BASIC Programmer’s Library

User’s Guide

by Miles Kehoe
David Pugmire
Brian Rainie

This manual has been written for
use with your HP Touchscreen
Personal Computer.

Manual Part No.
45310-90001

Coen
; :1 B

wuter

Saum

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

_Table of Contents

Chapter 1: Getting Started with BPL

Introduction

What Is BPL?

Who Can Benefit From BPL?

How Do I Use BPL?

How Is BPL Organized?

What Comes With BPL?
Files On The BPL Disk

A Sample Session With BPL
Using BPL With The Sample Files
Using BPL With Your Program

' b owh omh owh owh owh o=
| DI I |
N=a22O~NOLON=

1-1
1-1
1-1

Chapter 2: BPL Variables & Functions

Chapter 3: Practical Programming
3-1 Introduction
3-2 A Philosophy of Programming the HP 150
3-3 Introduction to Escape Sequences
3-6 Summary: Using Escape Sequences
3-7 Introduction to Softkeys
3-8 User Definable Softkeys
3-10 Displaying the User Definable Softkeys
3-13 Programming Considerations
3-14 Controlling the Keyboard
3-16 How to get Transmit Function Key Mode Started
3-16 Programming Considerations
3-18 Controlling the Display
3-18 Display Enhancements
3-19 Character Set Selection
3-22 Alphanumeric Memory Control

Programming Considerations
Using Touch Screen

Defining a Touch Field

Types of Touch Fields

Row/Column Reporting

Specifying Reporting Modes

Deleting Touch Fields

Controlling User Defined Keys

Touch Screen Reset

Programming Considerations
Device Control from BASIC
Using AGIOS from BASIC

OQQQQQ?QQQGQ
WWWWWWONNNNNN
OO NLL2000N~MRAON

Chapter 4: Variables and Functions by Group

AGIOS
Alpha
Display Control
Editing
Softkey Control
General
Graphics
Display Control
Origins
Polygons
Text
Vectors
Internal
Strings
Numeric
Touch Screen
4-5 Subroutines
4-5 String
4-5 Numeric

COWWRNRNN ===

1o
L

-Ihhnh-h-h-h-h-.h-h-h-h-h-h-h-h-h
a h

Chapter 5: Alphabetic Listing of Variables & Functions

iv

Getting Started with BPL

introduction The BASIC Programmer’s Library, ‘BPL’ for short, is a collection
of subroutines, functions and variable definitions. By utilizing
the BPL whenever you write a program in BASIC, you can save
a great deal of time and effort. BPL helps make you more
productive by saving you the effort of re-inventing the wheel
every time you start a project in BASIC.

In this chapter, we will answer the following questions about
BPL:

What Is BPL?

Who Can Benefit From BPL?
How Do I Use BPL?

How is BPL Organized
What Comes with BPL?

A Sample Session With BPL

BPL assumes you are somewhat familiar with BASIC. If you feel
you need to review the language, refer to the owner’s manual
for your version of BASIC, There are also a number very good
books useful in learning or reviewing the language. These books
are generally available from a local computer dealer or
bookstore.

Getting Started with BPL 1-1

What Is BPL?

1-2 Getting Started with BPL

The following manuals are referred to in this manual:

HP150 Owner’s Guide 45621-90001
HP150 Terminal User’s Guide 45623-90001
Using Your HP Touchscreen Personal

Computer 45626-90004
Using You HP Touchscreen Personal

Computer as a Terminal 45626-90005

Series 100/BASIC User's Guide 45445-90001
HP System Programmer’s Pack 45435A

Let’s get started!

BPL is a collection of subroutines, variable definitions, and
funciton definitions. By using BPL, you have access through
your program to virtually all of the features of the HP
Touchscreen PC including:

Screen control functions

Keyboard Control

Full Use of the Touchscreen

Control of the User-defined Function Keys
Line and Math Character Sets

Access to BIOS Routines via AGIOS Calls
Access to Datacomm and Plotter Devices

The subroutines are utility subprograms which give you a
consistent method of performing console input, displaying error
messages, and making system cails.

The entire philosophy of BPL is to make you productive in
BASIC right away. You don’t need to spend hours learning the
HP Touchscreen PC. You don’t need to develop ‘standards’ for
programs written in BASIC. BPL includes a structured
organization and fixed definitions so you can get off to a fast
start with your HP Touchscreen PC. This is true for both the
Series 100 BASIC Interpreter and the Series 100 BASIC Compiler.

Who Can Benefit
From BPL?

BPL does not attempt to explain the various escape sequences
and system (AGIOS) calls in depth. Rather, the most useful of
the sequences and calls have been incorporated into BPL. You
will then see fiow to use these ‘'most common’ features in your
program in such a way that you will be productive almost
immediately.

BPL does explain how you can incorporate your own functions
and definitions so the overall effect will be a well-organized
final product for you. But if you want additional information on
the various functions, refer to the appropriate system manuals
available from Hewlett-Packard.

The overall goal of BPL is to simplify your life as a programmer.
The examples are provided specifically for someone
programming in Series 100 BASIC. Both the compiler and the
interpreter are supported. Whether you are programming for
your own purposes, or programming a package for use by
someone else, BPL will improve your productivity.

However, the principles illustrated apply to programming the
HP Touchscreen PC from any language. For example, if you are
programming in Pascal you will find the functions and variable
definitions easily converted. In fact, the same general principles
apply to programming the HP Touchscreen PC terminal
regardless of the type of “host” you use. This is true whether your
host system is an HP 3000 or a minicomputer from another
vendor. If you are writing an application which uses the HP
Touchscreen PC as nothing more than a terminal, the principles
presented here will help you.

In short, if you are programming any application that uses the

HP Touchscreen PC, you can probably benefit from owning
BPL.

Getting Started with BPL 1-3

How Do 1 Use BPL?

1-4 Getting Started with BPL

BPL is provided on disc as a BASIC program. By loading BPL
into memory when you first begin to write a program, you can
immediately start YOUR program. This saves you the time of
entering all the standard escape sequences you will use in
EVERY program, making you more productive.

BPL, like any programming aid, expects a few things of you.
First, BPL expects your ‘main program’ to start at line 5000. The
lines before 5000 are, for the most part, reserved for BPL. More
will be said about this later in the section titled ‘How Is BPL
Organized?’.

Starting your application at line 5000 is not as severe a
restriction as it may seem. Series 100 BASIC allows line numbers
to range as high as 65529, so you will likely run out of memory
before you run out of line numbers!

It might seem “more efficient’ to renumber BPL and ‘compact’
the source code to use fewer line numbers. In fact, doing so does
not increase the available memory space and does assure alot of
extra work on your part should enhancements to BPL become
available!

BPL also expects certan variables to be ‘reserved’. While this is
not a limit on you, be sure to check the ‘reserved variables’ listed
in Chapter 5. You should not change the definition of these
reserved variables or BPL may not function properly. If strange
things begin to happen, check to see if you've redefined a
reserved variable or function!

You will start your programming session by loading BPL. Be
sure, when you save your program, not to name it ‘BPL" If this
does happen, you will want to use another copy of BPL for other
programs you write. There is a section later in this chapter titled
‘A Sample Session with BPL’ which illustrates how you would
use BPL in a simple application.

How is BPL
Organized?

Once BPL is loaded, proceed to write your program starting at
line 5000. Remember, lines below 5000 are generally reserved
for special purposes by BPL. Refer to the section below titled
‘How is BPL Organized’ for a detailed map of available line
ranges.

Also, remember that all ranges not marked as ‘Available for User
Definitions” should not be used. These are reserved for
enhancements and fixes in any future releases of BPL.

BPL is organized in a specific way so that variables, functions,
and subroutines are located within different ranges of line

numbers. Those variables and functions which control similar
functional components of the HP150 are ‘grouped” in the same
general range of line numbers. Within each of these groupings, .
variables are defined first and functions are defined second.

Furthermore, within the entire library, those lines which define
escape sequence control variables and functions consistently end
in zero. That is, all lines which are multiples of 10 contain
variable and function definitions which involve escape
sequences. Those lines which end in 5 define AGIOS variables
and functions.

In summary, those lines with line numbers which end with a ‘5’
are AGIOS related definitions. Those lines with line numbers
ending in ‘0" are escape sequence related definitions. This
convention applies only within the Library, that is, lines
numbered below 5000.

Let’s take a closer look at the ranges reserved for the several
general functions.

Getting Started with BPL 1-5

Line Range

1000 - 1030
1040

1050

1060

1100 - 1135
1140 - 1199
1200 - 1299
1300 - 1499
1500 - 1799
1800 - 1999
2000 - 2399
2400 - 2499
2500 - 2599
2600 - 2699
2700 - 2945
2955 - 2995
2999

3000 - 3040

3050 - 3095

3100 - 3110

1-6 Getting Started with BPL

Functional Area

Program identification for your application

Set up information (Interpretive BASIC ONLY)
Setup for console and printer width

BPL Revision and Date Code

BPL Identification and Copyright Notice
Available for User (Identification and Copyright)
General Variable and Function Definition
Available for User (General) Definitions
Alphanumeric Control Variables and Functions
Available for User (Alphanumeric) Definitions
Graphics Control Variables and Functions
Available for User (Graphics) Definitions
Touchscreen Control Variables and Functions
Available for User (Touchscreen) Definitions
AGIOS Specific Variables and Functions
Available for User (AGIOS) Definitions

GOTO Start of Main Program - REQUIRED! If this line is
removed, subroutines will be executed before your main
program. Most likely the error reported will be RETURN
WITHOUT GOSUB AT L INE 3040 after you press any key.

Subroutine CHRIN (CHaRacter INput) to accept a single
character from the console. If file ‘BPL3000A.BAS” was MERGEd,
input will be accomplished via an assembly language call. This
requires use of AGIOS subroutines. Use the appropriate file
whether you are using the interpreter or compiler.

Subroutine LININ (LINe INput) to accept a line of text into the
variable BUF$. LININ uses the CHRIN. Found in file
BPL3050.BAS.

Subroutine ECHO to display the character provided by CHRIN
to the display at the current cursor location. Found in file
BPL3100.BAS.

3150 - 3160

3500 - 4999
5000 - 65529

What Comes with
BPL?

Subroutine ERROR to provide an orderly halt should an error
occur. To use this subroutine with the compiler, be sure to
specify the appropriate compiler option. Refer to your compiler
manual for additional information. Note that line 3160 is a
STOP instruction. You may wish to modify this routine for error
recovery in your application. Found in file BPL3150.BAS.

User-defined subroutines.

Main Program. Your application ‘main’ code should be within
this range of lines.

BPL is composed of a disc and this manual. Using this manual,
you can learn what is available as part of BPL and learn how to
use the various components of BPL.

The disc contains several files. Some are the source code to BPL.
These are provided in a variety of forms which allows you to
customize BPL for your application. For example, the parts of
the library which deal with AGIOS system calls are contained in
one file. If you wish to use those calls in your application, you
can MERGE those lines into your code. If you don’t wish to use
those calls, you can simply load the ‘non-AGIOS” BPL.

The disc also contains several sample programs which you will
find in this manual. We encourage you to look at these sample
programs: each is provided to illustrate a point made in this
manual.

Finally, there are several files that allow you to perform input
and output functions with many of the HP Touchscreen PC
devices such as AUX, CON, LST, PRN, INT, PLT, COM, COM1,
and COM2. These files are independent of the regular BPL files
and require renumbering to be used with BPL files so that their
lines will fall in the proper range of BPL line numbers.

Computer

S Museum

Getting Started with BPL 1-7

INDEX.DOC

BPL.BAS

BPLS.BAS
BPLAIBAS

BPLAC.BAS

BPL3000A.BAS

BPL3000B.BAS

BPL3050.BAS

BPL3100.BAS

BPL3150.BAS

AGIOSILASM

AGIOSLIMG

1-8 Getting Started with BPL

Files on the BPL Disc.

The disc which contains BPL contains the following files:

Description

Complete index for this manual. Print using either your word
processor or the M5-DOS COPY command.

The full BPL containing both standard and AGIOS functions
and subroutines.

BPL using only standard calls: no AGIOS calls are included.

The AGIOS definitions of BPL for use with interpreted BASIC
only.

The AGIOS definitions of BPL for use with compiled BASIC
only.

Subroutine for single byte input from the console using the
AGIOSIL.TLA (assembly language) routine. The character is
accepted without echo.

Subroutine for single byte input from the console using BASIC
only. The character is accepted without echo.

Subroutine for accepting a full line of data from the console.
This uses whichever routine has been loaded at line 3000.

Subroutine for echoing the character from line 3000 to the
console. This routine is used regardless of the character input
routine used (B3000A.BAS or B3000B.BAS).

Subroutine to display a BASIC error message at the left margin
of line 20 of the display. This routine can be replaced or
modified to suit the needs of your application.

The source code of AGIOSI.TLA. Note that the assembler does
NOT directly generate the code in AGIOSL.TLA! If you re-
assemble this file, you will destroy your specially processed copy
of AGIOSL.TLA!

The assembly language routines used by the interpretive
version of BPL for access to AGIOS. This file has been specially
processed AFTER assembly as mentioned above. Refer to the
Series 100 BASIC Manual for additional details.

AGIOSC.ASM

AGIOSC.OBJ

AGIOS.DOC

SAMPLE1.BAS

SAMPLE2.BAS

SAMPLE3.BAS
SAMPLE4.BAS

SAMPLES.BAS

SAMPLE6.BAS

SAMPLE? BAS
SAMPLES.BAS

SAMPLE9.BAS

SAMPLEI10.BAS
SAMPLE11.BAS
SAMPLEI12.BAS
SAMPLEI13.BAS
SAMPLEI4.BAS
SAMPLE15.BAS
SAMPLE16.BAS

SAMPLE1L7.BAS

The source code of AGIOSC.OBJ. Unlike the interpretive version
of this file, the assembler generates this code directly. This file
should be used when linking your BASIC compiled program.

The assembly language routines used by the compiled version
of BPL. When you compile your application, no special BPL files
must be on-line during execution.

Documentation file for AGIOS calls. Print using either your
word processor or the MS-DOS COPY command.

Sample file which illustrates the use of alternate character sets
including the line drawing and math character sets.

Sample file illustrating the use of the limited tone generation
facilities on the system.

Sample file showing how to use area pattern definition.

Sample file illustrating the use of character enhancements such
as inverse video and blinking text.

Sample file showing how to use graphics text in any of the
defined sizes.

Sample file showing how to set the orientation of graphics text,
such as inverted text.

Sample file illustrating point plotting.

Sample tile which illustrates user-defined area pattern
definition.

Sample file illustrating the use of the various line patterns
available.

Sample file which shows how to draw lines in graphics mode.
Sample file showing the use of ‘memory lock’.

Sample file illustrating the use of ‘rubber band lines".

Sample file showing use of touch screen.

Sample file which uses polygonal area fill and boundry pen.
Sample file showing how to use origins on the system.

Sample file illustrating the set, complement, jam, and clear
modes of graphics memory.

Sample file showing how to define custom patterns for drawing
lines.

Getting Started with BPL 1-9

SAMPLE18.BAS

SAMPLE19.BAS
DFUNCSIB.ASM

DFUNCSCB.ASM
DFUNCSCB.OBJ

DFUNCSIB.OB]J

TESTIB.BAS

TESTCB.BAS

TESTCB.OBJ

TESTCB.EXE
DFUNCSIB.IMG

DATEST.BAS

PLTEST.BAS

DEVICE.DOC

1-10 Gotting Started with BPL

Sample file which illustrates the User-definable area fill
patterns.

Sample file illustrating the use of user-defined softkeys.

Assembler source code for DOPEN, DACCESS, and DCLOSE
routines. These routines are used to access HP Touchscreen PC
1/0 devices AUX, CON, LST, PRN, INT, PLT, COM, COM1, and
COM2. For use with intrepretive BASIC.

Compiled BASIC version of DFUNCSIB.ASM.

Object code of FUNCSCB.ASM to be used with compiled BASIC
programs.

Object code of FUNCSIB.ASM to be used with interpretive
BASIC programs.

Interpretive BASIC program showing how to use I/O device
routines.

Source code for compiled BASIC program showing how to use
the I/O device routines.

Object code of TESTCB.BAS that may be linked with your
compiled BASIC program.

Executable version of TESTCB.BAS

Memory image of assembly language routines in BLOAD
format. Loaded by your intrepretive BASIC program to perform
the I/O functions provided. This file is used by example
program TESTIB.BAS.

Example of using these device I/O routines to interact with a
host computer.

Example of using these device I/O routines to interact with a
plotter.

Documentation file for device I/O routines. Print using either
your word processor or the MS-DOS COPY command.

A Sample Session
with BPL

Now that you are aware of what BPL is an overview of an actual
session using BPL may aid you in your initial uses of the BASIC
Programming Library. First we will show an example of using
the sample files with BPL and then we will write a simple
program using some of the BPL functions.

Note that BPL is not installable under P.A.M. as a programming
tool. BPL is intended to be used with BASIC. Your application
written, using BPL, can be installed under P.A.M. by referring
to the HP 150 User’s Guide.

