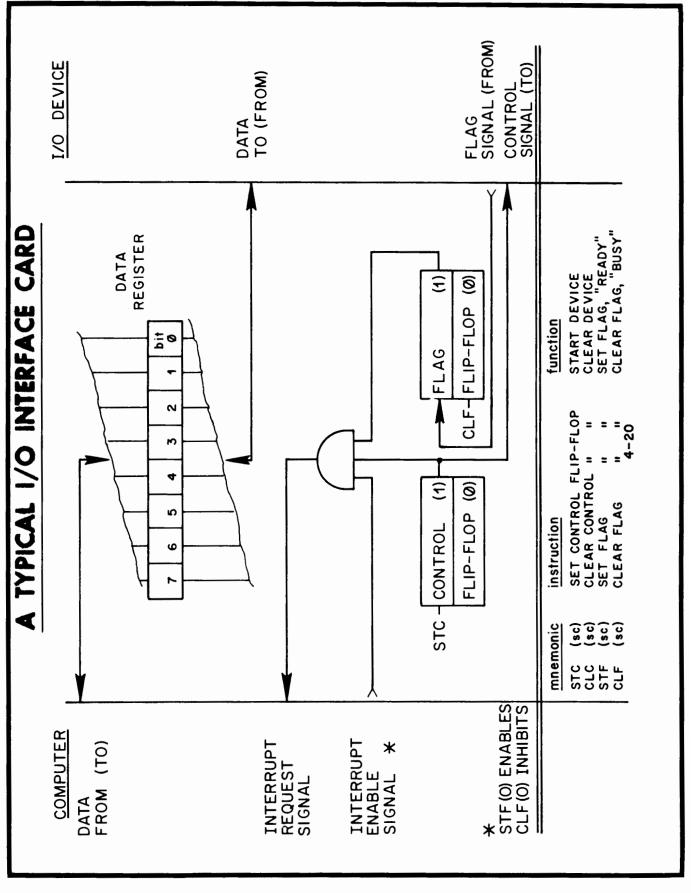

IS THE FLAG SET NO STAY IN LOOP

YES LOAD IN DATA

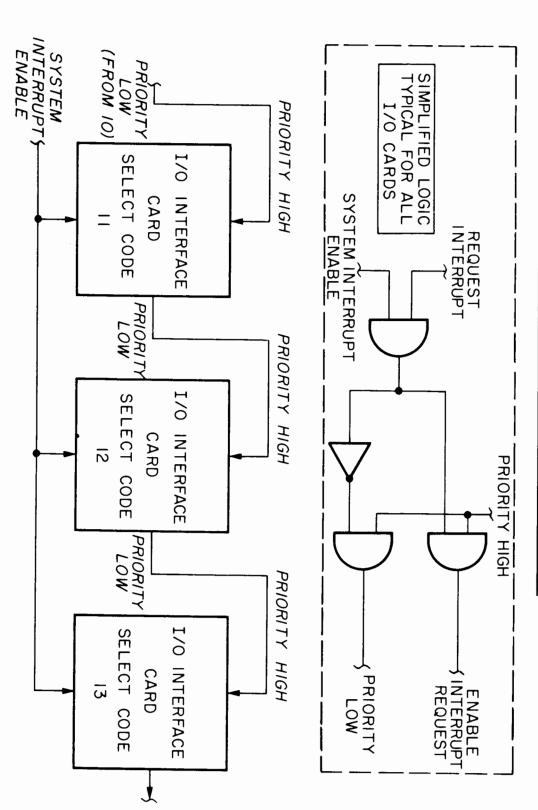

\*REMEMBER, THIS IS THE METHOD USED BY SIO DRIVERS

### INTERRUPT METHOD

THE USER COMMANDS THE I/O DEVICE TO CYCLE AND THEN CONTINUES EXECUTION OF THE MAIN PROGRAM. THE COMPLETION OF THE DEVICE CYCLE WILL INTERRUPT THE MAIN PROGRAM AND TRANSFER CONTROL TO A SUBROUTINE THAT WILL HANDLE THE ACTUAL DATA TRANSFER




