HP BASIC 6.2
Language Reference
Volume 2: 0-Z

==

ﬁf HEWLETT

PACKARD

HP Part No. 98616-90004
Printed in USA

Notice

The information contained in this document is subject to change without
notice.

Hewlett-Packard Company (HP) shall not be liable for any errors contained
in this document. HP MAKES NO WARRANTIES OF ANY KIND WITH
REGARD TO THIS DOCUMENT, WHETHER EXPRESS OR IMPLIED.
HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
HP shall not be liable for any direct, indirect, special, incidental, or
consequential damages, whether based on contract, tort, or any other legal
theory, in connection with the furnishing of this document or the use of the
information in this document.

Warranty Information

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to restrictions
as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause of DFARS 252.227-7013.

Use of this manual and magnetic media supplied for this product are restricted.
Additional copies of the software can be made for security and backup purposes
only. Resale of the software in its present form or with alterations is expressly
prohibited.

Copyright (© Hewlett-Packard Company 1987, 1988, 1990, 1991

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

Copyright © AT&T Technologies, Inc. 1980, 1984, 1986

Copyright (© The Regents of the University of California 1979, 1980, 1983,
1985-86

This software and documentation is based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University of
California.

MS-DOS ® is a U.S. Registered trademark of Microsoft Corporation.

Printing History

First Edition - April 1990
Second Edition - June 1991

iv

Contents

This manual consists of two parts. Part I, the “Keyword Dictionary,” is
divided between the two volumes. Part II, “Reference Information,” provides
additional information in the back of Volume 2.

Volume 1

Part | — Keyword Dictionary
A through N

Volume 2

Part | — Keyword Dictionary (continued)
O through Z

Part I — Reference Information
1. Keyword Summary

2. Interface Registers

3. Error Messages

4. Useful Tables

G. Glossary

Contents 1-1

Part | - Keyword Dictionary (continued)

This section continues the alphabetical listing of HP BASIC keywords with a
detailed syntax description for each. Refer to part II, “Reference Information,
in this volume for a summary of the keywords by category.

"

Keyword Dictionary 1-1

OFF CDIAL - OUTPUT

OFF CDIAL - OUTPUT O-1

OFF CDIAL

Supported On UX WS DOS
Option Required KBD
Keyboard Executable No
Programmable Yes

In an IF ... THEN ... Yes

This statement disables any ON CDIAL branching currently set up.

Example Statements

100 OFF CDIAL
200 IF Done THEN OFF CDIAL

0-2 OFF CDIAL - OUTPUT

OFF CYCLE

OFF CYCLE

Supported on UX WS DOS IN*
Option Required CLOCK
Keyboard Executable No
Programmable Yes

InanIF ... THEN ... Yes

This statement cancels event-initiated branches previously defined and enabled
by an ON CYCLE statement.

Example Statements

OFF CYCLE
IF Kick_stand THEK OFF CYCLE

Semantics

OFF CYCLE destroys the log of any CYCLE event which has already occurred
but which has not been serviced.

If OFF CYCLE is executed in a subprogram such that it cancels an ON
CYCLE in the calling context, the ON CYCLE definition is restored upon
returning to the calling context.

BASIC/UX Specifics

Resolution is 20 miliseconds. A new child process of BASIC/UX is started for
the timer.

OFF CDIAL - OUTPUT O0-3

OFF DELAY

Supported on UX WS DOS
Option Required CLOCK
Keyboard Executable No
Programmable Yes

InanIF ... THEN ... Yes

This statement cancels event-initiated branches previously defined and enabled
by an ON DELAY statement.

Example Statements

OFF DELAY
IF Ready THEN OFF DELAY

Semantics

OFF DELAY destroys the log of any DELAY event which has already occurred
but which has not been serviced.

If OFF DELAY is executed in a subprogram such that it cancels an ON
DELAY in the calling context, the ON DELAY definition is restored upon
returning to the calling context.

BASIC/UX Specifics

Resolution is 20 milliseconds. A new child process of BASIC/UX is started for
the timer.

0-4 OFF CDIAL - OUTPUT

OFF END

OFF END

Supported On UX WS DOS
Option Required None
Keyboard Executable No
Programmable Yes

InanIF ... THEN ... Yes

This statement cancels event-initiated branches previously enabled and defined
by an ON END statement.

Item | Description I Range

1/0 path name

name assigned to a mass storage file |any valid name (see

ASSIGN)

Example Statements

OFF END €@File
IF Special THEN OFF END @Source

Semantics

If OFF END is executed in a subprogram and cancels an ON END in the
context which called the subprogram, the ON END definitions are restored
when the calling context is restored.

If there is no ON END definition in a context, end-of-file and end-of-record are
reported as errors.

OFF CDIAL - OUTPUT O0-5

OFF EOR

Supported on UX WS DOS
Option Required TRANS
Keyboard Executable No
Programmable Yes

InanIF ... THEN ... Yes

This statement cancels event-initiated branches previously defined and enabled
by an ON EOR statement.

ON EOR @ 1/0 path e ™ Tne

name j \GOSUB/ 3 label 4
priority

line
RECOVER

X

number

subprogram
name

Item I Description I Range

I/0O path name |name assigned to a device, a group of

devices, or a mass storage file

any valid name

Example Statements

OFF EOR @File
OFF EOR @Device_selector

Semantics

The I/O path may be assigned either to a device, a group of devices, or to a
mass storage file or pipe; however, if the I/O path is assigned to a BUFFER,
an error is reported when the OFF EOR statement is executed.

0-6 OFF CDIAL - OUTPUT

OFF EOR
OFF EOR destroys the log of any EOR event which has already occurred but
which has not been serviced.

If OFF EOR is executed in a subprogram such that it cancels an ON EOR in
the calling context, the ON EOR definition is restored upon returning to the
calling context.

OFF CDIAL - OUTPUT O-7

OFF EOT

Supported on UX WS DOS
Option Required TRANS
Keyboard Executable No
Programmable Yes

In an IF ... THEN ... Yes

This statement cancels event-initiated branches previously defined and enabled
by an ON EOT statement.

OFF EOT @] /0 path

name

Item l Description l Range

I/0O path name |name assigned to a device, a group of | any valid name

devices, or a mass storage file

Example Statements

OFF EOT @File
IF Done_flag THEN OFF EOT @Info

Semantics

The I/0 path may be assigned either to a device, a group of devices, or to a
mass storage file or pipe; however, if the I/O path is assigned to a BUFFER,
an error is reported when the OFF EOT statement is executed.

OFF EOT destroys the log of any EOT event which has already occurred but
which has not been serviced.

If OFF EOT is executed in a subprogram such that it cancels an ON EOT in
the calling context, the ON EOT definition is restored upon returning to the
calling context.

0-8 OFF CDIAL - OUTPUT

OFF ERROR

OFF ERROR

Supported On UX WS DOS IN
Option Required None

Keyboard Executable No
Programmable Yes

InanIF ... THEN ... Yes

This statement cancels event-initiated branches previously defined and enabled
by an ON ERROR statement. Further errors are reported to the user in the
usual fashion.

(off erROR)+

OFF CDIAL - OUTPUT O0-9

OFF EXT SIGNAL

Supported On UX WS™ DOS”
Option Required None
Keyboard executable No
Programmable Yes

InanIF ... THEN ... Yes

This statement cancels event-initiated branches previously defined by an ON

EXT SIGNAL statement.

(oFF ExT sionAL

signal
number

Item | Description

l Range

numeric expression, rounded to
integer

signal number

Example Statements

OFF EXT SIGNAL 4
OFF EXT SIGNAL

Semantics

1 through 32 (see ON EXT
SIGNAL)

Not specifying a system signal number disables the event-initiated branches for
all system signals. Specifying a signal number causes the OFF EXT SIGNAL
to apply to the event-initiated log entry for the specified signal only.

Any pending ON EXT SIGNAL branches for the affected signals are lost and
further signals are vectored to the default handler for the EXT SIGNAL.
See ON EXT SIGNAL for a description of the default actions for each EXT

SIGNAL.

0-10 OFF CDIAL - OUTPUT

OFF EXT SIGNAL

The action to be taken for an EXT SIGNAL is inherited when entering a new
context (subprogram). This action stays in effect until an ON EXT SIGNAL
or OFF EXT SIGNAL is executed. When an OFF EXT SIGNAL is executed
within a context, the action for that external signal reverts to its default
action. When the context is exited, the current action reverts to what it was in
the calling context.

OFF CDIAL - OUTPUT O-11

OFF HIL EXT

Supported On UX WS DOS
Option Required KBD
Keyboard Executable No
Programmable Yes

Inan IF ... THEN ... Yes

This statement disables an end-of-line interrupt previously enabled by an ON
HIL EXT statement. When this statement is executed, any pending ON HIL
EXT branch is cancelled.

(o Hu ext)

Example Statement

OFF HIL EXT
IF NOT Hil_active THEN OFF HIL EXT

0-12 OFF CDIAL - OUTPUT

OFF INTR

OFF INTR

Supported On UX WS DOS IN
Option Required 10
Keyboard Executable No
Programmable Yes
InanIF ... THEN ... Yes

This statement cancels event-initiated branches previously defined by an ON
INTR statement.

4

(oFF INTR)T
L interface _j

select code

Item | Description | Range
5, and 7 through 31

interface select
code

numeric expression, rounded to an
integer; Default = all interfaces

Example Statements

OFF INTR
OFF INTR Hpib

Semantics

Not specifying an interface select code disables the event-initiated branches
for all interfaces. Specifying an interface select code causes the OFF INTR to
apply to the event-initiated log entry for the specified interface only.

Any pending ON INTR branches for the effected interfaces are lost and further
interrupts are ignored.

OFF CDIAL - OUTPUT 0-13

OFF KBD

Supported On UX WS DOS
Option Required None
Keyboard Executable No
Programmable Yes

InanIF ... THEN ... Yes

This statement cancels the event-initiated branch previously defined by an ON
KBD statement.

Example Statements

OFF KBD
IF NOT Process_keys THEN OFF KBD

Semantics

When this statement is executed, any pending ON KBD branch is cancelled,
and the keyboard buffer is cleared.

If OFF KBD is executed in a subprogram such that it cancels an ON KBD

in the calling context, the cancelled ON KBD definition is restored when the
calling context is restored. However, the keyboard buffer’s contents are not
restored with the calling context, because the buffer was cleared with the OFF
KBD.

0-14 OFF CDIAL - OUTPUT

OFF KEY

OFF KEY

Supported On UX WS DOS IN
Option Required KBD

Keyboard Executable No
Programmable Yes

In an IF ... THEN ... Yes

This statement cancels event-initiated branches previously defined and enabled
by an ON KEY statement.

(ofFF Kkev jLL — _j

selector

e

Item I Description | Range
0 through 19

key selector numeric expression, rounded to an

integer; Default = all keys

Example Statements

OFF KEY
OFF KEY 4

Semantics

Not specifying a softkey number disables the event-initiated branches for all
softkeys. Specifying a softkey number causes the OFF KEY to apply to the
specified softkey only. If OFF KEY is executed in a subprogram and cancels an
ON KEY in the context which called the subprogram, the ON KEY definitions
are restored when the calling context is restored.

Any pending ON KEY branches for the effected softkeys are lost. Pressing an
undefined softkey generates a beep.

OFF CDIAL - OUTPUT 0-15

OFF KNOB

Supported On UX WS DOS
Option Required None
Keyboard Executable No
Programmable Yes

InanIF ... THEN ... Yes

This statement cancels event-initiated branches previously defined and enabled
by the ON KNOB statement. Any pending ON KNOB branches are lost.
Further use of the knob will result in normal scrolling or cursor movement.

OFF KNOB

0-16 OFF CDIAL - OUTPUT

OFF SIGNAL

OFF SIGNAL

Supported On UX WS DOS
Option Required I0

Keyboard Executable No
Programmable Yes

InanIF ... THEN ... Yes

OFF SIGNAL cancels the ON SIGNAL definition with the same signal selector.
If no signal selector is provided, all ON SIGNAL definitions are cancelled. OFF
SIGNAL only applies to the current context.

(ofF sionaL
signal

selector

Item | Description I Range
0 through 15

signal selector |numeric expression, rounded to an

integer

Example Statements

OFF SIGNAL
OFF SIGNAL 15

OFF CDIAL - OUTPUT O0-17

OFF TIME

Supported on UX WS DOS
Option Required CLOCK
Keyboard Executable No
Programmable Yes

InanIF ... THEN ... Yes

This statement cancels event-initiated branches previously defined and enabled
by an ON TIME statement.

Example Statements

OFF TIME
IF Attended THEN OFF TIME

Semantics

OFF TIME destroys the log of any TIME event which has already occurred
but which has not been serviced.

If OFF TIME is executed in a subprogram such that it cancels an ON TIME in
the calling context, the ON TIME definition is restored upon returning to the
calling context.

BASIC/UX Specifics

Resolution is 20 milliseconds. A new child process of BASIC/UX is started for
the timer.

0-18 OFF CDIAL - OUTPUT

OFF TIMEOUT

OFF TIMEOUT

Supported on UX WS DOS IN
Option Required None

Keyboard Executable No
Programmable Yes

InanIF ... THEN ... Yes

This statement cancels event-initiated branches previously defined and enabled
by an ON TIMEQUT statement.

~

(oFF TMEOUT) >
L interface j

select code

Item | Description I Range
7 through 31

numeric expression, rounded to an
integer; Default = all interfaces

interface select
code

Example Statements

OFF TIMEOUT
OFF TIMEQUT Isc

Semantics

Not specifying an interface select code disables the event-initiated branches for
all interfaces. Specifying an interface select code causes the OFF TIMEOUT
to apply to the event-initiated branches for the specified interface only. When
OFF TIMEOUT is executed, no more timeouts can occur on the effected
interfaces.

OFF CDIAL - OUTPUT O0-19

OFF TIMEOUT

BASIC/UX Specifics

All channels of MUX interfaces have timeouts disabled by OFF TIMEOUT
without an interface select code.

0-20 OFF CDIAL - OUTPUT

ON

ON

Supported On UX WS DOS
Option Required None
Keyboard Executable No
Programmable Yes

InanIF ... THEN ... Yes

This statement transfers program execution to one of several destinations
selected by the value of the pointer.

(ﬂ)—' pointer

Item Description Range
pointer numeric expression, rounded to an 1 through 74
integer
line number integer constant identifying a 1 through 32 766
program line
line label name of a program line any valid name

Example Statements

ON X1 GOTO 100,150,170
IF Point THEN ON Point GOSUB First,Second,Third,Last

OFF CDIAL - OUTPUT 0-21

ON

Semantics

If the pointer is 1, the first line number or label is used. If the pointer is 2, the
second line identifier is used, and so on. If GOSUB is used, the RETURN is to
the line following the ON ... GOSUB statement.

If the pointer is less than 1 or greater than the number of line labels or
numbers, error 19 is generated. The specified line numbers or line labels must
be in the same context as the ON statement.

0-22 OFF CDIAL - OUTPUT

ON CDIAL

ON CDIAL

Supported On UX WS DOS
Option Required KBD
Keyboard Executable No
Programmable Yes

InanIF ... THEN... Yes

This statement sets up and enables a branch to be taken upon sensing rotation
of one of the dials on a “control dial” device.

o \ line
<0N CDlAL; J > GOSuUB) ™ umber
priority
line
label
subprogram
name
Item Description Range
priority numeric expression, rounded to an 1 through 15
integer; Default = 1
line label name of a program line any valid line name
line number integer constant identifying a 1 through 32 766
program line
subprogram name of a SUB or CSUB subprogram |any valid name
name

OFF CDIAL - OUTPUT 0-23

ON CDIAL

Example Statements

100 ON CDIAL GOSUB Dial_serv_rtn
200 ON CDIAL,Priority CALL Dial_sub

Semantics

All CDIAL function registers are automatically cleared when ON CDIAL is
executed.

The interrupt service routine for the branch initiated when one of the control
dials is rotated should read the number of pulses with the CDIAL function.

If ON CDIAL is used to set up control dial interrupts and then disabled
(with OFF CDIAL), the CDIAL function can still be used to determine valid
information about control dials: however, note that subsequent pulses will not
be accumulated into the CDIAL registers, and when a register is read with
CDIAL, that register is automatically cleared by the system.

The most recent ON CDIAL (or OFF CDIAL) overrides any previous ON
CDIAL branching. If the overriding branch is defined in another context (such
as in a SUB subprogram or user-defined FN), then the overriding branch is
canceled and the overridden branch is restored upon return to the calling
context.

The ON CDIAL statement behaves like the ON KNOB and ON HIL EXT
statements:

m When ON CDIAL is executed in a SUB context and program control exits
that context, the pulses from control dials will continue to be accumulated
(and can be read by CDIAL). No interrupts occur if there is no ON CDIAL
active in the current context.

m Conversely, if an ON CDIAL has been executed in a context and then OFF
CDIAL is executed in a called context, then upon returning to the calling
context the pulses will be routed to the BASIC system (instead of the
CDIAL function) and no interrupts will be initiated.

The priority can be specified, with the highest represented by a value of
15. (This is the highest user-specifiable priority; however, ON END and
ON TIMEOQOUT have priorities of 16, and ON ERROR has a priority of
17.) An ON CDIAL branch can interrupt the currently executing program

0-24 OFF CDIAL - OUTPUT

ON CDIAL

segment, if its priority is higher than the current SYSTEM PRIORITY (use
SYSTEM$ ("SYSTEM PRIORITY") to determine the current priority).

Upon completion of the interrupt service routine, CALL and GOSUB branches
are returned to the next line that would have been executed if the ON CDIAL
branch had not been serviced; the system priority is returned to the value in
effect before the ON CDIAL branch occurred. RECOVER forces the program
to go directly to the specified line in the context containing the ON CDIAL
statement; when RECOVER forces a change of context, the system priority is
restored to the value which existed in the original (defining) context at the
time that the context was exited.

CALL and RECOVER remain active (that is, they can initiate branches) when
the context changes to a subprogram (SUB), unless the change in context

is caused by a keyboard-originated CALL statement. GOSUB and GOTO
remain active when the context changes to a subprogram, but the branch is not
initiated until after the calling context is restored.

ON CDIAL branches are disabled by DISABLE, temporarily disabled when the
program is executing an INPUT, LINPUT, or ENTER KBD ... statement;
and deactivated by OFF CDIAL.

ON CDIAL does not initiate branches for other “knob” devices (such as
built-in knobs of 98203 keyboards or HIL mouse devices).

OFF CDIAL - OUTPUT 0-25

ON CYCLE

Supported on UX WS DOS IN”
Option Required CLOCK
Keyboard Executable No
Programmable Yes

InanIF ... THEN ... Yes

This statement defines and enables an event-initiated branch to be taken each
time the specified number of seconds has elapsed.

(on_craue o]seconce @D L
L’O—D priarity L
T
aumber [
subprogram
name
Item Description Range
seconds numeric expression, rounded to the 0.01 through 167 772.16
nearest (.02 second
priority numeric expression, rounded to an 1 through 15
integer; Default=1
line label name of a program line any valid name
line number integer constant identifying a 1 through 32 766
program line
subprogram name of a SUB or CSUB subprogram | any valid name
name

0-26 OFF CDIAL - OUTPUT

ON CYCLE

Example Statements

ON CYCLE 1 GOSUB One_second
ON CYCLE 3600,12 CALL Chime

Semantics

The most recent ON CYCLE (or OFF CYCLE) definition overrides any
previous ON CYCLE definition. If the overriding ON CYCLE definition occurs
in a context different from the one in which the overridden ON CYCLE occurs,
the overridden ON CYCLE is restored when the calling context is restored,
but the time value of the more recent ON CYCLE remains in effect. For more
information on the behavior of ON CYCLE in different contexts, read the
section “Branching Restrictions” in the chapter “Using the Clock and Timers”
in the HP BASIC 6.2 Programming Guide manual.

The priority can be specified, with the highest priority represented by 15. The
highest user-defined priority (15) is less than the priority for ON ERROR,

ON END, and ON TIMEOUT (whose priorities are not user-definable). ON
CYCLE can interrupt service routines of other event-initiated branches with
user-definable priorities, if the ON CYCLE priority is higher than the priority
of the service routine (the current system priority). CALL and GOSUB service
routines get the priority specified in the ON ... statement which set up the
branch that invoked them. The system priority is not changed when a GOTO
branch is taken.

Any specified line label or line number must be in the same context as the ON
CYCLE statement. CALL and GOSUB will return to the next line that would
have been executed if the CYCLE event had not been serviced, and the system
priority is restored to that which existed before the ON CYCLE branch was
taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON CYCLE statement. When RECOVER forces a
change of context, the system priority is restored to that which existed in the
original (defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a
subprogram, unless the change in context is caused by a keyboard-originated
call. GOSUB and GOTO remain active when the context changes to a
subprogram, but the branch cannot be taken until the calling context is
restored.

OFF CDIAL - OUTPUT 0-27

ON CYCLE

ON CYCLE is disabled by DISABLE and deactivated by OFF CYCLE. If the
cycle value is short enough that the computer cannot service it, the interrupt
will be lost.

BASIC/UX Specifics

Resolution is 20 milliseconds. A new child process of BASIC/UX is started for
the timer.

0-28 OFF CDIAL - OUTPUT

ON DELAY

ON DELAY

Supported on UX WS DOS
Option Required CLOCK
Keyboard Executable No
Programmable Yes

InanIF ... THEN ... Yes

This statement defines and enables an event-initiated branch to be taken after
the specified number of seconds has elapsed.

<ON DELAY >—P‘ seconds l

m line

j '@SUBJ iL label
P o)

line
number

CALL subprogram |

name

Item Description Range
seconds numeric expression, rounded to the 0.01 through 167 772.16
nearest 0.02 second
priority numeric expression, rounded to an 1 through 15
integer; Default=1
line label name of a program line any valid name

line number

subprogram
name

integer constant identifying a
program line

name of a SUB or CSUB subprogram

1 through 32 766

any valid name

OFF CDIAL - OUTPUT 0-29

ON DELAY

Examples

ON DELAY 10 GOTO Default
ON DELAY 3,2 GOSUB Low_level

Semantics

The most recent ON DELAY (or OFF DELAY) definition overrides any
previous ON DELAY definition. If the overriding ON DELAY definition occurs
in a context different from the one in which the overridden ON DELAY occurs,
the overridden ON DELAY is restored when the calling context is restored,
but the time value of the more recent ON DELAY remains in effect. For more
information on the behavior of ON DELAY in different contexts, read the
section “Branching Restrictions” in the chapter “Using the Clock and Timers”
in the HP BASIC 6.2 Programming Guide.

The priority can be specified, with the highest priority represented by 15. The
highest user-defined priority (15) is less than the priority for ON ERROR,

ON END, and ON TIMEOUT (whose priorities are not user-definable). ON
DELAY can interrupt service routines of other event-initiated branches with
user-definable priorities, if the ON DELAY priority is higher than the priority
of the service routine (the current system priority). CALL and GOSUB service
routines get the priority specified in the ON ... statement which set up the
branch that invoked them. The system priority is not changed when a GOTO
branch is taken.

Any specified line label or line number must be in the same context as the ON
DELAY statement. CALL and GOSUB will return to the next line that would
have been executed if the DELAY event had not been serviced, and the system
priority is restored to that which existed before the ON DELAY branch was
taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON DELAY statement. When RECOVER forces a
change of context, the system priority is restored to that which existed in the
original (defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a
subprogram, unless the change in context is caused by a keyboard-originated
call. GOSUB and GOTO remain active when the context changes to a
subprogram, but the branch cannot be taken until the calling context is
restored.

0-30 OFF CDIAL - OUTPUT

ON DELAY
ON DELAY is disabled by DISABLE and deactivated by OFF DELAY.

BASIC/UX Specifics

Resolution is 20 milliseconds. A new child process of BASIC/UX is started for
the timer.

OFF CDIAL - OUTPUT 0-31

ON END

Supported On UX WS DOS
Option Required None
Keyboard Executable No
Programmable Yes

InanIF ... THEN ... Yes

This statement defines and enables an event-initiated branch to be taken when
end-of-file is reached on the mass storage file associated with the specified I/O

path.
() R (: 1/0 path I
ON_END a non?\: 3 Ic;rl;:l
L line
number
subprogram
name
Item Description Range
I/O path name {name assigned to a mass storage file |any valid name (see
ASSIGN)
line label name of a program line any valid name
line number integer constant identifying a 1 through 32 766
program line
subprogram name of a SUB or CSUB subprogram | any valid name
name

0-32 OFF CDIAL - OUTPUT

ON END

Example Statements

ON END @Source GOTO Next_file
ON END @Dest CALL Expand

Semantics

The ON END branch is triggered by any of the following events:
s When the physical end-of-file is encountered.

® When an ENTER statement reads the byte at EOF or beyond.

m When a random access QUTPUT or ENTER requires more than one defined
record.

m When a random access QUTPUT is attempted beyond the next available
record. (If EOF is the first byte of a record, then that record is the next
available record. If EOF is not at the first byte of a record, the following
record is the next available record.)

The priority associated with ON END is higher than priority 15. ON
TIMEQUT and ON ERROR have the same priority as ON END, and can
interrupt an ON END service routine.

Any specified line label or line number must be in the same context as the

ON END statement. CALL and GOSUB will return to the line immediately
following the one during which the end-of-file occurred, and the system

priority is restored to that which existed before the ON END branch was
taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON END statement. When RECOVER forces a change
of context, the system priority is restored to that which existed in the original
(defining) context was exited.

CALL and RECOVER remain active when the context changes to a
subprogram, if the I/O path name is known in the new context. CALL

and RECOVER do not remain active if the context changes as a result of a
keyboard-originated call. GOSUB and GOTO do not remain active when the
context changes to a subprogram.

The end-of-record error (error 60) or the end-of-file error (error 59) can be
trapped by ON ERROR if ON END is not active. ON END is deactivated by
OFF END. DISABLE does not affect ON END.

OFF CDIAL - OUTPUT 0-33

ON EOR

Supported on UX WS DOS
Option Required TRANS
Keyboard Executable No
Programmable Yes

InanIF ... THEN ... Yes

This statement defines and enables an event-initiated branch to be taken when
an end-of-record is encountered during a TRANSFER.

170 path L e =\ i
nompea l J \GOSUB/ kL h:::;:l

priority

line
number

subprogram
nome

Item Description Range

I/O path name |name assigned to a device, a group of | any valid name
devices, or a mass storage file

priority numeric expression, rounded to an 1 through 15
integer; Default=1

line label name of a program line any valid name

line number integer constant identifying a 1 through 32 766
program line

subprogram name of a SUB or CSUB subprogram | any valid name

name

0-34 OFF CDIAL - OUTPUT

ON EOR

Example Statements

ON EOR @Gpio GOSUB Gpio_eor
ON EOR @Hpib,9 CALL Eor_sensed

Semantics

The I/O path may be assigned either to a device, a group of devices, or to a
mass storage file or pipe. If the I/O path is assigned to a BUFFER, an error is
reported when the ON EOR statement is executed.

If a TRANSFER statement uses an I/O path name which is local to a
subprogram and the TRANSFER has not completed by the time the context
is exited, returning to the original context will be deferred until the end of the
TRANSFER; at that time the ON EOR event cannot be serviced. To ensure
that the event will be serviced, a statement that cannot be executed in overlap
with the TRANSFER must be executed before the context is exited. A WAIT
FOR EOR @Non_buf statement is used for this purpose.

End-of-record delimiters are defined by the EOR parameters of the
TRANSFER statement (i.e., DELIM, COUNT, or END). An EOR event
occurs when any of the specified end-of-record delimiters is encountered during
a TRANSFER. The event’s occurrence is logged, and the specified branch is
taken when system priority permits.

The most recent ON EOR (or OFF EOR) definition for a given I/O path
name overrides any previous ON EOR definition. If the overriding ON EOR
definition occurs in a context different from the one in which the overridden
ON EOR occurs, the overridden ON EOR is restored when the calling context
is restored.

The priority can be specified, with the highest priority represented by 15. The
highest user-defined priority (15) is less than the priority for ON ERROR,

ON END, and ON TIMEOUT (whose priorities are not user-definable). ON
EOR can interrupt service routines of other event-initiated branches with
user-definable priorities, if the ON EOR priority is higher than the priority of
the service routine (the current system priority). CALL and GOSUB service
routines get the priority specified in the ON ... statement which set up the
branch that invoked them. The system priority is not changed when a GOTOQ
branch is taken.

OFF CDIAL - OUTPUT 0-35

ON EOR

Any specified line label or line number must be in the same context as the ON
EOR statement. CALL and GOSUB will return to the next line that would
have been executed if the EOR event had not been serviced, and the system
priority is restored to that which existed before the ON EOR branch was
taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON EOR statement. When RECOVER forces a change
of context, the system priority is restored to that which existed in the original
(defining) context at the time that context was exited. '

CALL and RECOVER remain active when the context changes to a
subprogram, unless the change in context is caused by a keyboard-originated
call. GOSUB and GOTO remain active when the context changes to a
subprogram, but the branch cannot be taken until the calling context is
restored.

ON EOR is disabled by DISABLE and deactivated by OFF EOR.

0-36 OFF CDIAL - OUTPUT

ON EOT

ON EOT

Supported on
Option Required

UX WS DOS
TRANS

Keyboard Executable No

Programmable

Yes

InanIF ... THEN ... Yes

This statement defines and enables an event-initiated branch to be taken when
the last byte is transferred by a TRANSFER statement.

ON EOT

Item

@ 1/0 path

Description

of \ line
name Gosus 3 label
priority
GOTO line
number
RECOVER
CALL subprogram |

name

Range

I/O path name

priority

line label

line number

subprogram
name

name assigned to a device, a group of | any valid name

devices, or a mass storage file

numeric expression, rounded to an
integer; Default=1

name of a program line

integer constant identifying a
program line

1 through 15

any valid name

1 through 32 766

name of a SUB or CSUB subprogram | any valid name

OFF CDIAL - OUTPUT 0-37

ON EOT

Example Statements

ON EOT @File GOTO Finished
ON EOT ¢@Hpib,5 CALL More

Semantics

The I/0O path may be assigned either to a device, a group of devices, or to a
mass storage file or pipe. If the I/O path is assigned to a BUFFER, an error is
reported when the ON EOT statement is executed.

If a TRANSFER statement uses an I/O path name which is local to a
subprogram and the TRANSFER has not completed by the time the context
is exited, returning to the original context will be deferred until the end of the
TRANSFER; at that time the ON EOT event cannot be serviced. To ensure
that the event will be serviced, a statement that cannot be executed in overlap
with the TRANSFER must be executed before leaving the context. A WAIT
FOR EOT @Non_buf statement is used for this purpose.

The most recent ON EOT (or OFF EQT) definition for a given path name
overrides any previous ON EOT definition. If the overriding ON EOT
definition occurs in a context different from the one in which the overridden
ON EOT occurs, the overridden ON EQOT is restored when the calling context
is restored.

The priority can be specified, with the highest priority represented by 15. The
highest user-defined priority (15) is less than the priority for ON ERROR,

ON END, and ON TIMEOUT (whose priorities are not user-definable). ON
EOT can interrupt service routines of other event-initiated branches with
user-definable priorities, if the ON EOT priority is higher than the priority of
the service routine (the current system priority). CALL and GOSUB service
routines get the priority specified in the ON ... statement which set up the
branch that invoked them. The system priority is not changed when a GOTO
branch is taken.

Any specified line label or line number must be in the same context as the ON
EOT statement. CALL and GOSUB will return to the next line that would
have been executed if the EOT event had not been serviced, and the system
priority is restored to that which existed before the ON EOT branch was
taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON EOT statement. When RECOVER forces a change

0-38 OFF CDIAL - OUTPUT

ON EOT

of context, the system priority is restored to that which existed in the original
(defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a
subprogram, unless the change in context is caused by a keyboard-originated
call. GOSUB and GOTO remain active when the context changes to a
subprogram, but the branch cannot be taken until the calling context is
restored.

ON EOT is disabled by DISABLE and deactivated by OFF EOT.

OFF CDIAL - OUTPUT 0-39

ON ERROR

Supported On UX WS DOS IN
Option Required None

Keyboard Executable No
Programmable Yes

InanIF ... THEN ... Yes

This statement defines and enables an event-initiated branch which results
from a trappable error. This allows you to write your own error-handling
routines.

line

label
line

number

subprogram
name

Item Description Range
line label name of a program line any valid name
line number integer constant identifying a 1 through 32 766

program line
subprogram name of a SUB or CSUB subprogram | any valid name
name

Example Statements

ON ERROR GOTO 1200
ON ERROR CALL Report

0-40 OFF CDIAL - OUTPUT

ON ERROR

Semantics

The ON ERROR statement has the highest priority of any event-initiated
branch. ON ERROR can interrupt any event-initiated service routine.

Any specified line label or line number must be in the same context as the

ON ERROR statement. RECOVER forces the program to go directly to the
specified line in the context containing the ON ERROR statement.

Returns via RETURN, SUBEXIT, or SUBEND from ON ERROR GOSUB

or ON ERROR CALL routines are different from regular GOSUB or CALL
returns. When ON ERROR is in effect, the program resumes at the beginning
of the line where the error occurred. If the ON ERROR routine did not correct
the cause of the error, the error is repeated. This causes an infinite loop
between the line in error and the error handling routine. To avoid a retry of
the line which caused the error, use ERROR RETURN instead of RETURN

or ERROR SUBEXIT instead of SUBEXIT. When execution returns from the
ON ERROR routine, system priority is restored to that which existed before
the ON ERROR branch was taken.

CALL and RECOVER remain active when the context changes to a
subprogram, unless the change in context is caused by a keyboard-originated
call. In this case, the error is reported to the user, as if ON ERROR had not
been executed.

GOSUB and GOTO do not remain active when the context changes to a

subprogram. If an error occurs, the error is reported to the user, as if ON
ERROR had not been executed.

If an execution error occurs while servicing an ON ERROR CALL or ON
ERROR GOSUB, program execution stops. If an execution error occurs while
servicing an ON ERROR GOTO or ON ERROR RECOVER routine, an
infinite loop can occur between the line in error and the GOTO or RECOVER
routine.

If an ON ERROR routine cannot be serviced because inadequate memory is
available for the computer, the original error is reported and program execution
pauses at that point.

ON ERROR is deactivated by OFF ERROR. DISABLE does not affect ON
ERROR.

OFF CDIAL - OUTPUT O-41

ON EXT SIGNAL

Supported On UX WS” DOS”
Option Required n/a
Keyboard executable No
Programmable Yes
InanIF ... THEN ... Yes

This statement defines an event-initiated branch to be taken when a system
generated signal is received.

signal
ON EXT SIGNAL e _J
priority

Item

Description

e

GOTO | line label

1

Range

signal number

priority

line label

line number

subprogram
name

numeric expression, rounded to
integer

numeric expression, rounded to
integer (Default = 1)

name of a program line

integer const identifying a program
line

name of a SUB or CSUB

0-42 OFF CDIAL - OUTPUT

(see below)

1 through 15

any valid name

1 through 32 766

any valid name

ON EXT SIGNAL

Example Statements

ON EXT SIGNAL 4 GOTO 10
ON EXT SIGNAL Sigusr2,12 GOSUB Fred
ON EXT SIGNAL Sigterm,15 CALL Terminate

Semantics

The ON EXT SIGNAL statement specifies a new action to be taken when

a system generated signal is received by BASIC. If an ON EXT SIGNAL
statement is not specified, then a default system action is be taken. The action
for a specific EXT SIGNAL is specified in the table below. The two possible
actions that can be taken are:

Exit BASIC is immediately, but gracefully exited.
Error An error [number to be determined] is generated at the next
end-of-line.

All ON EXT SIGNAL actions take place at end-of-line except the default
action to exit, which takes effect immediately upon receipt.

BASIC does not allow all system signals to be caught by users. The table
below specifies all system signals, and indicates which can be specified in the
EXT SIGNAL statements. All other values cause an error. This table also
specifies the default EXT SIGNAL handling action which takes place in the
absence of an ON EXT SIGNAL, or after an OFF EXT SIGNAL.

OFF CDIAL - OUTPUT 0-43

ON EXT SIGNAL

Signal Signal Valid | Default
Number Name Signal | Action Comment

1 SIGHUP yes |exit hangup (lost connection)

2 SIGINT no |- BASIC “CLR-I/O” signal

3 SIGQUIT no |- BASIC “RESET” signal

4 SIGILL no |- illegal instruction

5 SIGTRAP no |- BASIC debugging signal

6 SIGIOT yes |error |software generated (abort)

7 SIGEMT yes lerror |software generated

8 SIGFPE no |- floating point execution used
internally by BASIC

9 SIGKILL no |- not catchable by anyone

10 SIGBUS no |- hardware bus error

11 SIGSEGV no |- segmentation violation

12 SIGSYS yes lerror |bad argument to system call

13 SIGPIPE no |- write on pipe with no reader

14 SIGALRM yes |error |system alarm clock (used by
BASIC)

15 SIGTERM yes |exit software termination signal

16 SIGUSR1 no |- used by BASIC for
communications

17 SIGUSR2 yes |error |user defined signal

18 SIGCLD no |- used by BASIC

19 SIGPWR no |- powerfail; never reaches user

20 SIGVTALRM yes |error |virtual timer alarm

0-44 OFF CDIAL - OUTPUT

ON EXT SIGNAL

Signal Signal Valid | Default
Number Name Signal | Action Comment

21 SIGPROF yes |error |profiling timer alarm

22 SIGIO yes |error |I/O possible signal

23 SIGWINDOW no |- window /mouse signal

24 SIGSTOP no |- sendable stop signal not
from tty

25 SIGTSTP no |- stop signal from tty

26 SIGCONT no |- continue a stopped process

27 SIGTTIN no |- to readers pgroup upon
background tty read

28 SIGTTOU no |- like TTIN for output

29 SIGURG no |- urgent condition on I/O
channel

30 SIGLOST no |- remote lock lost (NFS)

31 - no |- not defined for HP-UX

32 SIGDIL no |- DIL signal

EXT SIGNALS default to and remain enabled unless explicitly disabled with
the DISABLE EXT SIGNAL statement.

The priority of an EXT SIGNAL can be specified in the ON EXT SIGNAL
statement, with the highest priority represented by 15. The highest priority

is less than the priority for ON ERROR, ON END, and ON TIMEOUT. ON
EXT SIGNAL can interrupt service routines of other event-initiated branches
which have user-definable priorities, if the ON EXT SIGNAL priority is higher
than the priority of the service routine (the current system priority). CALL
and GOSUB service routines get the priority specified in the ON ... statement
which set up the branch that invoked them. The system priority is not changed
when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON
EXT SIGNAL statement. CALL and GOSUB return to the next line that
would have been executed if the EXT SIGNAL event had not been serviced,
and the system priority is restored to that which existed before the ON EXT
SIGNAL branch was taken. RECOVER forces the program to go directly to
the specified line in the context containing that ON EXT SIGNAL statement.

OFF CDIAL - OUTPUT 0-45

ON EXT SIGNAL

When recover forces a change of context, the system priority is restored to that
which existed in the original (defining) context at the time that context was
exited.

CALL and RECOVER remain active when the context changes to a
subprogram, unless the change in context is caused by a keyboard-originated
call. GOSUB and GOTO remain active when the context changes to a
subprogram, but the branch cannot be taken until the calling context is
restored.

ON EXT SIGNAL is disabled by DISABLE EXT SIGNAL or DISABLE and
deactivated by OFF EXT SIGNAL.

The current state of the system signal handling can be determined through
the STATUS statement. EXT SIGNALS use the pseudo-select code 33 for
providing status information. For each EXT SIGNAL, a status register exists
with the same number, and providing the following information:

Status
Number Comment
-1 signal not catchable by user

0 signal disabled

1 signal enabled

Thus to determine the state of the SIGTERM (15) signal,

STATUS 33,15;A
When an EXT SIGNAL is enabled, and there is no ON EXT SIGNAL setup
for it and the default action is an error , a program error is generated if a

program is running, or if in a keyboard command (including EXECUTE). If a
program is running, an ON ERROR statement can catch the error.

When BASIC is idle (not running a program and not executing a keyboard
command) all EXT SIGNALS except SIGHUP and SIGTERM are ignored.
SIGHUP and SIGTERM exit if they are enabled.

Note that all EXT SIGNALs default to being enabled.

0-46 OFF CDIAL - OUTPUT

ON HIL EXT

ON HIL EXT

Supported On UX WS DOS
Option Required KBD
Keyboard Executable No
Programmable Yes

InanIF ... THEN ... Yes

This statement enables an end-of-line interrupt in response to receiving data
from HIL devices whose poll records are not otherwise being processed by the
BASIC system.

address of \ - line
<0N HIL EXT)—P mask l _j GOSuUB) “L lobel

priority
GOTO line
number
RECOVER
subprogr:
CML ¢ nameam
Range
Item Description/Default Restrictions

address mask the sum of 2 raised to the power of each |any even number
of the addresses of the desired devices; from 2 to 254
Default = 254

priority numeric expression, rounded to a 1 through 15
integer;Default = 1

line label name of a program line any valid name
line number integer constant identifying a program 1 through 32 766
line

subprogram name of a SUB or CSUB subprogram any valid name
name

OFF CDIAL - OUTPUT 0-47

ON HIL EXT

Example Statement

ON HIL EXT 8 GOSUB Ser_routine
ON HIL EXT Mask,Priority CALL Sub_prog
ON HIL EXT 2,3 GOTO Label_1

Semantics

The address mask provides the capability of being able to enable polling of
several devices using the same ON HIL EXT statement. This mask is obtained
by raising 2 to the power of each of the addresses of desired devices, and
adding these values. Suppose you want to create a mask which would allow
interrupts from HP-HIL devices at addresses 1 and 3. You would take 2 and
raise it to the first power and add this result to 2 raised to the third power;
the final result is a mask value of 10. This indicates that end-of-line interrupts
can be received from HP-HIL devices at addresses 1 and 3 in the HP-HIL link.
Note that the default mask is 254 (all devices in the link).

While interrupts are enabled, poll records are accumulated and returned via
the HILBUFS$ function. If the HIL SEND statement results in data being
returned from the device, the data is put into HILBUF$ even if HP-HIL
interrupts are not enabled (i.e. ON HIL EXT is not currently active). Note
that no interrupt is generated, even if HP-HIL interrupts are enabled (i.e. ON
HIL EXT is currently active), for data placed in HILBUF$ as a result of HIL
SEND. However, care should be taken in this case, since executing ON HIL
EXT clears HILBUFS.

HP-HIL devices which can use the ON HIL EXT statement are those whose
poll records are not being processed for another purpose by the BASIC system
or the Keyboard controller. These devices are grouped into two categories:

m Absolute positioning devices which are not the current GRAPHICS INPUT
device. Examples of these devices are as follows: Touchscreen (HP 35723A),
A-size Digitizer (HP 46087A), B-size Digitizer (HP 46088A). Note that both
digitizers return data too fast to be processed using the HILBUF$ function;
therefore, it is best to use the GRAPHICS INPUT IS statement with these
devices along with the READ LOCATOR or DIGITIZE statement.

m HP-HIL devices with Device ID’s less than hexadecimal 60. Examples of
these devices are as follows: Bar-code Reader (HP 92916A), ID Module (HP
46084A), Function Box (HP 46086A), Vectra Keyboard (HP 46030A).

0-48 OFF CDIAL - OUTPUT

ON HIL EXT

The main HP-HIL devices which cannot use this function are:

m Relative pointing devices, such as the HP Mouse (HP 46060A) and Control
Dial Box (HP 46085A). Since the HP 98203C keyboard has a knob on it, it is
considered a relative pointing device.

m Current GRAPHICS INPUT devices.

m All system Keyboards (includes HP 98203C as well as HP 46020/21A). Their
poll records are processed by the Keyboard controller and the keycodes
returned to BASIC via a different interface.

The priority can be specified, with the highest priority represented by 15. The
highest user-defined priority (15) is less than the priority for ON ERROR,

ON END, and ON TIMEOUT (whose priorities are not user-definable). ON
HIL EXT can interrupt service routines of other event-initiated branches with
user-definable priorities, if the ON HIL EXT priority is higher than the priority
of the service routine (the current system priority). CALL and GOSUB service
routines get the priority specified in the ON ... statement which set up the
branch that invoked them. The system priority is not changed when a GOTO
branch is taken.

Any specified line label or line number must be in the same context as the
ON HIL EXT statement. CALL and GOSUB will return to the next line
that would have been executed if the HIL EXT event had not been serviced,
and the system priority is restored to that which existed before the ON HIL
EXT branch was taken. RECOVER forces the program to go directly to the
specified line in the context containing the ON HIL EXT statement. When
RECOVER forces a change of context, the system priority is restored to that
which existed in the original (defining) context at the time that context was
exited.

CALL and RECOVER remain active when the context changes to a
subprogram, unless the change in context is caused by a keyboard-originated
call. GOSUB and GOTO remain active when the context changes to a
subprogram, but the branch cannot be taken until the calling context is
restored.

The most recent ON HIL EXT (or OFF HIL EXT) overrides any previous ON
HIL EXT definition. If the overriding ON HIL EXT occurs in another context
(such as in a SUB subprogram), then the overridden ON HIL EXT branch is
restored when the calling context is restored. (See below for restrictions.)

OFF CDIAL - OUTPUT 0-49

ON HIL EXT

ON HIL EXT is deactivated by OFF HIL EXT.

The ON HIL EXT statement behaves like the ON CDIAL and ON KNOB
statements:

m When ON HIL EXT is executed in a SUB context and program control
exits that context, the data from the enabled devices will continue to be
accumulated (and can be read by HILBUF$—unless lost due to buffer
overflow). No interrupts occur if there is no ON HIL EXT active in the
current context.

m Conversely, if an ON HIL EXT has been executed in a context and the
OFF HIL EXT is executed in a called context, upon returning to the calling
context, the data is not accumulated for HILBUF$ and no interrupts will be
initiated.

If ON HIL EXT is executed in a context with one mask value, and then
another ON HIL EXT is executed in a called context with a different mask
value, the former mask value is not restored on return to the calling context.
This behavior is similar to the time parameters of ON CYCLE and ON
DELAY.

0-50 OFF CDIAL - OUTPUT

ON INTR

ON INTR

Supported On UX WS DOS IN
Option Required I0
Keyboard Executable No
Programmable Yes
InanIF ... THEN... Yes

This statement defines an event-initiated branch to be taken when an interface

card generates an interrupt. The interrupts must be explicitly enabled with an
ENABLE INTR statement.

interf o N T
ON_WTR sell:c: 2z:e -j @_09 3 I:I;:I
L’@—D priority L
line
number
subprogram
name
Item Description Range
interface select |numeric expression, rounded to an 5, 7 through 31
code integer
priority numeric expression, rounded to an 1 through 15
integer; Default=1
line label name of a program line any valid name
line number integer constant identifying a 1 through 32 766
program line
subprogram name of a SUB or CSUB subprogram |any valid name
name

OFF CDIAL - OUTPUT 0-51

ON INTR

Example Statements

ON INTR 7 GOSUB 500
ON INTR Isc,4 CALL Service

Semantics

The occurrence of an interrupt performs an implicit DISABLE INTR for the
interface. An ENABLE INTR must be performed to re-enable the interface for
subsequent event-initiated branches. Another ON INTR is not required, nor
must the mask for ENABLE INTR be redefined.

The priority can be specified, with highest priority represented by 15. The
highest priority is less than the priority for ON ERROR, ON END, and ON
TIMEOUT. ON INTR can interrupt service routines of other event-initiated
branches which have user-definable priorities, if the ON INTR priority is higher
than the priority of the service routine (the current system priority). CALL
and GOSUB service routines get the priority specified in the ON ... statement
which set up the branch that invoked them. The system priority is not changed
when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON
INTR statement. CALL and GOSUB will return to the next line that would
have been executed if the INTR event had not been serviced, and the system
priority is restored to that which existed before the ON INTR branch was
taken. RECOVER forces the program to go directly to the specified line in
the context containing that ON INTR statement. When RECOVER forces a
change of context, the system priority is restored to that which existed in the
original (defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a
subprogram, unless the change in context is caused by a keyboard-originated
call. GOSUB and GOTO remain active when the context changes to a
subprogram, but the branch cannot be taken until the calling context is
restored.

ON INTR is disabled by DISABLE INTR or DISABLE and deactivated by
OFF INTR.

ON INTR and OFF INTR statements may be executed for any I/O card in the
machine. It is not necessary to have a driver for the card.

0-52 OFF CDIAL - OUTPUT

ON KBD

ON KBD

Supported On UX WS DOS
Option Required None
Keyboard Executable No
Programmable Yes

InanIF ... THEN... Yes

This statement defines and enables an event-initiated branch to be taken when
a key is pressed.

of \ a line

(on kep) _j > Gosus) [label
ALL priority

line

number

subprogram
name

Item Description Range

priority numeric expression, rounded to an 1 through 15
integer; Default = 1

line label name of a program line any valid name

line number integer constant identifying a 1 through 32 766
program line

subprogram name of a SUB or CSUB subprogram |any valid name

name

OFF CDIAL - OUTPUT ©0-53

ON KBD

Example Statements

ON KBD GOSUB 770
ON KBD,9 CALL Get_key

Semantics

Specifying the secondary keyword ALL causes all keys except (RESET), (SHIFT),
and to be trapped. When ALL is omitted, the untrapped keys are those
just mentioned, the softkeys, (PAUSE), (STOP), (CLR 1/0), (Break), (System), (User),
(Menu), and (Shift) (Menu). When not trapped, these keys perform their normal
functions. When the softkeys are trapped, ON KBD branching overrides any
ON KEY branching.

A keystroke triggers a keyboard interrupt and initiates a branch to the
specified routine when priority allows. If keystrokes occur while branching
is held off by priority, the keystrokes are stored in a special buffer. When
keystrokes are in the buffer, branching will occur when priority allows. This
buffer is read and cleared by the KBD$ function (see the KBD$ entry).

Knob rotation will generate ON KBD interrupts unless an ON KNOB
statement has been executed. Clockwise rotation of the knob produces
right-arrow keystrokes; counterclockwise rotation produces left-arrow keystokes.
If the key is pressed while turning the knob, then clockwise rotation of
the knob produces up-arrow keystrokes; counterclockwise rotation produces
down-arrow key strokes. Since one rotation of the knob is equivalent to 20
keystrokes (more with HP-HIL knobs), keyboard buffer overflow may occur if
the BASIC service routine does not process the keys rapidly.

Live keyboard, editing, and display control functions are suspended during ON
KBD. To restore a key’s normal function the keystroke may be OUTPUT to
select code 2.

The most recent ON KBD (or OFF KBD) definition overrides any previous
ON KBD definition. If the overriding ON KBD definition occurs in a context
different from the one in which the overridden ON KBD occurs, the overridden
ON KBD is restored when the calling context is restored.

The priority can be specified, with the highest priority represented by 15. The
highest user-defined priority (15) is less than the priority for ON ERROR,
ON END, and ON TIMEOUT (whose priorities are not user-definable). ON

0-54 OFF CDIAL - OUTPUT

ON KBD

KBD can interrupt service routines of other event-initiated branches with
user-definable priorities, if the ON KBD priority is higher than the priority of
the service routine (the current system priority). CALL and GOSUB service
routines get the priority specified in the ON ... statement which set up the
branch that invoked them. The system priority is not changed when a GOTO
branch is taken.

Any specified line label or line number must be in the same context as the ON
KBD statement. CALL and GOSUB will return to the next line that would
have been executed if the KBD event had not been serviced, and the system
priority is restored to that which existed before the ON KBD branch was
taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON KBD statement. When RECOVER forces a change
of context, the system priority is restored to that which existed in the original
(defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a
subprogram, unless the change in context is caused by a keyboard-originated
call. GOSUB and GOTO remain active when the context changes to a
subprogram, but the branch cannot be taken until the calling context is
restored.

ON KBD is disabled by DISABLE, deactivated by OFF KBD, and temporarily
deactivated when the program is executing LINPUT, INPUT, or ENTER
KBD.

You can use a relative pointing device, such as the HP 46060A mouse on an
HP-HIL interface, if the KBD BIN is present.

OFF CDIAL - OUTPUT 0-55

ON KEY

Supported On UX WS DOS IN
Option Required None

Keyboard Executable No
Programmable Yes

InanIF ... THEN ... Yes

This statement defines and enables an event-initiated branch to be taken when
a softkey is pressed.

key
ON KEY selector j A
LABEL prompt priority
~
line |
'(GOSUB> ML label | Y

GOTO

line
number

RECOVER
subprogram

0-56 OFF CDIAL - OUTPUT

ON KEY

Item Description Range
key selector numeric expression, rounded to an 0 through 23
integer
prompt string expression; Default = no label |—
priority numeric expression, rounded to an 1 through 15

integer; Default=1

line label name of a program line any valid name

line number integer constant identifying a 1 through 32 766
program line

subprogram name of a SUB or CSUB subprogram | any valid name

name

Example Statements

ON KEY 0 GOTO 150
ON KEY 5 LABEL "Print",3 GOSUB Report

Semantics

The most recently executed ON KEY (or OFF KEY) definition for a particular
softkey overrides any previous key definition. If the overriding ON KEY
definition occurs in a context different from the one in which the overridden
ON KEY occurs, the overridden ON KEY is restored when the calling context
is restored.

Labels appear in the two bottom lines of the CRT. The label of any key is
bound to the current ON KEY definition. Therefore, when a definition is
changed or restored, the label changes accordingly. If no label is specified, that
label field is blank. Refer to the HP BASIC 6.2 Programming Guide for a
discussion of these labels.

The priority can be specified, with the highest priority represented by 15. The
highest user-defined priority (15) is less than the priority for ON ERROR,

ON END, and ON TIMEOUT (whose priorities are not user-definable). On
KEY can interrupt service routines of other event-initiated branches with

OFF CDIAL - OUTPUT 0-57

ON KEY

user-definable priorities, if the ON KEY priority is higher than the priority of
the service routine (the current system priority). CALL and GOSUB service
routines get the priority specified in the ON ... statement which set up the
branch that invoked them. The system priority is not changed when a GOTO
branch is taken.

Any specified line label or line number must be in the same context as the ON
KEY statement. CALL and GOSUB will return to the next line that would
have been executed if the KEY event had not been serviced, and the system
priority is restored to that which existed before the ON KEY branch was
taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON KEY statement. When RECOVER forces a change
of context, the system priority is restored to that which existed in the original
(defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a
subprogram, unless the change in context is caused by a keyboard-originated
call. GOSUB and GOTO remain active when the context changes to a
subprogram, but the branch cannot be taken until the calling context is
restored.

ON KEY is disabled by DISABLE, deactivated by OFF KEY, and temporarily
deactivated when the program is paused or executing LINPUT, INPUT, or
ENTER KBD.

0-58 OFF CDIAL - OUTPUT

ON KNOB

ON KNOB

Supported On UX WS DOS
Option Required None
Keyboard Executable No
Programmable Yes

Inan IF ... THEN ... Yes

This statement defines and enables an event-initiated branch to be taken when
the knob is turned.

/_\ line

‘ON KNOB }—P seconds l J > GOSUB) [; label

priority
—’._’GOTO line
- number B
RECOVER

subprogrom
N C S il

X

Item Description Range

seconds numeric expression, rounded to the 0.01 through 2.55
nearest 0.01 second

priority numeric expression, rounded to an 1 through 15
integer; Default=1

line label name of a program line any valid name

line number integer constant identifying a 1 through 32 766
program line

subprogram name of a SUB or CSUB subprogram | any valid name

name

OFF CDIAL - OUTPUT 0-59

ON KNOB

Example Statements

ON KNOB .1 GOSUB 250
ON KNOB .333,Priority CALL Pulses

Semantics

Turning the knob (cursor wheel) generates pulses. After ON KNOB is
activated (or re-activated), the first pulse received starts a sampling interval.
The “seconds” parameter establishes the length of that sampling interval. At
the end of the sampling interval, the ON KNOB branch is taken if the net
number of pulses received during the interval is not zero and priority permits.
The KNOBX and KNOBY functions can be used to determine the number
of pulses received during the interval. If the ON KNOB branch is held off for
any reason, the KNOBX and KNOBY functions accumulate the pulses (see
KNOBX and KNOBY).

The priority can be specified, with the highest priority represented by 15. The
highest user-defined priority (15) is less than the priority for ON ERROR,

ON END, and ON TIMEOUT (whose priorities are not user-definable). ON
KNOB can interrupt service routines of other event-initiated branches with
user-definable priorities, if the ON KNOB priority is higher than the priority of
the service routine (the current system priority). CALL and GOSUB service
routines get the priority specified in the ON ... statement which set up the
branch that invoked them. The system priority is not changed when a GOTO
branch is taken.

Any specified line label or line number must be in the same context as the ON
KNOB statement. CALL and GOSUB will return to the next line that would
have been executed if the KNOB event had not been serviced, and the system
priority is restored to that which existed before the ON KNOB branch was
taken. RECOVER forces the program to go directly to the specified line in
the context containing that ON KNOB statement. When RECOVER forces a
change of context, the system priority is restored to that which existed in the
original (defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a
subprogram, unless the change in context is caused by a keyboard-originated
call. GOSUB and GOTO remain active when the context changes to a

0-60 OFF CDIAL - OUTPUT

ON KNOB

subprogram, but the branch cannot be taken until the calling context is
restored.

The most recent ON KNOB (or OFF KNOB) definition overrides any previous
ON KNOB definition. If the overriding ON KNOB definition occurs in a
context different from the one in which the overridden ON KNOB occurs, the
overridden ON KNOB is restored when the calling context is restored, but the
“seconds” parameter of the more recent ON KNOB remains in effect. (See
below for restrictions.)

ON KNORB is disabled by DISABLE and deactivated by OFF KNOB.

You can use an HP-HIL relative pointing device, such as a mouse or knob, if
the KBD binary is loaded.

The ON KNOB statement behaves like the ON CDIAL and ON HIL EXT
statements:

a When ON KNOB is executed in a SUB context and program control exits
that context, the pulses from control dials will continue to be accumulated
(and can be read by KNOBX and KNOBY). No interrupts occur if there is
no ON KNOB active in the current context.

m Conversely, if an ON KNOB has been executed in a context and then OFF
KNOB is executed in a called context, then upon returning to the calling
context the pulses will be routed to the BASIC system (instead of the
KNOBX and KNOBY functions) and no interrupts will be initiated.

OFF CDIAL - OUTPUT 0-61

ON SIGNAL

Supported On UX WS DOS
Option Required I0
Keyboard Executable No
Programmable Yes
Inan IF ... THEN ... Yes

This statement defines and enables an event-initiated branch to be taken when
a SIGNAL statement with the same signal selector is executed.

sleosun)

signal li |
ON_SIGNAL selector J >\G0sus) 3 Ic"g;
iorit;
number
RECOVER
b
oas)] e
Item Description Range
signal selector |numeric expression, rounded to an 0 through 15
integer
priority numeric expression, rounded to an 1 through 15
integer; Default = 1
line label name of a program line any valid name
line number integer constant identifying a 1 through 32 766
program line
subprogram name of a SUB or CSUB subprogram | any valid name
name

0-62 OFF CDIAL - OUTPUT

ON SIGNAL

Example Statements

ON SIGNAL 5 GOSUB 550
ON SIGNAL Bailout,15 RECOVER Bail_here

Semantics

The most recent ON SIGNAL (or OFF SIGNAL) definition for a given signal
selector overrides any previous ON SIGNAL definition. If the overriding ON
SIGNAL definition occurs in a context different from the one in which the
overridden ON SIGNAL occurs, the overridden ON SIGNAL is restored when
the calling context is restored.

The priority can be specified, with the highest priority represented by 15. The
highest user-defined priority (15) is less than the priority for ON ERROR,

ON END, and ON TIMEOUT (whose priorities are not user-definable). ON
SIGNAL can interrupt service routines of other event-initiated branches with
user-definable priorities, if the ON SIGNAL priority is higher than the priority
of the service routine (the current system priority). CALL and GOSUB service
routines get the priority specified in the ON ... statement which set up the
branch that invoked them. The system priority is not changed when a GOTO
branch is taken.

Any specified line label or line number must be in the same context as the ON
SIGNAL statement. CALL and GOSUB will return to the next line that would
have been executed if the SIGNAL event had not been serviced, and the system
priority is restored to that which existed before the ON SIGNAL branch was
taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON SIGNAL statement. When RECOVER forces a
change of context, the system priority is restored to that which existed in the
original (defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a
subprogram, unless the change in context is caused by a keyboard-originated
call. GOSUB and GOTO remain active when the context changes to a
subprogram, but the branch cannot be taken until the calling context is
restored.

ON SIGNAL is disabled by DISABLE and deactivated by OFF SIGNAL.

OFF CDIAL - OUTPUT 0-63

ON TIME

Supported on UX WS DOS
Option Required CLOCK
Keyboard Executable No
Programmable Yes

InanIF ... THEN ... Yes

This statement defines and enables an event-initiated branch to be taken when
the real-time clock reaches a specified time.

pr— .
< ON TIME)—— seconds J > GOsSuB) s lobel ™
priority =
line L
number

subprogram
nome

Item Description Range

seconds numeric expression, rounded to the 0 through 86 399.99
nearest 0.01 second for BASIC/WS
and 0.02 second for BASIC/UX

priority numeric expression, rounded to an 1 through 15
integer; Default =1

line label name of a program line any valid name

line number integer constant identifying a 1 through 32 766
program line

subprogram name of a SUB or CSUB subprogram | any valid name

name

0-64 OFF CDIAL - OUTPUT

ON TIME

Example Statements

ON TIME 3600#8 GOTO Work
ON TIME (TIMEDATE+3600) MOD 86400 CALL One_hour

Semantics

The most recent ON TIME (or OFF TIME) definition overrides any previous
ON TIME definition. If the overriding ON TIME definition occurs in a

context different from the one in which the overridden ON TIME occurs,

the overridden ON TIME is restored when the calling context is restored,

but the time value of the more recent ON TIME remains in effect. For more
information on the behavior of ON TIME in different contexts, read the section
“Branching Restrictions” in the chapter “Using the Clock and Timers” in the
HP BASIC 6.2 Programming Guide.

The priority can be specified, with the highest priority represented by 15. The
highest user-defined priority (15) is less than the priority for ON ERROR,

ON END, and ON TIMEOUT (whose priorities are not user-definable). ON
TIME can interrupt service routines of other event-initiated branches with
user-definable priorities, if the ON TIME priority is higher than the priority of
the service routine (the current system priority). CALL and GOSUB service
routines get the priority specified in the ON ... statement which set up the
branch that invoked them. The system priority is not changed when a GOTO
branch is taken.

CALL and GOSUB will return to the next line that would have been executed
if the TIME event had not been serviced, and the system priority is restored to
that which existed before the ON TIME branch was taken. RECOVER forces
the program to go directly to the specified line in the context containing that
ON TIME statement. When RECOVER forces a change of context, the system
priority is restored to that which existed in the original (defining) context at
the time that context was exited.

Any specified line label or line number must be in the same context as

the ON TIME statement. CALL and RECOVER remain active when the
context changes to a subprogram, unless the change in context is caused by a
keyboard-originated call. GOSUB and GOTO remain active when the context

changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

OFF CDIAL - OUTPUT 0-65

ON TIME

Unlike ON CYCLE, an ON TIME statement requires an exact match between
the clock and the time specified in the defining statement. If the event was
missed and not logged, re-executing the ON TIME statement will not result in
a branch being taken.

ON TIME is disabled by DISABLE and deactivated by OFF TIME.

BASIC/UX Specifics

Resolution is 20 milliseconds. A new child process of BASIC/UX is started for
the timer.

0-66 OFF CDIAL - OUTPUT

ON TIMEOUT

ON TIMEOUT

Supported On UX WS DOS™ IN
Option Required None

Keyboard Executable No
Programmable Yes

InanIF ... THEN ... Yes

This statement defines and enables an event-initiated branch to be taken when
an I/O timeout occurs on the specified interface.

<ON “MEOUT)—P‘ se::ti:ﬂ:z;e > second Y L |g’;:| y >
-
I'IU:‘:EGF B
subprogram
name
Item Description Range
interface select |numeric expression, rounded to an 7 through 31
code integer
seconds numeric expression, rounded to the [0.001 through 32.767
nearest 0.001 second for BASIC/WS
and 0.020 second for BASIC/UX
line label name of a program line any valid name
line number integer constant identifying a 1 through 32 766
program line
subprogram name of a SUB or CSUB subprogram | any valid name
name

OFF CDIAL - OUTPUT 0-67

ON TIMEOUT

Example Statements

ON TIMEOUT 7,2.544 GOTO 770
ON TIMEOUT Printer,Time GOSUB Message

Semantics

There is no default system timeout. If ON TIMEOUT is not in effect for an
interface, a device can cause the program to wait forever.

The specified branch occurs if an input or output is active on the interface
and the interface has not responded within the number of seconds specified.
The computer waits at least the specified time before generating an interrupt;
however, it may wait up to an additional 25% of the specified time.

Timeouts apply to ENTER and OUTPUT statements, and operations
involving the PRINTER IS, PRINTALL IS, and PLOTTER IS devices when
they are external. Timeouts do not apply to CONTROL, STATUS, READIO,
WRITEIQ, CRT alpha or graphics 1/Q, real time clock I/0, keyboard 1/0, or
mass storage operations.

The priority associated with ON TIMEQUT is higher than priority 15. ON
END and ON ERROR have the same priority as ON TIMEOUT, and can
interrupt an ON TIMEOQUT service routine.

Any specified line label or line number must be in the same context as the ON
TIMEQUT statement. CALL and GOSUB will return to the line immediately
following the one during which the timeout occurred, and the system priority
is restored to that which existed before the ON TIMEOUT branch was taken.
RECOVER forces the program to go directly to the specified line in the
context containing that ON TIMEQUT statement. When RECOVER forces a
change of context, the system priority is restored to that which existed in the
original (defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a
subprogram, unless the change in context is caused by a keyboard-originated
call. GOSUB and GOTO do not remain active when the context changes to
a subprogram. The TIMEOUT event does remain active. Unlike other ON
events, TIMEOQUTSs are never logged, they always cause an immediate action.
If a TIMEOUT occurs when the ON TIMEQUT branch cannot be taken, an
error 168 is generated. This can be trapped with ON ERROR. The functions

0-68 OFF CDIAL - OUTPUT

ON TIMEOUT

ERRN and ERRDs are set only when the error is generated. They are not set
when the ON TIMEOUT branch can be taken.

ON TIMEOUT is deactivated by OFF TIMEOUT. DISABLE does not affect
ON TIMEOUT.

ON TIMEOUT with SRM Interfaces

With SRM, ON TIMEOUT defines and enables a branch resulting from an I/O
timeout on the specified SRM interface. Although ON TIMEOUT is supported
on SRM, its use should be avoided because the asynchronous nature of the
SRM system does not allow predictable results.

A TIMEOUT occurring during statements such as RE-SAVE and RE-STORE
may leave a temporary file on the mass storage device. The file’s name is a
10-character identifier (the first character is an alpha character, the rest are
digits) derived from the value of the workstation’s real-time clock when the
TIMEOUT occurred. You may wish to check the contents of any such file
before purging.

BASIC/UX Specifics

If the interface is an MUX, the interface select code must be a device selector
with channel number included. For example,

m ON TIMEOUT 16 gives an error.
m ON TIMEOUT 1600 works.

Note that you cannot set up an ON TIMEOUT for an HP-IB or GPIO
interface when using burst I/0 mode.

Resolution is limited to 20 milliseconds. Accuracy depends on system load and
real time priority, but is generally 40 milliseconds.

BASIC/DOS Specifics

Delay time for select codes 9, 15, 19, 23, 24, 25, and 26 for the measurement
coprocessor is device dependent and is usually longer than for Series 200/300.
Also, the delay may differ between the HP 82300 and HP 82324 coprocessors.

OFF CDIAL - OUTPUT 0-69

OPTION BASE

Supported On UX WS DOS
Option Required None
Keyboard Executable No
Programmable Yes

Inan IF ... THEN ... No

This statement specifies the default lower bound of arrays.

(opmon Base ﬁ
()

Example Statements

OPTION BASE O
OPTION BASE 1

Semantics

This statement can occur only once in each context. If used, OPTION BASE
must precede any explicit variable declarations in a context. Since arrays are
passed to subprograms by reference, they maintain their original lower bound,
even if the new context has a different OPTION BASE. Any context that does
not contain an OPTION BASE statement assumes default lower bounds of
zero.

The OPTION BASE value is determined at prerun, and is used with all
arrays declared without explicit lower bounds in COM, DIM, INTEGER, and
REAL statements as well as with all implicitly dimensioned arrays. OPTION

BASE is also used at runtime for any arrays declared without lower bounds in
ALLOCATE.

0-70 OFF CDIAL - OUTPUT

OPTIONAL

OPTIONAL
See the DEF FN and SUB statements.

OFF CDIAL - OUTPUT O-71

OR

Supported On UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This operator returns a 1 or a 0 based on the logical inclusive-or of the
arguments.

numeric OR numeric
expression expression

Example Statements

X=Y OR Z
IF File_type OR Device THEN Process

Semantics

An expression which evaluates to a non-zero value is treated as a logical 1. An
expression must evaluate to zero to be treated as a logical 0.

The truth table is:

A|B|AORB
00 0
0]1 1
110 1
111 1

0-72 OFF CDIAL - OUTPUT

ouT

ouT

See the SHIFT IN ... OUT option of ASSIGN, DUMP DEVICE IS,
PRINTALL IS, and PRINTER IS statements.

OFF CDIAL - OUTPUT O0-73

OUTPUT

Supported on UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes

Inan IF ... THEN ... Yes

This statement outputs items to the specified destination.

0-74 OFF CDIAL - OUTPUT

OUTPUT

|
X

OUTPUT destination
image . .Iabel
specifier : items

Expanded diagram: destination image items
" A
r Y f K
1/0 path)
™Y @ name ¥ [S
R record > image line
number USING label
dfvitie > image line
selector number
destination ¥ s \ image
string name N2/ specifier
subscript]

©

string
expression

string
Iiterul< arrgy name $ (*)

items

numeric trailing punctuation
expression not allowed with USING

> numeric (*)

array name
~(@m)-
literal form of image specifier
N\

— ..

specifier list

repeat image
factor specifier list

OFF CDIAL - OUTPUT 0-75

OUTPUT

Item

Description

Range

1/0O path name

record number

device selector

destination
string name

subscript

image line
number

image line label

image specifier

string array
name

numeric array
name

image specifier
list

repeat factor

literal

name assigned to a device, devices,
mass storage file, buffer, or pipe

numeric expression, rounded to an
integer

numeric expression, rounded to an
integer

name of a string variable

numeric expression, rounded to an
integer

integer constant identifying an
IMAGE statement

name identifying an IMAGE
statement

string expression

name of a string array

name of a numeric array

literal

integer constant

string constant composed of
characters from the keyboard,
including those generated using the
ANY CHAR key

0-76 OFF CDIAL - OUTPUT

any valid name

1 through 2311

(see Glossary)

any valid name

—32 767 through +32 767
(see “array” in Glossary)
1 through 32 766

any valid name

(see drawing)

any valid name
any valid name
(see next drawing)

1 through 32 767

quote mark not allowed

OUTPUT

imaoge specifier list

Radix specifier cannot
be used without 4
digit epecifier

1
[}
J

1
U

ftems within daoshed fnes

Lo
")
7N

OFF CDIAL - OUTPUT ©O-77

OUTPUT

Example Statements

QUTPUT 701 ; Number, String$;
QUTPUT OFile;Array(#*),END

OUTPUT ORand,5 USING Fmti:Item(5)
OUTPUT 12 USING "#,6A";B$[2:6]
OUTPUT OPrinter;:Rank;Id;Name$

Semantics

Standard Numeric Format

The standard numeric format depends on the value of the number being
displayed. If the absolute value of the number is greater than or equal to 1E-4
and less than 1E+86, it is rounded to 12 digits and displayed in floating point
notation. If it is not within these limits, it is displayed in scientific notation.
The standard numeric format is used unless USING is selected, and may be
specified by using K in an image specifier.

COMPLEX numbers are treated like two REAL numbers. The separator
following the item is also used as the separator between the real and imaginary
parts.

Arrays

Entire arrays may be output by using the asterisk specifier. Each element in
an array is treated as an item by the OUTPUT statement, as if the items were
listed separately, separated by the punctuation following the array specifier. If
no punctation follows the array specifier, a comma is assumed. The array is
output in row major order (rightmost subscript varies fastest). COMPLEX
arrays are treated as if they were REAL arrays with twice as many elements.

Files as Destination

If an I/O path has been assigned to a file, the file may be written to with
OUTPUT statements. The file must be an ASCII, BDAT, DFS, or HP-UX
file. The attributes specified in the ASSIGN statement are used if the file is a
BDAT, DFS, or HP-UX file (ASCII files are always assigned a special case of
the FORMAT ON attribute).

0-78 OFF CDIAL - OUTPUT

OUTPUT

Serial access is available for ASCII, BDAT, DFS, and HP-UX files. Random
access is available for BDAT, DFS, and HP-UX files. The end-of-file marker
(EOF) and the file pointer are important to both serial and random access.
The file pointer is set to the beginning of the file when the file is opened by an
ASSIGN. It is updated by OUTPUT operations so that it always points to the
next byte to be written.

The EOF pointer is read from the media when the file is opened by an
ASSIGN. On a newly created file, EOF is set to the beginning of the file. After
each OUTPUT operation, the EOF pointer in the I/O path table is updated to
the maximum of the file pointer or the previous EOF value. The EOF pointer
on the volume is updated at the following times:

m When the current end-of-file changes.
m When END is specified in an OUTPUT statement directed to the file.

m When a CONTROL statement directed to the I/O path name changes the
position of the EQF.

Random access uses the record number parameter to write items to a specific
location in a file. The OUTPUT begins at the start of the specified record
and must fit into one record. The record specified cannot be beyond the
record containing the EQF, if EOF is at the first byte of a record. The record
specified can be one record beyond the record containing the EOF, if EOF is
not at the first byte of a record. Random access is always allowed to records
preceding the EOF record. If you wish to write randomly to a newly created
file, either use a CONTROL statement to position the EQF in the last record,
or write some “dummy” data into every record.

When data is written to an ASCII file, each item is sent as an ASCII
representation with a 2-byte length header. You cannot use OUTPUT with
USING to ASCII files; see the following section, “OUTPUT with USING” for
details.

Data sent to a BDAT, DFS, or HP-UX file is sent in internal format if
FORMAT OFF is currently assigned to the I/O path (this is the default
FORMAT attribute for these file types), and is sent as ASCII characters if
FORMAT ON has been explicitly assigned. (See “Devices as Destination” for a
description of these formats.)

OFF CDIAL - OUTPUT 0©-79

OUTPUT

QUTPUT to DFS or HFS Files

You must have W (write) permission on a DFS or HFS file, as well as X
(search) permission on all superior directories, to output data to the file. If you
do not have these permissions, error 183 is reported.

DFS and HFS files are extensible. If the data output to the file with this
statement would overflow the file’s space allocation, the file is extended. The
BASIC system allocates the additional space needed to store the data being
output, provided the disk contains enough unused storage space.

OUTPUT to SRM Files

You must have W (write) access capability on an SRM file, as well as R

(read) capability on all superior directories, to output data to the file. If this
capability is not public or if a password protecting this capability was not used
at the time the file was assigned an I/O path name (with ASSIGN), error 62 is
reported.

SRM files are extensible. If the data output to the file with this statement
would overflow the file’s space allocation, the file is extended. The BASIC
system allocates an additional “extent size” amount of space, provided the disk
contains enough unused storage space; see one of the CREATE statements for a
description of “extent size”.

Devices as Destination

An I/O path or a device selector may be used to direct OUTPUT to a
device. If a device selector is used, the default system attributes are used (see
ASSIGN). If an I/O path is used, the ASSIGN statement used to associate
the I/O path with the device also determines the attributes used. If multiple
listeners were specified in the ASSIGN, the OUTPUT is directed to all of
them. If FORMAT ON is the current attribute, the items are sent in ASCII.
Items followed by a semicolon are sent with nothing following them. Numeric
items followed by a comma are sent with a comma following them. String
items followed by a comma are sent with a CR/LF following them. If the last
item in the OUTPUT statement has no punctuation following it, the current
end-of-line (EOL) sequence is sent after it. Trailing punctuation eliminates the
automatic EOL.

0-80 OFF CDIAL - OUTPUT

OUTPUT

If FORMAT OFF is the current attribute, items are sent to the device in
internal format. Punctuation following items has no effect on the OUTPUT.
Two bytes are sent for each INTEGER, eight bytes for each REAL, and
sixteen bytes for each COMPLEX value. Each string output consists of a four
byte header containing the length of the string, followed by the actual string
characters. If the number of characters is odd, an additional byte containing a
blank is sent after the last character.

CRT as Destination

If the device selector is 1, the OUTPUT is directed to the CRT. OUTPUT

1 and PRINT differ in their treatment of separators and print fields. The
OUTPUT format is described under “Devices as Destination.” See the PRINT
keyword for a discussion of that format. OUTPUT 1 USING and PRINT
USING to the CRT produce similar actions.

Keyboard as Destination

Outputs to device selector 2 may be used to simulate keystrokes. ASCII
characters can be sent directly (i.e. “hello”). Non-ASCII keys (such as
(EXECUTE)) are simulated by a two-byte sequence. The first byte is CHR$(255),
and the second byte can be found in the “Second Byte of Non-ASCII Key
Sequences” table in the back of this book.

When simulating keystrokes, unwanted characters (such as the EOL sequence)
can be avoided with an image specifier (such as “#,B” or “4#,K”). See
“OUTPUT with USING.”

Strings as Destination

If a string is used for the destination, the string is treated similarly to a file.
However, there is no file pointer; each QUTPUT begins at the beginning of the
string, and writes serially within the string.

OFF CDIAL - OUTPUT 0-81

OUTPUT

Buffers as Destination (Requires TRANS)

When the destination is an I/O path name assigned to a buffer, data is placed
in the buffer beginning at the location indicated by the buffer’s fill pointer. As
data is sent, the current number-of-bytes

register and fill pointer are adjusted accordingly. Encountering the empty
pointer (buffer full) produces an error unless a continuous outbound
TRANSFER is emptying the buffer. In this case, the OUTPUT will wait until
there is more room in the buffer for data.

If an I/O path is currently being used in an inbound TRANSFER, and an
OUTPUT statement uses it as a destination, execution of the OUTPUT

is deferred until the completion of the TRANSFER. An OUTPUT can be
concurrent with an outbound TRANSFER only if the destination is the 1/0O
path assigned to the buffer.

An OUTPUT to a string variable that is also a buffer will not update the
buffer’s pointers and will probably corrupt the data in the buffer.

Pipes as Destination (BASIC/UX and BASIC/WS on SRM/UX)

If an I/O path has been assigned to a pipe, the pipe may be written to with
OUTPUT statements. The attributes specified in the ASSIGN statement are
used. Data is sent in internal format if FORMAT OFF is currently assigned
to the I/O path, and is sent as ASCII characters if FORMAT ON has been
explicitly assigned (this is the default FORMAT attribute for pipes). (See
“Devices as Destination” for a description of these formats.)

Using END with Devices

The secondary keyword END may be specified following the last item in an
OUTPUT statement. The result, when USING is not specified, is to suppress
the EOL (End-of-Line) sequence that would otherwise be output after the last
byte of the last item. If a comma is used to separate the last item from the
END keyword, the corresponding item terminator is output (CR/LF for string
items or comma for numeric items).

With HP-IB interfaces, END specifies an EOI signal to be sent with the last
data byte of the last item. However, if no data is sent from the last output

0-82 OFF CDIAL - OUTPUT

OUTPUT

item, EOI is not sent. With Data Communications interfaces, END specifies an
end-of-data indication to be sent with the last byte of the last output item.

OUTPUT With USING

When the computer executes an OUTPUT USING statement, it reads the
image specifier, acting on each field specifier (field specifiers are separated from
each other by commas) as it is encountered. If nothing is required from the
output items, the field specifier is acted upon without accessing the output list.
When the field specifier requires characters, it accesses the next item in the
output list, using the entire item. Each element in an array is considered a
separate item.

The processing of image specifiers stops when there is no matching display item
(and the specifier requires a display item). If the image specifiers are exhausted
before the display items, they are reused, starting at the beginning.

COMPLEX values require two REAL image specifiers (i.e. each COMPLEX
value is treated like two REAL values).

If a numeric item requires more decimal places to the left of the decimal point
than are provided by the field specifier, an error is generated. A minus sign
takes a digit place if M or S is not used, and can generate unexpected overflows
of the image field. If the number contains more digits to the right of the
decimal point than specified, it is rounded to fit the specifier.

If a string is longer than the field specifier, it is truncated, and the right-most
characters are lost. If it is shorter than the specifier, trailing blanks are used to
fill out the field.

OUTPUT with USING cannot be used with output to ASCII files.
Instead, direct the OUTPUT with USING to a string variable, and then
OUTPUT this variable to the file. For instance, OUTPUT String$ USING
"5A,X,6D.D";Chars$,Number and then OUTPUT @File;String$.

Effects of the image specifiers on the OUTPUT statement are shown in the
following table:

OFF CDIAL - OUTPUT 0-83

OUTPUT

Image
Specifier Meaning

K Compact field. Outputs a number or string in standard form with no

leading or trailing blanks.
-K Same as K.

H Similar to K, except the number is output using the European number

format (comma radix). (Requires I0)
—H |[Same as H. (Requires 10)

S Outputs the number’s sign (+ or —).

M Outputs the number’s sign if negative, a blank if positive.

D Outputs one digit character. A leading zero is replaced by a blank. If
the number is negative and no sign image is specified, the minus sign will
occupy a leading digit position. If a sign is output, it will “float” to the
left of the left-most digit.

V/ Same as D, except that leading zeros are output.

* Like D, except that asterisks are output instead of leading zeros. (Requires
10)

. QOutputs a decimal-point radix indicator.
R Outputs a comma radix indicator (European radix). (Requires I10)
E QOutputs an E, a sign, and a two-digit exponent.
ESZ |Outputs an E, a sign, and a one-digit exponent.
ESZZ |Same as E.
ESZZZ |Outputs an E, a sign, and a three-digit exponent.

A QOutputs a string character. Trailing blanks are output if the number
of characters specified is greater than the number available in the
corresponding string. If the image specifier is exhausted before the
corresponding string, the remaining characters are ignored. Use AA or 24
for two-byte globalization characters.

X Outputs a blank.

0-84 OFF CDIAL - OUTPUT

OUTPUT

Image
Specifier

Meaning

literal

%

Outputs the characters contained in the literal.

Outputs the character represented by one byte of data. This is similar to
the CHRS$ function. The number is rounded to an INTEGER and the
least-significant byte is sent. If the number is greater than 32 767, then
255 is used; if the number is less than —32 768, then 0 is used.

Outputs a 16-bit word as a two’s-complement integer. The corresponding
numeric item is rounded to an INTEGER. If it is greater than 32 767, then
32 767 is sent; if it is less than —32 768, then —32 768 is sent. If either

an I/O path name with the BYTE attribute or a device selector is used

to access an 8-bit interface, two bytes will be output; the most-significant
byte is sent first. If an I/O path name with the BYTE attribute is used to
access a 16-bit interface, the BYTE attribute is overridden, and one word
is output in a single operation. If an I/O path name with the WORD
attribute is used to access a 16-bit interface, a null pad byte is output
whenever necessary to achieve alignment on a word boundary. If the
destination is a BDAT file, string variable, or buffer, the BYTE or WORD
attribute is ignored and all data are sent as bytes; however, pad byte(s)
will be output when necessary to achieve alignment on a word boundary.
The pad character may be changed by using the CONVERT attribute; see
the ASSIGN statement for further information.

Like W, except that no pad bytes are output to achieve word alignment. If
an I/O path with the BYTE attribute is used to access a 16-bit interface,
the BYTE attribute is not overridden (as with the W specifier above).
(Requires 10)

Suppresses the automatic output of the EOL (End-Of-Line) sequence
following the last output item.

Ignored in OUTPUT images.

Changes the automatic EOL sequence that normally follows the last
output item to a single carriage-return. (Requires I0)

Changes the automatic EOL sequence that normally follows the last
output item to a single line-feed. (Requires 10)

Outputs a carriage-return and a line-feed.

OFF CDIAL - OUTPUT 0-85

OuUTPUT

Image

Specifier Meaning
L Outputs the current end-of-line (EOL) sequence. The default EOL

characters are CR and LF; see ASSIGN for information on re-defining the
EOL sequence. If the destination is an I/O path name with the WORD
attribute, a pad byte may be sent after the EOL characters to achieve
word alignment.
@ Outputs a form-feed.

Note Some localized versions of BASIC, such as Japanese localized
BASIC, support two-byte characters. When using this localized
language remember that the IMAGE, ENTER USING,
OUTPUT USING, and PRINT USING statements define a
one-byte ASCII character image with A. Use the image AA to
designate a two-byte character.

For a general discussion of globalization and localization, refer
to the HP BASIC 6.2 Porting and Globalization manual. For
LANGUAGE specific detalis, refer to Using LanguageX With
HP BASIC, where LanguageX is your local language.

END with OUTPUT ... USING

Using the optional secondary keyword END in an OUTPUT ... USING
statement produces results which differ from those in an QUTPUT statement
without USING. Instead of always suppressing the EQL sequence, the END
keyword only suppresses the EOL sequence when no data is output from

the last output item. Thus, the # image specifier generally controls the
suppression of the otherwise automatic EOL sequence.

With HP-IB interfaces, END specifies an EOI signal to be sent with the

last byte output. However, no EOI is sent if no data is sent from the last
output item or the EOL sequence is suppressed. With Data Communications
interfaces, END specifies an end-of-data indication to be sent at the same times
an EOI would be sent on HP-IB interfaces.

0-86 OFF CDIAL - OUTPUT

OUTPUT

BASIC/UX Specifics

You can specify a window number or unnamed pipe as the output destination
to OUTPUT.

OFF CDIAL - OUTPUT 0-87

PARITY - PURGE

PARITY - PURGE P-1

P PARITY
See the ASSIGN statement.

P-2 PARITY - PURGE

PASS CONTROL

PASS CONTROL

Supported on UX WS DOS IN
Option Required 10

Keyboard Executable Yes
Programmable Yes

In an IF ... THEN ... Yes

This statement is used to pass the capability of Active Controller to a specified

HP-IB device.
((pass controL OK 20,,‘:‘;"3—4
device

selector

Item Description | Range
I/0O path name |name assigned to an HP-IB device any valid name
device selector | numeric expression, rounded to an must contain primary
integer address (see Glossary)

Example Statements

PASS CONTROL 719
PASS CONTROL @Controller_19

Semantics

Executing this statement first addresses the specified device to talk and then
sends the Take Control message (TCT), after which Attention is placed in the
False state. The computer then assumes the role of a bus device (a non-active
controller).

PARITY - PURGE P-3

PASS CONTROL

The computer must currently be the active controller to execute this
statement, and primary addressing (but not multiple listeners) must be
specified. The controller may be either a System or Non-system controller.

Summary of Bus Actions

System Controller

Not System Controller

Interface Select

Primary Address

Interface Select

Primary Address

Code Only Specified Code Only Specified
Active Error ATN Error ATN
Controller UNL UNL
TAD TAD
TCT TCT
ATN ATN
Not Active Error Error Error Error
Controller

BASIC/UX Specifics

You cannot pass control on an interface containing a swap device or mounted

file system.

BASIC/DOS Specifics

PASS CONTROL is fully supported for the measurement coprocessor’s built-in
HP-IB. PASS CONTROL is not supported for PC plug-in HP-IB cards such as
the HP 82335A (select code 24 or 25).

P-4 PARITY - PURGE

PAUSE

PAUSE

Supported On UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

This statement suspends program execution. (Also see TRACE PAUSE.)

Semantics

PAUSE suspends program execution before the next line is executed, until the
key is pressed or CONT is executed. If the program is modified
while paused, RUN must be used to restart program execution.

When program execution resumes, the computer attempts to service any ON
INTR events that occurred while the program was paused. ON END, ON
ERROR, or ON TIMEOUT events generate errors if they occur while the
program is paused. ON KEY and ON KNOB events are ignored while the
program is paused.

Pressing the (PAUSE) (or (Stop) on an ITF keyboard) key, or typing PAUSE and
pressing (EXECUTE), (ENTER) or (Return) will suspend program execution at the
end of the line currently being executed.

PARITY - PURGE P-5

PDIR

Supported On UX WS DOS
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
InanIF... THEN... Yes

This statement specifies the angle with which IPLOT, RPLOT, POLYGON,
POLYLINE, and RECTANGLE output are rotated.

GLY o B g

Item I Description I Range

angle numeric expression in current units of

angle; Default = 0

Example Statements
PDIR 20

PDIR ACS(Side)

Semantics

The rotation is about the local origin of the RPLOT, POLYGON, POLYLINE
or RECTANGLE.

The angle is interpreted as counter-clockwise rotation from the X-axis.

P-6 PARITY - PURGE

PEN

PEN

Supported On UX WS DOS IN
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

This statement selects a pen value to be used for all subsequent lines. (For
information about PEN as a secondary keyword, see the AREA statement.)

pen
@)—. selector

Item l Description

| Range

pen selector numeric expression, rounded to an

integer

Example Statements

PEN 4
PEN Select
PEN Pen_number(I,J)

Semantics

~32 768 through +32 767
(device dependent)

For devices which support more than one line color (color or gray scale CRT),
or physical pen (external hard copy plotters), this statement specifies the line
color or physical pen to be used for all subsequent lines until the execution of
another PEN statement or until the execution of a PLOT, IPLOT, RPLOT, or
SYMBOL statement with an array argument which changes the pen color (see
Operation Selector 3 of these statements). The sign of the pen selectors affects

the drawing mode.

PARITY - PURGE P-7

PEN

In color map mode, specifying PEN 14 actually means “write a 14 into the
frame buffer.” The value of the frame buffer specifies the entry in the color
map to be used, which in turn describes the actual color to be used.

The PEN statement can also be used to specify that the current drawing

mode is to erase lines on all devices which support such an operation. This is
specified with a negative pen number. An alternate mode of operation which
allows non-dominant and complementing drawing may be accessed through

the GESCAPE function. “Complement” means to change the state of pixels;
that is, to draw lines where there are none, and to erase where lines already
exist. When the PEN statement is executed, the pen used is mapped into the
appropriate range, retaining the sign. For example, if you specify pen +8 on a
device whose pens range from —7 through 7, it would actually use pen +1. The
formulae used are as follows:

For monochromatic displays:

If pen selector > 0 then use PEN 1 (draw lines)
If pen selector = 0 then use PEN 0 (complement lines)
If pen selector < 0 then use PEN —~1 (erase lines)

For color displays not in COLOR MAP mode and the HP 98627A:

If pen selector > 0 then use PEN (pen selector — 1) MOD 7 + 1
If pen selector = 0 then use PEN 0 (complement)
If pen selector < 0 then use PEN — ((ABS(pen selector) — 1) MOD 7 + 1)

For color or gray scale displays in COLOR MAP mode:

If pen selector>0 then use PEN (pen selector — 1) MOD MaxPen + 1

If pen selector=0 then use PEN 0

If pen selector<0 then use PEN — ((ABS(pen selector) — 1) MOD MaxPen
+1)

Where MaxPen is the highest pen number (the lowest is 0). Four planes:
MaxPen=15; six planes: MaxPen=63, eight planes: MaxPen=255.

For an HPGL Plotter:
Use PEN pen selector

On an HPGL plotter, no checking is done to determine if the requested pen
actually exists. Pen 0 puts away any pen if the plotter supports such an
operation.

P-8 PARITY - PURGE

PEN

Non-Color Map Mode

The value written into the frame buffer depends not only on what pen is being
used, but whether or not the computer is in color map mode. The colors or
gray levels for the default (non-color map) mode are given because the color
map cannot be changed in this mode.

The meanings of the different pen values are shown in the table below. The
pen value can cause either a 1 (draw), a 0 (erase), no change, or invert the
value of each location in the frame buffer.

Non-Color Map Mode

Plane 1 Plane 2 Plane 3

Pen | Color (Red) (Green) (Blue)
1 | White 1 1 1
2 |Red 1 0 0
3 | Yellow 1 1 0
4 |Green 0 1 0
5 |Cyan 0 1 1
6 |Blue 0 0 1
7 |Magenta 1 0 1

For a gray scale monitor, pens 0 through 7 map to the following luminosities:

Pen Luminosity
0
1

.30

.89

.59

.70

11

41

~N T AN —=O

PARITY - PURGE P-9

PEN

Since hue and saturation are not involved in gray scale mapping, the luminosity
values of pens 0 through 7 are simply repeated 32 times for pens 8 through
255.

Drawing with the pen numbers indicated in the above table results in the
frame buffer planes being set to the indicated values. Drawing with the
negatives of the pen numbers while in normal pen mode causes the bits to be
cleared where there are 1s in the table. Drawing with the negatives of the pen
numbers while in alternate pen mode causes the bits to be inverted where there
are 1s in the table. In either case, no change will take place where there are 0s
in the table. Although complementing lines can be drawn, complementing area
fills cannot be executed.

Positive pen numbers in alternate drawing mode allows non-dominant drawing.
(Non-dominant drawing causes the values in the frame buffer to be inclusively
ORed with the value of the pen.) Pen 0 in normal mode complements. Pen 0
in alternate mode draws in the background color. Since the table represents the
computer in non-color map mode, table entries for any additional frame buffer
planes are all zeros.

Color Map Mode

When operating the color or gray scale display in color map mode, pen colors
can be redefined at will. For this reason, no colors are mentioned in the
following table. Unlike non-color-map mode, the fourth bit in the frame buffer
is used when in color map mode. Also, memory planes 1, 2, and 3 are not
associated with red, green, and blue.

Drawing with a pen merely puts the pen number into that pixel’s location. The
computer looks into the corresponding entry in the color map to determine
what actual color the pixel is to exhibit.

P-10 PARITY - PURGE

PEN

P
Pen Action Plane 1| Plane 2 | Plane 3 | Plane 4
0 |Background 0 0 0 0
1 |Draw Pen 1 1 0 0 0
2 |Draw Pen 2 0 1 0 0
3 |Draw Pen 3 1 1 0 0
4 |Draw Pen 4 0 0 1 0
5 |Draw Pen 5 1 0 1 0
6 |Draw Pen 6 0 1 1 0
7 |Draw Pen 7 1 1 1 0
8 |Draw Pen 8 0 0 0 1
9 |Draw Pen 9 1 0 0 1
10 |Draw Pen 10 0 1 0 1
11 |Draw Pen 11 1 1 0 1
12 |Draw Pen 12 0 0 1 1
13 |Draw Pen 13 1 0 1 1
14 |Draw Pen 14 0 1 1 1
15 |Draw Pen 15 1 1 1 1

Drawing with the negatives of the pen numbers while in normal pen mode
causes the bits to be cleared where there are 1s in the table. Drawing with the
negatives of the pen numbers while in alternate pen mode causes the bits to be
inverted where there are 1s in the table. In either case, no change will take
place where there are Os in the table.

Pen 0 merely draws in the background color. Although complementing lines
can be drawn, complementing area fills cannot be executed.

PARITY - PURGE P-11

PEN

Default Colors

The RGB and HSL values for the default pen colors while in color map mode
are shown below. These can be changed by the SET PEN statement. First, the
RGB (red/green/blue) values:

Pen Color Red | Green| Blue
0 {Black 0 0 0
1 | White 1 1 1
2 {Red 1 0 0
3 | Yellow 1 1 0
4 {Green 0 1 0
5 |Cyan 0 1 1
6 |Blue 0 0 1
7 |Magenta 1 0 1
8 }Black 0 0 0
9 | Olive Green 80 73 20
10 |Aqua 20 .67 47
11 |{Royal Blue 53 .40 67
12 | Maroon .80 27 40
13 |Brick Red 1.00 | .40 .20
14 |Orange 1.00 | 47 | 0.00
15 |Brown 87 .53 27

P-12 PARITY - PURGE

PEN

The same default color map colors are represented below in their HSL
(hue/saturation/luminosity) representations:

Pen Color Hue | Sat. |Lum.
0 |Black 0 0 0
1 | White 0 0 1
2 |Red 0 1 1
3 |Yellow 17 1 1
4 |Green 33 1 1
5 |Cyan .50 1 1
6 |Blue .67 1 1
7 |Magenta .83 1 1
8 |Black 0 0 0
9 | Olive Green 15 | .75 | .80
10 |Aqua 44 | .75 | .68
11 | Royal Blue a5 | .36 | .64
12 |Maroon 95 | 65 | .78
13 |Brick Red .04 | .80 | 1.00
14 |Orange .08 | 1.00 | 1.00
15 |Brown .08 | .70 | .85

PARITY - PURGE P-13

PEN

For a gray scale monitor, pens 0 through 15 map to the following luminosities:

Pen Luminosity
0 0
1 1
2 .30
3 .89
4 .59
5 .70
6 A1
7 Al
8 0
9 .69
10 .51
11 A7
12 44
13 .56
14 .58
15 .60

To calculate luminosity for pens 16 through 255, use the following formula:
256 — pen

luminosity = YT

P-14 PARITY - PURGE

PENUP

PENUP

Supported On UX WS DOS
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN... Yes

This statement lifts the pen on the current plotting device.

Eawe)

PARITY - PURGE P-15

P PERMIT

Supported on UX WS DOS*
Option Required None
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This statement modifies the owner, group, or public access permissions of an
HFS or SRM/UX file or directory.

PERMIT file or

directory specifier

literal form of HFS or SRM/UX file or directory specifier:

volume
path specifier

“ file or o ©
| directory name ,
directory!

P-16 PARITY - PURGE

PERMIT

Item Description Range
file or directory |string expression specifying a file on | (see drawing)
specifier an HFS or SRM/UX volume
directory path |literal (see MASS STORAGE IS)
HFS file or literal 1 to 14 characters (see
directory name Glossary)
SRM/UX file |literal 1 to 16 characters
or directory
name
volume specifier |literal (see MASS STORAGE IS)

Example Statements

PERMIT Dir_path$& File$& Volume$

PERMIT "/DirPath/HFSfile" ;OWNER:READ,WRITE; GROUP:READ
PERMIT "/DirPath/Dir' ;0THER:SEARCH

PERMIT "File''; OWNER:READ,WRITE; OTHER:READ

PERMIT "Dix'"; GROUP:READ; OTHER:

PERMIT "File"

PERMIT "Directory”

Semantics
The PERMIT statement is used to:

m change the permissions (access rights) of a file or directory on an HFS disk or
on SRM/UX,

m permit or restrict access to files and directories by the file owner, a member
of the file-owner’s group, or by all others.

Restricting access is useful, for instance, to prevent accidental purges of files or
to prevent others from reading or writing to a file.

You must be the current owner of the file or directory in order to execute
PERMIT.

There are 9 bits of “permission” for HFS and SRM/UX files.

PARITY - PURGE P-17

PERMIT

OWNER GROUP OTHER
Read | Write | Search | Read | Write | Search | Read | Write | Search

These bits are shown in the PERMISSION column (PERMS column for
SRM/UX) of a CAT listing of the directory in which the file or directory
resides (R for READ; W for WRITE; X for SEARCH; - for “no permission”):

FILE NUM REC MODIFIED

FILE NAME TYPE RECS LEN DATE TIME PERMISSION OWNER GROUP
File 8192 1 7-Nov-86 9:23 RW-RW-RW- 18 9
Directory 256 1 7-Nov-86 9:24 RWXRWXRWX 18 9

The default permission bits for directories are: RWXRWXRWX.
The default permission bits for files are: RW-RW-RW-.

The default permissions on SRM/UX can be changed. See your system
administrator if you want to change the default permissions.

There are three classes of users:

m OWNER—initially the person who created the file (ownership can be
changed with the CHOWN statement). All BASIC/WS local files are created
with an owner identifier of 18. BASIC/UX files and BASIC/WS files on
SRM/UX default to the owner’s user id. See /etc/passwd (HP-UX) or
/etc/srmdconf (SRM/UX) for listings of owner identifiers.

m GROUP—initially the “group” to which the file’s/directory’s “owner”
belongs (but the group can be changed with the CHGRP statement). All
BASIC/WS files are created with a group identifier of 9. BASIC/UX files
and BASIC/WS files on SRM/UX default to the user’s group id. See
/etc/group (HP-UX) or /etc/srmdconf (SRM/UX) for listings of group
identifiers.

m OTHER—all other users who are not the owner and are not in the same
group as the owner (known as “public” on the HP-UX system).

Each class of users has three types of permissions for accessing a file or
directory:

m Read—allows reading the file (such as with ASSIGN, ENTER, and GET).

P-18 PARITY - PURGE

PERMIT

m Write—allows a user to modify the file’s contents (such as with OUTPUT or
RE-STORE).

m Search—an operation on directories which allows you to include the directory
in a directory path (such as with CAT and MASS STORAGE IS).

When a user class is specified, all permission bits for that class are changed:
m If a permission is specified, then the corresponding permission bit is set;
m If a permission is omitted, the corresponding permission bit is cleared.

If no user class is specified, the default permissions for that file are restored.
For example, executing

PERMIT "Div";Other:
gives the following permission:
RWXRWX---
and executing:
PERMIT "File"
gives the following permission:
RW~RW-RW-
If you are using a version of BASIC that supports wildcards, you can use them

in file specifiers with PERMIT. You must first enable wildcard recognition
using WILDCARDS. Refer to the keyword entry for WILDCARDS for details.

BASIC/DOS Specifics

For the HFS file system, BASIC/DOS fully supports the PERMIT statement,
but only if the HP 82313A Hierarchical File System has been installed.

For the DFS file system, BASIC/DOS provides partial PERMIT functionality.
By default, DFS sets the permission bits to “RW-RW-RW-" for all files
(“RWXRWXRWX?” for a directory). You can use the PERMIT statement to
make a file read-only with the following statement.

PERMIT “MYFILE”;OWNER:READ

This sets the permission bits to “R—R—R—". You cannot set the GROUP
and OTHER bits separately.

PARITY - PURGE P-19

PARITY - PURGE P-21

PIVOT

Supported On UX WS DOS
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This statement specifies a rotation of coordinates which is applied to all
subsequently drawn lines.

(@—P angle |

Item | Description | Range
(same as COS)

numeric expression in current units of
angle

angle

Example Statements

PIVOT 30
IF Special THEN PIVOT Radians

Semantics

The specified angle is interpreted according to the current angle mode (RAD or
DEG).

The specified angular rotation is performed about the logical pen’s position at
the time the PIVOT is executed. This rotation is applied only to lines drawn
subsequent to the PIVOT; logical pen movement is not affected by PIVOT.
Consequently, PIVOT generally causes the logical and physical pens to be left
at different positions. Other operations which cause similar effects are attempts
to draw outside clip limits and direct HPGL output to plotters.

P-22 PARITY - PURGE

PLOT

PLOT

Supported On
Option Required
Keyboard Executable
Programmable

InanIF ... THEN ...

UX WS DOS
GRAPH

Yes

Yes

Yes

This statement moves the pen from the current pen position to the specified X
and Y coordinates. It can be used to move without drawing, or to draw a line,
depending on the pen control value.

x y 1 ol
displacement displacement I Sl

o
ERY.

GRAPHX
Item Description Range
x coordinate numeric expression, in current units |—
y coordinate numeric expression, in current units |—
pen control numeric expression, rounded to an —32 768 through +32 767
integer; Default = 1 (down after
move)
array name name of two-dimensional, two-column | any valid name
or three-column numeric array.
(Requires GRAPHX)

PARITY - PURGE P-23

PLOT

Example Statements

PLOT X,Y,-1
PLOT -5,12
PLOT Shape(#),FILL,EDGE

Semantics

Non-Array Parameters

The specified X and Y position information is interpreted according to the
current unit-of-measure. Lines are drawn using the current pen color and line

type.
PLOT is affected by the PIVOT transformation.

The line is clipped at the current clipping boundary. If none of the line is
inside the current clip limits, the pen is not moved, but the logical pen position
is updated.

Applicable Graphics Transformations

Scaling | PIVOT | CSIZE | LDIR | PDIR
Lines (generated by moves and draws) X X (4]
Polygons and rectangles X X X
Characters (generated by LABEL) X X
Axes (generated by AXES & GRID) X
Location of Labels (1] (3] [2]

1The starting point for labels drawn after lines or axes is affected by scaling.
2The starting point for labels drawn after other labels is affected by LDIR.

3The starting point for labels drawn after lines or axes is affected by PIVOT.
4RPLOT and IPLOT are affected by PDIR.

The optional pen control parameter specifies the following plotting actions; the
default value is +1 (down after move).

P-24 PARITY - PURGE

PLOT

Pen Control Parameter

Pen Control Resultant Action

—~Even Pen up before move
—-0dd Pen down before move
+Even Pen up after move

+0dd Pen down after move

The above table is summed up by: even is up, odd is down, positive is after
pen motion, negative is before pen motion. Zero is considered positive.

Array Parameters

When using the PLOT statement with an array, either a two-column or a
three-column array may be used. If a two-column array is used, the third
parameter is assumed to be +1; pen down after move.

FILL and EDGE

When FILL or EDGE is specified, each sequence of two or more lines forms a
polygon. The polygon begins at the first point on the sequence, includes each
successive point, and the final point is connected or closed back to the first
point. A polygon is closed when the end of the array is reached, or when the
value in the third column is an even number less than three, or in the range 5
to 8 or 10 to 15.

If FILL and/or EDGE are specified on the PLOT statement itself, it causes
the polygons defined within it to be filled with the current fill color and/or
edged with the current pen color. If polygon mode is entered from within

the array, and the FILL/EDGE directive for that series of polygons differs
from the FILL/EDGE directive on the PLOT statement itself, the directive

in the array replaces the directive on the statement. In other words, if a

“start polygon mode” operation selector (a 6, 10, or 11) is encountered, any
current FILL/EDGE directive (whether specified by a keyword or an operation
selector) is replaced by the new FILL/EDGE directive.

PARITY - PURGE P-25

PLOT

If FILL and EDGE are both declared on the PLOT statement, FILL occurs
first. If neither one is specified, simple line drawing mode is assumed; that is,
polygon closure does not take place.

If you attempt to fill a figure on an HPGL plotter, the figure will not be filled,
but will be edged, regardless of the directives on the statement.

When using a PLOT statement with an array, the following table of operation
selectors applies. An operation selector is the value in the third column of
a row of the array to be plotted. The array must be a two-dimensional,
two-column or three-column array. If the third column exists, it will contain

operation selectors which instruct the computer to carry out certain operations.

Polygons may be defined, edged (using the current pen), filled (using the
current fill color), pen and line type may be selected, and so forth.

Operation
Column 1 Column 2 Selector Meaning
X Y -2 Pen up before moving
X Y -1 Pen down before moving
X Y 0 Pen up after moving (Same as +2)
X Y 1 Pen down after moving
X Y 2 Pen up after moving
pen number ignored 3 Select pen
line type repeat value 4 Select line type
color ignored 5 Color value
ignored ignored 6 Start polygon mode with FILL
ignored ignored 7 End polygon mode
ignored ignored 8 End of data for array
ignored ignored 9 NOP (no operation)
ignored ignored 10 Start polygon mode with EDGE
ignored ignored 11 Start polygon mode with FILL and
EDGE
ignored ignored 12 Draw a FRAME
pen number ignored 13 Area pen value
red value green value 14 Color
blue value ignored 15 Value
ignored ignored >15 Ignored

P-26 PARITY - PURGE

PLOT

Moving and Drawing

If the operation selector is less than or equal to two, it is interpreted in exactly
the same manner as the third parameter in a non-array PLOT statement. Even
is up, odd is down, positive is after pen motion, negative is before pen motion.
Zero is considered positive.

Selecting Pens

An operation selector of 3 selects a pen. The value in column one is the pen
number desired. The value in column two is ignored.

Selecting Line Types

An operation selector of 4 selects a line type. The line type (column one)
selects the pattern, and the repeat value (column two) is the length in GDUs
that the line extends before a single occurrence of the pattern is finished and it
starts over. On the CRT, the repeat value is evaluated and rounded down to
the next multiple of 5, with 5 as the minimum.

Selecting a Fill Color

Operation selector 13 selects a pen from the color map with which to do
area fills. This works identically to the AREA PEN statement. Column one
contains the pen number.

Defining a Fill Color

Operation selector 14 is used in conjunction with operation selector 15. Red
and green are specified in columns one and two, respectively, and column three
has the value 14. Following this row in the array (not necessarily immediately),
is a row whose operation selector in column three has the value of 15. The first
column in that row contains the blue value. These numbers range from 0 to

32 767, where 0 is no color and 32 767 is full intensity. Operation selectors 14
and 15 together comprise the equivalent of an AREA INTENSITY statement,
which means it can be used on a monochromatic, gray scale, or color display.

Operation selector 15 actually puts the area intensity into effect, but only if an
operation selector 14 has already been received.

PARITY - PURGE P-27

PLOT

Operation selector 5 is another way to select a fill color. The color selection is
through a Red-Green-Blue (RGB) color model. The first column is encoded in
the following manner. There are three groups of five bits right-justified in the
word; that is, the most significant bit in the word is ignored. Each group of five
bits contains a number which determines the intensity of the corresponding
color component, which ranges from zero to sixteen. The value in each field
will be sixteen minus the intensity of the color component. For example, if the
value in the first column of the array is zero, all three five-bit values would
thus be zero. Sixteen minus zero in all three cases would turn on all three color
components to full intensity, and the resultant color would be a bright white.

Assuming you have the desired intensities (which range from 0 thru 1) for red,
green, and blue in the variables R, G, and B, respectively, the value for the first
column in the array could be defined thus:

Array (Row, 1)=SHIFT(16%(1-B) ,~10)+SHIFT(16*(1-G) ,-5)+16%(1-R)

If there is a pen color in the color map similar to that which you request here,
that non-dithered color will be used. If there is not a similar color, you will get
a dithered pattern.

If you are using a gray scale display, Operation selector 5 uses the five bit
values of the RGB color specified to calculate luminosity. The resulting gray
luminosity is then used as the area fill. For detailed information on gray
scale calculations, see the chapter “More About Color Graphics” in the

HP BASIC 6.2 Advanced Programming Techniques manual.

Polygons

A six, ten, or eleven in the third column of the array begins a “polygon mode”.
If the operation selector is 6, the polygon will be filled with the current fill
color. If the operation selector is 10, the polygon will be edged with the current
pen number and line type. If the operation selector is 11, the polygon will

be both filled and edged. Many individual polygons can be filled without
terminating the mode with an operation selector 7. This can be done by
specifying several series of draws separated by moves. The first and second
columns are ignored and should not contain the X and Y values of the first
point of a polygon.

Operation selector 7 in the third column of a plotted array terminates
definition of a polygon to be edged and/or filled and also terminates the

P-28 PARITY - PURGE

PLOT

polygon mode (entered by operation selectors 6, 10, or 11). The values in the
first and second columns are ignored, and the X and Y values of the last data
point should not be in them. Edging and/or filling of the most recent polygon
will begin immediately upon encountering this operation selector.

Doing a FRAME

Operation selector 12 does a FRAME around the current soft-clip limits.
Soft clip limits cannot be changed from within the PLOT statement, so one
probably would not have more than one operation selector 12 in an array to
PLOT, since the last FRAME will overwrite all the previous ones.

Premature Termination

Operation selector 8 causes the PLOT statement to be terminated. The PLOT
statement will successfully terminate if the actual end of the array has been
reached, so the use of operation selector 8 is optional.

Ignoring Selected Rows in the Array

Operation selector 9 causes the row of the array it is in to be ignored. Any
operation selector greater that fifteen is also ignored, but operation selector
9 is retained for compatibility reasons. Operation selectors less than —2

are not ignored. If the value in the third column is less than zero, only
evenness/oddness is considered.

PARITY - PURGE P-29

PLOTTER IS

Supported On UX WS DOS
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes

InanlIF... THEN... Yes

This statement selects a plotting device, file, or pipe.

device display/plotter |
PLOTTER IS selector ' specifier 471
color map MAP
display specifier (:) (COLOR) 3

file plot

specifier _.O—’ specifierJ _______ "
| AP
2 O TED
‘ O - O O - O X MS
xmin XMax ymin ymax e i
literal form of display/plotter specifier:
@———-{ INTERNAL)} =
“’< 98627A >

P-30 PARITY - PURGE

Item

Description

PLOTTER IS

Range

device selector

display/plotter
specifier

color map
display specifier

file specifier
plot specifier

window
specifier
Xmin
Xxmax
ymin

ymax

directory path

file name
LIF protect
code

SRM password

volume specifier

numeric expression, rounded to an
integer

string expression

string expression

string expression
string expression

numeric expression

numeric expression; Default =
—392.75mm

numeric expression; Default =
392.75mm

numeric expression; Default =
—251.5mm

numeric expression; Default =
251.5mm

literal

literal

literal; first two non-blank characters
are significant

literal; first 16 non-blank characters
are significant

literal

(see Glossary)

(see drawing)

INTERNAL or WINDOW

(see drawing)
HPGL
WINDOW

device dependent

device dependent

device dependent

device dependent

(see MASS STORAGE IS)
depends on volume’s format
(see Glossary)

> not allowed

> not allowed

(see MASS STORAGE IS)

PARITY - PURGE P-31

P

PLOTTER IS

Example Statements

PLOTTER IS 3,I$

PLOTTER IS CRT,"INTERNAL";COLOR MAP

PLOTTER IS Dsg,"HPGL"

PLOTTER IS "Newfile","HPGL"

PLOTTER IS "/PL/PlotFile"

PLOTTER IS "PlotFile:REMOTE","HPGL",6.2,256.2,6.9,186.9

PLOTTER IS 601,"WINDOW";COLOR MAP BASIC/UX only

PLOTTER IS "MyBDAT","HPGL" ; APPEND
PLOTTER IS "Files"

Semantics

Plotters

The hard clip limits of the plotter are read in when this statement is
executed. Therefore, the specified device must be capable of responding to this
interrogation.

Files

Using PLOTTER 1S with a file specifier causes all subsequent plotter output
to go to the indicated file. The file must be a BDAT or HP-UX file. The
PLOTTER IS statement positions the file pointer to the beginning of the
file unless you specify the APPEND option. Thus, PLOTTER IS overwrites
existing files unless you specify APPEND. The file is closed when another
PLOTTER IS statement is executed or SCRATCH A, GINIT or Reset is
executed.

An end-of-file error occurs when the end of a LIF file is reached.

If you are using a version of BASIC that supports wildcards, you can use them
in file specifiers with PLOTTER IS. You must first enable wildcard recognition
using WILDCARDS. Refer to the keyword entry for WILDCARDS for details.
Wildcard file specifiers used with PLOTTER IS must match one and only one

file name.

Xmin, Xmax, Ymin, Ymax are the hard clip limits of the plotter in millimeters.
This assumes 0.025 mm per plotter unit. The default size is for an HP 7580

P-32 PARITY - PURGE

PLOTTER IS

or HP 7585 D-size drawing. See the plotter manual for more information on
plotter limits. If you want to send HPGL commands to a file that is currently
the PLOTTER IS device, use the GSEND statement. (See the GSEND entry
of this reference for details.)

SRM and HFS Files

In order to write to a PLOTTER IS file on an HFS volume, you need to have
R (read) and W (write) permission on the file, and X (search) permission on all
superior directories.

In order to write to a PLOTTER IS file in an SRM volume, you need to have
R (read) and W (write) permissions on the file, as well as R permission on all
superior directories.

No end-of-file errors occur on SRM or HF'S files, because these files are
extensible. That is, if the data output to the file with this statement would
overflow the file’s space allocation, the file is automatically extended provided
the disk contains enough unused storage space.

SRM Plotter Spoolers

If the specified file is in the SRM plotter spooler directory and the file contains
data, then the SRM system sends the data to the plotting device (when the file
is closed) and then purges the file. You may close the file by executing another
PLOTTER IS statement, GINIT, SCRATCH A or SCRATCH BIN, or by
pressing (RESET) ((SHIFT }-(PAUSE) or (Shift}-(Break)).

PARITY - PURGE P-33

PLOTTER IS

Displays

The statement PLOTTER IS CRT, "INTERNAL" is executed whenever a graphics
statement is executed which needs a plotter (see GINIT) and no plotter is
active. The plotter activated is the first device encountered in the following
order:

1. The alpha display, if it has graphics capabilities

2. Internal 98542A, 98543A, 98544 A, 98545A, 98547A, 98548A, 985494,
98550A, 98700, or 98720 at select code 6

3. Model 362/382 internal displays at select code 132.

4. Non-bit-mapped alpha display with graphics capabilities at select code 3
(BASIC/UX supports the 98546A compatibility interface only)

5. External 98700 or 98720 at select code > 7
6. 98627A at select code > 7 (BASIC/WS only).

If the COLOR MAP option is specified and the plotting device has a color or
gray map, the capability of changing the color or gray map is enabled (see SET
PEN). Also, the values written into the frame buffer are different than they
would be if color map mode was not enabled.

If the COLOR MAP option is not included and the plotting device is the
Model 236 color display, the 4th memory plane is cleared (BASIC/WS only).

Non-Color Map Mode

Executing a PLOTTER IS statement without the COLOR MAP keyword
causes the color map to be defined as follows, where 0 is zero intensity and 1
is full intensity. This emulates the HP 98627A non-color-mapped device on a
color bit-mapped display.

P-34 PARITY - PURGE

Pen

Color

Green

Blue

=] OO W= O

Complement
White

Red

Yellow
Green

Cyan

Blue
Magenta

.—-ooo.—-.—-»—-og

OO e e = O =

—_—m = OO O

PLOTTER IS

For a gray scale monitor, pens 0 through 7 map to the following luminosities:

g
g

Luminosity

U N T IR Ry)

0
1
.30
.89
.59
.70
A1
41

Since hue and saturation are not involved in gray scale mapping, the luminosity
values of pens 0 through 7 are simply repeated 32 times for pens 8 through

255.

On a display with bit-mapped alpha, the non-color map mode affects the
ALPHA PEN, PRINT PEN, KEY LABELS PEN, and KBD LINE PEN
statements as follows: 8 is black (the same as 0) and 9 through 15 are white

(the same as 1).

The complementing cursor will be white on top of all colors except white, in
which case it will be black.

PARITY - PURGE P-35

PLOTTER IS

COLOR MAP

In the COLOR MAP mode, the color map is initialized so that the first eight
colors are the same as they were in the default mode, and the second eight
colors simulate HP’s designer colors of plotter pen ink or gray map luminosity.

Although the pen numbers select the same color or gray luminosity in color
map mode as in non-color map mode (for the first eight pens), the actual
values written to the frame buffer are different. This results from the different
interpretation of the values in the frame buffer: in non-color map mode, the
values are RGB values or gray luminosity; in color-map mode, the values

are indices into the color or gray map. This means that a picture drawn in
non-color map mode will change colors or gray luminosity if a PLOTTER IS
with the COLOR MAP option is executed. The reverse is also true.

On a console or a terminal, when the PLOTTER IS statement is executed, the
color or gray map is initialized to a default state. If the graphics write-enable
mask is left in the default mode, the entire color or gray map will be initialized
as before. Otherwise, the following algorithm is used: all color or gray map
entries whose binary representation has 1s in non-graphics planes will remain
unchanged. This is done to insure that only pens dedicated to graphics are
initialized. For example, with a graphics write mask of 7 (binary 0000 0111),
only pens 0 through 7 are initialized. Higher numbered pens would remain
unchanged since their binary representation would have 1s in non-graphics
planes.

In windows, the color map is initialized to whatever the color map was when
BASIC was booted.

Display Specifiers

There are several values which can be used when specifying the display on
which graphics operations are done:

PLOTTER IS CRT,"INTERNAL" or This is the safest of the possibilities.

PLOTTER IS 1,"INTERNAL" “CRT” is a built-in function which
returns the value 1, and the value 1
is interpreted by the graphics system
as “the default display.” The default
display may be an external display if
no internal display exists.

P-36 PARITY - PURGE

PLOTTER IS 3,"INTERNAL"

PLOTTER IS 6,"INTERNAL"

PLOTTER IS dev_sel ,"INTERNAL"

PLOTTER IS window.id,"WINDOW"
(BASIC/UX only)

PLOTTER IS dev_sel,"98627A"
(BASIC/WS only)

PLOTTER IS

This specifies a non-bit-mapped
display if there is one; otherwise,
the action is equivalent to

PLOTTER IS 1,"INTERNAL".
Specifying a value of 3 makes sense
for all Series 200 displays except the
Model 237.

Always specifies a bit-mapped
display. If one is not found, an error
results.

With the 98700 and 98720 displays,
it is possible to configure the display
card so that it is at an external
select code. For example, if you set
the select code to 25, you would use
PLOTTER IS 25,"INTERNAL"

This specifier works only in

a windowing environment. A
window id of 600 is equivalent to
PLOTTER IS CRT,"INTERNAL" in the
windowing environment.

This specifies a color graphics
display connected through the
98627A interface card. This may
have any one of several options
specifying television format,

etc. See the following table.
PLOTTER IS dev_sel, "INTERNAL" is
also accepted.

PARITY - PURGE P-37

PLOTTER IS

HP 98627A Display Specifiers

Desired Display Format

Display Specifier

Standard Graphics
512 by 390 pixels,
60 Hz, non-interlaced

512 by 390 pixels,
50 Hz, non-interlaced

High-Resolution Graphics
512 by 512 pixels
46.5 Hz, non-interlaced

TV Compatible Graphics
512 by 474 pixels,
60 Hz, interlaced
(30 Hz refresh rate)

512 by 512 pixels,
50 Hz, interlaced
(25 Hz refresh rate)

"98627A" or "98627A;US STD"

'"98627A; EURO STD"

"*98627A;HI RES"

"98627A;US TV"

""98627A;EURD TV"

P-38 PARITY - PURGE

Default Pen Colors

PLOTTER IS

The PLOTTER IS statement defines the color or gray map to default values
in a non-windowing environment. These values are different depending on
whether or not the COLOR MAP option was selected. The values, both in
RGB and HSL, of the sixteen default pen colors are given below:

Color Map Default Color Definitions (RGB)

Pen Color Red | Green | Blue
0 |Black 0 0 0
1 | White 1 1 1
2 |Red 1 0 0
3 | Yellow 1 1 0
4 | Green 0 1 0
5 |Cyan 0 1 1
6 |Blue 0 0 1
7 |Magenta 1 0 1
8 |Black 0 0 0
9 | Olive Green .80 .73 .20
10 [Aqua .20 .67 47
11 |Royal Blue 53 | 40 .67
12 |Maroon .80 27 .40
13 |Brick Red 1.00 | .40 .20
14 | Orange 1.00 | .47 | 0.00
15 |[Brown .87 .53 27

PARITY - PURGE P-39

PLOTTER IS

The same default color map colors are represented below in their HSL
(hue/saturation/luminosity) representations:

Color Map Default Color Definitions (HSL)

Pen Color Hue | Sat. |Lum.
0 |Black 0 0 0
1 | White 0 0 1
2 |Red 1 1
3 | Yellow A7 1 1
4 |Green 33 1 1
5 |Cyan .50 1 1
6 |Blue .67 1 1
7 |Magenta .83 1 1
8 |Black 0 0 0
9 |Olive Green .15 75 .80
10 [Aqua .44 75 | .68
11 |Royal Blue .75 .36 .64
12 |Maroon .95 .65 .78
13 | Brick Red .04 | .80 | 1.00
14 {Orange .08 | 1.00 | 1.00
15 |Brown .08 .70 .85

P-40 PARITY - PURGE

PLOTTER IS

For a gray scale monitor, pens 0 through 15 map to the following luminosities: p
Pen Luminosity

0 0

1 1

2 .30
3 .89
4 .59
5 .70
6 A1
7 .41
8 0

9 .69
10 .61
11 A7
12 44
13 .56
14 .58
15 .60

To calculate luminosity for pens 16 through 255, use the following formula:
256 — pen
241

Eight-plane machines have 256-entry color or gray maps. In these machines,
pens 16 through 255 are defined to a variety of shades. For exact values,
interrogate the color or gray map with GESCAPE.

luminosity =

BASIC/UX Specifics

BASIC/UX treats output to a pipe as it would output to a file. The pipe
must be explicitly closed before any output becomes permanent (or takes
place). Output to a spooled device will not be sent to the spooler until the
pipe has been closed. The closing of pipes can be achieved with a subsequent
PLOTTER IS, QUIT, or SCRATCH A command.

PARITY - PURGE P-41

PLOTTER IS

When running in the X Window environment, pen colors depend on the color
map as determined by the parameters of the X Window System.

m In non-color map mode, graphics pen colors will appear as the first 8 colors
of the X Window System color map. It is not true emulation of the HP
98627A device, since executing PLOTTER IS with the COLOR MAP option
will not change any of the colors of an existing picture. ALPHA PEN,
PRINT PEN, KEY LABELS PEN, and KBD LINE PEN statements (and
associated CRT control registers) will correspond to the X Window System
color map in its entirety and not map values 9 through 15 to white as in
BASIC/WS.

u In the COLOR MAP mode, graphics pen colors will map to the X Window
System color map in its entirety. ALPHA PEN, PRINT PEN, KEY
LABELS PEN, and KBD LINE PEN statements (and associated CRT
control registers) will also correspond to the X Window System color map in
its entirety.

P-42 PARITY - PURGE

POLYGON

POLYGON

Supported On UX WS DOS
Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN... Yes

This statement draws all or part of a closed regular polygon. The polygon can
be filled and/or edged.

POLYGON radius r >

. total
sides

. sides

J - .
=P -O-@, e

Item Description Range
radius numeric expression, in current units |—
total sides numeric expression, rounded to an 3 through 32 767

integer. Default = 60

sides to draw numeric expression, rounded to an 1 through 32 767
integer. Default = all sides

Example Statements

POLYGON 1,5,5,4,FILL,EDGE
POLYGON 4

PARITY - PURGE P-43

POLYGON

Semantics

The radius is the distance that the vertices of the polygon will be from the
logical pen position. The first vertex will be at a distance specified by “radius”
in the direction of the positive X-axis. Specifying a negative radius results in
the figure being rotated 180°. POLYGON is affected by the PIVOT and the
PDIR transformations.

The total sides and the number of sides drawn need not be the same. Thus:

POLYGON 1.5,8,5

will start to drawn an octagon whose vertices are 1.5 units from the current
pen position, but will only draw five sides of it before closing the polygon at
the first point. If the number of sides to draw is greater than the specified total
sides, sides to draw is treated as if it were equal to total sides.

POLYGON forces polygon closure, that is, the first vertex is connected to the
last vertex, so there is always an inside and an outside area. This is true even
for the degenerate case of drawing only one side of a polygon, in which case a
single line results. This is actually two lines, from the first point to the last
point, and back to the first point.

Polygon Shape

The shape of the polygon is affected by the viewing transformation specified by
SHOW or WINDOW. Therefore, anisotropic scaling causes the polygon to be
distorted; stretched or compressed along the axes. If a rotation transformation
is in effect, the polygon will be rotated first, then stretched or compressed
along the unrotated axes.

The pen status also affects the final shape of a polygon if sides to draw is less
than total sides. If the pen is up at the time POLYGON is specified, the first
vertex specified is connected to the last vertex specified, not including the
center of the polygon, which is the current pen position. If the pen is down,
however, the center of the polygon is also included in it. If sides to draw is less
than total sides, piece-of-pie shaped polygon segments are created.

P-44 PARITY - PURGE

POLYGON

FILL and EDGE P

FILL causes the interior of the polygon or polygon segment to be filled with
the current fill color as defined by AREA PEN, AREA COLOR, or AREA
INTENSITY. EDGE causes the edges of the polygon to be drawn using the
current pen and line type. If both FILL and EDGE are specified, the interior
will be filled, then the edge will be drawn. If neither FILL nor EDGE is
specified, EDGE is assumed.

Polygons sent to an HPGL plotter are edged but not filled regardless of any
FILL or EDGE directives in the statement.

After POLYGON has executed, the pen is in the same position it was before
the statement was executed, and the pen is up. The polygon is clipped at the
current clip limits.

Applicable Graphics Transformations

Scaling | PIVOT | CSIZE | LDIR | PDIR
Lines (generated by moves and X X [4]
draws)
Polygons and rectangles X X X
Characters (generated by LABEL) X X
Axes (generated by AXES & X
GRID)
Location of Labels (1] (3] 2]

1The starting point for labels drawn after lines or axes is affected by scaling.
2The starting point for labels drawn after other labels is affected by LDIR.
3The starting point for labels drawn after lines or axes is affected by PIVOT.
4RPLOT and IPLOT are affected by PDIR.

PARITY - PURGE P-45

POLYGON

BASIC/UX Specifics

There are device dependent limitations on the number of vertices for which a
correct FILL will be obtained.

Polygon fills in the X Windows environment do not fill to include the lower and
right boundaries.

P-46 PARITY - PURGE

POLYLINE

POLYLINE

Supported On UX WS DOS
Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes
InanIF ... THEN ... Yes

This statement draws all or part of an open regular polygon.

< POLYUNE ’—’ radius Y ua
, total
sides
sides | J
to draw
Item Description Range
radius numeric expression, in current units |—
total sides numeric expression, rounded to an 3 through 32 767
integer. Default = 60
sides to draw numeric expression, rounded to an 1 through 32 767
integer. Default = all sides

Example Statements

POLYLINE Radius,Sides,Sides_to_draw
POLYLINE 12,5

Semantics

The radius is the distance that the vertices of the polygon will be from the
current pen position. The first vertex will be at a distance specified by
“radius” in the direction of the positive X-axis. Specifying a negative radius
results in the figure being rotated 180°. POLYLINE is affected by the PIVOT
and the PDIR transformations.

PARITY - PURGE P-47

POLYLINE

The total sides and the number of sides drawn need not be the same. Thus:

POLYLINE 1.5,8,5

will start to drawn an octagon whose vertices are 1.5 units from the current
pen position, but will only draw five sides of it. If the number of sides to draw
is greater than the total sides specified, it is treated as if it were equal to the
total sides.

Shape of Perimeter

POLYLINE does not force polygon closure, that is, if sides to draw is less than
total sides, the first vertex is not connected to the last vertex, so there is no
“inside” or “outside” area.

The shape of the polygon is affected by the viewing transformation specified by
SHOW or WINDOW. Therefore, anisotropic scaling causes the perimeter to be
distorted; stretched or compressed along the axes. If a rotation transformation
is in effect, the polygon will be rotated first, then stretched or compressed
along the unrotated axes.

The pen status also affects the way a POLYLINE statement works. If the pen
is up at the time POLYLINE is specified, the first vertex is on the perimeter. If
the pen is down, the first point is the current pen position, which is connected
to the first point on the perimeter.

After POLYLINE has executed, the current pen position is in the same
position it was before the statement was executed, and the pen is up. The
polygon is clipped at the current clip limits.

Applicable Graphics Transformations

P-48 PARITY - PURGE

POLYLINE

Scaling | PIVOT | CSIZE | LDIR | PDIR
Lines (generated by moves and X X [4]
draws)
Polygons and rectangles X X X
Characters (generated by X X
LABEL)
Axes (generated by AXES & X
GRID)
Location of Labels (1] [3] [2]

1The starting point for labels drawn after lines or axes is affected by scaling.
2The starting point for labels drawn after other labels is affected by LDIR.
3The starting point for labels drawn after lines or axes is affected by PIVOT.
4RPLOT and IPLOT are affected by PDIR.

PARITY - PURGE P-49

POS

Supported On UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes

InanIF... THEN... Yes

This function returns the byte position of the first occurrence of a substring
within a string. If you are using ASCII characters, byte position equals

character position.

RO B
searched searched for

Item Description Range

string searched |string expression —

string searched |string expression —
for

Example Statements

Point=P0S(Big$,Little$)
IF POS(A$,CHR$(10)) THEN Line_end

Semantics

If the value returned is greater than 0, it is the position of the first character of
the string being searched for in the string being searched. If the value returned
is 0, the string being searched for cannot be found (or the string searched for is

the null string).

P-50 PARITY - PURGE

POS

Note that the position returned is the relative position within the string
expression used as the first argument. Thus, when a substring is searched, the
position value refers to that substring.

Two-byte Language Specifics

Certain localized versions of BASIC, such as Japanese localized BASIC,
support two-byte characters. The POS function can handle any combination
of one- and two-byte characters. The value returned is the byte position of
the first character being searched for. For more information about two-byte
characters, refer to the globalization chapters of HP BASIC 6.2 Porting and
Globalization.

PARITY - PURGE P-51

PPOLL

Supported On UX WS DOS
Option Required 10
Keyboard Executable Yes
Programmable Yes
InanIF ... THEN... Yes
This function returns a value representing eight status-bit messages of devices
on the HP-IB.
O @7 J——@—ﬂ
interface
select code
Item Description Range

I/O path name {name assigned to an interface select |any valid name (see

code ASSIGN)
interface select |numeric expression, rounded to an 7 through 31
code integer

Example Statements

Stat=PPOLL(7)
IF BIT(PPOLL(@Hpib),3) THEN Respond

Semantics

The computer must be the active controller to execute this function.

P-52 PARITY - PURGE

PPOLL

Summary of Bus Actions

Interface Select Code Only

Primary Address Specified

ATN & EOI
(duration>25us)
Read byte
EOI

Restore ATN to
previous state

Error

PARITY - PURGE P-53

PPOLL CONFIGURE

Supported On UX WS DOS
Option Required I0
Keyboard Executable Yes
Programmable Yes
InanlI¥F ... THEN ... Yes

This statement programs the logical sense and data bus line on which a
specified device responds to a parallel poll.

(PPow. conmGURE @] 70 _patn Configure |

name byte

interface
select code

Item Description Range

I/0 path name |name assigned to a device or devices |any valid name

device selector |numeric expression, rounded to an must contain a primary
integer address (see Glossary)
configure byte |numeric expression, rounded to an 0 through 15
integer

Example Statements

PPOLL CONFIGURE 711;2
PPOLL CONFIGURE €@Dvm;Response

P-54 PARITY - PURGE

PPOLL CONFIGURE

Semantics

This statement assumes that the device’s response is bus-programmable. The
computer must be the active controller to execute this statement.

The configure byte is coded. The three least significant bits determine the data
bus line for the response. The fourth bit determines the logical sense of the
response.

Summary of Bus Actions

Interface Select Code Only | Primary Address Specified
ATN
MTA
UNL
Error LAG
PPC
PPE

COmputer

useum

PARITY - PURGE P-55

PPOLL RESPONSE

Supported On UX WS DOS
Option Required 10
Keyboard Executable Yes
Programmable Yes
InanIF ... THEN ... Yes

This statement defines a response to be sent when an Active Controller
performs a Parallel Poll on an HP-IB Interface. The response indicates whether
this computer does or does not need service.

1/0 path I do/don't
@POLL RESPONSE @ /name need service >
interface
select code
Item Description Range
I/O path name |name assigned to an interface select |any valid name
code
interface select |numeric expression, rounded to an 7 through 31
code integer
I do/don’t need | numeric expression, rounded to an Oorl
service integer

Examples

PPOLL RESPONSE @Hp_ib;I_need_service
PPOLL RESPONSE Interface;0

P-56 PARITY - PURGE

PPOLL RESPONSE

Semantics

This statement defines the computer’s response to a Parallel Poll (ATN &
EOI) performed by the current Active Controller on the specified HP-IB
Interface. This statement only sets up a potential response; no actual response
is generated when the statement is executed.

If the value of the “I do/don’t need service” parameter is 0, the computer is
directed to place a logical false on the bit on which it has been defined to
respond; this response will tell the Active Controller that this (non-active)
controller does not need service. Any non-zero, positive value of this parameter
(within the stated range) directs the computer to set up a true response, which
will tell a polling Active Controller that the computer requires service.

The bit on which the computer is to place its Parallel Poll response is
determined by the value of the last “configure byte” written to CONTROL
Register 5 of the corresponding HP-IB Interface. In general, this configure
byte can be read from HP-IB STATUS Register 7 by the service routine
that responds to Parallel-Poll-Configuration-Change interrupts (Bit 14 of
the Interrupt Enable Register). This configure byte may then be written
into HP-IB CONTROL Register 5, and the response desired by the Active
Controller will be sent when a Parallel Poll is conducted.

This statement may be executed by either an Active Controller or a non-active
controller.

PARITY - PURGE P-57

PPOLL UNCONFIGURE

Supported On UX WS DOS
Option Required I0
Keyboard Executable Yes
Programmable Yes
InanIF... THEN... Yes

This statement disables the parallel poll response of a specified device or
devices.

(PPOLL UNCONFIGURE @] /o pot J——(

interface
select code

Item Description l Range

I/O path name |name assigned to a device or devices |any valid name

device selector |numeric expression, rounded to an (see Glossary)
integer

Example Statements

PPOLL UNCONFIGURE 7
PPOLL UNCONFIGURE €Plotter

Semantics

The computer must be the active controller to execute PPOLL
UNCONFIGURE. The computer may be either a System or Non-System
Controller.

If multiple devices are specified by an I/O path name, all specified devices
are deactivated from parallel poll response. If the device selector or I/O path

P-58 PARITY - PURGE

PPOLL UNCONFIGURE

name refers only to an interface select code, all devices on that interface are
deactivated from parallel poll response.

Summary of Bus Actions

Interface Select Code Only | Primary Address Specified
ATN ATN

PPU MTA
UNL
LAG
PPC
PPD

PARITY - PURGE P-59

PRINT

Supported On UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This statement sends items to the PRINTER IS device.

P-60 PARITY - PURGE

PRINT

PRINT

\|

USING

image
specifier

Expanded diagrom:

print
items

|
PRINT) ™
limage line
USING lobal
. image line
image
items number
image
specifier
< ’ >‘—‘
-
. ()<
~ l
string
expression A -
string Y
e array name L (%) g
literal <
items - numerfc ol trailing punctuation
xpression not allowed with USING
numeric >
B array name (%)
O-f (D
crt .(:) o CRT
. o column row)

tab function not allowed with USING

PARITY - PURGE P-61

PRINT

literal form of image specifier

image] "
specifier list
repeat image
factor specifier list

Item Description Range
image line integer constant identifying an 1 through 32 766
number IMAGE statement
image line label { name identifying an IMAGE any valid name
statement

image specifier |string expression (see drawing)

string array name of a string array any valid name

name

numeric array |name of a numeric array any valid name

name

column numeric expression, rounded to an device dependent
integer

CRT column numeric expression, rounded to an 1 through screen width
integer

CRT row numeric expression, rounded to an 1 through alpha height
integer

image specifier |literal (see next drawing)

list

repeat factor integer constant 1 through 32 767

literal string constant composed of quote mark not allowed
characters from the keyboard,
including those generated using the
ANY CHAR key

P-62 PARITY - PURGE

PRINT

Example Statements

PRINT "LINE";Number

PRINT Array(s);

PRINT TABXY(1,1) ,Header$,TABXY(Col,3),Message$
PRINT USING "5Z.DD'";Money

PRINT USING Fmt3;Id,Item$,Kilograms/2.2

Semantics

Standard Numeric Format

The standard numeric format depends on the value of the number being
displayed. If the absolute value of the number is greater than or equal to 1E-4
and less than 1E+86, it is rounded to 12 digits and displayed in floating point
notation. If it is not within these limits, it is displayed in scientific notation.
The standard numeric format is used unless USING is selected, and may be
specified by using K in an image specifier.

COMPLEX numbers are treated like two REAL numbers separated by a
semicolon.

Automatic End-Of-Line Sequence

After the print list is exhausted, an End-Of-Line (EOL) sequence is sent

to the PRINTER IS device, unless it is suppressed by trailing punctuation

or a pound-sign (#) image specifier. The printer width for EOL sequences
generation is set to the screen width (50, 80 or 128 characters) for CRTs and
to 80 for external devices unless the WIDTH attribute of the PRINTER IS
statement was specified. WIDTH is off for files. This “printer width exceeded”
EOL is not suppressed by trailing punctuation, but can be suppressed by the
use of an image specifier.

PARITY - PURGE P-63

PRINT

Control Codes

Some ASCII control codes have a special effect in PRINT statements if the
PRINTER IS device is the CRT (device selector=1):

Character | Keystroke Name Action

CHRS$(7) bell Sounds the beeper

CHR$(8) backspace Moves the print position back
one character.

CHR$(10) line-feed Moves the print position down
one line.

CHR$(12) form-feed Prints two line-feeds, then
advances the CRT buffer enough
lines to place the next item at
the top of the CRT.

CHR$(13) |(CTRLHM) |carriage- Moves the print position to

return column 1.

The effect of ASCII control codes on a printer is device dependent. See your
printer manual to find which control codes are recognized by your printer and
their effects.

CRT Enhancements

There are several character enhancements (such as inverse video and
underlining) available on some CRTs. They are accessed through characters
with decimal values above 127. For a list of the characters and their effects, see
the “Display Enhancement Characters” table in “Useful Tables” at the back of
this book.

P-64 PARITY - PURGE

PRINT

Arrays

Entire arrays may be printed using the asterisk specifier. Each element in

an array is treated as a separate item by the PRINT statement, as if the
items were listed separately, separated by the punctuation following the array
specifier. If no punctation follows the array specifier, a comma is assumed.
COMPLEX array elements are treated as if the real and imaginary parts are
separated by a semicolon. The array is output in row major order (rightmost
subscript varies fastest).

PRINT Fields

If PRINT is used without USING, the punctuation following an item
determines the width of the item’s print field; a semicolon selects the compact
field, and a comma selects the default print field. Any trailing punctation will
suppress the automatic EOL sequence, in addition to selecting the print field to
be used for the print item preceding it.

The compact field is slightly different for numeric and string items. Numeric
items are printed with one trailing blank. String items are printed with no
leading or trailing blanks.

The default print field prints items with trailing blanks to fill to the beginning
of the next 10-character field.

Numeric data is printed with one leading blank if the number is positive, or

with a minus sign if the number is negative, whether in compact or default
field.

TAB

The TAB function is used to position the next character to be printed on a
line. In the TAB function, a column parameter less than one is treated as one.
A column parameter greater than zero is subjected to the following formula:
TAB position = ((column — 1) MOD width) + 1; where “width” is 50 for the
Model 226 CRT, 128 for Model 237 and other hi-resolution displays, and 80
for all other devices. If the TAB position evaluates to a column number less
than or equal to the number of characters printed since the last EOL sequence,
then an EOL sequence is printed, followed by (TAB position — 1) blanks. If
the TAB position evaluates to a column number greater than the number of

PARITY - PURGE P-65

PRINT

characters printed since the last EOL, sufficient blanks are printed to move to
the TAB position.

TABXY

The TABXY function provides X-Y character positioning on the CRT.

It is ignored if a device other than the CRT is the PRINTER IS device.
TABXY(1,1) specifies the upper left-hand corner of the CRT. If a negative
value is provided for CRT row or CRT column, it is an error. Any number
greater than the screen width for CRT column is treated as the last column on
the screen. Any number greater than the height of the output area for CRT
row is treated as the last line of the output area. If 0 is provided for either
parameter, the current value of that parameter remains unchanged.

Display Type Output Area Height | Display Width
226 18 50
216, 220, 236, and 18 80
98546, DOS EGA
98542 and 98543 19 80
DOS VGA 27 80
237, 98544, 98545, 41 128

98547, 98549, 98700,
and Model 362/382
1024 x 768 internal

98548 and 98550 44 128

Model 362/382 640 X 23 80
480 internal, DOS VGA

P-66 PARITY - PURGE

PRINT

PRINT With Using

When the computer executes a PRINT USING statement, it reads the image
specifier, acting on each field specifier (field specifiers are separated from each
other by commas) as it is encountered. If nothing is required from the print
items, the field specifier is acted upon without accessing the print list. When
the field specifier requires characters, it accesses the next item in the print list,
using the entire item. Each element in an array is considered a separate item.

The processing of image specifiers stops when there is no matching display item
(and the specifier requires a display item). If the image specifiers are exhausted
before the display items, they are reused, starting at the beginning.

COMPLEX values require two REAL image specifiers (i.e. each COMPLEX
value is treated like two REAL values).

If a numeric item requires more decimal places to the left of the decimal point
than are provided by the field specifier, an error is generated. A minus sign
takes a digit place if M or S is not used, and can generate unexpected overflows
of the image field. If the number contains more digits to the right of the
decimal point than are specified, it is rounded to fit the specifier.

If a string is longer than the field specifier, it is truncated, and the right-most
characters are lost. If it is shorter than the specifier, trailing blanks are used to
fill out the field.

Effects of the image specifiers on the PRINT statement are shown in the
following table:

PARITY - PURGE P-67

PRINT

Image
Specifier Meaning

K Compact field. Prints a number or string in standard form with no leading

or trailing blanks.
-K Same as K.

H Similar to K, except the number is printed using the European number

format (comma radix). (Requires 10)
—H |Same as H. (Requires 10)

S Prints the number’s sign (+ or -).

M Prints the number’s sign if negative, a blank if positive.

D Prints one digit character. A leading zero is replaced by a blank. If the
number is negative and no sign image is specified, the minus sign will
occupy a leading digit position. If a sign is printed, it will “float” to the
left of the left-most digit.

V/ Same as D, except that leading zeros are printed.

* Like Z, except that asterisks are printed instead of leading zeros. (Requires
10)

Prints a decimal-point radix indicator.
R Prints a comma radix indicator (European radix). (Requires 10)
E Prints an E, a sign, and a two-digit exponent.
ESZ |Prints an E, a sign, and a one-digit exponent.
ESZZ |Same as E.
ESZZZ |Prints an E, a sign, and a three-digit exponent.

A Prints a string character. Trailing blanks are output if the number
of characters specified is greater than the number available in the
corresponding string. If the image specifier is exhausted before the
corresponding string, the remaining characters are ignored. Use AA or 24
for two-byte globalization characters.

P-68 PARITY - PURGE

PRINT

Image
Specifier

Meaning

X
literal

B

Prints a blank.
Prints the characters contained in the literal.

Prints the character represented by one byte of data. This is similar to
the CHRS function. The number is rounded to an INTEGER and the
least-significant byte is sent. If the number is greater than 32 767, then
255 is used; if the number is less than —32 768, then 0 is used.

Prints two characters represented by the two bytes in a 16-bit,
two’s-complement integer word. The corresponding numeric item is
rounded to an INTEGER. If it is greater than 32 767, then 32 767 is used;
if it is less than —32 768, then —32 768 is used. On an 8-bit interface, the
most-significant byte is sent first. On a 16-bit interface, the two bytes are
sent as one word in a single operation.

Same as W. (Requires 10)

Suppresses the automatic output of the EOL (End-Of-Line) sequence
following the last print item.

Ignored in PRINT images.

Changes the automatic EOL sequence that normally follows the last print
item to a single carriage-return. (Requires I0)

Changes the automatic EOL sequence that normally follows the last print
item to a single line-feed. (Requires IO)

Sends a carriage-return and a line-feed to the PRINTER IS device.

Sends the current EOL sequence to the PRINTER IS device. The default
EOL characters are CR and LF; see PRINTER IS for information on
re-defining the EOL sequence. If the destination is an I/O path name with
the WORD attribute, a pad byte may be sent after the EOL characters to
achieve word alignment.

Sends a form-feed to the PRINTER IS device.

PARITY - PURGE P-69

PRINT

P Note Some localized versions of BASIC, such as Japanese localized
BASIC, support two-byte characters. When using this localized
language remember that the IMAGE, ENTER USING,
OUTPUT USING, and PRINT USING statements define a
one-byte ASCII character image with A. Use the image AA to
designate a two-byte character.

For a general discussion of globalization and localization, refer
to the HP BASIC 6.2 Porting and Globalization manual. For
LANGUAGE specific details, refer to Using LanguageX With
HP BASIC, where LanguageX is your local language.

P-70 PARITY - PURGE

PRINTALL IS

PRINTALL IS

Supported on UX WS DOS
Option Required None
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This statement assigns a logging device, file or pipe for recording operator
interaction and troubleshooting messages.

PRINTALL IS device

Jact
selector

file
specifier

pipe

)

A
> | d—of~line |
@ e::"horvucter's
END DELAY

line
WIOTH v:'dth I

1 I
I I
exchange
i string 1
1 |
| exchange shift in shift out |
| string SHFT N string out string }-. |
I |
| LaousGE oFF !

PARITY - PURGE P-71

PRINTALL IS

Item

Description

Range

device selector
file specifier
end-of-line
characters
seconds

line width
exchange string
shift in string

shift out string

directory path

file name
LIF protect
code

SRM password

volume specifier

numeric expression, rounded to an
integer; Default = CRT

string expression

string expression; Default = CR/LF

numeric expression, rounded to the
nearest 0.001 seconds; Default = 0

numeric expression, rounded to an
integer; Default = infinity (see text)

string expression

string expression

string expression

literal

literal

literal; first two non-blank characters
are significant

literal; first 16 non-blank characters
are significant

literal

P-72 PARITY - PURGE

(see Glossary)

0 through 8 characters
0.001 through 32.767
1 through 32 767

choices depend on

LANGUAGE

depends on printer used; six
bytes maximum

depends on printer used; six
bytes maximum

(see MASS STORAGE IS)

depends on volume’s format
(see Glossary)
> not allowed

> not allowed

(see MASS STORAGE IS)

PRINTALL IS
Example Statements

PRINTALL IS 701

PRINTALL IS Gpio

PRINTALL IS 701;EOL CHR$(13) END,VIDTH 65

PRINTALL IS 614 BASIC/UX in X Windows
only

PRINTALL IS "debug.out"

PRINTALL IS "| fold | pr -e -o8 | 1p" BASIC/UX only

PRINTALL IS "debug.out";APPEND

PRINTALL IS 701;EXCHANGE "HP-16"

PRINTALL IS 701;EXCHANGE "JIS" SHIFT IN In$ OUT Out$

Semantics

PRINTALL IS defines a device or file as the destination for for logging certain
messages. You can turn PRINTALL logging on and off using th
or key. An asterisk (*) is displayed on the softkey label if PRINTALL

is on.

When PRINTALL is on, all items generated by DISP, all operator input
followed by the (Return), (ENTER), (CONTINUE), or (EXECUTE] key, and all error
messages from the computer are logged. All TRACE activity is logged if
tracing is enabled.

At power-on and SCRATCH A, the default printall device is the CRT (select
code 1).

The EOL Attribute (Requires 10)

The EOL attribute re-defines the end-of-line (EOL) sequence, which is sent

at the following times: after the number of characters specified by line width
and after each line of text. Up to eight characters may be specified as the

EOL characters; an error is reported if the string contains more than eight
characters. If END is included in the EQL attribute, an interface-dependent
END indication is sent with the last character of the EOL sequence. If DELAY
is included, the computer delays the specified number of seconds (after sending
the last character) before continuing. The default EOL sequence consists of a

PARITY - PURGE P-73

PRINTALL IS

carriage-return and a line-feed character with no END indication and no delay
period.

The WIDTH Attribute (Requires 10)

The WIDTH attribute specifies the maximum number of characters

which will be sent to the printing device or file before an EOL sequence is
automatically sent. The EOL characters are not counted as part of the line
width. The default width for the Model 226 CRT is 50, Model 237 and other
high-resolution displays is 128, and the default for all other devices or file is 80.
Specifying WIDTH OFF sets the width to infinity. If the default is desired,

it must be restored explicitly. If the USING clause is included in the PRINT
statement, the WIDTH attribute is ignored.

PRINTALL IS file
The file must be a BDAT, DFS, or HP-UX file.

The PRINTALL IS file statement positions the file pointer to the beginning
of the file unless you specify the APPEND option. Thus, PRINTALL IS
overwrites an existing file unless you specify APPEND. The file is closed when
another PRINTALL IS statement is executed and at SCRATCH A.

You can read the file with ENTER if it is ASSIGNed with FORMAT ON. An
end-of-file error occurs when the end of a LIF file is reached.

If you are using a version of BASIC that supports wildcards, you can use them

in file specifiers with PRINTALL IS. You must first enable wildcard recognition
using WILDCARDS. Refer to the keyword entry for WILDCARDS for details.

Wildcard file specifiers used with PRINTALL IS must match one and only one

file name.

SRM, DFS, and HFS Files

In order to write to a PRINTALL IS file on a DFS or an HFS volume, you
need to have R (read) and W (write) permission on the file, and X (search)
permission on all superior directories.

In order to write to a PRINTALL IS file on an SRM volume, you need to have
READ and WRITE capabilities on the immediately superior directory, as well
as READ capabilities on all other superior directories.

P-74 PARITY - PURGE

PRINTALL IS

No end-of-file error occurs when writing to a file on an SRM, DFS, or HFS
volume because these files are extensible. That is, if the data output to the file
with this statement would otherwise overflow the file’s space allocation, the
BASIC system automatically allocates the additional space needed (provided
the media contains enough unused storage space).

If the specified file is in the SRM printer spooler directory, is of type BDAT,
and contains data, then the SRM system sends the data to the printer (after
the file is closed) and then purges the file. The SRM printer spooler will also
spool ASCII files, which can be written by BASIC using OUTPUT, SAVE or
RE-SAVE.

You may close the file by executing another PRINTALL IS statement, or a
SCRATCH A or SCRATCH BIN command. The SRM printer spooler will also
spool ASCII files, which can be written by BASIC using OUTPUT, SAVE or
RE-SAVE.

BASIC/UX Specifics

On HP-UX systems, the line-printer is a spooled device. Writing directly to the
printer as 701 may interfere with other spooled output. It is recommended that
PRINTALL IS output be directed to either a file or the line-printer spooler by,
for example, the statement:

PRINTALL IS "|1p"

BASIC/UX treats output to a pipe as it would output to a file. The pipe
must be explicitly closed before any output becomes permanent (or takes
place). Output to a spooled device will not be sent to the spooler until the

pipe has been closed. The closing of pipes can be achieved with a subsequent
PRINTALL IS, QUIT, or SCRATCH A command.

If PRINTALL IS device is a window and that window is destroyed (with
DESTROY WINDOW), PRINTALL IS is undefined and generates an error.

PARITY - PURGE P-75

PRINTALL IS

Using EXCHANGE and SHIFT IN ... OUT (Requires LANGUAGE)

Some localized versions of BASIC, such as Japanese localized BASIC, support
two-byte characters. The secondary keyword EXCHANGE allows you to
automatically convert internal HP-15 character codes to the codes supported
by your two-byte printer. The available choices and default values for exchange
string depend on the particular LANGUAGE localization binary that you are
using. You can turn the EXCHANGE function off by specifying EXCHANGE
OFF. If you specify EXCHANGE without an exchange string, "HP-16" is
assumed.

The secondary keywords SHIFT IN and OUT are useful with certain printers
that use special control strings to turn two-byte printing on and off. BASIC
automatically sends the specified shift in string before two-byte characters.
BASIC also sends the specified shift out string before one-byte characters that
follow two-byte characters.

Note SHIFT IN and SHIFT OUT cause Error 257 if used with
HP-15 characters. Use EXCHANGE to convert HP-15
characters to your LANGUAGE two-byte characters.

For a general discussion of globalization and localization including printers,
refer to the HP BASIC 6.2 Porting and Globalization manual. For
LANGUAGE specific details, refer to Using LanguageX with HP BASIC, where
LanguageX is your local language.

P-76 PARITY - PURGE

PRINTER IS

PRINTER IS

Supported On UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This statement specifies the system printing device, file, or pipe.

PARITY - PURGE P-77

PRINTER IS

file
PRINTER IS specifier]

device
selector

pipe

wl
F—— == = === == — T T T T s s == - - h
| ' J |
| !
> () > I end—of=line |

EOL characters |
| END DELAY d |
| |
| "’(OFF > I
| |
e O30 e B !
| |
b /0 |
Ll e e e T e e e e e - e — — — —— e — - n
rfr—-—-—---= k|
| MS |
o)—
[U a
rt----———— - - — === === = h
I Sexcrance) s
| exchanqel |

string
| |
| |
exchange shift in shift out

| string SHFT N string our string |
! |
1 OFF |

literal form of file specifier:

pr—
L] file L]
name

directory| < LIF protect > volume
poth code specifier
Y SRM

HFS or SRM files only password

P-78 PARITY - PURGE

Item

Description

PRINTER IS

Range

file specifier

device selector
end-of-line
characters
seconds

line width
exchange string
shift in string

shift out string

directory path

file name
LIF protect

code

SRM password

volume specifier

string expression

numeric expression, rounded to an
integer

string expression; Default = CR/LF

numeric expression, rounded to the
nearest 0.001 seconds; Default=0

numeric expression, rounded to an
integer; Default = (see text)

string expression

string expression

string expression

literal

literal

literal; first two non-blank characters
are significant

literal; first 16 non-blank characters
are significant

literal

(see Glossary)

0 through 8 characters
0.001 through 32.767
1 through 32 767

choices depend on

LANGUAGE

depends on printer used; six
bytes maximum

depends on printer used; six
bytes maximum

(see MASS STORAGE IS)

depends on volume’s format
(see Glossary)
> not allowed

> not allowed

(see MASS STORAGE IS)

PARITY - PURGE P-79

P

PRINTER IS

Example Statements

PRINTER IS 701

PRINTER IS 614 BASIC/UX in X only
PRINTER IS Gpio

PRINTER IS "debug.out”

PRINTER IS 701;EOL CHR$(13) END,WIDTH 65

PRINTER IS "Myfile";WIDTH 80

PRINTER IS "Spooler :REMOTE"

PRINTER IS "My_dir/Temp_print";WIDTH 80

PRINTER IS " | fold | pr -e -o8| 1p" BASIC/UX only
PRINTER IS "MyBDATfile"; APPEND

PRINTER IS 701;EXCHANGE "HP-16"

PRINTER IS 701;EXCHANGE "JIS" SHIFT IN In$ OUT Out$

Semantics

The system printing device or file receives all data sent by the PRINT
statement and all data sent by CAT, LIST, and XREF statements in which the
destination is not explicitly specified.

The default printing device is the CRT (select code 1) at power-on and after
executing SCRATCH A.

Using the EOL Attribute (Requires 10)

The EOL attribute re-defines the end-of-line (EOL) sequence, which is sent
at the following times: after the number of characters specified by line width,
after each line of text, and when an “L” specifier is used in a PRINT USING
statement. Up to eight characters may be specified as the EOL characters;
an error is reported if the string contains more than eight characters. If END
is included in the EOL attribute, an interface-dependent END indication is
sent with the last character of the EOL sequence. If DELAY is included,

the computer delays the specified number of seconds (after sending the

last character) before continuing. The default EOL sequence consists of a

carriage-return and a line-feed character with no END indication and no delay
period. END and DELAY are ignored for files.

P-80 PARITY - PURGE

PRINTER IS

The WIDTH Attribute (Requires 10)

The WIDTH attribute specifies the maximum number of characters which will
be sent to the printing device before an EOL sequence is automatically sent.
The EOL characters are not counted as part of the line width. The default
width for the Model 226 CRT is 50, Model 237 and other high-resolution
displays is 128, and the default for all other devices is 80. Specifying WIDTH
OFF sets the width to infinity. If the default is desired, it must be restored
explicitly. If the USING clause is included the PRINT statement, the WIDTH
attribute is ignored. Default WIDTH for files is OFF.

PRINTER IS file
The file must be a BDAT, DFS, or HP-UX file.

The PRINTER IS file statement positions the file pointer to the beginning of
the file unless you specify the APPEND option. Thus, PRINTER IS overwrites
existing files unless you specify APPEND. The file is closed when another
PRINTER IS statement is executed and at SCRATCH A.

If you are using a version of BASIC that supports wildcards, you can use them
in file specifiers with PRINTER IS. You must first enable wildcard recognition
using WILDCARDS. Refer to the keyword entry for WILDCARDS for details.
Wildcard file specifiers used with PRINTER IS must match one and only one
file name.

You can read the file with ENTER if it is ASSIGNed with FORMAT ON. An
end-of-file error occurs when the end of a LIF file is reached.

SRM, DFS, and HFS Files

In order to write to a PRINTER IS file on a DFS or an HFS volume, you
need to have R (read) and W (write) permission on the file, and X (search)
permission on all superior directories.

In order to write to a PRINTER IS file on an SRM volume, you need to have
READ and WRITE capabilities on the immediately superior directory, as well
as READ capabilities on all other superior directories.

No end-of-file error occurs when writing to a file on an SRM, DFS, or HFS
volume because these files are extensible. That is, if the data output to the file

PARITY - PURGE P-81

PRINTER IS

with this statement would otherwise overflow the file’s space allocation, the
BASIC system automatically allocates the additional space needed (provided
the media contains enough unused storage space).

If the specified file is in the SRM printer spooler directory, is of type BDAT,
and contains data, then the SRM system sends the data to the printer (after
the file is closed) and then purges the file.

You may close the file by executing another PRINTER IS statement, or a
SCRATCH A or SCRATCH BIN command.

BASIC/UX Specifics

On HP-UX systems, the line-printer is a spooled device. Writing directly to the
printer as 701 may interfere with other spooled output. It is recommended

that printer output be directed to either a file or the line-printer spooler by, for
example, the statement:

PRINTER IS "|1p"

BASIC/UX treats output to a pipe as it would output to a file. The pipe must
be explicitly closed before any output becomes permanent (or takes place).
Output to a spooled device will not be sent to the spooler until the pipe has
been closed. The closing of pipes can be achieved with a subsequent PRINTER
IS, QUIT, or SCRATCH A command.

Using EXCHANGE and SHIFT IN ... OUT (Requires LANGUAGE)

Some localized versions of BASIC, such as Japanese localized BASIC, support
two-byte characters. The secondary keyword EXCHANGE allows you to
automatically convert internal HP-15 character codes to the codes supported
by your two-byte printer. The available choices and default values for exchange
string depend on the particular LANGUAGE localization binary that you are
using. You can turn the EXCHANGE function off by specifying EXCHANGE
OFF. If you specify EXCHANGE without an exchange string, "HP-16" is
assumed.

The secondary keywords SHIFT IN and OUT are useful with certain printers
that use special control strings to turn two-byte printing on and off. BASIC
automatically sends the specified shift in string before two-byte characters.

P-82 PARITY - PURGE

PRINTER IS

BASIC also sends the specified shift out string before one-byte characters that
follow two-byte characters.

Note SHIFT IN and SHIFT OUT cause Error 257 if used with
HP-15 characters. Use EXCHANGE to convert HP-15
characters to your LANGUAGE two-byte characters.

For a general discussion of globalization and localization including printers,
refer to the HP BASIC 6.2 Porting and Globalization manual. For
LANGUAGE specific details, refer to Using LanguageX with HP BASIC, where
LanguageX is your local language.

PARITY - PURGE P-83

PRINT LABEL

Supported on UX WS DOS
Option Required MS
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN ... Yes

This statement gives a name to a mass storage volume.

(PRINT LaBEL)] YOUume >
vol
TO)| specitier
Item Description l Range
volume label name to be given to the volume —
volume specifier | string expression; Default=the (see MASS STORAGE IS)

default mass storage unit

Example Statements

PRINT LABEL "Vers3" TO ":INTERNAL,4,0"
PRINT LABEL Vol_label$ TO Vol_specifier$

Semantics
The new name overwrites any previous name for the volume.

The volume label can be zero to six characters in length consisting of letters
and numbers. For maximum interchange, the characters should be limited to
upper-case letters (A-Z) and digits (0-9) with the first character being a letter.

You cannot use PRINT LABEL with SRM volumes; instead, you will have to
name the volume at the SRM console.

P-84 PARITY - PURGE

PRINT LABEL

BASIC/UX Specifics
PRINT LABEL does not work in BASIC/UX for HFS.

BASIC/DOS Specifics
PRINT LABEL is not supported for DFS.

PARITY - PURGE P-85

PRINT PEN

Supported On UX WS DOS
Option Required CRTX
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This statement sets the pen color or gray value to be used in the output area
and display line of the CRT.

<PRINT PEN)—F pen value >

Item | Description/Default | Range Restrictions

pen value l numeric expression I —

Example Statements

PRINT PEN Pen_value
PRINT PEN 143
IF Color_blue THEN PRINT PEN 141

Semantics

The set of alpha colors is given in the table below:

P-86 PARITY - PURGE

PRINT PEN

Value Result

< 16 The number is evaluated
MOD 8 and resulting values
produce the following:
0—black
1—white
2—red
3—yellow
4—green
5—cyan
6—blue
7—magenta

16 to 1356 Ignored

136 White

137 Red

138 Yellow

139 Green

140 Cyan

141 Blue

142 Magenta

143 Black

144 to 255 Ignored

This statement has no effect on single plane monochrome displays. On gray
scale (multi-plane monochrome displays) this statement changes the display
color to a different shade of gray.

For displays with bit-mapped alpha, PRINT PEN specifies the graphics pen to
be used for subsequent alpha output. The range of values allowed with this
statement are 0 through 255; these values are treated as MOD 2" n where n is
the number of display planes.

PRINT PEN n and CONTROL CRT,15; n set the value of CRT control register
15. These statements have no effect on control registers 16 and 17 which are
set using KEY LABELS PEN and KBD LINE PEN, respectively.

Note that the functionality of this statement can be achieved through CRT
CONTROL register 15.

PARITY - PURGE P-87

P

PRIORITY
See the SYSTEM PRIORITY statement.

P-88 PARITY - PURGE

PROTECT

PROTECT

Supported On

Option Required
Keyboard Executable
Programmable

InanlF ... THEN ...

UX WS
None
Yes

Yes

Yes

This statement specifies the protect code used on PROG, BDAT, and BIN
files on LIF volumes. It also specifies passwords used on all types of files and

directories on SRM volumes. (See PERMIT for access permissions of files and
directories on HFS or SRM/UX volumes.)

SRM _ file]

specifier

UF file
specifier

N new UF

protect code

specifier

SRM directory

literal form of file specifier:

file

~O;

directory
path

S——

HFS or SRM files only

J

name

literal form of directory specifier:

01

directory

path

J

—

HFS or SRM files only

=

UF protect >
code specifier
SRM
password >
directory "
name
< SRM volume
password specifier

PARITY - PURGE P-89

PROTECT

Item Description Range
LIF file string expression (see “file specifier” drawing)
specifier
new LIF string expression; first two non-blank | “>” not allowed

protect code

SRM file
specifier

SRM directory
specifier

new SRM

password
directory path

file name

volume specifier

directory name

characters are significant

string expression

string expression

literal; first 16 characters are
significant

literal

literal

literal

literal

Example Statements

PROTECT Name$,Lif_pc$
PROTECT "George<xy>:INTERNAL","NEW"

(see “file specifier” drawing)

(see “directory specifier”
drawing)

any valid SRM password
(see Glossary)

(see MASS STORAGE 1IS)

depends on volume’s format
(see Glossary)

(see MASS STORAGE IS)

depends on volume’s format
(see Glossary)

PROTECT "dir:REMOTE", ("mgr" :MANAGER) , ("'re" :READ,WRITE)
PROTECT "File<rw>", ("rw":DELETE)

Semantics

P-90 PARITY - PURGE

PROTECT

LIF Files

A protect code is necessary only for operations which write to a file or PURGE
a file. The file can always be read without using the protect code (by LOAD,
COPY, CAT “file name”, etc.) The protect code is required for ASSIGN (and
therefore ENTER) since ASSIGN opens a file for both read and write.

Protect codes are “trimmed” before they are used. Therefore, leading and
trailing blanks are insignificant. To remove a protect code from a file, assign a
protect code that is the null string or contains all blanks.

SRM Files (Requires SRM and DCOMM)

PROTECT allows you to control access to SRM files and directories by
protecting access capabilities with password(s). Access capabilities are either
public (available to all SRM users) or password-protected (available only to
users supplying the correct password with the file or directory specifier).

The three access capabilitiecs—MANAGER, READ and WRITE—are public
until the PROTECT statement associates a password with one or more of
those capabilities.

Once the capability on a given file or directory is password-protected, the
capability can be exercised on the file or directory only if the correct password
is included in the file or directory specifier. For instance, if a file’s READ
capabilities are protected, any user wishing to execute a command or statement
that reads the file must supply a password protecting the file’s READ
capability.

SRM/UX does not support the PROTECT statement, and will give Error 62 if
PROTECT is used. Use PERMIT to control access to SRM/UX files.

MANAGER Access Capability (SRM)

Public MANAGER capability allows any SRM user to PROTECT, PURGE
or RENAME a file or directory. Password-protected MANAGER capability
provides READ and WRITE, as well as MANAGER, access capabilities to
users who know the password.

PARITY - PURGE P-91

PROTECT

You must have MANAGER capabilities on a file or directory to PROTECT the
access capabilities on that file or directory. This includes adding, deleting and
changing passwords.

READ Access Capability (SRM)

READ capability on a file allows use of commands and statements that read
the contents of a file (for example: ENTER, LOAD, GET). READ capability
on a directory allows you to read the files in the directory (CAT), or to “pass
through” a directory by including the directory name (and password, if
assigned) in a directory path.

WRITE Access Capability (SRM)

WRITE capability on a file allows use of commands and statements that

write to the file (for example: OUTPUT, RE-SAVE, RE-STORE). WRITE
capability on a directory allows use of commands that add or delete file names
in the directory (for example: SAVE, STORE, PURGE, CREATE, RENAME).

Use of PROTECT on SRM

Each PROTECT statement allows up to six password/capability combinations
per statement. The number of PROTECT statements that can be executed for
each file or directory is unlimited, however, as long as each password is unique.

Successive associations of capabilities with the same password are not
cumulative. To retain previous capability assignments for a file or directory,
you must include those assignments in subsequent PROTECT statements
designating the same password for that file or directory.

Assume you protected the READ access capability on a file with the password
passme then wanted to change that assignment so that passme would protect
both the READ and WRITE access capabilities for that file. If you executed a
second PROTECT statement associating passme with the WRITE capability
only, passme would no longer protect the READ capability. Instead, you
should specify the password and both the READ and WRITE capabilities in
the second PROTECT statement.

P-92 PARITY - PURGE

PROTECT

To modify the access capabilities protected by a password, execute the
PROTECT with the existing password and the new password/capability

pair(s).

The secondary keyword DELETE is used to delete existing password
assignments for a file or directory. To be effective, DELETE must be the only
secondary keyword used with a password/capability pair in the PROTECT
statement. Otherwise, DELETE is ignored. MANAGER capability is required
to perform the DELETE. A DELETE executed without MANAGER capability
results in a protect code violation error.

PROTECT with WILDCARDS

If you are using a version of BASIC that supports wildcards, you can use them
in file specifiers with PROTECT. You must first enable wildcard recognition
using WILDCARDS. Refer to the keyword entry for WILDCARDS for details.

PARITY - PURGE P-93

PROUND

Supported On UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This function returns the value of the argument rounded to the specified
power-of-ten.

PROUND o argument . o':f’m::; —D@—-P

Item Description Range
argument numeric expression —
power of ten numeric expression, rounded to an —
integer

Example Statements

Money=PROUND(Result,-2)
PRINT PROUKD(Quantity,Decimal_place)

Semantics
COMPLEX arguments are not allowed with this function.

P-94 PARITY - PURGE

PRT

PRT

Supported On UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This INTEGER function returns 701, the default (factory set) device selector
for an external printer.

PRT

Example Statements

PRINTER IS PRT
OUTPUT PRT;A$

PARITY - PURGE P-95

PURGE

Supported On UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This statement deletes a file from a directory. On hierarchical-directory
volumes (such as DFS, HFS and SRM), PURGE deletes an empty directory
from its superior directory.

P-96 PARITY - PURGE

PURGE

file
specifier

directory)|
specifier

literal form of file specifier:

file @_ﬂ
name -j
directory UF protect volume
code specifier

path

__Y__J

HFS or SRM files only

literal form of directory specifier:
“ directory “
name
directory e SRM ° volume
path password specifier

HFS or SRM files only

literal form of DFS file specifier:

m file m
name

directory volume

path specifier

literal form of DFS directory specifier:

" dil’ector’y "
name
directory

volume
path specifier

PARITY - PURGE P-97

PURGE

Item Description Range
file specifier string expression (see drawing)
directory string expression (see drawing)
specifier
directory path |literal (see MASS STORAGE IS)
file name literal depends on volume’s format

(see Glossary)

LIF protect literal; first two non-blank characters | > not allowed
code are significant

SRM password |literal; first 16 non-blank characters | > not allowed
are significant

volume specifier | literal (see MASS STORAGE 1S)

directory name |{literal depends on volume’s format
(see Glossary)

Example Statements

PURGE File_name$

PURGE "File"

PURGE "George<PC>"

PURGE "Dir_a<SRM_RW_pass>/File<MGR_pass>"
PURGE "Dir1/Dir2/Dir3"

PURGE "Monday_7" WILDCARDS UX ONLY
PURGE "Dir/Type_[A-Z]" WILDCARDS UX ONLY
Semantics

Once a file is purged, you cannot access the information which was in the file.
The records of a purged file are returned to “available space.”

An open file must be closed before it can be purged. Any file except a
PRINTER IS file, a PLOTTER IS file, or the current working directory can be
closed by ASSIGN TO * (see ASSIGN). All files except those opened with the

P-98 PARITY - PURGE

PURGE

PRINTER IS statement are closed by (RESET) ((SHIFT)-(PAUSE) or (Shift } (Break]).
A PRINTER IS file can be closed by executing a PRINTER IS to another
device or file. A PLOTTER IS file can be closed by GINIT or PLOTTER IS to
another device or file. SCRATCH A closes all files.

If you are using a version of BASIC that supports wildcards, you can use them
in file specifiers with PURGE. You must first enable wildcard recognition using
WILDCARDS. Refer to the keyword entry for WILDCARDS for details.

When PURGE is executed from the keyboard with a wildcard argument that
matches more than one item, BASIC prompts you to continue, thus ensuring
safe file purging. BASIC does not prompt you to continue when executing
PURGE from a program.

SRM, DFS, and HFS Files and Directories

In order to PURGE an HFS, DFS, or SRM directory or file, all of the following
conditions must be met:

m It must be closed. The current working directory is closed by an MSI to a
different directory. SCRATCH A closes all directories and files.

m It must be empty (directories only). That is, it must not contain any
subordinate files or directories.

u You must have the appropriate access capabilities.

O In order to PURGE a file or directory on an HFS or DFS volume, you
need to have W (write) and X (search) permission of the immediately
superior directory, as well as X (search) permission on all other superior
directories. Note that the ability to purge an HFS or DFS file is not
determined by the file’s permissions but rather by the permissions set on
the parent directory.

O In order to PURGE a file or directory on an SRM volume, you need to
have M (manager) access capability on file or directory, as as well as R
(read) and W (write) capabilities on the immediately superior directory
and R capability on all superior directories.

PARITY - PURGE P-99

QUIT

QuIT Q-1

QUIT

Supported On UX DOS WS*
Option Required RMBUX Binary
Keyboard executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This statement exits BASIC for BASIC/UX and BASIC/DOS. The statement
is accepted by the editor for BASIC/WS, BASIC/UX, or BASIC/DOS, but it
wil only execute on BASIC/UX or BASIC/DOS.

Example Statements

QUIT
IF A$="DONE" THEN QUIT

Semantics

When used within a program, this statement stops the program, and then
BASIC exits.

When used as a keyboard command while a program is running, an error is
given. You must first stop (or pause) the program before using the QUIT
command.

If a program is not running, then BASIC is exited immediately.

Q-2 QuIT

RAD - RUNLIGHT ON/OFF

RAD - RUNLIGHT ON/OFF R-1

RAD

Supported On UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This statement selects radians as the unit of measure for expressing angles.

Semantics

All functions which return an angle will return an angle in radians. All
operations with parameters representing angles will interpret the angle in
radians. If no angle mode is specified in a program, the default is radians (also
see DEG).

A subprogram “inherits” the angle mode of the calling context. If the angle
mode is changed in a subprogram, the mode of the calling context is restored
when execution returns to the calling context.

R-2 RAD - RUNLIGHT ON/OFF

RANDOMIZE

RANDOMIZE

Supported On UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes

In an IF ... THEN ... Yes

This statement selects a seed for the RND function.

RANDOMIZE

seed

Item I Deseription

I Range

numeric expression, rounded to an
integer; Default = pseudo-random

seed

Example Statements

RANDOMIZE
RANDOMIZE 01d_seed*PI

Semantics

1 through 23! -2

The seed actually used by the random number generator depends on the
absolute value of the seed specified in the RANDOMIZE statement.

RAD - RUNLIGHT ON/OFF R-3

RANDOMIZE

Absolute Value

of Seed Value Used
less than 1 1
1 through 2312
INT(ABS(seed))
greater than 2312 23192

The seed is reset to 37 480 660 by power-up, SCRATCH A, SCRATCH, and
program prerun.

R-4 RAD - RUNLIGHT ON/OFF

RANK

RANK

Supported On UX WS DOS IN
Option Required MAT

Keyboard Executable Yes
Programmable Yes

InanIF ... THEN... Yes

This function returns the number of dimensions in an array. The value
returned is an INTEGER.

oo s D

Item I Description I Range

array name Iname of an array |any valid name

Example Statements

IF RANK(A)=2 THEN PRINT "A is a matrix"
R=RANK (Array)

RAD - RUNLIGHT ON/OFF R-5

RATIO

Supported On UX WS DOS
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This function returns the ratio of the X hard clip limits to the Y hard clip
limits for the current PLOTTER IS device.

Example Statements

WINDOW 0,10%RATIO,-10,10
Turn=1/RATIO

R-6 RAD - RUNLIGHT ON/OFF

READ

READ

Supported On UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes
InanIF ... THEN ... Yes

This statement reads values from DATA statements and assigns them to
variables.

Y 2 W

string o1
(READ) name @ A
[beginning |]
position
ending
position
subscript] substring
length
ol) >
)
] numeric _J

name

subscript |

RAD - RUNLIGHT ON/OFF R-7

READ

Item Description Range
numeric name |name of a numeric variable any valid name
string name name of a string variable any valid name
subscript numeric expression, rounded to an —32 767 through +32 767
integer (see “array” in Glossary)
beginning numeric expression, rounded to an 1 through 32 767 (see
position integer “substring” in Glossary)
ending position |numeric expression, rounded to an 0 through 32 767 (see
integer “substring” in Glossary)
substring numeric expression, rounded to an 0 through 32 767 (see
length integer “substring” in Glossary)

Example Statements

READ Number,String$
READ Array(*)
READ Item(1,1),Item(2,1),Item(3,1)

Semantics

The numeric items stored in DATA statements are considered strings by

the computer, and are processed with a VAL function to read into numeric
variables in a READ statement. If they are not of the correct form, error 32
may result. Real DATA items will be rounded into an INTEGER variable

if they are within the INTEGER range (—32 768 through 32 767). When a
READ statement contains a COMPLEX variable, that variable is satisfied with
two REAL values. A string variable may read numeric items, as long as it is
dimensioned large enough to contain the characters.

The first READ statement in a context accesses the first item in the first
DATA statement in the context unless RESTORE has been used to specify a
different DATA statement as the starting point. Successive READ operations
access following items, progressing through DATA statements as necessary.
Trying to READ past the end of the last DATA statement results in error

R-8 RAD - RUNLIGHT ON/OFF

READ

36. The order of accessing DATA statements may be altered by using the
RESTORE statement.

An entire array can be specified by replacing the subscript list with an asterisk.
The array entries are made in row major order (right most subscript varies
most rapidly).

RAD - RUNLIGHT ON/OFF R-9

READIO

Supported on UX WS DOS*
Option Required None
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN... Yes

This function reads the contents of the specified hardware register on the
specified interface, or reads the specified byte or word of memory.

m o interface register
select code number

Item Description Range
select code numeric expression, rounded to an 1 through 31, and -31
integer through -1; £9826; 9827
register number | numeric expression, rounded to an hardware-dependent
or memory integer
address
Note Unexpected results may occur with select codes 9826 and 9827.

Example Statements

Upper_byte=READIO(Gpio,4)

PRINT "Register";I;"=";READIO(7,I)
Peek_byte=READI0(9826 ,Mem_addr)
Var_addr=READI0(9827,Integer_array)

R-10 RAD - RUNLIGHT ON/OFF

READIO

Semantics

Positive select codes do a byte read (appropriate for most device registers);
negative select codes do a word read.

Reading Memory (“Peek”)

Select code 9826 is used to read a byte of memory, while —9826 is used to read

a word (16 bits) of memory. The second parameter specified in the READIO

function is the memory address of the byte to be read. This parameter is

interpreted as a decimal address; for instance, an address of 100 000 is 10°5,

not 2°20. R

Determining the Location of Numeric Variables

Select code 9827 is used to determine the memory address of a BASIC
variable. You can use this address, for instance, with WRITEIO to perform a
JSR (“Jump to SubRoutine”) instruction in machine language, execute the

instructions contained in the array, and then return to BASIC. (See WRITEIO
for details.)

BASIC/UX Specifics

You are restricted to memory access within your own process space.

BASIC/DOS Specifics

Use of READIO or WRITEIO requires specific knowledge of the measurement

coprocessor hardware. In general, it is recommended that you use STATUS and
CONTROL instead.

RAD - RUNLIGHT ON/OFF R-11

READ KEY

Supported On WS
Option Required KBD
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This statement reads typing-aid softkey definitions into a string variable.

READ KEY el o €
Item | Description

stning |
variable
string

anrray

I Range

numeric expression, rounded to an
integer

key number

Example Statements

READ KEY 1,A$
READ REY This_key,String$
READ KEY Key,Key_array$(#)

Semantics

0to 23

When the string variable is not an array, the single softkey definition specified
by the key number is read. When the string variable is an array, all the
typing-aid softkey definitions beginning with the key number specified are read

into the array.

The exact size required for the READ KEY string variable depends on the
the number of characters in the softkey definition of interest. The largest
typing-aid softkey definition allowed contains 256 bytes of character data per

softkey.

R-12 RAD - RUNLIGHT ON/OFF

READ KEY

For more information on typing-aid softkeys, refer to Using HP BASIC/WS 6.2
or Using HP BASIC/UX 6.2, and the “Communicating with the Operator”
chapter of HP BASIC 6.2 Programming Guide.

Related Commands
SET KEY, EDIT KEY, LOAD KEY

RAD - RUNLIGHT ON/OFF R-13

READ LABEL

Supported on UX WS DOS™
Option Required MS
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This statement reads a volume label into a string variable.

), string al
(READ LABEL variable -J -
media
FROM specifier

Item Description Range

string variable |string variable which returns the —
volume name

volume specifier |string expression; Default = the (see MASS STORAGE IS)
default mass storage unit

Example Statements

READ LABEL Volume_name$ FROM ":INTERNAL,4,1"
IF Inserted$="Yes" THEN READ LABEL Vol_label$ FROM Vol_specifier$

Semantics

A LIF or HFS volume label consists of a maximum of 6 characters. SRM
volumes can have labels up to 16 characters.

R-14 RAD - RUNLIGHT ON/OFF

READ LABEL

BASIC/UX Specifics
READ LABEL does not work for HFS in BASIC/UX.

BASIC/DOS Specifics
READ LABEL is not supported for DFS.

RAD - RUNLIGHT ON/OFF R-15

READ LOCATOR

Supported On UX WS DOS
Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This statement samples the locator device, without waiting for a digitizing
operation.

x coordinate y coordinate —l

(ReAD LocATOR)-»{* coordinatel . (7 o >
string
name

Item Description Range
x coordinate name of a numeric variable any valid name
name
y coordinate name of a numeric variable any valid name
name
string name name of a string variable any valid name

Example Statements

READ LOCATOR X_pos,Y_pos
READ LOCATOR X,Y,Status$

Semantics

Executing this statement issues a request to the current locator device to
return a set of coordinates. The coordinates are sampled immediately, without
waiting for a digitizing action on the part of the user. GRAPHICS INPUT

IS is used to establish the current locator device. The returned coordinates
are in the unit-of-measure currently defined for the PLOTTER IS and

R-16 RAD - RUNLIGHT ON/OFF

READ LOCATOR

GRAPHICS INPUT IS devices. The unit-of-measure may be default units or
those defined by either the WINDOW or SHOW statement. If an INTEGER
numeric variable is specified, and the value returned is out of range, Error 20 is

reported.

The optional string variable is used to input the device status of the
GRAPHICS INPUT IS device. This status string contains eight bytes, defined

as follows.

Byte 1:

Bytes 2, 4, and 6:

Byte 3:

Byte 5:
Bytes 7 and 8:

Button status; This value represents the status of the
digitizing button on the locator. A “0” means the

button is not depressed, and a “1” means the button is
depressed. This is an unprocessed value, and a “1” does
not necessarily represent successful digitization. If the
numeric value represented by this byte is used as the pen
control value for a PLOT statement, continuous digitizing
will be copied to the display device.

commas; used as delimiters.

Significance of digitized point; “0” indicates that the point
is outside the P1, P2 limits; “1” indicates that the point
is outside the viewport, but inside the P1, P2 limits; “2”
indicates that the point is inside the current viewport
limits.

Tracking status; “0” indicates off, “1” indicates on.

The number of the buttons which are currently down. To
interpret the ASCII number returned, change the number
to its binary form and look at each bit. If the bit is “1”,
the corresponding button is down. If the bit is “0”, the
corresponding button is not down.

If the locator device (e.g., stylus or puck) goes out of
proximity, a “button 7” is indicated in the “button
number” bytes. The number will be exactly “64”,
regardless of whether any actual buttons are being held
down at the time. The HP 9111A always returns “00” in
bytes 7 and 8.

RAD - RUNLIGHT ON/OFF R-17

REAL
Supported On

UX WS DOS IN®

Option Required None
Keyboard Executable No
Programmable Yes
InanIF ... THEN ... No

This statement reserves storage for floating-point variables and arrays. (For
information about the REAL function, see the next entry in the keyword
dictionary; for information about using REAL as a secondary keyword, see the
ALLOCATE, COM, DEF FN, or SUB statements.)

)

numernic
(_}LRE* name

A\

L,

Item

(
L »@J

Description

upper
bound

1

Range

numeric name

lower bound

upper bound

name of a numeric variable

any valid name

integer constant; Default = OPTION | —32 767 through +32 767

BASE value (0 or 1)

integer constant

R-18 RAD - RUNLIGHT ON/OFF

(see “array” in Glossary)

—32 767 through +32 767
(see “array” in Glossary)

REAL

Example Statements

REAL X,Y,Z
REAL Array(-128:127,15)
REAL A(512) BUFFER

Semantics

Each REAL variable or array element requires eight bytes of number storage.
The maximum number of subscripts in an array is six, and no dimension may
have more than 32 767 elements.

The total number of REAL variables is limited by the fact that the maximum R
memory usage for all variables—COMPLEX, INTEGER, REAL, and string—

within any context is 224—1, or 16 777 215, bytes (or limited by the amount of
available memory, whichever is less).

Declaring Buffers

To declare REAL variables to be buffers, each variable’s name must be followed
by the keyword BUFFER; the designation BUFFER applies only to the
variable which it follows.

RAD - RUNLIGHT ON/OFF R-19

REAL (function)

Supported On UX WS DOS
Option Required COMPLEX
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN... Yes

This function returns the real part of a COMPLEX number.

REAL {

argument

Item \ Description/Default

Range
Restrictions

argument numeric expression

Example Statements

X=REAL(Complex_expr)
Y=REAL(Real_expr)
Z=REAL(Integer_expr)
Result=REAL{(CMPLX(2.1,-8))

Semantics

any valid INTEGER, REAL,
or COMPLEX value

An INTEGER or REAL argument is returned unchanged.

R-20 RAD - RUNLIGHT ON/OFF

RECORDS

RECORDS
See the TRANSFER statement.

RAD - RUNLIGHT ON/OFF R-21

RECOVER

See the ON ... statements.

R-22 RAD - RUNLIGHT ON/OFF

RECTANGLE

RECTANGLE

Supported On UX WS DOS
Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This statement draws a rectangle. It can be filled, edged, or both.

RECTANGLE width -.O—» height l ~>|
W Wen)

Item I Description I Range
width numeric expression —
height numeric expression —

Example Statements

RECTANGLE 4,6
RECTANGLE 3,-2,FILL,EDGE

Semantics

The rectangle is drawn with dimensions specified as displacements from the
current pen position. Thus, both the width and the height may be negative.

Which corner of the rectangle is at the pen position at the end of the statement
depends upon the signs of the parameters:

RAD - RUNLIGHT ON/OFF R-23

RECTANGLE

Sign Sign | Cormer of Rectangle
of X of Y |at Pen Position

+ + Lower left
+ - Upper left
- + Lower right

- - Upper right

Shape of Rectangle

A rectangle’s shape is affected by the current viewing transformation. If
isotropic units are in effect, the rectangle will be the expected shape, but if
anisotropic units are in effect, the rectangle will be distorted: stretched or
compressed along the axes.

RECTANGLE is affected by the PIVOT and PDIR transformations. If a
rotation transformation and anisotropic units are in effect, the rectangle is
rotated first, then stretched or compressed along the unrotated axes.

FILL and EDGE

FILL causes the rectangle to be filled with the current fill color, and EDGE
causes the perimeter to be drawn with the current pen color and line type. If
both FILL and EDGE are specified, the interior will be filled, then the edge
will be drawn. If neither FILL nor EDGE is specified, EDGE is assumed.

Rectangles sent to an HPGL plotter are edged but not filled regardless of any
FILL or EDGE directives on the statement.

R-24 RAD - RUNLIGHT ON/OFF

Applicable Graphics Transformations

RECTANGLE

Scaling | PIVOT | CSIZE | LDIR | PDIR
Lines (generated by moves and X X [4]
draws)
Polygons and rectangles X X X
Characters (generated by X X
LABEL)
Axes (generated by AXES & X
GRID)
Location of Labels (1] (3] [2]

! The starting point for labels drawn after lines or axes is affected by scaling.
2 The starting point for labels drawn after other labels is affected by LDIR.

3 The starting point for labels drawn after lines or axes is affected by PIVOT.
4 RPLOT and IPLOT are affected by PDIR.

RAD - RUNLIGHT ON/OFF R-25

REDIM

Supported On UX WS DOS
Option Required MAT
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This statement changes the subscript range of previously dimensioned arrays.

e
=]
REDIM mmen P~ L
I \/
(Pound) >
Item Description Range

array name name of an array any valid name
lower bound numeric expression, rounded to an —32 768 through +32 767

integer; Default=OPTION BASE (see “array” in glossary)
value (0 or 1)

upper bound numetric expression, rounded to an —32 768 through +32 767
integer (see “array” in glossary)

Example Statements

REDIM Array(5)
REDIM B(3:5,6,-2:2)
REDIM Constants$(X,Y,Z)

R-26 RAD - RUNLIGHT ON/OFF

REDIM

Semantics
The following rules must be followed when redimensioning an array:

m The array to be redimensioned must have a currently dimensioned size
known to the context (i.e., it must have been implicitly or explicitly
dimensioned, or be currently allocated, or it must have been passed into the
context.)

m You must retain the same number of dimensions as specified in the original
dimension statement.

m The redimensioned array cannot have more elements than the array was
originally dimensioned to hold.

m You cannot change the maximum string length of string arrays.

REDIM does not change any values in the array, although their locations will
probably be different. The REDIM is performed left-to-right and if an error
occurs, arrays to the left of the array the error occurs in will be redimensioned
while those to the right will not be. If an array appears more than once in the
REDIM, the right-most dimensions will be in effect after the REDIM.

RAD - RUNLIGHT ON/OFF R-27

REM

Supported On UX WS DOS IN
Option Required None

Keyboard Executable No
Programmable Yes

InanIF ... THEN ... No

This statement allows comments in a program.

X

Item Description Range

literal string constant composed of —
characters from the keyboard,
including those generated with the
ANY CHAR key

Example Program Lines

100 REM Program Title
190 !
200 IF BIT(Info,2) THEN Branch ! Test overrange bit

Semantics

REM must be the first keyword on a program line. If you want to add
comments to a statement, an exclamation point must be used to mark the
beginning of the comment. If the first character in a program line is an
exclamation point, the line is treated like a REM statement and is not checked
for syntax.

R-28 RAD - RUNLIGHT ON/OFF

REMOTE

REMOTE

Supported On
Option Required

Keyboard Executable

Programmable

InanIF ... THEN ...

This statement places HP-IB devices having remote/local capabilities into the

remote state.

Item

UX WS DOS IN
10
Yes
Yes
Yes

Description

@ interface |
select code
1/0 path
name

Range

I/O path name

device selector

Example Statements

REMOTE 712
REMOTE €Hpib

Semantics

name assigned to a device or devices

numeric expression, rounded to an

integer

any valid name (see

ASSIGN)

(see Glossary)

If individual devices are not specified, the remote state for all devices on the
bus having remote/local capabilities is enabled. The bus configuration is
unchanged, and the devices switch to remote if and when they are addressed to
listen. If primary addressing is used, only the specified devices are put into the

remote state.

RAD - RUNLIGHT ON/OFF R-29

REMOTE

When the computer is the system controller and is switched on, reset, or
ABORT is executed, bus devices are automatically enabled for the remote state
and switch to remote when they are addressed to listen.

The computer must be the system controller to execute this statement, and it
must be the active controller to place individual devices in the remote state.

Summary of Bus Actions

Interface Select Code Only | Primary Address Specified

Active REN REN

Controller ATN ATN

MTA

UNL

LAG

Not Active REN Error
Controller

R-30 RAD - RUNLIGHT ON/OFF

REN

REN

Supported On UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable No

InanIF ... THEN ... No

This command allows you to renumber all or a portion of the program
currently in memory.

(REN) >
| beqinning
line numbe
starting ending -
R .
value J Begnming line number
increment line label
ending

—
line label
Summary of Bus Actions
Item Description Range
starting value |[integer constant identifying a 1 through 32 766
program line; Default = 10
increment integer constant; Default = 10 1 through 32 767

beginning line |integer constant identifying program |1 through 32 766
number line

beginning line |name of a program line any valid name
label

ending line integer constant identifying program |1 through 32 766
number line; Default = last program line

ending line name of a program line any valid name
label

RAD - RUNLIGHT ON/OFF R-31

REN

Example Statements

REN
REN 1000,5
REN 270,1 IN 260,Labell

Semantics

The program segment to be renumbered is delimited by the beginning line
number or label (or the first line in the program) and the ending line number
or label (or the last line in the program). The first line in the renumbered
segment is given the specified starting value, and subsequent line numbers are
separated by the increment. If a renumbered line is referenced by a statement
(such as GOTO or GOSUB), those references will be updated to reflect the
new line numbers. Renumbering a paused program causes it to move to the
stopped state.

REN cannot be used to move lines. If renumbering would cause lines to overlap
preceding or following lines, an error occurs and no renumbering takes place.

If the highest line number resulting from the REN command exceeds 32 766,
an error message is displayed and no renumbering takes place. An error occurs
if the beginning line is after the ending line, or if one of line labels specified
doesn’t exist.

R-32 RAD - RUNLIGHT ON/OFF

RENAME

RENAME

Supported on UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This statement changes a file’s or directory’s name.

RAD - RUNLIGHT ON/OFF R-33

RENAME

old file new file
CREN_A“Q_. specifier @ specifier '_.l

literal form of file specifier:

1] - fll‘e

"] name
directory
path

—

HFS or SRM files only

password

literal form of directory specifiers

L volume
specifier

path

« o] directory
name
directory

SRM
password

——

HFS or SRM files only

literal form of DFS file specifier:

L volume
specifier

_.G file
name

L directory

path

®

volume

specifier

literal form of DFS directory specifier:

directory
path

m directory
L _I name

R-34 RAD - RUNLIGHT ON/OFF

L

volume
specifier

Item

Description

RENAME

Range

old file specifier

new file
specifier

old directory
specifier

new directory
specifier

directory path

file name

LIF protect
code

SRM password

volume specifier

directory name

string expression

string expression

string expression

string expression

literal

literal

literal; first two non-blank characters
are significant

literal; first 16 non-blank characters
are significant

literal

literal

(see “file specifier” drawing)

(see “file specifier” drawing)

(see “directory specifier”
drawing)

(see “directory specifier”
drawing)

(see MASS STORAGE IS)

depends on volume’s format:
10 characters for LIF; 14
characters for HFS (short
file name); 255 characters
for HFS (long file name); 16
characters for SRM; (see
Glossary)

> not allowed
> not allowed

(see MASS STORAGE IS)

depends on volume’s format:
10 characters for LIF; 14
characters for HFS (short
file name); 255 characters
for HFS (long file name); 16
characters for SRM; (see
Glossary)

RAD - RUNLIGHT ON/OFF R-35

RENAME

Example Statements

RENAME "0ld_name" TO "New_name"
RENAME File_name$&Vol$ TO Temp$
RENAME "TEMP<pc>" TO "FINAL"

RENAME Dir$&File$&Volume$

RENAME "/WORKSTATIONS/AUTOST" TO "old_autost"

RENAME "Dir1<SRM_RW_pass>/F1<MGR_paes>" TO "Dir2<RW_pass>/F1"
RENAME "Dir1/Dir2/MoveFile:REMOTE" TO "./Dir3/ToOtherDir"

Semantics

The new file or directory name must not duplicate the name of any other file in
the directory.

SRM files and directories must be closed before being renamed. If an SRM file
is not closed and you try to rename it you will get an error.

m Files are closed by ASSIGN ... TO * (explicitly closes an I/O path). All
files except those opened with the PRINTER IS statement are also closed by
(RESET) ((SHIFT }-(PAUSE) or (Shift}(Break)). A PRINTER IS file can be closed by
executing a PRINTER IS to another device or file. A PLOTTER IS file can
also be closed by GINIT or PLOTTER IS to another device or file.

m The current working directory is closed by an MSI to a different directory.

SCRATCH A also closes all files and directories.

If you try to rename an open DFS, HFS or LIF file or directory, you will not
receive an error.

Because you cannot move a file from one mass storage volume to another with
RENAME, an error will be given if a volume specifier is included which is

not the current location of the file. (However, RENAME can perform limited
file-move operations with DFS, SRM and HFS files. See details below.)

If you are using a version of BASIC that supports wildcards, you can use them
in file specifiers with RENAME. You must first enable wildcard recognition
using WILDCARDS. Refer to the keyword entry for WILDCARDS for details.
Wildcard file specifiers used with RENAME must match one and only one file
name.

R-36 RAD - RUNLIGHT ON/OFF

RENAME

If you are using a version of BASIC that supports wildcards, you can use them
in file specifiers with RENAME. You must first enable wildcard recognition
using WILDCARDS. Refer to the keyword entry for WILDCARDS for details.
Wildcard file specifiers used with RENAME must match one and only one file
name.

LIF Protect Codes

A protected file retains its old protect code, which must be included in the old
file specifier.

DFS and HFS Permissions

In order to RENAME a file or directory on an HFS or DFS volume, you need
to have W (write) and X (search) permission of the immediately superior
directory, as well as X (search) permission on all other superior directories.

SRM Passwords

In order to RENAME an SRM file or directory, you need to have M (manager)
access capability on the file or directory, R (read) and W (write) capabilities
on the immediately superior directory, and R capabilities on all other superior
directories.

Including an SRM password in the file or directory specifier does not protect
it. You must use PROTECT to assign passwords. You will not receive an error
message for including a password, but passwords in the “new file/directory
name” portion of the RENAME statement are ignored. However, any existing
SRM password is retained by the renamed file or directory.

SRM File and Directory Specifier Length

A maximum of nine names (files or directories) are allowed in both file or
directory specifiers in the RENAME statement. (The number of names in the
old file/directory specifier plus the number of names in the new file/directory
specifier must not exceed nine.) No more than six names are allowed in either
file specifier individually.

RAD - RUNLIGHT ON/OFF R-37

RENAME

Limited File Moves with DFS, SRM and HFS

With DFS, SRM and HFS, RENAME can be used to move files within the
directory structure. Directories cannot be moved with RENAME. Moving of
files must occur within a single volume. If you move a file with RENAME, the
original file (“old file specifier”) is purged.

BASIC/UX Specifics
RENAMEing across HFS volumes is allowed.

R-38 RAD - RUNLIGHT ON/OFF

REORDER

REORDER
See the MAT REORDER statement.

RAD - RUNLIGHT ON/OFF R-39

REPEAT ... UNTIL

Supported On UX WS DOS IN
Option Required None

Keyboard Executable No
Programmable Yes

Inan IF ... THEN ... No

This construct defines a loop which is repeated until the boolean expression in
the UNTIL statement evaluates to be logically true (evaluates to non-zero).

program
segment
boolean
UNTIL expression
Item Description Range
boolean numeric expression; evaluated as true | —
expression if non-zero and false if zero
program any number of contiguous program —
segment lines not containing the beginning
or end of a main program or
subprogram, but which may contain
properly nested constructs(s).

Example Program Segments

530 REPEAT

540 PRINT Factor

650 Factor=Factor*1.1
560 UNTIL Factor>10

680 REPEAT

690 INPUT "Enter a positive number",Number
700 UNTIL Number>=0

R-40 RAD - RUNLIGHT ON/OFF

REPEAT ... UNTIL

Semantics

The REPEAT ... UNTIL construct allows program execution dependent on
the outcome of a relational test performed at the end of the loop. Execution
starts with the first program line following the REPEAT statement, and
continues to the UNTIL statement where a relational test is performed. If the
test is false a branch is made to the first program line following the REPEAT
statement.

When the relational test is true, program execution continues with the first
program line following the UNTIL statement.

Branching into a REPEAT ... UNTIL construct (via a GOTO) results
in normal execution up to the UNTIL statement, where the test is made.
Execution will continue as if the construct had been entered normally.

Nesting Constructs Property

REPEAT ... UNTIL constructs may be nested within other constructs
provided the inner construct begins and ends before the outer construct can
end.

Computer

Museum

RAD - RUNLIGHT ON/OFF R-41

REQUEST

Supported On UX WS DOS
Option Required IO
Keyboard Executable Yes
Programmable Yes
InanIF ... THEN... Yes

This statement is used by a non-active controller to send a Service Request
(SRQ) on an HP-IB interface.

1/0 path . serial poll
REQUEST @ name y response byte _’{

| interface
select code

Item Description Range

I/0O path name |[name assigned to an HP-IB interface |any valid name

interface select |numeric expression, rounded to an 7 through 31
code integer
serial poll numeric expression, rounded to an 0 through 255

response byte |integer

Example Statements

REQUEST @Hp_ib;Bit_6+Bit_0
REQUEST Isc;Response

R-42 RAD - RUNLIGHT ON/OFF

REQUEST

Semantics

To request service, the value of the serial poll response must have bit 6 set; this
bit asserts the SRQ line. SRQ will remain set until either the Active Controller
performs a Serial Poll or until the computer executes another REQUEST with
bit 6 clear.

Only the interface select code may be specified to receive the Request; if a
device selector that contains address information, or an I/O path assigned to a
device selector with address information is specified, an error results. An error
will also results if the computer is currently the Active Controller.

RAD - RUNLIGHT ON/OFF R-43

RES

Supported On UX WS DOS
Option Required None
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This function returns the result of the last numeric computation which was
executed from the keyboard.

Example Statements

RES
3.5%RES+A

R-44 RAD - RUNLIGHT ON/OFF

RE-SAVE

RE-SAVE

Supported On
Option Required

Keyboard Executable

Programmable

InanIF ... THEN ...

UX WS DOS IN
EDIT
Yes
Yes

Yes

This statement creates a specified ASCII file (or DFS or HP-UX file) if it does
not exist; otherwise, it re-writes a specified ASCII, DF'S, or HP-UX file by
copying program lines as strings into that file.

RE—SAVE

file
specifier

literal form of file specifier:

file

T

J

directory
path

;w_l

HFS or SRM files only

name

Yl

beginning
line number]

_ending L
beginning line number]
line label

ending | _J

line label

Q-

SRM

password

literal form of DFS file specifier:

file

T

name

directory
path

]

o

J

volume
specifier

volume
specifier

O~

RAD - RUNLIGHT ON/OFF R-45

RE-SAVE

Item Description Range

file specifier string expression (see drawing)

beginning line |[integer constant identifying program |1 through 32 766

number line; Default = first program line
beginning line |name of a program line any valid name
label
ending line integer constant identifying a 1 through 32 766
number program line; Default = last program
line
ending line name of a program line any valid name
label
directory path |literal (see MASS STORAGE 1S)
file name literal depends on volume’s format

(see Glossary)

SRM password |literal; first 16 non-blank characters |> not allowed
are significant

volume specifier | literal (see MASS STORAGE 1S)

Example Statements

RE-SAVE "NailFile"
RE-SAVE Name$,1,Sort
RE-SAVE "Dir<SRM_RW_pass>/File<SRM_RW_pass>"

Semantics

An entire program can be saved, or the portion delimited by beginning and (if
needed) ending line labels or line numbers. If the file name already exists, the
old file entry is removed from the directory after the new file is successfully
saved on the mass storage media. Attempting to RE-SAVE any existing file
that is not an ASCII, DFS, or HP-UX text file results in an error. (Note that if
you RE-SAVE an existing HP-UX text file, a new HP-UX file will be created;
the same rule applies to existing ASCII and DFS files).

R-46 RAD - RUNLIGHT ON/OFF

RE-SAVE

If the file does not already exist, RE-SAVE performs the same action as SAVE.

Pressing during a RE-SAVE operation results in the old file being
retained.

If a specified line label does not exist, error 3 occurs. If a specified line number
does not exist, the program lines with numbers inside the range specified are
saved. If the ending line number is less than the beginning line number, error
41 occurs.

Note that both hard and symbolic links to an HFS file are broken by RE-SAVE
(see LINK).

If you are using a version of BASIC that supports wildcards, you can use them
in file specifiers with RE-SAVE. You must first enable wildcard recognition
using WILDCARDS. Refer to the keyword entry for WILDCARDS for details.
Wildcard file specifiers used with RE-SAVE must match one and only one file
name.

DFS and HFS Permissions

In order to RE-SAVE a file on a DFS or HFS volume, you need to have W
(write) permission on the file (if one already exists), W (write) and X (search)
permission of the immediately superior directory, as well as X permission on all
other superior directories. If a file already exists, its permission bits will be
preserved.

SRM Access Capabilities

In order to RE-SAVE an SRM file, you need to have R (read) and W (write)
access capabilities on the file (if one already exists), R and W capabilities on
the immediately superior directory, and R capabilities on all other superior
directories.

If the file exists and is read /write protected, you must specify the correct
password with RE-SAVE. If you specify the wrong password on a protected file,
the system returns an error. Any existing SRM password is retained by the
re-saved file.

If the file does not exist, including an SRM password with the file name does
not protect the file. You must use PROTECT to assign a password. You will

RAD - RUNLIGHT ON/OFF R-47

RE-SAVE

not receive an error message for including a password, but a password in the
file name portion of the RE-SAVE statement will be ignored.

RE-SAVE on SRM Files

RE-SAVE opens the remote file in exclusive mode (denoted as LOCK in a CAT
listing) and enforces that status on the file until the RE-SAVE is complete.
While in exclusive mode, the file is inaccessible to all SRM workstations other
than the one executing the RE-SAVE.

Use of RE-SAVE on SRM and HFS may leave temporary files on the mass
storage media if (CLR 1/0) ((Break)) or (RESET) ((SHIFT H{(PAUSE) or (shift}-(Break))

is pressed or a TIMEOUT occurs during the RE-SAVE. The file name of the
temporary file is a 10-character name (the first is an alpha character, others
are digits) derived from the value of the workstation’s real-time clock when
the interruption occurred. You may wish to check the contents of any such file
before purging.

BASIC/UX Specifics

The temporary file name begins with RMB followed by the last 4 digits of the
BASIC/UX process id and 3 digits from the system clock.

If the specified file does not already exist, RE-SAVE will generally create an
ASCII type file. However, BASIC/UX will create an HP-UX type file when the
program is being RE-SAVEd to an HFS volume.

In order to RE-SAVE a file on an HFS volume, you need to have both R (read)
and W (write) permission on the file if one already exists. The rest of the HFS
permission requirements are the same as mentioned above.

R-48 RAD - RUNLIGHT ON/OFF

RESET

RESET

Supported On US WS DOS
Option Required I0
Keyboard Executable Yes
Programmable Yes
InanIF ... THEN ... Yes

This statement resets an interface or the pointers of either a mass storage file
or buffer. (For information about RESET as a secondary keyword, see the
SUSPEND INTERACTIVE statement.)

1/0 path
@ @ name
interface

select code

Item Description Range

1/O path name |name assigned to an interface, mass |any valid name
storage file, or buffer

interface select |numeric expression, rounded to an 7 through 31
code integer

Example Statements

RESET Hpib
RESET 20
RESET €Buffer_x

RAD - RUNLIGHT ON/OFF R-49

RESET

Semantics

A RESET directed to an interface initiates an interface-dependent action; see
the “Interface Registers” section for further details.

A RESET directed to a mass storage file resets the file pointer to the beginning
of the file.

A RESET directed to a buffer resets all registers to their initial values: the
empty and fill pointers are set to 1, and the current-number-of-bytes and all
other registers are reset to zero.

If a TRANSFER is currently being made to or from the specified resource,

the computer waits until the TRANSFER is complete before executing the
RESET. If the TRANSFER is not to be completed, an ABORTIO may be
executed to halt the TRANSFER before executing the RESET. If a busy buffer
is specified in a RESET statement, error 612 results.

R-50 RAD - RUNLIGHT ON/OFF

RESTORE

RESTORE

Supported On UX WS DOS IN
Option Required None

Keyboard Executable No
Programmable Yes

InanIF ... THEN... Yes

RESTORE specifies which DATA statement will be used by the next READ
operation.

A &

((ResTore) :

line
number

line
label

Item Deseription Range
line label name of a program line any valid name
line number integer constant identifying a 1 through 32 766

program line; Default = first DATA
statement in context

Example Statements

RESTORE
RESTORE Third_array

Semantics

If a line is specified which does not contain a DATA statement, the computer
uses the first DATA statement after the specified line. RESTORE can only
refer to lines within the current context. An error results if the specified line
does not exist.

RAD - RUNLIGHT ON/OFF R-51

RE-STORE

Supported On

Option Required
Keyboard Executable
Programmable
InanIF ... THEN ...

UX WS DOS
None
Yes
Yes
Yes

This statement creates a file and stores the program or typing-aid softkey

definitions in it.

(\ file
RE_STOREJ ———————— specifier >
I KEY i
| |
! kBD !
—J
literal form of file specifier:
M of file
name
directory UF protect volume
path code specifier
Y SRM
HFS or SRM files only password

literal form of DFS file specifier:

n
directory

path

file

name

J

R-52 RAD - RUNLIGHT ON/OFF

volume
specifier

7O~

RE-STORE

Item Description Range
file specifier string expression (see drawing)
directory path |[literal (see MASS STORAGE IS)
file name literal depends on volume’s format

(see Glossary)

LIF protect literal; first two non-blank characters |> not allowed
code are significant
SRM password |literal; first 16 non-blank characters |> not allowed R

are significant

volume specifier | literal (see MASS STORAGE IS)

Example Statements

RE-STORE Filename$&Volume$
RE-STORE "Prog_a"
RE-STORE "Dir<SRM_RW_pass>/Prog_z<SRM_RW_pasz>"

RE-STORE KEY "Typing_aids"
RE-STORE KEY "KEYS:REMOTE"

Semantics

If the specified file already exists, the old file is removed from the directory
after the new file is successfully stored in the current mass storage device. If
an old file does not exist, a new one is created as if this were the STORE
statement.

Pressing during a RE-STORE operation causes the old file to be
retained. (See note below for effects on an SRM system.)

Note that both hard and symbolic links to an HFS file are broken by
RE-STORE (see LINK).

If you are using a version of BASIC that supports wildcards, you can use them
in file specifiers with RE-STORE. You must first enable wildcard recognition
using WILDCARDS. Refer to the keyword entry for WILDCARDS for details.

RAD - RUNLIGHT ON/OFF R-53

RE-STORE

Wildcard file specifiers used with RE-STORE must match one and only one file
name.

LIF Protect Codes

If the old file had a protect code, the same protect code must be used in the
RE-STORE operation. Attempting to RE-STORE a file which is the wrong
type results in an error. (RE-STORE creates a PROG file, and RE-STORE
KEY creates a BDAT file.)

DFS and HFS Permissions

In order to RE-STORE a file on a DFS or HFS volume, you need to have W
(write) permission on the file (if one already exists), W (write) and X (search)
permission of the immediately superior directory, as well as X permission on all
other superior directories. If the file already exists, its permission bits will be
preserved.

SRM Access Capabilities

In order to RE-STORE an SRM file, you need to have R (read) and W (write)
access capability on the file (if one already exists), R (read) and W (write)
capabilities on the immediately superior directory, and R capability on all other
superior directories.

If the file exists and is read /write protected, you must specify the correct
password with RE-STORE. If you specify the wrong password on a protected
file, the system returns an error. Any existing SRM password is retained by the
re-saved file.

If the file does not exist, including an SRM password with the file name does
not protect the file. You must use PROTECT to assign a password. You will
not receive an error message for including a password, but a password in the

file name portion of the RE-STORE statement will be ignored.

R-54 RAD - RUNLIGHT ON/OFF

RE-STORE

RE-STORE with SRM Volumes

RE-STORE opens an SRM file in exclusive mode (denoted as LOCK in a CAT

listing) and enforces that status on the file until the RE-STORE is complete.

While in exclusive mode, the file is inaccessible to all SRM workstations other
than the one executing the RE-STORE.

Use of RE-STORE on SRM or HFS may leave temporary files on the mass

storage media if (CLR 1/0) ((Break)) or (RESET) is pressed or a TIMEOUT occurs

during the RE-STORE. The file name of the temporary file is a 10-character

name (the first is an alpha character, others are digits) derived from the value

of the workstation’s real-time clock when the interruption occurred. You may R
wish to check the contents of any such file before purging.

BASIC/UX Specifics

The temporary file name begins with RMB followed by the last 4 digits of the
BASIC/UX process id and 3 digits from the system clock.

In order to RE-STORE a file on an HFS volume, you need to have both R
(read) and W (write) permission on the file if one already exists. The rest of
the HFS permission requirements are the same as mentioned above.

RAD - RUNLIGHT ON/OFF R-55

RESUME INTERACTIVE

Supported On UX WS DOS
Option Required None
Keyboard Executable Yes!
Programmable Yes

In an IF ... THEN Yes

1This statement is executable from the keyboard, but only while SUSPEND
INTERACTIVE is not in effect.

This statement enables the (EXECUTE), (ENTER), (Return), (PAUSE), (STOP), (STEP),
(cLr1/0), and keys after a SUSPEND INTERACTIVE statement.

(RESUME INTERACTIVE)~

Example Statements

RESUME INTERACTIVE
IF Kbd_flag THEN RESUME INTERACTIVE

R-56 RAD - RUNLIGHT ON/OFF

RETURN

RETURN

Supported On UX WS DOS IN
Option Required None

Keyboard Executable No
Programmable Yes

InanIF ... THEN... Yes

This statement returns program execution to the line following the invoking
GOSUB. The keyword RETURN is also used in user-defined functions (see
DEF FN).

See also ERROR RETURN.

RAD - RUNLIGHT ON/OFF R-57

RETURN ...

Supported On UX WS DOS IN
Option Required None

Keyboard Executable No
Programmable Yes

InanIF ... THEN ... Yes

This statement returns a value from a multi-line function.

function
(DEF FN] name
parameter
list

|
>

program
segment
- Note: A user—defined function
numeric | .
RETURN expression may contain any number of
RETURN statements.
string
expression
program
segment
Item l Description [Range
numeric result | numeric expression range of REAL

string result string expression

R-58 RAD - RUNLIGHT ON/OFF

RETURN ...

Example Statements

IF D THEN RETURN D
RETURN A$2B$

Semantics

There may be more than one RETURN statement. The result in the RETURN
statement is the value returned to the calling context. The result type, numeric
or string, must match the function type (i.e., a numeric function cannot return
a string result).

When you exit a multi-line function, the following actions take place:
m local files are closed;

m local variables are deallocated;

m variables ALLOCATEd in the function are DEALLOCATEJ;

m ON ... statements may be affected. See ON ... /OFF ... ;

m some system variables are restored to previous values. See the “Master Reset
Table” in the “Useful Tables” section.

RAD - RUNLIGHT ON/OFF R-59

REV$

Supported On UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This function returns a string formed by reversing the sequence of characters in
the specified string.

string
REVS (expression (:) I

Example Statements

Reverse$=REV$ ("palindrome")
Last_blank=LEN(Sentence$)-P0S (REV$ (Sentence$),” ")

Semantics

The REVS$ function is useful when searching for the last occurrence of an item
within a string.

Two-byte Language Specifics

Certain localized versions of BASIC, such as Japanese localized BASIC,
support two-byte characters. The REV$ function can handle any
combination of one- and two-byte characters. The string is reversed on a

character-by-character basis. For more information about two-byte characters,
refer to the globalization chapters of HP BASIC 6.2 Porting and Globalization.

R-60 RAD - RUNLIGHT ON/OFF

RND

RND

Supported on UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This function returns a pseudo-random number greater than 0 and less than 1.

R

Example Statements

Percent=RND*100
IF RND<.5 THEN Casel

Semantics

The random number returned is based on a seed set to 37 480 660 at power-on,
SCRATCH, SCRATCH A, or program prerun. Each succeeding use of RND
returns a random number which uses the previous random number as a seed.
The seed can be modified with the RANDOMIZE statement.

RAD - RUNLIGHT ON/OFF R-61

ROTATE

Supported On UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This function returns an integer which equals the value obtained by shifting the
16-bit binary representation of the argument by the number of bit positions
specified. The shift is performed with wrap-around.

bit position
ROTATE (argument ! displacement @ l

Item Description Range
argument numeric expression, rounded to an —32 768 through +32 767
integer
bit position numeric expression, rounded to an —15 through +15
displacement integer

Example Statements

New_word=ROTATE(0l1d_word,2)
Q=ROTATE(Q,Places)

Semantics

The argument is converted into a 16-bit, two’s-complement form. If the bit
position displacement is positive, the rotation is towards the least-significant
bit. If the bit position displacement is negative, the rotation is towards the
most-significant bit. The rotation is performed without changing the value of
any variable in the argument.

R-62 RAD - RUNLIGHT ON/OFF

RPLOT

RPLOT

Supported On UX WS DOS
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN ... Yes

This statement moves the pen from the current pen position to the point
specified by adding the x and y displacements to the local origin. It can be
used to move with or without drawing a line depending on the pen control
parameter.

X ' 4 |
RPLOT displacement displacement | Y
pen
control

array

name [T\ _(*)
o@D =

Item Description Range

x displacement |numeric expression in current units —
y displacement |numeric expression in current units —

pen control numeric expression, rounded to an —32 768 through +32 767
integer; Default = 1

array name name of two-dimensional, two-column | any valid name
or three-column numeric array.
Requires GRAPHX

RAD - RUNLIGHT ON/OFF R-63

RPLOT

Example Statements

RPLOT Rel_x,Rel_y,Pen_action
RPLOT 5,12
RPLOT Shape(#*) ,FILL,EDGE

Semantics

This statement moves the pen to the specified X and Y coordinates relative
to the local coordinate origin. Both moves and draws may be generated,
depending on the pen control parameter. Lines are drawn using the current
pen color and line type.

The local coordinate origin is the logical pen position at the completion of one
of the following statements. The local coordinate origin is not changed by the
RPLOT statement.

AXES DRAW FRAME GINIT GRID IDRAW
IMOVE IPLOT LABEL MOVE PLOT POLYGON
POLYLINE RECTANGLE SYMBOL

The line is clipped at the current clipping boundary. RPLOT is affected by the

PIVOT and PDIR transformations. If none of the line is inside the current clip
limits, the pen is not moved, but the logical pen position is updated.

Non-Array Parameters

The specified X and Y displacements information is interpreted according to
the current unit-of-measure. Lines are drawn using the current pen color and
line type.

If none of the line is inside the current clip limits, the pen is not moved, but
the logical pen position is updated.

R-64 RAD - RUNLIGHT ON/OFF

RPLOT

Applicable Graphics Transformations

Scaling | PIVOT | CSIZE LDIR PDIR
Lines (generated by moves and X X (4]
draws)
Polygons and rectangles X X X
Characters (generated by X X
LABEL)
Axes (generated by AXES & X
GRID) R
Location of Labels (1] (3] [2]

1 The starting point for labels drawn after lines or axes is affected by scaling.
2 The starting point for labels drawn after other labels is affected by LDIR.

3 The starting point for labels drawn after lines or axes is affected by PIVOT.
4 RPLOT and IPLOT are affected by PDIR.

The optional pen control parameter specifies the following plotting actions; the
default value is +1 (down after move).

Pen Control Parameter

Pen Conirol| Resultant Action

—Even Pen up before move

—0dd Pen down before
move

+Even Pen up after move

+0dd Pen down after
move

The above table is summed up by: even is up, odd is down, positive is after
pen motion, negative is before pen motion. Zero is considered positive,

RAD - RUNLIGHT ON/OFF R-65

RPLOT

Array Parameters

When using the RPLOT statement with an array, either a two-column or a
three-column array may be used. If a two-column array is used, the third
parameter is assumed to be +1; pen down after move.

FILL and EDGE

When FILL or EDGE is specified, each sequence of two or more lines forms a
polygon. The polygon begins at the first point on the sequence, includes each
successive point, and the final point is connected or closed back to the first

point. A polygon is closed when the end of the array is reached, or when the

value in the third column is an even number less than three, or in the range 5
to 8 or 10 to 15.

If FILL and/or EDGE are specified on the RPLOT statement itself, it causes
the polygons defined within it to be filled with the current fill color and/or
edged with the current pen color. If polygon mode is entered from within

the array, and the FILL/EDGE directive for that series of polygons differs
from the FILL/EDGE directive on the RPLOT statement itself, the directive
in the array replaces the directive on the statement. In other words, if a

“start polygon mode” operation selector (a 6, 10, or 11) is encountered, any
current FILL/EDGE directive (whether specified by a keyword or an operation
selector) is replaced by the new FILL/EDGE directive.

If FILL and EDGE are both declared on the RPLOT statement, FILL occurs
first. If neither one is specified, simple line drawing mode is assumed; that is,
polygon closure does not take place.

If you attempt to fill a figure on an HPGL plotter, the figure will not be filled,
but will be edged, regardless of the directives on the statement.

When using a RPLOT statement with an array, the following table of
operation selectors applies. An operation selector is the value in the

third column of a row of the array to be plotted. The array must be a
two-dimensional, two-column or three-column array. If the third column exists,
it will contain operation selectors which instruct the computer to carry out
certain operations. Polygons may be defined, edged (using the current pen),
filled (using the current fill color), pen and line type may be selected, and so
forth.

R-66 RAD - RUNLIGHT ON/OFF

RPLOT

Operation
Column 1 Column 2 Selector Meaning
X Y -2 Pen up before moving
X Y -1 Pen down before moving
X Y 0 Pen up after moving (Same as +2)
X Y 1 Pen down after moving
X Y 2 Pen up after moving
pen number ignored 3 Select pen
line type repeat value 4 Select line type
color ignored 5 Color value
ignored ignored 6 Start polygon mode with FILL
ignored ignored 7 End polygon mode
ignored ignored 8 End of data for array
ignored ignored 9 NOP (no operation)
ignored ignored 10 Start polygon mode with EDGE
ignored ignored 11 Start polygon mode with FILL and
EDGE
ignored ignored 12 Draw a FRAME
pen number ignored 13 Area pen value
red value green value 14 Color
blue value ignored 15 Value
ignored ignored >15 Ignored

Moving and Drawing

If the operation selector is less than or equal to two, it is interpreted in exactly
the same manner as the third parameter in a non-array RPLOT statement.
Even is up, odd is down, positive is after pen motion, negative is before pen
motion. Zero is considered positive.

Selecting Pens

An operation selector of 3 selects a pen. The value in column one is the pen
number desired. The value in column two is ignored.

RAD - RUNLIGHT ON/OFF R-67

RPLOT

Selecting Line Types

An operation selector of 4 selects a line type. The line type (column one)
selects the pattern, and the repeat value (column two) is the length in GDUs
that the line extends before a single occurrence of the pattern is finished and it
starts over. On the CRT, the repeat value is evaluated and rounded down to
the next multiple of 5, with 5 as the minimum.

Selecting a Fill Color

Operation selector 13 selects a pen from the color map with which to do
area fills. This works identically to the AREA PEN statement. Column one
contains the pen number.

Defining a Fill Color

Operation selector 14 is used in conjunction with operation selector 15. Red
and green are specified in columns one and two, respectively, and column three
has the value 14. Following this row in the array (not necessarily immediately),
is a row whose operation selector in column three has the value of 15. The first
column in that row contains the blue value. These numbers range from 0 to

32 767, where 0 is no color and 32 767 is full intensity. Operation selectors 14
and 15 together comprise the equivalent of an AREA INTENSITY statement,
which means it can be used on a monochromatic, gray scale, or color display.

Operation selector 15 actually puts the area intensity into effect, but only if an
operation selector 14 has already been received.

Operation selector 5 is another way to select a fill color. The color selection is
through a Red-Green-Blue (RGB) color model. The first column is encoded in
the following manner. There are three groups of five bits right-justified in the
word; that is, the most significant bit in the word is ignored. Each group of five
bits contains a number which determines the intensity of the corresponding
color component, which ranges from zero to sixteen. The value in each field
will be sixteen minus the intensity of the color component. For example, if the
value in the first column of the array is zero, all three five-bit values would

thus be zero. Sixteen minus zero in all three cases would turn on all three colo
components to full intensity, and the resultant color would be a bright white.

R-68 RAD - RUNLIGHT ON/OFF

RPLOT

Assuming you have the desired intensities (which range from 0 thru 1) for red,
green, and blue in the variables R, G, and B, respectively, the value for the first
column in the array could be defined thus:

Array(Row, 1)=SHIFT (16*(1-B),-10)+SHIFT(16+(1-G) ,-5)+16#(1-R)

If there is a pen color in the color map similar to that which you request here,
that non-dithered color will be used. If there is not a similar color, you will get
a dithered pattern.

If you are using a gray scale display, Operation selector 5 uses the five bit
values of the RGB color specified to calculate luminosity. The resulting gray
luminosity is then used as the area fill. For detailed information on gray
scale calculations, see the chapter “More About Color Graphics” in the

HP BASIC 6.2 Advanced Programming Techniques manual.

Polygons

A six, ten, or eleven in the third column of the array begins a “polygon mode”.
If the operation selector is 6, the polygon will be filled with the current fill
color. If the operation selector is 10, the polygon will be edged with the current
pen number and line type. If the operation selector is 11, the polygon will

be both filled and edged. Many individual polygons can be filled without
terminating the mode with an operation selector 7. This can be done by
specifying several series of draws separated by moves. The first and second
columns are ignored and should not contain the X and Y values of the first
point of a polygon.

Operation selector 7 in the third column of a plotted array terminates
definition of a polygon to be edged and/or filled and also terminates the
polygon mode (entered by operation selectors 6, 10, or 11). The values in the
first and second columns are ignored, and the X and Y values of the last data
point should not be in them. Edging and/or filling of the most recent polygon
will begin immediately upon encountering this operation selector.

RAD - RUNLIGHT ON/OFF R-69

RPLOT

Doing a FRAME

Operation selector 12 does a FRAME around the current soft-clip limits. Soft
clip limits cannot be changed from within the RPLOT statement, so one
probably would not have more than one operation selector 12 in an array to
RPLOT, since the last FRAME will overwrite all the previous ones.

Premature Termination

Operation selector 8 causes the RPLOT statement to be terminated. The
RPLOT statement will successfully terminate if the actual end of the array has
been reached, so the use of operation selector 8 is optional.

Ignoring Selected Rows in the Array

Operation selector 9 causes the row of the array it is in to be ignored. Any
operation selector greater that fifteen is also ignored, but operation selector
9 is retained for compatibility reasons. Operation selectors less than —2

are not ignored. If the value in the third column is less than zero, only
evenness/oddness is considered.

R-70 RAD - RUNLIGHT ON/OFF

RPTS$

RPTS
Supported On UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This function returns the specified number of repetitions of a string.

s (O romer] O i O
Item Description Range
argument string expression —
repeat factor numeric expression, rounded to an 0 through 32 767
integer

Example Statements

PRINT RPT$("*",80)
Center$=RPT$(" *, (Right-Left-Length)/2)

Semantics

The value of the numeric expression is rounded to an integer. If the numeric
expression evaluates to a zero, a null string is returned.

An error will result if the numeric expression evaluates to a negative number or
if the string created by RPT$ contains more than 32 767 characters.

Note that RPT$ handles any combination of one- and two-byte characters.

RAD - RUNLIGHT ON/OFF R-71

RSUM

See the MAT statement.

R-72 RAD - RUNLIGHT ON/OFF

RUN

RUN

Supported On UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable No

InanIF ... THEN ... No

This command starts program execution at a specified line.

RUN R
line
number
line
label
Item Description Range
line number integer constant identifying a 1 through 32 766
program line; Default = first program
line
line label name of a program line any valid name

Example Statements

RUN 10
RUN Part2

Semantics

Pressing the key is the same as executing RUN with no label or line
number. RUN is executed in two phases: prerun initialization and program
execution.

The prerun phase consists of:

RAD - RUNLIGHT ON/OFF R-73

RUN

® Reserving memory space for variables specified in COM statements (both
labeled and blank). See COM for a description of when COM areas are
initialized.

m Reserving memory space for variables specified by DIM, REAL, COMPLEX,
INTEGER, or implied in the main program segment. This does not include
variables used with ALLOCATE, which is done at run-time. Numeric
variables are initialized to 0; string variables are initialized to the null string.

m Checking for syntax errors which require more than one program line to
detect. Included in this are errors such as incorrect array references, and
mismatched parameter or COM lists.

If an error is detected during prerun phase, prerun halts and an error message
is displayed on the CRT.

After successful completion of prerun initialization, program execution begins
with either the lowest numbered program line or the line specified in the RUN
command. If the line number specified does not exist in the main program,
execution begins at the next higher-numbered line. An error results if there is
no higher-numbered line available within the main program, or if the specified
line label cannot be found in the main program.

R-74 RAD - RUNLIGHT ON/OFF

RUNLIGHT ON/OFF

RUNLIGHT ON/OFF

Supported On UX WS DOS
Option Required CRTX
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This statement turns the runlight indicator at the bottom right of the display
on and off.

<D
LGy

Example Statements

RUNLIGHT ON
RUNLIGHT OFF

Semantics

This statement is useful when you want to prevent the runlight indicator from
appearing on graphics dumps. The default RUNLIGHT setting is ON after
SCRATCH A, BASIC reset, or power-on.

RAD - RUNLIGHT ON/OFF R-75

SAVE - SYSTEMS$

SAVE - SYSTEM$ S-1

SAVE

Supported On UX WS DOS IN
Option Required EDIT

Keyboard Executable Yes
Programmable Yes

Inan IF ... THEN ... Yes

This statement creates a file and copies program lines as strings into that file.
In general, SAVE creates an ASCII file. However, BASIC creates a DOS type
file on a DOS volume, and BASIC/UX creates an HP-UX type file on an HFS
volume.

y

file
narme x

beginning
line number]

ending -
line number]|

beginning
line label

ending ",
line label

literal form of file specifier:

" file o n
name
directory SRM volume
path password specifier

H_J

HFS or SRM files only

literal form of DFS file specifier:

O =0

directory volume
path specifier

§-2 SAVE - SYSTEMS

Item

Description

SAVE

Range

file specifier

beginning line
number

beginning line
label

ending line
number

ending line
label
directory path

file name
LIF protect
code

SRM password

volume specifier

string expression

integer constant identifying a
program line; Default = first program
line

name of a program line

integer constant identifying a
program line; Default = last program
line

name of a program line

literal

literal

literal; first two non-blank characters
are significant

literal; first 16 non-blank characters
are significant

literal

(see drawing)

1 through 32 766

any valid name

1 through 32 766

any valid name

(see MASS STORAGE IS)

depends on volume’s format
(see Glossary)
> not allowed

> not allowed

(see MASS STORAGE IS)

Example Statements

SAVE
SAVE
SAVE
SAVE

IIHHALESH

"TEMP",1,Sort
"Dir<SRM_RW_pass>/File"
"Ascii_file:REMOTE"

SAVE - SYSTEMS$ S-3

SAVE

Semantics

An entire program can be saved, or any portion delimited by the beginning and
(if needed) ending line numbers or labels. This statement is for creating new
files. Attempting to SAVE a file name that already exists causes error 54. If
you need to replace an old file, see RE-SAVE.

If a specified line label does not exist, error 3 occurs. If a specified line number
does not exist, the program lines with numbers inside the range specified are
saved. If the ending line number is less than the beginning line number, error
41 occurs. If no program lines are in the specified range, error 46 occurs.

Lines longer than 256 characters may not be saved correctly. When a GET
is performed on a program with such a line, an error will occur. However, a
program containing lines exceeding this length can be successfully STOREd
and LOADed.

HFS Permissions

In order to SAVE a file on an HFS volume, you need to have W (write) and
X (search) permission of the immediately superior directory, as well as X
permission on all other superior directories.

When a file is saved on an HFS volume, access permission bits are set to
RW-RW-RW-. You can modify the access permission bits with PERMIT if
desired. For BASIC/UX, these permissions are subject to alteration by the
user’s umask value, if set. See the HP-UX Reference, umask(1).

DFS and HFS File Headers

All ASCII type files on DFS or HFS volumes contain a 512-byte header (at
the beginning of the file’s contents). This header allows the BASIC system to
recognize the file as being an ASCII file. (The header is handled automatically
by the BASIC system, so you do not have to take any special actions.) HP-UX
type files do not have a header.

S-4 SAVE - SYSTEMS

SAVE

SRM Passwords and Exclusive Mode

In order to SAVE an SRM file, you need to have R (read) and W (write)
capabilities on the immediately superior directory, and R capabilities on all
other superior directories.

Including an SRM password with the file name does not protect the file.
You must use PROTECT to assign passwords. You will not receive an error
message for including a password, but a password in the file name portion of
the SAVE statement will be ignored.

SAVE opens an SRM file in exclusive mode (denoted as LOCK in a CAT listing)
and enforces that status on the file until the SAVE is complete. While in
exclusive mode, the file is inaccessible to all SRM workstations other than the
one executing the SAVE.

SAVE - SYSTEMS S-5

SBYTE

Supported On WS
Option Required None
Keyboard Executable Yes
Programmable Yes
Inan IF ... THEN ... Yes

This boolean function returns 1 (true) when the first byte of the string
argument is a valid second byte in the HP-15 character set.

CDEOL TR
expression

Example Statements

IF FBYTE(A$) AND SBYTE(A$[2]) THEN Valid_Hpl5

Semantics

Certain localized versions of BASIC, such as Japanese localized BASIC,

use two-byte characters. Together, FBYTE and SBYTE allow you to
programmatically determine a whether character is one or two bytes long. Note
that FBYTE only checks the first byte of the string expression. If FBYTE
returns 1 (true), you must also test the second byte of the string using SBYTE
to determine if the second byte is in the valid range for HP-15 characters.

For a general discussion of globalization and localization including two-byte
characters, refer to the HP BASIC 6.2 Porting and Globalization manual. To
determine the values returned by SBYTE for specific characters, refer to Using
LanguageX with HP BASIC, where LanguageX is your local language.

S-6 SAVE - SYSTEMS

sC

SC

Supported On UX WS DOS
Option Required None
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This function returns the interface select code associated with an I/O path
name.

1/0 th
sc O~@[2. 0O~

Item I Description I Range
I/O path name

name of a currently assigned I/0O
path

any valid name

Example Statements

Isc=SC(@Device)
Drive_isc=SC(QFile)

Semantics

If the I/O path name is assigned to a device selector (or selectors) with
primary and/or secondary addressing, only the interface select code is returned.
If the specified I/O path name is assigned to a mass storage file, the interface
select code of the drive is returned. If the specified I/O path name is assigned
to a buffer, a zero is returned.

If the I/0O path name is not currently assigned to a resource, an error is
reported.

SAVE - SYSTEMS$ S-7

sC

BASIC/UX Specifics

If the I/O path name refers to a file on an HFS disk, SC returns the constant
value 701.

S-8 SAVE - SYSTEMS$

SCRATCH

SCRATCH

Supported On UX WS DOS IN”
Option Required None

Keyboard Executable Yes
Programmable No

InanIF ... THEN ... No

This command erases all or selected portions of memory.

< SCRATCH ;

keynum
KBD

‘—'@‘L——f
keynum

SAVE - SYSTEMS$ S-9

SCRATCH

Item | Description | Range

key number Iinteger constant IO through 23

Example Statements

SCRATCH

SCRATCH A

SCRATCH ALL (BASIC/UX and BASIC/WS only)
SCRATCH KEY

SCRATCH KEY 21

SCRATCH WINDOW ~ (BASIC/UX under X Windows only)

Semantics
The BASIC Workstation (BASIC/WS) and BASIC/DOS do not support the
following secondary keywords with the keyword SCRATCH:

v

WINDOW

Both full names and single character abbreviations for actions are accepted.

SCRATCH clears the BASIC program and all variables not in COM. Key
definitions are left intact.

SCRATCH C clears all variables, including those in COM. The program and
keys are left intact.

SCRATCH R clears the key buffer.

To scratch a key, type SCRATCH KEY, followed by the key number, and press
(EXECUTE), (ENTER), or (Return). Also, pressing a softkey after typing SCRATCH will
cause SCRATCH KEY, followed by the key number, to be displayed. When a key
is specified, the definition for that key only is cleared. When an individual key
is not specified, all key definitions are cleared. In either case, the program and
all variables are left intact.

SCRATCH A clears the BASIC program memory, all the key definitions,
and all variables (including those in COM). Most internal parameters in the

S-10 SAVE - SYSTEMS

SCRATCH

computer are reset by this command. The clock is not reset and the recall
buffer is not cleared. See the Master Reset Table in the “Useful Tables” section
in the back of this manual for details.

SCRATCH BIN

SCRATCH BIN causes an extended SCRATCH A. It resets the computer to its
power up state. All programs, variables, and BINs are deleted from memory.
The BIN which contains the CRT driver for the current CRT is not deleted.
Note that SCRATCH BIN will not remove any binaries that reside in ROM.

SCRATCH BIN and SCRATCH B are not supported on BASIC/UX.

If you execute SCRATCH BIN for the measurement coprocessor, all binaries
except the CRTB and DFS binaries will be removed. Thus, LOAD BIN can
subsequently load binaries from the DFS disk files.

SCRATCH A Effects on SRM and HFS Volumes

With SRM volumes, SCRATCH A releases the system resources allocated to
the workstation executing the SCRATCH A, making those resources available
to other SRM workstations. More specifically, SCRATCH A closes all files and
directories, and resets the workstation’s working directory to the root directory
of the default volume (the mass storage volume from which the workstation
booted). SCRATCH A also closes files and directories with HFS volumes.

If the workstation has Boot ROM version 3.0 or A or later, and booted

from the SRM, SCRATCH A resets the working directory to the root of the
default system volume. If the workstation has an earlier version Boot ROM,
SCRATCH A resets the working directory to the device from which the
workstation booted (for example, INTERNAL if the workstation booted from
a built-in drive).

SCRATCH W or SCRATCH WINDOW (BASIC/UX only)

In a windowing environment, this command causes all created windows to be
destroyed. Note that this does not destroy the root BASIC window.

This command is only valid when running within a window system. When not
in a window system, this command causes an error.

SAVE - SYSTEMS$ S-11

SEC

See the SEND statement

S-12 SAVE - SYSTEM$

SECURE

SECURE

Supported On UX WS DOS IN
Option Required PDEV
Keyboard Executable Yes
Programmable No

In an IF.. THEN.. No

This command protects program lines so that they cannot be listed. There is
no way to remove this security, once executed.

(secure)- L. >

beginning

line number
ending »
line number

Item Description Range
beginning line |integer constant; Default = first line |—
number in program
ending line integer constant; Default = beginning [—
number line number if specified, or last line in
program

Example Statements

SECURE
SECURE 45
SECURE 1,100

SAVE - SYSTEMS S-13

SECURE

Semantics

If no lines are specified, the entire program is secured. If one line number is
specified, only that line is secured. If two lines are specified, all lines between
and including those lines are secured.

Program lines which are secure are listed as an *. Only the line number is
listed.

Caution Do not SECURE the only copy of your program. Make a copy
of your program, SECURE the copy, and save the original
“source code” version of your program in a safe place. There
is no way to “unsecure” a program once you have protected it
with the SECURE statement. This prevents unauthorized users
from listing your program.

S-14 SAVE - SYSTEMS

SELECT ... CASE

SELECT ... CASE

Supported On UX WS DOS IN
Option Required None

Keyboard Executable No
Programmable Yes

InanIF ... THEN ... No

This construct provides conditional execution of one of several program
segments.

SAVE - SYSTEMS$ S-15

SELECT ... CASE

SELECT expression
N\
; V tch
< \ matc
CASEJ — item
- beginning T0

match item

program
segment

program
seqment

S§-16 SAVE - SYSTEMS

SELECT ... CASE

Item Description Range
expression a numeric or string expression —
match item a numeric or string expression; —
must be same type as the SELECT
expression
program any number of contiguous program —
segment lines not containing the beginning
or end of a main program or
subprogram, but which may contain
properly nested construct(s).

Example Program Segments

650 SELECT Expression

660 CASE <0

670 PRINT "Negative number"
680 CASE ELSE

690 PRINT "Non-negative number"
700 END SELECT

750 SELECT Expression$

760 CASE "A" TO "Z"

770 PRINT "Uppercase alphabetic"
780 CASE n:n'u;ll'u'n'n.n

790 PRINT "Punctuation"

800 END SELECT

Semantics

SELECT ... END SELECT is similar to the IF ... THEN ... ELSE ... END
IF construct, but allows several conditional program segments to be defined;
however, only one segment will be executed each time the construct is entered.
Each segment starts after a CASE or CASE ELSE statement and ends when
the next program line is a CASE, CASE ELSE, or END SELECT statement.

The SELECT statement specifies an expression, whose value is compared to
the list of values found in each CASE statement. When a match is found,
the corresponding program segment is executed. The remaining segments are

SAVE - SYSTEMS$ S-17

SELECT ... CASE

skipped and execution continues with the first program line following the END
SELECT statement.

All CASE expressions must be of the same type, (either string or numeric) and
must agree in type with the corresponding SELECT statement expression.

The optional CASE ELSE statement defines a program segment to be executed
when the selected expression’s value fails to match any CASE statement’s list.

Branching into a SELECT ... END SELECT construct (via GOTO) results
in normal execution until a CASE or CASE ELSE statement is encountered.
Execution then branches to the first program line following the END SELECT
statement.

Errors encountered in evaluating CASE statements will be reported as having
occurred in the corresponding SELECT statement.

Nesting Constructs Properly

SELECT ... END SELECT constructs may be nested, provided inner
construct begins and ends before the outer construct can end.

S-18 SAVE - SYSTEMS

SEND

SEND

Supported On UX WS DOS
Option Required I0
Keyboard Executable Yes
Programmable Yes

In anIF ... THEN ... Yes

This statement sends messages to an HP-IB.

SAVE - SYSTEMS$ S-19

SEND

ASCIl space
(space bar)

(e

A

YA
1/0 path |
SEND @ name —D< CMD ,L
interface :

select code ey
expression
string)
expression
> DATA) >

L. numeric |
expression L..J
L= €D

expression
ALK primary
T address
?
primary
USTEN address o
,
secondary
SEC address g
UNL =
UNT >

MTA

S-20 SAVE - SYSTEMS

SEND

Item Description Range

interface select |numeric expression, rounded to an 7 through 31
code integer

1/O path name |name assigned to an interface select |any valid name (see

code ASSIGN)
primary numeric expression, rounded to an 0 through 31
address integer
secondary numeric expression, rounded to an 0 through 31
address integer

Example Statements

SEND 7;UNL MTA LISTEN 1 DATA "HELLO" END
SEND C@Hpib;UNL MLA TALK Device CMD 24+128

Semantics

CMD

The expressions following a CMD are sent with ATN true. The ASCII
characters representing the evaluated string expression are sent to the HP-IB.
Numeric expressions are rounded to an integer MOD 256. The resulting byte is
sent to the HP-IB. CMD with no items sets ATN true.

DATA

The expressions following DATA are sent with ATN false. The ASCII
characters representing the evaluated string expression are sent. Numeric
expressions are rounded to an integer MOD 256. The resulting byte is sent to
the HP-IB. If END is added to the data list, EOI is set true before sending the
last byte. DATA with no items sets ATN false without waiting to be addressed
as a talker.

SAVE - SYSTEMS$ S-21

SEND

If the computer is active controller, and addressed as a talker, the data is
sent immediately. If the computer is not active controller, it waits until it is
addressed to talk before sending the data.

TALK

TALK sets ATN true and sends the specified talk address. Only one primary
address is allowed for a single talker. An extended talker may be addressed by
using SEC secondary address after TALK. A TALK address of 31 is equivalent
to UNT (untalk).

UNT

UNT sets ATN true and sends the untalk command. (There is no automatic
untalk.) A TALK address of 31 is equivalent to UNT.

LISTEN

LISTEN sets ATN true, sends one or more primary addresses, and addresses
those devices to listen. A LISTEN address of 31 is equivalent to UNL
(unlisten).

UNL

UNL set ATN true and sends the unlisten command. (There is no automatic
unlisten.) A LISTEN address of 31 is equivalent to UNL.

SEC

SEC sets ATN true and sends one or more secondary addresses (commands).

MTA

MTA sets ATN true and sends the interface’s talk address. It is equivalent to
performing a status sequence on the interface and then using the returned talk
address with a SEND..TALK sequence.

S-22 SAVE - SYSTEMS

SEND

MLA

MLA sets ATN true and sends the interface’s listen address. It is equivalent
to performing a status sequence on the interface and then using the returned
listen address with a SEND..LISTEN sequence.

Summary

The computer must be the active controller to execute SEND with CMD,
TALK, UNT, LISTEN, UNL, SEC, MTA and MLA.

The computer does not have to be the active controller to send DATA. DATA
is sent when the computer is addressed to talk.

The following table lists the HP-IB message mnemonics, descriptions of the
messages, and the secondary keywords required to send the messages. Any
numeric values are decimal.

HP-IB Messages Used With SEND

Mnemonic Description Secondary Keyword and Value
DAB Data Byte DATA 0 through DATA 255
DCL Device Clear CMD 20 or CMD 148

EOI End or Identify DATA (data) END (sends EOI with ATN false,
which is the END message; EOI with ATN true is
the Identify message, sent automatically with the
PPOLL function)

GET Group Execute CMD 8 or CMD 136
Trigger

GTL Go To Local CMD 1 or CMD 129

IFC Interface Clear Not possible with SEND. An ABORT statement
must be used.

LAG Listen Address LISTEN 0 through LISTEN 31; or CMD 32 through
Group CMD 63

SAVE - SYSTEMS$ S-23

SEND

HP-IB Messages Used With SEND (continued)

Mnemonic Description Secondary Keyword and Value
LLO Local Lockout CMD 17
MLA My Listen Address | MLA
MTA My Talk Address {MTA
PPC Parallel Poll CMD 5 or CMD 133
Configure
PPD Parallel Poll PPC (CMD 5 or CMD 133), followed by CMD 112;
Disable or CMD 240; or SEC 16.
PPE Parallel Poll PPC (CMD 5 or CMD 133), followed by CMD 96
Enable through CMD 111; or CMD 224 through CMD 239;
or SEC 0 through SEC 15 (SEC 0 allows a mask to
be specified by a numeric value)
PPU Parallel Poll CMD 21 or CMD 149
Unconfigure
PPOLL |{Parallel Poll Not possible with SEND. PPOLL function must be
used.
REN Remote Enable Not possible with SEND. REMOTE statement must
be used.
SDC Selected Device CMD 4 or CMD 132
Clear
SPD Serial Poll Disable |CMD 25 or CMD 153
SPE Serial Poll Enable |CMD 24 or CMD 152
TAD Talk Address TALK 0 through TALK 31, or CMD 64 through
CMD 95, or CMD 192 through CMD 223.
TCT Take Control CMD 9 or CMD 137
UNL Unlisten UNL, or LISTEN 31, or CMD 63, or CMD 191.
UNT Untalk UNT, or TALK 31, or CMD 95, or CMD 223.

S-24 SAVE - SYSTEMS

SEPARATE ALPHA FROM GRAPHICS

SEPARATE ALPHA FROM GRAPHICS

Supported On UX WS DOS*
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN ... Yes

This statement is used to simulate the separate alpha and graphics rasters
of Series 200 displays (not valid in a windowing environment, such as X
Windows).

(SEPARATE ALPHA) >
L—(raou cwmcs}j

Example Statements
SEPARATE ALPHA

IF (S_300 AND Multi_plane) THEN SEPARATE ALPHA FROM GRAPHICS

Semantics

This statement is used to set up the planes on multi-plane bit-mapped alpha
displays for independent use as separate alpha and graphics rasters. (This

is the way that Series 200 displays work.) If the display is a monochrome,
bit-mapped alpha display, an error will be reported. An error will also be
reported if BASIC is running in a windowing environment.

SAVE - SYSTEMS S-25

SEPARATE ALPHA FROM GRAPHICS

The statement performs the following actions:
1. PLOTTER IS CRT,“INTERNAL?” is executed.

2. If the display is bit-mapped alpha with more than one plane (not
monochrome), then the following actions are taken:

o

[=8

. The screen is cleared.

a
b.

The alpha mask is set (see table below for details).
The alpha pen is set (see table below for details).

. All appropriate color or gray map entries are initialized (see table below

for details).

. The graphics mask is set so that it does not overlap with the alpha mask

(the complement of the alpha mask).
The alpha display is re-written in the new alpha color.

Display-Specific Parameters

Here are the values of parameters for the different types of Series 300
bit-mapped alpha displays:

S-26

SAVE - SYSTEMS

SEPARATE ALPHA FROM GRAPHICS

Number of
Planes Alpha Mask Color Map Graphics Mask
4 Plane 4(1000 base | Pens 0 through 7 have Planes 1 through
2) Alpha pen is 8. [normal default values; pens |3(0111 base 2)
8 through 15 are green. Graphics pens are
0 through 7.
6 Planes 5 & Pens 0 through 15 have Planes 1 through
6(110000 base 2) [normal default values; pens |4(001111 base 2)
Alpha pens are 16 through 31 are green; Graphics pens are
16, 32, and 48. pens 32 through 47 are 0 through 15.
brown; pens 48 through 63
are cyan.
8 Planes 7 & Pens 0 through 63 have Planes 1 through

8(11000000 base |normal default values; pens |6(00111111 base 2)
2) Alpha pens are |64 through 127 are green; Graphics pens are
64, 128, and 192. |pens 128 through 191 are 0 through 63.

brown; pens 192 through 255

are cyan.
8 gray |Planes7 & 8 Pens 0 through 63 have Planes 1 through
(11000000 base 2) |normal default values; 6(00111111 base 2)

Alpha pens are pens 64 through 127 have Graphics pens are
64, 128, and 192. {lum=.30; pens 128 through |0 through 63.

191 have lum=.53; pens 192
through 255 have lum=.41.

If you are using a gray scale display, refer to the chapter “More About Color
Graphics” in the HP BASIC 6.2 Advanced Programming Techniques manual for
more information.

Color map entries below the lowest alpha pen value have their default colors set
by PLOTTER IS CRT,"INTERNAL". Using a value in this range as an alpha pen
will produce transparent text (i.e., is equivalent to using pen 0). Setting up the
color or gray map as given in the table causes the alpha text to be dominant
over graphics images. If the COLOR MAP option is used with PLOTTER IS,
the SET PEN statement can still be used to set all color or gray map entries,
not just those dedicated to graphics pens.

SAVE - SYSTEM§ S-27

SEPARATE ALPHA FROM GRAPHICS

Here is a BASIC program that performs similar configuration of the planes of a
4-plane display:

100 PLOTTER IS CRT, "INTERNAL";COLOR MAP!Series 300 display
110 FOR I=8 TO 15

120 SET PEN I INTENSITY 0,1,0 ! Set alpha colors (green).
130 KEXT I

140 ALPHA PEN O ! Set alpha pen to black (temp).

150 ALPHA MASK 15 ! Enable all planes (temp).

160 CLEAR SCREEN

170 ALPHA MASK 8 ! Enable plane 4 for alpha.

180 ALPHA PEN 8 ! Set alpha pen.

190 INTEGER Gm(0) ! Declare array for GESCAPE.

200 Gm(0)=7 ! Set bits 2,1,0, which select

210 GESCAPE CRT,7,Gm(*) ! graphics planes 3,2,1.

220 ALPHA ON ! Display alpha plane.

230 GRAPHICS ON ! Display graphics planes.

240 PLOTTER IS CRT,"INTERNAL" ! Return to non-color-map
250 END ! mode.

Note that when using this operation with AREA COLOR and AREA
INTENSITY, there may be unexpected results. The algorithm that AREA
COLOR and AREA INTENSITY use to select graphics pens does not account
for the graphics write-enable or display-enable masks. If the pens selected by
these statements have bits outside of the write-enable mask, then the planes
corresponding to these bits will not be affected. The result is that the area fill
colors will not be what is expected.

BASIC/UX Specifics

Does not work in a windowed environment.

BASIC/DOS Specifics
Supported only for VGA (color or monochrome) and EGA displays.

S-28 SAVE - SYSTEMS$

SET ALPHA MASK

SET ALPHA MASK

Supported on UX WS DOS
Option Required CRTX
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN... Yes

This statement is used to specify which plane(s) can be modified by alpha
display operations.

()) frame
SET ALPHA MASK buffer mask —.l

Item Description/Default Range Restrictions
frame buffer numeric expression, rounded to an 1 through 2°n — 1, where n
mask integer equals the number of display

planes

Example Statements

SET ALPHA MASK Frame_mask

SET ALPHA MASK 3

SET ALPHA MASK IVAL("1100",2)

IF Total_frames = 5 THEN SET ALPHA MASK 8

Semantics

This statement does not affect the operation of monochrome displays or the
display of the Model 236C. An error is reported if BASIC is running in a
windowing environment.

Setting bit 0 of the frame buffer mask (i.e. SET ALPHA MASK 1) enables
alpha write permission to plane 1; setting bits 2 and 3 of the frame buffer mask
(i.e. SET ALPHA MASK 12) enables write permission to planes 3 and 4. The
masks you can use to enable write permissions range from 1 through 2°n — 1

SAVE - SYSTEM$ S-29

SET ALPHA MASK

where n is the number of display planes (e.g. the range of frame buffer masks
for 4-planes would be 1 through 15).

This statement affects any alpha display operation using the CRT (e.g. PRINT,
DISP, CAT, error messages, etc.).

The difference between this statement and SET DISPLAY MASK is SET
ALPHA MASK specifies which plane(s) can be modified by alpha operations
(regardless of whether or not it/they are displayed). SET DISPLAY MASK
specifies the plane(s) that are to be displayed (regardless of whether or not
anything has been or can be written to it/them).

For further information on the alpha write-enable mask, see the HP BASIC 6.2
Programming Guide.

Note that the functionality of this statement can be achieved through CRT
CONTROL register 18.

For more information related to this statement, see SEPARATE ALPHA and
MERGE ALPHA which are found in this reference.

S-30 SAVE - SYSTEMS

SET CHR

SET CHR

Supported On UX WS DOS*
Option Required CRTX
Keyboard Executable Yes
Programmable Yes
InanIF ... THEN ... Yes

This statement re-defines the bit-pattern used for character(s) in the current
font (on bit-mapped alpha/graphics displays only).

() » first bit—pattern
SET CHR character _’Q_. array (*)

Item Description Range

first character |numeric expression, rounded to an 0 through 258
integer, which specifies the numeric
code of the first character to be
re-defined

bit-pattern name of an INTEGER array any valid name
array

Example Statements

ALLOCATE INTEGER Char_cell (1:CHRY, 1:CHRX)
SET CHR Char_code,Char_cell(x)

ALLOCATE INTEGER Entire_font(1:Num_chars,1:CHRY,1:CHRX)
SET CHR 0,Entire_font (*)

SAVE - SYSTEMS$ S-31

SET CHR

Semantics

If the alpha display is not bit-mapped (that is, if the alpha is separate from the
graphics raster, and is generated by character-generator-ROM hardware), then
attempting to execute this statement results in error 880.

The “first character” parameter specifies the code of the first character whose
bit-pattern is to be re-defined.

The “bit-pattern array” contains the actual pixels that are to comprise the new
character. If the display is monochrome (single-plane), then only the low-order
bit of each INTEGER element is used. If the display is color (multi-plane),
then as many bits are used as there are planes in the display.

If the bit-pattern array parameter has only two dimensions, then only one
character is re-defined. The first dimension must have a range of exactly

the value of CHRY for this display; the second must have a range of CHRX.
(Character cells are 20 rows by 10 columns for 1280 x 1024 resolution
bit-mapped alpha displays, 16 rows by 8 columns for 1024 x 768 resolution
bit-mapped alpha displays, and 15 rows by 12 columns for medium-resolution
bit-mapped alpha displays.)

If the bit-pattern array parameter has three dimensions, then multiple
characters are re-defined beginning at the character specified by the “first
character” parameter, and continuing until the array is exhausted (or character
code 256 is reached, whichever occurs first). The first dimension of this array
corresponds to the character’s code, the second to the character-cell row, and
the third to the character-cell column.

Underline Character Definition

Note that character code 256 is the pattern which is exclusive OR’d with a
one-byte character to produce underlined characters on the display.

For two-byte characters, BASIC uses the character codes 257 and 258 to
exclusive OR with the first and second bytes, respectively.

For information regarding enabling underlining on the CRT, see the section,
“Display-Enhancement Characters”, in the “Useful Tables” section of this
manual.

S-32 SAVE - SYSTEMS

SET CHR

Restoring the Power-Up Default Font

If you want to return to using the default font, then execute this statement:

CONTROL CRT,21;1

BASIC/DOS Specifics

All bits on the bit pattern for a character must be the same color. Restoring
the power-up default font is not supported.

SAVE - SYSTEMS$ S-33

SET DISPLAY MASK

Supported On UX WS DOS
Option Required CRTX
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN ... Yes

This statement is used to specify which plane(s) can be seen on the alpha
display.

frame
CSET DISPLAY MASD_. buffer mask —’l

Item Description/Default Range Restrictions
frame buffer numeric expression, rounded to an 0 through 2°n — 1, where n
mask integer equals the number of display

planes

Example Statements

SET DISPLAY MASK Frame_mask

SET DISPLAY MASK 3

SET DISPLAY MASK IVAL("1100",2)

IF Disp_frames = 5 THEN SET DISPLAY MASK 8

Semantics

This statement does not affect thé operation of monochrome displays or the
display of the Model 236C. An error is reported if BASIC is running in a
windowing environment.

Setting bit 0 of the frame buffer mask (i.e. SET DISPLAY MASK 1) enables
the displaying of alpha plane 1; setting bits 2 and 3 of the frame buffer mask
(i.e. SET DISPLAY MASK 12) enables displaying of alpha planes 3 and 4.
The masks you can use to enable display range from 0 through 2°n — 1 where

S-34 SAVE - SYSTEMS

SET DISPLAY MASK

n is the number of display planes (e.g. the range of frame buffer masks for
4-planes would be 0 thru 15).

This statement affects any display operation using the CRT (e.g. PRINT, DISP,
CAT, error messages, graphics, etc.).

The difference between this statement and SET ALPHA MASK is SET
DISPLAY MASK specifies the plane(s) that are to be displayed (regardless of
whether or not anything has been or can be written to it/them). SET ALPHA
MASK specifies which plane(s) can be modified by alpha operations (regardless
of whether or not it/they are displayed).

For further information on the display-enable mask, see the HP BASIC 6.2
Programming Guide.

Note that the functionality of this statement can be achieved through CRT
CONTROL register 20.

For more information related to this statement, see ALPHA ON/OFF,
GRAPHICS ON/OFF, and GESCAPE found in this reference.

SAVE - SYSTEM$ S-35

SET ECHO

Supported On UX WS DOS
Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This statement sets an echo to the specified location on the current PLOTTER
IS device.

<SET ECHO)—’ x c¢oordinate —D@—h y coordinate

Item l Description I Range

x coordinate]numeric expression in current units —

y coordinate numeric expression in current units —

Example Statements

SET ECHO Xin,Yin
SET ECHO 1000,10000

Semantics

If the current PLOTTER IS device is a CRT, a 9-by-9-dot cross-hair is
displayed at the specified coordinates if they are within the hard clip limits; the
soft clip limits are ignored. No echo is displayed if the coordinates are outside
the hard clip limits.

If the current PLOTTER IS device is an HPGL plotter, the pen is raised and
moved to the specified coordinates if they are within the current clip limits.
If the pen is inside the clip limits and the new echo position is not, it moves
towards the new echo position but stops at the clip boundary. If the pen is

S-36 SAVE - SYSTEMS

SET ECHO

outside the clip limits and the new echo position is outside the clip limits, the
pen moves along the nearest clip boundary.

SET ECHO is frequently used with the READ LOCATOR statement.

SAVE - SYSTEM$ S-37

SET HIL MASK

Supported On UX ws*
Option Required n/a
Keyboard executable Yes
Programmable Yes
InanIF ... THEN ... Yes

This statement enables the specified HIL devices for use by the BASIC system.

(ST ML MasK)] address mask >

Item Description Range

address mask the sum of 2 raised to the power of any even number from 0 to
each of the addresses of the desired 254
devices

Example Statements

SET HIL MASK 16
SET HIL MASK 2 Mouse+2~Knobbox1+2 Buttonbox2

Semantics

The address mask provides the capability of specifying the HIL devices to be
used by the BASIC system. The most recent SET HIL MASK statement
specifies the HIL devices which are used in subsequent ON KNOB, ON CDIAL,
ON HIL EXT, and GRAPHICS INPUT IS statements. In addition, it specifies
the devices which generate arrow keystrokes during live keyboard and editing
when the devices are not being used by any of the above statements.

The value of the mask is obtained by raising 2 to the power of each of the
addresses of the desired device, and adding these values. Suppose you want
to create a mask which would only allow interrupts from HP-HIL devices at

S$-38 SAVE - SYSTEMS

SET HIL MASK

addresses 1 and 3. You would take 2 and raise if to the first power and add
this result to 2 raised to the third power; the final result is a mask value of 10.

At start-up time, the BASIC system attempts to use all available devices on
the HP-HIL link. You may then use this statement to select only those devices
which you require and relinquish the other devices for use by different HP-UX
processes (e.g. other BASIC/UX processes). You should never specify the
address of the HIL keyboard with this statement since this interferes with the
operation of BASIC and block all keyboard input.

Any HIL device which has been specified with this statement or which is not
owned by other processes can be identified using the HIL SEND statement as
in:

HIL SEND 4; IDD

You should note that the X Windows environment monopolizes all HIL devices
unless explicitly specified not to do so. When a device is thus owned by X
Windows, it is not available for use by any BASIC processes running under the
environment.

Each invocation of rmb in the X Windows environment should relinquish the
HP HIL devices that it does not need with SET HIL MASK to allow other
invocations of rmb to access those devices; otherwise, the first invocation of rmb
will monopolize all HP HIL devices on the link.

SAVE - SYSTEMS$ S-39

SET KEY

Supported On UX WS DOS
Option Required KBD
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN... Yes
This statement programmatically re-defines typing-aid softkey(s).

key string containing 1
SET KEY number typing—aid definition $
string array of
softkey definition(s) $ (*)

Item Deseription Range

key number numeric expression, rounded to an 0 through 23
integer

string string expression any valid string expression
containing
1 softkey
definition

string array name of a string array any valid name
of softkey
definition(s)

Example Statements

SET KEY 1,0neKey$
SET KEY First_key,Several_keys$(#)

S-40 SAVE - SYSTEMS

SET KEY

Semantics

Typing-aid softkeys are used when typing text at the keyboard. They are
active whenever there is not a running program that has defined interrupt
service routines for the keys (with ON KEY).

The “first key” parameter indicates the first key to be re-defined.

The second parameter (the string expression or array) determines the number
of keys to be re-defined:

m If the parameter is a string expression (which includes a simple string
variable), then only one typing-aid softkey is re-defined.

m If the parameter is a string array, then several typing-aid softkeys may be
re-defined. Softkeys are re-defined in ascending order, one for each array
element, until one of the following conditions is true:

o the end of the array is reached
o the last softkey is re-defined
O typing-aid softkey memory overflows

For instance, if this parameter has a value of 5, and the string array has 3
elements, then softkeys (f5), (f6), and (i7) are redefined, respectively.

In order to minimize the chances of typing-aid memory overflows, keys in

the range to be re-defined are first cleared and then the corresponding string
values are placed into typing-aid memory. For instance, if the “first key”
parameter is 3 and the array contains 4 elements, then softkeys 3 through 6 are
cleared, after which the string array elements are placed into the corresponding
softkeys. If typing-aid memory does overflow, the remaining keys in the range
remain undefined. For instance, in this example if a memory overflow occurred
while defining key 5, then keys 3 and 4 would have new definitions while keys 5
and 6 would remain undefined.

If the string, or string array element, contains a null (0 length) string, the
corresponding typing-aid becomes undefined. Use EDIT KEY or LOAD KEY
to define null string typing-aids.

SAVE - SYSTEMS$ S-41

SET LOCATOR

Supported On UX WS DOS
Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes

In an IF.. THEN ... Yes

This statement specifies a new position for the locator of the current graphics

input device.

(SET LOCATOD—. x coordinate —D@—b

Item Description

y coordinate]

Range

x coordinate numeric expression specifying the
x coordinate of the locator’s new
position in current units

y coordinate numeric expression specifying the
y coordinate of the locator’s new
position in current units

Example Statements

SET LOCATOR 12,95
SET LOCATOR X_cor,Y_cor

Semantics

range of REAL

range of REAL

If any of the coordinates are outside the device’s limits, they are truncated to

the nearest boundary.

In order to change the X and Y coordinates of the locator, the graphics input
device must have a programmable locator position, (e.g. graphics input is from

the keyboard and other relative locators).

S-42 SAVE - SYSTEMS

SET LOCATOR
The HP 9111A tablet does not support this capability.

SAVE - SYSTEM$ S-43

SET PEN

Supported on
Option Required

Keyboard Executable

Programmable

In an IF ... THEN

UX WS DOS

GRAPHX
Yes
Yes
Yes

This statement defines the color or gray value for one or more entries in the

color map.
G o R COLOR) hue »)} saturation —»O—q luminosity
S O
INTENSITY\ red —’@—' green P’O—’ blue
RGE
] ome ” *)
Item Description Range
pen selector numeric expression, rounded to an 0 through 32 767
integer
hue numeric expression 0 through 1
saturation numeric expression 0 through 1
luminosity numeric expression 0 through 1
HSL array name of a two-dimensional, any valid name
name three-column REAL array
red numeric expression 0 through 1
green numeric expression 0 through 1
blue numeric expression 0 through 1
RGB array name of a two-dimensional, any valid name
name three-column REAL array

S$-44 SAVE - SYSTEMS

SET PEN

Note The colors defined with SET PEN become active only after a
PLOTTER IS_.COLOR MAP statement, such as:

PLOTTER IS CRT, "INTERNAL"; COLOR MAP

Example Statements

SET PEN 3 COLOR Hue,Saturation,Luminosity
SET PEN Pen_number INTENSITY Color_map_array(#)
SET PEN O INTENSITY 4/15,4/15,4/15

Semantics

This statement defines the color or gray value for one or more entries in the
color map. Either the HSL (hue/saturation/luminosity) color model or the
RGB (red/green/blue) color model may be used. This statement is ignored for
non-color mapped devices and color or gray mapped devices in non-color map
mode.

For both SET PEN COLOR and SET PEN INTENSITY, the pen selector
specifies the first color or gray map entry to be defined. If individual RGB

or HSL values are given, that entry in the color or gray map is the only one
defined. If an array is specified, the color or gray map is redefined, starting at
the specified pen, and continuing until either the highest-numbered entry in the
map is redefined or the source array is exhausted.

Specifying color or gray with the SET PEN and AREA PEN statements
(resulting in non-dithered color) results in a much more accurate representation
of the desired color than specifying the color with an AREA statement.

SET PEN COLOR

The hue value specifies the color. The hue ranges from zero to one, in a
circular manner, with a value of zero resulting in the same hue as a value of
one. The hue, as it goes from zero to one, proceeds through red, orange, yellow,
green, cyan, blue, magenta, and back to red.

The saturation value, classically defined, is the inverse of the amount of white
added to a hue. What this means is that saturation specifies the amount of hue
to be mixed with white. As saturation goes from zero to one, there is 0% to

SAVE - SYSTEMS$ S-45

SET PEN

100% of pure hue added to white. Thus, a saturation of zero results in a gray,
dependent only upon the luminosity; hue makes no difference.

The luminosity value specifies the brightness per unit area of the color. A
luminosity of zero results in black, regardless of hue or saturation; if there is no
color, it makes no difference which color it is that is not there.

If you are using a gray scale display, hue and saturation are not used, and
the brightness per unit area of gray is specified by the luminosity value. A
luminosity of zero results in black.

The example program COLORS, found on the MANUAL EXAMPLES disk,
demonstrates many of the effects of HSL color model.

COLORS shows the changes brought about by varying one HSL parameter at a
time. The button bar shows that when saturation (the amount of color) is zero,
hue makes no difference, and varying luminosity results in a gray scale.

It also displays the fully saturated, fully luminous colors selected as the hue
value goes from 0 through 1. Any value between zero and one, inclusive, can
be chosen to select color, but the resolution (the amount the value can change
before the color on the screen changes) depends on the value of hue, as well as
the other two parameters.

COLORS illustrates the effect that varying saturation and luminosity has on hue
with several small color wheels.

SET PEN INTENSITY

The red, green, and blue values specify the intensities of the red, green, and
blue colors displayed on the screen.

If you are using a gray scale display, the luminosity value specifies the intensity
of gray.

The example program COLORS, found on the MANUAL EXAMPLES disk,
demonstrates the effect of varying the intensity of one color component while
the other two remain constant.

It also shows combinations of red, green and blue. The values are represented
in fifteenths: 0 fifteenths, 5 fifteenths, 10 fifteenths, and 15 fifteenths—every
fifth value. Fifteenths are the units. Thus, zero fifteenths through fifteen

S-46 SAVE - SYSTEMS

SET PEN

fifteenths made a total of sixteen levels. The values for each color component
are represented in that color.

BASIC/UX Specifics

Dithering on the HP 2397 terminal assumes that the hardware color map
contains power-on color assignments. However, these do not correspond to the
standard BASIC color map. To make dithering results accurate on the HP
2397, the color map must be set to the following with SET PEN:

Pen R G B
0 0.0 0.0 0.0
1 1.0 0.0 0.0
2 0.0 1.0 0.0
3 1.0 1.0 0.0
4 0.0 0.0 1.0
5 1.0 0.0 1.0
6 0.0 1.0 1.0
7 1.0 1.0 1.0

BASIC/DOS Specifics

SET PEN color selections are fully supported for a VGA color display.
However, for an EGA display, the color selections are limited.

SAVE - SYSTEMS S-47

SET TIME

Supported On UX WS DOS
Option Required None
Keyboard Executable Yes
Programmable Yes
InanIF... THEN ... Yes

This statement resets the time-of-day given by the real-time clock.

GO

seconds

Item | Description | Range

seconds numeric expression, rounded to the

nearest hundredth

0 through 86 399.99

Example Statements

SET TIME 0

SET TIME Hours*3600+Minutes*60

SET TIME TIME("8:37:30")

SET TIME (BASIC/UX only)

Semantics

SET TIME changes only the time within the current day, not the date. The
new clock setting is equivalent to (TIMEDATE DIV 86 400)x86 400 plus the
specified setting.

§-48 SAVE - SYSTEMS

SET TIME

BASIC/UX Specifics

This statement does not reset the HP-UX clock, even if the user is super-user.
Instead it resets the clock which BASIC/UX keeps for itself.

SET TIME without a parameter resynchronizes the time with the HP-UX
clock. This does not affect the date nor the timezone. If the timezone is
subsequently resynchronized with HP-UX (via TIMEZONE IS), then the time
will change accordingly. The proper way to resynchronize both the time and
timezone is to do the timezone first as in:

TIMEZONE IS
SET TIME

BASIC/DOS Specifics

With MS-DOS 3.1 and 3.2, SET TIME affects only the “local” BASIC time
and MS-DOS time. With MS-DOS 3.3 and above, SET TIME also sets the
CMOS battery-backed clock (the real time clock on the PC).

Computer

useum

SAVE - SYSTEMS$ S-49

SET TIMEDATE

Supported On UX WS DOS
Option Required None
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN... Yes

This statement resets the absolute seconds (time and day) given by the
real-time clock.

r bl
i BASIC /UX |

1 only gt
((ser TweDATE) t _____ J—_u

seconds

Item | Deseription | Range

numeric expression, rounded to
the nearest hundredth

seconds 2.086 629 12 E+11 through

2.143 252 223 999 9 E+11

Example Statements

SET TIMEDATE TIMEDATE+3600

SET TIMEDATE Strange_number

SET TIMEDATE DATE("1 Jan 1989") + TIME("13:57:20")

SET TIMEDATE (BASIC/UX only)

Semantics

The volatile clock is set to 2.086 629 12 E+4+11 (midnight March 1, 1900)

at power-on (BASIC Workstation semantics). If there is a battery-backed
(non-volatile) clock, then the volatile clock is synchronized with it at power-up.
If the computer is on an SRM system (and has no battery-backed clock), then
the volatile clock is synchronized with the SRM clock when the SRM and

S-50 SAVE - SYSTEMS$

SET TIMEDATE

DCOMM binaries are loaded. The clock values represent Julian time, expressed
in seconds.

BASIC/UX Specifics

The volatile clock is set to the current HP-UX time at power-on. The clock
values represent Julian time, expressed in seconds.

Note that this statement does NOT reset the HP-UX clock, even if the user is
super-user. Instead it resets the clock which BASIC keeps for itself.

SET TIMEDATE without a parameter resynchronizes the time and date

with the HP-UX clock. This does not affect the timezone. If the timezone is
subsequently resynchronized with HP-UX (via TIMEZONE IS), then the time
and date will change accordingly. The proper way to resynchronize the time,
date, and timezone is to do the timezone first as in:

TIMEZONE IS
SET TIMEDATE

BASIC/DOS Specifics

With MS-DOS 3.1 and 3.2, SET TIMEDATE affects only the “local” BASIC
time and MS-DOS time. With MS-DOS 3.3 and above, SET TIMEDATE also
sets the CMOS battery-backed clock (the real time clock on the PC).

SAVE - SYSTEMS$ S-51

SGN

Supported On UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes

InanlIF ... THEN ... Yes

This function returns 1 if the argument is positive, 0 if it equals zero, and —1 if
it is negative.

numeric > (:) »
SGN (expression

Example Statements

Root=SGN (X)*SQR(ABS (X))
Z=2+PI*SGN(Y)

Semantics
COMPLEX arguments are not allowed with this function.

S-52 SAVE - SYSTEMS$

SHIFT

SHIFT

Supported On UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes

InanIF ... THEN... Yes

This function returns an integer which equals the value obtained by shifting the
16-bit binary representation of the argument by the number of bit positions
specified, without wrap-around.

bit position
SHIFT o arqument ! displacement (:)

S
Item Description Range
argument numeric expression, rounded to an —32 768 through 432 767
integer
bit position numeric expression, rounded to an —15 through +15
displacement integer

Example Statements

New_word=SHIFT(01d_word,-2)
Mask=SHIFT(1,Position)

Semantics

If the bit position displacement is positive, the shift is towards the
least-significant bit. If the bit position displacement is negative, the shift is
towards the most-significant bit. Bits shifted out are lost. Bits shifted in are
zeros. The SHIFT operation is performed without changing the value of any
variable in the argument.

SAVE - SYSTEMS$ S-53

SHIFTIN ... OUT

See the ASSIGN, DUMP DEVICE IS, PRINTALL IS, and PRINTER IS
statements.

S$-54 SAVE - SYSTEMS

SHOW

SHOW

Supported On UX WS DOS
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN... Yes

This statement is used to define an isotropic current unit-of-measure for
graphics operations.

CTy Kl 1 O [l O L] 4 Oy K

Item Description Range
left numeric expression —
right numeric expression # left
bottom numeric expression —
top numeric expression # bottom

Example Statements

SHOW -5,5,0,100
SHOW Left,Right ,Bottom,Top

Semantics

SHOW defines the values which must be displayed within the hard clip
boundaries, or the boundaries defined by the VIEWPORT statement. SHOW
creates isotropic units (units the same in X and Y). The direction of an axis
may be reversed by specifying the left greater than the right or the bottom
greater than the top. (Also see WINDOW.)

SAVE - SYSTEMS$ S-55

SHOW
For information on scaling with large ranges, when using the SHOW statement,

read the section “Special Considerations about Scaling” in the chapter “Using
Graphics Effectively” found in the HP BASIC 6.2 Programming Guide.

S-56 SAVE - SYSTEMS

SIGNAL

SIGNAL

Supported On UX WS DOS
Option Required 10

Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This statement generates a software interrupt.

signal
(SIGNAL) selector _,‘

Item | Description | Range
0 through 15

numeric expression, rounded to an
integer

signal selector

Example Statements

SIGNAL 3
SIGNAL Bailout

Semantics

If an ON SIGNAL statement for the specified signal selector exists, and all
the other conditions for an event-initiated branch are fulfilled, the branch
defined in the ON SIGNAL statement is taken. If no ON SIGNAL exists for
the specified signal selector, the SIGNAL statement causes no action.

SAVE - SYSTEMS S-57

SIN

Supported On UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This function returns the sine of the angle represented by the argument.

argument —b@—b

Range
Item Description Restrictions
argument numeric expression in current units of | absolute values less than:
angle when arguments are INTEGER [1.708 312 781 2 E+10 deg
or REAL or 2.981 568 26 E48 rad
. .) ; see “Range Restriction
numeric expression in radians when Specifics” for COMPLEX
argument is COMPLEX
arguments

Examples Statements

Sine=SIN(Angle)
PRINT "Sine of ";Theta;"=";SIN(Theta)

Semantics

If the argument is REAL or INTEGER, the value returned is REAL. If the
argument is COMPLEX, the value returned is COMPLEX.

To compute the SIN of a COMPLEX value, the COMPLEX binary must be
loaded.

S-58 SAVE - SYSTEMS$

SIN

Range Restriction Specifics
The formula used for computing the SIN of a COMPLEX argument is:
CMPLX (SIN(Real_part)*COSH(Imag_part) ,COS(Real_part)*SINH(Imag_part))

where Real_part is the real part of the COMPLEX argument and Imag_part
is the imaginary part of the COMPLEX argument. Some values of a
COMPLEX argument may cause errors in this computation. For example,

SIN(CMPLX(0,MAXREAL))
will cause error 22 due to the COSH(Imag_part) calculation.

Note that any COMPLEX function whose definition includes a sine or cosine
function will be evaluated in the radian mode regardless of the current angle
mode (i.e. RAD or DEG).

SAVE - SYSTEMS$ S-59

SINH

Supported On UX WS DOS
Option Required COMPLEX
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This function returns the hyperbolic sine of a numeric expression.

argument —o@—b

Range
Item Description/Default Restrictions
argument numeric expression —710 through 710 for

INTEGER or REAL
arguments; see “Range
Restriction Specifics” for
COMPLEX arguments

Example Statements

Result=SINH(-8.2475)
PRINT "Hyperbolic Sine = ";SINH(Expression)

Semantics

If an INTEGER or REAL argument is given, this function returns a REAL
value. If a COMPLEX argument is given, this function returns a COMPLEX
value.

S-60 SAVE - SYSTEMS

SINH

Range Restriction Specifics
The formula used for computing SINH is as follows:
(EXP(Argument) - EXP(~Argument))/2

where Argument is the argument of the SINH function. Some arguments may
cause errors in intermediate values computed during this computation. For
example,

SINH(MAXREAL)

will cause error 22 due to the EXP(Argument) computation.

SAVE - SYSTEM$ S-61

SIZE

Supported On UX WS DOS IN
Option Required MAT

Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This function returns the size (number of elements) of a dimension of an array.
This INTEGER value represents the difference between the upper bound and
the lower bound, plus 1.

array 0 I -
name " dimension —D@—b-

Item Description | Range
array name name of an array any valid name
dimension numeric expression, rounded to an 1 through 6; < the RANK of
integer the array

Example Statements

Upperbound (2)=BASE (A, 2)+SIZE(A,2)-1
Number _words=SIZE(Words$,1)

S-62 SAVE - SYSTEMS

SORT

SORT
See the MAT SORT statement.

SAVE - SYSTEMS$ S-63

SOUND

Supported On UX WS
Option Required KBD
Keyboard Executable Yes
Programmable Yes
InanIF ... THEN ... Yes

This statement produces a single tone or multiple tones on the sound generator
of an HP-HIL interface.

SOUND n::’rﬁ’er —’@—F n\:cr:::er —FG—F volume —DG—D duration [»
f d A
et P(6))
Item Description Range
voice number | numeric expression, rounded to an 1 through 3
integer
frequency numeric expression, rounded to an 83 through 83 333 Hz (see
integer following table)
volume numeric expression, rounded to an 0 through 15
integer
duration numeric expression, rounded to an 0, 0.01 through 2.55
integer
array of sound |INTEGER array must contain the proper
instructions number of non-zero values
(see Semantics)

S-64 SAVE - SYSTEMS$

SOUND

Example Statements

SOUND Voice_num,Freq,Volume,Duration
SOUND 1,440,12,0.50
SOUND Instructions(*)

Semantics

If the multiple-parameter syntaz is used, then the SOUND statement generates
one tone on the specified voice number; the frequency, volume, and duration of
the tone are as specified by the last three parameters of the statement. Note
that the BASIC system does not wait for the tone to finish before executing
the following program line or statement (if any). If you want to generate

a sequence of tones, you must either generate a delay between SOUND
statements (such as with WAIT), or use the SOUND syntax described below.

If the single-parameter syntaz is used (that is, a numeric array is specified),
then the elements of the array are read sequentially and interpreted according S
to the following rules:

SAVE - SYSTEMS$ S-65

SOUND

Instruction Sound Chip Effect Produced

0 Exit the SOUND statement (and stop reading array elements)

1to3 The specified voice is to be used; also says to read the next three array
elements, and interpret them as follows, respectively:

» tone number—used to set the frequency (frequency = 83 333 / tone
number).

¥ volume—0 = off; 1 through 15 are lowest to highest volume.
® duration—values § through 255 are interpreted as follows:

0 is interpreted as “sound indefinitely”.

1 through 255 are interpreted as 10’s of milliseconds (i.e., 1/100
second);

4 Specifies that the noise voice is to be used; also says to read the next
three array elements and interpret them as above (the same as with
voice numbers 1 to 3), ezcept that the tone number parameter is
interpreted as follows:

0 => periodic noise; fast shift register clock; 1 => periodic noise;
medium shift register clock; 2 => periodic noise; slow shift register
clock; 3 => periodic noise; clock shift register with voice 3;

4 => while noise; fast shift register clock; 5 => white noise; medium
shift register clock; 6 => white noise; slow shift register clock; 7 =>
white noise; clock shift register with voice 3.

5to8 | Wait for voice 1 to 4, respectively, to finish sounding before executing
the next sound instruction (if any).

9 Read the following array element, and wait the specified interval
(100 microseconds x that element’s value) before executing the next
instruction (if any).

If the end of the array is reached on one of these boundaries, then the SOUND
statement terminates normally; however, if the last element of the array has

S-66 SAVE - SYSTEMS

SOUND

been reached and the BASIC system expects to read more values, then error 17
will be reported (subscript out of range).

Producing Notes in the Equal-Tempered Scale

Here is a list of the notes in the equal-tempered musical scale. The table shows
that the frequencies available with the SOUND statement are close to the
even-tempered notes, but are not ezact. The equal-tempered scale is derived
from the following relationship:

frequency of note = 2(1/12) x (frequency of preceding note)

Ideal Tone Closest
Note | Frequency | Number | Frequency
E 82.41 1011 82.43
F 87.31 954 87.35
F# 92.50 901 92.49
G 98.00 850 98.04
G# 103.83 803 103.78
A 110.00 758 109.94
A# 116.54 715 116.55
B 123.47 675 123.46
C 130.81 637 130.82
C# 138.59 601 138.66
D 146.83 568 146.71
D# 155.56 536 155.47
E 164.81 506 164.69
F 174.61 477 174.70
F# 185.00 450 185.18
G 196.00 425 196.08
G# 207.65 401 207.81
A 220.00 379 219.88
AH# 233.08 358 232.77
B 246.94 337 247.28

SAVE - SYSTEM$ S-67

SOUND

Ideal Tone Closest

Note | Frequency | Number | Frequency
C 261.63 319 261.23
C# 277.18 301 276.85
D 293.66 284 293.43
D# 311.13 268 310.94
E 329.63 253 329.38
F 349.23 239 348.67
F# 369.99 225 370.37
G 392.00 213 391.23
G# 415.30 201 414.59
A 440.00 189 440.92
A# 466.16 179 465.55
B 493.88 169 493.09
C 523.25 159 524.11
C# 554.37 150 555.55
D 587.33 142 586.85
D# 622.25 134 621.89
E 659.26 126 661.37
F 698.46 119 700.28
F# 739.99 113 737.46
G 783.99 106 786.16
G# 830.61 100 833.33
A 880.00 95 877.19
A# 932.33 89 936.33
B 987.77 84 992.06

S$-68 SAVE - SYSTEMS

Ideal Tone Closest

Note | Frequency | Number | Frequency
C 1046.50 80 1041.66
C# 1108.73 75 1111.11
D 1174.66 71 1173.70
D# 1244.51 67 1243.78
E 1318.51 63 1322.75
F 1396.91 60 1388.88
F# 1479.98 56 1488.09
G 1567.98 53 1572.32
G# 1661.22 50 1666.66
A 1760.00 47 1773.04
A# 1864.66 45 1851.84
B 1975.53 42 1984.12
C 2093.00 40 2083.33
C# 2217.46 38 2192.97
D 2349.32 35 2380.94
D# 2489.02 33 2525.24
E 2637.02 32 2604.16
F 2793.83 30 2777.77
F# 2959.96 28 2976.18
G 3135.96 27 3086.41
G# 3322.44 25 3333.32
A 3520.00 24 3472.21
A# 3729.31 22 3787.86
B 3951.07 21 3968.24

SOUND

SAVE - SYSTEM$ S-69

SOUND

Ideal Tone Closest
Note | Frequency | Number | Frequency
C 4186.01 20 4166.65
C# 4434.92 19 4385.95
D 4698.64 18 4629.61
D# 4978.03 17 4901.94
E 5274.04 16 5208.31
F 5587.65 15 5555.53
F# 5919.91 14 5952.36
G 6271.93 13 6410.23
G# 6644.88 13 6410.23
A 7040.00 12 6944.42
A# 7458.62 11 7575.73
B 7902.13 11 7575.73
C 8372.02 10 8333.30
C# 8869.84 9 9259.22
D 9397.27 9 9259.22
D# 9956.06 8 10416.63
E 10548.08 8 10416.63
F 11175.30 T 11904.71
F# 11839.82 7 11904.71
G 12543.85 7 11904.71
G# 13289.75 6 13888.83

S-70 SAVE - SYSTEMS

SPANISH

SPANISH
See the LEXICAL ORDER IS statement.

SAVE - SYSTEMS$ S-71

SPOLL

Supported On UX WS DOS IN
Option Required I0
Keyboard Executable Yes
Programmable Yes
InanIF ... THEN... Yes

This function returns an integer containing the serial poll response from the

addressed device.
Fa)~-(OE o
device

selector

Item Description Range
I/0 path name name assigned to a device any valid name (see
ASSIGN)
device selector |numeric expression, rounded to an must include a primary
integer address (see Glossary)

Example Statements

Stat=SPOLL(707)
IF SPOLL(@Device) THEN Respond

Semantics

A SPOLL may be executed under the following conditions:
m the computer must be the active controller

m multiple listeners are not allowed

m one secondary address may be specified to get status from an extended talker

S-72 SAVE - SYSTEMS$

SPOLL

Refer to the documentation provided with the polled device for information
concerning the device’s status byte.

Summary of Bus Actions

Interface Select | Primary Address
Code Only Specified

ATN
UNL
MLA
TAD
Error SPE
ATN

Read data
ATN
SPD
UNT

SAVE - SYSTEM$ S-73

SQRT

Supported On UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes

InanIF ... THEN... Yes

This function returns the square root of the argument.

m 0 argument)

SQR

Summary of Bus Actions

Range
Item Description/Default Restrictions
argument numeric expression any valid INTEGER or

REAL value for INTEGER
and REAL expressions; for
COMPLEX arguments, the
range restriction for ABS
applies here.

Examples Statements

Ampe=SQRT(Watts/Ohms)
PRINT "Square root of ";X;"=";SQR(Z)

Semantics

If the argument is REAL or INTEGER, the value returned is REAL. If the
argument is COMPLEX, the value returned is COMPLEX.

To compute the SQR or SQRT of a COMPLEX value, the COMPLEX binary
must be loaded.

S-74 SAVE - SYSTEMS$

STANDARD

STANDARD
See the LEXICAL ORDER IS statement.

SAVE - SYSTEMS$ S-75

STATUS

Supported on UX WS DOS
Option Required None
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This statement returns the contents of interface or I/O path name status
registers.

name name

STATUS @ 1/0 path J : numernic

, register
name

interface
select code

Item Description Range

I/0O path name [name assigned to a device, devices, any valid name (see
mass storage file, buffer, or pipe ASSIGN)

interface select |numeric expression, rounded to an 1 through 40

code integer

register number | numeric expression, rounded to an interface dependent
integer; Default = 0

numeric name |name of a numeric variable any valid name

S-76 SAVE - SYSTEMS

STATUS

Example Statements

STATUS 1;Xpos,Ypos
STATUS @File,5;Record

Semantics

The value of the beginning register number is copied into the first variable, the
next register value into the second variable, and so on. The information is read
until the variables in the list are exhausted; there is no wrap-around to the first
register. An attempt to read a nonexistent register generates an error.

The register meanings depend on the specified interface or on the resource to
which the I/O path name is currently assigned. Register 0 of I/O path names
can be interrogated with STATUS even if the I/O path name is currently
invalid (i.e., unassigned to a resource). Note that the Status registers of an
I/0 path are different from the Status registers of an interface. All Status and

Control registers are summarized in the “Interface Registers” section at the
back of the book.

SAVE - SYSTEMS S-77

STEP
See the FOR ... NEXT construct.

S-78 SAVE - SYSTEMS

STOP

STOP

Supported On UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This statement terminates execution of the program.

Semantics

Once a program is stopped, it cannot be resumed by CONTINUE. RUN must
be executed to restart the program. PAUSE should be used if you intend to
continue execution of the program.

A program can have multiple STOP statements. Encountering an END
statement or pressing the (sToP) ((shift}(Stop) on the ITF keyboards) key has
the same effect as executing STOP. After a STOP, variables that existed in the
main context are available from the keyboard.

SAVE - SYSTEMS$ S-79

STORE

Supported On UX WS DOS IN”
Option Required None

Keyboard Executable Yes
Programmable Yes

InanIF... THEN ... Yes

This statement creates a file and stores the program or typing-aid key
definitions into it.

@ @ spiiefier F"

literal form of file specifier:

file of «
name
directory LIF protect volume

path code specifier

—

HFS or SRM files only

literal form of DFS file specifier:

O 7O~

directory volume
path specifier

S-80 SAVE - SYSTEMS

Item

Description

STORE

Range

file specifier
directory path

file name

LIF protect
code

volume specifier

string expression
literal

literal

literal; first two non-blank characters
are significant

literal

Example Statements

STORE Filename$&Vol$
STORE "Dir<SRM_RW_pass>/Program"

STORE KEY "Typing_aids"
STORE KEY "KEYS:REMOTE"
STORE KEY "/USERS/MARK/TYPING"

Semantics

(see drawing)
(see MASS STORAGE IS)

depends on volume’s format
(see Glossary)

> not allowed

(see MASS STORAGE IS)

In all STORE statements, an error will occur if the storage media cannot be
found, the media or directory is full, or the file specified already exists. Also,
if a LIF protect code is specified, it will be applied to the new LIF file. To

update a file which already exists, see RE-STORE.

STORE

The STORE statement creates a PROG file and stores an internal form of the
program into that file.

SAVE - SYSTEMS$ S-81

STORE

STORE KEY

STORE KEY creates a file of type BDAT, and stores the current typing-aid
softkey definitions (not ON KEY softkey definitions) into it. These definitions
may subsequently be reloaded with the LOAD KEY statement.

For each defined typing-aid softkey, an integer and a string are sent to the file.
The integer is the key number, and the string is the key definition. The data
is written with FORMAT OFF (see the OUTPUT statement). Keys with no
definition are not written to the file.

HFS Permissions

In order to STORE a file on an HFS volume, you need to have W (write) and
X (search) permission on the immediately superior directory, as well as X
permission on all other superior directories.

When a file is stored on an HFS volume, access permission bits are set to
RW-RW-RW-. You can modify the access permission bits with PERMIT, if
desired.

DFS and HFS File Headers

On DFS or HFS volumes, STORE creates a PROG file that contains a
512-byte header (at the beginning of the file’s contents). This header allows
the BASIC system to recognize the file as being a PROG file. (The header is
handled automatically by the BASIC system, so you do not have to take any
special actions.)

SRM Passwords and Exclusive Mode

In order to STORE an SRM file, you need to have R (read) and W (write)
capabilities on the immediately superior directory, and R capabilities on all
other superior directories.

Including an SRM password with the file name does not protect the file.
You must use PROTECT to assign passwords. You will not receive an error
message for including a password, but a password in the file name portion of
the STORE statement will be ignored.

S-82 SAVE - SYSTEMS

STORE

STORE opens the remote file in exclusive mode (denoted as LOCK in a CAT
listing) and enforces that status on the file until the STORE is complete.
While in exclusive mode, the file is inaccessible to all SRM workstations other
than the one executing the STORE.

SAVE - SYSTEMS$ S-83

STORE SYSTEM

Supported on UX WS DOS*
Option Required None
Keyboard Executable Yes
Programmable No

InanIF ... THEN... No

The command stores the entire BASIC operating system currently in
memory including any BINs that are loaded (use only with BASIC/WS or

BASIC/DOS).

(STORE SYSTEM) _file 1o

specifier

literal form of file specifier:

directory

"@L j‘ n::'ze

Item

path

Description

volume
specifier

Range

file specifier
directory path
file name

volume specifier

string expression
literal
literal

literal

S-84 SAVE - SYSTEMS

(see drawing)
(see MASS STORAGE IS)
(see Semantics)

(see MASS STORAGE IS)

STORE SYSTEM

Example Statements

STORE SYSTEM "SYSTEM_BAS:,700"
STORE SYSTEM "BACKUP1"

STORE SYSTEM "SYSTEM_B1:REMOTE"
STORE SYSTEM "/SYSTEMS/SYSTEM_NEW"
STORE SYSTEM "/SYS_HFS"

Semantics
If the file name already exists, an error is reported.

On LIF volumes, SYSTM file names can be up to 10 characters long; on SRM
volumes, they may be up to 16 characters long.

On HFS volumes, SYSTM file names may only be up to 9 characters long,
since the HFS loader assumes that strings will be terminated with the null
character, CHR$(0). In addition, SYSTM file names on HFS volumes less
than 9 characters long will be padded with null characters to a length of

10 characters. This may cause unexpected results, since null characters act

as “wild cards” on HFS volumes. For instance, suppose that there are two
SYSTM files on the same HFS volume named SYSTEM_BA and SYSTEM_B,
and that they are listed as 1B and 2B, respectively, by the Boot ROM. Typing
1B will boot SYSTEM_BA, as expected. However, typing 2B will also boot
SYSTEM_BA because of the null (wild card) character in the 9th position in
the SYSTM file named SYSTEM_B.

The BASIC system and any BINs in memory are stored in the SYSTM file. If
the file name begins with SYSTEM_, the Boot ROM can find it and load it at
power up or SYSBOOT. (Note that Boot ROM 3.0 and A, and later versions,
can find and load files beginning with SYS.) On SRM, the system must be
located in /SYSTEMS for the Boot ROM to find it. On HFS, the system must
be stored in the root (“/”) for the Boot ROM to find it.

Note that if you did a SCRATCH BIN to remove the CRT driver you did not
need, and then stored the system, when you reboot, the CRT driver for the
other display is not available. If the CRT needs the other driver, you cannot
use the display. Execute a LOAD BIN command to load the needed driver.

STORE SYSTEM cannot be used with ROM BASIC systems.

SAVE - SYSTEM$ S-85

STORE SYSTEM

HFS Permissions and File Headers

In order to use STORE SYSTEM on an HFS volume, you need to have W
(write) and X (search) permission on the root directory. ON HFS, you can
STORE SYSTEM only to the root directory.

Do not RENAME a file stored into the root directory of an HFS volume by
STORE SYSTEM.

A SYSTM file (or an HP-UX file stored by STORE SYSTEM) which is placed
in the root directory of an HF'S volume by COPY or LINK will not be found
by the Boot ROM.

The R (read) access capability on the system file created with STORE
SYSTEM must be public to allow use of the file for booting.

On HFS volumes, STORE SYSTEM creates an HP-UX file that contains a
special header (at the beginning of the file’s contents) to make the file conform
to the HP-UX “a.out” file format. (The header is handled automatically by the
BASIC system, so you do not have to take any special actions.)

SRM Access Capabilities

In order to use STORE SYSTEM on an SRM volume, you need to have R
(read) and W (write) capabilities on the immediately superior directory, and R
capabilities on all other superior directories.

The R (read) access capability on the system file created with STORE
SYSTEM must be public to allow use of the file for booting.

Including an SRM password with the file name does not protect the file.
You must use PROTECT to assign passwords. You will not receive an error
message for including a password, but a password in the file name will be
ignored.

S-86 SAVE - SYSTEMS

STORE SYSTEM

BASIC/UX Specifics

STORE SYSTEM is not necessary nor supported on BASIC/UX as
BASIC/UX is a unified system.

BASIC/DOS Specifics

A system stored from BASIC/DOS will not run correctly on BASIC/WS, or
vice versa.

SAVE - SYSTEMS$ S-87

SUB

Supported On UX WS DOS IN”
Option Required None

Keyboard Executable No
Programmable Yes

InanIF ... THEN... No

This is the first statement in a SUB subprogram and can specify the
subprogram’s formal parameters.

§-88 SAVE - SYSTEMS

€

subprogram

suB

nome

program
segment

SUBEND

. parameter list:

required
parameters

optionat
parameters

>
(parametear
list

"5é%”ﬁ1puter
useum

I

numeric

nome

)

30 (D~
O —
£\
r r \/ 1
OPTIONAL)} > "ree
(+)

[

SAVE - SYSTEMS$ S-89

suB

Item Description Range
subprogram name of the SUB subprogram any valid name
name
numeric name |name of a numeric variable any valid name
string name name of a string variable any valid name

I/O path name |name assigned to a device, devices, or | any valid name (see

mass storage file ASSIGN)
program any number of contiguous program —
segment lines not containing the beginning

or end of a main program or

subprogram

Example Statements

SUB Parse(String$)
SUB Transform{(@Printer,INTEGER Array(*),0PTIONAL Text$)
SUB Complex_sub(COMPLEX Real_imag)

Semantics

SUB subprograms must appear after the main program. The first line of the
subprogram must be a SUB statement. The last line must be a SUBEND
statement. Comments after the SUBEND are considered to be part of the
subprogram.

Parameters to the left of the keyword OPTIONAL are required and must be
supplied whenever the subprogram is invoked (see CALL). Parameters to the
right of OPTIONAL are optional, and only need to be supplied if they are
needed for a specific operation. Optional parameters are associated from left
to right with any remaining pass parameters until the pass parameter list is
exhausted. An error is generated if the subprogram tries to use an optional
parameter which did not have a value passed to it. The function NPAR can be
used to determine the number of parameters supplied by the CALL statement
invoking the subprogram.

$-90 SAVE - SYSTEMS

suB

Variables in a subprogram’s formal parameter list may not be duplicated in
COM or other declaratory statements within the subprogram. A subprogram
may not contain any SUB statements, or DEF FN statements. Subprograms
can be called recursively and may contain local variables. A unique labeled
COM must be used if the local variables are to preserve their values between
invocations of the subprogram.

SUBEXIT may be used to leave the subprogram at some point other than the
SUBEND. Multiple SUBEXITSs are allowed, and SUBEXIT may appear in an
IF ... THEN statement. SUBEND is prohibited in IF ... THEN statements,
and may only occur once in a subprogram. ERROR SUBEXIT may be used in
place of SUBEXIT.

If you want to use a formal parameter as a BUFFER, it must be declared as a
BUFFER in both the formal parameter list and the calling context.

SAVE - SYSTEMS S-91

SUBEND

See the SUB statement.

$-92 SAVE - SYSTEMS$

SUBEXIT

SUBEXIT

Supported On UX WS DOS IN
Option Required None

Keyboard Executable No
Programmable Yes

InanlIF ... THEN... Yes

This statement may be used to return from a SUB subprogram at some
point other than the SUBEND statement. It allows multiple exits from a
subprogram.

See also ERROR SUBEXIT.

SAVE - SYSTEMS$ S-93

SUM

Supported On UX WS DOS
Option Required MAT
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This function returns the sum of all elements of a numeric array. The value
returned is of the same type as the array.

EDNOS R
name

Item I Description ' Range

array name Iname of a numeric array lany valid name

Example Statements

Array_sum=SUM(A)
Sum_squares=SUM(Squares)

S-94 SAVE - SYSTEMS

SUSPEND INTERACTIVE

SUSPEND INTERACTIVE

Supported On UX WS DOS
Option Required None
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This statement disables the (EXECUTE), (ENTER), (Return), (PAUSE]J, (STOP),
(CLR 170), (Break), and (optionally) key functions during a running
program.

(suspeno INTERACTVE) >

O~

Example Statements

SUSPEND INTERACTIVE,RESET
IF NOT Kbd_flag THEN SUSPEND INTERACTIVE

Semantics

Execution of a PAUSE statement, a TRACE PAUSE statement, or a fatal
execution error temporarily restores the suspended key functions. CONTINUE
after a PAUSE will again disable the keys.

SUSPEND INTERACTIVE is cancelled by RESUME INTERACTIVE, STOP,
END, RUN, SCRATCH, GET, LOAD, or (RESET). Although LOAD cancels
SUSPEND INTERACTIVE, LOADSUB does not. SUSPEND INTERACTIVE
has no effect unless a program is running,.

Note Suspending the key will prevent you from stopping a
program before it ends.

(EXECUTE), (ENTER), and (Return) can still be used to respond to an ENTER or
INPUT statement, but cannot be used for live keyboard execution.

SAVE - SYSTEM§$ S-95

SWEDISH
See the LEXICAL ORDER IS statement.

$-96 SAVE - SYSTEMS

SYMBOL

SYMBOL

Supported On UX WS DOS
Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes

Inan IF ... THEN ... Yes

This statement allows labelling with user-defined symbols.

SYMBOL name -'(,(:D
ALl P
{0 = LO)E=)-

S
Item Description | Range
array name name of a two-dimensional, any valid name
two-column or three-column REAL
array

Example Statements

SYMBOL My_char(#)
SYMBOL Logo(#) ,FILL,EDGE

Semantics

The user-defined symbol is created with moves and draws defined in a symbol
coordinate system. The symbol coordinate system is a rectangular area nine
units wide and fifteen units high, that is, a character cell. A symbol can
extend outside the limits of the 9x15 symbol coordinate system rectangle.

A symbol defined in the symbol coordinate system is affected by the label
transformations CSIZE, LDIR, and LORG. The symbol is drawn using the
current pen and line type, and it will be clipped at the current clip boundary.

SAVE - SYSTEM$ S-97

SYMBOL

When defining a symbol in the symbol coordinate system, coordinates may be
outside the 9x15 character cell; thus, characters can be made which are several
character cells wide and several character cells high. For this reason, the
current pen position is not updated to the next character’s reference point, but
it remains at the last X,Y coordinate specified in the array. A move is made

to the first point regardless of the value in the third column of that row in the
array.

The symbol may have polygons defined in its data, and the polygons may be
filled and/or edged. The fill color and pen number/line type used are those
defined at the time the polygon is closed.

FILL and EDGE

When FILL or EDGE is specified, each sequence of two or more lines forms a
polygon. The polygon begins at the first point on the sequence, includes each
successive point, and the final point is connected or closed back to the first
point. A polygon is closed when the end of the array is reached, or when the
value in the third column is an even number less than three, or in the range 5
to 8 or 10 to 15.

If FILL and/or EDGE are specified on the SYMBOL statement itself, it causes
the polygons defined within it to be filled with the current fill color and/or
edged with the current pen color. If polygon mode is entered from within the
array, and the FILL/EDGE directive for that series of polygons differs from
the FILL/EDGE directive on the SYMBOL statement itself, the directive in
the array replaces the directive on the statement. In other words, if a “start
polygon mode” operation selector (a 6, 10, or 11) is encountered, any current
FILL/EDGE directive (whether specified by a keyword or an operation
selector) is replaced by the new FILL/EDGE directive.

If FILL and EDGE are both declared on the SYMBOL statement, FILL occurs
first. If neither one is specified, simple line drawing mode is assumed; that is,
polygon closure does not take place.

If you attempt to fill a figure on an HPGL plotter, the figure will not be filled,
but will be edged, regardless of the directives on the statement.

S-98 SAVE - SYSTEMS

SYMBOL

Applicable Graphics Transformations

Scaling | PIVOT | CSIZE | LDIR | PDIR
Lines (generated by moves and X X (4]
draws)
Polygons and rectangles X X X
Characters (generated by X X
LABEL)
Axes (generated by AXES & X
GRID)
Location of Labels (1] (3] [2]

IThe starting point for labels drawn after lines or axes is affected by scaling.

2The starting point for labels drawn after other labels is affected by LDIR. S
3The starting point for labels drawn after lines or axes is affected by PIVOT.
4RPLOT and IPLOT are affected by PDIR.

When using a SYMBOL statement, the following table of operation selectors
applies. An operation selector is the value in the third column of a row of

the array to be plotted. The array must be a two-dimensional, two-column

or three-column array. If the third column exists, it will contain operation
selectors which instruct the computer to carry out certain operations. Polygons
may be defined, edged (using the current pen), filled (using the current fill
color), pen and line type may be selected, and so forth. See the list below.

SAVE - SYSTEM$ S-99

SYMBOL

Operation
Column 1 Column 2 Selector Meaning
X Y -2 Pen up before moving
X Y -1 Pen down before moving
X Y 0 Pen up after moving (Same as +2)
X Y 1 Pen down after moving
X Y 2 Pen up after moving
pen number ignored 3 Select pen
line type repeat value 4 Select line type
color ignored 5 Color value
ignored ignored 6 Start polygon mode with FILL
ignored ignored 7 End polygon mode
ignored ignored 8 End of data for array
ignored ignored 9 NOP (no operation)
ignored ignored 10 Start polygon mode with EDGE
ignored ignored 11 Start polygon mode with FILL and
EDGE
ignored ignored 12 Draw a FRAME
pen number ignored 13 Area pen value
red value green value 14 Color
blue value ignored 15 Value
ignored ignored >15 Ignored

Moving and Drawing

If the operation selector is less than or equal to two, it is interpreted in exactly
the same manner as the third parameter in a non-array SYMBOL statement.

Even is up, odd is down, positive is after pen motion, negative is before pen
motion. Zero is considered positive.

Selecting Pens

An operation selector of 3 selects a pen. The value in column one is the pen

number desired. The value in column two is ignored.

S$-100 SAVE - SYSTEMS

SYMBOL

Selecting Line Types

An operation selector of 4 selects a line type. The line type (column one)
selects the pattern, and the repeat value (column two) is the length in GDUs
that the line extends before a single occurrence of the pattern is finished and it
starts over. On the CRT, the repeat value is evaluated and rounded down to
the next multiple of 5, with 5 as the minimum.

Selecting a Fill Color

Operation selector 13 selects a pen from the color map with which to do
area fills. This works identically to the AREA PEN statement. Column one
contains the pen number.

Defining a Fill Color

Operation selector 14 is used in conjunction with operation selector 15. Red
and green are specified in columns one and two, respectively, and column three
has the value 14. Following this row in the array (not necessarily immediately),
is a row whose operation selector in column three has the value of 15. The first
column in that row contains the blue value. These numbers range from 0 to

32 767, where 0 is no color and 32 767 is full intensity. Operation selectors 14
and 15 together comprise the equivalent of an AREA INTENSITY statement,
which means it can be used on a monochromatic, gray scale, or color display.

Operation selector 15 actually puts the area intensity into effect, but only if an
operation selector 14 has already been received.

Operation selector 5 is another way to select a fill color. The color selection is
through a Red-Green-Blue (RGB) color model. The first column is encoded in
the following manner. There are three groups of five bits right-justified in the
word; that is, the most significant bit in the word is ignored. Each group of five
bits contains a number which determines the intensity of the corresponding
color component, which ranges from zero to sixteen. The value in each field
will be sixteen minus the intensity of the color component. For example, if the
value in the first column of the array is zero, all three five-bit values would
thus be zero. Sixteen minus zero in all three cases would turn on all three color
components to full intensity, and the resultant color would be a bright white.

SAVE - SYSTEMS$ S-101

SYMBOL

Assuming you have the desired intensities (which range from 0 thru 1) for red,
green, and blue in the variables R, G, and B, respectively, the value for the first
column in the array could be defined thus:

Array(Row, 1)=SHIFT(16%(1-B) ,-10)+SHIFT(16*(1-G) ,-5)+16+(1-R)

If there is a pen color in the color map similar to that which you request here,
that non-dithered color will be used. If there is not a similar color, you will get
a dithered pattern.

If you are using a gray scale display, Operation selector 5 uses the five bit
values of the RGB color specified to calculate luminosity. The resulting gray
luminosity is then used as the area fill. For detailed information on gray
scale calculations, see the chapter “More About Color Graphics” in the

HP BASIC 6.2 Advanced Programming Techniques manual.

Polygons

A six, ten, or eleven in the third column of the array begins a “polygon mode”.
If the operation selector is 6, the polygon will be filled with the current fill
color. If the operation selector is 10, the polygon will be edged with the current
pen number and line type. If the operation selector is 11, the polygon will

be both filled and edged. Many individual polygons can be filled without
terminating the mode with an operation selector 7. This can be done by
specifying several series of draws separated by moves. The first and second
columns are ignored and should not contain the X and Y values of the first
point of a polygon.

Operation selector 7 in the third column of a plotted array terminates
definition of a polygon to be edged and/or filled and also terminates the
polygon mode (entered by operation selectors 6, 10, or 11). The values in the
first and second columns are ignored, and the X and Y values of the last data
point should not be in them. Edging and/or filling of the most recent polygon
will begin immediately upon encountering this operation selector.

S-102 SAVE - SYSTEMS$

SYMBOL

Doing a FRAME

Operation selector 12 does a FRAME around the current soft-clip limits. Soft
clip limits cannot be changed from within the SYMBOL statement, so one
probably would not have more than one operation selector 12 in an array to

SYMBOL, since the last FRAME will overwrite all the previous ones.

Premature Termination

Operation selector 8 causes the SYMBOL statement to be terminated. The
SYMBOL statement will successfully terminate if the actual end of the array
has been reached, so the use of operation selector 8 is optional.

Ignoring Selected Rows in the Array

Operation selector 9 causes the row of the array it is in to be ignored. Any
operation selector greater than 15 is also ignored, but operation selector

9 is retained for compatibility reasons. Operation selectors less than —2
are not ignored. If the value in the third column is less than zero, only
evenness/oddness is considered.

If you attempt to fill a figure on an HPGL plotter, the figure will not be filled,
but will be edged, regardless of the directives on the statement.

SAVE - SYSTEMS$ S-103

SYSBOOT

Supported on UX* WS D
Option Required None
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

oS

This command returns control to the Boot ROM to restart the system
configuration and selection process.

Item

SYSBOOT

file
specifier

literal form of file specifier:

" file

name

volume
specifier

J

Description

Range

file specifier

file name

volume specifier

string expression, specify

ing a

SYSTM file to be booted

literal

literal

Example Statements

SYSBOOT

SYSBOOT Sys_file$&Volume$
SYSBOOT "SYSTEM_BA5:,700"

S-104 SAVE -S

YSTEMS

(see drawing)

(see Semantics)

(see MASS STORAGE IS)

SYSBOOT

Semantics

If no file specifier is included, the normal Boot ROM power-up search sequence
is initiated. (See Using HP BASIC/WS 6.2 or Using HP BASIC/UX 6.2 for a
sequence of mass storage devices searched.)

If a file specifier is included, it must a valid LIF file specifier (10 characters

or less). The Boot ROM restricts the file name, if included, to 10 characters.
System names on SRM can be up to 16 characters. To boot a system whose
name is more than 10 characters, do not specify the file name and use the Boot
ROM to select the correct file.

If no volume specifier is included in the file specifier, the current default volume
is assumed.

To boot a system from the SRM, public read access is required and the
system must be located in /SYSTEMS. The directory path, /SYSTEMS
must be omitted from the file specifier. The Boot ROM looks for the file in
/SYSTEMS.

To boot from HFS the system must be located in the root directory (/).
System names on HFS must be 9 characters or less.

BASIC/UX Specifics
Not supported on BASIC/UX. It generates an error.

BASIC/DOS Specifics

If a file specifier is included, it is ignored. Any boot options given on the
BASIC command line when BASIC/DOS is first invoked will be in effect.

SAVE - SYSTEM$ S-105

SYSTEM KEYS

Supported On UX WS DOS
Option Required KBD
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This statement changes the softkey definitions on an ITF keyboard to the
System menu.

(srstem kevs)+

Example Statements

SYSTEM KEYS
IF Change_keys THEN SYSTEM KEYS

Semantics

This statement only affects the normal mode of the ITF Keyboard (i.e. it does
nothing on an HP 98203A/B/C Keyboard and causes no visible change on an
ITF Keyboard when the Keyboard Compatibility Mode, KBD CMODE, is on).

Note that the functionality of this statement can be achieved through KBD
CONTROL register 2.

For information on the softkey definitions, see Using HP BASIC/WS 6.2 or
Using HP BASIC/UX 6.2.

S$-106 SAVE - SYSTEMS

SYSTEM PRIORITY

SYSTEM PRIORITY

Supported On UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This statement sets system priority to a specified value.

(svsTeM PRORITY)] new priority |54

Item | Description | Range S
0 through 15

new priority numeric expression, rounded to an

integer

Example Statements

SYSTEM PRIORITY 0l1d
IF Critical_code THEN SYSTEM PRIORITY 15

Semantics

Zero is the lowest user-specifiable priority and 15 is the highest. The END,
ERROR, and TIMEOUT events have an effective priority higher than the
highest user-specifiable priority. If no SYSTEM PRIORITY has been executed,
minimum system priority is 0.

This statement establishes the minimum for system priority. Once the
minimum system priority is raised with this statement, any events of equal
or lower priority will be logged but not serviced. In order to allow service of
lower-priority events, minimum system priority must be explicitly lowered.

If SYSTEM PRIORITY is used to change the minimum system priority in a
subprogram context, the former value is restored when the context is exited.

SAVE - SYSTEMS$ S-107

SYSTEM PRIORITY

Error 427 results if SYSTEM PRIORITY is executed in a service routine for an
ON ERROR GOSUB or ON ERROR CALL statement.

S-108 SAVE - SYSTEMS

SYSTEMS$

SYSTEMS

Supported On UX WS DOS™ IN”
Option Required None

Keyboard Executable Yes
Programmable Yes

InanIF ... THEN... Yes

This function returns a string containing system status and configuration
information.

topic
SYSTEM$ (speoci!:ier _,@—.‘

Item | Description I Range

topic specifier lstring expression Isee the following table

Example Statements

IF SYSTEM$ (“TRIG MODE")="RAD" THEN CALL Change_mode
System_prior=VAL(SYSTEM$("SYSTEM PRIORITY"))
Version$=SYSTEM$ ("VERSION:0S")

Semantics

The topic specifier is used to specify what system configuration information
SYSTEMS$ will return. The following table lists the valid topic specifiers and
the information returned for each one.

SAVE - SYSTEMS$ S-109

SYSTEMS

Topic Specifier Information Returned

AVAILABLE MEMORY | Bytes of available memory. BASIC/UX returns both the
physical RAM available before swapping becomes necessary
and available workspace.

CONVERSION A string containing the current contents of the keyboard
BUFFER input conversion buffer (Japanese localized BASIC/WS
only). (Requires INPUT)
CRT ID 6: nnwryzaa
6 distinguishes this format from Series 500 BASIC

nn CRT width in characters

w H=CRT highlights available, space=No highlights

T Cc=Color available, H=Monochrome/Gray scale

y G=Graphics available, space=No graphics

z B=Bit mapped display, space=Not bit mapped

aa highest graphics pen number, 1 if monochrome, 15

if 236C, 2°n-1 if bit mapped

DICTIONARY A string containing the current file specifier for system
IS:SYSTEM input conversion dictionaries (Japanese localized
BASIC/WS only). If no dictionary is assigned, the null
string is returned. (Requires INPUT)

DICTIONARY A string containing the current file specifier for
IS:USER user-defined input conversion dictionaries (Japanese
localized BASIC/WS only). If no dictionary is assigned,
the null string is returned.(Requires INPUT)

DUMP DEVICE IS A string containing numerals which specify the device
selector for the currently assigned DUMP DEVICE IS
device.

S-110 SAVE - SYSTEMS

SYSTEMS

Topic Specifier

Information Returned

GFONT IS

GRAPHICS INPUT IS

KBD LINE

KEYBOARD
LANGUAGE

LANGUAGE

LEXICAL ORDER IS

MASS MEMORY

A string containing the file specifier for the vector

fonts used by LABEL (BASIC/WS only). If no file

has been assigned, the null string is returned.(Requires
LANGUAGE)

A string containing numerals which specify the device
selector for the currently assigned GRAPHICS INPUT IS
device. Zero is returned if no device is currently selected.
(Requires GRAPH)

A string containing the current contents of the keyboard
input line(s). Note that this operation does not change the
contents of the line(s).

ASCII, BELGIAN, CANADIAN ENGLISH, CANADIAN
FRENCH, DANISH, DUTCH, FINNISH, FRENCH,
GERMAN, ITALIAN, KANJI, KATAKANA, LATIN,
NORWEGIAN, SPANISH, SWEDISH, SWISS FRENCH,
SWISS GERMAN, SWISS FRENCH*, SWISS
GERMAN¥*, or UNITED KINGDOM (Requires LEX)

A string containing the current system language
(BASIC/WS only). If no localized LANGUAGE binary

is loaded or if CRTD is not active, the returned string

is the null string. If a localized LANGUAGE binary is
loaded and CRTD is active, then the returned string is the
language supported by LANGUAGE, such as JAPANESE.
(Requires LANGUAGE)

ASCII, GERMAN, FRENCH, SPANISH, SWEDISH or
USER DEFINED (Requires LEX)

X000YZ0000000000

X=Number of internal disk drives Y=Number of initialized
EPROM cards Z=Number of bubble memory cards If Y or
Z exceed 9, an asterisk appears.

BASIC DOS and BASIC/UX: value is always a string of
0’s as internal LIF disk drives, EPROM or bubble memory
cards are not supported.

SAVE - SYSTEM$ S-111

SYSTEMS

Topic Specifier

Information Returned

MASS STORAGE IS,
MSI
PLOTTER IS

PRINTALL IS

PRINTER IS

PROCESS ID

SERIAL NUMBER

SYSTEM ID

SYSTEM PRIORITY

TIMEZONE IS

TRIG MODE

The mass storage unit specifier of the current MASS
STORAGE IS device, as it appears in a CAT heading.

A string containing numerals which specify the device
selector of the current PLOTTER IS device or the path
name of the current PLOTTER IS file. (Requires GRAPH)
A string containing numerals which specify the device
selector of the current PRINTALL IS device.

A string containing numerals which specify the device
selector of the current PRINTER IS device or the path
name of the current PRINTER IS file.

Returns the process identifier of the main process.
BASIC/WS and BASIC/DOS always returns 0.(Requires
CRTX)

Returns the serial number from an HP HIL ID module if
present; otherwise it returns the null string.

$300:40 on Series 300 computers with an MC68040
processor; or $300:30 on Series 300 computers with an
MC68030 processor; or S300:20 on Series 300 computers
with an MC68020 processor; or bytes 15 through 21 of the
ID PROM in a Series 200 computer (if present); or 9816,
9826A, or 98364 padded with trailing spaces to make a
seven character string; PC300 for 82300 Measurement
Coprocessor or PC300:30 for 82324 High Performance
Measurement Coprocessor.

A string containing numerals which specify the current
system priority.

A string specifying the seconds from Greenwich Mean
Time that represent the current timezone value. (Requires
RMBUX,CLOCK)

DEG or RAD

S-112 SAVE - SYSTEMS

SYSTEMS

Topic Specifier

Information Returned

VERSION: option name

VERSION:special_file

WILDCARDS
WINDOW SYSTEM

A string containing numerals which specify the revision
number of the specified binary (also displayed after LOAD
BIN or LIST BIN) or option. BASIC, BCD, BUBBLE,
CLOCK, COMPLEX, CRTA, CRTB, CRTX, CS80,
DCOMM, DFS, DISC, EDIT, EPROM, ERR, FHPIB,
GPIO, GRAPH, GRAPHX, HFS, HP9885, HPIB, IO,
KBD, LEX, MAT, MS, PDEV, RMBUX SERIAL, SRM,
TRANS, XREF, etc.: VERSION:OS returns the operating
system version and name.

A string containing the revision of the specified graphics
font file or dictionary file (Japanese localized BASIC/WS
only). If the file has not been assigned (using GFONT IS,
DICTIONARY is), the null string is returned.

Returns: OFF: DOS: UX:<esc.char>.

Returns data on the window environment.(BASIC/UX/WS
only) “X Windows” —for the X Windows manager
“Console” —for the bare screen console (or BASIC/WS or
BASIC/DOS with RMBUX binary) “Terminal”—for a
terminal “Windows/9000”—for the HP Windows/9000
manager.

SYSTEMS$ with SRM,

DFS, and HFS Systems

When SYSTEM$ of MASS STORAGE IS (MSI), PLOTTER IS, or PRINTER
IS is executed on a system using SRM, DFS or HFS volumes, the information
returned includes the full file specifier describing the file or directory about
which the information is requested. (SRM passwords are not included in the

specifier.)

The system remembers a maximum of 160 characters for any one specifier. If a
specifier contains more than 160 characters, the excess characters are removed
from the beginning of the specifier and are not retained. An asterisk (*) as

the left-most character in the specifier indicates that leading characters were
truncated for the function.

SAVE - SYSTEMS$ S-113

SYSTEMS

BASIC/UX Specifics

The system remembers a maximum of 1024 characters for any one specifier.
If a specifier contains more than 1024 characters, the excess characters are
removed from the beginning of the specifier and are not retained. An asterisk
(*) as the left-most character in the specifier indicates that leading characters
were truncated for the function.

BASIC/DOS Specifics
Four additional keywords are provided for BASIC/DOS:

Topic Specifier Information Returned
DISPLAY SIZE Viewable size of display in pixels in <horiz>x<vert>
format (e.g., “648 x 480).
PIXEL RATIO The X/Y ratio of the physical pixel size on the display

(e.g., 1.00 for VGA).

VERSION:MCP_HW “82300” for Measurement Coprocessor, “82324” for High
Performance Measurement Coprocessor.
VERSION:MCP_SW Version of Measurement Coprocessor Software being used
(e.g., “D 00.00”).

S-114 SAVE - SYSTEM$

TAB - TRN

TAB - TRN T-1

TAB
See the PRINT and DISP statements.

T-2 TAB - TRN

TABXY

TABXY
See the PRINT statement.

TAB - TRN T-3

TALK
See the SEND statement.

T-4 TAB - TRN

TAN

TAN

Supported On UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This function returns the tangent of the angle represented by the argument.

O 7o

~QO

Range
Item Description/Default Restrictions
argument numeric expression in the current absolute values less than:

units of angle when arguments are
INTEGER. or REAL.

numeric expression in radians when
the argument is COMPLEX.

Examples Statements

Tangent=TAN(Angle)
PRINT "Tangent of ";Z;"=";TAN(Z)

Semantics

8.541 563 906 E+9 deg.
or 1.490 784 13 E+8 rad.
for INTEGER and REAL
arguments; see “Range
Restriction Specifics” for
COMPLEX arguments

Error 31 is reported for INTEGER and REAL arguments when trying to
compute the TAN of an odd multiple of 90 degrees.

If the argument is REAL or INTEGER, the value returned is REAL. If the
argument is COMPLEX, the value returned is COMPLEX.

TAB - TRN T-5

TAN

To compute the TAN of a COMPLEX value, the COMPLEX binary must be
loaded.

Range Restriction Specifics
The formula used for computing the TAN of a COMPLEX argument is
illustrated by the following BASIC code segment.

100 Factor=C0S(2*Real_arg)+COSH(2*Imag_arg)
110 !

120 Real_result=SIN(2#Real_arg)/Factor

130 Imag_result=SINH(2*Imag_arg)/Factor

where Real_arg is the real part the COMPLEX argument and Imag_arg is the
imaginary part of the COMPLEX argument. Some values of a COMPLEX
argument may cause errors in this computation. For example,

TAN (CMPLX(0,710))
will cause error 22 due to the COSH(2*Imag_part) calculation.

Note that any COMPLEX function whose definition includes a sine or cosine
function will be evaluated in the radian mode regardless of the current angle
mode (i.e. RAD or DEG).

T-6 TAB - TRN

TANH

TANH

Supported On UX WS DOS
Option Required COMPLEX
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN... Yes

This function returns the hyperbolic tangent of a numeric expression.

TANH o argument -b@—bl

Range
Item Description Restrictions
argument numeric expression any value for INTEGER

or REAL arguments;

see “Range Restriction
Specifics” for COMPLEX
arguments.

Example Statements

Result=TANH(-5.7723)
PRINT "Hyperbolic Tangent = ";TANH(Expression)

Semantics
If an INTEGER

or REAL argument is given, this function returns a REAL

value. If a COMPLEX argument is given, this function returns a COMPLEX

value.

TAB - TRN

T-7

TANH

Range Restriction Specifics

For COMPLEX arguments, the formula for computing TANH is:

100 Factor=COSH(2+Real_arg)+C0S(2+Imag_arg)
110 !

120 Real_result=SINH(2*Real_arg)/Factor
130 Imag_result=SIN(2+Imag_arg)/Factor

where Real_part is the real part of the COMPLEX argument and Imag_part
is the imaginary part. Some values of the argument may cause errors in this
computation. For example:

TANH(CMPLX(710,3))

will cause error 22 REAL overflow due to the SINH(2*Real part) calculation.

T-8 TAB - TRN

TIME

TIME

Supported On UX WS DOS
Option Required CLOCK
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This function converts the formatted time of day (HH:MM:SS), into the
number of seconds past midnight. (For information on using TIME as
a secondary keyword, see the OFF TIME, ON TIME, and SET TIME

statements.)

)~
day

literal form of time of day

hours delimiter minutes L

delimiter

seconds

Item Description Range
time of day string expression representing the (see drawing)
time in 24-hour format
hours literal 0 through 23
minutes literal 0 through 59
seconds literal; default = 0 0 through 59.99
delimiter literal; single character (see text)

TAB -TRN T-9

TIME

Example Statements

Seconds=TIME(T$)
SET TIME TIME('8:37:30")
ON TIME TIME('"12:12") GOSUB Food_food

Semantics

TIME returns a REAL whole number, in the range 0 through 86 399,
equivalent to the number of seconds past midnight.

While any number of non-numeric characters may be used as a delimiter, a
single colon is recommended. Leading blanks and non-numeric characters are
ignored.

T-10 TAB - TRN

TIMES$

TIMES

Supported On UX WS DOS
Option Required CLOCK
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This function converts the number of seconds past midnight into a string
representing the time of day (HH:MM:SS).

TIME$ (seconds —b@—ﬂ

Item Description Range
seconds numeric expression, truncated to 0 through 86 399
the nearest second; seconds past
midnight

Example Statements

DISP "The time is: ";TIME$(TIMEDATE)
PRINT TIME$(45296)

Semantics

TIMES takes time (in seconds) and returns the time of day in the form
HH:MM:SS, where HH represents hours, MM represents minutes, and SS
represents seconds. A modulo 86 400 is performed on the parameter before it is
formatted as a time of day.

TAB - TRN T-11

TIMEDATE

Supported on UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes

InanIF ... THEN... Yes

This function returns the current value of the real-time clock. (Also see the
SET TIMEDATE statement.)

Example Statements

Elapsed=TIMEDATE-TO
DISP TIMEDATE MOD 86400

Semantics

The value returned by TIMEDATE represents the sum of the last time setting
and the number of seconds that have elapsed since that setting was made. The
volatile clock value set at power-on is 2.086 629 12 E+11, which represents
midnight March 1, 1900 (for BASIC/UX, the power-on value was the HP-UX
time). If there is a battery-backed (non-volatile) clock, then the volatile clock
is synchronized with it at power-up. If the computer is on an SRM system
(and has no battery-backed clock), then the volatile clock is synchronized with
the SRM clock when the SRM and DCOMM binaries are loaded. The clock
values represent Julian time, expressed in seconds. The time value accumulates
from that setting unless it is changed by SET TIME or SET TIMEDATE.

The resolution of the TIMEDATE function is .01 seconds. If the clock is
properly set, TIMEDATE MOD 86400 gives the number of seconds since midnight.

See also TIMEZONE IS.

T-12 TAB - TRN

TIMEDATE

BASIC/UX Specifics

Resolution is limited to 20 milliseconds.

BASIC/DOS Specifics

Resolution is limited to approximately 10 milliseconds.

TAB - TRN T-13

TIMEOUT
See the OFF TIMEOUT and ON TIMEOUT statements.

T-14 TAB - TRN

TIMEZONE IS

TIMEZONE IS

Supported On UX WS DOS
Option Required None
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN ... Yes

This statement specifies the offset from Greenwich Mean Time.

Comezone s)+ ovedir A

Item I Description l Range
seconds from numeric expression rounded to the 0 through +86 399.99
GMT nearest hundredth (=24*%60*60—0.01)
Example Statements T
TIMEZONE IS Hours_from_GMT#*60%60
TIMEZONE IS -7+3600 Mountain Standard Time
TIMEZONE IS BASIC/UX only
Semantics

BASIC/WS and BASIC/DOS Specifics

TIMEZONE specifies the number of seconds that will be added to the clock to
calculate the “local” time (when it is set to Greenwich Mean Time, or GMT).
Therefore TIMEZONE IS parameter’s value for the GMT timezone is 0. The
TIMEZONE IS parameter’s value for the Mountain Standard timezone is
—7%x60%60, because it is 7 hours behind GMT. For each one-hour timezone to
the east, add 3600 seconds to the parameter’s value; for each timezone to the
west, subtract 3600 seconds.

TAB - TRN T-15

TIMEZONE IS

You can determine the current value of the TIMEZONE IS parameter by
executing SYSTEMS$(“TIMEZONE 1S”). See SYSTEMS for details.

Note If you have a battery-backed (non-volatile) clock, then you may
need to first use SET TIMEDATE before using TIMEZONE IS
and SET TIMEDATE as described above. Otherwise, the clock
may initially be set to 1 March 1900, and SET TIMEDATE
could generate a “parameter out of range” error (when it
subtracts the TIMEZONE’s “offset from GMT” parameter from
the specified clock value while calculating the GMT value to
put into the clock register.)

You can use STATUS register 4 of select code 32 to determine
whether or not you have a battery-backed clock.

HP-UX Compatibility

This statement provides compatibility with HP-UX time stamps on files

when switching back and forth between the BASIC and HP-UX operating
systems. (If you will not be doing that, you do not need to use the TIMEZONE
statement.)

TIMEZONE is required for HP-UX compatibility when:
m The non-volatile clock is set to Greenwich Mean Time for HP-UX.
m The real-time clock is set to “local” time for BASIC.

An HP-UX environment variable called TZ is used to calculate “local time”,
which is an offset from GMT. Thus, when a time stamp (in GMT) is put on a
file by HP-UX, the time value (printed in a directory listing) is derived with
this formula:

Local_time = HP-UX clock value (GMT) + TZ

When using TIMEZONE for HP-UX compatibility, you can set the non-volatile
(battery-backed) clock to GMT by the following sequence of commands:

1. Specify the “local” offset to GMT with TIMEZONE IS. For example:
TIMEZORE IS -7%3600

2. Set the “local” time with SET TIMEDATE. For example:

T-16 TAB - TRN

TIMEZONE IS

SET TIMEDATE DATE("5 Dec 1986")+TIME("09:00:00")

(The actual value written into the battery-backed clock is the specified time
minus the TIMEZONE IS value.)

Note also that LIF volumes have “local time” stamps, while HFS volumes have
GMT time stamps.

BASIC/UX Specifics

The TIMEZONE is set to the current HP-UX timezone in effect at the start

of BASIC. Daylight savings time is automatically included. Any changes in
timezone that occur after BASIC has started must be accounted for by the user
with the TIMEZONE IS statement.

Note that this statement does NOT reset the HP-UX timezone, even if the user
is super-user. Instead it resets the timezone which BASIC keeps for itself

TIMEZONE IS without a parameter resynchronizes the timezone with the
current HP-UX timezone in effect (this does take into account Daylight Savings
Time changes). This command will affect any previous SET TIME or SET
TIMEDATE statements. The proper way to resynchronize the time, date, and
timezone is to do the timezone first as in:

TIMEZONE IS
SET TIMEDATE

You can determine the current value of the TIMEZONE IS parameter by
executing SYSTEMS$(“TIMEZONE IS”). See SYSTEMS for details.

Workstation Compatibility

This statement provides backward compatibility to the BASIC workstation. It
is intended to provide compatibility with HP-UX time stamps on files when
switching back and forth between the BASIC and HP-UX operating systems.
Since the BASIC Workstation default timezone is synchronized with HP-UX
at start-up time, this statement is generally NOT needed when working with
BASIC Workstation.

TAB - TRN T-17

TRACE ALL

Supported on UX WS DOS
Option Required PDEV
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This statement allows tracing program flow and variable assignments during
program execution.

TRACE ALL} >
beginning ending
line number line number
beginning eading
line label line label
Item Description Range
beginning line |integer constant identifying a 1 through 32 766
number program line; Default = first program
line
beginning line |name of a program line any valid name
label
ending line integer constant identifying a 1 through 32 766
number program line; Default = last program
line
ending line name of a program line any valid name
label

T-18 TAB - TRN

TRACE ALL

Example Statements

TRACE ALL Sort
TRACE ALL 1500,2450

Semantics

The entire program, or any part delimited by beginning and (if needed) ending
line numbers or labels, may be traced.

Tracing starts when the beginning line is first executed and continues until the
ending line is executed.

The ending line is not included in the trace output. The trace output stops
immediately before the ending line is executed. When a line is traced, the line
number and any variable which receives a new value is output to the system
message line of the CRT. Any type of variable (string, numeric or array) can
be displayed. For simple string and numeric variables, the name and the new
value are displayed. For arrays, a message is displayed stating that the array
has a new value rather than outputting the entire array contents.

TRACE ALL output can also be printed on the PRINTALL printer, if
PRINTALL is ON. TRACE ALL is disabled by TRACE OFF. The line
numbers specified for TRACE ALL are not affected by REN.

Computer
Museum

TAB - TRN T-19

TRACE OFF

Supported On UX WS DOS
Option Required PDEV
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This statement turns off all tracing activity.

(trace o)

T-20 TAB - TRN

TRACE PAUSE

TRACE PAUSE

Supported On UX WS DOS
Option Required PDEV
Keyboard Executable Yes
Programmable Yes
InanIF ... THEN ... Yes

This statement causes program execution to pause before executing the
specified line, and displays the next line to be executed on the CRT.

(TRace Pause) >
paused
line number
poused
line label
Item Description Range T

paused line integer constant identifying a 1 through 32 766
number program line; Default = next

program line

paused line name of a program line any valid name
label

Example Statements

TRACE PAUSE
TRACE PAUSE Loop_end

Semantics

Not specifying a line for TRACE PAUSE results in the pause occurring before
the next line is executed. Only one TRACE PAUSE can be active at a time.
TRACE PAUSE is cancelled by TRACE OFF.

TAB - TRN T-21

TRACK

Supported On UX WS DOS
Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes

Inan IF ... THEN ... Yes

This statement enables and disables tracking of the current locator position on
the current display device.

@ O
[,.)]

Item | Description I Range

numeric expression, rounded to an
integer

display device
selector

(see Glossary)

Example Statements

TRACK 709 IS ON
TRACK Plot IS OFF

Semantics

The current locator is defined by a GRAPHICS INPUT IS statement, and the
current display device is defined by a PLOTTER IS statement. If TRACK ...
IS ON is executed, an echo on the current display device tracks the locator
position during DIGITIZE statements. On a CRT, the echo is a 9-by-9-dot
crosshair. On a plotter, the pen position tracks the locator. When a point is
digitized, the echo is left at the location of the digitized point and tracking
ceases.

T-22 TAB - TRN

TRACK

The display device selector must match that used in the most recently executed
PLOTTER IS statement, or error 708 results.

Executing TRACK ... IS OFF disables tracking.

TAB - TRN T-23

TRANSFER

Supported on UX WS DOS*
Option Required TRANS
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN... Yes

This statement initiates unformatted I/O transfers.

T-24 TAB - TRN

TRANSFER

source destination |
TRANSFER @ name TO @ name |
(<
f o/
e
e]
number
COUNT of bytes 4
character
\
NED
RECORDS number of
() records |

@

number I o5\

of bytes | & ’\)j

character

CONT ' o

WAIT

TAB - TRN T-25

TRANSFER

Item Description Range

source name I/O path name assigned to a device, |any valid name
a group of devices, a mass storage
file, pipe, or a buffer

destination I/O path name assigned to a device, |any valid name
name a group of devices, a mass storage
file, pipe, or a buffer

number of numeric expression, rounded to an 1 through 2311
bytes integer
character string expression with a length of —

Zero or one
number of numeric expression, rounded to an 1 through 231 -1
records integer

Example Statements

TRANSFER @Device TO @Buff

TRANSFER ©@Buff TO @File;CONT

TRANSFER @Path TO @Destination;COUNT 256
TRANSFER @Source TO @Buffer;DELIM "/"

TRANSFER @Path TO @Buffer;RECORDS 12,EOR(COUNT 8)

Semantics

The TRANSFER statement allows unformatted data transfers between the
computer and devices (mass storage drives are considered devices for this
operation). Whenever possible, a TRANSFER takes place concurrently
with continued program execution. Since no formatting is performed and
the TRANSFER statement executes concurrently (overlapped) with regular
program execution, the highest possible data transfer rate is achieved.

Before a data transfer can take place, a buffer must be declared. Every
TRANSFER will need a buffer as either its source or its destination. An
outbound TRANSFER empties the buffer (source) while an inbound
TRANSFER fills the buffer (destination). Device to device transfers and buffer
to buffer transfers are not allowed.

T-26 TAB - TRN

TRANSFER

Two types of buffers are available; named and unnamed. A named buffer

is a REAL array, INTEGER array, COMPLEX array, or a string scalar
declared with the keyword BUFFER. See ASSIGN, COM, DIM, INTEGER,
COMPLEX, and REAL. Unnamed buffers are created in the ASSIGN
statement by specifying the keyword BUFFER and the number of bytes to be
reserved for the buffer. See ASSIGN.

Every buffer has two pointers associated with it. The fill pointer indicates the
next available location in the buffer for data. The empty pointer indicates the
next item to be removed from the buffer. This allows an inbound TRANSFER
and an outbound TRANSFER to access the same buffer simultaneously.

BDAT and HP-UX files are the only file types allowed in a TRANSFER. An
end-of-file error will prematurely terminate a TRANSFER, thus triggering an
end-of-transfer condition. If an end-of-record condition was satisfied when the
end-of-file was reached, the EOR event will also be true.

I/O path names should be used to access the contents of the buffer. This
ensures the automatic updating of the fill and empty pointers during a transfer.
For named buffers, the contents of the buffer can also be accessed by the
buffer’s variable name. However, accessing the contents of the buffer by the
variable name does not update the fill and empty pointers and is likely to
corrupt the data in the buffer.

TRANSFER with HFS and SRM Files

With files on HFS and SRM volumes, the TRANSFER statement runs in
overlapped mode until the BASIC system encounters a statement that accesses
the same volume (such as CAT or ASSIGN); at such times, the BASIC system
performs an implicit WAIT FOR EOT.

SRM and LIF are not supported for TRANSFER in BASIC/UX.

Transfer Parameters

When no parameters are specified for a TRANSFER, an inbound TRANSFER
will fill the buffer with data and then terminate. An outbound transfer will
empty the buffer and then terminate. Both inbound and outbound transfers
execute in overlapped mode when possible.

TAB - TRN T-27

TRANSFER

The CONT parameter specifies that the TRANSFER is to continue
indefinitely. Instead of terminating on buffer full or buffer empty conditions,
the TRANSFER will be temporarily suspended until there is space available in
the buffer (for inbound transfers) or until there is data available in the buffer
(for outbound transfers).

The WAIT parameter specifies that the TRANSFER is to take place serially
(non-overlapped). Program execution will not leave the TRANSFER statement
until the data transfer is completed.

A TRANSFER can be specified to terminate when a device dependent signal
is received (END), after a specified number of bytes has been transferred
(COUNT), or after a specific character is detected (DELIM). The DELIM
parameter can only be used with inbound transfers.

If END is included on a TRANSFER to a file, the end-of-file pointer is updated
when the TRANSFER terminates; including EOR(END) causes the end-of-file
pointer to be updated at the end of each record.

When the RECORD parameter is specified, the end-of-record parameter must
also be specified (EOR). The end-of-record condition can be either COUNT,
DELIM, END or any combination of conditions.

Overlapped execution of the TRANSFER statement can be deferred until a
record has been transferred or until the entire TRANSFER has completed. See
WAIT FOR EOR and WAIT FOR EOT.

Supported Devices

The TRANSFER statement supports data transfers to and from the following
devices.

HP-IB HP 98624 (and built-in HP-IB on Measurement Coprocessors)
GPIO HP 98622

Serial HP 98626

Datacomm HP 98628

MUX HP 98642 (BASIC/UX only)

TRANSFER can also be used with BDAT and HP-UX files on any of the mass
storage devices or pipes supported by BASIC.

T-28 TAB - TRN

TRANSFER

Transfer Method (BASIC Workstation only)

The transfer method is device dependent and chosen by the computer. The
three possible transfer modes are:

INT interrupt mode
FHS fast handshake
DMA direct memory access

The DMA mode will be used whenever possible. If the DMA mode cannot be
used (DMA card is not installed, both channels are busy, DELIM is specified,
or the interface does not support DMA) then the INT mode will be used. FHS
is used with the HP-IB or GPIO interfaces only when DMA cannot be used
and the WAIT parameter is specified.

Interactions

When the computer tries to move into the stopped state, it will wait for any
transfer to complete. Therefore, operations which would cause a stopped

state will make the computer unresponsive (or “hung”) if a TRANSFER

is in progress. Operations in this category include a programmed GET,
modifying a paused program, and STOP. Also, the computer will not exit a
context until any TRANSFER in that context is complete. This will cause the
program to wait at a SUBEXIT, ERROR SUBEXIT, SUBEND, or RETURN
<expression> statement while a TRANSFER is in progress. If the program is
paused, but a TRANSFER is still active, the run-light will be an “Io” character
and the system status Indicator (if present) will say “Transfer.”

To terminate a transfer before it has finished (and free the computer), execute

an ABORT IO (or, as a last resort, press (RESET)).

See also: ASSIGN, WAIT FOR EOT, WAIT FOR EOR, ABORTIO, RESET
and the “Advanced Transfer Techniques” chapter of the HP BASIC 6.2
Interface Reference.

TAB - TRN T-29

TRANSFER

BASIC/UX Specifics

Either io_burst is used (if specified with CONTROLisc,255;3) or else DMA
allocation is managed by the HP-UX kernel and may be used for some or all of
the TRANSFER segments.

BASIC/DOS Specifics

Overlapped transfers on DFS or HPW disks are not supported. Serial transfers
are not supported for the COM1 or COM2 serial port.

T-30 TAB - TRN

TRIGGER

TRIGGER

Supported On UX WS DOS IN
Option Required I0
Keyboard Executable Yes
Programmable Yes
InanIF ... THEN ... Yes

This statement sends a trigger message to a selected device, or all devices
addressed to listen, on the HP-IB.

name
device
selector

Item Description Range
I/O path name |[name assigned to a device or devices |any valid name (see
ASSIGN)
device selector |numeric expression, rounded to an (see Glossary)

integer

Example Statements

TRIGGER 712
TRIGGER @Hpib

Semantics
The computer must be the active controller to execute this statement.

If only the interface select code is specified, all devices on that interface which
are addressed to listen are triggered. If a primary address is given, the bus is
reconfigured and only the addressed device is triggered.

TAB - TRN T-31

TRIMS

Supported On UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes

InanIF ... THEN... Yes

This function returns the string stripped of all leading and trailing ASCII
spaces.

TRIMS (string)

expression

Example Statements

Unjustify$=TRIM$(" center ")
Clean$=TRIM$ (Input$)

Semantics

Only leading and trailing ASCII spaces are removed. Embedded spaces are not
affected.

Two-byte Language Specifics

Certain localized versions of BASIC, such as Japanese localized BASIC,
support two-byte characters. The TRIM$ function does not affect two-byte
characters, including two-byte blanks. Only CHR$(32) (ASCII space) is
trimmed from the string. For more information about two-byte characters,
refer to the globalization chapters of HP BASIC 6.2 Porting and Globalization.

T-32 TAB - TRN

TRN

TRN

See the MAT statement.

TAB - TRN T-33

UNCOMPILE - USING

UNCOMPILE - USING U-1

UNCOMPILE

For details on this command when using the BASIC/DOS, BASIC/WS or
BASIC/UX, see Compiling HP BASIC 6.2 Programs.

U-2 UNCOMPILE - USING

UNL

UNL

See the SEND statement.

UNCOMPILE - USING U-3

UNLOCK

Supported On UX WS DOS

Option Required SRM,DCOMM or HFS
Keyboard Executable Yes

Programmable Yes

InanIF ... THEN ... Yes

This statement is used to remove exclusive access (placed by the LOCK
statement) on an SRM or HFS file associated with an I/O path name (see
ASSIGN).

(unock (@) /2, 20" 1~

Item | Description l Range

I/0O path name |name identifying an I/O path to an

SRM file

any valid name (see
Glossary)

Example Statements

UNLOCK €File
IF Done THEN UNLOCK €File

Semantics

This statement unlocks a file previously locked with the LOCK statement.
While a file is locked, other SRM workstations or HP-UX processes cannot
access the file. After UNLOCK, other users may access the file provided they
possess the proper access capability (or capabilities).

If multiple LOCKs were executed on the file, the same number of UNLOCKs
must be executed to unlock the file.

UNLOCK is performed automatically by SCRATCH A, SCRATCH BIN,
and ASSIGN ... TO * (explicit closing of an I/O path).

U-4 UNCOMPILE - USING

UNLOCK

BASIC/UX Specifics

Since LOCK is not available for RFA, NFS or LIF on BASIC/UX, UNLOCK
is not supported for RFA, NFS or LIF on BASIC/UX. However, no error is
generated when LOCK or UNLOCK is executed.

BASIC/DOS Specifics
BASIC/DOS does not support UNLOCK for DFS files.

UNCOMPILE - USING U-5

UNT
See the SEND statement.

U-6 UNCOMPILE - USING

UNTIL

UNTIL
See the REPEAT ... UNTIL construct.

UNCOMPILE - USING U-7

UPCS

Supported On UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This function replaces lowercase ASCII characters with their corresponding
uppercase characters.

COL O 5
expression

Example Statements

Capital$=UPC$("lower")
IF UPC$(Name$)="TOM" THEN Equal_tom

Semantics

The corresponding characters for the Roman Extension alphabetic characters
are determined by the current lexical order. When the lexical order is a
user-defined table, the correspondence is determined by the STANDARD
lexical order.

Two-byte Language Specifics

Certain localized versions of BASIC, such as Japanese localized BASIC,
support two-byte characters. The UPC$ function converts only one-byte
characters and does not change two-byte characters. For more information

about two-byte characters, refer to the globalization chapters of the
HP BASIC 6.2 Porting and Globalization manual.

U-8 UNCOMPILE - USING

USER KEYS

USER KEYS

Supported On UX WS DOS
Option Required KBD
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN ... Yes

This statement changes the softkey definitions on an ITF keyboard to one of
three User softkey menus.

(USER ’—" menu number —@—D’l

Item | Description I Range

menu number | numeric expression, rounded to an

integer

1 through 3

Example Statements

USER Menu_number KEYS
IF Change_keys THEN USER 1 KEYS

Semairitics

This statement only affects the normal mode of the ITF Keyboard (i.e. it does
nothing on an HP 98203A/B/C Keyboard and causes no visible change on an
ITF Keyboard when the Keyboard Compatibility mode is on).

Note that the functionality of this statement can be achieved through KBD
CONTROL register 2.

For information on the softkey definitions, see Using HP BASIC/WS 6.2 or
Using HP BASIC/UX 6.2.

UNCOMPILE - USING U-9

USING
See the DISP, ENTER, LABEL, OUTPUT, and PRINT statements.

U-10 UNCOMPILE - USING

VAL - VIEWPORT

VAL - VIEWPORT V-1

VAL

Supported On UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This function converts an ASCII string expression into a numeric value.

string > (:) >
o argument

Item | Description | Range

string argument | string expression numerals, decimal point,

sign and exponent notation

Example Statements

Day=VAL(Date$)
IF VAL(Response$)<0 THEN Negative

Semantics

The first non-blank character in the string must be a digit, a plus or minus
sign, or a decimal point. The remaining characters may be digits, a decimal
point, or an E, and must form a valid numeric constant. If an E is present,
characters to the left of it must form a valid mantissa, and characters to the
right must form a valid exponent. The string expression is evaluated when a
non-numeric character is encountered or the characters are exhausted.

V-2 VAL - VIEWPORT

VAL

Two-byte Language Specifics

Certain localized versions of BASIC, such as Japanese localized BASIC,
support two-byte characters. The VAL function does not support two-byte
characters. The string digits to be converted must be one-byte ASCII
characters. For more information about two-byte characters, refer to the
globalization chapters of the HP BASIC 6.2 Porting and Globalization manual.

VAL - VIEWPORT V-3

VALS

Supported On UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes

InanIF... THEN ... Yes

This function returns an ASCII string representation of the value of the
argument. The returned string is in the default print format, except that the
first character is not a blank for positive numbers. No trailing blanks are
generated.

numeric .(:) >
o argument

Item l Description | Range

numeric
argument

numeric expression '—

Example Statements

PRINT Esc$;VAL$(Cursor-1)
Special$=Text$&VAL$ (Number)

V-4 VAL - VIEWPORT

VIEWPORT

VIEWPORT

Supported On UX WS DOS
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This statement defines an area onto which WINDOW and SHOW statements
are mapped. It also sets the soft clip limits to the boundaries it defines.

left right bottom top
VIEWPORT edge () edge () edge () edge —’i

Item Description Range
left edge numeric expression —
right edge numeric expression >left edge
bottom edge numeric expression —
top edge numeric expression >bottom edge

Example Statements

VIEWPORT 0,35,50,80
VIEWPORT Left,Right,Bottom,Top

Semantics

The parameters for VIEWPORT are in Graphic Display Units (GDUs).
Graphic Display Units are 1/100 of the shorter axis of a plotting device. The
units are isotropic (the same length in X and Y). The soft clip limits are set to
the area specified, and the units defined by the last WINDOW or SHOW are
mapped into the area.

VAL - VIEWPORT V-5

VIEWPORT

For the plotter specifier “INTERNAL” (the CRT), the shorter axis is Y. The
longer axis is X, which is 100xRATIO GDUs long. For the plotter specifier
“HPGL” (which deals with devices other than the CRT), the RATIO function
may be used to determine the ratio of the length of the X axis to the length of
the Y axis. If the ratio is greater than one, the Y axis is 100 GDUs long, and
the length of the X axis is 100XRATIO. If the ratio is less than one, then the
length of the X axis is 100 GDUs and the length of the Y axis is 100xXRATIO.

A value of less than zero for the left edge or bottom is treated as zero. A

value greater than the hard clip limit is treated as the hard clip limit for the
right edge and the top. The left edge must be less than the right edge, and the
bottom must be less than the top, or error 704 results.

V-6 VAL - VIEWPORT

WAIT - WRITEIO

WAIT - WRITEIO W-1

WAIT

Supported on UX WS DOS IN
Option Required None

Keyboard Executable Yes
Programmable Yes

InanlIF ... THEN ... Yes

This statement will cause the computer to wait approximately the number of
seconds specified before executing the next statement. Numbers less than 0.001
do not generate a WAIT interval.

WAIT seconds |

Item I Description [Range

seconds numeric expression, rounded to the less than 2 147 483.648

nearest thousandth

Example Statements

WAIT 3
VAIT 01d_time/2

BASIC/UX Specifics

Resolution is limited to 20 milliseconds. Accuracy depends on system load and
real time priority, but is generally 40 milliseconds.

BASIC/DOS Specifics

WAIT periods are generally accurate to within 1 percent, and are system load
dependent, if running in the background.

W-2 WAIT - WRITEIO

WAIT FOR EOR

WAIT FOR EOR

Supported on UX WS DOS
Option Required TRANS
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN ... Yes

This statement waits until an end-of-record event occurs in the TRANSFER on
the specified I/0O path.

((WAT FOR EOR)—-@ /0 path |y

Item l Description I Range
I/O path name

name assigned to a device, a group of
devices, a pipe, or a mass storage file

any valid name

Example Statements

WAIT FOR EOR CFile
WAIT FOR EOR @Device

Semantics

The I/O path may be assigned either to a device, a group of devices, a pipe,
or to a mass storage file. If the I/O path is assigned to a BUFFER, an error is
reported when the WAIT FOR EOR statement is executed.

The WAIT FOR EOR statement prevents further program execution until

an end-of-record event occurs in the TRANSFER whose I/O path name was
specified. This allows ON EOR events, which might otherwise be missed, to be
serviced. If the system priority prevents the servicing of an ON EOR event, the
event will be logged.

WAIT - WRITEIO W-3

WAIT FOR EOR

The I/O path specified must be involved in an active TRANSFER for the
statement to have any effect.

W-4 WAIT - WRITEIO

WAIT FOR EOT

WAIT FOR EOT

Supported on UX WS DOS
Option Required TRANS
Keyboard Executable Yes
Programmable Yes
InanIF... THEN ... Yes

This statement waits until the TRANSFER on the specified I/O path is
completed.

(wart FoR EOT @) /0 path Lnf

name

Item l Description l Range
I/O path name

name assigned to a device, a group of
devices, a pipe, or a mass storage file

any valid name

Example Statements

WAIT FOR EOT €File
WAIT FOR EOT €Device

Semantics

The I/O path may be assigned either to a device, a group of devices, a pipe,
or to a mass storage file. If the I/O path is assigned to a BUFFER, an error is
reported when the WAIT FOR EOT statement is executed.

The WAIT FOR EOT statement prevents further program execution until
the specified TRANSFER is completed. This allows ON EOQT events, which
might otherwise be missed, to be serviced. If the system priority prevents the
servicing of an ON EOT event, the event will be logged.

The I/O path specified must be involved in an active TRANSFER for the
statement to have any effect.

WAIT - WRITEIO W-5

WHERE

Supported On UX WS DOS
Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

This statement returns the current logical position of the pen and, optionally,
pen status information.

x variable .() >y variable
WHERE name name

A A

N status variable $
name
Item Description Range
x variable name | name of a numeric variable any valid name
y variable name | name of a numeric variable any valid name
status variable |name of a string variable whose any valid name
name dimensioned length is at least 3

Example Statements

WHERE X,Y
WHERE X_position,Y_position,Status$

Semantics

The characters in the status string may be interpreted as follows:

W-6 WAIT - WRITEIO

WHERE

Byte| Value |Meaning
1 “Q” Pen is up
“1? Pen is down
2 comma |(delimiter)
3 “0” Current position is outside hard clip
limits.
“1? Current position is inside hard clip limits
but outside viewport boundary.
“2” Current position is inside viewport

boundary and hard clip limits.

WAIT - WRITEIO W-7

WHILE

Supported On UX WS DOS IN
Option Required None

Keyboard Executable No
Programmable Yes

InanIF ... THEN ... No

This construct defines a loop which is executed as long as the boolean

expression in the WHILE statement evaluates to true (evaluates to a non-zero
value).

boolean
@ expression h"

pragram
segment

Item Description Range
boolean numeric expression: evaluated as true { —
expression if nonzero and false if zero.
program any number of contiguous program —
segment lines not containing the beginning
or end of a main program or
subprogram, but which may contain
propetly nested construct(s).

Example Program Segments

840 WHILE Value<Min OR Value>Max

850 BEEP

860 INPUT "Out of range; RE-ENTER",Value
870 END WHILE

W-8 WAIT - WRITEIO

WHILE

1220 WHILE P<=LEN(A$)

1230 IF NUM(A$[P])<32 THER

1240 A$[P1=A$[P+1] ! Remove control codes
1250 ELSE

1260 P=P+1 ! Go to next character

1270 END IF

1280 END WHILE

Semantics

The WHILE ... END WHILE construct allows program execution dependent
on the outcome of a relational test performed at the start of the loop. If the
condition is true, the program segment between the WHILE and END WHILE
statements is executed and a branch is made back to the WHILE statement.
The program segment will be repeated until the test is false. When the
relational test is false, the program segment is skipped and execution continues
with the first program line after the END WHILE statement.

Branching into a WHILE ... END WHILE construct (via a GOTO) results
in normal execution up to the END WHILE statement, a branch back to the
WHILE statement, and then execution as if the construct had been entered
normally.

Nesting Constructs Properly

WHILE ... END WHILE constructs may be nested within other constructs,
provided the inner construct begins and ends before the outer construct can
end.

WAIT - WRITEIO W-9

WIDTH
See the PRINTALL IS and PRINTER IS statements.

W-10 WAIT - WRITEIO

WILDCARDS

WILDCARDS

This statement enables and disables wildcard recognition in file related
commands.

Supported On UX WS DOS IN*
Option Required None
Keyboard Executable Yes
Programmable Yes
InanIF ... THEN ... Yes
(roearos}-r>Cux -+ (-esowe) g |
G
(o) .
Item | Description | Range
escape string string expression any expression that
evaluates to "\", "*", or the

null string

Example Statements

WILDCARDS UX;ESCAPE "\"
WILDCARDS DOS
WILDCARDS OFF

Semantics

Not all implementations of BASIC/IN support WILDCARDS. Refer to
your instrument programming manual for details. BASIC/IN supports only
WILDCARDS DOS, while BASIC/WS, BASIC/UX, AND BASIC/DOS
support both WILDCARDS UX and WILDCARDS DOS.

WAIT - WRITEIO W-11

WILDCARDS

Wildcard recognition is disabled at power-up and after SCRATCH A or
SCRATCH BIN. To use wildcards, you must explicitly enable them using
WILDCARDS.

Caution The effect of the wildcard characters is different for
WILDCARDS DOS than for WILDCARDS UX. This can
lead to undesireable consequences, especially with the PURGE
statement. To determine the current WILDCARDS state, use
SYSTEMS$(“WILDCARDS”).

Note that you must specify an escape string with WILDCARDS UX. The
backslash character (“\”) is recommended for HP-UX compatibility.

Definitions for WILDCARDS UX

Wildcard Meaning
? Matches 0 or 1 characters. For example, X?? matches file names of up
to 3 characters that begin with the letter X (for example “X”, “Xa”, and
“Xb”.
* Matches any sequence of 0 or more characters either before or after a “.”

in a file name. For example, X*Y matches any file names of two or more
characters that begin with X. Similarly, X* .b* would match “Xabc.bat”
or “Xyz.bak”. You can use only one asterisk before the period and one
asterisk after the period to match file names.

[list] }Matches any character specified by list. The list may consist of
individual characters or a range of characters. The expression
*[aeiou] * matches any filename containing af least one lower case
vowel. Ranges are specified using a hyphen. For example, *[0-9] *
matches any file names containing at least one digit.

[tlist] | Matches any character not specified by list. Note that the ! must be
the first character after [to have the special meaning not; otherwise,
it is used for matching like any other character. The list contains the
same types of individual characters and ranges as discussed above. For
example, *[10-9]* matches any file names containing at least one
non-digit.

W The escape character specified with WILDCARDS UX is used to cancel the

special meaning of wildcard characters immediately following it within a file

W-12 WAIT - WRITEIO

WILDCARDS

name specification. The escape character itself can be used in a file name by
typing it twice.

100 WILDCARDS UX ; ESCAPE "\"

110 PURGE "file_s" deletes files prefired tile_
120 PURGE "file_\s" deletes file named £ile_x*
130 PURGE "file_\\" deletes file named tile_\

Wildcards can be used only as the rightmost part of a file specifier.

/user/smith/my_dirs allowed
/user/smith/my_diri/sfile allowed
/user/#/my_diri/filel not allowed
/user/emith/#/filel not allowed

Definitions for WILDCARDS DOS

Wildeard Meaning
? Matches 0 or 1 characters. For example, X?? matches file names of up
to 3 characters that begin with the letter X (for example “X”, “Xa”, and
“Xab”).

Matches any sequence of 0 or more characters either before or after a
“” in a file name. For example, X* matches all file names (with null
extensions) of one or more characters that begin with X. Similarly,
X*.b* would match “Xabc.bat” or “Xyz.bak”. You can use only one
asterisk before the period and one asterisk after the period to match file
names.

Here is an example program segment using WILDCARDS DOS:

100 WILDCARDS DOS
110 PURGE "FILE_*" deletes all files prefized FILE with no ertension
120 PURGE "*.DAT" deletes all files with .DAT eztension

Wildcards generate matches through file name expansion or file name
completion. Expansion means that more than one file name can match the
wildcard specification. Completion means that one and only one file name can
match the wildcard specification, or an error is generated.

WAIT - WRITEIO W-13

WILDCARDS

W-14 WAIT - WRITEIO

Commands Allowing Wildcards

File Name File Name
Expansion Completion
CAT ASSIGN
PURGE DICTIONARY IS
COPY DUMP DEVICE IS
LINK GET
CHGRP GFONT IS
CHOWN |LOAD
LOAD BIN |LOAD KEY
PERMIT |LOAD SUB
PROTECT | MSI
PRINTALL IS
PRINTER IS
RENAME
RE-SAVE
RE-STORE

RE-STORE KEY

WINDOW

WINDOW

Supported On UX WS DOS
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN... Yes

This statement is used to define the current-unit-of-measure for graphics
operations.

left ,(:). right ,<:), bottom ,(:) > top
WINDOW edge edge edge edge _.'

Item Description Range
left edge numeric expression —
right edge numeric expression # left edge
bottom edge numeric expression —
top edge numeric expression # bottom edge

Example Statements

WINDOW -5,5,0,100
WINDOW Left,Right,Bottom,Top

Semantics

WINDOW defines the values represented at the hard clip boundaries, or the
boundaries defined by the VIEWPORT statement. WINDOW may be used to
create non-isotropic (not equal in X and Y) units. The direction of an axis
may be reversed by specifying the left edge greater than the right edge, or the
bottom edge greater than the top edge. (Also see SHOW.)

WAIT - WRITEIO W-15

WINDOW

For information on scaling with large ranges, when using the WINDOW
statement, read the section “Special Considerations about Scaling” in the
chapter “Using Graphics Effectively” found in the HP BASIC 6.2 Programming
Guide.

W-16 WAIT - WRITEIO

WORD

WORD
See the ASSIGN statement.

WAIT - WRITEIO W-17

WRITEIO

Supported On UX WS DOS*
Option Required None
Keyboard Executable Yes
Programmable Yes

InanIF ... THEN... Yes

This statement writes an integer representation of the register-data parameter
into the specified hardware register on the specified interface, or into memory.
The actual action resulting from this operation depends on the interface and
register (or memory address) selected.

Interface register register
CE o A] O o [F i o

Item Description Range
select code numeric expression, rounded }1 through 31; —31 through —1;
to an integer +9826; 9827
register number | numeric expression, rounded |—23! through 42311
or memory to an integer (hardware-dependent)
address
register or numeric expression, rounded | —23! through +231—1

memory data to an integer

Example Statements

WRITEIO 12,0;Set_pctl

WRITEIO Hpib,23;12

WRITEIO 9826,Mem_addr;Poke_byte
WRITEIO 9827, Jsr_address;D0_data

W-18 WAIT - WRITEIO

WRITEIO

Semantics

A positive select code (appropriate for most interfaces), writes a byte of data to
the register, and a negative select code writes a word of data to the register.

Writing Memory (“Poke™’)

Using a select code value of 9826 allows you to write directly into memory
addresses.

WRITEID 9826 ,Mem_address; Data_byte wriles a byte of data
WRITEIO -9826,Mem_address; Data_word wriles a word of data

The second parameter specified in the WRITEIO statement is the memory
address of the byte or word to be written. This parameter is interpreted as a
decimal address; for instance, an address of 100 000 is 105, not 2°20. The
third parameter is also interpreted as a decimal number.

Caution If you write into memory addresses, you risk:

m writing into inappropriate RAM locations that can cause the
software to fail.

m writing incorrect values to internal peripheral addresses that
can cause hardware failure. For example, you should not
write to addresses corresponding to registers 0 through 9 of
a CRT controller because doing so will damage some CRT
hardware.

In order to avoid these problems, you should only write into
numeric array variables with WRITEIO. HP cannot be held
liable for any damages caused by improper use of this feature.

For a description of the architecture of the computer, see the Pascal System
Designer’s Guide. This guide consists of three manuals. To order the Pascal
System Designer’s Guide call your local area HP Sales Representative.

WAIT - WRITEIO W-19

WRITEIO

Calling Machine-Language Routines

Using a select code value of 9827 allows you to execute a machine-language
JSR (“Jump to SubRoutine”) instruction. One parameter must be specified
in the WRITEIO statement (DO_data in the example below), which will be
written into the processor’s D0 register before the JSR instruction is executed.
The following program provides a framework for placing a machine-language
subroutine in an INTEGER array and then jumping to this subroutine.

10 DATA

(INTEGER values of machine-language
20 DATA

instructions go here.)

100 INTEGER Int_array(1:100)

110 READ Int_array(#),D0O_data ! Read instructions

115 ! and DO register data.

120 Jsr_addr=READIO(9827,Int_array(1)) ! Get JSR address.

130 WRITEIO 9827, Jsr_addr;DO_data ! Put data in DO, then do JSR.
140 PRINT "Returned from subroutine."

BASIC first keeps a copy of processor registers A2 through A6 on the stack.
Then the value represented by the expression DO_data is placed in the DO
register, and a machine-language JSR instruction is executed. The value of
the expression Jsr_addr is the address of an INTEGER array that contains
machine-language instructions. The value of Jsr_addr is forced to an even
address before the JSR is executed.

The last instruction in the subroutine should return control to BASIC with

a RTS (“ReTurn from Subroutine”) instruction. BASIC will first restore the
processor registers A2 through A6 (from the stack) to the state they were in
before the JSR was performed (by the WRITEIO statement). Register A7
(the stack pointer) must have the same value at the final RTS as it had when
BASIC executed the JSR. The other processor register can be used freely in
the assembly routine. BASIC then resumes program execution at the line
following the WRITEIO statement.

W-20 WAIT - WRITEIO

WRITEIO

BASIC/UX Specifics

You can write only to your own process’ data space.

BASIC/DOS Specifics

Use of READIO or WRITEIO requires specific knowledge of the Measurement
Coprocessor hardware. In general, it is recommended that you use STATUS
and CONTROL instead.

WAIT - WRITEIO W-21

XREF

XREF X-1

XREF

Supported On UX WS DOS
Option Required XREF
Keyboard Executable Yes
Programmable No

InanIF ... THEN... No

This command allows you to obtain a cross-reference listing of the identifiers in
a program or subprogram.

XREF]
selector

Bl

o] Subprogram .
name

Y function
pnEDERy :

Q009000000

X-2 XREF

XREF

Item Description Range

device selector | numeric expression; rounded to an (see Glossary)
integer Default = PRINTER IS
device

subprogram name of a SUB subprogram currently |any valid name

name in memory

function name |name of a user-defined function any valid name
currently in memory

Example Statements

XREF

XREF #705;FNUser$
XREF Print

XREF :NV

Semantics

The cross-reference listing is printed one context at a time, in the order that
they occur in the program. The main program is listed first, followed by the
subprograms.

The cross-reference listing starts with this line:
>>>> Cross Reference <<<<

Before each subsequent program segment, this line is printed:
>>>> Subprogram <<<<

followed by the line number of the first line in that context and the name of the
context. If the subprogram is a user-defined function, an FN will precede the
name, and if it is a string function, a $ will follow its name.

XREF X-3

XREF

Within each context, identifiers are listed by type. They occur in the following
order:

® NV—Numeric Variables

m SV—String Variables

m I0—I/O Path Names

s LL—Line Labels

m LN—Line Numbers

s NF—Numeric Functions

m SF—String Functions

s SB—SUB Subprograms

m CM—Common Block Names
m UN—Unused Entries

If a type is specified in the command, only that type is printed. If there are
no identifiers of a particular type in the context being cross-referenced, that
heading is not printed.

Within each group (which is composed of a header telling what kind of entity
follows, then the list of those entities), names are alphabetized according to
the ASCII collating sequence, and line numbers are in numerical order. If a
reference is a formal parameter in a SUB or DEF FN statement, declared in a
COM, DIM, REAL, or INTEGER statement, or is a line label, the characters
<-DEF will be printed immediately to the right of the line number containing
the defining declaration. Note that variables declared by ALLOCATE are not
given this marker. If unlabelled (blank) COM is used, it will have no name
associated with it.

At the end of each context, a line is printed that begins with:
Unused entries =

This is a count of the symbol table entries which have been marked by a
prerun as “unused.” Unreferenced symbol table locations which have not yet
been marked “unused” by the prerun processing will show up in the lists of
identifiers with empty reference lists. Note that a subprogram that is not
directly recursive will show up in its own cross-reference listing with an empty

X-4 XREF

XREF

reference list. (See the “Debugging Programs” chapter of HP BASIC 6.2
Programming Guide for further details.)

If a subprogram name or MAIN is specified in the XREF command, the above
rules are followed, but only the specified subprogram or the MAIN program is
cross-referenced. If there are two or more subprograms of the same name in the
computer, they will all be cross-referenced.

An XREF can be aborted by pressing (RESET), (CLR 1/0) or (Break).

XREF X-5

Part |l - Reference Information

The following sections contain additional reference information including a
summary of the keywords by category.

Part 1l - Reference Information

-1

Keyword Summary

R _

The following sections summarize the BASIC keywords by categories.

Booting BASIC

LIST BIN Lists binaries currently in memory.

LOAD BIN Loads a BIN-type file into memory .
SYSBOOT Returns system control to the boot ROM.
rmb (HP-UX command) enters BASIC/UX from HP-UX.

Keyword Summary 1-1

Program Entry/Editing
CHANGE Performs search and replace operations on the program in memory.
COPYLINES Copies program lines from one position to another.

EDIT Accesses a program using edit mode to enter new program lines or
modify existing ones. Also used with typing-aid softkeys.

FIND Searches for a character sequence in a program.

DEL Deletes specified program lines from memory.

INDENT Indents a program to reflect its structure.

LIST Lists program lines or typing-aid softkeys.

MOVELINES Moves program lines from one position to another.
REM and ! Allows comments on program lines.

REN Renumbers programs.

SECURE Makes program lines unlistable.

1-2 Keyword Summary

Program Debugging and Error Handling

CAUSE ERROR Simulates the occurrence of the BASIC error of the specified
number.

CLEAR ERROR Resets most error indicators (ERRN, ERRLN, ERRM$, and
ERRL) to their power-up state.

ERRDS Returns the device selector involved in the last I/O error.

ERRL Indicates whether an error occurred during execution of a specified line.
ERRLN Returns the program-line number of the most recent error.

ERRMS$ Returns the text of the last error message.

ERRN Returns the most recent program execution error.

ERROR RETURN Returns program control to the line following the line which
caused the most recent GOSUB. Used with ON ERROR GOSUB to avoid
retrying the line that caused the error (use RETURN to return control to the
line which caused the error).

ERROR SUBEXIT Returns program control to the line following the line
which caused the most recent CALL. Used with ON ERROR CALL to avoid
retrying the line that caused the error (use SUBEXIT to return control to the
line which caused the error).

TRACE ALL Allows tracing of program flow and variable assignments during
program execution.

TRACE PAUSE Causes program execution to pause at a specified line.
TRACE OFF Disables TRACE ALL and TRACE PAUSE.

XREF Provides a cross-reference to all identifiers used in a program.

Keyword Summary 1-3

Memory Allocation and Management

ALLOCATE Dimensions and allocates memory for arrays or string variables
during program execution.

COM Dimensions and reserves memory for variables in a common area for
access by more than one context.

COMPLEX Dimensions and reserves memory for complex variables and arrays.
DEALLOCATE Reclaims memory previously allocated.

DELSUB Deletes specified subprograms from memory.

DIM Dimensions and reserves memory for REAL numeric arrays and strings.

INITIALIZE Creates and deletes RAM mass storage volumes. (See also under
“Mass Storage.”)

INMEM Checks for the presence of a user-defined subprogram (SUB) or
function (FN) in memory.

INTEGER Dimensions and reserves memory for INTEGER variables and
arrays.

LOADSUB Loads BASIC subprograms from a PROG-type file into memory.
OPTION BASE Specifies the default lower bound for arrays.

REAL Dimensions and reserves memory for full-precision (REAL) variables
and arrays.

SCRATCH Erases selected portions of memory.

1-4 Keyword Summary

Comparison Operators
= Equality.

< > Inequality.

< Less than.

<= Less than or equal to.

> Greater than.

>= Greater than or equal to.

Keyword Summary 1-5

Math

General Math

+ Addition operator.

— Subtraction operator.

* Multiplication operator.

/ Division operator.

" Exponentiation operator.

ABS Returns an argument’s absolute value.

DIV Divides one argument by another and returns the integer portion of the
quotient.

DROUND Returns the value of an expression, rounded to a specified number of
digits.

EXP Raises the base e to a specified power.

FRACT Returns the fractional portion of an expression.
INT Returns the integer portion of an expression.

LET Assigns values to variables.

LGT Returns the log (base 10) of an argument.

LOG Returns the natural logarithm (base e) of an argument.
MAX Returns the largest value in a list of arguments.
MAXREAL Returns the largest number available.

MIN Returns the smallest value in a list of arguments.
MINREAL Returns the smallest number available.
MOD Returns the remainder of integer division.
MODULO Return the modulo of division.

PI Returns an approximation of 7.

1-6 Keyword Summary

PROUND Returns the value of an expression, rounded to the specified power
of ten.

RANDOMIZE Modifies the seed used by the RND function.
RES Returns last live keyboard numeric result.

RND Returns a pseudo-random number.

SGN Returns the sign of an argument.

SQRT Returns the square root of an argument (same as SQR).
SQR Returns the square root of an argument (same as SQRT).

Complex Math

ARG Returns the argument (or the angle in polar coordinates) of a
COMPLEX value.

CMPLX Creates a COMPLEX value, given a real and an imaginary part.

CONJG Returns the conjugate of a COMPLEX value (negates imaginary
part).

IMAG Returns the imaginary part of a COMPLEX value.
REAL Returns the real part of a COMPLEX value.

Binary Functions

BINAND Returns the bit-by-bit logical-and of two arguments.
BINCMP Returns the bit-by-bit complement of an argument.
BINEOR Returns the bit-by-bit exclusive-or of two arguments.
BINIOR Returns the bit-by-bit inclusive-or of two arguments.
BIT Returns the state of a specified bit of an argument.

ROTATE Returns a value obtained by shifting an argument’s binary
representation a number of bit positions, with wrap-around.

SHIFT Returns a value obtained by shifting an argument’s binary
representation a number of bit positions, without wrap-around.

Keyword Summary 1-7

Trigonometric Operations

ACS Returns the arccosine of an argument.
ASN Returns the arcsine of an argument.
ATN Returns the arctangent of an argument.
COS Returns the cosine of an angle.

DEG Sets the degrees mode.

RAD Sets the radians mode.

SIN Returns the sine of an angle.

TAN Returns the tangent of an angle.

Hyperbolic Operations

ACSH Returns the hyperbolic arc cosine of a numeric expression.
ASNH Returns the hyperbolic arcsine of a numeric expression.
ATNH Returns the hyperbolic arctangent of a numeric expression.
COSH Returns the hyperbolic cosine of a numeric expression.
SINH Returns the hyperbolic sine of a numeric expression.

TANH Returns the hyperbolic tangent of a numeric expression.

1-8 Keyword Summary

String Operations

& Concatenates two string expressions.

CHRS$ Converts a numeric value into one character byte (one ASCII character).
DVAL Converts an alternate-base representation into a numeric value.

DVALS$ Converts a numeric value into an alternate-base representation.

IVAL Converts an alternate-base representation into an INTEGER number.
IVALS$ Converts an INTEGER into an alternate-base representation.

LEN Returns the number of bytes (ASCII characters) in a string expression.

LEXICAL ORDER IS Determines the collating sequence used in ASCII string
comparisons.

LWCS$ Converts all the ASCII characters in a string to lower case characters.

MAXLEN Returns the maximum (dimensioned) length of a string variable in
bytes.

NUM Returns the decimal value of the first byte (the first ASCII character) in
a string.

POS Returns the position of a string within a string expression.
REVS Reverses the order of the characters in a string expression.

RPT$ Repeats the characters in a string expression a specified number of
times.

TRIM$ Removes the leading and trailing ASCII blanks from a string
expression.

UPC$ Converts all the ASCII characters in a string to upper case characters.
VAL Converts a string of ASCII digits into a numeric value.

VALS$ Returns an ASCII string expression representing a specified numeric
value.

Keyword Summary 1-9

Logical Operators

AND Returns 1 or 0 based on the logical AND of two arguments.

EXOR Returns 1 or 0 based on the logical exclusive-or of two arguments.
NOT Returns 1 or 0 based on the logical complement of an argument.

OR Returns 1 or 0 based on the logical inclusive-or of two arguments.

1-10 Keyword Summary

Mass Storage
ASSIGN Assigns an /0 path name and attributes to a file.
CAT Lists the contents of the mass storage media’s directory.

CHECKREAD Enables or disables read-after-write verification of mass storage
operations.

CHGRP Changes the group id of an HFS file or directory.

CHOWN Changes the ownership of an HFS file or directory.

COPY Provides a method of copying mass storage files and volumes.
CREATE Creates an HP-UX-type file on a mass storage media.
CREATE ASCII Creates an ASCII-type file on a mass storage media.
CREATE BDAT Creates a BDAT-type file on a mass storage media.
CREATE DIR Creates a directory on a mass storage media.

GET Reads an ASCII or HP-UX file into memory as a program.

INITIALIZE Formats a mass storage media for use with BASIC and places a
LIF directory on the media.

LINK Allows the linking of two file names to the same file.

LOAD Loads a PROG-type file into memory.

LOAD KEY Loads typing-aid softkey definitions.

LOADSUB Loads BASIC subprograms from a PROG-type file into memory.

LOCK Prevents other SRM workstation computers from accessing the file to
which the specified I/O path is currently assigned.

MASS STORAGE IS or MSI Specifies the default mass storage device.
PERMIT Changes the access permission bits on an HFS file or directory.
PRINT LABEL Writes a string expression to the label of a media.

PROTECT Specifies a LIF protect code or a password for an SRM file or
directory.

Keyword Summary 1-11

PURGE Deletes a file or directory.
READ LABEL Reads the label of a media to a string variable.
RENAME Changes a directory’s name or file’s name and/or path.

SAVE and RE-SAVE Create an ASCII file and write BASIC program lines as
strings into the file. RE-SAVE can write to an existing HP-UX file.

STORE and RE-STORE Create a PROG file and write a BASIC program from
memory into the file in an internal format.

STORE KEY and RE-STORE KEY Create a BDAT file and store the
typing-aid softkey definitions in the file.

STORE SYSTEM Stores BASIC and all binaries currently in memory in a
SYSTM file on LIF and SRM. On HFS, it is an HP-UX file.

UNLOCK Removes exclusive access to an SRM file set by the LOCK
statement.

WILDCARDS Enables and disables wildcard recognition within certain file
related commands.

1-12 Keyword Summary

Program Control

CALL Transfers program execution to a specified subprogram and passes
parameters.

CONT Resumes execution of a paused program.
DEF FN Defines the beginning of a function subprogram.
FNEND Defines the bounds of a user-defined function subprogram.

END Terminates program execution and marks the end of the main program
segment.

FN Invokes a user-defined function.

FOR ... NEXT Defines a loop which is repeated a specified number of times.
GOTO Transfers program execution to a specified line.

GOSUB Transfers program execution to a specified subroutine.

IF ... THEN Provides conditional branching,.

ELSE Provides a conditional execution of a program segment.

LOOP Defines a loop which is repeated until the expression in an EXIT IF
statement is evaluated as true.

EXIT IF Provides looping with conditional exit.
NPAR Returns the number of parameters passed to the current subprogram.

ON expression Transfers program execution to one of several locations based on
the value of an expression.

PAUSE Suspends program execution.

REPEAT ... UNTIL Allows execution of a program segment until the specified
condition is true.

RETURN Transfers program execution from a subroutine to the line following
the invoking GOSUB.

RETURN expression Transfers program execution from a user-defined function
by returning a value to the calling context.

RUN Starts program execution.

Keyword Summary 1-13

SELECT ... CASE Allows execution of one program segment of several.
STOP Terminates execution of the program.

SUB Defines the beginning of a SUB subprogram and specifies its formal
parameters.

SUBEND Defines the bounds of a subprogram.
SUBEXIT Transfers control from within a subprogram to the calling context.

SUSPEND/RESUME INTERACTIVE Allows suspending and resuming
interactive keyboard operation while a program is running,

SYSTEMS$ Returns selected system status and configuration information.
WAIT Causes program execution to wait a specified number of seconds.

WAIT FOR EOR Causes program execution to wait for an end-of-record
during a TRANSFER.

WAIT FOR EOT Causes program execution to wait for an end-of-transfer.

WHILE Allows execution of a program segment while the specified condition is
true.

1-14 Keyword Summary

Event-Initiated Branching
CDIAL Returns information about “control dial” devices.

DISABLE Disables event-initiated branching (except for ON END, ON
ERROR, and ON TIMEOUT).

DISABLE EXT SIGNAL Disable BASIC/UX handling of HP-UX signals.
DISABLE INTR Disables interrupts defined by the ON INTR statement.

ENABLE Re-enables all event-initiated branches previously suspended by
DISABLE.

ENABLE EXT SIGNAL Enable BASIC/UX handling of HP-UX signals.

ENABLE INTR Enables the specified interface to generate an interrupt which
can cause event-initiated branches.

EXECUTE Execute an HP-UX command from BASIC/UX.
HILBUF$ Returns data sent by an HP-HIL device.

KBDS$ Returns the contents of the ON KBD buffer.
KNOBX Returns the number of horizontal knob pulses.
KNOBY Returns the number of vertical knob pulses.

ON CDIAL Sets up and enables a branch to be taken upon sensing rotation of
one of the dials on a “control dial” device.

OFF CDIAL Disables any ON CDIAL branching currently set up.

ON CYCLE Defines and enables an event-initiated branch to be taken each
time the specified number of seconds has elapsed.

OFF CYCLE Cancels any event-initiated branches previously defined and
enabled by an ON CYCLE statement.

ON DELAY Defines an enables an event-initiated branch to be taken after the
specified number of seconds has elapsed.

OFF DELAY Cancels any event-initiated branches previously defined and
enabled by an ON DELAY statement.

Keyword Summary 1-15

ON END Defines and enables an event-initiated branch to be taken when
end-of-file is reached on the mass storage file associated with the specified I/0O
path.

OFF END Cancels any event-initiated branches previously defined and enabled
by an ON END statement.

ON EOR Defines and enables an event-initiated branch to be taken when an
end-of-record is encountered during a TRANSFER.

OFF EOR Cancels any event-initiated branches previously defined and enabled
by an ON EOR statement.

ON EOT Defines and enables an event-initiated branch to be taken when the
last byte is transferred by a TRANSFER statement.

OFF EOT Cancels any event-initiated branches previously defined and enabled
by an ON EOT statement.

ON ERROR Defines and enables an event-initiated branch which results from a
trappable error.

OFF ERROR Cancels any event-initiated branches previously defined and
enabled by an ON ERROR statement. Further errors are reported to the user
in the usual fashion.

ON EXT SIGNAL Defines an event-initiated branch to be taken when a system
generated signal is received.

OFF EXT SIGNAL Cancels event-initiated branches previously defined by an
ON EXT SIGNAL statement.

ON HIL EXT Enables an end-of-line interrupt in response to receiving data
from HIL devices whose poll records are not otherwise being processed by the
BASIC system.

OFF HIL EXT Cancels any event-initiated branches previously defined and
enabled by an ON HIL EXT statement.

ON INTR Defines an event-initiated branch to be taken when an interface card
generates an interrupt.

OFF INTR Cancels any event-initiated branches previously defined and
enabled by an ON INTR statement.

1-16 Keyword Summary

ON KBD Defines an event-initiated branch to be taken when a key is pressed.

OFF KBD Cancels any event-initiated branches previously defined and enabled
by an ON KBD statement.

ON KEY ... LABEL Defines and enables an event-initiated branch to be taken
when a softkey is pressed.

OFF KEY Cancels any event-initiated branches previously defined and enabled
by an ON KEY statement.

ON KNOB Defines an event-initiated branch to be taken when the knob is
turned.

OFF KNOB Cancels any event-initiated branches previously defined and
enabled by an ON KNOB statement. Any pending ON KNOB branches
are lost. Further use of the knob will result in normal scrolling or cursor
movement.

ON SIGNAL Defines an event-initiated branch to be taken when a SIGNAL
statement is executed using the same signal selector.

OFF SIGNAL Cancels the ON SIGNAL definition with the same signal
selector. If no signal selector is provided, all ON SIGNAL definitions are
cancelled. OFF SIGNAL only applies to the current context.

ON TIME Defines an event-initiated branch to be taken when the clock reaches
a specified time.

OFF TIME Cancels any event-initiated branches previously defined and
enabled by an ON TIME statement.

ON TIMEOUT Defines an event-initiated branch to be taken when an I/0O
timeout occurs on the specified interface.

OFF TIMEOUT Cancels any event-initiated branches previously defined and
enabled by an ON TIMEOUT statement.

SET HIL MASK Select HIL devices to be used by BASIC/UX processes.
SIGNAL Generates a software interrupt.

SYSTEM PRIORITY Sets a minimum level of system priority for
event-initiated branches.

Keyword Summary 1-17

HP-HIL Device Support
HIL SEND Sends HP-HIL commands to HP-HIL devices.

See also ON/OFF CDIAL, CDIAL, ON/OFF HIL EXT, HILBUF$, ON/OFF
KNOB, KNOBX, KNOBY, in the preceding “Event-Initiated Branching”
section.

1-18 Keyword Summary

Graphics

Graphics Control

ALPHA ON/OFF Turns the alpha planes on or off.
AREA Selects an area fill color.

CLIP Redefines a soft-clip area.

DIGITIZE Inputs the coordinates of a digitized point.

DUMP GRAPHICS Copies the contents of the graphics display to a printing
device.

DUMP DEVICE IS Specifies the device or file for DUMP operations.
GCLEAR Clears the graphics area.

GESCAPE Sends and returns device-dependent graphics information.
GINIT Resets graphics parameters to power-on values.

GLOAD Loads the graphics display from an INTEGER array.

GRAPHICS ON/OFF Turns the graphics planes on or off.

GRAPHICS INPUT IS Specifies the device for digitizing operations.
GSEND Sends an HPGL command to the current PLOTTER IS device or file.
GSTORE Copies the contents of the graphics display to an INTEGER array.
PLOTTER IS Specifies the default plotting device or file.

RATIO Returns the physical aspect ratio of the plotter’s hard-clip limits.

READ LOCATOR Samples the locator device, without waiting for a digitize
signal.

SET ECHO Specifies the coordinates of an echo on the current plotting device.
SET LOCATOR Sets the locator position on the input device.

SET PEN Defines the color of entries in the color map.

SHOW Defines plotting units that will appear in the VIEWPORT area.

Keyword Summary 1-19

TRACK ... ON/OFF Enables and disables locator tracking on the current
display device.

VIEWPORT Specifies an area in which WINDOW and SHOW statements are
mapped.

WHERE Returns the current logical position of the pen.

WINDOW Specifies the min and max values for the plotting area specified by
VIEWPORT.

Graphics Plotting

DRAW Draws a line to a specified point.

IDRAW Draws a line incrementally to a specified point.
IMOVE Moves the pen incrementally to a specified point.

IPLOT Draws a line incrementally to the specified point with optional pen
control.

LINE TYPE Selects a plotting line type.
MOVE Moves the pen to a specified point.

PDIR Specifies rotation for IPLOT, RPLOT, RECTANGLE, POLYGON and
POLYLINE.

PEN Selects a plotter pen.
PENUP Lifts the pen from the plotting surface.

PIVOT Specifies rotation for lines made with moves, draws, plots, polygons, or
rectangles.

PLOT Draws a line to the specified point with optional pen control.
POLYGON Draws all or part of a closed polygon.

POLYLINE Draws all or part of an open polygon.

RECTANGLE Draws a rectangle that can be filled and edged.

RPLOT Draws a line relative to a movable origin with optional pen control.

1-20 Keyword Summary

Graphic Axes and Labeling

AXES Draws axes with optional tick marks.

CSIZE Sets the size and aspect ratio for labeled characters.
FRAME Draws a frame around the current clipping area.
GRID Draws a full grid pattern for axes.

LABEL Draws alphanumeric labels.

LDIR Defines the angle for drawing labels.

LORG Specifies a labeling location relative to the pen location.
SYMBOL Allows labeling with user-defined symbols.

Keyword Summary 1-21

HP-IB Control

ABORT Terminates bus activity and asserts IFC.

CLEAR Places specified devices in a device-dependent state.
LOCAL Returns specified devices to their local state.

LOCAL LOCKOUT Sends the LLO message, disabling all device’s front-panel
controls.

PASS CONTROL Passes Active Controller capability to another device.
PPOLL Returns a parallel poll byte from the bus.

PPOLL CONFIGURE Programs a parallel poll bit for a specified device.
PPOLL RESPONSE Defines the computers response to a parallel poll.
PPOLL UNCONFIGURE Disables parallel poll for specified devices.
REMOTE Sets specified devices to their remote state.

REQUEST Sends a service request to the Active Controller.

SEND Sends explicit command and data messages on the bus.

SPOLL Returns a serial poll byte from a specified device.

TRIGGER Sends the trigger message to specified devices.

1-22 Keyword Summary

Clock and Calendar

DATE Converts a formatted date into a number of seconds.
DATES$ Converts a number of seconds into a formatted date.
SET TIME Sets the time of day on the real-time clock.

SET TIMEDATE Sets the time and date on the real-time clock.

TIME Converts a formatted time of day into a number of seconds past
midnight.

TIME$ Converts a number of seconds past midnight into a formatted time of
day.

TIMEDATE Returns the value of the real-time clock.

TIMEZONE IS Specifies the clock offset from Greenwich Mean Time (GMT),
which is used when sharing a disk with an HP-UX system.

Keyword Summary 1-23

General Device Input/Output
ABORTIO Terminates an active TRANSFER.

ASSIGN Associates an I/O path name and attributes with a device, group of
devices, mass storage file, or buffer.

BEEP Produces one of 63 audible tones.
BREAK Sends a Break signal on a serial interface.

CONTROL Sends control information to an interface or a table associated with
an I/O path name.

CRT Returns the device selector of the CRT.

DATA Specifies data accessible via READ statements.

DISP Outputs items to the CRT display line.

DUMP ALPHA Transfers alpha contents of the CRT to a specified device.

DUMP DEVICE IS Specifies a device or file for DUMP ALPHA and DUMP
GRAPHICS operations.

ENTER Inputs data from a device, file, string, or buffer to a list of variables.

IMAGE Provides formats for use with ENTER, OUTPUT, DISP, LABEL and
PRINT operations.

INPUT Inputs data from the keyboard to a list of variables.

KBD Returns the device selector of the keyboard.

LINPUT Inputs literal data from the keyboard to a string variable.
OUTPUT Outputs items to a specified device, file, string variable, or buffer.
PRINT Outputs items to the current PRINTER IS device.

PRINTALL IS Specifies a device for logging messages normally sent to the
display.

PRINTER IS Specifies a device for PRINT, CAT, and LIST statements.
PRT Returns 701, usually the device selector of an external printer.

READ Inputs data from DATA lists to variables.

1-24 Keyword Summary

READIO Reads the contents of the specified hardware registers on the
specified interface, or reads the contents of the specified memory address.

RESET Resets an interface or pointers of an I/O path.
RESTORE Causes a READ statement to access the specified DATA statement.
SC Returns the interface select code associated with an I/O path.

SOUND Produces a single tone or multiple tones on the sound generator of an
HP-HIL interface.

STATUS Returns the value from a specified interface status register.

TAB Moves the print position ahead to a specified point; used within PRINT
and DISP statements.

TABXY Specifies the print position on the internal CRT; used with PRINT
statements.

TRANSFER Initiates unformatted I/O transfers.

WRITEIO Writes an integer representation of the register data to the specified
hardware register on the specified interface or to the specified memory address.

Keyword Summary 1-25

Display and Keyboard Control
ALPHA HEIGHT Sets the number of display lines used for alpha output.
ALPHA PEN Selects the pen number to be used for displaying alpha.

CHRX Returns the number of pixel columns in an alpha character cell on a
bit-mapped display.

CHRY Returns the number of pixel rows in an alpha character cell on a
bit-mapped display.

CLEAR LINE Clears the keyboard input line of the display.

CLEAR SCREEN Clears the display screen.

CLEAR WINDOW Clear the contents of a BASIC/UX window.

CLS Clears the display screen.

CREATE WINDOW Create a window to be accessed by BASIC/UX.

CRT Returns 1, which is the select code of the CRT display.

DESTROY WINDOW Delete a window created with CREATE WINDOW.
DISPLAY FUNCTIONS ON/OFF Enables and disables the “display

functions” mode.
KBD Returns 2, which is the select code of the keyboard.

KBD CMODE Enables and disables the “98203 Keyboard Compatibility
Mode.”

KBD LINE PEN Selects the pen number to be used for writing alpha
characters on the “keyboard input line” and associated display areas.

KEY LABELS Turns softkey labels on and off.

KEY LABELS PEN Selects the pen number to be used for displaying softkey
labels.

LIST WINDOW List all active BASIC/UX windows and their attributes.

MERGE ALPHA Joins the “simulated” separate alpha and graphics rasters set
up by SEPARATE ALPHA FROM GRAPHICS.

MOVE WINDOW Move a text or graphics window created by BASIC/UX.

1-26 Keyword Summary

PRINT PEN Selects the pen number to be used for the output area and
display line of the alpha display.

READ KEY Reads typing aid softkey definitions into a string variable.

RUNLIGHT ON/OFF Turns the run indicator at the bottom right of the
screen on and off.

SCRATCH WINDOW Delete all active BASIC/UX windows except the root
BASIC/UX window.

SEPARATE ALPHA Simulates the separate alpha and graphics rasters of
Series 200 displays.

SET ALPHA MASK Specifies which display planes can be modified by alpha
display operations.

SET CHR Re-defines the bit-pattern used by alpha character(s); only available
on bit-mapped alpha displays.

SET DISPLAY MASK Specifies which planes of the alpha display are to be
displayed.

SET KEY Sets the definition of one or more typing-aid softkeys.

SYSTEM KEYS Sets the softkey definitions to the System menu (ITF
keyboards only).

USER n KEYS Sets the softkey definitions to the specified User menu (ITF
keyboards only).

See also CONTROL, DISP, DUMP ALPHA, DUMP DEVICE IS, ENTER,
IMAGE, INPUT, LINPUT, OUTPUT, PRINT, PRINTALL IS, PRINTER IS,
STATUS, TAB, and TABXY in the preceding “I/O Operations” section.

Computer

Musgum -

Keyword Summary 1-27

Array Operations

BASE Returns the lower bound of a dimension of an array.
DET Returns the determinant of a matrix.

DOT Returns the dot product of two vectors.

MAT Performs various operations on numeric and string arrays.

MAT REORDER Reorders the elements in an array according to the subscript
list in a vector.

MAT SEARCH Searches an array for user-defined conditions.

MAT SORT Sorts an array along one dimension according to lexical or numeric
order.

RANK Returns the number of dimensions in an array.
REDIM Changes the subscript range of an array.
SIZE Returns the number of elements in a dimension of an array.

SUM Returns the sum of all the elements in a numeric array.

Globalization

These keywords are used with localized versions of BASIC that support
languages with two-byte characters, such as Japanese.

CVT$ Converts strings from one character set to another, such as two-byte
Japanese Katakana to two-byte Japanese Hiragana.

DICTIONARY IS Specifies the files that contain user and system dictionaries
for keyboard input and conversion.

EXCHANGE Specifies two-byte character code conversions for easy printer
interfacing. EXCHANGE is a secondary keyword used with ASSIGN, DUMP
DEVICE IS, PRINTALL IS, and PRINTER IS.

FBYTE Returns 1 (true) when the first byte in a string is in the valid range for
the first byte of HP-15 characters.

1-28 Keyword Summary

GFONT IS Specifies the file that contains the graphics font characters used by
LABEL.

SBYTE Returns 1 (true) when the first byte in a string is in the valid range for
the second byte of HP-15 characters.

Other

BYE Exits BASIC and returns to the operating system.
EXECUTE Executes an HP-UX or MS-DOS command from BASIC.
QUIT Exits BASIC and returns to the operating system.

Keyword Summary 1-29

2

Interface Registers

This section lists the STATUS and CONTROL registers for I/O path names,
interfaces, and pseudo select code 32.

/0 Path Registers

Registers for All 1/0 Paths

STATUS Register 0 0 = Invalid I/O path name
1 = I/O path name assigned to a device
2 = I/0 path name assigned to a data file
3 = I/O path name assigned to a buffer
4 = I/0 path name assigned to an HP-UX special file
(See “Interface Registers” in the HP BASIC 6.2
Interface Reference.)

/O Path Names Assigned to a Device

STATUS Register 1 Interface select code
STATUS Register 2 Number of devices
STATUS Register 3 Address of 1st device

If assigned to more than one device, the addresses of the other devices are
available starting in STATUS Register 4.

Interface Registers 2-1

1/O Path Names Assigned to an ASCII File

STATUS Register 1
STATUS Register 2

STATUS Register 3
STATUS Register 4
STATUS Register 5
STATUS Register 6
STATUS Register 9
CONTROL Register 9

CONTROL Register 10

File type = 3

Device selector of mass storage device (not
supported for HFS on BASIC/UX)
Number of records

Bytes per record = 256

Current record

Current byte within record

File I/O buffering in use

Set file I/O buffer. BASIC/WS allows you to write
to this register but no action is taken. Writing
zero (0) enables buffering. Writing one (1) disables
buffering.

In BASIC/DOS, writing a 1 to this register writes
the pending buffer to the disk file and updates the
directory entry for the file. However, this command
has no effect on the buffering mode as defined by
Control Register 9.

Note that BASIC/WS and BASIC/UX allow this

command but perform no action.

I/O Path Names Assigned to a BDAT File

STATUS Register 1
STATUS Register 2

STATUS Register 3
STATUS Register 4
STATUS Register §
CONTROL Register §

2-2 Interface Registers

File type = 2

Device selector of mass storage device (not
supported for HFS on BASIC/UX)

Number of defined records
Defined record length
Current record

Set record

STATUS Register 6 Current byte within record 2
CONTROL Register 6 Set byte within record

STATUS Register 7 EOF record

CONTROL Register 7 Set EOF record

STATUS Register 8 Byte within EOF record
CONTROL Register 8 Set byte within EOF record
STATUS Register 9 File I/O buffering in use

CONTROL Register 9 Set file I/O buffer. BASIC/WS and BASIC/DOS
allow you to write to this register but no action is
taken. Writing zero (0) enables buffering. Writing
one (1) disables buffering.

CONTROL Register 10 In BASIC/DOS, writing a 1 to this register writes
the pending buffer to the disk file and updates the
directory entry for the file. However, this command
has no effect on the buffering mode as defined by
Control Register 9.

Note that BASIC/WS and BASIC/UX allow this

command but perform no action.

I/O Path Names Assigned to an HP-UX File

STATUS Register 1 File type = 4

STATUS Register 2 Device selector of mass storage device (not
supported for HFS on BASIC/UX)

STATUS Register 3 Number of defined records

STATUS Register 4 Defined record length (fixed record length = 1)

STATUS Register 5 Current record

CONTROL Register 5 Set record

STATUS Register 6 Current byte within record

CONTROL Register 6 Set byte within record

Interface Registers 2-3

STATUS Register 7
CONTROL Register 7
STATUS Register 8
CONTROL Register 8
STATUS Register 9
CONTROL Register 9

CONTROL Register 10

EOF record

Set EOF record

Byte within EOF record
Set byte within EOF record
File I/O buffering in use

Set file I/O buffer. BASIC/WS allows you to write
to this register but no action is taken. Writing
zero (0) enables buffering. Writing one (1) disables
buffering.

In BASIC/DOS, writing a 1 to this register writes
the pending buffer to the disk file and updates the
directory entry for the file. However, this command
has no effect on the buffering mode as defined by
Control Register 9.

Note that BASIC/WS and BASIC/UX allow this

command but perform no action.

I/O Path Names Assigned to a Buffer

When the status of register 0 indicates a buffer (3), the status and control
registers have the following meanings.

STATUS Register 1
STATUS Register 2
STATUS Register 3
CONTROL Register 3
STATUS Register 4
CONTROL Register 4
STATUS Register 5
CONTROL Register §
STATUS Register 6

2-4 Interface Registers

Buffer type (1=named, 2=unnamed)

Buffer size in bytes

Current fill pointer

Set fill pointer

Current number of bytes in buffer

Set number of bytes

Current empty pointer

Set empty pointer

Interface select code of inbound TRANSFER

STATUS Register 7
STATUS Register 8
CONTROL Register 8

STATUS Register 9
CONTROL Register 9

STATUS Register 10

Interface select code of outbound TRANSFER
If non-zero, inbound TRANSFER is continuous

zZero

Cancel continuous mode inbound TRANSFER if

If non-zero, outbound TRANSFER is continuous

Z€ero

Cancel continuous mode outbound TRANSFER if

Termination status for inbound TRANSFER

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 TRANS- [TRANS- | TRANS- |Device |Byte Record |Match
FER FER FER Termi- Count Count Character
Active Aborted |Error nation
value=128 value=64 [value=32 |value=16 |value=8 |value=4 |value=2 |value=1

STATUS Register 11

Termination status for outbound TRANSFER

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 TRANS- [TRANS- [TRANS- |Device |Byte Record |0

FER FER FER Termi- | Count Count
Active Aborted |Error nation

value=128 value=64 |value=32 |value=16 |value=8 |[value=4 {value=2 |value=0

STATUS Register 12 Total number of bytes transferred by last inbound

TRANSFER
STATUS Register 13 Total number of bytes transferred by last outbound

TRANSFER

Interface Registers 2-5

CRT STATUS and CONTROL Registers

STATUS Register 0
CONTROL Register 0

STATUS Register 1
CONTROL Register 1
STATUS Register 2
CONTROL Register 2

STATUS Register 3
CONTROL Register 3
STATUS Register 4
CONTROL Register 4

STATUS Register 5

2-6 Interface Registers

Current print position (column)

Set print position (column). See also TAB and
TABXY.

Current print position (line)
Set print position (line). See also TABXY.
Insert-character mode

Set insert character mode if non-0. Error 713 is
given if a window number is specified instead of a
select code on BASIC/UX.

Number of lines “above screen”.
Undefined
Display functions mode

Set display functions mode if non-0. To perform
the same function, use the statement DISPLAY
FUNCTIONS ON/OFF.

Returns the CRT alpha color value set (or default).
This does not reflect changes due to printing
CHR$(z), where 136<2<143.

CONTROL Register 5 Set default alpha color or gray value 2
For Alpha Displays:

Value Result
< 16 The number is evaluated
MOD 8 and resulting values
produce the following:
0—black
1—white
2—red
3—yellow
4—green
5—cyan
6—blue
7—magenta
16 to 135 |Ignored

136 White
137 Red

138 Yellow
139 Green
140 Cyan
141 Blue

142 Magenta
143 Black

144 to 255 |Ignored

For Bit-Mapped Displays: Values 0 thru 255 which
correspond to the graphics pens. The values are
treated as MOD 2" n where n is the number of
display planes.

For Gray-Scale Displays: the value corresponds to a
different intensity of gray.

CONTROL CRT,5;n sets the values of the CRT
registers 15, 16, and 17, but the converse is not
true. That is, STATUS CRT,5 may not accurately

Interface Registers 2-7

STATUS Register 6

CONTROL Register 6

STATUS Register 7

CONTROL Register 7

STATUS Register 8

CONTROL Register 8

STATUS Register 9

CONTROL Register 9
STATUS Register 10

2-8 Interface Registers

reflect the CRT state if CONTROL 15, 16, and/or
17 have been executed. Note that to perform the

same function as CONTROL CRT,5;n, you can use the
ALPHA PEN statement.

ALPHA ON flag. Error 713 is given if a window
number is specified instead of a select code on

BASIC/UX.

Undefined. Error 713 is given if a window number
is specified instead of a select code on BASIC/UX.

GRAPHICS ON flag. Error 713 is given if a
window number is specified instead of a select code

on BASIC/UX.

Undefined. Error 713 is given if a window number
is specified instead of a select code on BASIC/UX.
Display line position (column) Error 713 is given if
a window number is specified instead of a select
code on BASIC/UX.

Set display line position(column). See also TAB.

Error 713 is given if a window number is specified
instead of a select code on BASIC/UX.

Screenwidth (number of characters). Also available
in the SYSTEMS$(“CRT ID”) function result.

Undefined

Cursor-enable flag Error 713 is given if a window
number is specified instead of a select code on

BASIC/UX.

CONTROL Register 10

STATUS Register 11
CONTROL Register 11

STATUS Register 12

CONTROL Register 12

STATUS Register 13
CONTROL Register 13

STATUS Register 14

Cursor-enable:
O=invisible cursor
non-0=cursor visible.

Error 713 is given if a window number is specified
instead of a select code on BASIC/UX.

CRT character mapping flag

Disable CRT character mapping (if non-0). This is
valid only for non-bit-mapped displays.

Key labels display mode. Error 713 is given if a
window number is specified instead of a select code

on BASIC/UX.
Set key labels display mode:

0 = typing-aid key labels displayed unless
program is running.

1 = key labels always off (or use KEY LABELS
OFF).

2 = key labels displayed at all times (or use KEY
LABELS ON).

Error 713 is given if a window number is specified
instead of a select code on BASIC/UX.

CRT height (number of lines to be used for alpha
display).

Set CRT height (must be >= 9). Alternately use
the ALPHA HEIGHT statement.

Display replacement rule currently in effect. For
BASIC/UX information on this register, see the
HP BASIC 6.2 Interface Reference.

Interface Registers 2-9

CONTROL Register 14

STATUS Register 15

CONTROL Register 15

2-10 Interface Registers

Set display replacement rule (with bit-mapped
alpha displays only). For BASIC/UX information
on this register, see the HP BASIC 6.2 Interface
Reference.

This register is not processed for the 9836C display,
nor for the Model 362/382 internal displays. Any
updates made to this register are ignored for those
displays.

0

source AND old
source AND NOT old
source;default

NOT source AND old
old

source EXOR old
source OR old

source NOR old
source EXNOR old
NOT old

source OR NOT old
NOT source

NOT source OR old
source NAND old
151

O 00~ O OV b WN-=O

—
-

et
W N

It is strongly recommended that you do not change
the default display replacement rule.

Return the value set (or the default) for the color in
the PRINT/DISP area. This does not reflect changes
due to printing CHR$(z), where 136<zr<143.

Set PRINT/DISP color (or use the PRINT PEN
statement). Similar to CRT control register 5 but
specific to CRT PRINT/DISP areas; that is, it does

STATUS Register 16

CONTROL Register 16

STATUS Register 17

CONTROL Register 17

Computer

Museum

STATUS Register 18
CONTROL Register 18

STATUS Register 19

CONTROL Register 19
STATUS Register 20

not affect the areas covered by CRT registers 16
and 17.

Return the value set (or the default) for the softkey
label color. Error 713 is given if a window number
is specified instead of a select code on BASIC/UX.

Set key labels color (or use the KEY LABELS PEN
statement). Similar to CRT control register 5 but
only affects the softkey labels. Does not affect the
areas covered by CRT registers 15 and 17. Error
713 is given if a window number is specified instead
of a select code on BASIC/UX.

Return the value set (or the default) for the color
of the “non-enhance” area. This includes the
keyboard entry line, runlight, system message line,
annunciators, and edit screen.

Set “non-enhance” color (or use the KBD LINE
PEN statement). This includes the keyboard entry
line, runlight, system message line, annunciators,
and edit screen. Similar to CRT control register

5 but does not affect the areas covered by CRT
control registers 15 and 16.

Read the alpha write-enable mask.

Set alpha write-enable mask to a bit pattern (or
use the SET ALPHA MASK statement). When
running BASIC/UX in the X Window environment,
this CONTROL register is not supported. Error
713 is given if a window number is specified instead
of a select code on BASIC/UX.

Returns the maximum value for the ALPHA MASK
argument.

Undefined.

Read the alpha display-enable mask. Error 713 is
given if a window number is specified instead of a
select code on BASIC/UX.

Interface Registers 2-11

2 CONTROL Register 20 Set alpha display-enable mask to a bit pattern (or
use the SET DISPLAY MASK statement). When
running BASIC/UX in the X Window environment,
this CONTROL register is not supported. Error
713 is given if a window number is specified instead
of a select code on BASIC/UX.

STATUS Register 21 Active CRT binary identity. See CONTROL
register 21 for a table of CRT binary identification
codes.

CONTROL Register 21 Specify which loaded CRT binary BASIC
will attempt to activate. Each CRT binary is
represented by one of the following values:

Value Binary
0 default search
1 CRTA
2 CRTB
3 reserved
4 CRTD (single width)
5 CRTD (double width)

Note Double wide mode is not supported for 640 by 480 displays.

If 0 is sent to CONTROL register 21, BASIC
searches all the loaded binaries in a default order
and activates the first one found that is compatible
with the installed hardware. The default search
order is CRTD, then CRTB, then CRTA.

Sending a new value to CONTROL register

21 effectively initializes the alpha display and
executes GINIT and PLOTTER IS CRT, "INTERNAL".
BASIC/UX does not support switching between

2-12 Interface Registers

non-bit-mapped and bit-mapped displays, but the
initialization is still done.

STATUS Register 22 Undefined (BASIC/UX only).

CONTROL Register 22 Raises a window to the top of the window stack if
non-zero; pushes a window to the bottom of the
stack if zero (BASIC/UX only)

STATUS Register 23 Returns terminal compatibility mode (BASIC/UX
only)

CONTROL Register 23 Sets terminal compatibility mode (BASIC/UX
only).

Keyboard STATUS and CONTROL Registers

STATUS Register 0 CAPS LOCK flag
CONTROL Register 0 Set CAPS LOCK if non-0
STATUS Register 1 PRINTALL flag
CONTROL Register 1 Set PRINTALL if non-0
STATUS Register 2 Function key menu

CONTROL Register 2 Function key menu:
0: System menu (or SYSTEM KEYS statement)

1-3: User menu 1 thru 3 (or USER n KEYS
statement along with the appropriate menu
number)

STATUS Register 3 Undefined

CONTROL Register 3 Set auto-repeat interval. If 1 thru 255, repeat
interval in milliseconds is 10 times this value. 256
= turn off auto-repeat. (Default at power-on or
SCRATCH A is 30ms.) For BASIC/UX information
on this register, see the HP BASIC 6.2 Interface
Reference.

Interface Registers 2-13

STATUS Register 4

CONTROL Register 4

STATUS Register 5

CONTROL Register 5

STATUS Register 6

CONTROL Register 6

STATUS Register 7

Undefined

Set delay before auto-repeat. If 1 thru 256, delay

in milliseconds is 10 times this value. (Default
at power-on or SCRATCH A is 300ms.) For
BASIC/UX information on this register, see the
HP BASIC 6.2 Interface Reference.

KBDS$ buffer overflow register, 1 = overflow.
Register is reset when read.

Undefined

Typing aid expansion overflow register, 1 =
overflow. Register is reset when read.

Undefined

Interrupt Status

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 INITIAL }Reserved | Reserved | RESET | Keyboard|
-1ZE For For Key and
Timeout |Future |Future |Interrupt|Knob
Interrupt | Use Use Disabled | Interrupt
Disabled Disabled
value=128 | value=64| value=32 | value=16 |value=8 |value=4 |value=2 |value=1
CONTROL Register 7 Interrupt Disable Mask
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Not Used INITIAL | Reserved | Reserved | RESET | Keyboard|
-IZE For For Key and Knol
Timeout | Future |Future
Use Use
value=128 | value=64 |value=32 |value=16|value=8 |value=4 [value=2 |value=1
2-14 Interface Registers

STATUS Register 8

0-US ASCII
1-French

2-German

3-Swedish

4-Spanish

5-Katakana

Keyboard language jumper

7-United Kingdom
8-Canadian French
9-Swiss French
10-Italian
11-Belgian
12-Dutch

6-Canadian English 13-Swiss German

14-Latin (Spanish)
15-Danish
16-Finnish
17-Norwegian
18-Swiss French®
19-Swiss German”

20-Kanji (Japanese)

*See also SYSTEM$(“KEYBOARD LANGUAGE”) which requires the LEX
binary. Note that the STATUS statement when used with this register does not
require the LEX binary.

CONTROL Register 8

Undefined

STATUS Register 9 Keyboard Type For BASIC/UX information on this
register, see the HP BASIC 6.2 Interface Reference.
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Internal Internal |1=HIL 1=No 1=n-Key |0 1= 1=
Use Use Keyboard | Keyboard| Rollover 98203C [98203A
Interface Keyboard] Keyboard
0=Key- |0=2or
O=non- |board less 0=Other | 0=Other
HIL Present | rollover Keyboard| Keyboard|
value=128 | value=64 |value=32] value=16] value=8 |value=4 |value=2 |value=1

Bits 5, 1, and 0 of STATUS Register 9 and the following table can be used to
determine the Keyboard Type.

Interface Registers 2-15

Bit 5 Bit 1 Bit 0 | Keyboard Type
0 0 0 HP 98203B or built-in
0 0 1 HP 98203A
1 0 0 ITF (such as the HP 46020A and 46021A)
1 1 0 HP 98203C
CONTROL Register 9 Undefined

STATUS Register 10

Status at Last Knob Interrupt

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 0 0 CTRL |SHIFT
Key Key
Pressed | Pressed
value=128 | value=64 | value=32 | value=16 | value=8 | value=4 | value=2 | value=1

Note that bit 1 is always 0 for keyboards connected to an HP-HIL interface,
and with all HP-HIL mice and knobs (e.g. HP 46083A Rotary Control Knob,
HP 46085 Control Dials, and HP 98203C Keyboard Knob).

For BASIC/UX information on this register, see the HP BASIC 6.2 Interface

Reference.

CONTROL Register 10

STATUS Register 11

CONTROL Register 11

STATUS Register 12

CONTROL Register 12

STATUS Register 13

2-16

Undefined

O=horizontal-pulse mode; 1=all-pulse mode.

Set knob pulse mode (0 is default). See the knob

discussion in the “Porting to 3.0” chapter of
HP BASIC 6.2 Porting and Globalization. For
BASIC/UX information on this register, see the

HP BASIC 6.2 Interface Reference.

“Pseudo-EOI for CTRL-E ” flag

Katakana flag

Interface Registers

Enable pseudo-EOI for CTRL-E if non-0

CONTROL Register 13
STATUS Register 14

CONTROL Register 14

STATUS Register 15

CONTROL Register 15

STATUS Register 16

CONTROL Register 16

STATUS Register 17

Set Katakana if non-0
Numbering of softkeys on ITF keyboard:

0—) is key number 1 (default);
1-—(f1) is key number 0;

Softkey numbering on ITF keyboard (see STATUS
Register 14 description)

Currently in 98203 keyboard compatibility mode:

0—OFF (default)
1—ON

Turns “98203 keyboard compatibility mode” on
(#£0) and off (=0). (See the chapter “Porting to
Series 300” in the HP BASIC 6.2 Porting and
Globalization manual for further information about
using this mode.) Note that instead of using the
CONTROL register 15 statement you can use

the KBD CMODE statement to turn the “98203
keyboard compatibility mode” ON and OFF.

For BASIC/UX information on this register, see
Volume 2 of the HP BASIC 6.2 Interface Reference.

Returns the enabled/disabled status of the up
and down arrow keys, (Prev), (Next), and (&home;)
(both shifted and un-shifted for all of these keys).
If the status value is 1 it means these keys are
deactivated. Note that the default value is 0.

Allows you to disable or re-enable the display
scrolling keys mentioned for STATUS Register

16. This prevents accidental scrolling of the
display screen. Executing a 1 with the CONTROL
statement deactivates the print scrolling keys and a
0 activates them.

Automatic menu switching:
1—enabled (default)
0—disabled

interface Registers 2-17

CONTROL Register 17

STATUS Register 24

CONTROL Register 24

STATUS Register 25

CONTROL Register 25

2-18

interface Registers

Automatic menu switching;

#0—enable
0—disable

This register controls whether a system with an ITF
keyboard will switch to (from) the User 2 Menu
automatically on entering (leaving) EDIT mode.

Two-byte character input mode activation status

(BASIC/WS only).

0 no two-byte INPUT binary loaded, or
two-byte input disabled.

1 two-byte INPUT binary loaded and two-byte
character input enabled.

Enables/disables two-byte character input
(BASIC/WS only). Setting this register has an
effect only if a two-byte INPUT binary is loaded.
See STATUS register 24 for details.

Two-byte character input switch key enable status
(BASIC/WS only). The two-byte switch key toggles
the keyboard between one- and two-byte character
input.

0 no two-byte INPUT binary loaded or switch
key disabled.

1 two-byte INPUT binary loaded and switch key
enabled. Default after LOAD BIN "INPUT" is 1.
After INPUT is loaded, SCRATCH A enables the
switch key.

Not affected by BASIC reset.

Enables/disables two-byte switch key (BASIC/WS
only). Setting this register has an effect only if a
two-byte INPUT binary is loaded. See STATUS
register 25 for details.

0 = switch key disabled

1

= switch key enabled

STATUS and CONTROL Reserved for use with the Japanese INPUT binary.

Registers 26-28

Refer to the Using Japanese with HP BASIC
manual for details.

HP-IB STATUS and CONTROL Registers

Status Register 0

Control Register 0

Status Register 1

Card identification = 1

Reset interface if non-zero

Interrupt and DMA Status

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Interrupts | Interrupt Hardware 0 0 DMA DMA
Enabled Requested Interrupt Chan1l [Chan 0

Switches Enabled |Enabled
value=128 | value=64 |value=32|value=16]| value=8 | value=4 | value=2 |value=1
Control Register 1 Serial Poll Response Byte

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device SRQ Device Dependent Status
Dependent | 1=I did it
Status 0=I didn’t|
value=128 { value=64 |value=32 |value=16{value=8 |value=4 |value=2 | value=1
Status Register 2 Busy Bits

Interface Registers 2-19

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 Reserved | Hand- Inter- TRANS-
For shake rupts FER In
Future {In Enabled | Progress
Use Progress
value=128 | value=64 | value=32 | value=16 | value=8 | value=4 |[value=2|value=1
Control Register 2 Parallel Poll Response Byte
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIOS8 DIOT DIO6 DIO5 DIO4 DIO3 DIO2 DIO1
1=True 1=True 1=True 1=True |1=True [1=True |1=True |1=True
value=128 | value=64 | value=32 | value=16| value=8 | value=4 |value=2 |value=1
Status Register 3 Controller Status and Address
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
System Active 0 Primary Address of HP-IB Interface
Controller | Controller
value=128] value=64 |value=32]|value=16|value=8 |value=4 |value=2]value=1

Control Register 3

2-20

Set My Address

Interface Registers

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Not Used Used Primary Address

value=128 | value=64 |value=32 |value=16{ value=8 |value=4 |value=2 |value=1

Interface Registers 2-21

Status Register 4

Interrupt Status

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
Active | Parallel | My Talk | My Listen | EOI SPAS Remote/ | Talker/
Controller|Poll Con-| Address | Address Received Local Listener
figuration{ Received | Received Change | Address
Change Change
value= | value= | value= |value= value= |value= |Value= |value=
—-32 768 | 16 384 8192 (4096 2 048 1024 512 256
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Trigger Hand- Unrecog- |Secondary| Clear Unrecog- |SRQ IFC
Received |shake nized Command| Received | nized Received| Received|
Error Universal | While Addressed
Command| Addressed Command
value=128 | value=64 |value=32 |value=16 |value=8 |value=4 |value=2|value=1

Control Register 4

2-22

Writing anything to this register releases NDAC
holdoff. If non-zero, accept last secondary address
as valid. If zero, don’t accept last secondary address
(stay in LPAS or TPAS state).

Interface Registers

Status Register 5

Interrupt Enable Mask

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 | Bit 10 Bit 9 Bit 8
Active Parallel |My Talk |My Listen| EOI SPAS |Remote/ | Talker/
Controller | Poll Con- | Address | Address | Received Local Listener

figuration | Received | Received Change |Address

Change Change
value= value= value= value= value= |value= |value= |value=
—32 768 16 384 8 192 4 096 2 048 1024 512 256

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Trigger Hand- Unrecog- | Secondary| Clear Unrecog- |SRQ IFC
Received |shake nized Command nized Received| Received

Error Universal | While Addressed
Command| Addressed Command
value=128 | value=64 | value=32 | value=16 | value=8 |value=4 |value=2 |value=1
Control Register 5 Parallel Poll Response Mask

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Not Not Not Uncon- |Logic Data Bits Used for Response
Used Used Used figure Sense
value=128 | value=64 |value=32 |value=16{value=8 |value=4 |value=2 |value=1

Interface Registers 2-23

2

Status Register 6

Interface Status

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
REM LLO ATN LPAS | TPAS | LADS | TADS *
True
value= value= value= | Value= | Value= | Value= | value= | Value=
—32 768 16 384 8 192 4 096 2 048 1 024 512 256
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
System Active 0 Primary Address of Interface
Controller | Controller
value=128 | value=64 | value=32 | value=16]| value=8 |value=4 |value=2 |value=1
*Least-significant bit of last address recognized
Status Register 7 Bus Control and Data Lines
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit8
ATN DAV NDAC! | NRFD! EOI SRQ? IFC REN
True True True True True True True True
value= value= value= value= value= | value= | value= | value=
—-32 768 16 384 8 192 4 096 2 048 1024 512 256
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIOS8 DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DIO1
value=128 | value=64 | value=32 | value=16 | value=8 | value=4 | value=2 | value=1
2-24 Interface Registers

10nly if currently Addressed to Talk, otherwise not valid.
2Qnly if currently Active Controller, otherwise not valid.

Interrupt Enable Register (ENABLE INTR)

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit8
Active Parallel |My Talk |My Listen| EOI SPAS |Remote/ | Talker/
Controller | Poll Con- | Address | Address |Received Local Listener

figuration | Received | Received Change |Address

Change Change
value= value= value= value= value= |value= |value= |value=
—32 768 |16 384 8 192 4 096 2 048 1024 (512 256

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Trigger Hand- Unrecog- | Secondary| Clear Unrecog- |SRQ IFC
Received |[shake nized Command| Received| nized Received | Received

Error Universal | While Addressed
Commandj Addressed Command
value=128 | value=64 |value=32 |value=16 |value=8|value=4 |value=2 [value=1
STATUS Register 255 0: HP-IB interface unlocked and HP-IB interface
burst I/O disabled”
1: HP-IB interface locked
3: HP-IB interface burst I/O enabled

"BASIC/WS and BASIC/DOS accept this

command but always return the value “3”.

CONTROL Register 255 0:

disables HP-IB interface locking and HP-IB

interface burst I/0"

1: enables HP-IB interface locking
enables HP-IB interface burst I/O

3:

Interface Registers 2-25

*BASIC/WS and BASIC/DOS accept this
command but always set the value to “3”.

RS-232C Serial
STATUS and CONTROL Registers

General Notes: Most Control registers accept values in the range of zero
through 255. Some registers accept only specified values as indicated, or
higher values for baud rate settings. Values less than zero are not accepted.
Higher-order bits not needed by the interface are discarded if the specified
value exceeds the valid range.

Reset value is the default value used by the interface after a reset or power-up
until the value is overridden by a CONTROL statement.

See the HP BASIC 6.2 Interface Reference for “Modifications to RS-232 and
Datacomm Registers.”

STATUS Register 0 Card Identification

Value returned: 2 indicates a 98626 (if 130 is
returned, the Remote jumper wire has been
removed from the interface card); 66 indicates
a 98644 (194 if the Remote jumper has been
removed).

CONTROL Register 0 Interface Reset

Any value from 1 thru 255 resets the card.
Execution is immediate; any data transfers in
process are aborted and any buffered data is
destroyed. A value of 0 causes no action.

STATUS Register 1 Interrupt Status

Bit 7 set: Interface hardware interrupt to CPU
enabled.
Bit 6 set: Card is requesting interrupt service.

2-26 Interface Registers

CONTROL Register 1

STATUS Register 2

STATUS Register 3

CONTROL Register 3

Bits 5&4: 00 - Interrupt Level 3
01 - Interrupt Level 4
10 - Interrupt Level 5
11 - Interrupt Level 6
Bits 3 thru 0 not used.

Transmit BREAK

Any non-zero value sends a 400 millisecond BREAK
on the serial line. For BASIC/UX information

on this register, see the HP BASIC 6.2 Interface
Reference.

Interface Activity Status
Bit 7 thru 3 are not used.

Bit 2 set: Handshake in progress. This occurs
only during multi-line function calls.

Bit 1 set: Firmware interrupts enabled
(ENABLE INTR active for this select
code).

Bit 0 set: = TRANSFER in Progress.

For BASIC/UX information on this register, see the
HP BASIC 6.2 Interface Reference.

Current Baud Rate

Returns one of the values listed under CONTROL
Register 3.

Set New Baud Rate

Use any one of the following values:

50 150 1200 4800
75 200 1800 7200
110 300 2400 9600
134 600 3600 19200

From 25 to 28800, the value will be rounded. Any
value outside this range gives an error.

Interface Registers 2-27

STATUS Register 4

CONTROL Register 4

Current Character Format

See CONTROL Register 4 for function of individual

bits.

Set New Character Formats For BASIC/UX

information on this register, see the HP BASIC 6.2
Interface Reference.

Character Format and Parity Settings

10 Always ONE
(BASIC/WS only)
11 Always ZERO
(BASIC/WS only)

Parity Sense’ Parity Enable Stop Bits Character Length
(Switches 5&4) (Switch 3) (Switch 2) (Switches 1&0)
00 ODD parity 0 Disabled 0 1 stop bit 00 5 bits/char
01 EVEN parity 1 Enabled 1 1.5 stop bits 01 6 bits/char

(if 5 bits/char),
or 2 stop bits
(if6,7,0r 8
bits/char).

10 7 bits/char
11 8 bits/char

STATUS Register 5

CONTROL Register 5

2-28

1Parity sense valid only if parity is enabled
(bit 3=1). If parity is disabled, parity sense is

meaningless.

Bits 7 and 6 are reserved for future use.

Current Status of Modem Control Lines

Returns CURRENT line state values. See
CONTROL Register 5 for function of each bit.

Set Modem Control Line States

Sets Modem Control lines or interface state as

follows:

Bit 4 set:

Bit 3 set:

Interface Registers

Enables loopback mode for diagnostic
tests.”

Set Secondary Request-to-Send modem
line” to active state.

Bit 2 set: Set Data Rate Select modem line to
active state.

Bit 1 set: Force Request-to-Send modem line to
fixed active state.

Bit 1 clear: Toggle RTS line as in normal
OUTPUT operations.

Bit 0 set: Force Data Terminal Ready modem
line to fixed active state.

Bit 0 clear: Toggle DTR line as in normal
OUTPUT and ENTER operations.

*For BASIC/UX information on this register, see the HP BASIC 6.2 Interface

Reference.
STATUS Register 6

CONTROL Register 6

STATUS Register 7

CONTROL Register 7

Data In

Reads character from input buffer. Buffer contents
is not destroyed, but bit 0 of STATUS Register 10
is cleared.

Data Qut

Sends character to transmitter holding register.
This register is sometimes used to transmit protocol
control characters or other characters without using
OUTPUT statements. Modem control lines are not
affected.

Optional Receiver/Driver Status

Returns current value of optional circuit drivers or
receivers as follows:

Bit 3: Optional Circuit Driver 3 (OCD3).
Bit 2: Optional Circuit Driver 4 (OCD4).
Bit 1: Optional Circuit Receiver 2 (OCR2).
Bit 0: Optional Circuit Receiver 3 (OCR3).
Other bits are not used (always 0).

Set New Optional Driver States

Interface Registers 2-29

STATUS Register 8

STATUS Register 9

2-30

Interface Registers

Sets (bit=1) or clears (bit=0) optional circuit
drivers as follows:

Bit 3: Optional Circuit Driver 3 (OCD3),
Bit 2: Optional Circuit Driver 4 (OCD4).
Other bits are not used.

Current Interrupt Enable Mask

Returns value of interrupt mask associated with
most recent ENABLE INTR statement. Bit
functions are as follows:

Bit 3:

Bit 2:

Bit 1:

Bit 0:

Enable interrupt on modem line change.
STATUS Register 11 shows which modem
line has changed.

Enable interrupt on UART status error.
This has is used to trap ERROR 167
caused by UART error conditions. STATUS
Register 10, bits 4 thru 1, show cause of
error.

Enable interrupt when Transmitter Holding
Register is empty (BASIC/WS only).

Enable interrupt when Receiver Buffer is full
(BASIC/WS only).

Cause of Current Interrupt (not supported on
BASIC/UX)

Returns cause of interrupt as follows:

Bits 2&1: Return cause of interrupt

11 UART error (BREAK, parity,
framing, or overrun error). See
STATUS Register 10.

10 Receiver Buffer full. Cleared
by STATUS to Register 6
(BASIC/WS only).

01 Transmitter Holding Register
empty. Cleared by CONTROL

Register 6 or STATUS to Register
9 (BASIC/WS only).

00 Interrupt caused by change
in modem status line(s). See
STATUS Register 11.

Bit 0: Set when no active interrupt requests
from UART are pending. Clear until
all pending interrupts have been
serviced.

STATUS Register 10 UART Status

Bit set indicates UART status or detected error as
follows:

Bit 7: Not used.

Bit 6: Transmit Shift Register empty.
Bit 5: Transmit Holding Register empty.
Bit 4: Break received.

Bit 3: Framing error detected.

Bit 2: Parity error detected.

Bit 1: Receive Buffer Overrun error.

Bit 0: Receiver Buffer full.

STATUS Register 11 Modem Status

Bit set indicates that the specified modem line or
condition is active.

Bit 7: Data Carrier Detect (DCD) modem line
active.

Bit 6: Ring Indicator (RI) modem line active. (not
supported on BASIC/UX)

Bit 5: Data Set Ready (DSR) modem line active.

Bit 4: Clear-to-Send (CTS) modem line active.

Bit 3: Change in DCD line state detected.

Bit 2: RI modem line changed from true to false.

Bit 1: Change in DSR line state detected.

Bit 0: Change in CTS line state detected.

STATUS Register 12 Modem Handshake Control (not supported on
BASIC/UX)

Interface Registers 2-31

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Carrier 0 Data Set | Clear to 0 0 0 0
Detect Ready |Send
Disable! Disable? | Disable®
value=128| value=64 | value=32| value=16| value=8 | value=4 | value=2 | value=1

CONTROL Register 12

Modem Handshake Control (not supported on

BASIC/UX)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Carrier Not Data Set | Clear to | Not Not Not Not
Detect Used Ready |Send Used Used Used Used
Disable! Disable? | Disable?
value=128 | value=64 |value=32|value=16|value=8 |value=4 |value=2 {value=1

10 = Wait for Carrier Detect on Enter Operations; 1 = Don’t wait. RMB-UX
supports bits 7 and 4 in combination only

20 = wait for Data Set Ready on Enter and Output Operations; 1 = Don’t
wait. BASIC/WS only.

30 = Wait for Clear to Send on Output Operations; 1 = Don’t wait. RMB-UX
supports bits 7 and 4 in combination only.

2-32

Interface Registers

Interrupt Enable Register (ENABLE INTR)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Not Used

Modem | Receiver |Trans- Receiver
Status |Line mitter Buffer
Change |Status Holding | Full
(BASIC/ |Register
WS only) { Empty
(BASIC/
WS only)

value=128| value=64| value=32| value=16 | value=8 | value=4 |value=2 |value=1

STATUS Register 13

CONTROL Register 13

STATUS Register 14

Read 98644 “SCRATCH A default” baud rate!

Returns the baud rate that will be restored
whenever SCRATCH A is executed (same
bit-definitions as STATUS register 3).

For BASIC/UX information on this register, see the
HP BASIC 6.2 Interface Reference.

Set 98644 “SCRATCH A default” baud rate!

Sets both the “current” and the “default” baud
rate that will be restored whenever SCRATCH A
is executed (same bit-definitions as CONTROL
register 3). Default value in this register is 9600
baud.

Read 98644 “SCRATCH A default” character
format!

Returns the character format parameters that will
be restored whenever SCRATCH A is executed
(same bit-definitions as STATUS register 4).

!For BASIC/UX information on this register, see the HP BASIC 6.2 Interface

Reference.

Interface Registers 2-33

CONTROL Register 14 Set 98644 “SCRATCH A default” character format

Sets both the “current” and the “default” character
format parameters that will be restored whenever
SCRATCH A is executed (same bit-definitions

as CONTROL register 4). Default value in

this register specifies a character format of 8
bits/character, 1 stop bit, and parity disabled.

Overview of Datacomm
Status and Control Registers

Unless indicated otherwise, the Status Register returns the current value for a
given parameter; the Control Register sets a new value.

See the HP BASIC 6.2 Interface Reference for changes to RS-232C and
Datacomm Registers.

2-34 Interface Registers

Register

Function

0
1 (Status only)
2 (Status only)

3

4 (Status only)
5

6

7 (Status only)
8

9 (Status only)
10 (Status only)
11 (Status only)
12

13
14
15

Control: Interface Reset; Status: Interface Card ID

Hardware Interrupt Status: 1=Enabled, 0=Disabled
Datacomm activity: O=inactive, I=ENTER in process,
2=0UTPUT in process!

Select Protocol: 1= Async, 2= Data Link !

Cause of ON INTR program branch

Control: Terminate transmission; Status: Inbound queue status
Control: Send BREAK to remote; Status: 1=BREAK pending
Current modem receiver line states

Modem driver line states

Control block TYPE (supported on BASIC/UX)

Control block MODE (not supported on BASIC/UX)

Available outbound queue space

Control: Connect/Disconnect line; Status: Line connection status
(not supported on BASIC/UX)

ON INTR mask

Control Block mask (not supported on BASIC/UX)

Modem Line interrupt mask

1For BASIC/UX information on this register, see the HP BASIC 6.2 Interface

Reference.

Intertace Registers 2-35

Register Function
16 Connection timeout limit (not supported on BASIC/UX)
17 No Activity timeout limit (not supported on BASIC/UX)
18 Lost Carrier timeout limit (not supported on BASIC/UX)
19 Transmit timeout limit (not supported on BASIC/UX)
20 Async: Transmit baud rate (line speed)
Data Link: Set Transmit/Receive baud rate (line speed)
21 Async: Incoming (receiver) baud rate (line speed) (not supported
on BASIC/UX)
Data Link: GID address (0 thru 26 corresponds to “@” thru “Z”)
22 Async: Protocol handshake type
Data Link: DID address (0 thru 26 corresponds to “@” thru “Z”)
23 Hardware handshake type: ON/OFF, HALF/FULL duplex,
Modem/Non-modem
24 Async: Control Character mask (not supported on BASIC/UX)

25 (Status only)

26

Data Link: Block Size limit

Number of received errors since last interface reset (not supported
on BASIC/UX)

Async: First protocol character (ACK/DC1)

Data Link: NAKSs received since last interface reset

2-36 Interface Registers

For the BASIC Workstation, registers 27-35, 37, and 39 are used with Async

protocol only. They are not accessible during Data Link operations. Note that
registers 27-33 and 37-39 are not supported on BASIC/UX and that BASIC/UX
does not support Data Link operations.

Register Function

27 Second protocol handshake character (ENQ/DC3)

28 Number of characters in End-of-line sequence

29 First character in EOL sequence

30 Second character in EOL sequence

31 Number of characters in PROMPT sequence

32 First character in PROMPT sequence

33 Second character in PROMPT sequence

34 Data bits per character excluding start, stop and parity

35 Stop bits per character (0=1, 1=1.5, and 2=2 stop bits)

36 Parity sense: 0=NONE, 1=0DD, 2= EVEN, 3=ZERO, 4=0ONE
Data Link: 0=NONE (HP 1000 host), 1=0DD (HP 3000 host)

37 Inter-character time gap in character times (Async only)

38 (Status only)
39

Transmit queue status (1=empty)
BREAK time in character times (Async only)

Datacomm Interface
Status and Control Registers

General Notes:

Control registers accept values in the range of zero through
255. Some registers require specified values, as indicated.
Illegal values or values less than zero or greater than 255,
cause ERROR 327.

Reset value, shown for various Control Registers, is the
default value used by the interface after a reset or power-up
until the value is overridden by a CONTROL statement.

Status 0 Card Identification

Interface Registers 2-37

Control 0

Status 1

Status 2

Status 3
Control 3

Status 4

Value returned: 52 (if 180 is returned, check select code switch
cluster and make sure switch R is ON).

Card Reset

Any value, 1 thru 255, resets the card. Immediate execution.
Data in queues is destroyed.

Hardware Interrupt Status (not used in most applications)

1 = Enabled
0 = Disabled (not supported on BASIC/UX)

Datacomm Activity

0: No activity pending on this select code.

Bit 0 set: ENTER in progress.

Bit 1 set: OUTPUT in progress.

(Non-zero only during multi-line function calls.)

Current Protocol Identification: 1 = Async, 2 = Data Link.

Protocol to be used after next card reset (CONTROL Sc¢,0;1): 1 =
Async Protocol, 2 = Data Link Protocol (Data Link BASIC/WS
only). This register overrides default switch configuration.

Cause of ON INTR program branch.

2-38 Interface Registers

Bit

Function: Async Protocol

Function: Data Link Protocol

Data and/or Control Block available

Prompt received

Framing and/or parity error
Modem line change

No Activity timeout (forces a
disconnect) (BASIC/WS only)

Lost carrier or connection
timeout(forces a disconnect)

(BASIC/WS only)
End-of-line received

Break received

Data Block Available

Space available for a new transmission

block
Receive or transmit error
Modem line change

No Activity timeout (forces a
disconnect) (BASIC/WS only)

Lost carrier or connection
timeout(forces a disconnect)

(BASIC/WS only)
Not Used

Not used

Contents of this register are cleared when a STATUS statement is

executed to it.

Interface Registers 2-39

2 Status 5 Inbound queue status (not supported by BASIC/UX)

Value | Interpretation

0 [|Queue is empty

1 Queue contains data but no
control blocks

2 1Queue contains one or more
control blocks but no data
(BASIC/WS only)

3 Queue contains both data and
one or more control blocks

(BASIC/WS only)

Control 5 Terminate Transmission (not supported by BASIC/UX) OUTPUT
5,5;0 is equivalent to OUTPUT S;END

Data Link: Sends previous data as a single block with an ETX
terminator,then idles the line with an EOT.

Async: Tells card to turn half-duplex line around. Does
nothing when line is full duplex. The next data
OUTPUT automatically regains control of the line by
raising the RTS (request-to-send) modem line.

Status 6 Break status: 1 = BREAK transmission pending, 0 = no BREAK
pending.

Control 6 Send Break; causes a Break to be sent as follows:!

Data Link Protocol: Send Reverse Interrupt (RVI) reply to inbound block,
instead of data or CN character in next outbound
block.

Async Protocol: Transmit Break. Length is defined by Control Register
39.

Note that the value sent to the register is arbitrary.

2-40 Interface Registers

1For BASIC/UX information on this register, see the HP BASIC 6.2 Interface

Reference.

Status 7

Status 8
Control 8

Status 9

Status 10

Modem receiver line states (values shown are for male cable
connecter option for connection to modems).

Bit 0: Data Mode (Data Set Ready) line

Bit 1: Receive ready (Data Carrier Detect line)
Bit 2: Clear-to-send (CTS) line

Bit 3: Incoming call (Ring Indicator line)

Bit 4:

Returns modem driver line states.

Sets modem driver line states (values shown are for male cable
connector option for connection to modems).

Bit 0: Request-to-send (RS or RTS) line 1 = line set (active)
Bit 1: Data Terminal Ready (DTR) line 0 = line clear

(inactive)
Bit 2: Driver 1: Data Rate Select bit
Bit 3: Driver 2: Depends on cable option or adapter used.
Bit 4: Driver 3: Depends on cable option or adapter used.
Bit 5: Driver 4: Depends on cable option or adapter used.

Bit 6,7: Not used.

Returns control block TYPE if last ENTER terminated on a
control block. See Status Register 10 for values (not supported on
BASIC/UX).

Returns control block MODE if last ENTER terminated on a
control block (not supported on BASIC/UX).

interface Registers 2-41

2 Async Protocol Control Blocks

Type | Mode | Interpretation
250 1 | Break received (Channel A)

251 1! | Framing error in the following
character

251 2! | Parity error in the following
character

251 3! | Parity and framing errors in the
following character

252 1 End-of-line terminator detected

253 1 | Prompt received from remote

0 0 No Control Block encountered

Parity /framing error control blocks are not generated when characters with
parity and/or framing errors are replaced by an underscore () character.

Data Link Protocol Control Blocks
Type | Mode | Interpretation

254 1 | Preceding block terminated by
ETB character

254 2 | Preceding block terminated by
ETX character

253! | — |[(see following table for Mode
interpretation)
0 0 |No Control Block encountered

IThis type is used primarily in specialized applications.

2-42 Interface Registers

Mode Bit(s)

Interpretation

0

2,1

1 = Transparent data in following block
0 = Normal data in following block

00 = Device select
01 = Group select
10 = Line select

1 = Command channel
2 = Data channel

Status 11 Returns available outbound queue space (in bytes), provided there
is sufficient space for at least three control blocks. If not, value is

Z€TOo.

Status 12 Datacomm Line connection status (not supported on BASIC/UX)

Value | Interpretation

0 | Disconnected

1 {Attempting Connection

2 | Dialing

3 | Connected?

4 | Suspended

5 | Currently receiving data
(Data Link only)

6 | Currently transmitting data
(Data Link only)

2When using Data Link: Connected - datacomm idle

Reset value—0 if R on interface select code switch cluster is ON

(1).

Intertace Registers 2-43

2 Note When the datacomm line is suspended, CLEAR, ABORT, or
RESET must be executed before the line can be reconnected.

Control 12 Connects, initiates auto-dial sequence, and disconnects interface
from datacomm line (not supported on BASIC/UX).

Value | Interpretation

0 Disconnected from datacomm line

1 |Connected to datacomm line (set
DTR & RTS)

2 |Start auto dial. (Followed by
OUTPUT of telephone numbers)

Status 13 Returns current ON INTR mask
Control 13 Sets ON INTR mask!

If a CONTROL statement is used to access this register, the control block is
placed in the outbound queue. If the ENABLE INTR ... statement is used
with a mask, the mask value is placed directly in the control register, bypassing
any queue delays.

2-44 Interface Registers

Data Link Protocol (BASIC/WS only)

Bit | Value | Enables interrupt when:

0 1 A full block is available in receive
queue

1 2 Transmit queue is empty

2 4 Receive or transmit error detected

3 8 | A modem line changed

4 162 |No Activity timeout forced a
disconnection

5 322 |Lost Carrier or Connection

timeout caused a disconnection

21If bits 4 and 5 are not set, the corresponding errors can be trapped by using
an ON ERROR statement.

Interface Registers 2-45

Async Protocol

Bit | Value | Enables interrupt when:

0 1 Data or control block available in
receive queue (BASIC/WS only)

1 2 | Prompt received from remote
device
2 4 |Framing or parity error detected in

incoming data
3 8 | A modem line changed

4 16! [No Activity timeout forced a
disconnection (BASIC/WS only)

5 32! | Lost Carrier or Connection
timeout caused a disconnection

(BASIC/WS only)
6 64 | End-of-line received

7 128 | Break received

Reset value = 0

'If bits 4 and 5 are not set, the corresponding errors can be trapped by using
an ON ERROR statement.

Status 14 Returns current Control Block mask (not supported on
BASIC/UX).

Control 14 Sets Control Block mask. Control block information is queued

sequentially with incoming data as follows (not supported on
BASIC/UX).

2-46 Interface Registers

Data Link Control Block Passed

Bit | Value |{ Async Control Block Passed
0 1 Prompt position
1 2 End-of-line position
2 4 | Framing and/or Parity error?
3 8 | Break received

Transparent/Normal Mode?
ETX Block Terminator®
ETB Block Terminator®

Reset Value: 0 (Control Blocks disabled)

6 (ETX/ETB Enabled)

ZTransparent/Normal format identification control block occurs at the
beginning of a given block of data in the receive queue.

SETX and ETB Block Termination identification control blocks occur at the
END of a given block of data in the receive queue.

4This control block precedes each character containing a parity or framing

€error.

Bits 4, 5, 6, and 7 are not used.

Status 15 Returns current modem line interrupt mask.

Control 15 Sets modem line interrupt mask. Enables an interrupt to ON
INTR when Bit 3 of Control Register 13 is set as folows:

Interface Registers 2-47

Status 16

Control 16

Status 17

Control 17

Status 18

Bit | Value | Modem Line to Cause Interrupt

0 1 |Data Mode (Data Set Ready)

1 2 | Receive Ready (Data Carrier
Detect)

2 4 | Clear-to-send

3 8 JOCRI, Incoming Call (Ring
Indicator)

4 16 |[OCR2, Cable or adapter
dependent

Reset value= 0

Note that bit functions are the same as for STATUS register 7.
Functions shown are for male connector cable option for modem
connections.

Returns current connection timeout limit (not supported on

BASIC/UX).

Sets Attempted Connection timeout limit. Acceptable values:
1 thru 255 seconds. O=timeout disabled (not supported on
BASIC/UX)

Reset value=25 seconds

Returns current No Activity timeout limit (not supported on
BASIC/UX).

Sets No Activity timeout limit (not supported on BASIC/UX).
Acceptable values: 1 thru 255 minutes. 0=timeout disabled.

Reset Value=10 minutes (disabled if Async, non-modem
handshake).

Returns current Lost Carrier timeout limit (not supported on
BASIC/UX).

2-48 Interface Registers

Control 18

Status 19

Control 19

Status 20

Control 20

Sets Lost Carrier timeout limit in units of 10 ms. Acceptable 2
values: 1 thru 255. 0=timeout disabled.

Reset Value=40 (400 milliseconds) (not supported on BASIC/UX)

Returns current Transmit timeout limit (not supported on
BASIC/UX).

Sets Transmit timeout limit (loss of clock or CTS not returned
by modem when transmission is attempted) (not supported on
BASIC/UX).

Acceptable values: 1 thru 255.0=timeout disabled.
Reset Value=10 seconds

Returns current transmission speed (baud rate). See table for
values.

For BASIC/UX information on this register, see the
HP BASIC 6.2 Interface Reference.

Sets transmission speed (baud rate) as follows:!

Register Register
Value Baud Rate Value Baud Rate

0 External Clock 8 600

1* 50 9 1200
2* 75 10 1800
3* 110 11 2400
4* 134.5 12 3600
5* 150 13 4800
6* 200 14 9600
7 300 15 19200

* Async only. These values cannot be used with Data Link. These values set
transmit speed ONLY for Async; transmit AND receive speed for Data Link.
Default value is defined by the interface card configuration switches.

Status 21

Protocol dependent. Returns receive speed (Async) or GID
address (Data Link) as specified by Control Register 21.1

Interface Registers 2-49

Control 21 Protocol dependent. Functions are as follows:!

Data Link Protocol: Sets Group IDentifier (GID) for terminal. Values 0
thru 26 correspond to identifiers @, A, B, ... Y, Z,

respectively. Other values cause an error. Default value
is 1 (“A”).

Async Protocol: Sets datacomm receiver speed (baud rate). Values and
defaults are the same as for Control Register 20.

Status 22 Protocol dependent. Returns DID (Data Link) or protocol
handshake type (Async) as specified by Control Register 22.1

1For BASIC/UX information on this register, see the HP BASIC 6.2 Interface
Reference.

Control 22 Protocol dependent. Functions are as follows:!

Data Link Protocol: Sets Device IDentifier (DID) for terminal. Values
are the same as for Control Register 21. Default is
determined by interface card configuration switches.

Async Protocol: Defines protocol handshake type that is to be used.

Value Handshake type
0 Protocol handshake disabled

1 |ENQ/ACK with desktop computer as
the host (BASIC/WS only - ignored on
BASIC/UX)

2 |ENQ/ACK, desktop computer as a
terminal (BASIC/WS only - ignored on
BASIC/UX)

3 |DC1/DC3, desktop computer as host

4 |DC1/DC3, desktop computer as a
terminal

5 |DC1/DGC3, desktop computer as both
host and terminal

2-50 Interface Registers

Status 23 Returns current hardware handshake type (not supported on
BASIC/UX).

Control 23 Sets hardware handshake type as follows:

0=Handshake OFF, non-modem connection.
1=FULL-DUPLEX modem connection.
2=HALF-DUPLEX modem connection (BASIC/WS only).
3=Handshake ON, non-modem connection (BASIC/WS
only).

Reset Value is determined by interface configuration
switches.

Status 24 Protocol dependent. Returns value set by preceding
CONTROL statement to Control Register 24 (not supported
on BASIC/UX).

Control 24 Protocol dependent. Functions as follows (not supported on
BASIC/UX):

Data Link Protocol: Set outbound block size limit.

Value | Block size | Value | Block size
0 512 bytes 4 8 bytes

1 2 bytes
2 4 bytes

3 6 bytes 255 | 510 bytes

Reset outbound block size limit=512 bytes

Async Protocol: Set mask for control characters included in receive data
message queue.

Bit set: transfer character(s).

Bit cleared: delete character(s).

Interface Registers 2-51

Bit set | Value | Character(s) passed to receive queue

0 1 | Handshake characters (ENQ, ACK, DC1,
DC3)

1 2 |Inbound End-of-line character(s)

2 4 |Inbound Prompt character(s)

3 8 |NUL (CHR$(0))

4 16 |DEL (CHR$(127))

5 32 | CHR$(255)

6 64 | Change parity/framing errors to
underscores () if bit is set.

7 128 | Not used

Reset value=127 (bits 0 thru 6 set)

Status 25 Returns number of received errors since power up or reset (not
supported on BASIC/UX).

Note Control Registers 26 through 35, Status Registers 27 through
35, and Control and Status Registers 37 and 39 are used for
ASYNC protocol ONLY. They are not available during Data
Link operation.

Status 26 Protocol dependent

Data Link Protocol: = Returns number of transmit errors (NAKs received)
(BASIC/WS only) since last interface reset.

Async Protocol: Returns first protocol handshake character (ACK or
DC1).

Control 26 Sets first protocol handshake character as follows: 6=ACK,
(Async only) 17=DC1. Other values used for special applications only. Reset
(RMB-UX value=17 (DC1). Use ACK when Control Register 22 is set to
supports only 1 or 2. Use DC1 when Control Register 22 is set to 3, 4, or 5.
17=DC1)

Status 27 Returns second protocol handshake character.

(Async only)

2-52 Interface Registers

Control 27
(Async only)
(RMB-UX
supports only
19=DC3)

Status 28
(Async only)

Control 28
(Async only)

Status 29
(Async only)

Control 29
(Async only)

Status 30
(Async only)

Control 30
(Async only)

Status 31
(Async only)

Control 31
(Async only)

Status 32
(Async only)

Control 32
(Async only)
Status 33
(Async only)

Control 33
(Async only)

Sets second protocol handshake character as follows: 5=ENQ,
19=DC3. Other values used for special applications only. Reset
value=19 (DC3). Use ENQ when Control Register 22 is set to
1 or 2. Use DC3 when Control Register 22 is set to 3, 4, or 5.

Returns number of characters in inbound End-of-line delimiter
sequence.

Sets number of characters in End-of-line delimiter sequence
Acceptable values are 0 (no EOL delimiter), 1, or 2. Reset
Value=2

Returns first End-of-line character.
Sets first End-of-line character. Reset Value=13 (carriage
return)

Returns second End-of-line character.

Sets second End-of-line character.
Reset Value=10 (line feed)

Returns number of characters in Prompt sequence.

Sets number of characters in Prompt sequence. Acceptable
values are 0 (Prompt disabled), 1 or 2.

Reset Value=1

Returns first character in Prompt sequence.

Sets first character in Prompt sequence. Reset Value=17
(DC1)

Returns second character in Prompt sequence.

Sets second character in Prompt sequence. Reset Value=0

(null)

Interface Registers 2-53

Status 34
(Async only)

Control 34
(Async only)

Status 35
(Async only)

Control 35
(Async only)

Status 36

Returns the number of bits per character.

Sets the number of bits per character as follows:!

0=>5 bits/character 2=7 bits/character
1=6 bits/character 3=8 bits/character)

When 8 bits/char, parity must be NONE, ODD, or EVEN.
Reset Value is determined by interface card default switches.

Returns the number of stop bits per character.

Sets the number of stop bits per character as follows:”
0=1 stop bit 1=1.5 stop bits = 2=2 stop bits

*Reset Value: 2 stop bits if 150 baud or less, otherwise 1 stop
bit. Reset Value is determined by interface configuration
switch settings.

Returns current Parity setting.

1For BASIC/UX information on this register, see the HP BASIC 6.2 Interface

Reference.

2-54 Interface Registers

Control 36

Sets Parity for transmitting and receiving as follows:!

Data Link Protocol: 0=NO Parity; Network host is HP 1000 Computer.

Async Protocol:

Status 37
(Async only)

Control 37
(Async only)

Status 38

Status 39
(Async only)

Control 39
(Async only)

1=0DD Parity; Network host is HP 3000 Computer.
Reset Value=0

0=NONE; no parity bit is included with any
characters.

1=0DD; Parity bit SET if there is an EVEN number
of “1”s in the character body.

2=EVEN; Parity bit OFF if there is an ODD number
of “1”s in the character body.

3=%“0”; Parity bit is always ZERO, but parity is not
checked (BASIC/WS only).

4=“1”; Parity bit is always SET, but parity is not
checked (BASIC/WS only).

Default is determined by interface configuration switches. If 8
bits per character, parity must be NONE, ODD, or EVEN.

Returns inter-character time gap in character times.

Sets inter-character time gap in character times. Acceptable
values: 1 thru 255 character times. 0=No gap between
characters. Reset Value=0

Returns Transmit queue status (not supported on BASIC/UX).
If returned value=1, queue is empty, and there are no pending
transmissions.

Returns current Break time (in character times).

Sets Break time in character times (not supported on
BASIC/UX). Acceptable values are: 2 thru 255. Reset
Value=4.

1For BASIC/UX information on this register, see the HP BASIC 6.2 Interface

Reference.

Interface Registers 2-55

Parallel Interface STATUS and CONTROL Registers

STATUS Register 0 Card Identification. 6 is always returned.
CONTROL Register 0 Interface Reset. Any non-zero value causes a reset.
STATUS Register 1 Interrupt and DMA Status.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Interrupt |Interrupt]Interrupt |Interrupt]0 0 DMA1 |DMAO
enabled |requested {level level

value=128| value=64 | value=32| value=16| value=8 |value=4 | value=2 |value=1

Bit 7 is set (1) if interrupts are currently enabled.

Bit 6 is set (1) when the card is currently requesting service. (This bit is
independent of Interrupt Enabled, bit 7).

Bits 5 and 4 constitute the card’s hardware interrupt level:

Hardware Interrupt
Bit 5 Bit 4 Level
0 0 3
0 1 4
1 0 5
1 1 6

Bits 3 and 2 are not used (always 0).
Bit 1 is set (1) if DMA channel one is currently enabled.
Bit 0 is set (1) if DMA channel is currently enabled.

2-56 Interface Registers

On POR (Power on Reset), interrupts are disabled (Bit 7=0) and both DMA
channels are disabled. The interrupt level reflects the hardware state and is
always the same.

STATUS Register 10 Peripheral Status.
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 0 nError Select PError

value=128| value=64| value=32| value=16| value=8 | value=4 value=2 |value=1

Bits 7-3 Not used (always 0).

Bit 2 (nError) If this bit is set (1), nError is asserted low.
Bit 1 (Select) If this bit is set (1), Select is asserted high.
Bit 0 (PError) If this bit is set (1), PError is asserted high.

These bus lines are controlled by the peripheral. This register merely reflects
the state of these bus lines, and therefore does not have a default POR setting.

STATUS Register 11 Communication Status
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 FIFO FIFO nStrobe | Busy nAck
Full Empty
value=128| value=64| value=32| value=16| value=8 |value=4 |value=2 |value=1

Bits 7-5 Not used (always 0).

Bit 4 (FIFO Full If this bit is set (1), the hardware FIFO is full.
Bit 3 (FIFO Empty) If this bit is set (1), the hardware FIFO is empty.
Bit 2 (nStrobe) If this bit is set (1), nAck is asserted low.

Bit 1 (Busy) If this bit is set (1), Busy is asserted high.

Interface Registers 2-57

Bit 0 (nAck)

STATUS Register 12
CONTROL Register 12

If this bit is set (1), nAck is asserted low.

On POR the hardware FIFO (first in/first out register) is empty, the nStrobe
line should not be asserted, and the remaining lines are controlled by the
peripheral. This register reflects the state of the peripheral owned lines, and
therefore these register bits do not have a default POR setting.

Host Line Control
Host Line Control

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 0 nlnit nSelectIn | Wr/nRd
value=128| value=64{ value=32| value=16| value=8 |value=4 |[value=2 |value=1
Bits 7-3 Not used (always 0).

Bit 2 (nlnit) If this bit is set (1), nlnit is asserted low.
Bit 1 (nSelectIn) If this bit is set (1), nSelectIn is asserted low.
Bit 0 (Wr/nRd) If this bit is set (1), Wr/nRd is asserted high.

On POR, nlnit is asserted low, nSelectIn is released high, and Wr/nRd is
released high.

STATUS Register 13
CONTROL Register 13

I/0O Control.
I/0 Control.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit ¢
0 0 0 0 0 0 I/0 Input/
Modifier | nOutput
value=128| value=64] value=32| value=16| value=8 |value=4 |value=2 |value=1
Bits 7-2 Not used (always 0)
2-.58 Interface Registers

Bit 1 (I/O Modifier) If cleared, outbound transfers handshake with both
BUSY and nAck and inbound transfers will use the
FIFO. If set, outbound transfers will handshake
with BUSY only and inbound transfers will only use
one location in the FIFO (FIFO disabled).

Bit 0 (Input/nOutput) If this bit is set to 1, Input is selected. If this bit is
reset (0), output is selected.

On POR bits 1 and 0 are reset to 0.
STATUS Register 14 FIFO
CONTROL Register 14 FIFO

In order to get valid information when reading the hardware FIFO, the I/O
direction must be “input” and the FIFO must not be empty (see the Hardware
I/O Status and Control register and the Communication Status register). If
either of these conditions are not true, reading this register will not cause an
error, but unpredictable results may occur.

For writing, the same rules apply. The I/O direction must be “output” and the
FIFO must not be full. If either of these conditions are not true, writing this
register will not cause an error, but the data written will not be entered into
the hardware FIFO.

Note This register should not be used unless the program has full
control of this select code. For example, if this register is being
used while the driver is attempting a transfer, it is very likely
the transfer will fail.

STATUS Register 20 Peripheral Type

Interface Registers 2-59

Decimal
value Peripheral type
0 No device attached.
1 Output-only device is currently attached.
2 An HP bidirectional device is attached.
10 User-specified no device.
11 User-specified output only device.
12 User-specified HP bidirectional device.

CONTROL Register 20 Peripheral Type

Decimal
value Peripheral type
0 No device attached.
10 User-specified no device.
11 User-specified output only device.
12 User-specified HP bidirectional device.

I/C initialize resets peripheral.
CONTROL Register 22 Peripheral Reset

Writing any non-zero value to this register causes the driver to attempt a
hardware soft reset on the attached peripheral. The driver will assert the nInit
line, wait, release the nlnit line, and wait for Busy to be released.

STATUS Register 23 Interrupt State

2-60 Interface Registers

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

FIFO FIFO 0 Busy nAck nError | Select PError
Full Empty

value=128| value=64| value=32| value=16| value=8 |value=4 |value=2 |]value=1

This register returns the interrupt requests that are currently being made by
the driver.

Bit 7 (FIFO Full) If this bit is set (1), an interrupt will be requested
when the hardware FIFO transitions to full.

Bit 6 (FIFO Empty) If this bit is set (1), an interrupt will be requested
when the hardware FIFO transitions to empty.

Bit 5 (Busy) Not used (always 0).

Bit 4 (Busy) If this bit is set (1), an interrupt will be requested
when the Busy signal is low.

Bit 3 (nAck) If this bit is set (1), an interrupt will be requested
when the nAck signal transitions low.

Bit 2 (nError) If this bit is set (1), an interrupt will be requested
when the nError signal transitions.

Bit 1 (Select) If this bit is set (1), an interrupt will be requested
when the Select signal transitions.

Bit 0 (PError) If this bit is set (1), an interrupt will be requested

when the PError signal transitions.

On POR the driver disables all interrupt conditions, thus this register will
return a 0 on POR.

STATUS Register 24 Driver Options
CONTROL Register 24 Driver Options

Interface Registers 2-61

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 Ignore | Write Wr/nRd | Use nAck
PError | Verify low
value=128| value=64| value=32| value=16| value=8 |value=4 |value=2 |[value=1
Bits 7-4 Not used (always 0).

Bit 3 (Ignore PError)

Bit 2 (Write Verify)

Bit 1 (Wr/nRd low)

Bit 0 (Use nAck)

If this bit is set to 1, the interface will communicate
with the device despite PError assertion.

If this bit is set to 0 (the default), an error occurs
on a communication attempt with PError asserted.

If this bit is set to 1, the interface verifies that the
peripheral receives data on each byte sent.

If this bit is set to 0 (the default), verification does
not occur.

If this bit is set to 1, Wr/nRd is always LOW.

If this bit is set to 0 (the default), Wr/nRd HIGH
on ouput, LOW on input.

If this bit is set to 1, the interface uses nAck to
complete the output handshake.

If this bit is set to 0 (the default), the interface uses
Busy to complete the output handshake.

STATUS Register 26 Driver State
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Disable Inactive | Write Read 0 0 0 Active
by user |ERROR Xfer
value=128| value=64| value=32| value=16| value=8 | value=4 |value=2 |value=1
2-62 Interface Registers

The driver states are:

DISABLED_BY_USER

INACTIVE_ERROR
INACTIVE_WRITE
ACTIVE_WRITE
INACTIVE_READ
ACTIVEREAD

=20h
=21h
=10h
=11h

=80h (hexidecimal)
=40h

If the POR state of the peripheral type is not “user specified no device” (see
register 20) then the POR state for this register is INACTIVE_ERROR.
Otherwise, the POR state is DISABLED_BY_USER.

GPIO STATUS and CONTROL Registers
STATUS Register 0

CONTROL Register 0

Card Identification. Always 3.

Interface Reset. Any non-zero value causes a reset.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Interrupts | An Inter- | Interrupt Burst- |Word- |DMA DMA
Are rupt Is Level Switches Mode |Mode |Chanl |Chan0
Enabled |Currently | (HardwarePriority) [DMA |DMA |Enabled |Enabled

Requested
value=128 | value=64 | value=32 | value=16 |value=8 | value=4|value=2 {value=1

CONTROL Register 1

STATUS Register 2

Set PCTL Line. Any non-zero value sets the line.

Iinterface Registers 2-63

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 0 Hand- Interruptq Transfer
shake Are In
In Enabled | Progress
Process
value=128 | value=64 | value=32 | value=16 | value=8 | value=4 | value=2 | value=1
2-64 Interface Registers

CONTROL Register 2

Peripheral Control

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Not used PSTS Set Set
Error CTL1 CTLO
1=Repor{ 1=Low |1=Low
O=Ignore| 0=High |0=High
value=128 | value=64 | value=32 | value=16 | value=8 | value=4 |value=2]value=1
STATUS Register 3 Data In (16 bits)

CONTROL Register 3

Data Out (16 bits)

STATUS Register 4 Interface Ready. Interface is Ready for a subsequent
data transfer: 1=Ready, 0=Busy.
STATUS Register 5 Peripheral Status
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit1 Bit 0
0 0 0 0 PSTS |EIR STI1 STIO
Ok Line Low| Line Low| Line Low
value=128 | value=64 | value=32 | value=16 | value=8 | value=4 |value=2 |value=1

Interface Registers 2-65

Interrupt Enable Register

(ENABLE INTR)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Not used Not used | Not used | Not used | Not used Not used | Enable | Enable
Interface | EIR
Ready Interrupt
Interrupt
value=128 | value=64 | value=32 | value=16] value=8 | value=4 | value=2 | value=1
STATUS Register 255 0: GPIO interface unlocked and GPIO interface

1:
3:

*BASIC/WS and BASIC/DOS accept this

command but always return the value “3”.

CONTROL Register 255 0

1:
3:

*BASIC/WS and BASIC/DOS accept this

burst I/O disabled”
GPIO interface locked
GPIO interface burst I/O enabled

disables GPIO interface locking and GPIO

interface burst I/0™

enables GPIO interface locking
enables GPIO interface burst I/0

command but always set the value to “3”.

BCD

STATUS and CONTROL Registers

Note

This section does not apply to BASIC/UX.

STATUS Register 0

CONTROL Register 0

2-66

Card Identification = 4.

Reset Interface (if non-zero value sent).

Interface Registers

STATUS Register 1

Interrupt Status

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Interrupts | Interrupt| Hardware Interrupt 0 0 0 0
are Request | Level Switches
enabled
value=128 | value=64 | value=32 | value=16 | value=0 | value=0 | value=0 | value=0
CONTROL Register 1 Reset driver pointer (if non-zero value sent).
STATUS Register 2 Busy Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 0 Hand- Interrupts 0
shake in | Enabled
progress
value=128 | value=64 | value=32 | value=16 | value=8 | value=4 |value=2 |value=1

Bit 0 is 1 when a handshake is currently in progress.

CONTROL Register 2 Request data by Setting CTLA and CTLB (if a

STATUS Register 3

CONTROL Register 3

STATUS Register 4

non-zero value is sent); this operation also clears an
Interrupt Request (clears bit 6 of Status Register

1).

Binary Mode: 1 if the interface is currently
operating in Binary mode, and 0 if in BCD mode.

value sent, and BCD Mode if zero sent.

Switch and Line States

Set Binary Mode: set Binary Mode if non-zero

Interface Registers 2-67

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
OF DATA SGN1 SGN2 OVLD |SGN1 SGN2 OVLD
Switch Switch Is |Switch Is |Switch Is | Switch }Input Input Input
Is ON ON ON ON Is ON Is True |Is True |[Is True
value=128 | value=64 |value=32 |value=16 | value=8 |value=4 |value=2 |value=1
CONTROL Register 4 Data Out Lines

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Set Set DO-6| Set DO-5|Set DO-4 | Set Set Set Set
DO-7 True True True DO-3 DO-2 DO-1 DO-0
True True True True True
value=128 | value=64 | value=32 | value=16 | value=8 |value=4 |value=2 |value=1
2-68 Interface Registers

STATUS Register 5 BCD Digits DI1 and DI2
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DI11-8 DIl-4is |DI1-2is |DI1-1is |DI2-8 DI2-4 DI2-2 DI2-1
18 True True True is is is is
True True True True True
value=128 | value=64 |value=32 | value=16 | value=8 |value=4 |value=2 |value=1
STATUS Register 6 BCD Digits DI3 and DI4
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DI3-8 DI3-4is |DI3-2is |[DI3-1is |DI4-8 DI4-4 DI4-2 DI4-1
is True True True is is is is
True True True True True
value=128 | value=64 |value=32 | value=16 |value=8 |value=4 |value=2 |value=1
STATUS Register 7 BCD Digits DI5 and DI6
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DI5-8 DI5-4is |DI5-2is |[DI5-1is |DI6-8 DI6-4 DI6-2 DI6-1
is True True True is is is is
True True True True True
value=128 | value=64 | value=32 | value=16 |value=8 |value=4 |value=2 |value=1
STATUS Register 8 BCD Digits DI7 and DI8

Interface Registers 2-69

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DI7-8 DI7-4is |DI7-2is |DI7-1is |DI8-8 DI8-4 DI8-2 DI8-1
is True True True is is is is
True True True True True
value=128 | value=64 |value=32 |value=16 |value=8 |value=4 |value=2 {value=1
STATUS Register 9 BCD Digits DI9 and DI10
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DI9-8 DI9-4is |DI9-2is |DI9-1is |DI10-8 |DI10-4 |DI10-2 |DI10-1
is True True True is 1s is is
True True True True True
value=128 | value=64 |value=32 |value=16 | value=8 |value=4 |value=2 |value=1

EPROM Programmer
STATUS and CONTROL Registers

Note

This section does not apply to BASIC/UX.

STATUS Register 0

2-70

ID Register. This register contains a value of
27 (decimal) which is the ID of an EPROM

Programmer card.

Interface Registers

Bit 7 Bit 6

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

value=128 | value=64

value=32 | value=16 | value=8 | value=4 | value=2 | value=1

CONTROL Register 0

STATUS Register 1

CONTROL Register 1

STATUS Register 2

CONTROL Register 2

STATUS Register 3

CONTROL Register 3

Interface Reset. Writing any non-zero value into
this register resets the card; writing a value of zero
causes no action.

Read Program Time. A value of 0 indicates that
the program time is 52.5 milliseconds for each
16-bit word (default); a non-zero value indicates
that the program time is 13.1 milliseconds.

Set Program Time. Writing a value of 0 into this
register sets the program time to 52.5 milliseconds
for each 16-bit word; any non-zero value sets
program time to 13.1 milliseconds.

Read Target Address. This register contains the
offset address (relative to the card’s base address)
at which the next word of data will be read (via
STATUS Register 3) or written (via CONTROL
Register 3). The default address is 0, which is the
address of the first byte on the card.

Set Target Address. Writing to this register sets the
offset address at which the next word of data will
be read (via STATUS Register 3) or written (via
CONTROL Register 3). The target address must
always be an even number.

Read Word at Target Address. This register
contains the 16-bit word at the current target
address.

Write Word at Target Address. Writing a data
word to this register programs a 16-bit word at the
current target address. The target address must be

Interface Registers 2-71

STATUS Register 4

CONTROL Register 4
STATUS Register 5

CONTROL Register 5
STATUS Register 6

CONTROL Register 6

2-72 Interface Registers

set (via CONTROL register 2) before every word is
written. Automatic verification is also performed
after the word is programmed.

Current Memory Card Capacity (in bytes). This
register contains the current capacity of a fully
loaded card in bytes; it also indirectly indicates
which type of EPROM devices are being used

on the card. If 262 144 is returned, then 27128
EPROMs are being used; if 131 072 is returned,
then 2764 devices are being used. A 0 is returned if
the programmer card is not currently connected to
any EPROM memory card.

Undefined.

Number of Contiguous, Erased Bytes. Reading
this register causes the system to begin counting
the number of subsequent bytes, beginning at the
current target address, that are erased (or are
empty sockets). The counting is stopped when a
programmed byte (i.e., one containing at least one
logical 0) is found or when the end of the card is
reached. If the byte at the current target address
is not FF, then a count of 0 is returned. Error 84
is reported if the programmer card is not currently
connected to any EPROM card.

Undefined.

Base Address of EPROM Memory Card. This
register contains the (absolute) base address of the
EPROM memory card to which the programmer
card is currently connected; this base address is also
the absolute address of the first word on the card.
Error 84 is reported if the programmer card is not
currently connected to any EPROM memory card.

Undefined.

Parity, Cache, Float, and Clock 2
STATUS and CONTROL Registers
(Pseudo Select Code 32)

STATUS Register 0

CONTROL Register 0

STATUS Register 1

CONTROL Register 1

STATUS Register 2

CONTROL Register 2

STATUS Register 3

CONTROL Register 3

Parity Checking for Memory Is Currently
Enabled/Disabled

0 = currently disabled; 1 = currently enabled

Enable/Disable Parity Checking for Memory (not
supported on BASIC/UX or BASIC/DOS)

0 = disable; 1 = enable

External (16 Kbyte) Cache Is Currently
Enabled/Disabled

0 = currently disabled; 1 = currently enabled

Enable/Disable External (16 Kbyte) Cache (not
supported on BASIC/UX or BASIC/DOS)

0 = disable; 1 = enable

Floating-Point Math Hardware Is Currently
Enabled/Disabled (HP 98635 Card, MC68881, or
MC68882 Co-Processor)

0 = currently disabled; 1 = currently enabled

Enable/Disable Floating-Point Math (HP 98635
Card, MC68881 or MC68882 Co-Processor)

0 = disable; 1 = enable

MC68020 (256 Byte) or MC68030 Cache Is
Currently Enabled/Disabled

0 = currently disabled; 1 = currently enabled

Enable/Disable MC68020 (256 Byte) or MC68030
Cache (not supported on BASIC/UX)

0 = disable; non-0 = enable

Interface Registers 2-73

Note With computers that have a MC68030 processor, enabling or
disabling this internal cache also enables/disables the external
cache (since they are not independent). To determine which
processor you have, use SYSTEM$(“SYSTEM ID”). A result of
S300:20 indicates you have a 68020, and S300:30 indicates a
68030 processor.

STATUS Register 4 Battery-Backed Clock Type
0 = No battery-backed clock present;
1= Series 200 (98270) battery-backed clock
present;
2 = Series 300 (HP-HIL) battery-backed clock
present
STATUS Register 5 Background Process and Redirection

Bit 0 set: stdin redirected

Bit 1 set: stdout redirected
Bit 2 set: stderr redirected
Bit 3 set: in background mode

SRM Interface STATUS Registers

BASIC/UX supports SRM STATUS Registers 3 and 6. All other

registers either cause an error or return a value, depending on the current
ERRORMODE setting (specified on the rmb command line or in the
configuration file). If ERRORMODE is off, then STATUS Register 0 returns
52, and all other registers return 0.

STATUS Register 0 Card Identification

52 if the Remote Control switch (R) is set to 0
(closed); 180 if switch is set to 1 (open).

STATUS Register 1 Interface Interrupts
1=interrupts enabled; O=interrupts disabled.

STATUS Register 2 Interface Busy

2-74 Interface Registers

STATUS Register 3

STATUS Register 4
STATUS Register 5

STATUS Register 6

STATUS Register 7

STATUS Register 8

STATUS Regtster 11

STATUS Register 12

1=busy; 0=not busy.

Interface Firmware 1D

Always 3 (the firmware ID of the SRM interface).
Not Implemented

Data Availability

0= receiver buffer empty;

1= receiver data available but no control blocks
buffered:

2= receiver control blocks available but no data
buffered;

3= both control blocks and data available.

Node Address of SRM Interface

Node address of the SRM interface installed in this
computer which is set to the specified select code.
The range of node addresses is 0 through 63.

CRC Errors

Total number of cyclic redundancy check (CRC)
errors detected by the interface since powerup or

((ResED).-

Number of Buffer Overflows

Total number of times the receive buffer has

overflowed since powerup or ((ReseT)).

Available space

Amount of available space (number of bytes) in the
transmit-data buffer.

Number of Retries

Number of transmission retries performed since

powerup or ((RESET)).

Interface Registers 2-75

EXT Signal Registers

Note This section applies to HP BASIC/UX only
STATUS Register 0 Last un-caught EXT Signal 0
STATUS Register 1 Status of EXT Signal 1

—1 Not catchable

0 Disabled

1 Disabled
STATUS Register 2 Status of EXT Signal 2
STATUS Register 32 Status of EXT Signal 32

2-76 Interface Registers

Error Messages

1 Missing option or configuration error.

m If a statement requires an option which is not loaded, the option
number or option name (see following table) is given along with
error 1.

m Error 1 without an option number indicates other configuration
€rrors.

These option numbers are displayed when ERROR 1 is reported.

Computer
Museum

Error Messages 3-1

Option (Binary) Numbers

No. Name No. Name
1| BASIC Main 26 | FHPIB
2iGRAPH 27} SERIAL
3|GRAPHX 28 | GPIO
4110 29| BCD
5 BASIC Main 30| DCOMM
6| TRANS 31-40] Reserved
7| MAT 41 | Unavailable
8| PDEV 42| CRTB
9| XREF 43 | CRTA
10| KBD 441 CRTD
11 {CLOCK 45 | Reserved
12{ LEX 46 { COMPLEX
13 | BASIC Main 471 CRTX
14 MS 48 | EDIT
15|SRM 50 | HFS
16 | COMPILER? 51| RMBUX
17| PCIB! 54 LAN
18 | KNB2.0 56 | MCMATH
19| ERR 61 | LANGUAGE
20| DISC 62| FONT
211CS80 63| INPUT
22 |BUBBLE 64 | Reserved
23 | EPROM 65 | Reserved
24 [HP 9885 66 | SCSI
25| HPIB 68| PLLEL

IThis binary is included to support the software for the HP98647 PC
Instruments Interface. It is not supplied with the BASIC 6.0 System.
2The COMPILER for BASIC/WS/DOS is sold as a separate product. A
compiler is included in BASIC/UX.

3-2 Error Messages

10

11

12

Memory overflow. If you get this error while loading a file, the
program is too large for the computer’s memory. If the program
loads, but you get this error when you press RUN, then the
overflow was caused by the variable declarations. Either way, you
need to modify the program or add more read/write memory.

Line not found in current context. Could be a GOTO or GOSUB
that references a non-existent (or deleted) line, or an EDIT
command that refers to a non-existent line label.

Improper RETURN. Executing a RETURN statement without
previously executing an appropriate GOSUB or function call. Also,
a RETURN statement in a user-defined function with no value
specified.

Improper context terminator. You forgot to put an END
statement in the program. Also applies to SUBEND and FNEND.

Improper FOR ... NEXT matching. Executing a NEXT
statement without previously executing the matching FOR
statement. Indicates improper nesting or overlapping of the loops.

Undefined function or subprogram. Attempt to call a SUB or
user-defined function that is not in memory. Look out for program
lines that assumed an optional CALL.

Improper parameter matching. A type mismatch between a pass
parameter and a formal parameter of a subprogram.

Improper number of parameters. Passing either too few or too
many parameters to a subprogram. Applies only to non-optional
parameters.

String type required. Attempting to return a numeric from a
user-defined string function.

Numeric type required. Attempting to return a string from a
user-defined numeric function.

Attempt to redeclare variable. Including the same variable name
twice in declarative statements such as DIM or INTEGER.

Error Messages 3-3

13

14

15

16

17

18

19

20

22

24

25

26

Array dimensions not specified. Using the (*x) symbol after a
variable name when that variable has never been declared as an
array.

OPTION BASE not allowed here. The OPTION BASE statement
must appear before any declarative statements such as DIM or
INTEGER. Only one OPTION BASE statement is allowed in one
context.

Invalid bounds. Attempt to declare an array with more than 32
767 elements or with upper bound less than lower bound.

Improper or inconsistent dimensions. Using the wrong number of
subscripts when referencing an array element.

Subscript out of range. A subscript in an array reference is outside
the current bounds of the array.

String overflow or substring error. String overflow is an attempt
to put too many characters into a string (exceeding dimensioned
length). This can happen in an assignment, an ENTER an
INPUT, or a READ. A substring error is an attempted violation
of the rules for substrings. Watch out for null strings where you
weren’t expecting them.

Improper value or out of range. A value is too large or too small.
Applies to items found in a variety of statements. Often occurs
when the number builder overflows (or underflows) during an 1/0O
operation.

INTEGER overflow. An assignment or result exceeds the range
allowed for INTEGER variables. Must be —32 768 thru 32 767.

REAL overflow. An assignment or result exceeds the range allowed
for REAL variables.

Trig argument too large for accurate evaluation. Out-of-range
argument for a function such as TAN or LDIR.

Magnitude of ASN or ACS argument is greater than 1. Arguments
to these functions must be in the range —1 thru +1.

Zero to non-positive power. Exponentiation error.

3-4 Error Messages

27
28
29

30
31
32

33
34

35

36

38

40

41

Negative base to non-integer power. Exponentiation error.
LOG or LGT of a non-positive number.

Illegal floating point number. Does not occur as a result of any
calculations, but is possible when a FORMAT OFF I/0 operation
fills a REAL variable with something other than a REAL number.

SQR of a negative number.
Division (or MOD) by zero.

String does not represent a valid number. Attempt to use
“non-numeric” characters as an argument for VAL, data for a
READ, or in response to an INPUT statement requesting a
number.

Improper argument for NUM or RPT$. Null string not allowed.

Referenced line not an IMAGE statement. A USING clause
contains a line identifier, and the line referred to is not an IMAGE
statement.

Improper image. See IMAGE or the appropriate keyword in the
BASIC Language Reference.

Out of data in READ. A READ statement is expecting more data
than is available in the referenced DATA statements. Check for
deleted lines, proper OPTION BASE, proper use of RESTORE, or
typing errors.

TAB or TABXY not allowed here. The tab functions are not
allowed in statements that contain a USING clause. TABXY is
allowed only in a PRINT statement.

Improper REN, COPYLINES, or MOVELINES command. Line
numbers must be whole numbers from 1 to 32 766. This may also
result from a COPYLINES or MOVELINES statement whose
destination line numbers lie within the source range.

First line number greater than second line number. Parameters
out of order in a statement like SAVE, LIST, or DEL.

Error Messages 3-5

43

44

46
47

49

51

52

53

54

55

56

Matrix must be square. The MAT functions: IDN, INV, and DET
require the array to have equal numbers of rows and columns.

Result cannot be an operand. Attempt to use a matrix as both
result and argument in a MAT TRN or matrix multiplication.

Attempting a SAVE when there is no program in memory.

COM declarations are inconsistent or incorrect. Includes such
things as mismatched dimensions, unspecified dimensions, and
blank COM occurring for the first time in a subprogram.

Branch destination not found. A statement such as ON ERROR or
ON KEY refers to a line that does not exist. Branch destinations
must be in the same context as the ON ... statement.

File not currently assigned. Attempting an ON/OFF END
statement with an unassigned I/O path name.

Improper mass storage volume specifier. The characters used for a
msvs do not form a valid specifier. This could be a missing colon,
too many parameters, illegal characters, etc.

Improper file name. The file name is too long or has characters
that are not allowed. LIF file names are limited to 10 characters;
SRM file names to 16 characters; HFS file names to 14 characters.
Foreign characters are allowed, but punctuation (in commands,
etc.) is not.

Duplicate file name. The specified file name already exists in
directory. It is illegal to have two files with the same name on one
LIF volume or in the same SRM or HFS directory.

Directory overflow. Although there may be room on the media for
the file, there is no room in the directory for another file name.
LIF Disks initialized by BASIC have room for over 100 entries

in the directory, but other systems may make a directory of a
different size.

File name is undefined. The specified file name does not exist
in the directory. Check the contents of the disk with a CAT
command.

3-6 Error Messages

58

59

60

62

64

65

66

67

68

72

73

76

Improper file type. Many mass storage operations are limited to
certain file types. For example, LOAD is limited to PROG files
and ASSIGN is limited to ASCII, BDAT, and HP-UX files.

End of file or buffer found. For files: No data left when reading
a file, or no space left when writing a file. For buffers: No data
left for an ENTER, or no buffer space left for an OUTPUT. Also,
WORD-mode TRANSFER terminated with odd number of bytes.

End of record found in random mode. Attempt to ENTER or
OUTPUT a field that is larger than a defined record.

Protect code violation. Failure to specify the protect code of a
protected file, or attempting to protect a file of the wrong type.

Mass storage media overflow. The disk is full. (There is not
enough free space for the specified file size, or not enough
contiguous free space on a LIF disk.)

Incorrect data type. The array used in a graphics operation, such
as GLOAD, is the wrong type (INTEGER or REAL).

INITIALIZE failed. Too many bad tracks found. The disk is
defective, damaged, or dirty.

Illegal mass storage parameter. A mass storage statement contains
a parameter that is out of range, such as a negative record number
or an out of range number of records.

Syntax error occurred during GET. One or more lines in the file
could not be stored as valid program lines. The offending lines are
usually listed on the system printer. Also occurs if the first line in
the file does not start with a valid line number.

Disk controller not found or bad controller address. The msus
contains an improper device selector, or no external disk is
connected.

Improper device type in mass storage volume specifier. The msvs
has the correct general form, but the characters used for a device
type are not recognized.

Incorrect unit number in mass storage volume specifier. The msvs
contains a unit number that does not exist on the specified device.

Error Messages 3-7

77

78

79

80

81

82

83

84

85

87
88

89

90

93

100
101

Operation not allowed on open file. The specified file is assigned to
an I/O path name which has not been closed.

Invalid mass storage volume label. Usually indicates that the

media has not been initialized on a compatible system. Could also
be a bad disk.

File open on target device. Attempt to copy an entire volume with
a file open on the destination disk.

Disk changed or not in drive. Either there is no disk in the drive
or the drive door was opened while a file was assigned.

Mass storage hardware failure. Also occurs when the disk is
pinched and not turning. Try reinserting the disk.

Mass storage volume not present. Hardware problem or an
attempt to access a left-hand drive on the Model 226.

Write protected. Attempting to write to a write-protected disk.
This includes many operations such as PURGE, INITIALIZE,
CREATE, SAVE, OUTPUT, etc.

Record not found. Usually indicates that the media has not been
initialized.

Media not initialized. (Usually not produced by the internal
drive.)

Record address error. Usually indicates a problem with the media.

Read data error. The media is physically or magnetically
damaged, and the data cannot be read.

Checkread error. An error was detected when reading the data
just written. The media is probably damaged.

Mass storage system error. Usually a problem with the hardware
or the media.

Incorrect volume code in msvs. The msvs contains a volume
number that does not exist on the specified device.

Numeric IMAGE for string item.
String IMAGE for numeric item.

3-8 Error Messages

102

103

105

106

107

117

118

120

121

122
125
126

127
128
131

Numeric field specifier is too large. Specifying more than 256
characters in a numeric field.

Item has no corresponding IMAGE. The image specifier has no
fields that are used for item processing. Specifiers such as # X /
are not used to process the data for the item list. Item-processing
specifiers include things like K D B A.

Numeric IMAGE field too small. Not enough characters are
specified to represent the number.

IMAGE exponent field too small. Not enough exponent characters
are specified to represent the number.

IMAGE sign specifier missing. Not enough characters are specified
to represent the number. Number would fit except for the minus
sign.

Too many nested structures. The nesting level is too deep for such
structures as FOR, SELECT, IF, LOOP, etc.

Too many structures in context. Refers to such structures as
FOR/NEXT, IF/THEN/ELSE, SELECT/CASE, WHILE, etc.

Not allowed while program running. The program must be
stopped before you can execute this command.

Line not in main program. The run line specified in a LOAD or
GET is not in the main context. 122 Program is not continuable.
The program is in the stopped state, not the paused state. CONT
is allowed only in the paused state.

Program is not continuable.
Program not running.

Quote mark in unquoted string. Quote marks must be used in
pairs.

Statements which affect the knob mode are out of order.
Line too long during GET.

Unrecognized non-ASCII keycode. An output to the keyboard
contained a CHR$(255) followed by an illegal byte.

Emror Messages 3-9

132

133
134
135
136

140

141

142

143

145

146

150
152
153

154
155

Keycode buffer overflow. Trying to send too many characters to
the keyboard buffer with an QUTPUT 2 statement.

DELSUB of non-existent or busy subprogram.
Improper SCRATCH statement.
READIO/WRITEIO to nonexistent memory location.

REAL underflow. The input or result is closer to zero than 10/308
(approximately).

Too many symbols in the program. Symbols are variable names,
I/O path names, COM block names, subprogram names, and line
identifiers.

Variable cannot be allocated. It is already allocated.

Variable not allocated. Attempt to DEALLOCATE a variable that
was not allocated.

Reference to missing OPTIONAL parameter. The subprogram
is trying to use an optional parameter that didn’t have any
value passed to it. Use NPAR to check the number of passed
parameters.

May not build COM at this time. Attempt to add or change
COM when a program is running. For example, a program does a
LOADSUB and the COM in the new subprogram does not match
existing COM.

Duplicate line label in context. There cannot be two lines with the
same line label in one context.

Illegal interface select code or device selector. Value out of range.
Parity error.

Insufficient data for ENTER. A statement terminator was received
before the variable list was satisfied.

String greater than 32 767 bytes in ENTER.

Improper interface register number. Value out of range or
negative.

3-10 Error Messages

156

187

158

159

160

163

164

165

167

168

170

171

Illegal expression type in list. For example, trying to ENTER into
a constant.

No ENTER terminator found. The variable list has been satisfied,
but no statement terminator was received in the next 256
characters. The # specifier allows the statement to terminate when
the last item is satisfied.

Improper image specifier or nesting images more than 8 deep.
The characters used for an image specifier are improper or in an
improper order.

Numeric data not received. When entering characters for a
numeric field, an item terminator was encountered before any
“numeric” characters were received.

Attempt to enter more than 32 767 digits into one number.

Interface not present. The intended interface is not present, set to
a different select code, or is malfunctioning.

Illegal BYTE/WORD operation. Attempt to ASSIGN with the
WORD attribute to a non-word device.

Image specifier greater than dimensioned string length.

Interface status error. Exact meaning depends upon the interface
type. With HP-IB, this can happen when a non-controller
operation by the computer js aborted by the bus.

Device timeout occurred and the ON TIMEOUT branch could not
be taken.

I/O operation not allowed. The I/O statement has the proper
form, but its operation is not defined for the specified device. For
example, using an HP-IB statement on a non-HP-IB interface or
directing a LIST to the keyboard.

Illegal I/O addressing sequence. The secondary addressing in
a device selector is improper or primary address too large for
specified device.

Error Messages 3-11

172

173

174

177

178

180
181
182
183

185
186
187
188
189
190
191
192
193
194
195

Peripheral error. PSTS line is false. If used, this means that the
peripheral device is down. If PSTS is not being used, this error
can be suppressed by using control register 2 of the GPIO.

Active or system controller required. The HP-IB is not active
controller and needs to be for the specified operation.

Nested I/O prohibited. An I/O statement contains a user-defined
function. Both the original statement and the function are trying
to access the same file or device.

Undefined I/O path name. Attempting to use an I/O path name
that is not assigned to a device or file.

Trailing punctuation in ENTER. The trailing comma or semicolon
that is sometimes used at the end of OUTPUT statements is not
allowed at the end of ENTER statements.

HFS disk may be corrupt.
No room in HFS buffers.
Not supported by HFS.

Permission denied. You have insufficient access rights for the
specified operation.

HFS volumes must be mounted.
Cannot open the specified directory.
Cannot link across devices.

Renaming using ., .., or / not allowed.
Too many open files.

File size exceeds the maximum allowed.
Too many links to a file.

Networking error.

Resource deadlock would occur.
Operation would block.

Too many levels of a symbolic link.

3-12 Ermror Messages

196
197
198
199
200
251
252
253
254
255
256
257
258
259
260
290
291
292
293
294
295
296
301
303
304
306

Target device busy.

Incorrect device type in device file.
Invalid msvs mapping.(e.g., not a directory)
Incorrect access to mounted HFS volume.
Cannot access disk (e.g., uninitialized media)
Bad dictionary specification.

Improper dictionary file.

Bad dictionary combination.

Dictionary record overflow.

Bad parameter in CVTS$.

Improper GFONT file.

Bad parameter in EXCHANGE.

Invalid HP-15 code.

Dictionary not specified.

Dictionary already in use.

Invalid ESCAPE character.

Too many matches.

Wildcards not allowed.

Operation failed on some files.

Wildcard matches >1 item.

Improper destination type.

Unable to replace file.

Cannot do while connected.

Not allowed when trace active.

Too many characters without terminator.

Interface card failure. The datacomm card has failed self-test.

Emor Messages 3-13

308

310

313

314

315

316

317

318

319

324

325

326

327

328
330

Dlegal character in data.
Not connected.

USART receive buffer overflow. Overrun error detected. Interface
card is unable to keep up with incoming data rate. Data has been
lost.

Receive buffer overflow. Program is not accepting data fast enough
to keep up with incoming data rate. Data has been lost.

Missing data transmit clock. A transmit timeout has occurred
because a missing data clock prevented the card from transmitting.
The card has disconnected from the line.

CTS false too long. The interface card was unable to transmit for
a predetermined period of time because Clear-To-Send was false on
a half-duplex line. The card has disconnected from the line.

Lost carrier disconnect. Data Set Ready (DSR) or Data Carrier
Detect (if full duplex) went inactive for too long.

No activity disconnect. The card has disconnected from the line
because no data was transmitted or received for a predetermined
length of time.

Connection not established. Data Set Ready or Data Carrier
Detect (if full duplex) did not become active within a
predetermined length of time.

Card trace buffer overflow.

lllegal databits/parity combination. Attempting to program 8
bits-per-character and a parity of “1” or “0”.

Register address out of range. A control or status register access
was attempted to a non-existent register.

Register value out of range. Attempting to place an illegal value in
a control register.

USART Transmit underrun.
User-defined LEXICAL ORDER IS table size exceeds array size.

3-14 Error Messages

331

332

333

334

335

337

338

340

341

342

343

344

Repeated value in pointer. A MAT REORDER vector has
repeated subscripts. This error is not always caught.

Non-existent dimension given. Attempt to specify a non-existent
dimension in a MAT REORDER operation.

Improper subscript in pointer. A MAT REORDER vector specifies
a non-existent subscript.

Pointer size is not equal to the number of records. A MAT
REORDER vector has a different number of elements than the
specified dimension of the array.

Pointer is not a vector. Only single-dimension arrays (vectors) can
be used as the pointer in a MAT REORDER or a MAT SORT
statement.

Substring key is out-of-range. The specified substring range of the
sort key exceeds the dimensioned length of the elements in the
array.

Key subscript out-of-range. Attempt to specify a subscript in a
sort key outside the current bounds of the array.

Mode table too long. User-defined LEXICAL ORDER IS mode
table contains more than 63 entries.

Improper mode indicator. User-defined LEXICAL ORDER IS
table contains an illegal combination of mode type and mode
pointer.

Not a single-dimension integer array. User-defined LEXICAL

ORDER IS mode table must be a single-dimension array of type
INTEGER.

Mode pointer is out of range. User-defined LEXICAL ORDER IS
table has a mode pointer greater than the existing mode table size.

1 for 2 list empty or too long. A user-defined LEXICAL ORDER
IS table contains an entry indicating an improper number of 1 for
2 secondaries.

Error Messages 3-15

345

346

347

349

353
369-398

401

403

427
435
450
451
453
454
455
456

CASE expression type mismatch. The SELECT statement and its
CASE statements must refer to the same general type, numeric or
string.

INDENT parameter out-of-range. The parameters must be in the
range: 0 thru eight characters less than the screen width.

Structures improperly matched. There is not a corresponding
number of structure beginnings and endings. Usually means that
you forgot a statement such as END IF, NEXT, END SELECT,
etc.

CSUB has been modified. A contiguous block of compiled
subroutines has been modified since it was loaded. A single
module that shows as multiple CSUB statements has been altered
because program lines were inserted or deleted.

Data link failure.

Errors in this range are reported if a run-time Pascal error occurs
in a CSUB. To determine the Pascal error number, subtract 400
from the BASIC error number. Information on the Pascal error
can be found in the Pascal Workstation System manual.

Bad system function argument. An invalid argument was given to
a time, date, base conversion, or SYSTEMS$ function.

Copy failed; program modification incomplete. An error occurred
during a COPYLINES or MOVELINES resulting in an incomplete
operation. (Some lines may not have been copied or moved.)

Priority may not be lowered.

EXEC not allowed on this Binary.

Volume not found—SRM error.

Volume labels do not match—SRM error.
File in use—SRM or HF'S error.

Directory formats do not match—SRM error.
Possibly corrupt file—SRM error.

Unsupported directory operation—SRM error.

3-16 Error Messages

457
458
459
460
461
462
465
466
471
481
482

483
484
485
488

511
516
517
519
520
521
522
523
526

Passwords not supported—SRM error.
Unsupported directory format—SRM error.
Specified file is not a directory—SRM or HFS error.
Directory not empty—SRM or HFS error.
Duplicate passwords not allowed.

Invalid password—SRM error.

Invalid rename or link across volumes.

Duplicate volume entries.

TRANSFER not supported by the interface.

File locked or open exclusively—SRM error.

Cannot move a directory with a RENAME operation—SRM or
HF'S error.

System down—SRM error.
Password not found—SRM error.
Invalid volume copy—SRM or HFS error.

DMA hardware required. HP 9885 disk drive requires a DMA card
or is malfunctioning.

The result array in a MAT INV must be of type REAL.
Search key: improper dimensions.

Search start out of range.

HIL SEND Cmd arg out of range.

Cmd not supported on active dev.

Device sent Register I/0 Error.

Device not present.

Statement requires HIL interface.

Source: improper dimensions.

Error Messages 3-17

527
528
531
536
537
538
540
541

543
544
600

601

602

603

604

605

Source subscript out of range.
Source: upper bound < lower bound.
Source/destination mismatch.

Dest.: improper dimensions.

Dest. subscript out of range.

Dest. upper bound < lower bound.
HIL bus error.

Keyboard interrupts disabled. Operation requires bit 0 of KBD
STATUS/CONTROL register 7 to be 0.

Redim error: improper dimensions.
Redim not allowed on source.

Attribute cannot be modified. The WORD/BYTE mode cannot
be changed after assigning the I/O path name.

Improper CONVERT lifetime. When the CONVERT attribute
is included in the assignment of an I/O path name, the name of
a string variable containing the conversion is also specified. The
conversion string must exist as long as the I/O path name is valid.

Improper BUFFER lifetime. The variable designated as a buffer
during an I/O path name assignment must exist as long as the I/O
path name is valid.

Variable was not declared as a BUFFER. Attempt to assign
a variable as a buffer without first declaring the variable as a
BUFFER.

Bad source or destination for a TRANSFER statement. Transfers
are not allowed to the CRT, keyboard, or tape backup on CS80

drives. Buffer to buffer or device to device transfers are not
allowed.

BDAT or HP-UX file type required. Only a BDAT or HP-UX file
can be used in a TRANSFER operation.

3-18 Error Messages

606

607

609

611
612

613
620
623
624
625
700

702
704

705
706

708
713

Improper TRANSFER parameters. Conflicting or invalid
TRANSFER parameters were specified, such as RECORDS
without and EOR clause, or DELIM with an outbound
TRANSFER.

Inconsistent attributes. Such as CONVERT or PARITY with
FORMAT OFF.

IVAL or DVAL result too large. Attempt to convert a binary,
octal, decimal, or hexadecimal string into a value outside the range
of the function.

Prema.}ure TRANSFER termination.

BUFFER pointers in use. Attempt to change one or more buffer
pointers while a TRANSFER is in progress.

Cannot store a ROM system.
COMPLEX value not allowed.

ATN is undefined at +i and -i.
ACSH/ATNH arg out of range.

Bad SEARCH condition on COMPLEX.

Improper plotter specifier. The characters used as a plotter
specifier are not recognized. May be misspelled or contain illegal
characters.

CRT graphics hardware missing. Hardware problem.

Upper bound not greater than lower bound. Applies to P2<=P1
or VIEWPORT upper bound and CLIP limits. 705 VIEWPORT
or CLIP beyond hard clip limits.

VIEWPORT or CLIP off surface.

Too many polygon edges. In BASIC/UX, the ability to fill
polygons is dependent on the number of edges (different for each
display type).

Device not initialized.

Request not supported by dev.

Error Messages 3-19

715 Graphics not available

730 Internal error occurred in Starbase library call

733 GESCAPE opcode not recognized.

810 Feature not supported on system. The value of system depends on
the version of BASIC being used.

811 Memory allocation failed.

812 Out of semaphores.

813 Semaphores deallocation error.

814 Cannot access rmb lockfile.

815 Cannot access HP-UX time.

816 Invalid opcode in program.

817 Cannot spawn new process.

818 Kernel error setting signals.

825 Default EXT SIGNAL received.

826 EXECUTE process status failure.

827 String too long for EXECUTE.

830 Cannot open the pipe.

831 Write to a broken pipe.

832 Cannot seek on the pipe.

833 Wrong directory data transfer in pipe.

840 HIL mask error.

841 CSUB run-time error.

842 CSUB relocation error.

843 Invalid CSUB version number.

844 Invalid CSUB binary format.

850 Iomap of device failed.

3-20 Error Messages

851
852
862
863
864
865
866
867
868
880
881
882
883
897
898
899
900
901
902

903

904
905

Iounmap of device failed.

Iomap device file size wrong.
Window parameter out of range.
Not in a window system.

Window specifier out of range.
Window already exists.

Window does not exist.

Cannot create window.

Internal error occurred in X Window System library call
Current CRT is not bitmapped.
Array is not INTEGER type.
CHRX not matched by array dim.
CHRY not matched by array dim.

Array is not 1-dimensional.

Computer
Miseum

Typing aid is too long.

Key number out of range.
Undefined typing aid key.
Typing aid memory overflow.

Must delete entire context. Attempt to delete a SUB or DEF FN
statement without deleting its entire context. Easiest way to delete
is with DELSUB.

No room to renumber. While EDIT mode was renumbering during
an insert, all available line numbers were used between insert
location and end of program.

Null FIND or CHANGE string.

CHANGE would produce a line too long for the system. Maximum
line length is two lines on the CRT.

Error Messages 3-21

906

909

910

911
920
921
922
923
924
928
926
927
928
929
930
931
932

935

SUB or DEF FN not allowed here. Attempt to insert a SUB or
DEF FN statement into the middle of a context. Subprograms
must be appended at the end.

May not replace SUB or DEF FN. Similar to deleting a SUB or
DEF FN. Attempted to insert lines: between a CSUB statement
and the following SUB, DEF FN, or CSUB statement; or after a
final CSUB statement at the end of the program.

Identifier not found in this context. The keyboard-specified
variable does not already exist in the program. Variables cannot
be created from the keyboard; they must be created by running a
program.

Improper 1/0 list.

Numeric constant not allowed.
Numeric identifier not allowed.
Numeric array element not allowed.
Numeric expression not allowed.
Quoted string not allowed.
String identifier not allowed.
String array element not allowed.
Substring not allowed.

String expression not allowed.
I/O path name not allowed.
Numeric array not allowed.
String array not allowed.

Excess keys specified. A sort key was specified following a key
which specified the entire record.

Identifier is too long: 15 characters maximum.

3-22 Error Messages

936

937
939

940
942

943

946

947

948

949

950
951

954
955
956
961

Unrecognized character. Attempt to store a program line
containing an improper name or illegal character.

Invalid OPTION BASE. Only 0 and 1 are allowed.

OPTIONAL appears twice. A parameter list may have only one
OPTIONAL keyword. All parameters listed before it are required,
all listed after it are optional. 940 Duplicate formal parameter
name.

Duplicate formal param name.

Invalid I/O path name. The characters after the @ are not a valid
name. Names must start with a letter.

Invalid function name. The characters after the FN are not a valid
name. Names must start with a letter.

Dimensions are inconsistent with previous declaration. The
references to an array contain a different number of subscripts at
different places in the program.

Invalid array bounds. Value out of range, or more than 32 767
elements specified.

Multiple assignment prohibited. You cannot assign the same value
to multiple variables by stating X=Y=Z=0. A separate assignment
must be made for each variable.

Syntax error at cursor. The statement you typed contains
elements that don’t belong together, are in the wrong order, or are
misspelled.

Must be a positive integer.

Incomplete statement. This keyword must be followed by other
items to make a valid statement.

Improper default specification.
No range given.
Source/destination mismatch.

CASE expression type mismatch. The CASE line contains items
that are not the same general type, numeric or string.

Error Messages 3-23

962
963
o977

980

982
983

985
987

Programmable only: cannot be executed from the keyboard.
Command only: cannot be stored as a program line.

Statement is too complex. Contains too many operators and
functions. Break the expression down so that it is performed by
two or more program lines.

Too many symbols in this context. Symbols include variable
names, I/O path names, COM block names, subprogram names,
and line identifiers.

Too many subscripts: maximum of six dimensions allowed.

Wrong type or number of parameters. An improper parameter list
for a machine-resident function.

Invalid quoted string.

Invalid line number: must be a whole number 1 thru 32 766.

3-24 Error Messages

Useful Tables

Interface Select Codes

Internal Select Codes

Select Code Device or Interface
1 Display (alpha)
2 Keyboard
3 Display (graphics)
4 Internal floppy-disk drive
5 Optional powerfail protection
6 or 132 Display (bit-mapped graphics)
7 HP-IB
9 RS-232
14 or 28 SCSI
21 LAN
23 HP Parallel interface (Centronics
compatible)

Useful Tables 4-1

Factory Presets for External Interfaces

Select
Code Device or Interface
8 HP-IB
9 RS-232
10 |(not used)
11 BCD
12 GPIO
14 “High-Speed” HP-1B
14 |SCSI

20 |Data Communications

21 |Shared Resource Management
21 |LAN

27 |EPROM Programmer

28 [RGB Color Video

30 [Bubble Memory

32 |Pseudo Select Code (Parity,
Cache, Floating-point math
hardware, and battery-backed
clock)

33 |EXT SIGNAL Registers
(BASIC/UX)

4-2 Useful Tables

Display Enhancement Characters

BASIC uses certain characters as display enhancement characters. These
characters do not occupy any space on the screen, nor do they produce
any immediately visible effect. Display enhancement characters change the

appearance of characters that follow.

Globalized BASIC defines both one- and two-byte display enhancement
characters. Refer to the globalization chapters of HP BASIC 6.2 Porting and
Globalization for more information about two-byte characters.

PRINT CHR$(132);A$;CHR$(128)
PRINT CHR$(255)&CHR$ (132) ;A$; CHR$(255)&CHR$(128) underline on/off

underline on/off

Monochrome Display Enhancements

Character

Resulting Enhancement

One-byte

Two-byte

CHR$(128)

CHR$(255)&CHR$ (128)

All enhancements off

CHR$(129)

CHR$(255)&CHR$ (129)

Inverse video on

CHR$(130)

CHR$(255) &CHR$ (130)

Blinking on*

CHR$(131)

CHR$(255)&CHR$ (131)

Inverse video and blinking on

CHR$(132)

CHR$ (255) &CHR$(132)

Underline on

CHR$(133)

CHR$(255) &CHR$(133)

Underline and inverse video on

CHR$(134)

CHR$(255) &CHR$(134)

Underline and blinking on”

CHR$(135)

CHR$ (255)&CHR$(135)

Underline, inverse video, and blinking on*

*Blinking not available on bit-mapped alpha displays.

Useful Tables 4-3

Color Display Enhancements

Character Resulting Enhancement
One-byte | Two-byte Model 236C | Bit-mapped
CHR$(136) [CHR$(255)&CHR$(136) | White Pen 1
CHR$(137) | CHR$ (255)&CHR$(137) | Red Pen 2
CHR$(138) | CHR$(255)&CHR$(138) | Yellow Pen 3
CHR$(139) | CHR$(255)&CHR$(139) | Green Pen 4
CHR$(140) | CHR$(255)&CHR$(140) | Cyan Pen 5
CHR$(141) | CHR$(255)&CHR$(141) | Blue Pen 6
CHR$(142) | CHR$(255)&CHR$(142) | Magenta Pen 7
CHR$(143) | CHR$(255)&CHR$(143) | Black Pen 8

CRT CONTROL registers 5 and 15 through 17 also provide a method of
changing the alpha color.

PRINTing CHR$ (z), where 136<z<143, will provide the same colors as on the
Model 236C as long as the color map contains default values and the alpha
write-enable mask includes planes 0 through 2. A user-defined color map which
changes the values of pens 0 to 7 will change the meaning of CHR$(z).

4-4 Useful Tables

U.S. ASCII Character Codes

ASCH EQUIVALENT FORMS HP-1B ascil EQUIVALENT FORMS HPB
Char.| Dec Binary Oct | Hex Char.| Dec Binary Oct | Hex
NuL | o | oooo0000 | ooo | o0 space| 32 | 00100000 | 040 | 20 | LA
SOH | 1 |oo0000001 | 001 | o1 | GTL ' 33 | ooto0001 | 041 { 21 | LAt
sTx | 2 | ooooooto | 002 | 02 ” 34 [00100010 | 042 | 22 | La2
ETX [3 | o0oooootr | ooa | o3 * 35 | 00100011 | 043 | 23 | LA3
EOT | 4 | ooooot00{ oos | 04 | sDC $ 36 | 00100100 | 044 | 24 | LA4
ENQ| 5 | oooootot | oos | o5 | PPC % | 37 |oo0100101 | 045 | 25 | LAs
ACK | 6 | 00000110 | oos | 06 & 38 | 00100110 | 046 | 26 | LA6
BEL | 7 |oooo00111| 007 | o7 ' 39 { 00100111 { 047 | 27 | LA7
8BS 8 | 00001000 | 010 { 08 | GET (40 [oor01000| 050 | 28 | Lae
HT s [ooootoo1 | 011 | o8 [TCT) 41 [oor01001 | 051 | 29 | La9
LtF | 1o | oooot010| 012 | oA * 42 100101010 | 052 | 2a | LAt0
vr | 11 |oooorott | o1a § o8 + 43] 00701017 | 053 | 28 | LAt1
FF | 12 | oooo1100 | 014 | oC y 44 | ooto1100 | 054 | 2¢ | Lar2
ch | 13 |oooot101 | o15 | op - 45 | 00101101 055 | 20 | LAta
sO | 14 }oo001110] 018 | OE . 46 | 00101110 | 056 | 2E | LA14
sI 15 | oooot111 | o17 | of / 47 {oo101111] 057 | 2F | Lats
DLE [16 | 00010000 | 020 | toO [48 | 00110000 | 060 | 30 | LA1E
DCt] 7 |oootooor | 021 | 11 | Lo 1 49 [oot10001 | 061 | 31 |Lar7
DC2 | 1e |ooo10010 [022 | 12 2 50 |ooti0010 | 062 { 32 | Late
DC3 | 19 | 00010011 | 023 | 13 3 51 { 00110011 | 063 | 33 | LAt
DC4 | 20 | 00010100 | 024 | 14 | DOL 4 52 | 00110100 | 064 { 34 | LA20
Nak | 21 | ooot0101 | 025 | 15 | PPU 5 53 | 00110101 | 065 | 35 | LAz
SYNC| 22 |ooot0110 | 026 | 16 6 54 |oo110110 | 066 | 38 | LA22
ETB | 23 { 00010111 027 | 17 7 55 | oor1o111 | 067 | 37 | LA23
CAN | 24 |oo0o11000 | 030 | 18 | sPE [s6 | 00111000 [070 | 38 | LA24
EM | 25 | 00011001 | 031 | 19 | sPD 9 57 | oet1100v | 071 | as | La2s
suB | 26 |00011010f 032 | 1A : 56 |oot11010 | 072 | 3a | La2e
ESC| 27 |ooot1011 | 033 | 1B B 59 | oert1o11| 073 | as | La27
Fs | 28 |ooo11100| 034 | 1C < 60 | 00111100 | 074 | ac | LAze
Gs | 29 | 00011101 | 03s | 1D = 61 | oot11101 | 075 | 3D | LA2s
g As | 30 [ooot1110| 036 | 1E > 62 |oo111110{ 076 | 3E | LA30
;E: us | 31 {ooori11 | oar | e ? 63 |ooti1a11 | 077 { aF | UNL

Useful Tables 4-5

U.S. ASCIHl Character Codes

ASCil EQUIVALENT FQRMS HP-1B ASCH EQUIVALENT FORMS HP-IB

Char.| Dec Binary Oct | Hex Char.| Dec Binary Oct | Hex
@ 64 | 01000000 | 100 40 TAO N 96 | 01100000 | 140 60 SCo
A 65 01000001 101 41 TAt a 97 01100001 { 141 61 sc1
B 66 01000010 { 102 a2 TA2 b 98 01100010 [142 62 8C2
[67 01000011 103 43 TA3 c 99 01100011 143 €3 sC3
D 68 | 01000100 | 104 44 TA4 d 100 | 01100100 | 144 64 SC4
€ 69 01000101 105 45 TAS e 101 | 01100101 145 65 SC5
F 70 01000110 | 106 46 TA6 1 102 | 01100110 | 146 66 SCé
G kAl 01000111 107 47 TA7? g 103 | 01100111 | 147 67 sC7
H 72 01001000 { 110 48 TAB h 104 | 01101000 | 150 68 SCs
I n 01001001 11 49 TA9 P 105 | 01101001 151 69 SCy
J 74 01001010 | 112 4A TAI0 i 106 { 01101010 | 152 6A scC10
K 75 01001011 | 113 4B TAM 3 107 | 01101011 153 6B sCn1
L 76 01001100 | 114 4C TA12 I 108 | 01101100 | 154 6C sC12
M 77 01001101 1s 40 TA13 m 109 | 01101101 155 60 sC13
N 78 01001110 | t16 4E TA14 n 110 | 01101110 | 156 6E SC14
o 79 01001111 17 4F TA1S [111 | 01101111 | 157 6F sCi15
P 80 01010000 | 120 50 TA16 -] 112 | 01110000 | 160 70 sC16
Q 81 01010001 121 51 TA17 q 113 | 01110001 161 kAl 8C17
R 82 [01010010 | 122 52 TA18 r 114 | 01110010 | 162 72 SC18
S 83 01010011 123 53 TA19 s 115 | 01110011 163 73 sC19
T 84 01010100 | 124 54 TA20 t 116 | 01110100 | 164 74 §C20
U 85 01010101 125 55 TA21 v 117 § 01110101 165 75 sc21
v 86 01010110 | 126 56 TA22 v 118] 01110110 | 166 76 sc22
w 87 01010111 127 57 TA23 w 119 { 01110111 167 77 sca3
X 88 01011000 | 130 58 TA24 x 120 | 01111000 | 170 78 5C24
Y 89 01011001 131 59 TA2S ¥ 121 | 01111001 7 79 $C25
Z 90 01011010 § 132 5A TA26 z 122 | 01111010 | 172 7A $C26
[91 | 01011011 | 133 | 5B | TA27 { 123 | 01111011 | 173 | 7B | sc27
AN 92 01011100 | 134 5C TA28 | 124 | 01111100 | 174 7Cc scCae
] 93 101011107 | 135 | 5D | Ta29 } 125 [01111101 | 175 | 7D | sC29
~ 94 | 01014110 | 136 SE TA30 - 126 | 01111110 | 176 7E SC30
_ 95 01011111 | 137 SF UNT DEL 127 | 011111y 177 7F SC

4-6 Useful Tables

U.S./European Display Characters

These characters can be displayed on the alpha screens of Models 216, 220 (with a 98204A
display), 226, and 236 Computers.

Ascu| EQUIVALENT FORMS ascn| EQUIVALENT FORMS asci | EQUIVALENT FORMS asci| EQUIVALENT FORMS
Char. Dec Binary Char. Dec Binary Char. Dec Binary Char. Dec Binary
H 0 00000000 a2 00100000 = 64 01000000 96 01100000
K 1 00000001 ! a3 00100001 A 65 01000001 a 97 01100001
B 2 00000010 : 34 00100010 E 66 01000010 b 98 01100010
E 3 00000011 # 35 00100011 C 67 01000011 [99 01100011
E 4 00000100 ¥ a6 00100100 I 68 01000100 =} 100 01100100
& 5 00000101 5 kg 00100101 E 69 01000101 [101 01100101
? 6 00000110 38 00100110 F 70 01000110 f 102 01100110
7 00000111 39 00100111 s 71 01000111 [a] 103 01100111
E 8 00001000 ! 40 00101000 H 72 01001000 e 104 01101000
s 9 00001001 ! 41 00101001 I 73 01001001 1 105 01101001
lr 10 00001010 * 42 00101010 I 74 01001010 i 106 01101010
B 1 00001011 + 4 00101011 k 75 01001011 k 107 01101011
e 12 00001100 . 44 00101100 L 76 01001100 1 108 01101100
& 13 00001101 - 45 00101101 il 77 01001101 fit 109 01101101
Ed 4 00001110 B 46 00101110 H 78 01001110 i 110 01101110
B 15 00001111 47 00101111 i 79 01001111 i 1 01101111
g 16 00010000 o 48 00110000 F 80 01010000 px 12 01110000
4 17 00010001 i 49 00110001 i 81 01010001 q 13 01110001
b 18 00010010 s 50 00110010 F: 82 01010010 = 114 01110010
o 19 00010011 g 51 00110011 = 83 01010011 = 15 01110011
R 20 00010100 4 52 00110100 T 84 01010100 1 116 01110100
’i 21 0001010t & 53 00110101 i 85 01010101 & 17 01110101
& 22 00010110 3 54 00110110 W 86 01010110 L 18 01110110
L: 23 00010111 v 55 00110111 il 87 01010111 il 119 01110111
W 24 00011000 56 00111000 " 88 01011000 -- 120 01111000
ke 25 00011001 El 57 00111001 ki 89 01011001 L 121 01111001
k4 2 00011010 : 58 00111010 Z 90 01011010 z 122 01111010
E 27 0001101t H 59 00111011 L 91 01011011 i 123 01111011
F2 28 00011100 60 00111100 . 92 01011100 , 124 01111100
‘l‘ 29 00011101 = 61 00111101 1 93 01011101 ; 1285 01111101
% " 30 00011110 E 62 00t11110 - 94 01011110 126 01111110
oy
g % 31 00011111 i 63 00111111 — 95 01011111 127 0111119

Useful Tables 4-7

U.S./European Display Characters

These characters can be displayed on the alpha screens of Models 216, 220 (with a 98204A
display), 226, and 236 Computers.

asci| EQUIVALENT FORMS asci| EQUIVALENT FORNS ascn| EOVIVALENT FORMS Asci | EQUIVALENT FORMS
Char. Dec Binary Char. Dec Binary Char, Dec Binary Char. Dec Binary
Y 128 10000000 e 160 10100000 3 192 11000000 A 224 11100000
e 129 10000001 A 161 10100001 £ 193 11000001 A 225 11100001
Y 130 10000010 H 162 10100010] 194 11000010 a 226 11100010
3 131 10000011 E 163 10100011 4 195 11000011 o 227 11100011
4 132 10000100 E 164 10100100 B 196 11000100 d 228 11100100
4 2 133 10000101 E 165 10100101 E 197 11000101 I 220 11100101
b 134 10000110 I 166 10100110 & 198 11000110 I 230 11100110
t 135 10000111 1 167 10100111 i 199 11000111 i 231 11100111
b 136 10001000 168 10101000 Y 200 11001000 u 232 11101000
3 137 10001001 169 10101001 = 201 11001001 ul 233 11101001
e 138 10001010 170 10101010 . 202 11001010 o 234 11101010
. 139 10001011 171 10101011 [203 11001011 = 235 11101011
t 140 10001100 172 10101100 2 204 11001100 E 236 11101100
ke 141 10001101 d 173 10101101 £ 205 11001101 u 237 11101101
}F 142 10001110 i} 174 10101110 p 206 11001110 I\' 238 11107110
'F 143 10001111 £ 175 10101111 4 207 71001111 u 239 11101111
L2 144 | 10010000 - 176 | 10110000 A 208 | 11010000 W 240 | 11110000
2 145 10010001 N 177 10110001 i 209 11010001 kS 241 11110001
Y 146 10010010 178 10110010 ol 210 11010010 e 242 11110010
Y 147 10010011 kS 179 10110011 i3 211 11010071 * 243 11110011
b 148 10010100 [180 10110100 a 212 11010100 e 244 11110100
b 149 10010101 [181 10110101 i 213 11010101 e 245 11110101
b 150 10010110 H 182 10110110 @ 214 11010110 e 246 11110110
Y 151 10010111 1] 183 10110111 i 215 11010111 Y 247 11110111
b 152 10011000 i 184 10111000 H 216 11011000 Y 248 11111000
e 153 10011001 L 185 10141001 i 217 11011001 e 249 11111001
b 154 10011010 ja] 186 10111010] 218 11011010 e 250 11111010
e 155 10011011 £ 167 10111011] 219 11011011 e 251 11111011
i3 156 10011100 ke 188 10111100 3 220 11011100 e 252 11111100
r 157 10011101 S 189 10111101 1 221 11011101 h 253 11111101
fr 158 10011110 fe 190 10111110 i 222 11011110 2 254 11111110
Y 159 10011111 % 191 10111111 n 223 11011111] 255 [REREEET]

Note 1: Characters 128 thru 135 produce highlights on machines unlh monochwme hlghhgh(s when used |n PRINT and DISP statements.
Note 2: Characters 136 thru 143 change the color of text printed or displ capable of text in color.
Note 3: Characters 144 thru 159 are ignored by PRINT and DISP statements.

4-8 Useful Tables

U.S./European Display Characters

These characters can be displayed on the screen of Series 300 computers (except with
a 98546 Display Compatibility Interface or 98700 Display Controller; see the preceding

table).

ASCII

Num

WONOTAP»WNPELO

Chr .

MC m® @ T M i M 2N @M M xZ 00 (O P 0 0 8 ol 20 4 4€ nT 4T @ O P o N xM 8 L cZ

Nam.

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

| + X —rm - R

W ONAOATANBWNEFRON -

NV B A . e

Num.

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
924
95

Chr.

P /N E<SCHNTDOYOZICRXRUHIQWEHOOQODPD

Num. Chr.

’

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

B - ~ANKXESCCSC AU QUTOSIFXLU-ITOMRDAOQOT®

Useful Tables 4-9

U.S./European Display Characters

These characters can be displayed on the alpha screen of Series 200 Model 217, 220 (with
98204B display), and 237 computers, and on Series 300 computers using a 98546 Display
Compatibility Interface or 98700 Display Controller.

ASCII

Num. Chr. Num, Chr, Nam. Chr. Num. Chr.
128 & 160 192 a 224 A
129 Y 161 A 193 é 225 X
130 % 162 A 194 o] 226 a
131 5 163 E 195 Q 227 D
132 g 164 E 196 a 228 o}
133 L 165 E 197 é 229 f
134 % 166 " o 198 6 230 5
135 L 167 i 199 a 231 (]
136 % 168 ’ 200 a 232 (w]
137 i 169) 201] 233 O
138 't 170 - 202 (o) 234 o}
139 g 171 ’ 203 u 235 3
140 & 172 ~ 204 a 236 8
141 e 173 U 205 é 237 U
142 " 174 0 206 6 238 b4
143 & 175 £ 207 a 239 y
144 % 176 - 208 A 240 P
145 9 177 5 209 i 241 b
146 g 178 5% 210 /)] 242 5
147 9 179 ’ 211 A 243 5
148 % 180 ¢ 212 a 244 P
149 kS 181 ¢ 213 i 245 5
150 9 182 N 214 o 246 -
151 g 183 1] 215 & 247 %
152 % 184 i 216 A 248 ¥
153 £ 185 é 217 1 249 a
154 9 186 o] 218 o 250 2o
155 9 187 £ 219 8] 251 «
156 2 188 ¥ 220 E 252 |
157 9 189 § 221 i 253 »
158 2 190 f 222 B 254 t
159 2 191 ¢ 223 6 255 Kl

4-10 Useful Tables

U.S./European Display Characters

These characters can be displayed on the alpha screen of Series 200 Model 217, 220 (with
98204B display), and 237 computers, and on Series 300 computers using a 98546 Display

Compatibility Interface or 98700 Display Controller.
ASCII

Num

WONOTABWNDEFEO

Chr

S a8 i0® WM M il IR 2N @M A XZ A0 (O 0 0 0 Mol 30 M < 4T 0@ £ xD oM M xM A TN o2

Num.

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

+ e~ -

| -

VCONADTNPWNDEFE O\ -

NV 0 A we e

Num.

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

P/ PNRXESCCHODODUOZICrRUuNTZIQUIMOUQE»® F

Num. Chr.

4

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

B ~— AN XECCTNTITOTVODI I HXLHTARMDODAANT D

Useful Tables 4-11

U.S./European Display Characters

These characters can be displayed on the screen of Series 300 computers (except with
a 98546 Display Compatibility Interface or 98700 Display Controller; see the preceding
table).

ASCII
Num. Chr. Nam, Chr. Num. Chr. Num. Chr.
128 § 160 192 a 224 A
129 |} 161 A 193 & 225 X
130 & 162 & 194 & 226 4
131 % 163 195 @ 227 P
132} 164 ¢ 196 & 228 d
133} 165 E 197 ¢ 229 ¢
134 & 166 ¢t 198 6 230 i
135 | 167 i 199 4 231 6
136 % 168 - 200 a 232 o
137 % 169 201 @ 233 &
138 % 170 ° 202 234 3
139 § 171 203 0 235 &
140 ¢ 172~ 204 a 236 &
141 5 173 0 205 é 237 U
142 % 174 © 206 6 238 v
143 & 175 £ 207 a 239 §
144 3 176 208 A 200 P
145 9 177 v 209 1 241 P
146 2 178 vy 210 O 242 -
147 % 179 211 A 243 ¥
148 3 180 ¢ 212 a 244 1
149 3 181 ¢ 213 ¢ 245
150 g 182 R 214 o 246 -
151 ¢ 183 & 215 = 247 %
152 % 184 216 A 248 3
153 % 185 ¢ 217 1 249 2
154 3 186 & 218 o 250 ¢
155 9 187 ¢ 219 © 251 «
156 & 188 ¥ 220 E 252 ®
157 9 189 § 221 i 253 »
158 2 190 f 222 B 254 &
159 2 191 ¢ 223 6 255 [3

4-12 Useful Tables

Katakana Display Characters

These characters can be displayed on the screen of Model 216, 217, 220, 226, and 236
computers, and on Series 300 computers using a 98546 Display Compatibility Interface.

28109-11-01S

EQUIVALENT FORMS

EQUIVALENT FORMS

EQUIVALENT FORMS

EQUIVALENT FORMS

AsCH AscCll Ascn ASCH
Char. Dec Blnary Cher. Dec Binary Char. Dec Binary Char. Dec Blnary

b [00000000 32 00100000 @ 64 01000000 96 01100000
% 1 00000001 i 13 00100001 65 01000001 2 97 01100001
i 2 00000010 34 00100010 E 66 01000010 u 98 01100010
E 3 00000011 & 35 00100011 = 67 01000011 99 01100011
g 4 00000100 ¥ 36 00100100 It 68 01000100 100 01100100
£y 5 00000101 = 37 00100101 & 69 01000101 = 101 01100101
e 6 00000110 38 00100110 F 70 01000110 i 102 01100110

7 00000111 39 00100111 i 71 01000111 3 103 01100111
E [00001000 p 40 00101000 H 72 01001000 4 104 01101000
ks 9 00001001 41 00101001 I 73 0100100t i 105 01101001
r 10 00001010 + 42 00101010 74 01001010 106 01101010
T " 00001011 + 43 00101011 75 01001011 107 01101011
fr 12 00001100 . 44 00101100 L. 76 01001100 108 01101100
® 13 00001101 - a5 00101101 77 01001101 hi 109 01101101
& 14 00001110 a6 00101110 78 01001110 110 a1101110
By 15 00001111 47 00101111 79 01001111 1 a1101111
L 16 00010000 48 00110000 F 80 01010000 & 12 01110000
9 7 00010001 a9 00110001 81 01010001 i3 13 01110007
e 18 00010010 = 50 00110010 = 82 01010010 14 01110010
= 19 00010011 51 00110011 83 01010011 |3 115 01110011
“ 20 00010100 4 52 00110100 T 84 01010100 t 116 01110100
i 21 00010101 53 00110101 i 85 01010101 i "7 01110101
& 22 00010110 & 54 00110110 86 01010110 118 or110110
B 23 00010111 7 55 00110711 f 87 01010111 19 01110111
i 24 00011000 56 00111000 88 01011000 120 01111000
£ 25 00011001 57 00111001 89 01011001 121 01111001
E: 26 00011010 H 58 00111010 Z 90 01011010 = 122 01111010
ke 27 00011011 H 59 0011101 91 Q101101 123 LARRRI AR
f 28 00011100 80 00111100 Ed 92 01011100 124 01111100
53 29 00011101 - 61 00111101 93 01011101 125 01111101
Fi 30 00011110 62 00111110 94 01011110 126 01111110
% 31 00011111 A 83 00111111 — 95 01011111 127 LERRRRERR]

Useful Tables 4-13

Katakana Display Characters

These characters can be displayed on the screen of Model 216, 217, 220, 226, and 236
computers, and on Series 300 computers using a 98546 Display Compatibility Interface.

ascn| EQUIVALENT FORMS asci| EQUIVALENT FORMS ascn| EQUIVALENT FORMS ascu| EQUIVALENT FORMS
Char.| Dec Binary Char.| Dec Blnary Cher.[Dec Binary Char.[Dec Binary
fr 128 10000000 i 160 10100000 3 192 11000000 ke 224 11100000
f 129 10000001 o 161 10100001 ¥ 193 11000001 225 11100001
e 130 10000010 v 162 10100010 " 194 11000010 ¥ 226 11100010
b 131 10000011 S 163 10100011 ¥ 195 11000011 % 227 11100011
% 132 10000100 164 10100100 B 196 11000100 * 228 11100100
4 e 133 10000101 . 165 10100101 * 197 11000101 i 229 11100101
e 134 10000110 El 166 10100110 z 198 11000110 f 230 11100110
Y 135 10000111 B 167 10100111 E 199 11000111 e 231 11100111
2 136 10001000 | 168 10101000 * 200 11001000 ke 232 11101000
3 137 10001001 - 169 10101001 ; 201 11001001 233 11101001
G 138 10001010 T 170 10101010 I 202 11001010 5 234 11101010
e 139 10001011 + 7 10101011 = 203 11001011 235 11101011
Y 140 10001100 r 172 10101100 e 204 11001100 236 11101100
% 141 10001101 EY 173 10101101 205 11001101 I 237 11101104
e 142 10001110 El 174 1010110 h 206 11001110 i 238 11101110
2 143 10001111 f 175 10101111 B 207 11001111 e 239 11101111
L3 144 10010000 - 176 10110000 H 208 11010000 s 240 11110000
3 145 10010001 7 177 10110001 & 209 11010001 k: 241 11110001
Y 146 10010010 { 176 10110010 i 210 11010010 r 242 11110010
b 147 10010011 = 179 10110011 £ 2n 11010011 b 243 11110011
I3 148 10010100 I 180 10110100 i 212 11010100 k3 248 11110100
L3 149 10010101 El 181 10110101 1 213 11010101 % 245 11110101
Y 150 10010110 n 182 10110110 3 214 11010110 i 246 11110110
ke 151 10010111 ¥ 183 10110111 = 215 11010111 i3 247 11110111
e 152 10011000 0 184 10111000 " 216 11011000 ¥ 248 11111000
ke 153 10011001 T 185 10111001 i 217 11011001 b 249 11111001
e 154 10011010 | 186 10111010 L 218 11011010 Y 250 11111010
3 155 10011011 * 187 10111011 3] 219 11011011 s 251 11111011
he 156 10011100 o 188 10111100 & 220 11011100 e 252 11111100
3 157 10011101 = 189 10111101 o 221 11011101 i 253 1o
L3 158 10011110 o 190 10111110 222 11011110 ke 254 11111110
}F' 159 1001111 A 191 10111111 ° 223 101 E 255 ARRRERRAI

Note 1: Characters 128 thru 135 produce highlights on machines with monochrome highlights when used in PRINT and DISP statements
Note 2: Characters 136 thru 143 change the color of text printed or displayed on machines capable of displaying text in color.
Note 3: Characters 144 thru 159 are ignored by PRINT and DISP statements.

4-14 Useful Tables

Katakana Display Characters

These characters can be displayed on the Model 237 and on all Series 300 bit-mapped
alpha displays.

ascl| EQUIVALENT FORMS asci | EQUIVALENT FORMS ascit| EQUIVALENT FORMS ascii| EQUIVALENT FORMS
Char. Dec Binary Char. Dec Binary Char, Dec Binary Char. Dec Binary
b [00000000 32 00100000 IS 64 01000000 96 01100000
A 1 00000001 i 33 00100001 65 01000001 2 97 01100001
B 2 00000010 34 00100010 i 66 01000010 b 98 01100010
E 3 00000011 # 35 00100011 i 67 01000011 : 99 01100011
£ 4 00000100 F 36 00100100 68 01000100 100 01100100
& 5 00000101 37 00100101 f 69 01000101 & 101 01100101
e 6 00000110 38 00100110 70 01000110 { 102 01100110
7 00000111 39 00100111 3 7 01000111 103 01100171
E 8 00001000 i 40 00101000 & 72 01001000 104 01101000
% ° 00001001 ' 4 00101001 i 7 01001001 i 105 01101001
F 10 00001010 # a2 00101010 74 01001010 i 106 01101010
T 1" 00001011 + 43 00101011 h 75 01001011 K 107 01101011
Fe 12 00001100 . a4 00101100 H 76 01001100 ! 108 01101100
= 12 00001101 45 00101101 i 77 01001101 HH 109 01101104
5 14 00001110 48 00101110 78 01001110 ¥ 1o 01101110
£} 15 00001111 47 00101111 - 79 01001111 111 01101111
16 00010000 il 48 00710000 B 80 01010000 = 12 01110000
E 17 00010001 a9 00110001 81 01010001 5] 113 01110001
18 00010010 ! 50 00110010 82 01010010 b 14 01110010
ke 19 00010011 B 51 00110011 b 83 01010011 & 115 0111001
gl 20 00010100 4 52 00110100 i 84 01010100 116 01110100
% pal 00010101 , 53 00110101 id 85 01010101 11 17 01110101
B 22 00010110 54 00110110 i 86 01010110 118 01110110
: 23 00010111 ; 55 00110111 i a7 01010111 is 119 [ARRIVARD]
H 24 00011000 = 56 00111000 88 01011000 120 01111000
Fe 25 00011001 : 57 00111001 ’ 89 01011001 L 121 01111001
E: 26 00011010 58 00111010 90 01011010 o 122 01111010
= 27 00011011 H 59 0011101 i 91 01011011 d 123 01111011
i 28 00011100 60 00111100 % 92 01011100 124 01111100
5 29 00011101 61 00111101 H 93 01011101 125 01111101
g e 0 00011110 : 62 00111110 94 01011110 126 o1111110
£
§ * 3 00011111 B 63 00111111 - 95 01011111 127 [IRRERRE!

Useful Tables 4-15

Katakana Display Characters

These characters can be displayed on the Model 237 and on all Series 300 bit-mapped
alpha displays.

asci| EQUIVALENT FOAMS ascii| EQUIVALENT FORMS ascii| EQUIVALENT FORMS ascn| EQUIVALENT FORMS
Char. Dec Binary Char. Dec Blnary Char, Dec Binary Char. Dec Binsry
T 128 10000000 i3 160 10100000) 192 11000000 €o 224 11100000
L 129 10000001 a 161 10100001 ¥ 193 11000001 €y 225 11100001
% 130 10000010 ° 162 10100010 w 194 11000010 £z 226 11100010
b 131 10000011 a 163 10100011 ¥ 195 11000011 Ea 227 11100011
L 132 10000100 164 10100100 B 196 11000100 Ea 228 11100100
L 133 10000101 - 165 10100101 0 197 11000101 Es 229 11100101
% 134 10000110 E 166 10100110 z 198 11000110 e 2% 11100110
L 135 10000111 - 167 10100111 S 199 11000111 €7 231 11100111
% 136 10001000 1 168 10101000 kS 200 11001000 e 202 11101000
% 137 10001001 el 169 10101001 ' 201 11001001 Eg 233 11101001
t 138 10001010 T 170 10101010 I 202 11001010 Ea 234 11101010
% 139 10001011 + 171 10101011 = 203 11001011 €p 235 11101011
% 140 10001100 r 172 10101100 K 204 11001100 Ec 236 11101100
% 141 10001101 a 173 10101101 . 205 11001101 €0 237 11101101
Ky 142 10001110 El 174 10101110 T 206 11001110 Ee 236 11101110
% 142 10001111 y 175 10101111 7 207 11001111 Er 239 11101111
% 144 10010000 - 176 10110000 B 208 11010000 Fo 240 11110000
h 145 10010001 ¥ 177 10110001 o 209 11010001 Fi 241 11110001
% 148 10010010 1 178 10110010 < 210 11010010 F2 242 11110010
% 147 10010011 = 179 10110011 i 211 11010011 Fa 243 11110011
2 148 10010100 I 180 10110100 + 212 11010100 Fa 244 11110100
3 149 10010101 Bl 181 10110101 1 213 11010101 To 245 11110101
% 150 10010110 n 182 10110110 3 214 11010110 Fs 246 11110110
) 151 10010111 hi 183 10110111 E 218 11010111 Fq 247 11110111
% 152 10011000 a 184 10111000 U 216 11011000 Fe 248 11111000
% 153 10011001 T 185 10111001 i a7 11011001 Fa 249 11111001
3 154 10011010 a 186 10111010 L 218 11011010 Fa 250 11111010
3 158 10011011 " 187 10111011 o 219 11011011 e 251 11111014
% 156 10011100 188 10111100 “ 220 11011100 L} 252 11111100
% 157 10011101 # 189 10111101 E 221 11011101 Fo 253 11111101
3 H 158 10011110 r 190 10111110 222 11011110 Fe 254 1111110
é SF 159 10011111 : 191 101111 - 223 AREORERA] 3 255 ARRRRRAR
H

Note 1: Characters 128 thru 135 produce highlights on machines wnh monochrome highlights when used in PRINT and DISP statements.
Note 2: Characters 136 thru 143 change the color of text printed or displ hi capable of d text in color.
Note 3: Characters 144 thru 159 are ignored by PRINT and DISP statements.

4-16 Useful Tables

Lexical Tables

The following tables show the five predefined lexical orders available with the
LEXICAL ORDER IS statement.

Notation
All of the lexical tables use the following notation:

sequence number: 113
character displayed: a
ASCII value: (97)
Characters not available on the keyboard can be entered by pressing the

key and typing the value enclosed in parenthesis (with leading zeros,
if needed). The character will be collated according to the sequence number

shown above the character.

Useful Tables 4-17

33 " (39) 73 % (166) 104 4 (100) 136 ° (169) 188 % (148)
35 # (35) 73 1 (167) 105 4 (228) 137 ° (170) 189 3 (149)
36 $ (36) 73 t (229) 106 e (101) 138 ° (171) 190 % (150)
37 & (37) 73 1 (230) 106 @& (193) 139 ~ (172) 191 % (151)
38 & (38) 74 J (74) 106 ¢é (197) 140 £ (175) 192 3 (152)
39 ' (39) 75 K (75) 106 & (201) 141 ~ (176) 193 % (153)
40 ((40) 76 L (76) 106 é (205) 142 ° (179) 194 % (154)
41) (41) 77 M (77) 107 f (102) 143 § (184) 195 § (155)
42 * (42) 78 N (78) 108 g (103) 144 ; (185) 196 % (156)
43 + (43) 79 N (182) 109 h (104) 145 31 (186) 197 % (157)
4 , (44) 80 O (79) 110 i (105) 146 £ (187) 198 1 (158)
45 . (46) 80 @ (210) 110 1 (209) 147 ¥ (188) 199 % (159)
46 s/ (47) 80 o (218) 110 1 (213) 148 & (189) 200 [@ (255)
47 0 (48) 80 0O (223) 110 1 (217) 149 f (190)

48 1 (49) 80 O (231) 110 1 (221) 150 ¢ (191)

49 2 (50) 80 & (232) 111 j (106) 151 -~ (246)

50 3 (51} 80 & (233) 112 k (107) 152} (247)

Useful Tables 4-19

LEXICAL ORDER IS GERMAN

Seq. Chr. Num. Seq. Chr. bum. Seq. Chr. hum. Seq. Chr. Num. Seq. Chr. Num.
o % (o) 52 4 (52) 102 P (80) 152 1 (108) 201 § (248)
1 %) 53 5 (53) 103 Q (81) 153 m (109) 202 2 (249)
2 % (2) 54 6 (54) 104 R (82) 154 n (110) 203 2 (250)
3 5 3) 55 7 (5%5) 105 S (83) 155 f (183) 204 « (251)
4 &) 56 8 (56) 106 S (235) 156 o (111) 205 = (252)
5 &% (5) 57 9 (57) 107 T (84) 156 6 (206) 206 » (253)
6 % (6) 58 : (58) 108 U (85) 157 6 (198) 207 t (254)
7 8 (7) 59 ; (59) 108 U (219) 158 o (202) 208 ® (127)
8 ¥ (8) 60 < (60) 109 U (237) 159 & (194) 209 (160)
9 1 (9) 61 = (61) 110 U (173) 160 3 (234) 210 § (177)

10 % (10) 62 > (62) 111 0 (174) 161 o (214) 211 % (178)

11 % (11) 63 ? (63) 112 Vv (86) 162 p (112) 212 5 (242)

12§ (12) 64 @ (64) 113 w (87) 163 q (113) 213 %5 (243)

13 & (13) 65 A (65) 114 X (88) 164 r (114) 214 % (244)

14 % (14) 65 A (216) 115 Y (89) 165 s (115) 215 % (245)

15 % (15) 66 A (211) 116 ¥ (238) 165 B (222) 216§ (128)

16 % (16) 67 A (208) 117 Z (90) 166 & (236) 217 L (129)

17 9 (17) 68 A (224) 118 b (240) 167 t (116) 218 % (130)

18 & (18) 69 A (161) 119 [(91) 168 u (117) 219 § (131)

19 § (19) 70 A (162) 120 N\ (92) 168 0 (207) 220 Y} (132)

20 % (20) 71 & (225) 121 1 (93) 169 u (199) 221} (133)

21 % (21) 72 B (66) 122~ (94) 170 1 (203) 222 % (134)

22 % (22) 73 C (67) 123 _ (95) 171 0 (19%) 223 ; (135)

23 &% (23) 74 ¢ (180) 124 (96) 172 v (118) 224 % (136)

24 & (29) 75 D (68) 125 a (97) 173 w (119) 225 % (137)

25 % (25) 76 D (227) 125 a (204) 174 x (120) 226 % (138)

26 § (26) 77 E (69) 126 = (215) 175 y (121) 227 % (139)

27 % (27) 78 £ (220) 127 a (212) 176 ¥y (239) 228 5§ (140)

28 § (28) 79 & (163) 128 & (196) 177 z (122) 229 % (141)

29 & (29) 80 £ (164) 129 a (200) 178 p (241) 230 T (142)

30 % (30) 81 E (165) 130 a (192) 179 { (123) 231 % (143)

31 % (31) 82 F (70) 131 & (226) 180 | (124) 232 % (144)

32 (32) 83 G (71) 132 b (98) 181 } (125) 233 § (149)

33 v (33) 84 H (72) 133 ¢ (99) 182 - (126) 234 3% (146)

34 " (34) 85 I (73) 134 ¢ (181) 183 -~ (168) 235 % (147)

35 # (35) 86 £ (229) 135 d (100) 184 ° (169) 236 % (148)

36 $ (36) 87 I (230) 136 d (228) 185 ~ (170) 237 % (149)

37 % (37) 88 1 (166) 137 e (101) 186 ~ (171) 238 % (150)

38 & (38) 89 I (167) 138 é (197) 187 ~ (172) 239 % (151)

39 ' (39) 90 J (74) 139 & (201) 188 £ (175) 240 % (152)

40 ((40) 91 K (75) 140 & (193) 189 ~ (17e) 241 g (153)

41) (41) 92 L (76) 141 é (205) 190 - (179) 242 % (154)

42 > (42) 93 M (77) 142 f (102) 191 (184) 243 % (155)

43 + (43) 94 N (78) 143 g (103) 192 ¢ (185) 244 3% (156)

4 , (44) 95 R (182) 144 h (104) 193 4 (186) 245 % (157)

45 -~ (495) 9% O (79) 145 i (105) 194 £ (187) 246 % (158)

46 . (46) 9% o (218) 146 1 (213) 195 ¥ (188) 247 % (159)

47 /7 (47) 97 & (231) 147 1 (217) 196 6 (189) 248 @@ (255)

48 0 (48) 98 O (232) 148 1 (209) 197 f (190)

49 1 (49) 99 0O (223) 149 i (221) 198 ¢ (191)

50 2 (50) 100 & (233) 150 3 (106) 199 - (246)

51 3 (51) 101 @ (210) 151 k (107) 200 % (247)

4-20 Useful Tables

LEXICAL ORDER IS SPANISH

Seq. Chr. Num. Seq. Chr. Num. Seq. Chr. Num. Seq. Chr. HNum. Seq. Chr. Num.
0o % (0 52 4 (52) 84 P (80) 116 1 (108) 157 % (248)
1 5%) 53 S (53) 85 Q (81) 118 m (109) 158 2 (249)
2 % (2 54 6 (54) 86 R (82) 119 n (110) 159 2 (250)
3 £ (3) 55 7 (55) 87 S (83) 120 A (183) 160 « (251)
4 & (4) 56 8 (56) 88 $§ (2395) 121 o (111) 161 = (252)
5 % (%) 57 9 (57) 89 T (84) 121 6 (194) 162 » (253)
6 % () 58 : (58) 90 U (85) 121 6 (198) 163 t (254)
7 08 (7) 59 ; (59) 90 U (173) 121 o (202) 164 ® (127)
8 & (8) 60 < (60) 90 © (174) 121 6 (206) 165 (160)
9 % (9] 61 = (61) 90 U (219) 121 o (214) 166 &% (177)

10 % (10) 62 > (62) 90 U (237) 121 3 (234) 167 % (178)

11 % (11) 63 ? (63) 91 V (86) 122 p (112) 168 5 (242)

12 & (12) 64 @ (64) 92 W (87) 123 g (113) 169 5 (243)

13 & (13) 65 A (65) 93 X (88) 124 r (114) 170 % (244)

14 % (14) 65 A (161) 94 Y (89) 125 s (115) 171 4 (245)

15 % (15) 65 A (162) 94 ¥ (238) 125 B (222) 172§ (128)

16 ¢ (16) 65 A (208) 95 Z (90) 126 & (236) 173 4 (129)

17 % (17) 65 A (211) 96 P (240) 127 t (116) 174 % (130)

18 % (18) 65 A (216) 97 [(91) 128 u (117) 175 § (131)

19 % (19) 65 A (224) 98 \ (92) 128 Q (195) 176 § (132)

20 % (20) 65 X (225) 99 1 (93) 128 4 (199) 177 L (133)

21 % (21) 66 B (66) 100 ~ (94) 128 1 (203) 178 % (134)

22 % (22) 67 C (67) 101 _ (95) 128 4 (207) 179 4L (13%5)

23§ (23) 67 ¢ (180) 102 (96) 129 v (118) 180 % (136)

24§ (24) 69 D (68) 103 a (97) 130 w (119) 181 % (137)

25 % (25) 70 b (227) 103 & (192) 131 x (120) 182 % (138)

26 % (26) 71 E (69) 103 & (196) 132 y (121) 183 % (139)

27 & (27) 71 E (163) 103 a (200) 132y (239) 184 5 (140)

28 & (28) 71 £ (164) 103 a (204) 133 2z (122) 185 % (141)

29 % (29) 71 E (165) 103 a (212) 134 p (241) 186 % (142)

30 &% (30) 71 £ (220) 103 = (215) 135 { (123) 187 % (143)

31 % (31) 72 F (70) 103 & (226) 136 | (124) 188 3 (144)

32 (32) 73 G (M) 104 b (98) 137} (125) 189 9 (145)

33 ' (33) 74 H (72) 105 c (99) 138 -~ (126) 190 3 (146)

34 (34) 75 1 (73) 105 ¢ (181) 139 ° (168) 191 % (147)

35 # (35) 75 % (166) 107 4 (100) 140 ° (169) 192 5 (148)

36 $ (36) 75 1 (167) 108 d (228) 141 ° (170) 193 % (149)

37 % (37) 75 1 (229) 109 e (101) 142 ° (171) 194 3 (150)

38 & (38) 75 I (230) 109 & (193) 143 ~ (172) 195 % (151)

39 ' (39) 76 J (74) 109 ¢é (197) 144 £ (175) 196 3 (152)

40 ((40) 77 K (79) 109 & (201) 145 T (176) 197 § (153)

41) (41) 78 L (76) 109 é (205) 146 ° (179) 198 5 (154)

42 * (42) 80 M (77) 110 f (102) 147 § (184) 199 % (15%5)

43 + (43) 81 N (78) 111 g (103) 148 ; (185) 200 % (156)

4 , (44) 82 f (182) 112 h (104) 149 % (186) 201 % (157)

45 - (45) 83 0 (79) 113 i (105) 150 £ (187) 202 % (158)

46 . (46) 83 0 (210) 113 1 (209) 151 ¥ (188) 203 % (159)

47 7/ (47) 83 0 (218) 113 1 (213) 152 § (189) 204 [3 (255)

48 0 (48) 83 6 (223) 113) (217) 153 f (190)

49 1 (49) 83 o (231) 113 i (221) 154 ¢ (191)

50 2 (50) 83 © (232) 114 3 (106) 155 - (246)

51 3 (51) 83 6 (233) 115 k (107) 156 } (247)

Useful Tables 4-21

LEXICAL ORDER IS SWEDISH

Chr.

Seq. Chr. HNum.
[V (0)
1 % (1)
2 5 (2)
3 & (3)
4 £ (4)
5 & (5)
6 % (6)
7 8 (7)
8 & (8)
9 % (9)

10 &% (10)

11 % (11)

12 % (12)

13 & (13)

14 3 (14)

15 8% (15)

16 § (16)

17 9% (17)

18 5 (18)

19 % (19)

20 9 (20)

21 % (21)

22 5 (22)

23 § (23)

24§ (29)

25 & (25)

26 § (26)

27 % (27)

28 § (28)

29+ (29)

30 % (30)

31 % (31)

32 (32)

33 ' (33)

34 " (34)

35 # (35)

36 $ (36)

37 % (37)

38 & (38)

39 ' (39)

40 ((40)

41) (41)

42 *x (42)

43 + (43)

4 |, (44)

45 - (495)

46 . (46)

47 7/ (47)

48 0 (48)

49 1 (49)

50 2 (50)

51 3 (51)

4.22 Useful Tables

Seq.

e WONOU D

MR EBOQREPPPEIFFRANRKRFIFCANDOVOZINRGHIQATMHMUOUQDP® DY I A

Num.

(52)
(53)
(54)
(55)
(S6)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)
(66)
(67)
(e8)
(69)
(70)
(71)
(72)
(73)
(74)
(75)
(76)
(77)
(78)
(79)
(80)
(81)
(82)
(83)
(84)
(85)
(86)
(87)
(88)
(89)
(90)
(211)
(208)
(224)
(161)
(162)
(216)
(225)
(180)
(227)
(220)
(163)
(164)
(165)

Seq.

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
146
147
148
149
150
151
152
153

Y S L COC OGBSO ZIHBH R

-

N X E<CADNSO0UTOIT I HXLU,LTOROMACOQAONTO

(229)
(230)
(166)
(167)
(182)
(231)
(232)
(223)
(218)
(233)
(210)
(2395)
(237)
(173)
(174)
(219)
(238)
(240)

(91)

(92)

(93)

(94)

(95)

(96)

(97)

(98)

(99)
(100)
(101)
(197)
(102)
(103)
(104)
(105)
(106)
(107)
(108)
(109)
(110)
(111)
(112)
(113)
(114)
(115)
(222)
(116)
(117)
(118)
(119)
(120)
(121)
(122)

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

Chr.

AT OO R RO O = a DD DOO WD R

(215)
(212)
(196)
(200)
(192)
(204)
(226)
(181)
(228)
(201)
(193)
(205)
(213)
(217)
(209)
(221)
(183)
(198)
(202)
(194)
(206)
(234)
(214)
(236)
(199)
(203)
(195)
(207)
(239)
(241)
(123)
(124)
(125)
(126)
(168)

©(169)

(170)

©(171)

(172)
(175)
(176)

T (179)

ol O & O -

(184)
(185)
(186)
(187)
(188)
(189)
(190)
(191)
(246)
(247)

Num .

Seq.

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

IO MmO o N a® B PG PP® Y HP UP KB YD YR LB S XDV T T (D O M PR TP~ D® K™ FC o~ O ¢~ rD g™ 2T W NT NT LT
-
-
-
-
—

| X
-
N
o
o
-

Master Reset Table

ol 8
2 8 2 Note 2 5
Power | & g 2 |reser| enos | Loap | Loap | GET | GET § Main | suB | sus
On > 2 5 STOP &Go &Go | & |Preun| Enty | Ext

CRT
CRT DISP Line Clear | Clear — — Clear — — — — — — — — —
CRT Display Functions oft off — — — — — — — — — — —
CRT Message Line Ready { Clear | Clear | Clear | Reset — — — — — — Clear — -
CRT Input Line {Note 6} Clear Clear | Clear — Clear — — — — — — — — —
CRT Printout Area Clear | Clear — — — — — — — — — — — —
CRT Print Position {TABXY) 1.1 11 — — |Note 15} — — — — — — — — —
ALPHA ON/OFF (Note 3) On On On On On On — — — — — — — —
KEYBOARD
Keyboard Recall Butfer Clear — — — — — — — _ —_ _ . _ —
Keyboard Result Buffer Empty { Empty — — — — — — — — — — — —
Tabs On Input Line None | None — — — — — — — — — — — —
Typing Aid Labels Note 16{Note 16| — — — — — — — — — - — —
Keyboard Katakana Mode Off off Ooff — Ooff — — — — — — — — —
SUSPEND INTERACTIVE off off off Ooff off off Off Off oft off - off — —
PRINTING
Print column 1 1 — — 1 — — — - — — — — —
PRINTALL off off — — off — — — — — — — — —
PRINTALL IS 1 1 — — — — — — — — — — — —
PRINTER IS 1 1 — — — — — — - — — — — —
ENVIRONMENTS & VARIABLES
Allocated Variables None | None { None | None | Note 1 { Note 1 | None | None | None | None — None | None {Pre-ent
Normal Variables None | None | None | None — — None | None | None | None — |Note 11 |Note 11{ Pre-ent
COM Variables None | None — None — — — Note 9 — Note 9 — — — —
OPTION BASE 0 0 0 — — — — Note 9 — Note 9 — Note 9 | Note 9 | Pre-ent
VO Path Names None [Closed | Closed | Closed | None | Closed | Closed | Closed | Closed | Closed — Closed — |subclsd
VO Path Names in COM None | Closed — Closed | None — | Note 10| Note 10| Note 10{Note 10{ — — — —
Keyboard Variable Access No No No No Main Main No In ent. No Inent. { Incnt Main SUB | Pre-ent
BASIC Program Lines None | None | None — — — Note 4 | Note 4 | Note 4 | Note 4 | Note 4 — — —
BASIC Program Environment Main Main Main Main Main Main Main Main Main Main — Main SUB [Pre-ent
Normal Binary Programs None | None — — — — Note 5 | Note 5 — — — — — —
SUB Stack Clear | Clear [Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — Clear Push Pop
NPAR 0 0 0 0 0 0 0 0 0 0 — 0 Actual | Pre-ent
CONTINUE Allowed No No No No No No No Yes No Yes Yes Yes Yes Yes
ON <event> ACTIONS
ON <event> Log Empty § Empty | Empty } Empty | Empty | Empty | Empty | Empty | Empty | Empty — Empty | Note 8 | Note 8
System Prionity 0 0 0 — — - — 0 — 0 — 0 Note 7 { Pre-ent
ON KEY Labels None | None | None | None | None | None | None | None | None | None — None — Pre-ent
ENABLEDISABLE Enable { Enable | Enable | Enable | Enable | Enable | Enable | Enable | Enable | Enable - Enable — —
KNOBX & KNOBY 0 0 0 0 0 0 0 0 0 0 — 0 — —
ON EXT SIGNAL DAt Dfit Dflt - Dilt DIt _ _ _ _ Dilt Ditt | Note 8] Note 8

Note 20: For SRM files, RESET closes the file. For LIF and HFS files,
the file. All other I/0 path names at RESET are removed without any other action.

RESET removes the 1/O path name, but does not close

Useful Tables 4-23

o
§ 8 % Note 2 6
Power § S § RESET | END/ | LOAD | LOAD { GET GET ?U; Main suB suB
on | > 2 o STOP &Go 8Go | & |Prerun | Enty | Exit
MISC.
GOSUB Stack Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — Clear | Local | Pre-ent
TIMEDATE Note 14] — — — — — — — - — — — — —
ERRL, ERRN, and ERRDS 0 0 — — — — — 0 — 0 — 0 — —
ERRM$ Null Null — — — — — Nuli — Null — Null — —
DATA Pointer None | None | None | None | None | None | None |lstmain| None |istmain| — |1stmain| 1st sub | Pre-ent
LEXICAL ORDER IS Stand. | Stand. — — — — — — — — — — — —
MASS STORAGE IS Note 12|Note 12} — — — — — — — — — — — —
CHECKREAD ON/OFF Oft Off — — — — — — — — — — — —
Angle Mode RAD RAD RAD RAD — — RAD RAD RAD RAD — RAD — Pre-ent
Random Number Seed Note 13 |Note 13| Note 13| — — — — |Note13] — []INote13] — |Notel13] — —
DET 0 0 0 — — — — — - — _ 0 _ _
TRANSFER None | Aborts [Note 17| Waits | Aborts | Waits | None |Note 18] None | Waits — None — Note 19
TRACE ALL ot Otf Off — — — — — - - — — — —
Wildcards Off Off — — — — — — — — — — — —

— = Unchanged
Pre-ent = As existed previous to entry into the subprogram.
In cnt. = Access to vanables in current context only.
Ist main = Pointer set to first DATA statement in main program.
1st sub = Pointer set to first DATA statement in subprogram.
sub clsd = All local IO path names are closed at subexit.
Waits = Operation waits untl TRANSFER completes.

Note 1: Only those allocated in the main program are available.

Note 2. Pressing the STOP key is identical in function to executing STOP. Editing or altering a paused program causes the program to go
into the stopped state.

Note 3: Alpha is turned on automatically by typing on the input line, by writing to the display line, or by an output to the message line.

Note 4: Modified according to the statement or command parameters and file contents.

Note 5: Any new binary programs in the file are loaded.

Note 6: Includes cursor position, INS CHR mode, ANY CHAR sequence state, but not tabs, auto-repeat rate, and auto-repeat delay.
(These last three are defaulted only at SCRATCH A and Power On.)

Note 7. The system priority changes at SUB entry if the subroutine was invoked by an ON <event> CALL.

Note 8: See the appropriate keyword.

Note 9: As specified by the new environment or program.

Note 10: A COM mismatch between programs will close /0 path names. 1f I/O path names exist in a labeled COM, and a LOAD or GET
brings in a program which does not contain that labeled COM, those I/O path names are closed.

Note 11: Numeric variables are set to 0, and string lengths are set to 0.

Note 12: The default mass storage device is INTERNAL (the right-hand drive) on the 9826 and 9836. See the 9816 Installation Manual for
information on its default mass storage device.

4-24 Useful Tables

Further Comments
Note 13: The default random number seed is INT(Pl x (23! —2)/180). This is equal to 37 480 660.
Note 14: The default TIMEDATE is 2.086 629 12 E + 11 (midnight March 1, 1900, Julian time).
Note 15: After a RESET, the CRT print position is in column one of the next line below the print position before the RESET.
Note 16: Typing aid labels are displayed unless a program is in the RUN state.
Note 17: Operation waits untl TRANSFER completes unless both 1/O path names are in COM.
Note 18: Operation waits until TRANSFER completes unless both /O path names are in a COM area preserved during the LOAD.
Note 19: Operation waits until TRANSFER completes if the TRANSFER uses a local /O path name.

The PAUSE key. the programmed PAUSE statement, and executing PAUSE from the keyboard all have identical effects. The only
permanent effects of the sequence “PAUSE... CONTINUE” on a running program are:

1. Delay in execution.

2. Second and subsequent interrupt events of a given type are ignored.

3. INPUT, LINPUT. and ENTER 2 statements will be restarted.

4. ON KEY and ON KNOB are temporarily deactivated (i.e. not logged or executed) during the pause.

5. A TRANSFER may complete during the pause, causing ON EOT to be serviced at the next end-of-line.

Fatal program errors (i.e. those not trapped by ON ERROR) have the following effects:
— a PAUSE

— a beep

— an error message in the message line

— setting the values of the ERRL. the ERRN. and possibly the ERRDS functions

— setting the default EDIT line number to the number of the line in which the error occurred.

Autostart is equivalent to: Power On, LOAD “AUTOST’", RUN.

CLR IO terminates ENTER and OUTPUT on all interfaces, handshake setup operations, HP-IB control operations, DISP, ENTER
from CRT or keyboard. CAT, LIST, external plotter output, and output to the PRINTER [S, PRINTALL IS, and DUMP DEVICE IS
devices when they are external. CLR 10 does not terminate CONTROL, STATUS, READIO, WRITEIO, TRANSFER, real-time clock
operations, mass storage operations (other than CAT). OUTPUT 2 (keyboard), or message line output.

CLR IO clears any pending closure key action.

If CLRIO is used to abort a DUMP GRAPHICS to an external device, the external device may be in the middle of an escape-code
sequence. Thus, it might be counting characters to determine when to return to normal mode (from graphics mode). This means that a
subsequent [/O operation to the same device may yield ‘‘strange’ results. Handling this situation is the responsibility of the user and is
beyond the scope of the firmware provided with the product. Sending 75 ASClI nulls is one way to “'clear” the 9876 Graphics Printer.

Useful Tables 4-25

Graphic Reset Table

4 g
2 & 2 Note 2
Power | 2 g 2 |reset] eno | ot | Main
On i g i STOP Prerun

PLOTTER 1S CRY CRY — — CRY — CRT —
Graphics Memory Clear Clear — — Note 1 — Note 1 —
VIEWPORT hrd clip | hrd clip — — hrd clip — hrd clip —
X and Y Scaling (unit of measure) GDU { GDU - — GDU — Gbu —
Soft Clip hed clip{ hed clip b — — Ibhdaipl — thaap] —
Current Clip hed clip{ hed clip | — — Ibdaip] — Jhddp] —
CLIP ON OFF off Off — — oft — off —
PIVOT 0 0 — — O — 0 -
AREA PEN 1 1 — — 1 — 1 —
PEN 1 1 — — 1 — 1 -
LINE TYPE 1.5 15 — — 15 — L5 —
Pen Position 0.0 00 — — 0.0 — 0.0 —
LORG 1 1 — — 1 — 1 —
CSIZE 5.6 5.6 — — 5.6 — 5.6 —
LLDIR 0 0 — — Q — 0 —
PDIR 0 0 — — 0 — Q _
GRAPHICS ON OFF off Ooff — — — — — —
ALPHA ON OFF (Note 3) On On On On On On — —
DUMP DEVICE IS 701 701 — — — — — —
GRAPHICS INPUT IS None None — — None — None —
TRACK ... ON OFF Off Off — — Ol — Off —
Color Map (Note 4) Off Off — — Note 5 — Note 5 —
Drawing Mode Norm 1 Norm — — Norm — Norm —

— = Unchanged
hrd clip = The default hard clip boundaries of the CRT.

Note 1: Although RESET leaves the graphics memory unchanged. it will be cleared upon execution of the next graphics statement that sets
a default plotter following the RESET.

Note 2: Pressing the STOP key is identical to executing STOP. Altering a paused program causes the program to go into the stopped state.
Note 3: Alpha is turned on automatically by typing on the input line. by writing to the display line. or by an output to the message line.

Note 4: With color map off. 8 standard colors are available. With color map on. 16 user-defined colors are available. See PLOTTER IS.
Note 5: Although the color map remains unchanged. it is changed if a graphics statement selects the device as a default plotter.

4-26 Useful Tables

Interface Reset Table

@0
S & Note 5 Note 6
Power 3 2 BASIC | END/ | LOAD | GET Reset Main suB SUB CLR
On 5 2 RESET | STOP Cmd | Prerun | Entry Exit vo

GPIO Card
Interrupt Enable Bit Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — - —
Active Timeout Counter Clear | Clear | Clear | Clear | Clear | Clear | Clear — Clear — — —
Enable Interrupt Mask Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — — —
Hardware Reset of Card (PRESET) Reset | Note I | Note 1 | Reset | Note 1 | Note 1 [Note 1 | Reset | Note 1 — — Note 1
PSTS Enror Flag Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — — —
RS-232 Card
Interrupt Enable Bit Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — — —
Active Timeout Counter Clear | Clear | Clear | Clear | Clear | Clear | Clear — Clear — — —
Enable Interrupt Mask Clear | Clear | Clear | Clear | Clear | Clear | Ciear | Clear | Clear — — —
Hardware Reset of Card Reset | Reset — Reset — — — Reset — — — —
Data Rate/Character Format Swich | Swtch — — — — — — — — — —
RTS-DTR Latch Clear | Clear — — — - — Clear — — — —
Request to Send Line Clear | Clear — Clear — — — Clear — — — Note 2
Data Terminal Ready Line Clear | Clear — Clear — — — Clear — — — Note 2
Line Status Register Clear | Clear | Clear | Clear Clear | Clear | Clear | Clear | Clear — — Clear
Modem Status Register Clear | Clear { Clear | Clear | Clear | Clear | Clear | Clear | Ciear — — Clear
Data-In Buffer Empty | Empty | Empty | Empty | Empty | Empty | Empty | Empty | Empty — — Empty
Error-Pend. Flag Clear | Clear | Clear | Ciear | Clear | Clear | Clear | Clear | Clear — — Clear
HP-IB
Interrupt Enable Bit Clear | Clear Clear | Clear Clear | Clear | Clear | Clear Clear — — —
Active Timeout Counter Clear | Clear | Clear | Clear | Clear | Clear | Clear — Clear — — —
Interrupt Enable Mask Clear | Clear Clear | Clear | Clear | Clear | Clear | Clear Clear — — —
User Interrupt Status Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — — —
Serial Poll Register Clear | Clear — Clear — — — Clear — — — —
Parallel Poll Register Clear | Clear — Clear — — — Clear — — — —
My Address Register Note 4 | Note 4 — — — — — — — — — —
IFC Sent Note 3 | Note 3 — Note 3 — — — Note 3 — — — —
REN Set True Note 3 | Note 3 — Note 3 — — — Note 3 — — — —
Data Communications
Interrupt Enable Bit Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — — —
Active Timeout Counter Clear | Clear | Clear | Clear | Clear | Clear | Clear — Clear — — —
Interrupt Enable Mask Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — — —
Hardware Reset of Card Reset | Note 7 — Reset — — — Note 7 — — — —
Line State Dscon | Dscor — Dscon — — — Dscon — — — —
Data Buffers Empty | Empty | — | Empty | — - — |Empty | — — — —
Protocol Selection (Async or Data Link} | Swich | Note 8 — Switch — — — Note 8 — — — —
Protocol Options Swich | Swich — Swich — — — Swich — — — —

Useful Tables 4-27

g8
§ O Note 5 Note 6
Power a g BASIC { END: § LOAD } GET | Reset | Main | SUB | SUB CLR
On i 9 RESET | STOP Cmd | Prerun | Entry Exit 10
BCD Card
Interrupt Enable Bit Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — — —
Active Timeout Counter Clear | Clear | Clear | Clear | Clear | Clear | Clear — Clear — — —
Interrupt Enable Mask Clear | Clear | Clear | Clear | Clear } Clear | Clear | Clear | Clear — — —
Hardware Reset of Card Reset | Note I | Note 1 | Note | | Note 1 | Note 1 | Note 1 | Reset | Note t — — Note 1
Rewind Driver Rwd Rwd Rwd Rwd Rwd Rwd Rwd Rwd Rwd — — Rwd
BCD/Binary Mode Switch { Swich — — — _ — — — — — —
EPROM Programmer
Hardware Reset of Card Reset | Reset — Reset — — — Reset — — — —
Programming Time Register Clear | Clear — — — — — Clear — — — —
Target Address Register Clear | Clear — — — — — Clear — — — —

— = Unchanged
Swich = Set according to the switches on the interface card
Dscon = A disconnect is performed

Note 1: Reset only if card is not ready.

Note 2: Cleared only if corresponding modem control line is not set.

Note 3: Sent only if System Controller.

Note 4: If System Controller and Active Controller, address is set to 21. Otherwise, it is set to 20.

Note 5: Pressing the STOP key is identical in function to executing STOP or END. Editing or altering a paused program causes the
program to go into the stopped state.

Note 6: Caused by sending a non-zero value to CONTROL register 0.

Note 7: This is a “‘soft reset,”” which does not include an interfate self-test or a reconfiguration of protocol.

Note 8: Set according to the value used in the most recent CONTROL statement directed to Register 3. If there has been no
CONTROL 3 statement. the switch settings are used.

4-28 Useful Tables

Second Byte of Non-ASCIll Key Sequences (String)

Holding the key and pressing a non-ASCII key generates a two-character
sequence on the CRT. For example,

(CTRL) - (Clear line)
produces the following characters on the CRT:

Non-ASCII keypresses can be simulated by outputting these two-byte
sequences to the keyboard. For example,

OUTPUT KBD; CHR$ (255)&"%";

produces the same result as shown above. The decimal value of the first byte is
255 (on some computers this is the “inverse-video”

The following table can be used to look up the key that corresponds to the
second character of the sequence. (On the small HP 98203A keyboard some
non-ASCII keys generate ASCII characters when they are pressed while holding
the key down.)

Normally on an ITF keyboard, corresponds to ON KEY 1 ... ,
corresponds to ON KEY 2 ... , etc. However, you can use

CONTROL KBD,14;1 to change this relationship so that corresponds to
ONKEYO..., corresponds to ON KEY 1 ... , etc.

With 98203 keyboard compatibility (KBD CMODE ON), the ITF keyboard
softkeys (f1) thru (f4), the (Menu) and (System) keys, and (§5) thru correspond
to 98203 softkeys thru (k9), respectively. See “Porting to Series 300"
chapter of HP BASIC 6.2 Porting and Globalization for further information
about this mode.

The terms System and User in the ITF Key column refer to the softkey menu
which is currently active on an ITF keyboard.

Useful Tables 4-29

ITF 98203 Closure

Char. | Val. Key Key Key
space | 32 1 1

I Yes

" 34 1 1

r |

$ 36 System Yes

v | w Yes

& 38 2

’ 39 2 Yes

(40 Tab

) 41

* 42 Yes

+ 43

. 44 2 Yes

- |

1These characters cannot be generated by pressing the CTRL key and a
non-ASCII key. If one of these characters follows CHR$(255) in an output
to the keyboard, an error is reported (Error 131 Bad non-alphanumeric

keycode.).

2Cannot generate this keycode from this keyboard. If this character is

OUTPUT to the keyboard, an error is not reported. Instead, the system will
perform as much of the indicated action as possible.

1These keys have no system meaning, and will BEEP if not trapped by ON

KBD.

4-30 Useful Tables

ITF 98203 Closure
Char. | Val. Key Key Key
46 2 2
/ 47 Yes
0 48 User 3 Yes
1 49 User 1 Yes
2 50 User 1 x2) Yes
3 51 User 1 3) Yes 4
4 52 User 1 Yes
5 53 User 1 (3] Yes
6 54 User 1 Yes
4 55 User 1 Yes
8 56 User 1 Yes
9 57 User 2 Yes
58 System 4 2
; 59 System 4 2

ZCannot generate this keycode from this keyboard. If this character is
OUTPUT to the keyboard, an error is not reported. Instead, the system will
perform as much of the indicated action as possible.

3This ITF key is located in the System Control Key Group just above the
Numeric Keypad Group. Note that these keys have no labels on their keycaps;
however, they do have labels on the BASIC keyboard overlay for the ITF
keyboard. For information on the BASIC keyboard overlay for the ITF
keyboard, read Using HP BASIC/WS 6.2 or Using HP BASIC/UX 6.2.

4These keys have no system meaning, and will BEEP if not trapped by ON
KBD.

Salso System

Useful Tables 4-31

7also System

4-32 Useful Tables

ITF 98203 Closure

Char. | Val. Key Key Key

< 60 @

= 61 Result®

> 62 ®

? 63 Recall® ¢

] 64 (Shift) Recall® 7

A 65 System Yes

s | 6

c 67 System

D 68 2

E 69 8 Yes

F 70 System Yes

G 71 0

i | 7 G

1 | m

IThese characters cannot be generated by pressing the CTRL key and a
non-ASCII key. If one of these characters follows CHR$(255) in an output
to the keyboard, an error is reported (Error 131 Bad non-alphanumeric

keycode.).

2Cannot generate this keycode from this keyboard. If this character is

OUTPUT to the keyboard, an error is not reported. Instead, the system will
perform as much of the indicated action as possible.

3This ITF key is located in the System Control Key Group just above the
Numeric Keypad Group. Note that these keys have no labels on their keycaps;
however, they do have labels on the BASIC keyboard overlay for the ITF

Useful Tables 4-33

keyboard. For information on the BASIC keyboard overlay for the ITF
keyboard, read Using HP BASIC/WS 6.2 or Using HP BASIC/UX 6.2.

Or
9Also

4-34 Useful Tables

ITF 98203 Closure
Char. | Val. Key Key Key
J 74 (Katakana)? (Katakana)?
K | Yes
L 76 Graphics 3 Yes
M 7 Alpha 3 Yes
) | 78 Dump Graph 3 (DUMP GRAPHICS) Yes
0 79 Dump Alpha 3 ° Yes
P 80 Yes
Q 81 1 1
R 82 System Yes
S 83 System Yes
T 84 GhiftHY) GuEDHD Yes
u 85 Yes
v | 86 ® 0 Yes

1These characters cannot be generated by pressing the CTRL key and a
non-ASCII key. If one of these characters follows CHR$(255) in an output
to the keyboard, an error is reported (Error 131 Bad non-alphanumeric

keycode.).

2Cannot generate this keycode from this keyboard. If this character is

OUTPUT to the keyboard, an error is not reported. Instead, the system will
perform as much of the indicated action as possible.

Useful Tables 4-35

ITF 98203 Closure

Char. | Val. Key Key Key

v | e DO GO Yeo

X 88 2 Yes

v 87 (GhiftH@a) GrEDHD Yes

X 88 2 Yes

Y 89 (Roman)? (Roman)? Yes

z 90 ! !

L 91 System

\ 92 2 Yes

] 93 System

" 94 @ @D Yes

- 95 System 2 Yes

‘ 96 1 1

a 97 User 2 Yes

b 98 User 2 Yes

1These characters cannot be generated by pressing the CTRL key and a
non-ASCII key. If one of these characters follows CHR$(255) in an output
to the keyboard, an error is reported (Error 131 Bad non-alphanumeric

keycode.).

2Cannot generate this keycode from this keyboard. If this character is

OUTPUT to the keyboard, an error is not reported. Instead, the system will
perform as much of the indicated action as possible.

4These keys have no system meaning, and will BEEP if not trapped by ON

KBD.

SThese keys are also generated by the HP 46060A/B and HP 46095A (HP

Mouse devices) buttons unless GRAPHICS INPUT IS is using them.

4-36 Useful Tables

ITF 98203 Closure

Char. | Val. Key Key Key

c 99 User 2 (fa) GHFETHx2) Yes

d 100 User 2 (k3) Yes

e 101 User 2 Yes

4 102 User 2 (SHIFTH&S) Yes

g 103 User 2 (f8) (SHIFTHke) Yes

o | 104 User 3 Yes 4

i 105 User 3 Yes

j 106 User 3 Yes

k 107 User 3 2 Yes

1 108 User 3 2 Yes

m 109 User 3 2 Yes

n 110 User 3 2 Yes

o 111 System 4 2

P 112 System 4 2

1These characters cannot be generated by pressing the CTRL key and a
non-ASCII key. If one of these characters follows CHR$(255) in an output
to the keyboard, an error is reported (Error 131 Bad non-alphanumeric
keycode.).

2Cannot generate this keycode from this keyboard. If this character is
OUTPUT to the keyboard, an error is not reported. Instead, the system will
perform as much of the indicated action as possible.

4These keys have no system meaning, and will BEEP if not trapped by ON
KBD.

Useful Tables 4-37

ITF 98203 Closure

Char. | Val. Key Key Key

q 113 System 4 2

T 114 System 4 2

s 115 User 43 2

t 116 User 43 2

u 117 User 48 2

v 118 User 4 2

w 119 User 4 2

x 120 User 4 2

y 121 User 4 2

z 122 User 4 2

{ 123 2 Yes

| 124 2 Yes

} 125 2 Yes

- 126 2 Yes
(box) | 127 ! !

IThese characters cannot be generated by pressing the CTRL key and a
non-ASCII key. If one of these characters follows CHR$(255) in an output
to the keyboard, an error is reported (Error 131 Bad non-alphanumeric
keycode.).

2Cannot generate this keycode from this keyboard. If this character is
OUTPUT to the keyboard, an error is not reported. Instead, the system will
perform as much of the indicated action as possible.

1These keys have no system meaning, and will BEEP if not trapped by ON
KBD.

4-38 Useful Tables

Glossary

access capability
See SRM password.

angle mode
The current units used for expressing angles. Either degrees or radians may
be specified, using the DEG or RAD statements, respectively. The default
at power-on and SCRATCH A is radians.

A subprogram “inherits” the angle mode of the calling context. If the
angle mode is changed in a subprogram, the mode of the calling context is
restored when execution returns to the calling context.

array
A structured data type that can be of type REAL, INTEGER, COMPLEX,
or string. Arrays are created with the DIM, REAL, INTEGER,
COMPLEX, ALLOCATE, or COM statements. Arrays have 1 to 6
dimensions; each dimension is allowed 32 767 elements. The lower and
upper bounds for each dimension must fall in the range —32 767 (—32 768
for ALLOCATE) thru +32 767, and the lower bound must not exceed the
upper bound. The default lower bound is the OPTION BASE value; the
OPTION BASE statement can be used to specify 0 or 1 as the default
lower bound. The default OPTION BASE in every environment is zero.

Each element in a string array is a string whose maximum length is
specified in the declaring statement. The declared length of a string must
be in the range 1 thru 32 767.

To specify an entire array, the characters (*) are placed after the array
name. To specify a single element of an array, subscripts are placed in
parentheses after the array name. Each subscript must not be less than
the current lower bound or greater than the current upper bound of the
corresponding dimension.

Glossary-1

o orroy

bscri
name subscript

If an array is not explicitly dimensioned, it is implicitly given the number
of dimensions used in its first occurrence, with an upper bound of 10.
Undeclared strings have a default length of 18 bytes (18 ASCII characters).

ASCII
This is the acronym for “American Standard Code for Information
Interchange”. It is a commonly used code for representing letters, numerals,
punctuation, special characters, and control characters. A table of the
characters in the ASCII set and their code values can be found in the back
of this manual.

bit
This term comes from the words “binary digit”. A bit is a single digit in
base 2 that must be either a 1 or a 0.

byte
A group of eight bits processed as a unit.

command
A statement that can be typed on the input line and executed (see
“statement”).

COMPLEX
A complex number is an ordered pair (x,y) denoted by Mathematicians as:

x+yt
where:

z is the real part of the complex number and y is the imaginary part of the
complex number. The product y: represents the value obtained from:

Glossary-2

yv-1

Thus, this expression:

could be written as 3i.

context
An instance of an environment. A context consists of a specific instance of
all data types and system parameters that may be accessed by a program at
a specific point in its execution. Context changes occur when subprograms
are invoked or exited.

device selector
A numeric expression used to specify the source or destination of an I/0
operation. A device selector can be either an interface select code or a
combination of an interface select code and an HP-IB primary address. To
construct a device selector with a primary address, multiply the interface
select code by 100 and add the primary address. For instance, a device
selector that specifies the device at address 1 on interface select code 7 is
701. The device at address 0 on interface select code 14 is 1400. Device
selector 1516 selects interface select code 15 and primary address 16.

Secondary addresses may be appended after a primary address by
multiplying the device selector by 100 and adding the address. This may
be repeated up to 6 times, adding a new secondary address each time. A
device selector, once rounded, may contain a maximum of 15 digits. For
example, 70502 selects interface 7, primary address 05, and secondary
address 02.

In BASIC/UX, a device selector may also be a window number in the range
of 600 through 699. Note that the window being referenced must exist
before it can accept output.

When a device selector contains an odd number of digits, the leftmost digit
is the interface select code. For an even number of digits, the leftmost two
digits are the interface select code.

Glossary-3

DFS
This is the acronym for “DOS File System.”

directory name
A directory name specifies a directory of files on a hierarchically structured

mass storage volume. Directory names follow the same rules as file names
(see “file name”).

display enhancement characters
Display enhancement characters change the appearance of characters that
follow. These characters do not occupy any space on the screen, nor do
they produce any immediately visible effect.

Globalized BASIC defines both one- and two-byte display enhancement
characters. Refer to the globalization chapters of HP BASIC 6.2 Porting
and Globalization for more information about two-byte characters.

dyadic operator
An operator that performs its operation with two expressions. It is placed
between the two expressions. The following dyadic operators are available:

Glossary-4

Dyadic
Operator Operation

+ REAL, COMPLEX or INTEGER addition
- REAL, COMPLEX or INTEGER subtraction

* REAL, COMPLEX or INTEGER multiplication
/ REAL or COMPLEX division!
- REAL, COMPLEX or INTEGER exponentiation!
& String concatenation

DIV Gives the integer quotient of a division

MOD Gives the remainder of a division

MODULO | Gives the remainder of a division, similar to MOD

= Comparison for equality

<> Comparison for inequality

< Comparison for less than

> Comparison for greater than

<= Comparison for less than or equal to

>= Comparison for greater than or equal to

AND Logical AND

OR Logical inclusive OR

EXOR Logical exclusive OR

MINTEGER arguments are converted to REAL before any computation is
done.

file name
A name used to identify a file. The length and characters allowed in a file
name vary according to the format of the volume on which the file resides.

Glossary-5

Note You can avoid most complexities and pitfalls by using only
upper and lower case ASCII letters, digits, and the underline
character in file names. This is particularly important if
globalization is active.

m A file name on a Logical Interchange Format (LIF) volume may consist of
from 1 to 10 characters, which may include all ASCII characters except
“” “<” and “|”. Spaces are ignored.

m A file name on a Hierarchical File System (HFS) volume may consist of
from 1 to 14 characters, which may include all ASCII characters except
“pr, ey “<” and “|”. Spaces are ignored.

m A file name on a Shared Resource Manager (SRM or SRM/UX) volume
may consist of from 1 to 16 characters, which may include all ASCII
characters except “/”, “”, 7, “<”, “|”, and character 255. (Character 0,
the null character, is also invalid for SRM/UX only.) Spaces are ignored.

m DFS file names follow the standard MS-DOS file name conventions. That
is, a file name consists of from 1 to 8 characters, optionally followed by
a period and an extension of from 1 to 3 characters. All alphanumeric
characters (“A” through “Z”, “a” through “z”, and “0” through “9”)
are valid in DFS file names and extensions. However, lower-case alpha
characters are “case-folded” into upper-case characters. In addition, the
following characters may be used: “$77’ “&77’ “#77’ “%77’ “777’ “!77’ “(77’ “)77’
“_77’ “_77’ “@77’ “"77’ “{77’ “}77’ and “"’77.

Spaces may not be used in DFS file names or extensions. Also, the period
is not valid, except for the period that separates the extension. Note that
MS-DOS reserves certain file name extensions (“.COM”, “.S5YS”, and
“.EXE”) which should not be used for DFS file names.

Note When WILDCARDS UX is enabled, the wildcard characters
“pr«x» and “[” cannot be used explicitly in a filename unless
preceded by the escape character specified in the WILDCARDS
statement. When WILDCARDS DOS is enabled, the wildcard
characters “?” and “*” cannot be used explicitly in a filename.

Glossary-6

function
A procedural call that returns a value. The call can be to a user-defined-
function subprogram (such as FNInvert) or a machine-resident function
(such as COS or EXP). The value returned by the function is used in place
of the function call when evaluating the expression containing the function
call.

graphic display unit
This is 1/100 of the shortest axis on the plotting device. Graphic display
units are the same size on both the X and Y axes. Abbreviated “GDU”.

graphics font
The type of characters displayed by LABEL. These are also called “stroked
fonts” or “vector fonts”. The characters are drawn by a graphics pen.

hard clip limits
These are the physical limits of the plotting device.

HFS
This is the acronym for “Hierarchical File System.”

hierarchy
When a numeric or string expression contains more than one operation, the
order of operations is determined by a precedence system. Operations with
the highest precedence are performed first. Multiple operations with the
same precedence are performed left to right. The following tables show the
hierarchy for numeric and string operations.

Glossary-7

Math Hierarchy

Precedence Operator

Highest Parentheses: (may be used to force any order of
operations)

Functions: user-defined and machine-resident

Exponentiation: =

Multiplication and division: * / MOD DIV
MODULO

Addition, subtraction, monadic plus and minus: +

Relational operators: = <> < > <= >=
NOT
AND

Lowest OR EXOR

String Hierarchy

Precedence Operator

Highest Parentheses

Functions (user-defined and machine-resident) and
substring operations

Lowest Concatenation: &

HP-15
An HP character coding system used to represent two-byte characters.
BASIC uses HP-15 to represent two-byte characters in memory. Two-byte
characters are used by certain non-Roman languages, such as Japanese.
(See also “two-byte characters”.)

Glossary-8

HP-16
An HP character coding system used to represent two-byte characters.
Two-byte characters are used by certain non-Roman languages, such as
Japanese. Many HP Asian language printers use HP-16 codes to print
two-byte characters. (See also “two-byte characters”.)

I/0 path
A combination of firmware and hardware that can be used during the
transfer of data to and from a BASIC program. Associated with an I/0O
path is a unique table that describes the I/O path. This association table
uses 148 bytes and is referenced when an I/O path name is used. For
further details, see the ASSIGN statement.

IN
An abbreviation for “HP BASIC for Instrument Control.”

INTEGER
A numeric data type stored internally in two bytes. Two’s-complement
representation is used, giving a range of —32 768 thru +32 767. If a
numeric variable is not explicitly declared as an INTEGER, it is a REAL.

integer
A number with no fractional part; a whole number.

interface select code
A numeric expression that selects an interface for an I/O operation.
Interface select codes 1 thru 7 are reserved for internal interfaces. Interface
select codes 8 thru 31 are used for external interfaces. The internal
HP-IB interface with select code 7 can be specified in statements that are
restricted to external devices. (Also see “device selector”.)

keyword
A group of uppercase ASCII letters that has a predefined meaning to the
computer. Keywords may be typed using all lowercase or all uppercase
letters.

LIF
This is the acronym for “Logical Interchange Format”. This HP standard
defines the format of mass storage files and directories. It allows the

Glossary-9

interchange of data between different machines. Series 200/300 files of type
ASCII are LIF compatible. See “file name” for file name restrictions.

LIF protect code
A non-listable, two-character code kept with a file description in the
directory of a LIF volume. It guards against accidental changes to an
individual file. It may be any two characters, but must not contain a “>”
since that is used to terminate the protect code. Blanks are trimmed from
protect codes. When the result contains more than two characters, only the
first two are used as the actual protect code. A protect code that is the null
string (or all blanks) is interpreted as no protect code.

literal
A string constant. When quote marks are used to delimit a literal, those
quote marks are not part of the literal. To include a quote mark in a
literal, type two consecutive quote marks (except in response to a LINPUT
statement). The drawings showing literal forms of specifiers (such as file
specifiers) show the quote marks required to delimit the literal.

localization binaries
Binaries that allow BASIC to support the two-byte characters used by
non-Roman languages, such as Japanese. These binaries are LANGUAGE,
FONT, and INPUT.

localized BASIC
A version of BASIC that has been customized to support the native
language of a specific country. If the language uses two-byte characters, you
must load language specific LANGUAGE, FONT, and INPUT binaries.
(See also “two-byte characters” and “localization binaries”.)

logical pen
See “pen”.

monadic operator
An operator that performs its operation with one expression. It is placed in
front of the expression. The following monadic operators are available:

Glossary-10

Monadic
Operator Operation

- Reverses the sign of an expression
+ Identity operator

NOT Logical complement

msus
The acronym for “mass storage unit specifier”. This archaic term is no
longer used, because: it is not descriptive of newer mass storage devices
which may have multiple units or multiple volumes; and it is not an
industry-standard term. (See also “volume specifier”.)

msvs

The acronym for “mass storage volume specifier”. (See also “volume
specifier”.)

name
A name identifies one of the following: variable, line label, common block,
I/0 path, function, or subprogram. A name consists of one to fifteen
characters. The first character must be an ASCII letter or one of the
characters from CHR$(161) thru CHR$(254). The remaining characters,
if any, can be ASCII letters, numerals, the underbar (_), or national
language characters CHR$(161) thru CHR$(254). Names may be typed
using any combination of uppercase and lowercase letters, unless the name
uses the same letters as a keyword. Conflicts with keywords are resolved by
mixing the letter case in the name. (Also see “file name”, “directory name”
and “volume name”.)

)

node address

An integer from 0 through 63 that identifies an SRM device (such as a
workstation or controller).

Glossary-11

numeric expression
An expression that evaluates to a number.

Glossary-12

ol numeric

expression
monadic
operator
numeric dyadic
expression operator
numeric
constant
» Numeric variable
name
subscript
»] numeric function
keyword
parameter
FN Y numeric
function name
parameter

string
expression

operator

comparison >

string
expression

nu
exp

meric)
ression

Item Description

monadic An operator that performs its operation on the expression
operator immediately to its right: + - NOT

dyadic operator | An operator that performs its operation on the two
expressions it is between: = * / MOD DIV + — = <> < > <= >=
AND OR EXOR MODULO

numeric A numeric quantity whose value is expressed using
constant numerals, decimal point, and optional exponent notation
numeric The name of a numeric variable or the name of a numeric

variable name |array from which an element is extracted using subscripts

subscript A numeric expression used to select an element of an array
(see “array”)

numeric A keyword that invokes a machine-resident function which
function returns a numeric value

keyword

numeric The name of a user-defined function that returns a numeric

function name |{value

parameter A numeric expression, string expression, or I/O path name
that is passed to a function

comparison An operator that returns a 1 (true) or a 0 (false) based on
operator the result of a relational test of the operands it separates:
> LK=>==<>

password
See “SRM password”.

pen
All graphical objects are “drawn” using mathematical representations in
the computer’s memory. This is done with the “logical pen”. The logical
pen creates five classes of objects: lines, polygons, labels, axes, and label
locations (label locations are actually the position of an object, rather than
an object).

Glossary-13

Before these objects can be viewed, they are acted upon by various
transformation matrices, such as scaling and pivoting. No single
transformation affects all the objects, and no object is affected by all the
transformations.

The output of the transformations is used to control the “physical pen”.
The physical pen creates the image that you actually see on the plotter or
CRT. Since the graphics statements used to create objects act directly upon
the logical pen, and you can see only the output of the physical pen, the
location of the logical pen may not always be readily discernible from what
you see.

The following table shows which transformations act upon which objects.

Applicable Graphics Transformations

Scaling | PIVOT | CSIZE | LDIR | PDIR

Lines (generated by moves and draws) X X 4]
Polygons and rectangles X X X
Characters (generated by LABEL) X X

Axes (generated by AXES and GRID) X

Location of labels

[1]

[3]

[2]

1The starting point for labels drawn after lines or axes is affected by
scaling.

2The starting point for labels drawn after other labels is affected by LDIR.

3The starting point for labels drawn after lines or axes is affected by
PIVOT.

4RPLOT and IPLOT are affected by PDIR.

permission

A file-access permission on an HFS volume. See the PERMIT statement for
details.

Glossary-14

primary address
A numeric expression in the range of 0 thru 31 that specifies an individual
device on an interface which is capable of servicing more than one device.
The HP-IB interface can service multiple devices. (Also see “device
selector”.)

program line
A statement that is preceded by a line number (and an optional line label)
and stored with the (ENTER), (EXECUTE), or (Return) key into a program (see
“statement”).

protect code
See “LIF protect code”.

raster font
The type of characters displayed by PRINT and DISP. These characters are
composed of a matrix of display pixels. Individual pixels are turned on or
off to create the outline of a character.

REAL
A numeric data type that is stored internally in eight bytes using
sign-and-magnitude binary representation. One bit is used for the number’s
sign, 11 bits for a biased exponent (bias = 1023), and 52 bits for a
mantissa. On all values except 0, there is an implied “1.” preceding the
mantissa (this can be thought of as the 53rd bit). The range of REAL
numbers is approximately:

—1.797 693 134 862 32 E4308 thru —2.225 073 858 507 2 E-308 , 0, and
+2.225 073 858 507 2 E—308 thru +1.797 693 134 862 32 E+308

If a numeric variable is not explicitly declared as INTEGER or COMPLEX,
it is REAL.

record
The records referred to in the Series 200/300 BASIC manuals are defined
records. Defined records are the smallest unit of storage directly accessible
on the mass storage media. The length of a record is different for various
types of files. For ASCII files, the record length is the same as the sector
size (256, 512, or 1024 bytes). For HP-UX files, defined records are always 1
byte long. For BDAT files, the defined record length is determined when a

Glossary-15

BDAT file is created by a CREATE BDAT statement. All records in a file
are the same size.

There is another type of record called a “physical record” (or sector) which
is the unit of storage handled by the mass storage device and the operating
system. Physical records contain 256, 512, or 1024 bytes and are not
accessible to the user via standard BASIC statements.

recursive
The ability of a subprogram or function to call itself.

row-major order

The order of accessing an array in which the right-most subscript varies the
fastest.

secondary address
A device-dependent command sent on HP-IB. It can be interpreted as a
secondary address for the extended talker/listener functions or as part of a
command sequence. (Also see “device selector”.)

selector
A numeric quantity used to identify or choose something from a number
of possibilities. A selector is usually a numeric expression. For example:
device selector is used to identify a device involved in a I/O operation, and
pen selector is used to select a pen on a plotter.

soft clip limits
These are plotter clipping limits that are defined by the programmer. Lines
drawn on a plotting device are drawn only inside the clipping limits.

specifier
A string used to identify a method for handling an I/O operation. A
specifier is usually a string expression. For example: mass storage volume
specifier selects the proper drivers for a mass storage volume, and plotter
specifier chooses the protocol of a plotting device.

SRM
The acronym for Shared Resource Management.

Glossary-16

SRM server
The computer that controls access to the shared resources of the Shared
Resource Management “file server” system.

SRM server’s node address
An integer in the range 0 through 63 that identifies the SRM server.

SRM interface
The term used to describe the Resource Management Interface resident in
an SRM workstation computer (not the interface in the SRM server).

SRM password
A string of up to 16 characters that is used to protect a file on an SRM
volume from being overwritten, purged, etc. It may be any 16 characters,
but must not contain a “>” since that is used to terminate the password.
Passwords are assigned by the PROTECT statement in BASIC or the
Pascal Filer’s Access command.

SRM volume name
See “volume name”.

SRM volume password
See “volume password”.

statement
A keyword combined with any additional items that are allowed or required
with that keyword. If a statement is placed after a line number and stored,
it becomes a program line. If a statement is typed without a line number
and executed, it is called a command.

string
A data type comprised of a contiguous series of characters. Strings require
one byte of memory for each character of declared length, plus a two-byte
length header. Characters are stored using an extended ASCII character
set. The first character in a string is in position 1. The maximum length
of a string is 32 767 characters. The current length of a string can never
exceed the dimensioned length.

Glossary-17

If a string is not explicitly dimensioned, it is implicitly dimensioned to 18
bytes (18 ASCII characters). Each element in an implicitly dimensioned
string array is dimensioned to 18 bytes (18 ASCII characters).

When a string is empty, it has a current length of zero and is called a “null
string”. All strings are null strings when they are declared. A null string
can be represented as an empty literal (for example: A$="") or as one of
three special cases of substring. The substrings that represent the null
string are:

1. Beginning position one greater than current length
2. Ending position one less than beginning position

3. Maximum substring length of zero

Glossary-18

string expression
An expression that evaluates to a string.

string string > >
expression expression L 3

" literat O > P
=)

] string variable

name ej -
beginning]
pasition J A

subscript -

ending
position

substring)

length
|| string function > > >
keyword
parameter

Y string function -~ -
&G R € - -

parameter

string) > y
expression

Glossary-19

Item Description

literal A string constant composed of any characters
available on the keyboard, including those
generated with the ANY CHAR key.

string The name of a string variable or the name of a
variable string array from which a string is extracted using
name subscripts

subscript | A numeric expression used to select an element of
an array (see “array”)

beginning | A numeric expression specifying the position of

position the first character in a substring (see “substring”)
ending A numeric expression specifying the position of
position the last character in a substring (see “substring”)

substring | A numeric expression specifying the maximum
length number of characters to be included in a substring
(see “substring”)

string A keyword that invokes a machine-resident
function function which returns a string value. String
keyword function keywords always end with a dollar sign.
string The name of a user-defined function that returns a
function string value

name

parameter | A numeric expression, string expression, or I/O
path name that is is passed to a function

subprogram
Can be a CSUB, a SUB subprogram or a user-defined-function subprogram
(DEF FN). The first line in a SUB subprogram is a SUB statement. The
last line in a SUB subprogram (except for comments) is a SUBEND
statement. The first line in a function subprogram is a DEF FN statement.
The last line in a function (except for comments) is an FNEND statement.
Subprograms must follow the END statement of the main program.

Glossary-20

SUB and CSUB subprograms are invoked by CALL. Function subprograms
are invoked by an FN function occurring in an expression. A function
subprogram returns a value that replaces the occurrence of the FN function
when the expression is evaluated. Subprograms may alter the values of
parameters passed by reference or variables in COM. It is recommended
that you do not let function subprograms alter values in that way.

Invoking a subprogram establishes a new context. The new context remains
in existence until the subprogram is properly exited or program execution is
stopped. Subprograms can be recursive.

subroutine

A program segment accessed by a GOSUB statement and ended with a
RETURN statement.

substring
A substring is a contiguous series of characters that comprises all or part of
a string. Substrings may be accessed by specifying a beginning position, or
a beginning position and an ending position, or a beginning position and a
maximum substring length.

$ string > [beginning |__]
name position

N ending
position
Y subscript . substring

length

(

The beginning position must be at least one and no greater than the
current length plus one. When only the beginning position is specified, the

substring includes all characters from that position to the current end of the
string.

The ending position must be no less than the beginning position minus

one and no greater than the dimensioned length of the string. When both
beginning and ending positions are specified, the substring includes all
characters from the beginning position to the ending position or current end
of the string, whichever is less.

Glossary-21

The maximum substring length must be at least zero and no greater than
one plus the dimensioned length of the string minus the beginning position.
When a beginning position and substring length are specified, the substring
starts at the beginning position and includes the number of characters
specified by the substring length. If there are not enough characters
available, the substring includes only the characters from the beginning
position to the current end of the string.

two-byte characters
The characters used by certain non-Roman languages, such as Japanese,
that are represented in computer memory as two bytes of data.

two-byte langunage
A human language that has an alphabet containing two-byte characters.

vector font
See “graphics font”.

volume
A named mass storage media, or portion thereof, which may contain several
files. With BASIC, volumes are entities which are recognized by the disk
controller. (This is in contrast to Workstation Pascal logical volumes, which
are handled by the “Unitable” construct in the “TABLE” program; this
program partitions a “hard” volume into several “logical” volumes by using
byte offsets from sector number zero.)

volume name (or label)
A name used to identify a mass storage volume. The volume name is
assigned to the volume at initialization, but may be changed on LIF and
HF'S volumes with PRINT LABEL (and read with CAT and READ
LABEL). With SRM volumes, you may only change it at the SRM console.

m LIF volume names consist of 1 to 6 characters which may be any ASCII
character except “/7, “.” “” and “<”.

m HF'S volume names may contain 1 to 6 characters, which may be any
ASCII character except “/” and “:” and “<”. Spaces are ignored.

m SRM volume names may contain 1 to 16 characters, which may be any
ASCII character except “/” and “” and “<”. Spaces are ignored.

Glossary-22

volume password
A “master” password on an SRM volume, assigned at initialization, that
allows complete access to all files on that volume. SRM volume passwords
consist of 1 to 16 characters. All ASCII characters except “>" are allowed.
The volume password supercedes all access restrictions placed on files by
the PROTECT statement in BASIC or the Pascal Filer’s Access command.

volume specifier

A string of information that identifies a mass storage volume. It consists
of a device type (optional), device selector, unit number (optional;
default=unit 0), and volume number (optional; default=volume number 0).
Here are some examples:

:€S80, 700

:, 700

:,802, 0

:,1400,0,0

See MASS STORAGE IS for the complete syntax drawing.

Glossary-23

(ﬁp HEWLETT

PACKARD

HP Part Number
98616-90004

BRI NIRRT

Printed in U.S.A. E0691 98616-90625 Manufacturing Number