Using BPL with the Sample Files
After having loaded BASIC type:

LOAD “BPL

This will load the standard BPL without any subroutines or
AGIOS. Next merge in a sample file by typing in the file name
you want, i.e.:

MERGE "SAMPLE4

Then to see how the sample illustration works run the program
by typing:

RUN

You should see the phrase “GO0OD TRY MY FRIEND” with some
different character enhancements. If you want to try another
sample program you need to delete lines 5000 to the end of the
program. For SAMPLE4 you would type:

DELETE 5000-5050

You may now merge in another sample file and run it as you did
above.

Geotting Started with BPL 1-11

1-12 Getting Started with BPL

Using BPL with Your Program

In this session we will load the standard BPL without
subroutines or AGIOS and start writing a custom program that
uses a few of the BPL features. To begin, after having entered
BASIC, load the standard BPL by typing:

LOAD “BPL [Return)

Use the BASIC edit command or the HP Touchscreen PC

- function to alter lines 1000 to 1030 to reflect the
proper program identification, copyright, etc. for this program.
Now begin writing your program at line 5000. For example you
might type:

5000 REM Start of Main Program

5010 REM This Program will type out TEST 10 times
5020 REM

5030 PRINT CLS$ 'CLEAR THE SCREEN

5040 FORI=1TO 10

5050 PRINT FNLOCATES (I,1*4);“TEST”

5060 NEXT

5070 END

After having run the program be sure to save it with a new
name other than BPLS so as not to overwrite your original BPLS
file. Save this program as TEMP by typing:

SAVE “TEMP.BAS",A

You are now ready to enjoy the benefits of using BPL to
improve your BASIC programming productivity. The sections
that follow are primarily for reference. Chapter 2 is a reference
to every BPL variable, Chapter 3 is filled with some practical
programming tips for the HP Touchscreen PC, and Chapter 4
contains some brief notes on advanced features of the HP
Touchscreen PC and using the datacom files found on the BPL
disk.

ADOFFS$

Statement:

Type:
Purpose:

Remarks:

Example:

ADONS

Statement:

Type:
Purpose:

Remarks:

Example:

BPL Variables and Functions

ADOFF$=ESC$+"*dF”
Alpha, Display
To turn off the alpha display.

ADOFF$ turns off the alphanumeric display. The data in the
two pages of alphanumeric screen memory is not affected.

5000 PRINT ADOFF$

ADONS$=ESC$+*dE”
Alpha, Display
To turn on the alpha display.

ADONS$ turns on the alphanumeric display and alpha numeric
cursor. The data in alphanumeric memory is not affected.

5000 PRINT ADON$

BPL Variables and Functions 2-1

ALTCHROFFS
Statement:

Type:
Purpose:

Remarks:

Example:

ALTCHRONS
Statement:

Type:
Purpose:

Remarks:

Example:

ALTCHROFF$ = CHR$(15)

Alpha, Display

To end the use of the alternate character set.

Turns off the use of the alternate character set and returns you to
the normal characters. This is equivalent to typing o)
from the keyboard. A carriage return will also end the use of the
alternate character set.

5000 Print ALTCHROFF$

(See ALTCHRONS$ for a further example.)

ALTCHRONS$ = CHR$(14)

Alpha, Display

To start the use of the alternate character set.

Starts the use of the alternate character set which has been
selected using FNALTCHRS. This is equivalent to typing

from the keyboard.

It is important to follow the use of ALTCHRONS by a semicolon
(:] when PRINT’ed to avoid an unwanted carriage return.

SAMPLEI.BAS (On BPL disc)

2-2 BPL Variables and Functions

BDRYPENOFF$
Statement:

Type:

Purpose:

Example:

BDRYPENOFF$ = ESC$+“*mH"
Graphics, Polygon

To turn off the drawing of a boundary around a polygon. This is
the default state.

5000 PRINT BDRYPENOFF$
(see BDRYPENONS$ for a further example)

BPL Variables and Functions 2-3

BDRYPENONS
Ctatement:

Type:
Purpose:

Remarks:

Example:

Example:

BDRYPENON$ = ESC$+“*m1H"
Graphics, Polygon
To draw a solid boundary around a polygon.

This variable selects the pen to be used to draw the boundary of
a filled polygon. Because this is a monochrome system the actual
value used is not significant. Here, the digit one ‘1" was used.

This variable turns on the ability to draw a solid line around the

polygon.

There is the ability to control the drawing of a boundary on
individual sides of a polygon. The character sequence “*pu” will
lift the boundary pen and “*pv” will lower it. Once one of these
conditions is selected, all subsequent edges of the polygon will
be drawn with the same condition until a change is made. These
switches are used by placing them at the desired location in the
polygon vector list. (“*pu” & “*pv” must be lowercase letters or
the escape sequence will be terminated.)

5000 PRINT BDRYPENONS

SAMPLEI14.BAS (on BPL disc)

2-4 BPL Variables and Functions

BELLS

Statement:

Type:
Purpose:

Remarks:

Example:

BELL$ = CHRS$(7)
General
To ring the bell.

Further tones can be made by making use of the BASIC “OUT”
command (See SAMPLE2.BAS below).

Computer
- Museum

5000 PRINT BELL$

SAMPLE2.BAS (On BPL disc)

The above makes use of an HP Touchscreen PC specific port
address. Using this in your programs may prevent your program
from running on future 150 compatible computers.

BPL Variables and Functions 2-5

BS$

Statement:

Type:

Purpose:

Remarks:

Example:

BTABS

Statement:

Type:
Purpose:

Remarks:

Example:

CLLS

Statement:

Type:
Purpose:

Remarks:

Example:

BS$ = CHR$(8)
Alpha, Edit
To move the alpha cursor back one space.

This is the same as pressing .

You must follow BS$ with a semicolon to prevent a carriage
return from being appended when PRINT ed.

5000 PRINT BSS$;

BTAB$ = ESC$+"“i”
Alpha, Edit
To move the alpha cursor back to the previous tab stop.

Functions the same as pressing back tab () on the
keyboard.

You must follow BTAB$ with a semicolon to prevent a carriage
return from being appended when PRINT ed.

5000 PRINT BTABS;

CLL$ = ESC$+“K”
Alpha, Edit
To clear from the cursor to the end of the line.

This variable functions the same as clearing the line
from the cursor to the end of the line.

5000 PRINT CLLS$;

2-6 BPL Variables and Functions

CLRS

Statement:

Type:

Purpose:
Remarks:
Example:

CLSS

Statement:

Type:
Purpose:

Remarks:

Example:

COFF$

Statement:

Type:
Purpose:

Remarks:

Example:

CLR$ = ESC$+"]”
Alpha, Display
To clear the alpha screen from cursor to end of screen.

Works the same as pressing [Clear display | .

5000 PRINT CLRS;

CLS$ = HOMES + CLR$
Alpha, Display

To clear the entire display.

This variable works the same as pressing (Shift] {Clear display] or

pressing followed by .

This is also an example of how two variables may be combined
to create a third.

5000 PRINT CLS$

COFF$ = ESC$+"*dR”
Alpha, Display
To turn off the alpha cursor.

It is often desirable to turn off the alpha cursor so that the user
of a program does not think a response is required.

5000 PRINT COFF$

BPL Variables and Functions 2-7

CONS

Statement:

Type:

Purpose:
Remarks:
Example:

CRS$

Statement:

Type:
Purpose:

Remarks:

Example:

DLS

Statement:

Type:
Purpose:
Remarks:

Example:

CON$ = ESC$+"*dQ”

Alpha, Display

To turn on the alpha cursor.

Alpha cursor on is the default state.

5000 PRINT CONS;

CR$ = CHR$(13)

Alpha, Edit

To issue a carriage return.

Functions the same as pressing from the keyboard.

You must follow this with a semicolon or BASIC will add an
additional carriage return when PRINT ed.

5000 PRINT CR$;

DL$ = ESC$+“M”
Alpha, Edit
To delete the line the cursor is on.

Functions the same as pressing { Delete line | .

5000 PRINT DL$

2-8 BPL Variables and Functions

ENHOFFS$

Statement: ENHOFF$ = ESC$+“&d@"

Type: Alpha, Display

Purpose: To end the use of the selected character enhancement.
Remarks: ENHOFF$ will stop the use of the current enhancement. A

carriage return will also stop the use of an enhancement.

Example: 5000 PRINT ENHOFF$
(see FNENHONS for a further example)

ESCS

Statement: ESC$ = CHR$(27)

Type: General

Purpose: To represent the escape character.

Remarks: ESCS$ is defined to make it easier to use escape sequences to
control the computer.

Example: 5000 PRINT ESC$;

BPL Variables and Functions 2-9

FNALTCHRS$(BUFS)
Statement;

Type:
Purpose:

Remarks:

Example:

FNBOX$(X1,Y1,X2,Y2)
Statement:

Type:
Purpose:

Remarks:

Example:

DEF FNALTCHR$(BUF$) = ESC$+)y”+BUF$
Alpha, Display
To select the alternate character set.

Two alternate character sets are available for use from BASIC,
Line Drawing and Math. To use Bold Face Roman and [talic
Roman, you must use AGIOS area operations.

The code characters passed to the function are:

(@ Normal Roman
A Math
B Line Drawing

5000 PRINT FNALTCHRS (‘'B™)
(See ALTCHRONS for a further example.)

DEF FNBOX$(X1,Y1,X2,Y2) = ENMOVE$(X1,Y1) +
FNDRAWS$(X2,Y1) +
FNDRAW$(X2,Y2) +
FNDRAWS$(X1,Y2) +
FNDRAWS$(X1,Y1)

Graphics, Vector

To draw a rectangle by giving the opposite corners.

This function uses other functions to perform the task of
drawing a rectangle. First the pen is moved to the beginning

corner, then each side of the box is drawn.

5000 PRINT GDONS;
5010 PRINT FNBOX$ (150, 100,300,250);

2-10 BPL Variables and Functions

FNBOXFAS$(X1,Y1,X2,Y2)

Statement: DEF ENBOXFA$(X1,Y1,X2,Y2) = ESC$+“*m* +STR$(X1)
4+ “+STR$(Y1)+“, +STR$(X2)
+ 4+ STR$(Y2)+"E”

Type: Graphics, Polygon
Purpose: To place a shaded rectangle on the graphics screen.
Remarks: This function uses the currently defined fill pattern (see

ENFILLPATS$) to shade the designated area of the graphics
screen. The user defines rectangular region by specifying the
lower left and upper right corners. The corners are absolute
coordinates with the lower left corner of the screen being (90,0).
The box does not have a boundary.

Coordinates must be specified by lower left corner, upper right
corner.

Example: 5000 PRINT GDONS$;
5010 PRINT FNBOXFA$ (125,150,325,350);

BPL Variables and Functions 2-11

FNBOXFR$(X1,Y1,X2,Y2)
Gtatement:

Type:
Purpose:

Remarks:

Example:

DEF ENBOXFR$(X1,Y1,X2)Y2) = ESC$+“*m" +STRS(X1)
+7,/+STRH(Y1)+",” +STR$(X2)
+,"+STRH(Y2)+"F”

Graphics, Polygon

To place a shaded rectangle on the graphics screen.

Functions the same as FNBOXFA$ with one exception: the

coordinates are in relation to the relocatable origin rather than

the absolute origin.

Coordinates must be specified by lower left corner, upper right
corner.

SAMPLE15.BAS (on BPL disc)

2-12 BPL Variables and Functions

FNCENTERS(BUF$,W)
Statement:

Type:
Purpose:

Remarks:

Example:
FNDEFLINES$(X1,X2)
Statement:

Type:

Purpose:

Remarks:

Example:

DEF FNCENTERS$(BUF$,W) = STRINGS(INT((W-LEN
(BUF$))/2), ” “)+BUF$

Alpha, Display
To center a phrase on a line.

This function will center a phrase on a line. The phrase to be
centered is in the variable BUF$ and the length of the line is W.

5000 PRINT FNCENTERS (*'Good Try",80)

DEF FNDEFLINE$(X1,X2)=ESC$+*m" +STR$(X1)+ ", +
STR$(X2)+"C”

Graphics, Vector
To define the User-definable line pattern.

The first parameter is a number between 0 and 255. The system
will use the binary representation of that number to define the
eight bits (screen dots) to make up the pattern. The second
parameter is a scaling factor of from 1 to 16. This factor
determines the number of times each dot in a pattern is
repeated before starting the next dot.

SAMPLE17.BAS (on BPL disk)

BPL Variables and Functions 2-.13

FNDEFPATS$(BUFS)
Statement:

Type:
Purpose:

Remarks:

Example:

DEF FNDEFPAT$(BUF$)=ESC$ +“*m " +BUF§ + D"
Graphics, Polygon
To define the user-defined area fill pattern.

With this function the user can define any type of area fill
pattern desired and then use area fill commands to use that
pattern. The string required by this function is a list of eight
numbers separated by commas and enclosed in double quote
marks. Each number must be between 0 and 255. The system
will use the binary representation of that number to make up
the fill pattern. The first number in the string is for the bottom
row of eight bits in an eight by eight cell, the last number for the
top row.

SAMPLEI18.BAS (on BPL disc)

2-14 BPL Variables and Functions

FNDRAWS$(X1,Y1)
Statement:

Type:
Purpose:

Remarks:

Example:

DEF FNDRAWS$(X1,Y1) = ESC$+""*pb”+STR$(X1)+",”+
STR$(Y1)+"Z2”

Graphics, Vector

To draw a line from the current pen position.

This function lowers the pen and draws a vector to the new
coordinate position. The pen remains lowered at the end of the

operation.

5000 PRINT FNDRAWS (511,389);

. Computer

“Museum

BPL Variables and Functions 2-15

FNDRAWMODES(X1)
Statement;

Type:
Purpose:

Remarks:

DEF FNDRAWMODES$(X1) = ESC$+“*m” +STR$(X1)+"A"”
Graphics, Display

To select the vector drawing mode.

The vector drawing modes are as follows:

0 Graphics Memory Not Changed
1 Clear Mode

2 Set Mode

3 Complement Mode

4 Jam Mode

The data in graphics memory is either 0 (off) or 1 (on). Drawing
modes determine what effect a graphics command (Vector or
Polygon) will have on graphics memory.

CLEAR MODE will turn the selected display bits in graphics
memory to 0 or OFF. The selected bits are those that are ON in
the line or area pattern. Clear mode has the effect of drawing
dark lines on a light background. 1If the background is dark
there is no noticeable effect on the display.

SET MODE is the opposite of clear mode giving light lines on a
dark background. As in clear mode only the bits that are ON in
the pattern are affected.

COMPLEMENT MODE causes the selected bits (those that are
ON) in a pattern to toggle (on to off, off to on). The pattern
drawn is the opposite of whatever the graphics status is at that
point. Complement mode gives you the ability to selectively
erase. If a line is drawn and then another line is drawn over the
top of the first, the first appears to have been erased.

JAM MODE differs from the other 3 modes in that all the bits of
a pattern affect the display. Jam mode gives the effect of having
cut out the pattern and placed it over the top of the display. The
example below shows how the jam mode pattern appears with

graphics memory set to OFF and then with it set to ON.

2-16 BPL Variables and Functions

Example: SAMPLE16.BAS (on BPL disc)

BPL Variables and Functions 2-17

FNENHONS(BUFS)
Statement:

Type:

Purpose:

Remarks:

Example:

DEF FNENHON$(BUF$) = ESC$+"&d"+BUF$
Alpha, Display

To define the type of enhancement to be made to the characters
that follow.

Enhancements are defined according to the following table:

enhancement: @ ABCDEFGHIJKLMNDO
half-bright : X X X X X X X X
underline : X X X X X X X X
inverse video : X X X X X X X X
blinking : X X X X X X X X

FNENHONS$ must be followed by a semicolon (;] to prevent the
automatic insertion of carriage return.

SAMPLE4.BAS (on BPL disc)

2-18 BPL Variables and Functions

FNFILLPATS(X1)
Statement:

Type:
Purpose:

Remarks:

Example:

DEF FNFILLPAT$(X1) = ESC$+"*m”+STR$(X1)+"“G”
Graphics, Polygon
To select the desired fill pattern.

This function selects a pattern for polygonal and rectangular
area fill. The possible patterns are:

1 Solid fill pattern (Default)
2 User-defined pattern (see FNDEFPAT$)
3-10 Predefined fill patterns.

SAMPLES.BAS (on BPL disc)

BPL Variables and Functions 2-19

FNGCMAS(X1,Y1)
Ctatement:

Type:
Purpose:

Remarks:

Example:

FNGCMR$(X1,Y1)
Statement:

Type:
Purpose:

Remarks:

Example:

DEF FNGCMAS$(X1,Y1) = ESC$+“*d” +STR(X1)+", " +
STR$(Y1) +“O”

Graphics, Display

To move the graphics cursor to specified coordinates.