Fundamentals of Hardware, Software and Programming




## SELECT CODE ASSIGNMENTS

| SELECT<br>CODE | INTERRUPT<br>LOCATION | FUNCTIONAL ASSIGNMENTS            |
|----------------|-----------------------|-----------------------------------|
| 0              | NONE                  | ENABLE/DISABLE I/O AND INT. SYST. |
|                | NONE                  | SWITCH REGISTER                   |
| 2              | NONE                  | DMA CH 1                          |
| ß              | NONE                  | DMA CH 2                          |
| 4              | 4 -                   | POWER FAIL                        |
| (Ji            | O I                   | MEMORY PROTECT                    |
| თ              | 6                     | DMA CH1                           |
| 7              | 7 -                   | DMA CH2                           |
| 10             | 10 -                  | I/ODEVICE HIGHEST PRIORITY        |
| •              | •                     | •                                 |
| •              | •                     | •                                 |
| •              | •                     |                                   |
| •              | ٠                     | •                                 |
| 77             | 77                    | I/O DEVICE LOWEST PRIORITY        |



## SIMPLIFIED PRIORITY LOGIC

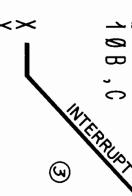


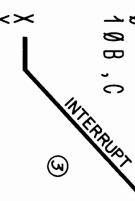
4-21

# INTERRUPT PHASE - HOW IT WORKS

- PROCESSOR, PHASE 4 (INTERRUPT PHASE) IS SET, CAUSING WHEN AN INTERRUPT SIGNAL IS ACKNOWLEDGED BY THE THE FOLLOWING TO HAPPEN:
- P-REGISTER IS DECREMENTED (P-1)
- M-REGISTER IS CLEARED
- M-REGISTER IS SET TO THE SELECT CODE OF THE INTERRUPTING DEVICE 4 2 6
- STRUCTION STORED IN MEMORY LOCATION SPECIFIED BY THE AT THE COMPLETION OF THE INTERRUPT PHASE THE FETCH PHASE IS SET, CAUSING THE COMPUTER TO FETCH THE IN-M-REGISTER [INTERRUPT LOCATION] Ħ

## INTERRUPT PHASE-EXAMPLE


AT MOMENT OF INTERRUPT




(3)

**(** 

909 2 4 6







IN THE INTERRUPT PHASE

P→2 Ø Ø Ø M→1 Ø

FETCH PHASE IS THEN SET

AT CONCLUSION OF FETCH PHASE

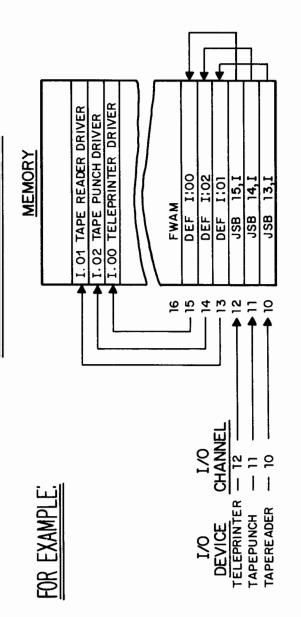
$$M = 2001$$

(1) PROGRAM STARTING POINT

5 5 5 5 5 5 5 5

 $\circ$ 

2 0


- POINT OF INTERRUPT
- (3) REGISTER CONTENTS

### INTERRUPT OPERATION COMPLETE (4) INTERRUPT LOCATION

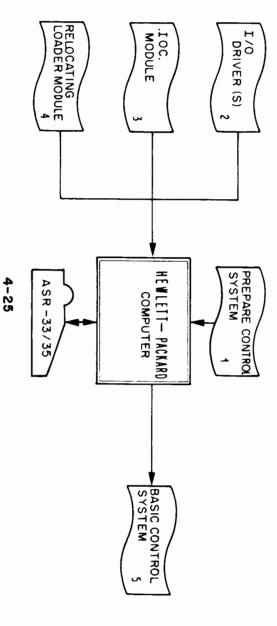
CONTINUES THE EXECUTION OF THE MAIN PROGRAM. THE COMPUTER THEN FETCHES THE INSTRUCTION IN 2001 AND

