MANUAL CHANGE NOTICE

MANUAL IDENTIFICATION CHANGE IDENTIFICATION
Part Number: 92060-90013 Change Number: 3

Print Date: MAY 1978 Print Date: DEC 1978

Title: Batch-Spool Monitor Software Revision Code: 1826

Reference Manual

Library Index No. 92060.320.92060-90013

THE PURPOSE OF THIS MANUAL CHANGE
is to accumulate all changes to the current edition of the manual. Earlier changes, if any, are contained herein for your

convenience. (If you have made all previous changes to this manual, you need only make the changes described under the
change number indicated above.)

CHANGED PAGES ARE IDENTIFIED .
by the change number at the bottom of the page and a vertical line (change bar) in the outside margin to indicate the area

of the text that has been changed..

NEW PAGES ARE IDENTIFIED
by the change number at the bottom of the page. “New” pages are those which were not present when the current edition of

the manual was published.

TO UPDATE YOUR MANUAL
locate the Change Number, indicated above, on the back of this page and follow the instructions provided.

HEWLETT \h

" PACKARD g

HEWLETT-PACKARD COMPANY
11000 WOLFE ROAD, CUPERTINO, CALIFORNIA, 95014 CN-1

TECHNICAL MANUAL CHANGES
{92060-30013)

CHANGE 1:

Reason for Change 1: Change manual to reflect update of software to 1826 revision code.

A. Replace changed pages with update pages. Insert any new pages in sequence. Destroy all replaced pages
B. Page 2-0 “Index to FMGR Operator Commands’’ change page reference for “TR’ command:
’ From 2.58
To 2-59
CHANGE 2:

Reason for Change 2: Change manual to incorporate technical enhancements to the documentation.

A. Replace changed pages with update pages.

CHANGE 3:

Reason for Change 3: Change manual to incorporate technical enhancements to the documentation.

A. Replace changed pages with update pages.

CN-2

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

MANUAL CHANGE NOTICE

MANUAL IDENTIFICATION CHANGE IDENTIFICATION
Part Number: 9206090013 Change Number: 1

Print Date: MAY 1978 Print Date: JUNE 1978
Title: Batch-Spool Monitor Software Revision Code: 1826

Reference Manual

Library Index No. 92060.320.92060-90013

THE PURPOSE OF THIS MANUAL CHANGE
is to accumulate all changes to the current edition of the manual. Earlier changes, if any, are contained herein for your

convenience. (If you have made all previous changes to this manual, you need only make the changes described under the
change number indicated above.)

CHANGED PAGES ARE IDENTIFIED
by the change number at the bottom of the page and a vertical line (change bar) in the outside margin to indicate the area

of the text that has been changed..

NEW PAGES ARE IDENTIFIED
by the change number at the bottom of the page. “New” pages are those which were not present when the current edition of

the manual was published.

TO UPDATE YOUR MANUAL
locate the Change Number, indicated above, on the back of this page and follow the instructions provided.

il

HEWLETT (hp; PACKARD

S

HEWLETT-PACKARD COMPANY
11000 WOLFE ROAD, CUPERTINO, CALIFORNIA, 95014 CN-1

v

TECHNICAL MANUAL CHANGES

(92060-90013)
CHANGE 1:
Reason for Change 1: Change manual to reflect update of software to 1808 revision code. j
A, Replace changed pages with update pages. Insert any new pages in sequence. Destroy all replaced pageyf
B. Page 2-0 “Index to FMGR Operator Commands’’ change page reference for “TR’ command: i /

CN-2

From 2-58
To 2-59

\/)/d /,:/7;

Batch-Spool Monitor

Reference Manual

HEWLETT hp; PACKARD

HEWLETT-PACKARD COMPANY
11000 WOLFE ROAD, CUPERTINO, CALIFORNIA, 95014

Library Index Number
92060.320.92060-90013
Printed in U.S.A. 12/78

PART NO. 92060-90013

PUBLICATION NOTICE

Information in this manual describes the BATCH-SPOOL MONITOR software. Changes in text to document software
updates subsequent to the initial release are supplied in manual update notices and/or complete revisions to the manual.
The history of any changes to this edition of the manual is given below under “Publication History.” The last change
itemized reflects the software currently documented in the manual.

Any changed pages supplied in an update package are identified by a change number adjacent to the page number.
Changed information is specifically identified by a vertical line (revision bar) on the outer margin of the page.

PUBLICATION HISTORY

Third Editioncoviiiiiiiiin. May 78 (Software Rev. Code 1805)

Change 1.........coiiriiiiiiiiiii i Jun 78 (Software Rev. Code 1826)

Change 2ot Oct 78 (Software Rev. Code 1826)

Change 3 ... vvniiiii e Dec 78 (Software Rev. Code 1826)
NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1978 by HEWLETT-PACKARD COMPANY

PREFACE

The Batch-Spool Monitor provides file management and batch job processing capabilities
through the File Management Package; it provides spooled batch processing or spooled I/O
with the Spool Monitor. The File Management Package can be used independently of the Spool
Monitor, or they can be combined to extend the capabilities of the Batch-Spool Monitor.

The Batch-Spool Monitor is provided as part of the Real-Time Executive III operating system;
it is an option of the Real-Time Executive II operating system.

This manual gives the reference specifications for the entire Batch-Spool Monitor. It is
organized functionally so that it can be used by programmers new to the Batch-Spool Monitor.
An index to each command and call is provided at the start of each section so that experienced
users may quickly reference the command or call formats.

The manual is organized as follows:

® Section I System overview describing each component of the system and its functions

plus a general description of files and cartridges used by the File Manage-
ment Package.

¢ Section II Describes batch job and file control through FMGR commands by means of
the command syntax and an explanation of command usage with examples.

e Section III Describes file management through FMP program calls by means of the
syntax of each call and an explanation of usage with examples.

® Section IV Describes how to use the Spool Monitor, how to enter jobs for spooling and
how to spool the output from jobs; command syntax with an explanation of
usage and examples is provided for the FMGR spooling commands and the
JOB command, XE.

o Section V Describes spool control through the GASP commands by means of command
syntax, explanation of usage, and examples.

® Section VI Describes spool control through the SMP calls by means of the call syntax
and an explanation of usage with examples.

® Section VII Describes how to configure the File Management Package and Spool
Monitor and how to initialize each of these subsystems.

® Appendices Five appendices are provided that supply general information to the user of
the Batch-Spool Monitor:

HP Character Set

Error Codes for FMP, FMGR, and GASP
Table, Directory, and Record Formats
Cartridge Formatting

Making Copies of FMGR

Global Equivalence Table

HEOOQm >

iii

Anyone using the Batch-Spool Monitor should be familiar with the RTE operating system. For
the RTE-II user, this system is described in the manual:

Real-Time Executive II Software System Programming and Operating Manual Part
Number 92001-93001

The RTE-III operating system is described in the manual:

Real-Time Executive III Software System Programming and Operating Manual Part
Number 92060-90004

The RTE-IV operating system is described in the manual:
Real-Time Executive IV Programmer’s Reference Manual Part Number 92067-90001

Other manuals of interest may be found in the Documentation Map in the beginning of the
appropriate Operating System Reference Manual.

iv

Batch-Spool Monitor
Reference Manual
92060-90013

DOCUMENTATION MAP

RTE-1V Programmer’s
Reference Manual
92067-90001

YOU

HERE

RTE -1 Programming
and Operating Manual
92060-90004

RTE-lt Programming
and Operating Manual
29001-93001

Refer to the Documentation Map in the appropriate Operating System Reference Manual for a
complete listing of all relevant manuals.

v/vi

CONTENTS

Section I Page
SYSTEM OVERVIEW
INTRODUCTIONt 1-1
Features 0 it 1-1
Batch-Spool Environment 1-1
Batch-Spool Monitor Components 1-3
Batch-Spool Monitor Functions 1-4
FILE MANAGEMENTcciiiiininnn 1-5
File Organization 1-5
Disc File Allocation 1-6
Directoriesot 1-7
File Typesuuriiiiiiii i, 1-8
File Accesscouviiiiiiiiiiiiinennnn. 1-10
Securitycc e 1-10
FMP Program Calls 1-11
FMGR Operator Commands 1-12
BATCH PROCESSINGc.coiiiivine... 1-13
SPOOLINGo 1-14
GASP Operator Commands 1-15
SMP Program Calls 1-15
Section II Page

BATCH AND FILE CONTROL WITH FMGR
OPERATOR COMMANDS

INTRODUCTION 2-1
Interactive vs. Batch Operation 2-1
Multi-Terminal Environment 2-2
Interrupting FMGR 2-3

FMGR COMMANDS i en 2-5
Command Structureiiiiiiiann 2-6
Parameter Syntax Rules 2-7
Namr Parameterco0iiivnnn.. 2-8

FMGR OPERATION ... 2-10
Running Program FMGR 2-11
?? - Request Error Explanation 2-13
EX - Terminate FMGR 2-14
LI - Change List Device 2-14
LO - Change Log Device 2-15
SV - Change Severity Code 2-16
TE - Send Message to Console 2-17
AN - Send Message to List Device 2-18

FILE CREATION AND MANIPULATION 2-18
CR-Create Disc File 2-19
CR - Create Non-Disc File 2-20
PU-PurgeaPFile....................oooiiit. 2-22
ST - Transfer Data and Create File 2-23
DU - Transfer Data to Existing File 2-28
LI - List File Contents 2-31
CN - Control Non-Disc Device 2-33
RN-Rename File......................... ..., 2-35

PROGRAM FILE MANIPULATION 2-36
MS - Move Source File 2-38
LS - Set Logical Source Pointer 2-40
LG-Assign LG Trackst 2-41
MR - Move Relocatable Program 2-42
SA - Save Program as aFile 2-43
SP-Save Programcccvviiinannn. 2-44
RP - Restore Program 2-46

Section II (Continued)

RU-Run Program 2-48
OF - Remove Program......................... 2-51
RT - Release Tracksc.... 2-52
Program Development Example 2-53
PROCEDURE FILE MANIPULATION............ 2-54
Global Parameters 2-54
TR - Transfer Control 2-59
PA - Pause and Send Message 2-62
DP - Display Parameters 2-63
SE - Set Global Parameters.................... 2-64
CA - Calculate Globals 2-65
IF - Conditional Skip.......................... 2-67
BATCH JOB CONTROLcccvivnnnn. 2-70
JO-Startofdobl 2-73
EO-Endofdob, 2-74
TL - Set Run Time Limit 2-76
LU - Logical Unit Switch 2-71
AB-AbortdJob 2-78
FMP CARTRIDGE MANIPULATION 2-80
Locking a Cartridge 2-81
MC - Mount Cartridge 2-81
IN - Initialized Cartridge 2-83
DC - Dismount Cartridge 2-88
CL - Cartridge List 2-90
DL - Directory List............................ 2-91
PK - Pack Cartridge 2-92
CO - Copy One Cartridge to Another 2-95
MISCELLANEQUS COMMANDS 2-96
SY - Execute RTE System Command 2-96
X COmMmMENtS ... 2-97
Section III Page
FILE MANAGEMENT THROUGH FMP CALLS
INTRODUCTION iiieieeiees 3-1
FMP Calls . ..ottt e ieeaeeaiees 3-1
Data Control Blockoovvinine, 3-1
PROGRAM CALLSo 3-4
Common Parameters 3-4
Optional Parameters 3-6
FILE DEFINITION ..., 3-8
CREAT e 3-8
PURGE e 3-12
OPEN ... e 3-13
CLOSE ..ottt et e 3-18
FILE ACCESS i 3-21
READFo e 3-21
WRITF ... o e 3-26
FILE POSITIONINGot 3-31
LOCF .. i e 3-31
APOSN e 3-34
POSNT ... e 3-36
RWNDF ... e 3-39
SPECIAL PURPOSE ROUTINES 3-41
FCONT i e e e 3-41
FOTAT .. e e 3-44
IDCBS ... e 3-46
NAMF . 3-47

CONTENTS (continued)

Section III (continued)
POST ... e 3-48

EXAMPLE USING FMP CALLS 3-51
Section IV Page
USING THE SPOOL MONITOR
INTRODUCTION, 4-1
Bateh Spooling ..o 4-1
Timing Considerations.......................... 4.4
Spool Files i i 4-4
Logical Unit Switching 4-5
SPOOL SETUPt 4-8
JO - Initiate Job For Spooling 4-9
EO - End of Spooled Job....................... 4-10
LU - Spool Set Up and Outspool
Control 4-10
CS - Change Spool Setup 4-15
INSPOOLING ...ttt 4-17
Running Program JOB 4-17
XE - Job Input Control 4-21
Error Conditions 4-23
QUTSPOOLING ... 4-24
SPOOL STATUS e 4-25
Inspool Statusccoiiiiiiiiiii... 4-25
Outspool Status, 4-25
OUTSPOOL ERRORS 4-26
Section V Page
SPOOL CONTROL WITH GASP
OPERATOR COMMANDS
INTRODUCTIONt 5-1
GASP commandscoiiiiiviin... 5-1
Running Program GASP........................ 5-2
?? - GASP Error Explanation 5-3
EX - Terminate GASP.......................... 5-3
JOB MANIPULATION 5-4
DJ - Display Job Status 5-4
CJ - Change Job Status 5-6
AB-Abortdob i 5-6
OUTSPOOL MANIPULATIONcc.o... 5-7
DS - Display Spools 5-7
CS - Change Spool Status 5-8
RS - Restart Spool 5-10
Spool File State Diagram 5-10
KS - Kill Outspoolooiiivii.nn. 5-11
SPOOL SYSTEM MANIPULATION 5-14
SD - Shut Down Spooling................ R 5-14
SU - Start Up Spooling 5-15
DA - Deallocate Spooling 5-16
COMPREHENSIVE SPOOLING EXAMPLE 5-17
Section VI Page
SPOOL CONTROL THROUGH SMP CALLS
INTRODUCTION ...t 6-1
SPOOL SETUP\t 6-1
Setup with SPOPN 6-2
SPOOL CONTROLcoiiiiiiiiinnenann. 6-5
Change Purgeto Save 6-5
Change Saveto Purge 6-6
Queune for OQutspooling 6-7

viii

Section VI (continued)

Write EOF and Queue for Qutspooling 6-7
Change Spool Options 6-8
Set Buffer Flag S 6-8
Clear Buffer Flag 6-9
SPOOL POSITIONINGccoviennnn... 6-10
Retrieve Record Position....................... 6-10
Change Record Position 6-10
SPOOL CALL EXAMPLE 6-12
Section VII Page

FMP AND SM CONFIGURATION AND
INITIALIZATION

INTRODUCTION i 7-1
FMP CONFIGURATIONt 7-1
Parameter Input Phase 7-1
FMGR Initialization 7-3
SM CONFIGURATION ... 7-4
Parameter Input Phase 7-4
Table Generation Phase 7-6
Partition Definition Phase 7-8
GASP Initialization 7-9
Appendix A Page
HP CHARACTER SET A-1
Appendix B Page

BATCH-SPOOL MONITOR ERROR CODES....B-1

FMP AND FMGR ERROR CODES B-1
GASPERROR CODES B-10
UNNUMBERED ERROR MESSAGES B-12
SPOOLERRORS, B-14
Spool IO Abort Errors B-14
SMP Error Messagescovvriiennnnnnnen B-15
Outspool Error Messagescoooiennn. B-16
Appendix C Page
TABLES, DIRECTORIES, AND RECORD
FORMATS e C-1
STANDARD LOGICAL UNITS.................... C-1
Standard Driver Types C-1
DATA CONTROL BLOCK FORMAT C-2
CARTRIDGE DIRECTORY FORMAT C-4
FILE DIRECTORY FORMAT C-5
JOBFIL FORMAT i, C-7
SPLCON FORMAT ... C-9
DISC FILE RECORD FORMATS C-12
NON-DISC FILE RECORD FORMATS C-14
Appendix D Page
CARTRIDGE FORMATTING D-1
Appendix E Page
MAKING COPIESOFFMGR E-1
MAKE SINGLE PROGRAM COPY E-1
MAKE MULTIPLE COPIES AT SYSTEM
START-UP ... e E-2
Appendix F Page
GLOBAL EQUIVALENCE TABLE F-1

ILLUSTRATIONS

Title Page Title Page
Batch-Spool Monitor Components 1-3 Data Transfer With Type 1 Files 3-3
Relation Between Batch-Spool Monitor Read Type 1 File When IL Greater Than 128 3-22
Components............ccvviiiiiiiiiiiiaaii. 1-4 Write Type 1 File When IL Greater Than 128..... 3-27
Disc Organization for the Batch-Spool Monitor 1.7 Batch Spooling Diagram 4-3
Spooled Batch Processingc..cooii.t. 1-14 Logical Unit Switching..................oooi.t. 4-5
Interactive vs. Batch Operation.................... 2-2 Association of Logical Unit to Driver 4-6
Relation of Files to Subfiles...................... ,2-26 Relation Between LU Switch Table, DRT,
Compile and Execute Program 2-53 and EQT ... o 4-7
Disc Platter With Three Cartridges 2-87 Outspool File State Diagram 5-11
Two Types of Directory List e 2-93 GASP Initializes Spooling System 5-17
Packing a Cartridge 2-95 Jobs X, Y, Z . o 5-18
Sequential Transfer Between Disc File Program JOB Used to Inspool Jobs, X, Y, and Z ... 5-18
and Buffers i 3-3 Command Stream and Use of GASP 5-19
TABLES
Title Page Title Page
Batch-Spool Monitor Programs and JOB Error Messagesc.ccooviiiiiiinno... 4-24
Routineso i 1-3 GASP Operator Command Summary 5-2
File Management Terms 1-5 IBUFR Formatcooiiuuineeiinanneeaans 6-3
Categories of File Types...................c.ovo. .. 1-8 Spool Control Callsoooiiit. 6-5
FMGR Operator Command Summary 2-5 Standard Program Parameters..................... 7-4
Global Equivalenceccoovo.... 2-57 FMP Error Codesccvviieiiiiineeinnann, B-2
G and S Global Format 2-58 Relation Between FMP Error Codes and
FMP Call Summaryc..ccoiiiiiiiiia... 3-2 FMP Calls..........coiiiiiii i B-4
Relation of Actual to Requested DCB FMGR Error Codescoiviviuininaano.n. B-5
Buffer Size................ i 3-5 GASP Error Codesccoeiviieeninnunnann. B-9
Effect of IL Parameter in READF 3-22 Unnumbered Error Messages B-12
Effect of IL Parameter in WRITF 3-27 Spool I/O Abort Error Codes B-14
Relation Between Parameters NUR and IR 3-36 SMP Error Messagescoueiiiieiinninnnns B-15
FCONT Function Codes 3-42 Outspool Error Messagescccconnnn. B-16
ISTAT Formatcoovterii i 3-45 Octal Equivalence Table F-1

ix/x

SECTION |
SYSTEM OVERVIEW

=

SECTION

SYSTEM OVERVIEW

1-1. INTRODUCTION

The Batch-Spool Monitor is a software package operating under control of the Real-Time
Executive Operating System to provide file control, program development, job control, and job
control with spooling. The Batch-Spool Monitor consists of two separate but related subsys-
tems: the File Management Package and the Spool Monitor. The file management, program
control, and batch job processing capabilities are contained in the File Management Package
(FMP). The spooling function is contained in the Spool Monitor (SM).

1-2. FEATURES

With the Batch-Spool Monitor, the user of a Real-Time Executive Operating System may
perform the following tasks:

® C(Create named disc files at a terminal or from a program

® Create and access files by name rather than by disc address

® Treat peripheral non-disc devices as files for I/O control

o Transfer data from file to file, from device to device, or between a file and a device

e Control I/0 to and from files or devices with program calls

® Prepare and test programs from a terminal or in a batch job stream

e Control batch job processing from a terminal or file using an extensive job control
language '

® Enter jobs in the batch stream by priority and with time limits

® Qutput data from jobs by priority

¢ Automatically spool job input and output

¢ Control spool input and output through operator commands or program calls

® Safeguard file integrity and security in a multiprogramming environment

1-3. BATCH-SPOOL ENVIRONMENT

Software Environment

The Batch-Spool Monitor runs under control of any of the following operating systems:

Real-Time Executive II (RTE-II)
Real-Time Executive III (RTE-III)
Real-Time Executive IV (RTE-IV)

1-1

System Overview

Throughout the rest of this manual, the generic term RTE will be used to refer to the above
operating systems.

With RTE-II, the Batch-Spool Monitor is an option; with RTE-III and RTE-IV, it is provided
with the system. If provided, the Spool Monitor need not be configured in the Batch-Spool
Monitor. The File Management Package (FMP) will run equally well on systems that do not
include the Spool Monitor (SM). The Spool Monitor, on the other hand, will not run without the
File Management Package.

Refer to Section VII on FMP and SM Configuration and Initialization for memory require-
ments for these subsystems.

Hardware Environment

The Batch Spool Monitor operates within the RTE hardware environment consisting of an HP
1000-Series Computer system.

For RTE-II, the File Management Package can operate within the minimum system on a 2100
or 21MX computer. When the Spool Monitor is added, an additional 8K of memory is required.
Refer to the RTE-II Programming and Operating Reference Manual for more information on
the minimal system for RTE-IIL.

For RTE-III and RTE-IV, both the File Management Package and the Spool Monitor can
operate within the minimum system on a 21MX computer. Refer to the appropriate Program-

ming and Operating Reference Manual for information on the minimal system for RTE-III and
RTE-IV.

With any operating system, a system using the Spool Monitor should also include:

a line printer.
a disc platter reserved for spool files.

CAUTION

To avoid disruption of data stored on disc, the disc controller
and removable disc platters must not be exposed to areas with
a strong magnetic field.

1-2

System Overview

1-4. BATCH-SPOOL MONITOR COMPONENTS

The components of the Batch-Spool Monitor are illustrated in Figure 1-1.

BATCH—SPOOL MONITOR

FILE MANAGEMENT PACKAGE SPOOL MONITOR
FMP
LIBRARY FMP PROGRAMS: SM PROGRAMS:
FMGR JOB
D.RTR* GASP
SMP
SPOUT*
DVS43*
EXTND*
*PROGRAMS NOT DIRECTLY REQUESTED BY USER

Figure 1-1. Batch-Spool Monitor Components

The File Management Package controls file input and output through program calls to the
FMP library. It also manipulates files and processes batch jobs by means of operator com-
mands to the program FMGR.

The Spool Monitor controls the entry of batch jobs (inspooling), job processing, and job output
(outspooling) according to priorities assigned to each job. With minimal operator intervention,
the Spool Monitor provides highly efficient use of the FMGR batch job processing capabilities.
The Spool Monitor also provides spooling of program input and output apart from batch

processing.
Table 1-1. Batch-Spool Monitor Programs and Routines

SUBSYSTEM PROGRAM FUNCTION
FMP FMGR is the operator interface for file management and batch pro-
cessing. The FMGR commands are entered by an operator
from a console or from a previously prepared procedure file.
D.RTR is the only program that writes on the file directories used by
FMP for file control. To insure file security and integrity, D.RTR
may be scheduled only by a system program or subroutine; it is

never requested directly by a user.
FMP Utility routines that may be called from a user program or
Library FMGR to perform file input and output as well as other file

related operations.

1-3

System Overview

Table 1-1. Batch-Spool Monitor Programs and Routines (Continued)
SUBSYSTEM PROGRAM FUNCTION

SMP JOB provides the inspool capability for batch jobs. it reads jobs
from an input device and places them on a disc file or reads the
jobs directly from disc. JOB places each inspooled job in a
queue of jobs to be processed.

GASP provides a set of commands to allow operator control of the
spooling process.

SMP maintains information on all active spools in the system and
coordinates job processing with outspooling. Program calls to
SMP control spooled input and output apart from job proces-
sing and inspooling.

SPOUT writes the output from completed or active jobs to specified
output devices. SPOUT is never directly requested by a user.

DVS43 is the driver routine used to implement disc accesses for spool-
ing. It is independent of user control.

EXTND controls the automatic assignment of extents to spool files as
needed. It operates without user intervention.

The relation between the Batch-Spool Monitor programs, the FMP library, and the files they
control is illustrated in Figure 1-2. Only those programs are shown that may be requested by
an operator command or from a user program.

WITHOUT
SPOOLING
FMGR FMP USER
OPERATOR (INTERACTIVE LIBRARY - PROGRAM
FILE MANAGEMENT \ (FILE CONTROL}
WITH JOB
SPOOLING » (SPOOL INPUT)
GASP SMP
» (INTERACTIVE » (SPOOL <
SPOOL CONTROL} MONITOR)

Figure 1-2. Relation Between Batch-Spool Monitor Components

1-5. BATCH-SPOOL MONITOR FUNCTIONS
The three main functions performed by the Batch-Spool Monitor are:

e File Management
e Batch Processing
e Spooling

1-4

System Overview

File management is the primary function of the Batch-Spool Monitor. Batch job processing
depends on the file processing capabilities of program FMGR and spooling extends these batch
job processing capabilities.

1-6 FILE MANAGEMENT

File management is performed through program calls to the FMP library and by interactive
operator commands to the program FMGR. The FMP calls mainly control input to and output
from disc files or peripheral devices treated as files. The file management capability is
increased by using FMGR for interactive program development, disc cartridge manipulation,
and batch job control.

1-7. FILE ORGANIZATION

Files are a collection of information logically organized into records. The information in files
may be programs or the data used by programs. Data may be binary or in ASCII code.
Programs may be in the form of ASCII source code or binary code in either relocatable or

absolute form. Programs may also be in memory-image form, a form used by RTE for programs
ready to be executed.

Files may be stored on disc or they may refer to non-disc peripheral devices. The Batch-Spool
Monitor is used to control and access files whether they are disc files or non-disc devices.

Certain terms used in discussing file organization for the Batch-Spool Monitor are defined in
Table 1-2.

Table 1-2. File Management Terms

DISC A rotating random access storage device on which files may be stored and
from which they may be retrieved. Discs may be physically permanent or they
may be removable. The system disc on logical unit 2 contains the RTE operat-
ing system, and may contain FMP files. Peripheral discs on logical units
greater than 6 are usually removable and may contain FMP files.

The RTE Disc driver names must be DVn30, DVn31, DVn32, DVn33 with cor-
responding Initiator and Continuator entry points (1n30,Cn30; In31,Cn31; in32,
Cn32; In33;Cn33).

Where: n is any character (normally, “R” for driver names and *.” for entry
points, e.qg., driver name DVR32 and entry point names 1.32 and
C.32).

CARTRIDGE Sometimes used as another name for disc. In FMP terms, it is a set of con-
tiguous tracks on a disc platter. Cartridges contain disc files with a directory of
the files stored on each cartridge. All files on the same FMP cartridge must
have unique names.

TRACK A subdivision of the disc

SECTOR A further subdivision of the disc; specifically, a sector is a portion of a disc
track consisting of 64 words. Two sectors make up one FMP block, the unit of
information that may be physically transferred between the disc and memory.

FILE A disc file is a collection of records terminated by an end-of-file mark. Non-disc
devices are treated by the Batch-Spool Monitor as if the device were itself a
file. The device, like a file, is a collection of records terminated by an end-of-file
mark that depends on the device. Any file can have zero or more records and
is designated by a name of six characters or less.

1-5

System Overview

Table 1-2. File Management Terms (continued)

NON-DISC DEVICE A peripheral device, not a disc, that may be treated as a file and controlled by
the File Management Package. Non-disc devices include the paper tape or
card reader for input, the paper tape punch or line printer for output, magnetic
tape for Input or output, and terminals through which an operator can interact
with the system.

LOGICAL UNIT An integer assigned to each input-output device or disc cartridge at system
generation by which the cartridge or device can be referenced.

BLOCK A subdivision of a disc file containing 128 words {two disc sectors) that is the
smallest unit that can be physically transferred between disc and central
memory during file access.

RECORD A logical collection of 16-bit words on a file or device that is terminated by an
end-of-record mark. A record may have zero or more words. A record is the
smallest unit that may be accessed by a call from a program.

EXTENT An extension to a file automatically provided by FMP as needed. Each extent is
the same length and type as the file and is identified by a positive integer
called the extent number.

DCB BUFFER FMP uses an array called the Data Control Buffer both as a directory to the file
being accessed and as a buffer for data transfer between the file and memory.
Space must be allocated for the Data Control Block in any program making an
FMP file access call.

USER BUFFER An area in the calling program to hold one record at a time during file access.
ID SEGMENT A directory in the system area of the disc to a program that may be brought into

memory for execution. The number of ID segments specified at generation
directly limits the number of user programs that may be in memory at one time.

1-8. DISC FILE ALLOCATION

Disc files managed by the Batch-Spool Monitor, whether they are program files, data files, or
spool files, are kept on FMP cartridges. An FMP cartridge is a logical entity that may
correspond directly to a disc platter or may be a subdivision of the disc platter. On some discs, a
cartridge may even cross platter boundaries although care must be taken if the cartridge is
partly on a removable platter and partly on a fixed platter.

Each cartridge is defined by a beginning and an ending track, and is assigned a logical unit
number and a cartridge reference number either of which may be used to reference the
cartridge. Files on the same cartridge must have unique names. Duplicate file names may be
used as long as the duplicates are on separate cartridges so the file can be uniquely identified
by its name and a cartridge identifier.

Files are located on contiguous tracks on an FMP cartridge. User files, including spool files,
begin in the lowest numbered track and work up. Directory entries for user files begin in the
highest numbered track and work down. Removable cartridges containing FMP files are
interchangeable between drives within a system, or between drives on different systems
provided that logical track O refers to the same physical track on every disc unit. (Refer to
Figure 1-3 for an illustration of disc organization using one cartridge on the system disc
starting at the first FMP track, and one on a peripheral disc starting at track 0.)

Whenever a cartridge is mounted, the last FMP track on the disc should be known in order to
assign the last track for the cartridge directory. At cartridge initialization, the number of

1-6

System Overview

1 16-WORD ENTRY
DEFINING USE OF
THIS CARTRIDGE

oF LAST Fh.>
]
LAST FMP FILE DIRECTORY } CONTINUOUS LIST { TRACK

16 WORD ENTRIES FOR FILE DIRECTOR
TRACK EACH FILE ON CARTRIDGE LE DIRECTORY

CARTRIDGE

DIRECTORY
N\ e
A,
TRACKS L/_\ DEFINES CURRENTLY _/_\4
\/\ ACTIVE CARTRIDGES.

USER FILES START

FIRST FMP N FIRSTF K
TRACK USER FILES / N FIRST FMP TRAC
SYSTEM SCRATCH
SYSTEM
TRACKS
RTE SYSTEM
USER FILES FIRST FMP
|&———— TRACKO ————¥ TRACK
LU 2 (SYSTEM DISC} (OTHER DISC)

Figure 1-3. Disc Organization for Batch-Spool Monitor

directory tracks for that cartridge is specified. The first cartridge track must be assigned at
initialization; the number of sectors per track may be specified at this time, but is supplied by
FMP as a default if not. Otherwise, track locations are not required for cartridge
specification.

Files may cross track boundaries but, in a multi-cartridge environment, no one file may cross
cartridge boundaries. Files are subject to being moved whenever a cartridge is packed. This
causes files to be relocatable within a cartridge and no absolute file addresses should be kept in
any file or program.

Files always start on even sector boundaries and all accesses are multiples of 128 words
addressed to even sectors.

Disc errors are passed back to the user for action. Error codes are printed on the system log
device when using the File Manager operator commands, or passed to the user program when
calling a File Management Package library routine. You may report bad tracks to the system
through the FMGR Initialization command. Bad tracks discovered by the system result in an
error return to the calling program.

1-9. DIRECTORIES

Two directories are created and maintained by FMP: the FMP cartridge directory on the
system disc, and the file directory on each cartridge. Only program D.RTR can write to or
modify the directories.

Cartridge Directory

The Cartridge directory is a master index to all active FMP cartridges. It is maintained in the
first two sectors of the last track of the system disc (refer to Figure 1-3). It has an entry for all
currently mounted cartridges with tracks assigned to FMP. The directory has room to describe
up to 31 cartridges using four words for each. In addition, this directory keeps the master
security code for the system. With this code, the security codes for the individual files in the
File Management Package can be retrieved.

1-7

System Overview

File Directory

A file directory, maintained on each cartridge, contains information on each file on that
particular cartridge. Each directory starts in sector 0 of the last track available to FMP. The
first 16-word entry in this directory contains label and track information for the cartridge
itself. Each subsequent 16-word entry has information on a user file. The last entry is followed
by a zero word. When a file is purged, the first word in the directory entry for the fileis set to -1
to indicate that it is to be ignored. When the cartridge is packed, the directory entry for any
purged file is cleared and the cartridge area where the file was located is overwritten by
non-purged files wherever possible.

1-10. FILE TYPES

Eight file types are defined by the system. Additional types may be defined by the user. Only
the first four types differ in format; all subsequent types differ only in the type of data FMP
expects the file to contain. The file types may be divided into three categories as shown in
Table 1-3. The first category contains one type, type zero. This type includes all non-disc
devices defined as files and accessible by name. The second category contains two file types,
types 1 and 2. These fixed-length record files are used for quick random access. The remaining
file types all belong to the third category of files with variable-length records designed for
sequential access. These file types may be extended automatically as needed; files in the first
two categories may not be extended.

Table 1-3. Categories of File Types

CATEGORY TYPE DESCRIPTION
Control 0 Non-disc device files
Fixed-length, 1 - Fixed-length 128-word record files
random access,
non-extendable 2 Fixed user-defined record length files
Variable-length, 3 Variable-length records; any data type
sequential access,
automatic extents 4 Source program file; ASCII
5 Object program file; relocatable binary
6 Executable program file; memory-image code
7 Absolute binary
8-32767 User-defined data format

Type 0 Files

Type O files are used to reference non-disc devices by name. They afford a measure of device
independence in that the standard file commands can be used to control the device. A directory
entry is made for the device as if it were a file. A type O file is created with a FMGR command,
not with an FMP call. The File Directory entry for a file of this type contains special entries
that specify logical unit number and the operations allowed on the particular device.

The record format of a type 0 file is determined by the device type. Refer to Appendix C for type
0 record formats on paper tape or card devices.

1-8

System Overview

Type 1 Files

Type 1 files have fixed length records of 128 words. Because the File Management Package
transfers data to and from disc in 128-word blocks, this file type allows direct access between
disc and the user’s buffer area in his program, thereby eliminating the need to go through a
packing buffer (the Data Control Block). As a result, type 1 files have the fastest transfer rate.
Any other file type, except type 0, may be opened and accessed as a type 1 file in order to take
advantage of the faster transfer rate. However, if the files being transferred have less than
128-word logical records, the user must be able to recognize where his records begin and end
within the 128 words, or if his records are longer, be able to work with part of a record at a
time. The end-of-file is the last word of the last block. Type 1 files may cross track boundaries.

Type 2 Files

The record lengths of type 2 files are fixed, but the length is defined by the user at file creation.
Like type 1 files, the end-of-file is the last word of the last block and files may cross sector or
track boundaries. Only one logical record is transferred at a time, but unlike type 1 files, the
transfer must go through a packing buffer (the Data Control Block). For this reason, files of
type 2 and above have a slower transfer rate than type 1 files. To obtain access of the
maximum number of records (32767), the record length must be 128 or a multiple of 128.

Type 3 Files

These files have variable length records, are extendable, and may contain data, source code,
relocatable or absolute binary code. Only one logical record is transferred at a time and the
transfer must be made through the packing buffer (Data Control Block). The first and last
words of each record as written on disc always contain the number of words in the record
(minus the two length words). A zero-length record consisting of two zero words can be used to
separate groups of records into sub-files. The end-of-file is marked by a -1 as the first length
word in the next record. Words following the end-of-file are undefined. However, FMP can

write records beyond the end-of-file by replacing the end-of-file with a new record followed by
an end-of-file mark.

Type 4 Files

- This file type is the same as type 3, except the system expects these files to contain ASCII data.
Typically, source program files are type 4.

Type 5 Files

Same as type 3 files, except the system assumes type 5 files contain relocatable binary code.
Typically object program files are type 5.

Type 6 Files

This type file is the same as a type 3 file, except the system assumes it contains a program in

memory-image format that is ready to run. Type 6 files are created by the Save Program (SP)
command. These files are always accessed by FMP as type 1 files. The first two sectors of a type

Change 3 1-9

System Overview

6 file are used to record ID segment information for the program. As a result, this file type can
be used for programs that do not have a permanent ID segment.

Type 7 Files

Same as type 3 files, except the system expects type 7 files to contain absolute binary code.

Type > 7 Files

Same as type 3, but the content is user-defined. FMP does no special processing based on file
type for types greater than 7. For instance, any checksums must be specifically requested.
Content is also user-defined; it may be source, relocatable binary, memory-image format, and
so forth.

The record formats of disc files are illustrated in Appendix C.

1-11. FILE ACCESS

Type 1 and type 2 files contain fixed length records which makes it possible to calculate the
position of a desired record. On the other hand, type 3 files and above contain variable length
records, so the system must access the disc at least once, and in some cases several times, in
order to position to the desired record location. For this reason, access takes longer for file
Lypes greater than type 2.

File Extents

Files of type 3 and above are automatically extended whenever a write request points to a
location beyond the range of the currently defined file. The extent is created by FMP with the
same name and size as the main file, and access continues. FMP numbers each extent starting
with 1. The extent number and location is kept in the file directory entry for the file. When a
file with extents is referenced by its file name, any extents are provided automatically. At
close, the extents may be truncated to provide more disc space, or they may be retained.

Files Opened for Update

Files may be opened in the update mode. This implies that the file is to be modified in some
manner. Type 2 files should always be opened for update except when the file is written
originally, or when adding records to the end of the file, and then only if the file is written
sequentially. Reading or positioning a file is not affected by update or non-update mode.

In update mode, the entire block containing the record is read into the Data Control Block
before the record is modified. After modification, the entire block is written to the disc. This is
done to insure that the Data Control Block always contains the unmodified as well as the
modified data, thereby guaranteeing restoration of the block to the disc.

1-12. SECURITY

FMP provides two levels of security: system security and file security.

1-10

System Overview

System Security

During system setup, a master security code is assigned to the system. If the code is zero, no
security is provided. If non-zero, the master code must be known in order to get directory
listings that include the specific file security codes and also in order to re-initialize an FMP
cartridge.

File Security

Each file has a security code. This code may be zero, positive, or negative. A zero code allows
the file to be opened to any caller with no restrictions; in effect this code provides zero security.
A positive code restricts writing on the file but not reading; that is, a user who does not know
the code may open the file for read only, but may not write on the file. A negative code restricts
all access to the file; this code must be specified in order to open a file protected by it. An
attempt to open a file so protected without the correct security code results in an error
message.

1-13. FMP PROGRAM CALLS

These calls to the FMP library provide programmatic control of input from, output to, and
positioning of disc or non-disc files. They may also be used to create or purge disc files. The
FMP calls allow you to:

® (Create disc files

® Open an existing file to:

Add records

Delete records

Change records

Copy records or information

¢ Close an opened file

® Purge a disc file

The FMP recognizes calls from programs written in:

FORTRAN IV

HP FORTRAN

ALGOL

HP Assembly Language
Multi-User Real-Time BASIC

The FMP resolves conflicts between users who want to open the same file. If you request
exclusive use of a file, FMP grants this request only if the file is not already being used. Once
granted, exclusive use means that no other program may access the file until you close it. You
may also request non-exclusive use of any file that you want to share with other programs. Up
to seven programs may share the same non-exclusive file. If this file is a non-disc peripheral
device, the file access protection provides a way to avoid contention for such devices.

1-11

System Overview

The functions that will modify file directory entries are:

¢ Creating a file
¢ Opening a file
e Closing a file

® Purging a file

® Renaming a file

Since all these functions can be programmed, it is clear that there could be conflict. The FMP
resolves this conflict by allowing only one program (D.RTR) to write on the directories. D.RTR
is scheduled with wait whenever a directory change is required. Disc tracks on system and
auxiliary discs that contain the file directories for FMP tracks on these discs are assigned to
D.RTR. These directory tracks are therefore protected by FMP from all other programs.

1-14. FMGR OPERATOR COMMANDS

Program FMGR is run from the system console or from a terminal in a multi-terminal
environment. It responds to a set of more than 40 commands. Any command may be entered
directly from the terminal to perform a particular function, or one or more commands may be
stored on a file as a procedure. Commands can also be included in jobs to be entered from
peripheral devices in order to provide batch job control. Program FMGR allows an operator to
perform the following basic functions:

e Control FMGR by sending messages to the console or list device, requesting error explana-
tions, changing the log or list devices or error severity.

® Create and maintain files, both disc and non-disc, including maintenance of the file
directory

e Keep track of the disc cartridge on which files are placed, including maintenance of the
cartridge directory.

e Transfer data or programs between files or to and from system areas such as the load-
and-go and logical source areas, creating new files as needed.

o Establish and transfer to procedure files, and manipulate the global parameters used in
these files to receive and return data from other commands or procedures.

e Control execution of jobs in the batch stream, including assigning a job time limit,
switching logical units, and aborting the job.

Since the files controlled by FMGR include data files, program files, non-disc devices, proce-
dure files, and batch jobs, this program can provide full control over all input to and output
from FMP. It uses many of the same FMP program calls for the actual input and output as does
any user.

1-12

System Overview

Multi-Terminal Monitor

When the Multi-Terminal Monitor is used, programs including FMGR may be requested from
more than one terminal. Since RTE program access is not time-shared, a method has been
devised to allow apparently simultaneous access to FMGR, not only from each active terminal
but also for batch job control.

By making a copy of FMGR for each terminal, these copies can be run to provide the FMGR
interactive capabilities to each terminal simultaneously. The program FMGR itself can then
be reserved for batch job control. Methods for making copies of any program are described in
this manual in Appendix E.

1-15. BATCH PROCESSING

Batch processing, the entry of one or more jobs for processing in a job stream, is controlled by
FMGR commands. The jobs themselves may be stored on disc or on a peripheral input device.
In either case, batch job operation is controlled through FMGR commands that delimit the job
and that may be included with the job.

A batch job usually consists of FMGR commands to control system operation, a source
language program to be compiled and executed, and data to be manipulated by the program.
With batch processing, more than one such job can be placed in the input device so that the
running of each job and the transition from job to job takes place with a minimum of human
intervention.

Program FMGR performs batch processing by means of a set of commands that define the
beginning and end of each job and effectively define a separate environment for the job. Any of
the other FMGR commands can be included in the job itself in order to perform the full range of
FMGR functions. Because the job may include programs and the commands to compile or
assemble, load, and execute the programs, program development is possible in batch mode. A
programmer can submit a job, return to other work and retrieve the output later.

1-13

System Overview
1-16. SPOOLING

The Spool Monitor is used in conjunction with the File Management Package to provide batch
job processing with “spooling”. Spooling allows jobs to be processed according to assigned
priorities rather than in the sequential order necessitated by standard batch processing. (Refer
to Figure 1-4 for an example of spooling).

EXECUTES 1ST

JoB
2
(JOB 3-PRIORITY=3 d EXECUTES 2ND

JoB3

JOB 2-PRIORITY=1] T~—p — J(1)B

JOB 1-PRIORITY=2]
| EXECUTES LAST
JoB
3

EXECUTION
BY

/

LIST QUT
JOB 2

LIST OUT
Jos 1

JOB1
LISTED
SECOND

1

JOoB 3
LISTED
LAST

\

LISTOUT
JoB3

INPUT BATCH INPUT SPOOLS PRIORITY OUTPUT SPOOLS QUTPUT LISTS

Figure 1-4. Spooled Batch Processing

To illustrate, consider that jobs processed directly from the card reader or paper tape reader
must be taken in serial order as they are placed in the reader. Also, if the output goes directly
to the line printer, paper tape punch, or other output device, the computer operating system
must wait for the completion of one job before processing the next job. Priority of execution can
be managed only by the operator manually inserting one job ahead of others, and lengthy
printout from a low-priority job can delay execution of a higher priority job.

When spooling is used, jobs are read from the input device to spool files or from a user file on
disc, and a directory of jobs to be executed is created. From disc, the FMGR selects each job for
execution according to its priority. Similarly, the output spool file is selected from the outspool
directory and is “outspooled” according to priority independently of input or processing
priorities. Transition between jobs is faster as one job does not have to wait for completion of a
previous job’s output to the print or punch device. Also, since output files are on disc, they may
be held until the operator takes action to print or punch them. This is especially convenient if,
for example, the output requires a special form on the line printer.

Inspool or outspool files can be allocated automatically by the Spool Monitor or they can be
specified by the user. Simplicity of use is achieved if the Spool Monitor allocates and releases

all spool files. On the other hand, if a particular file is specified, that file can be retained as a
permanent file.

For instance, if you define your own job command file as an inspool file, the job can be kept in
that file and, at a later time, it can be re-run by command. In this case, no use is made of
system spool files, and “inspooling” consists merely of creating an entry for the file in the job
directory. This technique eleminates the necessity of putting a frequently run job on the
non-disc input device each time it is executed.

Spooling is requested by submitting jobs to the inspool program (JOB). Qutput spooling to

logical unit 6 is performed automatically unless specifically disabled by command in the job
stream. Spooling to other devices may be specifically requested.

1-14

System Overview

1-17. GASP OPERATOR COMMANDS

A set of operator commands is available through the spool program GASP that allow you to
control various aspects of the Spool Monitor from the system console or other terminal. These
commands perform such functions as:

e Display or change the status of jobs being inspooled or outspooled.

e Hold jobs being inspooled or outspooled and subsequently restart them.

¢ Remove entries from either the output or input directory.

® Restart the outspooling of a file.

¢ Place a system-wide hold on the spool system or de-activate it entirely.

1-18. SMP PROGRAM CALLS

The program SMP may be scheduled through RTE EXEC calls from a program in order to
perform any of several spool control requests. These calls are used to spool input from or output
to a program. Because spooling uses disc files, the calls provide the capability to read from or
write to disc with non-disc 1/0 calls whether formatted or not. In addition, the calls provide
spooling apart from batch job processing.

1-15/1-16

SECTION I

BATCH AND FILE CONTROL
WITH

FMGR OPERATOR COMMANDS

(L-g ydeadered aos) puswiwio)) pado[Ialid .

16-2 SIUBWWOD JO UL B 3IB[IB(] 13U1] JUAWIWIOD a
£1-Z sodessow Jo.id [[B ISI[10 #Jouu2 puedxy [#40442 |4, 1€-7 SIUSIU0Dd A1030941p IO SJUSIUOI (Y 98I g | qwouyy
s4djawnand Kue a8+ "
8G-3 Juissed ‘vaFajul- yoeq 10 L DU 0} IBJSUBL], _”_mow:Ech. ! x:E.:.H ML 152 syoen} D udrssy [syons# 10T
9L-3 Srostion e atE:me: qof 108 um%.:.i:..gq.,d,r L% qof yoreq £jnuap] [([£122014d] 028 utws: uy:] awoU1Q L
L1-¢ [0SUOD UIa3sAs 03 @ awmmﬁwﬂmw 128pssaul g, 08-Z 2p0d A)1andas Iojsew mau udissy £114n02s MaU--K114NIISN]
96-2 wolj pubwiwod WaIsAs g LY 2INoaxy LPUDWINOIXS (l[{syop42 pug’} yov /0054 "}
91-% apoo 0} apod K311849s aduey) APOIAS Y004 ap# ‘] 3o04 IST']
[[[sap1f #*] £8-% 93p1aed JWNJ 9ZIBNIU] P1129D) 28P143400 [£314m028 IN]
Z4unu JpuULIof 19-2 anay J1 diys ‘gd pue [d axedwo) [diys‘] gd‘do* 1d* J1
£Z-7 9IBdI0 ‘ZuDU UL [LuDU JO SPUIJUOD dI0YS # ay J0o* | guwmuw a1 ¥1-% HOHNA 2jeutunas,J, XH
Joa‘putaof* ¥L-Z qof puy od
pp-g Awoudy st_wwhmaa MMM:%.MEQE@E aABg o M:Eq.mm [[[sartf# 1 #2711/]
¥9-2 6 4 Y3 DI s[eqo[d 18s 10 Ied[] (ed | lgd | rd1gs 0UL0f
eh-z JuDU B[1y 5B BOIE G 10 £ ALS E:c:.mmvw,, Ve 83-7 g4wipu 918910 pue Zswou 0} Jswou dung . \om” gawou’ faunu' nNg
[0Fessed Julns puewwiod $11qryul Luenu’ s exed Lino Kerd Jooymusof e fod 11de
8¥-Z HI | 4wbu 01 Jajsued) o wouFosd uny y[sudrdwnand® | b g0 I HIINY €92 ToRomeEd JuUSLMD ABIESIQ U led it 14
) . 16-Z £1030311p 3L JO SIUIIUQGI ST ([£214m0as 1380w] 38 P1409°] 1
78-2 wivafousd Kq pasn syoeI) OSIp 3SBA[AY wnaSoad 19 . . ’ -
juawides (J[#seI[AI 10 woaSoad 88-2 95p1IED JunoOWsi(q 23p14.403°)Q
9¥-2 juawdas (11 uSisse pue wetloid a10)sey [wpaSoad Jautbu gy
Ge-3 awreu afy aduey) AUDU LD U NY u
222 waysAs Woj $judxa s} pue [y ading Juou g u|vd'|od|od"
2672 sadpLilied JWJ (e 10 duo yoed (25 p1a1apd’ |31d SV | AT Sd'[dM’ Mhwouyg)
79-% ny 01 adessawt puds pue asned 1+ [[28pssaud |0y |y d 0Z-2 9[1J ISIP-UOU }BIIY 19¢|od‘| sd| AY’
18- weadoiad Liesodwa) aaoway wnaFoad* §0O 61-2 a[1J ISIp 3jBAI) JUWDUYD
8€-% eaJte QT 01 wedoad 20Inos A0 [IHI‘ JwpaSoud |auvu‘SW _ £ ot ‘ ‘ ‘
757 vo1e 1] 07 weadoid 2[qEIEI0[aL FAOI umugy £e-Z (3[y ¢ 2d41) 90149p ISIp-UOU [0IJUOD [[[uonounjgns‘luonoun/ Jywou‘IND
182 o3p1a1ae0 JUnoJy (49041 1501 1M1 O GR-Z Jayloue 031 95pLIIEDd SUO WY Sa[Y Ado) 208p141400 [35 P14340I' QD)
LLZ qof yojeq ur Jrun [eordo] YoM el 06-2 S9ApLI.IE) PARUNOU 45T 10
ov-2 syoed) 201n0s 180180 03 123uled J08 [yoemny 181 992 #1090]8 Ul an[eA PIjR[II[Ed 31015 “{{gd'1do*] [d]#199015'VD
G1-2 ao1aap Jo[jo yun [eado] aduey) ol 81-2 a[y 351 qof 01 adessow pudg 1a8nssaw’ N
¥1-2 801A9p 3811 Jo Nun [eaido] aduey) £y 8L2 qof 110qVy av
adeq uoyounyg puswwo) adeq uonouny puewwo)

wuapyf a1y ostp woay yndut

1un 00130}
= Jwou

[[[[[2215 paodaa:)az1s ap1f:] adKy aj1f:] aSp14panI:] K114ndas:) dwvU 31

[(#577) 3240005) wu'a) Yf* (Y«

ao1A9p asip-uou wody ndur [[[[£242aas] 1817] §op © 1 ndur * JYHWA ‘NU« DN 2[NpaYos

SANVININOD HOLVEHIJdO dDNA OL XAANI

BATCH AND FILE CONTROL WITH
FMGR OPERATOR COMMANDS|[1

2-1. INTRODUCTION

The FMGR commands can be entered interactively at a terminal or they can be entered in
batch mode from a non-disc input device or from a procedure file on disc. The commands
perform the following functions:

Control FMGR operation

Create and manipulate disc or non-disc files
Develop and save program files

Develop and save procedure (transfer) files
Control batch jobs

Inititialize and manipulate disc cartridges

A permanent disc-resident program FMGR is used to perform the operations described in this
section. You may schedule FMGR with the RTE RU command from an interactive terminal or
schedule it from a program with the RTE Program Schedule EXEC call.

2-2. INTERACTIVE VS. BATCH OPERATION

In interactive mode, you enter the FMGR commands from an interactive device specified as
the input parameter in the RU,FMGR command. If the input parameter is omitted or is zero,
FMGR defaults its value to 1 and interacts with the system console. In a Multi-Terminal
Environment, the default input device is the logical unit of your terminal. Interactive mode
assumes that the FMGR input device allows two-way communication (teleprinters and display
terminals).

As soon as it is scheduled interactively, FMGR issues a colon prompt (:) to signal that it is
ready for you to enter a command. This prompt is issued after each command is successfully
completed until the EX command terminates FMGR.

When the input parameter in the RU,FMGR command specifies a non-interactive device or is a
FMGR procedure file on disc, batch mode is assumed. Batch mode is entered when FMGR, not
a copy of FMGR, processes a :JO command. It is normally exited when FMGR processes an :EQO
command, signifying the end of the job. Batch mode is used when the input device is a card
reader, paper tape reader, magnetic tape, or a FMGR file on disc. Note that an input device can
be referenced as a type 0 file.

In batch mode, you must include the colon prompt (:) as the first character of the command; the
system does not supply this prompt. (Refer to Figure 2-1.) When a group of commands are
preceded by the JO command and terminated by EO, the commands form a batch job. Batch
jobs can be entered as part of a stream of jobs; all functions are performed without operator
intervention and the beginning and end of each job are logged on the list device. Batch jobs are
generally entered from a device such as the card or paper tape reader, or they may be saved as
FMGR procedure files to be entered from disc. Whether entered from a file or device, jobs may
be spooled with the Spool Monitor (refer to Section IV).

2-1

FMGR Operator Commands

INTERACTIVE MODE BATCH MODE
PAPER TAPE

CRT reaDer — ¥ [] E @

[of o S S

MAG TAPE

CARD READER

— DISC —

(:EX
(;RU,LOADER,QQ
J:RU,FTN4,2,99 J

LG,3
LG.3
:RU,FTN4,2,99
:RU,LOADER,99 L

EX

YOU MUST SUPPLY COLON
SYSTEM SUPPLIES COLON

Figure 2-1. Interactive vs. Batch Operation

The program FMGR controls all batch operations. If an attempt is made to run FMGR
interactively at the same time, the message ILLEGAL STATUS is returned to indicate that
FMGR is busy. The same message is issued if FMGR is requested to run a batch job while it is
being run interactively. To avoid this conflict, a copy of program FMGR can be made to be used
at the interactive device. (Refer to Appendix E.)

Batch processing without spooling is explained more fully starting at “Batch Job Control”.

Program JOB is used to inspool jobs in a batch environment with spooling. FMGR then
processes the jobs. This capability is explained in Section IV.

2-3. MULTI-TERMINAL ENVIRONMENT

If your system operates in a multi-terminal environment under control of the Multi-Terminal
Monitor, it is essential to have a copy of FMGR for each terminal that uses FMGR. Any

FMGR Operator Commands

terminal can use any copy, but to avoid two terminals using the same copy, it is good practice
to associate each copy mnemonically with a terminal number. For example, copy FMGO7 could
be associated with terminal LU 7. Copies of the program must begin with the letters FM.

RTE-IV Multi-Terminal Monitor Operation

In an RTE-IV Multi-Terminal Monitor (MTM) environment, the prompt for a terminal other
than the system console depends on whether it has its own copy of FMGR. A terminal of logical
unit number xx has its own copy of FMGR if a program exists named FMGxx.

If such a copy exists, it is automatically scheduled for execution each time the terminal
interrupts the Operating System. The following prompt is issued:

xx>FMGxx
and the user is conversing with his copy of FMGR. Furthermore, the Operating System makes
the interrupting terminal the log list device; a transfer file named “HI” is executed for the

user; and the BReak and ABort commands have a special meaning. Refer to the MTM section
of the RTE-IV Programmer’s Reference Manuai for further information.

If such a copy does not exist, the following prompt is issued:

XxX>

and the user is conversing with the Operating System.

If copies do not exist for use with your system, you can make copies using the procedure
outlined in Appendix E.

NOTE

All batch operations are performed by program FMGR, not a
copy of FMGR.

2-4. INTERRUPTING FMGR

Most FMGR command processing can be interrupted with the RTE system command:

*BR,FMGR

If you are using a copy of FMGR, be sure to use the name of that copy.

2-3

FMGR Operator Commands

If FMGR is at a convenient breakpoint, command operation stops and the message:

FMGR 000

is printed or displayed on the log device, usually the system console or user terminal. Control
is transferred to that device unless a job is being processed. If a job is being processed, the BR
command terminates the job and returns control to FMGR.

In an RTE-IV Multi-Terminal Monitor (MTM) environment, the BReak and ABort commands
have a special meaning. Under the following conditions, the last son of program FMGxx will be
broken or aborted by the BReak or ABort commands:

1. the user is at an MTM terminal.
2. the terminal has its own copy of FMGR named FMGxx.

3. the BR or AB command is given with no program name specified.

Refer to the Multi-Terminal Monitor section of the RTE-IV Programmer’s Reference Manual
for more information.

Most FMGR commands recognize the BR command. For those that do not, it is recognized
between commands. This insures that command processing is completed for commands where
interruption could cause difficulties. For example, if FMGR is interrupted while a command is
creating a file, the file is purged. Or if the command is to pack all cartridges, it will finish
packing the current cartridge, but will not pack the next. Such interruptions do not occur with
the BR command, but could occur if OF, FMGR is specified. For this reason, OF, FMGR is not
recommended. Execution of a batch job or a program running under FMGR control can be
interrupted with the RTE abort command:

*AB

The program is aborted and control returns to FMGR. If no program is executing, it acts as a
break command and interrupts FMGR. Refer to the RTE Operating System manual for
information on the AB options.

NOTE

AB will affect only programs executing as a result of FMGR,
not a copy of FMGR.

FMGR suspends itself when it expects further batch input through a non-interactive input
device. In this case, a FMGR 006 error message is issued and you must place the input in the
device and type *GO,FMGR.

If FMGR is terminated with :OF, FMGR or *OF,FMGR,8 (not recommended), it can be re-
scheduled with *RU,FMGR as described in paragraph 2-10.

2-4

FMGR Operator Commands

2-5. FMGR COMMANDS

All the FMGR commands are summarized in Table 2-1. This table presents the commands in
the same functional groups in which they are described in this section.

Table 2-1. FMGR Operator Command Summary

FUNCTIONAL
GROUP COMMAND FUNCTION PARAGRAPH
FMGR ?? Request error code explanation 2-11
Operation EX Terminate FMGR; return to RTE control 2-12
LL Change list device 2-13
LO Change log device 2-14
SV Change severity code 2-15
tTE Send message to system console 2-16
+AN Send message to list device 2-17
File CR Create disc file 2-19
Creation CR Create non-disc file 2-20
and PU Purge file 2-21
Manipulation ST Store data in device or file; create file 2-22
DU Dump data to device or created file 2-23
LI List contents of file 2-24
CN Control non-disc file 2-25
RN Rename disc file 2-26
Program File MS Move source program to LS area 2-28
Creation LS Set or clear pointer to LS area 2-29
and LG Allocate tracks to LG area 2-30
Manipulation MR Move relocatable program to LG area 2-31
SA Save LS or LG area as file; create file 2-32
SP Save memory-image file for execution 2-33
RP Restore memory-image file for execution 2-34
TRU[IH] Execute program, program file, or procedure 2-35
[inhibit command string passage]

OF Remove program and ID segment from memory 2-36
RT Release tracks assigned to program 2-37
Procedure TR Transfer control to procedure file or device 2-41
File TPA Pause and send message to log device 2-42
Manipulation tDP Display parameter values 2-43
SE Define global parameters 2-44
CA Calculate global parameter values 2-45
IF Branch on parameter values 2-46
Batch Jo Initiate job 2-48
Job EO indicate end-of-job 2-49
Control TL Set run-time limit within job 2-50
LU Switch logical units within job 2-51
AB Terminate job 2-52
FMP MC Mount Cartridge 2-55
Cartridge IN Initialize cartridge 2-56
Manipulation DC Dismount cartridge 2-57
CL List cartridge directory 2-58
DL List file directories 2-59
PK Pack cartridges 2-60
CO Copy all files from cartridge to cartridge 2-61

1 Privileged command (see paragraph 2-7)

2-5

FMGR Operator Commands

Table 2-1. FMGR Operator Command Summary (Continued)

FUNCTIONAL

GROUP COMMAND FUNCTION PARAGRAPH
Miscellaneous t38Y Execute an RTE system command from FMGR 2-63
Commands T Denotes a “comment” line 2-64

tPrivileged command (see paragraph 2-7)

2-6. COMMAND STRUCTURE

Each command is specified by a mnemonic code consisting of at least two letters to indicate the
operation to be performed. Depending on the command, parameters may be entered to further

specify the command operation. Commands allow more than two characters in the command

code, but only the first two characters are significant. For example, STORE can be specified,

but ST is always sufficient.

The following syntax conventions are used in this manual to specify command format.

UPPER-CASE BLOCK LETTERS

lower-case italics

[, parameter]

parameter 1
parameter 2
parameter 3

parameter 1
parameter 2

parameter 3

[,paraml [,param2]]

Literals that must be specified exactly as
shown; if underlined, the letters may be omit-

ted.

Type of information to be supplied by the user;
most parameters are in this form.

Optional parameters are enclosed in brackets;
FMGR supplies a default value if omitted.

One and only one of the stacked parameters
may be specified.

All bracketed parameters are optional; if all
are omitted, FMGR supplies default value, or
only one may be specified.

Series of optional parameters; the last parame-
ter may be omitted with no indication; embed-
ded parameters must be indicated by a comma
when omitted.

Ellipsis indicates that the previous parameter
or series of bracketed parameters can be re-
peated.

2-6

FMGR Operator Commands

To illustrate:

If the format is: You may enter:
EOJ EO OR EOJ
DL [, cartridge[,security]] DL default values supplied for parameters

DL ,[SC\ position of parameter held by comma

DL,2 last parameter omitted
,SOURCE LIST,2,DIRECTORY use full names
LIST,namr|,BINARY
,DIRECTORY || LI,2,D use abbreviations for identical effect
LIST,FILA default parameter supplied

2-7. PARAMETER SYNTAX RULES

A parsing routine checks every parameter specified in a FMGR command according to the
following syntax rules:

The first parameter is separated from the command code by a comma (,) or a colon (:).
Subsequent parameters are separated from each other by commas.