This graphics cursor move is in relation to the absolute lower
left of the screen, coordinates (0,0). The cursor move takes place
even if the cursor is off. The upper right corner is (511,389).
5000 PRINT FNGCMAS$ (250,300);

DEF FNGCMR$(X1,Y1) = ESC$+“*d“+STR$(X1)+","+
STRS$(Y1) +“P”

Graphics, Display

To move the graphics cursor.

This function moves the graphics cursor relative to the current
position of the cursor.

5000 PRINT FNGCMR (25,-25);

2-20 BPL Variables and Functions

FNGTLABELS(BUFS)
Statement:

Type:
Purpose:

Remarks:

Example:

DEF FNGTLABEL$(BUF$) = ESC$+~*1”+BUF$

Graphics, Text

To place graphics text on the graphics screen.

This is the function used to write any graphics labels or text on a
graphics screen. It can be combined with the size and rotate

command for further control. Default text size is one.

SAMPLE5.BAS (on BPL disc)

BPL Variables and Functions 2-21

FNGTORGNS(X1)
Gtatement:

Type:
Purpose:

Remarks:

Example:

DEF FNGTORGN$(X1) = ESC$+“*m* +STR$(X1)+"Q”
Graphics, Text

To set the justification of a graphics text character.

This function sets the graphics text origin to one of twelve
positions of text justification. The possible justification positions

are outlined in the following representation of a graphics text
cell. Position 1 is the default.

3 6 9
2 5 8
I |
0 10 11 Base Line
1 4 7

If a position other than one on the left is chosen the text will not
appear on the screen until is sent.

5000 PRINT FNGTORGNS$ (8);

2-22 BPL Variabies and Functions

FNGTROTS(X1)
Statement:

Type:
Purpose:

Remarks:

Example:

DEF ENGTROT$(X1) = ESC$+“*m” +STR$(X1)+"“N”
Graphics, Text
To set the orientation of graphics text.

This function selects the graphics text orientation. This also
changes the direction of line feed, carriage return, and back
space. The desired orientation is specified by a number defined
as:

1 normal text orientation

2 rotate 90 degrees counter clockwise
3 rotate 180 degrees counter clockwise
4 rotate 270 degrees counter clockwise

SAMPLE6.BAS (on BPL disc)

BPL Variables and Functions 2-23

FNGTSIZES$(X1)
Statement:

Type:
Purpose:

Remarks:

Example:
FNLINEPATS(X1)
Statement:

Type:

Purpose:

Remarks:

Example:

DEF ENGTSIZE(X1) = ESC$+"*m" +STR$(X1)+"M"
Graphics, Text
To set the size of graphics text.

This function sets the size of graphics text. The vector lists that
define the current character set are scaled with this scale factor.

5000 PRINT FNGTSIZES (2);
(See FNGTLABELS for a further example.)
DEF FNLINEPAT$(X1) = ESC$+"*m”+STR$(X1)+“B”
Graphics, Vector
To select the type of line to be used for vectors.
The possible line types available are:

1 Solid line

2 User-defined line (see FNDEFLINE$)

3 Current area fill pattern (see FNFILLPATS)

4-10 Various combinations of dashes & points

11 Point plot

SAMPLE9.BAS (on BPL disc)

2-24 BPL Variables and Functions

FNLOCATES$(R1,C1)
Statement:

Type:
Purpose:

Remarks:

Example:
FNLYNES$(X1,Y1,X2,Y2)
Statement:

Type:

Purpose:

Remarks:

Example:

DEF FNLOCATE$(R1,C1) =
ESC$+//&a+STR$(R1)+//y1/+STR$(C1)+ucl/

Alpha, Display

To locate the cursor at a specified row and column on the screen.
This function works the same as the command “Locate” in
many other BASICs. The upper left corner of the alpha screen is

(0,0) the lower right is (23,79).

It is necessary to follow the command with a semicolon [7] to
prevent the insertion of a carriage return by BASIC.

5000 PRINT FNLOCATES (10,22);

DEF FNLYNES$(X1,Y1,X2,Y2) = FNMOVE$(X1,Y1)+
FNDRAWS$(X2,Y2)

Graphics, Vector

To draw a line between any two points.

This function combines two other functions: FNMOVES$ &
ENDRAWS. A line is drawn between the points (X1,Y1) and
(X2,Y2). The line style is that specified by the function
FNLINEPATS.

SAMPLE10.BAS (on BPL disc)

BPL Variables and Functions 2-25

FNMOVES$(X1,Y1)
Statement:

Type:
Purpose:

Remarks:

Example:

DEF FNMOVE$(X1,Y1) = ESC$+“*pa‘+STR$(X1)+*," +
STR$(Y1)+“Z”

Graphics, Vector

To move the graphics pen to a new position.

This function lifts the graphics pen and moves the pen to the
new coordinate position. The pen is lowered at the end of the
operation. This function is used to move the pen to a new

position in preparation for writing graphics text and drawing a
point or line.

5000 PRINT FNMOVES$ (250,250);

2-26 BPL Variables and Functions

FNPK16$(MSB,LSB)
Statement:

Type:

Purpose:

Remarks:

Example:

DEF FNPK16$(MSB,LSB)=CHRS$(LSB)+CHR$(MSB)
AGIOS

To create a two-byte string buffer with a bit pattern equivalent
to a sixteen bit integer.

The string is created from two eight bit numeric values which
make up the integer value, and is stored in BASIC ‘MKI$’
format.

This function is used primarily in conjunction with the AGIOS
functions, where system calls are specified as eight bit functions
followed by eight bit sub-functions.

The AGIOS function in order to generate a two-character escape
sequernce, requires a sixteen bit word with a zero as the most
significant byte, and a 16 in the least significant byte. This word
is followed by a one byte ASCII code which determines the
function to be performed. To create a buffer to ‘home’ the cursor,
the buffer passed to AGIOS should contain:
CHR$(16)+ CHR$(0)+"H”
The FNPK16$ function permits you to create this buffer:
BUF$=FNPK16$(0,16)+"“H"”

Either form is acceptable: the latter is more clearly consistent
with the HP AGIOS documentation.

5000 BUF$=FNPK16$ (0,16) +'*H"
5010 CALL AGIOS (BUF$)

BPL Variables and Functions 2-27

FNPSETS$(X1,Y1)
Ctatement:

Type:
Purpose:

Remarks:

Example:

DEF ENPSET$(X1,Y1) = FNMOVE$(X1,Y1)+POINTPLOT$
Graphics, Vector

To draw a point at the specified coordinates.

This function combines the function FNMOVE$ with the
variable POINTPLOTS$ to draw a point at the specified

coordinates.

SAMPLE7 BAS (on BPL disc)

FNSKDS$(K,LS,RETS)
Statement:

Type:

Durpose:

Remarks:

DEF FNSKD$(K,L$,RET$) = ESC$~+“&f” +STR$(K)+“k2a”
+STR$(LEN(L$)) +“d* +STR$(LEN(RET$)) + “L“ +L$ +RET$

Alpha, Softkey

To Jeﬂne a user softkey.

This function can be used to define user softkeys. The following
conventions need to be followed:

The key number K must be between 1 and 8.
The label L$ is 0 to 16 characters in length. A length of zero

will leave the label unchanged. The first 8 characters will
appear on the first line, the next 8 on the second line.

2-28 BPL Variables and Functions

Example:

The return string RETS is -1 to 80 characters in length. A
value of -1 indicates the existing return buffer should be set
to a null string. Any other value indicates the number of
characters which should be returned to the application when
the softkey is pressed.

For further information on programming the softkeys and how
parameters of this function can be changed to accomplish
different purposes see the softkey section of Practical
Programming Techniques in this manual.

The “G” and “H” straps in the terminal configuration must be
set to YES for softkeys to be used correctly.

See SAMPLEI19.BAS (on BPL disc)

BPL Variables and Functions 2-29

FNSOFF$(X1)
Statement:

Type:

Purpose:

Remarks:

Example:

FNSOFFL$(X1)
Statement:

Type:

Purpose:

Remarks:

Example:

DEF FNSOFF$(X1)=CHR$(PEEK(X1+1))

+ CHRS$(PEEK(X1 +2)) interpreted BASIC only
DEF FNSOFF$(X1)=CHR$(PEEK(X1 +2))

+ CHR$(PEEK(X1 + 3)) ‘compiled BASIC only

AGIOS

To generate the address of a character string in memory from the
string descriptor block used by BASIC.

The VARPTR function in BASIC can be used to return the
address of a string descriptor block for a particular string
(CHARBUF?$ in the example below). Function FNSOFF$ returns
a two-character packed buffer containing the actual address of
the character string. Normally the string buffer contains
information required by an AGIOS.

5000 BUF$="CHARBUF”
5010 X1=VARPTR (BUF$)
5020 B$=FNSOFF$ (X 1)

DEF FNSOFFL$(X1)=ENSOFF$(X1)+ DS$
AGIOS

To generate a fully qualified offset and data segment address for
use in an AGIOS call.

This function generates a buffer containing a fully qualified
address consisting of a sixteen bit offset (using FNSOFF$) and a
sixteen bit segment register value stored in DS$ during start-up
processing by BPL. For several AGIOS functions, the buffer
address must be fully qualified. This function can be used for
those calls.

5000 BUF$="CHARBUF”
5010 X1=VARPTR (BUF$)
5020 BX$=FNSOFFL$ (X1)

2-30 BPL Variables and Functions

FNTFS$(R1,R2,C1,C2,RETS)

Statement: DEF FNTF$(R1,R2,C1,C2,RET$) = ESC$+“-zg” +STR$(R1)
+ 4+ STR$(R2)+“r” +STR$(C1)+",” +
STR$(C2)+“cOp1b10e2f2m1a” + STR$(LEN(RETS))

+“L"+RET$
Type: Touch, Display
Purpose: To define touch fields of various sizes.
Remarks: This function defines a touch field between the rows R1 and R2

and the columns C1 and C2. RET$ contains the string to be
returned when the field is touched. A further explanation of
each possible parameter can be found under touch screen
information in the Practical Programming (Chapter 3) of this
manual.

WARNING: R1 must be less than R2
C1 must be less than C2

Example: 5000 Print FNTF$ (2,6,2,10,“GOOD TOUCH MY FRIEND”);

(See FNTOUCHS for a further example)

FNTFDELS$(R1,C1)

Statement: DEF FNTFDEL$(R1,C1) = ESC$+ "“-zd”
+STR$(R1)+“r“+STRH(C1)+“C”

Type: Touch, Display

Purpose: To delete a specific touch field.

Remarks: This function deletes the touch field that has as its upper left
coordinate (R1,C1). It is good programming practice to delete
touch fields when you are finished with them. This can be
accomplished by using this function or TSDELS$.

Example: 5000 PRINT FNTFDELS$ (2,6);

BPL Variables and Functions 2-31

FNTOUCHS$(R1,C1,RETS)

Statement: DEF FNTOUCH$(R1,C1,RET$) = ESC$+“-zg”+STR$(R1)
++STR$R1+1)+“r*+STR$(C1)+,”+STRHC1+7)
+“cOp1bl10e2f2mla” + STR$(LEN(RET$))+ “L” + RET$

Type: Touch, Display

Purpose: To define a 2 row by 8 column touch field.
Remarks: See Chapter 3 ‘Practical Programming’.
Example: SAMPLE13.BAS (on BPL disc)

2-32 BPL Variables and Functions

FNUP$(BUFS)
Statement:

Type:
Purpose:

Remarks:

Example:

DEF FNUP$(BUF$) = CHR$(ASC(BUF$) + (32*((ASC(BUF$)> 96
AND ASC(BUF$)<<123))))

Alpha, Edit

To ensure that a character is uppercase.

It is often desirable to permit the user to enter a response in
either upper or lower case. By using this function, you can
‘upper case’” whatever is entered, making the test for a match

easier.

5000 A$=FNUP$ (INPUT$ (1))

BPL Variables and Functions 2-33

FNXBATS(AS,X1)

Statement: DEF ENXBAT$(A$ X1) = FNPK16$(0,0) + MKIS(LEN(A$)) +
ENSOFFL$(X1)

Type: General, AGIOS

Purpose: To perform ‘batch” AGIOS commands.

Remarks: FNXBATS$ can be used to create a buffer of one or more AGIOS

commands which are to be executed at the same time.

You must pass FNXBATS$ the command string as well as the
address of the string (which cannot be generated within a
function).

For example, you will often want to perform a followed by
to erase the entire screen. To do this, you will need
to set up a batch or ‘macro” AGIOS command string.

Once you have created this string (XCLS$) you will only need to
store it and call it when needed. If one or more of your batched
commands require variable parameters (such as FNXMOVES$)
you will need to repeat these steps prior to each call.

Example: 5000 BUF$ = XHOMES$ + XCLR$ 'Build buffer of commands
5010 B = VARPTR (BUF$) 'Find its address
5020 XCLS$ = FNXBAT$ (BUFS$,B) 'Build Batch Buffer
5030 CALL AGIOS (XCLS$) ’Call Batch Function

2-34 BPL Variables and Functions

FNXDRAWS(X1,Y1)
Statement:

Type:

Purpose:

Remarks:

Example:

FNXDRAWMODES$(X1)
Statement:

Type:
Purpose:

Remarks:

Example:

DEF FNXDRAWS$(X1,Y1) = FNPK16%$(4,44) + MKI$(X1) +
MKI$(Y1)

Graphics, Vector, AGIOS

To draw a line from the current pen position.

FNXDRAWS$ works just as FNDRAWS to draw a line from the
current graphics pen position to the specified coordinate

position.

BUF$ = FNXDRAWS (100,100):CALL AGIOS (BUF$)

DEF FNXDRAWMODE$(X1) = FNPK16$(4,17) + MKI$(X1)
Graphics, Display, AGIOS

To select the vector drawing mode.

FNXDRAWMODES$ works just as FNDRAWMODES$ to select the
vector drawing mode. Refer to the description under

FNDRAWMODES$ for additional information.

BUF$ = FNXDRAWMODES$ (2) : CALL AGIOS (BUF$)

BPL Variables and Functions 2-35

FNXENHONS
Ctatement:

Type:

Purpose:

Remarks:

Example:

FNXFILLPATS(X1)
Statement:

Type:
Purpose:

Remarks:

Example:

FNXGCMAS$(X1,Y1)
Statement:

Type:
Purpose:

Remarks:

Example:

DEF FNXENHONS$(BUF$) = FNPK16%$(0,18) + CHR$(0) +
MID$(BUFS$,1,1)

Alpha, Display, AGIOS

To define the type of enhancement for characters which follow
on the current line.

FENXENHONS$ works just as FNENHONS$ to define the alpha
display enhancement for characters printed to the right of the
cursor when this call is made. The enhancement remains
enabled until it is turned off (see XENHOFF$ and ENHOFF$) or
until the cursor is moved to a new line.

BUF$ = FNXENHONS (“B”") : CALL AGION (BUF$)

DEF FNXFILLPAT$(X1) = FENPK16$(4,23) + MKI$(X1)
Graphics, Polygon, AGIOS
To select the desired fill pattern for polygon fill.

FNXFILLPAT$ works just as FNFILLPAT$ to select the pattern
which is active for polygon fill operations.

BUF$ = FNXFILLPATS$ (1) : CALL AGIOS (BUF$)

DEF FNXGCMA$(X1,Y1) = FNPK16$(4,11) + MKI$(X1) +
MKI$(Y1)

Graphics, Display, AGIOS

To move the graphics cursor to the specified position.

FNXGCMAS$ works just as FNGCMAS$ to move the absolute

graphics screen coordinate specified and occurs whether the

cursor is actually displayed or not.

BUF$ = FNXGCMAS (0,0) : CALL AGIOS (BUF$)

2-36 BPL Variables and Functions

FNXGCMRS$(X1,Y1)
Statement:

Type:

Purpose:

Remarks:

Example:

FNXGTORGNS$(X1)
Statement:

Type:
Purpose:

Remarks:

Example:

FNXGTROTS$(X1)
Statement:

Type:
Purpose:

Remarks:

Example:

DEF FNXGCMR$(X1,Y1) = FNPK16$(4,12) + MKI$(X1) +
MKI$(Y1)

Graphics, Display, AGIOS

To move the graphics cursor relative to the current graphics
cursor position.

FNXGCMR$ works just as ENGMCR$ to move the graphics
cursor relative to the current position

BUF$ = FNXGCMRS$ (25,-25) : CALL AGIOS (BUF$)

DEF FNXGTORGN$(X1) = FNPK16%$(4,33) + MKI$(X1)
Graphics, Text, AGIOS
To set the origin of graphics text characters.

ENXGTORGNS works just as ENGTORGNS to set the
justification for graphics text within each character cell.

BUF$ = FNXGTORGNS$ (0) : CALL AGIOS (BUF$)

DEF FNXGTROT$(X1) = FNPK16$(4,30) + MKI$(X1)
Graphics, Text, AGIOS

To set the orientation of graphics text.

FNXGTROT$ works just as FNGTROTS$ to set the orientation of

graphics text.