### INTERRUPT LINKAGE

ONE WHICH WILL TRANSFER CONTROL TO THE CONTINUATOR SECTION OF THE I/O DRIVER ASSOCIATED WITH THE DEVICE. SINCE ALL INTERRUPT LOCATIONS ARE ON THE BASE PAGE 8, THE INSTRUCTION STORED IN THE INTERRUPT LOCATION IS THE I/O DRIVERS ARE IN HIGH MEMORY, THE TRANSFER TO THE DRIVER MUST USE INDIRECT ADDRESSING.



## PREPARE CONTROL SYSTEM (P.C.S.)


#### WHAT IS IT?

A COMPUTER PROGRAM WHICH PROCESSES RELOCATABLE MODULES OF THE BASIC CONTROL SYSTEM AND PRODUCES HARDWARE CONFIGURATION. AN ABSOLUTE VERSION OF B. C.S. TAILORED TO THE SPECIFIC

### WHAT DOES IT DO?

SUBROUTINE (I.O.C.), THE RELOCATABLE LOADER (LDR) AND THE REQUIRED PERIPHERAL EQUIPMENT INPUT/OUTPUT DRIVER SUBROUTINES. IT CREATES AN OPERATING SYSTEM CONSISTING OF THE INPUT/OUTPUT

## PROCESSING ENVIRONMENT



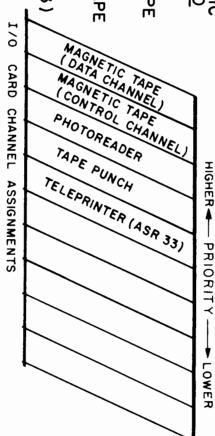
### P.C.S. OVER VIEW

P.C.S PROVIDES THE CAPABILITY OF CREATING A COMPLETE BASIC CONTROL SYSTEM IN THE COMPUTERS MEMORY.

MEMORY

| AST WORD AVAILABLE   | BASIC BINARY LOADER       |
|----------------------|---------------------------|
| MEMORY               | I/O DRIVER # 1            |
| (LWAM)               | I/O DRIVER #2             |
|                      | I/O DRIVER # 3            |
|                      | I/O DRIVER # 4            |
|                      | INPUT OUTPUT CONTROL      |
|                      | RELOCATING                |
|                      | LOADER MODULE             |
|                      | AVAILABLE MEMORY          |
|                      |                           |
|                      | PREPARE CONTROL<br>SYSTEM |
| 0003                 | BASE PAGE                 |
|                      | AVAILABLE MEMORY          |
| PIGO HAVA GOOM TO GE | SYSTEM LINKAGE            |
| MEMORY               | INTERRUPT LINKAGES        |
| (FWAM)               | INTERRUPT LOCATIONS       |
|                      |                           |

WHEN ALL INDIVIDUAL ELEMENTS ARE PRESENT IN MEMORY.
P.C.S. WILL PUNCH AN ABSOLUTE BINARY VERSION OF THE COMPLETE BASIC CONTROL SYSTEM.

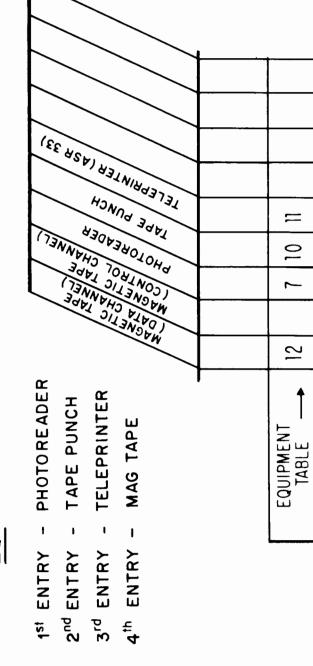

### PLANNING THE SYSTEM

HAS THE HIGHEST PRIORITY, # 11 NEXT HIGHEST, ETC. PLACEMENT OF THE I/O INTERFACE CARDS. CHANNEL #10THE FIRST CONSIDERATION TO BE MADE IS THE PHYSICAL THE HIGHEST PRIORITY. NUMBER OF INTERRUPTS PER UNIT OF TIME IS ASSIGNED GENERALLY, THE DEVICE THAT GENERATES THE GREATEST