Subparameters are legal in the first two parameters. Also, they are legal anywhere within
a privileged command (see below). Subparameters are separated from each other by a colon
(). The first two subparameters may be ASCII or numeric, the rest must be numeric.

Blanks on either side of a delimiter or the command code are deleted from the command
entry; they are not transmitted or echoed back.

Parameters are first assumed to be numeric, but if the parameter fails to convert, it is
treated as ASCII unless it is a number immediately followed by B,G,P, or S or is preceded
by a plus (+) or minus (-) sign.

Numeric parameters observe the following rules:
A leading plus sign (+) is ignored; a number is assumed to be positive unless preceded
by a minus sign (-).
A number followed by the letter B is octal.
A number followed by G, P, or S is a global reference.

ASCII parameters are parsed to a maximum of six characters; only the first six characters
are interpreted. If fewer than six, the parameter is padded with trailing blanks (octal code
40, the ASCII space. Blanks within a number are ignored. In a message command (AN,TE,
or PA), a parameter may contain more than six ASCII characters since the message
parameter is not interpreted.

2-7

FMGR Operator Commands

e The total number of characters in any parameter must be less than: 128 — (8 times the
parameter number) i.e, parameter 10 must be less than 48 characters: 128 — (8* 10) =48.

¢ The maximum number of parameters in one command is 14.
e Comments may be entered following the last parameter as long as they do not replace an
omitted optional parameter. They are subject to the length and number and subparameter

restriction on all parameters, but like messages are not interpreted.

¢ For privileged commands (see Table 2-1) minimum syntax checking occurs before the
command is processed. The only syntax requirements for privileged commands are:

1. If issued from a non-interactive device, the first character must be a colon ().

2. Global values specified in the command string must be within the legal range (see
paragraph 2-40).

3. The “constructed” command line length (after globals are replaced and blanks on
either side of the delimiters are removed) must be less than 80 characters.

2-8. NAMR PARAMETER

A special parameter namr is used to identify a file or device in a FMGR command. It uses
subparameters and may appear only as the first or second parameter.

Format

file name (:security[:cartridge (:file type[:file size{:record sizell}]]
namr =

logical unit number file creation only

Unless specifically noted, each subparameter has a default value of zero. This value is selected
so that, as closely as can be predicted, it provides the most general case. This means that in
many cases, all subparameters can be omitted and the file be completely specified by name
alone.

NAMR Subparameters

file name 6-character ASCII file name; restricted as follows:

® only printable characters, space through __ (or «)
plus (+), minus (=), colon (;), or comma (,) not allowed
first character must not be blank (space) or a number
embedded blanks not allowed
must be unique to FMP cartridge

logical unit positive integer specifying logical unit number of non-disc device

security positive or negative integer or 2 ASCII characters representing a positive
integer; range is from -32767 through 32767; security may be:

2-8

cartridge

file type

file size

record size

FMGR Operator Commands

zero file is unprotected (default)

+integer write protected; may be read with any security or none; may be
written only with correct code or negative (2’s complement) of cor-
rect code.

—integer file is fully protected; may be referenced only with correct negative
code.

positive or negative integer or 2 ASCII characters representing a positive
integer; range is from -32767 through 32767; used to identify FMP disc car-
tridge, it may be:

zero first available cartridge that satisfies the request is used; (default)

+integer cartridge reference number (CR) by which the cartridge is iden-
tified.

—integer logical unit number (LU) associated with the cartridge.
positive integer in range 0 through 32767; default depends on command.

non-disc file
fixed length 128-word record
fixed length records; user defines length

0
1
2
3 variable length record, sequential access, automatic extents
4 ASCII code and source programs (otherwise like type 3)

5 relocatable binary code (otherwise like type 3)

6 memory-image format (otherwise like type 3)

7 absolute binary (otherwise like type 3)

8 - 32767 user defined

decimal number of blocks in range 1 through 16383; a block is 128 words (two
64-word sectors); indicates space allocated to file:

+integer allocate specified number of blocks to file; minimum is 1.
—integer allocate remainder of available space (up to the maximum allowed
file size) to file; integer may be any value (valid only for files of type

3 or greater).

decimal number of words in range 1 through 32767; applies only to type 2 files;
type 1 files use 128-word records, other types use variable length records.

NAMR Examples

10

20B

logical unit 10

logical unit 16 (octal 20)

29

!

FMGR Operator Commands

3XYZ:AA file named $XYZ is write protected by ASCII code AA (040501
octal or 16705 decimal)

ABS:-10:-3:2:40:64 file named ABS fully protected by security code -10, is located on
LU 3, is a type 2 file 40 blocks long, each record has 64 words.

A23456:::3 file name A23456 is type 3; security and cartridge default to zero.
Note that a colon is specified for each omitted parameter plus one
colon to separate the subparameters from the file name. Thus, one
more colon than default parameters must be supplied.

2-9. FMGR OPERATION

To use FMGR interactively, you simply run the program from a terminal. When it responds
with the colon prompt, you may enter any command. To run in batch mode, you also run the
program from a terminal but specify that command input is to be from an input device such as
the paper tape reader or from a disc file. No prompt is issued. The program FMGR expects a
colon to precede each command entered from a non-interactive device or disc. You may also
schedule program FMGR from a program.

When you run FMGR, it assumes default values for the devices used for command input, to log
errors and to list output. These values all assume interactive mode. You may specify other
devices when you run FMGR and you may change the devices during operation of FMGR with
FMGR commands.

When you enter each command at a terminal, it is echoed back to you at the terminal. It
appears as if you were typing the command on the terminal display, but actually the command
is sent to FMGR which then displays (echos) the command. Command echo can be suppressed,
and it is good practice to suppress the echo when command input is from a non-interactive
device.

Except for errors requiring correction, error messages can also be suppressed. If a batch job is
being run, you can prevent FMGR from terminating the job in case of an error that needs
correction or you can specify that the job must terminate in such a case. Normally, when an
error requires operator action, it is logged on the log device and control transfers to that device.

During FMGR operation, messages can be issued to the terminal, to the log device if it is
different from the terminal, or to the list output device. Each type of message uses a different
command. The message to the log device also causes a pause in job processing so that you may
interact with FMGR.

FMGR operation is terminated with the EX command. If spooling is operative, FMGR checks if
there is another job to process before terminating. During interactive operation this may slow
the actual termination, but will not affect FMGR copies in a multi-terminal environment.

2-10

FMGR Operator Commands

2-10. RUNNING PROGRAM FMGR

To request FMGR from the RTE system console or your terminal, you specify the system
command RUN. You may also schedule FMGR from a program with the RTE program
schedule EXEC call.

Format

*RUN,FMGR [,input[,log{,list[,severity]]l] commands entered from device

*RUN,FMGR,fi,le,nm [,severity [,list]] commands entered from file

Parameters

input Logical unit number of input device for FMGR commands; if omitted, LU
1 is assumed; in a multi-terminal environment, default input is logical
unit number of device where FMGR was scheduled.

log Logical unit number of the log device used to log and to correct any
diagnosed errors; must be an interactive device; if omitted, input device is
assumed unless it is non-interactive, in which case, LU 1 is assumed.

fi,le,nm File name of file containing command input to FMGR,; specified as 3
words each consisting of 2 ASCII characters; refer to file name discussion
below for restrictions.

list Logical unit number of device used to list results of FMGR commands; if
omitted, LU 6 is assumed.

severity Severity code defines action in case of error messages;

0 Display error codes and echo commands on log device (default).
1 Display error codes on log device, inhibit command echo.

2 Error code displayed only if error requires transfer of control to log
device for correction, in this case, active job terminates; no command
echo.

3 Same as 2 except active job not terminated when an error causes
transfer to log device. You can transfer back to the job. No command
echo.

4 If a FMGR command error is encountered, job continues
automatically; no command echo, no transfer to log device, and no
job abort occurs.

NOTE

Once FMGR is running, log can be changed with the LO com-
mand, list with the LL command, and severity with the SV
command.

2-11

FMGR Operator Commands

Input Device

The device through which commands are sent to the FMGR program can be any device to
which a logical unit has been assigned and that can be used for input. Normally, when input is
from disc, a file name is used to specify the input device.

File Name

e If the name begins with NO, these characters are assumed by RTE to be the scheduling
parameter NOW and the second parameter is treated as the first two characters in the file
name. Either specify NO twice, or use the octal equivalent for the characters. For example,
to specify input from the file NOBLE:

RU,FMGR,NO,NO,BL,E or
RU,FMGR,47117B,BL,E

¢ Ifa file name has two numbers in the last two character pairs they are treated as numeric
unless they are followed by some ASCII character to indicate they are ASCII, or the octal
equivalent is used. To specify input from AA1044:
RU,FMGR,AA,10X,44X or
RU,FMGR,AA,30460B,32064B

Since the parse routine deletes blanks, the name AFIL1 must be entered as:
RU,FMGR,AF,IL,30440B

Examples

1. =*RiJ,FMGR - FMGR is scheduled with default values for all parameters:
input from LU 1, errors logged on LU 1, list output to LU 6

2. @7>RU,FMG27 A copy of FMGR (FMGO7) is schedule with input from LU

7 (terminal from which FMGR is scheduled), errors logged
on LU 7, list output to LU 6

3. *RIJ,FMGRs»S5s5») <«—— Input from paper tape (LU 5), log errors on LU 1, list to LU
6, severity inhibits command echo on LU 1.

4. *RUFMGR,FISLEsAY» ! < Input from FILEAI, severity inhibits command echo on
console, default list is LU 6

Program Request For FMGR

To request FMGR from a program (optionally, a command string may be passed to FMGR),
use the following call:

2-12

FMGR Operator Commands

Format

CALL EXEC(ICODE,FMGR,INP,LOG,LIST,ISV,IDUM,IBUFR,IBUFL)
entered from device

CALL EXEC(CODE ,FMGR,2HFI,2HLE,2HNM,ISV,LIST, IBUFR,IBUFL)
entered from file

Parameters

ICODE = 23 to schedule FMGR with wait

24 to schedule FMGR without wait
FMGR a 3-word array containing ASCII file name FMGR.

INP,LOG,LIST,ISV
FILLE,NM,ISV,LIST

correspond to the parameters in the RU,FMGR command.

IDUM a placeholder for parameter 5 in command entered from device.

IBUFR,IBUFL buffer address and length containing command string to be passed to
FMGR.

Command String Passing

The command string to be passed to FMGR via IBUFR must begin with a colon (:). The buffer
length specified in IBUFL is a positive value for words, or a negative value for characters. The
command string is ignored if:

a. The input device specified is an interactive device.

b. The command string does not start with a colon.

FMGR assumes that the string passed is a command (it may be any command) and effectively
inserts it in front of the first command on the specified input file.

2-11. ?? - REQUEST ERROR EXPLANATION

Once FMGR is running, it assumes control and if a command cannot be understood (input
error) or has caused a recognized problem, an error message is printed in the form:

FMGR nnn

where nnn is a three-digit number. (Refer to Appendix B for a list of all FMGR error codes,
their meaning, and corrective action.) During interactive operation, a brief description of the
error code can be requested with the ?? command.

Format

2?2 ,error #1]

Parameter

error # Error code whose explanation is requested; if omitted, the explanation of
the current error is issued and the value of global P6 is set to zero; if two
error codes were sent, the explanation usually refers to the first number
only. Iferror # is 99, a list of all FMGR error codes and their explanations
is printed at the list device.

2-13

FMGR Operator Commands

In some cases, when an error code is issued, it is followed automatically by additional
information. This may consist of the line in which the error occurred up to the point where the
error was detected. Or it may be a second FMGR error code. Any error code explanation can be
requested by entering the code number as the error # parameter. Be sure to include the comma
separator or the current error will be explained.

2-12. EX - TERMINATE FMGR

When you have finished using the FMGR, you can terminate the program and return to RTE
control with the command EX.

Format

EXIT

In response to EX, the FMGR sends the message:
$END,FMGR

to the log device unless a non-zero severity code inhibits the message.

2-13. LL - CHANGE LIST DEVICE

You may change the list device currently assigned to FMGR with command LL.

Format
:LL,namr
Parameters
namr New list device; may be either a file or a logical unit number. (Refer to
paragraph 2-8 for namr description).

namr may refer to any existing file or logical unit. It should be a device allowing output; an
attempt to list on an input device terminates FMGR and issues the system error code 1007.

Certain FMGR commands (AN, LI, CL, DL, EO, JO) direct their output to the list device. By
default this is the line printer in order to provide printed copies. If you want this output saved
on a file or directed to your terminal or some other device, you may request it with the LL
command. If LL is specified within a batch job, the default device (LU®6) is re-established at the
end of the job.

2-14

FMGR Operator Commands

Examples
1. *RU, FMGR
tLL,4 Change the list device from default logical unit
. 6 (line printer) to logical unit 4 (paper tape punch)
L]
$LLs6 - Subsequently change it back to logical unit 6.
2. #RU, FMGR

SLLLLISTF23813 <————— Change list device to list output on existing file LISTF;
Specify CR to insure that list is sent to correct file.

2-14. LO - CHANGE LOG DEVICE

You may change the log device currently assigned to FMGR with the command :LO.

Format
:LOG,lu
Parameters
lu Specifies the logical unit number of the new log device; note that a file
name cannot be used as a log device.

lu must be a two-way device such as a teleprinter or CRT terminal since it is used both to log
messages and to correct errors.

All error messages are printed or displayed on the log device. When the log device is not the
input device and an error occurs that requires operator correction, control is transferred from
the input to the log device and corrective action must be taken at the log device. To transfer

control back to the input device, simply type a colon after the colon prompt. The second colon is
interpreted as a transfer command.

input device log device
FMGR 21 ﬂ} error message
:DD] wrong command DD ?
:[22]=— request error explanation
FMGR 214 INPHUT ERROR
:DJ«—— correct command _
tE]=—return to input

If the LO command is specified within a batch job,the default device (LU1) is re-established at
the end of the job.

2-15

FMGR Operator Commands

Example
*RU » FMGR log device is system console (LU 1) by default
tL0,»7 change it to logical unit 7 (a terminal)
2L0, subsequently change it back to logical unit 1

2-15. SV - CHANGE SEVERITY CODE

You may change the severity code currently being used by FMGR with the command SV.

Format
:SV,severity [,global#] [,IH]
Parameters
severity New severity code; it may be:

0 Display error codes and echo commands on log device (default).

1 Display error codes on log device, inhibit command echo.

2 Error code displayed only if error requires transfer of control to log
device for correction, in this case, any active batch job terminates;
no command echo.

3 Same as 2 except active job not terminated when an error causes
transfer to log device. You can transfer back to the job. No command
echo.

4 If a FMGR command error is encountered, job continues
automatically; no command echo, no transfer to log device, and no
job abort occurs.

global# Optional G global number in the range 1 - 9, in which the severity code is
placed.
IH Optional parameter to inhibit echo of command entry.

The normal default mode is to echo each command as it is entered on the input device and to
log all errors on the same device. During interactive operation, the severity code should be this
default value, zero. When there is no advantage to echoing commands at the console, for
instance when commands are entered in a batch job, from a peripheral device, or through a file,
you could set the severity code to 1. If, in addition, you want to suppress messages unless they
require action, you can set the code to 2. This code terminates any currently executing job
when an error occurs so that the job will not continue with errors. A severity code of 3 allows

2-16

FMGR Operator Commands

jobs to continue in spite of errors. This code would be useful when more than one batch job
must be processed so that the job containing errors does not hinder subsequent job processing.

If SV is specified within a batch job, the severity is reset to zero when the job is terminated
with the EO command.

Whenever command echo is suppressed, any command causing an error is displayed preceding
the error code unless the error display is also inhibited.

Examples

1. *RI),FMGR,5 =

command input from paper tape reader

tSVs1 =

1st command entered from reader inhibits echo
on system console

- paper tape

L~

2, *RIJ,FMGR

:JO

1SV,3 set severity to 3 to inhibit command echo and error
. messages; job will not terminate in case of error
.
.

tEO

end-of-job command resets severity to 0

2-16. TE - SEND MESSAGE TO CONSOLE

You can send a message to the system console with the command TE.

Format

Privileged Command
:TELL,message

Parameters

message Message to be sent to system console; must conform to parameter syntax

rules for privileged commands (refer to paragraph 2-7).

Whatever you type as a message is displayed at the system console following the command
code TE. The message may consist of any printable upper-case ASCII characters. It is limited
by the length and number restrictions placed on any FMGR command parameters (refer to
Parameter Syntax Rules, paragraph 2-7). Note that any commas divide the message into
separate parameters. A one-parameter message could be as long as 60 characters.

2-17

FMGR Operator Commands

Examples

1. *RIJ,FMGR
tTE,START FMGR OPERATION, APRIL 22, 9AM.

message logs beginning
and end of terminal op-
erations

TE,» **x*%xF INISHED**x%x%x NOON, APRIL 22

2. D7>,FMGR
:TE, TURN ON AND READY LINE PRINTER <——— messagefrom terminal to
the system console

2-17. AN - SEND MESSAGE TO LIST DEVICE

You can send a message to the list device with the AN command.

Format

Privileged Command
:ANNOTATE, message

Parameters

message Message to be sent to the list device; must conform to parameter syntax
rules for privileged command (refer to paragraph 2-7).

AN differs from TE in that it is sent to the list device, not the log device. Because it is printed
on the list device, it is useful within batch jobs to annotate the job.

Example

*R >FMGR,MYLFI1,LE
sAN, *x**FMGR OPERATION FROM FILE "MYFILE"

1st command in
7MYFILE sends mes-
**xxFMGR OPERATION FROM FILE "MYFILE" sage to line printer

NOTE

One other command (PA) may be used to send messages. PA
suspends current operation and transfers control to a specified
device. Optionally, it sends a message. This command is par-
ticularly useful to request operator intervention during non-
interactive operation. It is fully defined in paragraph 2-42.

2-18. FILE CREATION AND MANIPULATION

The file creation and manipulation functions include the creation of all types of files, the
transfer of data between files or between files and devices, renaming files, listing file contents,

2-18

FMGR Operator Commands

and purging files after use. A special command is available to perform control functions on
non-disc files.

File creation for disc files means that the file is given a name, a file directory entry, and is
assigned an area on disc. For non-disc files, creation means associating a peripheral device
with a file name so that it can be treated as a file in subsequent operations. The FMP calls
described in Section III that refer to non-disc files expect the files to be created by FMGR
commands.

Files may be created in a variety of ways. Probably the most commonly used command,
STORE, creates a file and transfers data to the file in the process. The CREATE command
simply creates a disc or non-disc file with no data. Special files containing programs may also
be created with FMGR commands. These commands that create files for source programs (type
4), for relocatable programs (type 5), and for memory-image programs (type 6), are described
with program file manipulation beginning in paragraph 2-27.

When files or extents are created, a check is made to see if a “hole” left by a purged file is the
same size as the requested file or extent size.

If such a “hole” is found, the new file or extent will be put there and the directory entry of the
old file will be used for the new file or extent.

If no “hole” of the same size exists, the directory entry of the file (or extent) will be placed at
the end of the directory. Disc space will be allocated for the new file at the end of all
currently-allocated files on that disc. (Provided, of course, that there is enough room on the
disc to accommodate the new file or extent.)

The transfer of data is accomplished either with the STORE or DUMP commands. Either of
these commands allow you to append data to a file or overwrite data on a file. They may also be
used to transfer data between peripheral devices or between a device and a disc file. DUMP
differs from STORE primarily in that it does not create a file but assumes an existing file.

Device control is provided that allows you to perform all the functions of the RTE I/O Control
EXEC call from an interactive terminal. These functions include writing an end-of-file or
rewinding magnetic tape.

2-19. CR - CREATE A DISC FILE

A disc file may be created with the CR command. No data is transferred to the file.

Format

:CREATE, namr
Parameters

namr File descriptor; must not be a logical unit number; omitted subparame-
ters default to zero; file type and file size must be specified as greater than
zero; record size need be specified only for type 2 files; refer to namr
description, paragraph 2-8.

When a disc file is created, an entry is made in the file directory on the cartridge to which the
file is allocated. If the subparameter cartridge is specified, the file is allocated to that cartridge;
otherwise, it is sent to the first cartridge found with enough room starting at the head of the
cartridge directory on the system disc. If a file with the given name already exists on the first
cartridge with enough space, an error -002 is issued.

2-19

FMGR Operator Commands

If a file is type 3 or greater, an end-of-file mark is written at the beginning of the file. As data is
entered serially in the file, the mark is moved to the end of the data.

The format of a file directory entry for a created file is illustrated in Appendix C. The

information in the entire file directory (all files) can be listed with the DL command, informa-
tion in an individual file with the LI command.

Examples

1. sCRMYFILE:t-25:100:4:10 MYFILE is type 4; it has a security code of -25 (read
and write are restricted to users knowing the
code); it is allocated to a cartridge with CR = 100;
it uses 10 blocks (20 sectors) of disc space.

2. SCRo,URFILEs:t12,28,72 URFILE is type 2; uses 20 blocks; each record is
72 words. Cartridge is not specified, but a list will

show the cartridge to which URFILE is allocated
(see LI command).

3. sCROMYFILESEJs8033,~1} MYFILE is type 3; security code is EJ (only write
restricted); on cartridge 100; the remaining un-
used portion of the cartridge up to the maximum
allowed file size blocks is allocated to the file. The
exact size can be determined with a list (LI).

2-20. CR - CREATE A NON-DISC (TYPE 0) FILE

A different form of the CR command is used to create non-disc files. It creates a file directory
entry on the system cartridge that specifies device control information.

Format
,READ ,BSPACE | ,EOF ,BINARY
:CREATE,namr,lu ,WRITE | ,FSPACE | ,LEADER LASCII
,BOTH | ,BOTH ,PAGE ,control word
control word
Parameters
namr Only the file name and, optionally, the security code are specified (refer to
paragraph 2-8 for namr details); file type is default value 0 and other
subparameters do not apply.
lu Logical unit of the non-disc device; a positive integer.

READ, WRITE, or BOTH specify the legal input/output mode of the device; it must be
specified, there is no default.

RE - device accepts input only; forward spacing is assumed

WR - device is output only; no forward spacing is supported

BO - device is used for input or output; backspacing and forward spacing are
legal

2-20

FMGR Operator Commands

BSPACE, FSPACE, or BOTH specify the type of spacing the device supports; if omitted,
FSPACE is assumed for READ devices and no spacing for other devices.

BS - backspacing is supported
FS - forward spacing is supported
BO - both forward and backspacing are supported

EOF, LEADER, PAGE, or control word specify the particular type of end-of-file to be
written on the device; if omitted, default depends on driver type (see Appendix C).

EO - end offile mark for magnetic tape (default if device has driver type greater
than 16 octal, magnetic tape or mass storage device).

LE - leader on paper tape (default if driver type 02, paper tape punch).

PA - page eject for line printer or two line feeds on teleprinter (default if not a

punch or if driver type less than 17 octal).

control word - control subfunction (equivalent to function code in FCONT, see
paragraph 3-21); supplied if further end-of-file definition needed; specify as octal
integer of which only least 5 bits are used.

BINARY, ASCII, or control word specify the type of data on the device; ASCII is the
default.

BI - binary data
AS - ASCII data

control word - subfunction (equivalent to bits 6-10 of IOPTN parameter in OPEN
call, paragraph 3-10); supplied if further data definition needed; specify as decimal
or octal integer of which only the lowest five bits are used.

NOTE

In general, a type O file can be specified with only the required
parameters. FMGR needs a name, the logical unit, and
whether the device is read only, write only, or both. The other
parameters usually follow from this information.

Programs can use type O files as a means of controlling access to a device. Thus, type O files
provide a measure of device independence in that the standard file calls (refer to Section III)
can be used to control a peripheral device.

When a type 0 file is created, an entry is made in the file directory on the system disc. The
entry for a type O file precedes all other file entries in this directory. To make the entry, the
cartridge must be locked and other directory entries moved to make room for the new entry.
The cartridge is also locked when a type O file is purged.

The type O file entry differs from the disc file entry in that control information replaces the
track, sector, and record length information. The directory entry for type 0 files is illustrated
in Appendix C.

2-21

FMGR Operator Commands

Examples

1. :CR,LPUNCH:PP,4,WRs5LE»Bl «—— create file PUNCH on LU 4 for write only using
binary format and punching leader as end-of-file;
security code is PP.

2. tCR,LLP,6,WR>>PA . create LP as output file on LU 6; defaults are no
spacing and ASCII data.

3. $CR>MT:32107,8,B0,B0 <«———— create MT as inputloutput file on LU 8; both for-
ward and back spacing supported; security code is

32107.
4. :CR,>MAG:JT,»R,RE create a read-only magnetic tape file.
5. :CRLREADR,S,RE = create READR as input only file on LU 5.

2-21. PU - PURGE A FILE

A file and its extents can be removed from the system with the PU command. Type O files can

be purged only with this command; other file types can also be purged with the PURGE call
(see Section III).

Format
:PURGE, namr
Parameters
namr File descriptor; enter file name and, optionally, security code and car-
tridge reference; (refer to namr syntax, paragraph 2-8).

If a file is protected by a security code it cannot be purged unless the correct code is entered. If a
label is specified, that cartridge is searched for the file to be purged; otherwise, cartridges are
searched and the first file found with the correct file name is purged.

When a file is purged, the first word in its file directory entry is set to -1. Tracks assigned to the
file are returned to the system only if the file was the last on the cartridge. If, however, the file
is a type 6 program, its tracks are not released. Disc space allocated to purged type 6 programs
and all purged files except the last can be returned to the system only by packing the cartridge
with the PK command (see paragraph 2-60), or by creating (in any way) a file or a file extent
that is the same size as a purged file (see paragraph 2-18).

A purged file cannot be accessed and its name will not appear on the file directory list
requested with the DL command. A new file with the same name can now be created on the
cartridge.

2-22

FMGR Operator Commands

Examples

1. tPUsAA purge the first file found named AA
2. 1PUs»CC2552100Q <«————— purge file CC protected by security code 55 on cartridge 100

3. Assume files A, B, and C are the last files in the directory and are not type 6:

tPUJSA
tPiJ,B
tPl),C

When C, the last file is purged, FMGR releases its disc space and then checks the next to last
file B. Since B has also been purged, its disc space is released and A is checked. It too was
purged and FMGR releases its disc space. This procedure continues until FMGR finds a file
that has not been purged, or finds a type 6 file, purged or not.

2-22. ST - TRANSFER DATA AND CREATE FILE

The ST command transfers data from a file or logical unit to a disc file or logical unit; the
receiving file is created by the command unless it is a logical unit. To transfer data to an
existing file use the DU command, paragraph 2-23.

Format

,record format,eof control
:STORE ,namrl,namr2 | ,eof control Jile # |, #files

,record format

NOTE

Only one place-holding comma is required when both record
format and eof control are omitted

Parameters

namrl File name of existing file or a logical unit number; data is transferred
from namrl. (See namr description, paragraph 2-8).

namr2 File name or logical unit to which data is transferred from namr1 ; if a file
name, the file is created using the last three namr subparameters if
supplied.

record format Format of data in namrl; default is derived from file type of namrl or is
ASCII; refer to record format description below.

2-23

FMGR Operator Commands

eof control SA to transfer embedded subfile marks in namrl to namr2 and write
end-of-file mark at end of data on namr2

IH to inhibit end-of-file on namr2; subfile marks are not transferred. If
omitted, end-of-file marks are saved, subfile marks purged.

file # Positive integer indicating file (or subfile) relative to beginning of namrl
at which to start transfer; default is 1.

#files Positive integer indicating number of non-disc files or disc subfiles to be
transferred; default is 1 unless namrl is a disc file and file # is omitted, in
which case default is 9999.

NOTE

Files are transferred record by record; records longer than 128
words are truncated.

namrl can be a created file (disc or non-disc) or a logical unit number defined for the system;

namr2 can be a logical unit number or a disc file name; it may not name a type O file. The file
type subparameter for namr2 defaults to the file type of namrl if namrl is a disc file.

If namrl1 is not a disc file, the file type of namr2 is based on the record format of namri:

type 3 if record format is MT, MS, or AS (ASCII or System I/Q) or is omitted
type 5 if record format is MSBR or BR (binary relocatable)
type 7 if record format is MSBA or BA (binary absolute).

Type 6 files are normally created with the SP command (paragraph 2-33); type 4 and 5 files

with the SA command (paragraph 2-32). These files can be stored to new files with the ST
command.

If a type 6 file is created or moved with the maximum file size specified for namr2 (see
paragraph 2-8 on namr file size) the unused disc track space will not be released automatically

at the end of the store. The :PK command on the subchannel must be given to recover the
unused space.

The file size subparameter for namr2 defaults to one-half a system disc track (24 sectors) when
namrl is a device, otherwise file size defaults to size of namrl without extents.

Record Format
If record format is omitted, the file type of namrl is used to derive the format:

if file type is O (non-disc files) 3 or 4 (disc files) record format is AS (ASCII).
if file type is 5, then record format is BR (binary relocatable)
if file type is 7, then record format is BA (binary absolute)

2-24

FMGR Operator Commands
The choices for record format are:
AS ASCII records are transferred

BA binary absolute records are transferred; checksum is performed (see Appendix
C for format)

BR binary relocatable records are transferred; checksum is performed (see
Appendix C for format)

BN binary relocatable records are transferred; without checksum (see Appendix C
for format)

MT magnetic tape ASCII records are transferred (MT record format is identical to
AS record format)

MS magnetic tape SIO (System 1/0) records are expected on namrl, standard
records are written to namr2 (see Appendix C for SIO record format)

Record formats can be combined as follows:

MSBR magnetic tape SIO binary relocatable records
MSBA magnetic tape SIO binary absolute records.
Subfiles

Before discussing the remaining parameters, it is necessary to understand subfiles. On non-
disc devices, files are separated by end-of-file marks that depend on the device:

magnetic tape EOF mark

paper tape leader

line printer top-of-form indicator (page eject)

terminal two spaces (two carriage return/line feeds) on output; CTRL/D on
input.

Iframrl is a non-disc device, it may contain manv such subfiles; the physical end-of-file for the
particular logical unit (device) terminates the collection of files or information. A disc file is
terminated by a special end-of-file, — 1, in the first length word of the last record. Disc files may
be divided into subfiles by zero length records, two length words set to zero. These are logical
divisions that usually result from transferring non-disc files to disc. (Refer to Appendix C for
file formats).

Subfiles are useful when you want to save more than one tape file or relocatable program file
(such as a library) on a single disc file and retain the files as separate entities. Subfiles can
subsequently be stored (ST command) or dumped (DU command) to another file separately or
as a single file. See Figure 2-2.

2-25

FMGR Operator Commands

EoF ©)
X $T,ABC,8,8A,3
1
%) @ <
w w w [
w w w
gl =2 |81 2 18 =
) SUBFILE C w uw w
‘$T.5.ABC.SA, 3
. z T - 5 @ START OF TAPE
BlFLE g FiLe | B FiLE |8 0 ST ABC 8
| ¢ |a|l B]l a |« S LA
w w w w
i} 3] pu] { H
SUBFILE B w " 1 .
o cC |, B 4 A 9]
w (]
| |
g 1 |
ZERO-LENGTH RECORD_/
(SUBFILE MARK)
SUBFILE A FILE
‘ABC’
PAPER TAPE — DISC FILE —— MAGNETIC TAPE

Figure 2-2. Relation of Files to Subfiles
EOF Control

If eof control is omitted, an end-of-file mark is written on namr2 following the last data
transferred; on paper tape, leader is punched at the beginning of the file as well as at the end.
Any zero-length records on disc or embedded end-of-file marks on non-disc files are not
transferred to namr2 (see@in Figure 2-2).

If specified, eof control is one of the following:

TH inhibit the terminating end-of-file; useful only if namr2 is a non-disc file. On paper
tape punch, inhibits initial leader.

SA transfer embedded end-of-file marks or subfile separators from namrl to namr2

When SA is specified, the embeded end-of-file marks are converted to the form used by namr2.
For instance, if a paper tape file is being stored on disc, the leader is converted to zero-length
records (@ in figure 2-2) and zero-length records to EOF marks on magnetic tape (@in the
same figure).

File Number

The file # parameter applies to files on non-disc devices or subfiles on disc. It specifies which
file or subfile relative to the first with which to start the transfer. For instance, if file # = 3,
transfer starts with the third file or subfile. If omitted, transfer starts at the beginning of
namrl. Transfer is always to the beginning of namr2.

:ST,AA,BB,,3

EOF
w
(=]
(=]
N
o
(=]

EOF
w

NAMRT = AA NAMR2 = BB

FOR ST, FILE# SPECIFIES FILE OR SUBFILE IN NAMR1.

2-26

FMGR Operator Commands

Number of Files

The #files parameter applies to files on non-disc devices or subfiles on disc. It specifies the
number of files or subfiles to transfer starting with file #. File # and #files are specified or

omitted under the following circumstances:

Transfer: file # #files
1 particular non-disc file or the rest of a disc yes no
file
1 non-disc file or all of a disc file no no
a number of non-disc files or disc subfiles from no yes
beginning of file
a number of non-disc files or disc subfiles from yes yes
particular file or subfile

Examples

1. Transfer contents of disc file XYZ to new file AA:
1ST,XYZ,AA

2. Copy a file from cartridge 2 to cartridge 17:
$SToXYZ2:2,XYZ2317 file XYZ on cartridge 2 is not affected

3. Duplicate a paper tape:

:tST»5,4 - the contents of tape on LU 5 are punched on a new tape

4. Enter ASCII data on file FILEX from the system console, creating FILEX:
tST»1,FILEX record format default is ASCII, type 3 file is created

- enter lines of ASCII data; terminate each line
with a carriage return

D¢ press CTRL and D keys simultaneously to terminate input

5. Store a command file on magnetic tape and then execute the commands:

tST»1,8

f?; two commands stored on magnetic tape (LU 8)
DC

:CN rewind the tape

11l - transfer control to LU 8

directory list is printed on list device by :DL
SEND L FMGR and FMGR terminates (:EX)

2-27

FMGR Operator Commands

Remember that you must enter the colon prompts for all commands entered into a file for later
use.

6. Store third, fourth and fifth files from a paper tape to disc as one file with an end-of-file
mark at the end:

$ST»55XY7Z553,3

FMGRAAE - after storing first file, reader stops and FMGR suspends
*GO»FMGR - type GO,FMGR to continue
FMGRAA6

*GO , FMGR

FMGRANSG
® -

when FMGR suspends the third time, the three files
have been read to disc as one file XYZ

7. Transfer first five subfiles on disc file DFILE to magnetic tape as five separate files:

$1STSDFILE»8sMT»SA»,»S

default for file# is 1 (first subfile)

2-23. DU - TRANSFER DATA TO EXISTING FILE

The dump command (DU) transfers data from an existing file or logical unit to another
existing file or logical unit; unlike ST, a new file is not created in the process.

Format

,record format,eof control
:DUMP,namrl,namr2 ,eof control JSile # | #files
,record format

NOTE

Only one place-holding comma is required when both record
format and EOF control are omitted.

Parameters

namrl File name of existing file or non-disc logical unit number; data is trans-
ferred from namrl. (See namr description, paragraph 2-8).

namr2 Name of existing file or non-disc logical unit number to which data is

transferred. (See namr description, paragraph 2-8).

record format Format of data being transferred; default is derived from namrl or is
ASCII. Record format description for ST command (paragraph 2-22)

applies to DU EXCEPT that MS defines format of namr2, and standard
format is expected on namrl.

2-28

FMGR Operator Commands

eof control SA to transfer end-of-file or subfile marks from namrl to namr2; IH to
inhibit end-of-file on namr2; subfile marks not transferred. If omitted,
end-of-file is written at end of data on namr2 (Refer to EOF Control
description under ST command, paragraph 2-22).

file # Positive integer indicating file (or subfiles) relative to beginning of
namr2 to which beginning of data is transferred; default is 1. Note that
file # here applies to the file receiving data, in ST command it applies to
the file from which data is transferred.

#files Positive integer indicating number of non-disc files or disc subfiles to be
transferred; default is 1, unless namrl! is a disc file and file # is omitted in
which case default is 9999.

NOTE

Files are transferred record by record; records longer than 128
words are truncated.

namrl and namr2 must both be existing disc files or logical units defined for the system.
namr2 may be a type 0 file.

Record Format

record format is identical to that described for the ST command except for MS. When data is
stored (ST), MS refers to the format of namrl; when data is dumped (DU), it refers to the
format of namr2.

EOF Control

The subfile concept is the same for DU as for ST, that is, by specifying eof control as SA,
end-of-file marks on non-disc devices or on disc files are saved during the transfer. If eof control
is IH, no end-of-file is written after the last data transfer nor are end-of-file marks saved. On

paper tape, the initial leader is not punched. IH allows you to combine two files on namr! into
one file on namr2,

File Number

file # specifies at which file or subfile on namr2 transfer begins. This feature allows you to
append one file to another or to replace one file with another. For example, specify file # as 3 to
skip the first two files or subfiles on namr2 and append a third file or subfile. Transfer is
always from the start of namrl.

NAMR1 = AA ¢ NAMR2 =88
[T [T w w
e :DU,AA,BB, 3 o 3 o 2 o} 1
w w

FOR DU, FILE# SPECIFIES FILE OR SUBFILE IN NAMR2

2-29

FMGR Operator Commands

Number of Files

#files is exactly the same for DU as for ST; that is, it specifies the number of files or subfiles to
transfer from namrl to namr2. It need be specified only when more than one file on a non-disc
device or less than a full disc file is to be transferred.

Examples

1. Dump contents of MYFILE to paper tape:

tDULSMYFILE»4

2. Transfer three files from magnetic tape and one file from paper tape to disc:

$ST>»85A15AS,1IHs 153 write 3 files from LU 8 as one file on Al; inhibit EOF mark

tDUs»S»A15,A852 «———— append 1 file from paper tape and write EOF on Al

3. Transfer three files from paper tape to disc file WXY as three subfiles and then transfer
the first two subfiles to magnetic tape as two files following an existing file on the
magnetic tape:

2ST»SsWXY»SAs | » 3«——transfer 3 files from paper tape to WXY as subfiles

tDIJ>WXY»B85S5A52,2 transfer first two subfiles from WXY to magnetic tape
following existing file

4. If an ASR35 teleprinter is used to punch tape, it must be created as a type O file with LE
(leader) specified for EOF. This is because a teleprinter is usually considered a list device
and the EOF mark is two spaces. To punch data on an ASR 35 punch:

tCR>TTY»1,B0,,LE creates type 0 file TTY using leader as EOF mark
tDU» XYZsTTY s AS~———— punch ASCII data from file XYZ
To punch on a paper tape punch, simply use the logical unit number (see example 1).

5. To add the contents of file B to the end of file A when both are existing disc files:

tDU»BsA,»»2

file B is transferred to follow file A

2-30

FMGR Operator Commands

2-24. LI - LIST FILE CONTENTS

The contents of a file, file directory information, or data stored on a logical unit can be listed on
the list device with the LI command.

Format

:LIST,namr [,format [,L1 [,L2]]]

Parameters

namr File name or logical unit number; (refer to namr description, paragraph
2-8); if file is protected by a negative security code, it must be specified; if
cartridge reference number is included, that cartridge is searched for the
file name, otherwise, the first file found with that name is listed.

format Specifies list format:

S ASCII source format

B binary format

D directory information only
If omitted, file type determines format: S if file is type 0, 3, or 4; B for all
other files types.

L1 Line numbers of file to list in format.

L2 If neither L1 (starting line) nor L2 (ending line) are given, the entire file
is listed. If L1 is specified, but not L2, one line is listed. If L1 is greater
than L2, no lines are listed. If L1 is not specified, but L2 is, L1 defaults to
line 1 of the file.

LI lists the specified file record by record. Any binary records longer than 128 words are
truncated. On interactive devices, source records are truncated to 66 characters (6 characters
are added to provide line numbers and spacing). On a teleprinter, the list starts in column one,
on other list devices two blanks precede the list line.

Headings
If namr is a file, the listing is headed by:

file name T = file type IS ON CR cartridge USING file size BLKS R = record size

where the italicized words are replaced by the actual values in the file directory for the file (see
examples).

If namr is a logical unit, then a brief heading is printed with asterisks replacing the file name:
**xx¥x T=00000 IS ON LU nn

where nn is the logical unit number.

Directory Format

When D is specified, one of the headings shown above is all that is listed.
Change 1 2-31

FMGR Operator Commands

Source Format

When S is specified, each line number followed by a line of text is printed. Lines may not
exceed 66 characters; longer lines are truncated.

Binary Format

When B is specified, the record number is printed followed by each word of the record. Words
are printed in octal followed by an ASCII equivalent if a legal ASCII character corresponds to
the octal. The ASCII is separated from the octal by an asterisk. Lines are truncated after the
last non-blank character (asterisks are treated as blank characters in this case). Binary format
prints eight words per line, using as many lines as are needed to print the record up to the
maximum of 128 words.

For zero-length records, only the record number is printed.

Examples

:ST,1,AA

FIRST RECORD FILE AA

DS create two ASCII files, AA and BB, each
:ST,1,BB with one record; dump BB to AA
FIRST RECORD FILE BB

D¢

:DU,BB,AA,,2

1. Source Listing:

:LI,AA 8 is default for type 3 or 4 files
AA T=00003 IS ON CR0O0002 USING 00001 BLKS R=0000

0001 FIRST RECORD FILE AA
0002 FIRST RECORDFILE BB

2. Binary Listing:

:L1,AA,B

AA T=00003 IS ONCR00002 USING 00001 BLKS R=0000
REC# 00001

043111 051123 052040 051105 041517 051104 020106 044514+FIRST RECORD FIL
042440 040501 +E AA

REC# 00002

043111 051123 052040 051105 041517 051104 020106 044514+FIRST RECORD FIL
042440 041102 +E BB

3. Directory Listing:
:LI1,AA,D
AA T=00003 1S ON CR00002 USING 00001 BLKS R=0000

2-32 Change 1

FMGR Operator Commands

2-25. CN - CONTROL NON-DISC DEVICE

A non-disc device can be controlled with the operator command CN. This command is similar
to the FCONT program call (see Section III) but can be used to reference logical units directly
as well as type o files.

Format

:CN[,namr [,function [,subfunction]l]

Parameters

namr Logical unit number of the device or its type O file name previously
defined in a CR command; default is 8 (recommended logical unit for
magnetic tape).

function Function code corresponding to FCONT function codes; two-character

mnemonic may be used instead of the octal function code:

mnemonic code octal function code

RW (rewind) 4 (default for magnetic tape/2644
Cartridge Tape Unit/mass storage)

EO (end-of-file) 1 (magnetic tape/2644 Cartridge Tape
Unit)
TO (top-of-form) 11 (default line printer, terminal)

FF (forward space file) 13

magnetic tape/2644

}(ﬁle spacing)
Cartridge Tape Unit

14

FR (forward space record) 3

}(record spacing)

BR (backspace record) 2
LE (leader) 10 (default paper tape punch)
numeric code octal function code in range 0 through 37 cor-

responding to bits 6-10 of function code in
FCONT (paragraph 3-21).

subfunction Carriage control characters for line printer or terminal; use if function is TO
(top-of-form); it may be:

0 to suppress spacing on next print operation only
+n to space n lines before next print operation
-n to page eject on line printer or space n lines on terminal

2-33

FMGR Operator Commands

The function default values are determined from the driver type of the device. For driver types
greater than or equal to 17, RW is the default. For driver types less than 17, the default is the
standard FMGR end-of-file. Depending on the device, this is:

TO line printer page eject or 2 spaces on a terminal
LE leader on paper tape punch

For driver type 05 on subchannel 1 or 2 (HP 2644 Cartridge Tape Unit), the default is RW.

See Appendix C for a list of the driver types and their associated devices.

Top of Form

TO may be used to specify a particular form of line spacing other than top of form on the line
printer. The desired spacing may be specified as the subfunction code as described under CN
format.

Numeric Code

Any function code included in the FCONT description (paragraph 3-21), including those for
which CN provides a mnemonic code, can be specified as an octal integer. The main purpose for
the numeric code is to provide control not included as a mnemonic code.

Examples

1. To rewind magnetic tape:

:CN - note default to LU 8, magnetic tape
or also, rewind is default for magnetic tape
:CN,8
or
¢:CN,8,RW
2. To eject to top of new page on the line printer:

:+CN,8
or

:CN,6,TO

3. To space two spaces on the system console and return the carriage:
¢CN, !
or

:CN,1,TO

4. To punch leader on paper tape:
:CN, 4

or

:CN,4,LE
5. Skip 5 spaces on the line printer (no page eject):
+CN,6,T0,5

6. To space forward one record on magnetic tape:
¢+CN,8,FR
7. To backspace one file on type O file MT assigned to LU 8 at creation:

:CN,MT,BF
2-34

FMGR Operator Commands

8. To write end-of-file mark on magnetic tape:
$CN,,,EOD

9. Use numeric code to rewind magnetic tape off-line:
tCN»>»5

10. To disable and then enable a terminal associated with logical unit 9:

tCN,9,21B «———— disable terminal
tCNs9-,20B «———— enable terminal

2-26. RN - RENAME A FILE

An existing, but closed, disc file can be renamed with the RN command; none of the file
characteristics except the name are changed.

Format

:RN,namr,name
Parameters

namr File name and, optionally, security code and cartridge reference number
of existing file; (see namr description, paragraph 2-8).

name New file name to replace existing file name

NOTE

Subparameters of namr may not be changed.

The new name must be unique to the FMGR cartridge to which the existing file is allocated. If
the file was created with a non-zero security code, then the namr in this command must
include that code. If a cartridge reference number is included in the namr, then only that
FMGR cartridge is searched. If the CR number is omitted, all mounted cartridges are searched
and the first file found with the corresponding namr is renamed. The search starts with the
first cartridge in the cartridge directory.

Examples

1. :RNLMYFILE:-25:100,MF search for MYFILE on cartridge number 100 and, if
the security code is correct, change its name to MF.

2. tRNLURFILE,FILEA search cartridges for first file named URFILE and

change its name to FILEA, thefile is not protected by
a security code.

2-35

FMGR Operator Commands

2-27. PROGRAM FILE MANIPULATION

You can control your program compilation or assembly, loading, and execution directly
through RTE, but you may prefer to save the program as a file on disc or as a non-disc device
and use FMGR to control the program file. FMGR simplifies the storage and manipulation of
programs by treating them as files.

Any of the commands that create and manipulate files apply equally to files that contain
programs. In addition, a set of FMGR commands apply specifically to program files. Any type 3
file can be used as a source program file. Other file types greater than 3 specify particular
program formats:

source programs (type 4)

binary relocatable programs (type 5)
memory-image programs (type 6)
binary absolute programs (type 7)

File types 4, 5, and 6 apply to different stages in program development. In the first stage,
source programs are moved into LS (logical source) areas by EDITR or with the FMGR MS
command. A program in an LS area can be edited, if necessary, and then compiled or
assembled. If the relocatable binary output from compilation or assembly was moved to the LG
(load-and-go) area, it can be loaded into the system preparatory to execution. A loaded
program in memory-image format can be executed by the RU command in RTE or FMGR.
Programs in any of these stages can be saved as disc files for later use. FMGR insures that the
file is the correct type. As disc files they can be dumped to non-disc devices unless the file is
type 6. The commands in this part of the manual provide control over these stages of program
development.

There are no special FMGR commands dealing with binary absolute programs (type 7). Such
programs can be created, stored, or dumped just like any other file; the correct format depends
on your specification of file type in a CR command or of record format in the DU or ST
commands.

Logical Source Areas

The logical source (LS) areas are allocated on the system or auxiliary disc for source programs
to be assembled or compiled. Each LS disc area is allocated in units of whole tracks. The
number of tracks specified depends on the source program size. The system maintains a
pointer to the last source program moved to an LS area. You may reset or clear this pointer
with the LS command. Source programs are compiled or assembled from the current LS area
when the system disc is the input device for the compiler or assembler. You may move a
program to an LS area with the MS command, and save a program from an LS area as a type 4
file with the SA command.

LG Area

One area on the system or auxiliary disc can be allocated for programs that have been
compiled or assembled and are ready to be loaded. The number of tracks in this area must be
specifically declared with the LG command before running an assembler or compiler. The
relocatable binary program resulting from assembly or compilation may be placed in the LG
area you have reserved. The LOADR program expects a binary relocatable program to be in
the LG tracks by an LG command. Any program segments must be loaded into the LG area
with the main program. If a main program or segment uses subroutines not in a resident
library, these also must be loaded into the LG area.

2-36

FMGR Operator Commands

The LG area must have enough tracks to hold the main program plus any segments or
subroutines. The LG area is cleared automatically when the LOADR program terminates
normally or at the end of a job by the FMGR EOJ command. You may also clear the LG area
with the LG command. A file in the LG area can be saved with SA as a type 5 file. A type 5 file
can be moved to the LG area with the MR command.

Memory-Image Programs

A program to be executed must be in memory-image format, the format that results from
running the LOADR program. To save such a program on disc as a type 6 file, you must use the
SP command. A type 6 file can be restored, executed, and removed with the RU command, or
simply restored with the RP command. When restored, an ID segment is set up for the program
in memory.

Program ID Segments

The number of programs RTE can accomodate at one time is limited by both disc space and the
number of blank ID segments allocated at system generation. The FMGR commands give you
methods to work around these limitations.

Every program must have a system-resident ID segment in which the system maintains
information about the program: its name, disc location, memory location for execution, and so
forth. Programs loaded at generation are permanent; their ID segments are maintained with
the system on the system disc and thus are restored whenever the system is restarted with the
bootstrap loader. Only the LOADR (or a new generation) can replace or delete permanent
programs or add new permanent programs because only the LOADR can alter disc-defined ID
segments.

Programs loaded on-line after generation are temporary (unless loaded as permanent pro-
grams with LOADR); their ID segments exist in memory but not on the system disc. As a
result, ID segments of temporary programs are not restored when the system is restarted with
the bootstrap loader and the program is effectively lost.

To prevent losing programs through shutdown and restart, a program can be saved as a FMGR
Type 6 file using the SP command. SP creates a FMGR memory-image file containing the
program, its ID segment, and its ID segment extension if it has one. The original program can
then be deleted with the OF command releasing its system disc space, ID segment, and ID
segment extension.

The program file saved with SP can be executed with the FMGR RU command which calls on
RP to restore the program and build an ID segment for it in memory. RU then executes the
program and, after execution, removes it from the system. The FMGR file containing the
program will not be purged.

When RP is used to restore a Type 6 file, it simply builds an ID segment in memory that points
directly to the file. The program name inserted into the ID segment is taken from the name of
the Type 6 file containing the program. The file can be renamed and restored repeatedly with
each resulting ID segment pointing to the original Type 6 file. This is a useful method for
making copies without reserving disc tracks for each new copy (for an example, see Appendix

E). RP can be used to assign an ID segment to a Type 6 file or to release an ID segment it
created.

2-37

FMGR Operator Commands

Essentially the same procedure is followed to process the RU command in an RTE-IV Multi-
Terminal Monitor (MTM) environment. However, programs scheduled from a copy of FMGR
will be automatically renamed by the system to allow several users to run the same program
concurrently. For more information, refer to Section II in this manual on the RU command;
and to the MTM section of the RTE-IV Programmer’s Reference Manual.

Segmented Programs

If a program is segmented, each segment has a separate ID segment. Program segments are
treated as separate programs when using the FMGR program manipulation commands; that
is, they must be saved and restored separately. A short ID segment is used for a program

segment wherever possible; if a short segment is not available, then a long ID segment is
used.

2-28. MS - MOVE SOURCE FILE

The MS command moves a program on a FMGR file to an LS (logical source) area where it can
be edited, compiled or assembled.

Format

‘MS, namr [, program[,JH]]

Parameters

namr File name or logical unit number of program to be transferred; (see namr
description, paragraph 2-8 for parameter format).

program Name of program to which LS tracks are assigned; if omitted, tracks are
assigned to EDITR.

IH Inhibit the pointer to the LS track from being set, which requires use of

the LS command to set pointer; if omitted, pointer is set to the LS track
containing namr.

NOTE

A program file to be moved with MS must not have records
longer than 128 words.

When MS is entered, the logical unit number and first track of the LSS area are reported on the
log device as:

FMGR 015
LS LU n TRACK nnn

If you use the LS command to set or reset the pointer to this LS track, you will need to know
these numbers.

Ordinarily, the LS tracks are assigned to the program EDITR when MS is executed. If,
however, you have a reason to assign these tracks to another program, it may be specified as
program. Care should be taken that the program specified does not release the LS tracks.
FMGR, for instance, should never be specified as program since all tracks assigned to FMGR
are released when the MS command executes and also when FMGR is terminated.

2-38

FMGR Operator Commands

If FMGR was scheduled from a program using the RTE Program Schedule EXEC call with
wait, the scheduling program can retrieve the logical unit and track number in the second
parameter returned by a call to RMPAR:

DIMENSION PRAM(5)
CALL RMPAR(PRAM)

0if LU2
1if LU3 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

TRACK NUMBER SECTOR =0 <4— PRAM(2)

Logical source tracks are RTE system tracks so the logical unit number can be only 2 or 3.
RMPAR returns the absolute track number (from system track 0, not FMP track 0).

The track number and logical unit of the LS area areimportant in case the LS pointer is moved
and no longer points to the particular area containing your program. This may occur if another
user resets the pointer. In this case, use the LS command (paragraph 2-29) to reset the pointer
to the area you want.

LS tracks assigned to the EDITR are not released automatically; they may be released with
the RT command (paragraph 2-37).

Examples

1.

Create a source file from the terminal and then move it to a logical source area for
compilation.

$ST,1,SPFILE

enter program statements
D¢ -— end file with CTRLID
$MS,SPFILE

FMGR @15
LS LU 2 TRACK @10

SPFILE is now on system track 10

Assume a program on file SOURC 1 is to be moved to an LS area to be edited by EDITR:
EDITR:

:MS,SOURCH
FMGR @15
LS LU 2 TRACK 01}

unless a file is specified, EDITR edits source file
in track 11

If IH is specified, the editor, compilers or assembler will not be able to access the particular
logical source until :LS is used to set the pointer:

tMS,SOURC2,5IH

FMGR @15
LS LU 2 TRACK 612 <«———— use this LU and track number in LS command

2-39

FMGR Operator Commands

2-29. LS - SET LOGICAL SOURCE POINTER

A pointer to a particular logical source track can be set with the LS command; this command
will also clear the current pointer. It is identical to the RTE *LS command.

Format
:LS{[,lu,track]
Parameters
lu Logical unit number of LS area; must be 2 or 3 to set pointer, 0 to clear a
current pointer.
track Track number to which pointer is set.
If both track and lu are omitted, the current pointer is cleared;

Unless the pointer is set to a particular LS area, the source program in that area cannot be
referenced. Since the pointer is set whenever MS is executed, LS need be used only if the

pointer has been reset to a different LS area. The LS pointer is also set by the EDITR when it is
terminated with an /EL name command.

Example

tMS,AFILE,,1H no pointer set
FMGR 015
LS LU 2 TRACK 213
tMS,BFILE
FMGR 815
LS LU 2 TRACK @14 <«————— pointer set to track 14, file BFILE

[]
1LS,2.13 pointer set to track 13,AFILE
sRULEDITR
IA - space, file in LS area can be edited
*
*
*
LS pointer cleared (same as :LS,0)

2-40

FMGR Operator Commands

2-30. LG - ASSIGN LG TRACKS

A set of tracks is allocated to the LG area with the LG command; this area must contain binary
relocatable programs that are to be loaded with the LOADR.

In an RTE-IV system, the LG tracks needn’t be used since‘nt\he LOADR can directly access

b\iﬁary relocatable files. Refer to the RTE-IV Programmer’s Reference Manual for more
information.

Format
P M
LG, #tracks] AREN (R
Parameters
#tracks Positive integer indicating the number of tracks to reserve on the system
or auxiliary disc for the LG area; if omitted or zero the current tracks are
returned to the system.

Whenever LG is specified, any binary relocatable program in the current LG area is cleared.

The LG area is also cleared upon successful completion of LOADR and at the beginning or end
of a batch job by the JO and EO commands.

If #tracks is not specified, the LG tracks are returned to the system and no tracks are available

for a compiled or assembled program. If #tracks is specified, then the current LG area is
cleared and a new area is allocated for the LG tracks.

The FMGR LG command is the same as the RTE LG command and the same error messages
may be generated.

Example
tLG,3 allocate 3 tracks to LG area
tRULASMB, 2,99 ~<~——— assemble program source in LS area; relocatable binary to LG
tSA,LG,BFILE save binary relocatable program as file
tLG return LG tracks to system

2-41

FMGR Operator Commands

2-31. MR - MOVE RELOCATABLE PROGRAM

A program saved in relocatable binary form (type 5 file) can be moved to the LG area with the
:MR command.

In an RTE-IV system, the LG tracks needn’t be used since the LOADR can directly access
binary relocatable files. Refer to the RTE-IV Programmer’s Reference Manual for more
information.

Format
:MR,namr
Parameters
namr File name or logical unit number of file to be transferred; may include
security code and cartridge reference number; (refer to namr description,
paragraph 2-8).

If the file namr is not terminated by an END record, FMGR prints the message FMGR 006
when the end of file is reached. FMGR suspends and you should then load the next relocatable
module and enter *GO,FMGR. This situation may occur when more than one relocatable
binary module is entered through the paper tape reader. If it occurs within a batch job, FMGR
is terminated and you must re-schedule it with the RU,FMGR command.

If no LG tracks are allocated when this command is given, the file size is checked and an LG
allocation large enough to hold the file is made automatically.

Unlike the MS command, repeated MR commands add each specified file to the same LG area
until it is cleared, whereas MS creates a new LS area for each specified file.

Examples

1. A relocatable binary program requiring 2 tracks has been punched on paper tape; to move
it to the LG area:

tLG,2 = clear and assign two LG tracks
tMR, S read program from paper tape to LG tracks

2. Move type 5 file XX to LG area with 1 track:

tLG,1
MR, XX

3. Put main program and two segments in LG area,then run LOADR:

tLG,4 main program and two segments, each stored as type
tMR, PROGA 5 file, are moved to an LG area one following the

H MRJ SEGA l other

tMR, SEGA2

tRULLOADR, 99,4541 ~——————— the last parameter indicates a main program with
segments, 99 that the program is to be found in the
LG area.

Program PROGA with its segments can now be executed (RU) or saved as a type 6 program
(5P).

2-42

FMGR Operator Commands

2-32. SA - SAVE PROGRAM AS FILE

To save the contents of a logical source (LS) area or the load-and-go (LG) area as a file, use the
SA command. A file is created by SA.

Format
:SAVE :is(; ,namr
Parameters
LS Source program in LS area is saved.
LG Relocatable program in LG area is saved.
namr File name or logical unit number of file in which LS or LG is saved; file is
created and full namr can be used; (see namr description, paragraph 2-8)

NOTE

The SA command truncates records longer than 128 words; no
HP compiler or assembler generates records longer than 128
words.

If there is not enough cartridge space available when namr is a disc file, error message FMGR
-06 is issued. Any portion of the file that was saved is purged.

Save LS
For SA,LS,namr the file type when omitted defaults to type 4.

The file size defaults to one half the number of blocks on a system disc track. After the final
end-of-file is written on the new file, its position is checked. If there are no extents, any
remaining unused disc space is returned to the system. If extents were created, the file size is
not shortened.

Save LG

For SA LG,namr, the file type of namr when omitted defaults to type 5. A checksum is
provided.

Following each relocatable module (main program, program segment or library subroutine)
including the last, a zero-length record is written if namr is a disc file or an EOF if namr is a
non-disc device. (Refer to paragraph 2-20 for the particular device end-of-file.)

The file size, if omitted, is computed as the maximum size possible from the amount of LG area
used. Extents are not created and file will be only as long as needed.

2-43

FMGR Operator Commands

Examples
1. 3LS,2,36 set LS pointer to system disc, track 36
$SA,LS,SFILEs: 13 save LS area as type 4 file, on cartridge 13; default
file size
2. 1SA,LGLA = punch relocatable program in LG area to paper tape

3. $SALLG,LLFILES$JMt~14 <~————— saverelocatable program as type 5 file on logical unit
14 protected by security code JM

2-33. SP - SAVE PROGRAM

A disc resident program and its ID segment is saved as a FMGR type 6 file with the SP
command. SP creates a file.

Format

:SP,namr

Parameters

namr Defines the type 6 file created by :SP. (refer to namr description in
paragraph 2-8): namr cannot be a logical unit number; first five charac-
ters of the file name must be identical to the name of the saved program.

Subparameters default as follows:

security code default to 0

cartridge default to -2 (system disc logical unit)
file type forced to type 6

file size forced to size of program

record size forced to 128

Any cartridge may be specified, but the file must be on logical unit 2 (system) or 3 (auxiliary) if
it is to be restored with RP (see paragraph 2-34).

A program name is a maximum of five characters; a file name can be six characters. This
means you can create a type 6 file for more than one version of the same program by adding
one character to a five character program name. If, however, the program name is less than
five characters, the file name must be identical.

The SP command is usually used in conjunction with the RP command. A program that has
been edited, compiled or assembled, has been loaded and then run successfully can be saved in
its loaded form for future use with the SP command. To run this program through FMGR, issue
either the RU command alone or RP and RU. In either case, the file is restored and then
executed.

2-44

FMGR Operator Commands

One reason to save a program with SP is to release its ID segment for use by another program.
After saving a temporary disc resident program (a program loaded since last start-up), issue
the OF, program command (paragraph 2-36). The ID segment assigned to the program is
released for use by another program. The ID segment of a permanent disc resident program
(loaded at system generation) can be released only with the LOADR using the command
RU,LOADR,, 4.

Examples

1.

Save a temporary disc resident program APROG as a type 6 file named APROG1:
1SP,APROG!

save APROG and its ID segment as a file named APROG1

delete the original program from disc

$10F,APROG

Save a temporary disc resident program LOCA as file LOCA and then rename file
TESTO01. The new name is used in all future references to the program.

$SP,LOCA
tRN,LOCA,TESTB1 <«—— new file name is TESTO01, program name is TEST0

$RU,TEST@1 <«—————— when running the program use either file name TESTO1
or program name TESTO

Note that if the file is restored as a program with RP (paragraph 2-34), it can be run with the
five character program name, in this case TESTO.

3.

Save a permanent program XX, rename it as temporary program YY, then release 1D
segment for XX (RTE-II/III systems).

ISPLXX = save permanent program
tRN,XX,YY rename it as temporary program YY
3RU,LOADR,, ,4 < run LOADR to release ID segment
/LOADR: PNAME?