BUF$ = FNXGTROTS$ (3) : CALL AGIOS (BUF$)

BPL Variables and Functions 2-37

FNXGTSIZES(X1,X2,Y1,Y2)

Statement:

Type:
Purpose:

Remarks:

Example:

FNXLINEPATS(X1)
Statement:

Type:
Purpose:

Remarks:

Example:

DEF ENXGTSIZE$(X0,X1,Y0,Y1) = FNPK16$(4,29) +
FNPK16$(X2,X1) +
FNPK16$(Y2,Y1)

Graphics, Text, AGIOS
To set the size of graphics text.

ENXGTSIZES$ is very different from ENGTSIZES$ in that non-
integral text sizes may be specified. The format of each
parameter is:

BUF$ = FNXGTSIZE$ (1,5,1,0) : CALL AGIOS (BUFS$)

FNXLINEPAT$(X1) = FNPK16%(4,18) + CHR$(X1)
Graphics, Vector, AGIOS
To select the line pattern to be used in vector draw.

FNXLINEPAT$ works just as FNLINEPATS$ to select any of 11
possible line patterns to be used in vector drawing operations.
Refer to ENLINEPAT$ for more information on the possible line

types.

XBUF$ = FNXLINEPATS (4):CALL AGIOS (XBUF$)

2-38 BPL Variables and Functions

FNXLOCATES$(R1,C1)
Statement:

Type:

Purpose:

Remarks:

Example:

FNXMOVES$(X1,Y1)
Statement:

Type:
Purpose:

Remarks:

Example:

DEF FNXLOCATE$(R1,C1) = FNPK16$(0,17) + CHR$(153) +
MKI$(C1) + MKI$(R1)

Alpha, Display, AGIOS

To position the alpha cursor.

FNXLOCATE$ works just as FNLOCATES$ to position the alpha

cursor at a particular row and column location on the screen.

This function positions the cursor to a fixed location on the

display screen.

BUF$ = FNXLOCATES$ (10,10) : CALL AGIOS (BUFS$)

DEF FNXMOVES$(X1,Y1) = FNPK16%(4,40) + MKI$(X1) +
MKI$(Y1)

Graphics, Vector, AGIOS

To move the graphics cursor to a new position.

FENXMOVES$ works just as FNMOVE$ to position the graphics

cursor to an absolute position on the display without drawing

the line, and puts the pen down at the end of the move.

BUF$ = FNXMOVES$ (511,389) : CALL AGIOS (BUF$)

BPL Variables and Functions 2-39

FNXTCESCS$(AS)
Statement:

Type:
Purpose:

Remarks:

Example:

GCLSS

Statement:
Type:
Purpose:

Remarks:

Example:

GCOFF$

Statement:
Type:
Purpose:

Remarks:

Example:

ENXTCESC$(A$) = ENPK16%(0,16) + MID$(A$,1,1)

General, AGIOS

To execute a two-character escape sequence.

FNXTCESCS$ allows you to execute any two character escape
sequence supported by the HP Touchscreen PC. Refer to the HP
Touchscreen PC Terminal User’s Guide for information on the

actual escape sequences.

5000 BUF$ = FNXTCESCS$ (“A*) : CALL AGIOS (BUF$)

ESC$ + II*dA/I
Graphics, Display
To clear the graphics display.

This function clears the entire 390 X 512 graphics display setting
all pixels to 0 or off.

5000 PRINT GCLSS$;

ESC$+*dL”
Graphics, Display
To turn off the graphics cursor.

Turning off the graphics cursor does not affect graphics
memory.

5000 PRINT GCOFF$;

2-40 BPL Variables and Functions

GCONS

Statement:

Type:
Purpose:

Remarks:

Example:

GDFTS

Statement:

Type:
Purpose:

Remarks:

Example:

ESC$+“*dK”

Graphics, Display

To turn on the graphics cursor.

Turning on the graphics cursor does not affect the data in

graphics memory.

5000 PRINT GCON$;

ESC$+“*mR”

Graphics, Display

Comuputer

S Museum

To set graphics parameters to their default values.

The default values for the graphics parameters are:

Pen down
Line type 1

User-defined line pattern is solid
User-defined area fill pattern is solid

Boundary pen off
Drawing mode set

Relocatable origin at 0,0

Text size 1

Text origin at 1

Text slant off

Text orientation 1
Graphics Text off
Graphics display on
Graphics cursor off

Alphanumeric cursor on

Rubber band line off

Graphics cursor position is 0,0

5000 PRINT GDFT$;

BPL Variables and Functions

2-41

GDOFF$

Statement:

Type:
Purpose:

Remarks:

Example:

GDONS

Statement:
Type:
Purpose:

Remarks:

Example:

GDOFF$ = ESC$+“*dD”

Graphics, Display

To turn off graphics display.

Turning off the graphics display does not affect graphics display
memory. This means that if graphics display is turned off and

then back on it will be the same.

5000 PRINT GDOFF$;

GDON$ = ESC$+“*dC”
Graphics, Display
To turn on the graphics display.

Turning on the graphics display does not affect the graphics
memory.

5000 PRINT GDONS;

2-42 BPL Variables and Functions

GPDFTS

Staterent: GPDFT$ = ESC$+""*m1R”
Type: Graphics, Display
Purpose: To set the graphics picture defaults.
Remarks: The default values of the graphics picture definition parameters
are:
Pen down
Line type 1

User-defined line pattern is solid
User-defined area fill pattern is solid
Boundary pen is off

Drawing mode is set

Text size is 1

Text origin is 1

Text slant is off

Text orientation is 1

Graphics text is off

Example: 5000 PRINT GPDFTS$;

GRESETS

Statement: GRESET$ = ESC$+"*wR"”

Type: Graphics, Display

Purpose: To reset all graphics parameters to the power on state.
Example: 5000 PRINT GRESET$;

BPL Variables and Functions 2-43

GSETS
Statement:

Type:

Purpose:
Remarks:
Example:

GSETUPS
Statement:

Type:
Purpose:

Remarks:

Example:

GSET$ = ESC$+"*dB”

Graphics, Display

To set graphics memory to inverse video.

The entire 512 x 390 graphics display is set to 1 or on.

5000 PRINT GSETS$;

(See POLYGONS$ for a further example.)

GSETUP$ = GCLS$+GDON$+ADOFF$

Graphics, Display

To prepare the screen for using graphics.

This is an example of how several library variables can be
combined to accomplish multiple tasks with a single statement.
The graphics screen is cleared (GCLS$), the graphics display is
turned on (GDONS$), and the alpha display is turned off
(ADOFEF$). The contents of alpha display memory is not

affected.

This variable is often printed in a program just prior to the first
use of graphics.

5000 PRINT GSETUPS$;

2-44 BPL Variables and Functions

GTOFFS$

Statement:

Type:
Purpose:

Remarks:

Example:

GTONS

Statement:

Type:
Purpose:

Remarks:

Example:

GTOFF$ = ESC$+“*dT”
Graphics, Text
To turn off graphics text.

By turning off the graphics, text mode characters will go to the
alpha display.

5000 PRINT GTOFF$;

GTON$ = ESC$+“*ds”
Graphics, Text
To turn on graphics text mode.

Characters that normally go to the alphanumeric display will go
to the graphics display when graphics text mode is on.

Depending on graphics text origin the text may not appear until
after . See FNGTORGNS.

5000 PRINT GTONS;

BPL Variables and Functions 2-45

GTSOFF$
Statement:

Type:
Purpose:

Remarks:

Example:

GTSONS
Statement:

Type:
Purpose:

Remarks:

Example:

HOMES
Statement:

Type:
Purpose:

Remarks:

Example:

GTSOFF$ = ESC$+"*mP”
Graphics, Text
To turn off slanted graphics text.

Once graphics text slant is turned off graphics text characters
will be output normally.

5000 PRINT GTSOFFS$;

GTSON$ = ESC$+“*mO”
Graphics, Text
To turn on slanted graphics text.

The slant that is used for graphics text characters is 26.57
degrees.

5000 PRINT GTSONS;

HOME$ = ESC$+“H”

Alpha, Display

To move the alpha cursor to the home position.

The home position is row 1 column 1 or in the function
FNLOCATES$(0,0). Be sure to follow HOME$ with a semicolon to

prevent BASIC from issuing the carriage return.

5000 PRINT HOMES;

2-46 BPL Variables and Functions

HOMEDWNS$
Statement:

Type:

Purpose:

Remarks:

Example:

iLs

Statement:
Type:
Purpose:

Remarks:

Example:

KBOFF$
Statement:

Type:
Purpose:

Remarks:

Example:

HOMEDWNS$ = ESC$+"F”
Alpha, Display

To move the alpha cursor to the bottom of screen memory
contents.

This function will move the cursor to the end of the contents of
screen memory, not the bottom or 48th row of screen memory.
HOMEDWNS$ will only move the cursor the 48th row if the

entire alpha memory is full.

5000 PRINT HOMEDWNS;

IL$ = ESC$+"L”
Alpha, Edit
To programmatically insert a line in alpha memory.

This function works the same as pressing on the
keyboard.

5000 PRINT IL$;

KBOFF$ = ESC$+“c”

General

To turn off the keyboard.

This function will lock the keyboard, preventing the user from
inputting information from the keyboard. When using this
function be sure to turn the keyboard back on programmatically

or the user will have to perform a soft reset to get going again.

5000 PRINT KBOFF$;

BPL Variables and Functions 2-47

KBONS
Statement:

Type:

Purpose:
Remarks:
Example:

MEMLS
Statement:

Type:
Purpose:

Remarks:

Example:

KBON$ = ESC$+“b”

General

To turn on the keyboard.

This function turns on the keyboard to allow user input.

5000 PRINT KBONS;

MEML$ = ESC$+-1”
Alpha, Display
To lock a portion of screen memory.

This function will lock the alpha screen memory from the
cursor position to the top of the displayed screen so that this
portion of memory will not be scrolled off the top of the screen.
To use it, move the cursor to the desired row and then print
MEMLS. This has the same effect as the memory lock system
softkey. It is very useful for locking instructions or touch fields
at the top of the screen.

SAMPLE11.BAS (on BPL disc)

2-48 BPL Variables and Functions

MEMULS
Statement:

Type:
Purpose:

Remarks:

Example:

ORGNSETS
Statement:

Type:
Purpose:
Example:

ORGNSETCPS
Statement:

Type:

Purpose:

Example:

MEMUL$ = ESC$+"“m”
Alpha, Display
To unlock screen memory.

Place the cursor on the row where memory lock (MEMLS$) was
previously used and then print this function.

5000 PRINT MEMULS;

ORGNSET$ = ESC$+“*pE”

Graphics, Origin

To set the relocatable origin to the current pen position.
5000 PRINT ORGNSETS$;

{See FNBOXFRS for a further example)

ORGNSETCP$ = ESC$+“*mL”

Graphics, Origin

To set the relocatable origin to the current graphics cursor
position.

5000 PRINT ORGNSETCPS$;

BPL Variables and Functions 2-49

ORGNSETPPS
Statement:

Type:
Purpose:

Remarks:

Example:

PCMOVES
Statement:

Type:
Purpose:
Example:

PCPLOTS
Statement:

Type:
Purpose:

Example:

ORGNSETPP$ = ESC$+“*mK”

Graphics, Origin

To set the relocatable origin to the current pen position.
Several graphics commands can be issued relative to the
relocatable origin rather than the absolute origin of (0,0) in the
lower left corner. Setting the relocatable origin may provide

advantages to the application program.

5000 PRINT ORGNSETPP$;

PCMOVE$ = PENUPS$+ESCS$+"*pC”
Graphics, Vector
To move the pen to the current graphics cursor position.

5000 PRINT PCMOVES;

PCPLOTS$ = PENDWNS$+ESC$+“*pC”
Graphics, Vector
To draw a line to the current graphics cursor position.

5000 PRINT PCPLOTS$;

2-350 BPL Variables and Functions

PENDWNS$

Statement: PENDWNS$ = ESC$+“*pB”
Type: Graphics, Vector

Purpose: To lower the graphics pen.
Example: 5000 PRINT PENDWNS;
PENUPS

Statement: PENUP$ = ESC$+"“*pA”
Type: Graphics, Vector

Purpose: To raise the graphics pen.
Example: 5000 PRINT PENUPS$;
POINTPLOTS

Statement: POINTPLOT$ = ESC$+“*pD”
Type: Graphics, Vector

Purpose: To draw one point.

Remarks: A point will be drawn at the current pen position and then the

pen is raised.

Example: 5000 PRINT POINTPLOTS
(See FNPSETS$ for a further example)

BPL Variables and Functions 2-31

POLYGONS
Statement:

Type:
Purpose:

Remarks:

POLYGONS$ = ESC$+“*ps”
Graphics, Polygon
To start polygon area fill definition.

Starts the definition of a polygon for area fill. The boundary pen
is lowered with the use of this function.

To use this function print the variable POLYGONS$ then a + and
a ” (quote mark). Next, specify all of the (X,Y) coordinates and

that define the polygon. The sequence must end with an upper
case "T". Be sure the first and last coordinates are the same so the
polygon is closed. See line 5120 for an example of this function.

2-52 BPL Variables and Functions

Example: SAMPLE3.BAS (on BPL disc)

BPL Variables and Functions 2-33

RBLOFFS$

Gtatement: RBLOFF$ = ESC$+“*dN”

Type: Graphics, Vector

Purpose: To turn off the rubber band line.
Example: 5000 PRINT RBLOFFS$;

RBLONS

Statement: RBLON$ = ESC$+“*dM”

Type: Graphics, Vector

Purpose: To turn on the rubber band line.
Remarks: Also turns on the graphics cursor.
Example: SAMPLE12.BAS (on BPL disc)

2-54 BPL Variables and Functions

SKL$

Statement:

Type:
Purpose:

Remarks:

Example:

SKMS$

Statement:

Type:
Purpose:

Remarks:

Example:

SKL$ = ESC$+“&jS”

Alpha, Softkey

To lock the softkey labels.

Locks the softkey labels to their current state. If the user labels
are defined and on the screen this function will keep the user
from changing the labels. It will also keep the labels locked off
the screen.

5000 PRINT SKL$;

(See FNSKD#$ for a further example.)

SKM$ = Esc$+“&jA”

Alpha, Softkey
To switch to the modes softkey set.
This set of keys includes:

Line Modify
Modify All

Block Mode
Remote Mode
Smooth Scroll
Memory Lock
Display Functions
Auto LF

5000 PRINT SKOFF$;
(See FNSKD#$ for a further example.)

BPL Variables and Functions 2-33

SKOFFS$

Gtatement:

Type:
Purpose:
Remarks:

Example:

SKONS

Statement:

Type:
Purpose:
Remarks:

Example:

SKULS

Statement:

Type:
Purpose:

Remarks:

Example:

SKOFF$ = ESC$+“&j@"

Alpha, Softkey

To turn off the softkey labels.

Also turns off the status line and cursor position indicator.
5000 PRINT SKOFF$;

{See FNSKD#$ for a further example.)

SKON$ = ESC$+"&jB”

Alpha, Softkey

To turn on the softkey labels.

The last set of softkeys displayed or requested will be shown.
5000 PRINT SKONS$;

(See FNSKD#$ for a further example.)

SKUL$ = ESC$ +“&jR”

Alpha, Softkey

To unlock the softkey labels so they may be changed.

This function may be used with the softkey labels either on or
off.

5000 PRINT SKUL$;
(See FNSKD#$ for a further example.)

2-56 BPL Variables and Functions

TABS

Statement:

Type:

Purpose:
Remarks:
Example:

TSDELS

Statement:

Type:
Purpose:

Remarks:

Example:

TSOFF$

Statement:

Type:
Purpose:

Remarks:

Example:

TAB$ = ESC$+"1”

Alpha, Edit

To move the cursor to the next defined tab stop.
Similar to on the keyboard.

5000 PRINT TABS;

TSDEL$ = ESC$+“-zD”

Touch, Display

To delete all defined touch fields.

Touch screen fields remain active until specifically deleted. This
variable will delete all currently defined fields. Individual fields

may be deleted by using FNTFDELS$.

5000 PRINT TSDELS;

TSOFF$ = ESC$ + “-zON”
Touch, Display
To turn off the touch screen.

Touch fields remain defined but can not be activated until the
touch screen is turned on.

5000 PRINT TSOFF$;

BPL Variables and Functions 2-57

TSONS
Statement:

Type:

Purpose:
Remarks:
Example:

TSRESETS
Statement:

Type:
Purpose:
Example:

XADOFF$
Statement:

Type:
Purpose:

Remarks:

Example:

TSON$ = ESC$+“-z2n1A”

Touch, Display

To turn on the Touch Screen.

Specifies ASCII reporting of touch fields only.

5000 PRINT TSONS;

TSRESET$ = ESC$+“-z]”
Touch, Display
To reset the touch screen to the default parameters.

5000 PRINT TSRESETS;

XADOFF$ = FNPK16%(4,6)
Alpha, Display, AGIOS
To turn off the alpha display.

XADOFF$ works just as ADOFF$ to turn off the alpha display
without affecting the contents of screen memory.

5000 CALL AGIOS (XADOFF$)

2-58 BPL Variables and Functions

XADONS
Statement:

Type:
Purpose:

Remarks:

Example:

XBDRYPENOFF$
Statement:

Type:
Purpose:

Remarks:

Example:

XBDRYPENONS
Statement:

Type:
Purpose:

Remarks:

Example:

XADON$ = FNPK16%(4,5)
Alpha, Display, AGIOS
To turn on the alpha display.

XADONS$ works just as ADON$ to turn on the alpha display
without affecting the contents of screen memory.

5000 CALL AGIOS (XADONS$)

XBDRYPENOFF$ = FNPK16%(4,25)
Graphics, Polygon, AGIOS
To turn off the drawing of a boundary pen around a polygon.

XBDRYPENOFF$ works just as BDRYPENOFF$ to turn off
automatic boundary pen drawing.

5000 CALL AGIOS (XBDRYPENOFF$)

XBDRYPENON$ = FNPK16%$(4,24) + MKI$(1)
Graphics, Polygon, AGIOS
To select the pen to draw a polygon boundary.

XBDRYPENONS$ works just as BDRYPENONS$ to draw the
boundary of a filled polygon.

5000 CALL AGIOS (XBDRYPENONS$)

BPL Variables and Functions 2-59

XBTABS

Ctatement:

Type:
Purpose:

Remarks:

Example:

XCLLS

Statement:

Type:
Purpose:

Remarks:

Example:

XCLRS

Statement:

Type:
Purpose:

Remarks:

Example:

XBTAB$ = FNPK16$(0,16) + “i”
Alpha, Edit
To move the cursor back to the previous tab stop.

XBTAB$ works just as BTAB$ to move the alpha cursor back to
the previous tab stop or, if none are set, to the left margin.

5000 CALL AGIOS (XBTABS)

XCLL$ = ENPK16$(0,16) + “K”
Alpha, Edit
To clear the current line in alpha memory.

XCLL$ works just as CLL$ to clear the alpha display from the
current cursor position to the end of the current line.

5000 CALL AGIOS (XCLL$)

XCLR$ = FNPK165%(0,16) + “J”
Alpha, Edit, AGIOS
To clear alpha display to the end of screen.

XCLR$ works just as CLR$ to clear alpha display memory from
the current cursor position to the bottom of display memory.

5000 CALL AGIOS (XCLR$)

2-60 BPL Variables and Functions

XCOFF$

Statement:

Type:

Purpose:
Remarks:
Example:

XCONS

Statement:

Type:

Purpose:
Remarks:
Example:

XDL$
Statement:

Type:
Purpose:

Remarks:

Example:

XCOFF$ = FNPK16%(4,14)

Alpha, Display, AGIOS

To turn off the alpha cursor.

XCOFF$ works just as COFF$ to turn off the alpha cursor.

5000 CALL AGIOS (XCOFF$)

XCON$ = FNPK16$(4,13)

Alpha, Display, AGIOS

To turn on the alpha cursor.

XCONS$ works just as CON$ to turn on the alpha cursor.

5000 CALL AGIOS (XCONS$)

XDL$ = FNPK16%$(0,16) + “M”
Alpha, Edit
To delete the line the cursor is on.

XDL$ works just as DL$ to delete the line in screen memory and
scrolls any lines below that line ‘up’.

5000 CALL AGIOS (XDL$)

BPL Variables and Functions 2-61

XENHOFF$
Statement:

Type:
Purpose:

Remarks:

Example:

XGCLSS

Statement:
Type:
Purpose:

Remarks:

Example:

XGCOFF$
Statement:

Type:
Purpose:

Remarks:

Example:

XENHOFF$ = FNPK16%(0,18) + CHR$(0) + “@”

Alpha, Display, AGIOS

To turn off display enhancements.

XENHOFF$ works just as ENHOFF$ to turn off display
enhancements on the current line from the current cursor
position to the end of line (or to the next location where an
enhancement is turned on). Note that the corresponding call to
turn on enhancements is a function which must be assigned to a
string which is then passed to AGIOS.

XENHOFF$ is a special case of FNXENHONS$.

5000 CALL AGIOS (XENHOFF$)

XGCLS$ = FNPK16%$(4,1)
Graphics, Display, AGIOS
To clear the graphics display.

XGCLS$ works just as GCLS$ to clear the entire graphics display
by setting all pixels to 0 or off.

5000 CALL AGIOS (XGCLS$)

XGCOFF$ = FNPK16$(4,8)
Graphics, Display, AGIOS
To turn off the graphics cursor.

XGCOFF$ works just as GCOFF$ to turn off the graphics cursor.
This does not affect the contents of graphics memory.

5000 CALL AGIOS (XGCOFF$)

2-62 BPL Variables and Functions

XGCONS

Statement:
Type:
Purpose:

Remarks:

Example:

XGDFTS
Statement:

Type:
Purpose:

Remarks:

Example:

XGDOFF$

Statement:
Type:
Purpose:

Remarks:

Example:

XGCON$ = FNPK16$(4,7)

Graphics, Display, AGIOS

To turn on the graphics cursor.

XGCONS$ works just as GCON$ to turn on the graphics cursor.
This does not affect the contents of graphics memory nor does it

assume the graphics display is on.

5000 CALL AGIOS (XGCONS$)

XGDFT$ = FNPK16%(4,38)

Graphics, Display, AGIOS

To set graphics parameters to their default values.

XGDFT$ works just as GDFT$ to set graphics parameters to their
default values. Refer to GDFT$ for a review of those default

states.

5000 CALL AGIOS (XGDFT$)

XGDOFF$ = FNPK16$(4,4)

Graphics, Display, AGIOS

To turn off graphics display.

XGDOFF$ works just as GDOFF$ to turn off graphics memory. It
doesn’t affect the contents of graphics memory, but it does cause
the contents of graphics to become ‘invisible’. The graphics

cursor is also turned off.

5000 CALL AGIOS (XGDOFF$)

BPL Variables and Functions 2-63

XGDONS$
Statement:

Type:
Purpose:

Remarks:

Example:

XGPDFTS
Statement:

Type:
Purpose:

Remarks:

Example:

XGRESETS

Statement:
Type:
Purpose:

Remarks:

Example:

XGDON$ = FNPK16$(4,3)

Graphics, Display, AGIOS

To turn on graphics display.

XGDONS$ works just as GDONS$ to turn on the graphics display.
If there is something in graphics memory it will become

‘visible'. If the graphics cursor is ‘on’, it too will become visible.

5000 CALL AGIOS (XGDONS$)

XPDFT$ = FNPK16$(4,72)
Graphics, Display, AGIOS
To set graphics picture defaults.

XGPDFT$ works just as GPDFT$ to set the default picture
values. Refer to GPDFTS$ for a review of the default values.

5000 CALL AGIOS (XGPDFT$)

XGRESET$ = FNPK16$(4,73)
Graphics, Display, AGIOS
To set graphics parameters to their power-on state.

XGRESET$ works just as GRESET$ to set all graphics parameters
to their default power-on states.

5000 CALL AGIOS (XGRESET$)

2-64 BPL Variables and Functions

XGSETS
Statement:

Type:
Purpose:

Remarks:

Example:

XGTOFFS$
Statement:

Type:
Purpose:

Remarks:

Example:

XGTONS
Statement:

Type:
Purpose:

Remarks:

Example:

XGSET$ = FNPK16$(4,2)
Graphics, Display, AGIOS
To set graphics display to inverse video.

XGSET$ works just as GSET$ to set every pixel in graphics
memory to 1 or on.

5000 CALL AGIOS (XGSET$)

P.Computer

useum

XGTOFF$ = FNPK16%(4,16)
Graphics, Text, AGIOS
To turn off graphics text mode.

XGTOFF$ works just as GTOFF$ to turn off graphics text mode.
Standard console output will be directed to alpha memory.

5000 CALL AGIOS (XGTOFF$)

XGTON$ = FNPK16$(4,15)

Graphics, Text, AGIOS

To turn on graphics text mode.

XGTONS$ works just as GTONS$ to turn on graphics text mode.
Standard console output is displayed in the graphics memory

instead of alpha memory.

5000 CALL AGIOS (XGTONS)

BPL Variables and Functions 2-65

XGTSOFFS
Ctatement:

Type:
Purpose:

Remarks:

Example:

XGTSONS

Statement:
Type:
Purpose:

Remarks:

Example:

XHOMES
Statement:

Type:
Purpose:

Remarks:

Example:

XGTSOFF$ = FNPK16$(4,32)

Graphics, Text, AGIOS

To turn off slanted text mode.

XGTSOFF$ works just as GTSOFFS$ to turn off slanted graphics
mode. Subsequent graphics text will be printed in upright

(unslanted) fashion.

5000 CALL AGIOS (XGTOFF$)

XGTSON$ = FNPK16%$(4,31)
Graphics, Text, AGIOS
To turn on slanted graphics text mode.

XGTSONS$ works just as GTSONS$ to turn on slanted graphics
text mode. Subsequent graphics text will be displayed slanted.

5000 CALL AGIOS (XGTSON$)

XHOME$ = FNPK16%(0,16)+"“H"”
Alpha, Display, AGIOS
To move the alpha cursor to the home position.

XHOMES$ works just as HOMES$ to position the alpha cursor at
the upper left hand corner of the display, the ‘home” position.

5000 CALL AGIOS (XHOMES)

2-66 BPL Variables and Functions

XHOMEDWNS
Statement:

Type:
Purpose:

Remarks:

Example:

XILS
Statement:

Type:
Purpose:

Remarks:

Example:

XKBOFF$
Statement:

Type:
Purpose:

Remarks:

Example:

XHOMEDWNS$ = FNPK16$(0,16)+“E”

Alpha, Display, AGIOS

To move the alpha cursor to the home down position.
XHOMEDWNS$ works just as HOMEDWNS$ to move the cursor
to the last active line of display memory. Note that this may not

be the last line of the screen.

5000 CALL AGIOS (XHOMEDWNS$)

XIL$ = FNPK16$(0,16)+“L"
Alpha, Display, AGIOS
To insert a blank line in alpha memory.

XIL$ works just as IL$ to insert a line in alpha memory at the
current cursor position.

5000 CALL AGIOS (XIL$)

XKBOFF$ = FENK16%(0,16)+“c”

General, AGIOS

To disable the HP Touchscreen PC keyboard.

XKBOFF$ works just as KBOFF$ to turn off the HP Touchscreen
PC keyboard. This has the effect of not permitting any key

presses until the keyboard is once again turned on or enabled.

5000 CALL AGIOS (XKBOFF$)

BPL Variables and Functions 2-67

XKBONS$

Statement: XKBONS$ = FNPK16%$(0,16)+"b"

Type: General, AGIOS

Purpose: To turn on the HP Touchscreen PC keyboard.

Remarks: XKBON$ works just as KBON$ to turn on or enable the HP

Touchscreen PC keyboard.

Example: 5000 CALL AGIOS (XKBONS)

XMEMLS

Statement: XMEMLS$ = FNPK16%(0,16)+ 1"

Type: Alpha, Display, AGIOS

Purpose: To lock a portion of the alpha display on the screen.

Remarks: XMEMLS$ works just as MEMLS$ to lock a portion of alpha
display memory at the top of the screen.

Example: 5000 CALL AGIOS (XMEMLS)

XMEMULS

Statement: XMEMUL$ = FNPK16%$(0,16)+“m”

Type: Alpha, Display, AGIOS

Purpose: To unlock alpha memory.

Remarks: XMEMUL$ works just as MEMULS$ to unlock the alpha display

memory locked with XMEML$ or MEMLS.

Example: 5000 CALL AGIOS (XMEMULS$)

2-68 BPL Variables and Functions

XORGNSETS
Statement:

Type:
Purpose:

Remarks:

Example:

XORGNSETCPS

Statement:

Type:

Purpose:

Remarks:

Example:

XORGNSETPPS

Statement:
Type:
Purpose:

Remarks:

Example:

XORGNSET$ = FNPK16$(4,49)
Graphics, Display, AGIOS
To set the relocatable origin to the current pen position.

XORGNSET$ works just as ORGNSETS$ to set the graphics
relocatable origin to the current graphics pen position.

5000 CALL AGIOS (XORGNSET$)

XORGNSETCP$ = FNPK16%(4,28)
Graphics, Display, AGIOS

To set the relocatable origin to the current graphics cursor
position.

XORGNSETCP$ works just as ORGNSETCP$ to position the
relocatable graphics origin to the current graphics cursor

position.

5000 CALL AGIOS (XORGNSETCP$)

XORGNSETPP$ = ENPK16%(4,27)
Graphics, Display, AGIOS
To set the relocatable origin to the current pen position.

XORGNSETPP$ works just as ORGNSETPPS$ to set the
relocatable origin to the current graphics pen position.

5000 CALL AGIOS (XORGNSETPP$)

BPL Variables and Functions 2-69

XPENDWNS

Statement: XPENDWN$ = FNPK16$(4,43)

Type: Graphics, Vector, AGIOS

Purpose: To lower the graphics pen.

Remarks: XPENDWNS$ works just as PENDWNS$ to lower the graphics pen

at the current position. Any subsequent moves will result in a
line being drawn.

Example: 5000 CALL AGIOS (XPENDWNS$)

XPENUPS

Statement: XPENUP$ = FNPK16$(4,39)

Type: Graphics, Vector, AGIOS

Purpose: To raise the graphics pen

Remarks: XPENUP$ works just as PENUP$ to lift the graphics pen. Any
subsequent moves will not cause a line to be drawn.

Example: 5000 CALL AGIOS (XPENUP$)

XPOINTPLOTS

Statement: XPOINTPLOT$ = FNPK16$(4,48)

Type: Graphics, Vector. AGIOS

Purpose: To plot a point.

Remarks: XPOINTPLOT$ works just as POINTPLOTS$ to plot a single

point at the current pen position.

Example: 5000 CALL AGIOS (XPOINTPLOT$)

2-70 BPL Variables and Functions

XPOLYGONS
Statement:

Type:
Purpose:

Remarks:

Example:

XRBLOFFS$
Statement:

Type:
Purpose:

Remarks:

Example:

XPOLYGONS$ = FNPK16$(4,50)

Graphics, Polygon, AGIOS

To start polygon area fill definition.

XPOLYGONS$ works just as POLYGONS$ to initiate the definition
of a polygonal area operation. The boundary pen will be
lowered.

After using this call, continue on to specify the (X,Y) coordinates
that define the polygon. You can do this by printing the
FNMOVES$ function or by setting a buffer using FNXMOVES.

Batch commands can also be used if desired.

5000 CALL AGIOS (XPOLYGONS)

XRBLOFF$ = FNPK16$(4,10)

Graphics, Vector, AGIOS

To turn off rubber band line mode.

XRBLOFF$ works just as RBLOFF$ to turn off rubber band line
mode. It does not otherwise affect graphics memory or whether

it is displayed.

5000 CALL AGIOS (XRBLOFF$)

BPL Variables and Functions 2-71

XRBLONS
Statement:

Type:
Purpose:

Remarks:

Example:

XTABS
Statement:

Type:
Purpose:

Remarks:

Example:

XRBLON$ = FNPK16%(4,9)
Graphics, Vector, AGIOS
To turn on rubber band line mode.

XRBLON$ works just as RBLONS to turn on rubber band line
and turn on the graphics cursor.

5000 CALL AGIOS (XRBLONS)

XTAB$ = FNPK16%(0,16)+1"

Alpha. Display, AGIOS

To move the cursor to the next defined tab stop.

XTAB$ works just as TAB$ to advance the alpha cursor to the
next tab stop, or to the beginning of the next line if no tab stops

exist to the right of the alpha cursor.

5000 CALL AGIOS (XTABS)

2-72 BPL Variables and Functions

Introduction

Practical Programming

Escape sequence programming is probably the easiest method of
programmatically controlling the keyboard and display.

This chapter gives details and examples about escape sequence
programming. This information is intended to help you with
the most unique features. The topics included in this section are:

m User-definable Softkeys
Keyboard Control
& Character Enhancements and Screen Control

® Touch Screen Programming

In BPL, we have attempted to identify the most frequently used
escape sequences for your use. However, BPL does not define all
of the escape sequences which work on the HP Touchscreen PC.
For additional information, be sure to refer to the HP
Touchscreen HP Terminal User’s Guide or other HP Touchscreen
PC reference guides.

Before going into details of using escape sequences, let’s take a

brief look at a philosophy of programming the HP Touchscreen
PC.

Practical Programming 3-1

-

A Philosophy of
Programming
the HP
Touchscreen PC

3-2 Practical Programming

The HP Touchscreen PC is both a full function personal
computer and a complete intelligent terminal. Because of this
dual capability, there are several ways to control the HP
Touchscreen PC display and keyboard. The two methods
supported by Hewlett-Packard are:

— Escape sequence programming
— AGIOS function calls

The first, using escape sequences, is the easiest to implement
and can be used in standard output statements in any
programming language. In this method, sending an ‘escape’
character (ASCII code 27 decimal) causes the HP Touchscreen
terminal to interpret the next one or more characters as special
control codes, not as usual ASCII characters.

There is a price to pay for such ease. The ‘escape sequence
interpreter” is relatively slow. Standard console output occurs at
a rate of approximately 700 characters a second. If this speed is
acceptable, you will probably be happy with escape sequences.

The second method, called ‘AGIOS’, is unique to the HP
Touchscreen PC. It usually requires an assembly language call to
perform, and does not use standard input and output
statements. You might wonder why you would want to use
AGIOS if it requires such special set- up. The answer is system
dependent speed: AGIOS allows console output to run as fast as
4000 characters a second!

This AGIOS, which stands for ‘Alpha Graphics Input/Output
Subsystem’, is provided so you can write high-speed output
routines and gain total control over the HP Touchscreen PC
keyboard.

Introduction to
Escape
Sequences

You will not find an AGIOS on other micro-computers. Most
micros require you to use hardware specific information on that
system in order to make your application faster. This makes
your program dependent on specific hardware addresses and
revisions of computer firmware (ROM) and operating system. If
the manufacturer should change some small detail in the
computer, your application may not run and your customers
will be calling you.

Escape sequences offer one of the easiest ways to access the
features of the HP Touchscreen. Once you have mastered how to
use these sequences, you will be able to program nearly all the
features of the system: the trick is becoming comfortable with
how it’s done.

Imagine for a moment a printer terminal attached to a large
computer. This printer is an old one, and it can only advance the
paper: it cannot ‘back up’ to print a previous line. For the
computer to print a form, it has to start at the top line and print
each line sequentially. The printer terminal requires very little
‘intelligence’. All it needs to do is accept a character from the
computer and print it on the paper.

Some of the possible characters the printer might receive really
don't ‘print” anything: that is, they leave no visible mark on the
paper. A ‘carriage return’ character is an example of such an
‘invisible” letter. However, the carriage return does affect the
printer: it advances the platten one line. Another invisible
character is the ‘line feed” character, which advances the paper
to the next line and often moves the print head to the left
margin.

When cathode-ray tubes (CRTs) became cost effective, the
printer terminal described above was often replaced by a CRT
unit. The first of these were usually replacements for printer
terminals: there was still no ability to return to a previous line.
As the technology advanced, however, these glass terminals
became more and more advanced.

Practical Programming 3-3

3-4 Practical Programming

Soon, there were ‘smart’ CRT’s which could receive special
instructions from the host computer. One of the most exciting of
these new features was the ability to move the print head
("cursor’) anywhere on the page. This permitted an entirely new
way of using computer terminals.

To accomplish this ‘random’ cursor positioning, the CRT needed
to be sent commands from the large computer. While different
types of terminals use different commands, most terminals use
the same ASCII character to signify the start of a command to
the terminal. This character is the ‘escape’ character, the ASCII
character represented by the value 27 decimal.

As a smart terminal receives characters from the large computer,
it ‘examines’ each character as that character is received. If the
character is not the ‘escape’ character, the terminal simply
‘prints’ that character on the display at the current cursor
location and proceeds. If the terminal receives the ‘escape’
character, it '’knows’ the next character(s) are not to be displayed
normally: they are a command to the CRT.

For our purposes here, we can treat the HP Touchscreen PC as if
the terminal and the computer were physically separate. To the
terminal part of the system, a character coming from MS-DOS is
no different than a character which originated at a distant
computer.

As mentioned above, the terminal examines each character it
receives. When the ‘computer’ is the local MS-DOS system,
those characters are coming from ‘standard console output’. In
BASIC, this means from your PRINT statements. When the
‘escape’ character is sent, a special part of the terminal takes
control. This part is called the ‘escape sequence processor’. It
reads additional characters (after the escape character) and
determines what action is to be taken.

The HP Touchscreen PC supports many commands, or ‘escape
sequences’. Some are simple and require no variable
information. For example, deleting a line is simple and needs no
additional information ('parameters’). The line where the cursor
is located is deleted, and lines below it ‘scroll up’ to fill the

empty space. Such simple sequences usually require only one
character following the escape character to specify the
command. Deleting a line occurs when an ‘escape’ is followed
by the letter "M".

More advanced escape sequences are needed when additional
information is required. For example, to position the cursor
anywhere on the screen, you need to specify the row and
column positions you want. On the HP Touchscreen, as with all
other HP terminals, a special character following the escape
character indicates to the escape sequence processor that a
sequence is more than two characters long.

In fact, on the HP Touchscreen PC, there are four sets of
extended commands indicated by the following starting
characters:

ESC & : General Alphanumeric Commands
ESC * : General Graphics Commands

ESC) : Character Set Control

ESC - : Touchscreen Control

Many of these more complex commands have several
parameters. To move the cursor, you specify a row and column.
To define a softkey, you specify a key number, the label, the
actual softkey definition, and several other parameters. The
actual order in which you provide the parameters isn’t critical
because each has a letter associated with that parameter.

For example, one way to move the cursor is to follow the row
number with the letter 't and the column number with the
letter “c’. The last letter in the escape sequence must be upper
case and those before must be lower case. But the order is not
critical. The following two sequences perform the same
function, locating the cursor at the upper left corner of the
screen:

ESC&aly0C
ESC&al0c0Y

Practical Programming 3-5

Further, if you didn’t want to change the row number, you could

specify:
ESC&a0C

This would cause the cursor to be positioned at the left margin
on the current line. The function FNLOCATE$ in BPL provides
direct cursor addressing,.

Summary: Using The BPL provides you with the most useful escape sequences.
Escape Sequences There are other sequences, though, so remember these
guidelines when you use them:

@ With two-character escape sequences, the second character
may be upper or lower case. However, upper case characters
have different functions than lower case characters. Be sure
the case is correct depending on the function you want to use.

® Multi-character escape sequences are interpreted until the
first upper case character is found after the escape character.
The order of the parameters is not important.

® Send escape sequences to the console with standard console
output. In BASIC, this usually means with ‘PRINT’
statements.

3-6 Practical Programming

Introduction to
Softkeys

Computer
< Museum

There are two distinct sets of softkeys on the HP Touchscreen
PC. While you can use both sets in a single application, you will
probably want to select one or the other. The first set is the
“User-definable Softkeys” programmed via escape sequences.
The other set, “Application Softkeys”, are controlled via AGIOS
calls. The following summary gives you more details on these
two sets of softkeys.

User-definable Softkeys

& The set of 8 keys labeled through

B Are defined and displayed under program control (escape
sequences).

@ Are accessed by typing [CTRL] [User System] .

® Can contain up to 80 characters.

Can be programmed to perform terminal functions only,'or
to simulate keyboard input with or without an automatic
carriage return.

® Display the default label (i.e., [(f1]) or any label up to 16
characters on two lines.

Application Softkeys

® The set of 8 keys labeled through and the the 4
unlabeled keys at the top of the numeric keypad.

m Are defined, displayed, and controlled by AGIOS function
calls.

® Are normally used for input only in “keycode mode”.

® Return a keycode for each key, not the buffer associated with
the “User-definable Softkeys”.

® Are displayed by the user by typing .

For more information on Application Softkeys, refer to the
appropriate system documentation. Use of these keys is not
covered in depth within BPL.

Practical Programming 3-7

User-Definable
Softkeys

The escape sequence that you use to program the User-definable
set of softkeys has the following general format:

ESC & f «<Cattr> a <key> k <lablen> d <buflen> L <lab>

<buf>

The most commonly used form of this escape sequence is found
in the BPL function FNSKDS$. As is true with all escape
sequences, the HP Touchscreen processes this sequence until the
first upper case character is encountered. The characters in the
above escape sequence are defined as:

ESC
& 1

<<attr> a

<key> k

<lab len> d

<buf len> L

<lab>

<buf>

3-8 Practical Programming

The escape character, ASCII 27 decimal.
The “define function key” sequence.
The attribute. Values for <attr> are:

0 = Normal Key
1 = Local Key
2 = Transmit Key

See the note which follows for an explanation
of the various attributes.

The softkey number. Key must be between 1
and 8.

The length of the softkey label <lab>.

The length of the response buffer <buf>: must
be between -1 and 80

Notice that the character that follows <buf
len> is an uppercase “1”. This ends the escape
sequence and the <Jab> and <buf>
parameters which follow it are treated as data
when the escape sequence is executed.

If you do not want to change the <buf Jen>
parameter, make sure that the “d” which ends
<lab len> is uppercase.

A length of -1 clears the existing buffer.

The ASCII characters to be displayed in the on-
screen softkey labels.

The ASCII characters associated with the
softkey.

The above parameters are the ones commonly used in softkey
definitions. See the HP Touchscreen PC Terminal User’s Guide for
additional softkey parameters.

Local defined keys execute only in the HP Touchscreen display.
None of the characters in <buf> will be sent to the user
program. Local keys will display on the screen but not get to
console input, hence not generally useful within applications.

Normal and Transmit keys are both sent to standard console
input. The principal difference is that with Transmit keys a
carriage return is appended to the end of each softkey (hence
transmitted to the internal computer). The characters in a
Normal key buffer are sent to the program, but no carriage
return is automatically appended.

In BASIC, for example, the INPUT statement requires a carriage
return to end input. If you are using the INPUT statement, be
sure to define keys with the Transmit attribute.

However, the INPUT$ function does not require a carriage
return. If you are using this instruction for input, you may elect
to use Normal keys. The standard subroutines provided with
BPL use INPUTS$.

The sum of <lab len> and <buf len> must be less than 160
characters.

In actual use, User-defined Softkeys may be affected by the state
of the ‘G" and ‘H’ terminal straps. When the HP Touchscreen is
in local computer mode, you will generally want to set both
straps to their ‘open’ position using the following escape
sequence:

ESC & s1gt1H

This is discussed in greater depth in various system manuals.
You will usually find it best to set these straps at the beginning
of any program using softkeys.

Practical Programming 3-9

Displaying the User- Once you define one (or more) of the User-defined Softkeys, you
Definable Softkeys will probably want to display them. To do so, use the following
general escape sequence format, with the appropriate <<parm>
value:

ESC & j <<parm>

The <parm>> options are:

= Turn off screen labels, time display, and status line.
Display the “System-Mode” softkeys.

Display the User-defined softkeys.

= Lock the currently displayed set of softkeys on the
screen.

Unlock the softkeys so that they can be redefined or
changed.

wwmP>E
Il

=
I

The BPL variable for each of these parameters is:

@ = SKOFF$
A = SKM$
B = SKONS$
S = SKL$
R = SKULS$

3-10 Practical Programming

The meanings of each of the <parm> field follows:

@: This option turns off the current screen displayed
labels and the row and column indicators. It also
turns off the Status Line, including the time and
other status information.

A: This options causes the display of the User-defined
Softkey labels on the screen. This is the modes
softkey level a user would see by pressing

and then if it contains the word
“Modes”.

B: With this option, the system displays the currently
defined set of User-defined Softkey labels. If no
labels have been defined, the default labels
through are used. This is the programmatic
equivalent of (CTRL] [User System] .

S This selection causes the currently displayed set of
screen labeled keys to be ‘locked” in place. Any
attempt to change them will cause the system to
‘beep’ and the labels to remain intact.

R: This option unlocks the softkey labels so that they
may be changed (by a user or programmatically).

Practical Programming 3-11

3-12 Practical Programming

There is an irregularity in the HP Touchscreen PC firmware
such that User-Definable Softkeys are “live” to touch, even
when the labels are not displayed. That is, when the User-
defined Softkeys are displayed using the ESC & | B sequence,
and then ‘turned off” with the ESC & | @ sequence, the screen
labels are still active and will return the softkey definition when
touched.

Be sure to account for this possibility in your application when
you design your program. Do this by always expecting touch
input in your application. If this is not acceptable, you can
define all eight User-Defined Softkeys as ‘local’ keys (attribute
= ‘1a"). Further, set the buffer contents of each key to a null
(empty) string. This will cause the terminal to effectively ignore
any touches in the softkey area.

As mentioned above, remember the state of the ‘G” and ‘H’
straps may affect the action of this method.

You will find that, when you use the ESC & f sequence, the
changed labels/buffers do not “take effect” until you re-display
the labels with an ESC & j B sequence.

There is one more valid parameter to the ESC & j sequence
which requires slightly different syntax. The syntax of this
sequence is:

ESC & j <len> L <message>

This sequence allows an application to display up to 160
characters (two lines) of text in place of the softkey labels. The
message is displayed on the screen until is pressed, and
cannot be locked on the screen. The <len>> parameter must be
between 0 and 160 inclusive, and specifies the number of bytes
after the L are to be displayed. The <message> buffer will be
displayed in place of the screen labeled softkeys.

Programming
Considerations

User-defined Softkeys on the HP Touchscreen PC are not
interrupt driven as they are on many micros. This means that
you need to ‘poll” console input for softkey presses.

There are times you will want softkey input to be
indistinguishable from keyboard input. For example, an
application menu may prompt the user for a numbered
selection. By defining the softkey contents so that the selection
number corresponds to the key number, the user can either type
the menu selection or press the appropriate softkey. This allows
the User-Defined Softkeys, labeled appropriately, to be used to
augment other keyboard input.

At other times, you may want softkey input to be unique. For
example, an application may offer a user the ability to either
type a filename or to exit the program. If the user types any
valid string, the application considers that input a filename. If
B is pressed, the application ends.

One way to solve this dilema is to define the softkeys with
control characters. While the user may enter a control character
from the console, you can nonetheless distinguish between
normal ASCII input and the control-code definition of the
softkeys.

To use such a scheme successfully, you need to select softkey
definitions which do not have unwanted effects on the
operation of the system. ASCII values in the range of 18 through
25 can be used without any such interference. In lower ranges,
tab (8), line feed (10), carriage return (12), and DC1 (17} interfere.
Above this range, the escape character (27) interferes. Given
softkey definitions in that range, here is a BASIC program
segment which can accept keyboard input and set a flag (KEY)
to the softkey number when a softkey is pressed. Within BPL,
this would be a very easy sub-routine to add!

5000 A$ = INPUTS (1) ‘Get character without echo
5010 A = ASC (A$) - KEY =0 ‘Get value; assume no KEY
5020 IF A<<18 OR A>>25 THEN 5000 ‘Not in softkey range
5030 KEY = A - 17 ‘Put KEY in range 1-8

5040 ‘Continue with program

Practical Programming 3-13

Controlling the
Keyboard

3-14 Practical Programming

You should find User-Defined Softkeys can be used to your
advantage to make your applications easier to use.

Finally, remember the state of the ‘G” and "H’ straps can affect
the operation of your system unless properly initialized. If you
forget to do so, your system will ‘freeze” when you press the
softkey the second time!

Some applications on the HP Touchscreen will want to assume
more control over the keyboard than required for simple data
entry. Some examples of the functions you may want to ‘trap’
within your application include:

Cursor Control Keys

and [Frev) keys

"
]
@ Scroll Up and Scroll Down Keys
L

Character and Line Manipulation keys

In general, those functions which can be executed by escape
sequences can be trapped. Remember, there are some keyboard
controls which do not have corresponding escape sequences and
which cannot be captured without using AGIOS calls. If these
keys and controls must be utilized by your application, refer to
the system documentation on AGIOS function calls.

The method used to trap these functions is to cause the terminal
to “transmit” the escape sequence associated with the function
rather than to “execute” it normally.

For example, in normal operation, typing causes the
terminal to erase all of the characters from the current cursor

position to the end of line. In “Transmit Function Key” mode,
the terminal sends two characters (ESC and K) to your
application. The HP Touchscreen does not clear to the end of the
line unless your application echos the two characters to the
display.

The two character escape sequence returned to your application
is the same sequence that performs a . The characters
returned to your application in Transmit Function Key mode are
always the escape sequence characters which correspond to that
function.

The terminal executes the function only when it is echoed to the
console. For this reason, you will want to use the CHRIN sub-
routine in BPL for console input. An example of using this
routine is illustrated in the example below.

In the following program segment, once “transmit function
keys” is enabled, the only control key which is executed is the
key which generates ‘ESC K'. Incidently, this segment
assumes that “transmit functions keys” has aiready been
enabled.

5005 GOSUB 3000 ‘Read one character w/o echo
5010 IF CH$ <<>> ESC$ THEN 5040 ‘Not ESC char
5015 GOSUB 3000 ‘Read the next character

5020 IF CH$ = “K” THEN 5030 ‘Clear Line

5025 GO TO 5005

5030 PRINT ESC$;“K";

5035 GO TO 5005 ‘Go get another character
5040 PRINT CHS$; ‘Have to echo it so it is seen!
5050 GOTO 5005

Note that this example is not necessarily the best example of
good programming techniques. There are more efficient ways to
code the routine: it is intended to clearly show what is
happening.

Practical Programming 3-15

How to Get Transmit

Function Key Mode
Started

Programming
Considerations

3-16 Practical Programming

The Transmit Function Key mode is controlled by setting or
clearing the “A” Strap in the HP Touchscreen Terminal
Configuration Menu. This can be done by the user (see the HP
Touchscreen Personal Computer Owner’s Guide for details) or
programmatically as follows:

ESC & s 1 A Enable Transmit Mode
ESC & s 0 A Disable Transmit Mode

In the above example, you would probably include the
following line above the code segment shown.

5000 PRINT CHRS$ (27); & s1A”;

Using ‘transmit function keys’ mode allows you to have
additional control over the HP Touchscreen PC. When using
this mode, there are some things of which to be aware.

First, if you set ‘transmit function keys” ON when your
application starts, be sure to turn it OFF when you exit. This
puts the HP Touchscreen PC in its default state, and assures that
your application won't disrupt the functioning of other
applications.

The ‘transmit funtion keys’ mode causes the terminal to send an
escape sequence to your application. The sequence you receive is
the same sequence which, if sent by your application, would
perform the same task as the key. To effectively control the
keyboard then, your application should perform input without
echo. By doing this, your application will receive the two
character escape sequence and be able to determine the suitable

course of action without the HP Touchscreen having already
performed the task. Finally, remember the user-defined Softkeys
have default values which return two character escape
sequences. These defaults are:

[£1] ESCp
[£2] ESC q
[£3] ESCr

[£4] ESCs
[£5] ESC t

[£6] ESC u
(71 ESC v
[£8] ESC w

You may use these default values, but you may find it easier to
define the softkeys to fit your application. Finally, there are keys
which do not generate escape sequences. For these, you will
need to use AGIOS. With AGIOS, you can define all of the
special keys to execute normally, to be intercepted by your
application, or to be ignored. If you find you need more control
than available via the ‘transmit function keys’ mode, you will
need to incorporate AGIOS into your application.

One final note: in transmit function key mode, generates
ESC&P. Your application can detect this sequence as well.

Practical Programming 3-17

Controlling the
Display

Display
Enhancements

3-18 Practical Programming

The HP Touchscreen PC supports a number of display
enhancements including video enhancements and alternate
character sets. You can also selectively ‘turn off’ the alpha
display with or without affecting the softkey labels.

Four types of display enhancements are available on the HP
Touchscreen. You can use them one at a time, or in any
combination of the four. Within BPL, the function to perform
such enhancements is FNENHON$(A$%). The value of A$ is
determined using the table below.

The general format of the escape sequence used to enable
enhanced text is:

ESC & d <enh>

The possible values for <enh> are provided in the following
table:

<enh>: @ABCDEFGHIJKLMNO

Blnk: * * * * * * * *
Inv: * * * * % *
Ulin: * Ok k ok * ok * %
HBrt: EEE T 2

Here, the enhancements are Blinking (BInk) , Inverse (Inv),
Underlined (Ulin), and Half-Bright (HBrt).

Once enabled, the enhancement remains on until turned off
(with the <enh> of @ or until the cursor is moved to a different
line. In this respect, the HP Touchscreen is different from many
other systems.

Character Set The HP Touchscreen includes a number of different character
Selection sets which can be included in your application. The sets
supported are:

Character Set Description

Base The system'’s base set as defined in the
configuration menu. This is normally the US
ASCII character set.

Math This is a set of mathematics characters such as
Greek letters and various symbols.

Line The line drawing set permits the use of various
line segments, corners, and symbols.

There are two other character sets which can be accessed only
from AGIOS area and line functions: an [talics character and a
Bold character set.

The escape sequence for selecting an alternate character set is:

ESC) <cset> (FNALTCHR$ in BPL)

The value for <cset>, the character set selection, is:

@ : Base set selected as alternate character set
A : Math set selected as alternate character set
B : Line drawing set selected as alternate character set

Compute!
AL So U

Practical Programming 3-19

3-20 Practical Programming

Once you have selected one of these sets as the alternate set, you
can shift between the primary set and the alternate set with the
ASCII Shift-Out (SO) and Shift-In (Sl) characters. The decimal
values for these characters is 14 and 15 respectively. The BPL
variables for these characters are ALTCHROFF$ and ALTCHRONS$
respectfully.

You alternately use the alternate set by simply printing the
ASCII character which corresponds to the desired character:

DbBhEBEDDDBBROG
BHEOHHHOBEOD®
BOHBHBHBIBDIE

HBOEOBBEBRH
o

[DR R LD MDA o
W G I =)D -
. { >“:
BIBBOEIODPOHOD
o
LFJGr—Hw—Jr'v—KrTT‘L T
< +> *7
Lm0 clr Jo ol o s T4

You can write programs which draw boxes and lines, use special
math symbols, and even use enhancements on these special
characters, all from within BASIC. Here is a sample of such a
program which draws a rectangle on the screen:

5000 'Print a box with ‘Hello There’ in the middle
5010 PRINT CHR$ (27);) B”; 'Select Line Drawing as Alternate

5025 " Now print middle line with normal characters in middle
5030 PRINT CHR$ (14);":";CHR$ (15);” Hello There ”;

5040 PRINT CHR$ (14);“:” 'Other end of box

5045 ' That concludes the middle line

Note that, to print the normal characters in the middle, you
need to shift back to the primary character set (lines 5025
through 5045).

Note that within BPL you can replace the awkard ‘CHRS$)’
functions with the defined variables “ALTCHRON$' for
‘alternate character set on; and "ALTCHROFF$’ for ‘“alternate
character set off’.

The above program will produce a figure which looks like this:

Hello There

Practical Programming 3-21

Alphanumeric
Memory Control

Programming
Considerations

3-22 Practical Programming

The alphanumeric screen and graphics screen images are
independent. For this reason, the two can be displayed together,
or either can be displayed alone. There is also a ‘Graphics Text’
mode which writes alpha characters into graphics memory, and
that is controlled totally within graphics.

In the alpha memory, you can turn off the entire display
including softkeys or you can turn off any text and leave the
softkey labels intact. To perform these tasks, use the following
escape sequences:

ESC & w12F Alpha Display On

ESC & w13 F Alpha Display Off (softkey labels remain)

ESC *dE Alpha Memory On (BPL ADON$)

ESC*dF Alpha Memory Off (including softkey labels)
(BPL ADOFF$)

In using both display enhancements and alternate character
sets, keep in mind how the HP Touchscreen PC works. When
the display is cleared, none of alpha memory is allocated. When
you position the cursor and turn on a display enhancement, that
enhancement affects all bytes on that line which may be
allocated now or in the future.

For example, on a clear screen position the cursor to column 5 on
the first row. Print the ‘inverse video’ enhancement, ESC & dB.
Now print several characters: they will appear in inverse text. If
your application leaves the first line and returns to column 70
(for example) on the first line, the next characters you print will
cause the entire line to become inverse. This occurs even if you do
not include the ‘inverse video” sequence at column 70!

To avoid this situation, you should turn on inverse video; print
the text to be inverse; and turn off inverse video with the ESC &
d @ sequence. Then, repositioning the cursor to the right on the
same line will not cause the entire line to be enhanced.

Using Touch
Screen

Alternate characters work the same way. Once you have shifted
out (SO) to an alternate set, all characters to the right will be
shifted unless and until you print a shift-in character (8!). The
example above illustrated this point: be sure you understand
how it works.

One of the most unique features of the HP Touchscreen PC is
the touch sensitive screen. The touch screen can be programmed
in a variety of ways, giving you flexibility in designing your
application. This section tells you about touch screen, how you
program it, and finally how you can make the best use of it in
your application.

The first thing you need to know about programming the touch
screen is the “modes” of operation. The simplest and most
flexible mode of operation involves “fields”. In this mode, you
tell the HP Touchscreen PC information about where you want
to detect touches, and the system firmware does the work.

As you will see, you can turn the touch screen on and off
without affecting the fields you may have defined. You can also
select video enhancements for both “touched” and “untouched”
fields, and control cursor positioning and beeping.

A more comprehensive solution, but one which requires more
work by the application, involves “row and column sensing”. In
this mode, the touch screen passes absolute row and column
addresses to your application. As with fields, you can turn
sensing on and off, and control cursor positioning and beeping.

Practical Programming 3-23

Defining a Touch
Field

3-24 Practical Programming

The general form of a touch field definition is:

ESC -z g <rows> r <cols> ¢ <curs> ¢ <beep>b /
<on__enh> e <off__enh> f <attr>a <mode> m /
<buf len> L <buf>

The meaning and valid entries for each of these fields follows.
Note that the “/” character is the continuation line marker, not
part of the sequence! Use BPL funcitons FNTF$ or FNTOUCHS.

ESC
_Zg

<rOWS> r

<cols> ¢

The escape character, ASCII 27 decimal.

The sequence which represents a touch field
definition.

Specifies the beginning and ending rows for
this touch field. The <rows> parameter is
specified as:

< Start-row, End-row>

The valid ranges for Start-row and End-row
are numeric ASCII strings from 0 to 23
inclusive. End-row must be greater than or
equal to the Start-row.

Specifies the beginning and ending columns
for this touch field. The <<cols>> parameter
is specified as:

<Start-col , End-col>

The valid ranges for Start-col and End-col are
numeric ASCII strings from 0 to 79
inclusive. End-col must be greater than or
equal to the Start-col.

<curs> p

<beep> b

<on__enh> ¢

<off _enh> f

This parameter specifies whether the alpha
cursor should be positioned at the upper left
corner of the field. Possible values for
<<curs> are:

0 = The cursor does not move to the field.
1 = The cursor is positioned at the upper
left corner of the field.

If “p” is not specified, the cursor is not
positioned on touch.

The “b” parameter specifies whether the
system should beep when the field is
touched. Valid values for <beep>> are:

0 = No sound occurs when the field is
touched.
1 = The system beeps on touch.

If “b” is not specified, no beeping occurs
when touched.

This parameter specifies the enhancement
(if any) which is displayed when the field is
off (not touched). Possible values for <on___
enh> are shown in the table below.

If “e” is not specified, the default on-
enhancement of 10 is used. This displays a
half-bright inverse field.

This specifies the enhancement displayed
when the field is on, or touched. The
possible values for <off __enh> are shown
in the “Touch Enhancements” table above.

If “£” is not specified, the default off-
enhancement of 2 is used. This causes an
inverse video enhancement in the field.

Practical Programming 3-25

3-26 Practical Programming

Touch Enhancements Table:

<parm>> value:

012345678 9101112131415

Blnk:
Inv:

Ulin:
HBrt:

<attr> a

<mode> m

<buflen> L

<buf>

This parameter specifies the type of field to
be defined. The possible values for <attr>
are:

1 = ASCII field
2 = keycode field
3 = toggle field
4 = normal field

For a full explanation of the types of fields
refer to the next section, “Types of Touch
Fields”.

This parameter specifies the sensing mode
for this field. The valid values for <mode>
are:

1 = Report on touch.

2 = Report on release.

3 = Report on touch and release.

As you would assume, this parameter
determines when the HP Touchscreen

” W

———
“S—
“—

I
I JW

The section, “Specifying Reporting Modes”
gives you more information about this
parameter.

This parameter specifies the length of the
response string associated with this field.

The response buffer to be associated with

this field. <buf> may be 0 to 80 bytes for
ASCII fields but must be two characters in
length for Toggle and Normal fields.

Types of Touch
Fields

The HP Touchscreen PC lets you define several types of touch
fields. The discussion which follows presents all of the types,
although you will find some are more appropriate than others
for use within BASIC. While this does limit your options, it does
not prevent you from fully utilizing the touch features within
your application.

The four types of touch fields are:

1.

ASCII Fields: These are very similar to the User-Definable
Softkeys in that a buffer of up to 80 characters can be
associated with every field. In an ASCII field, each time
touch is sensed (see “Specifying Reporting Modes™) your
application receives the designated buffer as standard
console input.

Keycode Fields: These fields require Keycode Mode
which is not easily done within high level languages. In
this mode, a touch field simulates the typing of keys on the
keyboard.

Toggle Fields: Toggle fields are “regions” for which on
and off states make sense. For example, you might permit
the user to enter any of several options, and act on the
selected fields only when is typed. The following
escape sequence is used for toggle fields:

ESC- z <buf> <type> Q

Here, <buf>is the two-character buffer specified when
the toggle field is defined. The <type> parameter will
return:

1 = Toggle field turning on.
2 = Toggle field turning off.

Practical Programming 3-27

Row/Column
Reporting

3-28 Practical Programming

4. Normal Fields: These fields are similar to ASCII fields, but
you use only a two-character <buf> (same as toggle

fields). The following escape sequence is used for normal
fields:

ESC - z <buf> <type> Q

Here, <buf> parameter is the two character buffer
specified when the field is defined. Valid return values for
<type>> are:

5 = Normal field touch sensed
6 = Normal field release sensed

Again, the main difference between Toggle Fields and Normal
Fields is that Toggle Fields have two states, on and off. A Normal
Field is “on” only while it is actually touched.

The alternative to Touch Fields is Row/Column Reporting.
When row/column reporting is in effect, you will receive touch
reports in the following format:

ESC - z <row> x <<col> y <type> Q

The <row> and <col> parameters are the 8-bit binary row and
column positions of the touch. Possible values for <type> are:
3 = Row/Column touch reporting.
4 = Row/Column release reporting.

When you use Row/Column Reporting, you are not required to
define any touch fields (remember that the sensing mode
parameter, <mode>>, is part of the touch field definition). The
next section explains how to specify row/column reporting
mode.

Specifying
Reporting Modes

Once you have specified a field, you need to specify a reporting
mode. This is done with the following escape sequence:

ESC - z <<smode> n <tmode> M

The meaning of each parameter is:

ESC

-Z

<smode> n

The escape character, ASCII 27 decimal.

The sequence for setting touch sensing
mode.

This parameter specifies the screen mode.
Use this sequence to determine what type of
reporting to perform. Possible values for
<smode> are:

0 = Turn off all reporting. This has the

effect of turning off reporting without
deleting any fields. Softkeys remain
touch active.

Enable Row /Column reporting only.
This disables field reporting, if active,
and enables row/column reporting
only. You will receive row /column
reports even when a field area is
touched.

Enable touch field reporting only. The
only reports you will receive will be
from defined fields.

Enable both row/column and touch
field reporting. Touch fields are
reported as defined. Row/Column
reports are made from all other areas of
the screen.

Toggle touch screen on/off. When off,
all touch screen operations are disabled.
This disables softkey fields as well.

Practical Programming 3-29

Deleting Touch
Fields

3-30 Practical Programming

<tmode> M This parameter specifies the touch mode. It
is not required for touch fields, because the
sensing mode is set in the field definition.
This parameter is required for row/column
sensing. If used with touch fields, this mode
should correspond to the mode specified in
the ESC-zg escape sequence.

Valid parameters for <tmode> are:

1 = Report on touch only.
2 = Report on release only.
3 = Report on touch and release.

The most common uses of these touch modes are in BPL
variables TSON$ and TSOFF$

You may wish to delete all touch fields or selectively remove one
or more fields. For example, if several options are presented as
touch fields, you may wish to remove all fields to go on to
another menu. At other times, you may only want to make
certain fields invalid by selectively deleting those fields you
don’t want.

The following escape sequence lets you delete the touch field
which starts at the row specified by <row> and the column
specified by <col>. If no field starts at the specified coordinates,
no action is taken.

ESC -zd <row> r <col> C

The second form deletes all touch fields. It should be used
whenever your application moves from one menu of touch
fields to another menu of touch fields. Deleting fields conserves
terminal memory.

ESC-zD

Use BPL variables TSDEL$ and FNTFDELS$ to perform these
functions.

Controlling User- The User-definable Softkeys are touch sensitive by default. For

Defined Softkeys an explanation on defining them, see the section on “User-
definable Softkeys”. If you wish to change the touch sensitive
nature of the softkeys, do so with the following escape sequence:

ESC - z <key> s <mode> K

The parameters are:

ESC The escape character, ASCII 27 decimal.

-z The sequence indicating touch screen
control.

<key> s The softkey number. <<Key> may be from

1 through 8 inclusive.
<mode> K The keymode. Values of <.mode> are:

0 = Disable touch on <key>.
1 = Enable touch on <key>.

Touch Screen Reset One final operation remains concerning touch screen, the
“reset” operation. Resetting touch screen turns all fields to the
off state. Remember, this affects the field state, not touch sensing
or reporting. Use this sequence to reset touch fields:

ESC-zJ

This makes most sense with the toggle fields. When a toggle
field is reset, no “off” sensing occurs. Use BPL variable
TSRESETS$ to perform a Touchscreen reset.

Practical Programming 3-31

Programming
Considerations

3-32 Practical Programming

Touch screen is a very easy way to provide unique features to

your application. There are a few things to be aware of when
using touch screen.

You probably want to select one type of field and stick with it.

ASCII fields are probably the best, because it is easy to “equate”
them with valid keyboard input. This means that your user can
specify input either through the keyboard or by touch screen. If
you use another type of field, you are going to do a lot of “escape
sequence parsing’ to determine which touch field was affected
(touched).

Within BPL, the functions which are used to define fields use
ASCII fields exclusively. You will probably find these the easiest
to use with your application.

You should also keep touch field responses to a minimum
number of bytes. You do this for two reasons:

1. Your application screens will experience a minimum
amount of interference from touch input.

2. You conserve the limited terminal memory space. HP has
not documented the actual amount of space available for
touch buffers, but when you reach the limit, your system
hangs up or crashes.

This second point leads to another thing to watch. When you are
finished with a touch field, delete it! Also you shouldn’t redefine

a field over and over in a loop. These two program segments
illustrate this point:

PROGRAM A
5000 PRINT CLS$; ‘Clear screen w/ cursor at top
5010 GOSUB 7000 ‘Define a touch field: actual
* field not critical
5020 GOSUB 3000 ‘Read one character from touch

‘using CHRIN routine
5030 IF CH$="“1" GOTO 5500 ‘Go off on option 1 to unshown line
5040 GOTO 5010 ‘Not option 1, return for more

Now look at Program B:

PROGRAM B
5000 PRINT CLS$; ‘Clear screen w/ cursor at top
5010 GOSUB 7000 ‘Define a touch field: actual
* field not critical
5020 GOSUB 3000 ‘Read one character from touch

‘using CHRIN routine
5030 IF CH$="1" GOTO 5500 ‘Go off on option 1
5040 GOTO 5020 ‘Not option 1, return for more

See the difference? Look at Line 5040. In Program A, the touch
field is defined EACH time a character is accepted. In Program
B, the touch field is defined only once. Program A will
eventually crash the system. Program B will not crash the
system as long as it stays within the above loop.

Practical Programming 3-33

3-34 Practical Programming

When you use touch screen, the touch fields will “auto-repeat”
just as the keys on the keyboard do. To prevent this from
confusing your application, use the “touch sensing mode”
escape sequence to control acceptance of input. For example,
notice how this program controls the touch screen:

PROGRAM C
5000 PRINT CLS$; ‘Clear screen w/ cursor at top
5010 GOSUB 6000 ‘Define a touch field
5015 PRINT CHRS$ (27);“-z2N"; “Turn on sensing
5020 GOSUB 3000 ‘Read one character from touch
‘using CHRIN routine
5025 PRINT CHRS$ (27);“-zON"; ‘Turn off sensing
5030 IF CH$="1" GOTO 5500 ‘Go off on option 1
5040 GOTO 1015 ‘Not option 1, return for more

6000 PRINT CHRS$ (27);“-zg1,5r1,5cib1a2miL1";
6005 RETURN

Note lines 5015 and 5025. They turn sensing on just before input
is expected, and turn it off immediately after input is received.

Of course, at a line later in the program such as line 5500 in all of
the above examples, you should delete the touch field selected.
The possible exception might be the case where control is
returned to line 5020. To avoid inputting additional (unwanted)
characters.

If more than one field is defined over a particular area of the
screen, the HP Touchscreen PC will report only the most recently
defined buffer. This nature of the system can prove useful.

Sometimes you will want to know if the user is touching the
screen but is not touching a defined field. You can do this by
defining the entire screen as a field with no enhancements for
‘on’ or ‘off” states. Then define your application fields ‘over’ this
background field. When a user touches one of your fields, you
will receive the buffer you expect. If the user touches anywhere
else, you will receive the buffer associated with the background
field.

Device Control
From BASIC

For both the BASIC compiler and BASIC interpreter there exists
a problem concerning device control. Although a program can

OPEN a device as a file (eg: COM1), the BASIC code assumes it
to be some sort of disc drive and has difficulty communicating
with it. This is not a bug. BASIC was simply not designed to do
device control.

Two problems exist when using standard BASIC statements
(OPEN, INPUT, PRINT) to try to control devices. The first
problem is that of buffering. BASIC will wait for either a record
separator or buffer over-flow before continuing execution after a
read. In many cases, neither of these will take place. As far as
writing to a device goes, you must force a buffer over-flow or
close the file in order to force the write to complete. The second
problem concerns MS-DOS. In its default file access mode, MS-
DOS performs a lot of clean-up when reading information from
a device (strip escape characters, look for a , etc.). This
is called “cooked” mode. The extra time needed to “cook” the
data usually causes data-loss on high-speed devices.

The device control functions in this package are designed to
eliminate the above problems. First, they do not use fixed length
buffers. As an example, if you write 25 bytes, they will be sent
out immediately. If you read 37 bytes, the function will wait for
37 bytes to become available, then read them. You could even
request an [/O CONTROL read, which would try to read the 37
bytes but would not wait if 37 weren’t available. It would read as
many as it could and return them. The problem concerning
“cooked” mode is also eliminated. Before any read or write, the
file is temporarily modified into the “raw” mode state
("uncooked”).

There are three functions contained in the DFUNCS files:
DOPEN
This function will open a device file and return a unique file

number associated with the file. This file number must be
used to identify the file when calling the following routines.

Practical Programming 3-35

Using AGIOS from
BASIC

3-36 Practical Programming

DACCESS
This function allows read, write, or [/O CONTROL read
access to an open file.

DCLOSE
This function allows you to close (discontinue use of) a file.

This package contains copies of the functions for both the
interpreter and the compiler, their related source listings
(assembly language), and test programs designed to give you
more information on how to call the procedures. The interpreter
copy, DFUNCSIB.IMG, must be BLOADed into memory before
the functions can be called. If you are using the compiler, you
can simply LINK the DFUNCSCB.OB] file in with your code.

You will find additional documentation on these device control
functions on your BPL Master Disc. The file called
"DEVICE.DOC’ can be printed by a word processor or simply
COPY’ed to your printer using File Manager or MS-DOS
Commands. Study that file and the program examples provided
to master device file control from within BASIC.

One final note: the sample programs contained with BPL to
illustrate device control have been tested with the HP 7470
plotter and an HP 3000 mainframe. If you wish to use a different
plotter, or to connect to a different mainframe, some
modification may be required.

As you have read, AGIOS calls are slightly more difficult to use
than escape sequence programming. However, the benefits
include faster execution and better control over the HP
Touchscreen PC.

Rather than document these more advanced calls and
complicate this manual, we have included a file on your BPL
Master Disc which describes AGIOS usage in detail. The file,
called "AGIOS.DOC’, can be printed using a word processor, or
COPY’ed to your printer using File Manager or MS-DOS
Commands. To use AGIOS, print that file and study its examples
and text.

Function

AGIOS
FNPK16$(MSB,LSB)
FNSOFF$(X1)
FNSOFFL$(X1)
FNXBATS$
FNXTCESC$

Alpha

Display control
ADOFF$
ADONS$
ALTCHROFF$
ALTCHRONS$
CLR$
CLS$
COFF$
CON$
ENHOFF$
FNALTCHRS$(BUF$)
FNCENTER$(BUF$,W)
FNENHONS$(BUF$)
FNLOCATE$(R1,C1)
HOMES$
HOMEDWN$
MEMLS$
MEMULS$

Variables and Functions by

Group

Basic Programmer’s Library
Variable & Function Listing by use

Description

FuNction PacK 16 bit

FuNction String OFFset
FuNction String OFFset Long
FuNction AGIOS BATch
FuNction AGIOS Execute ESCape
Sequence

Alphanumeric Display OFF
Alphanumeric Display ON
ALTernate CHaRacter set OFF
ALTernate CHaRacter set ON
CLeaR

CLear Screen

Cursor OFF

Cursor ON

ENHancement OFF$
FuNction ALTernate CHaRacter set
FuNction CENTER

FuNction ENHancement ON
FuNction LOCATE

HOME

HOME DOWn

MEMory Locked

MEMory UnLocked

Has Comparable
AGIOS Function

“~

“~ ~

N N N NN

Page Number
Reference

2-27
2-30
2-30
2-34
2-40

2-1
2-1
2-2
2-2
2.7
2-7
2-7
2-8
2-9
2-10
2-13
2-18
2-25
2-46
2-47
2-48
2-49

Variables and Functions by Group 4-1

Has Comparable Page Number

4-2 Variables and Functions by Group

Function Description AGIOS Function Reference

Alpha

Editing
BS$ Back Space 2-6
BTAB$ Back TAB J 2-6
CLL$ CLear Line J 2-6
CR$ Carriage Return v 2-8
DL$ Delete Line J 2-8
FNUPS$(BUF$) FuNction UP 2-23
1L$ Insert Line v 2-47
TAB$ TAB J 2-57

Alpha

Softkey Control
FNSKD$(K,L$,RET$) FuNction SoftKey Definition 2-28
SKL$ SoftKeys Locked 2-55
SKM$ SoftKey Modes 2-55
SKOFF$ SofKeys OFF 2-56
SKONS$ SoftKeys ON 2-56
SKUL$ SoftKeys UnLocked 2-56

General
BELL$ BELL 2-5
ESC$ ESCape 2-9
KBOFF$ KeyBoard OFF J 2-47
KBONS$ KeyBoard ON J 2-48

Graphics

Display Control
FNDRAWMODE$(X1) FuNction set DRAW MODE v 2-15
FNGCMAS$(X1,Y1) FuNction Graphics Cursor Move Absolute v 2-20
FNGCMR$(X1,Y1) FuNction Graphics Cursor Move Relative v 2-20
GCLS$ Graphics CLear Screen v 2-40
GCOFF$ Graphics Cursor OFF v 2-40
GCONS$ Graphics Cursor ON v 2-41
GDFT$ Graphics DeFaulTs 2-41
GDOFF$ Graphics Display OFF v 2-42
GDON$ Graphics Display ON v 2-42
GPDFT$ Graphics Picture DeFaulTs v 2-43

Function

GRESET$
GSET$
GSETUP$

Graphics

Origins

ORGNSET$
ORGNSETCP$
ORGNSETPP$

Graphics

Polygons

BDRYPENOFF$
BDRYPENON$
FNBOXFA$(X1,Y1,X2,Y2)
FNBOXFR$(X1,Y1,X2,Y2)
FNDEFPAT$(BUF$)
FNFILLPAT$(X1)
POLYGONS$

Graphics

Toxt

FNGTLABEL$(BUF$)
FNGTORGN$(X1)
FNGTROT$(X1)
FNGTSIZE$(X1)
GTOFF$

GTON$

GTSOFF$

GTSON$

Graphics

Vectors

FNBOX$(X1,Y1,X2,Y2)
FNDEFLINE$(X1,X2)
FNDRAWS$(X1,Y1)
FNLINEPAT$(X1)
FNLYNES$(X1,Y1,X2,Y2)
FNMOVES$(X1,Y1)

Description

Graphics RESET
Graphics SET
Graphics SET UP

ORIiGIiN SET
ORiGiN SET Cursor Position
ORIiGiN SET Pen Position

BounDaRY PEN OFF

BounDaRY PEN ON

FuNction BOX Filled Absolute
FuNction Box Filled Relative
FuNction DEFine area fill PATtern
FulNction set FILL PATtern
POLYGON

FuNction Graphics Text LABEL
FuNction Graphics Text ORiGiN
FuNction Graphics Text ROTate
FuNction Graphics Text SIZE
Graphics Text OFF

Graphics Text ON

Graphics Text Slant OFF
Graphics Text Slant ON

FuNction BOX

FuNction DEFine LINE pattern
FuNction DRAW

FuNction set LINE PATtern
FuNction LYNE (line)
FuNction MOVE pen

Has Comparable
AGIOS Function

J
J

“~

N N N

Page Number
Reference

2-43
2-44
2-44

2-49
2-49
2-50

2-3

2-4

2-11
2-12
2-14
2-19
2-52

2-21
2-22
2-23
2-24
2-45
2-46
2-46
2-46

2-12
2-13
2-15
2-24
2-25
2-26

Variables and Functions by Group 4-3

Function

FNPSET$(X1,Y1)

PCMOVE$
PCPLOT$
PENDWNS$
PENUP$

POINTPLOT$

RBLOFF$
RBLON$

Internal

Strings

BUF$

DR$

DS$

FILE$

L$

RET$

REV$
REV.BY$
REV.DATE$

internal

Numeric

AGIOS
C1

C2
DS%
GETCH
GETDS
K

LSB
MSB
R1

R2
TLA

w

X1

X2

Y1

Y2

Has Comparable

Description AGIOS Function

FuNction Point SET
Pen to Cursor MOVE
Pen to Cursor PLOT
PEN DoWN

PEN UP

POINT PLOT

Rubber Band Line OFF
Rubber Band Line ON

AN

BUFfer

DRive

Data Segment
FILE

Label

RETurn
REVision
REVision BY
REVision DATE

Alpha Graphics Input Qutput Subsystem
Column or Column 1
Column 2

Data Segment

GET CHaracter

GET Data Segment
Key

Least Significant Bit
Most Significant Bit
Row or Row 1

Row 2

Three Letter Acronym
Width

X1

X2

Y1

Y2

4-4 Variables and Functions by Group

Page Number
Reference

2-28
2-50
2-50
2-51
2-51
2-51
2-54
2-54

Function

Touch Screen
FNTF$(R1,R2,C1,C2,RET$)
FNTFDEL$(R1,C1)
FNTOUCHS$(R1,C1,RET$)
TSDELS$
TSOFF$
TSON$
TSRESET$

Subroutines
String
CH$

Subroutines
Numeric

CH%

Cl%

SKFLAG

Description

FuNction Touch Field
FulNction Touch Field DELete
FulNction TOUCH define
Touch Screen DELete

Touch Screen OFF

Touch Screen ON

Touch Screen RESET

CH$

CH%
Cl%
Soft Key FLAG

Has Comparable
AGIOS Function

Page Number
Reference

2-31
2-31
2-32
2-57
2-57
2-58
2-58

Variables and Functions by Group 4-5

Alphabetic Listing of All BPL
Variables and Functions

This chapter cross-references the variables and functions of BPL.
For a subject index refer to the contents of INDEX.DOC” found
on your BPL master disc. This file can be printed using either
your word processor or the MS-DOS COPY command.

ADOFF$
ADONS$
AGIOS
ALTCHROFF$
ALTCHRONS
BDRYPENOFF$
BDRYPENONS$
BELL$

BS$

BTAB$

BUF$

C1

C2

CH$

CH%

CI$

CLL$

CLR$

CLS$

COFF$

CONS$

CR$

DL$

DR$

DS$

DS%

Alphabetic Listing of All BPL Variables and Functions 5-1

ENHOFF$
ESC$

FILES
FNALTCHR$
FNBOX$
FNBOXFA$
FNBOXFR$
FNCENTER$
FNDEFLINES$
FNDEFPAT$
FNDRAWS$
FNDRAWMODE$
FNENHONS$
FNFILLPAT$
FNGCMAS$
FNGCMR$
FNGTLABEL$
FNGTORGNS$
FNGTROT$
FNGTSIZE$
FNLINEPAT$
FNLOCATES$
FNLYNE$
FNMOVES$
FNPK16$
FNPSET$
FNSKD$
FNSOFF$
FNSOFFL$
FNTF$
FNTFDEL

ENTOUCHS$
FNUP$

FNXBAT$
FNXDRAWS$
FNXDRAWMODE$
FNXENHONS$
FNXFILLPAT$
FNXGCMA$
FNXGCMR$

5-2 Alphabetic Listing of All BPL Variables and Functions

FNXGTORGNS$
FNXGTROT$%
FNXGTSIZES
FNXLINEPAT$
FNXLOCATE$
FNXMOVE$
FNXTCESC$
GCLS$
GCOFF$
GCON$
GDFT$
GDOFF$%
GDON$
GETCH
GETDS
GPDFT$
GRESET$
GSET$
GSETUP$
GTOFF$
GTON$
GTSOFF$
GTSONS$
HOMES$
HOMEDWNS$
IL$

K

KBOFF$
KBON$%

L$

LSB

MEMLS$
MEMULS$
MSB
ORGNSET$
ORGNSETCP$%
ORGNSETPP$%
PCMOVE$
PCPLOT$
PENDWNS$
PENUP$

Alphabetic Listing of All BPL Variables and Functions 35-3

POINTPLOT$%
POLYGONS$
R1

R2
RBLOFF$
RBLONS$
RET$

REV$
REV.BY$
REV.DATES$
SKFLAG
SKL$

SKM$
SKOFF$
SKON$
SKUL$
TAB$

TLA
TSDEL$
TSOFF$
TSONS$
TSRESET$
w

X1

X2

Y1

Y2
XADOFF$
XADONS$
XBDRYPENOFF$
XBDRYPENONS$
XBTAB$S
XCLL$
XCLRS$
XCOFF$
XCONS$
XDL$
XENHOFF$
XGCLS$
XGCOFF$

5-4 Alphabetic Listing of All BPL Variables and Functions

XGCON$
XGDOFF$
XGDONS$
XGPDFT$
XGRESET$
XGSET$
XGTOFF$
XGTONS$
XGTSOFF$
XGTSONS$S
XHOMES$
XHOMEDWNS$
XIL$
XKBOFF$
XKBONS$

Alphabetic Listing of All BPL Variables and Functions 35-3