#### FOR EXAMPLE.

ASSUME A COMPUTER SYSTEM IS MADE UP OF THE FOLLOWING UNITS:

- 1. READ/WRITE MAGNETIC TAPE (REQUIRES TWO INTERFACE BOARDS)
- 2.- HIGH-SPEED PAPER TAPE READER
- 3. HIGH-SPEED PAPER TAPE PUNCH
  4. TELEPRINTER (ASR-33)




## **EQUIPMENT TABLE NUMBERS**

EQUIPMENT TABLE NUMBERS BEGIN WITH 7. EACH DEVICE IS ASSIGNED A SEQUENTIAL OCTAL NUMBER. WITHIN THIS FRAMEWORK THE INITIAL NUMBER ASSIGNMENTS ARE ARBITRARY.

#### FOR EXAMPLE:

EQT



4-28

# INTERRUPTS, LINKAGE, DRIVER I.D.

INTERRUPT LOCATION - P.C.S. WILL CAUSE A COMPUTER INSTRUCTION TO BE STORED HERE. (USUALLY A JSB, I)

LINKAGE LOCATION - P.C.S. WILL CAUSE THE ADDRESS OF THE CONTINUATOR SECTION OF THE I/O DRIVER TO BE STORED HERE

DRIVER IDENTIFICATION - THE SYMBOLIC NAME OF THE I/O DRIVER INITIATOR SECTION ENTRY POINT.

INTERRUPT IDENTIFICATION - THE SYMBOLIC NAME OF
THE I/O DRIVER CONTINUATOR

SECTION ENTRY POINT

FWAM - THE FIRST WORD OF AVAILABLE MEMOR

NOTE: DRIVER AND INTERRUPT
ID CODES ASSIGNED BY H-P.
THE SYMBOLS USED MUST
BE UNIQUE.

DRIVER IDENTIF

INTERRUPT LOC

NTERRUPT IDE

EQUIPMEN

|           | l             |            |               | I     |      |            |
|-----------|---------------|------------|---------------|-------|------|------------|
|           | =             | 10         | 7             |       | 21   | <b>1</b> → |
| (         | 1.00          | 1.02       | 10.1          | C.21  | 1.21 | NT.        |
| (22) FWAM | 21            | 20         | 17            | 16    | 15   | ON         |
| )         | 14            | 13         | 12            | 11    | 10   | ATION      |
|           | D. <b>Ø</b> Ø | D.002 D.00 | D. <b>Ø</b> 1 | 1     | D.21 | ICATION    |
| TELEPR    | ~ AP.         | P40        | ONT           | (OATA |      |            |
| NTER      | _             | TORE       | 74            | G TA  |      | EMORY.     |
| PAS       | _ ~ < /       | An         | »×ε           | PE    |      | . '        |
| R 33      | ₽             | NEL        | £ _           |       | ~    | NUATOR     |
| / / 5/    | $\sim$        |            |               |       | 유    | IC NAME    |

## STANDARD UNIT NUMBERS

pointers to the appropriate equipment The standard unit numbers are simply table entries.

| NUMBERS               |      |                                              |             | 773                         |         | (8)              |
|-----------------------|------|----------------------------------------------|-------------|-----------------------------|---------|------------------|
| simply<br>uipment     |      | MAG TANNIEL<br>MAG TANNIEL<br>JANION TONNIEL | CONTROL PAR | CONTROLCHANG<br>TARE DANNEL | As adr. | TELEPRINTER (ASE |
| DRIVER IDENTIFICATION | D.21 |                                              | D.00 1      | D. <b>0</b> 2               | 0.00    |                  |
| INTERRUPT LOCATION    | 2    | =                                            | 12          | 13                          | 14      |                  |
| LINKAGE LOCATION      | 15   | 91                                           | 17          | 20                          | 21      |                  |
| INTERRUPT IDENT.      | 1.21 | C.21                                         | 1.01        | 1.02                        | 1.00    |                  |
| EQUIPMENT<br>TABLE —  | 12   |                                              | 1           | 10                          | II      |                  |
|                       | ŀ    | ŀ                                            | ŀ           | ŀ                           | ŀ       |                  |

intersection of the standard unit table number (x-axis), and the correct equipment

table number (y-axis)