XX of permanent program XX
/LOADR: SEND
H

loader terminates

2-45

FMGR Operator Commands

2-34. RP - RESTORE PROGRAM

A program file saved with the SP command can be restored with the RP command. RP is also
used to assign an ID segment to the restored file, or to release an ID segment so assigned.

Formats

1. Restore program file namr:
:RP,namr
2. Restore program file namr using program’s ID segment
:RP,namr,program
3. Release disc tracks, ID segment, and ID segment extension assigned by previous RP:
:RP,,program
Parameters
namr Identifies type 6 file on logical unit 2 or 3 that was saved with SP;
security code, and cartridge reference may be specified; (see namr de-
scription paragraph 2-8); namr must not be a logical unit number. namr
is only omitted in format 3 to release the ID segment of the named

program.

program 1-5 character name of program whose ID segment is assigned to namr
(format 2) or released (format 3).

Format 1

A program file, namr, is restored as a program that can be accessed by the RTE system
commands. It is restored with the same time parameters, priority, and (in RTE-III) partition
assignment it had when saved. The first five characters of namr define the program name. If
the file namr has been renamed since it was saved, then the new name is used.

If a program with the same name as namr is already in the system, error message FMGR
023 is issued. To avoid this error, it is a good idea to delete any program saved with SP using
the OF, program command (see 2-36) or to rename the type 6 file before it is restored.

All programs restored with RP are temporary; they are not recorded in the system area of
disc and will not be restored automatically when the system is restarted with the bootstrap
loader.

If a blank ID segment cannot be found for namr, FMGR 014 is issued. An ID segment may be
freed by deleting a program with OF, program or by using the program option of RP.

2-46

FMGR Operator Commands

Format 2

The restored program can be assigned the ID segment of a previously restored program by
using the program option. program must identify a currently inactive program that was
restored with RP. The specified program is removed from the system and an ID segment
assigned to namr.

RP first releases the ID segment assigned toprogram and then allocates a blank ID segment
to namr. RP looks for a blank ID segment from a temporary program, but if none are
available, it uses a blank segment from a permanent program. Such ID segments occur
when a permanent program is purged by RU,LOADR,, 4. (See RTE reference manual). If namr
is a program segment, RP looks for a blank ID segment in the following order:

1. short blank ID segment from a temporary program.

2. long blank ID segment from a temporary program.

3. short blank ID segment from a permanent program.

4. long blank ID segment from a permanent program.
Format 3

The third format releases the ID segment and tracks of a restored program. The ID segment
is returned to the system as a blank ID segment that can be used by another program.

If program does not exist and thus does not have an ID segment, FMGR 009 is issued but
does not cause transfer to the log device. If program is currently active, FMGR 018 results;
enter OF, program and try RP again. If program’s ID segment was not set up by RP, FMGR
017 is issued; enter OF, program and then enter the RP command again.

The program file restored as namr can be purged while an ID segment points to it and while
it is still running. The executing program is not affected in any way by this action. Before
the file space can be recovered with the packing command PK, its ID segment must be

released by OF, program. Failure to return the ID segment before packing results in a
FMGR 011 message.

Examples

1. Restore program file APROG1 as program APROG:

$RP, APROG1 file APROG1 is restored as program APROG;
its ID segment is stored in memory

2. Restore program file TESTO1 as program TESTO and assign it APROG’s ID segment:
tRP,TEST@ 1, APROG APROG must be inactive
3. Release ID segment and tracks previously assigned to TESTO:

tRP,,TESTO

4. program and namr can be the same name since program is cleared from its ID segment
before namr is restored. To illustrate, assume two type 6 files WW and XX:

tRP, XX restore program XX from file

tPULXX purge file XX

tRN,WW, XX rename file WW as XX

tRP,L XX, XX restore XX (was WW) with ID segment released by XX

Change 1 2-47

FMGR Operator Commands

2-35. RU - RUN PROGRAM

The RUN command searches for and executes a named program. It will also restore, execute
and release the ID segment of a program saved as a type 6 file or transfer control to a procedure
file. This command can be entered in either of two forms — RU to cause the entire command

string to be passed through to RTE with the EXEC schedule call, or RUIH to inhibit command
string passage.

In the RTE-IV Multi-Terminal Monitor (MTM) environment, several special considerations
apply. These are explained briefly below and more completely in the MTM section of the

RTE-IV Programmer’s Reference Manual.

Format

Privileged Command (see

,program [ters] paragraph 2-7)
,parameters

RUN

= L,namr
passes command string, or

,program
,namr

RUIH [,parameters]

inhibits passing of command string, or

,program IH
RUN ,namr IH

inhibits renaming feature of RTE-IV Multi-Terminal Monitor environment.

Parameters

program Program name; 5-character name of program to be executed

namr File descriptor; identifies type 6 file containing program to be executed or
a procedure file to which control transfers; should not be a logical unit
number (see namr description, 2-8).

parameters Parameters to be passed to program or procedure file; 1-5 program pa-

rameters depending on the program requirements; 1-9 global parameters
if namr is procedure file; omitted if no parameters are to be passed.

When RU is executed, a search is made of the system ID segments for the named program. If
found, the program is executed. If not found, a search is made for a type 6 file on which the
named program is stored. If such a file is found, it is restored, its ID segment is built in
memory, and the program is executed. You need not specify RP; RU will insure that RP is
performed. Following execution of a program restored from a type 6 file, the program’s ID
segment is released and any tracks used by the program also are released.

When parameters are specified for a program to be executed, the particular parameters depend
on the program. For instance, the assembler (ASMB) and the compilers (FTN and FTN4) have
a standard set of parameters that are used when these programs are executed with RU. A

2-48

FMGR Operator Commands

program may pass back up to five one-word parameters with the routine PRTN. The five
program parameters are passed back to FMGR in global parameters 1P through 5P. The first
three parameters are also returned to FMGR as the global parameter 10G, a three-word ASCII
parameter that usually contains a file name (refer to paragraph 2-40 for a description of global
parameters).

If namr is not a type 6 file that can be executed, then RU is interpreted as a TR command
(paragraph 2-41) and control transfers to the named file. This file is assumed to be a procedure
file containing commands that can be executed; if not, FMGR 019 results. Parameters in this
case are set into the appropriate globals (1G through 9G), (refer to Global Parameters,
paragraph 2-40). Up to nine global parameters can be specified in the parameter list for a
procedure file.

When a program is scheduled using the RU command form, a section of System Available
Memory is allocated for storage of a command string. A command string consists of every item
following the prompt character in a scheduling command entry.

Global parameters may be used within any of the RU command parameters. The global
parameters are interpreted and the correct values are passed through to the scheduled

program.

Because the RU command is privileged (see paragraph 2-7) subparameters are legal with any
parameter. This allows passing arbitrary strings to programs.

The string passage capability is described in detail in the appropriate RTE Operating System
Reference Manual.

Scheduling a program using the RUIH command form inhibits the passage of command
strings.

The following descriptions define system action when a program that was restored (implicit
RP) via the RU command terminates:

1. If the running program terminates, is aborted, or terminates serially reuseable:

a. The system releases program owned tracks, e.g., EDITR, LS, system scratch and
compiler scratch tracks.

b. The system releases the program’s ID segment.

¢. The system releases program owned RN’s, locked RN’s and LU’s, and program owned
memory.

2. If the running program calls EXEC to place itself into the time list and then terminates
saving resources:

Conmpute;

a. The system does not release any resources. Men
! eurn

b. The program’s ID may not be released by RP (the OF command can be used). An
attempt to release the program’s ID (RU or RP) will result in an error (FMGR 018).

¢. The program remains within the system.

2-49

FMGR Operator Commands

3. Ifthe running program calls EXEC to place itself into the time list and then terminates, or
terminates serially reuseable:

a. The system releases program owned RN’s, locked RN’s and LU’s, and program owned
memory.

b. The program’s ID may not be released by RP (the OF command can be used). An
attempt to release the program’s ID (RU or RP) will result in an error (FMGR 018).

¢. The program remains in the system.

RUN Command in RTE-IV Multi-Terminal Monitor Environment

In an RTE-IV Multi-Terminal Monitor (MTM) environment, MTM manages ID segments so
that each user can have his own copy of a program. If the user wishes to run a program with
FMGzxx as the father (i.e., :RU,PROGX but not :SYRU,PROGX), then in certain circumstances
a copy of the program will be created belonging to the particular terminal and run for the user
at the terminal. MTM performs this action whenever the program to be run is a son of FMGxx,
and the program is either a temporary program or in a type six FMGR file. A copy of the
program will be created with the last two characters being xx and scheduled for execution to
terminal xx.

For example, if the EDITR is loaded on-line as a temporary load and saved as a Type 6 file, the
command.:

:RU,EDITR

will create a program named EDIxx and schedule it to terminal xx. When EDIxx is finished
the ID segment is automatically returned to the system.

The advantage of processing the ID segments in this way is that all terminals can run the
same program but each user gets his own copy of the program. Therefore a user does not have
to wait for other users to finish with a program before using it himself.

The above procedure will still work properly even if the program to be run has been previously
restored using the RP command. In fact, the program will be created more quickly since there
would be no disc search time before the program could be run.

The automatic renaming feature of MTM may be circumvented by using a copy of FMGR that
does not “belong” to the terminal at which the user is operating. (A copy of FMGR named
FMGxx “belongs” to the terminal with logical unit number xx.) In this case, none of the
features described for MTM will apply.

The program renaming feature of MTM may also be temporarily inhibited when the user runs
a program. The following form of the command should be used:

:RU,PROGX:IH

The “TH” inhibits the program renaming feature, thereby ensuring that the actual program
named PROGX will be run and not a copy.

This ability is especially useful when loading permanent programs. The program named
LOADR is the only program that can load programs permanently into the system; a copy of the

2-60

FMGR Operator Commands

LOADR cannot perform permanent loads. Therefore, whenever MTM would normally rename
the LOADR making it impossible to do a permanent load, use the following command to load a
permanent program:

:RU,LOADR:IH,.........
Examples
1. :RUIH,ASMB,2,99 run program ASMB
stored on system disc;
inhibit command

string passage.

run program APROG
previously saved as type 6 file
APROGI1; pass command

2. :RU,APROG1,FILE:7G:-13,FILEN2,6,99

string.

3. +RUIH,PR0G,2,4,3,99 run program PROG; inhibit
command string passage.

4. :RU, TRANSF transfer control to file
TRANSF.

2-36. OF - REMOVE PROGRAM

A temporary program and its ID segment can be removed from the system with the OF
command. The command is the same as the system command OF ,program,8.

Format
:OFF ,program
Parameters
program Names temporary program to be removed; must have been loaded or
created since last system restart with bootstrap loader.

The OF command clears program’s ID segment and ID segment extension and returns
any disc tracks used by program to the system. The ID segment and tracks become
available for use by another program. If executing, the program is terminated by OF. Any
segments must be removed with separate OF commands; an OF naming the main
program will not remove its segments automatically.

The message PROG ABORTED generated by OF,program,8 is also generated by OF ,program.

Removal of a program with OF causes an abort message to be displayed at the system console
unless the program is a background disc-resident segment.

Note that permanent programs created at generation or by the loader maintain their ID
segments on the disc and thus can be removed only with the loader request: RU,LOADR,, 4.

2-51

FMGR Operator Commands

Examples
1. sOF,APROG —— remove APROG and its ID segment from system
2. tOF,MAIN
tOF,SEG1 -— remove program MAIN and its two segments
tOF, SEG2

2.37. RT - RELEASE TRACKS

Disc tracks currently assigned to a dormant program can be released to the system with the RT
command.

Format
:RT,program
Parameters
program Name of program whose tracks are to be released; must be a dormant
program.

If the named program is dormant, all tracks assigned to that program are released. Any
released tracks become available to the system and all programs suspended and waiting for
disc track allocation are rescheduled. If the named program is not dormant, the request is
illegal. Error message ILLEGAL STATUS is issued.

This command can be used to release any LS tracks assigned to the EDITR program. These
tracks may accumulate through use of MS commands (paragraph 2-28) and also may be left
when EDITR terminates leaving an LS area assigned.

Example

tRTLEDITR all LS tracks assigned to EDITR are released

2-52

FMGR Operator Commands

2-38. PROGRAM DEVELOPMENT EXAMPLE

Figure 2-3 illustrates how a program is entered, compiled, loaded, and executed with FMGR

commands.

#0N,FMGR
:ST,1,4FILE
FTNA4,L

WRITE

END
ENDS

PROGRAM HELLO

18 FORMAT("HELO')

-~ store program to file MYFILE from console

(1,1@

$RULEDITR~

SOURCE FILE

/&FILE
FTN4,L

/4

16 FORMAT('HELO")
/R 1@ FORMAT(*HELLO")

edit program HELLO

? 1

/ER

END OF EDIT
:RU,FTN4,¢F

PAG

0081 FTNA,
2862
28063
goea 1
2885

% NO ERRO

save corrected copy of source MYFILE

LE,.B,-
E 06661

L
PROGRAM HELLO
WRITE(1,18)
FORMAT("HELLO")
END

RS %% PROGRAM = @021 COMMON = ggeee

:RU,LBADR, , %

/LOADR$ SEN
$SP,HELLO -

/FTN4s SEND

/LOADRIHELLO READY

—

FILE~— load program from file name %FILE

D

save memory image program as type 6 file HELLO

$RULHELLO «
HELLO
$OF,HELLO

execute program HELLO

HELLO ABORT

release HELLO ID segment and tracks
ED

S$RTLEDITR -
$EX
SEND FMGR

release EDITR tracks

Figure 2-3. Compile and Execute Program

2-53

FMGR Operator Commands

2-39. PROCEDURE FILE MANIPULATION

Instead of entering each command at the terminal, groups of consecutive commands can be
saved as a procedure file (also known as a transfer file). Using the transfer command (TR or :),
you can then transfer control to the procedure file and the commands will be executed. This is
useful particularly when the same set of commands, say to compile, load, and run a program,
are to be used over and over.

A procedure file can be generalized with global parameters. These are a set of general purpose
parameters which can replace any command parameters in a file of commands. The TR

command allows you to pass particular values to the global parameters when you transfer to
the file.

A set of commands that manipulate parameters may be useful within a procedure file as
mini-language. These commands:

® Assign values to or clear values from global parameters
o (Calculate values and assign them to global parameters

® Display the values of any parameters

® (Compare the values of any two global parameters and skip according to the result

Each procedure file is terminated with TR or : in order to return control to the point of origin.
Up to ten procedure files can be nested. The return is normally to the command following the
TR in the preceding procedure file. If files are nested, the return may skip to any of the
preceding files.

When procedure files form part of a batch job (refer to paragraph 2-47), values of global
parameters are cleared upon entry to the job and again upon exit from the job (refer to JO
command, paragraph 2-48). Otherwise, global values set in a procedure file are not altered
upon return from the file. They may be set with the TR command upon transfer to the file in
order to pass values to the file.

2-40. GLOBAL PARAMETERS

Global parameters are variables that may be set, examined, and manipulated by FMGR
commands. Global parameters may replace any FMGR command parameter. When used in
procedure files, they are similar to formal parameters in a procedure or subroutine to which
actual values are passed through the TR command. There are three ways to access the global
parameters: as G globals, P globals, or S globals. Each global is identified by a variable name
that combines an integer with the letter G, P, or S. (Refer to Table 2-2 for the relation between
G, S, and P globals.)

G Globals
The 11 G-type globals are named 0G through 10G. Globals 1G through 9G can be set or altered

with the TR, CA, or SE commands and may be assigned any values: they may be null (no value
assigned), have a numeric value, or contain up to six ASCII characters.

2-54

FMGR Operator Commands

Globals 0G and 10G have particular values: 0G is set to the namr value of the input device
with which FMGR is scheduled or, for batch job processing, to the job input file or logical unit.
10G is set by a PRTN call in a program executed by the FMGR RU command. Notably, it is set
to the name of the loaded program following the command :RU,LOADR. 10G is always ASCII.

P Globals

There are seven P globals, 1P through 7P. The first five P globals represent integer values
returned by a program executed with the RU command. Global 6P is the current error code and
7P is the current severity code. The first three P globals correspond to global 10G; that is, 1P is
the integer equivalent of the first two characters in 10G, 2P of the second two characters, and
3P of the last two characters. Whenever it is necessary to reference any of these three values
separately, the P globals can be used instead of 10G.

The RU command results in the first five P-type globals being set only when the program
passes back parameter values in a call to PRTN. These parameter values may be used as
parameters in subsequent commands. To illustrate:

¢RI} » PROG1 «——————returns values to FMGR in 1P through 5P (10G, 4P and 5P)
(PROG1 must call PRTN to set up 1P through 5P)
tRIJ»PROG251P»2Ps3P,4P,5P

N e

10G

PROG2 can retrieve values from 1P - 5P

The P-type globals are particularly useful when one-word parameters are expected. To illus-
trate:

tRUSXYZ,=27Ps=26Ps~25P«————— passes global 3G to program XYZ

tRUULABC,1P,»2P»3P « passes global 10G to program ABC

Global 6P can be cleared (set to zero) using either the CA or ?? command. To clear 6P, specify:

tCA,6:P, D (see paragraph 2-45)
or
£?? (see paragraph 2-11)

An example showing one way of using global 6P follows.

Assume a program named ABLE having two segments, ABLE1 and ABLEZ2, is to be run from a
transfer file called DOABLE.

:TR,DOABLE,P1,P2,P3,P4,PS ~————— transfer to file DOABLE

The file DOABLE contains the following commands:

:SV,4,6,1H Save severity code in global 6G; inhibit
command echo and error transfer.

2-565

FMGR Operator Commands

:CA,6:P, 02
¢tRP,ABLEl::2
:RP, ABLE2::2
tIF,6P,NE, 2,1

tRU,ABLE, 1G, 2G, 3G, 4G, 5G
:RP, ,ABLEI
:RP, »ABLEZ2
tIF,6P,EQ, 02,1

:DP, ABLE RUN

:$?

¢« Q

L

2-56

?

ERROR FMGR, 6P

7, 6G

Set global 6P to zero.

Restore segment ABLEI.

Restore segment ABLE2.

If global 6P is not equal to zero, skip over next
command (skip 1 command on error).

Run program ABLE; pass parameters.

Purge ABLE1 ID.

Purge ABLE2 ID.

If global 6P equals zero, skip over next
command (skip 1 command if no error).
Display a message and global 6P.

Set 6P to zero.

Restore original severity code value from 6G

FMGR Operator Commands

As shown in Table 2-2, 0S is identical to -2G and 7S is identical to 5G. The standard values
defined above (0G - 10G, 1P - 5P, and 0S, 1S) are shown within the dark lines.

Table 2-2. Global Equivalence

=3
A

[9)

ype

h
s

|
)
=

sl e

=]

=

|
Pl
[

i
1)
=
Gafto|—[| wjr v
e
-
b

7 5
-1¥
=17
-16 Type
NE
8 i ST
-13 3
12 Type
-1 1
9
/ -4 2
-9 3
~ 8 Type
w | s =1L
=0
-5 3
~ 4 Type
oo s
-1 3
g Type
[} B
12 19 =S I
o B
B
13 11 3G
717

The standard values are shown within dark lines.

2-57

FMGR Operator Commands

S Globals

S-type globals are set by the FMGR commands JO or LU when running under control of the
Spool Monitor (refer to Section IV). They may be referenced by FMGR commands within
spooled jobs.

Two S globals have a particular meaning: 1S is null or is the ASCII file name of the last

created spool file; 0S is null or is the spool logical unit number of the last spool file set up (see
the LU Switch Table in Figure 4-4). 0S and 1S are always null when spooling is not being used.

Global Format

All globals are kept in an array in memory. G and S globals use four-words accesses; P globals
use one-word accesses. Table 2-3 illustrates the format of G and S globals.

Table 2-3. G and S Global Format

word 0 global type = 0 (null) 1 (numeric) 3 (ASCID

word 1 0 integer characters 1,2
word 2 0 0 characters 3,4
word 3 0 0 characters 5,6

Word zero defines the global type. If the type is null, the remaining words are also 0. If the type
is numeric, then word one contains the integer value and the last two words are zero. An ASCII
global (type 3) can contain up to six ASCII characters. This format applies only to G and S
globals. Each P global corresponds to one word of the S and G globals (refer to Table 2-2).

Since the system checks a global access by its position in the array (Table 2-2), a P global can

be used to reference one word of an S or G global, and an S global can be used to reference a G
global, or vice versa.

2-b8

FMGR Operator Commands

2-41. TR - TRANSFER CONTROL

The TR command transfers control to a file or logical unit, optionally passing values to the
globals 1G through 9G.

Format
.TRANSFER [namr [,parameters]j]
- |, —integer
OR
namr
: [. [,parameters]]
—integer
Parameters
namr Identifies file or logical unit to which TR transfers; (refer to namr descrip-
tion, paragraph 2-8); if omitted, TR returns control to the namr of a
previous transfer; up to 10 transfers can be nested - a stack of return
pointers is saved.
-integer Indicates a transfer back the specified number of files in the nested stack.
parameters The values to be set into the globals 1G through 9G; position determines
to which global the value is passed; omitted globals are unchanged.
NOTE
A comma (,) may replace TR or the colon (:) as the transfer
command code.

Whenever a TR command is executed, the namr associated with TR is saved in a stack that can
contain up to ten file names or logical unit numbers. This allows the system to transfer back
when TR or TR, —integer is specified. If the namr identifies a disc file, the current record
number is also saved. The transfer returns to the point immediately following the specified TR
command.

When transferring back to a control file on disc, it is possible to backspace and re-execute one
or more commands within that file. To accomplish this, specify a negative integer (- integer) as
the security code of a null namr. For example:

will result in a backspace of two commands while transferring back to the previous control file.

2-59

FMGR Operator Commands

NOTE

For non-disc devices on which a backspace is legal, e.g., LU5 in
spooled jobs, the backspace record function of the CN command
(see paragraph 2-25) can be used (:CN,5,BR).

If TR is specified with no parameters and a previous namr cannot be found, FMGR terminates.
In this case, it acts exactly like the EX command.

If an error requiring operator intervention occurs, the system transfers control to the log
device. The TR command (TR or :) is used, in this situation, to return control to the procedure
file or input device where the error occurred.

When parameters are specified, the parameter values are passed to the global parameters 1G
through 9G. Position determines which globals receive values. For example:

tTR»PROG2A, :1: »ABC»32705sXYZ sets 4G to "ABC”, 5G to 3270, 7G to "XYZ”

1G”~ 2G " 3G 6G

Examples

1. Transfer to generalized procedure PROC1 to compile, load, and run a FORTRAN 1V
program, FILEA:

tTRLPROCIFILEA sets 1G to FILEA and transfers to PROCI
H TR in PROC1 returns control here

:RU,FTN4,1G, *TEMP,XTEMP
file :RU,LOADR, ,%XTEMP

“PROC1” H RU ’ 10G LOADR sets 10G to name Of
:0F ,106 4—//, loaded program

: TR

1@ is source program name

2. To transfer to one procedure that transfers to another nested procedure and returns
through the first procedure to the command following the original TR. The LG area is used
to build up a relocatable program to be stored in file %TEMP.

:LG,3 - both procedures require LG area
:RU,FTN4,99
:TR,SUBS1 transfer to SUBS1; SUBS1 transfers to SUBS6
:SA,LG,%4TEMP «— return here from SUBS1
:RU,LOADR, , XTEMP
:RU,106
tMR 5 ST1IRB1
tile :TR,SHRBSE - transfer to procedure file SUBS6
« » | tMR»SIIBT return here from SUBS6
SUBS1 tMR,SIHIRBSR
HH transfer back to command after first TR

2-60

FMGR Operator Commands

$MR , STJRD
tMR, S1IB3
file tMR,SUR4
“SUBS6” | :mR, S1JBS
¢MR > SUB6

23 transfer to previous file in stack (SUBS1)
|

The procedure files, in this case, are both used to move subroutines to the LG area prior to
loading with the main program.

The flow may be illustrated as:

COMMANDS SUBS1 SUBS6

L] t I

3. Set up procedure file RP to restore a main program and two segments or three main
programs or two main programs and a segment:

sRP,1G
file ., tRP, 2G
“RP tRP, 3G
$s

Transfer to RP to restore program MAIN and two segments SEG1 and SEG2:

ssRP,MAIN, SEG1, SEG2
4. Assume three procedure files, FILEA, FILEB, and FILEC stacked so that FILEA transfers
to FILEB to FILEC:

$TRL,FILEA
' .

FILEA $TR,FILEB

FILEB $TRLFILEC

FILEC $TR, -3 - returns to command after original transfer

2-61

FMGR Operator Commands

5. Assume a control file, CNTFL, containing a command to store file name ABC into file
name DEF on cartridge 3. When the command is executed, the directory on cartridge 3 is
full resulting in an error. A solution is to pack cartridge 3 and then backspace 1 line while
transferring back to file CNTFL, as follows:

:TR,CNTFL transfer to control file
file CNTFL
¢t ST,ABC,DEF::3 command line in control file
FMGR-0206 error message
1PK, 3 pack cartridge 3
¢t TR, 1~ 1 transfer back one line in control file

2-42. PA - PAUSE AND SEND MESSAGE

The PA command suspends execution of the current job or procedure file and transfers control
to the log device or to some other specified device. Optionally, PA displays a message. PA is
used only to send messages during non-interactive processing.

Format
Privileged Command

:PAUSE[,lu [,message]]

Parameters

lu Logical unit number of device to which control transfers and where mes-
sage is displayed; if omitted, log device is assumed.

message Message to be displayed on [z ; must conform to parameter syntax rules
for privileged commands (refer to paragraph 2-7).

The PA command causes a transfer to the log device or specified logical unit where the entire
command line is printed. The message, if any, must conform to the syntax rules for any
parameter (refer to paragraph 2-7).

When job processing is suspended with PA, it may be continued by entering a TR or : command
on the device to which control transferred. Control returns to the command following PA.

2-62

FMGR Operator Commands

Example for RTE-II/III Systems

Use PA to issue a request to the system console to mount a paper tape. PA is part of the
procedure file PROC2 that compiles a program using two relocatable subroutines, one in file
SUBR and the other on paper tape:

tTR,>PROC2,PROG] »SIUBRR <«————— relocatable subroutine to 2G

\ source program to 1G

tLG»

tMSL1G

¢RI} ,ASMB, 2,99

MR L2206

file tPA,,PUT TAPE IN READER, TYPE "TR' «—— assumes log device is
“PROC2” | sMmR,5 system console
tRUJ>LOADR, 99

(R, 126

tTR

When PA is executed, the following message is printed at the console:
tRPALLPIT TAPE IN READER, TYPE "TR"

The operator then loads the paper tape and enters TR to return to PROC2 at the command
following PA.

2-43. DP - DISPLAY PARAMETERS

The current value of one to 14 parameters can be displayed on the log device with the
command DP.

Format

Privileged Command

:DP[p1[,p2,...[,p14]}]}
Parameters

pl - pld Parameter values or global names to be displayed; if omitted, nothing is
displayed.

This command is commonly used to display global values. It may, however, be used to display
any parameter. Numeric values are printed as decimal values with no leading sign when they
are positive, as decimal values with a leading minus sign when negative.

Null globals are displayed as adjacent commas (,,) unless they are P-type globals which are
never null.

2-63

FMGR Operator Commands

The P-type globals can be used to display the global type (refer to Table 2-3 for the particular P
global corresponding to the type of G or S global).

The display is not inhibited by a severity code greater than 0.

Examples

1. Display non-global parameters:

sDP,WORD, 10B,~-1,-32768,50
WORD, 19B,~-1,-32768,50

2. Display values of globals 1G and 2G passed in a TR command:

$TRL,PROCX,PROG1, 1 transfer to PROCX

file P Ly .
«PROGX” sDP, 1G,2G within PROCX, DP command requests display
PROG1, | — display on log device

3. Assume 1G and 2G have values set in previous example and that value of 3G is null,
display types of 1G, 2G, and 3G:

$DP, -36P, =32P, =28P
3,1, 0@

f

ASCII numeric null

2-44. SE - SET GLOBAL PARAMETERS

The SE command is used to assign values to the global parameters 1G through 9G.

Format

:SET[,p1[p2(. . .[,p91II]

Parameters

pl through p9 Values assigned to globals 1G through 9G; if all parameters are omitted,
globals are nulled; if any one parameter is omitted, corresponding global
is unchanged.

The value in pl is assigned to 1G, that in p2 to 2G, and so forth. By using SE alone with no
parameters, all the globals 1G through 9G can be cleared (nulled). Individual globals can be
nulled or set with the CA COMMAND (paragraph 2-45). Any integer value between -32767
and 32767 or an ASCII value up to six characters can be assigned top! through p9. If, however,

2-64

FMGR Operator Commands

you enter a global name (0G - 10G, 1P - 5P, 0S or 1S) as a parameter, the value of the specified
global is assigned to the global corresponding to the parameter position.

Examples

1. 3SEs»,5,F1VE

$SE,256,NEVFIL,AA,D globals 1G through 4G are assigned values;
t1DP,1G,2G,3G,4G,56G 5G through 9G are unchanged
256,NEVFIL,AA,B,FIVE
2. 3SE,4G —«— global 1G is set to the value of 4G; in this case, 0
sDP, 1G
8

2-45. CA - CALCULATE GLOBALS

Individual G-type global parameters can be assigned values or nulled with the CA command.
The values assigned can be the result of arithmetic or logical calculations.

Format

:CALCULATE,global#,pI[,0pl,p2[op2 ... ,opn,pnll]

Parameters

global# Integer 1 through 9 identifying the global 1G through 9G to be set to the
result of the calculation. :

Globals — 36P through — 1P and 1P through 6P also may be set to the
result of the calculation using the following entry form for global#:

n:P

where n is the P type global to be set in the range —36 through + 6
(excluding 0). For example, to set global 6P to zero, enter:

tCAL6:P, 0
or

:CA,6:P (if value or operation is
omitted, zero is assumed)

pl -pn Values used in calculations; if omitted, global# is nulled.
opl - opn Operations performed on operands; may be:

+ add two operands

- subtract one operand from another
/ divide one operand by another

* multiply one operand by another
OR inclusive OR two operands

XOR exclusive OR two operands
AND AND two operands

2-65

FMGR Operator Commands

Evaluation proceeds from left to right until a null operation code is detected. Any other
precedence is effected by multiple CA statements.

The type of the result depends on the type of the operands. If operand types differ in any one
CA statement, the highest type value is used, where type 0 = null, type 1 = numeric, and type
3 = ASCII in ascending order from 0 through 3.

Except for divide and multiply, calculations are performed separately on each word of three-
word ASCII globals. For divide and multiply, all three words of the first operand are divided or

multiplied by word 1 of the second operand.

In its simplest form, CA is used to null an individual global parameter or to set an individual

global to the value of pl.

Examples

1. tCA,6,FTNG -
tDP,~16P
3

tCA,6 «
$1DP,~-16P
8

2. 3CA,2,15

sDP,=32P
1
$CA,7,2G <

$DP, ~12P
1
tDP,2G, 7G

15,15
$CA,1,2G,%,14,+,1
sDP,1G

211 -«
tCALT»TGo=y]l <

tDP,7G

14 ~«
2

3. sCA,1,7,0R,15

$CAL2, T X0R, 15 «—
$3CA»3,7,AND, 15 —

tDP,1G,2G,3G
15,8,7

l 4 :CA,-1:P,-2P

2-66 Change 3

set global 6G to ASCII value “FTN4”
display type of 6G is ASCII (3)

clear global 6G to null value
display type of 6G is null (0)

set global 2G to integer value 15
display type of 2G is numeric (1)

set global 7G to current value of 2G
display type of 7G assumes type of 2G

display values of 2G, 7G
set 1G to product of 2G and 14 plus 1

display 1G
decrement 7G by 1

display 7G

inclusive OR 7 and 15 (octal 17), assign to IG
exclusive OR same values, assign to 2G

AND these values, assign to 3G

Set —1P to the valve in —2P
2

FMGR Operator Commands

2-46. IF - CONDITIONAL SKIP

The IF command compares two values (usually globals) and skips a specified number of
commands depending on the result of the comparison.

Format
:IF,pl1,operator,p2 [,skip]
Parameters
pl,p2 Values to be compared; one or both may be global parameters
operator Relative operator used to compare values of pl and p2; entered as one of
the following two-character keywords:
Keyword Operation
EQ pl = p2
NE pl # p2
LT pl < p2
GT pl > p2
GE pl = p2
LE pl < p2
skip Skip count; positive or negative integer specifying the number of com-
mands to skip when relation between pl and p2 is true; forward skip if
positive, backward if negative; if omitted, one command is skipped; if
relation not true, next sequential command is executed.

NOTE

IF will not be executed from an interactive device; it must be
within a procedure file or a batch job.

The specified relation between pl and p2 is examined and if it is true then commands are
skipped. One command is skipped if skip is not specified. If skip is specified, then that number
of commands are skipped. A skip of -1 causes the IF command to be repeated. To skip back to
the preceding command, specify -2.

IF will not skip past the beginning or the end of the procedure file. Such an attempt will cause
a skip to the beginning or end of file mark; no error message is issued.

When a negative skip is used, the file must be on a device that recognizes a backspace. For
example, it is useless to attempt a negative skip on a paper tape reader. Jobs that are spooled
(refer to Section IV) recognize backspace commands. The following relations obtain for mixed

types:

null<numeric<ASCII

This corresponds to the type codes: null=0, numeric=1, ASCII=3.
2-67

FMGR Operator Commands

If pI and p2 are both ASCII, the comparison is based on the ASCII collating sequence (refer to
Appendix A).

Examples

1. Procedure file COMP tests if 1G is ASCII. If it is, a source program name is assumed, the
program is moved to the LS area and 1G is set to 2 to compile from that area. If it is not, it
is assumed to be the logical unit of an input device other than 2.

Procedure file COMP:

e IF,-365NE»3,2 <+———— JF 1G not ASCII, skip two commands
tMS, 16 } -
tCA»1.,2

tRIJ>FTN4» 16599 <«——————— compile program

move to LS area and set 1G to LU 2

To perform procedure COMP:

tCOMPLFILENM <« transfer to COMP with 1G a file name

OR
1 :COMP,S transfer to COMP with 1G a logical unit number

2. Test if program has been loaded. If it has, 10G is set to program name and 1P is greater
than 0, if not 1P is 0. If not loaded, send message:

Procedure file FORTLG:

:L.G,1

:RU :ASMB ,99 = source input from default logical unit 5
:RU,LOADR ,99

:IF,1P,GT,0 skip one command if true (default skip is 1)
:PA,7,%+2L0AD**+ if 10G not a program name, execute PA
:RU,106

: TR

Transfer to FORTLG from logical unit 7:

tFORTLG
- message sent here if 10G not loaded

3. Procedure IDLE sets up a loop that executes a set of instructions 1000 times:

Procedure IDLE:

18V,2 set severity so commands are not echoed
tCA»1,7

sCAL1,51G,+,5t - }

tIF>1GLLE»1020,-2 loop increments 1G until it equals 1000

To perform IDLE:
¢t IDLE

2-68 Change 1

FMGR Operator Commands

General Example Using Procedure File with Globals

This example illustrates all the commands discussed with procedure files. A procedure file
MOVE is used to copy a number of files from one FMP cartridge to another without copying
them all as is the case with the CO command (paragraph 2-61). Four message files are used to
request input specifying the cartridge to be copied, the cartridge to which files are copied, a
security code for the copied files, and the names of the files themselves. If desired, the copied
file can be given a new name.

When you transfer to MOVE with the TR or RU command, you should enter the logical unit of
the terminal at which you want to enter input as the first parameter to be passed to MOVE. If
omitted, a message is displayed at the log device and you must re-enter the command with the
input parameter.

The messages asking for input are displayed at the terminal you specify. The procedure then
pauses so that you can return the information as parameters in the : version of the TR
command.

The message files are:
Comypruter

Museum

File #MESS1
PRECEDE ANSWERS TO THE FOLLOWING QUESTIONS WITH A COLON AND A
COMMA:

ANSWER1,ANSWER?2,...

File # MESS2
ENTER THE ‘CR’ OF THE CARTRIDGE WITH THE FILES TO BE MOVED:

File # MESS3
ENTER DESTINATION CARTRIDGE'S CR, FILE'S NEW SC:

File # MESS4
NOW ENTER SOURCE AND DESTINATION FILE NAMES. IF NEW FILE IS TO
HAVE THE SAME NAME AS OLD, ONLY ONE NAME IS REQUIRED. END LIST
WITH /E.

The file MOVE:

t5V,1

t1CA,4,1G « save terminal LU in 4G
t1F,=-36P,EQ,1,2 if not specified, display error message
$DP,YOUR LU VWAS NOT GIVEN

33 and return

tDU,#MESSI,4G < send first message to terminal

$DP

$DU,#MESS2,4G

tPAL4G at pause, operator enters TR followed by information
tCA,6, 16 CR of cartridge containing files is saved in 6G
s DU, #MESS3, 4G

2-69

FMGR Operator Commands

$PALAG - enter cartridge and security code at pause
tCA,8,2C - security (SC) in 8G

sCA,T7,1G - and cartridge (CR) in 7G

sDU, #MESS4, 4G

tDP note use of DP to generate blank line
$SE,0,0.0 clear 1G, 2G, and 3G prior to entry of files
tPA,4G,FILESs — enter files

t1F,1G,EQ,/E,S

tIF,1G,EQ,,=3

$1IF,-32P,GT,1 test for new file name

$CA,2,16

$ST,1G336G,2G28Gs7Gs ¢~ < transfer file

tIF,A,EQ,A, -8 return for next file

15V,0

33

To use this procedure:

$RU,MOVE
1SV, 1
YOUR LU WAS NOT GIVEN
tRU,MOVE, |
PRECEDE ANSWERS TO THE FOLLOVWVING QUESTIONS WITH A COLON AND A COMMA:
$,ANSVER] ,ANSWVER2,e 00

ENTER THE °CR*' OF THE CARTRIDGE WITH THE FILES TO BE MOVED:

tPA, AG
13,2
ENTER DESTINATION CARTRIDGE®'S CR, FILE'S NEVW SC:

1PALAG

t3,13,JG

NOW ENTER SOURCE AND DESTINATION FILE NAMES. 1IF NEV FILE 1S TO HAVE
THE SAME NAME AS OLD, ONLY ONE NAME IS REQUIRED.

END LIST WITH /E.

tPA,AG,LFILESS

12 ,BEV,JOAN «— enter first file to be moved and rename it
tPA,4G,L,FILES:

$t ,MIKE - enter next file and use same name for copy
tPALA4G,LFILES:

318, /7E <« no more files

2-47. BATCH JOB CONTROL

Whenever a set of activities is to be combined in one job, it can be delimited with the JO and
EO commands. JO defines the beginning of a job and EO the end. Other commands are used to

2-70

FMGR Operator Commands

set time limits to the job, to switch logical units for the duration of the job, to print messages on
the job list device, or to terminate the job before the EO is reached.

With these commands, it is possible to define one or more jobs that are entered and controlled
through devices other than the system console. For instance, a job can be punched on paper
tape or on cards and completely controlled with little or no operator intervention. This type of
operation is generally referred to as “batch processing”. Using the FMGR job capabilities, the
entire job stream consisting of commands, source language programs, and data can be read in
from a peripheral device and output sent to whatever device is specified in the job stream.

When FMGR (not a copy of FMGR) encounters a :JO command, a batch environment is set up.
FMGR, and not a copy of FMGR, is the only program that can do this. If the :JO command was
inspooled by program JOB, a batch environment with spooling is set up, as explained in
Section IV “Using The Spool Monitor”. If the :JO command was not inspooled by program JOB,
a batch environment without spooling is set up, as explained in the following paragraphs.

Commands are part of the job stream and can be saved as a procedure file (refer to paragraph
2-39) to which a TR command within the job transfers control. If not saved on a file, commands
are expected from the input device specified in the *RU ,FMGR command.

FMGR Batch Control

Within the boundaries of the JO and EO commands, the FMGR program operates in batch
mode. JO and EO delimit an environment that is distinct from interactive FMGR operations.
Any FMGR command can be used in a batch job. The LU command to switch logical units only
can be used in the batch job environment. Previously set global parameter values or a severity
code are set to FMGR default values by JO and then reset to these values when EO terminates
the batch environment. LG tracks are also released by EO. This means that any logical unit
switching, global manipulation, severity code settings within a job are operative for that job
only.

Using Procedure Files in Job

Errors that might not occur in other environments may occur in a batch job that transfers to
procedure files. For example, if a job transfers to a procedure file that contains another job, the
first job is terminated as soon as it encounters the second job since jobs must not be nested.

ERTEST

1JOLAA
tTRLERTEST — | :JOXX | <—— Job AA terminates
. with the message:

ABEND EOJ IN ERTEST

1EO :EO

An error will also occur if the EO command is not at the same level as the JO command.
For example:

TT
1J0,AAA
tTRLTT —_— e
léO :EO <«——— When EO is encountered,
job AAA terminates with the message:
ABEND EOJ IN TT

2-71

FMGR Operator Commands

dJobs can, and often do, transfer control to procedure files. Such jobs work as long as the
procedure file does not contain a JO or EO command.

TEST
1J0,BB
$TRL,TEST — | :ST..
[
. . The transfer to TEST and return are successful.
. .
:EO TR

Setting Severity Code

Within a job, the severity code should be set to a value greater than zero in order to inhibit
command echo which is only useful in interactive mode. If the severity code is set to 4, the job
will continue automatically, despite any error condition. If the severity code is set to 3, the job
will continue, despite errors that require operator intervention, when the error is corrected. If
set to 2, the job terminates whenever an error occurs requiring operator intervention. If set to
1, all errors are displayed but certain errors do not cause the job to terminate.

To illustrate, when an error such as FMGR -006 occurs that does not cause transfer to the log
device, SV= 1 causes the code to be listed at the console and the job continues executing, for
SV =2, the job also continues but no error code is listed. On the other hand, if an error such as
FMGR 020 occurs causing transfer of control to the log device, both SV = 1 and SV =2 cause
the error to be logged and the job to be terminated.

Severity code should be set at the beginning of each job with the SV command (paragraph
2-15). If more than one batch job is being processed, either 1 or 2 would be useful codes so that
the job terminates in case of serious error. This allows FMGR to proceed with the next job. If an
operator is monitoring the jobs, then severity of 3 is useful since it allows the job to continue
after correction. A severity code of 4 allows the job to continue in any case.

Logical Unit Switching

Should you write a program using logical unit numbers that do not correspond to the logical
units established at system generation, you can switch all logical unit references in your
program to refer to the actual logical unit. This is done by the LU command and is effective
only for the duration of a job as defined by JO and EO. Logical unit switching is also used to
equate a logical unit in your program to a spool file for input or output spooling (see Section
V).

Batch Logical Unit Switch Table

FMGR uses a Logical Unit Switch Table to keep track of switched logical units. This table is
only available in FMGR under batch job control, with or without spooling. The table is set up
for the life of a batch or spooled job to equate logical units referenced in programs or commands
to actual logical units or spool files. The table consists of pairs of logical units, one the logical
unit referenced by calls or commands in the job, and the other an actual logical unit in the
Device Reference Table (DRT) established at system generation. If spooling is used, the actual
logical unit may be a spool logical unit.

2-72

FMGR Operator Commands

Batch Control With Spooling

The Spool Monitor extends the FMGR batch capabilities by transferring job input and output
to special disc files, the spool files. (Refer to Section IV for a full description of the Spool
Monitor.) When spooling is used, the spool input program (JOB) reads each job into a disc file.
As soon as at least one job has been read, the spool input program automatically schedules the
FMGR program to execute the job stream. The Spool Monitor sends all spooled output from
jobs to disc so that actual output does not interfere with other tasks.

2-48. JO - START OF JOB

The JO command defines the beginning of a job, gives the job a name, and sets up parameters
for the job. JO should be used only with program FMGR, not a copy. When FMGR processes a
:JO command that has not been inspooled by program JOB a batch environment without

spooling is set up. Refer to Section IV for a description of the :JO command in a batch
environment with spooling.

Format

:JOB[,name[:hr:min :sec]]
Parameters

name 6-character name; follows file name conventions (paragraph 2.8); iden-
tifies the job; if omitted, job has no name.

thr:min:sec CPU time limit for job in hours, minutes, seconds specified as one or two

decimal digits; executing job is terminated when limit exceeded; if omit-
ted, no limit to job time.

NOTE
The JO command has additional parameters used only for

spooling; refer to Section IV, paragraph 4-7 for complete JO
command format.

The JO command automatically performs a set of housekeeping functions for the job it
initiates; it:
® terminates any previous job if EO not specified for that job

¢ assigns default log and logical list units for the duration of the job:

log default = logical unit 1 (system console)
list default = logical unit 6 (line printer)

® clears globals 1G through 9G and 1P through 5P to null values

® clears LG area
® resets Logical Unit Switch Table to generation values

¢ prints start of job message on list device (logical unit 6).

2-73

FMGR Operator Commands

Additional housekeeping functions are performed when FMGR processes a :JO command in a
batch environment with spooling (see Section IV).

The time limit specifies central processor time, not elapsed time from beginning to end of the
job.

All job input is assumed to be from the logical unit at which the JO command is entered.
When JO is entered, it prints a start of job message on the default list device:

JOB name ON AT hr:min:sec.ms ON day month year

2-49. EO - END OF JOB

The EO command indicates the end of a job; all commands, files, or data between JO and EO
constitute the job. See Section 1V for further use of EO with spooling.

Format

:EOQ

As JO performs housekeeping functions to initialize a job, EO performs functions that termi-
nate a job; it:

® prints an end of job message on the list device

® resets the log and list logical units to the values 1 and 6 respectively

® resets severity code to zero

® releases any LG tracks

e clears globals 1G through 9G

e clears Logical Unit Switch Table

When spooling is used, EOQ performs additional housekeeping; refer to paragraph 4-8. When
EO is entered, the following end of job message is printed on the list device:

JOB name OFF AT hr:min:sec.ms ON day month year

EXECUTION TIME: hr:min :sec.ms

2-74

FMGR Operator Commands

Examples

1. In an RTE-IV Operating System, job RUNX assembles, loads, and executes program
PROGX with all input including the job control commands from the card reader (logical
unit 5): Load the following card deck:

KZEO

— l&——— END OF JOB.

¢ :RU, PROGX

/RU,LOADR,,%PROGj_l

SOURCE PROGRAM

(i RU,ASMB,s,s,%PROGj

]

[JO, RUNX::10, 1
— 10 MINUTE TIME LIMIT, PRIORITY OF 1

Then run FMGR with input from LU5, the standard input device, in this case the card reader:
#*RU,FMGR,5

The above command causes FMGR to process the cards in logical unit 5. When it processes the
:JO command it will set up a batch environment without spooling.

The EO command will also terminate FMGR if there is not further input from logical unit 5; if
this job is followed by another job, FMGR will not terminate until the card reader is empty.

2. In an RTE-IV Operating System, two jobs J1 and J2 transfer control to procedure file
FORTLG that compiles, loads, and runs a FORTRAN program using global 1G for the
source and 10G for the loaded program:

Procedure file FORTLG:

:RU,FTN4,1G,6,%TEMP
:RU,LOADR, ,%ZTEMP
:RU,106

: TR

Jobs that execute source programs SRCE1 and SRCE2:

:JO, N

:SV,3

:TR,FORTLG, &SRCE1

:éJD ,J2 - JO performs all EO functions
:S5V,3

:TR,FORTLG, 4SRCE2

:EO

Job, but not FMGR, terminated

2-75

FMGR Operator Commands

3. Use AN command (paragraph 2-17) to annotate a job on the list device:

¢JO>MYJOR::15
tAN, **MYJORBR TIMES OUT AFTER 15 MINUTES CP!l) TIMEx*x*

The line printer will then print at the start of the job:

or whatever time

JOB MYJUR On AT 12319338,6 UN 1v JUN 1975<—"" and date
PAN, xxMY DB TIMES UUT AFYER 15 MINUTES CPU TIMEwx

2.50. TL - SET RUN TIME LIMIT

TL sets a time limit for the execution of programs within a job.

Format

‘TL:Ar:min :sec
Parameters

thr:min:sec Time limit for execution of any programs run with RU command sub-
sequent to TL command; specified as hours, minutes, seconds each two
decimal digits: if omitted, job time limit is used.

The time specified must be less than any time limit specified for the job in the JO command. TL
sets this time limit for each program executed between TL and EO. If the remaining time for
the job is less than the limit in TL, the remaining job time is used to limit program execution

time. If any program exceeds this limit, it is terminated and the job is aborted; RTE issues an
error message.

The specified TL limit applies only to programs executed by a RU command. Actual program
run time is subtracted from the remaining job time. For example, suppose the job time limit is
15 minutes and TL sets a run time limit of 5 minutes for program XX, If XX starts executing
after the job has run for 12 minutes, then XX is given a run time limit of only 3 minutes, the
remaining job time. If XX times out in that time, zero minutes remain of the job time. If XX
starts executing after 10 minutes of job time and finishes in three minutes, then the remaining
job time is two minutes (15-(10+3)).

TL, like the job time limit, limits central processor time and not the elapsed time for the
program that could include waiting for an I/O device or for program swapping, or be processor
time devoted to unrelated real-time tasks.

2-76

FMGR Operator Commands
Example
Procedure file FORTLG:

:RU,FTN4,1G,6, XTEMP
:RU,LDADR, , xTEMP

:TL::5 = time limit for execution of 10G is 5 minutes
:RU,106G
: TR

Job that transfers to FORTLG:

:JDO,RUN:::10 time limit for entire job is 10 minutes
1SV, 1

:TR,FORTLG, &PROGA

:EO

2-51. LU - LOGICAL UNIT SWITCH

Within a batch job, without spooling, the LU command can be used to exchange a referenced
logical unit for an actual system defined logical unit.

For a description of the LU command in batch with spooling, refer to Section IV.

Format
LU lul,lu2
Parameters
lul Logical unit number referenced from a call or command within a batch
job.
lu2 Logical unit number of actual unit for batch logical unit switch; if 0,

resets [ul to definition prior to switch.
NOTE
The LU command has additional parameters used only for

spooling; refer to Section IV, paragraph 4-9 for the complete
LU command format.

The {uI parameter specifies a logical unit number referenced in a program or command which
is to be switched through the Logical Unit Switch Table (paragraph 2-47) to an actual logical
unit associated with a device at system generation. This first logical unit must not be 0, 2, or 3;

nor may it be a unit associated with any DVR30, 31, 32, or 33 type device (refer to Appendix C
for device types).

2-77

FMGR Operator Commands

The (u2 parameter must be a positive logical unit number. If [u2 is zero, the first logical unit
({lul) is reset to its system defined logical unit and the switch table entry is cleared.

NOTE
If the LU command is included in a batch job, it only works if

the job is run by program FMGR, not a copy of FMGR such as
FMGO7.

Examples

1. Suppose your program writes its list output to logical unit 10, but the desired list device is
logical unit 6:

*RUJ,FMGR = must be FMGR, not a copy

¢t JOBLLIST

tLH,10,6 sets LU 10 equivalent to LU 6 in Logical Unit Switch Table
TR XX

WRITEC(1A 50006) =— XX contains a statement to write to LU 10

1 Ne) clears Logical Unit Switch Table

2. Program YY contains references to logical unit 5 as the standard assignment for magnetic
tape when in actual fact, the system assignment for magnetic tape is 8. In the same job,
program ZZ uses logical unit 8 for magnetic tape:

:J0,JOAN

:LU,8,5

:RU,YY -~ YY uses LU 5 for magnetic tape

:LU,8,0 set LU 8 to system definition

:RU,Z2 program ZZ uses LU 8 for magnetic tape (actual logical unit)
:ED

2-52. AB - ABORT JOB

AB terminates a job at any point within the job and performs the end-of-job housekeeping
normally performed by EO.

Format

:AB

2-78 Change 2

FMGR Operator Commands

Whenever there is reason to terminate a job before the normal end of job, the AB command can
be specified. Any subsequent commands will be read but not processed until a JO or EO is
encountered, or the card hopper is empty.

AB causes the message ABEND OPERATOR to be logged.

When an error in a job causes control to transfer to the log device and the severity code is set to
3, the job will not terminate. The operator at the log device can then correct the error and
return control to the job with TR, or he may abort the job with AB.

Examples

1. In an RTE-IV Operating System, procedure file FTNLG

:RU,FTN4,1G,6,%XTEMP
:LG,1

:RU,LOADR, ,%XTEMP
:I1F,106,67,0,2

:AN, »*NO LOAD»+

:AB -— terminate if program not loaded
:RU,106 continue if program loaded
:TR

Transfer to FTNLG from job AA

:J0,AA
:SV,1
:TR,FTNLG, &4SRCE

:EOQ normal job termination

2. Job XX contains an error that causes transfer to the log device but does not terminate the
Jjob; if the error cannot be corrected, the job may be aborted with AB at the log device:

$J0L,XX
1SV,3
1STL,AA,TEST TEST is an existing file
. error causes transfer to log device —————» 3S§T,AAL,TEST

o use AB to terminate job FMGR -006
. T 4B
$EO

2-79

FMGR Operator Commands

2-53. FMP CARTRIDGE MANIPULATION

In the File Management Package, disc manipulation is performed in terms of FMP cartridges.
An FMP cartridge is a logical area on a disc consisting of an area for file storage and a
directory of the files stored. Each cartridge is a physically contiguous area on the disc
identified in FMP calls and commands by a unique cartridge reference number. It also has an
ASCII identifier and must be associated with a unique logical unit number.

Since many logical units can refer to the same disc subchannel, many cartridges can exist on a
given subchannel provided they do not overlap. Generally, one cartridge per subchannel is
used. Where one subchannel per disc platter is specified at system generation (required for the
7900 disc), the disc and the FMP cartridge are generally the same. On discs where subchannels
can cross disc platter boundaries, the cartridge definition generally corresponds to the
subchannel definition.

Every cartridge used by the File Management Package, including the system and auxiliary
cartridges, must be mounted and initialized before they can be used. The system disc (logical
unit 2) is initialized when RTE is loaded from disc for the first time after system generation
(refer to FMGR initialization, Section VII). If you use an auxiliary system disc (logical unit 3),
it too is initialized at this time. Note that unless you have a specific need for the auxiliary

system disc, it is much simpler to avoid using it altogether and use only the system and
peripheral discs.

Peripheral discs on which user files are stored must be mounted and initialized with FMGR
commands described in this part of the manual. When a cartridge is physically mounted,
FMGR must be so informed with a mount cartridge command. This command establishes an
entry for the cartridge in the cartridge directory on the system disc and specifies the last track
used by the cartridge for its file directory. To be fully defined for use, a cartridge must also be
initialized. Initialization establishes the first track used by the cartridge and also specifies its

logical unit number, cartridge reference number, ASCII identifier, and the number of file
directory tracks to be allocated to the cartridge.

Once a cartridge has been initialized, it need not be re-initialized unless the cartridge defini-
tion needs to be changed. Re-initialization may necessitate purging all files on the cartridge. It
must be mounted with a mount cartridge command each time it is physically placed in the disc
drive. Whenever a cartridge is physically removed, FMGR must be informed with a dismount
cartridge command in order to clear the cartridge entry from the cartridge directory.

When there is more than one cartridge on the disc platter, only the cartridge on which your
files are stored need be mounted when the platter is placed in the disc drive. When removed,
any currently mounted cartridges on that platter must be dismounted.

CAUTION

To avoid disruption of data stored on disc, the disc controller
and removable disc platters must not be exposed to areas with
a strong magnetic field.

Within each FMP cartridge, all file names must be unique. File names can be duplicated if
they appear on different cartridges since the file can be uniquely identified by the cartridge
reference number and the file name.

2-80

FMGR Operator Commands

FMP peripheral cartridges can be protected from alteration by user programs. This is
accomplished during system generation (see paragraph 7-3). After the system is booted-up and
running, user programs can read information from protected cartridges, but cannot alter files
residing on them, except through the FMP commands and subroutines.

2-54. LOCKING A CARTRIDGE

Under circumstances requiring modification of the cartridge’s file directory, FMGR will lock a
cartridge to insure that it cannot be accessed by other users.

FMGR locks the cartridge whenever:

® the cartridge is mounted but has not been initialized (MC command)
® the cartridge is being initialized IN command)

® a type O file is being created on the cartridge (CR command)

® a type 0 file is being purged from the cartridge (PU command)

® the cartridge is being packed (PK command)

e the cartridge is being dismounted (DC command)

A locked cartridge appears to other users as if it were not mounted and attempts to access the

cartridge result in error code -013. A cartridge can be locked only when all files on the
cartridge are closed.

On the other hand, if you attempt a function that requires the cartridge to be locked, but it is
impossible for FMGR to lock the cartridge, a FMGR -008 error is issued. Suppose you attempt

to pack a cartridge from the system console, but a user program has opened a file on that
cartridge, error code -008 is sent to the log device.

2-55. MC - MOUNT CARTRIDGE

A cartridge must be mounted with the MC command before it is included as an entry in the
FMP cartridge directory making it available to the file management system.

Format

:MC,lu [,last track]

Parameters
lu Logical unit number of the cartridge; may be either positive or negative.
last track Last track on cartridge available to the FMP; if omitted, the last track

defined at system generation for the disc; last track must be specified for
a fixed head disc (driver type DVR30) that is not logical unit 2 or 3.

2-81

FMGR Operator Commands

Logical Unit

The lu parameter may be positive or negative, but in either case it is a logical unit and must
refer to a disc. Only one FMP cartridge can be assigned to each logical unit, so if a cartridge is
already mounted on the specified logical unit an FMGR error 012 is issued and the command is
not executed.

Last Track

The last track on the FMP cartridge contains the cartridge entry in the file directory estab-
lished for the cartridge by the IN command (paragraph 2-56). The last track parameter
provides the link to this information. If the cartridge is on LU 2 or LU 3 (system or auxiliary)
or is on a moving head disc, last track may be omitted. In these cases, the system defined last
track is assumed.

When a cartridge is dismounted, the system reports the last track and this should be noted.
When an initialized cartridge is mounted, FMGR checks the file directory to see that the
cartridge reference number (CR) is unique. If not, the error message FMGR 012 is issued and

MC is not executed. You should dismount the cartridge with the duplicate CR number and
then request MC again,

Note that a cartridge cannot be used until it is both mounted and initialized. In general, a
cartridge on a removable platter is initialized once, but mounted and dismounted often.

Cartridge Directory
When MC is executed, an entry is established for the cartridge at the bottom of the FMP

cartridge directory on the system disc (refer to Appendix C for an illustration of the directory
format).

Examples

1. Mount an FMP cartridge on logical unit 14:

sMC» 14 last FMP track defaults to 202, the last track
on the 7900 moving head disc

2. Mount three cartridges on logical units 15, 16, and 17:

MC,155256 '
tMC,~-165512 all three FMGR cartridges could be on the same disc

tMC»17,768%

2-82

FMGR Operator Commands

2-56. IN - INITIALIZE CARTRIDGE

Every FMP cartridge must be initialized once with the IN command before it can be used. IN
establishes an entry for the cartridge in the file directory maintained for each cartridge. The
command can also be used to change this cartridge entry or to assign a new master security
code to the cartridge.

Formats

1. :IN,[master securityl,cartridge,labelid], first track[, #dir tracks
[,sec/track [,bad tracks]ii]

2. :IN,master security--new security

The first format initializes a cartridge or changes the description of an initialized
cartridge; the second format changes the master security code of the cartridge.

Parameters

master security Security code that governs access to the FMP cartridge directory and to
all file security codes; must be 2 ASCII characters; if omitted, directory
and file security codes can be accessed with any code or none.

cartridge Cartridge identifier; if positive specifies cartridge reference number, if
negative, the logical unit number; must be negative the first time
cartridge is initialized.

label Cartridge reference number (CR) that identifies the cartridge; must be
positive integer from 1 through 32767 or two ASCII characters.

id ASCII identifier assigned to cartridge; up to 6 ASCII characters
specified exactly like an FMP file name (see namr description, para-
graph 2-8).

first track First FMP track on cartridge; a positive integer; for the system disc

(LU 2), it must be at least 8 greater than the last system track; if
omitted, track O is assumed.

#dir tracks Number of directory tracks used by file directory on cartridge; positive
integer from 1 through 48 and less than one ninth of the total tracks on
the cartridge; if omitted, one track is assumed.

secltrack Number of 64-word sectors per track; if cartridge is on same channel as
(that is, the same hardware select code) LU 2 or LU 3, this parameter is
ignored; on any other channel, it must be specified.

bad tracks Up to six track numbers, separated by commas, specifying bad tracks
on the cartridge; if omitted, all tracks are assumed to be usable.

NOTE: For a system with mixed discs, the number of sectors per track must be specified.
It is not an optional parameter. For example, in a system with a 7905 system disc
and a 7900 disc, you must specify 96 sectors per track to initialize the 7900.

Change 1 2-83

FMGR Operator Commands

The information in this command is used to build or modify the cartridge entry in the file
directory for the cartridge. (Refer to Appendix C for an illustration of the file directory
cartridge entry.) Following the cartridge entry, which is always on the last track of the
cartridge, are entries for each file resident on the cartridge.

New Cartridge Initialization

All cartridges, including the FMP cartridges on the system and auxiliary discs (LU 2 and LU
3), must be initialized with IN to be recognized by FMP. LU 2 and LU 3, if used, must be
initialized the first time the RTE system is run after system generation. At this time, FMGR is
scheduled by the system and its first request is for you to enter IN to initialize the cartridges
on LU 2 and LU 3. This process is fully described in Section VII under FMGR initialization.

The master security code entered for the system is the code that controls all access to FMP files
and cartridges. If specified, then that code must be used in all other initializations.

NOTE
Remember the master security code since it is never printed or

displayed by the system.

Whenever an FMP cartridge is initialized the first time, cartridge must be a negative number

specifying the logical unit with which the cartridge is associated. label is always a positive CR
number.

Example

$IN,SC,-14,9600,CLASYS < cartridge informative label

' L Lcartridge reference number
cartridge mounted on logical unit 14

master security code

Re-Initializing Cartridges

Any cartridge, including a cartridge on the system disc, can be re-initialized in order to change
the initialization parameters. You may also change the cartridge reference number or the
identification label or report bad tracks..

Before attempting to re-initialize a cartridge, make sure that all files on the cartridge are

closed. If they are not, the cartridge cannot be locked, the FMGR -008 error message is issued,
and the IN command is not executed.

2-84

FMGR Operator Commands

Example

Change the cartridge reference number and the identification label of cartridge CLASYS
initialized in the previous example:

$INSSC,96AA5,9T7AASNEWSYS —new ID

I t _ newCR
use old cartridge reference number to identify cartridge

if master security was entered originally, it must be entered again

Note that when re-initializing, cartridge may be a positive cartridge reference number.

Another reason for re-initialization is to change the first track or the number of directory
tracks. For example, you may increase the amount of space for your files by lowering the first
track or decreasing the number of directory tracks.

If the first track is lowered on the system disc, it may lower the FMP area into the RTE system
area. FMGR checks and if there is no conflict, assigns the tracks to FMP. But if the tracks
requested for FMP conflict with the RTE system tracks, error message FMGR 059 is issued
and the highest assigned track is reported. The IN command is not executed for this case. You
may re-enter IN using the next highest track number as the first track.

Whenever the first track is lowered, you must pack the disc with the PK command (paragraph

2-60) in order to recover the area.

Example

tINSAAR,-2,2,5SYSD1S,29 «———— attempt to lower FMP first track on LU 2

FMGR ~AS9

FMGR29 = highest system track

1INSAA, =2,52,5,SYSDIS,»49 «———— add 20 tracks to last system track
tPK,2 pack the disc

When the first track assigned to FMP is higher than the previous first track for the cartridge,
the extra tracks are returned to RTE.

Purge Files and Re-Initialize
If the new parameters in a re-initialization raise the first track or lower the directory into an
existing file, FMGR 060 is issued. This is a caution message that allows you to abort the

initialization by entering either ?? or NO in response to the message.

If you enter YES all files on the disc are purged. This can be done on purpose to purge all files
and completely re-initialize the cartridge.

2-85

FMGR Operator Commands
Example

tINLSC,-14,970A,NEWSYS»t <~—— raise first track from 0 to 1
FMGR n672

IYES enter YES to purge all files
tIN,SCs=14,6520,CLEARS «—— — re-initialize cartridge and retrieve track 0
$PK (first track is 0 by default)

Bad Tracks

Bad track information is returned during RTE generation or, if discovered by the File Man-
agement Package, is returned as a -001 error code and reported on the system console. When
you know a track is bad, you must enter the track number as a parameter in the IN command.
This information is kept in the cartridge directory and FMP compensates for bad tracks when
it assigns tracks during file creation or packing as follows: The first track of a new file is
increased until the file contains no bad tracks. If a created file is to use the rest of the disc, it is
allocated an area above the highest numbered bad track. During packing, if a file is found to
include a declared bad track, the file is purged.

Note that in order to declare bad tracks, you must know the master security code.

Changing the Master Security Code

Anyone knowing the master security code has access to all the file security codes on the
cartridge. For this reason, it is never printed and if you know the code, you must remember it.
There is no other way to retrieve it.

If the current master security code is zero (default if omitted), you must still enter some code,
any code will do, in order to assigh a new master security code. If the master code is other than
zero, you must enter the exact code in order to change it.

The new security code can be any two ASCII characters except:

colon (:) comma (,) a leading blank.

Non-printing characters are acceptable; in fact, such characters provide greater security since
they are never printed or displayed.

To remove an existing master security code, the new security code can be set to two blanks.
The blanks need not be specified; they are supplied by the parameter parsing routine.

Examples

1. To assign a code where none existed:

$IN,AA~--SC
I'Lt—— new master security code protecting all FMP cartridges

two minus signs separate old code from new
any two characters

2-86

FMGR Operator Commands

2. To remove an existing master security code:

tIN,S5C=-~ blanks may be typed or omitted after the minus signs

3. A code may be changed to the ASCII equivalent of two integers:

t1IN,AG==1]12

When entered in subsequent commands as a separate parameter, the ASCII 12 will appear to
FMGR as an integer. Therefore, to correctly specify the new master security code in later

commands, it must be entered as the octal equivalent of the ASCII characters “12” that is, as
30462B.

Define a Three-Cartridge Disc Platter

Assume a subchannel is associated with three logical unit numbers 10, 11, and 12 at system
generation. If this subchannel is on a 7900 disc, then it is equivalent to one disc platter. Using
the MC and IN commands, Figure 2-4 defines three cartridges for this platter, one for each of
the three logical units.

(
FMP TRACK 202 | __ DIRECTORY
-
MC,-12
. LU12 {
IN,AA,-12,CR300,151 . CARTRIDGE CC
(CR300)
151
DIRECTORY
180 = — — — — — — —
MC,-11,160 LU 11
IN,AA,-11,CR200,76 CARTRIDGE B8
(CR200)
76
DIRECTORY
B - - — =
MC,-10,75 LU 10 CARTRIDGE AA
IN,AA,-10,CR100,85 (CR100)
FMP TRACK 0
SUBCHANNEL = ONE 7900 DISC PLATTER

Figure 2-4. Disc Platter With Three Cartridges

Change 3 2-87

FMGR Operator Commands

2-57. DC - DISMOUNT CARTRIDGE

Before a mounted cartridge is physically removed from the disc drive, the DC command should
be entered to logically remove the cartridge. DC makes the cartridge unavailable to FMP by
removing its entry from the cartridge directory.

Format
:DC,cartridge
Parameter
cartridge Cartridge identifier; positive cartridge reference number assigned to car-
ridge or negative logical unit number associated with cartridge

The cartridge designated by cartridge is locked and then its entry is removed from the
cartridge directory. The last FMP track is reported on the log device. This track number should

be written on the removed cartridge to facilitate the future restoration of the cartridge with
the MC command.

Cartridge Directory Manipulation

FMGR does not allow the system or auxiliary cartridges to be removed. They must be mounted
in order to properly configure the RTE track assignment table when the system is re-started
from disc (booted). The DC command may, nevertheless, be issued for these cartridges. The
cartridge is locked and removed from the cartridge directory list, but it is then immediately
remounted at the bottom of the list. Because of this feature, the DC command can be used to
alter the order of cartridge entries in the cartridge directory.

Whenever a search is made for a file and a particular cartridge is not specified, the search
begins with the cartridge at the top of the directory list. For this reason, there may be an
advantage to moving a particular cartridge to the head of the directory and this may be
accomplished only by moving the system and auxiliary cartridges to the bottom.

Examples

1. To illustrate the effect of the DC command on LU 2, first list the cartridge directory (use
CL command described in paragraph 2-59) and then dismount LU 2. The effect will be to
move the cartridge to the bottom of the list:

sCL
LU LAST TRACK CR LOCK
@2 v2e2 gaeoe
13 g2e2 20013

sDC,2

tCL
LU LAST TRACK CR LOCK
13 e292 gee13
g2 g2e2 goevoee

2-88

FMGR Operator Commands

2. To return cartridge 13 to the bottom of the list, dismount it and then remount it (it need
not be physically removed and replaced) with the DC and MC commands:

1DC,13
LAST TRACK @202
tMC, 13,202
tCL
LU LAST TRACK CR LOCK

a2 @282 gooe2
13 g202 @213

o Computer
Museum

When a file is created, it can be placed on the first cartridge in the cartridge directory that has
enough room. To do this, simply omit the cartridge subparameter in the namr describing the

file. The system automatically places the file on the first cartridge it finds on which the file
fits.

Changing Auxiliary Cartridges

Since the auxiliary cartridge (LU 3) cannot be dismounted with the DC command, another
technique must be used if you want to replace one auxiliary cartridge with another. All
cartridges to be mounted on logical unit 3 must be initialized to the same first track, preferably
track O since this prevents the loader or the system from placing a program in this area.

To change auxiliary cartridges, use the DC command as follows:

tNCy»-3 = this insures that all files are closed

Remove the cartridge from the drive and insert the replacement.

tDC»-3 places new cartridge in disc directory

Note that MC is not used to mount the cartridge. This is because DC mounts the cartridge as
part of its procedure when the logical unit is 2 or 3.

Be sure that the new auxiliary cartridge has been initialized to the same track as the old
cartridge. If it has not been initialized, FMGR will lock it and a subsequent attempt to
initialize the cartridge results in FMGR 059 error message. The error is caused because the
directory tracks are already assigned to D.RTR. You must, therefore, release the D.RTR tracks
and then re-assign them by scheduling FMGR. After assigning the D.RTR tracks, FMGR
terminates and you must schedule it again in order to enter FMGR commands. This special

case, where FMGR terminates immediately, occurs only when the D.RTR tracks are
unassigned.

2-89

FMGR Operator Commands

Example
tEX
SEND FMGR
*RT,D«RTR release the D.RTR tracks
*RU, FMGR scheduling FMGR assigns D.RTR tracks on LU 2; FMGR terminates
*RU, FMGR re-schedule FMGR

$IN,SC, =3, 3, AUX <«—initialize new auxiliary disc on LU 3

2-58. CL - CARTRIDGE LIST

A list can be requested of all cartridges in the cartridge directory with the command CL.

Format

:CL

The cartridge list is issued to the list device, normally LU 6, the line printer. This device may
be changed with LL (see paragraph 2-13). The list contains the following categories:

LU Logical unit number of the cartridge

LAST TRACK Last track assigned to the FMP on that cartridge

CR Cartridge reference number
LOCK Name of program locking the cartridge; blank if not locked
Example

:CL «—— request from input device

LU LAST TRACK CR LOCK

02 0175 00002 output to list device
13 0202 00104

14 0202 06500

2-90

FMGR Operator Commands

2-59. DL - DIRECTORY LIST

Each mounted cartridge has on its last tracks a directory for the cartridge. The directory
contains an entry describing the cartridge followed by an entry describing each file on the
cartridge. A listing of this directory can be requested with the DL command.

Format

:DL,namr [,master security]
or
:DL [,cartridge [,master security]]

Parameters

namr namr parameter. See paragraph 2-8 for format definition. See below for
conditions for using this version. The long list format (Table 2-5) is
supplied.

cartridge Cartridge identifier; positive for cartridge reference number, negative

for logical unit number; if omitted or zero, the directories of all
mounted cartridges are listed.

master security Code assigned to the system at initialization; if correctly specified,
directory list includes file security code and track and sector address
for each file (long list).

The directory list is provided in two formats: a short list and a long list
(see figure 2-5). Both lists have the same header information
describing the cartridge itself; they differ in the file information
provided. The long list includes a file security code for each file and the
track and sector address for the file.

:DL,namr format

The purpose of this DL command format is to allow you more options when specifying which
directory entries you want listed. When this format is used, the following conditions must be
met before a given file entry will be listed:

a. The file name must match the name portion of < namr> except that the minus sign “— ” if
used in < namr> “matches” any character.

b. Zero as a subparameter matches any actual subparameter, however, if a non-zero
subparameter is used, it must match the files actual parameter.

¢. The standard security code match is used, i.e.,

—n matches nand —n
+1n matches n only

2-91

FMGR Operator Commands

Examples:

:DL,A lists all files whose name is A.

:DL,A----- lists all files whose name starts with A.

:DL,--A--A:—5:2 lists all files whose 3rd and 6th name characters are A and
whose security code is —5 or +5 and which are on CR2.

:DL,------ el lists all files of length 1.

:DL,------1::::16 lists all files with record length 16.

2-60. PK - PACK CARTRIDGE

The PK command is used to recover the tracks assigned to purged files and close any gaps
between files.

Format
:PK [,cartridge]
Parameters
cartridge Cartridge identifier; a positive reference number or, if negative, the
logical unit number of the FMP cartridge to be packed; if omitted, all
mounted cartridges are packed.

When PK executes, it moves files into empty spaces left from purging, if possible, and updates
the file addresses in the file directory. When all files are packed, it then packs the directory
removing any entries for purged files.

PK will purge all files that contain bad tracks reported by the IN command (paragraph 2-56).
If you do not want the file with bad tracks purged, you must save it on another cartridge using
the ST command (paragraph 2-22).

2-92

Example

FMGR Operator Commands

e DL,2

e Cartridge reference number

e Command

3

L- CR=ANAB2 —~—— ————

SHORT LIST

— Cartridge information label

- Next available track

- Next available sector

= No. of Sectors/Track
Last FMP track on this disc

No. of Directory tracks

I B

P,
o~ N\ - pana ¥

ILAB=SYSDIS NXTKk=0133 NXSEC=07¢ #SEC/Tk=096 LAST Th= 0202 #Dk Tk=02

NAME

MT
REWND
EOF

TYPE #BLKS/LU OFEN TO

5121517 5] Q&
28303 28
PPRB4 BRI

TAPNUM 00002 00128

FMGK

FMGK

File Name Number of blocks File is open to this program. opens are indicated by a
used by file, or a Extents are indicated by a minus {—) sign following
logical unit number plus {+) sign preceding the the program name.
if file is type O. extent number. Exclusive
LONG LIST
:DL,2,55
CR=00002

ILAB=SYSDIS NXTR=0133 NXSEC=074 #SEC/TR=096 LAST Thk= @202 #DKk Tk=82

NAME

MT
KEWND
EOF
TAPNUM

TYPE #BLKS/LuU SCODE

nAav0o o8
20000 28
PP004 00001
onen2 00128

00000
N0200
00000
12345

t

TRACK SEC OPEN TO

FMGR
0100 000
0100 002 FMGk

i

File security Track and sector

code

address

Figure 2-5. Two Types of Directory List

293

FMGR Operator Commands

Packing Considerations

Since the PK command locks the cartridge(s) being packed, you must be sure that there are no
open files on the cartridge(s) before requesting PK. If files are open, a FMP -008 error message
is issued followed by the cartridge reference number if cartridge was specified or the logical
unit if not. All cartridges except the specified logical unit(s) will be packed. If the cartridge
being packed contains any programs restored by RP (paragraph 2-34), a FMGR 011 error is

issued followed by a list of all the programs. Programs must be terminated with an OF,
program, 8, command before packing can take place.

NOTE

To pack a cartridge containing spool files, you must first shut
down the spool system with the 1SD command (see Section V).

If the system fails during execution of PK, it is possible to lose, at most, one file. In order to
determine which file, if any, has been lost, you need a copy of the file directory listing before
PK was entered. This list should be the long list requested with the master security code so
that it shows length, first track and sector addresses for each file. When power is returned, get
another such list and compare the two lists. Look for the first file with an old disc address
preceded by a file with a new address. Since the directory is updated after each file is
successfully moved, this unchanged entry may indicate that the file has been lost. To illus-
trate, suppose the directory list before packing shows:

NAME TYPE #BLKS/LU SCODE TRACK SEC OPEN TO

A 00003 00001 0100 000
B 00004 00003 0100 002
«~—————— 2 sector gap follows B
C 00004 00002 0100 010 too small for C
D 00003 00003 0100 014

If the directory after packing shows C in sector 8 and D in sector 12, no files have been lost; PK
has completed its operation. If, however, either file C or D is listed in the same sector (10 or 14
respectively), there is a good chance that it was being moved when the system failed and is now
lost. If the second directory shows duplicate entries this simply means the directory was being
re-written when the failure occurred and no files were lost. This can be corrected by storing the
affected files in new files, purging the affected files, and changing the names of the new files
back to their original names.

Examples

DL, 1005,SC «———— get directory listing before packing
IPK» 100 - then pack the cartridge
iDL>100»SC «—————— and get new listing

The new listing will show the new next available track (NXTR in heading) and new track
sector addresses for any files that were moved. Figure 2-6 shows how packing might affect a
cartridge.

2-94

FMGR Operator Commands

0 (END OF DIRECTORY)
FILE C ENTRY 0 (END OF DIRECTORY)
— 0 (PURGED FILE) FILE C ENTRY
LAST FMP TRACK
FILE B ENTRY FILE B ENTRY
FILE A ENTRY FiLE A ENTRY
CARTRIDGE ENTRY J CARTRIDGE ENTRY
IL
M ot
T 1
< NEXT AVAILABLE
c FMP TRACK
GAP WHERE FILE
WAS PURGED [
B B
A FIRST FMP TRACK A
CR =100 CR =100
(BEFORE PACKING) (AFTER PACKING)

Figure 2-6. Packing a Cartridge

2-61. CO - COPY ONE CARTRIDGE TO ANOTHER

All files currently on a mounted cartridge can be copied to another mounted cartridge with the
CO command.

Format

:COPY ,cartridgel cartridge2

Parameters

cartridgel Cartridge reference number of mounted cartridge containing files to be
copied; if negative, identifies cartridge logical unit number.

cartridge2 Cartridge reference number of mounted cartridge to which files are to be

transferred; if negative, identifies cartridge logical unit number.

NOTE

Files are transferred record by record; records longer than
128 words are truncated.

All files transferred should have unique names. If a file on cartridge2 has the same name as a

file being transferred from cartridgel, the file is not transferred and an informative message is

sent to the log device. As each file is copied, its name is displayed on the log device.
Change 3 2-95

FMGR Operator Commands

The files being copied are not affected by the copy. If files already exist on the cartridge to
which files are being copied (cartridge2), these files are not affected; the copied files follow the
existing files. Entries for the copied files are added to the end of the file directory on cartridge2.
If there are any entries for purged files in this directory, entries for the copied files may be
interspersed with entries for existing files. To know where the new file entries are placed,
request a directory list with the DL command.

Example

Assume files A, B, C, and D on cartridgel are to be copied to cartridge2, and a file C already
exists on cartridge?2:

tCO,LA,LB where LA is cartridgel and LB is cartridge2

a
R <\ system prints file names as they are copied

C
FMGR -072
D

message indicating C is a duplicate name; it is not copied

2-62. MISCELLANEOUS COMMANDS

Using the commands described in the following paragraphs, you can execute RTE system

commands without exiting FMGR and you can denote one or more lines of your own comments
in the command entry list.

2-63. SY — EXECUTE RTE SYSTEM COMMAND

RTE system commands can be executed from FMGR by using the SY command as a prefix to a
system command.

Format
:SYcommand Privileged Command (see paragraph 2-7)
where: command is the desired system command mnemonic code. No delimiter is
permitted between SY and command.

FMGR strips off the SY prefix and passes the remaining characters to the system for

execution. Any messages resulting from execution of the system command are passed back
through FMGR to the log device, but do not force a transfer to the log device.

If you do not specify a logical unit number in an SY command request for the system command
RU or ON, the SY command will supply the log device as the default logical unit.

2-96

FMGR Operator Commands

Examples
:SYUP, 6 -« Make logical unit 6 available to the system.
1SYTI Request the time and date from the system.

2-64. ** — COMMENTS

You can include lines of comments within your command entry list to explain the command
flow.

Format

**comment line Privileged Command (see paragraph 2-7)
or,

* comment line

or,

* comment line

where: comment line is any string of alphanumeric characters. These characters

must be separated from the first asterisk (*) by another asterisk, a
comma, or a blank.

The lines denoted as comments do not affect command execution. Globals may be specified;
however, the constructed line (with replaced global values) must not exceed line limitations
(see paragraph 2-7).

Example for RTE-IIIII Systems

:*xALLOCATE 3 TRACKS TO LG AREA

:LG,3

:%, ASSEMBLE SOURCE PROGRAM IN LS; RELOCATABLE TO LG
:tRU, ASMB, 2,99

:x SAVE RELOCATABLE AS FILE

:SA,LG,BFILE

:* RETURN LG TRACKXS TO SYSTEM

:LG

2-97/2-98

SECTION 1li

FILE MANAGEMENT

THROUGH
FMP PROGRAM CALLS

INDEX TO FMP CALLS

Optional parameters are underlined

NAME FORTRAN CALL FUNCTION PAGE

Position disc file to record IREC using block (IRB)
and word in block (IOFF) returned by LOCF. 3-34

CLOSE CALL CLOSE(IDCB IERR.ITRUN) Close file NAME to further o
- access by caller.

APOSN CALL APOSN(IDCB,IERR,IREC.IRB,IOFF)

Create file NAME of size

CREAT CALL CREAT(DCB,IERR,NAME,ISIZE ITYPE,ISECU ICRIDCBS) [SIZE. type ITYPE. 3-8
FCONT CALL FCONT(IDCB IERRICON1ICON2) Write EOF or position non-
= disc type 0 file.
Return status of mounted
FSTAT CALL FSTATISTAT
() cartridges in ISTAT. 3-44
IDCBS ISIZE=IDCBS(IDCB) Return actual DCB buffer 5
size in A register.
LOCF CALL LOCF(IDCB.IERR,IREC,IRB,IOFF, Returnsinformationon open file; next record in
JSEC, JLU,JTY ,JREC) - IREC, next block (IRB), next word (IOFF), ete. 531
Assigns new name
NAMF CALL NAMF(IDCB,JERR,NAME ,NNAME, 3-47
(MEISECU.ICR) (NNAME) to file NAME.
OPEN CALL OPEN(IDCB,IERR,NAME IOPTN ISECU ICR IDCBS) Open file NAME for access 3 ;4
— by calling program.
POSNT CALL POSNT(IDCB IERR,NUR.IR) Position dle: or non-disc file NUR records from 336
— current position or to record NUR.
Transfer contents of DCB
POST CALL POSTdD
OSTIDCB,IERR) buffer to disc. 3-48
PURGE CALL PURGE(DCB,IERR,NAME,ISECU,ICR) Purge file NAME and its 4,
— extents from disc.
Read record from open file
READF CALL READF(IDCB,IER L P
(IDCB, R,IBUF,IL,LEN,NUM) to buffer (IBUF). 3-21
RWNDF CALL RWNDF(IDCB,IERR) Rewind or position to first 4 5

record in file.

Write record from buffer

WRITF CALL WRITF(IDCB,IERR,IBUF IL NUM) (IBUF) to file. 3-26
ASSEMBLY LANGUAGE CALLS COMMON PARAMETERS
Assembly language uses the same IBUF user-defined integer array used as read/write buffer for READF and
parameters as FORTRAN plus a re- WRITF calls.
turn location parameter RTN. ICR one-word integer variable set to cartridge reference number of cartridge

The general form is: containing file:

positive integer= cartridge label

EXT routine-name negative integer = logical unit number

IDCB user-defined integer array (Data Control Block) containing file control

JSB - routine-name information on open file (16 words) plus packing buffer for data transfer

ggg ;{;FN (minimum 128 words); IDCB assumed to be 144 words unless IDCBS is
: parameters specified.
bEF pn IDCBS one-word integer variable containing exact number of words in IDCB
RTN return location when IDCB greater than 144.
IERR one-word variable where negative error code is returned, or for successful
For example: OPEN, file type, for successful CREAT, number of 64-word sectors.
EXT CLOSE NAME 3-word integer array containing legal 6-character file name; must not
: begin with blank or number; no embedded blanks; use any printable
JSB CLOSE ASCII character.
ggg ?ggB ISECU one-word security code; integer or two ASCII characters:
DEF IERR positive = write protected
-RTN negative= read/write protected
iDCB BSS 144 zero = not protected

IERR BSS 1 OPTIONAL PARAMETERS IN FORTRAN CALLS ARE UNDERLINED.

FILE MANAGEMENT
THROUGH FMP CALLS | i

3-1. INTRODUCTION

The FMP program calls provide an interface between programs and the File Management
utility routines. With these calls, you can open, close, read from and write to files from your
program. In addition, the calls allow you to create or purge disc files, position either disc or
non-disc files and directly control non-disc files.

Calls to the FMP routines may be written in Assembly Language, FORTRAN II or IV,
ALGOL, or Multi-User Real-Time BASIC. Only FORTRAN IV is documented in this manual;
calls from other languages use the same parameters and generate the same code.

3-2. FMP CALLS

Table 3-1 lists all the FMP calls according to general function and indicates the status, before
and after the call, of the Data Control Block, a user array assigned to each open file. It also
indicates when and if the file directory is accessed by the call.

3-3. THE DATA CONTROL BLOCK

The Data Control Block is a block of words defined within your program that acts as an
interface between the program and the File Management Package. You must supply one Data
Control Block for each open file. It is an array which contains control information for the file
including the file name, type, size, and location on disc if the file is a disc file. In addition, it

acts as a buffer for the physical transfer of data between a file and your program. The Data
Control Block is used to:

® Avoid directory access for file information
o Keep track of current record position in file

® Provide a buffer for transfer of data between a file and the program.

Once a file is open, the Data Control Block is referenced for file information and the file name
is no longer needed or used in FMP calls.

Each Data Control Block is an array with a minimum of 144 words. The first 16 words are a
control block to provide all the file information required by the FMP calls. The remaining
words are a buffer used for the transfer of data in blocks of 128 words. The 16-word control area

is maintained and used only by FMP and must not be modified directly. Refer to Appendix C
for the format of this area.

A Data Control Block buffer of 128 words is the minimum that can be specified. The buffer may
be larger, as large as available memory, but any file can be accessed with the minimum

128-word buffer regardless of the buffer size specified at creation.

3-1

FMP Calls

Table 3-1. FMP Call Summary

DCB STATUS
CATEGORY | ROUTINE FUNCTION DIRECTORY | PARAGRAPH
AT ENTRY | AT RETURN ACCESS
File Definition CREAT | Enter file in directory; open CBO OPNX YES 3-8
exclusively for update.
PURGE | Close file and remove from CBO CLOS YES 39
directory.
OPEN Open file. CBO OPN YES 3-10
CLOSE | Ciose file. MBO CLOS YES 3-11
File Access READF | Transfer record from file to MBO OPN EXTENTS 3-13
user buffer.
WRITF | Transfer record from user MBO OPN EXTENTS 3-14

buffer to file.

File Position LOCF Retrieve current position MBO OPN NO 3-16
and status of open file.

APOSN | Position disc file relative MBO OPN EXTENTS 3-17
to a particular record.

POSNT | Position disc or non-disc MBO OPN EXTENTS 3-18
file relative to current
record.
RWNDF Position file to first record. MBO OPN EXTENTS 3-19
Special FCONT | Specify control functions MBO OPN NO 3-21
Purpose for non-disc file.
Routines
ESTAT Retrieve contents of car- — — — 3-22
tridge directory.
IDCBS | Retrieve actualsize of DCB MBO OPN NO 3-23
buffer used by FMP.
NAMF Rename existing file. CBO CLOS NO 3-24
POST Write DCB buffer to disc. MBO OPN NO 3-25
Legend:
CBO Can be open: DCB can be assigned to open file; that file will be closed and, in case of CREAT and
OPEN, file specified in call will be opened.
MBO Must be open: DCB must be assigned to open file.
OPN Open: File assigned to DCB is opened or is left open.
OPNX Open with extents: New file is assigned to DCB and is opened exclusively for update.
CLOS Closed: File assigned to DCB is closed; DCB is available for other use.
EXTENTS Directory is accessed only if call changed extents.

Data Transfer

In addition to the Data Control Block buffer, another buffer must be defined in your program
for transferring individual records. This buffer, the user buffer, is where a record to be written
is specified and into which a record is read. The relation between the user buffer, the Data
Control Block buffer, and a disc file is illustrated in Figure 3-1.

3-2

FMP Calls

MEMORY DISC
] L 11
f 1 — =
128 WORD DCB BUFFER FILE
/, RECORD 1
20 WORD USER BUFFER -7 RECORD 2
4/
1RECORD RECORD 3
N~
N O~
\\\\ M RECORD 4 l¢——»| 128 WORD BLOCK
N N
W\ ‘ﬂ RECORD 5
\
/ \ RECORD 6

1ST 8 WORDS
LOGICAL READ/WRITE T RECORD 7

PHYSICAL
READ/WRITE

Figure 3-1. Sequential Transfer Between Disc File and Buffers

Each call to read or write a record transfers one record between the user buffer and the Data
Control Block buffer. This type of transfer within memory is known as a logical read or write.

A physical read or write transfers a 128-word block between the disc file and the Data Control
Block buffer. A physical write is performed automatically when the Data Control Block buffer
is full, when the file is closed, or when a specific request is made with the POST call. On a read
request, a block of data is physically read into the Data Control Block buffer from the disc only
if the requested record is not already in that buffer. Any time a record being read or written is
not wholly contained in the Data Control Block buffer (refer to record 7 in Figure 3-1), then the
File Management Package reads or writes blocks until the entire record has been transferred.

When type 2 files are accessed randomly, the process is essentially the same as the sequential
access illustrated in Figure 3-1 except that physical transfers may be more frequent since

successive references are less likely to be to records in the same block in the Data Control
Block buffer.

Since each record in a type 1 file is 128 words, the intermediate transfer to the Data Control
Block buffer is omitted and each record is transferred directly between the user buffer and the
file as illustrated in Figure 3-2. This type of access is the most efficient. A full 144 word Data
Control Block must still be specified in the user program.

MEMORY DISC
J J L
f 1 r 1
USER BUFFER TYPE 1 FILE
1 RECORD = 128 WORDS |« »| 1 BLOCK =128 WORDS

Figure 3-2. Data Transfer With Type 1 Files

Type 0 (non-disc) files also bypass the Data Control Block during transfers. Records in these
files are written or read directly to or from the device identified as a type O file. A specific

3-3

FMP Calls

number of words, rather than a record, is the unit transferred by a read or write request to this
file type. The transfer can thus be tailored to the particular record length of the device.

3-4. PROGRAM CALLS

When a calling sequence is encountered during execution of a user program, the File Man-
agement Package executes the call according to the value of the parameters in the calling
sequence, and/or returns information to areas defined in the parameter list. The number, type,

and meaning of the parameters depends on the subroutine and are described in detail in this
section.

For FORTRAN, the general form of the calling sequence is:
CALL name(p,ps . .. ,Dw

where:
name is the subroutine name.

pithrough p, are the parameters; parameters name a real or an integer array or variable
or, if the parameter is one-word, a value. Position determines parameter meaning.

For Assembly Language, the general form of the calling sequence is:

EXT name

JSB name

DEF RTN (or *+(n+1) where n is the number of parameters, may be zero)
DEF p,

DEF p,

DEF p,

RTN (return location)

where:

name is the subroutine name; it must always be defined as an external with an EXT
statement before it is called.

RTN is the label of the location to which the subroutine returns upon completion; it must
always follow the last parameter in the calling sequence.

p:through p, are the parameters; each parameter names an integer array or variable.

3-5. COMMON PARAMETERS

Parameters used frequently in FMP calls are described here and in paragraph 3-6.
3-4

FMP Calls

IDCB

This parameter specifies the array used as a Data Control Block. It must be at least 144 words,
16 words for file control information and 128 for the minimum buffer. For faster processing a
larger buffer can be specified. In general, the larger the usable buffer, the faster the transfer
rate. For example, a usable buffer of 256 words (IDCB=272 words) will nearly double the
transfer rate for sequential accesses.

While a file may be created with a large DCB buffer, it may be accessed with any buffer that is
at least 128 words long IDCB=144 words). All transfers of data use the full actual buffer size.
This size is always 128, or a multiple of 128, words. The actual size used is determined from
the size requested for the Data Control Block at OPEN in conjunction with the file size in the
following manner.

If the requested buffer size is greater than or equal to the file size, FMP allocates an actual
Data Control Block equal to the file size +16 control words.

If the requested buffer size is less than the file size, FMP determines the actual Data Control
Block buffer size according to the following rules:

¢ It must be a multiple of 128 words.
¢ It must be less than or equal to the size specified for IDCB by the user.

o It can be evenly and exactly divided into the total file size.

Toillustrate, Table 3-2 shows the relation between file size, requested DCB buffer size and the
actual size assigned by FMP for two file sizes, one with factors and the other a prime number.
File size is given in 128-word blocks for convenience.

Table 3-2. Relation of Actual to Requested DCB Buffer Size

FILE SIZE REQUESTED DCB BUFFER* ACTUAL DCB BUFFER
IN BLOCKS BLOCKS WORDS BLOCKS WORDS
10 1 128 1 128
2 256 2 256
3 384
4 512
5 640 5 640
6 768
7 896
8 1024
9 1152
10 1280 10 1280
13 1 128 1 128
2 256 1 128
12 1536 1 128
13 1664 13 1664
Uljficvgc;rds must be added to the buffer size when dimensioning the Data Control Block array

3-5

FMP Calls

A call to routine IDCBS (paragraph 3-23) may be made to determine the actual size of the DCB
array (actual buffer +16 control words).

IERR

When an error occurs during a subroutine call, a negative error code is returned in this
parameter and also in the A-register. (Appendix B contains a list of the FMP error codes and
their meaning.) For successful OPEN calls, the file type is returned as a positive integer in
IERR,; for successful CREAT calls the number of disc sectors used is returned in IERR as a
positive integer. In calls where IERR is the last parameter, it is optional. It should be omitted
only if errors are checked in the A-register. Negative error codes allow for easy error checking
and error checking should not be omitted as a general practice.

NAME

For calls requiring a file name, the name is specified in this 3-word array. File names are six
ASCII characters and must conform to the following rules:

e only printable characters may be used (blank A through __or «)

¢ first character must not be blank or a number

e if less than six characters, must be padded with trailing blanks

e embedded blanks are not allowed |

e plus (+) minus (—) colon (:) or comma (,) are not allowed

Duplicate file names are not allowed on the same cartridge.

IBUF

This array is the user buffer and is included in the calls that transfer records: READF and
WRITF. It should be as long as the longest record to be transferred. The record to be written
must be in this array; when a record is read it is placed in this array.

3-6. OPTIONAL PARAMETERS

Most subroutines have one or more optional parameters. They always appear at the end of the
calling sequence and may be omitted only from the end. Optional parameters are underlined in
the formats. If an optional parameter is needed that is preceded by other unnecessary optional
parameters, all the parameters up to the desired parameter must be included. Unused optional

parameters should be set to zero. Three commonly used optional parameters are ISECU, ICR,
and IDCBS.

ISECU

The file security code is specified in ISECU. It can be a positive or negative integer or two
ASCII characters representing a positive integer. When characters are used, FMP converts
them to their integer equivalent. If omitted, ISECU is set to zero.

3-6

FMP Calls

ISECU is set at creation to zero, a positive value, or a negative value:

Creation File Protection File Reference
ISECU=0 unprotected ISECU =any value for any access
ISECU=+n write protected ISECU=+n or —n to write or purge

ISECU =any value to open or read

ISECU=-n read/write ISECU =—n for any access
protected

ICR

This parameter is specified to restrict the file search to a particular cartridge or logical unit
number. The search is for space if the call is CREAT, for a file name in other calls. ICR may be
a positive or negative integer. If omitted, it is set to zero.

IfICR = 0 The file search is not restricted to a particular cartridge. A CREAT call
locates the file on the first cartridge with enough room; other calls using ICR

search the cartridges in the order they appear in the cartridge directory to
find the specified file.

>0 File search is restricted to the cartridge identified by the cartridge reference
number (ICR), an identifier assigned to all cartridges in the system. A list of
cartridge reference numbers can be obtained with the FSTAT call or the :CL
command (Section II).

<0 File search is restricted to the cartridge associated with the logical unit
number (—ICR). To illustrate, if ICR is —14, the file search is restricted to
logical unit 14.

IDCBS

When a Data Control Block larger than 144 words is specified in parameter IDCB, then
parameter IDCBS must also be specified. It informs FMP of the number of words available in
the DCB buffer for data transfer. Any positive number can be specified; the actual usable
buffer is always determined by FMP as described in the discussion of the IDCB parameter
(paragraph 3-5). This size is never larger than the size specified in IDCBS, but it may be
smaller. For example if IDCBS is less than 256 (any value between 1 and 255), then 128 words
are used for the DCB buffer (144 for the entire Data Control Block).

Normally, you will specify IDCBS as 16 words less than the array size specified for IDCB.

3-7

FMP Calls

3-7 FILE DEFINITION

A file may be defined in terms of its name, size, type, and where it is located. The CREAT call
defines a disc file in this way and causes an entry to be made for the file in the file directory
(refer to File Directory Format, Appendix C). Once defined, the file may be opened for access by
any program with the proper security code. To open a file means to transfer the necessary
information from the file directory to the control words of the Data Control Block and thus
make a logical connection between the file name in the directory and the Data Control Block
for the file. The CREAT call opens the file it creates to the calling program only, and only for
update. For other types of access by other programs, the OPEN call must be used.

Following access, the file may be closed with the CLOSE call. Closing a file means that the
connection between the Data Control Block and the file directory entry for the file is severed.
The Data Control Block is freed for other uses, but the file is still defined in the file directory.
PURGE performs all the CLOSE functions and, in addition, flags the directory entry so that
the file is no longer defined.

3-8. CREAT

A call to CREAT creates a disc file; that is, it makes an entry in the File Directory for the file
and allocates disc space to the file. This call only creates disc files. To create a non-disc (type 0)
file, use the FMGR :CR command (paragraph 2-20).

Following execution of CREAT, the file is left open in the update mode for exclusive use of the
program performing the call. If you want the file open in any other mode or for more than one
program, use the OPEN call (paragraph 3-10).

Format

CALL CREAT(IDCB,JERR,NAME,ISIZE ITYPE ISECU,ICR,IDCBS)

Parameters

IDCB Data Control Block; an array of 144 +n words where n is positive or zero.

IERR Error return; one-word variable in which a negative error code is re-
turned. If no error, it is set to the number of 64-word sectors (twice the
number of 128-word blocks) in the created file.

NAME File name; 3-word array containing ASCII file name.

ISIZE File size; 2-word array with number of blocks in first word; if negative,
rest of cartridge is allocated to file; second word, used only for type 2 files,
contains record length in words.

ITYPE File type; 1-word integer variable in range 1-32767; types 1-7 are FMP
defined (see paragraph 1-10), higher types are user-defined special-
purpose files.

ISECU Security code; optional 1-word variable in range 0 through *32767; if
omitted, code is set to zero and file is not protected; positive value is write
protect only, negative value for read and write protect.

3-8

FMP Calls

ICR Cartridge reference; optional 1-word variable; if omitted, ICR is set to
zero and space for the file may be allocated to any cartridge; if positive,
cartridge is identified by the cartridge reference number, if negative, by
logical unit number.

IDCBS DCB buffer size; optional 1-word variable; set to number of words in DCB
buffer if larger than 128; if omitted, FMP assumes DCB size (control

words + buffer) is 144 words regardless of IDCB dimensions.

(See paragraphs 3-5, 3-6 for further discussion of commonly used parameters.)

File Size

Since records are addressed by number, the number of records must not exceed the maximum
address (32767). Number of records can be determined by:

words in file (blocks in ISIZE x 128)
record length in words (ISIZE(2))

= number of records < 32767

To obtain access of the 32676 maximum number of records in a type 2 file (see “File Type”
below), the record length must be 128 or a multiple of 128.

When the exact size of the file is not known, an indefinite size can be specified by setting ISIZE
td a negative number. The rest of the cartridge, but not more than 16383 blocks, is allocated to
the file in this case (valid only for files of type 3 or greater). Any area that is unused may be
returned with the ITRUN parameter when the file is closed. (Refer to CLOSE, paragraph

3-11.) Note that a file using all the remaining cartridge is not extendable since a file may not
cross cartridge boundaries. Extents are created automatically when a write goes beyond the
end-of-file of an extendable file (type 3 and above).

File Type
There are seven standard FMP file types as follows:

1. fixed length 128-word records; random access
2. fixed length user-defined record; random access
3. (and greater) variable length records; sequential access; extents provided
4. source program
5. relocatable program
6. memory-image program
7. absolute binary program

File types greater than 7 are user defined but are treated by FMP as type 3. Any special
processing based on file type is not provided as a default, but must be specified.

When any file of type 3 or greater is created, FMP writes an EOF mark at the beginning of the
file. As records are written to the file, the EOF is moved automatically to follow the last record.

Change 2 3-9

FMP Calls

Examples

1. Create a type 2 file called FIX with 100 blocks, 62 words per record, security code AB, and
a DCB buffer of 128 words:

DIMENSION NAML(3),181Z(2Y,I0CB1(144) - 16 control words +

VATA NAMLI/2RFI,2HX ,2H / 128-word buffer

15]22lva number of blocks

1517 (2)=262 record size
o file type

CALL CrReAT(I0Cpl,lEtKkk,NAMY,]IS812,2,2HAB)

IF(IeRk LT, 2) bu Tu HAm N__ security code

: \ process any errors at 900

Create a type 3 file PROG1 with 60 blocks, no security code, using a 256 word DCB buffer,
and locate it on logical unit 14.

LIMENSION NAMR(3),13172¢(2), IIIC“\Z(272)__16-control words + 256-word

UATA NAM2/ZHPR,2HUG, 241 buffer

1517k3=1 = file uses rest of cartridge, record length unspecified
Ilkam] g« file located on logical unit 14

ITYPE=S ~— file type is 3

ILUCR3BZ9h DCB buffer size

LCALL CREAVCLIDOCn2,, 1ERR ,NAM2,ISTIZE, LTYRPE, M, TLR, T LCHS)
IP(lerk LT, @) Lu Tu Y- error check

L

-

Another method is to use literals for all one-word variables:

GIMESSIUN NAMER2(8),10l1ZFc2),10082(27¢)
CATA NaAMp /2P, 200G, 2H /

*

L;ALL CKCA‘(li)t?‘?'itﬁ’(,iVA"al'],nuj;zv"1412?)”j
P {Texk LTy 9) U To 9ac

continue after successful call
.

Care should be taken when literals are used as parameters since this practice can result in
problems if the values are changed by the called routines.

3.10 Change 3

FMP Calls

Sequence of Operations (CREAT)

gr. W Do

© ® 2>

11.
12.

. Open the file to the DCB.

Check for enough parameters.

Close the DCB using CLOSE (ignore not open error).
Check legality of NAME.

Check legality of ITYPE.

Check legality of ISIZE, and if ITYPE = 2, then check that no more than 32767 records
will fit in allotted size. (This is to prevent the file from containing more records than
possible to address.) If ITYPE = 1, force record size to 128.

Get a system track and write skeleton entry on the track.
Schedule D.RTR to create the file.

Return the track.

Check for D.RTR error; if any, exit.

' Computer
useum

Read the directory entry to the DCB buffer area.
Transfer directory parameters to the DCB.

c. Set current position pointers in the DCB.

d. Set update mode bit in DCB.

If file type = 3, set “written-on-flag” and EOF in DCB.

Return.

3-11

Parameters

IDCB

IERR

NAME

IOPTN

ISECU

ICR

IDCBS

CALL OPEN(IDCB,IERR,NAME,IOPTN,ISECU,ICR,IDCBS)

Data Control Block; array of 144 +n words where n is positive or zero.

Error return; 1-word variable in which negative error code is returned if
unsuccessful, file type if successful.

File name; 3-word array containing ASCII file name.

Open Options; optional 1-word variable set to octal value to specify
non-standard opens. If omitted or set to zero, the file is opened by default

as follows:

¢ Exclusive use — only the calling program can access the file.

¢ Standard sequential output — each record is written following the
last, destroying any data beyond the record being written.

¢ File type defined for file at creation is used for access.
¢ Type 0 files use function code defined at creation.

To open a file with other options, set IOPTN as described below under
OPEN Options.

Security code; optional 1-word variable; must be specified to open file
created with negative code or to write on file protected with positive code;
may be omitted if file not protected at creation.

Cartridge reference; optional 1-word variable; If set, FMP searches that
cartridge for file; if omitted, it searches cartridges in the cartridge direc-
tory order and opens first file found with specified name.

DCB buffer size; optional 1-word variable; set to number of words in DCB
buffer if larger than 128; if omitted, FMP assumes DCB size (control
words + buffer) is 144 words regardless of IDCB dimensions.

See paragraphs 3-5, 3-6 for further discussion of commonly used parameters.

When a file is opened, it is positioned at the first record in the file.

OPEN Options

The IOPTN parameter is defined as follows:

BIT

3-14

15 14 13 12 1110 9 8 7 6|15 4 3] 2 1 0

X|A]K|]V]M F|T U E

L FUNCTION CODE J
TYPE O OPTIONS

FMP Calls

The following bits may be set for any file type:

E (it 0) = 0 File opened exclusively for this program
1 File may be shared by up to seven programs
U (bit1) = 0 File opened for standard (non-update) write
1 File opened for update
T (bit2) = 0 Use file type defined at creation

1 File type is forced to type 1
The following bits are used for type O files only (they are ignored when opening other file
types):

F (bit 3) = 0 Use function code defined at creation
1 Use function code defined in bits 6-10 of IOPTN

Bits 6-10 correspond exactly to the function code used for RTE READ/WRITE EXEC call. The
definition is repeated here for convenience.

M (it 6) = 0 ASCII data
1 Binary data
Vmit7 = 0 If M=0 (ASCII) use column 1 for carriage control on line printer.
If M= 1 (binary) length of punched tape input determined by buffer length
specified in READF call.
1 If M=0 (ASCII) print column 1 on line printer.
If M=1 (binary) length of punched tape input determined by word count
in first non-zero character read.
K (bit8) = 0 Keyboard input is not printed.

1 Keyboard input printed as received.

A with M determine whether binary and ASCII data are punched or printed on ASR35
Teleprinter-type device.

A®it9 = 0 If M=0 (ASCII) output is printed but not punched.
If M=1 (binary) output is punched but not printed.

1 If M=0 (ASCIID) output is punched but not printed.

If M=1 (binary) output is punched but not printed.

X in combination with M and V determines what is read or written on paper tape.

3-15

FMP Calls

X (bit 10) = 0 No function.

1 If M=1 and V=1, absolute binary tape format is expected; any leader,
special control characters, etc. are skipped; (“honesty mode”).

If M=1 and V=0, on input number of words in word count are read, leader

is not skipped; on output, record terminator (4 feed frames) is not
punched.

If M=0 and V=0, ASCII tape format is expected. On input, parity bit 8 is
stripped and terminating line feed suppressed, but all other characters,
including leader, are transmitted to user buffer; on output, carriage re-
turn and line feed are suppressed, but any trailing underscore or back
arrow is punched.

Exclusive Open

By default, a file is opened for exclusive use of the calling program. An exclusive open is
granted to only one program at a time. If the call is rejected because the file is open to another
program, you must make the call again; it is not stacked by FMP. Exclusive open is useful in
order to prevent one or more programs from destructively interfering with each other.

Non-Exclusive Open

If more than one program needs to access the file, it should be opened non-exclusively by
setting the IOPTN E bit. A non-exclusive open may be granted to as many as seven programs
per file at one time. A non-exclusive open will not be granted if the file is already opened
exclusively. Each time an open is requested for the file, all programs currently having the file
open are checked. If any program is dormant, the file is closed to that program. That type of
close does not free the DCB and does not post the contents of the DCB buffer to the file. Any
open flag will also be cleared if it does not point to a valid ID segment (possible if the file was
left open on a different system).

Update Open

In update mode, IOPTN U bit set, the block containing the record to be written is read into the
DCB buffer before it is modified. This insures that existing records in the block will not be
destroyed. This mode of open has no effect on reading or positioning. File type governs the
choice between update and standard (non-update) open.

Update mode should be used to write to type 2 files. A type 2 file should be opened in standard
mode only when originally writing the file or adding to the end of the file, and then only ifit is
to be written sequentially.

Update mode is ignored for type 1 files. Although, like type 2, they are designed for random
access with fixed length records and the end-of-file in the last word of the last block, each

record is the same length as the block transferred so that there is no danger of writing over
existing records.

For type 3 and above files, update mode is not generally used; most writes are sequential with
an end-of-file mark written after each record. These files should be opened for update only if a
record previously written to the file is being modified. In this case, care must be taken not to
change the length of the modified record. If it is changed, a ~005 error is issued. Regardless of
the mode of open (update or standard) a record written beyond the end-of-file replaces the
end-of-file and is followed by a new end-of-file.

3-16

FMP Calls
Type 1 Access

Any file may be forced to type 1 access by setting the IOPTN T bit. Type 1 access is faster
because it bypasses the Data Control Block buffer and transfers a sector of data directly to the
user buffer defined as IBUF in a READF or WRITF call. The file type defined at creation is not
affected; the file is treated as type 1 only for the duration of this open. You are responsible for
any packing or unpacking of records in files forced to type 1. That is, if the records are less than
128 words, you must determine the start and end of each record. (Refer to READF and WRITF
for particulars of type 1 access.)

Examples

1. Open a type 2 file named FIX for update in non-exclusive mode. The security code at
creation was AB:

DIMENSION NAME(3),1NCA1(144)
JATA NAME/2HMF1,2HX 21/

a set bit 1 for update and

. r—/‘ bit 0 for non-exclusive open

.

CALL OPEN(INCHBL, IER®,NAMEL,3,2HAB)

IF (JERR GNE, 2) GO TO QWA «————— ftest for error; file type expected

]
2. Open type 3 file PROG1 with default options, The file is located on logical unit 14:

CIMENSION NAM(3),IDCB2(144) '
OATA NAH/QHPR,ZHDG,QH! / default options

. no security code
']

L4
CALL OPEN(IDCB2,IERR,NAM,2,0,»14)
IF (IERR ,NE, 3) GO TO 9p0

Although PROG1 was created with a DCB buffer of 256 words (refer to CREAT examples,
paragraph 3-8), it can be opened and accessed with the minimum DCB buffer of 128 words.

3. Open type 0 file PTAPE (created with :CR command) and set options so that binary data is
punched on paper tape without leader:

OIMENSION NAME(3),IDCR3I(144)

DATA NAME/2NWPT,2WHAP,2HE /

JIOPTNER21 108 set M, V, and X for "honesty mode”
]

’

L]

CALL OPEN(IDCB3I,IERR,NAME,IOPTN)
.IF (1ERR ,NE, @) GO TOD 900

.

L}

.

3-17

FMP Calls

Sequence of Operations (OPEN)

Check for enough parameters.

Close the DCB using CLOSE (ignore not open error).
Format and issue D.RTR request.

Call RMPAR to get D.RTR return parameters.

If D.RTR error, exit.

Open the file to the DCB.

A

a. Read the directory entry for the file into the DCB buffer area.
b. Transfer directory parameters to the DCB.
c. Set current position pointers in the DCB.

7. If OPEN protected (i.e., security code < 0), and security code mismatches, close the file and
exit,

8. If type = 0 and subfunction option present (Bit 3 = 1), replace subfunction.
9. Return.

3-11. CLOSE

To close a file after use, call the CLOSE routine. The file remains in the system available to
other programs following the close; the Data Control Block is freed for association with other
files. A disc file opened for exclusive use of the calling program may be truncated to its actual
length.

Format

CALL CLOSE(IDCB,IERR,ITRUN)

Parameters

IDCB Data Control Block, an array of 144+n words where n is positive or zero.

IERR Error return; 1-word variable in which negative error code is returned if
truncation unsuccessful; only required when ITRUN is specified.

ITRUN Truncation; optional 1-word variable containing integer number of blocks

to be deleted from the file at closing; if omitted or zero, the file is closed
without truncation; if negative, only extents are truncated.

See paragraph 3-5 for further discussion of commonly used parameters.

3-18

FMP Calls

File Truncation

When a file has been created with more blocks than are actually needed to accommodate the
data in it, it can be truncated at closing to save disc space. A file may be truncated only if:

the file is a disc file

e the current position is in the main file, not in an extent

e the file was opened with the correct security code

e the file was opened for exclusive use of the calling program

e the number of blocks deleted are less than or equal to the total number of blocks in thefile.

If all these conditions are met, the value of ITRUN can be a:

® positive integer — to specify the number of blocks to be deleted from the end of the main
file: any extents are automatically truncated: if equal to the total number of blocks in the
file, the file is purged.

® negative integer — to specify that any extents be deleted from the file; the main file is not
affected.

The value of ITRUN when positive can be determined from information returned by a previous
call to LOCF (paragraph 3-16) assuming the current position is at the end of the data in the
file. In this case, the last block number written or read (IRB-1) is subtracted from the total
blocks with which the file was created (JSEC/2) and assigned to ITRUN. When negative,
ITRUN can be any value. The number of extents need not be known. If the file is currently
positioned in an extent, it can be re-positioned to the main file with RWNDF (paragraph 3-19).

A zero value for ITRUN is exactly the same as omitting this parameter; a standard close is
performed with no truncation.

Examples

1. Close file FIX (IDCB1) with no truncation; assume FIX has been opened:

UleodIun JUuCRL(144) < file name associated with IDCB1

|]

L]

Larl LiLdoak (luCrl,lenn) ~————— error return optional but good practice
It (lERK LLT, @) GUJ T Q.

IDCBI1 is freed for other files.

3-19

FMP Calls

2. Close type 3 file PROG1 and truncate it to exactly the number of blocks used. Assume the
file was written sequentially and the current location is at the end of the data in the file.

DIMENSION IDCB2(144) &)

CALL LOCFCIDCB2,IERR,I,IRB,I,JSEC) <~—— call LOCF for file length and
ITRUN=JSEC/2-C IRB-1) next block

CALL CLOSECIDCB2,IERR,ITRUN) =
IFCIERR .LT. 0) GO TO 900

IERR required with truncation

Since JSEC contains the number of sectors (2 blocks per sector) it must be divided by 2 for
the number of blocks. IRB is the next block; for the current block subtract 1.

3. Close the same file, but delete only the extents; use the RWNDF call (paragraph 3-19) to
insure that current position is in the main file:

ulMeEndUN IDLBZ(144)

]
]
AP (NaNOF (IDCB2YYyanm, 14,14
1 calt CLUSE(IUCD?, 1+ RR, =1)Y——mITRUN negative to delete all extents
IF(lER= (LT, @) GO T Hap
L]

Sequence of Operations (CLOSE)

Check for enough parameters.

If DCB is not open, reject call.

If block currently in core was written on, write it to the file.
Check file type, current extent, and security for truncate option.

Call D.RTR to close the file (D.RTR makes the rest of the truncate checks).

S o o

Return.

3-20 Change 2

FMP Calls

3-12. FILE ACCESS

Information in files is accessed with the READF and WRITF routines. Calls to these routines
are basically the same whether the file is a device (type 0) or a disc file (type 1 and above).
Whether reading or writing, you can specify that exactly one record be transferred or you may
specify a particular number of words. In general, it is good practice to specify the number of
words since this permits generality among file types.

The normal mode of access for files of type 3 and above is sequential. Such files are created
with an end-of-file in the first record. The first record written overrides the end-of-file and a
new end-of-file is written immediately following the record. As each subsequent record is
written, the process is repeated so that the end-of-file always follows the last record written.

Variable length records are assumed for these file types. For this reason it is necessary to
specify the number of words when the record is written. On a read, if the number of words is
not specified, FMP determines its length and reads exactly one record.

For file types 1 and 2, random access is the normal mode. The end-of-file is written at the end of
the file according to the file size at creation. Since each record is a fixed length determined at
creation, the file is easily positioned to a particular record. Generally, one record is written or
read at a time, although more may be transferred when accessing a type 1 file.

When accessing a type O file, the number of words should always be specified unless a
zero-length record is to be read or written or a record skipped. End-of-file marks are not
written automatically to type O files; you must specify the end-of-file.

3-13. READF

This routine reads a record from an open file to the user buffer. Either one full record or a
specified number of words is read. The record to be read may be the record at which the file is
currently positioned or, for type 1 and 2 files, it may be any specified record.

Format

CALL READF(IDCB,IERR IBUF IL LEN,NUM)

Parameters

IDCB Data Control Block; an array of 144 +n words where n is positive or zero.

IERR Error return; 1-word variable in which negative error code is returned.

IBUF User buffer; array into which the record is read; it should be large enough
to contain the record; if IL is specified, it should be length IL.

IL Length in words; optional 1-word variable specifying number of words to
be read; should not be omitted for type O files, for other files, 1 record is
read if IL is omitted; refer to Table 3-3 for details of IL use.

3-21

FMP Calls

LEN

NUM

Words read; optional 1-word variable in which actual number of words
read is returned; set to —1 if end-of-file read; if omitted, information not
supplied.

Record number; optional 1-word variable set to record number to be read
if positive, to number of records to backspace if negative; used only for
type 1 and 2 files; if omitted, record at current position is read.

See paragraphs 3-5, 3-6 for further discussion of commonly used parameters.

Relation of IL to File Type

It is a good idea to specify IL for file type 0 and it doesn’t hurt to specify it for other file types. If
you do not know the length of a disc file record, IL can be specified as the user buffer length to
prevent reads beyond this area. If the record is shorter than IL, the exact record length is read
for file types greater than type 1. Table 3-3 illustrates the effect of IL depending on file type.

Table 3-3. Effect of IL Parameter in READF

IL VALUE FILE TYPE O FILE TYPE 1 FILE TYPE > 1
IL> 0 Upto ILwords areread; | Exactly IL words are | Upto ILwords areread;
if less than IL, file de- | read; IL may be more | if less than IL, actual
fined record length is | or less than 128-word | record length is read.
read. record.
IL=0 Zero length record is | No action. (Zero-length | Record is skipped and
(not recommended) regd; usually record is | read, no position | counted as read.
skipped and countedas | change.)
read.
IL omitted Zero-length record is | 128-word record is | Actual record length is
read; usually record is read. read.
skipped and counted as
read. (Not recom-
mended.)
TYPE 1 FILE
USER BUFFER \’\/\/\/
256 2% [T — — — 77
\\ 180 150 N
150 WORDS \ 128
ACTUALLY
READ | < IL=150
(LEN = 150}
) ; &

3-22

Figure 3-3. Read Type 1 File When IL Greater Than 128

FMP Calls

Figure 3-3 illustrates a type 1 file read. The file is read directly to the user buffer when the
number of words specified in IL is greater than the 128 words expected for a type 1 file. Other
file types may be forced to type 1 at open in order to benefit from this type of transfer.

Using LEN

Upon completion of a read, the actual number of words transferred to the user buffer is
returned in LEN. If, however, the number of words in LEN is equal to IL, more words may

actually have been in the disc record. This is because LEN is never set to a value greater
than IL.

Toillustrate, suppose IL is specified as 80 words. If 10 words are transferred, then LEN is set to
10. But whether 80 or more words are in the record, LEN is still set to 80, the value of IL.

LEN can be used to test for possible overflow of the user buffer. Except for type 1 files, the user
buffer and IL can be specified one word larger than the largest expected record. If, when tested,
LEN equals this size, it is a good indication that the record read was too large for the buffer. Do
not use this test for type 1 files since exactly IL words are read for this file type.

Another use of LEN is to test for end-of-file in all file types except 1 and 2. For types 1and 2, an
end-of-file is reported as an error in IERR. Depending on file type, reading an end-of-file
results in the following:

Type 0 LEN is set to —1 when EOF is read; no error occurs and access may
continue beyond the end of file.

Type 1 & 2 IERRissetto —12 indicating an error. Access is not permitted beyond the
end of file.

Type 3 & up LEN is set to —1 for the first EOF read; no error occurs but an attempt to
read past this EOF causes an error (IERR = —12); you may not read past
the end-of-file, but you may write beyond it.

Note that length words in variable-length records (file types 3 and above) are not transferred
to the user buffer and are not counted in LEN.

Positioning With NUM

NUM is used only to position file types 1 and 2; it may be specified for other file types but is
ignored. If positive, NUM specifies the record number of the record to be read: records are
numbered from the first record in the file starting with 1 and proceeding sequentially up to a
maximum of 32767. If negative, NUM specifies the number of records to backspace from the
current position in the file.

To illustrate, assume the file is positioned at the beginning of record 4:

1. If NUM=0 or is omitted, read record 4.
2. If NUM=6, read record 6.
3. If NUM=-3, read record 1.

3-23

FMP Calls

Examples

START OF FILE END OF FILE

SOF EOF

.__4| L N I N I I A N)
| o

| | | ! 1

CURRENT POSITION

1. Read records in a type O file until an end-of-file is reached; the record length is 80 words

but 81 words are assigned to the buffer in order to test LEN; assume the file is positioned at
the first record:

106

o202

DIMENSION IDCBR(S%6),1B8UF (81)

CALL READF(IDCBw,YERR,IBUF,81,LEN)

IF(IeRR LLT, ©) GO TO Y¢n

IF(LEN EQ, =1) GO TO 50@<— test for end-of-file

IF(LEN .GT, B3Y GO TO 550 - test for record greater than 80 words

. - process record

60 TO 1dp <« read next record
[]

|]
CALL CLOSE(C1DCB®, JERR)<~———close file at end-of-file
IF(IERK LLT. ©B) G0 TO 910

2. Readrecord 24 from a type 2 file with a record length of 256 words using a 257 word buffer:

3-24

DIMENSION IDCB31(272),1BUF1(257)

.

CALL READF(IDCB1,IERK,IBUF1,257,LEN,24)
IF(IERR ,LTe. @) GO YO 908 «— test for error or EOF
IF(LEN ,EG@, 257) GO TOD 55@-<— test for too long record

process record
[]

3.

FMP Calls

Read file with variable length records until first end-of-file is reached. Assume the file is
positioned at the first record and that no record exceeds 128 words:

DIMENSION IDCB2(144),I1B8UF2(129)

10@ CALL READF(IDCB2,IERR,IBUF2,129,LEN)
IF(leRR LT, ©) GO TO 999
IF(LEN JEQ, 1) 60 TO 506 <——— test for end of file
IF(LEN JERd, 129) GO TO 5@ < test for possible buffer overflow

LI process record
[

GO0 T0 10¢ read next record
]

Son CALL CLOSE(IUCH2, JERR) «———— close file at end-of-file
[]

Sequence of Operations (READF)

IR

=

10.
11.
12,
13.
14.
15.
16.
17.

Set read flag and fetch parameters.
Check for enough parameters.

If DCB is not open, reject call.

If read or update, set reading flag.

If type 1 force DCB length to 128.

If type 1 or 2, do random access positioning (implies EQF if initial position not in file). If
new position not in currently resident block, then write the DCB buffer if it was written on.

If type 2 or above, and reading flag set, and DCB buffer is empty, then read to DCB.
If type less than 3, skip to 18.

If current position is at EQF set EOF encountered flag in DCB. If already set, set IERR =
—12 and exit; else step record count, set LEN = -1, and exit.

Read the record length.

If IL too short, set skip count.

Read the record.

If skip count set, skip the rest of the record.
If type 2, set record count and exit.

Read the length word.

If lengths do not match, take error exit.

If reading flag not set, set EOF in buffer, set written on flag, step record count and exit;
else step record count and exit.

3-25

FMP Calls

18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.

3-14.

If type 2, go to 11.

If type 0, go to 30.

If type 1, round up length to even 238 words and save as increment in record count.

Check if request is within the file.

If track switch, compute maximum words this access.

Read the record.

If type O read, do EOF test and return.

If type 1, check for disc errors.

Update for rest of record.

If more to transfer, go to 22.

Update record count.

Return.

Test read legality bits.

Go to 23.

WRITF

A call to this routine transfers a record from the user’s buffer to an open file. For files of type 0

or type 3 and above, a specified number of words is written. Type 1 files are written in blocks of

128 words. For type 2 files the exact record length specified at creation is written,

Format

CALL WRITF(IDCB,IERR,IBUF IL,NUM)

Parameters

IDCB

IERR

IBUF

IL

NUM

Data Control Block; an array of 144 +n words where n is positive or zero.
Error return; 1-word variable in which negative error code is returned.

User buffer; array containing the record to be written; it should be large
enough to contain the largest record to be written.

Length in words; optional 1-word variable specifying number of words to
be written; if omitted, one record is written to type 1 and 2 files, zero-
length record to other file types; refer to Table 3-4 for details of IL use.

Record number; optional 1-word variable containing record number to be
written if positive, number of records to backspace if negative; used only
for type 1 and 2 files; if omitted, record is written to current file position.

See paragraphs 3-5, 3-6 for further discussion of commonly used parameters.

3-26

FMP Calls

Relation of IL to File Type

IL should be specified for all but type 2 files and may be specified for all files. It is ignored by
type 2 files but can be used with type 1 files to write more than one 128-word record at a time.
For files of type 3 and above, it is essential to specify record length in IL. To omit IL for these
file types is the same as setting IL=0, a zero-length record is written. Refer to Table 3-4.

IL can also be used to write an end-of-file on files of type 0, type 3 or greater. An attempt to
write an end-of-file to a type 1 or 2 file is ignored; no error is indicated.

Table 3-4. Effect of IL Parameter in WRITF

IL VALUE FILE TYPE O FILE TYPE 1 FILE TYPE 2 FILE TYPE > 2
IL>0 Exactly IL words are] IL is rounded up to 128 IL is ignored; file defined | Exactly IL words are
written. or a multiple of 128. record length is written. written.
IL=0 Zero length record | No action. IL is ignored; file defined | Zero length record
is written. record length is written. is written.

IL omitted Zero length record | 128 words are written.| IL is ignored; file defined | Zero length record

is written. record length is written. is written.
IL=-1 End-of-file is written. | No action. No action. End-of-file is written.
IL <—1 IL is treated as a | No action. No action. Undefined.
not character count.

recommended

When IL is not 128 or a multiple of 128 for a type 1 file, it is rounded up so that 128 or a
multiple of 128 words are always transferred. The user buffer need be no larger than the size
specified in IL. If the exact record size is always read, no problems result from the transfer of
words beyond the buffer. Figure 3-4 illustrates a write to a type 1 file with IL = 150 words. In
this case, 256 words (the shaded area) are actually transferred.

TYPE 1 FILE

/ GARBAGE

~J > 256 WORDS
\ 128 ACTUALLY
\ WRITTEN

7/

Figure 3-4. Write Type 1 File When IL Greater Than 128

3-27

FMP Calls

Positioning with NUM

NUM is used only to position file types 1 and 2; if specified for other file types, it is ignored. A
positive value causes a write to the specified record number; records are numbered relative to
start of the file beginning with 1. When negative, NUM specifies the number of records to

the

backspace from the current file position.

To illustrate, assume the file is positioned at the beginning of record 5:

1. If NUM=0 or is omitted, write is to record 5.
2. If NUM=6, record number 6 is written.
3. If NUM=-3, record number 2 is written.
START OF FILE END OF FILE
SOF EOF
___|I‘lzl3l4l5l6l7lall___
I | I I | ! | | I
CURRENT POSITION
NOTE
Although it is possible to rewrite specific records in files of type
3 and above, great care must be taken. If the length of the
existing record and that of the replacing record are not identi-
cal, the integrity of the file is destroyed.
Examples
1.

3-28

Write records sequentially to a file starting at record 1; when all records are written, write
an end-of-file; set IL to the exact record length of each record using a maximum record

length of 100. File could be type 0 or a type 3 or above:
DIMENSION IDCBO(144),IBUFR(120)

109 move record to IBUF0Q

ILs
CALL WRITF(IDCH®,TERR,IBUFO,IL)
IF(IEXKR ,LT. @) GO TO YQ@<——— check for error
IF(IL) 110,100

11e CALL CLOSE(IDCBR@,JERR) «———— close file after EOF

number of words in record
(after last record, set IL=~1)

FMP Calls

2. Write record number 24 to a type 2 file with a record length of 256 words:

DIMENDIUN 10CHhE(272), IRUF2(256)

move record to IBUF2

CALL WRITFCIDCH2, TERK, 18UF2,7,24)
IFCIERR LT, ©) G T 90

Sequence of Operations (WRITF)

A R L

10.
11.

12.
13.
14,
15.
16.
17.
18.
19.
20.
21.
22,
23.
24.
25.

Set write flag and fetch parameters.
Check for enough parameters.

If DCB is not open, reject call.
Check security.

If update, set reading flag.

If type 1, force record length to 128,

If type 1 or 2 and EOF write, then exit, or do random access positioning (implies EOF if
initial position not in file). If new position not in currently resident block, then write the
block if it was written on.

If type 2 or above, and reading flag set and DCB buffer is empty, then read to DCB.
If type less than 3, skip to 19.
If current position is at EOF, then clear reading flag.

If EOF write: (a) then set EOF in buffer, (b) set written on flag, (¢) step record count, and
(d) exit.

If reading,then this is an update write; check lengths (must match).
Write the record length.
Write the record.
If skip count set, skip the rest of the record.
If type 2, then to 11c.
Write the length word.
If reading flag not set, go to 11a; else 11c.
If type 2, go to 14.
If type 0, go to 31.
If type 2, round up length to even 128 words and save as increment in record count.
Check if request within file.
If write, use round-up length.
If track switch, compute maximum words this access.
Write the record.
3-29

FMP Calls

26.
27,
28.
29.
30.
31.
32.
33.

3-30

If type 1, check for disc errors.

Update for rest of record.

If more to transfer, go to 24.

Update record count.

Return.

Test write legality bits.

If EOF write, make control request and return.

Go to 25.

FMP Calls
3-15. FILE POSITIONING

The FMP positioning routines provide a variety of ways to position a file:

e To a particular record in a sequential (variable-length record) file (LOCF and APOSN).

® To a particular record in a sequential file with variable-length records
(LOCF,APOSN,POSNT).

® Relative to the current position in a forward direction in a disc or non-disc file with
fixed-length records, or backwards if the file also permits backspacing (POSNT).

® To the first record in the file for any file that permits backspacing (RWNDF).

Disc files with fixed length records (type 1 and 2) can also be positioned to a particular record
or backspaced with the NUM parameter of READF or WRITF. However, they may be
positioned for sequential access with APOSN or positioned forward with POSNT.,

Each time a file is opened, it is positioned by FMP to the first record in the file. For this reason,
only POSNT may be useful immediately after an open. All disc files and magnetic tape files
may be backspaced. Non-disc files other than magnetic tape usually have fixed length records
but cannot be backspaced.

In addition to the position routines, the routine LOCF is essential when a file is to be
positioned for sequential access with APOSN. The parameters for such positioning are re-
trieved from a call to LOCF and can be passed directly to APOSN. LOCF also returns status
information on any open file and, thus, has broader uses than simply file positioning.

3-16. LOCF

A call tothis routine retrieves status and location information on an open file. The information
is obtained from the Data Control Block control words for the file. The minimum information
returned is the next record number; all other information is optional.

Format

CALL LOCF(IDCB,IERR,IREC,IRB,IOFF,JSEC,JLU JTY ,JREC)

Parameters

IDCB Data Control Block; array of 144 +n words where n is positive or zero.

IERR Error return; 1-word variable in which negative error code is returned.

IREC Next Record; 1-word variable in which number of next sequential record
is returned.

IRB Next block; optional 1-word variable in which next block number is
returned; not returned for type O files; identical to IREC for type 1 files;
includes extents if file was extended.

IOFF Next woxjd; optional 1-word variable in which number of next word in
record is returned; not returned for type 0 files.

3-31

FMP Calls

JSEC File size; optional 1-word variable in which number of sectors in file at
creation is returned; not returned for type O files; JSEC/2 provides
number of blocks.

JLU Logical unit; optional 1-word variable in which logical unit to which file
is allocated is returned.

JTY File type; optional 1-word variable in which file type at open is returned.

JREC Record size; optional 1-word variable in which record size of type 1 and 2

files or read/write code for type O files is returned; not applicable to files
with variable length records (type 3 and above).

See paragraph 3-5 for further discussion of IDCB and IERR.

Location Information

Together, IREC, IRB, and IOFF provide the current position within a disc file; they are not set
for non-disc files. The values in these parameters may be passed directly to APOSN (para-
graph 3-17) to position the file to this location. The values returned in IRB and IOFF give the
exact physical location of the record pointer in the file. The values of IRB and IOFF are based
on a Data Control Block buffer size of 128 words. If the actual Data Control Block buffer size is
greater than 128, these values are adjusted automatically by APOSN.

IREC numbers records starting with 1 for the first record, 2 for the second, and so forth. IREC
alone is sufficient to find the location of type 1 files. IRB numbers blocks starting with 0 for the
first block in the file, 1 for the second, and so forth. If the file is extendable (type 3 and above),
IRB includes extent information and is specified as:

blocks in main file X extent number + block number in current extent
IOFF numbers the words in a record relative to the beginning of the record but beginning with

zero. Since all records are assumed to be no greater than 128 words (the size of the minimum
Data Control Block buffer), the range of IOFF is 0 through 127.

Status Information

JSEC is always an even number with two 64-word sectors for each 128-word block in a disc file.
It is not applicable to non-disc files.

JLU is the logical unit to which a file, disc or non-disc is allocated.

JTY is the file type of the file; if forced to type 1 at open, then 1 is returned.

JREC as a record size is meaningful for type 2 files only; it is the size specified at creation. For
type 1 files, whether actual or forced to type 1 at open, JREC is set to 128 on the first read or
write access.

For type 0 files, JREC specifies the read/write access code:

bit 15
bit 0
3-32

N

1 read legal

1 write legal

Examples

FMP Calls

1. Determine the actual location of the record pointer in the open file PROG1 defined in

IDCB2:

UIMENSTON JUCB2(144)

»
CALL LUCF (IUCHZ, lERK, TREC, INB, JUFF)
LF(TERR ,LT. w) GO TO 9 process errors at 900

2. Open an existing file DATA and create file NEW with the same file type and size; then
transfer all data from DATA to NEW:

4

VIMENSLOUN LDATA(R272), INEw(272) ,NDATA(3) ,NNEW(3)
DINENSTION IbuF (256),1512(2)

DATA NDATA/2RDA,2HTA,2H /,NNEW/2HNF,2HW ,2H /
CALL UPEN(IDATA,IER,NUATA,#,7,4,272)

JFCIer JLE. @) GO 10 9@ test for error or type 0
Call LOCF (LUATA,TER,T,1,1,1512C1),1,1TYP,1812(2))
IFCIeEw LT, 89) GU TU 921

IS12(1)=1512(1})/2 set ISIZ to number of blocks
CALL CREAT(INEW,IER,NNEW,IS1Z,1TYP,0,2,256)

IF(Itk 9L.Tc d) GO 1O H2v

CALL meADFCIUATA,TER, IBUF,256,1.)

IF(lew LT, &) GO YO 92v

CALL WRITF(INEw,l1ER,IBUF,L)

1ELIER L 7. &) GO TO 420

IF(L)Y54, 30 return for next record if not end-of-file

PROCESS ERRORS AND CLOSE FILES

G
Y19
g2
93p
Y84
1pee

IFC(lER JNE, ©) GO TOD 924

WRITE (1,910) type 0 file cannot be created from program
FORMAT("IDATA IS TYPE @& FILE™)
GO T 951

WRITE(Y,632)
FORMAY ("ERKOK ATTEMPTING TO COPY IDATA TU NEW")
CALL CLUSE(IDATA,IER)

CALL CLOSE(INEW, IER) ~—————close files following end-of-file or error
ENO

Sequence of Operations (LOCF)

S N N =

Check for enough parameters.
Fetch DCB.

Check that file is open.

Set IREC.

If type O, go to 8.

3-33

FMP Calls

If type 1 or 2, compute current address from the record number.
Compute and set IOFF, IRB, JSEC.

Set JTY, JLU, JREC.

Return.

© ® N

3-17. APOSN

This routine is called to position any disc file to a specific record. The record location may be
determined by a prior call to LOCF (paragraph 3-16).

APOSN is intended to position sequential files with variable length records prior to a read or
write request. It may be used to position random files with fixed length records (types 1 and 2)
but it must not be used to position non-disc files (type 0). POSNT may be used to position type 0
files.

Format

CALL APOSN(IDCB,IERR,IREC,IRB,IOFF)

Parameters

IDCB Data Control Block; array of 144+n words where n is positive or zero.

IERR Error return; 1-word variable in which negative error code is returned.

IREC Next record; 1-word variable set to number of next sequential record; may
be determined by a prior call to LOCF.

IRB Next block; optional 1-word variable set to next block number; may be
determined by a prior call to LOCF; omitted only for files with fixed-
length records.

IOFF Next word; optional 1-word variable set to number of next sequential
word in record where number is in range 0-127; may be determined by a
prior call to LOCF; omitted only for files with fixed-length records.

APOSN assumes the values entered for the record address are based on a 128-word Data
Control Block buffer. The routine adjusts the values to the buffer size currently in use if it is
greater than 128,

IREC must be set; if not set to a specific record number by user, it may be set to a value
returned by a call to LOCF. The three values IREC, IRB, and IOFF may all be retrieved
through LOCF. This permits the resetting of the file location to its position when LOCF was
called.

NOTE

Whenever a file with variable-length records is positioned, the
two optional parameters IRB and IOFF must be included.

3-34

Examples

1.

FMP Calls

Call LOCF to retrieve the current position parameters. After reading more of the file,
re-position the file associated with IDCB2 to the position whose location was saved:

DIMENSION I0DCR2(144)

» . .
CALL LOCF (1UCB2, JERR, IREC, IR8, 10FF) < fouicbe loeation af
IF(1eRR LT, @) GO TO 9np

] read and process records in the file

1] v .
CALL APosmclucsz.IERR,1REC,IRB,IUFF)«—“”ﬁ?’mP””““U
IF(1ERR LT, &) GO Tu 9un saved focation

[]

The values of IREC, IRB, and IOFF retrieved by the call to LOCF are simply passed to the
call APOSN by using the same variable names in both calls.

Position type 2 file defined in Data Control Block IDCB1 to the 6th record in the file and
then read next 8 records in sequence:

14

DIMENSION IDCHBYI(144),1IBUF(128)

*

L}

CALL APOSN(IUCDY,JERR,D) < position file
TF(Iewrr LT, #) GN TQ Q0w

COunT=ag

CALL READF(IOCB1,I1ERR,IBUF1,128,LEN)

IFPCIERR (LT, 8) GN TU 9un

IF(LEN JEQ, =1) GO TU 52 test for end of file

. process record

COUNT=COINT1
IR (COUNT LT, 8) G0N TO 16
L}

Sequence of Operations (APOSN)

1
2
3.
4
5

If DCB is not open, reject call.

Check if file type = 0.

Check for enough parameters.

If type 1 or 2, go to 7.

Call subroutine LOCF to get the current IRB.

3-35

FMP Calls

6. Position to the new block without reading file.
a. May imply an extent change.
b. Implies writing current block if written on, before positioning to a new block.
7. Set current buffer pointer.
8. If record number is less than 1, error exit.
9. Record number is returned.

10. Return.

3-18. POSNT

This routine positions a file relative to the current file position or to a specific record number.
It can be used to position all file types.

Format

CALL POSNT(IDCB,IERR,NUR,IR)

Parameters

IDCB Data Control Block; array of 144+n words where n is positive or zero.

IERR Error return; 1-word variable in which negative error code is returned.

NUR Number of records; 1-word variable specifying the number of records to
position forward if positive, backward if negative; if IR is included as
non-zero value, NUR specifies record number to which file is positioned.

IR Optional 1-word variable set to indicate that NUR be interpreted as

record number; if omitted or zero, NUR is treated as number of records to
space forward or backward. Refer to Table 3-5.

See paragraph 3-5 for further discussion of IDCB and IERR.

Table 3-5 Relation Between Parameters NUR and IR

IR = 0 OR OMITTED IR #0
NUR RELATIVE POSITION ABSOLUTE POSITION
NUR > 0 Position forward number of records Position to record number specified.
specified.
NUR =0 No operation. No operation
NUR < 0O Position backward number of records Error
specified.

3-36

FMP Calls
Positioning Type 0 Files

When the file is on a non-disc device, the forward or backward positioning specified by NUR
must be legal for the device.

To forward position a type O file, the records are read until one less than the specified number
of records is read or an EOF is read. In every case, an EOF terminates positioning.

When backspacing a type O file, the first record backspaced over may be an EQF. If an EOF is
encountered not as the first record backspaced over, an error (—12) is returned and the call
terminates after forward spacing to position the file immediately after the EOF.
Positioning Type 1 and 2 Files

POSNT may be used to position these file types, however, file positioning for files with fixed
length records can be specified in the read or write requests and POSNT may not be necessary.
Positioning Type 3 and Above Files

These files are treated as magnetic tape files. To be correct, a backspace should be issued after
an EOF is read and before continuing to write on the file. This action writes the next record

over the EOF allowing a correct extension of the file for either disc or magnetic tape files. If the
file is on disc, it can be extended without backspacing.

Examples

1. Current file position immediately follows EOF2. Backspace four records to final position
immediately following EOF1 (no error). Note that EOF2 is counted as a record:

EOF 1 EOF 2
1A 1B 1C 2A B
“'I | | | | L L% 1
i I] IR | T
POSITION AFTER CALL L POSITION BEFORE CALL

DIMENDSJUON TLCHB3I(144)

L)

NiiRz=4

CalL POSNT(IOCE3, IERK,NHR)
P (leRK LY. ¥) GO Tk 920

3-37

FMP Calls

2. Current file position follows record 2A. Backspace five records resulting in a —12 error
because the end-of-file was not the first record backspaced over. The call is terminated and
the file is left positioned immediately after EOF2.

DIMENSION IDCB3(144)

IERRBY
NURsS®d
CALL PUSNT(IUCAH3, TERR,NUK)
IF(IERR ,LT, ¥) GO TO 9ne

909 WRITE(1,910) [EKR
917 FORMAT("PDSITION ERROR = ",15)

POSITION BEFORE CALL
POSITION AFTER CALL

3. Position file with Data Control Block JDCB to record number 10:

UIMENSLION JLCB (144)

NUR31Q

lk=}

CAlLL POSWT(JOCB, IEKR,NUR,IK)
IF (IERR LLT, @) GO TU 980

v
[
]

Sequence of Operations (POSNT)
Check for enough parameters.

Set reading flag.

If DCB is not open, reject call.
Compute the relative record number.
If type 0, go to 17.

If type 1 or 2, go to 14.

N R o

If forward spacing, call READF to read the required number of records (unless EOF or
error).

3-38

8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.

22

3.

FMP Calls

If current position is EOF and EOF read bit is set, clear it and go to 9; else 10.
Decrement record number and backspace count; if done, exit.
Backspace one word and read it.

Backspace over the record.

Read length; if no match, error exit.

Go to 9.

Compute absolute record count; if less than 1, error exit.

Set record number.

Return.

If forward space, go to 7.

Check backspace legal flag.

Backspace — EXEC call.

If EOF encountered and not first backspace, go to 7 with 1 record (READF will return
EOF).

If not done, go to 19.

. Return.

19. RWNDF

This routine rewinds a magnetic tape or positions a disc file to the first record in the file.

Format

CALL RWNDF(IDCB,IERR)

Parameters
IDCB Data Control Block; array of 144 +n words where n is positive or zero.
IERR Error return; optional 1-word variable in which error code is returned;

may be omitted if A-register is to be checked for errors.

See paragraph 3-5 for further discussion of these parameters.

If the rewind cannot take place, the call is completed with the file position unchanged; no error
is indicated. The rewind will not take place if, for instance, the file being rewound is a paper
tape punch, the line printer, or some other device that cannot be positioned in reverse.

3-39

FMP Calls

Example

Position a disc file to the first record:

DIMENSION IDCB2(144)

CALL RwNOF (IDCB2,IERR)
IF(IERR LLT, 2) GO TO 900
L}

Sequence of Operations (RWNDF)

SO O o o

3-40

If DCB is not open, reject call.

If type O file, do EXEC rewind request and return.

Write out current block if written on.

If not in main file, call D.RTR to get the main file address.

Reset current position pointers in DCB to beginning of file.

FMP Calls

3-20. SPECIAL PURPOSE ROUTINES

FMP provides a set of routines each of which performs a special function not directly related to
the standard input/output functions of defining, accessing, and positioning files. The routines
with their associated functions are listed here and described in subsequent paragraphs in
alphabetic order since they are not functionally related to one another.

Routine Function

FCONT Controls input and output of non-disc type O files; the functions
are identical to those provided in the I/O Control EXEC call for
RTE but here the device is identified by the file DCB, not a logical
unit.

FSTAT Returns the status of all cartridges in the FMP cartridge direc-
tory; includes the ID segment location of any program that has
locked a cartridge.

IDCBS Retrieves actual size of the DCB buffer for a currently open file;
this is the usable buffer size allocated by FMP and determined by
the total file size and the requested buffer size.

NAMF Renames a created file; the file itself is not changed but it can no
longer be opened or purged by the old name.

POST Writes the contents of the DCB buffer to the disc; since FMP
normally performs this function when the file is closed or the
buffer is full, POST is useful mainly to enable modification of
records in a file opened for non-exclusive use.

3-21. FCONT

This routine controls input/output functions on a peripheral device. The device must have been
created and opened as a type O file. The call has no effect on other file types. It performs the
same functions as the RTE I/0 CONTROL call, such as to backspace, rewind, write end-of-file
to magnetic tape, set the end of paper tape or generate paper tape leader, and control line
spacing and top of form on the line printer.

Format

CALL FCONT(IDCB,IERR,ICON1,ICON2)

Parameters
IDCB Data Control Block; array of 144 +n words where n is positive or zero.
IERR Error return; 1-word variable in which negative error code is returned.

3-41

FMP Calls

ICON1 Function code; 1-word variable set to an octal code defining the function;
see Table 3-6 for the codes.

ICON2 Line spacing if ICON1 = 11 (octal); 1-word variable set to output line
spacing control code.

File number if ICON1 = 27 (octal); 1-word variable set to file number on
2644 Cartridge Tape Unit minicartridge.

See paragraph 3-5 for further discussion of IDCB and IERR.

Function Code

Bits 6 through 10 of parameter ICON1 are used for the function code.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FUNCTION CODE
The function codes are defined in Table 3-6.
Line Spacing

If the function code is 11 octal, then FCONT expects a value in ICON2. This value controls
output line spacing on the line printer or a keyboard display device:

0 to suppress line spacing on the next line
>0 to indicate the number of lines to space before the next line
<0 to page eject on line printer; space specified lines on keyboard device.

File Number

If the function code is 27 octal, then FCONT expects a value in ICONZ2. This value declares the
absolute file number to be located, in the range 1 through 255.

Table 3-6. FCONT Function Codes

FUNCTION CODE
(OCTAL) FUNCTION DEVICE

00 Unused

01 Write end-of-file Magnetic tape/2644 Cartridge
Tape Unit

02 Backspace one record Magnetic tape/2644 Cartridge
Tape Unit

03 Forward space one record Magnetic tape/2644 Cartridge
Tape Unit

3-42

FMP Calls

Table 3-6. FCONT Function Codes (Continued)

FUNCTION CODE

(OCTAL) FUNCTION DEVICE
04 Rewind Magnetic tape/2644 Cartridge
Tape Unit
05 Rewind standby Magnetic tape
Rewind 2644 Cartridge Tape Unit
06 Actual device status Magnetic tape/2644 Cartridge
Tape Unit
07 Set end-of-tape Paper tape/TTY
10 Generate leader Paper tape/TTY
Write end-of-file if not just previously 2644 Cartridge Tape Unit
written or not at load point
*11 List output line spacing Line printer
12 Write 3 inch interrecord gap Magnetic tape
13 Forward space on file Magnetic tape/2644 Cartridge
Tape Unit
14 Backspace one file Magnetic tape/2644 Cartridge
Tape Unit
15 Conditional top-of-form Line printer/display device
20 Enable terminal — allows terminal to Codes 20-27 are defined for
schedule its program when any key is a keyboard terminal (DVRQO).
struck Refer to the DVROO manual
29029-60001 for other uses.
21 Disable terminal — inhibits scheduling of
terminal program
22 Set time-out — sets new time-out interval
23 Ignore all further requests until;
® the request queue is empty
® an input request is received
® a restore control request is received
24 Restore output processing (this request
is usually not needed)
26 Write end-of-data 2644 Cartridge Tape Unit
27 Locate file number 2644 Cartridge Tape Unit

"When function code 11 is specified in ICON1, then ICON2 must be included in the parameter list to

specify the particular line spacing.

“*When function code 27 is specified in ICONT, then ICON2 must be included in the parameter list to

specify the particular file number.

3-43

FMP Calls

Examples

1. Backspace one record on file MT previously created and opened with Data Control Block
MTDCB:

VIMENSTON MTBUF (144)

iCONT'mﬂE\B-* function code 2
CALL FCONT(MTBUF,IER,ICONT)
IFCIER LT, @) GO TO Su¢

2. Page eject to line printer created and opened with Data Control Block LPDCB:
DIMENSION LPDCB(144)

, page eject on line printer (would space 1 line on
ICONTR1{90B keyboard device)
LPSPa=]

CALL FCONT(LPDCB,IERR,ICONT,LPSP)
IF(IERR LLT. 2) GO TO 90n

L]
*
L]

Sequence of Operations (FCONT)

1. If DCB is not open, reject call.
2. Check if file type = 0.

3. Issue control EXEC call.

4. Return.

3-22. FSTAT

This routine returns the status of all mounted cartridges in the cartridge directory. The status
information is essentially a copy of the cartridge directory and, for each cartridge, provides the
logical unit number, the last FMP track, the cartridge reference number, and if a program has
locked the cartridge, its ID segment.

Format

CALL FSTAT{STAT)
Parameters

ISTAT Status; 125-word array in which the status of up to 31 cartridges is
returned, using 4 words per cartridge; see Table 3-7.

3-44

FMP Calls

Table 3-7. ISTAT Format

ISTAT
WORD CONTENTS CARTRIDGE
1 Logical unit number First cartridge in directory
2 Last FMP track
3 Cartridge reference number
4 ID segment address of locking program
or
Compute:
0 (not locked) Miisem
il
5 Logical unit number (or O if no more discs) Second cartridge
6 Last FMP track
7 Cartridge reference number
8 ID segment address or 0
9 Logical unit number (or O if no more discs) Remaining cartridges (31 maximum)
125 0 (terminates list)
NOTE
The same information can be obtained by the operator com-
mand :CL (cartridge list). Refer to paragraph 2-58 for descrip-
tion of this command.
Example

1. Find the cartridge reference number of the cartridge associated with logical unit 13 in
order to create file XX on that cartridge:

12

DIMENSION ISTAT(125),ID0XX(144),NAMX(3),ISIZE(2)
DATA NAMX/Z2HXX,2n ,2H /,18172E/128/

CalLt FSTAT(ISTAT))

ICRS=1 set ICR to cartridge number of lu 13 ——
on 10 131,121,4
IFCISTAT(1) EG, AMS(13))ICR=zISTAT(I+2)——
IF(ICK LT, ¥) GO TO 148 lu 13 not found
CaLl CREAT(IOCR,IERR,NAMX,IS8I7E,3,¢,ICR)

IF(lERK LT, 4) GO TO 15a@

Sequence of Operations (ISTAT)

1. Read cartridge directory to ISTAT.

2. Return.

3-45

FMP Calis

3-23. IDCBS

This function returns the number of words in a Data Control Block actually used by the File
Management Package for data transfer and file control.

Format

ISIZE=IDCBS(IDCB)
Parameters
IDCB Data Control Block; array of 144+n words where n is positive or zero.

See paragraph 3-5 for a further discussion of IDCB.

When a Data Control Block larger than 144 words is specified for the file at open or creation,
the File Management Package may not use the entire DCB buffer area. The actual size used
depends on the file size as well as the requested buffer size (refer to paragraph 3-5). This call
returns the actual Data Control Block size; the buffer used plus 16 control words.

Example

1. A file has been opened using the Data Control Block MBUF with a size of 5000 words. Use
IDCBS to determine how much of MBUF is being used by FMP. If 144 or more words
remain, create KFIL using the remainder of MBUF as a Data Control Block:

DIMENSION NAM(3),NAM1(3)
DIMENSION ISZ1(2),MBUF(5000)
DATA NAM/2HMY,2HF1,2HLE/,NAM1/2HKF,2HIL,2HAA/

ICR=-14

CALL OPEN (MBUF,IERR,NAM,0,ICR,5000-144)
IFOERR.LT.0) GOTO 150

ISZ1(1)=5

ITYPE=3

ISIZE=IDCBS(MBUF)

CALL CREAT(MBUF(ISIZE),IERR,NAM1,ISZ1,ITYPE,0,ICR,5000-ISIZE)

IF(IERR.LT.0) GOTO 150

MBUF
0
DCB IN ACTUAL USE MSIZ
MSIZ+1
DCB ALLOCATED TO KFIL MS1Z=5000-MS1Z
5000

3-46

FMP Calls

Sequence of Operations (IDCB)

1. Determine if DCB is open.
2. Extract the DCB size.
3. Return.

3-24. NAMF

This routine renames an existing file. If the code was created with a security code, this code
must be specified. If the file is open, it is closed and then renamed.

Format

CALL NAMF(IDCB,IERR,NAME NNAME,ISECU ICR)

Parameters

IDCB Data Block; array of size 144 +n where n is positive or zero.

IERR Error return; 1-word variable in which negative error code is returned.

NAME File name; 3-word array containing ASCII file name.

NNAME New file name; 3-word array containing ASCII file name to replace
NAME as the file name.

ISECU Security code; optional 1-word variable in range 0 through *32767,;
omitted only if file NAME was created without a security code or a zero
code; if specified, the code must match.

ICR Cartridge reference; optional 1-word variable in range 0 through 32767,
if zero or omitted, the first file found with given NAME and matching
security code is renamed; if specified, only a file on the specified cartridge
is renamed.

Refer to paragraphs 3-5, 3-6 for further discussion of IDCB, IERR, NAME, ISECU, ICR.

Example

Rename file PROG1 as MYFILE. Since a cartridge reference is specified, the system will look
for PROG1 on logical unit 14 only. No security code is needed:

3-47

FMP Calls

DIMENSION IDCB2(144),NAME(3),NNAME (3)

DATA NAME/2HPR,2H0G,2H1 /,NNAME/2HMY, 2HFI,2HLE/
ICRaw]4

CALL NAMF(IOCB2,IERR,NAME,NNAME, ¥, ICR)
IF(IERR LT, @) GO TO 9an

Sequence of Operations (NAMF)

Check for enocugh parameters.

Check legality of nuname.

Call OPEN to open the file exclusively.

If OPEN errors, exit.

Check file security flag in DCB; if mismatch, close and exit.
Get a system track.

Write new name on track.

Pass track to D.RTR; rename request.

© ® =\ e ook W e

Return system track.
10. Close the DCB.

11. Check for D.RTR errors.
12. Return.

3-25. POST

This routine is called to post (write) the contents of the Data Control Block buffer to a disc file
(type 2 or above). Normally, this is done by the system when the buffer is full or the file is
closed. POST provides direct control over the physical write to disc, assures that the next read
is from disc, and can be used in a special case to save records in a file opened for non-exclusive
use.

Format

CALL POST(IDCB,IERR)

Parameters
IDCB Data Control Block; array of 144 +n words where n is positive or zero.
IERR Error return; optional 1-word variable in which negative error code is

returned; should be omitted only if A-register is tested for errors.

Refer to paragraph 3-5 for further discussion of IDCB and IERR.
3-48

FMP Calls

This call is ignored for all files of type O or 1 since transfers to these files are always direct,
bypassing the Data Control Block buffer. (Refer to paragraph 3-3 for a discussion of data
transfer.)

Using POST For Modification

In conjunction with the RTE Resource Numbering call RNRQ, POST allows several programs
to modify a file without requiring an exclusive open. (Refer to RTE Operating System Manual
for description of RNRQ.) RNRQ is used to lock the file for exclusive use of the calling program,
and POST then clears the DCB buffer before modifying the record and again after
modification.

The sequence to be followed is:

Open the file.

Read the file to retrieve the resource number (RN).

Call POST to clear the DCB buffer (no data is posted since none was written).
Call RNRQ to lock the file for exclusive use of the calling program.

Call READF to read the record to be modified.

Modify the record and call WRITF to write the record.

Call POST to transfer the updated record to the file from the DCB buffer.
Call RNRQ to unlock the file for use by other programs.

e I o L o

It is possible that WRITF in step 6 above causes the buffer to be posted to the disc, but POST
should be called to insure the transfer.

Example

Assume the resource number is in location IRN; modify record number 5 in a type 2 file opened
non-exclusively:

DIMENSION IDCH(144),1BUF(128)

KY CALL POST(IDCB,IERR) clear DCB buffer
IF(IERR LT, ¥) GO TO {5¢ set code to local lock
1CO0E=1R lock fil lusi

Y] CALL RNRG(ICUDC,IRN,ISTAT)‘___.Oi;cprfgeforexcusweuse
1F(ISTAT NE. 2) GN TO 150 ram

54 ILz8) T error test

CALL READF(IOCH,IERR,1BUF,IL,LEN,S)~—— read record 5
IF(IERR LT, #) GO TO 15m
IF(LEN .GT, 82) GN TO 15#

0 - modify record in IBUF
L]

62 CALL WRITF(IVCB,IERR, IBUF,IL ,9)<— write modified record
IF(IeRR LT, ©#) GO TO 1S

79 CALL POST(IDCB,JERR) clear buffer again

' IF(IERR LT, 2) GN TO 150

X1 ICUbe=48 set code to unlock file

3-49

FMP Calls

CALL RNRR(ICODE, IRN,ISTAT)

[]
L]
[]
152 process errors here and unlock Resource Number
[]
[]

Sequence of Operations (POST)

1.
2.
3.
4.

3-50

Determine that the DCB is open.
If the DCB was written into, post it (write it on the disc).
Clear the in-core flags and the written-on flags.

Return.

g

sEsNslalaslsNeoRalsEaNsNaleEslolsRalesRnlsReleRaisRsle ol aNe R NS0 NGNS O 4

FMP Calls

3-26. EXAMPLE USING FMP CALLS

The following short sample program creates up to ten data files from one control file. It then
reads and checks the data in each data file against control information in the control file.

Program FMPEX

PROGRAM FHMPEX,3,99

DIMENSION LU(D),IAUF(4r), IFBUF(33),IREADK(4Q),1REC(LB)
DIMENSION IRe(IR?),10FF(1&), IOPEN(L1Y),ILOCF(1€),ISCHK(16),IREG(2)
DIMENSION 1HCB(144),J0CB(1448),0aTA(S)

EQGUIVALENCE (TA,IREG), (IR,IREG(2)),(X,1REG)
EQUIVALENCE (FNAM, IPBUF(2)), (ISECU,IFRUF(6)), (1CR, IPBUF (10))
cWUIVALENCE (ITYPE,IPBUF(14)),(I3IZc,IPBUF(18)), (IRLNT,IPBUF (22))

vATA 1SCHK/%,3,2,3,4,5,6,7,8,9,1¢,11,12,13,14,15/

TmIS$ PROGRAM I8 INTENDED TCU MANALE ThE DATA-FILE SCHEME FOR A
GATA ACAUISTTIUN SYSTEM, NOT INCLUDED HERE IS ThE

COle ThAT ACTUALLY OBTAINS THE DATA, SINCE ThIS IS

SIMPLY AN EXAMPLE OF FILE USAGE,

fHE OPERATION OF TrHIS FOUTINE FOLLOWS:

o TYPE 4 '"CONTROLY' FILE IS CREATED 8Y THE TEST QPERATOK THAT
CONTAINS INFORMATION ApOuT ThRE TeSTS TU sE PERFORMED AND THE
FILES INTU WHICH THE CATA MUST GU., THIS ROUTINE REGUESTS
THe ~aME OF Trk FILE, (OPeENE IT, AND LSES INFURMATION

IN IT 70 CREATE ANDQ USE OTHEK DATA FILES,

THE FNORMAT OF TH1IS CONTROL FILE 183

ReCORO #® CONTENTS
1 TEST LABEL : A HcAUDER FOk DATA FJILES
2 'NAMR! OF CATA FILE ®1
3 'NAMK! OF DLATA FILE #2
4 ETC,

END WITH "/E" AS FlLE MAMR
UPERATGR SECURITY CODE (E.G, FUR TEST ACCESS)
AS CHECKEQ AGAINST THE 'ISCHK' VALUES, ABOVE

2z

NOTES ANY LINE BEGINNING WITh "=xx" IS CONSIDERED A COMMENT

THE VDATA, AS IT COMES IN, HAS ASSOCIATED WITH)T A
'0ATA COpE! INDICATING THE DISPOSITION OF THE DATA, THE
COUES ARE LISTED BELOW:

cooe FUNCTIGN
4 DATA 0.k, WRITE IT TO THE APPROPRIATE FILE

3-51

OO0 o000 00000 n

121

000000

14

1)

2)

FMP Calls

THIS DATA IS TO BE IGNORED

REWIND THE DATA FILE « START OVER AGAIN
GO BACK 70 'REMEMBERED' POINT IN DATA FILE
*
] SAME AS @, ABOVE
*
*

END OF TEST = CLOSE OF THE DATA FILE

R OXON UL OGN -

-

NOTE: DATA IS WRITTEN INTO THWE FILES IN ASCII

SChENULING PARAMETERS: RuU,FMPEX,LU
WHEKE LU IS A TERMINAL'S LOGICAL UNIT

GET SCHEDULING PARAMETER AND SET UP TERMINAL LU

CALL RMPaR(LU)
IF(LU,EQ.¥ILU=1
ILUsLU+42v08

ASK OPERATOR FOR CONTROL FILE NAME
USE RUUTINE 'COLON' TO wREPLACE COLONS IN FILE I'NAMR!?
WITH COMMAS SO WE CAN USE SYSTEM PARSE ROUTINE 'PARSE!

WRITE(LU,108@)

FORMAT("/FMPEXT ENTER CONTROL FILE 'NAMR': ")
XxsREIO(Y,ILU,IBUF,20)

CALL COQLONCIBUF,18)

CALL PARSE(IBUF,IBw2,IPBUF)

CALL OPENC(IDCB,IERR,FNAM,Q@,ISECU,ICR)
IF(IERR.,GE,.D)GD TO 12

ARITECLU,1Q21)IERR

FORMAT("/FMPEX: FILE ERROR"IOG", TRY AGAINI"/)
GO TO 19

3) READ CONTROL FILE AND2

CREATE EACH UATA FILE
WRITE DATA FILE HEADER FROM CONTROL FILE
CHECK GPERATOR SECURITY COOE

NEt

CALL READF(IDCB,IERR,IBUF,20)

CALL READF(ILCB,IERR,IBUF,20)

CALL READF(IDCb,IERR,IBUF,16,1B)

IF(IERR.LT,Q)G0 TO 8

IF(IB,NE,=1)GO TO 13

ARITE(LU,112)

FORMAT (" /FMPEX: FOUND EOF IN CONTROL F1lLE, ERROR!M)
50 TO 89

IFCIBUF ,EQ.2AWX)IGO TO 14

3-52

IGNORE THE PREVIOUS DATA ITEM (ERASE IT FROM .THE FI
REMEMBER ThE FILE POINTERS, WE MAY WANT TO GO BACK

-

OO ONOCOOOODOD OO0
L ot

[\
=

120

c

FMP Calls

IF (IBUF ,EW.2H/E)GO TO 16
IF(N,GT,12)G0 TO 14

CALL COLON(IBUF,18)

CALL PARSE(IBUF,18#2, IPBUF)

IPBUF (19) 31RLNT

CALL CREAT(JUCB(144x(N=1)+1),I1ERR,FNAM,ISIZE,4,ISECU,ICR)
IF(JERR.LT,B)GO TO 8¢

NIN®]

GO TO 14

NENw]

CALL READF(IOCob,lERR,IBUF,20,IL)
IBUF (IL+1)=32n,,

CAaLL CODE

REAC (IBUF , %) ISECUY

DO 17 131,16
IF(ISECULEQ,ISCHK(I))GO TO 18

CONTINUE

WRITE(LU,117)ISECU

FORMAT ("/FMPEX3 "Io6" IS NOY A vALIU OPERATOR SECURITY CODE"™)
GUu TO 82

CALL RWNUF(IULCB,IERR)
IF(IERK L T,Q)G0 TO 8¢
CALL READF(IDCb,IlERR,IKEADR,40,1B)
IF(IERR,LT,¥)GU TO 8o
00 19 Isy,N
CalL WRITF(JOCB(144x(I=1)+1),IERR,IREADR,IB)
IF(IERR,LT,v)GO TO B&e@
CONTINUE

4) THIS SECTION WCULD CONTAIN SOME DATA ACGUISYTION ROUTINES,

FOR THe PURPOSE OF ThIS EXAMPLE WE WILL SIMPLY INPUT SOME
DATA FROM A TELETYPE,

THE DATA wILL LONSIST QOF 7 ITEMS?
ITEM VALUE
| DATA FILE TG BE USED FOKR STORAGE
2 DISPOSITION FLAG, AS DISCUSSED ABOVE
3 THRU 7 DATA VALULES

IN A MORE GENERALIZED CASt, THIS SECTION wOuLLL ALSO

INCLUDE OATA PROCESSING OR CORRECTION, GATA CHECKING, AND
DETERMINATION OF LISPOSITION FLAG VALUE,

wRITE (LU, 120)

FORMAT ("/FMPEXS ENTER FILE #,FLAG, AND 5 DATA ITEMS: ¢")
ReAD(Lu,*)I,IFLG, (DATA(J),J=1,)5)
CHECK DISPOSITION FOR 'IGNCRE', ERROR IN FLAG, GR END OF TEST

IF(IFLG,EQ,1)GO TO 24
IF(IFLG,EQ,10)60 TO 34

3-53

OO0

oo n DOy D

nNOoO

nNoOOCoOoOoOoO

35
135

FMP Calls

IF(CIFLGeLT41) ORL(IFLGLGT,1€))GU TO 38
RE=FORMAT THt DATA TO THE FORMAT OF THE DATA FILE

CALL CODE
ARITE(IBUF,122)I,IFLG, (DATACJ),JJ21,5)
FUNMAT(I4"’ "14'5("' "'FE.ZJ)

DATA IS MEKELY WRITTEN TO THE FILE FOR IFLG=@,6~9

IF(CI NEL®) AND,(I,LE.5))GC TO 22

CALL WRITF(JuCB(144x(I~-1)+1),IERK,IBUF,30)
IF(IERR,.LT,@)G0 TN 8@

GO Tu 2@

wt BACKSPACE THE PILE TO OVER-WRITE PREVIGUS DATA IF 'IFLG!' = 2

LF (I,NE,2)GD TO 24

CaLlL POSNT(JUCH(144%(I=1)+1),1ERR,=1)
IF(IERR.LTL.0)GO TO 80

60 TO 21

'REMEMBER' THE FILE POINTERS BEFORE WRITING IF 'IFLG! = 3
A 19~w0OrD ARRAY IS USED IN ORDER TO MAINTAIN ONE SET OF POINTERS
FOR EACH DATA FILE

IF (I NEL3)GO TO 26

CALL LOCF(JDCB(144%(I~1)+1),IERR,IREC(1),IRB(I),I0FF(I))
IF(IERR,LT,B)GQ TO 8e

GO TO 21

IF VIFLG' = 4, WwE START THE DATA FILE ALL OVER AGAIN,,, REWIND

IF(I.NE.4)G0D Tu 28

CALL RWNDF(JUCB(144%(I=»1)+1),1ERR)
LF(IERRT,E)G0 TO 8@

w0 TO 2%

THAT DATA TAKEN SINCE WE NCOTED THE FILE POINTERS IS NOW DETERMINED
TO sE OF NO VALUVE, RESTORE THE DATA FILE TO TRAT POSITION AND
OVERWRITE OLD DATA WITH NEW,

IF(IERR,NE,S)GO TO 35

CALL APOSN(JDCB(144%(I~1)+1),IERR,IREC(I),IRB(I),IO0FF(I))
IF (1IERR,LT,0)GD TO BY

60 TU 21

CALL CLOSE(JDCB(144»(I=1)+1),IERR)
IF(IERR,.LT,8)G0 T0 8@

NB8Nw]

IF(N,EG,n)90,20

WRITE(LU,135)IFLG

FORMAT ("/FMPEX: "I6" IS AN ILLEGAL DISPOSITION FLAG}")
60 TO 29

3-54

FMP Calis

C
38 ARITE(LU,138)1
138 FONMAT ("/FMPEX: "IB" IS AN ILLEGAL DATA FILE NUMBERI™)

GO YO 24
C
C
C FILE ERROR SECTION
c
8a WRITE(LU,180) IERR

184 FORMAT("/FMPEX: FILE ERRGR"I6", ABORTI™)
DO 82 I=1,6
CALL CLOSE(JOCB(144%x(1=1)#1),1ERR)
82 CUNTINUE

CALL CLOSE(IDCB,IERR)

LN

92 WRITE (LU, 190)
19¢ FORMAT("/FMPEX: DONE!"/)

END
ENDD
Subroutine COLON

COLON is used to convert the colons (:) in namr to commas for the PARSE routine. PARSE is
in the RTE system library.

@]

SUBRUOUTINE COLON(IBUF,N)

O

DIMENSION 1BUF(2)

THIS SUBROUTINE ACCEPTS A BUFFER CONTAINING AN ASCII STRING
(USUALLY AN FMP 'NAMR') AND CONVERTS ALL COLUNS (3) TO COMMAS ()
THIS ALLOWS THE USE OF ThHE SYSTEM PARSE ROUTINE (WHICH REQUIRES
COmMAS AS DELIMITERS) TO PARSE OUT FMP 'NAMR!S WHICH USE COLONS
AS DELIMITERS

OO0 0

D0 18 I=1,N
IF(IAND(IBUF (L) ,776028B) ,NE,35000B)GO TO 5
IBUFCI)=I0OR(IAND(IBUF(1),1778B),26006B)

5 IF(IANDCIBUF(I),1778) NE,728)G0 TO 10
IBUF(1)sIOR(IAND(IBUF(I),776@2b),548)

10 CONTINUE

c
RETURN
c
ENV
ENDS

3-55/3-56

SECTION IV

USING THE SPOOL MONITOR

INDEX TO SPOOL-RELATED FMGR COMMANDS

Command Syntax Function Page
[EN
JRW 7
,PU
SA .
:CS,lu PA Change spool set-up attributes. 4-14
NB
,BU
L NP[,outiul,priority]] _
:EO Indicate end-of-job. 4-10
JO[,name(:hr:min:sec](,priority Indicate start-of-job. 4-9
[spool priority[,(NS1]
:LU,lu[,namr] Associate logical unit with spool file 4-10
(input only).
[, HO] Associate logical unit with spool file, specify 4-10
,WR outspool attributes, logical unit, priority (out-
,BO put or input/output).
LU lul,namr| ,WH [outlu[,priority]l]
,BU
JPU
[_,ST .
PROGRAM JOB COMMAND
Schedule JOB from RTE: *RU,JOB,lu Job or jobs input from device.
*RU,JOB,fi,le,nm[,priority] Job entered from file.
Command Syntax Function Page
:XE,namr[,pribrity] Specify file or logical unit containing job input to JOB. 4-21

See Section V for Index to GASP Commands.

SECTION

IV

USING THE SPOOL MONITOR

4-1. INTRODUCTION

The Spool Monitor is an optional segment of the complete Batch-Spool Monitor. It operates in
conjunction with the File Management Package to provide batch job processing with spooling
or, through user program calls,to provide spooling without batch processing. Spooling means
that jobs or data are placed on disc files for input and data is sent to disc for output. This allows
input and output to be performed independently of each other and of job processing. Spooling
allows jobs to be processed without having to wait for completion of input from or output to
slow devices. The entire spool process can proceed automatically with virtually no user
intervention, or it may be directly controlled during its various phases.

Spooling can be used to increase the throughput of a job stream that is limited by the idle time
of slow peripheral devices. It does this by allowing programs to perform I/O to disc files rather
than to the slower peripheral devices. The system then manages the I/O between the disc files
and the peripheral devices to assure that all I/O reaches its proper destination.

For example, assume there are 10 compute-bound programs that output one line to the line
printer approximately once each second. One way to avoid an interleaved listing would be to
have the programs each request an LU lock on the printer during its entire execution. The
program that requested the lock first would completely shut out the other programs during its
entire computation and output. When the first program finished, the next program to receive
the lock would again shut out the other programs. This process would continue until all 10
programs have run to completion. This method wastes system resources since only the line
printer or the CPU is operating at any one time.

Under spooling, both the line printer and the CPU are used more efficiently. The programs
output their listings to disc files which can be done much faster. Additionally, when one of the
programs is suspended for a disc write, another program may use the CPU for its computations
and then perform its output to its own disc file. The system handles the task of outputting the
disc file to the line-printer. Since the disc files are already built up, they can be output as
quickly as the line printer can accept them, thereby eliminating the line printer’s idle time.

The Spool Monitor Package provides the following capabilities:

e Opens and closes the disc files known as spool files; after close, optionally writes the file
contents to a user-selected non-disc device for output.

o Keeps a record of the current status of all jobs and spool files in the system.

e Translates non-disc device references in program I/O calls to references to spool files.

These capabilities can be divided into two distinct functions: spooled batch processing and
spooled input/output or non-batch spooling. Spooled batch processing is described in this
section and Section V. Non-batch spooling is performed with the SMP program calls described
in Section VI.

Spooling is normally an automatic process, however, direct intervention in the batch spooling
process is possible with the spool operator commands under control of program GASP. The
GASP commands are described in Section V.

4-1

Spool Monitor

4-2,. BATCH SPOOLING

Batch processing without spooling is performed by FMGR as described in Section II. Batch
processing with spooling is set up when FMGR encounters a :JO command that has been
inspooled by program JOB. Batch processing with spooling involves three phases:

® Inspooling the job
® Processing the job

® Qutspooling data produced by job processing

Figure 4-1 is a diagram of these three phases.

@Inspooling

Spooling of batch jobs is initiated by running program JOB from RTE. This program controls
the phase known as inspooling. During this phase, JOB makes an entry for each job in the
inspool directory file JOBFIL (refer to Appendix C for JOBFIL format). Job priority and status
information is maintained in JOBFIL. Jobs entered from non-disc devices are written to disc
spool files. If any jobs are already stored on disc, they are not transferred, but an entry is made
in JOBFIL and the disc file is treated as a spool file.

@J ob Processing

Program JOB schedules FMGR to process jobs as soon as the first job is inspooled. If FMGR is
already scheduled interactively, it automatically checks JOBFIL for jobs to process each time

it is terminated by the EX command. Each job is processed in the order of priority recorded in
JOBFIL.

NOTE

FMGR, not a copy such as FMGO07, is the only program that can
process batch jobs. FMGR termination is expedited when JOB-
FIL is on the first cartridge checked in the FMP cartridge
directory.

@Outspooling

After processing, output from each processed job is written to disc and an entry made for the
output in the outspool directory file, SPLCON (refer to Appendix C for SPLCON format).
Spooled output is controlled by program SMP. SMP assigns and monitors outspool files,
maintains the outspool directory, SPLCON, and monitors the program SPOUT. Program
SPOUT, scheduled by SMP, takes job output from the outspool files and directs the output to
the actual devices.

Except for JOB, which you must request with the RUN command, each of these programs is
scheduled internally as needed.

Program GASP

During batch spooling, you may directly intervene in the inspool and outspool processes with
the GASP operator commands (refer to Section V). In particular, these commands are useful to
change priorities or the current status of spooled jobs or files.

GASP is also used to initialize the Spool Monitor. You must run GASP once in order to
initialize the spool directory file JOBFIL, the outspool directory SPLCON, and the spool files
that constitute the pool of disc files used by the Spool Monitor. The process of configuring the
Spool Monitor and initializing it with GASP is described in Section VII.

4-2

Spool Monitor

BATCH JOB STREAM *RU, JOB
PROGRAM:
____________ »
/ JOB
— INSPOOL ING
JOBS IN SPOOL INSPOOL
FILES DIRECTORY
(DISC FILES) (DISC)
AN N AN -
N\
\\ N —_
~
~
> ®
~N
| Jos
PROCESSING
/ —_
/
4
PROGRAM:
OUT SPOOL L —
FILES SMpP
{DISC) *—— @
‘r OUTSPOOL
DIRECTORY ~OUTSPOOLING
PROGRAM:
SPOUT

CONTROL
—
QUTPUT

DATA FLOW > \ DEVICES

Figure 4-1. Batch Spooling Diagram

Non-Batch Spooling

Data to be input or output can be spooled to or from disc files using the SMP program calls
described in Section VI. These calls set up spool files for I/O and control the spooled I/O. The
routines permit calls that specify non-disc I/O devices to be actually referred to disc.

4-3

Spool Monitor

4-3. TIMING CONSIDERATIONS

The spool system transfers to or from the disc at a maximum rate of approximately 5K words
per second. This rate is much faster than that of most other devices and thus speeds job
throughput since time limits for final output are usually imposed by the slower devices. What
spooling does is decrease the amount of time a slower device is idle by keeping all output on
disc ready to be sent to that device. Maximum gain in the speed of job processing with spooling
can be directly equated to the amount of time an output device remains idle waiting for job
output when spooling is not used.

The Spool Monitor will, in general, contend with other users for the disc, thus forcing those
users to run more slowly. This can be minimized by:

® using a separate disc for spooling
e shutting down the spool system during critical periods

® not using spooling

4-4. SPOOL FILES

The disc files used by the Spool Monitor are called spool files. In general, these files are taken
from a pool of up to 80 spool files that are created during initialization of the spool system, by
GASP. These files are controlled by the Spool Monitor and are given names of the form
SPOLnn, where nn is a number between 01 and 80. The files always start with SPOLO01 and
are numbered consecutively up to the number requested at initialization. They are known as
spool pool files.

Besides the spool pool files, any disc file (type 3 or above) can be used as a spool file. To specify
an existing file as a spool file you must define it as a spool file with the FMGR LU command
(paragraph 4-9) or with the spool setup EXEC call (paragraph 6-3). Such files can be saved
after use by the Spool Monitor. Spool pool files, on the other hand, are not saved, but are
returned to the pool of spool files after being closed.

Data in spool files has one of two formats: spool file or standard. In either case, a spool file must
be a variable-length record file (type 3 or above).
Spool File Format
Spool files used for outspooling are written by the Spool Monitor in spool file format. This
format has a special two-word header attached to and preceding each record in the file. This
header preserves the I/O control information specified in the original I/O call. It consists of:
word 1 Control word containing function and subfunction from the original I/O call.
word 2 Length word or extra control word; length word contains the record length in
words (positive) or characters (negative) as given in the original I/O call. If the

call is a control request, the extra control word is stored here.

The rest of the record contains the data to be written to a device.

4-4

Spool Monitor

Standard Format

Spool Files that are not used for outspooling or that do not require I/O control information have
no header. Such files are written exactly as presented.

NOTE

Since spooling is automatic, jobs may be easily spooled without
thorough understanding of the spool system. You may wish to
turn directly to paragraph 4-6, Spool Setup, and skip para-
graph 4-5 that describes how the system works, not how to use
it

4-5. LOGICAL UNIT SWITCHING

The spool system is structured so that all programs should be able to run with no change in
code whether they are spooled or not. Since spooling is a form of disc buffering, normal I/O calls
and statements must be transformed to disc I/O calls that require track/sector addresses to
result in information compatible with FMP files. User calls, normally directed to I/O devices
such as the line printer (LU 6)or the punch (LU 4) are re-directed to a logical unit referencing
the spool driver DVS43. This re-direction is done through the Logical Unit Switch Table of the
RTE system. The transition from non-disc to disc I/O is made by the spool driver DVS43.

Figure 4-2 illustrates a call to LU 6 that references driver DVR12 when it is not spooled, but if
spooled, references DVS43 and ultimately the disc driver DVR31.

/O CALL
ToLus SPOOLED
LU SWITCH LUS7
_— > —» — DVS43 —» RTE
a l TABLE {SPOOL LU) SYSTEM
J
0
2 v
o
@
5 DVR12 DVR31
) !
r LP DiISC

Figure 4-2. Logical Unit Switching

The process of setting up the Logical Unit Switch Table and associating disc I/O with a specific
file is called “spool setup”. Spool setup is requested by the user through the LU command in
batch spooling or a spool setup call for non-batch spooling. The process itself, involving the
Spool Monitor Program (SMP), the RTE system itself, the FMGR program as batch processor,
and the D.RTR file directory management program, requires no user intervention. The aim of
spool setup is to open a spool file to the spool system.

4-5

Spool Monitor

Notice that spool setup effectively associates a logical unit with a disc file. Recall that device
logical units are linked to Equipment Table (EQT) entries through the Device Reference Table
(DRT) in the RTE system (refer to the RTE Programming and Operating manual). The
Equipment Table entry in turn specifies the I/O select code and I/O driver associated with the
device. This association is illustrated in Figure 4-3.

USER I/O CALL
SPECIFIED

DRT EQT

LU —————— b

SELECT CODE

/ (/O SLOT #)

———— DRIVER

v

Figure 4-3. Association of Logical Unit to Driver

In order to implement spool setup, an Equipment Table entry must reference the spool driver
DVS43 and point to a “dummy” select code (10B through 77B) not used by a real device. An
entry in the Device Reference Table must link a logical unit number, the “spool logical unit” to
a “spool EQT entry”. These spool entries are all established at system generation time in the
same way that EQT and DRT entries are established for standard I/O devices (refer to Section
VII).

Spool Logical Units

The spool system requires, at the very least, four spool EQT entries and their corresponding
spool logical units in order to function. One logical unit is needed for inspooling by JOB, two
for the standard input and output devices used during processing, and one (for SPOUT) for
each spooled output device expected to be active at one time. The standard input logical unit,
LU 5, and the standard output logical unit, LU 6, are always equated to spool logical units. In
addition, you will need one spool logical unit for each LU command expected in a job. In order
to use the spool system effectively, a minimum of six spool EQT entries and spool logical units
should be allocated at system generation. For each spool logical unit, at least one spool file
should be requested during spool initialization with GASP (see Section VII).

Example of Batch Logical Unit Switching

Figure 4-4 illustrates a possible set of entries in the Logical Unit Switch Table, the Device
Reference Table (DRT) and the EQT table. The first four entries in the Logical Unit Switch
table connect the logical units referenced in a program call or operator command to the spool
logical units in the Device Reference Table. The last six entries in the Device Reference Table
equate logical units 13 through 18 to the EQT entries for DVS43. The last six entries in the
EQT table are associated with DVS43, the special spool driver that references spool files rather
than devices.

4-6

Spool Monitor

LOGICAL UNIT

DEVICE REFERENCE

SWITCH TABLE Lug TABLE
6 17— 1 EQT = 2
7 13 2 EQT =1
4 15 3 EQT - 1
1 14
»'0 18g :
N .
13 EQT - 20
14 EQT = 21
15 EQT = 22
| —
e’ 16 EQT - 23
L 17
REFERENCED SPOOL —
) O # 18 EQT - 25

EQTENTRY #

ENTRY #

EOT =24 l——»>

20
21
22
p<)
24
25

EQT TABLE

21, DVR31

15, DVR0OO

DEVICES

17, DVR02

72, Dvsa3

73, DVSA3

74, DVsA43

SPOOL FILES

75, DVS43

76, DVs43

77, Dvs43

SELECT
CODE

DRIVER

Figure 4-4. Relation between LU Switch Table, DRT, and EQT

Suppose a reference is made to logical unit 6. In the LU Switch table shown in Figure 4-4,
logical unit 6 is associated with spool logical unit 17:

REFERENCED LU —P 6

17 <¢— SPOOL LU

In the Device Reference Table, spool logical unit 17 is associated with EQT entry 24. This
entry for the spool driver DVS43 is assigned the next available spool pool file (SPOLO05).

EQT 24

DRT ENTRY FOR LU 17

DVS43

SPOLO5

EQT ENTRY 24

SPOOL FILE

In this way, logical unit 6 is associated with spool file SPOLO5:

LUG6

LU 17 =

EQT 24

When a standard I/O EXEC call or a program I/0 statement writes output to logical unit 6, the
data is written to SPOL05. Program SPOUT subsequently gets this data from SPOL05 and
writes to logical unit 6, the actual list device:

OR

WRITE(6,100)
CALL EXEC(286...)

SPOLOS

DVs43

(‘ \;
7 N

LOGICAL UNIT6

SPOUT

LIST DEVICE

Spool Monitor

4-6. SPOOL SETUP

The jobs to be spooled, like the batch jobs described in Section II (2-47), must be preceded by a
:JO command and terminated by an :EO command. Additional housekeeping functions are
automatically performed by the spool system at the start and termination of each job. The :JO
command can also be used to set priorities for job inspooling and outspooling, and to bypass
automatic outspooling so that job output may be controlled directly.

If any spool logical units are required by the job in addition to the standard input logical unit 5
and output logical unit 6, these should be specified in an :LU command within the job. :LU is
used to specify which spool file to reference and how outspooling is to be performed. For
instance, if you want to hold outspooling until another task is completed, this can be specified,;
or if you want the outspool file buffered or purged upon completion, this too may be specified
with :LU. An actual output device other than logical unit 6 can be requested with :LU. If an
outspool priority is needed that is different from the job priority, this too can be specified.

NOTE

The standard logical units for input and output, LU 5 and
LU 6, are automatically set up for spooling. LU 5 must not be
specified in an :LU command.

Any of the outspool attributes specified in an :LU command can be changed with a subsequent
:CS command. This command would be useful, for example, to remove a hold on an outspool file
that had been set by :LU.

Use of the commands :LU and :CS to set up additional spools is restricted to use within spooled
batch jobs.

The spool calls described in Section VI may be used within programs to perform pro-
grammatically many of the outspool functions of the :LU and :CS commands. These calls allow
a program that is not part of a batch job delimited by :JO and :EO to use the spooling
capabilities of the Spool Monitor. In this way, a program can send its standard output to a disc
file even if it is limited by the programming language to non-disc logical units.

Priority Assignment

Jobs entered in the spool system for spooling may have a priority. If they don’t, the lowest
priority, 9999, is assigned to the job. A separate priority can be assigned for outspooling, but if
not assigned, the job priority is used as the outspool priority.

Job priority may be assigned by:

o the FMGR spool :JO command

® the program JOB during inspooling if the job is on a disc file

® the JOB command :XE during inspooling if the job is on a disc file.

Outspool priority is the same as job priority unless specifically assigned by:
¢ the FMGR spool :JO command
¢ the FMGR spool :LU command

Or changed by:
o the FMGR spool :CS command.
4-8

Spool Monitor

4-7. JO — INITIATE JOB FOR SPOOLING

The :JO command defines the beginning of a job, optionally names the job, and defines
parameters for the job. It is the same command described in paragraph 2-48 with additional
parameters used only if the job has been inspooled by program JOB. When FMGR processes a
:JO command that has been inspooled by program JOB, a batch environment with spooling is
set up.

Format
. {HO

:JOB[,name[:hr:min:sec][,priority[,spool priority NS 111

Parameters

name Job name; 6-character name specified according to file name conven-
tions (paragraph 2-8).

:hr:min:sec CPU time limit for job in hours, minutes, seconds; executing job is
terminated when limit is exceeded; if omitted, jobs has no time limit.

priority Job priority in range from 1 (highest) to 9999 (lowest); if omitted,
priority is 9999.

spool priority Outspool priority; same range as priority; if omitted defaults to
priority.

HO Hold outspooling, if specified, the JOB’s list spool is held until LUS6 is
reassigned, or until explicitly released, or until EOJ. May be specified
anywhere after name, but must be last parameter; if omitted, list
output spool is created automatically (but see NS).

NS No outspooling; if present, may be specified anywhere after name, but
must be last parameter; if omitted, list output spool is created
automatically.

When :JO is used for spooling, it performs all the housekeeping functions required by a batch
Jjob (refer to paragraph 2-48) and also:

® assigns the list output spool to logical unit 6, unless NS is specified

® assigns job input spool file to logical unit 5, unless the job is entered from a logical unit
specified by the :XE command (refer to paragraph 4-13) in which case that logical unit is
used for job input.

HO Parameter

If you specify HO, job output is spooled to a disc file but is not sent to the line printer (LU6)
until EOJ occurs. Or when you explicitly release the file (e.g., :CS,6,EN or :CS,6,PA). Or when
you reassign LUG6.

NS Parameter

If you specify NS, job output is not spooled to a disc file but is sent directly to the line printer
(LU 6). If the line printer is not buffered, this may slow job execution. Usually, NS is specified
only if job output might overflow the disc.

4-9

Spool Monitor

4-8. EO — END OF SPOOLED JOB

The EO command indicates the end of a job. It is the same command described in paragraph
2-49 with additional functions performed only if the job is spooled.

Format

:EOJ

When a job terminated by :EO is spooled, :EO performs all the housekeeping functions
required by a batch job (refer to paragraph 2-49) and also:

e closes all spool files
e sets job status to completed and waiting for outspooling
® if command input was from a spool pool file, returns file to pool of available files

® searches JOBFIL for next job and, if any, returns to :JO command processor.

499. LU — SPOOL SET UP AND OUTSPOOL CONTROL

The :LU command specifies logical units with which spool logical units or spool files are to be
associated. It also may be used to specify outspool attributes, actual output devices other than
logical unit 6, and outspool priority.

It has two formats, one for input and the other for input and/or output.

Format

Format (input only):

LU, lu[,namr]

Format (output or input/output):

LU, lu[,namr[,attributel ,outlu(,priority1]]]

lu The logical unit with which a spool file is to be associated; in range 1-63
except logical units 2, 3 (when used to reference the auxiliary disc), 5 or a

spool logical unit, or any logical unit associated with a disc driver (DVR30,
31, 32, or 33).

namr Name of existing file to be used as a spool file with which lu is to be
associated; if omitted, system assigns a spool pool file; if set to 0, lu is
returned to its standard system definition, i.e., association with spool file is
cleared. A logical unit may be specified for namr in a spooled job, if the LU
command is used to perform an LU switch (see paragraph 2-51). A logical
unit may not be specified for namr where a spool reference is intended.

4-10

Spool Monitor

attribute Defines characteristics of lu, in regard to the job in which it is specified.
Defaults are: read only, no buffering, outspool format, no hold, and save (file
is saved only if namr is specified); any three of the following attribute codes
can be combined in any order, without separators, in order to override
defaults:

HO hold file; do not queue for outspooling (i.e., do not make an entry for the
file in SPLCON) until hold is removed or spool file is closed at end of
job.

WR write only; file is for output only, no hold. EOF automatically written
as the first record.

BO read and write with hold.
WH write only with hold. EOF automatically written as the first record.
BU file is buffered.

PU file is to be purged following outspooling (if file is not to be outspooled,
it is purged at the end of the job); namr must be specified.

ST standard file format (refer to spool file formats paragraph 4-4).

priority Outspool priority; if omitted, spool priority specified in :JO command is
used.
outlu Logical unit number or function code defining the logical unit to which the

spool file will be outspooled. The outlu must have been specified as an
outspool destination LU during GASP initialization. It must specify the
logical unit of an actual output device; if omitted, the outspool file will not
be output to a device. Any file can be outspooled, whether set up for read, or
write, or both (the attribute of the spool file is in regard to the job in which
the attribute is declared; it has no effect on the eventual outspooling of the
file).

NOTE
This form of the :LU command may be specified only in a batch

job initiated by the command :JO, controlled by FMGR, and
inspooled through JOB.

4-11

Spool Monitor

Logical Unit Assignment

The system associates a spool logical unit with the specified logical unit. The spool logical unit
associated with lu can be retrieved by displaying the global parameter 0S with FMGR DP
command (paragraph 2-43).

The logical unit (lu) specified should correspond to the device type of the actual device for
which it is intended (outiu). This ensures that control functions and control requests are issued
to the device as expected. For example, if output is to be punched, logical unit 4 associated with
the punch should be specified. If a logical unit specified for [z has not been associated with a
particular device, magnetic tape is assumed.

lu must not be any of the following:

® logical unit 2 (system disc), or 3 (if assigned as auxiliary disc)

® any logical unit associated with a disc driver (DVR30, 31, 32, or 33)

¢ logical unit 5 (standard spool input device). If you want to use the true logical unit 5, use
an LU switch command to obtain it (e.g., :LU,50,5 — see paragraph 2-51)

¢ a spool logical unit

Spool File Assignment

If namr is not specified, an available file from the spool pool files (SPOL0O1-SPOL80) is
associated with the logical unit. If a particular file is specified, then that file is associated with
{u and will be used as a spool file during spooling. The specified file must be an existing user
file; :LU does not create the file. The name of the most recently assigned spool file can be
retrieved by displaying the global parameter 1S with the FMGR DP command (paragraph
2-43).

Attributes

If lu is to be used for output only or for output as well as input, then its attributes must be
specified.

No buffering saves System Available Memory space. Generally, there is no need to request
buffering with BU. Outspool format is used rather than standard in most cases. The format
makes no difference for input. Specify standard format (ST) if you want to read back the file
either within the JOB or after the job. If the file is to be outspooled only, it is better to use the
outspool format. If ST is specified, no control is passed through to the outspool routine which
supplies a default EOF action based on the actual device to which the file is being outspooled.

If you do not want to save the user-defined spool file namr, you must specify PU. Spool pool
files are never saved. The normal case is to ready the spool file for outspooling as soon as it is
opened rather than to hold it. If you do specify HO, the held file will be placed in the outspool
queue at job termination (:EQO), or you may use the :CS command (paragraph 4-10) to queue
the file for outspooling within the job.

4-12

Spool Monitor

The :LU hold attribute is not the same as the GASP hold established with the GASP CS
command (see Section V). The :LU hold prevents the file from being placed in the outspool
queue (an entry is not made for it in SPLCON) until a :CS command removes the hold or an
:EO command is processed. The GASP hold places a hold on a file already entered into the
outspool queue (already listed in SPLCON).

Outspool Logical Unit Assignment

The device to which output from spooling is to be directed must be specified with the outlu
parameter, or the file will not be outspooled. The specified logical unit is not associated with a
spool file or spool logical unit. Logical unit 1 may not be specified in outlu. Any other spool
output logical unit specified at GASP initialization may be used. An octal function code that
specifies an I/O function code in bits 6-10 and a logical unit in bits 0-5 can be used when a file
with standard format is output; files with spool format use the function code in the second
header word. For example, the code 104B indicates punch binary on logical unit 4. The
function code is equivalent to the CONWD parameter in the standard /O EXEC calls (refer to
the RTE Operating System Reference Manual).

For spool file format, if the file is to be outspooled, be careful that the proper attribute is used
to indicate the file type SPOUT will actually see.

If outspool format is specified for a standard file, the validity test performed by SPOUT will
usually find the error and change it to standard format, however, one or more records may be
transmitted before the test fails.

Examples
1. Request system to assign a spool file to the punch (logical unit 4):

sJO,LUEXL
tLJ,4,,WRST,»4 <——— actual output lu is the punch

LU 4 =lvLwis | = SPOL nn LU 4

i !

SPOOL LU SPOOL POOL FILE

"

ASSIGNED BY SYSTEM

2. Request system to assign a user file for outspooling to the punch (logical unit 4). MYFIL
must already exist:

:JO,LUEX2
:LU,4,MYFIL,WRST,4

4-13

Spool Monitor

3. Associate logical unit 10 with existing file MYFILE. Data is written to MYFILE whenever
logical unit 10 is used in an I/O call or statement. No outspooling occurs:

:J0,LUEX3
:LU,10,MYFILE,WR

(WRITE €10, 190)) writes to spool file MYFILE

LU 10 = LU 18 = MYFILE

SPOOL LU USER FILE
ASSIGNED BY SYSTEM

4. Setup to compile source program in &FILE and send relocatable program to existing file
named %FILE:

:J0O,LUEX4
:LU,50,4FILE
:LU,51,%FILE
:LU,6,,,6
:RU,FTN4,50,6,51

5. Setup logical unit 50 for source input file IFILE and logical unit 4 for relocatable output on
OFILE; then compile:

$J0, COMPL

sLU,S@,IFILE

sLU,4,0FILE,WRST WR must be specified for output file
sRU,FTN4,50,,4

4-14

Spool Monitor

4-10. CS — CHANGE SPOOL SET UP

During a job, the spool options for outspooling established by the :LU command can be changed
with the :CS command. The changes can include not only the outspool attributes, but the
logical unit for output and the outspool priority.

Format
[[EN]
,RW
,PU
SA
:CS,lu PA
,NB
,BU
L_,NP[,outlu Lpriority]] _J
Parameters
lu Logical unit number defined by the spool set-up command :LU.
EN Writes a final end-of-file on spool file and closes the spool; spool file is
placed in outspool queue if not already there.
NOTE
Normally, spool files are not closed until job termination.
However, when EN is specified in a CS command, the
spool system closes the file immediately, and releases its
LU Switch Table entry (see Figure 4-4).
RW If spool file is in standard format, resets (rewinds) spool file to first record.

Causes next access to be at the beginning of the first record in the file. For
example, if the job is required to read a file more than once (via the spool
lu), the file must be rewound before each successive read operation. This
also applies if the job is required to write a file more than once (that is,
overwrite a file from the beginning of the file).

If spool file is in outspool format, a rewind is issued to the device
associated with the spool file when this point of the outspool operation is
reached. No positioning of the spool file occurs.

PU Chmaem e st of aulpol fle 0 pUES | e s eny
PA Changes hold on spool file to pass file to outspool queue.

BU Changes no buffer attribute to buffered for spool file.

NB Changes buffered attribute to unbuffered for spool file.

NP Changes outspool logical unit and priority:

outlu New outspool logical unit number.

priority New outspool priority.

4-15

Spool Monitor

The :CS command can be used to change certain of the spool file attributes, either default or
assigned by the :LU command. It can also be used to reset the file pointer to the beginning of
the file (RW), or to write an end-of-file on the spool file and send it immediately to the outspool
queue (EN).

Examples

The examples below all assume the jobs are processed in a batch-spool environment.

1. To remove a hold placed on a file associated with logical unit 6:

:J0O,LUEX1

:LU,6,LIST,WHSA lu 6 assigned to user file LIST for write only; file is to be held from
. outspool queue (no entry made in SPLCON) and saved.

:CS,6,PA pass file LIST to outspool queue

:EOD

2. Spool the input, list, and punch files for an assembly using existing files SOURCE, LIST,
and PUNCH,; list the assembly listing three times:

$JO,LUEX2

LU, 50, SOYRCE~—— set up assembly input file SOURCE
LU,6,L1S8T, WR<————— set up list file LIST

LU, 4sPUNCH) WR +——— set up file PUNCH for assembly output and save
IRU,ASME,50,6,4

I€S,6,EN< write end-of-file on LIST

iCA, 11— use 1G as counter with initial value 1
SLu,?7,L1ST,) 6«——— set up actual logical unit for outspooling LIST
1IF,10,80,3,2<«—— test if 1G equals 3 and skip to EOJ if so
SCA,1,106,%,«——— increment 1G by 1

$IF, k)) *4 «———o—— loop back including current line in count to list "LIST” 3 times

ie0J

3. Assemble file SOURCE three times, using CS command to rewind source to beginning
prior to re-assembling:

$J08,LUEXD
$LU, 50, SOURCE~——— equate LU 50 with file SOURCE: SOURCE must exist
A, 11 set counter 1G to 1

tRU,AOMb D3 -—————— assemble SOURCE file
1IF,16,BW, 8y 3<«———— after three assemblies, go to end of job
$CS,5%0,Rnu reset to start of SOURCE
$CA,1,16,%y) «——— increment counter

SIF,)BWy 4»D «—— return to assemble SOURCE again
tEO0J

4-16

Spool Monitor

4-11. INSPOOLING

The process of inspooling means submitting the job to be processed from an input device or file
to the Spool Monitor under control of program JOB. Each job to be entered is recorded by JOB
on the inspool status file JOBFIL. JOB schedules FMGR which then searches JOBFIL for jobs
to process. (Refer to appendix C for JOBFIL format.)

The inspool program JOB recognizes one command that can be used to specify a file or device
containing the job to be inspooled. This command, :XE, can be interspersed with batch jobs
when input is from a batch device or it can be entered interactively if input to JOB is from an
interactive device.

4-12. RUNNING PROGRAM JOB

Program JOB is scheduled from RTE with the RU command. JOB can be scheduled from
FMGR but the job is not processed until you exit from FMGR.

Input to JOB may be a device (default is the standard input, LU 5, usually the paper tape
reader or card reader), or input to JOB may be a file. If input is from a device, more than one

job can be stacked on the device. When input is from a file, only one job may be on the file.

If the input device is interactive, JOB expects input to be entered from that device in the form
of FMGR commands or the :XE command. It prompts for interactive input with a semi-colon.

Format

Format 1 (input from non-disc device)

*RUN,JOB{,lu]

Format 2 (input from file)

*RUN,JOB, filename [,priority] { ,cartridge #]

Parameters

lu Logical unit of input device containing jobs to be spooled; if omitted, logical
unit 5 is assumed.

filename File name of file containing single job to be spooled.

priority Job priority of file for spooling; specified only when input is from a file; if
omitted, priority for file input is 9999.

cartridge# The cartridge reference number of the cartridge where file named resides.

4-17

Spool Monitor

Job Entered From Batch Device

When the first format is used and lu is omitted, the jobs are expected to be on the standard
batch input device, logical unit 5, which is usually a card or paper tape reader. JOB will read
input from the device until it encounters a :JO, or :XE command signalling the start of the job.
(Refer to Paragraph 4-13 for a description of the :XE command.) Ignoring all input prior to :JO,
it then makes an entry for the job in JOBFIL, allocates a spool pool file for the job, and reads in
the rest of the job, writing it to the spool pool file, until an :EQ, :JO or :XE command
terminates the job. At that point it closes the spool pool file and schedules FMGR to process the
job. If FMGR is already scheduled, it will check JOBFIL automatically when it is terminated.

If lu is specified and it is a batch input device, JOB proceeds exactly as described above for the
standard input device.

NOTE

If JOB is scheduled from a terminal other than the system
console in a multi-terminal environment and input is not from
that terminal, then the logical unit must be specified; for in-
stance, 07 >RU,JOB,5

After processing the first job on an input device, JOB looks for subsequent jobs. If there are
none, it terminates. If there are more jobs, it processes them as it did the first job, continuing
until there are no more jobs or an end-of-file is reached.

END-OF-FILE PROCESSING. If an end-of-file is encountered within a job (between :JO

and :EQ), it is entered in the spool file as a zero-length record. An end-of-file before or after a
job terminates program JOB,

If an end-of-tape occurs on the paper tape reader within a job, program JOB suspends and the
message: JOB WAIT ON PT is issued. To continue processing the job, load the rest of the job in
the reader, ready the reader, and type *GO,JOB on the console. When the hopper of a card

reader is empty within a job, simply add the rest of the cards and restart the reader; JOB
continues reading the cards.

Job Entered Interactively

If the device specified by lu in the first format is interactive, program JOB prompts for input
with a semicolon (;). You then enter your input at the terminal including any required colons.
Interactive input to JOB is terminated by CTRL/D.

You may enter one or more jobs or :XE commands in the same manner as on a batch device.
Processing of jobs proceeds exactly as if the job was entered through a batch device. It is often
useful to store commonly used command sequences in procedure files. Then, any job may
transfer to these files to do some of their work. Another method is to store often used jobs on

files and use the :XE command when you want one of the jobs to be run. (Refer to paragraph
4-13 for :XE description.)

4-18

Spool Monitor
CTRL/D. Entering CTRL/D in an interactive environment is like an end-of-file in a batch

environment. That is, if CTRL/D is within a job (between :JO and :EQ), then a zero-length

record is written on the spool file. But if it precedes or follows a job, it terminates program
JOB.

Job Entered From a File

When the second format of *RU,JOB is used, JOB expects the job to be stored on the specified

file. Only one job should be on the file since FMGR will only process one job per file. :JO should
be the first command, :EO the last.

JOB does not read the file; it simply makes an entry for the file in JOBFIL and schedules
FMGR to process the file as if it were a spool file.

Examples

1. Send output of program WHZAT to user file named MYFIL. MYFIL must already exist.

+RU, J0B,1 set up spool environment

5:J0,XY2 set up batch

s:LU,6,MYFIL associate LU 6 with MYFIL; no outspool
s :RU,WHZAT ,6 run WHZAT

s :EO end batch

3 C(control D) end spool

A listing of file MYFIL will show the WHZAT listing.

2. Two jobs are on the card reader:

*RU,JOB (from system console)
OR
@7>RU,J0B,S (from terminal 7 in multi-terminal environment)

JOBFIL

%/

MN—]

SPOOL FILE
FOR B8

~

N—]

Vi

PRIORITY

SPOOL FILE
FOR AA

N

4-19

Spool Monitor

3. In an RTE-IV Operating System, one job is on file FILEXX:

*RU,JOB,FILE XX, 28 _—— - - = = - - - =

FILEXX

:J0
:RU,FTN4, 4SRCE ,6,%SRCE
:RU,LOADR, ,%SRCE
:RU,106G

:ED

Note that a spool file is not assigned in example 3; file FILEXX is used as the spool file. In

this case, the file name is the job name and priority is specified directly to JOB when it is
scheduled.

4. Job CC is entered from console (RTE-IV Systems):

*RU,J0B,)t — — — — — — — — — — — Y N
F1Jo,CcCc,30 JOBFIL
FITR,TFILE,SFILE } Eé
1180

10¢ (or next job) L_/

N

SPOOL FILE
FOR

KT/
:RU,FTN4,1G,6,XTEMP

:RU,LOADR, ,XTEMP
:RU,10G
: TR

5. If you want to enter a job interactively with input to the job from paper tape, an LU switch

is needed since LU 5 (paper tape reader) is redefined as a spool file by JOB (RTE-II/III
Systems):

+RU,J0OB,1

:JO,COMPL <«——— enter job

:LG,1

:LU,50,5 <«— set up for source input from LU 5.
:PA,1,LDAU PAPER TAPE LABELED **COMPL’‘’ IN READER
+RU,ASMB, 50,99

:EO terminate job

O we v ve us we we

terminate interactive input

When the job is processed, the message is printed at the terminal so that the paper tape
containing the source file can be loaded.

4-20

6. A job enter

Spool Monitor

ed from any batch device (including LU 5) can request input from LU 5 and it

will be entered correctly if the input immediately follows the request for it. To illustrate,
consider the following job entered from magnetic tape (LU 8) that contains a request for
source input from the standard input device (LU 5):

*kiU,JUn,8<«———— job, including all input is entered from magnetic tape and stored on a

:LG,

SPOOL :RU,
FILE

N]

:J0, JOAN

:RU,LOADR, ,XTEMP
:RU,106

b

spool pool file

1
FTN4,5,6,XTEMP|<«—— LU 5 simply indicates that source follows on the standard input

SOURCE device, in this case, the spool file where job is stored

4-13. XE — JOB INPUT CONTROL

The :XE command indicates to program JOB that the next job to place in the job queue is on
the device or file specified by :XE. :XE is used only when JOB is scheduled with input from a

logical unit.

Format

:XE ,namr| ,priority[,cartridge#]]

Parameters

namr Identifies input device containing a job to be placed in job queue, may be a
logical unit or the name of an existing file; refer to namr description,
paragraph 2-8.

priority Priority assigned to job; if omitted, priority is 9999.

cartridge# The cartridge reference number of the cartridge where file named resides.

NOTE

When XE is used to specify job input, JOB does not read the
:JO command parameters (job name, priority, ete.); if input is
from a file, the file name is used as the job name; if from a
logical unit the job name is left blank and a job number
assigned for the Entry in JOBFIL. When FMGR processes each
job, it recovers the :JO command parameters and places them
in JOBFIL.

4-21

Spool Monitor

XE Entered from Batch Device

If JOB expects input from a batch device such as logical unit 5, all jbbs on the device must be
delimited by :JO and :EQ. The command :XE may precede a :JO or follow an :EQ command to
indicate to JOB that the next job is on the device or file specified by :XE.

To illustrate, three jobs are to be spooled by JOB; two are on LU 5, the card reader, and one is
on file AA.

*RU,JOB

by default, input is on LU 5

("F0 J R
(" XE.AAT0 Joa 3 (BB) INPUT FROM CARDS /
r ‘EO /
<4—— JOB 2 (AA} INPUT FROM FILE AA
JO,XX,20 /
} JOB 1 {XX) INPUT FROM CARDS

:XE Entered Interactively

&
N
)
__

JOBFIL

If JOB expects input from an interactive device, :XE can be entered just like any FMGR
command in response to the semicolon prompt issued by JOB. XE must be preceded by a colon.
JOB interprets the XE command in this context exactly as if it were specified on a batch
device.

For example, to enter a job from a file, XE can be used as follows:

wRY,JOB,1 JOB expects input from system console
FIXE,FILEXX,20
j D¢ (or next job)

enter :XE at console

This example performs exactly the same function as example 2 in paragraph 4-12.

4-22

Spool Monitor
XE to Specify Input From a Device

So far, we have shown how :XE can be used to inspool a file. It can also be used to specify direct
job input from a logical unit. If namr specifies a logical unit, JOB expects the job input to be
entered from that device. For example, if logical unit 8 is assigned to magnetic tape, then the
following command tells JOB that a job is on magnetic tape:

*RU;JOB'I
JUXE,B8,10 «——— — enter XE at console; priority is 10
j0¢
JO, AA . . .
. Job is on magnetic tape; the tape must be ready to be read
:E.O \
~
~N
~
Lus ~

JOBFIL
~ o8B

4— JOB enters job in JOBFIL queue
FMGR will process it according to
the priority specified in :XE com-
mand. FMGR will read the job
from magnetic tape

4-14. ERROR CONDITIONS

JOB will suspend under the following conditions:

e there is no room for the job entry in JOBFIL

¢ only one spool file is available for the job; JOB will not use the last spool file since it might
be needed for job processing.

¢ 1o spool EQT entry is available for the job; unless the job is a file, an EQT entry is needed
to assign to a spool file.

No error messages are issued in these cases. The program suspends and will restart automati-
cally when resources become available. If you are not sure what has happened, use the RTE
STATUS command (*ST,JOB) to find out if JOB has suspended. If it has, you should wait and
try again. When other spooled jobs are complete their spool files and entries in JOBFIL and the
EQT table are released automatically and JOB will continue as soon as the necessary
resources become available.

Table 4-1 lists the error messages that may be received during JOB execution.

4-23

Spool Monitor

Table 4-1. JOB Error Messages

MESSAGE CAUSE CORRECTIVE ACTION
JOB WAIT ON PT End-of-tape occurred between :JO and | Load remainder of job in reader, ready
:‘EO commands. the reader, and enter *GO,JOB.
JOB WAIT ON Reguired spool file or logical device | None required. JOB will suspend and
SPOOL RESOURCE | cannot be obtained at this time. be automatically rescheduled when the
resource becomes available.
JOB WAIT ON Spool file overflows available disc Condition will automatically clear when
EXTENT space. SMP releases spool files as a result of

outspool completion; or you can force
a retry using the GASP command, SU;
or you can abort JOB.,

END JOB ABNORM | JOBFIL could not be opened; or other | Try re-initialization with GASP after all
uncorrectable error occurred; or JOB | spool activity is completed.
was run before Spool initialization.

4-15. OUTSPOOLING

Outspooling is the process of directing output from spooled jobs or outspool files to specified
devices according to an outspool priority. The device for outspooling standard job output (list
output) is the line printer. Other job output may be directed to other devices.

After JOB records each inspooled job in JOBFIL, it schedules FMGR if FMGR is not already
scheduled, in order to process the jobs recorded in JOBFIL. Jobs are processed according to
their priority. As soon as FMGR starts processing a job it calls program SMP to set up the spool
to process the standard output from that job.

SMP makes an entry in file SPLCON for each job’s output, opens an outspool file for the
output, and puts a notation of the spool file in the outspool queue. When that file is at the top of
the queue and SPOUT is ready for it, SMP tells SPOUT to start dumping the file. A similar
process occurs when the user specifies other outspools with the :LU command.

SPOUT can outspool to several devices at a time as long as there are enough spool logical units
available and enough spool files allocated to the Spool Monitor to assure that several spools to
various devices can be built concurrently. As SPOUT performs its outspool functions, it
communicates with SMP so that SMP can modify the status and queue information in file
SPLCON. Once scheduled, SPOUT runs continuously, receiving information from SMP on the
outspool files to be processed. When SPOUT is not busy, it is suspended in a Class GET call
waiting for more information.

File SPLCON is a directory of all files to be outspooled (refer to Appendix C for SPLCON
format). Entries are queued in this file according to their outspool priority. The file also keeps
track of the particular status of the spool file: whether it is still in the queue waiting to be
outspooled, whether it has been passed to SPOUT for actual outspooling, and whether it is
being held from completion of outspooling, or is completed. When completed, the spool file is
removed from the outspool queue.

4-24

Spool Monitor

The :LU and :CS commands can be used to specify the type of outspool device to be used as well
as the device logical unit and outspool priority. They also specify when the file is to be placed in
the outspool queue maintained in SPLCON. For example, HO is specified as an outspool
attribute if the file is to be held from the outspool queue until the file is closed. This attribute is
not the same as the outspool status Hold maintained in SPLCON.

4-16. SPOOL STATUS

Spool status for jobs being inspooled is maintained in file JOBFIL; the status of jobs being
outspooled in file SPLCON.

4-17. INSPOOL STATUS

'There are four states through which a job normally progresses as it is inspooled and processed.
The GASP DJ command may be used to examine the state of an inspooled job. The four normal
states are:

I In spooling; job being read by JOB.

R Ready; job is at top of inspool queue and is ready to be run by FMGR.

A Active; job is being processed by FMGR.

CS Completed Spooling; job has been processed and is waiting to be outspooled.

An additional state may be specified with the GASP command CJ (see paragraph 5-8). If a job
is ready but is not yet active, it can be suspended from further processing. This job status is:

RH Ready-Hold; a job in the ready state has been held; it will not be processed until
specifically released.

4-18. OUTSPOOL STATUS

The state of each outspool file produced by a job is recorded in SPLCON when the file is placed
in the outspool queue. The states of all outspool files may be examined using the GASP DS
command. The possible states of outspool files are:

W Wait; file is in queue but is not at the top of the queue.
A Active; file has reached the top of the quete and is being outspooled.

In addition to these two states, there are two possible hold states. A hold may be placed on a

file in the outspool gueue or being actively outspooled only through the GASP operator
command CS (see paragraph 5-12). The two hold states are:

H Hold in wait status; file will not be released to SPOUT until you specifically
release it with the GASP command RS (paragraph 5-13).

AH Active-Hold; file was being outspooled when a hold was requested with the GASP
command CS; it remains suspended until released by the GASP command RS.
The device to which file was being outspooled is idled until this hold is released or
the file is killed or re-started.

4-25

Spool Monitor
4-19. OUTSPOOL ERRORS

During outspooling, if the device associated with the outspool file becomes unavailable (down),
the file is placed in the active hold state and an error message is displayed:

SMP: LU xx DOWN filename HELD

where xx is the logical unit number of the down device, and filename is the name of the
outspool file.

For example, the paper tape punch has run out of tape, or the line printer has run out of paper.

To recover, determine which device is down (if necessary) using the GASP command DS to
display Spool Status. Correct the problem at the device. Then use the system command UP
(SYUP may be used in FMGR) to declare the device available. Next use either the GASP
command RS to restart the outspool from the beginning, or CS to release the hold state of the

outspool file.

If a file was outspooled and not completed because of spool overflow, the following message is
displayed:

SMP: LU xx EOF ER filename

where xx is the logical unit number of the device on which the file was outspooled and filename
is the name of the outspool file.

To recover, re-run the JOB.

If an ASCII file was outspooled and not completed because of spool overflow, the following
message is printed after the last line of the file:

BAD EOF

To recover, re-run the JOB.

If SMP encounters an FMP error in one of its operations, the following message is displayed:
SMP: FMP-nn

where -nn is the FMP error number (see Table B-1).

If an end-of-tape condition occurs on input from the paper tape reader during the JOB run, this
message is displayed:

JOB WAIT ON PT

Load the remainder of the job tape into the reader, ready the reader, and enter GO,JOB
(§YGO,JOB in FMGR).

4-26

Spool Monitor

If a required spool file or logical device is temporarily unavailable, the following message is
displayed:

JOB WAIT ON SPOOL RESOURCE

In this case, JOB will suspend and be automatically rescheduled when the resource becomes
available.

If the spool file overflows available disc space, JOB displays the message:

JOB WAIT ON EXTENT

This condition will automatically clear when SMP releases spool files as a result of outspool
completion. You can force a retry using the GASP command SU, or you can abort the JOB.

If JOBFIL cannot be opened, or some other uncorrectable error occurs, or JOB was run before
spool initialization, the following message is displayed:

END JOB ABNORM

You can attempt re-initialization using GASP after all spool file activity is completed.

The following abort messages may appear on logical unit 1:

1020 Read attempted on write only spool.

1021 Read attempted past EOF.

1022 Second attempt to read a JCL card from the batch input file by other than
FMGR.

1023 Write attempted on read only spool.

1024 Write attempted beyond an EOF (usually spool file overflow).

1025 Attempt to access a spool LU that is not currently connected to a file (i.e.,

that is not open).

A summary of error messages is included in Appendix B.

4-27/4-28

SECTION V

SPOOL CONTROL WITH
GASP OPERATOR COMMANDS

INDEX TO GASP OPERATOR COMMANDS

Schedule GASP:

*RU,GASP[,lu]

Command Syntax Function Page
AB,job # Abort pending job. 5-6
priority
Cd,job# H Change job status or priority. 5-6
,priority
CS,spoolfile H Change outspool status or priority. 5-8
DA Deallocate spool system; respond YES to execute DA, anything 5-16
KILL SPOOLING?YES/NO else to terminate DA.
DJ ,Job# Display all current jobs or particular job, and job status. 5-4
,Jjobname
DS[Llu] Display all current outspools or all spools to a particular device, 5-7
and spool status.
EX Terminate GASP. 5-3
KS ,7goolﬁle Kill outspool file or file currently outspooling to a device. 5-11
RS,spoolfile{,lu] Restart outspool from beginning; optionally, to a new device. 5-10
sD B Shut down batch processing (pending jobs) or outspooling (pend- 5-14
.S ing spools) or both.
SU ,B Start up batch processing (pending jobs) or outspooling (pending 5-15
S spools) or both.
2?{,error#(,lu]] Request explanation of error code. 5-3

SPOOL CONTROL WITH
GASP OPERATOR COMMANDS

)

5-1. INTRODUCTION

Once a job has been entered in the spool system, its processing is automatic. As described in
Section IV, priority for execution and output can be specified in the :JO command, spooling
priorities and device information in the :LU command. Given these values, spooling proceeds
automatically unless you choose to change the sequence of operations with the GASP
commands described in this section.

Each time GASP is run, it checks whether the job queue file JOBFIL exists. If it exists, GASP
knows that it has previously initialized the spooling system and the user may enter the
commands explained in this section. If JOBFIL does not exist, GASP enters the initialization
process to set up the spooling system (see Section VII on GASP initialization).

The interactive program GASP provides a set of commands that allow you to:

® change the job priority or abort a job that is not yet processed

e hold a job from processing or release it from hold

® hold (delay) job output from being outspooled to a device or release it from hold

e display the status, priority, job number, and name of all jobs

e display the status, priority, job number, and output logical unit of all outspool files

® restart an outspool or direct an outspool to another device

e “kill” the job output from a completed job

® shut down and start up the spool system without altering jobs or outspools

¢ remove the spool capability from the system by purging all spool files.

5-2. GASP COMMANDS

A summary of the commands that perform these functions is listed in Table 5-1.

Table 5-1. GASP Operator Command Summary

CATEGORY COMMAND FUNCTION PARAGRAPH
GASP *RU,GASP
Operation or schedule GASP 5-3
page 5-2 nn>RU,GASP

?? request error explanation 5-4

EX terminate GASP 5-5
Job DJ display job status 5-7
Manipulation
page 5-4 CJ change job status or priority 5-8

AB abort a job before it runs 5-9

5-1

GASP Operator Commands

Table 5-1. GASP Operator Command Summary (Continued)

CATEGORY COMMAND FUNCTION PARAGRAPH
Outspool DS display outspool status 5-11
Manipulation
page 5-7 CS change outspool status 5-12

RS restart an outspool 5-13
KS kill an outspool 5-15
Spool System SD shut down spool system 5-17
Manipulation
page 5-14 SuU start up spool system after shut down 518
DA purge spool system files after shut down 5-19

5-3. RUNNING PROGRAM GASP

GASP may be run from RTE or from a copy of FMGR. It can not be scheduled from FMGR
unless no jobs are active since FMGR controls job processing during spooling.

Format

*RU,GASP[,lu] from RTE
nn>RU,GASP[,lu] from a copy of FMGR

Parameters

lu Logical unit of interactive device on which GASP commands are entered;
if omitted, logical unit 1 (system console) is assumed. In a multi-terminal
environment, lu must be specified if it is different from the terminal
logical unit.

When GASP is scheduled, it responds with a prompt. On some devices, this is an up-arrow (1);
on others such as the HP 2640 terminal, it is a caret (A). Any.of the commands shown in
Table 5-1 may then be entered.

Examples

1. Run GASP from system console:

*Ri], GASP - input expected from logical unit 1
t GASP prompt
2. Run GASP from terminal 07 using FMGR copy FMGO07:

x5!

JsFMGRT input expected from logical unit 7
RS GASP _
*

5-2

GASP Operator Commands

3. Run GASP from system console using FMGR copy FMG07 and direct input to terminal 7:

*R1) ,FMGAT

tRUJ,GASP, T = input expected from logical unit 7
)

5-4. GASP ERROR EXPLANATION

When an error occurs during GASP operation, an error code is printed in the form of a positive
or negative integer. Negative integers indicate FMP errors caused by calls to File Manage-
ment Package utility programs; positive error codes indicate GASP program errors. The error
codes are printed at the terminal. Appendix A contains a complete list of Batch-Spool Monitor
error codes with their meaning. You can also request GASP to display the meaning of a
particular error or all errors with the ?? command. This explanation is normally displayed at
your terminal, but you can ask that it be displayed on another output device.

Format
A??[error#[,iu]]
Parameters
error# Positive or negative integer specifying a particular GASP error code; if
omitted, an explanation of the most recent error is displayed; if error# is
99, an explanation of all error codes is displayed.
lu Logical unit on which error code description is displayed; use only if
error# is 99 for a listing of all errors; if omitted, display is at terminal.
Examples

1. Request meaning of latest error code:

TAP,AA . .
GASP 3 AB requires a job number, not a name
T

GASP 3 84AD JO8 NUMBER]

2. 1t?2?2,99,6 request list of all error code meanings on line printer

5-5. EX - TERMINATE GASP

When you are through using GASP, you may return to the system from which GASP was
scheduled with the EX command.

GASP Operator Commands

Format

AEX

GASP prints:
END GASP

and then terminates.

5-6. JOB MANIPULATION

Jobs that have been entered in the directory file JOBFIL by program JOB can be manipulated
with the GASP commands:

DJ display job status

CJ change job status

AB abort pending job

JOBFIL is the inspool directory that maintains the queue of inspooled jobs with information on
each one. These jobs may be in one of the following states:

I in process of being inspooled by JOB
R ready to be processed

RH ready to be processed but being held
A active, that is, being run

CS completed and ready for outspooling

5-7. DJ - DISPLAY JOB STATUS

The DJ command displays the job number, job name, job status and priority, and the spool pool
files assigned to the job except the job input spool. You may request that all jobs currently in
the spool system or any particular job be displayed.

Format

ADJ [’j"b#]

,jobname
Parameters
Job# Job number of particular job to be displayed.
Jjobname Name of the job or jobs to be displayed.

If both job #and jobname are omitted, all jobs currently in the system are
displayed.

5-4

GASP Operator Commands

The display is formatted as:
NAME STATUS SPOOLS

The first field (##) is the job number. Jobs are numbered consecutively from 1 according to the
record they occupy in JOBFIL.

Under NAME is the job name assigned in the :JO command or in the :XE command to program
JOB. If a job is entered directly from a device specified in the :XE command, then this name is
blank until FMGR processes the job. Refer to XE command description, paragraph 4-13.
The field STATUS lists the job source and priority as well as its status in the form:

X ppppss
where x is either S or D. S means the job is on a file, D that it is on a device; pppp is the job
priority; ss is the current job status, I, R, RH, A, or CS, (see paragraph 5-6).

Under the heading SPOOLS are the integers identifying any spool pool files associated with
the job except the job input spool. For example, if the job uses spool files SPOL01 and SPOL10,
then 1 and 10 are listed under SPOOLS. When a job uses more than one spool, the spools are
listed in ascending numeric order.

Examples

1. Display all jobs in the system:

tDJ
HE NAME STATUS SPOOLS /
1 DLIST) 14CS 1 Z::Z:ZZ; to
2 IuLE s 22 A 2 jobs
3 COMPL 5 49 R
4 XX S HSURH

Job 1 is processed and ready to be outspooled; job 2 is currently being processed; job 3 is
ready to be processed; job 4 is ready but has been held with a CJ command.

2. Display job 2 (IDLE):

thJ,2

or

tJ, IULE

wa NAME STATUS SPOOLS
2 IdLe 5 20CS 2

Job 2 is now completed.

5-5

GASP Operator Commands

5-8. CJ - CHANGE JOB STATUS

Job status or priority can be changed with the CJ command. This command may only be used
for a jobin R, or RH status; it may not be used if the job is active or has completed processing.

Format
,priority
NCJd,job# H
R
Parameters
Job# Number assigned to job by spool system; use DJ to display job numbers.
priority New job priority; only legal before job is active.
H Hold job from processing; changes R status to RH.
R Release job for processing; changes RH status to R.
Example
1. tCJs4,H < hold job 4; sets status to RH
2. 1CJs4,R= release job previously held
3. tCJ»3,342 assign new priority to job 3

5-9. AB - ABORT JOB

Before a job is processed, it may be removed with the AB command; AB deletes the job entry
from the file JOBFIL. In order to abort a currently active job, get the attention of RTE and
enter the RTE AB command.

Format

NAB, job #
Parameter

Job# Number assigned to job by spool system; use DJ to display job numbers.

This command may be used only for jobs in R (ready) or RH (ready and hold) status. The
command sets the job status to A (active) so that FMGR removes it from the job queue, as if it
had been processed, the next time it scans the queue. FMGR scans the queue when it finishes
processing the current job. If FMGR is dormant, GASP schedules it and FMGR scans the queue
as soon as it starts executing.

5-6

GASP Operator Commands
Example

tAB» 4 removes job 4 before it is processed

5-10. OUTSPOOL MANIPULATION

Spool files in the outspool queue maintained in the directory file SPLCON can be displayed or
their status changed with the GASP commands:
DS display spool status
CS change spool status
RS restart outspool from beginning

KS purge spool file from outspool queue

An outspool is normally in one of two states: either waiting for a device or actively being
written to the device. In either of these two states, an outspool file can be held and then
subsequently released. The possible outspool states are:

W waiting for a device, or put into wait state by :CS or :LU command
A being written to the device
H held by operator; outspool was in wait status

AH held by operator; outspool was in active status

When an active file is held, the device to which it is outspooling is locked from further use until

the outspool is released, killed, or respooled. This maintains the integrity of the output to that
device.

5-11. DS - DISPLAY SPOOLS

The DS command displays the spool file name, job number, outspool priority, and if an
outspool, the outspool status, and the logical unit to which the file is being or will be dumped.

You may request either all current spools or all outspools currently assigned to a particular
logical unit.

Format
ADSI,lu]
Parameter
lu Outspool logical unit; only files directed to this lu are displayed; if omit-
ted, all files in the outspool queue are displayed.

The spool display heading is:
LU NAME PRIORITY JOB# STATUS

5-7

GASP Operator Commands

Listed below this heading is one entry for each file being spooled, that is, for each file listed in
SPLCON.

The first field under LU contains the outspool logical unit number. Under NAME are the
names of the files currently assigned for spooling. The next field contains the outspool priority;
this is the same as the job priority unless a different outspool priority was specified in the :JO,
:LU, or :CS commands (see Section IV). Under JOB# is the number of the job that generated
the outspool file. Under STATUS, one of the possible outspool states is listed as: A, W, AH, or
H (see paragraph 5-10); or, if the file is not to be dumped the status is “--”.

If there are no spools currently being outspooled or read or written by a job, the message NO

SPOOLS is printed below the heading. If spooling has been shut down, the message SHUT
DOWN is printed.

If the spool file has not been assigned to a device for outspooling, then two dashes (- -) are

printed under the headings LU and STATUS. This means the spool file has been assigned to a
job but is not used for outspooling; that is, it was used for input only or is not to be outspooled.

Examples

1. Display all current spool files:
tDS

LU NAME PRIOTRITY JnBs STATUS

6 SPOLRl aln i A

6 SPDL®NE B2 2 W

6 SPOLWY 0an 3 W

6 SPOLu4 350 d W .
P

- SPOLYS iy ' e — SPOLO05 not used for outspooling

All spool files except SPOLO1 are in wait state; SPOLO1 is active.

2. Display all spool files currently assigned to LU 6:
tDS»6

The resulting display is identical to the first four entries in the preceding display; that is,
all but the entry for SPOL0S5 is displayed.

5-12. CS - CHANGE SPOOL STATUS

The status of an outspool file can be changed with the command CS. CS will also change spool
priority, but only if the outspool file is not active.

Format
,priority
ACS,spoolfile H
R

5-8

GASP Operator Commands

Parameters
spoolfile
priority

H

Name of spool file as displayed by Dd.
New outspool priority.

Hold spool file; if active, changes status to AH; if waiting, changes status
to H.

Release spool file that has been held in AH or H status.

When a hold is placed on an active file, the device to which it is outpooling is locked and the
device is unavailable until the hold is released with the R parameter of CS, or the file is killed
with the KS command or respooled with RS. When a hold is released on a file in AH status, the
outspooling is continued from where it was when held.

The priority of an active spool file may be changed; the entry in SPLCON reflects the new
priority but the outspooling continues unaffected by the new priority unless the file is re-
spooled. If priority is changed on a file in Wait or Hold status, it may affect when it is

outspooled.

For the effects of CS on outspools in various states, refer to Figure 5-1.

Examples

1. Place hold on active spool, SPOLO01:

tCS,SPOLB1,H place hold on SPOLO!1
tDS
LU waMF PRIOWITY dip# STATUS <——— SPOLOI was actively outspooling
A 3POLul ZREY 1 AH
& SPOLwn? Bew 2 “
€ SPULGS P4n 3 W
A SPULVG 'Y 4 W
t+CS,SPOLAI1,R SPOLO1 will continue outspooling from point where it was held
2. Change priority of inactive spool file, SPOL04:
+CS,SPOLB4,25
tDS
LU NAME PRIOKITY JOBR STATUS
5 »PRLI D1 1 AH
2] SPOLVZ2 hn2a 2 W
6 SPOLe3 namn 3 W
) &P0L ¢4 728 4 w
L——— new priority displayed

5-9

GASP Operator Commands

5-13. RS - RESTART SPOOL

An active outspool file can be restarted from the beginning with the command RS.

Format
ARS,spoolfile(,lu]
Parameters
spoolfile Name of active or active-held spool file in outspool queue.
lu New logical unit to which file is to be outspooled; if omitted, logical unit
previously assigned is used for spool output.

When an active or active-held spool file is restarted, it is restarted from the beginning of the
file. The restart automatically removes the hold from an active-held file. If the file is to be
outspooled to a different device, it may go back into wait state on the new outspool queue.
A file in wait state is not affected by the RS command unless lu is specified to change the
outspool logical unit, and thereby move the spool to another queue. Files that have completed
outspooling are no longer in the SPLCON queue and, thus, may not be restarted.
For the effects of RS on outspools in various states, see Figure 5-1, Changing Outspool File
Status.
Examples
1. Restart active spool file, SPOLO03:

t RS, SPOL@3

2. Change the outspool logical unit from the unit 6 to 4:

t RS, SPOLB4,4

In this case, the file can be either active or waiting.

5-14. SPOOL FILE STATE DIAGRAM

Under normal spool control, without using GASP, an outspool file in the Wait state (status W)
is selected by SMP for outspooling when it reaches the top of the outspool queue in file
SPLCON. This procedure can be altered with either CS or RS as illustrated in Figure 5-1.

5-10

GASP Operator Commands

RS name { lu#] RS, name
r\‘ RS,name,new lu#
woo A
—

SMP selects from top of outspool queue

CS,name H

CS name H CS,name R
RS ,name [lu#]

RS,name new lu# CS,name R

RS ,name

AH

Figure 5-1. Outspool File State Diagram

To summarize, the possible changes:

o From wait state (W), a file can be:
moved to active state (A) by SMP as next outspool
moved to hold state (H) with CS command.

e From hold state (H), a file can only be:

moved to wait state (W) with CS or RS commands.

e From active state (A) a file may be:
returned to wait state (W) with RS command

moved to active-hold state (AH) with CS command.

o From active-hold state (AH) a file may be:
moved to wait state (W) with RS command

moved to active state (A) with CS or RS commands.

5-15. KS — KILL OUTSPOOL

An outspool file can be removed from the outspool queue (killed) with the KS command.

5-11

GASP Operator Commands

Format
AKS ,Spoolfile
Jdu
Parameters
spoolfile Name of outspool file to be removed.
lu Logical unit of device to which file is being outspooled.

When a file actively being outspooled is killed, the output is terminated. If any other file is in

the queue to be outspooled to that device, the file at the top of the outspool queue in SPLCON is
started.

You may kill an outspool whose job is still active. However this may cause job or program
abortion. In this case GASP will verify the kill command before proceeding.

Example

*RU, GASP
ADS
LU NAME PRIORITY JOB# STATUS

6 C02801 099 18 A
AKS ,C02801
MAY ABORT PROGRAM OR JOB, OK TO KILL? YES <———Yes, i.e., Kill is verified
AEX
END GASP

1025 ASMB 51725 «———— ASMB was listing to CO2801 so it loses on next attempt.
ASMB ABORTED

Caution should be used when lu is specified. This will purge the file currently being outspooled
to that logical unit. If there are other files queued for outspooling to that device, it is possible
that the file you intended to purge has completed outspooling, in which case, you will
inadvertently purge the next file in the queue since it has become the currently active file to
the specified device.

Examples

1. Examine the job list to determine if the job XX has completed processing; if it has, then kill
the job’s outspool file:

1DJ

He MAME ATATUS SFO0OLS
1 NDLIST S 120S 1
2 ToLe 8 2¢C8 2
3 ComplL S 4uCs 3
4 X X S 25058 4

1DS,10

LU NAME PRIORITY JOBs# STATUS

10 SPOLO4 050 4 CS
5-12

GASP Operator Commands

Since job XX using spool file SPOL04 is completed, the job need not be aborted:

tKS,SPOL24 -« kill spool of inactive job XX

If job XX had been active, it would have to be aborted before using KS:

*AB, 1 abort active job
*RU,GASP
tKS, SPOL24 then kill spool

If no other jobs are being outspooled to logical unit 10, the spool file can be killed with:
tDS, 13
LU NAME PRIORITY JOB# STATUS

18 5SPOL34 252 4 Cs
tK5,10 kill file outspooling to logical unit 10

5-13

GASP Operator Commands

5-16. SPOOL SYSTEM MANIPULATION

At any time during spooling, either in the job processing or the spool output phase, the spool
system can be shut down. Nothing is lost by shut down and start up. The spool shut down
effectively suspends batch processing and/or outspool operations until a start up command
restarts the spool process. While the spool system is shut down, it may be restarted or else
removed from the system using the GASP command, DA (see paragraph 5-19). If removed, all
spool files are purged, GASP is terminated, and the spool system is no longer an active part of
the Batch-Spool Monitor and must be re-initialized before further spooling can be performed.

While it is shut down, all spool files are closed and the cartridges on which they reside can be
packed.

The commands to perform these functions are:
SD shut down spooling
SU restart spooling after shut down

DA deallocate the spool system
The SD and SU commands provide a means to shut down and restart the system in an orderly
manner. When both job processing and outspooling are shut down and the current job is

processed and any outspooling completed, the following events may occur.

o SMP closes SPLCON when the last active file finishes outspooling and the currently active
job is completely processed.

e Spool discs may be packed.

¢ The entire system may be halted and then restarted from disc (booted) and GASP may then
be run to start up the spool system from where it left off.

5-17. SD - SHUT DOWN SPOOLING

You may hold all spooled jobs, all spooled output, or both with the SD command.

Format
Sk
Parameters
B Hold all pending jobs: outspooling is not affected.
S Hold all pending outspools; job processing is not affected.
none If both B and S are omitted, then both job processing and outspooling are
held. Inspooling by JOB may continue.

Any jobs or spools that are currently active when SD is specified are allowed to run to
completion. New jobs may be submitted after the system is shut down; if jobs are being held,

5-14

GASP Operator Commands

then the new jobs will also be held until the system is restarted with SU. If only outspooling is

shut down (SD,S), then jobs may be run but no output will be spooled until outspooling is
restarted.

Examples

L *SDsB no further batch job processing until system is restarted

2. 15D, S + no further outspooling until system is restarted

3 15D = no further job processing or outspooling until system is restarted

5-18. SU - START UP SPOOLING

To start up the spool system after it has been shut down with SD, use the SU command. Also,
use SU to start batch and/or spool if SMP or FMGR has been aborted by the operator, or after
restarting to process any jobs or files remaining in the queues from previous runs.

Format
nsu | 5poc
Parameters
B Jobs held with SD are released; does not restart outspooling
S Outspools held with SD are released; does not restart job processing
none Both jobs and outspools held by SD are restarted

A job or spool file that was held with a command other than SD will not be restarted. For

instance, SU will not restart spooling on a particular outspool file held with CS or a job held
with CJ.

Examples
L. t15U,B ~— restart jobs held with SD or SD,B
2. t15U,S5 = restart outspooling held by SD or SD,S
3. 15U < restart job processing andlor outspooling held by SD
4. If you want to run a job now, but spool output at a later time, you can use the SD and SU
commands:
*RU,GASP
tSD, S shut down outspooling
tEX

Jobs can now be inspooled and processed; there will be no outspooling until:
*RU, GASP
t5U, S start up outspooling

tEX

5-15

GASP Operator Commands

5-19. DA - DEALLOCATE SPOOLING

The spool system can be deallocated from the Batch-Spool Monitor with the DA command.
Before using DA, the spool system must be shut down, all files must be closed, and all current
job processing and/or outspooling should be completed.

CAUTION

Be certain that all discs containing spool system files are

mounted (see paragraph 2-55) before using the DA
command.

Format

NADA
Response:

KILL SPOOLING? The system prints this message in response to DA in order to give
you a chance to change your mind; answer YES if you want to
remove the spool system; any other response is treated as NO and
the next GASP prompt is issued.

NOTE

Do not use ADA if GASP was scheduled from FMGR rather
than from RTE since it is possible that JOBFIL is still open.

If any file is currently active because a job is being processed or a file is being outspooled, the
deallocation cannot be performed. GASP reports the file name of the open file followed by the
message: FILE OPEN OR LOCK REJECTED. It then terminates the DA command and issues
the next GASP prompt. You may either purge the file with KS or you may wait for completion
and then re-enter DA, As a general rule, you should wait for completion or abort any active job

or outspool before entering DA. This allows active jobs and spools to complete and close all
files.

If DA is successful, GASP issues the following message and then terminates:

SPOOL IS DEAD!
END GASP

Following this message, you must re-initialize the spool system before it can be used again. If
you run GASP, it will automatically issue the first prompt of the initialization process rather
than the standard GASP interactive prompt (A or 7). Refer to Section VII for a description of
how to initialize the spool system with GASP.

5-16

GASP Operator Commands

Examples
1. tSD
tDA
KILL SPOOLING?NO any response except YES terminates DA
tSU
2. tSD
tDA
KILL Spw/———— SPOLO04 is open
SPQLB4
GASP -8 FILE OPEN QR LOCK REJECTED
tKS, SPOLB4 <— purge SPOL04
tSD *——————_________________)
tDA shut down system and then deallocate spooling

KILL SPOOLING?YES

SPOOL 15 DEAD
END GASP

5-20. COMPREHENSIVE SPOOLING EXAMPLE

The following comprehensive example presents an entire spooling session. First, program
GASP is used to initialize the spooling system in Figure 5-2. Figure 5-3 shows jobs X, Y, and Z
that are to be processed. Program JOB is used to inspool the jobs as shown in Figure 5-4.
Finally, the left side of Figure 5-5 shows the FMGR commands as they would be processed and
listed on the system console. The right side of Figure 5-5 shows program GASP running on
logical unit 16 to display information about the job queue and spool status.

PROG6 and PROGS are two programs that write to logical units 6 and 8 respectively. The
severity code is set to 4 within jobs X and Y prior to purging files FILEX and FILEY. This
ensures that the jobs will not be aborted if the files do not already exist.

16>RU,GASP

MAX NUMBER OF JOBS,J0OB FILE DISC? 24,31
NUMBER OF SPOOL FILES (5 TO 80)2 20
SIZE OF SPOOL FILES (IN BLOCKS)? 24
NUMBER, LOCATION OF SPOOL FILES? 20,31
NUMBER, LOCATION OF SPOOL FILES? E
MAXIMUM NUMBER ACTIVLC AND PENDING SPOOL FILES? 20
ENTER OUTSPOOL DESTINATION LU 6

ENTERK OUTSPOCL DESTINATION LU 52

ENTER OQUTSPOOL DESTINATION LU E

END GASP

Figure 5-2. GASP Initializes Spooling System

5-17

GASP Operator Commands

+JO, X

:PA,14,J0B X:BEGINNING NOW
:SVv,4

:PU,FILEX::31

1SV, 0
:CR,FILEX::31:3:1
:LU,6,FILEX::31,WRST,6
: RU, PROG6

:Lu,6,0

:PA,14,J0B X:ENDING
:EO

:JO,Y

tPA,14, JOB Y: BEGINNING NOW
:SV, 4

:PU,FILEY::31

1SV, 0

:CR,FILEY::31:3:1
:LU,8,FILEY::31,wWH,52

: RU,PROGS

:PA,14,J08 Y:HOLD ON FILEY TO LU 52
:CS,8,PA

:PA,14,J0B Y: ENDING

:EO

:JO, %
:PA,14,J0B Z: DOING NOTHING
:EO

Figure 5-3. Jobs X, Y, and Z

16>RU,J08B,16
s ¢ XE, X
;o XE,Y
;0 XE, 2
; (control D)

Figure 5-4. Program JOB Used to Inspool Jobs X, Y, and Z

5-18

GASP Operator Commands

This is the command stream This is program GASP being used to
as it appears on the system examine and modify the job gueue and
console. the outspool files. This is run on

a separate terminal.

:JO, X
¢:PA,14,J0B X:BEGINNING NOW.

(308 X is in a pause. GASP is

run to examine the job queue
and spool files)

16>RU,GASP, 16

“bJ

NAME STATUS SPOOLS
1 X S 9999 A 4
2 Y S 9999 R
3 Y S 9999 R

DS

LU NAME PRIORITY JOR# STATUS

-- X 00 1 -

6 SPOLO4 9999 1 A

(JOBS X,Y ana Z are in the
job gueue; X is active and Y
and Z are ready. SPOL0O4 is
set up as an outspool file
for job X.)

TR

:CR,FILEX::31:3:1
:LU,6,FILEX,WRST,®6
:RU,PROG6

:PA,14,J08 X: ENDING

(The :PU command 1is not listed
because the severity code is 4.
LU 6 has been associated with
FILEX. PROG6 performs a write
to LU 6 which goes into FILEX
to be outspooled to LU 6.)

Figure 5-5. Command Stream and Use of GASP
5-19

GASP Operator Commands

TR
:L0U,6,0
:EC

(Job X ends. Jcb Y begins.)

:JO, Y
:PA,14,J0B Y:BEGINNING

-

DJ
NAME STATUS SPOOLS
1 X 5 9999 A
2 Y S 9999 R
3 Z S 9999 R
“DS
LU NAME PRIORITY JOB# STATUS
~-- X 00 1 -
6 FILEX 9999 1 A
(FILEX has been set up for
outspooling and is currently
active.)
“DJ
4 NAME STATUS SPOOLS
2 Y S 9999 A 4
3 Z S 9999 R
“DS

LU NAME PRIORITY JOB# STATUS

- Y
6 SPOL0A4

00
9999

2
2 A

(Job X has been removed from the
job queue. SPOL04 is set up for
job Y.)

Figure 5-5. Command Stream and Use of GASP (Sheet 1 of 3)

5-20

GASP Operator Commands

TR

:CR,FILEY::31:3:1

:LU,8,FILLY,WH,52

:RU,PROGS8

:PA,14,J0B Y:HOLD ON FILLY TO LU 52

(FILEY has Leen associated with
LU 8, and placed on hold. It will
not be placed in outspool gqueue
until :EOQO or :CS command is
processed.)

2
3

“DS

LU NAME PRIORITY JOB# STATUS

-- Y

6 SPOLO4 9939 2 A
52 FILEY

(FILEY is in wait state. User decides
to abort job 3.)

“AB,3

“DJ
4

2
3

(The system places Z into active
causing it to be removed from
the job queue the next time FMGR scans
the queue.)

state,

NAME STATUS SPOOLS
Y S 9999 A 4
Z S 9999 R

00 2 -

9989 2 W

NAME STATUS SPOOLS
Y S 9999 A 4
2 S 9999 A

Figure 5-5. Command Stream and Use of GASP (Sheet 2 of 3)

GASP Operator Commands

TR
:C5,8,PA
:PA,14,J0B Y:

TR
:CO

ENDING

-~

DJ
#4 NAME STATUS

2 Y S 9999 A
3 / S 9999 A
“bSs

LU NAME PRIORITY JOB# STATUS

-—Y 00 2 -
6 SPOL04 9999 2 A
52 FILEY 9999 2 A
“BJ

4 NAME STATUS
“DS

LU NAME PRIORITY JOB# STATUS

NO SPOOLS
“EX
END GASP

SPOOLS

4

SPOOLS

5-22

Figure 5-5. Command Stream and Use of GASP (Sheet 3 of 3)

SECTION Vi

SPOOL CONTROL
THROUGH SMP CALLS

A single call to the routine SPOPN takes a setup buffer established by the user to define the
spool file and passes this buffer to SMP. Following the call to SPOPN, the spool file is open.
The spool logical unit associated with the spool file is returned in a SPOPN parameter. This
logical unit is one of those associated with a spool EQT at generation; SPOPN causes SMP to
set up the spool EQT entry.

Format

CALL SPOPN(IBUFR,ISLU)

IBUFR Setup buffer; 16-word array defining spool file, spool attributes, spool priority,
and outspool device.

ISLU Spool logical unit number assigned by SMP returned here.

A spool setup must be established for each logical unit in your program to which you want to
assign a spool logical unit equivalence. When SMP is scheduled by this subroutine, it estab-
lishes a record in file SPLCON (see format in Appendix C). Recall that SPLCON contains a
record for each spool file currently active or queued for spooling. An EQT number is initialized
for the spool and its corresponding spool logical unit is assigned. SMP passes back a non-zero
logical unit number in ISLU if the call is successful. ISLU is set to a negative error code if the
call is unsuccessful (see Appendix B).

Setup Buffer

You must set up IBUFR as described in Table 6-1. SMP adds the spool logical unit and status
to the 16-word array IBUFR and writes it to a record in SPLCON.

This buffer establishes the file to be used for spooling and is used by SMP as the spool control
record in file SPLCON. The user file is specified in words 2, 3, and 4, and this file must exist
before it can.be used by SMP.

Batch Checking

Batch checking is not normally requested by user programs. If batch checking is requested,
only the program making this call may read records starting with a colon (:). If any other
program attempts to read such a record, it will get an EOF on the first attempt and the error
code 1022 on any subsequent attempts. Batch checking is normally set by program FMGR to
prevent other programs from reading FMGR commands.

Disposition Flags

The disposition flags are similar to the attributes specified in :LU or changed by :CS (refer to
paragraphs 4-9 and 4-10). If the entire word is set to zero, then the following default disposition
is assumed: the file is unbuffered, input is not from batch job; both read and write are allowed,
spool file is formatted with two-word record header, file is a user file; it is passed to outspool
queue, and is purged when spooling is completed. The main difference between these attri-
butes and those assumed by :LU is that SMP assumes a user file as the spool file in this
case, assumes that both read and write are allowed, and purges the file upon completion of
outspooling.

6-2

SMP Calls

Table 6-1. IBUFR Format

WORD CONTENTS

0 Batch input checking flag; # O if batch input checking wanted; = 0 if no batch input
checking. When the flag is set, SMP places the calling program’s 1D segment address in
word O when IBUFR is moved to SPLCON.

1 Spool logical unit number set by SMP when IBUFR is moved to SPLCON; do not set or set
to zero.

2,34 6-character file name of user file to be used for spooling; may not be a spool pool file
(SPOLO1 through SPOLS80).

5 Security code of file; set to value associated with file at creation; if no security, set to zero.

6 Cartridge reference number of cartridge containing file; set to value assigned to file at
creation; if no cartridge specified, set to zero.

7 Octal number of device type for outspool device; i.e., if device is line printer (driver
DVR12), set to 12B. This number is placed in the EQT table so that programs testing the
device type will find it. If the spool is to be accessed by the Formatter with binary reads or
writes, the type should be greater than 17B. If positioning such as back-spacing is to be
done, it may be set to 238 (magnetic tape).

8 Disposition flags defining spool file characteristics as follows:
15914 13 12411 10 918 7 645 4 3,2 1 0

BU| BI W/R ST |SP HO| SA
BU

1 if buffering; = 0 if no buffering (no buffering is recommended since tests have
shown it to be faster)

Bl = 1 if batch input (FMGR procedure file); = 0 otherwise (you should set to zero)

W/R = 10 for write only; 01 for read only; 00 for write/read

ST = 1if standard file format; = 0 if spool file format (spool format is recommended if
the file is to be outspooled as it retains all control requests)

SP =1 for spool pool file; = 0 for user file (do not set to 1, must be user file)

HO =1 to hold outspooling until file is closed; = 0 to pass to outspool queue im-
mediately (only useful if word 15 set to an outspool logical unit). You should set
HO = 1 if you expect to re-position file to be outspooled.

SA = 1tosave file; = 0to purge file (this action is taken when file is closed or, if queued
for outspooling, when outspooling is complete)

9 Spool priority (1-9999) used to determine priority for outspooling; if set to zero, 9999 is
assumed; used only if word 15 is set to an outspool logical unit.

10 a. |If the file is not to be outspooled this word is ignored.

Null H (110;) the file is put in HOLD status, the same as if a CS,,H command had
been issued by GASP. This “operator” hold may only be removed by the GASP CS
command.

c. Ifword 10is not null H (110,) then the file is put in R status and will be outspooled as
soon as the HO bit is cleared in word 8 either by the initial set up or by the “Write EOF
and queue for outspooling” or the “Queue for outspooling” request.

6-3

SMP Calls

Table 6-1. IBUFR Format (Continued)

11 Job number; only applicable if Bl in word 8 set to indicate batch input; usually set to zero.
12-14 Set to zeros
15 Set to outspool logical unit; set to zero if no outspooling is desired at this time; a logical
unit may be assigned later in the program.
Example

Set up to spool on the user file MYFILE (security code SC, cartridge 13) with outspooling to the
line printer (logical unit 6, DVR12). The file is for write only, and is to be saved. The spool
logical unit is retrieved in ISLU:

- * » L ol

set values
DIMENSION JUCR(144),1BUFR(16),FNAME(J) for CREAT
EGUIVALENCE (LSECU, IBUFR(6)) s (ILR,IBUFR(7))e—
DATA FNAME/2HMY,2HFT,2MLE/,Y812E/20/,1TYPE/3) —
DATA IﬁUFH/Mc@'?hHY.ZHFI'ZHLE.2HSC.13.1?8.4218.lw.

WoBoBhyaen 6/ values for
setup buffer
CaLL C‘J‘EAYflUCH,ltRHaFNAMEoISlZEoITYPEpIStCUoICR):]
IF(LERK (LT, ©) GU TG 940 create user file MYFILE
CaLL CLUSE(IDCBH) close file before calling SPOPN
CalLL SPUPN(IBUFR,18LU) = set up MYFILE as spool file

IF(ISLU LEQ, ¢) GO T0D 9v0<«——— " check for successful completion

of SPOPN

WRITE(ISLU,2M0)

QNG FURMAT("THIS UUTPUT IS SPOODLEDM)
»
»
»
CaLl CLO3EC(TLCH)
Yhn (error processing starts here)

6-4

6-4. SPOOL CONTROL SMP Calls

A set of EXEC calls may be used to assign new values for spool control. They assume that spool
control values have been specified in IBUFR and that a setup call has been used to move
IBUFR to the file SPLCON and set up the spool EQT.

The calls have a general form:
CALL EXEC(23,ISMP,» ISLU)

where n is the request code for the procedure. The request code for spool setup is zero; the
request codes for calls in this group range from 1 through 7. The call using request code 5 has
two additional parameters, otherwise they follow the general form exactly.

ISMP is a three-word array containing the program name SMP

ISLU is the non-zero spool logical unit number returned by the spool setup call,
SPOPN; ISLU < 0 if the setup failed.

Table 6-2 summarizes the spool control functions.

Table 6-2. Spool Control Calls

FUNCTION REQUEST CODE

Change purge to save

—_

Change save to purge

Queue for outspooling

Write EOF and queue for outspooling
Change spool options

Set buffer flag

N OO O~ w N

Clear buffer flag

Once you have set up the IBUFR array with default values these calls permit you to change
them dynamically during execution of your program. In this way, IBUFR need not be com-
pletely re-specified for each new spool setup as long as the same spool file is used. All output to
tne same logical unit goes to the same file.

6-5. CHANGE PURGE TO SAVE
This call saves the spool file following outspooling.

Format

CALL EXEC(23,ISMP,1,ISLU)
ISMP Program name SMP.

ISLU Spool logical unit number returned by setup request.

6-5

SMP Calls

Example

To set a flag in IBUFR to save FILEX:

DIMENSION JBUFR(16),ISHP(J)
GATA THUFR/G,u,2MFT,2HLE,2HX
[PATA ISMP/2HSM,2HP ,2W /

]

*

L}
CALL SPOPN(IBUFR,TSLU)~—

28,6, 128,0,0,8,0,0,0,2,8/

define IBUFR with
default values in
disposition flags

IFCISLY JEG, A) GO T 90e
L]

CALL EXEC(23,I5MP,1,15L0)

setup spool on user file FILEX

6-6. CHANGE SAVE TO PURGE

set flag to save FILEX

This call causes the spool file to be purged following outspooling.

Format

CALL EXEC(23,ISMP,2,ISLU)

ISMP Program name SMP.

ISLU Spool logical unit number returned by setup request.

Since the default is to purge the spool file, this call is only meaningful if the save flag has been
set in IBUFR.

Example

Assume the save flag has been set in IBUFR; to purge spool file FILEX:

6-6

UIMENSION TBUFR(L16),I8MP(3)
UATA [BUFR/M, 0, 2HF], 2HLE, 2HX
UATA ISMP/2HSEM,2:P 2H /

]

.
CALL SPOPN(IBUFR,ISLU)

10‘0128,lgﬂ,m,'ﬁya,m,ﬂ,ﬂ/
b save flag is set

IF (1SLY LEQ,) GO TO QA

CALL EXEC(23,ISMP,2,1S8LU) <

set up spool file and return spool
logical unit

set flag to purge FILEX

SMP Calls

6-7. QUEUE FOR OUTSPOOLING

This call releases a hold from a spool file so that it may be outspooled.

Format

CALL EXEC(23,ISMP,3,ISLU)
ISMP Program name SMP.

ISLU Spool logical unit returned by setup request.

If the file is already in the queue to be outspooled, the call is ignored. The call is intended to
release a hold placed on a spool file by the hold flag in IBUFR.

Example

When the hold flag is set in IBUFR, to release the hold:

UVIMENSION 1BUFR(16),1SMP(3)
JATA 10UFK/Q,A,2RFL,2HLE,2NnX 1 V28,128,2,0,¢,2,0,4,2,4,6/
WATA ISMP/2HSM,2KP 2n / b et hold flag on FILEX

]

»
CALL SPOPN(IRURR,ISWLI)
IF (IsLu ,efi, @) GG TO Quw

setup spool file

CALL EXEC(23,I5MP,3,150LU) «— release hold on FILEX

6-8. WRITE EOF AND QUEUE FOR OUTSPOOLING

This call writes an end-of-file mark on the spool file and then places it in the queue for
outspooling. This call must be used for each opened spool file in order to properly close the file.
The spool LU is no longer connected to the spool file when this call is completed.

Format

CALL EXEC(23,ISMP,4,ISLU)

ISMP Program name SMP.

ISLU Spool logical unit number returned by setup request.

After all output has been written to the spool file, this call writes an end-of-file mark and
places the file in the outspool queue. If the file is already queued for outspooling or is being
outspooled, the end-of-file is written but the queue request is ignored. In any case, the call
must be used to close an opened spool file.

6-7

SMP Calls

Example

Assume that IBUFR has been set up exactly as shown in the preceding example, after writing
data to the spool file, to then write an EOF and outspool it:

CALL SPOPN(IBUrR,ISLL) - setup spool file
TF(ISLY LEQ, W)GD 1N 9un
[]

L]

ARLTECLSLU,2%a) , (PATA(L) s 131,5 <—write data to spool file
PR FORMRT ("UATAI",5(61n,3)

CAaLl. EXEC(23,1aMP,d4,18PLU) <———~close file and outspool it

6-9. CHANGE SPOOL OPTIONS

This call assigns an outspool logical unit and an outspool priority.

Format

CALL EXEC(23,ISMP,5ISLUNOLU,NPR)

ISMP Program name SMP,

ISLU Spool logical unit returned by setup request.
NOLU Logical unit of output device.

NPR Priority for spool file in outspool queue.

A driver type should always be specified in IBUFR corresponding to the actual device to which
output is sent. (Refer to Appendix C for a list of driver types). The logical unit specified in
NOLU should be the driver type specified in IBUFR; that is, a line printer logical unit if a line
printer driver was specified, a magnetic tape logical unit if a magnetic tape driver, and so
forth. In the examples in this section, a driver type is always specified in IBUFR and is usually
DVR12, the line printer driver.

6-10. SET BUFFER FLAG

Data transmitted to or from spool files may be buffered or unbuffered. This call sets a flag in
the spool EQT table to specify buffering.

Format

CALL EXEC(23,ISMP,6,ISLU)
ISMP Program name SMP.

ISLU Spool logical unit returned by setup request.

6-8

SMP Calls

Ordinarily buffering of spool files is not recommended. Buffering moves data to a system buffer
in memory and thus adds overhead to spooling. However, when a foreground program is
spooling, buffering is useful in order to insure that it can be swapped and thus avoid conflicts
with the foreground program D.RTR used by the Spool Monitor to create spool file extents.
This conflict can also be avoided by using calls to REIO (re-entrant I/0) for input and/or output
(refer to the RTE Programming and Operating manual).

Example

IfIBUFR is specified with the buffer flag set to zero, to setup a spool file and request buffering:

DIMENSION JBUFR(16),[S5MP(3)
DATA IBUFR/W,W,?HFI,ZHLE.?HX 'W'Wp125,@1”1@,”.@,”;@1“96/
DATA [SHP/2HSM,2HP ,2H /

disposition flags all zero

CaLlL SPUPN(IBUFR,ISLUY) setup spool file
IF(ISLy Jew, A)GO TO 9ue
CaLL EXEC(23,ISMP,6,1S8LL) set flag to buffer file

6-11. CLEAR BUFFER FLAG

If spool file buffering has been specified, the buffer flag in the EQT table can be cleared with
this call.

Format

CALL EXEC(23,ISMP,7 ISLU)
ISMP Program name SMP.

ISLU Spool logical unit returned by setup request.

Example
Assume the buffer flag has been set; to clear the flag:

CALL EXEC(23,ISMP,7,ISLU)

6-9

SMP Calls

6-12. SPOOL POSITIONING

Data is read from or written to spool files one record at a time. The position of the record
currently being written or read can be retrieved with one SMP call; another call may be used
subsequently to reposition the file to the record position saved in the first call.

6-13. RETRIEVE RECORD POSITION

This call retrieves the current record position in the spool file. The information must be
retrieved by a subsequent call to RMPAR.

Format

CALL EXEC(23,ISMP,8,ISLU)
CALL RMPAR(IPRAM)

ISMP Program name SMP.
ISLU Spool logical unit returned by spool setup request.
IPRAM 5-word array containing pointers to record position:
word 1 =
contain an internal coding of the current position
word 2 =

of the referenced file
word 3 =

word 4 = not used but should be included in array

word 5 = not used but should be included in array

The information retrieved in IPRAM can be set into the three parameters ITRK, ISEC, and
IEXT used in the next spool call to (paragraph 6-14) position the disc at the indicated position.

6-14. CHANGE RECORD POSITION

This call positions the spool file at a particular record indicated by its track/sector address, the
location within the sector,and the extent number (if any) of the file. This information can be
retrieved by the previous SMP call (paragraph 6-13).

Format

CALL EXEC(23,ISMP,9,ISLU,ITRK,ISEC,IEXT)

ISMP Program name SMP.

ISLU Spool logical unit returned by setup request.

6-10

SMP Calls

ITRK

ISEC ITRK, ISEC, IEXT are words 1, 2, and 3 (respectively) from the RETRIEVE
RECORD POSITION call (see paragraph 6-13).

IEXT

In order to use this call, retrieve the location of the current record by a previous EXEC call and
call to RMPAR, and save this information so it can be used in the call to change the record
position. The information specified in this call must have been obtained in the current setup of
the file.

Example

This example illustrates both the record retrieval and positioning calls. To save the location of

current record (when data value is — 1); then reposition to the saved location (when data value
is —2):

DIMENSION IBUFR(16),1SMP(3),1P(S5),DATA(S)
DATA IBUFR/Q‘-.B.2HOU;2HTF.2HIL.RT.13.123.4D38;19.6tﬂj
DATA ISMP/2KWEM,2WP. ,2K / define IBUFR

[]

.
CALL SPOPN(IBUFK,ISLU) setup spool file OUTFIL
IF (ISLU €0, 9)GO TQ. 990

[]
22 READ(L,*) {(0ATA(L), IlliSQ\ read data from lu 1
IF (DATA L,EQ, 2)GO TO 50 terminate on zero input
IF (DATA ,NE, »1)GO TO 24

CALL?EXECfQS.ISMP.B.ISLU)<‘~_\\‘§\§\
CALL RMPAR(IP) get current record position

24 IF (OATA NE, =2)G0 7O 26
CALL EXEC(23,1ISMP,9,ISLULIP(I),IP(2),1IP(3)

26 WRITECISLU,202)DATYA \ reposition‘f.ilej

20@ FORMAT ("™ DATA " t%,. 5(610.3)) write data to spool file
60 T2 22

S (end-of-data termination)

6-11

SMP Calls

6-15. SPOOL CALL EXAMPLE

The program SPOLX illustrates an application of SMP calls. The program reads data from
logical unit 1 and writes it to a spool file. The data is monitored so that when a value indicates
a change of state, the next record location is saved and at a second value, the record is
re-written from that location. When there is no more data, then the file is closed, an end-of-file

is written to it and it is placed in the outspool queue. The file is saved and its contents can be
printed at any time.

The particular use for such an application is in situations when data comes in at a relatively
slow rate and where the data must be monitored so that only “good” data is written to a device.
If the process is monitored over long periods of time, this would make the output device
unavailable to other users during that time. This problem can be alleviated by writing to FMP
files or, as in this example, by outspooling to a spool-maintained file. The advantage of
spooling is that I/O can be handled by standard EXEC calls or formatted I/0 calls and the file
physically outspooled to the device at some later time.

The program is scheduled with:

RU, SPOLX,P1,P2,P3,P4
where
pl is the input logical unit

p2-p4 is the name of the data file to be spooled

When the program has completed, the results can be physically outspooled to the line printer
by running the following job:

s$JOB, DUMP
tLJ,S51,FILENM,,6
$EOQJ 51 is a dummy value following constraints of LU command
"
c
PROGRAM SPOL¥X,3,99
c
DIMENSION IRTHNBF(5),IPRAM(S),ISHP(D),I0CB(144)
DIMENSION DATA(S), ISET(16)
INTEGER FNAMWME(3)
c
EQUIVYALENCE (LU, IPRAN)
EQUIVALENCE (FNAME, ISET(3))
EQUIVALENCE C(ISECU.ISETC(6)),(ICR,ISET(?))
c
DATa ITYPE/3/.,IBCHK/0/
DATA ISHP/2HSH,2HP ,2H /
DATA ISET/0,0,2H0U, 2HTF, 2HIL, 2HRT,13.,12,403B.,10,
1 0,0,0,0,0.,0/
c
(¥

CALL RMPAR(CIPRAN)
IF(LU.EQ.O0)LU=1

6-12

SMP Calls

c
c
C CHECK SCHEDULE PARAMETERS FOR A FILE NANE
¢
IFCIPRAMCZ) . ER.0OXGD TO 12
FNANE=IPRAN(CZ)
FNAMEC2)=IPRAN(3)
FNAREC3)=IPRAN(4)
[N
£ CREATE OUTPUT FILE (10 BLKS - IT'LL BE EXTENDED IF NECESSARY)
c ALS0, PURGE OLD VERSION IF NECESSARY
c
i2 CALL PURGECIDCB, IERR,FNAME,ISECU,ICRD

ISIZE=10
CALL CREAT(IDCB, IERR,FNAME,ISIZE, ITYPE, ISECU,ICR)
IFCIERR.GE. OGO TO 195
WRITECLU,101)IERR
iotl FORMAT("/SPOLX: FILE CREATE ERROR:®"I35>
GO TO 999
15 CaLL CLOSECIDCB, IERER, 07

NO BATCH INPUT CHECK

TO FILE SPECIFIED ON CR 13, SC = "RT®

DRIVER TYPE 12 SIWNCE WE INTEND TO LIST ON L.P. LATER
ATTRIBUTES OF: SAVE, HOLD, WRITE ONLY

PRIORITY 1¢

OUTSPOOL LU: 6

{SEE DATA STATENENT FOR PRE-SET VYALUES)

[B o B or I o B BN o B v I v B w0 o }

CALL SPOPNCISET,LUSPOL)
IFCLUSPOL .GT. ¢ XG0 TO 2¢
WRITE(LU, 110)LUSPOL
i1o FORMAT("/XPOLX: SPOOL SET-UP ERROR, ABORT!®I4)

GO TO %99
c
C 1ISSUE TOP-OF~FORM TO THE QUTPUT
c
29 ICHUD=LUSPOL+110¢B
c
CaLl EXECC(3,ICHNBD,-1)
c
c
C HOW, START DATA INPUT., PROCESSING., AND OUTPUT TO THE SPOOL
c THIS SECTION WOULD BE REPLACED BY A MORE FUNCTIONAL
c SET OF CODE UNDER USUAL CIRCUMSTANCES
c
c IN THIS EXAMPLE WE WILL MAKE USE OF THE FIRST 0ATh ITENM IN THE
C LINE OF FIYE TO SIGNAL THE PROGR&M IN THE FILLOWING MANNER:
c
c = ¢ TERMINATE
C
c = -1 FLAG AS START OF ‘'CHAKNGE POINT’. E.G. THE TEST OR
c PROCESS IS BEING ALTERED AND IS NO LONGER IN
c EQUILIBRIUM. DATA IS GOOD FOR LOGGING ONLY, AND NOT
c GOOD FOR PERFORMANCE RESULTS FOR THE PROCESS.

6-13

NOOOOOOOOO
~

-,
o
o

¢

OGO MOO0O 00

L 2 v 2 o]

399
199

0123

SMP Calls

-2 OVER-WRITE DATA FROM 'CHANGE POINT’. E.G. THE LOGGED DATA

IS NO LONGER NECESSARY AND THE FILE SHOULD CONTAIN ONLY
GOOD PERFORMANCE DATA.

-3 THE OUTPUT DEVICE IS NOW AVAILABLE. START QUTPUT
IMMEDIATELY

WRITECLU,100)

FORMAT(/"/SPOLXY: ENTER 5 DATA VALUES: .")
READC(LU, *)X(DATACI), I=1,5)
IF{DATA.EQ.¢.>GD TO §S¢
IF(DRTA.NE.-1.3G0 TO 24

CALL EXEC(23,ISMP,8,LUSPOL>

CALL RMPARCIRTNBF)

ITRK=IRTNBF

ISEC=IRTNEBF(2)

IXTHT=IRTHBF(3)

GO YO 28

IF{DATA .HE.-2.)3G0 TO 25

CALL EXEC(23,ISMP,9,LUSPOL,TITRK,ISEC,IXKTNT)
GO TO 26

IF(CDATA.NE.-3.)G0 10 26

CALL E¥YEC(23, ISNP.S5S.,LUSPOL,&,10)
CALL EXEC(23,1ISHP,3,LUSPOL)

GO TOo 26
WRITECLUSPOL,200)ICNT,DATA
FORMAT(* ITEMS"I3* :",5(G10,3))
GO TO 22

CLEAN-UP

ISSUE TOP-OF-FORM ON OUTPUT

CALL EXEC(3,ICNWD, -1

CLOSE THE SPOOL AND PASS IT TO SHP

CALL EXEC(23,ISMP,4,LUSPOL)

TERMINATE

WRITEC(LYU,1%9)
FORMAT(®/SFOLX: DOKE!"/)
END

ENDS

6-14

SECTION Vi

FMP AND SM CONFIGURATION AND
INITIALIZATION

Summary Section VII

PAGE
FMP Configuration 7-1
FMGR Initialization 7-3
SM Configuration 7-4
GASP Initialization 7-9

FMP AND SM CONFIGURATION AND
INITIALIZATION [vui

7-1. INTRODUCTION

The Batch-Spool Monitor consists of two parts: the File Management Package and the Spool
Monitor. Each of these parts must be configured into the RTE system; the File Management
Package is required, the Spool Monitor only if spooling is to be used.

Configuration is done when the system is originally generated. There is no provision for
on-line loading. Refer to the RTE operating system manual for a complete description of the
off-line generation process. Refer to the appropriate RTE On-Line Generation Manual for a
description of the on-line generation process. The particulars of generating the File Manage-
ment Package and the Spool Monitor are described in this section.

In addition to configuring the two parts of the Batch-Spool Monitor, the program FMGR (part
of FMP) and the program GASP (part of SMP) must be initialized. Initialization of FMGR
assigns system tracks to D.RTR, sets up file space boundaries on the system disc, assigns
directory tracks, and, optionally, assigns a master security code.

Initialization of GASP sets up and initializes the files JOBFIL, SPLCON, and the spool pool
files.

Configuration of the Batch-Spool Monitor for RTE-II, RTE-III, and RTE-IV differs only in two
respects:

® Page requirements of RTE-III and RTE-IV force FMGR to a background memory size of 7K
words; 6K is needed for the program and 1K for the base page. RTE-II requires 6K words.

® Three programs in the Spool Monitor (SMP, EXTND, and SPOUT) are supplied with
different program types in RTE-II, RTE-III and RTE-IV. An additional module (SP.CL) is
supplied with RTE-IIT and RTE-IV.

Apart from these differences, configuration under the two systems is the same. Initialization of
FMGR and GASP are identical whether the system is RTE-II, RTE-III, or RTE-IV.

7-2. FMP CONFIGURATION

During the program input phase of system generation, the FMP programs are loaded into the
system.

7-3. PARAMETER INPUT PHASE

The parameter input phase of generation allows you to change the program type and/or
priority of the two programs supplied with FMP. These programs, FMGR and D.RTR, are

7-1

Installation and Initialization

assigned a type and priority in the NAM statement of each. If you want a different type or
priority, you may enter them when the system generator issues the prompt PARAMETERS.
The response is the form:

brogram name,type [, priority [,execution intervall)

execution interval is not applicable to either FMGR or D.RTR since these programs are never
scheduled by time intervals.

FMGR Parameters

FMGR is supplied as a disc-resident background program (type 3) with a priority of 90. It is
segmented into nine parts and requires 6K words of memory for the program and 1K for the
base page in RTE-III and RTE-IV.

D.RTR Parameters

Subroutine D.RTR is supplied as a foreground disc resident program (type 2) with a priority of
1. It requires a few words over 1K words of memory. If space permits, it is recommended that it
be made memory resident by changing the program type to 1 during the parameter input
phase of generation. This increases its speed. When D.RTR is memory resident, its boundary
may precede the page boundary by 200 (octal) words if no links are used, since there is a 128,
(2009 word buffer here.

If its priority is changed, it is essential that the new priority be higher than that of any other
program using the File Management Package.

Example

To change the FMGR and D.RTR parameters during system generation:

System generator prompt

PARAMETERS FMGR priority is increased

from 90 to 30; program type

is not changed from 3.

DeRTR, | = D.RTR is made memory re-
sident; priority is unchanged.

FMGR» 3,37

More program types are available in RTE-III and RTE-IV than in RTE-II. Refer to the
respective operating system manuals for complete lists of available program types.

Protecting Peripheral Cartridges
If you want to protect the FMP peripheral cartridges from alteration by user programs, you

may enter a change to an entry point when the generator issues the prompt CHANGE ENTS?.
To protect these cartridges, specify:

$PLSK,AB, |

7-2

Installation and Initialization

7-4. FMGR INITIALIZATION

The first time the system is started up after system generation, FMGR runs automatically. It
displays the message FMGR 002 and then issues the standard prompt (:). This is a request to
initialize the program by assigning specific system tracks to FMGR. Before it is initialized,
FMGR obtains all the available tracks on the system and auxiliary discs and assigns them to
itself. After it is initialized, it owns only those tracks specifically assigned to it. Thereafter,
each time the system is loaded from disc (booted up), it recovers these tracks automatically and
no further initialization is required. After initialization and each time the system is restarted
FMGR transfers to the WELCOM file — a file containing user specified commands (see -
Appendix E).

FMGR initialization is performed with the FMGR command IN used to initialize FMGR
cartridges (refer to paragraph 3-18 for a full description of IN). This command is specified in
response to the prompt FMGR 002 for system disc initialization, or in response to the prompt -
FMGR 003 for auxiliary disc intialization. In order to use FMGR, the starting track of the
FMGR tracks on the system disc must be assigned. The starting track must be at least 8 tracks
greater than the last track used by the system. This provides working tracks between the
system and FMGR. System size in tracks and sectors is reported at the end of the generation
dialogue. The system always starts at track 0.

If auxiliary disc tracks are not to be assigned to FMGR, the IN command should still be

specified in response to FMGR 003, but the cartridge reference number should be specified
as 0. '

The last track on the system disc is always assigned to D.RTR and is reserved for the FMGR
cartridge and file directories. If the auxiliary disc has been initialized to contain FMGR files,
then its last track is also assigned to D.RTR and is reserved for the FMGR file directories. If
more directory tracks are needed, these must be specified at this time. This is also the time to

specify a master security code for FMGR files, an ASCII identifier for the disc, and any bad
tracks.

NOTE

If you assign a master security code, remember it since it
cannot be recovered.

When a successful initialization is completed, FMGR assigns the tracks as specified in the IN
command parameters. FMGR then transfers to the WELCOM file which will not exist at this
time — so error FMGR — 006 is generated and control is passed back to the system TTY.

Example

To initialize the system disc for FMGR starting at track 50 and to initialize the auxiliary disc
with no tracks assigned to FMGR:

*RULFMGR - schedule FMGR
FMGR 282 < request system disc initialization
$INL,XX,=2,2,SDB2F M, 53 <+——— start at track 50; set master security to XX
FM3R 203 request auxiliary disc initialization
1IN, XX,~-3,3 do not assign auxiliary tracks to FMGR (cr=0)
FMGR-026 « FMGR fails to find WELCOM and transfers
: to the TTY system

If there is no auxiliary disc, FMGR terminates after the system disc initialization without
requesting auxiliary disc initialization.

7-3

Installation and Initialization

If you respond with a command other than IN to the prompts FMGR 002 or FMGR 003, the
error message FMGR 004 is issued. If you correctly enter IN but request a starting track that
is not available, FMGR 005 is issued. The first available track and sector is reported if you
enter ?? to expand the message.

7-5. SM CONFIGURATION

As with FMP configuration the Spool Monitor programs are loaded into the system during the
program input phase of system generation. The program type or priority of each program can
be changed during the parameter input phase.

Spooling Configuration

If spooling is used, additional memory is required. The Spool Monitor Program needs 3K words
of foreground disc memory. DVS43 and EXTND programs need 1.5K words of system and
foreground memory. If SPOUT is memory-resident, it requires .5K words of foreground. Each
spool EQ requires 34 words (15 EQT + 18 EQT +1 Interrupt Table). Each spool logical unit
requires 2 words.

Since spooling uses System Available Memory (SAM), enough SAM should be allocated during
generation to service spooling. The exact requirements depend on the application, but 1024
(decimal) words of SAM is a practical minimum for most systems. More SAM is required if
several programs use it simultaneously.

In addition, the Spool Monitor requires entries during the table generation phase. At this time,
class numbers are reserved for spooling and other functions, the logical unit switch table is
allocated, and resource numbers are specified. Then entries for the Spool Monitor driver

(DVS43) must be made in each of the three tables: EQT, Device Reference, and Interrupt.

During the partition definition phase of system generation, you must make sure that there is
sufficient System Available Memory to handle the SPOUT program outspool requirements.

7-6. PARAMETER INPUT PHASE

The Spool Monitor programs are loaded from tape with the priority and program type shown in
Table 7-1.

Table 7-1. Standard Program Parameters

PROGRAM TYPE
PROGRAM | PRIORITY
RTE-Il RTE-I RTE-IV
JoB 30 2 (foreground disc res.) 2 (real-time disc res.) 2 with TB2
GASP 30 19 (background disc res.)! 19 (background disc res.) 19 with TB2
SMP 30 2 (foreground disc res.) 18 (real-time disc res. with SSGA) | 18 SSGA,TB2
EXTND 10 1 (core resident) 17 {memory resident with SSGA) | 17,8SSGA,TB2
SPOUT 10 1 (core resident) 17 (memory resident with SSGA) | 17 with TB2
DvS43 — 0 (system module) 0 (system module) System Driver Area*
SP.CL — (not used by RTE-Il) 30 (SSGA module) 30 SSGA
TB2 = Table Area |l SSGA = Subsystem Global Area *With M option specified.

7-4 Change 3

Installation and Initialization

Optimal performance is provided by these system supplied program types. For some programs,
the type code may be changed during configuration if the following rules are observed:

JOB - For RTE-II must be foreground disc resident (type 2) to avoid competing for memory
with FMGR.

- For RTE-IIIl and RTE-IV may be any disc-resident program type as long as JOB does
not compete for the same partition with FMGR. If both JOB and FMGR are
background disc resident, there should be enough partitions to avoid competition.

GASP - For all versions of RTE should be background disc resident because GASP runs only
under operator control.

SMP - For RTE-II must be foreground disc resident (type 2).

- For RTE-III and RTE-IV should be real-time disc resident (type 18); it may be
background disc resident (type 19) but it must be able to access SSGA. Must not be
memory resident.

- For RTE-IV must have Table Area II access.

EXTND - For RTE-II must be foregound memory resident (type 1). DO NOT CHANGE THE
PROGRAM TYPE.

- For RTE-III and RTE-IV must be memory resident (type 17) with access to SSGA.
- For RTE-IV must have Table Area II access.

SPOUT - For RTE-II should be foreground core resident (type 1); it may be foreground disc
resident (type 2) but this slows the system severely.

- For RTE-IIT and RTE-IV should be memory resident (type 17); it may be disc
resident (types 18 or 19) but this will slow the system.

- For RTE-IV must have Table Area II access.
- For all systems, SPOUT and D.RTR must rot be in the same disc area.
DVS43 - For both RTE-II and RTE-III must be system resident (type 0). DO NOT CHANGE
THE PROGRAM TYPE. During the EQT phase of the RTE-IV generation, M must
be specified. This indicates that DVS43 does its own mapping.

SP.CL - For RTE-III and RTE-1IV only provides a spool communication area that must be in
the SSGA module (type 30). DO NOT CHANGE THE PROGRAM TYPE.

Example

Change JOB and SMP to memory resident programs in RTE-III:

PARAMETERS ~—

System generator prompt
JOR 1

SMP, 17 memory resident with access to SSGA

7-5

LB

Installation and Initialization

7-7. TABLE GENERATION PHASE

During the system generator interaction, the first questions ask for system resource
allocation:

OF I/O CLASSES? 2 class numbers; one for outspooling and
one for communication with SMP, in
addition to any numbers required by the
rest of the system.

OF LU MAPPINGS 2+n logical unit switch table entries; one for
the inspool logical unit and one for the
outspool, plus one each for the maximum
number of LU commands expected in any
job.

OF RESOURCE NUMBERS 4 resource numbers; one for logical unit
locking during outspooling, two for lock-
ing files JOBFIL and SPLCON, and one
for resource waiting, plus any numbers
required by the rest of the system.

Next, entries in the three tables must be set up for spooling. At least six entries are needed in
each of the tables EQT, Device Reference, and Interrupt. The EQT table entries for spooling
are entered:

EQT nn? v M specified for RTE-IV only
xx,DVS43,X=18,M

nn is the number of the EQT entry
xx is a unique unused select code in the range 10 through 77 (octal)

DVS843 is the spool driver which must have an EQT extension of 18 words (X = 18).
M specifies that DVS43 does its own mapping (RTE-IV only).

When the EQT entries are complete, the EQT entry number for each entry must be specified in
the Device Reference Table:

lu =EQT?
nn

lu is the logical unit number to be associated with nn
nn is the EQT entry number of an entry for which DVS43 was specified.

Finally, the Interrupt table entries are made in the form:
xx , EQT,nn

xx is the select code specified for the EQT entry nn.

7-6

Installation and Initialization
Example
To enter the system resources and table entries for six spool files:

w8 OF 1/0 CLASSES?
16 -

2 for spooling + 14 for rest of system

% OF LU MAPPINGS?
8 total of 8 logical unit switches

»#% OF RESOURCE NUMBERS?
32 4 for spooling + 28 for rest of system

BUFFER LIMITS (LOW, HIGH)?
190,4m0

« EQUIPMENT TABLE ENTRY

EQT 207
72,DVS43,X=18,M

EQT 217
73,DVS43,X=18,M

EQT 227
74 ,DVS43,X=18,M
+ 6 entries in EQT table for DVS43.

EQT 237 The M is specified in RTE-1V only. This indi-
75,DVS43,X=18,M cates that DVS43 does its own mapping.
EQT 247

76,DVS43,X=18,M

EQT 257
77,DVS43,X=18,M

EQT 267

/E

DEVICE REFERENCE TABLE

-7

Installation and Initialization

51 = EQT u? 1
20 « SPOOL LU

52 = EQT #7

21 « SPOOL LU

53 = EQY 47

22 « SPOOL LU

s 6 spool logical units
54 = EQT #?
23 « SPOOL LU

55 = EQT #7?
24 « SPOOL LV

56 = EQT #?
25 « SPOOL LV

« INTERRUPT TABLE

72,EQT7,20

74,€£QT,22 L
75,EQY,23 6 spool entries in interrupt table
76,EQY,24

/€

Note that although select codes are assigned (72 through 77 in example), no I/0 devices should
be present in these slots.

7-8. PARTITION DEFINITION PHASE

System Available Memory is defined during the partition definition phase of generation
(RTE-IID) or after foreground memory resident program definition (RTE-II). In both systems,
opportunity is provided at this time to increase the allocation for System Available Memory.

One consideration is that the SPOUT program attempts to keep four requests in System
Available Memory for each device to which it is outspooling. For this reason, enough System
Available Memory must be provided to handle at least four of the longest expected outspool
records. To calculate this space, assume a maximum record size of 68 words plus a 10 word
header for each record. Thus, 78 words times 4 records = the minimum System Available
Memory required by SPOUT.

The dialogue for increasing System Available Memory is:

RTE-1II RTE-III RTE-1V
SYS AVMEM mem loc SYS AV MEM: size WORDS SYS AV MEM: xxxxx WORDS
CHANGE SYS AVMEM? 1ST PART PG xxxxx
new loc 1ST DSK PG mem loc CHANGE 1ST PART PG?
BIG BOUNDRY mem loc CHANGE 18T DSK PG?
CHANGE BG BOUNDRY? new loc
new loc SYS AV MEM: new size WORDS

To increase System Available Memory, you may raise the low address of the background
boundary (RTE-II) or of the first disc-resident program (RTE-III and RTE-IV).

7-8

Installation and Initialization
7-9. GASP INITIALIZATION

The first time GASP is run it initializes the spool system; thereafter it displays the initializa-
tion dialogue only if the spool system was removed by the GASP DA command or has been lost
for any other reason. When GASP is scheduled, the scheduling program checks whether the
file JOBFIL exists and if it does, the standard GASP prompt is issued. If not then the GASP
initialization dialogue is started.

The purpose of GASP initialization is to set up the spool directory files JOBFIL and SPLCON,

and the spool pool files. (See Appendix C for format and meaning of records in JOBFIL and
SPLCON).

GASP is initialized by responding to the following prompts.
MAX NUMBER OF JOBS, JOB FILE DISC?

The response to this question establishes the definition of JOBFIL. Each job entry
requires a 16-word record in JOBFIL. These job records are preceded by 16 records of job
queue information (1 word/job) and two general information records. The maximum
number of jobs allowed by the queue is 254 (16 records times 16 words = 256, less 2 words
for a count and resource number). If the maximum number of jobs you expect is over 126,
you might as well enter 254 since little disc space is saved unless you have fewer than 126
jobs.

The second part of the question “JOB FILE DISC” asks you to enter the cartridge
reference number of the cartridge used for JOBFIL and SPLCON files. You should choose
a cartridge that:

® is always in the system (a fixed platter)
® you won’t want to pack unless you can shut down spooling while you pack.

Also, if you want to avoid contention for the disc, you can choose a cartridge that is used
only for spooling. In order to save FMGR termination time, any cartridge containing
JOBFIL should be the first cartridge in the directory on the system cartridge. Further,
when a cartridge is used both for spool and user files, the user files may be interpersed
with spool file extents. When the spool system is finished, the extents are purged from the
disc. In this case, the user files created during execution of the job might have to be
repacked (see PK command, paragraph 2-60) to recover full use of the cartridge.

CAUTION

Be certain that any cartridge specified for spooling files is
currently mounted (see paragraph 2-55).

NUMBER OF SPOOL FILES (5 TO 80)?
SIZE OF SPOOL FILES (IN BLOCKS)?

A number of considerations affect the responses to these questions:

a) Bearin mind that any job inspooled from a device will be stored in one of these files.
It makes no sense to store (typically) 30 or 40-line jobs in a 500-block file.

79

Installation and Initialization

b) Nor is it useful to have a small number of files, thereby limiting the number of such
inspooled jobs. Allow enough spool pool files to accommaodate the anticipated inspool
load and outspool load, and match this (+ the anticipated load of inspooled user
files) to a reasonable number of allowable jobs. Note that the maximum number of
jobs is limited both by the number of available pool files and by the number of
available job slots in JOBFIL.

¢) If the files are small, extents are automatically created as needed for outspooling.
The price is additional overhead and a directory peppered with extent entries.

The proper balance between size and number can be obtained by planning disc and
directory resources as follows:

given: N = available disc tracks for spool files
D = # of FMP directory entries available on the disc (about 380 per
directory track)
S = size of spool files (blocks)
P = number of spool pool files on the disc

Plan the disc and the directory to have the same capacity:
The number of extents that will fit on the disc:

N * 48

-P (for 7900 disc unit)
S

should equal the number of extents that can be accommodated in the directory, D. Or,
having picked P on the basis of the possible # of jobs and outspools, find their size from:

N * 48
§= —
D+P
Suppose there are 180 available tracks and directory for 300 entries, if you require 20
spool files, their size should be:

180 * 48
Ss= — = 27 blocks
300 + 20

You might choose 24 blocks (half a track) for aesthetic reasons.

NUMBER, LOCATION OF SPOOL FILES?

Enter the number of spool files to be placed on a particular cartridge in the form nn,cr
where nn is the number of files and cr is the cartridge reference or logical unit number.
This prompt is repeated until you enter E. The total number of spool files allocated to all
cartridges should equal the number of spool files specified in response to the second
prompt. If spool files are spread over several discs, the size calculation for the prior
response should be made for each disc used.

If a GASP 2 error is encountered after ending the responses to this question, the question
will be repeated with all previous responses to the question being ignored by GASP.

7-10

Installation and Initialization

MAXIMUM NUMBER ACTIVE AND PENDING SPOOL FILES
ENTER OUTSPOOL DESTINATION LU

The responses to these two questions define the outspool directory file SPLCON. Each
outspool logical unit establishes an 8-record, 16-word per record, queue in SPLCON with

a maximum of ten logical units. Each outspool logical unit queue can accommodate up to
63 files. '

Do not use logical unit 1 as an outspool device.

The spool system contains a Queue depth with each outspool LU. This is the number of
requests SPOUT attempts to keep in the queue for each LU it is outspooling to. The number
may be between 1 and 15 inclusive, and is entered as the second parameter to the

“ENTER OUTSPOOL DESTINATION LU”

question. If there is no entry or zero is entered 4 is used. The number entered here should
reflect the relative time it takes to find and extent vs. the time it takes to process a line of
output to the given LU. As guide lines we might recommend:

punch - 2

2607 printer - 3
2767 printer - 6
mag tape - 15

Too big a number will cause needless use of buffer memory. Too small a number will cause
short pauses in output while the system searches for extents.

Each entry for an active or pending outspool requires one 16-word record, with a
maximum of 256 allowed. An entry is opened under the following conditions:

e A file is sent to be outspooled

e A spool pool file is opened for outspooling

e A user file is being processed

e A spool pool file is used for inspooling or processing

® LU equivalence is made to a file

In other words, an entry is used anytime a disc file is used by the spool system.

The important points are:
a) An entry is required for each pending job in a spool pool file.

b) An entry is required for each outspool, be it in a spool pool file or a user file. Heavy
usage of outspooling could detract from availability of entries for jobs and therefore
from full use of JOBFIL. (Why allow a large number of jobs and not enough
SPLCON entries?)

A rule-of-thumb would be to respond with a number about 1.5 or 2 times the number
of spool pool files. It would be better, however, to anticipate the loading of user files

onto the spooling process, in order to allow sufficient SPLCON entries to accommo-
date them.

7-11

Installation and Initialization

The prompt asking for an outspool logical unit is repeated until you type E to
terminate. You should enter as many devices as you expect to use for output and
then type E. The logical units should correspond to actual devices since the Spool
Monitor only writes output to a device specified here. Logical unit 6, the list device,
must always be entered and it is most efficient to enter it first.

After a successful initialization, GASP terminates with the message:
END GASP
The next time GASP is scheduled, it issues the standard GASP prompt (1) or (A\).

It sometimes happens during GASP initialization that a duplicate file name is found for either
SPLCON or JOBFIL. In this case, GASP issues the message:

DUP FILE NAME filename. DEINITIALIZE?

You may then answer YES so that all spool files will be closed. You may re-initialize by
running GASP again. Deinitializing may take considerable time if multiple cartridges are
currently mounted.

CAUTION

Be certain that all cartridges required by the spool system are

mounted (See MC command, paragraph 3-55) before running
GASP.

Example

The following example is a typical initialization where a maximum of 20 jobs are expected:

*0ON,GASP

MAX NUMBER OF JOBS,JOB FILE DISC? 20,13
NUMBER OF SPOOL FILES (5 TO 86)>7 40
SIZE OF SPOOL FILES (IN BLOCKS)? 24
NUMBER,LOCATION OF SPOOL FILES? 40,13
NUMBER, LOCATION OF SPOOL FILES? E
MAXIMUM NUMBER ACTIVE AND PENDING SPOOL FILES? S0
ENTER OUTSPOOL DESTINATION LU 6 .
ENTER OUTSPOOL DESTINATION LU 4

ENTER OUTSPOOL DESTINATION LU E

END GASP

7-12

APPENDIX SECTION

APPENDIX SUMMARY

Appendix Title Page
A HP Character Set A-1
B FMP Error Codes B-2

FMGR Error Codes B-5
GASP Error Codes B-10
Spool Errors B-14
C Standard Logical Units C-1
Standard Driver Types C-1
Data Control Block Format C-2
Cartridge Directory Format C-4
File Directory Format C-5
JOBFIL Format C-7
SPLCON Format C-9
Disc File Record Formats C-12
Non-Disc Record Formats C-14
D Cartridge Formatting D-1
E FMGR Copies E-1
F Global Equivalence Table F-1

HP CHARACTER SET

APPENDIX

A

Effect of Control key * L
TN

[— 000-0378 —s-}e— 040- 0778 —#-|4—100-1378

140-177B—>|

brgr———— 0 0 0 1 1 1
b6 pg—————— %4 0, ‘o ' o 0, 1o 1
BITS COLUMN

bg by by by| ROW ¢

olo|o|o 0 NUL | DLE sP 0 @ P ' P

010101 1 SOH DC1 ! 1 A Q a q

ofof1{0 2 STX DC2 o 2 B R b r

olof1]1 3 ETX DC3 # 3 c s c s

o{1/00 4 EOT DC4 $ 4 D T d t

oj1101{1 5 ENQ NAK % 5 E V) e u

0111110 6 ACK SYN 8 6 F \") t v

ofl1]1]1 7 BEL | ETB ’ 7 G w g w

1/0(0(0 8 BS CAN { 8 H X h X

110{01|1 9 HT EM) 9 | Y i Yy

1{of1]o0 10 LF SUB . J Z i z

1jo]1]1 11 vT ESC + K i K {

1/1/0]0 12 FF FS , < L \ I :
1{1]of1 13 CR GS - = M] m }

111l1]o 14 SO RS . > N A n ~

1111 15 s us / ? o _ o DEL

Ne————
32 CONTROL Unshifted
pshi
CODES Lower Case
| «—— 64 CHARACTER SET ——>|
-+——— 96 CHARACTER SET >
-— 128 CHARACTER SET >
EXAMPLE: The representation for the character K’ {column 4, row 11) is.
b bg bs bg b3 by by
BINARY 1001011
N “—y—
OCTAL 1 1 3
* Depressing the Control key while typing an upper case letter produces
the corresponding control code on most terminals. For example,
Control-H is a backspace.
9206- 1A

A-l

Appendix A

g1 -90Z6

BN UONSAND ¢ 220000 00v.€0 €9
uey| Joleasn < 90000 000.€0 29
slenb3 = $/0000 00v9e0 19
UBY] $S87 > ¥.0000 0009€0 09
UolOIWAS ¢ £20000 00¥SE0 6S
uo|on 2.0000 000G€0 8S
6 120000 00vyE0 LS
8 020000 000vE0 9s
ya 290000 0oveeo SS
9 990000 000€€0 S
sisqunn ‘siBig S 90000 00v2€0 €5
4 b 90000 000280 25
€ £90000 [60)74 230] LS
4 290000 000LED 0S
i 190000 00v0e0 (514
0 090000 0000€0 14
WeIS 'yse|s / 250000 00v£20 Ly
JuI0d jewidaq ‘pousd . 9S0000 000420 4
yseq ‘snuipy ‘usydAH - SS0000 00v920 Sy
B|IPOD) 'BUWO)D ¢ 50000 000920 144
snid + £50000 00vSz0 34
JBIS 'YSualsy - 250000 000520 414
sisayjusied (Butsolo) by (150000 00vy 2o 3%
sisayiuased (Buuado) ya) 0S0000 000v20 oy
a2y andy ‘eydossody , /%0000 00v£20 6€
ubis puy ‘puesiadwy k) 9v0000 000€£20 8e
W81 % S¥0000 oovezo LE
ubig Jejjoq $ 0000 000220 9€
ubig punod ‘ubig JsequinN # £0000 00v 120 Se
WEBW UOIBIOND « 2v0000 000420 ve
Utod UOHBWR(OXT i L0000 00t 0co %)
Juelg ‘eoedg 0v0000 000020 ce
aiig by | ehg ye onjeA
Bujueoy Je10848Y40) 190Q
son|eA 18120

gnoany ‘aleleg Y 730 121000 00v£.0 121
Joresedas wun F sn ££0000 00rL10 Le
Jojeledag pioday Sy sy 920000 000410 og
Iolesedag dnoio 5 $9 SE0000 00v910 62
Jolesedag oty S, S4 ¥€0000 000910 8z
odeos3 5 0s3 €££0000 00¥510 12
ainsang & ans 2£0000 000510 oz
Wnipap o pu3 W W3 180000 00pY 10 sz
|ooue) N NYO 0£0000 000¥ L0 ve
%00l UOISSIWSURI] JO PuU3 g 813 £20000 00VEL0 €2
aIp| SNoUOIYOUAS] NAS 920000 000E10 22
abBpajmounoy annebaN N MVYN 520000 00v210 1z
(3dvl) ¥ 104u0D 8omeq % v0a 20000 000240 02
(340-X) € lonuo) s2maQg fa €00 £20000 00110 61
(3dv1) 2 105u0D 92iA8Q %q 20oa 220000 000110 8l
(NOX) | 100D 8018) +10a 120000 004010 It
adeos3 yun eleq b 3a 020000 000010 9l
195 JsloBIBYD ul s Ig 1S £10000 00v200 Sl
aleulally nO WS % oS 910000 000200 vi
wnjay abeuse) Le} 40 S 10000 00v900 el
posJ wio4 3 e 10000 000900 2t
uoleINQe] [BOIIBA 4 1A £10000 00v500 b
poa4 aur 3, 4 210000 000500 ol
uoneinge | (eluoZloH ._.I 1H 1 L0000 00¢+00 6
aoedsyoeg % se 010000 000500 8
[eubis uonualy '(leg U gEL:] 100000 00700 L
9Bpa|MOUNOY i MOV 900000 000€00 9
Ainbug =) ON3 $00000 001200 S
uoISSILSUEI] JO PUT = 103 #00000 000200 v
xo Jo pu3 % X13 £00000 00v100 g
X8 |0 UBIS % X1S 200000 000400 z
Buipeay jo LEIS s HOS 100000 00v000 |
INN " NN 000000 000000 0
oihg whiy | eukg yel onjeA
Bujusoy _o_zna._o ojuoweup 198Q
sonjep 18390

'$9P00 J8I0BIBYD BIB 9/} YBnoIyl Op SONIBA [BI100 U] '$8POD [01Ju0d 8Je 4/ | Pue /€ ubnoiyl g sen(ea [Bjo0 ay|

(‘ueyo s ul 08z ale siq Awed ayl) 'Z0Sov0o uiened [B1oo ayy s8onpoid | gy, 'eldwexa
104 *SAN{BA OM] BY) PPE 'DJOM BLIBS 8Y) Uj S1810BJELD OM] JO Wiled 8U) puly 0) '019Z de S1ig 8y} JO 152 3Y) pue (81Ag 1ybu) 9 o)
010 (914Q 431) L 01 g SHQ $81AN220 J31OBIBYD 8Y) USUM PIOM UG 9| B Ul SLIdlied [B100 ay) moys suwnod aiig 1ybu pue ys| sy

SWILSAS HIINAWOD HOd 13S HILOVHVHI QUVIIVC-LLITMIH

‘80in8p INOA 10}
JENUBW 8yl JINSUO)) (JUO} UBIABUBPUEDS 10 188 Bumelq sur 'sidwexs J0j) ey Siyl Ul UMOYS 9SOU) WO S1810BIBYD dlBU.IS)E
sINjIsqQNs ABW $80IABP BWOS "£/61-2€'EX SNV PUB (|IDSYSN) 8961-t'€X SNV JO Wonejuswaidwt SdH Smous 8|ae) siy|

A-2

Appendix A

19XOBIQ 18| B O} PALSAUOD 8q PINOM 9JEIG Y3| 8yl ‘sidwexd o4 (v
ybnoiyy @) 1810B4BYS 8seD Jaddn Buipuodsa.0d 8yl O (~ ybnoiyl \) SIOqQuIAS pUB S18}i8] 9SBD JaMO| YIysdn S8IIABD BWOSs

‘MOLIE 0BG PUB MOLE dn ay] ajniisNs S80IAap SWOS ‘PIARIASIP I Bullapun PUB 18183 8Y) "A|[BULION,
‘aoeds 10 @, ‘.. se pakeldsip 8q Aew 8}8|8Q¢

‘[eUILLIS)
OrOg B UO ARIGSID BU) SIB3YD [, AQ PAMOI0) DST BIdusexa 104 '80usNbas |0AUOD 1B10adS € JO J31JBIBYD 1Sy BU) SI adeds3,

‘aoeds 10 ‘D), . SE S8P02 |04U0D Jle AB|dSip sa0IABp awoS pasoudl Jo ‘paIndexa ‘pakeldsip

SI 8p02 [0JIUOD BY) |l BUILIBIGP WISAS JNOA Ul IEMPIBY DUE 3JEMYOS Y| "UOleluasaidal Aeidsip piepuelS 8yl 1 Slyl, S9ION J1 -90Z6
»MOLY ¥Oeg 'aulsapun - 2£1000 00v.S0 S6
s8UIIBAQ 'apiiL ~ 971000 000420 9zl »MOLY dN IXBRWNINY ‘18Ie) L ov 9€1000 000250 v6
so0eig (Buisopd) Wby { SZ1000 00920 4 oe1g (Buisold) wbiy { S€1000 00v9S0 £6
$3UIT {BOILBA i 21000 000920 vei JUB|S 9S13A3Y 'yse|sxoeg AN ¥€1000 0009s0 26
s8orig (Buiuado) ya } €21000 00vS20 €l 1oxoeig (Buuado) yo 1 €€ 1000 00vSS0 16
z 221000 000520 ceh Z 2€1000 000550 06
A 121000 00v¥.0 ¥4 A L€1L000 00 S0 68
x 041000 000%20 ozt X 0E 1000 000vS0 88
m 291000 00veL0 611 M 221000 00vES0 /8
A 991000 000€20 8Ll A 921000 000€S0 98
n $91000 00v2.0 Ll n S21000 00veso S8
1 ¥91000 000220 9Ll 1 ¥21000 000250 v8
s £91000 00v 120 St S €21000 00v 450 €8
1 291000 000120 rLl H 221000 000450 43}
b 191000 00v0.0 €Ly o} L2 1000 00¥0S0 18
d 091000 000020 48 d 021000 000050 08
o 251000 00v290 LLL s1on87 ENdeD) 0 211000 00v.¥0 6.
$5491197 ase)) 19m07 u 951000 000290 oLt “eqeydly asen iaddn N 911000 000.%0 8.
w SS1000 00990 601 W S11000 00v9t0 L
| #5000 000990 801 1 711000 0009¥0 9.
b £€51000 00v590 201 N €11000 00vS¥0 S
! 251000 000590 901 r 211000 000S+0 v
! 151000 00v¥90 SOl I 1 11000 00vvr0 €L
y 051000 000v90 v01 H 011000 000%¥0 2L
6 21000 00t£90 €01 2} 201000 00vEYO 1L
) 9v 1000 000£90 201 4 901000 000EV0 0L
CJ S 1000 00290 101 3 S01000 00vZr0 69
p ¥ 1000 000290 001 a ¥01000 0002¥0 89
0 £v1000 00v190 66 o) £041000 00v %0 .9
q 21000 000190 86 g 201000 000170 99
e %1000 00090 16 v 101000 00v0r0 S9
5IUB0Y BABID . 0v 1000 000090 96 v [e1215WWo) ©)] 001000 0000t0 ¥9
elig Wby elAg Yo anjeA oig by | aiig yo enjeA
Bujusen 1e)0818Y4D jlewdeq Bujueon Jey0818Y) swseq
san|BA 18120 sanjeA 9190

A-3

Appendix A

RTE SPECIAL CHARACTERS

Mnemonic

Octal Value

Use

SOH (Control A)
EM (Control Y)
BS (Control H)

EOT (Control D)

1
31
10

Backspace (TTY)
Backspace (2600)

Backspace (TTY, 2615, 2640, 2644,
2645)

End-of-file (TTY 2615, 2640, 2644,
2645)

9206-1D

BATCH-SPOOL MONITOR
ERROR CODES|[&

When the Batch-Spool Monitor is active, numbered error codes and unnumbered error
messages may result from improper program calls or command entries. The numbered error
codes issued by the Batch-Spool Monitor are either positive or negative. In general negative
error codes are a result of improper interface routine (FMP) calls. Positive error codes result
from improper commands to the interactive programs FMGR or GASP. However, since these
programs often use interface routines to perform the command functions, a negative code can
result from a FMGR or GASP command.

The unnumbered error messages result from operator abort requests, job related conditions,
and system commands (such as LG) entered through FMGR.

B-1. FMP AND FMGR ERROR CODES

A FMGR error causes a transfer to the log device whenever operator intervention is needed to
correct the error. FMGR remains in control and is not aborted unless a batch job is currently
active and the severity code for the job is less than 3. When control transfers to the log device
and the terminal at which FMGR was scheduled is not the same as the log device, the terminal
is no longer in control and all input must be made from the log device. As many commands as
desired may be entered from the log device followed by a TR command without a namr. The TR
command (refer to paragraph 2-41) returns control to the statement following the erroneous
statement.

Since many FMGR commands use FMP interface routines, negative errors can be generated
when using the FMGR operator commands. For example, the :ST command uses CREAT to
create the namr2 file and READF and WRITF to transfer data to that file.

Interface routine error codes (negative codes) are always returned in the A-register following a
call as well as in the error return location.

A complete list of all FMGR and FMP error codes can be requested from FMGR by entering
?2,99. The list is printed on the list device. FMP errors are described in detail in Table B-1; a
matrix of these errors and the routines that may cause them is provided in Table B-2. Table
B-3 describes the FMGR errors and lists the commands that may cause them.

B-1

Appendix B

Table B-1. FMP Error Codes

ERROR
CODE

MESSAGE

MEANING & CORRECTIVE ACTION

000

(no error)

none

-001

DISC ERROR

The disc is down; try again and then report it
to the system manager of facility.

-002

DUPLICATE FILE NAME

A file already exists with specified name;
repeat with new name or purge existing file.

-003

BACKSPACE ILLEGAL

Attempt was made to backspace a device (or
type O file) that cannot be backspaced;
check device type.

-004

MORE THAN 32767 RECORDS IN A
TYPE 2 FILE

Attempt was made to create a type 2 file with
too many records or record size too large,
check size parameter.

-005

RECORD LENGTH ILLEGAL

Attempt to read or position to a record not
written, or on update to write an illegal record
length; check position or size parameters.

-006

CR OR FILE NOT FOUND OR NO
ROOM

Attempt to access a cartridge or file that
cannot be found or which has no more room;
check the file name or cartridge number, if no
more room on cartridge try another, or de-
crease file size.

-007

BAD FILE SECURITY CODE

Attempt to access a file with no security code
or the wrong code; find out the correct code
and use it or do not access file.

-008

FILE OPEN OR LOCK REJECTED

Attempt to open file already open exclusively
or open to eight programs or cartridge con-
taining file is locked; use CL or DL to locate
lock; if file being packed, check if spool shut
down.

-009

ATTEMPT TO USE APOSN OR
FORCE TO 1 A TYPE 0O FILE

Type O files cannot be positioned with
APOSN or be forced to type 1; check file
type.

-010

NOT ENOUGH PARAMETERS

Required parameters omitted from call; enter
the parameters.

-011

DCB NOT OPEN

Attempt to access an unopened DCB; use
CREATE, or OPEN to open DCB; check for
errors.

-012

EOF OR SOF ERROR

Attempt to read or write or position beyond
the file boundaries; check record position
parameters, result depends on file type &
call.

-013

DISC LOCKED

Cartridge is locked; initialize cartridge if not
initialized, otherwise keep trying.

B-2

Appendix B

Table B-1. FMP Error Codes (Continued)

ERROR
CODE MESSAGE MEANING & CORRECTIVE ACTION

-014 DIRECTORY FULL No more room in file directory; purge files and
pack directory if possible, or try another
cartridge.

-015 ILLEGAL NAME File name does not conform to syntax rules;
correct name.

-016 ILLEGAL TYPE OR SIZE=0 Wrong type code supplied; attempt to create
or purge type 0 file or create 0O-length file;
check size and type parameters.

-017 ILLEGAL READ/WRITE ON TYPE 0 Attempt to read/write or position type O file

FILE that does not support the operation; check
file parameters, from FMGR check namr.

-020 ILLEGAL ACCESS LU LU number specified in LU or CS command
(see paragraphs 2-51 and 4-10) must be a
positive logical unit number; correct com-
mand entry.

-021 ILLEGAL DESTINATION LU LU number specified must be a logical unit
number that was allocated by GASP.

-022 NO AVAILABLE SPOOL LU'S No spool logical units currently available.
Re-run after spool LU becomes available.

-023 NO AVAILABLE SPOOL FILES No spoo! files currently available. Re-run
after spool file becomes available.

-024 NO MORE BATCH SWITCHES LU switch table full; size of switch table
created at system generation not adequate.

-025 NO SPLCON ROOM SPLCON full. May occur when spool system
is competing with programs running out-
side batch and using their own spooling
files and SMP.

-026 QUEUE FULL OR MAX PENDING Self-explanatory. Re-run when space

SPOOLS EXCEEDED becomes available.
-099 D.RTR YO REQUEST D.RTR's tracks have been released or car-
REJECTED BY EXEC tridge mounted that has not been initialized.

Initialize disc.

-101 ILLEGAL PARAMETER IN Possible operator error; recheck previous
D.RTR CALL entries for illegal or misplaced parameters.
-102 ILLEGAL D.RTR CALL Lock not requested first or file not opened
SEQUENCE exclusively; possible operator error such as
: removal of cartridge without DC command.

Except for -10 and -11, any of these error codes can be returned from FMGR.

The matrix in Table B-2 shows which interface routines can be the cause of each error. For
example, error -08 can occur as a result of the PURGE, OPEN, or NAMF routines. Since
these routines can be called by FMGR, the matrix also indicates the errors that result in a
transfer to the log device (X) and those that do not not (0).

Change 1 B-3

Appendix B

Table B-2. Relation Between FMP Error Codes and FMP Calls

Code

Message

CREAT

PURGE

OPEN

CLOSE

READF

WRITF

LOCF

*
APOSN

RWNDF

POSNT

¥
FCONT

NAMF

POST

X
IDCBS

DISC ERROR

X

X

X

X

X

0

X

X

-002

DUPLICATE FILE NAME

X

-003

BACKSPACE ILLEGAL

-004

MORE THAN 32767
RECORDS IN A TYPE 2 FILE

-005

RECORD LENGTH ILLEGAL

-006

CR OR FILE NOT FOUND
OR NO ROOM

-007

BAD FILE SECURITY CODE

-008

FILE OPEN OR LOCK
REJECTED

-009

ATTEMPT TO USE APOSN
OR FORCE TO 1 A TYPE 0
FILE

*
-010

NOT ENOUGH PARAM-
ETERS

*011

DCB NOT OPEN

-012

EOF OR SOF ERROR

-013

DISC LOCKED

014

DIRECTORY FULL

-015

ILLEGAL NAME

-016

ILLEGAL TYPE OR SIZE=0

-017

ILLEGAL READ/WRITE ON
TYPE O FILE

X - transfer to log device (FMGR)

0 - no transfer to log device

* - error never returned to FMGR or routine never called by FMGR

B-4

Table B-3. FMGR Error Codes

Appendix B

ROUTINE
ERROR ERROR MEANING AND OR
CODE MESSAGE CORRECTIVE ACTION COMMAND

000 FMGR-BREAK Informative message; no general
error.

001 DISC ERROR nn Disc associated with nn is general
down; report problem to
system manager.

002 INITIALIZE LU 2! Request for IN command to Initialize
initialize system disc (lu 2); FMGR
enter command.

003 INITIALIZE LU 3! Request for IN command to Initialize
initialize auxiliary disc (lu 3); FMGR
enter command.

004 ILLEGAL RESPONSE TO 002 OR Command other than IN Initialize

003 entered in response to 002 FMGR
or 003; enter IN.

005 REQUIRED TRACK NOT AVAIL- First track specified in IN Initialize
ABLE RELATIVE TAT POSITION not available; re-enter IN FMGR or
REPORTED - TAT position® with first available track MS

report in message. If from
MS, TAT position not
reported.

006 FMGR SUSPENDED FMGR suspended itself; MR, ST, DU
ready device and enter GO,
FMGR

007 CHECKSUM ERROR Checksum error on paper MR, ST, SA,
tape, or file is not binary DU
(type 5 or 7); check type.

008 D.RTR NOT LOADED Program D.RTR not found in Initialize
system; load D.RTR as per- FMGR
manent program.

*009 ID-SEGMENT NOT FOUND RP was used to deallocate RP
or reassign ID segment to
program being restored;
system looks for blank ID
segment.

*Does not cause transfer to log device.

'TAT position is track number on LU 2, on LU 3 it is track on LU 3 plus all tracks on LU 2.

B-5

Appendix B

Table B-3. FMGR Error Codes (Continued)

ERROR
CODE

ERROR
MESSAGE

MEANING AND
CORRECTIVE ACTION

ROUTINE
OR
COMMAND

010

INPUT ERROR .
(if syntax check failed, command up
thru error is displayed followed by ?7)

Syntax error in statement;
look for missing colon (batch
input) or extra colon (inter-
active), undefined com-
mand, error in namr sub-
parametsrs, command too
long, etc re-enter command.

Syntax
Check

If AB corimand, no iob was
active.

AB

011

DO OF, program, 8 ON NAMED
PROGRAM

Attempt 10 pack disc to
which named programs
still allocated; RP,,program
or OF program,8 to remove
programs.

PK

012

DUPLICATE DISC LABEL OR LU

Attempt to mount cartridge

~ with label or logical unit of

mounted cartridge; re-enter
with another label or lu, or
dismount duplicate car-
tridge.

MC

013

TR STACK OVERFLOW

More than 10 nested TR
commands; correct coding.

R

014

REQUIRED ID-SEGMENT OR
ID EXTENSION NOT FOUND

Program specified for which
no ID segment found;
check program name or
load program.

SP, RP

MS assigns tracks to EDITR
which does not exist. RP the
EDITR.

MS

Blank segment not found for
program being restored; OF
program to release seg-
ment.

RP

*015

LS TRACK REPORT
LS LU N TRACK nn

Informative message to
report logical unit and track
of current LS area.

MS

016

FILE MUST BE AND IS NOT ON LU 2
OR 3

Attempt to restore program
file not on system or auxil-
iary disc; move file to lu 2 or
3 and re-enter command.

RP

017

ID SEGMENT NOT SET UP BY RP

To be released by RP, ID
segment must have been
set up by RP; try OF, pro-
gram

RP

*Does rot cause transfer to log-device.

B-6

Table B-3. FMGR Error Codes (Continued)

Appendix B

ERROR
CODE

ERROR
MESSAGE

MEANING AND
CORRECTIVE ACTION

ROUTINE
OR
COMMAND

018

PROGRAM NOT DORMANT

. RP,namr,program attemp-

ted when program is active;
enter OF, program then
RP

RP

019

FILE NOT SET UP BY SP ON
CURRENT SYSTEM

Program file being restored
had parity error or was not
set up correctly or was not
set up by SP in current sys-
tem; program and try
again.

RP, RU

020

ILLEGAL TYPE O LU

Attempt to create type O
file on logical unit not
assigned in system; re-enter
using another logical unit.

AN, CL, CR
(type 0),

DC, DL, DU,
N, LI, MC,
MR, MS, ST

021

ILLEGAL DISC SPECIFIED

Attempt to copy files to or
from same disc or disc not
mounted; mount disc or use
another.

CcO

022

COPY TERMINATED

Copy has been terminated
as a result of copy error;
check parameters and
specified discs.

CO

023

DUPLICATE PROGRAM NAME

Program being restored is
already defined in system;
change name, OF program,
or release ID segment.

RP

024 through 046 are undefined

047

SPOOL SETUP FAILED

(In later systems, this error code has
been replaced with FMP error codes
-020 through -026 see Table B-1)

No available spool files or
logical units or logical unit
table full; can try job again,
but if error is from lack of
spool logical units or logical
unit table full, must recon-
figure.

JO, LU

048

GLOBAL SET OUT OF RANGE

A global was specified out
of the range of globals;
check parameters and re-
enter command correctly.

CA, SE, TR

049

CAN'T RUN RPD PROGRAM OR
PARTITION TOO SMALL

Program restored from file
does not execute; usually
attempt to run SP's segment;
check program.

RU

050

ILLEGAL NUMBER OF
PARAMETERS

Less than the required num-
ber of parameters were
specified; re-enter correctly.

IN, MR, SA,
SP

Appendix B

Table B-3. FMGR Error Codes (Continued)

ROUTINE
ERROR ERROR MEANING AND OR
CODE MESSAGE CORRECTIVE ACTION COMMAND

051 ILLEGAL MASTER SECURITY CODE Attempt to re-initialize or list N, DL
files with incorrect master
security code; re-enter with
correct code.

052 ILLEGAL LU IN RESPONSE TO 002 Attempt to initialize FMGR Initialize

OR 3 using lu other than 2 or 3; FMGR
Also an attempt to mount an IN, MC
LU which is not a disc car-
tridge; re-enter correctly
specified lu not assigned to
a disc; check lu and re-enter
correctly.

053 ILLEGAL LABEL OR ILABEL lllegal cartridge reference IN
number or cartridge ID; CR
must be positive non-zero
integer, ID must be legal file
name.

054 DISC NOT MOUNTED Attempt to reference un- N, DC, PK,
mounted disc; mount disc DL
and activate with MC.

055 MISSING PARAMETER Required parameter s IN, MC,
omitted; check and re-enter DC, CR,
with missing parameter. DU, ST

056 BAD PARAMETER Parameter specified incor- IN, DU, ST,
rectly or a track parameter CR, LO, SA
specifies track outside LI
range of FMGR tracks;
check and re-enter correctly.

057 BAD TRACK NOT IN FILE AREA Specified track in system IN
area or is a directory track;
re-enter correctly.

058 LG AREA EMPTY Attempt to save contents of SA
LG area which is empty; re-
compile or use MR.

059 REPORTED TRACK UNAVAILABLE Attempt to re-initialize IN

HIGHEST NON-AVAILABLE TRACK lowers first track.into sys-

nnn tem area, last system track
reported as nnn; re-enter IN
with first track = last track+ 8
(min).

060 DO YOU REALLY WANT TO PURGE A re-initialization raises first IN

THIS DISC? (YES OR NO). track or lowers directory into
file and will destroy file;
enter ?? or NO to stop re-
initialization, YES to con-
tinue.

B-8

Table B-3. FMGR Error Codes (Continued)

Appendix B

ERROR
CODE

ERROR
MESSAGE

MEANING AND
CORRECTIVE ACTION

ROUTINE
OR
COMMAND

061

DO A "DC” AND A "MC” ON THIS
CR

Attempt to replace a
mounted cartridge without
entering a DC and MC com-
mand, and then attempt to
initialize the new cartridge
which has not been pre-
viously initialized.

Enter a DC and MC com-
mand for this cartridge.

IN

062

MORE THAN 31 DISCS

Attempt to mount 32nd
cartridge (limit is 31
cartridges).

Dismount cartridges to
make room, if possible.

MC

B-9

Appendix B
B-2. GASP ERROR CODES

GASP errors are reported as either negative or positive codes; negative when an FMP interface
routine used by the command finds an error, positive as a direct result of the command. Most
positive GASP error codes result from illegal syntax, most negative error codes from file access
problems. Note that all the negative codes correspond to FMP codes.

Error messages are not issued for SMP call errors. Improper spool setup is diagnosed by a 0
returned in parameter ISLU; other spool calls are ignored should they be improperly specified.

A complete list of GASP calls can be requested by entering ??,99 in response to the GASP
prompt. These messages are described in detail in Table B-4.

Table B-4. GASP Error Codes

ROUTINE
ERROR ERROR MEANING AND OR
CODE MESSAGE CORRECTIVE ACTION COMMAND
-001 | DISC ERROR Disc is down; try again and then report JAny GASP
problem to system manager. command
that tries
-002 |} DUPLICATE FILE NAME JOBFIL or SPLCON or spool pool file |to open or
already created. access
JOBFIL or
-004 [MORE THAN 32767 RECORDS IN | Consult system manager. SPLCON
TYPE 2 FILE (all except ??
or EX); in
-006 |CR OR FILE NOT FOUND OR NO | Generally, no room to create spool files. |particular,
ROOM GASP initializ-
ation or DA.
-007 |[BAD FILE SECURITY CODE Consult system manager.
-008 | FILE OPEN OR LOCK REJECTED | Possibly, attempt to DeAllocate (DA)
with spool system active; shut down
spooling (SD) and try again.
-012 | EOF OR SOF ERROR Consult system manager.
-013 | DISC LOCKED Cartridge containing JOBFIL or SPLCON
locked; initialize or if already initialized,
wait and try again.
-014 | DIRECTORY FULL No more room in file directory for spool | Initialize
files. Pack cartridge and re-run GASP. | GASP
0 NO ERROR Informative message; no error General
1 DISC ERROR nn Disc associated with nn is down; report | Initialize
problem to system manager. GASP
2 NUMBER OUT OF RANGE Number entered in GASP initialization {Initialize
inconsistent with previous entries or ex- | GASP
ceeds maximum specified at generation;
check last entry and change.

B-10

Table B-4. GASP Error Codes (Continued)

Appendix B

ROUTINE
ERROR ERROR MEANING AND OR
CODE MESSAGE CORRECTIVE ACTION COMMAND
3 BAD JOB NUMBER! Specified job number not currently |AB, CJ, DJ
assigned; re-enter command with valid
job number.
4 ILLEGAL STATUS Command is not valid for current state of [CJ, CS, KS
job or spool file; check status with DJ or
DS.
5 ILLEGAL COMMAND Command not recognized by GASP;|Any unrec-
check and re-enter command correctly. | ognizable
command
6 NOT FOUND Specified job or spool not currently|AB, CJ, CS,
assigned; check with DJ or DS. DJ, KS, RS
55 MISSING PARAMETER Required parameter omitted; check and|AB, CJ, CS,
re-enter with parameter. KS, RS
56 BAD PARAMETER Specified parameter cannot be recog-|Any except
nized; check parameter and re-enter. DA or EX
/GASP: IRRECOVERABLE INITIALIZE GASP is not a background program or | During
ERROR SPOOL EQT extentions are less than 18 | initialization
words long or SPOOL driver is not in | process.

system driver area.

B-11

Appendix B

B-3. UNNUMBERED ERROR MESSAGES

Unnumbered error messages may result during FMGR execution because of operator abort
requests, job related conditions, or system commands (such as LG) entered through FMGR.
Table B-5 describes these messages, lists possible causes, and suggests corrective action to be

taken.

Table B-5. Unnumbered Error Messages

COMMAND

ERROR MESSAGE

MEANING

CORRECTIVE ACTION

:AB or *AB

ABEND OPERATOR

1. The job has been
aborted by operator
request.

2. The job has been
aborted because of
spool /O error.

1. Examine job, correct (if
necessary), and re-run
job.

2. Check for such errors
as write to read-only
spool file, or read to
write only spool file.

JOB xxxxx ABORTED

Error encountered during
job execution.

Examine job, correct (if
necessary), and re-run job.

:EO or :JO

ABEND EOJ IN ssssss

An :EQ or :JO command
was encountered, but in
a different level than the
original :JO command.
For example, control has
transferred from PROG1
to PROG2 and PROG?2
contained an :EQ or :JO
command. s$sssss is the
file name or logical unit
number where :EO or :JO
occurred.

Examine job, correct (if
necessary), and re-run job.

LG, #tracks

NO LGO SPACE

More LG tracks were
requested than are
available.

Check that all possible
tracks have been released
back to the system. Re-
check your command
entry. The number of
tracks specified must be
less than or equal to the
available track count.

LGO IN USE

The Assembler or a com-
piler has current use of
the LG track area.

Wait until the LG tracks are

released and re-enter the
command.

:OF,program

(same as sys-
tem command
OF program,8)

NO SUCH PROGRAM

The program name
specified does not exist
as a system main pro-
gram.

Recheck your command
entry. The program name
specified must be the
name of a system main
program.

B-12

Appendix B

Table B-5. Unnumbered Error Messages (Continued)

COMMAND

ERROR MESSAGE

MEANING

CORRECTIVE ACTION

:OF,program
(continued)

xxxxx ABORTED

A temporary program
has been removed from
the system, or a perma-
nent program has been
aborted (xxxxx is the
name of the program).

None Required.

‘RT,program

NO SUCH PROGRAM

The program name
specified does not exist
as a system main
program.

Recheck your command
entry. The program name
specified must be the
name of a system main
program.

ILLEGAL STATUS

The program named is
not dormant.

It is illegal to attempt
releasing tracks for a non-
dormant program. Wait
until program is dormant
and re-enter command.

:RU,program

ABEND xxxxx ABORTED

The program was
aborted by the operator
or the system following
entry of the RU command
(xxxxx is the program
name).

Check program for
errors and re-run.

*ABEND JOB LIMIT

The job time limit (set via
the :JO command) has
been exceeded.

Check program for errors
and/or extend job time
limit.

ABEND RUN UIMIT

The run time limit (set via
the :TL command) has
been exceeded.

Check program for errors
and/or extend run time
limit.

FMGR WAITING
ON LU xx

LU xx is down or locked.

Up the EQT associated with
LU xx or unlock the LU.

LIST OVERFLOW

List file extending to over-
flow FMGR area on disc;
spool file overflow direc-
tory overflow.

Obtain more spool room on
disc (see PK command) or
do not use spooling at this
time.

*This message can occur at any time during execution of a job.

Change 1 B-13

Appendix B

B-4. SPOOL ERRORS

Error conditions occurring during spool processing result in error code or error message

reports. These error reports are discussed in the following paragraphs.

B-5.

SPOOL I/0 ABORT ERRORS

Spool I/O abort error conditions result in the display of error codes in the form:

I0nn

where nn is an error number. Table B-6 defines these error codes.

Table B-6. Spool I/O Abort Error Codes

ERROR
CODE MEANING ACTION
1020 Read attempted on write only spool file. Revise program and re-run.
1021 Read attempted past end-of-file (EOF). Revise program and re-run.
1022 Second attempt to read JCL card from Revise program and re-run.
batch input file by other than FMGR.
1023 Write attempted on read only spool file. Revise program and re-run.
1024 Write attempted beyond end-of file (EOF); Obtain more spool room on disc (See PK
usually, spool file overflow. command, paragraph 2-60) or do not
use spooling at this time.
1025 Attempt to access spool LU that is not May be caused by GASP KS command
currently set up. — if other reason, correct offending
programs.

B-14

B-6. SMP ERROR MESSAGES

Appendix B

Error messages produced by SMP are reported in the form:

SMP: error message

where the error message reported is defined in Table B-7.

Table B-7. SMP Error Messages

ERROR
MESSAGE

MEANING

ACTION

SMP: LUxx EOFER
filename

File filename just outspooled to
logical unit xx overflowed or was
otherwise incomplete.

Re-run the JOB.

SMP: LU xx DOWN
filename HELD

Logical unit xx down; file filename
placed in active hold.

Correct LU down condition and
use GASP to restart operation or
release hold status on file.

SMP: FMP-nn

FMP error -nn occurred during SMP
operation (see Table B-1). Usually
indicates loss of JOBFIL or
SPLCON.

Use GASP to deallocate and
reallocate the spool files.

B-15

Appendix B

B-7. OUTSPOOL ERROR MESSAGES

Errors encountered during outspool operations result in the messages defined in Table B-8.

Table B-8. Outspool Error Messages

MESSAGE

CAUSE

CORRECTIVE ACTION

JOB WAIT ON PT

End-of-tape occurred between
:JO and :EO commands.

Load remainder of job in
reader, ready the reader, and
enter *GO,JOB.

JOB WAIT ON SPOOL
RESOURCE

Required spool file or logical
device cannot be obtained at this
time.

None required. JOB will
suspend and be automatically
rescheduled when the resource
becomes available.

JOB WAIT ON EXTENT

Spool file overflows available
disc space.

Condition will automatically
clear when SMP releases spool
files as a result of outspool
completion; or you can force a
retry using the GASP com-
mand, SU; or you can abort
JOB.

END JOB ABNORM

JOBFIL could not be opened; or
other uncorrectable error
occurred; or JOB was run before
Spool initialization.

Try re-initialization with GASP
after all spool activity is
completed.

BAD EOF

Message appears after last line
of fite. ASCII file outspooling
overflowed; or was otherwise
incomplete.

Re-run JOB.

B-16

TABLES, DIRECTORIES,
AND RECORD FORMATS|[c

Reference material frequently used in Batch-Spool Monitor operation is organized in this
appendix as follows:

C-1. Standard Logical Units

C-2. Standard Drive Types

C-3. Data Control Block Format

C-4. Cartridge Directory Format

C-5. File Directory Format

C-6. JOBFIL Format

C-7. SPLCON Format

C-8. Record Format Disc Files

C-9. Record Format Non-Disc Files
Relocatable Tape Format
Absolute Tape Format

‘_,Comyfmer
L epuseun

C-1. STANDARD LOGICAL UNITS

LOGICAL UNIT DEVICE

system console
system disc

auxiliary disc
standard output
standard input
standard list

usually magnetic tape

QW Ok W

C-2. STANDARD DRIVER TYPES

DRIVER TYPE DEVICE
DVRO00 00 Teleprinter/CRT Display Terminal
01 Paper Tape Reader
02 Paper Tape Punch
DVRO05 05 Page Mode CRT
DVR10 10 Plotter
DVRI11 11 Card Reader
DVR12 12 Line Printer
DVRI15 15 Mark Sense Reader
DVR23 23 9-Track Magnetic Tape
DVR31 31 Moving Head Disc
32 Moving Head Disc
33 Moving Head Disc (reserved)

C-1

Appendix C

C-3. DATA CONTROL BLOCK FORMAT

bit
wo'rd
0

Control) 8
Words

10
11
12
13
14

15

16
Buffer
144 +n

C-2

151413121110 9 8 7 6 5 4 3 2 1 0

A O O O

Track # of File Directory LU # of File Directory
or of file if on disc

Sector offset of
File Directory

Sector number of
File Directory

N

File Type (may be overridden at open, unless type 0)

Track address of ,

file (type = 1) LU# of file (type = 0)

"\

file (type = 1)

Sector address of End-of-file Code (type = 0)

N\

File size in Spaci de (t =0

Record Length (type =2)/Read/Write Code (type = 0)

SC| Number of Blocks in DCB OM
buffer

Number of sectors per track (type =1

Open/Close Indicator

Track # of current file position (type = 1)

Sector # of current file position (type = 1)

Location of next word in file (type = 1)

File
Directory
Address

Current
{ Position
in File

1B EF | WR

Record Number of current file position (type < 3)

Extent Number (type = 3)

11T 17T T 17T 17T 1T 1T T T 1T 1T T1

DCB Buffer Area

Legend for Data Control Block

Word

4 End-of-File Code, type O file:

5 Spacing Code, type O file:

6 Read/Write Code, type 0 file:

Appendix C

Content

01 lu = EOF on Magnetic Tape
10 lu = EOF on Paper Tape
11 lu = EOF on Line Printer

bit 15 = 1 - backspace legal
bit 0 = 1 - forward space legal

bit 15 = 1 - input legal
bit 0 = 1 - output legal

7 Security Code Check/Open Mode/Buffer Size, all files types

(SC) Security Code Check:

bit 15 = 1 - security codes agree
= 0 - security codes do not agree

DCB Buffer bits 14-7 = Number of blocks in DCB buffer
(OM) Open Mode bit 0 = 1 - update open
= 0 - standard open
9 Open/Close Indicator: if open, contains ID segment location of program

performing open.
if closed, set to zero.

13 In Buffer/To Be Written/EOF Read Flags, all file types

(IB) In Buffer Flag:

EOF Read Flag:

(WR) To Be Written Flag

bit 15 = 1 - data in DCB buffer
0 - data not in DCB buffer

bit 1

1 - EOF has been read
= 0 - EOF has not been read

bit 0 = 1 - data in DCB buffer to be written
= (0 - data in DCB buffer not to be written

C-3

Appendix C

C-4. CARTRIDGE DIRECTORY FORMAT

2 sectors on 4
last track of 4
system disc

124

125

126

{12‘7

logical unit of first cartridge

last track used by FMP

cartridge reference number (label)

lock word: O if not locked; else ID
segment of locking program

logical unit of second cartridge Gf 0,
end of cartridge entries)

up to 31 4-word cartridge entries

0

sum of contents of base page words:
1650 thru 1657 and 1742 thru 1764*

master security code

reserved for future use

]

:MC,lul,last track]

cartridge locked until
initialized with :IN

initialization code
word

«+——— set when system cartridge
initialized

*For RTE-1V, the contents of base page words 1750-1754 are not included in the sum.

C-4

Appendix C

C-5. FILE DIRECTORY FORMAT

The first entry in each File Directory is the specification entry for the cartridge itself. The
directory starts on the last FMP track of each cartridge in sector zero for all but the system
cartridge (LU 2) on which it starts in the next logical directory block. The directory sector
address can be obtained from the block address by the following formula:

sector address = (block*14) modulo S/T

where S/T is the number of sectors per track. Directory blocks are 128 words long. Each
Directory entry is 16 words long.

Word Content IN parameters
15 0 bit 15 set to distinguish
0 1 -« cartridge entry from
-t ————————— file entry
1| 6-character cartridge label id

2
3 [cartridge reference label -~ labell

4| first available track for FMP first track

16-word 5[next available sector
cartridge
entry 6 [number of sectors per track #sectors/track

7| lowest directory track (last file track + 1)

8| number of tracks in directory (negative value) #dir tracks

9| next available FMP track

10| first bad track

¢ +— bad tracks

15(sixth bad track J

The 16-word cartridge entry is followed by an entry for each created file; non-disc (type 0) files
follow disc files in the formats shown:

C-5

Appendix C

Disc File Directory Entry

word

bit

0

10

11

12

13

14

15

15 BT

0 CR parameters:

6-character file name

<+———— file name

file type (1 thru 32767)

- file type

starting track

extent #

starting sector

of sectors in file

file size *2

record length (type 2 only)

-~ record size

security code

<~——security (namr)

open flags in bit 15
program ID segment addresses
of programs opening file in
bits 14-0

word 0 = O if the last entry in directory; = -1 if file is purged

Type 0 File Directory Entry

The entries for non-disc (type 0) files differ from those for disc files in words 3 through 7:

C-6

word

bit

15, { O CR parameters:
0 (file type default)
logical unit number -~ lu
end of file subfunction <—EO,LE,PA or control
spacing code BS,FS, or BO
input-output code RE,WR, or BO

Words 5-7 are octal codes:

end-of-file subfunction = 01lu for MT (EQ)
10lu for paper tape (LE)
11lu for line printer (PA)
or subfunction code
spacing code = bit 15 = 1 backspace legal (BS)
bit 0 = 1 forward space legal (FS)
input/output code= bit 15 = 1 input legal (RE)
bit 0 = 1 output legal (WR)

Il

C-6. JOBFIL FORMAT

Appendix C

JOBFIL is a type 2 file with 16-word records. Records 1 - 16 list pending jobs with their
priorities. Records 17 and 18 record JOBFIL size, spool file control, and spool location flags.

Records 19 and up each describe one job.

Word Content

0 | resource number lock flag

1| number of pending job entries

2| priority of pending job in record 19

records
1-16 3| priority of pending job in record 20
255] priority of pending job in record 272

0! resource number lock flag

1| # of records in JOBFIL

2| # of spool files

3| size of spool files
record 415 0
17

65|

0 if no job in that
record < O if active
job

set by GASP
/ initialization

-« bit set for each file in
use - up to 80 starting
at 0

C-7

Appendix C

JOBFIL Format (Continued)

Word Content

9

12
13
14

15

not currently used

JOBFIL record number of current job

wait - resource number

shut down flag for batch processing

record 0| # of files / first file
18
1| cartridge label
8 2-word
entries .| repeated for each cartridge containing
-| spool files
15
Job Records 0] job priority
records 19
and up 1 1|job number (= record number - 18)
record per job
2| job status
31 job location - logical unit
4ior
51 3-word file name
6| cartridge identification
7| job name
8! (3-word name)
9
10| spool priority

«~—— set by SD

set by
GASP Initialization

-1 if no job

<~———assigned by SM

set if job input from
disc

C-8

JOBFIL Format (Continued)

Word

Content

11

15

15

79

65

Continue
with one
record for
each job in
JOBFIL . ..

up to 254 records

C-7. SPLCON FORMAT

Appendix C

bit set for each spool
owned by job

SPLCON is a type 2 file with 16-word records. It contains information on all active spool files
and pending outspools, the outspool logical units and the available spool logical units.

Word

Content

record 1 0

resource number lock flag

number of spool control records

number of outspool logical units

record number of first spool control record

maximum # pending spools

class ID # used by outspool program

15

list of outspool logical units

set at GASP
initialization

C-9

Appendix C

SPLCON Format (Continued)

Word

0

Content

S [T T T[]

record 2
sl [VT ITTT]
record 3 0 [shut down flag for outspooling
1 |wait - resource number
2
: |words 2 through 15 not used
15
records 4-8
(not used)
Outspool 0 | queue depth outspool logical unit #
Queue
records 1| # of entries in queue
9-16 2 |SPLCON record number of file
(1 sector)

queue for one
outspool
logical unit

127

spool priority

each bit
corresponds to a
SPLCON record; set to
1 if record in use.

- set by SD

1 entry/file

continue with 1 sector (8 records) for each outspool logical unit assigned at GASP initializa-

tion.

Spool Control
Records
(follow out-
spool queue)

1 record per
spool file in
same format
as IBUFR
(setup buffer
for SPOPN
call)

C-10

15 14 4 3 2 1 0
| | IS SV I

batch checking flag

spool logical unit

file name of user file

or spool pool file

security code

cartridge reference

SPLCON Format (Continued)

Word

Content

Spool Control
Records
(follow out-
spool queue)

1 record per
spool file in
same format
as IBUFR
(setup buffer
for SPOPN
call)

10
11

12

14

15

driver type of outspool logical unit

BU

BI

R-
0 W 0 |ST|SP|0|HO

SA

spool priority

spool status

job # of spool owner

0

0

outspool logical unit number

continue with
one record for
each spool file
in SPLCON

Disposition Flags (word 8):

SA = 1save

0 purge at completion of spooling
HO = 1 hold until close
0 outspool immediately
SP = 1 spool pool file
0 user file
ST = 1 standard file format (no record headers on output)
0 spool format

R/W = 00write and read

01 read only

10 write only
1 batch checking (used only by FMGR)

BI

BU = 1 buffering
0 no buffering

Appendix C

~—— disposition flags

«—used by FMGR only
to setup a spool file

C-11

Appendix C
C-8. DISC FILE RECORD FORMATS
Fixed Length Formats (Types 1 and 2)

1st 127 WORDS OF LAST BLOCK

,——/‘
aLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4 > & BLOCK N
e, ——
128 WORDS EOF FOLLOWS LAST

WORD IN LAST BLOCK

Type 1 Record length = Block length = 128 words

Type 2 Record length is user defined; may cross block boundaries but not past EOF

Variable Length Formats (Types 3 and Above)

RECORD 1 RECORD 2 RECORD 3 RECORD 4 RECORD 5 RECORD N

——

DATA Ljojojt DATA L L DATA L]

-

L DATA Lt DATA L

4 f ZERO-LENGTH EOF = 1
RECORDS IN FIRST LENGTH
—— LENGTH WORDS (SUB-FILE MARK) WORD OF NEXT

RECORD

C-12

Appendix C

Memory-Image Program File Formats (Type 6) for RTE-II/III

Files created by the SP command as memory-image program files are always accessed as type

1 files (fixed length, 128-words per record).

Word Content
0|1
1-5 not used
6 |priority
7 |primary entry point
8-13 not used
14 |program type
1st two
sectors 15-16 not used
contain
program’s § 17-19 |time parameters
ID-segment 20 |substatus 1 - word 21 of ID segment
information 21 [substatus 2 - word 22 of ID segment
22 |low main address
23 |high main address
24 |low base-page address
25 |high base-page address
26-27 not used
28 ichecksum of words 0 - 27
29 |setup code word
30-127 not used

<«~——— EOF unless forced to
type 1

sum of contents of

«+—— words 1650 thru 1657
and words 1742 thru

1764 in base page

Remainder of file is an exact copy of the program being saved.

C-13

Appendix C

Memory-Image Program File Formats (Type 6) for RTE-IV

Files created by the SP command as memory-image program files are always accessed as type
1 files (fixed length, 128-words per record).

Word Content

1st two
sectors
contain
program’s
ID-segment
information

8-13

14

-1

not used
priority
primary entry point

not used
program type

not used

time parameters

substatus 1 - word 21 of ID segment

substatus 2 - word 22 of ID segment

24

26-27
28
29
30
31
32
33
34
35

36

\37-127

low main address

high main address

low base-page address

high base-page address

not used

ID EXT # EMA SIZE

High Addr +1 of largest segment

not used

not used

not used

checksum of words 0 - 32

setup code word

ID EXT word 0

ID EXT word 1

not used

Remainder of file is an exact copy of the program being saved.

C-14

<+————— EOF unless forced to
type 1

sum of contents of

<+—————— words 1650 thru 1657,
words 1742 thru 1747,
and words 1755-1764
in base page

C-9.

NON-DISC RECORD FORMATS

Appendix C

The record formats of programs saved on tape as relocatable or absolute binary records as

shown here.

RELOCATABLE TAPE FORMATS

Formats are illustrated for NAM, ENT, EXT, DBL, and END records.

NAM Record
CONTENT
15 8,7 0,15 13,12 0,15 0
1
N
RECORD
H
LENGTH ¥ CHECKSUM
001
.
WORD 0 WORD 1 WORD 2
15 8,7 0,15 8,7 0,15 8,7 0
] Y M B L
WORD 3 WORD 4
15,14 0,15 0,15 0
LENGTH OF LENGTH OF LENGTH OF
A MAIN PROGRAM BASE PAGE COMMON
c SEGMENT SEGMENT SEGMENT
(OR ZERO) (OR ZERO) (OR ZERO)
WORD 6 WORD 7 WORD 8
15 0,15 0,15 0,15 0
PROGRAM PRIORITY RESOLUTION EXECUTION
TYPE CODE MULTIPLE
WORD 9 WORD 10 WORD 11 WORD 12
15 0,15 0,15 0,15 0
HOURS MINUTES SECONDS TENS OF
MILLISECONDS
WORD 13 WORD 14 WORD 15 WORD 16
15 8,7 0 15 8,7 0
COMMENT COMMENT COMMENT COMMENT
CHAR 1 CHAR 2 CHAR X CHAR X
WORD 17 WORD n
(n < 60)

HATCH-MARKED AREAS SHOULD BE ZERO-FILLED
WHEN THE RECORDS ARE GENERATED

B

EXPLANATION
RECORD LENGTH = 9-60 WORDS
IDENT = 001

CHECKSUM: ARITHMETIC
TOTAL OF ALL WORDS
IN RECORD EXCLUDING
WORDS 1 AND 3.

SYMBL: FIVE CHARACTER
NAME OF PROGRAM

A/C: BINARY TAPE PRECESSION
= 0 IF ASSEMBLER PRODUCED,
OR LENGTH IS EXACT

= 1 IF COMPILER PRODUCED,
AND LENGTH IS UNKNOWN

CROSS-HATCHED AREAS SHOULD BE BLANK-FILLED
WHEN THE RECORDS ARE GENERATED.

C-15

Appendix C

ENT Record
CONTENT
15 8,7 0,15 13,12 a3 0,15
) E
. !
RECORD 5 R CHECKSUM
LENGTH b !
E
010 /42 8
WORD 1 WORD 2 WORD 3
15 8,7 0.15 8,7 0,15 8,7
s M 8 L 2
WORD 4 WORD 5 WORD 6
15 0,15 8.7 0,15 8,7
UNRELOCATED
ADDRESS s Y M 8
FOR SYMBL
WORD 7 WORD 8 WORD 9
15 0,15
UNRELOCATED
L ADDRESS
FOR SYMBL
WORD 10 WORD 58
EXT Record
CONTENT
15 8,7 0,15, 13,12 54 0,15
i , E
RECORD E T
CHECKSUM
LENGTH N R
z// y §
/] 100 S
WORD 1 WORD 2 WORD 3
15 8,7 0.15 8,7 0,15 8,7
” 8 L SYMBOL
s 1.D. NO
WORD 4 WORD 5 WORD 6
15 8,7 0.15 0,15 8,7
L SYMBOL
s 1.D. NO
WORD 7 WORD 60

C-16

EXPLANATION

RECORD LENGTH = 7-50 WORDS

IDENT =010

ENTRIES: 1 TO 14 ENTRIES
PER PROGRAM; EACH ENTRY
IS FOUR WORDS LONG.

SYMBL: 5 CHARACTER ENTRY
POINT SYMBOL

R: RELOCATION INDICATOR

=0 IF PROGRAM RELOCATABLE
1 IF BASE PAGE RELOCATABLE
=2 1F COMMON RELOCATABLE
=3 IF ABSOLUTE
=4 MICROCODE REPLACEMENT

"

WORDS 4 THROUGH 7 ARE
L REPEATED FOR EACH
ENTRY POINT SYMBOL.

EXPLANATION

RECORD LENGTH = 6-60 WORDS

IDENT = 100

ENTRIES: 1 TO 19 PER
RECORD:; EACH ENTRY
IS THREE WORDS LONG

SYMBL: 5 CHARACTER
EXTERNAL SYMBOL

SYMBOL 1D. NO.: NUMBER
ASSIGNED TO SYMBL FOR
USE IN LOCATING
REFERENCE IN BODY
OF PROGRAM.

WORDS 4 THROUGH 6 REPEATED
FOR EACH EXTERNAL
SYMBOL (MAXIMUM OF
19 PER RECORD}.

DBL Record
CONTENT
15 8,7 0,15, 13,12 8,7 6,5 0,15
|
/ NO.OF
RECORD / 0 /
LENGTH E INST. CHECKSUM
/ N WORDS
.
WORD 1 WORD 2 WORD 3
15 0,15 13,12 109 76 43 1015
L1
UNRELOCATED
LOAD R{R|R[{R R A?,SOLLJJJE
ADDRESS A
WORD 4 WORD 5 INSTRUCTION WORD
R = 000
15,14 0,15,14 0,15,14
15-8IT PROGRAM 15-B1T BASE PAGE 15-81T COMMON
RELOCATABLE RELOCATABLE RELOCATABLE
VALUE VALUE VALUE
3 D/ 4—0/1 Lon
INSTRUCTION WORD INSTRUCTION WORD INSTRUCTION WORD
R =001 R =010 R =011
15,14 11,10 8,7 0,15,14 11,10,9 2,1,0,15
| / |
N N EXTERNAL
s C EXTERNAL s C SYMBOL | UNRS;?EATED
&9 SYMBOL I8 iono R oR ¢
U E 1.D. NO. U E —OR- OFFSET
§ A § W zro
D1 D/
INSTRUCTION WORD INSTRUCTION WORD
R =100 R =101
15 12 11 21015 0
T T
| |
' I m RELOCATABLE
TYPE | | R BYTE
| | ADDRESS
1 1
INSTRUCTION WORD R =110

Appendix C

EXPLANATION

RECORD LENGTH = 660 WORDS
IDENT = 011
Z/C: RELOCATION OF LOAD
ADDRESS
=0 FOR BASE PAGE
=1 FOR PROGRAM
=2 FOR ABSOLUTE
= 3 FOR COMMON
NO, OF INST. WORDS: 1 TO 45
LOADABLE INSTRUCTION
WORDS PER RECORD

RELOCATABLE LOAD ADDRESS:
STARTING ADDRESS FOR
LOADING THE INSTRUCTIONS
WHICH FOLLOW;

R’s: RELOCATION INDICATORS:

000 = ABSOLUTE

001 = 15-BIT PROGRAM
RELOCATABLE

010 = 15-BIT BASE PAGE
RELOCATABLE

011 = 15-BIT COMMON
RELOCATABLE

100 = EXTERNAL REFERENCE

101 = MEMORY REFERENCE

R4 IS RELOCATION INDICATOR
FOR INSTRUCTION WORD; R2,
FOR INSTRUCTION WORD3; ETC.

D/1: INDIRECT ADDRESSING

0 = DIRECT
1 = INDIRECT

MEMORY REFERENCE INSTRUC-
TIONS USE TWO WORDS, WITHIN
THE TWO-WORD GROUP?, "MR"
INDICATES RELOCATABILITY OF
OPERAND SPECIFIED IN SECOND
WORDS:

00 = PROGRAM RELOCATABLE
01 = BASE PAGE RELOCATABLE
10 = COMMON RELOCATABLE
11 = ABSOLUTE

C-17

Appendix C

EXPLANATION

RECORD LENGTH = 4 WORDS
IDENT = 101

T: TRANSFER ADDRESS
INDICATOR

= 0IF NO TRANSFER

END Record
CONTENT
15 8,7 0,15 1312 3,2,1,0,15 0
I
ORD £ /
REC E CHECKSUM
LENGTH / N R [T
T
/ .
WORD 1 WORD 2 WORD 3
15,14 0
RELOCATABLE
TRANSFER R: RELOCATION INDICATOR
ADDRESS FOR TRANSFER ADDRESS
= 0 IF PROGRAM RELOCATABLE
WORD 4 F BASE PAGE RELOCATABLE

F COMMON RELOCATABLE

ABSOLUTE TAPE FORMAT

F ABSOLUTE

ADDRESS IN RECORD

= 11F TRANSFER ADDRESS
PRESENT

Absolute binary code is written to paper tape in the following format:

CONTENT
15 87 01514 015
V
/ 4
RECORD) “’Egkg“ INSTRUCTION
LENGTH ’ ADontas WORD,
i~
WORD 1 WORD 2 WORD 3
15 015 015
INSTRUCTION
WORD. CHECKSUM
WORD n -1 WORD n

Each word represents two frames arranged as follows:

Bit 8 — «— Bit0
<+« Feed Holes
Bit 15 — «— Bit 7

C-18

EXPLANATION

RECORD LENGTH = NUMBER OF
WORDS IN RECORD EXCLUDING
WORDS 1 AND 2 AND THE
LAST WORD,

ABSOLUTE LOAD ADDRESS:
STARTING ADDRESS FOR
LOADING THE INSTRUCTIONS
WHICH FOLLOW

INSTRUCTION WORDS:
ABSOLUTE INSTRUCTIONS
OR DATA

CHECKSUM: ARITHMETIC
TOTAL OF ALL WORDS
EXCEPT FIRST AND LAST

Appendix C

SIO RECORD FORMAT

Magnetic tape SIO binary records have the following format:

RECORD LENGTH

{—n or +2n)
Record length = number of
WORD 0 WORD 1 WORD 2 WORD 3 words or characters in re-
cord, excluding word 0; nega-
15 o 15 015 0 tive value denotes words,
positive value denotes charac-
ters.
WORD 4 WORD~R-? WORD n
NOTE
The length (word 0) is not considered part of the data record.
When written with the MS option of the DU command, the
length is supplied by FMGR. When read with the MS option of
the ST command, the length is removed (in this case, the
length word is used instead of the length supplied by the
driver).
EMA RECORD
15 8,7 0,15 13,12 109 0,15 0
V , /
RECORD E EMA CHECKSUM
LENGTH N SIZE su EXPLANATION
A T // RECORD LENGTH = 7 WORD
WORD 1 WORD 2 WORD 3 IDENT =110
15 8,7 0,15 8,7 0,15 8
l | I
S | Y M | B L | SYMBOL
I | | 'o-NO. SYMBOL ID. NO.: NUMBER
{ | L ASSIGNED TO SYMBL FOR
USE IN LOCATING REFER-
WORD 4 WORD 5 WORD 6 ENCE IN BODY OF PROGRAM.
15 5.4 0
/ v
E
G €
WORD 7

C-19/C-20

CARTRIDGE FORMATTING

Cartridge formatting, or “subchannel initialization”, defines the disc track areas of RTE
subchannels by writing their physical track and sector addresses in the preamble of each
sector. The preamble of tracks containing system code are set to indicate they are write-
protected.

A spare track is assigned to replace all defective tracks encountered during the initialization of
a 7905/7906/7920 disc subchannel. The preamble of the defective track indicates that it is
defective and gives the address of the spare track that replaces it. The preamble of the spare
track indicates that it is acting as a spare, and gives the address of the defective track that it
replaces. The disc controller will automatically switch to the spare track for all references to
the defective track.

If the disc is new, if it has any write-protect flags written on its tracks, or if the subchannel
definition of the pack is being changed, the disc must be reformatted.

CAUTION

Cartridge areas containing systems or data that must be pre-
served should not be initialized. Only the portion of the disc
being written on during initialization gets reformatted.

At RTE generation time, program SWTCH formats the system subchannel during the transfer
process. In addition, the RTE-IV SWTCH can format any additional subchannels specified
during the generation process. Refer to Section V of the RTE-IV On-Line Generator Reference
Manual for SWTCH documentation.

The UNIT COPY feature of the off-line disc backup utility can also be used to format discs.
Refer to the section on Initializing Discs in the RTE Utility Programs Reference Manual for

directions.

To ensure successful initialization when using the disc backup utility or SWTCH, the appro-
priate disc diagnostic must have been previously run to flag the bad tracks.

D-1/D-2

MAKING COPIES OF FMGR

In a Multi-Terminal Monitor environment, efficient use of FMGR requires that a copy be made
for each active terminal. This provides simultaneous processing with FMGR commands.
Copies of program FMGR may be made as type 6 files. Such files are then set up as temporary
programs with an ID segment in memory, but not on disc. They can be run with the RU
command from RTE exactly as it they were program. Since the ID segments are temporary and
will be lost whenever the system is brought down, you might want to restore the copies each
time RTE is restarted from disc (re-booted).

This appendix describes two methods for making copies that serve two separate functions:
® Make single copy of FMGR from a terminal for immediate use

® Set up a procedure file “COPY” that can be run each time RTE is restarted from disc; the
procedure file makes one copy of FMGR for each active terminal.

NOTE

The names of FMGR copies must start with the letters FM; it is
good practice as a memory aid to associate each copy with a ter-
minal logical unit number, for example, FMGO7 for terminal 7.

E-1. MAKE SINGLE PROGRAM COPY

The following method makes a single copy of FMGR. You may use these FMGR commands
from any active terminal to make a temporary copy for immediate use. The copy will be
retained as a type 6 file.

:SPL,FMGR create type 6 program file FMGR
tRNSFMGR,FMGAT assign new name to file
tRPLFMGAT assign ID segment to FMGO07

Program FMGR is not affected by this process; the program file FMGO7 can now be used from
any terminal to perform all the FMGR functions except batch job processing and spooled job
processing.

E-1

Appendix E

E-2. MAKE MULTIPLE COPIES AT SYSTEM START-UP

A procedure file “COPY” is established that will make copies for each terminal in the
multi-terminal environment if COPY is executed whenever the RTE system is restarted from

disc (booted-up). The procedure assumes that FMGR has been saved as a file with the
command:

:SP,FMGR

Procedure File COPY:

¢t RN,FMGR,L,FMG32
:RP,FMG22 \ assign new name to FMGR file

:RANLFMGR2,FM335 ~ assign ID segment to FMG02

: RPLFMGO5 rename the file for next copy
and assign ID segment to this copy
continue for as many copies as are needed

restore last copy
o ~ / and rename it FMGR (so "COPY” will work the next time)
P,FMGan / exit from file
»FMG@n,FMGR

1

e o8 O & * -

sy

When the system is restarted from dise, run FMGR and enter the following command:

$:COPY + transfer to COPY

Copies can be made of any other programs using this same method. For example, if you want
more than one copy of program EDITR, use the same code substituting EDITR for FMGR. Note
that only FMGR requires the copies to start with the same two letters as the original program.
EDITR copies could be given your own name, for instance.

The procedure file to make copies can be incorporated in a general file that performs other
system initialization functions. If this file is called WELCOM, it will be run automatically at
each system startup.

The first time the system is started, FMGR will initialize (refer to paragraph 7-4) and then
attempts to TR to WELCOM and, since WELCOM does not exist, will print FMGR - 006 and
transfer to logical unit 1 (the system console). You should at this time save FMGR as a file and

then create the file WELCOM. For example:

$ 5P,FMGR

enter commands for WELCOM

E-2

Appendix E

Subsequent system starts will cause the file WELCOM to be run.
Refer to Section II, paragraph 2-27 for a description of type 6 program files; to paragraph 2-41

for procedure files and the command : that transfers to them; to paragraphs 2-33 and 2-34 for
SP and RP commands; to 2-25 for RN.

E3/E4

APPENDIX

GLOBAL EQUIVALENCE TABLE

S G P
—48 Type
S
v N —i6 2
4303
-4+ Type
431
! N
-1 3
44 Tvpe
Al 1 7“‘() }
2 1%} [::———— o
36 Tyvpe
. | 351
a 34 02
32 Tape
A
4 2
W
T
I8 dvpe
- N 271
3 3
RITSN
AR
2 Type
N
213
2 Type
. - -9 1
A
N 2
17 3
16 Type
A O ol
14 2
U
(IR
12 Tape
o
[§) E
g 2
g 3
=8 Type
w | s =1
-0
< 3
-4 Tvpe
=
-1 3
¥ Type
11!
1>
12 10 1
414
3B
13 11 33
717
The standard values are shown within dark lines.

F-1/F-2

INDEX

A

AB command, FMGR, 2-78
GASP, 5-6
RTE, 2-3
Absolute binary program (see Type 7)
Absolute tape format, C-17
Actual DCB buffer size, 3-5
AN command, FMGR, 2-18
APOSN call, FMP, 3-34
ASCII character set, A-1
Auxiliary cartridge (disc), 2-80
initialize, 7-3
change, 2-89

B

Bad tracks, 2-86

Batch job control, 2-71
spooled, 2-73, 4-1

Batch logical unit switch table, 2-72; 4-5

Batch mode, 2-1

Batch processing, 1-13
spooled, 1-14; 4-1

Batch-Spool Monitor, 1-1
components, 1-3
configuration, 7-1
environment, 1-1
installation, 7-1

Block, 1-6

BR command, RTE, 2-3

Buffer, DCB, 1-6; 3-1, 5
spool files, 4-11, 14; 6-8, 9

C

CA command, FMGR, 2-65
Cartridge, 1-5; 2-80
copy, 2-95
dismount, 2-88
file allocation, 1-6
formatting, D-1
initialize, 2-83
list, 2-90
pack, 2-92
status, 3-44
Cartridge directory, 1-6, 7; 2-80
list, 2-90
format, C-4
Cartridge reference, ICR parameter, 3-7
namr parameter, 2-8
Change outspool options, CS command, 4-15
SMP call, 6-8
Change purge to save, SMP call, 6-5
Change record position, SMP call, 6-10
Change save to purge, SMP call, 6-6
CJ command, GASP, 5-6
CL command, FMGR, 2-90

Clear buffer flag, SMP call, 6-9
CLOSE call, FMP, 3-18
CN command, FMGR, 2-33
CO command, FMGR, 2-94
Command string passing, 2-13
Components of system, 1-3
Conditional skip, 2-67
Configure system, 7-1
Copy, cartridge, 2-95
files, 2-23, 2-28
CR command, FMGR, 2-18, 20
disc file, 2-19
non-disc device, 2-20
CREAT call, FMP, 3-8
Create files, 2-18
disc files, 2-19, 3-8
non-disc files, 2-20
program files, 2-43, 44
CS command, FMGR, 4-15
GASP, 5-8

D

DA command, GASP, 5-16
Data Control Block, 3-1
format, C-2
Data transfer, FMGR, 2-23, 28
FMP calls, 3-2
DC command, FMGR, 2-88
DCB buffer, 1-6; 3-1
size, 3-5
De-allocate spool system, 5-15
Device, definition, 1-5, 6
driver types, C-1
logical unit assignment, C-1
Directory, cartridge, 1-7; 2-88; C-4
file, 1-7; 2-31; C-5
Disc, definition, 1-5
organization, 1-7
(also see Cartridge)
Disc file, 1-6
create, 2-19; 3-8
purge, 2-22; 3-12
record formats, C-12
Dismount cartridge, 2-88
Display parameters, 2-63
DJ command, GASP, 5-4
DL command, FMGR, 2-91
DP command, FMGR, 2-63
D.RTR program, 1-3
configuration, 7-2
Driver types, C-1
DS command, GASP, 5-7
DU command, FMGR, 2-28
DVS43 spool driver, 1-3, 4
configuration, 7-4, 5
use, 4-5, 6, 7

Index-1

Index Batch-Spool Monitor

E operation, 2-10
termination, 2-14
EO command, FMGR, 2-74 FMP, 1-3
spooled jobs, 4-10 cartridge, 2-80
EOF control, DU command, 2-29 configuration, -1
ST command, 2-26 library, 1-3
Error codes, B-1 FMP program calls, 1-11; 3-1
FMGR codes, B-5 summary, 3-2
FMP codes, B-2 syntax, 3-4
GASP codes, B-10 Function code, 3-42
outspool, B-16 FSTAT call, FMP, 3-44
SMP, B-15 GASP operator commands, 1-15/16; 5-1
spool, B-14 summary, 5-1, 2
unnumbered, B-12 GASP program, 1-3, 4; 4-2
EX command, FMGR, 2-14 error codes, B-10
GASP, 5-3 execution, 5-2
Extents, definition, 1-6 initialization, 7-9
us, 1-10 Global parameters, 2-54
truncation, 3-19 assign, 2-64
EXTND program, 1-4 calculate, 2-65
configuration, 7-4, 5 display, 2-63
equivalence, 2-57
F format, 2-58
FCONT call, FMP, 3-41 H
File access, 1-10; 3-3
FMP calls, 3-21 Hold spool file, 4-11; 6-3
open options, 3-17
File, 1-5 I
create, 2-18, 19, 20, 23, 43, 44; 3-8
purge, 2-21; 3-12 IBUF parameter, 3-6
File directory, 1-6, 7, 8; 2-83, 91 IBUFR parameter, 6-2, 3
formats, C-5, 6 ICR parameter, 3-7
list, 2-31 ID segment, 1-6
File Management Package (see FMP) use, 2-37, 46, 47
File Manager (see FMGR) IDCB parameter, 3-5
File name, 2-8, 3-6 IDCBS call, FMP, 3-46
FMGR request, 2-12 parameter, 3-7
FMP calls, 3-6 IERR parameter, 3-6
File number, DU command, 2-29 IF command, FMGR, 2-67
ST command, 2-26 IL parameter, READF, 3-21
File organization, 1-5 WRITE, 3-27
File size, CREAT call, 3-9 IN command, FMGR, 2-83
namr parameter, 2-8 Initialization, cartridge, 2-83
File status, 3-32 FMGR, 7-3
spool files, 4-24; 5-8 GASP, 7-8
File type, 1-8, 9, 10 ' Input device, 2-11, 12
CREAT call, 3-9 Inspooling, 4-2, 16
namr parameter, 2-8 Interactive mode, 2-1
READF call, 3-22 Interrupting FMGR, 2-3
WRITF call, 3-27 : IOFF parameter, 3-31, 34
Formats & tables, C-1 IOPTN parameter, 3-14
FMGR operator commands, 1-12; 2-1 IR parameter, 3-36
error codes, B-5 IRB parameter, 3-31, 34
structure, 2-6 IREC parameter, 3-31, 34
summary, 2-5 ISECU parameter, 3-6
syntax rules, 2-7 ISIZE parameter, 3-8
FMGR program, 1-3 ISLU PARAMETER, 6-2, 5
configuration, 7-2 ISMP parameter, 6-5
copies, 2-2; E-1 ISTAT parameter, 3-45
execution, 2-11, 12 ITRUN parameter, 3-18
initialization, 7-3 ITYPE parameter, 3-8

Index-2

Batch-Spool Monitor

J

JLU parameter, 3-32

JO command, FMGR, 2-73
spooled jobs, 4-9

JOB program, 1-4; 4-2
execution, 4-17

JOBFIL file, 4-2, 24
format, C-7

dJobs, batch, 2-71, 73
spooled, 4-1

JREC parameter, 3-32

JSEC parameter, 3-32

JTY parameter, 3-32

K

Kill spooling, 5-11
KS command, GASP, 5-11

L

LEN parameter, 3-22, 23
LG area, 2-36
assign tracks, 2-41
move to, 2-42
LG command, FMGR, 2-41
LI command, FMGR, 2-31
List device, 2-11
change, 2-14

List file contents or directory, 2-31

LL command, FMGR, 2-14

LO command, FMGR, 2-15

LOCF call, FMP, 3-31

Lock cartridge, 2-81
change, 2-15

Logical source areas, 2-36

Logical unit, 1-6

cartridge reference, 2-9, 79; 3-7

namr parameter, 2-8
spool, 4-6, 10, 11
standard assignment, C-1
switching, 2-72, 77; 4-5
LS areas, 2-36
move to, 2-38
set pointer, 2-40
LS command, FMGR, 2-40
LU command, FMGR, 2-77
spooling, 4-10

M

Master security code, 1-11; 2-83
assign, 7-3
change, 2-86
MC command, FMGR, 2-81
Memory-image program, 2-37
restore, 2-46
save, 2-44
(also, see Type 6 files)
Memory requirements, 1-2; 7-1

Index

Messages, to console, 2-17
to list device, 2-18
from job, 2-62
Mount cartridge, 2-81
MR command, FMGR, 2-42
MS command, FMGR, 2-38
Multi-Terminal Monitor, 1-13; 2-2
copies of FMGR for, E-1

N

NAMF call, FMP, 3-47
Namr parameter, 2-8
Non-disc device, 1-6
control, 2-33; 3-41
create as file, 2-20
position, 3-36
Non-disc file, 1-8
create, 2-20
purge, 2-22
formats, C-14
NUM parameter, READF, 3-23
WRITF, 3-28
Number of files, DU command, 2-30
ST command, 2-26
NUR parameter, 3-36

o

OF command, FMGR, 2-50
OPEN call, FMP, 3-13
Open files, 1-10; 3-13
exclusive use, 3-16
update 1-10; 3-16
Outspool, attributes, 4-12
error messages, B-16
logical unit, 4-11, 12
manipulation, 5-7
SPOPN call, 6-2
Outspool options, 4-11; 6-3
change, 4-15; 6-5
Outspooling, 4-2, 24

P

PA command, FMGR, 2-62
Parameter syntax, FMGR commands, 2-7
Parameters, global, 2-54
FMP calls, 34, 5
Parsing routine, FMGR commands, 2-7
Pass outspool, CS command, 4-15
SMP call, 6-2
Passing command strings, 2-13
PK command, FMGR, 2-92
Position file, 3-31
READF call, 3-23
spool files, 6-10
WRITF call, 3-28
POSNT call, FMP, 3-36
POST call, FMP, 3-48
Priority, spooled jobs, 4-8
JO command, 4-9

Index-3

Index

P (Continued)

JOB program, 4-17

LU command, 4-10

new priority, 4-15; 6-8

SPOPN call, 6-2
Privileged commands, 2-5, 8
Procedure files, 2-54

in batch jobs, 2-69
Program calls, FMP, 3-4
Program development, 2-36

example, 2-53
Program files, 2-36

create, 2-43, 44

save, 2-43, 44

release, 2-51

restore, 2-46
Programs used by BSM, 1-3, 4
PU command, FMGR, 2-22
PURGE call, FMP, 3-12
Purge files, 2-22, 3-12

spool files, 4-11, 15, 6-6

Q

Queue for outspooling, CS command, 4-15
SMP call, 6-7

R

Read record from file, 3-21
READF call, FMP, 3-21
Record, definition, 1-6
Record format, disc file, C-12
DU command, 2-29
non-disc file, C-14
ST command, 2-24
Record format, magnetic tape, SIO, C-18
Record size, CREAT call, 3-8
namr parameter, 2-9
Release tracks, 2-52

Relocatable object programs (see Type 5 files)

Relocatable tape formats, C-14

Rename file, FMGR command, 2-35
FMP call, 3-47

Retrieve record position, SMP call, 6-10

Rewind magnetic tape, FMGR command, 2-33

FMP call, 3-39

spool file, 4-15
RN command, FMGR, 2-35
RP command, FMGR, 2-46
RS command, GASP, 5-10
RT command, FMGR, 2-52
RU command, FMGR, 2-48

RTE, 2-11, 5-2
RUIH command, FMGR, 2-48
RWNDF call, 3-39

S

SA command, FMGR, 2-43
Save spool file, CS command, 4-14

Index-4

SMP call, 6-5
SD command, GASP, 5-14
SE command, FMGR, 2-64
Sector, 1-5
Security, 1-10, 11
Security code, FMP calls, 3-6
namr parameter, 2-9
Set buffer flag, SMP call, 6-8
Setup buffer, IBUFR, 6-2, 3
Severity code, assign, 2-11
change, 2-16
in batch jobs, 2-72
SIO record format, C-18
SMP program, 1-4, 15/16; 4-2, 24
calls to, 6-1
error messages, B-15
SP command, FMGR, 2-44
SP.CL program, 7-5
SPLCON file, 4-2, 23
format, C-9
Spool control, programmatic, 6-5
Spool errors, 4-23, 25; B-14
GASP, B-10
I/O abort, B-14
Spool files, 4-4
assign, 4-12
manipulate, 5-7
position, 6-10
Spool logical units, 4-5, 6
assign, 4-11
switch, 4-6, 7, 10
Spool Monitor, 1-14
configuration, 7-4
use, 4-1
Spool pool files, 4-4
Spool setup, 4-5, 8, 10
change, 4-15
programmatic, 6-1
SPOPN call, 6-2
Spool status, 4-25
change, 5-6, 8, 10
Spool system, configuration, 7-4
de-allocate, 5-16
initialization, 7-9
restart, 5-15
shut down, 5-14
Spooled job manipulation, 5-4
Spooling, 1-14
batch, 4-1
non-batch, 4-3; 6-1
SPOPN call, SMP, 6-2
SPOUT program, 1-4; 4-2, 23
ST command, FMGR, 2-23
SU command, GASP, 5-15
Subfiles, 2-25
SV command, FMGR, 2-16
System cartridge (disc) 1-6; 2-86
initialize, 7-3
SY command, FMGR, 2-96

Batch-Spool Monitor

Batch-Spool Monitor

T

TE command, FMGR, 2-17
Terminate FMGR, 2-14
Terms, file management, 1-5
Time limit, job, 2-73; 4-9

run time, 2-76
TL command, FMGR, 2-76
Top of form, line printer, 2-33, 34, 3-42, 43
TR command, FMGR, 2-59
Track, 1-5

directory, 2-83

FMP, 1-7

system, 1-7; 7-3
Transfer file (see Procedure file)
Type 0 file, 1-8

create, 2-20

data transfer, 3-3, 21

open options, 3-14

position, 3-37

purge, 2-22
Type 1 file, 1-8, 9

access, 3-17

data transfer, 3-3

format, C-12

position, 3-37
Type 2 file, 1-8, 9

data transfer, 3-3

format, C-12

position, 3-37
Type 3 file, 1-8, 9

access, 3-21

Index

format, C-12

position, 3-37
Type 4 file, 1-8, 9

source program, 2-36, 43
Type 5 file, 1-8, 9

object program, 2-36, 42, 43

paper tape format, C-14
Type 6 file, 1-8, 9

format, C-13

memory-image program, 2-36, 37, 44, 46
Type 7 file, 1-8, 10

paper tape format, C-17

U

Unnumbered error messages, B-12
Update open, 1-10; 3-15, 16
User buffer, 1-6

use, 3-6, 31, 26

w

Write EOF and queue for outspooling,
CS command, 4-15
SMP call, 6-7

Write record to file, 3-26

WRITF call, FMP, 3-26

XE command, JOB, 4-21

?? command, FMGR, 2-13
GASP, 5-3

**command, FMGR, 2-96

Index-5/Index-6

READER COMMENT SHEET

BATCH-SPOOL MONITOR
Reference Manual

92060-90013 June 1978

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.
Please use additional pages if necessary.

Is this manual technically accutate?

Is this manual complete?

Is this manual easy to read and use?

Other comments?

FROM:

Name

Company

Address

FIRST CLASS
PERMIT NO. 141

CUPERTINO
CALIFORNIA

BUSINESS REPLY MAIL

No Postage Necessary if Mailed in the United States Postage will be paid by

Hewlett-Packard Company

Data Systems Division

11000 Wolfe Road

Cupertino, California 95014

ATTN: Technical Marketing Dept.

PART NO. 92060-90013

Rev. Code 1805 - -~ Sales and service from 172 offices in 65 countries.
Printed in U.S.A. 5/78 1000 Wolle Road, Cupertino, California 95014

HEWLETT @ PACKARD