To assign standard units place a checkmark at the

|          | STANDARD UNIT TABLE |  |              |            |   |
|----------|---------------------|--|--------------|------------|---|
| <u>+</u> | KEYBOARD INPUT      |  |              |            | > |
| 2        | TELEPRINTER OUTPUT  |  |              |            | > |
| 3.       | PROGRAM LIBRARY     |  | $\nearrow$   |            |   |
| 4        | PUNCH OUTPUT        |  |              | $\nearrow$ |   |
| S        | INPUT               |  | $\checkmark$ |            |   |
| ဖ        | 6. LIST OUTPUT      |  |              |            | _ |

4-30

### P.C.S. OPERATIONS

CONFIGURATION. THE SYSTEM WILL CONSIST OF A COMPUTER THE NEXT FEW CHARTS WILL DESCRIBE A SIMPLE B.C.S

SYSTEM WITH 8K OF MEMORY AND THE FOLLOWING PERIPHERALS:

- READ/WRITE MAGNETIC TAPE - I/O CHANNELS 10,11
- 2. PHOTOELECTRIC PUNCHED PAPER I/O CHANNEL TAPE READER

2

ᇯ

- HIGH SPEED PAPER TAPE PUNCH I/O CHANNEL
- TELEPRINTER (ASR 33)

— I/O CHANNEL 4

PHASES THE ACTUAL CONFIGURATION PROCESS MAY BE DESCRIBED IN FIVE

PHASE 1- INITIALIZATION

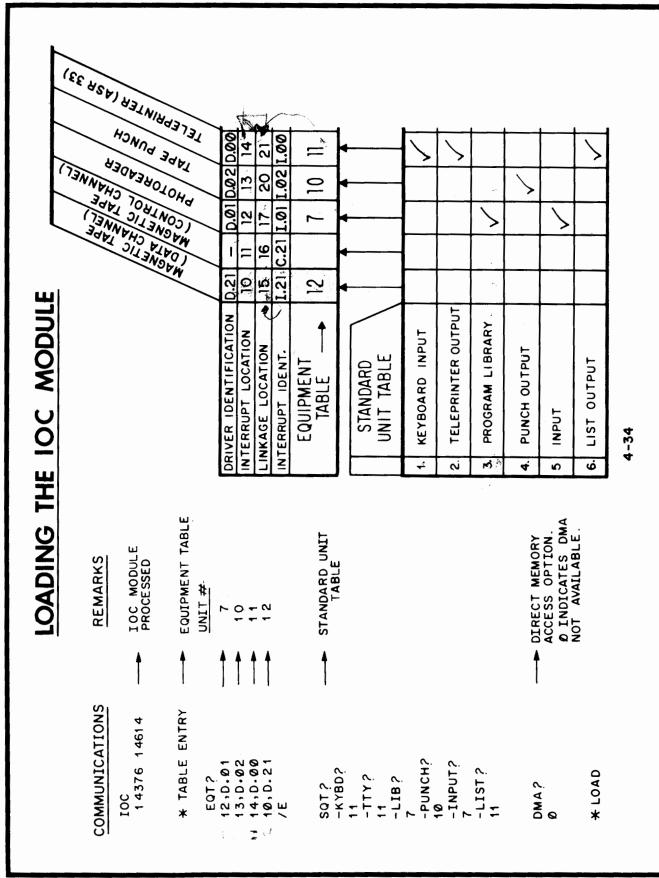
PHASE 2- LOADING THE I/O EQUIPMENT DRIVER

PHASE 3- LOADING THE IOC MODULE

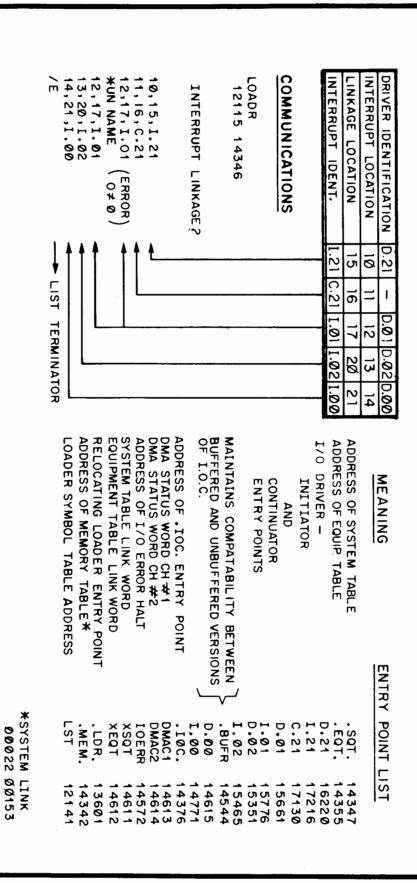
- CREATING THE EQUIPMENT TABLE
   CREATING THE STANDARD UNIT TABLE
- PHASE 4— LOADING THE RELOCATING LOADER MODULE a. ESTABLISH THE INTERRUPT LINKAGES
- PHASE 5- PUNCH THE ABSOLUTE OUTPUT TAPE

### INITIALIZATION PHASE

# THE P.C.S. PROGRAM INITIALIZATION PHASE


|                | THESE ENTRIES REFER TO THE "CONFIGURING" SYSTEM. |                                |                         |                              | able memory                                    | upt locations                                     | lable memory                                  | memory)                                 |                                  |  |
|----------------|--------------------------------------------------|--------------------------------|-------------------------|------------------------------|------------------------------------------------|---------------------------------------------------|-----------------------------------------------|-----------------------------------------|----------------------------------|--|
| REMARKS        | Is H.S. inputunit available ?                    | Channel number of photo-reader | Is H.S punch available? | Channel number of tape punch | Request first word address of available memory | First word following required interrupt locations | Request last word address of available memory | Word preceding basic loader (8K memory) | Request to load first BCS module |  |
| COMMUNICATIONS | HS INP?                                          | 17                             | HS PUN?                 | 20                           | FWA MEM?                                       | 22                                                | LWA MEM ?                                     | 17677                                   | * LOAD                           |  |

# LOADING THE I/O EQUIPMENT DRIVERS


| D.00<br>14615 15350          | * LOAD | D-02<br>15351 15660         | * LOAD | D.Ø1<br>15661 16217           | * LOAD                      | D.21<br>16220 17677             | COMMUNICATIONS |
|------------------------------|--------|-----------------------------|--------|-------------------------------|-----------------------------|---------------------------------|----------------|
| TELEPRINTER DRIVER PROCESSED |        | TAPE PUNCH DRIVER PROCESSED |        | PHOTO-READER DRIVER PROCESSED | REQUEST TO LOAD NEXT MODULE | MAGNETIC TAPE DRIVER PROCESSED* | REMARKS        |

\* WHEN PRESENT, THIS DRIVER SHOULD BE LOADED FIRST DUE TO ITS LARGE SIZE

\* LOAD



# THE RELOCATING LOADER MODULE



MEMORY FWABP LWABP FWAM LWAM

TABLE

\*BCS ABSOLUTE OUTPUT

|           | ,                     |  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|-----------------------|--|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                       |  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                       |  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                       |  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                       |  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                       |  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                       |  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                       |  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                       |  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                       |  |      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|           |                       |  |      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|           |                       |  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                       |  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                       |  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                       |  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                       |  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                       |  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                       |  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                       |  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                       |  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                       |  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                       |  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                       |  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>k.</b> | and the second second |  | <br> | <br>en Managala de la Managala de la constanta de |
|           |                       |  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |