RN IR

HP BASIC 6.2 Interface Reference

&

A cacianc

HP Part No. 98616-90013
Printed in USA

Notice

The information contained in this document is subject to change without
notice.

Hewlett-Packard Company (HP) shall not be liable for any errors contained
in this document. HP MAKES NO WARRANTIES OF ANY KIND WITH
REGARD TO THIS DOCUMENT, WHETHER EXPRESS OR IMPLIED.
HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
HP shall not be liable for any direct, indirect, special, incidental, or
consequential damages, whether based on contract, tort, or any other legal
theory, in connection with the furnishing of this document or the use of the
information in this document.

Warranty Information

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to restrictions
as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause of DFARS 252.227-7013.

Use of this manual and magnetic media supplied for this product are restricted.
Additional copies of the software can be made for security and backup purposes
only. Resale of the software in its present form or with alterations is expressly
prohibited.

Copyright (© Hewlett-Packard Company 1987, 1988, 1989, 1990, 1991

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

Copyright © AT&T Technologies, Inc. 1980, 1984, 1986

Copyright © The Regents of the University of California 1979, 1980, 1983,
1985-86

This software and documentation is based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University of
California.

Printing History
First Edition - June 1991

Contents

1. Display Interfaces

Description of Displays 1-1
Types of Display Devices for BASIC/WS 1-2
How the Default Display Device Is Chosen 1-3
Overview of Display Features 1-4

Display Regions 1-4
Clearing the Screen 1-6
The OQutput Area and the Display Line 1-6
Determining Screenwidth and Other Attributes 1-8
Changing Pen Colors in Display Regions 1-10

Pen Colors for BASIC/WS 1-12

Interaction Between Alpha and Graphics 1-16

Output tothe CRT o ... 1-17
Numeric Qutputs L. .. 1-17
String Outputs 1-18
Control Characters 1-18
Display-Enhancement Characters 1-21

Monochrome Enhancement Characters 1-22
Color Enhancements 1-24
Display Enhancement Guidelines 1-25
The Display Functions Mode 1-25

Output-Area Memory 1-27
Determining Above-Screen Tines 1-27
The PRINT Position 1-29
Scrolling the Display 130

Entering from the CRT 1-32
Reading a Screen Line 1-32
Reading the Entire Output-Area Memory 1-33

Final Display 1-34

Additional CRT Features 1-35

Contents-1

The DISP Line v v 135

Changing Pen Colors 136
Disabling the Cursor Character 1-37
Enabling the Insert Mode 1-37
Softkey Labels 1.38
Softkey Label Colors 1-40

Summary of CRT STATUS and CONTROL Registers 1-40
2. The Keyboard Interface
Description of Keyboards 2-1
Types of Keyboards 2-1
How the Primary Keyboard Is Chosen for BASIC/WS 2-3
HP 98203 Keyboard Compatibility Mode 2-4
Re-Configuring HIL Devices 2-4
Overview of Keyboard Features 2-4
ASCII and Non-ASCIlI Keyso 2-5
The Shift and Control Keys 2-5
Keyboard Operating Modeso 2-9
The Caps Lock Mode 2-9
The Print Al Mode 210
Disabling Scrolling 210
Modifying the Repeat and Delay Intervals 2-11
Entering Data from the Keyboard 213
Sending the EOI Signal 2-15
Sending Data to the Keyboard 215
Sending Non-ASCII Keystrokes to the Keyboard 2-16
Second Byte of Non-ASCII Key Sequences (String) 2-17
ClosureKeys 224
Softkeyso 2-26
Sensing Knob Rotation2-27
Enhanced Keyboard Control 229
Trapping Keystrokes 2-30
Mouse Keys e e e . 2-32
Softkeys and Knob Rotation 2-33
Disabling Interactive Keyboard 2-33
Locking Out the Keyboard 234
Special Considerations 2-35
Keyboard Status and Control Registers 2-36

Contents-2

3.

The HP-IB Interface

Introduction Lo oL
Initial Installation and Verification
Communicating with Devices
HP-IB Device Selectors
Moving Data Through the HP-IB
Using an Interface in the HP-UX Environment
Locking an Interface toa Process
Using the Burst I/O Mode

General Structure of the HP-1B

Addressing Multiple Listeners

Secondary Addressing
General Bus Management

Remote Control of Devices
Locking Out Local Control
Enabling Local Control
Triggering HP-IB Devices
Clearing HP-1B Devices
Aborting Bus Activityo
HP-IB Service Requests
Setting Up and Enabling SRQ Interrupts
Servicing SRQ Interrupts
Polling HP-IB Devices
Configuring Parallel Poll Responses
Conducting a Parallel Poll
Disabling Parallel Poll Responses
Conducting a Serial Poll
Special Case: Serial Polling a Non-Active Controller
Advanced Bus Management
The Message Concept
Types of Bus Messages
Bus Commands and Codes

Address Commands and Codes

Explicit Bus Messages
HP-IB Message Mnemonics
The Computer As a Non-Active Controller
Determining Controller Status and Address
Changing the Controller’s Address

Contents-3

Passing Control 3-36

Restrictions to Passing Control with BASIC/UX 3-37
Interrupts While Non-Active Controller 3-37
Addressing a Non-Active Controller 3-43
Requesting Service o000 0oL 3-44
Responding to Parallel Polls 3-45
Responding to Serial Polls 3-48
Interface-State Information 3-48
Servicing Interrupts that Require Data Transfers 3-50

HP-IB Control Lines 3-53
Handshake Lines 3-54
The Attention Line (ATN) 3-54
The Interface Clear Line (IFC) 3-55
The Remote Enable Line (REN) 3-55
The End or Identify Line (EOI) 3-55
The Service Request Line (SRQ) 3-56
Determining Bus-Line States 3-56

Summary of HP-IB STATUS and CONTROL Registers 3-58

HP-IB Status and Control Registers (continued) 3-59

HP-IB Status and Control Registers (continued) 3-60

HP-IB Status and Control Registers (continued) 3-61

HP-IB Status and Control Registers (continued) 3-62

HP-IB Status and Control Registers (continued) 3-63

HP-IB Status and Control Registers (continued) 3-64

Summary of HP-IB READIO and WRITEIO Registers 3-65
READIO Registers 3-65
HP-IB WRITEIO Registers 3-71

Summary of Bus Sequences L. 3-78
ABORT oo oo o 3-79
CLEAR oo o 3-79
LOCAL o oo oo e 3-80
LOCALLOCKOUT 3-80
PASSCONTROL 3-81
PPOLL o oo 3-81
PPOLL CONFIGURE 3-82
PPOLL UNCONFIGURE 3-82
REMOTE o ... 3-83
SPOLL o 3-84

Contents-4

TRIGGER o000 3-85

RS-232C Serial Interfaces

Overview L .. Lo e e e e e e e 4-1
Asynchronous Data Communication 4-2
Character Format 4-2
Parity 4-3
Error Detection 4-4
Data Transfers Between Computer and Peripheral 4-5
Overview of Serial Interface Programming 4-5
Determining Operating Parameters 4-6
Handshake and Baud Rate 4-6
Character Format Parameters 4-6
Using BASIC/WS Interface Defaults to Simplify Programming 4-7
Modem-Line Disconnect Switches 4-7
Baud Rate Select Switches 4-8
Line-Control Switches 4-8
Serial Configuration for BASIC/UX 4-9
Defaults for the Serial Interface 4-9
Configuring a Serial Interface for BASIC/UX 4-10
Using Program Control to Override Defaults 4-11
Interface Reset 4-11
Selecting the Baud Rate 4-12
Setting Character Format and Parity 4-13
Transferring Data 4-14
Entering and Outputting Data 414
Outputting Data 4-14
EnteringDatao, 4-15
Modem Line Handshaking (HP BASIC/WS only) 4-15
BASIC/UX Modem Line Handshaking 4-16
Incoming Data Error Detection and Handling (BASIC/WS
only) 4-18
Trapping Serial Interface Errors on BASIC/WS 4-19
Advanced Programming Information e ... 421
RS-232 Software Portability 421
Sending BREAK Messages 4-24
Using the Modem Control Register 4-24
Modem Handshake Lines (RTS and DTR) 4-24

Contents-5

Programming the DRS Modem Line for BASIC/UX .
Programming the DRS and SRTS Modem Lines for
BASIC/WSo oo
Configuring the Interface for BASIC/WS Self-test Operations
READIO and WRITEIO Registers for BASIC/WS
Interface Hardware Registers
UART Registers
Cable Options and Signal Functions
The DTE Cable
Optional Circuit Driver/Receiver Functions e
The DCECableo ..
RS-232C /CCITT V.24
HP 98626 and HP 98644 Serial Interface STATUS and
CONTROL Registers
Model 216 and 217 Built-In Interface Differences for BASIC/WS
HP 98644 Interface Differences
Hardware Differences
Card ID Register
Optional Driver Receiver Circuits
Configuration Switches
Coverplate Connector Ce e
Cables o0l o s
BASIC Differences
Card ID Register
Optional Driver/Receiver Registers for BASIC/WS ..
Baud-Rate and Line-Control Registers for BASIC/WS . . .
Series 300 Built-In 98644 Interface Differences

5. Datacomm Interfaces

Prerequisites oL ..

Protocolo 0oL
Asynchronous Communication Protocol
Data Link Communication Protocol (BASIC/WS Only)

Data Transfers Between Computer and Interface
Outbound Control Blocks
Inbound Control Blocks for BASIC/UX
Inbound Control Blocks for BASIC/WS Coe
Outbound Data Messages

Contents-6

Inbound Data Messages 5-10

Overview of Datacomm Programming 5-11
RS-232 Software Portability 5-12
Establishing the Connection 5-15
Determining Protocol and Link Operating Parameters 5-15
Datacomm Configuration for BASIC/UX 5-16
Defaults for the Serial Interface 5-17
Configuring a Datacomm Interface for BASIC/UX 5-17
Resetting the Datacomm Interface 5-18
Protocol Selection for BASIC/WS 5-19
Datacomm Options for Async Communications 5-20
Control Block Contents for BASIC/WS 5-21
Modem-initiated ON INTR Branching Conditions for
BASIC/WSo 5-21
Datacomm Line Timeouts 5-22
Line Speed (Baud Rate) 5-23
Handshake 5-23
BASIC/UX Modem Line Handshaking 5-25
Handling of Non-Data Characters for BASIC/WS 5-25
Protocol Handshake Character Assignment for BASIC/WS . 5-26
End-Of-Line Recognition for BASIC/WS 5-26
Prompt Recognition for BASIC/WS 5-27
Character Format Definition 5-27
Break Timing for BASIC/WS 5-28
Datacomm Options for Data Link Communication for
BASIC/WS 5-29
Control Block Contents for BASIC/WS 5-30
ON INTR Branching Conditions and Line Speed for
BASIC/WSo 5-30
Terminal Identification for BASIC/WS 5-31
Handshake for BASIC/WS 5-31
Transmitted Block Size for BASIC/WS 5-32
Parity for BASIC/WS 5-32
Connecting tothe Line 5-32
Switched (Public) Telephone Links 5-33
Private Telecommunications Links 5-33
Direct Connection Links 5-33
Connection Procedure for BASIC/WS 5-33

Contents-7

Dialing Procedure for Switched (Public) Modem Links . .
Automatic Dialing with the HP 13265A Modem
Initiating the Connection
Connection Procedure for Hayes-Compatible Modems ..
Setting up the Interrupt System for BASIC/WS
Setting up Softkey Interrupts
Setting Up Program Operator Inputs
Setting Up Datacomm Interrupts
Background Program Routines for BASIC/WS
Interrupt Service Routines
Servicing Datacomm Interrupts
Exit Conditions oL,
Data Formats for Datacomm Transfers
Servicing Keyboard Interrupts
Service Routines for ON KEY Interrupts
Cooperating Programs for BASIC/WS
FORTRAN Program COOP for the HP 1000:
Cooperating BASIC Program for the Desktop Computer:
Program File to be Downloaded from the HP 1000: -
Modified Cooperating BASIC Program After Loading: . . .
Results: o000
Terminal Emulator Example Programs for BASIC/WS .
Datacomm Programming Helps for BASIC/WS
Terminal Prompt Messages
Prevention of Data Loss on the HP 1000
Disabling Auto-poll on the HP 1000
Prevention of Data Loss on the HP 1000
Secondary Channel, Half-duplex Communication
Automatic Answering Applications
Communication Between Desktop Computers
Datacomm Error Recovery
Datacomm Error Detection and Program Recovery
Cable and Adapter Options and Functions
DTE and DCE Cable Options Ce
Optional Circuit Driver/Receiver Functions
RS-232C/CCITT V24 o o o o o o ..
The HP 98642 4-Channel Multiplexer
Specifics on the HP 98642 4-Channel Multiplexer

Contents-8

Using the HP 98642 4-Channel Multiplexer

Keywords Used by the HP 98642 4-Channel Multiplexer .
HP 98628 and HP 98642 Datacomm Interface Status and Control
Registers 000w e e

The GPIO Interface
Introduction Lo oo oL
Interface Description 000
Interface Configuration
Interface Select Code
Hardware Interrupt Priority
Data Logic Sense oL,
Data Handshake Methods
Handshake Lines
Handshake Logic Sense
Handshake Modes
Data-In Clock Source
Optional Peripheral Status Check
Full-Mode Handshakes
Pulse-Mode Handshakes
Interface Reseto
Outputs and Enters through the GPIO
ASCII and Internal Representations
Example Statements that Output Data Bytes
Example Statements that Enter Data Bytes
Example Statements that Output Data Words ..
Example Statements that Enter Data Words
Using a GPIO Interface in the HP-UX Environment
Locking an Interface toa Process -
Using the Burst I/O Mode
GPIO Timeouts
Timeout Time Parameter
Timeout Service Routines
Using Alternate Data Representations
BCD Representation
Character Conversions
GPIO Interrupts
Types of Interrupt Events

................

5-84
5-84

5-86

Contents-9

Setting Up and Enabling Events
Interrupt Service Routines
Designing Your Own Transfers
Full Handshake Transfer
Interrupt Transfers
Ready Interrupt Transfers
Using the Special-Purpose Lines
Driving the Control Qutput Lines
Interrogating the Status Input Lines
Using the PSTS Line o ...
Summary of GPIO STATUS and CONTROL Registers
Summary of GPIO READIO and WRITEIO Registers
GPIO READIO Registers
GPIO WRITEIO Registers

7. The BCD Interface for BASIC/WS

Brief Description of Operation
Data Representations and Formats
The BCD Data Representation
Standard Format00,
Optional Format
The Binary Data Representation
The Binary Mode -
Alternate Methods of Entering Data
Outputting Data
Configuring the Interface

Determining Interface Configuration
Setting the Interface Select Code
Setting the Hardware Priority (Interrupt Level)
Setting the Peripheral Status Switches Coe
Setting the Handshake Configuration
Type 1 Timing«
Type2Timingo
Configuring the Cable
Interface Reset o000
Entering Data Through the BCD Interface
Entering Data from One Peripheral
Entering with BCD-Mode Standard Format

Contents-10

Entering with the Binary Mode 7-25

Entering with STATUS Statements 7-29
Entering Data from Two Peripherals 7-31
Optional Format 7-31
Outputting Data Through the BCD Interface 7-34
Output Routines Using CONTROL and STATUS 7-34
Sending Data with OUTPUT 735
BCD Interface Timeouts 7-37
Timeout Time Parameter 7-38
Timeout Service Routines 7-38
BCD Interface Interrupts 7-40
Setting Up and Enabling Interrupts 7-40
Interrupt Service Routines 7-41
Summary of BCD STATUS and CONTROL Registers 7-42
Summary of BCD READIO and WRITEIO Registers 7-45
BCD READIO Registers 7-45
BCD WRITEIO Registers 748
EPROM Programming for BASIC/WS
Introduction L. L 0L 8-1
Accessories Required oL oL L 8-1
Hardware Installation 8-1
Brief Overview of Using EPROM Memory 8-2
Initializing EPROM Memory 8-3
EPROM Programmer Select Code 8-3
EPROM Addresses and Unit Numbers 8-3
Verifying Hardware Operation 8-4
Initializing Units o000 L. 8-8
EPROM Directories 8-8
EPROM Catalogs 8-9
Programming EPROM 000 L. 8-10
Storing Datao 8-10
Data Storage Rates 8-11
Determining Unused EPROM Memory 8-12
Storing Programs 8-14
Programming Individual Words and Bytes 815
Operations Not Allowed 817
Reading EPROM Memory 8-18

Contents-11

Retrieving Data and Programs 8-18
Summary of EPROM Programmer STATUS and CONTROL

Registers, 8-19

9. HP-HIL Interface
The Interface to HP-HIL Devices 9-1
Preview of HP-HIL Devices 9-2
Communicating through the HP-HIL Interface 9-3
Supported HP-HIL Devices 9-6
Selecting HP-HIL Devices 9-6
Enabling HP-HIL Devices 9-7
Identifying All Devices on the HP-HIL Link 9-8
Explanation of the HILID Program 9-10
Segment 1of HILID 9-10
Segment 2of HILID 9-12
Segment 3of HILID 914
Segment 4 of HILID ' A f
HP-HIL Devices 9-21
HP-HIL Keyboards 9-22
Relative Positioners e 922
Absolute Positionerso, 9-25
Security Device e . - o926
Other Devices 926
Communicating with HP-HIL Devices 9-29
HP-HIL Device Characteristics 929
IDModuleo ... 930
Device Characteristics 930
Interpreting ID Module Data e 92
Note about Installing and Removing ID Modules 9-31
Function Box and Vectra Keyboard 933
Determining Function Box Characteristics 9-33
Activating the Function Box 9-34
Trapping Key Presses 9-36
Assigning FunctionstoKeys 939
Using a Touchscreen 944
Device Characteristics 9-44
Plotting Selected Locations 9-45
Using a Bar Code Reader 949

Contents-12

10.

Determining Bar Code Reader Characteristics 9-50

Reading a Selected Bar Code 9-51
Interaction Among Multiple HP-HIL Devices 9-33
Modifying the Interactive Program 9-56

The Parallel Interface
Introduction oL 000000 10-1
Required Software and Hardware 10-1
Bus Description oo L oL 10-2
The Data Lines 10-3
The Handshake Lines 10-4
The Error Lines 10-4
The Status Lineso 0. 10-5
The Reset Line 10-5

Summary of Parallel Interface STATUS and CONTROL Registers 10-5
Summary of Parallel Interface READIO and WRITEIO Registers 10-13

Parallel READIO Registers 10-13
Parallel WRITEIO Registers 10-17
HP-HIL Appendix
HP-HIL Command Reference A-1
Identify and Describe (IDD) A-2
Read Register (RRG) A-2
Write Register (WRG) A-3
Report Name (RNM) A-4
Report Status (RST) A-4
Extended Describe (EXD) A4
Report Security Code (RSC) A-5
Disable Keyswitch Autorepeat (DKA) A-5
Enable Keyswitch Autorepeat (EKA 1,EKA2) A-6
Prompt 1 thru Prompt 7 (PRM1.. PRM7) A-6
Prompt (PRM)o A-7
Acknowledge 1 thru Acknowledge 7 (ACK 1.. ACK7) . .. A7
Acknowledge (ACK) A-8
Device-Dependent Commands (DDC 128 .. 239) A-8
Device ID Byte A-8
Describe Record, A-11
Extended Describe Record A-15

Contents-13

Poll Record

Report Security Code Record
Sample of Report Security Format for a Product Module . . .
Sample of Report Security Format for An Exchange Module

Accessible Keycode Definitions

Index

Contents-14

Display Interfaces

This chapter describes programming techniques for sending data to and
entering data from display interfaces. For information on using a display

for graphics, see the HP BASIC 6.2 Programming Guide. Configuring and
accessing these devices with I/O statements (QUTPUT, ENTER, STATUS,
and CONTROL) is described in this chapter. The display screen is a
convenient tool for visually verifying data output before attempting to send it
to another device.

Description of Displays

This section provides an overview of the capabilities of display devices available
with Series 300 computers. Here are the topics:

m Types of display devices.

m How the “default display device” is chosen (in machines with more than one
display installed).

m Overview of display features.

Display Interfaces 1-1

Types of Display Devices for BASIC/WS

There are essentially two types of displays available with Series 200/300
computers:

m Displays with separate alpha and graphics planes:
o The alpha screen is produced by character-generator hardware.
o The graphics screen is produced by bit-mapping hardware.
r1 Each can be turned on and off independently.
m Displays with combined alpha and graphics planes:
o Alpha and graphics share the same screen.
o Both are produced by bit-mapping hardware.
o Alpha and graphics cannot be turned on and off independently.

All Series 200 computers have separate alpha and graphics, except the Model
237 which has a combined display.

All Series 300 computer displays have combined alpha and graphics. However,
you can configure Series 300 color (multi-plane) displays to use independent
alpha and graphics planes. You can also install the HP 98546 Display
Compatibility Interface in a Series 300 computer to get separate alpha

and graphics planes (this interface is essentially the display of the Model

217). Configuring the color display and using the compatibility display are
both discussed in the HP BASIC 6.2 Programming Guide. Interactions
between graphics and alpha planes are also described in the HP BASIC 6.2
Programming Guide.

HP BASIC/DOS for the HP Measurement Coprocessor emulates a Series 300
bit-mapped display on the PC display.

1-2 Display Interfaces

How the Default Display Device Is Chosen

Select code 1 (BASIC provides the CRT function, which returns a value of
1) is always assigned to the “default display device.” However, as previously
mentioned, Series 300 computers can have more than one display installed at
one time. In such cases, the BASIC system has to choose which display will
be the default display device. The following list indicates the order that the
system chooses this device assuming that both display drivers, CRTA and
CRTB, are present. If CRTB is not present, steps 1 and 2 are skipped.

1. The “internal” bit-mapped display.

a. A Series 300 bit-mapped display, including Model 362 and 382 built-in
display.

b. The HP 98700 Display Controller at “internal” select code 6 (i.e., the
“internal/external” switch is set to “internal”).

2. An “external” bit-mapped display.

a. An HP 98700 Display Controller at the lowest “external” select code (i.e.,
the “internal/external” switch is set to “external”, and the select code
switches are set to a select code in the range 8 through 31).

3. The “internal” non-bit-mapped display (BASIC/WS only).
a. The HP 98546 Display Compatibility Interface.

Display Interfaces 1-3

Overview of Display Features

Even though there are several choices of displays available with Series 300
computers, all have similar alphanumeric display capabilities. Here are the
general categories of I/O operations you can perform with the alphanumeric
display.

m You can OUTPUT characters to any location on the screen through select
code 1 (this applies only to the logical region known as the “output area,”
which is described in the next section).

m You can read characters from any location of the output area with the
ENTER statement through select code 1. A line-feed character, CHR$(10), is
sent following the last non-blank character on the line. (A simulated HP-IB
End-or-Identify, EOI, signal is also sent with the line-feed.)

m You can configure and read the current modes of display operation with
CONTROL and STATUS registers.

Display Regions

The BASIC system logically partitions the alphanumeric display into several
regions, each of which has a specific use. Here is a diagram of the regions.

1-4 Display Interfaces

18=default for 80X25 displays
19=default for 80X26

Output Area 23=default for 80X30
41=default for 128x48

Blank Line
Display Line
Keyboard Area (two lines)

Message Results Line
Run Indicator

%

J

BASIC Display Organization

o~ e ——

Softkey Labels (two lines)

Here is a description of each region, from top to bottom of the display.

m The “Output Area” is the logical region on which characters sent to the
screen are displayed (characters sent with OUTPUT through select code 1, or
with PRINT when PRINTER IS CRT).

m One blank display line separates the output area from other areas.
m One display line is used for output using the DISP statement.

m Two display lines are used for keyboard input and output (input with
INPUT, LINPUT, and ENTER through select code 2; OUTPUT through
select code 2).

m One display line is used for system “messages” and “results.” These include
error messages or results of keyboard computations.

The right end of this line is used by the BASIC system for “annunciators”
such as softkey mode (such as System or User 1), CAPS indicator, and

Display Interfaces 1-5

system activity indicator (such as Running, Idle, or Command). For more
information, see the Using HP BASIC manual for your system.

s Two lines at the bottom of the screen are used for softkey labels. (See the
subsequent section called “Softkey Labels” for further information.)

While the number of lines in the output area may vary according to display
size, BASIC provides all of these regions on all alpha displays.

Clearing the Screen

Alpha display memory can be cleared using the CLEAR SCREEN statement.
CLEAR SCREEN

It has the same effect as executing:

OUTPUT KBD;CHR$(255)&"K";

or pressing the key.

Note that you can type CLS and the statement CLEAR SCREEN will appear in the
program listing. CLS acts as a shorthand method of entering the CLEAR SCREEN
statement.

The Output Area and the Display Line
There are two separate areas on the CRT used for displaying characters:

m Characters sent to the CRT with PRINT and OUTPUT CRT; ...
statements are displayed in the output area.

m Characters sent to the display with the DISP statement appear in the display
line.

Type in and run the following program to see these areas.

10 ALPHA HEIGHT 25 ! or CONTROL 1,13;25

20 FOR K=1 TO 18

30 PRINT "This is line #";K;" in the output area."
40 WAIT .5

50 DISP "This is line #";K;" in the display line."
60 WAIT .5

70 NEXT K

80 END

1-6 Display Interfaces

The number of Qutput Area lines available can vary depending on what display
you have.

m Series 200 Models 216, 217, 220, 226, and 236 computers with non-bit-
mapped displays, and Series 300 computers using an HP 98546A Video
Compatibility Interface, provide 18 lines (BASIC/WS only).

m Series 300 medium-resolution (bit-mapped alpha) displays provide 19 lines.

m Series 300 Models 362 and 382 with 640x480 internal displays provide 23
lines.

m Model 237 and Series 300 high-resolution (bit-mapped alpha) displays
provide 41 or 44 lines.

The number of lines in the output area can be altered, within display-size
limits, by either of these statements:

ALPHA HEIGHT Number of lines
or

CONTROL CRT,13; Number of lines

The number of lines specifies an area of the display that begins at the bottom
of the screen. That is, if you have a default Qutput Area size of 18 and you
execute ALPHA HEIGHT 9, the new Output Area will be the 2 lines at the
bottom of the screen (just above the Display Line). The lower limit of the
alpha height for the root window and CRT is 9. The upper limit is 25, 26, 30,
48, or 51 depending on the size of display the upper limit for your display.
Experiment with different parameters for the ALPHA HEIGHT statement in
line 10 in the preceding program. Try integers in the range 9 to 51. Error
messages alert you to out-of-range situations.

You should experiment with the loop upper limit in line 20. After the program
executes, scroll the displayed text up and down to see what happens. Try
values such as 10, 30, 48, 49, 51, and 52.

To determine the current height of the alpha area for a CRT or window
number, use STATUS register 13:

STATUS 1,13;Height

Display Interfaces 1-7

To re-establish the default alpha height, omit the “number of lines” parameter
in the preceding ALPHA HEIGHT statement:

ALPHA HEIGHT

The edit mode in BASIC/WS requires a minimum alpha height of 11 lines. If
the alpha height is 9 or 10 lines, going into the edit mode will change it to 11
lines.

Windows created with the rmb command (it runs the BASIC interpreter on
HP-UX) must have a height of at least 1 for the “rmb*Geometry” entry of the
X.defaults file. Windows with height values less than 10 will have an alpha
height of 9, even it the displayed window has fewer lines. This means that
output to the windows would be clipped.

Determining Screenwidth and Other Attributes

A wide variety of displays having different characteristics are available for
Series 200/300 computers. Since all programs are transportable between

these computers, a program that uses the display extensively should have the
ability to distinguish the characteristics of the display it is using. This BASIC
language system provides this capability.

Interface select code 1 is used to access the CRT from BASIC programs. You
can also use a window number in the range from 600 to 699. Several registers
are associated with this interface which allow the interrogation and control of
the CRT /window. For example, STATUS register 13 (discussed previously)
returns the current alpha height; STATUS register 9 of the CRT interface
returns the screenwidth:

STATUS 1,9;Screenwidth

STATUS register 19 of the CRT interface returns the maximum alpha mask of
the CRT:

STATUS 1,19;Max_alpha_mask

1-8 Display Interfaces

You can also use SYSTEMS$(“CRT ID”) to determine screenwidth (and other
display attributes). Executing this function returns a string similar to the
following;:

6: SOHCGB15

where:

6: is a format indicator for Series 300 computers.

80 is the CRT width in characters.

H indicates that CRT highlights are available (blinking, underlining,
etc.).

C indicates that color is available.

G indicates that graphics is available.
. Computer

B indicates that your display is bit-mapped. Museum

15 indicates the highest graphics pen number:

m 1 if monochrome
m 2"—1if bit-mapped (n = number of planes)

The numeric characters following the bit-mapped indicator represent the CRT
“max pen” value (highest graphics pen number available on your display: for
instance 4-plane color displays have a max pen equal to 15, 6-plane bit-mapped
displays have a max pen equal to 63 or (26—1), and so forth).

For more information on SYSTEMS$(“CRT ID”) results, read the section
covering the SYSTEMS function in the HP BASIC Language Reference.

Display Interfaces 1-9

Changing Pen Colors in Display Regions

This section covers a set of statements which allow you to change the alpha pen
colors in five of the display regions on your CRT/window. Here is a list of the
BASIC statements which change the alpha pen colors of the display regions:

m ALPHA PEN pen value (same as CONTROL CRT,5; pen value)

m KBD LINE PEN pen value (same as CONTROL CRT,17; pen value)

m KEY LABELS PEN pen value (same as CONTROL CRT, 16; pen value)
m PRINT PEN pen value (same as CONTROL CRT, 15; pen value)

The diagram below shows the areas which these statements affect.

e Y

L PRINT PEN

(Output Area)

A'zi;'“ o J PRINT PEN
(Display Line)

display regions)

KBD LINE PEN
(Keyboard Area)
KBD LINE PEN
(Message/Results Line)

KEY LABELS PEN
(Softkey Area)

@DD: I:I:E!:)}

Note that the KBD LINE PEN statement sets the color for more than just the
Message/Results Line. This statement also sets the color for the “run-light”
and for the program lines listed on screen in the edit mode.

1-10 Display Interfaces

The following table should help to clarify the previous diagram of the display
regions affected by pen color statements.

Display Regions Attected by Pen Color Statements

Written by These

Statements which

Output area and
Display line in edit
mode)

Display Region Statements Affect Pen Colors
Output area PRINT ALPHA PEN
OUTPUT PRINT PEN
CAT
LIST
etc.
Display line DISP ALPHA PEN
INPUT (prompt only) PRINT PEN
LINPUT (prompt only)
Edit area (replaces EDIT ALPHA PEN

KBD LINE PEN

Keyboard area

Keyboard input

ALPHA PEN
KBD LINE PEN

Message Results Line

Error messages, keyboard
computation results, and

ALPHA PEN
KBD LINE PEN

annunciators
SOftkey Labels EDIT KEY ALPHA PEN
SET KEY KEY LABELS PEN
LOAD KEY
ON KEY

Display Interfaces 1-11

Pen Colors for BASIC/WS

When speaking of alpha pen colors, there are two categories of displays which
need to be mentioned:

m Displays with bit-mapped alpha (such as a Series 300 computer using an
HP 98543A Color Display). These can be either color or gray scale displays.
The examples in this chapter use color displays. For information about gray
scales, refer to HP BASIC 6.2 Advanced Programming Techniques.

m Displays without bit-mapped alpha (such as a Model 236C).

Displays without bit-mapped alpha use a set of alpha pen colors as described
in the section entitled “CRT Status and Control Registers” found at the end
of this chapter. Note that the alpha and graphics pen colors are different for
displays without bit-mapped alpha. However, for displays with bit-mapped
alpha, the alpha and graphics pen colors are the same.

Pen Colors Example

The following program shows the use of all the alpha pen color statements
previously mentioned.

100 ALPHA PEN 1 ! White (for all display regions).
110 ON KEY 1 LABEL "KeyLabel" GOSUB Sftkey_label
120 GOSUB Show_regions

130 WAIT 3

140 !

150 PRINT PEN 2 ! Red (OUTPUT/PRINT and DISP regions).
160 KBD LINE PEN 3 ! Yellow (Keyboard input line).

170 KEY LABELS PEN 4 ! Green (Softkey labels).

180 WAIT 3

190 CLEAR LINE

200 GOSUB Show_regions

210 STOP

220 !

230 Shovw_regions: !

240 PRINT "PRINT/OUTPUT Area"

250 DISP "DISP Line";

260 OUTPUT KBD;""'"Message/Results Line""";CHR$(255)&"E";
270 OUTPUT KBD;RPT$("KBD Line ",10);
280 Sftkey_label :RETURN

290 END

1-12 Display Interfaces

The results on the display (through the WAIT 3 statement on line 180) are
output using an alpha pen color of white.

r

PRINT/QUTPUT Area

DISP Line

KBD Line KBD Line KBD Line KBD Line KBD Line KBD Line KBD Line KBD Line
KBD Line KBD Line

Message/Results Line User 1 Idle

KeyLabel Continue RUN SCRATCH LOAD "" LOAD BIN LIST BIN RE-STORE

Display Interfaces 1-13

The above program assumes you are using a medjum resolution monitor with
a Series 300 computer and that you are in the non-color-map mode. The
following is an explanation of the program:

Line 100 selects white as the alpha pen color.

Line 120 calls a subroutine called Show_regions. This subroutine causes

the output of messages to the five CRT display regions. The color of these
messages is determined by the alpha pen color statement executed prior to the
call to the subroutine. Note that the color may vary from those stated if you
are running the program from the X Window environment.

Line 130 causes the program to wait for 3 seconds before proceeding.

Line 150 sets the pen color to red for the output area and display line of the
CRT (existing text is not affected).

Line 160 sets the pen color to yellow for the keyboard area and
message/results line of the CRT. (Note that the Keyboard lines, annunciators,
and “run-light” are updated, the result text is not.)

Line 170 sets the pen color to green for the softkey area of the CRT.
Line 180 causes the program to wait for 3 seconds before proceeding.

Line 200 calls the subroutine called Show_regions. This subroutine causes
the output of messages to the five CRT display regions. The color of these
messages is determined by the pen color statements executed prior to the call
to the subroutine.

The remaining program lines are the subroutine called Show_regions which
has been previously explained.

1-14 Display Interfaces

The following display shows what happens after the WAIT 3 statement on line
180.

QNT/ OUTPUT Areq=—— White \

PRINT/QUTPUT Areq<+—— Red

Green
White Red

Yellow
DISP LineDISP Line
KBD Line KBD Line KBD Line KBD Line KBD Line KBD Line
KBD Line KBD Line

Message/Results Line User 1 Idle

@T Continue RUN SCRATCH LOAD'™* LOAD BINLISTBIN RE—STORE}—

y

The above display assumes you have a medium-resolution color monitor.

Display Interfaces 1-15

Interaction Between Alpha and Graphics

On Series 300 computers the alphanumeric and graphic outputs are normally
combined. However, it is possible, in multi-plane bit-mapped displays, to
make the alpha text independent from the graphics image with the statement
SEPARATE ALPHA FROM GRAPHICS (see the HP BASIC 6.2 Language Reference
for more details). With the display in this mode, the user can independently
control the alpha and graphic screens by using the corresponding keys on the
keyboard or through the ALPHA ON/OFF and GRAPHICS ON/OFF statements.

For example:

10 GINIT

20 SEPARATE ALPHA FROM GRAPHICS

30 PLOTTER IS CRT;"INTERNAL";COLOR MAP

40 CLEAR SCREEN

50 FOR I=1 TO 18

60 PRINT "This is line";I;"of alphanumeric output”
70 NEXT I

80 MOVE 30,30

90 RECTANGLE 50,50 FILL

100 DISP "Use the Alpha and Graphics keys to turn them on and off."
110 END

Line 10 initializes the graphics display parameters.

Line 20 separates alpha from graphics.

Line 30 defines the CRT as the output for graphics statements.
Line 40 erases the alpha screen.

Lines 50 through 70 fill the output area with text.

Lines 80 through 90 draw a solid box over the bottom center of the output
area.

Line 100 prompts the user to experiment with the new relationship between
alpha and graphics.

1-16 Display Interfaces

Output to the CRT

Data can also be sent to the output area by directing OUTPUT statements to
interface select code 1 or a window number. The following example uses an I/O
path name to direct the data to the CRT; the default data representation used
with the CRT is the ASCII representation.

100
110
120
130
140
150
160
170

ASSIGN @Printer TO 1
1
CLEAR SCREEN
FOR Line=1 TO 18
OUTPUT @Printer;"The OUTPUT Area"
NEXT Line
]

END

Numeric Outputs

When numbers are output to the CRT /window by the free-field form of the
OUTPUT statement, the standard numeric format is used. (“Standard numeric
format” is further described in the chapter “Outputting Data”.)

The following statements show how trailing punctuation within the QUTPUT
statement affects the item terminators output after each numeric item.

Ezamples Results
OUTPUT 1;123,456 123, 456
OUTPUT 1;-123,456 -123, 456
OUTPUT 1;-123,-456 ~-123,-456
OUTPUT 1;-123;-456 -123-456
OUTPUT 1;123;456 123 456

Leading + signs are replaced by a space.

Display Interfaces 1-17

String Outputs

Strings are output to the CRT or window in a similar manner with free-field
outputs; trailing punctuation in the statement determines whether or not
string-item and statement terminators are output. The following examples
show how trailing punctuation within the OUTPUT statement affects the
output of string-item terminators.

Ezamples Results
OUTPUT 1;"One","Two" One Two
OUTPUT 1;"Three";"Four" ThreeFour

As with free-field outputs to other devices, a trailing semicolon causes the
separator of the item that it follows to be suppressed. In the above case, the
carriage-return and line-feed separators which normally follow the output of a
string item are suppressed by the semicolon. The next paragraphs describe how
the carriage-return and line-feed (control characters) are interpreted by the

CRT.

Control Characters

ASCII characters with codes 0 through 31 are defined to be “control”
characters. When one of these characters is sent to a system resource, it is
usually interpreted as a command, rather than as data. The complete list of
control characters and their corresponding codes and definitions is given in the
ASCII table in “Useful Tables” of the HP BASIC 6.2 Language Reference.

Four of these characters are used for controlling the CRT display, and all
others are ignored (i.e., are not displayed and cause no special action when
received by the CRT). Run the following program and note the results.

130 Backspace$=CHR$(8)
140 Line_feed$=CHR$(10)
150 Form_feed$=CHR$(12)
160 Carriage_return$=CHR$(13)

170 !

180 !

190 ASSIGN €Crt TO 1
200 !

210 OUTPUT €Crt;"Back";
220 WAIT 1

1-18 Display Interfaces

230 OUTPUT €Crt;Backspace$;"space”

240 WAIT 1

250 !

260 OUTPUT QCrt;"Line";

270 WAIT 1

280 QUTPUT Q@Crt:Line_feed$;"feed"

290 WAIT 1

300 !

310 OUTPUT €Crt;"Carriage';

320 WAIT 1

330 OUTPUT €Crt;Carriage_return$;"return"

340 WAIT 1

350 !

360 OUTPUT €Crt;"Form";

370 WAIT 1

380 OUTPUT €Crt;Form_feed$;'"feed"

390 DISP "Scroll down to view previous display."

400 !

410 END

Display Before Scroll Display After Scroll
feed /Bocspoce
Line
feed

returnge
Form
feed

Display Interfaces 1-19

The following table describes the display functions invoked when the specified
control character is sent to the CRT/window (in the “Display functions off”

mode). The print position is the column and line at which the next character
sent to the display will appear.

Control-Character Functions on the CRT

ASCII
Character Code Defined Action

Bell 7 Causes beeper to output the standard tone;
no display action is invoked.

Backspace (BS) 8 If the print position was not in column 1, it is
moved “back” one character position; if it was
in the first column, no action is invoked.

Line-feed (LF) 10 Moves the print position “down” one line.

Form-feed (FF) 12 Prints two blank lines, scrolls the screen
“up” as far as possible, and places the print
position at column 1 of the second, printed
blank line.

Carriage-return (CR) 13 Causes the print position to be moved to the

beginning (first column) of the current screen
line.

All other control
characters

Ignored.

1-20 Display Intertaces

Here is another short example program. Type it in and watch the execution.
Notice how you can use CONTROL statements and selected registers to control
the CRT display.

100 CONTROL 1,1;10

110 PRINT "Let’s back up a little."
120 WAIT .6

130 FOR K=24 TO 1 STEP -1

Go to 10th line
Print a sentence
Time to see it.

]
!
!
! Loop for backspacing.

140 CONTROL 1,1;10 ! Stay on 10th line. Could do other ways.
150 CONTROL 1,0;K ! Move cursor back one space.

160 PRINT CHR$(8);" "; ! Issue backspace.

170 WAIT .3 t Lets you see backspacing.

180 NEXT K ! Continue loop.

190 END

Display-Enhancement Characters

Characters with codes CHR$(128)-CHR$(159) are a second set of “control”
characters. Some of these characters are used to implement display
enhancements. The others are ignored.

Newer revisions of BASIC (6.x and above) support both one- and two-byte
display enhancement characters. The one-byte display enhancement characters
are the same as those used in BASIC/WS/UX 5.x and previous versions; they
are CHR$(128)-CHR$(143). The two-byte display enhancement characters

are created by adding CHR$(255) before the one-byte display enhancement
character. For example:

PRINT CHR$(132);A$;CHR$(128) ! Underline on/off

PRINT CHR$(255)&CHR$(132) ;A$; CHR$(255) &CHR$(128) ! Underline on/off

One- and two-byte display-enhancement characters are functionally equivalent.
One-byte display-enhancement characters are supported for backward
compatibility only. Whenever you write a new program, use two-byte
display-enhancement characters.

Display Interfaces 1-21

Monochrome Enhancement Characters

Some displays have the ability to display underlined, blinking, and
inverse-video characters. Both the Output Area and the Display Line have

these abilities.

Monochrome Display Enhancements

Character

Resulting Enhancement

One-byle

Two-byte

CHR$(128)

CHR$(255) &CHR$ (128)

All enhancements off

CHR$(129)

CHR$ (255)&CHR$(129)

Inverse video on

CHR$(130)

CHR$(255) &CHR$(130)

Blinking on

CHR$(131)

CHR$(255)&CHR$(131)

Inverse video and blinking on

CHR$(132)

CHR$(255) &CHR$ (132)

Underline on

CHR$(133)

CHR$(255) &CHR$(133)

Underline and inverse video on

CHR$(134)

CHR$ (255) &CHR$ (134)

Underline and blinking on

CHR$(135)

CHR$(255)&CHR$(135)

Underline, inverse video, and blinking on

When one of these characters is sent to the CRT/window, it turns on the

corresponding enhancement(s). All subsequent characters on the CRT/window
are also displayed in the specified enhancement mode; if only a few characters
are to be enhanced, a CHR$(255)&CHR$(128) must be sent to the display after

the last character to be enhanced, which turns off all enhancements.

1-22 Display Interfaces

From the preceding table, you may have deduced that certain bits within the
character bytes turn on these display modes. The following bit pattern and
individual bits control these features.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 0 0 0 0 Underline | Blinking | Inverse
on on on

value=128 | value=64 | value=32 | value=16 | value=8 | value=4 |value=2 |value=1

Notice that the upper five bits (7 through 3) must be in the pattern shown
(numeric value = 128). Thus, adding the values 4, 2, or 1 enable the Underline,
Blinking, and Inverse features. Several examples of using these enhancements
are shown in the following program.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

PRINTER IS 1

0f£=128

Underline=4

Blinking=2

Inverse=1

1

PRINT CHR$(255)&CHR$(0ff) ;"Normal"

PRINT

PRINT CHR$(255)&CHR$ (128+Inverse) ;"Inverse"
PRINT "carries over onto"

PRINT "subsequent lines"

PRINT

PRINT CHR$(255)&CHR$ (128+Underline) ;"Underline"
PRINT "also remains on until turned off"
PRINT

PRINT CHR$(255)&%CHR$(128+Blinking); '"Blinking"
PRINT "is the same"

PRINT

PRINT CHR$(255)&CHR$(0ff) ;"Back to normal"
PRINT

END

Display Interfaces 1-23

Color Enhancements

Color displays recognize eight additional control codes for selecting the first
eight alpha pen colors. Both the Output Area and the Display Line have this
ability.

Color Display Enhancements

Character Resulting Enhancement
One-byte | Two-byte Model 236C | Bit-mapped
CHR$(136) | CHR$(255)&CHR$(136) | White Pen 1
CHR$(137) | CHR$(255)&CHR$(137) | Red Pen 2
CHR$(138) | CHR$(255)&CHR$(138) | Yellow Pen 3
CHR$(139) | CHR$(255)&CHR$(139) | Green Pen 4
CHR$(140) | CHR$(255) &CHR$(140) | Cyan Pen 5
CHR$(141) | CHR$(255)&CHR$(141) | Blue Pen 6
CHR$(142) | CHR$(255)&CHR$(142) | Magenta Pen 7
CHR$(143) | CHR$(255)&CHR$(143) | Black Pen 8

When using BASIC/UX from the X Window environment, the colors

will correspond to the first eight colors of the X Window color map. For
information about programming for gray scale displays, refer to the HP BASIC
6.2 Advanced Programming Techniques manual.

These same features can also be placed in strings by using the key (Any
Char) while typing in string literals. Keep in mind that, even though these
characters are not shown on the screen, they are counted in the length of the
string. Dimension string variables accordingly.

1-24 Display Interfaces

Display Enhancement Guidelines

For maximum portability between localized and non-localized BASIC,

always use the two-byte form of display enhancement characters. Two-byte
display enhancements are compatible with both one- and two-byte languages.
One-byte display enhancement characters are not compatible with many
two-byte languages.

The Display Functions Mode

The preceding program showed the control characters which are defined to
invoke a special display function when sent to some CRTs or windows. To
display all control characters sent to the CRT/window, rather than have the

CRT/window interpret them as commands, turn the Display Functions mode
on by pressing the Display Fctns key ((f6) in the System menu). Repeatedly
pressing this key toggles this display mode between “on” and “off”. The same
thing can be accomplished programmatically using the statement DISPLAY
FUNCTIONS ON/OFF. Using the CRT/window with DISPLAY FUNCTIONS
ON is very useful when you need to see exactly which control characters have
been output. An asterisk is visible in the Display Functions softkey label when

the Display Functions mode is on.

Except for the carriage-return character, all subsequent control characters sent
to the display (while in this mode) do not invoke their defined function, but
are only displayed. The carriage-return is both displayed and causes the print
position to move to the beginning of the next line (both CR and LF functions
invoked).

The DISPLAY FUNCTIONS mode can also be enabled from BASIC programs
with the use of the CONTROL statement. The following program shows

how this is accomplished. Notice that the carriage-return invokes both
carriage-return and line-feed functions.

100 DISPLAY FUNCTIONS ON ' CONTROL CRT,4;1
110 !

120 ! First send with default CR/LF sequence.
130 OUTPUT 1;"DISPLAY FUNCTIONS ON"

140 !

150 ! Then suppress the CR/LF (with ";").

160 OUTPUT 1;CHR$(12);

170 END

Display Interfaces 1-25

Notice that the DISPLAY FUNCTIONS ON message normally displayed when the
key is pressed is not automatically displayed when the mode is changed by
one of these statements; instead, the program must display the message, if so

desired.

The following program uses the CRT mapping register (lines 150 and 270)
and the DISPLAY FUNCTIONS statements (lines 160, 210, 230, and 260) to
display the logical and physical CRT character sets.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290

! Qutput available character sets to CRT
PRINT "If you want to see the ROM contents, THEN ENTER any character"
PRINT "ELSE, to see the legitimate character set, ENTER a null string.
INPUT A$
PRINT CHR$(12) ! Issue a form feed.
CONTROL 1,11;LEN(A$) ! Identify which character set.
DISPLAY FUNCTIONS ON ! Set display functions mode.
! Provide loop to display character set.
FOR I=0 TO 255
PRINT USING "#,DDD,X,A,X";I,CHR$(I)
IF NOT (I MOD 13) THEN
DISPLAY FUNCTIONS OFF
PRINT
DISPLAY FUNCTIONS ON
END IF
NEXT I
DISPLAY FUNCTIONS OFF
CONTROL 1,11;0
PRINT
END

The logical and physical CRT character sets are the same on all bit-mapped
displays, including the HP 98204B Video Output Interface and the HP 98546A
Display Compatibility Interface, when the “character-set select” switch is set to
the ASCII/ROMAN 8 position.

Access DISPLAY FUNCTIONS functionality from windows other than the root
window with:

CONTROL 699,4;1

where 699 is the device selector for window 699.

1-26 Display Interfaces

Output-Area Memory

In addition to the visible display lines in the output area, there may be
additional lines available within output-area memory. These additional lines
of display memory can be viewed by running the following program and then
scrolling the display down. The wvisible lines of output area memory will
hereafter be called the screen.

100 ! Example to show scrolling.

110 !

120 PRINTER IS 1 ! PRINT on CRT.
130 !

140 FOR Line=1 TO 48 ! Write 48 lines.
150 PRINT Line

160 NEXT Line

170 ! Now scroll manually.

180 END

Determining Above-Screen Lines

Scrolling the display up and down allows you to view different portions of the
lines within output-area memory. If the display is scrolled down as far as
possible, there are no lines “above screen”. Similarly, if the display is scrolled
up as far as possible, there are no lines “below screen”. The following drawing
illustrates the screen of an HP 98782A color monitor with six lines above the
screen.

Display Interfaces 1-27

Six
Above—~Screen
Lines

4 ™)
1
2
3
. 96
LlnesA:e t\r;irs?sl?sh 41 A 41 Lines Total
Displayed Lines
18
19 4
20
21

22

Line Positions of the Output Area

The values could vary if you have a different CRT /window.

The number of lines that are above screen can be determined from BASIC
programs by reading STATUS register 3 of interface select code 1. The
returned value is the number of lines currently above screen.

1-28 Display Interfaces

If the screen has just been cleared ((Clear display)), the following program
displays:

0 lines above screen.
Running the program a second time displays:

41 lines above screen

Subsequently running the program produces similar results, until the following
message is displayed continually (on a 48-line CRT):

96 lines above screen

100 FOR Line=1 TO 41

110 OUTPUT 1;Line

120 NEXT Line

130 !

140 STATUS 1,3;Lines_above

150 DISP Lines_above;" 1lines above screen"
160 END

The final value will be different for different displays.

The PRINT Position

All of the characters in output-area memory can be addressed individually
by the character’s screen column and line. The character in the upper left
corner of the screen is in column 1 and line 1, and the character in the lower
right corner varies depending on what monitor you have. The addresses of
the characters “off screen” are limited by the number of lines currently above
screen.

Display Interfaces 1-29

The screen addresses (both column and line) at which a subsequent character
sent to the display will appear on the screen are known as the print position.
The current print position is automatically changed as characters are output to
the display. For instance, the print-position column is incremented each time

a character is sent; when the last character is sent to a line, the print-position
column is reset to 1 and the print-position line is incremented, sending the next
character to the next line. The following program shows how the print-position
line varies during output to the CRT /window.

100 FOR Line=1 TO 48

110 OUTPUT 1;Line

120 STATUS 1,1;Print_line

130 DISP "Print-position lime = ";Print_line
140 IF Line<25 THEN WAIT .2

150 NEXT Line

160 !

170 END

Notice that the print-position line is always relative to the first line of the
current screen. This accounts for the print position (read with STATUS)
remaining at a value of 19 while the 19th through 48th lines are being printed.
When the print position is off screen, the display is scrolled (when it receives

a character) so that the character appears on the screen. When the display is
finished scrolling, all line addresses are again relative to the new top screen
line. The next section describes using this feature to scroll the display from the
program.

Scrolling the Display

A program can scroll the display up and down by changing the print position
to a location off screen and then outputting character(s) to the CRT /window.
In order to scroll up, values greater than the number of lines in the output area
must be written to register 1. Assuming an alpha height of 25, this number

is 18. If the screen is to be scrolled up 4 lines, the following statements can

be used. In this case, the OUTPUT statement outputs the “Null” control
character so that no characters will be overwritten.

100 CONTROL 1,1;18+4 ! Move print position off screen;
110 OUTPUT 1;CHR$(0); ! scrolling takes place when next
120 ! character sent to the CRT.

1-30 Display Interfaces

The screen is not scrolled up until the OUTPUT statement actually writes to
the CRT /window at the current print position (even though, in this case, no
visible character is actually output to the display).

In order to scroll down, a non-positive number must be written into register
1. For instance, to scroll down one line, a 0 would be written into register 1.
Again, the display is not actually scrolled until an OUTPUT (or PRINT) to
the CRT is executed.

The only restriction on the value of the line number is that it must not
attempt to scroll the screen down past the first line of output-area memory.
In other words, to scroll down as far as possible, the following value would be
used; using smaller values results in an error.

Top line’s address = — (number of lines above screen) + 1
Thus, if no lines are above screen, the top line’s address is 1.

An example of scrolling down “as far as possible” is shown in the following
program.

100 FOR Line=1 TO 48

110 OUTPUT 1;Line
120 NEXT Line
130 !

140 STATUS 1,1;Line_pos
150 DISP "Print-position line =";Line_pos;'" after OUTPUT,"

160 WAIT 2

170 !

180 STATUS 1,3;Lines_above ! Find # lines above screen.
190 DISP "and";Lines_above;" lines are above screen"

200 WAIT 3

210 !

220 CONTROL 1,1;-Lines_above+1 ! Change line-pos.

230 OUTPUT 1;"Line 1" ! Scroll made when 1st.
240 ! character is sent.
250 '

260 STATUS 1,3;Lines_above

270 DISP "Now, number of lines above screen =";Lines_above
280 END

Display Interfaces 1-31

Entering from the CRT

Data is entered from the CRT or a window beginning at the current print
position. As characters are read from the screen (from left to right), the print
position is updated. When the ENTER statement attempts to read past the
last non-blank character on a line, the CRT/window driver sends a line-feed
character accompanied by a (simulated) EOI signal, and the print position is
advanced to the beginning of the next line.

Display-enhancement characters, CHR$(128) through CHR$(143), cannot be
entered from the CRT/window memory. When these characters are shown on
the screen (because they were displayed while DISPLAY FUNCTIONS was
on), they can be read with an ENTER statement. However, if they are instead
“executed” (because DISPLAY FUNCTIONS is off), they are not read with
ENTER.

Reading a Screen Line

The following program uses the line-feed accompanied by EOI to terminate
entry into a string variable. Since the free-field ENTER statement is used, only
one line can be read because of the EOI sent with the line-feed character.

100 CONTROL 1;5,8 ! Move print position to
110 ! 5th column of line 8,

120 OUTPUT 1;"ABCDEFGH" ! then OUTPUT (with CR/LF).
130 !

140 OUTPUT 1;"IJKLMNOP " ! QUTPUT to line 9 with
150 ! trailing spaces.

160 !

170 CONTROL 1,1;8 ! Move print position back
180 ! to 1st column of line 8.
190 1

200 ENTER 1;Line_8$

210 DISP LEN(Line_8%) ;"characters read from line 8"
220 WAIT 2

230 !

240 ENTER 1;Line_9%

250 DISP LEN(Line_9%) ;"characters read from line 9"
260 END

1-32 Display Interfaces

This feature of the CRT /window is very useful when simulating entry from the
HP-1B interface; however, keep in mind that no spaces can be read after the last
visible character at the end of each line. Notice in the preceding example that
the leading space characters in a string which are sent to the display were read
by ENTER and trailing space characters sent to the display were not read back
by the ENTER statement. These trailing characters are treated as “blanks”

by the CRT, which sends the line-feed with EOI when the ENTER statement
attempts to read the first one.

Reading the Entire Output-Area Memory

In order to read all lines within output-area memory, an ENTER statement
that uses an image must be used to prevent the EOI signal from terminating
the statement prematurely (since the EOI signal acts as an item terminator
during ENTER-USING-image statements which contain no “%” image
specifiers). The following program shows the entire contents of output-area
memory being read.

100 OPTION BASE 1

110 DIM Memory$(48)[50] ! To read 48 lines.
120 !

130 FOR Screen_line=1 TO 48

140 OUTPUT 1;"Line'";Screen_line

150 NEXT Screen_line

160 WAIT 1

170 !

180 STATUS 1,3;Lines_above

190 CONTROL 1,1;-Lines_above+1 ' Scroll to read
200 ENTER 1 USING "K'";Memory$(x) ! entire memory.
210 !

220 FOR Screen_line=1 TO 48 ! Display all lines;
230 PRINT Memory$(Screen_line);" "; ! no CR/LF.
240 NEXT Screen_line

250 END

Display Interfaces 1-33

Final Display

Line 36

Line 37

Line 38

Line 39

Line 40

Line 41

Line 42

Line 43

Line 44

Line 45

Line 46

Line 47

Line 48

Line 1 Line 2 Line 3 Line 4 Line 5 Line 6 Line 7 L
ine 8 Line 9 Line 10 Line 11 Line 12 Line 13 Line
14 Line 15 Line 16 Line 17 Line 18 Line 19 Line 20
Line 21 Line 22 Line 23 Line 24 Line 25 Line 26 L
ine 27 Line 28 Line 29 Line 30 Line 31 Line 32 Lin
e 33 Line 34 Line 35 Line 36 Line 37 Line 38 Line
39 Line 40 Line 41 Line 42 Line 43 Line 44 Line 45
- Line 46 Line 47 Line 48 J

Notice that the print position was moved to the top line before attempting to
read memory contents, since the ENTER statement reads characters beginning
at the print position. If the print position is not at the “top line” of memory
before attempting to read all 57 lines, the lines above screen will not be read.
However, the statement executes with no errors, because the CRT sends
line-feeds (with EOI) for each line that does not really exist “below screen”.
For instance, if the print position is at line 10 when the ENTER begins, only
the last 47 lines of output-area memory will be read (and placed into the first
47 elements of Memory$). When the ENTER statement attempts to fill the
last ten elements of Memory$, the CRT sends only line-feeds accompanied by
EOI because the print position is past the last non-blank character.

1-34 Display Interfaces

Additional CRT Features

This section describes the remainder of features of the CRT /window display
controllable by BASIC programs. Interrupt and timeout events are not available
with the CRT interface.

The DISP Line

BASIC programs can output characters to the DISP Line with the DISP
statement, as described in the HP BASIC 6.2 Language Reference. As with the
output-area’s print position, the position (column) within the DISP line at
which subsequent characters will appear can be read and changed explicitly
by BASIC programs. This DISP-line position can be read and changed with
STATUS register 8 and CONTROL register 8 (of interface select code 1),
respectively. Note that the CONTROL register 8 statement can be replaced
with the DISP TAB statement as shown in the following program. However,
the DISP TAB statement and the CONTROL register 8 statement are slightly
different. For example, if there were characters in the first 45 columns of the
DISP Line, those characters would be blanked when the DISP TAB statement
is executed. The CONTROL register 8 statement allows the characters to
remain, and as the FOR loop decrements its count the characters in columns 1
through 45 would not be blanked.

100 FOR Disp_pos=46 TO 1 STEP -1

110 DISP TAB(Disp_pos),"HELLO" ! or 110 CONTROL 1,8;Disp_pos
120 ! 120 DISP "HELLO"
130 !

140 WAIT .2
150 NEXT Disp_pos
160 END

Display Interfaces 1-35

Keep in mind that if trailing carriage-return and line-feed characters are
output to the DISP line, the carriage-return returns the DISP-line position
to column 1. A subsequent DISP statement clears the entire line. However,
if these trailing characters are suppressed, the DISP-line position is left
unchanged. Run the following program to see these effects.

100 PRINT "First with trailing CR/LF,"
110 DISP "HI"

120 WAIT .5

130 DISP " THERE"

140 WAIT 1

150 !

160 PRINT "then with no CR/LF."
170 DISP "HI";

180 WAIT .5

190 DISP " THERE"

200 END

Also notice that if a DISP attempts to send characters to the DISP line so that
any character will be past the last column (50, 80, or 128 depending on your
CRT/window), the entire line is shifted left so that all of the new characters
will be displayed (i.e., so that the last character written will end up in the last
column).

100 A$=SYSTEM$("CRT ID")

110 X=VAL(A$[3])-10 ! Screen width minus 10.
120 DISP TAB(X),"CHARACTERS"; ! No CR/LF.

130 WAIT 1

140 DISP " SHIFTED LEFT"
150 !

160 END

The display-enhancement characters produce the same effects in the DISP Line
as in the QOUTPUT Area.

Changing Pen Colors

The pen color of the OUTPUT Area and DISP Line of the CRT/window can
be changed using either the ALPHA PEN or PRINT PEN statement followed
by a pen value. Information for both of these commands can be found in the
preceding section of this chapter entitled “Changing Pen Colors in Display
Regions.”

1-36 Dispfay Interfaces

Disabling the Cursor Character

BASIC programs even have control over whether any cursor is displayed
(during all computer modes, such as during EDITs and other keyboard-entry
modes). The cursor is disabled with the following statement.

CONTROL 1,10;0

Any non-zero value written to this register re-enables the cursor to be
displayed. Resetting the computer also re-enables the cursor being displayed.

CONTROL 1,10;1

Enabling the Insert Mode

The insert mode of the keyboard area can be enabled and disabled with
STATUS and CONTROL statements. If any non-zero numeric value is written
to register 2, the insert mode is enabled. All subsequent characters typed into
this area are “inserted” between the cursor and the character to its immedijate
left, and characters to its right are shifted appropriately.

The following program turns insert mode on for approximately five seconds.
During this time, use the arrow keys to move the cursor left and right while
typing in characters from the keyboard.

100 Insert_mode=1

110 CONTROL 1,2;Insert_mode

120 !

130 DISP "Insert mode is now being used."
140 BEEP 200,.2

150 WAIT 5

160 !

170 Insert_mode=0

180 CONTROL 1,2;Insert_mode

190 DISP "Now the mode has changed to overwrite."
200 BEEP 100, .2

210 WAIT 5

220 !

230 BEEP 50,.2

240 DISP "Program ended."

250 END

Display Interfaces 1-37

Softkey Labels

Softkeys can be defined as typing-aid keys or as keys that initiate program
(ON KEY) branches. In any usage, two display lines (near the bottom of

the CRT /window) can be used for key labels. The topic of typing-aid keys

is discussed in the Using HP BASIC manual for your system. The topic of
using softkeys to initiate program branches is discussed in the HP BASIC 6.2

Programming Guide.

Softkey labels can be turned off and on by writing to CRT or window
CONTROL Register 12 or using the KEY LABELS ON/OFF statement. The

values written to the register have the following effects:

Turning Softkey Labels Off/On

Value of CRT
Register 12

Effect on Key Labels

0

Typing-aid key labels are displayed
unti the program is run, at which time
they are turned off (until at least one
ON KEY is executed). Annunciators, if
present, stay on. System menu softkeys
are displayed even when a program is
running. (This is the default for systems

with an HP 98203A/B/C keyboard.)

Typing-aid and softkey labels are not
displayed at any time.

Typing-aid and softkey labels are
displayed at all times. (This is the default
for systems with an ITF keyboard.)

The default value of this register is 2 for BASIC/UX, since it uses an ITF
keyboard. The default is restored at power-on and when SCRATCH A is
executed. The register’s current contents can be determined by reading

STATUS Register 12.

1-38 Display Interfaces

Here is an illustrative program which cycles through Register 12 using the
values 0, 1, and 2. Note that loading the binary CRTX allows you to use
the statements KEY LABELS ON and KEY LABELS OFF in place of the
CONTROL register 12 statements.

100 ! Toggle key displays

110 PRINT "Softkey labels are toggled."

120 WAIT 2

130 ! Set up toggle loop.

140 FOR J=1 TO 3

150 FOR Toggle=0 TO 2 ! 1= KEY LABELS ON, and 2= KEY LABELS OFF

160 CLEAR SCREEN

170 PRINT "Flag value =";Toggle

180 CONTROL 1,12;Toggle ! KEY LABELS ON and OFF.
190 WAIT 1.5

200 NEXT Toggle

210 NEXT J

220 !

230 STOP

240 END

Try running the program with one of the three User menus and then with the
System menu.

You can use CONTROL register 2 (of select code 2) to cycle the menus:
0=System, 1=User 1, 2=User 2, and 3=User 3. For example:

CONTROL 2,2;3
or
USER 3 KEYS

displays the menu for User 3 softkeys. Another method of bringing the System
menu and User menus up is to use the:

m SYSTEM KEYS statement for the System menu.

s USER menu number KEYS statement with the appropriate user menu
number for the three User menus.

CONTROL register 14 (of select code 2) can be used to set softkey bases 0 or
1 (i.e., is KEY 0, is KEY 1, etc.) The default is 0, which means the
softkeys start at 1. Changing the flag value to 1 starts the softkeys at 0. You
might need to deal with this because the softkeys on HP 98203 Keyboards are
labeled from 0 to 9, and from 1 to 8 on ITF Keyboards.

Display Interfaces 1-39

Note that you can draw a solid line between the two lines of key labels

(on machines with ITF keyboards). To cause a line to be drawn, put a
CHR$(132) as the first character of the label (third character if the first two
are inverse-video K (character code 255) and “#”, which represents a
key). An example of this technique is the System key labeled C1lr Tab (above
the line) and Set Tab (below the line). For examples, see the Using BASIC
manual for your system.

Softkey Label Colors

Softkey pen color changes are made using the KEY LABELS PEN statement
followed by the pen value. For a detailed description of pen values and the use
of this statement, read the preceding section in this chapter entitled “Changing
Pen Colors in Display Regions.”

Summary of CRT STATUS and CONTROL Registers

STATUS Register 0 Current print position (column)

CONTROL Register 0 Set print position (column). See also TAB and
TABXY.

STATUS Register 1 Current print position (line)

CONTROL Register 1 Set print position (line). See also TABXY.

STATUS Register 2 Insert-character mode

CONTROL Register 2 Set insert character mode if non-0

(Error 713 is given if a window number is specified
instead of a select code.)

STATUS Register 3 Number of lines “above screen”.
CONTROL Register 3 Undefined
STATUS Register 4 Display functions mode

1-40 Display Interfaces

CONTROL Register 4 Set display functions mode if non-0. To perform
the same function, use the statement DISPLAY
FUNCTIONS ON/OFF.

STATUS Register 5 Returns the CRT alpha color value set (or default).
This does not reflect changes due to printing
CHR$(z), where 136<2<143.

Display Interfaces 1-41

CONTROL Register 5 Set default alpha color.
For Alpha Displays:

Value Result

< 16 The number is evaluated
MOD 8 and resulting values
produce the following:

0—Dblack
1—white
2—red
3—yellow
4—green
5—cyan
6—Dblue

7—magenta
16 to 135 |Ignored

136 White
137 Red

138 Yellow
139 Green
140 Cyan
141 Blue

142 Magenta
143 Black

144 to 255 |[Ignored

For Bit-Mapped Displays:

Values 0 thru 255 which correspond to the graphics
pens. The values are treated as MOD 2™ where n
is the number of display planes.

CONTROL CRT,5; n sets the values of the CRT
registers 15, 16, and 17, but the converse is not
true. That is, STATUS CRT,5 may not accurately
reflect the CRT state if CONTROL 15, 16, and/or

1-42 Display Interfaces

STATUS Register 6

CONTROL Register 6

STATUS Register 7

CONTROL Register 7

STATUS Register 8

CONTROL Register 8

STATUS Register 9

CONTROL Register 9
STATUS Register 10

17 have been executed. Note that to perform the
same function as CONTROL CRT,5;n, you can use
the ALPHA PEN statement.

ALPHA ON flag

(Error 713 is given if a window number is specified
instead of a select code.)

Undefined

(Error 713 is given if a window number is specified
instead of a select code.)

GRAPHICS ON flag

(Error 713 is given if a window number is specified
instead of a select code.)

Undefined

(Error 713 is given if a window number is specified
instead of a select code.)

Display line position (column)

(Error 713 is given if a window number is specified
instead of a select code.)

Set display line position (column). See also TAB.

(Error 713 is given if a window number is specified
instead of a select code.)

Screenwidth (number of characters). Also available
in the SYSTEMS$(“CRT ID”) function result.

Undefined
Cursor-enable flag

(Error 713 is given if a window number is specified
instead of a select code.)

Display Interfaces 1-43

CONTROL Register 10

STATUS Register 11
CONTROL Register 11
STATUS Register 12

CONTROL Register 12

STATUS Register 13
CONTROL Register 13

STATUS Register 14

1-44 Display Interfaces

Cursor-enable;

O=invisible cursor.
non-O=cursor visible.

(Error 713 is given if a window number is specified
instead of a select code.)

CRT character mapping flag
Disable CRT character mapping (if non-0)
Key labels display mode.

(Error 713 is given if a window number is specified
instead of a select code.)

Set key labels display mode:
0 = typing-aid key labels displayed unless
program is running.
1 = key labels always off (or use KEY LABELS
OFF).

2 = key labels displayed at all times (or use KEY
LABELS ON).

(Error 713 is given if a window number is specified
instead of a select code.)

CRT height (number of lines to be used for alpha
display).

Set CRT height (must be > 9). Alternately use the
ALPHA HEIGHT statement.

Display replacement rule currently in effect
(BASIC/WS only).

CONTROL Register 14

Set display replacement rule (BASIC/WS only)
(with bit-mapped alpha displays only)

Note This register is not processed for the 9863C display, nor for
i the Model 362/382 internal display because they do not have
v replacement rule support hardware. Any updates made to this

register are ignored for those displays.

STATUS Register 15

CONTROL Register 15

0—0

1—source AND old
2-—source AND NOT old
3—source;default
4—NOT source AND old
5—old

6—source EXOR old
7—source OR old
8—source NOR old
9—source EXNOR old
10—NOT old 11—source OR NOT old
12—NOT source
13—NOT source OR old
14—source NAND old
15—1

It is strongly recommended that you do not change
the default display replacement rule.

Return the value set (or the default) for the
color in the PRINT/DISP area. This does not
reflect changes due to printing CHR$(z), where
136<z<143.

Set PRINT/DISP color (or use the PRINT PEN
statement). Similar to CRT control register 5 but
specific to CRT PRINT/DISP areas; that is, it does
not affect the areas covered by CRT registers 16
and 17.

Display Interfaces 1-45

STATUS Register 16

CONTROL Register 16

STATUS Register 17

CONTROL Register 17

STATUS Register 18
CONTROL Register 18

STATUS Register 19

CONTROL Register 19
STATUS Register 20

1-46 Display Interfaces

Return the value set (or the default) for the softkey
label color.

(Error 713 is given if a window number is specified
instead of a select code.)

Set key labels color (or use the KEY LABELS PEN
statement). Similar to CRT control register 5 but
only affects the softkey labels. Does not affect the
areas covered by CRT registers 15 and 17.

(Error 713 is given if a window number is specified
instead of a select code.)

Return the value set (or the default) for the color
of the “non-enhance” area. This includes the
keyboard entry line, runlight, system message line,
annunciators, and edit screen.

Set “non-enhance” color (or use the KBD LINE
PEN statement). This includes the keyboard entry
line, runlight, system message line, annunciators,
and edit screen. Similar to CRT control register

5 but does not affect the areas covered by CRT
control registers 15 and 16.

Read the alpha write-enable mask.

Set alpha write-enable mask to a bit pattern (or
use the SET ALPHA MASK statement). When

running BASIC/UX in the X Window environment,
this CONTROL register is not supported.

Returns the maximum value for ALPHA MASK
argument.

Undefined.
Read the alpha display-enable mask.

(Error 713 is given if a window number is specified
instead of a select code.)

CONTROL Register 20

STATUS Register 21

CONTROL Register 21

STATUS Register 22
CONTROL Register 22

Set alpha display-enable mask to a bit pattern (or
use the SET DISPLAY MASK statement).

(Error 713 is given if a window number is specified
instead of a select code.)

Active CRT binary identity. See CONTROL
register 21 for a table of CRT binary identification
codes.

Specify which loaded CRT binary BASIC
will attempt to activate. Each CRT binary is
represented by one of the following values:

Value Binary

Stk W N O

default search
CRTA
CRTB
reserved
CRTD (single width)
CRTD (double width)

If 0 is sent to CONTROL register 21, BASIC
searches all the loaded binaries in a default order
and activates the first one found that is compatible
with the installed hardware. The default search
order is CRTD, then CRTB, then CRTA.

Sending a new value to CONTROL register

21 effectively initializes the alpha display and
executes GINIT and PLOTTER IS CRT, "INTERNAL".
BASIC/UX does not support switching between
non-bit-mapped and bit-mapped displays, but the
initialization is still done,

Undefined.

Raises a window to the top of the window stack if
non-zero; pushes a window to the bottom of the
stack if zero.

Display Interfaces 1-47

STATUS Register 23 Returns terminal compatibility mode.
CONTROL Register 23 Sets terminal compatibility mode.

1-48 Display Interfaces

The Keyboard Interface

As with displays, access to the keyboard can be made with OUTPUT,

ENTER, CONTROL, and STATUS statements. This chapter describes I/O
programming techniques for “interfacing” to the keyboard.

Description of Keyboards

This section introduces you to the different types of keyboards available with
Series 200/300 computers, and provides an overview of their capabilities. Here
are the topics covered:

m Types of keyboards.

m How the “primary” keyboard is chosen (in machines with more than one
keyboard installed).

m Overview of keyboard features.

Types of Keyboards

There are essentially three types of keyboards available with Series 200/300
computers:

The Keyboard Interface 2-1

. J

HP 98203A Keyboard (BASIC/WS Only)

Q OO O ™
OO OO, o« @
| L1
[() =E‘
[
| [1 —

HP 98203B and 98203C Keyboards (BASIC/WS Only)

) C IO IO IO I I 07 10D I iio

)| R
S)| I
[)]
| 0 | mmm
[|]

ITF Keyboards (HP 46020 and HP 46021)

2-2 The Keyboard Interface

Series 200 Model 216 computers may have the smaller HP 98203A keyboard
or optionally the larger 98203B keyboard. Model 220 computers have

options which allow either the HP 98203A or HP 98203B Keyboards, or the
HP 98203C or ITF Keyboards. Models 226 and 236 computers have built-in
98203B keyboards. Models 217 and 237 and all Series 300 computers have ITF
keyboards as the standard, but you can also order the 98203C keyboard as an
option.

Complete descriptions of the BASIC definitions of each key of every keyboard
is provided in the Using HP BASIC manual for your system.

How the Primary Keyboard Is Chosen for BASIC/WS

Select code 2 is always assigned to the keyboard interface. However, Series
200/300 computers can have more than one keyboard installed at one time. In
such cases, the BASIC system has to choose which one will be the primary
keyboard. Here is the order that the system chooses this keyboard:

1. If there is an “internal” keyboard, then it is chosen as the primary keyboard.
Examples are as follows:

a. The 98203 keyboard on a Series 200 computer.
b. The HIL keyboard on a Series 200 or 300 computer.

2. If there is an “external” HIL keyboard, and no “internal” keyboard
interface, then it will be chosen as the primary keyboard. An example is:

a. A keyboard connected to the HIL port of an HP 98700 Display
Controller.

Only one primary keyboard and one HIL interface will be recognized by the
BASIC system.

Note that the primary keyboard determines the keyboard language and which
softkey labels are chosen. Thus, if two keyboards with different languages are
connected to the computer (and recognized by BASIC), then the language and
softkey labels of the primary keyboard are used. This effect may cause some
keys on the secondary keyboard to produce incorrect characters.

The Keyboard Interface 2-3

HP 98203 Keyboard Compatibility Mode

There is also a mode of operation, enabled and disabled via keyboard
CONTROL register 15 (or the KBD CMODE statement), in which ITF
Keyboards can emulate an HP 98203B keyboard; see the “Keyboard Status
and Control Register Summary” section at the end of this chapter for values
and effects. Details of using this mode are provided in the HP BASIC 6.2
Programming Guide.

Re-Configuring HIL Devices

If you add or remove HIL devices while the BASIC system is in the computer,
you must re-configure in order for BASIC to properly recognize all devices.
Executing SCRATCH A initiates this re-configuration.

Overview of Keyboard Features

Series 200/300 computer keyboards are controlled by their own separate
processors, which allows many more capabilities than most other
desktop-computer keyboards. These keyboards are devices which reside at
select code 2. (BASIC provides the KBD function which returns a value of 2.)
Here is a brief list of keyboard capabilities:

m You can use the ENTER statement to enter data from the keyboard, and
thus simulate devices for debugging purposes.

m You can monitor keys and the “knob” (rotary pulse generator), if present,
and enable them to interrupt BASIC programs; the BASIC program can
contain a segment of code to read and use this input.

m You can OUTPUT commands to the keyboard, simulating an operator
entering them. You can also OUTPUT data to the keyboard which the
operator can then edit and send back.

Note, however, that the INTR and TIMEOUT event-initiated branches cannot
be sensed by the keyboard.

2-4 The Keyboard Interface

ASCIl and Non-ASCIl Keys

The keys of a Series 200/300 computer keyboard can be generally grouped by
function into the ASCII and non-ASCII keys.

ASCII (or alphanumeric) keys all produce an ASCII character when
pressed, and include the character entry and
numeric keys.

non-ASCII (or non-alphanumeric) do not produce characters but initiate

keys specific actions when pressed; the
and keys are considered to be
non-ASCII keys for this reason. Non-ASCII
keys also include all program control,
editing, cursor control, and system control
keys.

The Shift and Control Keys

The (shift), (CTRL), and (Extend char] keys are not really either type of key because
they cannot cause action on their own; instead, they are used only with the
other types of keys. Pressing the key with another key qualifies the other
keypress, allowing the other key to have a second meaning. For instance, in the
“Caps lock off” mode, pressing an alphabetic ASCII key generates a lowercase
alphabetic character. Pressing the key simultaneously with an alphabetic
key in the “Caps lock off” mode generates an uppercase character. The
key is used similarly with the non-ASCII keys, allowing many of those keys to
have a second function.

The key is held down while you press other keys from the main
typewriter section to generate the rest of the available 256 ASCII characters. It
also has a special use with the softkeys when in keyboard compatibility mode;
see the HP BASIC 6.2 Programming Guide.

The (Control) key is also used to further qualify both ASCII and
non-ASCII keypresses. Pressing the key simultaneously with an ASCII
key generates an ASCII control character in the display, and is often faster
than using the Any char ((f7)) softkey. The following table shows how to
generate control characters by simultaneously pressing the key and a

The Keyboard Interface 2-5

key as listed. This is particularly useful when you need to include a control
character in a string.

Generating Control Characters with CTRL and ASCIl Keys

Character ASCII Character Key(s) Pressed | Character
Code Character Description with CTRL on CRT
0 NUL Null (space bar) Ny
1 SOH Start of Header Sh
2 STX Start of Text Sk
3 ETX End of Text Ex
4 EOT End of Transmission ©) E.

5 ENQ Enquiry Eq
6 ACK Acknowledgement Ay
7 BEL Bell (bell)

8 BS Backspace B,

9 HT Horizontal Tab 0] H,
10 LF Line-feed L¢
11 VT Vertical Tab Vi
12 FF Form-feed F;
13 CR Carriage-return (D] C;
14 SO Shift OQut o) o
15 SI Shift In © S:

2-6 The Keyboard Interface

Generating Control Characters with CTRL and ASCII Keys

(continued) 2
Character ASCII Character Key(s) Pressed | Character
Code Character Description with CTRL on CRT
16 DLE Data Link Escape ® D
17 DC1 Device Control @ D,
18 DC2 Device Control ®) D,
19 DC3 Device Control Dj
20 DC4 Device Control Dy
21 NAK |Neg. Ny
Acknowledgement
22 SYN Synchronous Idle Sy
23 ETB End of Text Block Ey
24 CAN Cancel Cn
25 EM End of Media Emn
26 SUB Substitute Sy
27 ESC Escape @) E.
28 FS File Separator Gshii}(D F,
29 GS Group Separator 0] Gs
30 RS Record Separator @ R,
31 US Unit Separator G- U,

Pressing the key is an alternative to (CTRL}H[). The keys listed in the
preceding table are not the only ways to generate control characters, but are
generally the simplest and most easily memorized method. For instance, to
generate a line-feed character, press the and the (J) keys simultaneously.

The Keyboard Interface 2-7

Pressing the key with a non-ASCII key is used to generate and store
non-ASCII keystrokes within strings and is further discussed in “Outputs to
the Keyboard”.

The display enhancement control codes can be generated by pressing (CTRL),
(Extend char), and a key from the following table simultaneously.

Generating Control Characters with CTRL, Extend char, and

ASCIl Keys
Character Character Key(s) Pressed with Character
Code Description CTRL and Extend char [on CRT
128 Clear enhancements CL
129 Inverse video Iv
130 Blinking Bg
131 Inverse blinking @ Ig
132 Underline UL
133 Underline and Inverse (6) Iy
134 Underline and Blinking Bg
135 Underline, Inverse, and Ig
Blinking
136 White @ Wy
137 |Red Rp
138 Yellow Yg
139 Green ®) Gr
140 Cyan Cy
141 Blue By
142 Magenta Mg
143 Black 0] Bk

2-8 The Keyboard Interface

Keyboard Operating Modes 2

The keyboard has three operating modes which can be changed within a
program with the CONTROL statement. This section describes changing these
modes from the program.

The Caps Lock Mode

Pressing the key toggles the keyboard between the “Caps lock on” and
“Caps lock off” modes. In the “Caps lock on” mode, pressing any alphabetic
key causes an uppercase letter to be displayed on the screen; in the “Caps lock
off” mode, these keys generate lowercase letters. This mode can be changed
with the CONTROL statement and sensed with the STATUS statement.
Writing any non-zero numeric value into register 0 (of interface select code 2)
sets the caps lock mode on; writing a zero into this register sets the mode off.

100 STATUS 2;Caps_lock ! Check mode.
110 !

120 PRINT "Initially, “;

130 IF Caps_lock=1 THEN

140 Mode$="0N"

150 ELSE

160 Mode$="0FF"

170 END IF

180 !

190 PRINT "CAPS LOCK was "&Mode$&CHR$(10) ! Skip line.
200 BEEP

210 WAIT 1

220 '

230 CONTROL 2;1

240 PRINT "CAPS LOCK now ON"

250 PRINT "Type in a few characters"&CHR$(10)
260 WAIT 4

270 !

280 CONTROL 2;0

290 PRINT "CAPS LOCK now OFF"

300 PRINT
310 BEEP
320 END

The Keyboard Interface 2-9

The Print All Mode

Pressing the Prt all softkey ((f4) in the System menu) toggles the “Print all”

mode “on” and “off”. The “Print all” mode can also be sensed and changed

by reading and writing to STATUS register 1 and CONTROL register 1 (of
interface select code 2). Writing a non-zero numeric value into this register sets
the “Print all” mode on; writing a value of zero turns this mode “off”. The
following statement turns the “Print all” mode off.

CONTROL 2,1;0

Disabling Scrolling

If there are results you do not want to accidentally scroll off the screen after or
while executing a program, keyboard CONTROL register 16 can be used to
prevent this from happening. The “scrolling keys” which keyboard register 16
affects are:

m (4) and (Shit}-(a)
s (v) and (Shit}(y)
8 (Prev) and (Shift H{Prev)
8 (Next) and (Shift }(Next)
n and

including implied (&) and (¥) arrows from knobs and mice, OUTPUT KBD of
these keys, and typing-aid softkey definitions which contain these keycodes.

To disable the keys mentioned above, execute the following statement:

CONTROL XBD,16;1

You can re-enable these keys by writing a 0 (the default state) into this
register.

CONTROL KBD,16;0

2-10 The Keyboard Interface

The “scrolling keys” are also re-enabled when you:

®m power-up your computer.

a press (S (e
m execute either the SCRATCH or SCRATCH A statement.

If you are not sure of the status of the scrolling keys previously mentioned, you
can execute the following statement in a program:

100 STATUS KBD,16;A
110 END

The results returned will be a 1 if the keys are disabled and a 0 if they are
enabled.

Note that keyboard register 16 has no effect when you are in the EDIT mode.

Also, programmatic scrolling will still occur as a result of executing TABXY or
CONTROL CRT,1; ... or printing more lines than fit in the OUTPUT Area.

Modifying the Repeat and Delay Intervals

The keyboard has an auto-repeat feature which allows you to hold a key down
to repeat its function rather than pressing and releasing it repeatedly. Holding
a key down will cause it to be repeated every 40 milliseconds for as long as

it is held down, resulting in a repeat rate of approximately 25 characters per
second. However, you may have noticed that the initial delay between the

key being pressed and the key being repeated is longer than successive delays
between repeats; the initial delay before a key is repeated for the first time is
300 milliseconds (3/10 second).

These intervals can be changed from the program, if desired, by writing
different values into CONTROL registers 3 and 4 (of interface select code 2).
Register 3 contains the parameter that controls the auto-repeat interval, and
register 4 contains the parameter that controls the initial delay. The values of
these parameters, multiplied by 10, give the respective intervals in milliseconds

with the following exception; if register 3 is set to 256, the auto-repeat is
disabled.

The following program sets up softkeys 1, 4, 6, 8 to change these parameters.
Run the program and experiment with these intervals to optimize them for
your own preferences and needs.

The Keyboard Interface 2-11

2 Note Softkey labels (on the keycaps) are through on ITF

i keyboards. In default mode, the correspondence between
ﬁ key labels ((i1), (12), etc.) and KEY numbers (in ON KEY

and with typing-aid softkeys) is (f1)=KEY 1, (2)=KEY 2,
etc. You can change this correspondence by writing a 1 into
KBD CONTROL register 14; the new correspondence will be
()=KEY 0, (2)=KEY 1, etc.

100 ON KEY 1 LABEL "Faster" GOSUB Decr_interval
110 ON KEY 4 LABEL "Slower'" GOSUB Incr_interval
120 ON KEY 6 LABEL "Sooner" GOSUB Decr_delay
130 ON KEY 8 LABEL "Later" GOSUB Incr_delay

140 !

150 Interval=40 ! Defaults.

160 Delay=300

170 !

180 DISP "Interval=";Interval;" Delay= ";Delay
190 GOTO 180 ! Loop.

200 !

210 Incr_interval:Interval=Interval+10*(Interval<2560)
220 CONTROL 2,3;Interval/10

230 RETURN

240 !

250 Decr_interval:Interval=Interval-10*(Interval<>10)
260 CONTROL 2,3;Interval/10

270 RETURN

280 !

290 Incr_delay:Delay=Delay+10+(Delay<2560)

300 CONTROL 2,4;Delay/10

310 RETURN

320 !

330 Decr_delay:Delay=Delay-10*(Delay>10)

340 CONTROL 2,4;Delay/10

350 RETURN

360 '

370 END

2-12 The Keyboard Interface

Entering Data from the Keyboard

When the keyboard is specified as the source of data in an ENTER statement,
the computer executes the process just as if entering data from any other
device. The computer signals to the keyboard that the keyboard is to be the
sender of data. The keyboard in turn signals that it is not ready to send data
and waits for you to type in and edit the desired data.

The characters you type in appear in the keyboard area of the display, but
they are not automatically sent to the computer. As long as you can see the
characters, you can edit them before sending them to the computer, just as
during an INPUT statement. Available characters include all 256 characters
that can be generated either with keystrokes or with the Any char key
(softkey in the System menu on the ITF keyboard).

Pressing any of the following keys signals the keyboard that the data is to be
sent to the computer:

[key (ITF keyboard).
] key (HP 98203 keyboard).

the ITF keyboard—User menu softkeys require the KBD binary).

The data is then sent byte-serially according to an agreed-upon handshake
convention. The computer enters the data in byte-serial fashion and processes
it according to the specified variable(s), type of ENTER statement, and image
(if it is an ENTER USING statement).

The Keyboard Interface 2-13

The differences in pressing the keys or softkeys in the above paragraph are as
follows. Keep in mind that the ENTER statement is still being executed as

long as the “?” appears in the lower right corner of the display.

or All of the characters displayed in the keyboard area are sent
or to the computer, followed by carriage-return and line-feed
Step characters. These last two characters usually terminate entry

into current item in the ENTER statement. In addition,
the _ key causes the computer to remain in the single-step
mode after the ENTER statement has been completely
executed.

All of the characters displayed in the keyboard area are sent
to the computer for processing; no trailing carriage-return and
line-feed characters are sent. The ':Conﬁ'inue key is pressed if
more characters are to be entered into the current variable in
the destination list of the ENTER statement.

Type in and run the following program. Experiment with how entry into each

variable item is terminated by using the different keys (i.e., the Continue key

versus (Return), (Enter), or Step keys). Pressing the (Return), m, or Step key

terminates entry into the current variable, while pressing the Cont'lnue key
allows additional characters to be entered into the current variable.

100 DIM String_array$(1:3)[100]
110 ASSIGN @Device_simulate TO 2

120 !

130 ENTER @Device_simulate;String_array$(*)
140 !

150 OUTPUT 1;String_array$(*)

160 !

170 END

This use of the keyboard is very powerful when tracing the cause of an error in
an ENTER operation. With this tool, you can “debug” or verify any type of
ENTER statement, including ENTER statements whose source is intended to
be a device on the HP-IB interface. The next section describes this topic.

2-14 The Keyboard Interface

Sending the EOI Signal 2

The EOI signal is implemented on the HP-IB interface. This line ordinarily
signals to the computer that the data byte being received is the last byte of the
item; thus, it is either an item terminator or a terminating condition for the
ENTER statement. (See the chapter “Entering Data” for a further explanation
of the EOI signal’s effects during ENTER.)

The EOI signal can be simulated from the keyboard when this feature is
properly enabled. CONTROL register 12 of interface select code 2 controls this
feature; the following example statement shows how to enable this feature.

CONTROL 2,12;1

To simulate the EOI signal with a character, press the and (g) (or
(shift}(*) on the numeric keypad) keys simultaneously before the character to
be accompanied with EOI is typed. For instance, if the characters “DATA”
are to be entered and the EOI is to accompany the last “A”, the following

QWO E®RIE®

The same result can be obtained by placing an ENQ character (ASCII control
character CHR$(5), Eq) in front of the character to be accompanied by the EQI
signal (see the previous section for further details).

Sending Data to the Keyboard

Characters output to the keyboard are indistinguishable from characters typed
in from the keyboard. All characters output to the keyboard, including control
characters, are displayed in the keyboard area. The following program outputs
the BEEP statement to the keyboard. Read on to see how it works.

100 QUTPUT 2;"BEEP"; ! No CR/LF
110 !
120 END

The Keyboard Interface 2-15

Sending Non-ASCII Keystrokes to the Keyboard

The preceding program sent the characters BEEP to the keyboard, but

the statement was not executed. Pressing the (Return) or (Enter) key after the
program has ended executes the statement. Modify the program to “press”
the (Return) or (Enter) key by typing (CTRL}-(Return) (or (CTRL)}(Enter)) following
the BEEP. Sending this special two-character sequence to the keyboard is
equivalent to the operator pressing the corresponding key. Thus, in general,
to store a non-ASCII “keystroke” within a program line, press the key
while simultaneously pressing the desired non-ASCII key.

Since CHR$(255) does not generate the same character on most printers

as it does on the computer’s display, it is recommended that some explicit
means of documenting these character sequences be employed. For instance,
string variables can be defined to contain these sequences; then when the
program is listed on an external printer, it will be much easier to determine
which non-typing keys are being represented. The key is still used with
the non-ASCII key to generate the two-character sequence, but the special
character should be changed to a CHR$(255).

100 Enter_key$=CHR$(255)&"E"
110 Printall_key$=CHR$(255)&"A"

120 !

130 OUTPUT 2;Printall_key$; ! Use ";" to suppress CR/LF.

140 OUTPUT 2;"BEEP"&Enter_key$;

150 END
Note Since this type of output can be used to send immediately

i executed commands (such as SCRATCH 4), it is important that
ﬁ you use care when outputting commands to the keyboard and

when editing statements and commands sent to the keyboard.
Undesirable results may occur if the wrong non-ASCII key
sequences are output by a program.

The table in the next section shows the resultant characters that follow
CHR$(255) in the two-character sequences generated by these keystrokes. The
table can be used to look up which non-ASCII key is to be output if the second
character is known or vice-versa.

2-16 The Keyboard Interface

Second Byte of Non-ASCII Key Sequences (String) 2

Holding the key and pressing a non-ASCII key generates a two-character
sequence on the CRT. For example,

|CTRL H Clear line |

produces the following character on the CRT:

K

Non-ASCII keypresses can be simulated by outputting these two-byte
sequences to the keyboard. For example,

OUTPUT KBD;CHR$(255)&"%";

produces the same result as shown above. The decimal value of the first byte is
255 (on some computers this is the “inverse-video” X).

The following table can be used to look up the key that corresponds to the
second character of the sequence.

Normally on an ITF keyboard, corresponds to ON KEY 1... ,
corresponds to ON KEY 2 ... , etc. However, you can use CONTROL
KBD,14;1 to change this relationship so that corresponds to

ON KEY 0 ... , (2] corresponds to ON KEY 1, etc.

With 98203 keyboard compatibility (KBD CMODE ON), the ITF keyboard

softkeys thru (1), the (Menu) and (System) keys, and thru correspond
to 98203 softkeys thru (ko), respectively. See the HP BASIC 6.2
Programming Guide for further information about this mode.

The terms System and User in the ITF Key column refer to the softkey menu
which is currently active on an ITF keyboard.

The Keyboard Interface 2-17

ITF 98203 Closure

Char. | Val. Key Key Key
space 32 ! !

| Yes

" 34 1 1

¢ | 3

$ 36 System Yes

v | Yes

& 38 2

’ 39 2 Yes

(40 Tab

) 41

* 42 INS LN Yes

+ 43 (Insert char] (INS CHR]

, 44 2 Yes

- s

46 2 2

! These characters cannot be generated by pressing the CTRL key and a
non-ASCII key. If one of these characters follows CHR$(255) in an output
to the keyboard, an error is reported (Error 131 Bad non-alphanumeric

keycode.).

2 Cannot generate this keycode from this keyboard. If this character is
OUTPUT to the keyboard, an error is not reported. Instead, the system will
perform as much of the indicated action as possible.

3 These keys have no system meaning, and will BEEP if not trapped by ON

KBD.

2-18 The Keyboard Interface

ITF 98203 Closure
Char. | Val. Key Key Key
/ 47 Yes
0 48 User 3 Yes
1 49 User 1 Yes
2 50 User 1 Yes
3 51 User 1 Yes
4 52 User 1 Yes
5 53 User 1 Yes
6 54 User 1 Yes
7 55 User 1 Yes
8 56 User 1 Yes
9 57 User 2 Yes
58 System 3 2
; 59 System 3 2
< 60 @
= 61 Result*

Z Cannot generate this keycode from this keyboard. If this character is
OUTPUT to the keyboard, an error is not reported. Instead, the system will
perform as much of the indicated action as possible.

3 These keys have no system meaning, and will BEEP if not trapped by ON
KBD.

4 This ITF key is located in the System Control Key Group just above the
Numeric Keypad Group. Note that these keys have no labels on their keycaps;
however, they do have labels on the BASIC keyboard overlay for the ITF
keyboard. For information on the BASIC keyboard overlay for the ITF
keyboard, read the Using HP BASIC manual for your system.

The Keyboard Interface 2-19

ITF 98203 Closure

Char. | Val. Key Key Key

> 62 ®

? 63 Recall? ®

e 64 (Shift)-Recall? ©

A 65 System Yes

s | o6

c 67 System

D 68 2

E 69 7 Yes

F 70 System Yes

¢ | n EDO

i | ED

po|

J 74 (Katakana)? (Katakana)?

2 Cannot generate this keycode from this keyboard. If this character is

OUTPUT to the keyboard, an error is not reported. Instead, the system will
perform as much of the indicated action as possible.

4 This ITF key is located in the System Control Key Group just above the
Numeric Keypad Group. Note that these keys have no labels on their keycaps;
however, they do have labels on the BASIC keyboard overlay for the ITF
keyboard. For information on the BASIC keyboard overlay for the ITF
keyboard, refer to the Using HP BASIC manual for your system.

5 also System
6 also System
" or

2-20 The Keyboard Interface

ITF 98203 Closure
Char. | Val. Key Key Key
K |7 Ve
L 76 Graphics 4 Yes
M 77 Alpha 4 Yes
N 78 Dump Graph * (DUMP_GRAPHICS) Yes
0 79 Dump Alpha 4 8 Yes
P 80 Yes
Q 81 1 1
R 82 System Yes
S 83 System Yes
T 84 Ghif}¥) XD Yes
U 85 Yes
v 86 ™ D Yes
| 87 Ghift}@) @ Yes

! These characters cannot be generated by pressing the CTRL key and a
non-ASCII key. If one of these characters follows CHR$(255) in an output
to the keyboard, an error is reported (Error 131 Bad non-alphanumeric

keycode.).

4 This ITF key is located in the System Control Key Group just above the
Numeric Keypad Group. Note that these keys have no labels on their keycaps;
however, they do have labels on the BASIC keyboard overlay for the ITF
keyboard. For information on the BASIC keyboard overlay for the ITF

keyboard, refer to the Using HP BASIC manual for your system.

® Also

The Keyboard Interface 2-21

ITF 98203 Closure

Char. | Val. Key Key Key

X 88 2 Yes

Y 89 (Roman)? (Roman)? Yes

Z 90 ! !

L 91 System

\ 92 2 Yes

] 93 System

- 94 @) D Yes

- 95 System 2 Yes

‘ 96 1 1

a 97 User 2 Yes

b 98 User 2 Yes

c 99 User 2 Yes

d 100 User 2 Yes

e 101 User 2 Yes

£ 102 User 2 Yes

1 These characters cannot be generated by pressing the CTRL key and a
non-ASCII key. If one of these characters follows CHR$(255) in an output
to the keyboard, an error is reported (Error 131 Bad non-alphanumeric

keycode.).

Z Cannot generate this keycode from this keyboard. If this character is
OUTPUT to the keyboard, an error is not reported. Instead, the system will
perform as much of the indicated action as possible.

2-22 The Keyboard Interface

ITF 98203 Closure

Char. | Val. Key Key Key

103 User 2 Yes

104 User 3 Yes

i 105 User 3 Yes

j 106 User 3 Yes

k 107 User 3 2 Yes

1 108 User 3 2 Yes

m 109 User 3 2 Yes

n 110 User 3 2 Yes
0 111 System 3 2
P 112 System 3 2
q 113 System 3 2
T 114 System 3 2
s 115 User 39 2
t 116 User 39 2
u 117 User 39 2
v 118 User 3 2

2 Cannot generate this keycode from this keyboard. If this character is
OUTPUT to the keyboard, an error is not reported. Instead, the system will
perform as much of the indicated action as possible.

3 These keys have no system meaning, and will BEEP if not trapped by ON
KBD.

9 These keys are also generated by the HP 46060A/B and HP 46095A (HP
mouse devices) buttons unless GRAPHICS INPUT IS is using them.

The Keyboard Interface 2-23

ITF 98203 Closure

Char. | Val. Key Key Key
w 119 User 3 2
x 120 User 3 2
y 121 User 3 2
z 122 User 3 2

{ 123 2 Yes

|| 124 2 Yes

} 125 2 Yes

- 126 2 Yes
127 ! !

! These characters cannot be generated by pressing the CTRL key and a
non-ASCII key. If one of these characters follows CHR$(255) in an output
to the keyboard, an error is reported (Error 131 Bad non-alphanumeric
keycode.).

2 Cannot generate this keycode from this keyboard. If this character is
OUTPUT to the keyboard, an error is not reported. Instead, the system will
perform as much of the indicated action as possible.

3 These keys have no system meaning, and will BEEP if not trapped by ON
KBD.

Closure Keys

Several of the non-ASCII keys are known as closure keys. Closure keys are

so named because they close (block) further keyboard input until processed.
The computer can only process two closure keys between program lines during a
running program. If more than two appear in the data output to the keyboard,
the extra keys will be deferred until the next end-of-line is encountered and two
more closure keys can be processed. See the table on the preceding pages to
determine which keys are “closure keys”.

2-24 The Keyboard Interface

As an example, the following program sends four closure keys to the keyboard
with a single OUTPUT statement. Only the first two closure keys are
processed after this OUTPUT statement (but before DISP "Next BASIC line"
is executed). The third and fourth closure keys are processed after DISP "Next
BASIC line" is executed (but before DISP "2nd BASIC line" is executed).
This accounts for the following display after running the program, since the
“Printall” command was not executed until after DISP "Next BASIC line" was

executed.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270

! Define non-ASCII keys.

En$=CHR$(255)&"E" ! ENTER or Return key.
Up$=CHR$(255)&"~" ! Up arrow key.
Prt$=CHR$ (255)&"A" ! PRT ALL key or softkey.
!

CONTROL 2,1;0 ! Turn PRINTALL off.

CONTROL 1,1;1 ! Begin on top screen line.
OUTPUT 1;"Line 1"

OUTPUT 1;"Line 2"

OUTPUT 1;"Line 3"

WAIT 1

!

! Now send statement with 4 closure keys.
OUTPUT 2;"DISP ""Hello"'"";En$;Up$;Up$;Prt$;

DISP "Next BASIC line" ! PRT ALL still off.
DISP "2nd BASIC line" ! Now PRT ALL is on.
!

END

The Keyboard Interface 2-25

Line 3
2nd BASIC line

2nd BASIC line

L Printall on

In addition, if the last character sent to the keyboard is a CHR$(255), the
next character typed in by the user will give unexpected results. Again, it is
important to exercise care when using this feature.

Softkeys

The keys on the upper-left portion of the keyboard are called “softkeys.”
These keys can be defined by BASIC programs to initiate program branches.
In addition, these keys can be defined as typing-aid keys, which produce
keystrokes just as if you had typed them in yourself.

Brief examples of using the softkeys have already been presented in the
“Interface Events” chapter, and in the section found earlier this chapter

2-26 The Keyboard Interface

entitled “Modifying the Repeat and Delay Intervals”. Typing-aid softkeys are
discussed in the Using HP BASIC manual for your system.

Sensing Knob Rotation

Your computer system may or may not have a knob (built-in, or HP 46083) or
a mouse (HP 46060). In any event, the programs below are illustrative of how
knob and mouse movements can be trapped in a program. It is assumed that
you will use the techniques and apply them to your programming situation.

The “event” of the knob (rotary pulse generator) being rotated can be

sensed by a program. The branch location, interval at which the computer
interrogates the knob for the occurrence of rotation, and branch priority are set
up with a statement such as the following:

ON KNOB Interval,Priority CALL Knob_turned

In addition to the program being able to sense rotations of the knob, it can
also determine how many pulses the knob has produced and whether or not
either or both of the or keys are being pressed. This ability to
“qualify” the use of the knob allows it to be used for up to four different
purposes. The following program shows how to set up the branch, how

to determine the number of pulses, and how to determine the direction of
rotation.

Note HIL devices do not set the “CTRL” bit, although they do set
the “SHIFT” bit (if the last record processed was “y-axis”
data). Consequently, you should not depend on the value of

keyboard status register 10.

The Keyboard Interface 2-27

100 DN KNOB .25 GOSUB Knob ! Check knob every 1/4 sec.

110 t

120 FOR Iteration=1 TO 400

130 WAIT .2

140 DISP Iteration

150 NEXT Iteration

160 !

170 STOP

180 !

190 Knob: STATUS 2,10;Key_with_knob

200 PRINT KNOBX;" pulses ";KNOBY;" pulses ";

201 DISP TAB(40),"Status = ";Key_with_knob

210 IF Key_with_knob=0 THEN

220 PRINT

230 ELSE

240 IF Key_with_knob=1 THEN PRINT "with SHIFT"
250 IF Key_with_knob=2 THEN PRINT "with CTRL"
260 IF Key_with_knob=3 THEN PRINT "with SHIFT and CTRL"
270 END IF

280 RETURN

290 END

If any pulses have occurred since the last branch, the specified branch will be
initiated.

One full rotation of the knob produces 120 pulses. The service routine calls

the KNOBX and KNOBY functions to determine how many pulses (only net
rotation) have been generated since the last call to this function. If the number
is positive, a net clockwise rotation has occurred; a negative number signifies
that a net counterclockwise rotation has occurred. Since the pulse counter (on
built-in knobs) can only sense +128 to —127 pulses during the specified interval,
the interval parameter should be chosen small enough to interrogate the knob
before the pulse counter reaches one of these values. Experiment with this
parameter to adjust it for your particular application. (Note that HIL devices
can count from 32 767 to —32 768 pulses during the interval.)

The next program illustrates the use of an ON KNOB with a mouse
(HP 46060). Note changes in iteration as you move the mouse.

2-28 The Keyboard Interface

10 COM /Knob/ Kx,Ky)
20 Kx=0

30 Ky=0

40 ON KNOB 1 CALL Knob

50 PRINT TABXY(1,1);" "

60 FOR I=1 TO 1.E+6

70 DISP I

80 PRINT TABXY(1,2);Kx;Ky;" "
90 NEXT I

100 END

110 SUB Knob

120 COM /Knob/ Kx,Ky

130 INTEGER Knx,Kny

140 Knx=KNOBX

150 Kny=KNOBY

160 Kx=Kx+Knx

170 Ky=Ky+Kny

180 PRINT TABXY(1,5);Knx;Kny;" "
190 SUBEND

You can also trap mouse keys with ON KBD and KBD$ function (see the
subsequent section for details on using these keywords). These keys produce

the same codes as the (Shift}-(r1), (shift}-(r2), etc. keys on ITF keyboards (while in

any User menu).

Enhanced Keyboard Control

Normally, the BASIC operating system handles all keyboard inputs. Several
BASIC statements allow programs to handle inputs from the keyboard;
examples are the INPUT, LINPUT, ENTER, ON KEY, and ON KNOB
statements. Additional keyboard statements provide BASIC programs with a
means of intercepting both ASCII and non-ASCII keystrokes for processing by
the program. The statements are:

ON KBD sets up and enables keystrokes to be trapped.
ON KBD ALL includes Pause, , Clr I/O, (System), (User), (Menu),

and sofkeys. See the key tables in the section
of this chapter entitled “Second Byte of Non-ASCII Key

Sequences (String)” for appropriate ITF key labels.

The Keyboard Interface 2-29

KBD$ returns keystrokes trapped in the buffer.
OFF KBD resumes normal keystroke processing.

ON KBD allows terminal emulation, keyboard masking, and special data
inputs. Each keystroke produces unique code(s) that allow the program to
differentiate between different keys being pressed. The program can also
determine whether the or keys are being pressed with most keys,
but these keystrokes cannot be detected by themselves. Also, the key
cannot be trapped by ON KBD.

Trapping Keystrokes

The ON KBD statement sets up a branch that is initiated when the keyboard
buffer becomes “non-empty”. The service routine may then interrogate the
buffer as desired, processing the keystrokes as determined by the program. The
keyboard buffer contains up to 256 characters. Calling the KBD$ function does
two things: it returns all keystrokes trapped since the last time the buffer was
read, and it then clears the keyboard buffer.

The following program uses ON KBD, KBD$, and OFF KBD to trap and
process keystrokes, rather than allowing the operating system to do the same.
The program defines each keystroke to print a complete word.

100 OPTION BASE 1

110 DIM String$(26)[6]

120 READ String$(#)

130 !

140 DATA A,BROVWN,CAT,DOG,EXIT,FOX,GOT
150 DATA HI,IN,JUMPS,KICKED,LAZY,MY

160 DATA NO,OVER,PUSHED,QUICK,RED,SMART
170 DATA THE,UNDER,VERY,WHERE,XRAY,YES, Z0O
180 !

190 PRINTER IS 1

200 PRINT "Many ASCII keys have been"
210 PRINT "defined to produce words."
220 PRINT

230 PRINT "Press the following keys."
240 PRINT"TQBFJOTLD."

250 !

260 ON KBD GOSUB Process_keys
270 !

280 LOOP

2-30 The Keyboard Interface

290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730

EXIT IF Word$="EXIT"
END LOOP

!

STOP

!

Process_keys:Key$=KBD$!
]

Read buffer.

REPEAT ! Process ALL keys trapped.

Key_code=NUM(Key$[1;1]) !
|

SELECT Key_code !
!

CASE 65 TO 90 !

Calculate code.
Choose response.

CASE "A" TO "Z".

Word$=String$(Key_code-64)

Key$=Key$[2] !
!

CASE 97 TO 122 !

Remove processed key.

CASE "a" TO '"z".

Word$=String$ (Key_code-96)

Key$=Key$[2] !
[}

CASE 255 !
IF Key$[2;11<>CHR$(255)
Word$=Key$[1,2] !
Key$=Key$[3] !
ELSE
Word$=Key$[1,3] !
Key$=Key$[4] '
END IF
CASE ELSE H
Word$=""
Key$=Key$[2] !
]

END SELECT

Defined=LEN(Word$)<>0
IF Defined THEN

PRINT Word$;" ";

DISP
ELSE

BEEP 100,.05

DISP "Key undefined.”
END IF
1

UNTIL LEN(Key$)=0]

Remove processed key.
CASE non-ASCII key.
THEN

Non-ASCII key alone,

so take 2 codes.

Non-ASCII w/ CTRL,
so take 3 codes.

CASE all others.

Remove processed key.

Execute response.

Until ALL keys processed.

The Keyboard Interface

2-31

740 !
750 RETURN
760 !
770 Quit:END

Notice that all non-ASCII keys produce two-character sequences: CHR$(255)
followed by an ASCII character. Pressing the key with non-ASCII keys
produce three-character sequences: another CHR3(255) character preceding the
two-character sequence produced by pressing the non-ASCII key by itself. See
the tables in the section entitled “Second Byte of Non-ASCII Key Sequences
(String)” for a listing of the sequences produced by non-ASCII keys.

BASIC programs can output ASCII keystrokes to the keyboard, via QUTPUT 2,
without initiating an ON KBD branch; however, outputting non-ASCIl
“closure” keys followed by other keys will initiate the ON KBD branch. For
example, executing the following statement (in a program line):

OUTPUT 2;'32#2";CHR$(255);"E";"'KBD";

causes the characters KBD which follow the closure key to be placed in the
KBDS$ buffer, which also initiates the ON KBD branch. The keycode
which was sent to the keyboard executes the numeric expression 32*2 before
the branch is initiated. OUTPUT to the keyboard while ON KBD is in effect
should contain at most one closure key, and that key should be at the end, in
order to avoid this “recirculation” of closure keys.

ON KBD branching is disabled by DISABLED, deactivated by OFF KBD,
and temporarily deactivated when the program is executing LINPUT, INPUT,
or ENTER KBD statements. Note that the keyboard input line can be

read without deactivating ON KBD by using the SYSTEMS$(“KBD LINE”)
function.

Mouse Keys

You can also trap mouse keys with this technique. The keys produce
CHR$(255) followed by “s”, “t”, and so forth.

2-32 The Keyboard Interface

Softkeys and Knob Rotation

When ON KNOB is not in effect, knob rotation is also trapped by ON KBD.
Rotation of the knob will produce “cursor” keystrokes. A clockwise rotation
of the knob produces CHR$(255) followed by “>”, while a counter-clockwise
rotation produces CHR$(255) followed by “<”. When using the HP 46083
Rotary Control Knob, pressing the key and rotating the Knob clockwise
produces CHR$(255) followed by “*”, and rotating the Knob counter-clockwise
produces CHR$(255) followed by “V”. These same results can be produced
when using the HP 46060A Mouse; however, the results are dependent on the
“toggle” state for the Rotary Control Knob and “horizontal” and “vertical”
movements for the HP Mouse.

ON KBD ,ALL allows softkey trapping (“overrides” ON KEY) but does not change
the softkey labels.

Disabling Interactive Keyboard

Another group of statements is used to disable the interactive keyboard
functions:

SUSPEND INTERACTIVE ignores the Pause, (Stop), Step,

and Clr I/0 keys (see the table in
the section entitled “Second Byte of
Non-ASCII Key Sequences (String)”
for equivalent ITF keys) and disables
live keyboard execution.

SUSPEND INTERACTIVE,RESET ignores (see the table in the
section entitled “Second Byte of
Non-ASCII Key Sequences (String)”
for equivalent ITF key) too.

RESUME INTERACTIVE returns to normal operation.

SUSPEND INTERACTIVE can be used to prevent interruption of programs which
gather data or which control other systems.

Special care should be taken when using SUSPEND INTERACTIVE,RESET. If an
“infinite loop” is executed while interactive keyboard functions are disabled,
only the power switch will stop execution of the program.

The Keyboard Interface 2-33

110 This program cannot be stopped by

'
120 ! Pause, Stop, or Reset keys

130 ! before its normal completion.

140 !

150 !

160 SUSPEND INTERACTIVE, RESET ! Ignore keyboard.
170 !

180 PRINT "COUNTDOWN IS "

190 PRINT

200 1I=10 ! Initial value.
210 REPEAT

220 PRINT " T minus ";I ! Print count.

230 I=I-1 ! Decrement count.
240 WAIT 1 ! Wait one second.
250 UNTIL I<0

260 !

270 PRINT

280 BEEP 100,1
290 PRINT "Done"

300 RESUME INTERACTIVE ! Return to normal.
310 !
320 END

Locking Out the Keyboard

There are certain times during program execution when it is expedient to
prevent the operator from using the keyboard, such as during a critical
experiment which cannot be disturbed. Then the knob and groups of keyboard
keys can be enabled and disabled separately.

Setting bit 0 of register 7 (of interface select code 2) disables all keys (excluding
the key) and the knob. The following program first sets up the KNOB
and KEY events to initiate program branches. It is assumed that the keyboard
is already enabled; if you are not sure, press the key. When the

program is run, the keyboard and knob remain enabled for about five seconds,
after which they are disabled. The program then displays the time of day
indefinitely; the only way to stop the program is to press the key.

2-34 The Keyboard Interface

100 ON KEY 1 LABEL "SFK 1" GOSUB Keyl

110 ON KNOB .2 GOSUB Knob

120 H

130 PRINT "You’ve got 5 seconds. GO! "

140 FOR Iteration=1 TO 20

150 WAIT .25

160 NEXT Iteration

170 !

180 Reset_disable=0 ! Reset key remains ENABLED.
190 Ky_knb_disable=1 ! DISABLE reset of kbd.
200 CONTROL 2,7;2%Reset_disable+Ky_knb_disable
210 PRINT "Time’s up!"

220 BEEP

230 !

240 Loop: DISP TIME$(TIMEDATE)

250 GOTO Loop

260 H

270 !

280 Keyl: PRINT "Special function key 1 pressed.”
290 RETURN

300 !

310 Knob: PRINT "Knob rotation sensed."
320 RETURN

330 END

If the value of the variable Reset_disable is set to 1 in the preceding program,
the only way to stop the program is to turn off power to the computer, losing
the program and all data currently in computer memory.

Note Use care when locking out both the key and the keyboard
keys. If both are locked out, the only way to prematurely stop
the program is to turn the computer off.

Special Considerations

Disabling keyboard interrupts by locking out the keyboard will also block the
use of other HP-HIL devices. For example, if an HP-HIL Graphics Tablet

is the current graphics input device and keyboard interrupts are disabled,
executing a DIGITIZE statement will cause the system to hang, waiting for a
response it cannot receive. Attempting to execute an HIL SEND statement
while keyboard interrupts are disabled will cause an error to occur.

The Keyboard Interface 2-35

Keyboard Status and Control Registers

STATUS Register 0
CONTROL Register 0
STATUS Register 1
CONTROL Register 1
STATUS Register 2
CONTROL Register 2

STATUS Register 3
CONTROL Register 3

STATUS Register 4§
CONTROL Register {4

STATUS Register 5

CONTROL Register 5

CAPS lock flag

Set CAPS lock if non-0
PRINTALL flag

Set PRINTALL if non-0
Function key menu.

Function key menu:

0 = System menu (or SYSTEM KEYS
statement)

1-3 = User menu 1 thru 3 (or USER n KEYS
statement along with the appropriate menu
number)

Undefined

Set auto-repeat interval. If 1 thru 255, repeat
interval in milliseconds is 10 times this value.

256 = turn off auto-repeat. (Default at entry

to BASIC/UX or SCRATCH A is the value

that was in effect before entry to BASIC/UX.)
(Default at power-up or SCRATCH A is 40 ms for
BASIC/WS.)

Undefined

Set delay before auto-repeat. If 1 thru 256, delay
in milliseconds is 10 times this value. (Default at
entry to BASIC/UX or SCRATCH A is the value
that was in effect before entry to BASIC/UX.)
(Default at power-up or SCRATCH A is 300 ms for
BASIC/WS.)

KBD$ buffer overflow register. 1 = overflow.
Register is reset when read.

Undefined

2-36 The Keyboard Interface

STATUS Register 6 Typing aid expansion overflow register.

1 = overflow. Register is reset when read.

Undefined

CONTROL Register 6

STATUS Register 7

Interrupt Status

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Initialize | Reserved | Reserved | Reset Keyboard
0 0 0 timeout | for for key and knob
interrupt | future future interrupt | interrupt
disabled |use use disabled |disabled
value=128 | value=64| value=32|value=16 |value=8 |value=4 |value=2 {value=1
CONTROL Register 7 Interrupt Disable Mask
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Initialize | Reserved | Reserved | Reset Keyboard
Not used timeout | for for key and knob
future future
use use
value=128 | value=64|value=32(value=16 | value=8 |value=4 |value=2 |value=1

The Keyboard Interface 2-37

2 STATUS Register 8

0-US ASCII
1-French
2-German
3-Swedish
4-Spanish

5-Katakana

Keyboard Language Jumper

7-United Kingdom

8-Canadian French

9-Swiss French

10-Italian

11-Belgian

12-Dutch

6-Canadian English

* Alternate version

13-Swiss German

14-Latin(Spanish)

15-Danish
16-Finnish

17-Norwegian

18-Swiss French*

19-Swiss German*

See also SYSTEM$(“KEYBOARD LANGUAGE”) which requires the LEX
binary. Note that the STATUS statement when used with this register does not
require the LEX binary.

CONTROL Register 8

Undefined

STATUS Register 9 Keyboard Type
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1=HIL 1=No 1=n-key
Internal use keyboard |keyboard |rollover 0 0 0

interface 0= 0=9 or
0=non- Keyboard |less
HIL present rollover

value=128| value=64 |value=32 |value=16 |value=8 |[value=4 |value=2 |value=1

2-38 The Keyboard Interface

Bits 5, 1, and 0 of STATUS Register 9 and the following table can be used to
determine the Keyboard Type.

Bit 0 Keyboard Type

Bit 5 Bit 1
0 0
0 0
1 0
1 1

0 HP 98203B or built-in (unsupported)

1 HP 98203A (unsupported)

0 ITF (such as the HP 46020A and 46021A)
0 HP 98203C (unsupported)

CONTROL Register 9
STATUS Register 10

Undefined
Status at Last Knob Interrupt

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
(CTRL) key | (SHIFT)

0 0 0 0 0 0 pressed key
pressed
value=128| value=64| value=32| value=16| value=8 | value=4 | value=2 value=1

Note that bit 1 is always 0 for keyboards and all HP-HIL mice and knobs (e.g.,
HP 46083A Rotary Control Knob and HP 46085 Control Dials).

CONTROL Register 10
STATUS Register 11
CONTROL Register 11

STATUS Register 12
CONTROL Register 12
STATUS Register 13

Undefined
O=horizontal-pulse mode; 1=all-pulse mode.

Set knob pulse mode. (This CONTROL register
is not supported with BASIC/UX, because the
KNB2.0 binary is unsupported on BASIC/UX.)

“Pseudo-EOI for CTRL-E ” flag
Enable pseudo-EOI for CTRL-E if non-0
Katakana flag

The Keyboard Interface 2-39

CONTROL Register 13
STATUS Register 14

CONTROL Register 14

STATUS Register 15

CONTROL Register 15

STATUS Register 16

CONTROL Register 16

STATUS Register 17

Set Katakana if non-0
Numbering of softkeys on ITF keyboard:

0— is key number 1 (default);
1- is key number 0;

Softkey numbering on ITF keyboard (see above
register description).

Currently in 98203 keyboard compatibility mode:

0—OFF (default)
1-0ON

Turns “98203 keyboard compatibility mode”

on (#0) and off (=0). (See the HP BASIC
Programming Guide for further information about
using this mode.) Note that instead of using the
CONTROL register 15 statement you can use

the KBD CMODE statement to turn the “98203
keyboard compatibility mode” ON and OFF.

Returns the enabled/disabled status of the up and
down arrow keys, (Prev), (Next), and (both shifted
and un-shifted for all of these keys). If the status
value is 1 it means these keys are deactivated. Note
that the default value is 0.

Allows you to disable or re-enable the display
scrolling keys mentioned for STATUS Register

16. This prevents accidental scrolling of the

display screen. Executing a 1 with the CONTROL
statement deactivates the print scrolling keys and a
0 activates them.

Automatic menu switching:

1 — enabled (default)
0 — disabled

2-40 The Keyboard Interface

CONTROL Register 17 Automatic menu switching:

<>0 — enable
0 — disable

This register controls whether a system with an
ITF keyboard will switch to (from) the User 2
Menu automatically on entering (leaving) EDIT
mode.

The Keyboard Interface 2-41

The HP-IB Interface

Introduction

This chapter describes the techniques necessary for programming the HP-IB
interface. Many of the elementary concepts have been discussed in previous
chapters; this chapter describes the specific details of how this interface works
and how it is used to communicate with and control systems consisting of
various HP-IB devices.

The HP-IB (Hewlett-Packard Interface Bus), commonly called the bus,
provides compatibility between the computer and external devices conforming
to the IEEE 488-1978 standard. Electrical, mechanical, and timing
compatibility requirements are all satisfied by this interface.

Data
PP G m—
Interface
Handshake .
Data and 3 S | Shielded Cable
Control |Hardware § to Device(s)
Backplane and <
. o 25
Connectors Firmware ©
Control
£
K 5 r\, a
LO
)7 N

Logic and
Shield Grounds

—

HP-IB Interface Block Diagram

The HP-IB Interface 3-1

The HP-IB Interface is both easy to use and allows great flexibility in
communicating data and control information between the computer and
external devices. It is one of the easiest methods to connect more than one
device to the same interface.

Initial Installation and Verification

Refer to the HP-IB Installation Note for information about setting the
switches and installing an external HP-IB interface. Once the interface has
been properly installed, you can verify that the switch settings are what you
intended by running the following program. The defaults of the internal HP-IB
interface can also be checked with the program. The results are displayed on

the CRT.

100 PRINTER IS CRT

110 PRINT CHR$(12) ! Clear screen w/ FF.

120 !

130 Ask: INPUT "Enter HP-IB interface select code",Isc
140 IF Isc<7 OR Isc>30 THEN GOTO Ask

150 !

160 STATUS Isc;Card_id

170 IF Card_id<>1 THEN

180 PRINT "Interface at select code";Isc;
190 PRINT "is not an HP-IB"

200 PRINT

210 STOP

220 END IF

230 !

240 PRINT "HP-IB interface present”

250 PRINT " at select code'";Isc

260 PRINT

270 !

280 STATUS Isc,1;Intr_dma

290 Level=3+(BINAND(32+16,Intr_dma) DIV 16)
300 PRINT "Hardware interrupt level =";Level
310 ¢

320 STATUS Isc,3;Addr_ctrlr

330 Address=Addr_ctrlr MOD 32

340 PRINT "Primary address ='";Address

350 !

360 Sys_ctrl=BIT(Addr_ctrlr,7)

3-2 The HP-IB Interface

370 IF Sys_ctrl THEN

380 PRINT "System Controller"

390 ELSE

400 PRINT "Non-system Controller"
410 END IF

420 !

430 END

The hardware interrupt level is described in Chapter 7. Hardware interrupt
level is set to 3 on built-in HP-IB interface, but can range from 3 to 6 on
optional interfaces. Primary address is further described in “HP-IB Device
Selectors” in the next section.

The term “System Controller” is also further described later in this chapter

in “General Structure of the HP-IB”. The internal HP-IB has a jumper or
switch that is set at the factory to make it a system controller. To find out

the location of this jumper or switch, refer to the documentation that comes
with your computer. Note that the location varies with different Models of
computers. External HP-IB interfaces have a switch that controls this interface
state.

Communicating with Devices

This section describes programming techniques used to output data to and
enter data from HP-IB devices. General bus operation is also briefly described
in this chapter. Later chapters will describe: further details of specific bus
commands, handling interrupts, and advanced programming techniques.

HP-IB Device Selectors

Since the HP-IB allows the interconnection of several devices, each device
must have a means of being uniquely accessed. Specifying just the interface
select code of the HP-IB interface through which a device is connected to the
computer is not sufficient to uniquely identify a specific device on the bus.

Each device “on the bus” has an primary address by which it can be identified;
this address must be unique to allow individual access of each device. Each
HP-IB device has a set of switches that are used to set its address. Thus, when

The HP-IB Interface 3-3

a particular HP-IB device is to be accessed, it must be identified with both its
interface select code and its bus address.

The interface select code is the first part of an HP-IB device selector. The
interface select code of the internal HP-IB is 7; external interfaces can range
from 8 to 31. The second part of an HP-IB device selector is the device’s
primary address, which are in the range of 0 through 30. For example, to
specify the device:

the interface at select code 7 use device selector = 722
the device at primary address 22

the interface at select code 10 use device selector = 1002
the device at primary address 2

Remember that each device’s address must be unique. The procedure for
setting the address of an HP-IB device is given in the installation manual for
each device. The HP-IB interface also has an address. The default address

of the internal HP-IB is 21 or 20, depending on whether or not it is a System
Controller, respectively. The addresses of external HP-IB interfaces are set by
configuring the address switches on each interface card. Each HP-IB interface’s
address can be determined by reading STATUS register 3 of the appropriate
interface select code, and each interface’s address can be changed by writing to
CONTROL register 3. See “Determining Controller Status and Address” and
“Changing the Controller’s Address” for further details.

Moving Data Through the HP-IB

Data is output from and entered into the computer through the HP-IB with
the OUTPUT and ENTER statements, respectively; all of the techniques
described in Chapters 4 and 5 are completely applicable with the HP-IB. The
only difference between the OUTPUT and ENTER statements for the HP-IB
and those for other interfaces is the addressing information within HP-IB
device selectors.

3-4 The HP-IB Interface

Ezamples

100
110
120
130
140
150

320
330
340

440

380

Hpib=7

Device_addr=22

Device_selector=Hpib*100+Device_addr

1

OUTPUT Device_selector;"F1R7T2T3"

ENTER Device_selector;Reading 3

ASSIGN OHpib_device TO 702
OUTPUT OHpib_device;"Data message"
ENTER €@Hpib_device;Number

OUTPUT 822;"F1R7T2T3"

ENTER 724;Readings(*)

All of the IMAGE specifiers described in Chapters 4 and 5 can also be used by
OUTPUT and ENTER statements that access the HP-IB interface, and the
definitions of all specifiers remain exactly as stated in those chapters.

Ezamples
100 ASSIGN OPrinter TO 701
110 OUTPUT OPrinter USING "6A,3X,2D.D";Item$,Quantity
860 ASSIGN @Device TO 825
870 OUTPUT @Device USING "#,B";65,66,67,13,10
870 ENTER @Device USING "#,K";Data$

Using an Interface
in the HP-UX Environment

This section explains the interface locking and burst I/O, which are useful
when using an interface in the HP-UX environment, and applies to BASIC/UX

only.

The HP-IB Interface 3-5

Locking an Interface to a Process

In a multi-user environment, interface cards are usually accessible to several
users. BASIC/UX supports this sharing by making no attempt to guarantee
exclusive access to an interface unless it is directed to do so. This allows you
to access instruments, for instance, on an HP-IB bus that is shared with other
peripherals. Although this is not a recommended configuration, it is allowed.

BASIC/UX provides interface locking to support exclusive access to an
interface. When an interface is locked to a process, all other processes are
prevented from using that interface. For instance, this feature can prevent
the loss of important data while a process is taking measurements from an
instrument by keeping other users or processes from using the same interface.

Interface locking is enabled and disabled by using pseudo-register 255 and the
interface’s select code. For example:

CONTROL 7,255;1 Enables HP-IB interface locking.
CONTROL 7,255;0 Disables HP-IB interface locking.

In order to be a “good citizen” on a multi-user system, you should unlock an
interface after you no longer need to have it locked.

Note that attempting to lock an HP-IB connected to a system disc will result
in an error.

In addition, attempting to lock an interface that is already locked to another
process will cause a program to suspend execution until:

m The interface is unlocked (by the other process to which it is currently
locked).

m A timeout occurs.

m You press or Clr 1/0.

Using the Burst I/0 Mode

The default mode of HP-UX I/O transactions requires many time consuming
HP-UX system calls to send data to the destination.

Another method, “burst I/0”, maps the interface into your “user address
space”, thereby bypassing the memory buffer. This direct-write method
decreases the number of calls to HP-UX I/O system routines, which establishes

3-6 The HP-IB Interface

a short, highly tuned path for performing I/O operations. The interface is
also implicitly locked when burst mode is enabled (see above explanation of
interface locking).

Burst I/O provides the fastest I/O performance available with BASIC/UX
for the “smaller” I/O transactions that are typical of many instruments. For
instance, an 8-byte ENTER operation is over an order of magnitude faster
when burst mode is enabled. For larger I/O operations, of more than 4 000

bytes for example, burst mode becomes increasingly slower than the default
(buffered or DMA) I/O modes.

Burst I/0O is enabled and disabled by using register 255 and the interface’s

select code. For example:

CONTROL 7,255;3 FEnables HP-IB interface burst 1/0.
CONTROL 7,255;0 Disables HP-IB interface burst I/0.

In order to be a “good citizen” on a multi-user system, you should unlock an
interface after you no longer need to have it locked.

In addition, attempting to use burst mode with an interface that is already
locked to another process will cause a program to suspend execution until:

m The interface is unlocked (by the other process to which it is currently
locked).

m A timeout occurs.

m You press or Clr 'I/Q .

Note also that you cannot set up an ON TIMEOUT for an interface when
using burst mode.

General Structure of the HP-IB

Communications through the HP-IB are made according to a precisely defined
set of rules. These rules help to ensure that only orderly communication may
take place on the bus. For conceptual purposes, the organization of the HP-IB
can be compared to that of a committee. A committee has certain “rules of
order” that govern the manner in which business is to be conducted. For the
HP-IB, these rules of order are the IEEE 488-1978 standard.

The HP-IB Interface 3-7

One member, designated the “committee chairman,” is set apart for the
purpose of conducting communications between members during the meetings.
This chairman is responsible for overseeing the actions of the committee and
generally enforces the rules of order to ensure the proper conduct of business.
If the committee chairman cannot attend a meeting, he designates some other
member to be “acting chairman.”

On the HP-IB, the System Controller corresponds to the committee chairman.
The system controller is generally designated by setting a switch on the
interface and cannot be changed under program control. However, it is possible
to designate an “acting chairman” on the HP-IB. On the HP-IB, this device is
called the Active Controller, and may be any device capable of directing HP-IB
activities, such as a desktop computer.

When the System Controller is first turned on or reset, it assumes the role of
Active Controller. Thus, only one device can be designated System Controller,
These responsibilities may be subsequently passed to another device while the
System Controller tends to other business. This ability to pass control allows
more than one computer to be connected to the HP-IB at the same time.

In a committee, only one person at a time may speak. It is the chairman’s
responsibility to “recognize” which one member is to speak. Usually, all
committee members present always listen; however, this is not always the case
on the HP-IB. One of the most powerful features of the bus is the ability to
selectively send data to individual (or groups of) devices.

Imagine slow note takers and a fast note takers on the committee. Suppose
that the speaker is allowed to talk no faster than the slowest note taker can
write. This would guarantee that everybody gets the full set of notes and that
no one misses any information. However, requiring all presentations to go at
that slow pace certainly imposes a restriction on our committee, especially if
the slow note takers do not need the information. Now, if the chairman knows
which presentations are not important to the slow note takers, he can direct
them to put away their notes for those presentations. That way, the speaker
and the fast note taker(s) can cover more items in less time.

A similar situation may exist on the HP-IB. Suppose that a printer and a
flexible disc are connected to the bus. Both devices do not need to listen to all
data messages sent through the bus. Also, if all the data transfers must be slow
enough for the printer to keep up, saving a program on the disc would take as
long as listing the program on the printer. That would certainly not be a very

3-8 The HP-IB Interface

effective use of the speed of the disc drive if it was the only device to receive
the data. Instead, by “unlistening” the printer whenever it does not need to
receive a data message, the computer can save a program as fast as the disc
can accept it.

During a committee meeting, the current chairman is responsible for telling
the committee which member is to be the talker and which is (are) to be the
listener(s). Before these assignments are given, he must get the attention of all
members. The talker and listener(s) are then designated, and the next data
message is presented to the listener(s) by the talker. When the talker has
finished the message, the designation process may be repeated.

On the HP-IB, the Active Controller takes similar action. When talker and
listener(s) are to be designated, the attention signal line (ATN) is asserted
while the talker and listener(s) are being addressed. ATN is then cleared,
signaling that those devices not addressed to listen may ignore all subsequent
data messages. Thus, the ATN line separates data from commands; commands

are accompanied by the ATN line being true, while data messages are sent with
the ATN line false.

On the HP-IB, devices are addressed to talk and addressed to listen in the
following orderly manner. The Active Controller first sends a single command
which causes all devices to unlisten. The talker’s address is then sent, followed
by the address(es) of the listener(s). After all listeners have been addressed,
the data can be sent from the talker to the listener(s). Only device(s)
addressed to listen accept any data that is sent through the bus (until the bus
is reconfigured by subsequent addressing commands).

The data transfer, or data message, allows for the exchange of information
between devices on the HP-IB. Our committee conducts business by
exchanging ideas and information between the speaker and those listening to
his presentation. On the HP-IB, data is transferred from the active talker to
the active listener(s) at a rate determined by the slowest active listener on the
bus. This restriction on the transfer rate is necessary to ensure that no data is
lost by any device addressed to listen. The handshake used to transfer each
data byte ensures that all data output by the talker is received by all active
listeners.

The HP-IB Interface 3-9

Fzamples of Bus Sequences

Most data transfers through the HP-IB involve a talker and only one listener.
For instance, when an OUTPUT statement is used (by the Active Controller)
to send data to an HP-IB device, the following sequence of commands and data
is sent through the bus.

OUTPUT 701;'"Data"
1. The unlisten command is sent.

2. The talker’s address is sent (here, the address of the computer; “My Talk
Address”), which is also a command.

3. The listener’s address (01) is sent, which is also a command.

4. The data bytes “D”, “a”, “t”, “a”, CR, and LT are sent; all bytes are sent
using the HP-IB’s interlocking handshake to ensure that the listener has
received each byte.

Similarly, most ENTER statements involve transferring data from a talker to
only one listener. For instance, the following ENTER statement invokes the*
following sequence of commands and data-transfer operations.

ENTER 722;Voltage
1. The unlisten command is sent.
2. The talker’s address (22) is sent, which is a command.

3. The listener’s address is sent (here, the computer’s address; “My Listen
Address”), also a command.

4. The data is sent by device 22 to the computer using the HP-IB handshake.

Bus sequences, hardware signal lines, and more specific HP-IB operations are
discussed in the “HP-IB Control Lines” and “Advanced Bus Management”
sections.

3-10 The HP-IB Interface

Addressing Multiple Listeners

HP-IB allows more than one device to listen simultaneously to data sent
through the bus (even though the data may be accepted at differing rates).
The following examples show how the Active Controller can address multiple
listeners on the bus.

100 ASSIGN Q@Listeners TO 701,702,703
110 QUTPUT QListeners;String$
120 OQUTPUT CListeners USING Image_1;Array$(*)

This capability allows a single OUTPUT statement to send data to several
devices simultaneously. It is however, necessary for all the devices to be on
the same interface. When the preceding OUTPUT statement is executed, the
unlisten command is sent first, followed by the Active Controller’s talk address
and then listen addresses 01, 02, and 03. Data is then sent by the controller
and accepted by devices at addresses 1, 2, and 3.

If an ENTER statement that uses the same I/O path name is executed by the
Active Controller, the first device is addressed as the talker (the source of data)
and all the rest of the devices, including the Active Controller, are addressed as
listeners. The data is then sent from the device at address 01 to the devices at
addresses 02 and 03 and to the Active Controller.

130 ENTER @Listeners;String$
140 ENTER CListeners USING Image_2;Array$(*)

The HP-IB Interface 3-11

Secondary Addressing

Many devices have operating modes which are accessed through the extended
addressing capabilities defined in the bus standard. Extended addressing
provides for a second address parameter in addition to the primary address.
Examples of statements that use extended addressing are as follows.

100 ASSIGN @Device TO 72205 ! 22=primary, Ob5=secondary.
110 OUTPUT QDevice;Message$

200 OUTPUT 72205;Message$

150 ASSIGN @Device TO 7220529 ! Additional secondary
160 ! address of 29.
170 OUTPUT @Device;Message$

120 OUTPUT 7220529;Message$

The range of secondary addresses is 00-31; up to six secondary addresses may
be specified (a total of 15 digits including interface select code and primary
address). Refer to the device’s operating manual for programming information
associated with the extended addressing capability. The HP-IB interface also
has a mechanism for detecting secondary commands. For further details, see
the discussion of interrupts.

General Bus Management

The HP-IB standard provides several mechanisms that allow managing the bus
and the devices on the bus. Here is a summary of the statements that invoke
these control mechanisms.

ABORT is used to abruptly terminate all bus activity
and reset all devices to power-on states.

CLEAR is used to set all (or only selected) devices to a
pre-defined, device-dependent state.

LOCAL is used to return all (or selected) devices to local
(front-panel) control.

3-12 The HP-IB Interface

LOCAL LOCKQUT is used to disable all devices’ front-panel
controls.

PPOLL is used to perform a parallel poll on all
devices (which are configured and capable of
responding).

PPOLL CONFIGURE is used to setup the parallel poll response of a
particular device.

PPOLL UNCONFIGURE is used to disable the parallel poll response of a
device (or all devices on an interface).

REMOTE is used to put all (or selected) devices into their
device-dependent, remote modes.

SEND is used to manage the bus by sending explicit
command or data messages.

SPOLL is used to perform a serial poll of the specified
device (which must be capable of responding).

TRIGGER is used to send the trigger message to a device
(or selected group of devices).

These statements (and functions) are described in the following discussion.
However, the actions that a device takes upon receiving each of the above
commands are, in general, different for each device. Refer to a particular
device’s manuals to determine how it will respond. Detailed descriptions of the
actual sequence of bus messages invoked by these statements are contained in
“Advanced Bus Management” later in this chapter.

Remote Control of Devices

Most HP-IB devices can be controlled either from the front panel or from the
bus. If the device’s front-panel controls are currently functional, it is in the
Local state. If it is being controlled through the HP-IB, it is in the Remote
state. Pressing the front-panel “Local” key will return the device to Local
(front-panel) control, unless the device is in the Local Lockout state (described
in a subsequent discussion).

The Remote message is automatically sent to all devices whenever the System
Controller is powered on, reset, or sends the Abort message. A device also

The HP-IB Interface 3-13

enters the Remote state automatically whenever it is addressed. The REMOTE
statement also outputs the Remote message, which causes all (or specified)
devices on the bus to change from local control to remote control. The
computer must be the System Controller to execute the REMOTE statement.

Fzamples
REMOTE 7

ASSIGN @Device TO 700
REMOTE @Device

REMOTE 700

Locking Out Local Control

The Local Lockout message effectively locks out the “local” switch present on
most HP-IB device front panels, preventing a device’s user from interfering
with system operations by pressing buttons and thereby maintaining system
integrity. As long as Local Lockout is in effect, no bus device can be returned
to local control from its front panel.

The Local Lockout message is sent by executing the LOCAL LOCKOUT
statement. This message is sent to all device on the specified HP-IB interface,
and it can only be sent by the computer when it is the Active Controller.

Ezxamples

ASSIGN €eHpib TO 7
LGCAL LOCKOUT €Hpib

LOCAL LOCKOUT 7

The Local Lockout message is cleared when the Local message is sent by
executing the LOCAL statement. However, executing the ABORT statement
does not cancel the Local Lockout message.

3-14 The HP-IB Interface

Enabling Local Control

During system operation, it may be necessary for an operator to interact with
one or more devices. For instance, an operator might need to work from the
front panel to make special tests or to troubleshoot. And, in general, it is
good systems practice to return all devices to local control upon conclusion
of remote-control operations. Executing the LOCAL statement returns the
specified devices to local (front-panel) control. The computer must be the
Active Controller to send the LOCAL message.

Ezamples

ASSIGN OHpib TO 7
LOCAL OHpib

ASSIGN @Q@Device TO 700
LOCAL ©ODevice

If primary addressing is specified, the Go-to-Local message is sent only to
the specified device(s). However, if only the interface select code is specified,
the Local message is sent to all devices on the specified HP-IB interface and
any previous Local Lockout message (which is still in effect) is automatically
cleared. The computer must be the System Controller to send the Local
message (by specifying only the interface select code).

Triggering HP-IB Devices

The TRIGGER statement sends a Trigger message to a selected device or
group of devices. The purpose of the Trigger message is to initiate some
device-dependent action; for example, it can be used to trigger a digital
voltmeter to perform its measurement cycle. Because the response of a device
to a Trigger Message is strictly device-dependent, neither the Trigger message
nor the interface indicates what action is initiated by the device.

Ezamples

ASSIGN ©OHpib TO 7
TRIGGER €Hpib

ASSIGN @Device TO 707
TRIGGER ©@Device

The HP-IB Interface 3-15

Specifying only the interface select code outputs a Trigger message to all
devices currently addressed to listen on the bus. Including device addresses

in the statement triggers only those devices addressed by the statement. The
computer can also respond to a trigger from another controller on the bus. See
“Interrupts While Non-Active Controller” for details.

Clearing HP-IB Devices

The CLEAR statement provides a means of “initializing” a device to its
predefined, device-dependent state. When the CLEAR statement is executed,
the Clear message is sent either to all devices or to the specified device(s),
depending on the information contained within the device selector. If only the
interface select code is specified, all devices on the specified HP-IB interface are
cleared. If primary-address information is specified, the Clear message is sent
only to the specified device. Only the Active Controller can send the Clear
message.

FEzamples

ASSIGN eHpib TO 7
CLEAR CHpib

ASSIGN €@Device TO 700
CLEAR @Device

Aborting Bus Activity

This statement may be used to terminate all activity on the bus and return all
the HP-IB interfaces of all devices to a reset (or power-on) condition. Whether
this affects other modes of the device depends on the device itself. The
computer must be either the active or the system controller to perform this
function. If the System Controller (which is not the current Active Controller)
executes this statement, it regains active control of the bus. Only the interface
select code may be specified; device selectors which contain primary-addressing
information (such as 724) may not be used.

FEzamples

ASSIGN @Hpib TO 7
ABORT €Hpib

ABORT 7

3-16 The HP-IB Interface

HP-IB Service Requests

Most HP-IB devices, such as voltmeters, frequency counters, and spectrum
analyzers, are capable of generating a “service request” when they require the
Active Controller to take action. Service requests are generally made after

the device has completed a task (such as making a measurement) or when an
error condition exists (such as a printer being out of paper). The operating
and/or programming manuals for each device describe the device’s capability to
request service and conditions under which the device will request service.

To request service, the device sends a Service Request message (SRQ) to the
Active Controller. The mechanism by which the Active Controller detects
these requests is the SRQ interrupt. Interrupts allow an efficient use of system
resources, because the system may be executing a program until interrupted by
an event’s occurrence. If enabled, the external event initiates a program branch
to a routine which “services” the event (executes remedial action).

Chapter 7 described interrupt events in general. This chapter describes the two
types of interrupts that can occur on an HP-IB Interface: SRQ interrupts from
external devices (that can occur while the computer is an Active Controller),
and interrupts that can occur while the computer is a non-Active Controller.
The first type of interrupts are described in this section. The second type are
described in the section called “The Computer as a Non-Active Controller.”

Setting Up and Enabling SRQ Interrupts

In order for an HP-IB device to be able to initiate a service routine in the
Active Controller, two prerequisites must be met: the SRQ interrupt event
must have a service routine defined, and the SRQ interrupt must be enabled
to initiate the branch to the service routine. The following program segment
shows an example of setting up and enabling an SRQ interrupt.

100 Hpib=7

110 ON INTR Hpib GOSUB Service_routine

120 !

130 Mask=2

140 ENABLE INTR Hpib;Mask

The value of the mask in the ENABLE INTR statement determines which
type(s) of interrupts are to be enabled. The value of the mask is automatically
written into the HP-IB interfaces’s interrupt-enable register (CONTROL
register 4) when this statement is executed. Bit 1 is set in the preceding

The HP-IB Interface 3-17

example, enabling SRQ interrupts to initiate a program branch. Reading
STATUS register 4 at this point would return a value of 2.

When an SRQ interrupt is generated by any device on the bus, the program
branches to the service routine when the current line is exited (either when the
line’s execution is finished or when the line is exited by a call to a user-defined
function). The service routine, in general, must perform the following
operations:

m determine which device(s) are requesting service (parallel poll)
m determine what action is requested (serial poll)

m clear the SRQ line

m perform the requested action

m re-enable interrupts

m return to the former task (if applicable)

Servicing SRQ Interrupts

The SRQ is a level-sensitive interrupt; in other words, if an SRQ is present

momentarily but does not remain long enough to be sensed by the computer,
an interrupt will not be generated. The level-sensitive nature of the SRQ line
also has further implications, which are described in the following paragraphs.

FEzample

Assume only one device is currently on the bus. The following service routine
first serially polls the device requesting service, thereby clearing the interrupt
request. In this case, the computer did not have to determine which device was
requesting service because only one device is on the bus. It is also assumed
that only service request interrupts have been enabled; therefore, the type of
interrupt need not be determined either. The service is then performed, and
the SRQ event is re-enabled to generate subsequent interrupts.

500 Serv_rtn: Ser_poll=SPOLL(@Device)
]

510

520 ! Additional service routine code
530 ! can be included here.

540 !

550 ENABLE INTR 7 ! Use previous mask.
560 RETURN

3-18 The HP-IB Interface

The IEEE standard has defined that when an interrupting device is serially
polled, it is to stop interrupting until a new condition arises (or the same
condition arises again). In order to “clear” the SRQ line, it is necessary to
perform a serial poll on the device. This poll is an acknowledgement from

the controller to the device that it has seen the request for service and is
responding. The device then removes its request for service (by releasing SRQ).

Had the SRQ line not been released, the computer would have branched to the
service routine immediately upon re-enabling interrupts on this interface. This
is another implication of the level-sensitive nature of the SRQ interrupt.

It is also important to note that once an interrupt is sensed and logged,

the interface cannot generate another interrupt until the initial interrupt is
serviced. The computer disables all subsequent interrupts from an interface
until a pending interrupt is serviced. For this reason, it was necessary to allow
for subsequent branching.

Polling HP-IB Devices

The Parallel Poll is the fastest means of gathering device status when several
devices are connected to the bus. Each device (with this capability) can be
programmed to respond with one bit of status when Parallel Polled, making

it possible to obtain the status of several devices in one operation. If a

device responds affirmatively (“I need service”) to a Parallel Poll, then more
information as to its specific status can be obtained by conducting a Serial Poll
of the device.

Configuring Parallel Poll Responses

Certain devices can be remotely programmed by the Active Controller to
respond to a Parallel Poll. A device which is currently configured for a

Parallel Poll responds to the poll by placing its current status on one of the
bus data lines. The logic sense of the response and the data-bit number

can be programmed by the PPOLL CONFIGURE statement. No multiple
listeners can be specified in the statement; if more than one device is to
respond on a single bit, each device must be configured with a separate PPOLL
CONFIGURE statement.

The HP-IB Interface 3-19

FEzample

ASSIGN @Device TO 701
PPOLL CONFIGURE @Device;Configure_code

The value of Configure_code (any numeric expression can be specified) is first
rounded to an integer and then used to configure the device’s Parallel Poll
Response. The least-significant 3 bits (2 thru 0) of the expression are used to
determine which data line the device is to respond on (place its status on). Bit
3 specifies the logic sense of the Parallel Poll Response bit of the device. For
instance, a value of 0 implies that the device’s response is 0 when its Status Bit
message is “I need service.”

Ezample

The following statement configures the device at address 01 on the HP-IB
interface at select code 7 to respond by placing a 0 on bit 4 (DIO5) when its
Status Bit response is affirmative.

$PPOLL CONFIGURE 701; 4

Conducting a Parallel Poll

The PPOLL function returns a single byte containing up to 8 status bit
messages of the devices on the bus (which are capable of responding to the
Parallel Poll. Each bit returned by the function corresponds to the status bit
of the device(s) configured to respond to the Parallel Poll. (Recall that one or
more devices can respond on a single line.) The PPOLL function can only be
executed by the Active Controller.

Response=PPOLL(7)

Disabling Parallel Poll Responses

The PPOLL UNCONFIGURE statement gives the Active Controller the
capability of disabling the Parallel Poll responses of one or more devices on the
bus.

PPOLL UNCONFIGURE 705

The following statement disables all devices on the HP-IB interface at select
code 8 from responding to a Parallel Poll.

PPOLL UNCONFIGURE 8

3-20 The HP-IB Interface

If no primary addressing is specified, all bus devices are disabled from
responding to a Parallel Poll. If primary addressing is specified, only the
specified devices (which have the Parallel Poll Configure capability) are
disabled.

Conducting a Serial Poll

A sequential poll of individual devices on the bus in known as a Serial Poll.
One entire byte of device-specific status is returned in response to a Serial Poll.
This byte is called the “Status Byte” message and, depending on the device,
may indicate an overload, a request for service, or a printer being out of paper.
The particular response of each device depends on the device.

The SPOLL function performs a Serial Poll of the specified device; the
computer must currently be the Active Controller in order to execute this
function.

Ezamples

ASSIGN @Device TO 700
Status_byte=SPOLL(700)

Spoll_724=SPOLL(724)

Just as the Parallel Poll is not defined for individual devices, the Serial Poll is

meaningless for an interface; therefore, primary addressing must be used with
the SPOLL function.

Special Case: Serial Polling a Non-Active Controller

If you wish to perform a serial poll on a non-active BASIC controller that will
cause it to generate a Serial Poll Addressed State (SPAS) interrupt, you must
follow a specific procedure. You cannot use an ordinary SPOLL to obtain this
behavior, you must construct a custom HP-IB message using SEND. You must
send Serial Poll Enable (SPE) before sending the talk address of the non-active
BASIC controller. Refer to the SPOLL simulation example in the following
section, “Explicit Bus Messages” /“Examples of Sending Commands” for details
and example code.

The HP-IB Interface 3-21

Advanced Bus Management

Bus communication involves both sending data to devices and sending
commands to devices and the interface itself. “General Structure of the
HP-IB” stated that this communication must be made in an orderly fashion
and presented a brief sketch of the differences between data and commands.
However, most of the bus operations described so far in this chapter involve
sequences of commands and/or data which are sent automatically by the
computer when HP-IB statements are executed. This section describes both
the commands and data sent by HP-IB statements and how to construct your
own, custom bus sequences.

The Message Concept

The main purpose of the bus is to send information between two (or more)
devices. These quantities of information sent from talker to listener(s) can be
thought of as messages. However, before data can be sent through the bus,

it must be properly configured. A sequence of commands is generally sent
before the data to inform bus devices which is to send and which is (or are) to
listen to the subsequent message(s). These commands can also be thought of as
messages.

Most bus messages are transmitted by sending a byte (or sequence of bytes)
with numeric values of 0 through 255 through the bus data lines. When the
Attention line (ATN) is true, these bytes are considered commands; when ATN
is false, they are interpreted as data. Bus command groups and their ASCII
characters and codes are shown in “Bus Commands and Codes”.

Types of Bus Messages

The messages can be classified into twelve types. This computer is capable
of implementing all twelve types of interface messages. The following list
describes each type of message.

1. A Data message consists of information which is sent from the talker to the
listener(s) through the bus data lines.

2. The Trigger message causes the listening device(s) to initiate
device-dependent action(s).

3-22 The HP-IB Interface

10.

11.

12.

. The Clear message causes either the listening device(s) or all of the devices

on the bus to return to their device-dependent “clear” states.

. The Remote message causes listening devices to change to remote program

control when addressed to listen.

. The Local message clears the Remote message from the listening device(s)

and returns the device(s) to local front-panel control.

. The Local Lockout message disables a device’s front-panel controls,

preventing a device’s operator from manually interfering with remote
program control.

. The Clear Lockout/Local message causes all devices on the bus to be

removed from Local Lockout and to revert to the Local state. This
message also clears the Remote message from all devices on the bus.

. The Service Request message can be sent by a device at any time to signify

that the device needs to interact with the the Active Controller. This
message is cleared by sending the device’s Status Byte message, if the
device no longer requires service.

. A Status Byte message is a byte that represents the status of a single

device on the bus. This byte is sent in response to a serial poll performed
by the Active Controller. Bit 6 indicates whether the device is sending the
Service Request message, and the remaining bits indicate other operational
conditions of the device.

A Status Bit message is a single bit of device-dependent status. Since more
than one device can respond on the same line, this Status Bit may be
logically combined and/or concatenated with Status Bit messages from
many devices. Status Bit messages are returned in response to a Parallel
Poll conducted by the Active Controller.

The Pass Control message transfers the bus management responsibilities
from the Active Controller to another controller.

The Abort message is sent by the System Controller to assume control
of the bus unconditionally from the Active Controller. This message
terminates all bus communications, but is not the same as the Clear
message.

The HP-IB Interface 3-23

These messages represent the full implementation of all HP-IB system
capabilities; all of these messages can be sent by this computer. However,
each device in a system may be designed to use only the messages that are
applicable to its purpose in the system. It is important for you to be aware
of the HP-IB functions implemented on each device in your HP-IB system to
ensure its operational compatibility with your system.

Bus Commands and Codes

The following table shows the decimal values of IEEE-488 command messages.
Remember that ATN is true during all of these commands. Notice also that
these commands are separated into four general categories: Primary Command
Group, Listen Address Group, Talk Address Group, and Secondary Command
Group. Subsequent discussions further describe these commands.

3-24 The HP-IB Interface

HP-IB Commands and Codes

Decimal ASCII Interface
Value Character Message Description
PCG Primary Command Group
1 SOH GTL Go to Local
4 EOT SDC Selected Device Clear
5 ENQ PPC Parallel Poll Configure
8 BS GET Group Execute Trigger
9 HT TCT Take Control
17 DC1 LLO Local Lockout
20 DC4 DCI Device Clear
21 NAK PPU Parallel Poll Unconfigure
24 CAN SPE Serial Poll Enable
25 EM SPD Serial Poll Disable
LAG Listen Address Group
32-62 Space through > Listen Addresses 0-30
(Numbers/special chars.)
63 ? UNL Unlisten
TAG Talk Address Group
64-94 @ through 1 Talk Addresses 0-30
(Uppercase letters)
95 —(underscore) UNT Untalk
SCG Secondary Command Group
96-126 ¢ through ~ Secondary Commands 0-30
(Lowercase letters)
127 DEL Ignored

The HP-IB Interface 3-25

Address Commands and Codes

The following table shows the ASCII characters and corresponding codes of the
Listen Address Group and Talk Address Group commands. The next section
describes how to send these commands.

HP-IB Listen and Talk Address Commands

Listen Talk Address
Address Address Address Switch
Character | Character Code Settings
Space @ 0 00000
! A 1 00001
» B 2 00010
C 3 00011
$ D 4 00100
% E 5 00101
& F 6 001190
’ G 7 00111

(H 8 01000

) I 9 01001
* J 10 01010
+ K 11 01011
, L 12 01100
- M 13 01101
N 14 01110

/ o) 15 01111
0 P 16 10000
1 Q 17 10001
2 R 18 10010

3-26 The HP-IB Interface

HP-IB Listen and Talk Address Commands (continued)

Listen Talk Address
Address Address Address Switch
Character | Character Code Settings
3 S 19 10011

T 20 10100

5 U 21 10101

6 \% 22 10110

7 W 23 10111

8 X 24 11000

9 Y 25 11001

Z 26 11010

; [27 11011

< / 28 11100

=] 29 11101

>) 30 11110

The HP-IB Interface 3-27

The preceding table implicitly shows that:

m Listen address commands can be calculated from the primary address by
using one of the following equations:

Listen_address=32+Primary_address
or
Listen_address$=CHR$ (32+Primary_address)

m Similarly, talk address commands can be calculated from the primary address
by using one of the following equations

Talk_address=64+Primary_address
or
Talk_address$=CHR$(64+Primary_address)
However, the table does not show that:
m the Unlisten command is “?”, CHR$(63)
m the Untalk command is “_”, CHR$(95)

m therefore, primary address 31 is an unusable device address, but can be used
to send the Unlisten and Untalk commands.

Explicit Bus Messages

It is often desirable (or necessary) to manage the bus by sending explicit
sequences of bus messages. The SEND statement is the vehicle by which
explicit commands and data can be sent through the bus. The SEND
statement is also a method of sending data with odd parity through the bus
(instead of using the PARITY attribute discussed in the “I/O Path Attributes”
chapter). This section shows several uses of this statement.

Ezamples of Sending Commands

As a simple example, suppose the following statement is executed by the Active
Controller to configure the bus (i.e., to address the talker and listener).

OUTPUT 701 USING "#,K"

3-28 The HP-IB Interface

The SEND statement can be used to send the same sequence of commands, as
shown in the following statement.

SEND 7;CMD "70'"

This statement configures the bus explicitly by sending the following
commands:

m the unlisten command (ASCII character “?”; decimal code 63)
m talk address 21 (ASCII character “U”; decimal code 85)
m listen address 1 (ASCII character “!”; decimal code 33)

The same sequence of commands and data is sent with any of the following
statements.

SEND 7;CMD UNL MTA LISTEN 1
SEND 7;CMD UNL TALK 21 LISTEN 1
SEND 7;CMD 32+31,64+21,32+1

Commands can be sent by specifying the secondary keyword CMD. The list

of commands (following CMD) can be any numeric or string expressions. If
more than one expression is listed, they must be separated by commas. A
numeric expression will be evaluated, rounded to an integer (MOD 256), and
sent as one byte. Each character of a string expression will be sent individually.
All bytes are sent with ATN true. The computer must be the current Active
Controller to send commands.

SEND Isc;CMD 8 ! Group Execute Trigger
SEND Isc;TALK New_controller CMD 9 ! Pass Control
SEND 8;CMD 1 ! Go to Local

If SEC is used, the specified secondary commands will be sent. An extended
talker may be addressed by using SEC after the talk address; extended
listener(s) may be addressed by using SEC after the listen address(es).

SEND 7;MTA UNL LISTEN 1 CMD 5 SEC 16 ! SEND PPD.

The computer must be the Active Controller to send CMD, LISTEN, UNL,
MLA, TALK, UNT, MTA, and SEC. If a non-Active Controller attempts to
send any of these messages, an error is reported.

The HP-IB Interface 3-29

Simulate the following SPOLL function with SEND and ENTER statements.
A=SPOLL(724)

When an SPOLL is performed, the resulting bus activity is:

m Unlisten command

m My Listen Address (the computer’s listen address; MLA)

m device’s talk address (one of the TAG commands)

m Serial Poll Enable command (SPE; decimal code 24)

m one data byte is read (the Status Byte message)

m Serial Poll Disable (SPD; decimal code 25)

m Untalk command

This is accomplished by either of the following sequences:

SEND 7;CMD "75"&CHR$(24)&"X" ! Configure the bus; send SPE.
ENTER 7 USING "#,B";A ! Read Status Byte.

SEND 7;CMD CHR$(25)&"_" ! Send SPD and Untalk.

SEND 7;UNL MLA CMD 24 TALK 24 ! Configure the bus; send SPE.
ENTER 7 USING "#,B";A ! Read Status Byte.

SEND 7;CMD 25 UNT ! Send SPD and Untalk.

The preceding secondary keywords provide the capability of sending various
command messages through the bus. The activity that results on the bus when
several other high-level commands are issued is summarized in “HP-IB Message
Mnemonics”.

FEzamples of Sending Data

Data messages can be sent by specifying the secondary keyword DATA. If the
computer is the Active Controller, the data is sent immediately. However, if
the computer is not the Active Controller, it waits to be addressed to talk
before sending the data.

SEND 7;DATA "Message",13,10 ! Send with CR/LF.

SEND Bus;DATA "Data" END ! Send with EOT.

The data list may contain any mixture of numeric or string expressions; if
more than one expression is specified, they must be separated by commas.

3-30 The HP-IB Interface

Each numeric expression is evaluated as an integer (MOD 256) and sent as a
single byte. Each string item is evaluated and all resultant characters are sent
serially. Each byte is sent with ATN false (sent as a data message). The last
expression may be followed by the secondary keyword END, which causes the
EOI terminator to be sent concurrently with the last data byte.

As another example, simulate this ENTER statement with a SEND statement.
ENTER 724;Number,String$

Any of the following pairs of statements can be used to accomplish the same
operation.

SEND 7;UNL TALK 24 MLA
ENTER 7;Number,String$

SEND 7;UNL TALK 24 LISTEN 21
ENTER 7 ;Number,String$

SEND 7;CMD "7X5"
ENTER 7;Number, String$

HP-IB Message Mnemonics

This section contains the descriptions of several bus messages described by the
IEEE 488-1978 standard. The following table describes message mnemonics,
their meanings, and the secondary keywords used with the SEND statement.
The HP-IB messages that require primary keywords are noted in the table.

All BASIC statements which send HP-IB messages (except SEND) always

set ATN-true (command) messages with the most-significant bit set to zero.
Using CMD (with SEND) allows you to send ATN-true messages with the
most-significant bit set to one. This may be useful for non-standard IEEE-488
devices which require the most-significant bit to have a particular value.

The CMD and DATA secondary keywords of SEND statements allow string
expressions as well as numeric expressions (e.g., CMD “?” is the same as
CMD 63). All other secondary keywords which need data require numeric
expressions. Keep this in mind while reading through this table.

The HP-IB Interface 3-31

HP-IB Messages and Mnemonics

Message Message SEND Clause Required
Mnemonic Description (numeric values are decimal)
DAB Data Byte DATA 0 through 255
DCL Device Clear CMD 20 (or 148)
EOI End or Identify DATA data list END
GET Group Execute Trigger | CMD 8 (or 136)
GTL Go To Local CMD 1 (or 129)
IFC Interface Clear Not possible with SEND;
use the ABORT statement.
LAG Listen Address LISTEN 0 through 30;
or CMD 32 through 62;
or CMD 160 through 190
LLO Local Lockout CMD 17
MLA My Listen Address MLA
MTA My Talk Address MTA
PPC Parallel Poll Configure |CMD 5 (or 133)

3-32 The HP-IB Interface

HP-IB Messages and Mnemonics (continued)

Message Message SEND Clause Required
Mnemonic Description (numeric values are decimal)
PPD Parallel Poll Disable SEC 16; or CMD 112 (or 240)

(Must be preceded by PPC.)
PPE Parallel Poll Enable SEC 0+Mask:
SEC 0 through 15;
or CMD 96 through 111;
or CMD 224 through 239
{Must be preceded by PPC.)
PPU Parallel Poll Unconfig. |CMD 21 (or 149)
PPOLL | Parallel Poll Not possible with SEND;
use the PPOLL function.
REN Remote Enable Not possible with SEND;
use the REMOTE statement.
SDC Selected Device Clear CMD 4 (or 132)
SPD Serial Poll Disable CMD 25 (or 153)
SPE Serial Poll Enable CMD 24 (or 152)
TAD Talk Address TALK 0 through 30;

or CMD 64 through 94;
or CMD 192 through 222

The HP-IB Interface 3-33

HP-IB Messages and Mnemonics (continued)

Message Message SEND Clause Required
Mnemonic Description (numeric values are decimal)
TCT Take Control CMD 9 (or 137)
UNL Unlisten UNL; or LISTEN 31;

or CMD 63 (or 191)

UNT Untalk UNT; or TALK 31;
or CMD 95 (or 223)

The Computer As a Non-Active Controller

The section called “General Structure of the HP-IB” described how
communications take place through HP-IB Interfaces. The functions of

the System Controller and Active Controller were likened to a “committee
chairman” and “acting chairman,” respectively, and the functions of each

were described. This section describes how the Active Controller may “pass
control” to another controller and assume the role of a non-Active Controller.
This action is analogous to designating another committee member to take the
responsibility of acting chairman and then becoming a committee member who
listens to the acting chairman and speaks when given the floor. The following
topics will be discussed:

m Determining whether the computer is currently the Active Controller and/or
System Controller

m Determining the computer’s HP-IB primary address, and changing it, if
necessary

m Passing control to another HP-IB controller
m Requesting service from the Active Controller
m Responsibilities of being a non-Active Controller

m Responding to interrupts that occur while non-Active Controller

3-34 The HP-IB Interface

Determining Controller Status and Address

It is often necessary to determine if an interface is the System Controller and
to determine whether or not it is the current Active Controller. It is also often
necessary to determine or change the interface’s primary address. The example
program shown in the beginning of this chapter interrogated interface STATUS
registers and printed the resultant System-Controller status and primary
address. Those operations are explained in the following paragraphs.

Ezample
Executing the following statement reads STATUS register 3 (of the internal
HP-IB) and places the current value into the variable Stat_and-addr.

Remember that if the statement is executed from the keyboard, the variable
Stat_and_addr must be defined in the current context.

STATUS 7,3;Stat_and_addr

STATUS Register 3 Controller Status and Address

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
System Active 0 Primary address of HP-IB interface
Controller | Controller
value=128 | value=64 }value=0 |value=16 }value=8 |value=4 |value=2 |value=1

If bit 7 is set (1), it signifies that the interface is the System Controller; if
clear (0), it is not the System Controller. Only one controller on each HP-IB
interface should be configured as the System Controller.

If bit 6 is set (1), it signifies that the interface is currently the Active
Controller; if it is clear (0), another controller is currently the Active
Controller.

Bits 4 through 0 represent the current value of the interface’s primary address,
which is in the range of 0 through 30. The power-on default value for the
internal HP-IB is 21 (if it is the System Controller) and 20 (if not the System
Controller). For external HP-IB interfaces, the default address is set to 21 at

the factory but may be changed by setting the address switches on the card
itself.

The HP-IB Interface 3-35

FEzample

Calculate the primary address of the interface from the value previously read
from STATUS register 3.

Intf_addr=Stat_and_addr MOD 32

This numerical value corresponds to the talk (or listen) address sent by

the computer when an OUTPUT (or ENTER) statement containing
primary-address information is executed. Talk and listen addresses are further
described in “Advanced Bus Management”.

Changing the Controller’s Address

It is possible to use the CONTROL statement to change an HP-IB interface’s
address.

Ezample
CONTROL 7,3;Intf_addr

The value of Intf_addr is used to set the address of the HP-IB interface (in this
case, the internal HP-IB). The valid range of addresses is 0 through 30; address
31 is not used. Thus, if a value greater than 30 is specified, the value MOD 32
is used (for example: 32 MOD 32 equals 0, 33 MOD 32 equals 1, 62 MOD 32
equals 30, and so forth).

Passing Control

The current Active Controller can pass this capability to another computer by
sending the Take Control message (TCT). The Active Controller must first
address the prospective new Active Controller to talk, after which the TCT
message is sent. If the other controller accepts the message, it then assumes the
role of Active Controller; this computer then assumes the role of a non-Active
Controller.

3-36 The HP-IB interface

Passing control can be accomplished in one of two ways: it can be

handled by the system, or it can be handled by the program. To handle it

programmatically, use the PASS CONTROL statement. For example, the

following statements first define the HP-IB Interface’s select code and new

Active Controller’s primary address and then pass control to that controller.
100 Hp_ib=7

110 New_ac_addr=20
120 PASS CONTROL 100*Hp_ib+New_ac_addr

The following statements perform the same functions.

100 Hp_ib=7
110 New_ac_addr=20
120 SEND Hp_ib;UNL TALK New_ac_addr CMD 9

Once the new Active Controller has accepted the TCT command, the controller
passing control assumes the role of a non-Active Controller (or “HP-IB

device”) on the specified HP-IB Interface. The next section describes the
responsibilities of the computer while it is a non-Active Controller.

Restrictions to Passing Control with BASIC/UX

On BASIC/UX if the HP-IB device contains swap space or a mounted file
system, you cannot pass control to that device.

Interrupts While Non-Active Controller

When the computer is not an Active Controller, it must be able to detect and
respond to many types of bus messages and events.

The computer (as a non-Active Controller) needs to keep track of the following
information.

m It must keep track of itself being addressed as a listener so that it can enter
data from the current active talker.

m It must keep track of itself being addressed as a talker so that it can transmit
the information desired by the active controller.

m It must keep track of being sent a Clear, Trigger, Local, or Local Lockout
message so that it can take appropriate action.

® It must keep track of control being passed from another controller.

The HP-IB Interface 3-37

One way to do this is to continually monitor the HP-IB interface by executing
the STATUS statement and then taking action when the values returned match
the values desired. This is obviously a great waste of computer time if the
computer could be performing other tasks. Instead, the interface hardware can
be enabled to monitor bus activity and then generate interrupts when certain
events take place.

The computer has the ability to keep track of the occurrences of all of the
preceding events. In fact, it can monitor up to 16 different interrupt conditions.
STATUS registers 4, 5 and 6 provide access to the interface state and interrupt
information necessary to design very powerful systems with a great degree of
flexibility.

Each individual bit of STATUS register 4 corresponds to the same bit of
STATUS register 5. Register 4 provides information as to which condition
caused an interrupt, while register 5 keeps track of which interrupt conditions
are currently enabled. To enable a combination of conditions, add the decimal
values for each bit that you want set in the interrupt-enable register. This total
is then used as the mask parameter in an ENABLE INTR statement.

Note that non-active controller interrupts that occur during an ENTER or
OUTPUT operation are lost.

3-38 The HP-IB Interface

STATUS Register 5 Interrupt Enable Mask
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
Active Parallel | My Talk | My EOI SPAS Remote/ | Talker/
Controller| poll con- |address | Listen received local listener
figuration |received |address change |address
change received change
value= value= value= |value= |[value= |[value= |valuex= |value=
-32 768 |16 384 8 192 4 096 2 048 1024 512 256
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Trigger |Hand- Unrecog- | Secondary | Clear Unrecog- |SRQ IFC
received |shake nized command |received |nized received |received
error universal | while addressed
command| addressed command
value=128| value=64 | value=32|value=16 |value=8 |value=4 |[value=2 |value=1

Bit 15 enables an interrupt upon becoming the Active Controller. The
computer then has the ability to manage bus activities.

Bit 14 enables an interrupt upon detecting a change in Parallel Poll
Configuration. This condition requires accepting data from the bus and then
explicitly releasing the bus. Refer to the “Advanced Bus Management” section

for further

details.

Bit 13 enables an interrupt upon being addressed as an active talker by the
Active Controller.

Bit 12 enables an interrupt upon being addressed as an active listener by the
Active Controller.

Bit 11 enables an interrupt when an EOI is received during an ENTER
operation (the EOI signal line is also described in “HP-IB Control Lines”).

The HP-IB Interface 3-39

Bit 10 enables an interrupt when the Active Controller performs a Serial Poll
on the computer (in response to its service request).

Bit 9 enables an interrupt upon receiving either the Remote or the Local
message from the active controller, if addressed to listen. The action taken by
the computer is, of course, dependent on the user-programmed service routine.

Bit 8 enables an interrupt upon a change in talk or listen address. An
interrupt will be generated if the computer is addressed to listen or talk or
“idled” by an Unlisten or Untalk command.

Bit 7 enables an interrupt upon receiving a Trigger message, if the computer
is currently addressed to listen. This interrupt can be used in situations
where the computer may be “armed and waiting” to initiate action; the active
controller sends the Trigger message to the computer to cause it to begin its
task.

Bit 6 enables an interrupt if a bus error occurs during an OUTPUT statement.
Particularly, the error occurs if none of the devices on the bus respond to

the HP-IB’s interlocking handshake (see “HP-IB Control Lines”). The error
typically indicates that either a device is not connected or that its power is off.

Bit 5 enables an interrupt upon receiving an unrecognized Universal
Command. This interrupt condition provides the computer with the capability
of responding to new definitions that may be adopted by the IEEE standards
committee. This condition also requires accepting data from the bus and then
explicitly releasing the bus. Refer to the “Advanced Bus Management” section
for further details.

Bit 4 enables an interrupt upon receiving a Secondary Command (extended
addressing) after the interface receives either its primary talk address or
primary listen address. Again, this interrupt provides the computer with a
way to detect and respond to special messages from another controller. This
condition requires accepting data from the bus and then explicitly releasing the
bus. Refer to the “Advanced Bus Management” section for further details.

Bit 3 enables an interrupt on receiving a Clear message. Reception of

either a Device Clear message (to all devices) or a Selected Device Clear
message (addressed to the computer) will cause this type of interrupt. The
computer is free to take any “device-dependent” action; such as, setting up all
default values again, or even restarting the program, if that is defined by the
programmer to be the “cleared” state of the machine.

3-40 The HP-IB Interface

Bit 2 enables an interrupt upon receiving an unrecognized Addressed
Command, if the computer is currently addressed to listen. This interrupt

is used to intercept and respond to bus commands which are not defined by
the standard. This condition requires accepting data from the bus and then
explicitly releasing the bus. Refer to the “Advanced Bus Management” section
for further details.

Bit 1 enables an interrupt upon detecting a Service Request.

Bit 0 enables an interrupt upon detecting an Interface Clear (IFC). The
interrupt is generated only when the computer is not the System Controller, as
only a System Controller is allowed to set the Interface Clear signal line. The
service routine typically is used to recover from the abrupt termination of an
I/0 operation caused by another controller sending the IFC message.

Note that most of the conditions are state- or event-sensitive; the exception
is the SRQ event, which is level-sensitive. State-or event-sensitive events
can never go unnoticed by the computer as can service requests; the event’s
occurrence is “remembered” by the computer until serviced.

For instance, if the computer is enabled to generate an interrupt on becoming
addressed as a talker, it would interrupt the first time it received its own talk
address. After having responded to the service request (most likely with some
sort of OUTPUT operation), it would not generate another interrupt, even if it
was still left assigned as a talker by the Active Controller. Thus, it would not
generate another interrupt until the event occurred a second time.

The HP-IB Interface 3-41

An oversimplified example of a service routine that is to respond to multiple
conditions might be as follows.

100 ON INTR Hpib GOSUB Service
110 Mask=INT(2°13)+INT(2°12)
120 ENABLE INTR Hpib;Mask ! Interrupt on receiving

130 ! talk or listen addr.
140 Idle: GDTD Idle

150 !

160 Service: STATUS Hpib,4;Status,Mask

170 IF BIT(Status,13) THEN Talker
180 IF BIT(Status,12) THEN Listener
190 RETURN! Ignore other interrupts.
200 Talker: ! Take action for talker.

210 GOTO Exit_point

220 !

230 Listener: ! Take action for listener.

240 !

250 Exit_point: ENABLE INTR Hpib;Mask

260 RETURN

270 END

Register 4, the interrupt status register, is a “read-destructive” register; reading
the register with a STATUS statement returns its contents and then clears

the register (to a value of 0). If the service routine’s action depends on the
contents of STATUS register 4, the variable in which it is stored must not be
used for any other purposes before all of the information that it contains has
been used by the service routine.

The computer is automatically addressed to talk (by the Active Controller)
whenever it is Serially Polled. If interrupts are concurrently enabled for My
Address Change and/or Talker Active, the ON INTR branch will be initiated
due to the reception of the computer’s talk address. However, since the Serial
Poll is automatically finished with the Untalk Command, the computer may no
longer be addressed to talk by the time the interrupt service routine begins
execution. See “Responding to Serial Polls” for further details.

3-42 The HP-IB Interface

Addressing a Non-Active Controller

The bus standard states that a non-Active Controller cannot perform any bus
addressing. When only the interface select code is specified in an ENTER

or OUTPUT statement that uses an HP-IB interface, no bus addressing is
performed.

If the computer currently is not the Active Controller, it can still act as either
talker or listener, provided it has been previously addressed as such. Thus, if
an ENTER or OUTPUT statement is executed while the computer is not an
Active Controller, the computer first determines whether or not it is an active
talker or listener. If not addressed to talk or listen, the computer waits until it
is properly addressed and then finishes executing the statement. It relies on the
Active Controller (another computer or device) to perform the bus addressing,
and then simply participates as a device in the exchange of the data. Example
statements which send and receive data while the computer is not an Active
Controller are as follows.

100 OUTPUT 7;'"Data" ! If not talker, then wait until

110 ! addressed as talker to send data.
200 ENTER 7;Data$! If not listener, then wait until
210 ! addressed as listener to accept data.

If the computer is the Active Controller, it proceeds with the data transfer
without addressing which devices are talker and listener(s). However, if the
bus has not been configured previously, an error is reported (Error 170
1/0 operation not allowed). The following program does not require

the “overhead” of addressing talker and listeners each time the QUTPUT
statement in the FOR..NEXT loop is executed, because the bus is not
reconfigured each time.

100 OUTPUT 701 USING "#,K“
110

120

130

140 FOR Iteration=1 TD 25
150 OUTPUT 7;"Data message"
160 NEXT Iteration

170 !

180 END

Configure the bus:
This interface = talker, and
printer (701) = listener.

The HP-IB Interface 3-43

This type of HP-IB addressing should be used with the understanding that

if an event initiates a branch between the time that the initial addressing

was made (line 100) and the time that any of the OUTPUT statements

are executed (line 150), the event’s service routine may reconfigure the bus
differently than the initial configuration. If so, the data will be directed to the
device(s) addressed to listen by the last I/O statement executed in the service
routine. Events may need to be disabled if this method of addressing is used.

In general, most applications do not require this type of bus-overhead
minimization; the computer’s I/O language has already been optimized to
provide excellent performance. Advanced methods of explicit bus management
will be described in the section called “Advanced Bus Management”.

Note This type of HP-IB addressing is not allowed for TRANSFER
in BASIC/UX. If only a select code is specified, and that select
ﬁ code is Active Controller, an error is reported (Error 170 I/0

operation not allowed).

Requesting Service

When the computer is a non-Active Controller, it has the capability of sending
an SRQ to the current Active Controller. The following statement is an
example of requesting service from the Active Controller of the HP-IB Interface
on select code 7.

CONTROL 7,1;64

The REQUEST statement can be used to perform the same function.
REQUEST 7;64

Both of the preceding example place a logic True on the SRQ line. (Note that
the line may already be set True by another device.) Other bits may be set in
the Status Byte message, indicating that other device-dependent conditions
exist.

The SRQ line is held True until the Active Controller executes a Serial Poll or
this computer executes a REQUEST with bit 6 equal to 0. (Note also that the
line may still be held True by another device.)

3-44 The HP-IB Interface

When the Active Controller detects an SRQ message, it usually polls device(s)
on the bus to determine which need(s) service and what kind of service is
needed. To determine which device(s) are requesting service, the Active
Controller conducts a Parallel Poll. If there are not more than one device
currently capable of requesting service, the Parallel Poll is not necessary.

The Parallel Poll is conducted by sending an Identify (ATN & EOI). This
non-Active Controller’s response to a Parallel Poll performed by the Active
Controller depends on the current Parallel Poll Response set up for this
controller. Setting up this controller’s Parallel Poll Response is described in the
next section.

If the Active Controller needs to determine what service action is required for a
particular device, it performs a Serial Poll on the device(s) that responded to
the Parallel Poll with an “I need service.” As each device is Serially Polled, it
responds by placing its Status Byte on the bus.

This non-Active Controller’s response to a Serial Poll performed by the Active
Controller is handled automatically by the system. The Status Byte is the byte
sent to the Serial Poll Response Byte Register (with CONTROL or REQUEST,
as shown above). A subsequent section further describes this non-Active
Controller’s responses to Serial Polls.

Responding to Parallel Polls

Before performing a Parallel Poll of bus devices, the Active Controller
configures selected device(s) to respond on one of the eight data lines. Each
device is directed to respond on a particular data line with a logic True or
False; the logic sense of the response informs the Active Controller either “I do
need service” or “I don’t need service.” The logic sense of the response is also
specified by the Active Controller. This response to the Parallel Poll is known
as the Status Bit message.

After the desired devices have been told how to respond, the Active Controller
can send the Identify message and read the Status Bits placed on the data lines
to determine which device(s) need service. Identify is sent by placing ATN and
EOI in the logic True state. All devices which are currently configured for the
poll respond as configured.

To configure its own Parallel Poll Response, the computer must receive a
Parallel Poll Configure (PPC) command followed by a Parallel Poll Enable

The HP-IB Interface 3-45

(PPE) command from the Active Controller. Receiving this “Parallel Poll
Configuration Change” generates an interrupt (this type of interrupt is enabled
by setting bit 14 of the Interrupt Enable Register). The service routine takes
care of configuring this controller’s response by first accepting the encoded
“configure byte” (the PPE command from the Active Controller) and then
setting up a corresponding response.

The desired Status Bit message can be configured and sent by one of two
methods. The first, and simplest, method is to define an automatic response
by using the PPOLL RESPONSE statement. With this method, the computer
reads the configure byte from the data lines (HP-IB STATUS Register 7) and
then writes the byte’s numeric value into HP-IB CONTROL Register 5. The
following statements show an example of configuring this controller’s Parallel
Poll Response.

100 STATUS 7,7;Configure_code

110 CONTROL 7,5;Configure_code

120 I_need_service=0

130 PPOLL RESPONSE 7;I_need_service

When the computer receives a subsequent Identify from the Active Controller,
the specified response (“I do/don’t need service”) is automatically sent to the
Active Controller. The computer will probably need to respond to a Serial Poll,
which is described in the next section.

The second method requires that the service routine decode the configure
byte and set up the corresponding response. The configure byte read from

HP-IB STATUS Register 7 contains 5 bits of data encoded with the following
information:

CONTROL Register 5 Parallel Poll Response Mask

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Not used Uncon- | Logic Data bit used for response
figure sense

value=128| value=64 |value=0 |value=16|value=8 |value=4 |value=2 |value=1

3-46 The HP-IB Interface

Bit 4 determines whether a response will or will not be configured. A 1 tells
this controller not to configure a response, and a 0 tells the controller to
configure a response.

Bit 3 determines the logic sense of the Status Bit. If this bit is 0, then the “I
need service” message is a 0; if this bit is 1, the “I need service” message is 1.

Bits 2 through 0 determine the data line on which the Status Bit is to be
placed. For instance, if these bits are “000”, then the Status Bit is to be placed
on DIO1. If these bits are “111”, then the response is to be placed on DIOS.

The service routine calculates the desired response and places the appropriate
bit pattern in HP-IB CONTROL Register 2. For instance, if the configure
byte has a value of 12 (positive-true logic on DIO5 for “I need service”), the
value sent to CONTROL Register 2 is 16 for “I need service.” The appropriate
statement might be:

CONTROL 7,2;16

When the Identify is received from the Active Controller, the specified response
is made automatically.

As another example, suppose that the configure byte has a value of 7. The
Status Bit to be written into DIO8 would be a 0 for “I need service.” The
corresponding statement might be:

CONTROL 7,2;0

The following general routine calculates the value to be sent to CONTROL
Register 2:

790 STATUS 7,7;Config_code ! Read data lines.

800 Config_code=Config _code MOD 256 ! Strip 8 MSBs.
810 Unconfig=BIT(Config_code,4)

820 Sense=BIT(Config_code,3)

830 IF Unconfig=1 OR Sense=0 THEN ! Unconfigure.
840 Ppoll_response=0

850 ELSE ! Configure.

860 Status_bit=Config_code MOD 8 ! Get bits 2-0.
870 Ppoll_response=2"Status_bit ¢ Set proper bit.
880 END IF

890 CONTROL 7,2;Ppoll_response

The HP-IB Interface 3-47

Responding to Serial Polls

As a non-Active Controller, the response to Serial Polls is automatically
handled by the system. The desired Serial Poll Response Byte is sent to
HP-IB CONTROL Register 1. If bit 6 is set (bit 6 has a value of 64), an
SRQ is indicated from this controller. All other bits can be considered to be
“device-dependent,” and can thus be set according to the program’s needs.

The following statement sets up a response with SRQ and bits 1 and 0 set to
1’s.
CONTROL 7,1;64+2+1

When the Active Controller performs a Serial Poll on this non-Active
Controller, the specified byte is automatically sent to the Active Controller by
the system.

This non-Active Controller is automatically addressed to talk by the Active
Controller during a Serial Poll. If interrupts are concurrently enabled for My
Address Change and/or Talker Active interrupts, the ON INTR branch will
be initiated due to the reception of this controller’s talk address. However,
since the Serial Poll Response is terminated with the Untalk command, this
controller may no longer be addressed to talk when the service routine begins
its execution. In such a case, the SPAS interrupt (if enabled) will also be
indicated. If desired, the interrupt may be ignored.

Interface-State Information

It is often necessary to determine which state the interface is in. STATUS
register 6 contains interface-state information in its upper byte; it also contains
the same information as STATUS register 3 in its lower byte. In advanced
applications, it may be necessary to detect and act on the interface’s current
state. Register 6’s definition is shown below.

3-48 The HP-IB Interface

STATUS Register 6 Interface State Information

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

REM LLO ATN LPAS TPAS LADS TADS *
true 3

value= value= value= |value= |[value= |value= |value= |value=
—32768 |16 384 8 192 4 096 2 048 1024 512 256

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
System Active 0 Primary address of HP-1B interface
Controller | Controller
value=128| value=64 |value=32}value=16|value=8 |[value=4 |value=2 |value=1

* Least-significant bit of last address recognized.

Bit 15 set indicates that the interface is in the Remote state.

Bit 14 set indicates that the interface is in the Local Lockout state.
Bit 13 set indicates that the ATN line is currently set (true).

Bit 12 set indicates that the interface is in the Listener Primary Addressed
State (has received its primary listen address).

Bit 11 set indicates that the interface is in the Talker Primary Addressed State
(has received its primary talk address).

Bit 10 set indicates that the interface is in the Listener Addressed State and
is currently an active listener. If Bit 4 of the Interrupt Enable register is

set (Secondary Command While Addressed), two additional conditions are
required to enter this state: the interface must have first received its own
primary address followed by a secondary command, and it must have accepted
the secondary command (by writing a non-zero value to CONTROL register 4
to release the NDAC Holdoff).

The HP-IB Interface 3-49

Bit 9 set indicates that the interface is in the Talker Addressed State and is
currently an active talker. This state is entered in a manner analogous to the
Listener Addressed State (see Bit 10 above).

Bit 8 contains the least-significant bit of the last address recognized by this

interface.

Bits 7 through 0 have the same definitions as STATUS register 3.

Servicing Interrupts that Require Data Transfers

During the discussion on interrupts, three special types of interrupt conditions
were described (which are enabled by setting bits in CONTROL register 4).
These interrupts occur upon receiving: an unrecognized Universal Command,
an unrecognized Addressed Command, or a Secondary Command. These
sitnations all require the computer to read a byte of information from the bus
and respond as desired by the programmer.

STATUS Register 4 Interrupt Status
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
Active Parallel My Talk | My EOI SPAS Remote/ } Talker/
Controller | poll con- address] Listen received local listener
figuration |received |address change |address
change received change
value= value= value= |value= |[value= |[value= |[value= |value=
—32 768 |16 384 8192 4 096 2 048 1024 512 256
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Trigger | Hand- Unrecog- | Secondary| Clear Unrecog- | SRQ IFC
received [shake nized command |received |nized received |[received
error universal |while addressed
command | addressed command
value=128| value=64 | value=32 jvalue=16 |value=8 |value=4 |value=2 |value=1

3-50 The HP-IB Interface

As a reminder, these interrupt conditions occur under the following
circumstances.

Bit 14 enables an interrupt on any change in Parallel Poll configuration. If a
Parallel Poll Configure command is received, the computer must set up its own
Parallel Poll Response designated by the Active Controller. The response itself
is set up by writing to CONTROL register 2 of the HP-IB interface.

Bit 5 enables an interrupt upon receiving an unrecognized Universal
Command. This interrupt condition provides the computer with the ability
to respond to new definitions that may be adopted by the IEEE standards
committee.

Bit 4 enables an interrupt upon receiving a Secondary Command, if addressed
to either talk or listen during the command mode. Again, this allows the
computer to detect and respond to special information from another controller.

Bit 2 enables an interrupt upon receiving an unrecognized Addressed
Command, if addressed to listen. This interrupt is used to detect and respond
to commands that are undefined by the standard (but which may be recognized
by the computer).

Whenever any of the above interrupt conditions are enabled and occur, the
computer logs the interrupt and then sets a bus holdoff. In other words, all bus
activity is “frozen” until the program has released this holdoff. The holdoff is
established to allow the program time to determine the current state of the
bus.

The bus state is determined by reading HP-IB STATUS register 7, which
returns the current logic state of the data and control lines as a 16-bit integer.

STATUS 7,7;Bus_lines

After reading the state of the lines, it is necessary to release the bus holdoff by
writing any value into HP-IB CONTROL register 4.

CONTROL 7,4;Any_value

The HP-IB Interface 3-51

Only able
to talk

(e.q.,
counter)

DO 1.8

DAV
L———— NRFD
NDAC
IFC
ATN
SRQ

EO

HP-IB Control Lines

Handshake Lines

The preceding figure shows the names given to the eight control lines that
make up the HP-IB. Three of these lines are designated as the “handshake”
lines and are used to control the timing of data byte exchanges so that the
talker does not get ahead of the listener(s). The three handshake lines are as
follows.

DAV Data Valid
NRFD Not Ready for Data
NDAC Not Data Accepted

The HP-IB interlocking handshake uses the lines as follows. All devices
currently designated as active listeners would indicate when they are ready
for data by using the NRFD line. A device not ready would pull this line low
(true) to signal that it is not ready for data, while any device that is ready
would let the line float high. Since an active low overrides a passive high, this
line will stay low until all active listeners are ready for data.

When the talker senses that all devices are ready, it places the next data byte
on the data lines and then pulls DAV low (true). This tells the listeners that
the information on the data lines is valid and that they may read it. Each
listener then accepts the data and lets the NDAC line float high (false). As
with NRFD, only when all listeners have let NDAC go high will the talker
sense that all listeners have read the data. It can then float DAV (let it go
high) and start the entire sequence over again for the next byte of data.

The Attention Line (ATN)

Command messages are encoded on the data lines as 7-bit ASCII characters,
and are distinguished from normal data characters by the logic state of the
attention line (ATN). That is, when ATN is false, the states of the data lines
are interpreted as data. When ATN is frue, the data lines are interpreted as
commands. The set of 128 ASCII characters that can be placed on the data
lines during this ATN-true mode are divided into four classes by the states of
data lines DIO6 and DIO7. These classes of commands are shown in a table in
the section called “Advanced Bus Management”. Only the Active Controller
can set ATN true.

3-54 The HP-IB Interface

The Interface Clear Line (IFC)

Only the System Controller can set the IFC line true. By asserting IFC, all
bus activity is unconditionally terminated, the System Controller regains the
capability of Active Controller (if it has been passed to another device), and
any current talker and listeners become unaddressed. Normally, this line is
only used to terminate all current operations, or to allow the System Controller
to regain control of the bus. It overrides any other activity that is currently
taking place on the bus.

Computer

Museum

The Remote Enable Line (REN)

This line is used to allow instruments on the bus to be programmed remotely
by the Active Controller. Any device that is addressed to listen while REN is
true is placed in the Remote mode of operation.

The End or Identify Line (EOI)

Normally, data messages sent over the HP-IB are sent using the standard
ASCII code and are terminated by the ASCII line-feed character, CHR$(10).
However, certain devices may wish to send blocks of information that contain
data bytes which have the bit pattern of the line-feed character but which are
actually part of the data message. Thus, no bit pattern can be designated as a
terminating character, since it could occur anywhere in the data stream. For
this reason, the EOI line is used to mark the end of the data message.

The EQI line is used as an END indication (ATN false) during ENTER
statements and as the Identify message (ATN true) during an identify sequence
(the response to parallel poll). During data messages, the EOI line is set true
by the talker to signal that the current data byte is the last one of the data
transmission. Generally, when a listener detects that the EOI line is true, it
assumes that the data message is concluded. However, EOI may either be used
or ignored by the computer when entering data with an ENTER statement
that uses an image. Chapter 5 fully describes the definitions of EOI during all
ENTER statements and shows how to use the image specifiers that modify the
statement-termination conditions.

The HP-IB Interface 3-55

ENTER statements can use images to re-define the meaning of EOI to provide
a very great degree of flexibility. Using the “#” or “%” specifier in an ENTER

statement affects the definition of the EOI signal as shown in the following

table.
Definition of EOl During ENTER Statements
Free-Field ENTER ENTER ENTER
ENTER USING USING USING
Statements |without # or % with # with %
Definition of EOI |Immediate Item Ttem Immediate
statement terminator or terminator or |statement
terminator statement statement terminator
terminator terminator
Statement
Terminator Yes Yes No No
Required?
Early Termination
Allowed? No No No Yes

The Service Request Line (SRQ)

The Active Controller is always in charge of the order of events that occur on
the HP-IB. If a device on the bus needs the Active Controller’s help, it can
set the Service Request line true. This line sends a request, not a demand,
and it is up to the Active Controller to choose when and how it will service
that device. However, the device will continue to assert SRQ until it has
been “satisfied”. Exactly what will satisfy a service request depends on the
requesting device, which is explained in the device’s operating manual.

Determining Bus-Line States

STATUS register 7 contains the current states of all bus hardware lines.
Reading this register returns the states of these lines in the specified numeric

variable.

STATUS Hpib,7;Bus_lines

3-56 The HP-IB Interface

STATUS Register 7 Bus Control and Data Lines

Bit 15 Bit 14 | Bit13 | Bit12 | Bit11 | Bit10 | Bit9 Bit 8
ATN true | DAV true [NDAC! |NRFD! |EOI SRQ? IFC true | REN

true true true true true 3
value= value= value= |value= [value= |[value= |value= [value=
—-32 768 |16 384 8 192 4 096 2 048 1024 512 256
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DIO8 D107 DIO6 DIO5 DIO4 DIO3 DIO2 DIO1

value=128| value=64 | value=32| value=16] value=8 |value=4 |value=2 |value=l

1QOnly if currently addressed to Talk, else not valid.

20nly if currently Active Controller, else not valid.

Note Due to the way the bi-directional buffers work, NDAC and
NRFD are not accurately read by this STATUS statement
unless the interface is currently addressed to talk. Also, SRQ is

not accurately shown unless the interface is currently the active
controller.

The HP-IB Interface 3-57

Summary of HP-IB STATUS and CONTROL Registers
STATUS Register 0

CONTROIL Register 0 Reset interface if non-zero

STATUS Register 1

Card identification = 1

Interrupt and DMA Status

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Interrupts|Interrupt } Hardware | Interrupt DMA DMA
enabled |requested]level switches 0 0 channel |channel

1 0
enabled |enabled
value=128| value=64 | value=32 | value=16| value=8 |value=4 [value=2 |value=1
CONTROL Register 1 Poll Response Byte

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device SRQ
depen- 1=I did 1t Device dependent status
dent 0=I didn’t
status
value=128| value=64 |value=32|value=16|value=8 |value=4 |value=2 {value=1

3-58 The HP-IB Interface

HP-IB Status and Control Registers (continued)

STATUS Register 2 Busy Bits
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reserved | Handshake | Interrupts [TRANS-
0 0 0 0 for in enabled FER in
future progress progress
use
value=128| value=64| value=32| value=16| value=8 | value=4 value=2 [value=1
CONTROL Register 2 Parallel Poll Response Byte
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIOS8 DIO7 DIOS DIOS DIO4 DIO3 DIO2 DIO1
l1=true l1=true 1=true 1=true 1=true 1=true l1=true 1=true
value=128| value=64 |value=32| value=16]| value=8 |value=4 |value=2 |value=1
STATUS Register 3 Controller Status and Address
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
System Active 0 Primary address of HP-IB interface
Controller | Controller
value=128} value=64 | value=32]|value=16| value=8 |value=4 |value=2 |value=1

The HP-IB Interface 3-59

HP-IB Status and Control Registers (continued)
CONTROL Register 3 Set My Address

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Not used Primary address
value=128| value=64 | value=32| value=16| value=8 [value=4 {value=2 |[value=1
STATUS Register 4 Interrupt Status
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 |
Active Parallel |My Talk | My EOI SPAS Remote/ | Talker/
Controller | poll con- |address |Listen Received local listener
figuration |received |address change |address
change received change
value= value= value= |value= |[value= |[value= |[value= |value=
—-32 768 |16 384 8 192 4 096 2 048 1024 512 256
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Trigger |Hand- Unrecog- { Secondary | Clear Unrecog- | SRQ IFC
received |shake nized command |received |nized received |received
error universal | while addressed
command| addressed command
value=128] value=64 |value=32|value=16 |value=8 |value=4 |value=2 |value=1

3-60 The HP-IB Interface

HP-IB Status and Control Registers (continued)

CONTROL Register 4 Writing anything to this register releases NDAC
holdoff. If non-zero, accept last secondary address as
valid. If zero, don’t accept last secondary address (stay
in LPAS or TPAS state).

STATUS Register 5

Interrupt Enable Mask

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
Active Parallel |My Talk | My EOI SPAS Remote/ { Talker/
Controller | poll con- [address | Listen received local listener

figuration |received |address change [address
change received change
value= value= value= |value= |[value= |value= |value= |value=
—32 768 |16 384 8 192 4 096 2 048 1024 512 256
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Trigger Hand- Unrecog- [Secondary | Clear Unrecog- [SRQ IFC
received |shake nized command |received |nized received |received
error universal | while addressed
command] addressed command
value=128{ value=64 |value=32{value=16 [value=8 |value=4 |value=2 |value=1

The HP-IB Interface 3-61

HP-IB Status and Control Registers (continued)
CONTROL Register 5 Parallel Poll Response Mask

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Not used Uncon- | Logic Data bit used for response
figure sense
value=128| value=64 {value=0 |value=16}value=8 |value=4 |value=2 |value=1
STATUS Register 6 Interface Status

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

REM LLO ATN LPAS TPAS LADS TADS *
true

value= value= value= [{value= |value= |value= [value= |value=
—32 768 |16 384 8 192 4 096 2 048 1024 512 256

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
System Active 0 Primary address of interface
Controller{ Controller
value=128| value=64 |} value=32| value=16| value=8 |value=4 |value=2 |value=1

* Least-significant bit of last address recognized

3-62 The HP-IB Interface

HP-IB Status and Control Registers (continued)
STATUS Register 7 Bus Control and Data Lines

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
ATN true | DAV true [NDAC! |NRFD! [EOI SRQ? IFC true | REN

true true true true true
value= value= value= |value= |[value= |[value= |[value= [value=
-32 768 |16 384 8192 4 096 2 048 1024 512 256
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DIO8 DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DIO1

value=128| value=64 |value=32| value=16{ value=8 | value=4 |value=2 |value=1

1Only if currently addressed to Talk, else not valid.

20nly if currently Active Controller, else not valid.

The HP-IB Interface 3-63

HP-IB Status and Control Registers (continued)
Interrupt Enable Register (ENABLE INTR)

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
Active Parallel |My Talk |My EOI SPAS Remote/ | Talker/
Controller|{ poll con- [address |[Listen received local listener

figuration |received [address change {address

change received change
value= value= value= |value= |value= |value= |[value= |value=
—32 768 |16 384 8 192 4 096 2 048 1024 512 256

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Trigger |Hand- Unrecog- | Secondary |Clear Unrecog- |SRQ IFC
received |[shake nized command |received [nized received |received

error universal | while addressed
command| addressed command
value=128| value=64 |value=32|value=16 |value=8 |value=4 |value=2 |value=1
STATUS Register 255 0: HP-IB interface unlocked and HP-IB interface
burst I/O disabled. (BASIC/WS and
BASIC/DOS accept this command but always
return the value “3”.)
1: HP-IB interface locked.
3: HP-IB interface burst I/O enabled.
CONTROL Register 255 0: disables HP-IB interface locking and HP-IB
interface burst I/0. (BASIC/WS and
BASIC/DOS accept this command but always
set the value “3”.)
1: enables HP-IB interface locking.
3: enables HP-IB interface burst I/0.

3-64 The HP-IB Interface

Summary of HP-IB READIO and WRITEIO Registers

READIO Registers

Register 1
Register 3
Register 5
Register 17

Register 19

Register 21
Register 23
Register 29
Register 31

HP-IB READIO Register 1

Card Identification
Interrupt and DMA Status
Controller Status and Address

Interrupt Status 0 (READIO operation will
change the state of the interface.)

Interrupt Status 1 (READIO operation will
change the state of the interface.)

Interface Status
Control-Line Status
Command Pass-Through

Data-Line Status (READIO operation will
change the state of the interface.)

Card Identification

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Future
use 0 0 0 0 0 0 1
jumper
installed
value=128]} value=64 | value=32| value=16| value=8 |value=4 |value=2 |value=1

Bit 7 is set (1) if the “future use” jumper is installed and clear (0) if not.

Bits 6 through 0 constitute a card identification code (=1 for all HP-IB cards).

The HP-IB Interface 3-65

Note

v

This register is only implemented on external HP-IB cards.
The internal HP-IB, at interface select code 7, “floats” this

register (i.e., the states of all bits are indeterminate).

HP-IB READIO Register 3

Interrupt and DMA Status

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |
Interrupt |Interrupt Interrupt level X X DMA1 |[DMAG
enabled |requested
value=128j value=64 [value=32|value=16{value=8 |value=4 |value=2 |value=1

Bit 7 is set (1) if interrupts are currently enabled. (On BASIC/UX, this bit is
not cleared (0) by DISABLE INTR.)

Bit 6 is set (1) when the card is currently requesting service.

Bits 5 and 4 constitute the card’s hardware interrupt level (a switch setting on
all external cards, but fixed at level 3 on the internal HP-IB).

Hardware Interrupt
Bit 5 | Bit 4 Level
0 0 3
0 1 4
1 0 5
1 1 6

Bits 3 and 2 are not used (indeterminate).
Bit 1 is set (1) if DMA channel one is currently enabled.
Bit 0 is set (1) if DMA channel zero is currently enabled.

3-66 The HP-IB Interface

Note Bits 7, 5, 4, 3, 2, and 1 are not implemented on the internal
6 HP-IB (interface select code 7).

HP-IB READIO Register 5 Controller Status and Address

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
System Not
Controller| Active X HP-1B primary address of interface
Controller

value=128{ value=64 |value=32 |value=16 |value=8 |value=4 |value=2 |value=1

Bit 7 is set (1) if the interface is the System Controller.

Bit 6 is set (1) if the interface is not the current Active Controller and clear
(0) if it is the Active Controller.

Bit 5 1s not used.

Bits 4 through 0 contain the card’s Primary Address switch setting. The
following bit patterns indicate the specified addresses.

Bit Primary
43210 Address
00000 0
00001 1
11101 29
11110 30
11111 (not allowed)

The HP-IB Interface 3-67

Note
1

Bits 5 through 0 are not implemented on the internal HP-IB.

HP-IB RFEADIO Register 17 MSB of Interrupt Status
This READIO Register is not supported on BASIC/UX.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
MSB LSB Byte Ready for | End SPAS Remote/ | My
interrupt [interrupt |received |next byte |detected local address

change |change
value=128| value=64 |value=32 jvalue=16 | value=8 |value=4 |value=2 |value=1

Bit 7 set (1) indicates that an interrupt has occurred whose cause can be

determined by reading the contents of this register.

Bit 6 set (1) indicates that an interrupt has occurred whose cause can be
determined by reading Interrupt STATUS Register 1 (READIO Register 19).

Bit 5 set (1) indicates that a data byte has been received.

Bit 4 set (1) indicates that this interface is ready to accept the next data byte.
Bit 3 set (1) indicates that an End (EOI with ATN=0) has been detected.
Bit 2 set (1) indicates that the computer is in the Serial Poll Addressed State

(SPAS).

Bit 1 set (1) indicates that a Remove/Local State change has occurred.

Bit 0 set (1) indicates that a change in My Address has occurred.

3-68 The HP-IB Interface

HP-IB READIO Register 19 LSB of Interrupt Status

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Trigger Hand- Unrecog- | Secondary| Clear My SRQ IFC
received |shake nized command |received |address |received]received

error command | while received
group addressed (MLA or
MTA)
value=128} value=64 |value=32 | value=16 | value=8 |value=4 |value=2 |value=1

Bit 7 set (1) indicates that a Group Execute Trigger command has been

received.

Bit 6 set (1) indicates that an Incomplete-Source-Handshake error has

occurred.

Bit 5 set (1) indicates that an unidentified command has been received.

Bit 4 set (1) indicates that a Secondary Address has been sent in while in the
extended-addressing mode.

Bit 3 set (1) indicates that the interface has entered the Device-Clear-Active

State.

Bit 2 set (1) indicates that My Address has been received.

Bit 1 set (1) indicates that a Service Request has been received.

Bit 0 set (1) indicates that the Interface Clear message has been received.

The HP-IB Interface 3-69

HP-IB READIO Register 21

Interface Status

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
REM LLO ATN true | LPAS TPAS LADS TADS LSB of
last
address
value=128] value=64 |value=32 |value=16 |value=8 |value=4 {value=2 |value=1

Bit 7 set (1) indicates that this interface is in the Remote State.

Bit 6 set (1) indicates that this interface is in the Local Lockout State.
Bit 5 set (1) indicates that the ATN signal line is true.

Bit 4 set (1) indicates that this interface is in the Listener-Primary-Addressed

State.

Bit 3 set (1) indicates that this interface is in the Talker-Primary-Addressed

State.

Bit 2 set (1) indicates that this interface is in the Listener-Addressed State.
Bit 1 set (1) indicates that this interface is in the Talker-Addressed State.

Bit 0 set (1) indicates that this is the least-significant bit of the last address
recognized by this interface.

HP-IB READIO Register 23 Control-Line Status

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ATN true | DAV true {NDAC! |NRFD! |EOI SRQ? IFC true | REN
true true true true true
value=128]| value=64 |value=32 |value=16 |value=8 |{value=4 |value=2 |value=1

1 Only if addressed to TALK, else not valid.

2 Only if Active Controller, else not valid.

3-70 The HP-IB Interface

A set bit (1) indicates that the corresponding line is currently true; a 0
indicates that the line is currently false.

HP-IB READIO Register 29 Command Pass-Through

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 DIO7 DIO6 DIO5 DI04 DIO3 DIO2 DIO1
value=128| value=64 |value=32 | value=16 |value=8 |value=4 |value=2 [value=1

This register can be read during a bus holdoff to determine which Secondary
Command has been detected.

HP-IB READIO Register 31

Bus Data Lines

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIOS DIOY DIO6 DIO5 DIO4 DIO3 DIO2 DIO1
value=128{ value=64 |value=32 |value=16 | value=8 |value=4 |value=2 |value=1

A set bit (1) indicates that the corresponding HP-IB data line is currently true;
a 0 indicates the line is currently false.

HP-IB WRITEIO Registers

Register 3—Interrupt Enable
Register 17—MSB of Interrupt Mask
Register 19—LSB of Interrupt Mask
Register 23—Auxiliary Command Register
Register 25-—Address Register
Register 27—Serial Poll Response
Register 29—Parallel Poll Response
Register 31—Data Out Register

The HP-IB Interface 3-71

HP-IB WRITEIQO Register 3 Interrupt and DMA Enable

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Enable Enable |Enable
interrupt X X X X X channel |channel

1 0
value=128] value=64 | value=32 | value=16 }value=8 |value=4 |value=2 |value=1

Bit 7 enables interrupts from this interface if set (1) and disables interrupts if

clear (0).

Bits 6 through 2 are “don’t cares” (i.e., their values have no effect on the
interface’s operation).

Bit 1 enables DMA channel 1 if set (1) and disables if clear (0).
Bit 0 enables DMA channel 0 if set (1) and disables if clear (0).

Note

v

Bits 7 through 1 are not implemented on the internal HP-IB
interface and thus have no effect on the interface’s operation.

HP-IB WRITFEIO Register 17 MSB of Interrupt Mask

Setting a bit of this register enables an interrupt for the specified condition.
The bit assignments are the same as for the MSB of Interrupt Status Register
(READIO Register 17), except that bits 7 and 6 are not used.

HP-IB WRITEIO Register 19 LSB of Interrupt Mask

Setting a bit of this register enables an interrupt for the specified condition.
The bit assignments are the same as for the LSB of Interrupt Status Register
(READIO Register 19).

3-72 The HP-IB Interface

HP-IB WRITEIO Register 23 Auxiliary Command Register

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Set X X Auxiliary command function

value=128| value=64 [value=32|value=16]value=8 |value=4 |value=2 {value=1

Bit 7 is set (1) for a Set operation and clear (0) for a Clear operation.
Bits 6 and 5 are “don’t cares.”

Bits 4 through 0 are Auxiliary-Command-Function-Select bits. The following
commands can be sent to the interface by sending the specified numeric values.

The HP-IB Interface 3-73

Auxiliary Commands

Decimal
Value Description of Auxiliary Command
0 Clear Chip Reset
128 [Set Chip Reset
1 Release ACDS holdoff. If Address Pass Through is set, it indicates an
invalid secondary has been received.
129 | Release ACDS holdoff. If Address Pass Through is set, indicates a valid
secondary has been received.
2 Release RFD holdofT.
130 |Same command as decimal 2 (above).
3 Clear holdoff on all data.
131 | Set holdoff on all data.
4 Clear holdoff on EOI only.
132 | Set holdoff on EOI only.
5 Set New Byte Available (nba) false.
133 | Same command as decimal 5 (above).
6 Pulse the Group Execute Trigger line, or clear the line if it was set by
decimal command 134.
134 | Set Group Execute Trigger line.
7 Clear Return To Local (rtl).
135 [Set Return To Local (must be cleared before the device is able to enter the
Remote state).
8 Causes EOI to be sent with the next data byte.
136 |Same command as decimal 8 (above).

3-74 The HP-IB Interface

Auxiliary Commands (continued)

Decimal
Value Description of Auxiliary Command

9 Clear Listener State (also cleared by decimal 138).
137 | Set Listener State.

10 Clear Talker State (also cleared by decimal 137).
138 | Set Talker State.

11 Go To Standby (gts; controller sets ATN false).
139 |Same command as decimal 11 (above).

12 | Take Control Asynchronously (tca; ATN true).
140 |Same command as decimal 12 (above).

13 | Take Control Synchronously (tcs; ATN true).

141 }Same command as decimal 13 (above).

14 Clear Parallel Poll
142 [Set Parallel Poll (read Command-Pass-Through register before clearing).
15 Clear the Interface Clear line (IFC).

143 | Set Interface Clear (IFC maintained > 100 ps).

16 Clear the Remote Enable (REN) line.
144 | Set Remote Enable.

17 Request control (after TCT is decoded, issue this to wait for ATN to drop
and receive control).

145 | Same command as decimal 17 (above).

18 Release control (issued after sending TCT to complete a Pass Control and
set ATN false).

146 |Same command as decimal 18 (above).

The HP-IB Interface 3-75

Auxiliary Commands (continued)

Decimal
Value

Description of Auxiliary Command

19 Enable all interrupts.

147
20
148

Disable all interrupts.

Pass Through next Secondary Command.

Same command as decimal 20 (above).

21 Set TI delay to 10 clock cycles (2 us at 5 MHz).

149

22 Clear Shadow Handshake

150

Set Shadow Handshake.

Set TI delay to 6 clock cycles (1.2 ps at 5 MHz).

HP-IB WRITFIO Register 25 Address Register

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Enable Disable Disable
dual listen talker Primary address
addressing
value=128| value=64 | value=32 | value=16 |value=8 |value=4 |value=2 |value=1

Bit 7 set (1) enables the Dual-Primary- Addressing Mode.

Bit 6 set (1) invokes the Disable-Listen function.

Bit 5 set (1) invokes the Disable-Talker function.

Bits 4 through 0 set the device’s Primary Address (same address bit definitions
as READIO Register 5).

3-76 The HP-IB Interface

HP-IB WRITFEIO Register 27 Serial Poll Response Byte

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device Request
depen- service Device dependent status
dent
status
value=128| value=64 |value=32 |value=16 | value=8 |value=4 |value=2 |value=1

Bits 7 and 5—0 specify the Device Dependent Status.
Bit 6 sends an SRQ if set (1).

Note

v

Given an unknown state of the Serial Poll Response Byte, it is
necessary to write the byte with bit 6 set to zero followed by a
write of the byte with bit 6 set to the desired final value. This
will insure that a SRQ will be generated if one was desired.

HP-IB WRITFEIO Register 29 Parallel Poll Response

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIOS8 DIOT DIO6 DIO5 DIO4 DIO3 DIO2 DIO1
value=128| value=64 | value=32 | value=16 | value=8 |value=4 {value=2 |value=1

A 1 sets the appropriate bit true during a Parallel Poll; a 0 sets the
corresponding bit false. Initially, and when Parallel Poll is not configured, this
register must be set to all zeros.

The HP-IB Interface 3-77

HP-IB WRITFEIO Register 31 Data-Out Register

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIOS8 DIO7 DIO6 DIO5 DIO4 DIO3 DIO?2 DIO1
value=128| value=64 |[value=32 jvalue=16 |value=8 |value=4 |value=2 |value=1

Summary of Bus Sequences

The following tables show the bus activity invoked by executing HP-IB
statements and functions. The mnemonics used in these tables were defined in
the previous sections of this chapter.

Note that bus messages are sent by using single lines (such as the ATN line)
and multiple lines (such as DCL). The information shows the state of and
chapges in the state of the ATN line during these bus sequences. The tables
implicitly show that these changes in the state of ATN remain in effect unless
another change is explicitly shown in the table. For example, if a statement
sets ATN (true) with a particular command, then it remains true unless the
table explicitly shows that it is set false. The ATN line is implemented in this
manner to avoid unnecessary transitions in this signal whenever possible. It
should not cause any dilemmas in most cases.

3-78 The HP-IB Interface

ABORT

Summary of Bus Actions

System Controller

Not System Controller

Active Controller IFC (duration ATN
>100 psec) MTA
REN UNL
ATN ATN
Not Active Controller IFC (duration No
>100 psec)! Action
REN
ATN

! The IFC message allows a non-active controller (which is the system
controller) to become the active controller.

CLEAR

The computer must be active controller to execute this statement.

Summary of Bus Actions

Interface Select Code Only | Primary Address Specified

ATN ATN
DCL MTA
UNL
LAG
SDC

The HP-IB Interface 3-79

LOCAL

Summary of Bus Actions

System Controller Not System Controller
3 Interface Select |Primary Addresq Interface Select | Primary Address
Code Only Specified Code Only Specified
Active REN ATN ATN ATN
Controller MTA GTL MTA
UNL UNL
LAG LAG
GTL GTL
Not Active REN Error Error Error
Controller
LOCAL LOCKOUT

The computer sending LOCAL LOCKOUT must be the active controller and
only an interface select code may be specified, not a primary address.

Summary of Bus Actions

System Controller

Not System Controller

Interface Select

Primary Address

Interface Select

Primary Address

Code Only Specified Code Only Specified
Active ATN Error ATN Error
Controller LLO LLO
Not Active Error Error Error Error
Controller

3-80 The HP-IB Interface

PASS CONTROL

The computer must currently be active controller to execute this statement,
and primary addressing (but not multiple listeners) must be specified. The
controller may be either a System or Non-system controller.

Summary of Bus Act

ions

System Controller Not System Controller
Interface Select | Primary Addresq Interface Select | Primary Addresq
Code Only Specified Code Only Specified
Active Error ATN Error ATN
Controller UNL UNL
TAD TAD
TCT TCT
ATN ATN
Not Active Error Error Error Error
Controller
PPOLL

The computer must be the active controller to execute this function.

Summary of Bus Actions

Interface Select Code Only

Primary Address Specified

ATN & EOI
(duration>25us)
Read byte
EOI

Restore ATN to
previous state

Error

The HP-IB Interface 3-81

PPOLL CONFIGURE

This statement assumes that the device’s response is bus-programmable. The

computer must be the active controller to execute this statement.

Summary of Bus Actions

Interface Select Code Only

Primary Address Specified

Error

ATN
MTA
UNL
LAG
PPC
PPE

PPOLL UNCONFIGURE

The computer must be the active controller to execute this statement. The

computer may be either a System or Non-System Controller.

Summary of

Bus Actions

Interface Select Code Only

Primary Address Specified

ATN
PPU

ATN
MTA
UNL
LAG
PPC
PPD

3-82 The HP-IB Interface

REMOTE

The computer must be the system controller to execute this statement, and it
must be the active controller to place individual devices in the remote state.

Summary of Bus Actions

Interface Select Code Only | Primary Address Specified

Active REN REN

Controller ATN ATN

MTA

UNL

LAG

Not Active REN Error
Controller

The HP-IB Interface 3-83

SPOLL

The computer must be the active controller to execute this statement, and
multiple listeners are not allowed. One secondary address may be specified to
get status from an extended talker.

Summary of Bus Actions

Interface Select | Primary Address
Code Only Specified

ATN

UNL
MLA
TAD
Error SPE
ATN
Read data
ATN
SPD
UNT

3-84 The HP-IB Interface

TRIGGER

The computer must currently be active controller to execute this statement.

Summary of Bus Actions

System Controller Not System Controller
Interface Select | Primary Addresqd Interface Select | Primary Addres
Code Only Specified Code Only Specified
Active ATN ATN ATN ATN
Controller GET UNL GET MTA
LAG UNL
GET LAG
GET
Not Active Error Error Error Error
Controller

The HP-IB Interface 3-85

RS-232C Serial Interfaces

Overview

The HP 98626 and HP 98644 serial interfaces are RS-232C compatible
interfaces used for simple asynchronous I/O applications such as driving

line printers, terminals, or other peripherals where the more sophisticated
capabilities of the HP 98628 and HP 98642 data communications interfaces are
not justified. (See the “Datacomm Interfaces” chapter for more information
on data communication interfaces.) Because the HP 98626 and HP 98644
Serial Interface cards have only a few differences, this chapter will deal mainly
with the HP 98626 interface card. Information on differences between these
two serial interface cards can be found in the sections “HP 98644 Interface
Differences” and “Series 300 Built-In 98644 Interface Differences.”

Bit—Serial
Data
Parallel {In)
Data IPoro!lel/ Out
Serial
Converter Handshake
Data and | (UART) 5 Shielded Cable
Control . to a Device
Serial

Backpiane iterface
Connectors

Hardware Special Purpose

7 A

Grounds
(———>

Block Diagram of the Serial Interface

25-Pin Connector

RS-232C Serial Interfaces 4-1

The BASIC system must provide most control functions because these cards do
not have their own microprocessor (as do the HP 98628 and HP 98642 cards).
Consequently, there is more interaction between these cards and computer
than when you use a more intelligent interface except for relatively simple
applications.

The RS-232C interface standard establishes electrical and mechanical interface
requirements, but does not define the exact function of all the signals that are
used by various manufacturers of data communications equipment and serial
I/0 devices. Consequently, when you plug your serial interface into an RS-232
connector, there is no guarantee the devices can communicate unless you have
configured optional parameters to match the requirements of the device you are
connecting to.

Note The RS-232C data communication standard is established
i and published by the Electronic Industries Association (EIA).
ﬁ Copies of the standard are available from the association at

2001 Eye Street N. W., Washington D. C. 20006. Its equivalent
for European applications is CCITT V.24.

Asynchronous Data Communication

The terms Asynchronous (Async for short) data communication and Serial I/O
refer to a technique of transferring information between two communicating
devices by means of bit-serial data transmission. This means that data is sent,
one bit at a time, and that characters are not synchronized with preceding

or subsequent data characters; that is, each character is sent as a complete
entity without relationship to other events, before or after. Characters may

be sent in close succession, or they may be sent sporadically as data becomes
available. Start and stop bits are used to identify the beginning and end of
each character, with the character data placed between them.

Character Format

Each character frame consists of the following elements:

Start Bit The start bit signals the receiver that a new character is being
sent. Since the receiver knows how many bits per second
are being transmitted (specified by the baud rate), it can

4-2 RS-232C Serial Interfaces

determine the expected arrival time for all subsequent bits
in that character frame. All other bits in a given frame are
synchronized to the start bit.

5-8 Character The next bits are the binary code of the character being

Data Bits transmitted, consisting of 5, 6, 7, or 8 bits; depending on the
application. The parity bit is not included in the character
data bits.

Parity Bit The parity bit is optional, included only when parity is
enabled.

Stop Bit(s) One or more stop bits identify the end of each character. The
serial interface has no provision for inserting time gaps between
characters.

Here is a simple diagram showing the structure of an asynchronous character
and its relationship to other characters in the data stream:

1]] l
“L T I T — T | '+‘l_
Y } })
pu—
¢ 1] 1 — :
Preceding = 1 o o 0o o0 1 . ?ctgrtNe%tt
Character Line in |Start Parity Stop Ch ¢
Idie State| Bit Bt Bit(s) aracter
(Mark)
[€—— Single Character Frame —————~
Beginning of End of
Character Character

Asynchronous Format
Parity

The parity bit is used to detect errors as incoming characters are received. If
the parity bit does not match the expected sense, the character is assumed to
be incorrectly received. The action taken when an error is detected depends
upon how the interface and the BASIC program are configured.

System requirements govern parity sense, which is determined by counting the
number of ones in the character including the parity bit. Consequently, the
parity sense is reversed from the number of ones in a character without the
parity bit.

RS-232C Serial Interfaces 4-3

The parity bit may be included or omitted from each character by enabling
or disabling the parity function. If the parity bit is enabled, four options are
available. Parity is checked by the receiver for all parity options including ONE

and ZERO. (The HP 98628 and HP 98642 Datacomm Interface cards do not
check parity when parity is set to ONE or ZERO.)

Parity options include:

NONE Parity function is DISABLED, and the parity bit is omitted
from each character frame.
ODD Parity bit is SET if there is an EVEN number of ones in

the data character. The receiver performs parity checks on
incoming characters.

EVEN Parity bit is SET if there is an ODD number of ones in
the data character. The receiver performs parity checks on
incoming characters.

Error Detection
Two types of incoming data errors can be detected by serial receivers:

m Parity errors are signaled when the parity bit does not match the number
of ones, including the parity bit, even or odd as defined by interface
configuration. When parity is disabled, no parity check is made.

m Framing errors are signaled when start and stop bits are not properly
received during the expected time frame. They can be caused by a missing
start bit, noise errors near the end of the character, or by improperly
specified character length at the transmitter or receiver.

Two additional error types are detected by the receiver section of the serial
interface:

m Overrun errors result when the desktop computer does not consume
characters as fast as they arrive. The card provides only one character of
buffer space, so the current character must be consumed by an ENTER
before the next character arrives. Otherwise, the character is lost when the
next character replaces it, and an error is sent to BASIC.

m Received BREAKSs are detected as a special type of framing error. They
generate the same type of BASIC error as framing errors.

4-4 RS-232C Serial Interfaces

Data Transfers Between Computer and Peripheral

Five statements are used to transfer information between your desktop
computer and the interface card:

m The OUTPUT statement sends data to the interface which, in turn, sends
the information to the peripheral device.

m The ENTER statement inputs data from the interface card after the interface
has received it from the peripheral device.

m The STATUS statement is used to monitor the interface and obtain
information about interface operation such as buffer status, detected errors,
and interrupt enable status.

m The CONTROL statement is used to control interface operation and defines
such parameters as baud rate, character format, or parity.

m The TRANSFER statement is used to input or output data from/to the
interface and, in turn, from/to the peripheral device.

Since the interface has no on-board processor, ENTER and OUTPUT
statements cause the computer to wait until the ENTER or OUTPUT
operation is complete before continuing to the next line. For OUTPUT
statements, this means that the computer waits until the last bit of the last
character has been sent over the serial line before continuing with the next
program statement.

Overview of Serial Interface Programming

Serial interface programming techniques are similar to most general I/0O
applications. The interface card is initialized by use of CONTROL statements;
STATUS statements evaluate its readiness for use. Data is transferred between
the desktop computer and a peripheral device by OUTPUT and ENTER
statements.

Due to the asynchronous nature of serial /O operations, special care must be
exercised to ensure that data is not lost by sending to another device before the
device is ready to receive. Modem line handshaking can be used to help solve

RS-232C Serial Interfaces 4-5

this problem. These and other topics are discussed in greater detail elsewhere
in this chapter.

Determining Operating Parameters

Before you can successfully transfer information to a device, you must

match the operating characteristics of the interface to the corresponding
characteristics of the peripheral device. This includes matching signal lines and
their functions as well as matching the character format for both devices.

Handshake and Baud Rate

To determine hardware operating parameters, you need to know the answer for
each of the following questions about the peripheral device:

m Which of the following signal and control lines are actively used during
communication with the peripheral?

Data Set Ready (DSR)

Data Carrier Detect (DCD or CD)
Clear to Send (CTS)

Ring Indicator (RI)

m What baud rate (line speed) is expected by the peripheral?

Character Format Parameters

To define the character format, you must know the requirements of the
peripheral device for the following parameters:

Character How many data bits are used for each character, excluding

Length start, stop, and parity bits?

Parity Enable Is parity enabled (included) or disabled (absent) for each
character?

Parity Sense Is the parity bit, if enabled, ODD, EVEN, always ONE, or
always ZERO?

Stop Bits How many stop bits are included with each character: 1, 1.5,
or 27

4-6 RS-232C Serial Interfaces

Using BASIC/WS Interface Defaults to Simplify Programming

The serial interface includes three default configuration switch clusters in
addition to the select code and interrupt level switches. Their functions are
described in the following paragraphs.

Modem-Line Disconnect Switches

The Modem Line Disconnect switches are used to connect or disconnect the
following modem lines from the interface cable:

m Data Set Ready (DSR), RS-232C

m Data Carrier Detect (DCD or CD), RS-232C
m Clear to Send (CTS), RS-232C

a Ring Indicator (RI), RS-232C

When a given switch is in the CONNECT position, the corresponding modem
line is connected from the peripheral device to the interface circuitry. When

it is in the disconnected position, the modem line is disconnected, and the
interface receiver input for that line is held HIGH (true). Any modem lines
that are not actively used while communicating with the peripheral should be
disconnected to minimize errors due to electrical noise in the cable. Modem
line disconnect switch settings cannot be altered under program control. To
reconfigure the switches, the interface must be removed from the computer, and
the settings changed by hand.

Note The built-in HP 98626 serial interface in Series 200 Model 216
i and 217 computers has no “modem-line disconnect” switches.
ﬁ Because switch settings can vary, cable connections between the

computer and an external device can require some cross-wiring.
Use of a breakout box can be helpful.

RS-232C Serial Interfaces 4-7

Baud Rate Select Switches

The rate at which data bits are transferred between the interface and the
peripheral is called the baud rate. The interface card must be set to transmit
and receive at the same rate as the peripheral, or data cannot be successfully
transferred. (These switches are not implemented on the 98644 interface.

See the description of register 13, which allows you to set a SCRATCH A
default value for the baud rate.) To preset the baud rate, the Baud Rate Select
switches can be set to any one of the following values:

Baud Rate Select Switch Settings

Switch Settings Switch Settings
Baud Rate 3210 Baud Rate 3210
50 0000 1200 1000
75 0001 1800 1001
110 0010 2400 1010
134.5 0011 3600 1011
150 0100 4800 1100
200 0101 7200 1101
300 0110 9600 1110
600 0111 19200 1111

Line-Control Switches

The Line Control switches are used to preset character format and parity
options. Functions are as shown in the following table. (These switches are not
implemented on the 98644 interface. See the description of register 14, which
allows you to set a SCRATCH A default value for the character format.)

4-8 RS-232C Serial Interfaces

Line Control Switch Settings

Parity Sense Parity Enable Stop Bits Character Length
(Switches 5&4) (Switch 3) (Switch 2) (Switches 1§10)
00 ODD parity 0 Disabled 0 1 stop bit 00 5 bits/char
01 EVEN parity |1 Enabled 1 1.5 stop bits 01 6 bits/char
10 Always ONE (if 5 bits/char), 10 7 bits/char
11 Always ZERO or 2 stop bits 11 8 bits/char
(if 6, 7, or 8 bits/char)

Bits 6 and 7 are reserved for future use. 4

Serial Configuration for BASIC/UX

There is no capability in BASIC/UX for reading the hardware bit settings on
either the HP 98626 or HP 98644 Serial Interface cards. Therefore, BASIC/UX
provides two methods for configuring modem control options:

m The stty command from the HP-UX environment.

m The keyword CONTROL and registers directly related to the modem control
options.

Of the two methods mentioned above the best one to use is the stty command
while in the HP-UX environment. The reason for this is any modem control
options set by using the keyword CONTROL are lost when you leave
BASIC/UX. However, if you prefer to change these options while in the
BASIC/UX environment, then read the subsequent section “Using Program
Control to Override Defaults.”

This section deals with the first method mentioned above which is the use of
the stty command from the HP-UX environment.

Defaults for the Serial Interface

When HP-UX is being booted up, the defaults for all serial interfaces are:

Baud rate 300
Bits per character 7
Parity Odd
Stop bits 2

RS-232C Serial Interfaces 4-9

The above values are used by BASIC/UX as defaults, unless configured as

explained in the next section.

Some common serial interface configuration settings are:

Baud rate to 9600

Bits per character to 8

Parity to 0Odd and disabled
Stop bits to 1

Configuring a Serial Interface for BASIC/UX

To configure your serial interface with the values mentioned in the previous
section, you can execute the following HP-UX command before entering

BASIC/UX:

/bin/stty 9600 cs8 -parenb parodd -cstopb < /dev/rmb/serialnn

where:

9600

cs8

-parenb

parodd

-cstopb

is the baud rate. The following are baud rates
you can use with the stty command:

50 150 1200 4800
75 200 1800 7200
110 300 2400 9600
134 600 3600 19200

is the number of bits per character. In the
case of this example, the number of bits per
character is 8. Other character lengths can be
set using cs5, cs6, or c¢s7 for 5, 6, or 7 bits
per character respectively.

disables parity generation and detection.
Removing the minus sign that is prefixed to
this stty option causes parity generation and
detection to be enabled.

selects odd parity. Prefixing a minus sign to this
stty option selects even parity.

causes one stop bit per character to be used.
Removing the minus sign that is prefixed to this

4-10 RS-232C Serial Interfaces

stty option causes two stop bits per character
to be used.

< /dev/rmb/serialnn assigns the stty options to the serial interface
located at select code number nn.

For more information on stty options, see the HP-UX Language Reference.

Using Program Control to Override Defaults

You can override some of the interface default configuration options by use

of CONTROL statements. This not only enables you to guarantee certain
parameters, but also provides a means for changing selected parameters in the
course of a running program. CONTROL Register tables are listed at the end
of this chapter as well as in the HP BASIC 6.2 Language Reference. Refer to
them as needed during the discussion which follows.

Interface Reset

Whenever an interface is connected to a modem that may still be connected
to a telecommunications link from a previous session, it is good programming
practice to reset the interface to force the modem to disconnect, unless the
status of the link and remote connection are known. When the interface is
connected to a line printer or similar peripheral, resetting the interface is
usually unnecessary unless an error condition requires it.

100 CONTROL Sc,0;1 ! Reset interface.

When the interface is reset by use of a CONTROL statement to CONTROL
Register 0 with a non-zero value, the interface is restored to its power-up
condition, except that the current character format for BASIC/WS is

not altered whether or not it is the same as the current default switch
configuration. If you are not sure of the present settings, or if your application
requires changing the configuration during program operation, you can use
CONTROL statements to configure the interface. An example of where this
may be necessary is when several peripherals share a single interface through

a manually operated RS-232 switch such as those used to connect multiple
terminals to a single computer port, or a single terminal to multiple computers.

RS-232C Serial Interfaces 4-11

Selecting the Baud Rate

In order to successfully transfer information between the interface card and a
peripheral, the interface and peripheral must be set to the same baud rate. A
CONTROL statement to register 3 (or 13 with 98644 interfaces) can be used to
set the interface baud rate to any one of the following values:

50 75 110 134
150 200 300 600
1200 1800 2400 3600
4800 7200 9600 19200

For example, to select a baud rate of 3600, the following program statement is
used:

CONTROL Sc,3;3600
Use of values other than those shown may result in incorrect operation.

To verify the current baud rate setting, use a STATUS statement addressed to
register 3. All rates are in baud (bits/second).

4-12 RS-232C Serial Interfaces

Setting Character Format and Parity

CONTROL Register 4 overrides the Line Control switches that control parity
and character format. To determine the value sent to the register, add the
appropriate values selected from the following table:

Character Format and Parity Settings

10 Unsupported

11 Unsupported

Handshake Parity Sense! | Par. Enable Stop Bits Char. Length

(Bits? 7&6) (Bits? 5&4) (Bit? 3) (Bit? 2) (Bits? 1&0)
00 no-op 00 ODD parity |0 Disabled 0 1 stop bit 00 5 bits/char
01 Xon/Xoff 01 EVEN parity |1 Enabled 1 2 stop bits |01 6 bits/char

Bidirectional |10 Unsupported 10 7 bits/char

11 8 bits/char

11 Handshake
Disabled

! Parity sense valid only if parity is enabled (bit 3=1). If parity is disabled,
parity sense is meaningless.

2 These bits correspond to equivalent switch settings on the HP 98626 and
HP 98644 serial interface cards. A 1 is the same as set.

Note

¥

For example, to configure a character format of eight bits per character, two
stop bits, and EVEN parity, use the following CONTROL statement:

CONTROL Sc,4;IVAL("11111",2)

With HP 98644 interfaces, there are no Line Control switches.
You can simulate their effect by writing to CONTROL Register
14. Note that individual bits of this register are the same as for
register 4.

or

CONTROL Sc,4;31

To configure a 5-bit character length with 1 stop bit and no parity bit, use the
following:

CONTROL Sc,4;0

RS-232C Serial Interfaces 4-13

Transferring Data

The serial interface card is designed for relatively simple serial I/O operations.
It is not intended for sophisticated applications that use ON INTR statements
to service the interface. If your situation for BASIC/WS requires full interrupt
capability such as in terminal emulator applications, use the HP 98628
Datacomm Interface instead. Limited ON INTR capabilities are provided by
the serial interface for error trapping and other simple tasks.

Entering and Outputting Data

When the interface is properly configured, either by use of default switches

or CONTROL statements, you are ready to begin data transfers. OUTPUT
statements are used to send information to the peripheral; ENTER statements
to input information from the external device.

OUTPUT 20;"String data",Numeric_var,Etc

ENTER 20;String_var$,Numeric_var,Etc

Any valid OUTPUT or ENTER statement and variable(s) list may be used,
but you must be sure that the data format is compatible with the peripheral
device. For example, non-ASCII data sent to an ASCII line printer may result
in unexpected behavior.

Various other I/O statements can be used in addition to OUTPUT and
ENTER, depending on the situation. For example, the LIST statement can
be used to list programs to an RS-232 line printer—provided the interface is
properly configured before the operation begins.

Outputting Data

To send data to a peripheral, use OUTPUT, OUTPUT USING, or any other
similar or equivalent construct. Suppression of end-of-line delimiters and

other formatting capabilities are identical to normal operation in general 1/0O
applications. The OUTPUT statement hangs the computer until the last bit of
the last character in the statement variable list is transmitted by the interface.
When the output operation is complete, the computer then continues to the
next line in the program. See the “Outputting Data” chapter for details of the
OUTPUT statement.

4-14 RS-232C Serial Interfaces

Entering Data

To input data from a peripheral, use ENTER, ENTER USING, or an
equivalent statement. Inclusion or elimination of end-of-line delimiters and
other information is determined by the formatting specified in the ENTER
statement. The ENTER statement hangs the computer until the input
variables list is satisfied. To minimize the risk of waiting for another variable
that isn’t coming, you may prefer to specify only one variable for each ENTER
statement, and analyze the result before starting the next input operation. See
the “Entering Data” chapter for details of the ENTER statement.

Be sure that the peripheral is not transmitting data to the interface while no
ENTER is in progress. Otherwise, data may be lost because the card provides
buffering for only one character. Also, interrupts from other I/O devices, or
operator inputs to the computer keyboard can cause delays in computer service
to the interface that result in buffer overrun at higher baud rates.

Modem Line Handshaking (HP BASIC/WS only)

Modem line handshaking, when used, is performed automatically by the
computer as part of the OUTPUT or ENTER operation. If the modem

line states have not been latched in a fixed state by Control Register 5, the
following sequence of events is executed automatically during each OUTPUT or
ENTER operation.

For OUTPUT operations:
1. Set Data Terminal Ready and Request-to-Send modem lines to active state.

2. Check Data Set Ready and Clear-to-Send modem lines to be sure they are
active.

3. Send information to the interface and thence to the peripheral.

4. After data transfer is complete, clear Data Terminal Ready and
Request-to-Send signals.

RS-232C Serial Interfaces 4-15

For ENTER operations:

1. Set Data Terminal Ready line to active state. Leave Request-to-Send
inactive.

2. Check Data Set Ready and Data Carrier Detect modem lines to be sure
they are active.

3. Input information from the interface as it is received from the peripheral.
4. After the input operation is complete, clear the Data Terminal Ready signal.

After a given OUTPUT or ENTER operation is completed, the program
continues execution on the next line.

Control Register 5 can be used to force selected modem control lines to their
active state(s). The Data Rate Select line is set or cleared by bit 2. For
BASIC/WS, the Secondary Request-to-send line is set or cleared by bit 3.
Request-to-send and Data Terminal Ready are held in their active states

when bits 1 and 0 are true, respectively. If bits 1 and/or 0 are false, the
corresponding modem line is toggled during OUTPUT or ENTER as explained
previously.

BASIC/UX Modem Line Handshaking

BASIC/UX requires addtional system administration before modem line
handshaking can be used with the HP98626/HP98644 card. The minor
numbers of any serial device files in the /dev/rmb directory must be changed to
0x550009 where SS is the select code of the serial interface. For example,

crv-rv-rv- 1 root other 1 0x090004 Feb 12 12:44 /dev/rmb/serial9

would be changed to

Cr¥-Irv-IrVv- 1 root other 1 0x090009 Feb 12 12:44 /dev/rmb/serial9

The mechanism used for modem line handshaking is limited by the features
provided by the HP-UX operating system. In particular, BASIC/UX uses the
simple mode of modem line handshaking with a call-out device file. A full
discussion of HP-UX facililties is beyond the scope of this manual. Refer to
modem(7) and termio(7) for more details.

HP-UX allows for three different types of opens on RS5232 interfaces: call-in,
call-out, and direct connect. There are anomolies associated with each type

4-.16 RS-232C Serial Interfaces

of open, and thus existing applications or workarounds which execute outside
the BASIC/UX environment may not work correctly as a result of changing
the device file used by BASIC/UX. Because of these anomolies, BASIC/UX
continues to use a direct connect device file for backward compatibility. See
MODEM(7) for more details.

HP-UX simple mode of modem line handshaking uses the following algorithm
for modem line handshaking. DTR. is asserted by the interface, and DCD
and CTS must be asserted by the device before data transfers can take place.
If DCD is lowered, DTR will also be lowered until DCD is asserted again.
See MODEM(7) for a further description of the simple mode of modem line
handshaking.

RS-232C Serial Interfaces 4-17

Incoming Data Error Detection and Handling (BASIC/WS only)

The serial interface card can generate several errors that are caused when
certain conditions are encountered while receiving data from the peripheral
device. The UART detects a given error condition. The card then generates
a pending error to BASIC. Errors can be generated by any of the following
conditions:

Parity error The parity bit on an incoming character does not match
the parity expected by the receiver. This condition is most
commonly caused by line noise. When this error occurs on
BASIC/WS, bit 2 of Status Register 10 is set.

Framing error Start and stop bit(s) do not match the timing expectations of
the receiver. This can occur when line noise causes the receiver
to miss the start bit or obscures the stop bits. When this error
occurs on BASIC/WS, bit 3 of Status Register 10 is set.

Overrun error Incoming data buffer overrun caused a loss of one or more data
characters. This is usually caused when data is received by
the interface, but no ENTER statement has been activated to
input the information. When this error occurs on BASIC/WS,
bit 1 of Status Register 10 is set.

Break received A BREAK was sent to the interface by the peripheral device.
The desktop computer program must be able to properly
interpret the meaning of a break and take appropriate action.
When this condition occurs on BASIC/WS, bit 4 of Status
Register 10 is set. Since a BREAK is detected as a special type
of framing error, the framing error indicator, bit 3, is also set.

4-18 RS-232C Serial Interfaces

All UART status errors are generated by incoming data, never by outbound
data. When a UART error occurs, the corresponding bit of Status Register
10 is set, and a pending error (ERROR 167: Interface status error) is sent to
BASIC. BASIC processes the error according to the following rules:

m If an ENTER is in progress, the error is handled immediately as part of
the ENTER process. An active ON ERROR causes the error trap to be
executed. If no ON ERROR is active, the error is fatal and causes the
program to terminate.

m If an OUTPUT is in progress, or if there is no current activity between the
computer and interface, the error is flagged, but nothing is done by BASIC
until an ENTER statement is encountered. When the computer begins 4
execution of the ENTER statement, if an ON ERROR is active, the error
trap is executed. If there is no active ON ERROR for that select code, the
fatal ERROR 167 causes the BASIC program to terminate.

m If a STATUS statement is executed to Status Register 10 before an ENTER
statement is encountered for that select code, the pending BASIC error is
cleared, and the program continues as if no error had been generated. For
BASIC/WS, whenever a STATUS statement is executed to Status Register
10, bits 1 through 4 of the register are cleared and the data is destroyed.

If you need to perform multiple operations (such as IF BIT tests) on the
register contents, be sure to store the information in a variable before you use
it.

Note that the above UART status errors cannot be detected using BASIC/UX.

Trapping Serial Interface Errors on BASIC/WS

Pending BASIC errors can be trapped by using an ON ERROR statement
in conjunction with an error trapping service routine to evaluate the error
condition. Here is an example technique:

RS-232C Serial Interfaces 4-19

1200 Sc=9 ! Set serial interface select code.

1210 ON ERROR GOTO Error ! Set up error trap routine.

1400 ENTER Sc;A$! Input line of data from interface.
1530 Error: ! Error trap routine:

1535 IF ERRN167 THEN Other_error

1540 STATUS Sc,10;Uart_error ! Get UART error information.
1550 IF BIT (Uart_error,1) THEN Overrun { Overrun error.
1560 IF BIT (Uart_error,2) THEN Parity ! Parity error.
1570 IF BIT (Uart_error,4) THEN Break ' BREAK received.
1580 IF BIT (Uart_error,3) THEN Framing ! Framing error.
1590 Other: ! Other error type.
1650 Overrun: ! Overrun error routine:

1700 Parity: ! Parity error routine:

1750 Framing: ! Framing error routine:

1800 Break: ! BREAK received routine:

1850 Other_error: ! Not error 167. Process accordingly.|A

This example is not intended to show a specific application, but only to
illustrate the technique for trapping interface errors. Only UART errors are
shown in this example, but the technique is valid for other errors related to a
given interface.

4-20 RS-232C Serial Interfaces

Note that in this example, the UART error information is checked for a
BREAK before looking at the framing error bit. When a break is received,
both the BREAK and framing error bits are set. Consequently, if the error
check sequence were reversed, it would be necessary to check for a BREAK
whenever a framing error is processed. Reversing the order eliminates an extra
step by making it unnecessary to check for framing errors when a BREAK
occurs. That is because whenever the BREAK is processed, the framing error
is also cleared, making it unnecessary to perform any operations related to
framing errors that are handled by the BREAK routine.

Advanced Programming Information

This section provides advanced programming information for applications
requiring special techniques.

RS-232 Software Portability

The status/control register sets of the serial and datacomm interfaces are
different (i.e., register numbers, functionality, etc). Unfortunately, this makes
it difficult to write programs which can be run on either interface, or future
interfaces which may not present the same status/control interface. Since
RS-232 interfaces support a set of common primitives, portability can be
enhanced by calling subprograms to perform these primitives rather than
accessing status/control registers directly.

For example, all RS-232 interfaces should provide a mechanism for changing
baud rate, number of stop bits, etc. When writing RS-232 programs in
BASIC, use subprograms which determine the interface type, and access the
appropriate status/control registers based on the interface type determined.
Doing so will allow you to develop your code in a hardware independent
fashion, with the details of how to communicate with a particular interface
isolated to a few lines of code.

In addition to using subprograms, avoid the use of interface dependent features.
For example, many of the status/control registers on the HP98628 implement
functionality which does not exist on other RS-232 interfaces. For example, the

RS-232C Serial Interfaces 4-21

HP9828 CONTROL register 24 (character filter) is specific to the HP98628.
Such functionality is normally not present on other RS-232 interfaces.

If you use subprograms to improve portability, unportable functionality should
be apparent when you are unable to support a particular subprogram for all
interfaces. In some cases it is reasonable to call a subprogram which does
nothing for a particular interface (i.e., a nop), as long as a program does

not depend on the behavior. For example, a subprogram to put an interface
into asynchronous mode would do nothing for interfaces which support
asynchronous mode only.

Below are two examples of subprograms which isolate the details of controlling
a particular RS-232 interface. A BASIC program could use these subroutines
withtout dependencies on the type of RS-232 interface actually in use.

RESET_RS232

!
!

[

! Syntax:

! Reset_rs232(Scd)
! Scd - Select code
[}

]

!

]

]

Description:
This is used to reset the RS232 cards. It also set
some of the registers to reasonable defaults.

SUB Reset_rs232(Scd)
STATUS Scd,0;Id
IF Id=52 THEN
RESET Scd
CONTROL Scd,0;1
CONTROL Scd,16;0
CONTROL Scd,17;0
CONTROL Scd,18;0
CONTROL Scd,19;0
CONTROL Scd,22;0
CONTROL Scd,23;0
END IF
IF Id=2 OR Id=66 THEN
RESET Scd
CONTROL Scd,0;1
CONTROL Scd,12;176 ! Turn off H/W Handshaking
END IF
SUBEND

Connect timeout

No activity timeout
Lost carrier timeout
Transmit timeout

SW Handshaking

HW Handskaking

4-22 RS-232C Serial Interfaces

SET_PAR

]

'

'

! Syntax:

! Set_par(Scd,Par)

! Scd - Select code

! Par - Parity 0 - none, 1 - odd, 2 -~ even
!
]
'
1

Description:
This is used to set the parity for the RS232 cards.

SUB Set_par(Scd,Par)
STATUS Scd,0;Id
Found=0
IF Id=52 THEN
Found=1
CONTROL Scd,36;Par
END IF
IF Id=2 OR Id=66 THEN
Found=1
STATUS Scd,4;Stat
SELECT Par
CASE 0
Reg_4=BINAND(Stat,7) ! None 000XXX unset bits 5,4, and 3
CASE 1
Stat=BINAND(Stat,7)
Reg_4=BINIOR(Stat,8) 1 0dd 001XXX set bit 3
CASE 2
Stat=BINAND(Stat,7)
Reg_4=BINIOR(Stat,24) ! Even 011XXX set bits 4 & 3
CASE ELSE
PRINT "ERROR: Invalid parity sent to Set_par()"
STOP
END SELECT
CONTROL Scd,4;Reg_4
END IF
IF Found=0 THEN
PRINT "ERROR: Unrecognized ID for select code.”
END IF
SUBEND

RS-232C Serial Interfaces 4-23

Sending BREAK Messages

A BREAK is a special character transmission that usually indicates a change
in operating conditions. Interpretation of break messages varies with the
application. To send a break message, send a non-zero value to Control
Register 1 as follows (Sc is the interface select code):

CONTROL Sc,i;1 ! Send a BREAK to peripheral.

Using the Modem Control Register

Control Register 5 controls various functions related to modem operation.
Bits 0 thru 3 control modem lines, and bit 4 enables a self-test loopback
configuration.

Modem Handshake Lines (RTS and DTR)

As explained earlier in this chapter, Request-to-send and Data Terminal Ready
lines are set or cleared at the beginning and end of each OUTPUT or ENTER
operation. In some cases, it may be advantageous or necessary to maintain
either or both in an active state. This is done by setting bit 1 or 0 respectively
in Control Register 5 as follows:

1650 CONTROL Sc,5;2 ! Set RTS line only and hold active.
1660 CONTROL Sc,5;1 ! Set DTR line only and hold active.
1670 CONTROL Sc,5;3 ! Set both RTS and DTR lines active.
1680 CONTROL Sc,5;0 ! Return to normal modem line handshake.

When RTS and/or DTR are set by Control Register 5, they are not toggled
during OUTPUT or ENTER operations, but remain constantly in an active
state until the CONTROL register is cleared by:

m writing a different value to CONTROL Register 5
m an interface reset to CONTROL Register 0

m an interface reset ((Reset)) from the keyboard ((Shift) on an ITF
keyboard, or on a 98203 keyboard).

4-24 RS-232C Serial Interfaces

Programming the DRS Modem Line for BASIC/UX

Bit 2 of Control Register 5 controls the present state of the Data Rate Select
(DRS). When bit 2 is set, the modem line is activated. When bit 2 is cleared,
the modem line is cleared. To set the DRS line, the following statement or its
equivalent can be used:

1690 CONTROL Sc,5:;4 ' Sets the DRS line.

This line is also cleared by a CONTROL statement to Control Registe
bit 2 cleared, or by an interface reset.

Programming the DRS and SRTS Modem Lines for BASIC/WS 4

Bits 3 and 2 of Control Register 5 control the present state of the Data Rate
Select (DRS) and Secondary Request-to-send (SRTS) lines, respectively. When
either bit is set, the corresponding modem line is activated. When the bit is
cleared, so is the modem line. To set both lines, the following statement or its
equivalent can be used:

1690 CONTROL Sc,5;8+4 ! Set DRS and SRTS lines.
These lines are also cleared by a CONTROL statement to Control Register 5
with bits 2 and 3 cleared, or by an interface reset.
Configuring the Interface for BASIC/WS Self-test Operations

Self-test programs can be written for the serial interface. Prior to testing the
interface, it must be properly configured. Using bit 4 of Control Register 5,
you can rearrange the interconnections between input and output lines on the
interface, enabling the interface to feed outbound data to the inbound circuitry.

RS-232C Serial Interfaces 4-25

When LOOPBACK is enabled (bit 4 is set), the UART output is set to its
MARK state and sent to the Transmitted Data (TxD) line. The output of the
transmitter shift register is then connected to the input of the receiver shift
register, causing outbound data to be looped back to the receiver. In addition,
the following modem control lines are connected to the indicated modem status
lines:

Modem Control Line/Modem Status Line Connections

Modem Control Line Modem Status Line
DTR Data Terminal Ready DSR Data Set Ready
RTS Request-to-send CTS Clear-to-send
SRTS Secondary RTS DCD Data Carrier Detect
DRS Data Rate Select RI Ring Indicator

When loopback is active, receiver and transmitter interrupts are fully
operational. Modem control interrupts are then generated by the modem
control outputs instead of the modem status inputs. Refer to serial interface
hardware documentation for information about card hardware operation.

READIO and WRITEIO Registers for BASIC/WS

For those cases where you need to write special interface driver routines, the
interface card provides registers that can be accessed by use of READIO and
WRITEIO statements. These capabilities are intended for use by experienced
programmers who understand the inherent programming complexities that
accompany this versatility.

Some registers are read/write; that is, both READIO and WRITEIO
operations can be performed on a given register. Writing places a new value
in the register; a read operation returns the current value. All registers have
8 bits available, and accept values from 0 through 255 unless noted otherwise.
When the value of a given bit is 1, the bit is set; otherwise, it is zero (cleared
or inactive).

4-26 RS-232C Serial Interfaces

Note Some READIOQ and WRITEIO registers are similar in structure

interaction with the BASIC operating system is considerably

ﬁ and function to Status and Control Registers. However, their

different. To prevent incorrect program operation, do not
intermix the use of STATUS/CONTROL registers and
READIO/WRITEIO registers in a given program.

Interface Hardware Registers

READIO and WRITEIO registers 1, 3, 5, and 7 access interface registers.
Their functions are as follows:

READIO Register 1

WRITEIO Register 1

READIO Register 3

Interface ID

This register returns the interface ID value: 2 for
the HP 98626 Serial Interface; 66 for the HP 98644
interface.

Interface Reset

Writing any value to this register, 1 thru 255, resets
the interface as when using a CONTROL statement
to Control Register 0.

Interrupt Status

Only the upper four bits of Register 3 are used. Bit

7 returns the current interrupt enable value. Bit 6 is
set when an interrupt request is originated by the
UART. (No interrupt can occur unless bit 7, Interrupt
Enable, is set by a WRITEIO statement.)

Bits 5 and 4 return the setting of the Interrupt Level
switches on the interface. With 98644 interfaces
(which have no interrupt level switches), this register
always indicates an interrupt level of 5. Their values
are as follows:

RS-232C Serial Interfaces 4-27

WRITEIO Register 3

READIO Register 5

00 Interrupt Level 3
01 Interrupt Level 4
10 Interrupt Level 5
11 Interrupt Level 6

Interrupt Enable

Only bit 7 can is affected by WRITEIO statements.
Writing a 1 into this bit enables interrupts, while a 0
disables them.

Optional Circuit and Baud Rate Status

READIO returns current states of the optional circuit
drivers, plus the following:

Bit 5
Bit 4
Bits 3-0

Optional Circuit Receiver 2 state.
Optional Circuit Receiver 3 state.

Current Baud Rate switch setting (not
necessarily the current UART baud rate)
as shown in the following table.

Baud Rate Switch Settings

Baud Rate

50
75
110
134.5

150
200
300
600

Switch Settings Switch Settings
3210 Baud Rate 3210
0000 1200 1000
0001 1800 1001
0010 2400 1010
0011 3600 1011
0100 4800 1100
0101 7200 1101
0110 9600 1110
0111 19200 1111

4-28 RS-232C Serial Interfaces

WRITFEIO Register 5

READIQO Register 7

WRITFEIO Register 7

UART Registers

Optional Circuit and Baud Rate Control

WRITEIO to bits 7 and 6 control the state of
optional circuit drivers 3 and 4, respectively.

Bits 3-0 WRITEIO to this register cannot be used
to set the baud rate. (Use Register 23,
bit 7 and Registers 17 and 19 instead.)

Line Control Switch Monitor

READIO to this register enables you to input the
present settings of the Line Control switches that
preset default character format and parity. Bit
functions are included in the table earlier in this
chapter under Using Interface Defaults to simplify
programming. Bits 7 thru 0 correspond to switches

7 thru 0, respectively. Since the 98644 interface does
not have these switches, READIO of this register will
be meaningless.

WRITEIO operations to this register are meaningless.

Registers 17 through 29 access UART registers. They are used to directly
control certain UART functions. The function of Registers 17 and 19 are
determined by the state of bit 7 of Register 23.

RS-232C Serial Interfaces 4-29

READIQ Register 17

WRITEIO Register 17

READIO/WRITFEIO
Registers 17 and 19

READIO Register 19

Receive Buffer/Transmitter Holding Register

When bit 7 of Register 23 is clear (0), this register
accesses the single-character receiver buffer by use of
READIO.

The receiver and transmitter are doubly buffered.
When the transmitter shift register becomes empty,

a character is transferred from the holding register

to the shift register. You can then place a new
character in the holding register while the preceding
character is being transmitted. Incoming characters
are transferred to the receiver buffer when the receiver
shift register becomes full. You can then input the
character (READIO) while the next character is being
constructed in the shift register.

Receive Buffer/Transmitter Holding Register

A WRITEIO statement places a character in the
transmitter holding register.

Baud Rate Divisor Latch

When bit 7 of Register 23 is set (1), Registers 17
and 19 access the 16-bit divisor latch used by the
UART to set the baud rate. Register 17 forms the
lower byte; Register 19 the upper. The baud rate is
determined by the following relationship:

Baud Rate = 153 600/Baud Rate Divisor

To access the Baud Rate Divisor latch, set bit 7

of Register 23. This disables access to the normal
functions of Registers 17 and 19, but preserves access
to the other registers. When the proper value has
been placed in the latch, be sure to clear bit 7 of
Register 23 to return to normal operation.

Interrupt Enable Register

When bit 7 of Register 23 is clear (0), this register
enables the UART to interrupt when specified

4-30 RS-232C Serial Interfaces

WRITEIO Register 19

READIO Register 21

conditions occur. Only bits 0 thru 3 are used.
Interrupt enable conditions are as follows:

Bit 3 Enable Modem Status Change Interrupts,
when set, enables an interrupt whenever
a modem status line changes state as
indicated by Register 29, bits 0 thru 3.

Bit 2 Enable Receiver Line Status Interrupts,
when set, enables interrupts by errors,
or received BREAKSs as indicated by
Register 27, bits 1 thru 4.

Bit 1 Enable Transmitter Holding Register
Empty Interrupt, when set, allows
interrupts when bit 5 of Register 27 is
also set.

Bit 0 Enable Receiver Buffer Full Interrupts,
when set, enables interrupts when bit 0 of
Register 27 is also set.

Interrupt Enable Register

When bit 7 of Register 23 is clear (0), this register
enables the UART to interrupt when specified
conditions occur. Only bits 0 thru 3 are used.
WRITEIO establishes a new value for each bit.
Interrupt enable conditions are described in the
preceding explanation of READIO register 19.

Interrupt Identification Register

This register identifies the cause of the highest-
priority, currently-pending interrupt. Only bits 2, 1,
and 0 are used. Bit 0, if set, indicates no interrupt
pending. Otherwise an interrupt is pending as defined
by bits 2 and 1. Causes of pending interrupts in order
of priority are as follows:

RS-232C Serial Interfaces 4-31

Bits 2&1
11

10

01

00

Interrupt Cause

Receiver Line Status interrupt (highest
priority) is caused when bit 2 of Register
19 is set and a framing, parity, or overrun
error, or a BREAK is detected by the
receiver (indicated by bits 1 thru 4 of
Register 27). The interrupt is cleared by
reading Register 27.

Receive Buffer Register Full interrupt
is generated when bit 0 of Register 19
is set and the Data Ready bit (bit 0)
of Register 27 is active. To clear the
interrupt, read the receiver buffer, or
write a zero to bit 0 of Register 27.

Transmitter Holding Register Empty
interrupt occurs when bit 1 of Register 19
is set and bit 5 of Register 27 is set. The
interrupt is cleared by writing data into
the transmitter holding register (Register
17 with bit 7 of Register 23 clear) with a
WRITEIO statement, or by reading this
register (Interrupt Identification).

Modem Line Status Change interrupt
occurs when bit 3 of Register 19 is set
and a modem line change is indicated by
one or more of bits 0 thru 3 of Register
29. To clear the interrupt, read Register
29 which clears the status change bits.

READIO/WRITEIO Character Format Control Register

Register 23

This register is functionally equivalent to Control and

Status Register 4 except for bits 6 and 7. WRITEIO
sets a new character format; READIO returns the
current character format setting. Since the 98644
interface does not have these switches, READIO of
bits 5 through 0 of this register will be meaningless.

4-32 RS-232C Serial Interfaces

Bit 7

Bit 6

Bits 5,4

Bit 3

Bits 2,1&0

Divisor Latch Access Bit, when set,
enables you to access the divisor latches
of the Baud Rate generator during
read/write operations to registers 17 and
19.

Set BREAK, when set, holds the serial
line in a BREAK state (always zero),
independent of other transmitter activity.
This bit must be cleared to disable the
break and resume normal activity.

Parity Sense is determined by both bits 5
and 4. When bit 5 is set, parity is always
ONE or ZERQ. If bit 5 is not set, parity
is ODD or EVEN as defined by bit 4.
The combinations of bits 5 and 4 are as
follows:

00 ODD parity
01 EVEN parity
10 Always ONE
11 Always ZERO

Parity Enable, when set, sends a parity
bit with each outbound character, and

checks all incoming characters for parity
errors. Parity is defined by bits 4 and 5.

Stop Bit(s) are defined by a combination
of bit 2 and bits 1 & 0.

Bit 2| Character Length | Stop Bits
0 |5,6,7,0r8 1
1 |5 1.5
1 [6,7,0r8 2

RS-232C Serial Interfaces 4-33

Bits 1&0 Character Length is defined as follows:

Bits 140 | Character Length
00 5 bits
01 6 bits
10 7 bits
11 8 bits

READIO/WRITEIO Modem Control Register

Register 25 This is a READ/WRITE register. READIO returns
current control register value. WRITEIO sets a new
value in the register. This register is equivalent to
interface Control Register 5.

Bits 7,6, Not used.
and 5

Bit 4 Loopback, when set, enables a loopback
feature for diagnostic testing. Serial line
is set to MARK state, UART receiver is
disconnected, and transmitter output
shift register is connected to receiver
input shift register. Modem line outputs
and inputs are connected as follows: DTR
to CTS, RTS to DSR, DRS to DCD,
and SRTS to RI. Interrupts are enabled,
with interrupts caused by modem control
outputs instead of inputs from modem.

Bit 3 Data Rate Select controls the QCD1
driver output. 1=Active, 0=Disabled.

Bit 2 Secondary Request-to-Send controls
the OCD2 driver output. 1=Active,
0=Disabled.

4-34 RS-232C Serial Interfaces

READIO Register 27

Bit 1

Bit 0

Request-to-Send controls the RT'S modem
control line state. When bit 1=1, RTS is
always active. When bit 1=0, RTS is
toggled by the OUTPUT statement as
described earlier in this chapter.

Data Terminal Ready holds the DTR
modem control line active when the bit
is set. If not set, DTR is controlled by
the QUTPUT or ENTER statement as
described earlier.

Line Status Register

Bit 7
Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Not used.

Transmitter Shift Register Empty
indicates no data present in transmitter
shift register.

Transmitter Holding Register Empty
indicates no data present in transmitter
holding register. The bit is cleared
whenever a new character is placed in the
register.

Break Indicator indicates that the
received data input remained in the
spacing (line idle) state for longer than
the transmission time of a full character
frame. This bit is cleared when the line
status register is read.

Framing Error indicates that a character

was received with improper framing; that
is, the start and stop bits did not conform
with expected timing boundaries.

Parity Error indicates that the received
character did not have the expected
parity sense. This bit is cleared when the
register is read.

RS-232C Serial Interfaces 4-35

Bit 1

Bit 0

Overrun Error indicates that a character
was destroyed because it was not read
from the receiver buffer before the next
character arrived. This bit is cleared by
reading the line status register.

Data Ready indicates that a character
has been placed in the receiver buffer
register. This bit is cleared by reading
the receiver buffer register, or by writing
a zero to this bit of the line status
register.

READIO Register 29 ~ Modem Status Register

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

4-36 RS-232C Serial Interfaces

Data Carrier Detect, when set, indicates
DCD modem line is active.

Ring Indicator, if set, indicates that the
RI modem line is active.

Data Set Ready, if set, indicates that the
DSR modem line is active.

Clear-to-send, if set, indicates that CTS
is active.

Change in Carrier Detect, when set,
indicates that the DCD modem line has
changed state since the last time the
modem status register was read.

Trailing Edge of Ring Indicator is set
when the RI modem line changes from
active to inactive state.

Delayed Data Set Ready is set when the
DSR line has changed state since the last
time the modem status register was read.

Change in Clear-to-send, if set, indicates
that the CTS modem line has changed

state since the last time the register was
read.

Cable Options and Signal Functions

The HP 98626A Serial Interface is available with RS-232C DTE and DCE cable
configurations. The DTE cable option consists of a male RS-232C connector

and cable designed to function as Data Terminal Equipment (DTE) when

used with the serial interface. This means that the cable and connector are

wired so that signal paths are correctly routed when the cable is connected to 4
a peripheral device wired as Data Communication Equipment (DCE), such

as a modem. The cables are designed so that you can write programs that

work for both DCE and DTE connections without requiring modifications to
accommodate equipment changes.

The DCE cable option includes a female connector and cable wired so that
the interface and cable behave like normal DCE. This means that signals are
routed correctly when the female cable connector is connected to a male DTE
connector.

Line printers and other peripheral devices that use RS-232C interfacing are
frequently wired as DTE with a female RS-232C chassis connector. This means
that if you use a male (DTE) cable option to connect to the female DTE device
connector, no communication can take place because the signal paths are
incompatible. To eliminate the problem, use an adapter cable to convert the
female RS-232C chassis connector to a cable connector that is compatible with
the male or female interface cable connector. The HP 13242 adapter cable is
available in various configurations to fit most common applications. Consult
cable documentation to determine which adapter cable to use.

The DTE Cable

The signals and functions supported by the DTE cable are shown in the
signal identification table which follows. The table includes RS-232C signal
identification codes, CCITT V.24 equivalents, the pin number on the interface
card rear panel connector, the RS-232C connector pin number, the signal

RS-232C Serial Interfaces 4-37

mnemonic used in this manual, whether the signal is an input or output signal,
and its function.

RS-232C DTE (Male) Cable Signal Identification Table

RS-232C V.24 | Interface | RS-232C
Signal Signal | Pin# Pin# |{Mnemonic|I/O Function
AA 101 24 1 - — | Safety Ground
BA 103 12 2 Out Transmitted Data
BB 104 42 3 In Received Data
¢ CA 105 13 4 RTS Out | Request to Send
CB 108 44 5 CTS In |Clear to Send
CC 107 45 6 DSR In |Data Set Ready
AB 102 48 7 - — | Signal Ground
CF 109 46 8 DCD In |Data Carrier
Detect
SCF (OCR2) | 122 47 12 SDCD In |Secondary DCD
SCA (OCD2) | 120 15 19 SRTS Out |Secondary RTS
CD 108.1 14 20 DTR Out | Data Terminal
Ready
CE (OCR1) 125 9 22 RI In] Ring Indicator
CH (OCD1) 111 40 23 DRS Out jData Rate Select

4-38 RS-232C Serial Interfaces

Optional Circuit Driver/Receiver Functions

Not all signals from the interface card are included in the cable wiring.
RS-232C provides for four optional circuit drivers and two receivers. Only two
drivers and two receivers are supported by the DCE and DTE cable options.
They are as follows:

Drivers

Name Function
OCD1 |Data Rate Select

OCD2 [Secondary 4
Request-to-send

OCD3 | Not used
OCD4 | Not used

Receivers

Name Function
OCRI1 |Ring Indicator

OCR2 |Secondary Data
Carrier Detect

If your application requires use of 0CD3 or OCD4, you must provide your own
interface cable to fit the situation.

The DCE Cable

The DCE cable option is designed to adapt a DTE cable and serial or

data communications interface to an identical interface on another desktop
computer. It is also used with the serial interface to simulate DCE operation
when driving a peripheral wired for DTE operation. The DCE cable is
equipped with a female connector. Since most DTE peripherals are also
equipped with female connectors (pin numbering is the same as the standard
male DTE connector), an adapter (such as the HP 13242M) is used to connect
the two female connectors as explained earlier.

RS-232C Serial Interfaces 4-39

Note Not all RS-232C devices are wired the same. To ensure
proper operation, you must know whether the peripheral

d device is wired as DTE or DCE. The interface cable option
and associated adapter cable, if needed, must be configured to
properly mate with the female DTE chassis connector.

The following schematic diagram shows the input and output signals for the
serial interface and how they are connected to a DCE peripheral.

4-40 RS-232C Serial Interfaces

98626 DTE RS—232C 3

INTERFACE CABLE SIGNALS
DATA 12 R DATA
50T <€ »BA (PIN 2) >—
DATA L, 42 R DATA
~ < ¢ »B8 (PIN 3) >— 7
RTS 13 . REQUEST
< ¢ 3CA (PIN 4) >— T SEND(IN)
CTS 44 CLEAR

N

5CB (PIN 5) >—

A

TO SEND(OUT)

DCD 46 . DATA CARRIER
PCF {PIN 8) >— prreer (OuUT)

SECONDARY , , 15 . SECONDARY REQUEST
rTe < ¢ SSCAPIN 19) >— =0 SEND(IN)
SECONDARY, , 47 . SECONDARY DATA
oo ¢ PSCR(PIN 12) >— eRIER DETECT(OUT) | OCE Interface
> Signals to and
DTR L, 14 — DATA TERMINAL from Peripheral
<€ XD (PIN 20)>— o0)
NOTE: Some DCE
RI 9 RING peripherals may not

N

XE (PIN 22)>—

A

provide for all the

INDICATOR (QUT) signal lines shown.

DSR 45 X DATA SET
>CC (PN 6) >— ceany (0UT)

SIGNAL & 5 PN 7 SIGNAL
GROUND GROUND
24

A
N

AN YA AAVAY

SAFETY _L—<(-—-)AA (PIN 1) SAFETY
GROUND =+ — GROUND
l> DRS L, 40 - DATA
<¢ XH (PIN 23)>_‘\RATE SELECT(IN)
INTERFACE MALE FEMALE
REAR PANEL RS—232C DCE PERIPHERAL
CONNECTOR INTERFACE CHASSIS CONNECTOR
CABLE CONNECTOR J

DTE Cable Interconnection Diagram

RS-232C Serial Interfaces 4-41

This diagram shows an HP 13242M adapter cable connected to a DCE
interface cable and a DTE peripheral. Note that RTS is connected to CTS

in the DCE cable. If your peripheral uses RT'S/CTS handshaking, a different
adapter cable must be used with the appropriate DTE or DCE interface cable
option.

4-42 RS-232C Serial Interfaces

13242M

98626 DCE RS—232C ADAPTER
INTERFACE CABLE SIGNALS CABLE
DATA ___ ¢e2 <BB (PIN 3)¢é—3>—
ouT S N
{} DfNTA e CBA (PIN 2)é—3>—
RTS 2 CF (PIN 8)e—3>2—
CTS 44
Deh 18 CA (PIN 4)¢—mmdd>t
CB (PIN 5)¢——3>"—
—1 SECOIOARY o2 CSCF(PIN 12)———3 >3
—< ISEgggDARQ'” < SCAPIN 19)6——> >0
—DL<GJ:—Q—<CE (PIN 22)(—»2—
L ¢cC (PN 6)e——3>
RI 9 20
—<——<<——0—<co (PIN 20— >—
< DSR 45
SIGNAL 7)6e——>

GROUND

r((—48_‘—< AB (PIN
24

SAFETY [—((——(A (PIN
GROUND -

—-DL(f—‘—"—— NOT USTED

INTERFACE
REAR PANEL
CONNECTOR

MALE
RS-232C
INTERFACE

1)(—-——»'—_]_

FEMALE

DATA
IN

DATA
ouT

DATA CARRIER
DETECT (IN)

REQUEST
TO SEND(OUT)

CLEAR
TO SEND(IN)
SECONDARY DATA
CARRIER DETECT(IN)

SECONDARY REQUEST
TO SEND(OUT)

RING
INDICATOR (IN)

DATA SET
READY (IN)

DATA TERMINAL
READY (QUT)

SIGNAL
GROUND

SAFETY
GROUND

RS-232C
DTE PERIPHERAL
CABLE CONNECTOR CHASSIS CONNECTOR

DCE Cable Interconnection Diagram

DCE Interface
Signals to and
from Peripheral

NOTE: Some DTE

peripherals may not
provide for all the
signal lines shown.

RS-232C Serial Interfaces 4-43

RS-232C / CCITT V.24

The following table provides information about each data communications
interface function. The pin assignments are also shown. Not all functions
provided by RS-232C standard are implemented. The functions denoted with a
* are implemented.

RS-232C/CCITT v.241
RS-232C | CCITT V.24 Signal Name
*Pin 1 101 Protective Ground. Electrical equipment frame and ac
power ground.
*Pin 22 103 Transmitted Data. Data originated by the terminal to be
transmitted via the sending modem.
*Pin 32 104 Recetved Data. Data from the receiving modem in response
to analog signals transmitted from the sending modem.
*Pin 4 105 Request to Send. Indicates to the sending modem that the
terminal is ready to transmit data.
*Pin 5 106 Clear to Send. Indicates to the terminal that its modem is
ready to transmit data.
*Pin 6 107 Data Set Ready. Indicates to the terminal that its modem is
not in a test mode and that modem power is ON.
*Pin 72 102 Signal Ground. Establishes common reference between the
modem and the terminal.
*Pin 8 109 Data Carrier Detect. Indicates to the terminal that its
modem is receiving carrier signals from the sending modem.
Pin 9 Reserved for test.
Pin 10 Reserved for test.

! International Telephone and Telegraph Consultative Committee European

standard.

2 Signal on this pin is commonly used for three-wire (no modem) links.

4-44 RS-232C Serial Interfaces

RS-232C/CCITT V.24 (continued)

RS-232C | CCITT V.24 Signal Name

Pin 11 Unassigned.

*Pin 12 122 Secondary Data Carrier Detecl. Indicates to the terminal
that its modem is receiving secondary carrier signals from
the sending modem.

Pin 13 121 Secondary Clear to Send. Indicates to the terminal that
its modem is ready to transmit signals via the secondary
channel.

Pin 14 118 Secondary Transmilied Data. Data from the terminal to be
transmitted by the sending modem’s channel.

*Pin 15 114 Transmitter Signal Element Timing. Signal from the
modem to the transmitting terminal to provide signal
element timing information.

Pin 16 119 Secondary Received Data. Data from the modem’s
secondary channel in response to analog signals transmitted
from the sending modem.

*Pin 17 115 Receiver Signal Element Timing. Signal to the receiving
terminal to provide signal element timing information.

Pin 18 Unassigned.

*Pin 19 120 Secondary Requesi lo Send. Indicates to the modem that
the sending terminal is ready to transmit data via the
secondary channel.

*Pin 20 108.2 Data Terminal Ready. Indicates to the modem that the
associated terminal is ready to receive and transmit data.

Pin 21 110 Signal Quality Detector. Signal from the modem telling

whether a defined error rate in the received data has been
exceeded.

RS-232C Serial Interfaces 4-45

RS-232C/CCITT V.24 (continued)

RS-232C |CCITT V.24 Signal Name

*Pin 22 125 Ring Indicator. Signal from the modem indicating that a
ringing signal is being received over the line.

*Pin 23 111 Data Signal Rate Selector. Selects one of two signaling rates
in modems having two rates.

*Pin 24 113 Transmit Signal Element Timing. Transmit clock provided
by the terminal.

Pin 25 Unassigned.

HP 98626 and HP 98644 Serial Interface
STATUS and CONTROL Registers

Most Control registers accept values in the range of zero through 255. Some
registers accept only specified values as indicated, or higher values for baud
rate settings. Values less than zero are not accepted. Higher-order bits not
needed by the interface are discarded if the specified value exceeds the valid
range.

Reset value is the default value used by the interface after a reset or power-up
until the value is overridden by a CONTROL statement.

The STATUS and CONTROL register information contained in this section
applies only to BASIC/UX. BASIC/WS and BASIC/DOS support additional
STATUS and CONTROL registers not covered in this section.

STATUS Register 0 Card Identification

Value returned: 2 indicates a 98626 (if 130 is
returned, the Remote jumper wire has been
removed from the interface card); 66 indicates
a 98644 (194 if the Remote jumper has been
removed).

4-46 RS-232C Serial Interfaces

CONTROL Register 0

STATUS Register 1

CONTROL Register 1

STATUS Register 2

Interface Reset

Any value from 1 thru 255 resets the card.
Execution is immediate; any data transfers in
process are aborted and any buffered data is
destroyed. A value of 0 causes no action.

Interrupt Status

Bit 7 set: Interface hardware interrupt to CPU
enabled.

Bit 6 set: Card is requesting interrupt service.

Bits 5&4:

00 Interrupt Level 3
01 Interrupt Level 4
10 Interrupt Level 5
11 Interrupt Level 6

Bits 3 through 0 not used.

Send BREAK

Any non-zero value causes a BREAK to be sent.
Interface Activity Status

Bit 7 thru 4 are not used.

Bit 3 set Error condition. Handshake ended
with an escape.

Bit 2 set Handshake in progress. This occurs
only during multi-line function calls.

Bit 1 set Firmware interrupts enabled
(ENABLE INTR active for this select
code).

Bit 0 set TRANSFER in progress.

RS-232C Serial Interfaces 4-47

STATUS Register 3 Current Baud Rate

Returns one of the values listed under CONTROL
Register 3.

CONTROL Register 3 Set New Baud Rate

Use any one of the following values:

50 150 1200 4800
75 200 1800 7200
110 300 2400 9600
134 600 3600 19200

From 25 to 28800, the value will be rounded. Any
value outside this range gives an error.

STATUS Register 4 Current Character Format

See CONTROL Register 4 for function of
individual bits.

CONTROL Register / Set New Character Format

Character Format and Parity Settings for BASIC/UX

Handshake Parity Sense | Par. Enable Stop Biis Char. Length

(Bits 7&6) (Bits? 5&4) (BitZ 3) (Bit? 2) (BitsZ 1&0)
00 no-op 00 ODD parity [0 Disabled 0 1 stop bit 00 5 bits/char
01 Xon/Xoff 01 EVEN parity |1 Enabled 1 2stop bits |01 6 bits/char

Bidirectional {10 Unsupported 10 7 bits/char
10 Unsupported |11 Unsupported 11 8 bits/char
11 Handshake

Disabled

! Parity sense valid only if parity is enabled (bit 3=1). If parity is disabled,
parity sense is meaningless.

2 These bits correspond to equivalent switch settings on the HP 98626 and
HP 98644 serial interface cards. A 1 is the same as set.

4-48 RS-232C Serial Interfaces

Character Format and Parity Settings for BASIC/WS

Parity Sensel Parity Enable Stop Bits Character Length
(Switches 5&4) (Switch 3) (Switch 2) (Switches 1&10)
00 ODD parity 0 Disabled 0 1 stop bit 00 5 bits/char
01 EVEN parity |1 Enabled 1 1.5 stop bits 01 6 bits/char
10 Always ONE (if 5 bits/char), 10 7 bits/char
11 Always ZERO or 2 stop bits 11 8 bits/char
(if 6, 7, or 8 bits/char)

Bits 6 and 7 are reserved for future use. 4

! Parity sense valid

only if parity is enabled (bit 3=1). If parity is disabled,

parity sense is meaningless.

STATUS Register 5

Current Status of Modem Control Lines

Returns CURRENT line state values. See
CONTROL Register 5 for function of each bit.

CONTROL Register 5 Set Modem Control Line States

Sets Modem Control lines or interface state as
follows:

Bit 2 set Set Data Rate Select modem line to
active state.

Bit 1 set Force Request-to-Send modem line to
fixed active state.

Bit 1 clear Toggle RTS line as in normal
OUTPUT operations.

Bit 0 set Force Data Terminal Ready modem
line to fixed active state.

Bit 0 clear Toggle DTR line as in normal
OUTPUT and ENTER operations.

RS-232C Serial Interfaces 4-49

STATUS Register 6

CONTROL Register 6

STATUS Register 7

CONTROL Register 7

STATUS Register 8

Data In

Reads character from input buffer. Buffer contents
is not destroyed, but bit 0 of STATUS Register 10
is cleared.

Data Out

Sends character to transmitter holding register.
This register is sometimes used to transmit
protocol control characters or other characters
without using OUTPUT statements. Modem
control lines are not affected.

Optional Receiver/Driver Status

Returns current value of optional circuit drivers or
receivers as follows:

Bit 3 Optional Circuit Driver 3 (OCD3).
Bit 2 Optional Circuit Driver 4 (OCD4).
Bit 1 Optional Circuit Receiver 2 (OCR2).
Bit 0 Optional Circuit Receiver 3 (OCR3).
Other bits are not used (always 0).

Set New Optional Driver States

Sets (bit=1) or clears (bit=0) optional circuit
drivers as follows:

Bit 3 Optional Circuit Driver 3 (OCD3),
Bit 2 Optional Circuit Driver 4 (OCD4).
Other bits are not used.

Current Interrupt Enable Mask

Returns value of interrupt mask associated with
most recent ENABLE INTR statement. Bit
functions are as follows:

4-50 RS-232C Serial Interfaces

STATUS Register 9

Bit 3 Enable interrupt on modem line
change. STATUS Register 11 shows
which modem line has changed.

Bit 2 Enable interrupt on UART status
error. This bit is used to trap ERROR
167 caused by UART error conditions.
STATUS Register 10, bits 4 thru 1,
show cause of error.

Bit 1 Enable interrupt when Transmitter
Holding Register is empty (supported
only on BASIC/WS).

Bit 0 Enable interrupt when Receiver Buffer
is full (supported only on BASIC/WS).

Cause of Current Interrupt
Returns cause of interrupt as follows:

Bits 2&1 Return cause of interrupt

11 UART error (BREAK, parity,
framing, or overrun error). See
STATUS Register 10.

10 Receiver Buffer full. Cleared by
STATUS to Register 6. (Supported
only on BASIC/WS.)

01 Transmitter Holding Register empty.
Cleared by CONTROL Register 6 or
STATUS to Register 9. (Supported
only on BASIC/WS.)

00 Interrupt caused by change in
modem status line(s). See STATUS
Register 11.

Bit 0 Set when no active interrupt requests
from UART are pending. Clear until all
pending interrupts have been serviced.

RS-232C Serial Interfaces 4-51

STATUS Register 10 UART Status

Bit set indicates UART status or detected error as

follows:
Bit 7 Not used.
Bit 6 Transmit Shift Register empty.
Bit 5 Transmit Holding Register empty.
Bit 4 Break received.
Bit 3 Framing error detected.
Bit 2 Parity error detected.
Bit 1 Receive Buffer Overrun error.
Bit 0 Receiver Buffer full.
STATUS Register 11 Modem Status

Bit set indicates that the specified modem line or
condition is active, and bit clear indicates that the
specified modem line is not active. The default
settings are given with each bit.

Bit 7 Data Carrier Detect (DCD) modem line
active.

Bit 6 Ring Indicator (RI) modem line active.

Bit 5 Data Set Ready (DSR) modem line active.

Bit 4 Clear-to-Send (CTS) modem line active.

Bit 3 Change in DCD line state detected.

Bit 2 RI modem line changed from true to false.

Bit 1 Change in DSR line state detected.

Bit 0 Change in CTS line state detected.
STATUS Register 12 Modem handshake status.

4-52 RS-232C Serial Interfaces

Modem Handshake Control for BASIC/WS

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Carrier 0 Data Set |Clear to 0 0 0 0
Detect Ready Send
Disable! Disable? | Disable®
Value=128| Value=64 | Value=32 | Value=16 |Value=8|Value=4|Value=2|Value=1

CONTROL Register 12

Modem handshake control.

Modem Handshake Control for BASIC/WS

Computer

Museum

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Carrier Not Data Set | Clear to Not Not Not, Not
Detect Used Ready Send Used Used Used Used
Disable! Disable? | Disable?

Value=128| Value=64 | Value=32 |[Value=16 |Value=8| Value=4|Value=2| Value=1

1 Wait for Carrier Detect on Enter Operations;
1=Don’t wait. BASIC/UX supports bit 7 and
bit 4 in combination only. See the “BASIC/UX
Hardware Handshaking” section for more details.

2 Wait for Data Set Ready on Enter and Output
Operations; 1=Don’t wait. BASIC/UX does not
support bit 5.

3 Wait for Clear to Send on Output Operations;
1=Don’t wait. BASIC/UX supports bit 7 and
bit 4 in combination only. See the “BASIC/UX
Hardware Handshaking” section for more details.

RS-232C Serial Interfaces 4-53

Interrupt Enable Register (ENABLE INTR)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Not Not Not Not Modem |[Receiver| Trans- | Receiver
Used Used Used Used Status | Line mitter | Buffer

Change |Status |Holding | Full
Register
Empty
Value=128| Value=64 | Value=32 |Value=16 | Value=8|Value=4| Value=2}Value=1

STATUS Register 13

CONTROL Register 13

STATUS Register 14

CONTROL Register 14

1 Supported only on BASIC/WS.
Read 98644 “SCRATCH A default” baud rate

Returns the baud rate that will be restored

whenever SCRATCH A is executed (same
bit-definitions as STATUS register 3).

Set 98644 “SCRATCH A default” baud rate

Sets both the “current” and the “default” baud
rate that will be restored whenever SCRATCH A
is executed (same bit-definitions as CONTROL

register 3). Default value in this register is 9600
baud for BASIC/WS.

Read 98644 “SCRATCH A default” character
format

Returns the character format parameters that will
be restored whenever SCRATCH A is executed
(same bit-definitions as STATUS register 4).

Set 98644 “SCRATCH A default” character format

Sets both the “current” and the “default” character
format parameters that will be restored whenever
SCRATCH A is executed (same bit-definitions as
CONTROL register 4). BASIC/WS default value
in this register specifies a character format of 8
bits/character, 1 stop bit, and parity disabled.

4.54 RS-232C Serial Interfaces

Model 216 and 217
Built-In Interface Differences for BASIC/WS

This section describes the differences between the HP 98626 Serial interface
and the built-in Serial interface in the Model 216 (HP 9816) and 217 (HP 9817)

Computers.

The hardware differences between the built-in serial interfaces and the 98626
interface occur in the following areas:

m There are no “Select Code” switches (the select code is hard-wired to 9).

m There are no “Interrupt Level” switches (the interrupt level is hard-wired to
3).

m There are no “Status Line Disconnect” switches (the modem status lines are
always monitored; you cannot throw switches to make them “ALWAYS ON”
like you can with the 98626 interface).

There are no differences between programming these two interfaces with the
BASIC system.

HP 98644 Interface Differences

The HP 98644 RS-232 Serial Interface is nearly identical to the HP 98626
RS-232 Serial Interface. This section describes the few differences between
them.

RS-232C Serial Interfaces 4-55

Hardware Differences
The differences in the hardware of the two cards occur in the following areas:

m Card ID register contains 66 (rather than 2) or 194 if the Remote jumper on
the HP 98644 interface card has been removed.

m There are no optional driver and receiver lines.

m There are fewer configuration switches (there are no Baud Rate or Line
Control switches).

m There is a 25-pin coverplate connector (instead of 50).

m There are different cables available.

Card ID Register

The default card ID for the HP 98644 interface is 66, and the default card ID
for the HP 98626 is 2.

Note HP 98644 cards are logged as HP 98626 interfaces while
i booting machines with Boot ROM 3.0 (and earlier versions).
w This is not a problem, because the BASIC recognizes the 98644

card properly.

You can also change the card ID to 2 (to make it look like
a 98626) by cutting a jumper on the card. See the 98644’s
installation manual for details.

See the following “BASIC Differences” section for details of how to read this
register with software.
Optional Driver Receiver Circuits

On the 98626 interface, there are two optional driver lines (OCD3 and OCD4)
and two optional receiver lines (OCR2 and OCR3). These lines are not
implemented on the 98644 interface.

4-56 RS-232C Serial Interfaces

Configuration Switches

The HP 98644 card does not implement the following configuration switches on
the card:

m Baud Rate
m Line Control (character length, parity, etc.)

These operating parameters are set in the same manner as the HP 98626
interface card. See the previous section “Serial Configuration for HP-UX” for
details.

Coverplate Connector

The connector on the HP 98644 interface’s coverplate is set up for DTE (Data
Terminal Equipment) applications; it has a 25-pin, female, D-series connector
(the connector on the HP 98626 is a 50-pin connector). The pin designators for
the connector follow.

RS-232C Serial Interfaces 4-57

Coverplate Connector Pin Designators

~
E

Signal Description
Safety Ground
Transmitted Data
Received Data
Request to Send
Clear to Send
Data Set Ready
Signal Ground
Carrier Detect

not used
not used

— =
Ho@m\l@mb&wt\bv—l

not used

—_
[%]

not used
not used

—
w

not used

—
=N

not used
not used

[—
O Ot

not used

—
oo =3

not used

not used

Data Terminal Ready
not used

Ring Indicator

Data Rate Select

not used

R R RO RN B =
N N = =]

[\~
(<4

not used

4-58 RS-232C Serial Interfaces

Cables

You can use standard RS-232C compatible cables, as long as the signal lines
are connected properly. Here are cables available from HP Computer Supplies
Operation.

Available RS-232C-Compatible Cables

HP Product Number | Description
13242N Modem cable (male to male)
13242G DTE cable (male to male, with pins 2 and 3
reversed) 4
13242H DCE cable (male to female, with pins 2 and 3
reversed)

BASIC Differences

The only differences between programming these two interfaces with the
BASIC system are in the register definitions given in this section. See the
“Summary of RS-232 Serial STATUS and CONTROL Registers” section for
further details.

Card ID Register

The card ID register is Status register 0. It will contain a value of 66 if the
interface is a 98644. (It will contain 2 if the card ID jumper has been cut.)
If the REMOTE jumper has been removed, then the value returned will be
194 (=128466) or 130 (=128+42). For BASIC/WS, the card ID can also be
determined by reading READIO Register 1.

Optional Driver/Receiver Registers for BASIC/WS

Since there are no optional driver or receiver lines on the 98644 interface,
Status and Control register 7 are meaningless for this card. (Status register 7
always contains 0, and Control register 7 is a no-op.)

The hardware register bits that are not defined because of this difference are
as follows: bits 7 and 6 of WRITEIO register 5 (for writing OCD3 and OCD4,
respectively); bits 7 and 6 of READIO register 5 (for reading OCD3 and

RS-232C Serial Interfaces 4-59

OCD4, respectively); bits 5 and 4 of READIO register 5 (for reading OCR2
and OCRS3, respectively).

Baud-Rate and Line-Control Registers for BASIC/WS

Since there are no switches to set the default baud rate and line control
parameters, the BASIC system sets them to its own default values, which are
as follows:

Baud Rate and Line Control Default Values

Parameter Default Value
Baud rate 9600 baud

Character length | 8 bits/character

Stop bits 1 stop bit
Parity Parity disabled
Parity type Odd parity

Status registers 3 (baud rate) and 4 (line control) are still implemented for the
98644 interface and retain their original definitions. However, the hardware
registers no longer contain any baud rate and line control information (since
there are no switches to read). The hardware registers affected are READIO
register 5 (bits 3 thru 0) and READIO register 7 (bits 7 thru 0), respectively.

You can still program the baud rate and line control parameters by writing to
Control register 3 (baud rate) and Control register 4 (character format). These
registers correspond to WRITEIO register 5 (bits 3 thru 0) and register 23
(bits 5 thru 0), respectively.

4-60 RS-232C Serial Interfaces

Series 300
Built-In 98644 Interface Differences

The differences between the separate HP €8644 RS-232C serial interface and
the built-in 98644-like interface of Series 300 computers are as follows:

m There are no “Select Code” switches (the select code is hard-wired to 9).

m There are no “Interrupt Level” switches (the interrupt level is hard-wired to
5).

There are no differences in programming these interfaces with the BASIC
system. 4

RS-232C Serial Interfaces 4-61

Datacomm Interfaces

The HP 98628 and HP 98642 Data Communications Interfaces enable

your desktop computer to communicate with any device that is compatible
with standard asynchronous data communication protocols. Devices can
include modems or equipment with standard RS-232C links. Because the

HP 98628 and HP 98642 Data Communications Interface cards have only a few
differences, this chapter will deal mainly with the HP 98628 interface card.
Information on differences between these two data communications cards can
be found in the section “The HP 98642 4-Channel Multiplexer.”

Note The HP 98642 4-channel multiplexer is supported on
I BASIC/UX only.

Datacomm Interfaces 5-1

Bit—Serial

Data
{In)
———————|
Parallel | Parallel/
Data Serial {Out)
Converter Handshake |
DGtG and I (UART) M 3 Shlelded Coble
Control . @ to a Device
Serial c
Backplane c
Interface S
Connectors . O
Hardware Special Purpose -
£
6 |
J7 o]
o~
Grounds

N N/

—

Block Diagram of the Datacomm Interface

Prerequisites

It is assumed that you are familiar with the information presented in Data
Communication Basics, and that you understand data communication
hardware well enough to determine your needs when configuring the datacomm
link. Configuration parameters include such items as half/full duplex,
handshake, and timeout requirements. If you have any questions concerning
equipment installation or interconnection, consult the appropriate interface or
adapter installation manuals.

The datacomm interface supports several cable and adapter options. They
include:

s RS-232C Interface cable and connector wired for operation with data
communication equipment (male cable connector) or with data terminal
equipment (female cable connector).

m HP 13264A Data Link Adapter for use in HP 1000- or HP 3000-based Data
Link network applications for BASIC/WS.

5-2 Datacomm Interfaces

m HP 13265A Modem for asynchronous connections up to 300 baud, including
built-in autodial capability.

The HP 13265A modem is compatible with Bell 103 and Bell 113 Modems,
and is approved for use in the USA and Canada. Most other countries do not
allow use of user-owned modems. Contact your local HP Sales and Service
office for information about local regulations.

m HP 13266A Current Loop Adapter for use with current loop links or devices.

Some of the information contained in this chapter pertains directly to certain of
these devices in specific applications.

Before you begin datacomm operation, be sure all interfaces, cables,
connectors, and equipment have been properly plugged in. Power must be on
for all devices that are to be used. Consult applicable installation manuals if
necessary.

Protocol

Two protocols are switch selectable on the datacomm interface. They are
also software selectable during normal program operation. The switch setting
on the interface determines the default protocol when the computer is first
powered up. Protocol is changed between Async and Data Link during
program operation by selecting the new protocol, waiting for the message to
reach the card, then resetting the card. The exact procedure is explained in
Protocol Selection.

Asynchronous Communication Protocol

Asynchronous protocol is the only protocol supported by BASIC/UX.
Asynchronous data communication is the most widely used protocol,
especially in applications where high data integrity is not mandatory. Data

is transmitted, one character at a time, with each character being treated

as an individual message. Start and stop bits are used to maintain timing
coordination between the receiver and transmitter. A parity bit is sometimes
included to detect character transmission errors. Asynchronous character
format is as follows: Each character consists of a start bit, 5 to 8 data bits, an

Datacomm Interfaces 5-3

optional parity bit, and 1, 1.5, or 2 stop bits, with an optional time gap before
the beginning of the next character. The total time from the beginning of one
start bit to the beginning of the next is called a character frame.

Parity options include:

NONE No parity bit is included.

ODD Parity set if EVEN number of “1”s in character bits.
EVEN Parity set if ODD number of “1”s in character bits.
ONE Not supported.

ZERO Not supported.

Here is a simple diagram showing the structure of an asynchronous character
and its relationship to previous and succeeding characters:

] 1 i) }
I T 1 [L f T
3 | ! 5
4 ‘l_
T [1 < -
Character Line in [Start Parity Stop o #
Idle State| Bit Bit © Bit(s) aracter
(Mark)
¢———— Single Character Frame
Beginning of End of
Character Character

Structure of Asynchronous Character

Data Link Communication Protocol (BASIC/WS Only)

Data Link protocol overcomes the data integrity limitations of Async by
handling data in blocks. Each block is transmitted as a stream of individual
asynchronous characters, but protocol control characters and block check
characters are also transmitted with the data. The receiver uses the protocol
control characters to determine block boundaries and data format. Block check
characters are used to detect transmission errors. If an error occurs, the block
is usually retransmitted until it is successfully received. Block protocol and
format is similar to Binary Synchronous Communication (BSC or Bisync, for
short).

5-4 Datacomm Interfaces

Data Link protocol provides for two transmission modes: transparent, and
normal. In transparent mode, any data format can be transferred because
datacomm control characters are preceded by a DLE character. If a control
character is sent without an accompanying DLE, it is treated as data. When
normal mode is used, only ASCII data can be sent, and datacomm control
characters are not allowed in the data stream.

The HP 1000 and HP 3000 computers usually transmit in transparent mode.
All transmissions from your desktop computer are sent as transparent data.
If your application involves non-ASCII data transfers (discussed later in this
chapter), be sure the HP 1000 or HP 3000 network host is using transparent
mode for all transmissions to your computer.

Each data block sent to the network host by the datacomm interface is
structured as follows:

|-<— Start of Block End of Bloek —b1

L T | ! text (data) L T C C

Structure of Data Block Sent by Datacomm Interface

1. The “start transmission” control characters identify the beginning of valid
data. If a DLE is present, the data is transparent; If absent, data is normal.
All data from your desktop computer is transparent.

2. The terminal identification characters are included in blocks sent to the
network host. Blocks received from the network host do not contain these
two characters.

3. Data characters are transmitted in succession with no time lapse between
characters.

4. The “end transmission” control characters identify the end of data. DLE
ETX or DLE ETB indicate transparent data. ETX or ETB indicates
normal data.

5. Block check characters (usually two characters) are used to verify data
integrity. If the value received does not match the value calculated by

Datacomm Interfaces 5-5

the receiver, the entire block is rejected by the receiver. Block check
includes Group Identifier (GID) and Device Identifier (DID) characters in
transmissions to the network host.

Protocol control characters are stripped from the data transfer, and are not
passed from the interface to the computer. For information about network
polling, terminal selection and other Data Link operations, consult the Data
Link network manuals supplied with the HP 1000 or HP 3000 network host
computer.

Data Transfers Between Computer and Interface

Data transfers between your desktop computer and its datacomm interface
involve two message types: control blocks and data. Control blocks contain
information sent to and received from the interface regarding its operation.
Data is sent to and received from a remote device through the interface.
Control blocks are not sent to or received from remote devices. Both types are
encountered in both output and input operations as follows:

s Outbound control blocks are created by CONTROL statements.
m Outbound data messages are created by OUTPUT statements.

m Inbound control blocks are created by certain protocol operations such as
Data Link block boundaries, or Async prompt, end-of-line, parity/framing
error, or break detection.

m Inbound data messages are created by the interface as messages are received
from the remote. They are transferred to BASIC by ENTER statements.

Outbound Control Blocks

Outbound control blocks are messages from your computer to the datacomm
interface that contain interface control information. They are usually generated
by CONTROL statements, although QOUTPUT ... END creates a control
block that terminates a given Async transmission or forces a block to be sent
on the Data Link. Outbound control blocks are serially queued with data, and
executed by the interface in the same order as created by BASIC. The single

5-6 Datacomm Interfaces

exception to the queued control block rule is when a non-zero value is output
to Control Register 0 (Interface Reset) which is executed immediately.

Note When an interface card reset is executed by use of a
CONTROL statement, the control block that results is
d transmitted directly to the interface. It is not queued up, so

any previously queued data and control blocks are destroyed.
To prevent loss of data, be sure that all queued messages have
been sent before resetting the datacomm interface. Status
Register 38 returns a value of 1 when the outbound queue is
empty. Otherwise, its value is 0. To prevent loss of inbound
data, Status Register 5 must return a value of zero prior to
reset.

Inbound Control Blocks for BASIC/UX

Inbound control blocks are messages from the interface to the computer that
identify protocol control information. Refer to the HP BASIC 6.2 Language
Reference for details about register contents for various control block types.

For Async applications, terminal emulator programs usually use prompt
and end-of-line control blocks. Use of other functions such as break or error
detection depend on the requirements of the individual application.

Inbound Control Blocks for BASIC/WS

Inbound control blocks are messages from the interface to the computer that
identify protocol control information. Which item(s) are allowed to create

a control block is determined by the contents of Control Register 14, Status
Registers 9 and 10 identify the contents of the block, and Control Register 24
defines what protocol characters are also included with inbound Async data
messages. Refer to the HP BASIC 6.2 Language Reference for details about
register contents for various control block types.

For Async applications, terminal emulator programs usually use prompt
and end-of-line control blocks. Use of other functions such as break or error
detection depend on the requirements of the individual application.

Datacomm Interfaces 5-7

Two types of information are contained in each control block: type and mode.
The type is contained in STATUS register 9; the mode in STATUS register 10.
Type and Mode values can be used to interpret datacomm operation as follows:

Async Protocol Control Blocks

Type | Mode Interpretation
250 1 |Break received (channel A).

251 1! | Framing error in the following character.
251 | 2! |Parity error in the following character.
251 3! | Both Framing and Parity error in the following character.

252 1 End-of-line terminator detected.

253 1 | Prompt received from remote.

1 Parity/framing error control blocks are not generated when characters with
parity and/or framing errors are replaced by an underscore (.) character.

Data Link Protocol Control Blocks

Type | Mode Interpretation

254 1 | Preceding block terminated by ETB character.
254 2 | Preceding block terminated by ETX character.

2531 (See following table for Mode interpretation.)

5-8 Datacomm interfaces

Mode Bit(s) Interpretation
0 1=Transparent data in following block.
0=Normal data in following block.

21 00=Device Select (most common).
01=Group Select
10=Line Select

3 1=Command Channel
0=Data Channel

1 This type is used mainly in specialized applications. In most cases, you can
expect a Mode value of zero or one for Type 253 Data Link control blocks. For
most Data Link applications, control blocks are not used by programmers.

For Data Link applications, control blocks are normally set up for end-of-block

(ETB or ETX). Control blocks are then used to terminate ENTER operations. 5
Control block contents are not important for most applications unless you are

doing sophisticated protocol-control programming.

For Async applications, terminal emulator programs usually use prompt
and end-of-line control blocks. Use of other functions such as break or error
detection depend on the requirements of the individual application.

Outbound Data Messages

Outbound data messages are created when an QUTPUT statement is executed.
Here is a short summary of how OUTPUT parameters can affect datacomm
operation.

m Async protocol: Data is transmitted directly from the outbound queue.
When operating in half-duplex, OUTPUT ... END causes the interface to
turn the line around and allow the remote device to send information back
(line turn-around is initiated when the interface sets the Request-to-send line
low). OUTPUT ... END has no effect when operating in full duplex.

m Data Link protocol (BASIC/WS only): Data messages are concatenated until
at least 512 characters are available, then a block of 512 characters is sent.
Block boundaries may or may not coincide with the end of a given OUTPUT
message.

Datacomm Interfaces 5-9

You can force transmission of shorter blocks by using the OUTPUT ... END
statement. The interface then transmits the last pending block regardless

of its length. This technique is useful for ensuring that block boundaries
coincide with message boundaries, or for sending one message string per
block when you are transmitting short records.

s Unless a semicolon or END appears at the end of a free-field OUTPUT
statement, an EQL sequence is automatically sent at the end of the data.
The EQL sequence is also suppressed by using the appropriate IMAGE
specifier in an QUTPUT statement. For further information, see the chapter
called “Outputting Data.”

Inbound Data Messages

Inbound data messages are created by the datacomm interface as information is
received from the remote. ENTER statements are terminated when a control
block is encountered or the input variable is filled. For BASIC/WS, whether
control characters are included in the data stream depends on the configuration
of Control Register 24 (Async operation only). Control information is never
included in inbound data messages when using Data Link protocol.

With this brief introduction to the data communications capabilities of the
HP 98628 Datacomm Interface, you are ready to begin programming your
desktop computer for datacomm operation. The next section of this chapter
introduces BASIC datacomm programming techniques using simple terminal
emulator examples that can be readily expanded into much more sophisticated
datacomm programs.

5-10 Datacomm Interfaces

Overview of Datacomm Programming

Your desktop computer uses four BASIC statements for data communication
with remote computers, terminals, and other peripheral devices. Datacomm
programs include part or all of the following elements:

m CONTROL statements to configure the datacomm link and establish the
connection.

m OUTPUT and ENTER statements to transfer information,
m STATUS statements to monitor operation.

m CONTROL statements to alter link parameters during the session, if needed
for unusual applications.

m OUTPUT and ENTER statements to transfer additional information.
m A CONTROL statement to disconnect at the end of the session.

Here is a simple BASIC/WS example of an Async terminal emulator that
uses default parameters. The user must disconnect at the end of a session by
executing the command CONTROL Sc,12;0 from the keyboard.

1000 Sc=27 ! Datacomm on Select Code 27.

1010 CONTROL Sc,14;6 ! Set Control Block Mask.

1020 OUTPUT Sc;CHR$(13); ! Datacomm interface uses defaults
1025 ! and automatically connects to line.
1030 Check_reader:DIM A$[700] ! Up to 700 characters per line.

1040 STATUS Sc,5;Rx_avail_bits ! Get Rx queue status.

1050 IF Rx_avail_bits>1 THEN

1060 ENTER Sc USING "#,K";A$! Get data from queue.

1070 PRINT USING "#,K";A$! Print data.

1080 STATUS Sc,9;R ! Get Control Block TYPE field.
1090 IF R=253 THEN

1100 LINPUT "Enter line to send to remote.';A$

1110 OUTPUT Sc;A$;CHR$(13);

1120 END IF

1130 END IF

1140 GOTO Check_reader

1150 END

While this program shows the relative simplicity of using your computer for
data communication, most applications require more sophisticated techniques.

Datacomm Interfaces 5-11

The following pages show more elaborate structures to illustrate some of the
concepts used in creating programs for datacomm applications.

Two sample terminal emulator programs, one for Async and one for Data
Link, are used in this chapter to show you how to write datacomm programs
with a minimum of difficulty and complexity. Both versions are very similar;
differences are explained fully. The emulators are explained in logical sequence,
with complete program listings included at the end. The examples can be

used as written, or expanded to include other features. They are designed to
demonstrate program structures and programming techniques that are used in
many data communication applications.

RS-232 Software Portability

The status/control register sets of the serial and datacomm interfaces are
different (i.e., register numbers, functionality, etc). Unfortunately, this makes
it difficult to write programs which can be run on either interface, or future
interfaces which may not present the same status/control interface. Since
RS-232 interfaces support a set of common primitives, portability can be
enhanced by calling subprograms to perform these primitives rather than
accessing status/control registers directly.

For example, all RS-232 interfaces should provide a mechanism for changing
baud rate, number of stop bits, etc. When writing RS-232 programs in
BASIC, use subprograms which determine the interface type, and access the
appropriate status/control registers based on the interface type determined.
Doing so will allow you to develop your code in a hardware independent
fashion, with the details of how to communicate with a particular interface
isolated to a few lines of code.

In addition to using subprograms, avoid the use of interface dependent features.
For example, many of the status/control registers on the HP98628 implement
functionality which does not exist on other RS-232 interfaces. For example, the
HP9828 CONTROL register 24 (character filter) is specific to the HP98628.
Such functionality is normally not present on other RS-232 interfaces.

If you use subprograms to improve portability, unportable functionality should
be apparent when you are unable to support a particular subprogram for all
interfaces. In some cases it is reasonable to call a subprogram which does
nothing for a particular interface (i.e., a nop), as long as a program does

5-12 Datacomm interfaces

not depend on the behavior. For example, a subprogram to put an interface
into asynchronous mode would do nothing for interfaces which support
asynchronous mode only.

Below are two examples of subprograms which isolate the details of controlling
a particular RS-232 interface. A BASIC program could use these subroutines
withtout dependencies on the type of RS-232 interface actually in use.

RESET_RS232

Syntax:
Reset_rs232(Scd)
Scd - Select code

Description:
This is used to reset the RS232 cards. It also set
some of the registers to reasonable defaults.

SUB Reset_rs232(Scd)
STATUS Scd,0;Id
IF 1d=52 THEN
RESET Scd
CONTROL Scd,0;1
CONTROL Scd,16;0
CONTROL Scd,17;0
CONTROL Scd,18;0
CONTROL Scd,19;0
CONTROL Scd,22;0
CONTROL Scd,23;0
END IF
IF Id=2 OR Id=66 THEN
RESET Scd
CONTROL Scd,0;1
CONTROL Scd,12;176 ! Turn off H/W Handshaking
END TIF
SUBEND

Connect timeout

No activity timeout
Lost carrier timeout
Transmit timeout

SW Handshaking

HW Handshaking

Datacomm Interfaces 5-13

SET_PAR

Syntax:
Set_par(Scd,Par)
Par - Parity O - none, 1 -~ odd, 2 ~ even

'
1
1
[}
'
! Scd - Select code
'
!
! Description:
! This is used to set the parity for the RS232 cards.
!
SUB Set_par(Scd,Par)
STATUS Scd,0;Id
Found=0
IF Id=52 THEN
Found=1
CONTROL Scd, 36;Par
END IF
IF Id=2 OR Id=66 THEN
Found=1
STATUS Scd,4;Stat
SELECT Par
CASE 0
Reg_4=BINAND(Stat,7) ! None 000XXX unset bits 5,4, and 3
CASE 1
Stat=BINAND(Stat,7)
Reg_4=BINIOR(Stat,8) ! 0dd 001XXX set bit 3
CASE 2
Stat=BINAND(Stat,7)
Reg_4=BINIDR(Stat,24) ! Even 011XXX set bits 4 & 3
CASE ELSE
PRINT "ERROR: Invalid parity sent to Set_par()"
STOP
END SELECT
CONTROL Scd,4;Reg_4
END IF
IF Found=0 THEN
PRINT "ERROR: Unrecognized ID for select code.”
END IF
SUBEND

5-14 Datacomm Interfaces

Establishing the Connection

Determining Protocol and Link Operating Parameters

Before information can be successfully transferred between two devices, a
communication link must be established. You must include the necessary
protocol parameters to ensure compatibility between the communicating
machines. To determine the proper parameters for your application, select
Async or Data Link protocol, then answer the following questions:

For BOTH Async and Data Link Operation:

m Is a modem connection being used? What handshake provisions are
required? (Data Link does not use modems, but multi-point Async modem
connections use a protocol compatible with Data Link.)

m Is half-duplex or full-duplex line protocol being used?
For Async Operation ONLY:

Computer
Museum

m What line speed (baud rate) is being used for transmitting?
m What line speed is being used for receiving?

m How many bits (excluding start, stop, and parity bits) are included in each
character?

m What parity is being used: none, odd, even, always zero, or always one?
m How many stop bits are required on each character you transmit?

m What line terminator should you use on each outgoing line?

m How much time gap is required between characters (usually 0)?

m What prompt, if any, is received from the remote device when it is ready for
more data?

m What line terminator, if any, is sent at the end of each incoming line?
For Data Link Operation ONLY:

s What line speed (baud rate) is being used? (Data Link uses the same speed
in both directions.)

Datacomm Interfaces 5-15

m What parity is being used: none (HP 1000 network host), or odd (HP 3000
network host)?

m What is the device Group IDentifier (GID) and Device IDentifier (DID) for
your terminal?

m What is the maximum block length (in bytes) the network host can accept
from your terminal?

All these parameters are configured under program control by use of
CONTROL statements. Alternately, default values for line speed, modem
handshake, parity, and Async or Data Link protocol selection can be set using
the datacomm interface configuration switches. Other default parameters are
preset by the datacomm interface to accommodate common configurations.
You can use the defaults, or you can override them with CONTROL
statements for program clarity and immunity to card settings. Default Control
Register values are shown in the HP BASIC 6.2 Language Reference The

HP 98628 Datacomm Interface Installation manual explains how to set the
default switches on the interface.

Datacomm Configuration for BASIC/UX

There is no capability in BASIC/UX for reading the hardware switches on
either the HP 98628 Datacomm Interface card or the HP 98642 4-Channel
Multiplexer card. Therefore, BASIC/UX provides two methods for configuring
modem control options:

m The stty command from the HP-UX environment.

m The keyword CONTROL and registers directly related to the modem control
options.

Of the two methods mentioned above the best one to use is the stty
command while in the HP-UX environment. The reason for this is any
modem control options set by using the keyword CONTROL are lost when
you leave BASIC/UX. However, if you prefer to change these options while in
the BASIC/UX environment, then read the subsequent section “Datacomm
Options for Async Communications.”

This section deals with the first method mentioned above which is the use of
the stty command from the HP-UX environment.

5-16 Datacomm Interfaces

Defaults for the Serial Interface
When HP-UX is being booted, the defaults for all Datacomm Interfaces are:
Baud rate 300

Bits per character 7
Parity 0dd
Stop bits 2

The above values are used by BASIC/UX as defaults, unless configured as
explained in the next section.

Some common datacomm interface configuration settings are:

Baud rate to 9600

Bits per character to 8

Parity to 0dd and disabled
Stop bits to 1

Configuring a Datacomm Interface for BASIC/UX

To configure your datacomm interface with the values mentioned in the
previous section, you can execute the following HP-UX command before
entering BASIC/UX:

/bin/stty 9600 cs8 -parenb parodd -cstopb < /dev/rmb/dcommnn

where:
9600 is the baud rate. The following are baud rates
you can use with the stty command:
50 150 1200 4800
75 200 1800 7200
110 300 2400 9600
134 600 3600 19200
cs8 is the number of bits per character. In the case of

this example, the number of bits per character is
8. Other character lengths can be set using cs5,
cs6, or cs7 for 5, 6, or 7 bits per character
respectively.

Datacomm iInterfaces 5-17

-parenb disables parity generation and detection.
Removing the minus sign that is prefixed to
this stty option causes parity generation and
detection to be enabled.

parodd selects odd parity. Prefixing the minus sign to
this stty option selects even parity.

-cstopb causes one stop bit per character to be used.
Removing the minus sign that is prefixed to this
stty option causes two stop bits per character to
be used.

< /dev/rmb/dcommnn assigns the stty options to the serial interface
located at select code number nn.

For more information on stty options, see the HP-UX Language Reference.

Resetting the Datacomm Interface

Before you establish a connection, the datacomm interface must be in a known
state. The datacomm interface does not automatically disconnect from the
datacomm link when the computer reaches the end of a program. To prevent
potential problems caused by unknown link conditions left over from a previous
session, it is a good practice to reset the interface card at the beginning of your
program before you start configuring the datacomm connection. Resetting

the card causes it to disconnect from the line and return to a known set of
initial conditions (see the previous section “Datacomm Configuration for

BASIC/UX").

In the following example, a numeric variable is used to define the select code.
The second statement resets the card after the select code has been defined.

1110 Sc=20 ! Set select code to 20.
1160 CONTROL Sc,0;1 ! Reset the card to disconnect from line.

5-18 Datacomm Interfaces

Protocol Selection for BASIC/WS

During power-up and reset, the card uses the default switches to preset the
card to a known state. The protocol select switch defines which protocol
the card uses at power-up only. If the default protocol is the same as you
are using, you can skip the protocol selection statements. However, if the
switch might be set to the wrong protocol, or if you want to change protocol
in the middle of a program, you can use a CONTROL statement to select
the protocol. After the protocol is selected, reset the card again to make the
change. Here is how to do it:

Select the protocol to be used:
1170 CONTROL Sc,3;1 ! Select Async Protocol
or
1170 CONTROL Sc,3;2 ! Select Data Link Protocol

Wait until the protocol select message has been sent to the card, (lines
1180-1200) then reset the card. The Reset command restarts the interface
microcomputer using the selected protocol.

1180 Wait:STATUS Sc,38;Al11_sent ! Get transmit queue status.

1190 IF NOT All_sent THEN Wait ! If not done, wait.
1200 CONTROL Sc,0;1 { Reset interface card.
Note Be careful when resetting the interface card during normal
i program operation. Data and Control information are sent to
ﬁ the card in the same sequence as the statements originating the

information are executed. When a card reset is initiated by a
CONTROL statement, the reset is not placed in the queue with
outbound data, but is executed immediately. Therefore, if there
is other information in the output queue waiting to be sent, a
reset can cause the data to be lost. To prevent loss of data,

use STATUS statements (register 38) to verify that all data
transfers have run to completion before you reset the interface.

You are now ready to program datacomm options that are related to the
selected protocol. In applications where defaults are used, the options are very
simple. The following pair of examples shows how to set up datacomm options
for each protocol.

Datacomm Interfaces 5-19

Datacomm Options for Async Communications

This section explains how to configure the datacomm interface for
asynchronous data communication. The example used shows how to set up
all configurable options without considering default values. Some statements
in the example are redundant because they override interface defaults having
the same value. Others may or may not be redundant because they override
default configurations. The remaining statements are necessary because

they override the default values, replacing them with non-default values
required for proper operation of the example program. If you are not familiar
with Asynchronous protocol, consult the section on protocol for the needed
background information.

The following BASIC/WS program lines set up all the CONTROL register
options (a 300-baud connection to an HP 1000 is assumed). The * marks
program lines that may be redundant because they are the same as the
interface default. The — marks program lines that may be redundant because
they override the configuration switch option.

1250 CONTROL Sc,14;3 ! Set control block mask for EOL & Prompt.
* 1260 CONTROL Sc,15;0 ! No modem line-change notification.
1270 CONTROL Sc,16;0 ! Infinite connection timeout.
— 1280 CONTROL Sc,17;0 ! Disable No Activity timeout.
* 1290 CONTROL Sc,18;40 ! Lost Carrier 400 ms. *
* 1300 CONTROL Sc,19;10 ! Transmit timeout 10 s.
—+ 1310 CONTROL Sc,20;7 ! Transmit speed = 300 baud.
— 1320 CONTROL Sc,21;7 ! Receive speed = 300 baud.
1330 CONTROL Sc,22;2 ! EQ/AK (as terminal) handshake.
—+ 1340 CONTROL Sc,23;1 ! Full Duplex connection.
1350 CONTROL Sc,24;66 ! Remove protocol characters except
1360 ! EOL. Change errors to Underscore.
1370 CONTROL Sc,26;6 ! Assign AK character for EQ/AK.
1380 CONTROL Sc,27;5 ! Assign EQ character for EQ/AK.
* 1390 CONTROL Sc,28;2,13,10 ! Set EOL sequence to be CR-LF.
* 1400 CONTROL Sc,31;1,17 ! Set prompt to be DC1. (33 not used).
—s 1410 CONTROL Sc,34;2 ! Seven bits per character.
—s 1420 CONTROL Sc,35;0 ! One stop bit.
— 1430 CONTROL Sc,36;1 ! 0dd parity.
* 1440 CONTROL Sc,37:0 ! No inter-character time gap.
* 1450 CONTROL Sc,39;4 ! Set BREAK to four character times.

5-20 Datacomm Interfaces

The following BASIC/WS program lines set up all the CONTROL register
options (a 300-baud connection to an HP 1000 is assumed). The — marks
program lines that may be redundant because they override the configuration
switch option.

— 1310 CONTROL Sc,20;7 ! Transmit speed = 300 baud.

1330 CONTROL Sc,22;5 ! DC1/DC3 (as terminal & host) handshake.
— 1340 CONTROL Sc,34;2 ! Seven bits per character.
— 1350 CONTROL Sc,35;0 ! One stop bit.

1360 CONTROL Sc,36;1 ! 0dd parity.

Refer to the Control Register tables in the HP BASIC 6.2 Language Reference
as you examine the CONTROL statements. The paragraphs which follow
explain register functions and how to configure them.

Control Block Contents for BASIC/WS

Configuration of the link begins with register 14 which determines what
information is placed in the control blocks that appear in the input (receive)
queue. In this example, only the end-of-line position and prompts are
identified. Parity or framing errors in received data, and received breaks are
not identified in the queue. This register interacts with Control registers 28
thru 33.

Modeme-initiated ON INTR Branching Conditions for BASIC/WS

Register 15 is rarely used in most applications because the interface usually
manages all interaction with the modem. Modem interrupts are helpful when
you are simulating your own line protocol. This register determines what
changes in one or more modem lines can cause a program branch to occur
when an ON INTR statement is active for that select code. Values from 0
thru 31 can be used, where a “1” in a bit position enables branching whenever
the corresponding signal line changes state. Lines correspond to bits 0 thru 4
of STATUS register 7. In this example, modem functions are handled by the
interface; no interaction with BASIC is necessary. If this register is given a
non-zero value, bit 3 of the ENABLE INTR mask should be set. (ENABLE
INTR statement is line 1820 of the example terminal emulator program.)

Datacomm Interfaces 5-21

Datacomm Line Timeouts

Registers 16-19 set timeout values to force an automatic disconnect from the
datacomm link when certain time limits are exceeded. For most applications,
the default values are adequate. A value of zero disables the timeout for any
register where it is used. Each register accepts values of 0 thru 255; units vary
with the register function.

m Register 16 (Connection timeout) sets the time limit (in seconds) allowed
for connecting to the remote device. It is useful for aborting unsuccessful
attempts to dial up a remote computer using public telephone networks.

m Register 17 (No Activity timeout) sets an automatic disconnect caused by
no datacomm activity for the specified number of minutes. Default value is
determined by default handshake switch setting. Default is not affected by
CONTROL statements to Control Register 23 (hardware handshake).

m Register 18 (Lost Carrier timeout) disconnects when:

o Full Duplex: Data Set Ready (Data Mode) or Data Carrier Detect go
false,

or
o Half Duplex: Data Set Ready goes false,

indicating that the carrier from the remote modem has disappeared from the
line. Value is in multiples of 10 milliseconds.

m Register 19 (Transmit timeout) disconnects when a loss-of-clock occurs or
a clear-to-send (CTS) is not returned by the modem within the specified
number of seconds.

5-22 Datacomm Interfaces

Line Speed (Baud Rate)

The transmit and receive line speed(s) are set by Control Registers 20 and
21, respectively. Each is independent of the other, and they are not required
to have identical values. The following baud rates are available for Async

communication:
Async Baud Rates
Register | Baud | Register | Baud | Register | Baud | Register Baud
Value Rate Value Rate Value Rate Value Rate
0 0 4 134 8 6002 12 3600
1 50 5 1502 9 12002 13 48002
2 75 6 200 10 1800 14 96002
3 1102 7 3002 11 24002 15 19 200

1 An external clock must be provided for this option.

2 These speeds can be programmed using the default switches on the interface
card. Other speeds are accessed by CONTROL statements. (The HP 13265A
Modem can be operated up to 300 baud.)

All configurable line speeds are available to CONTROL Registers 20 and 21.
Only the eight speeds indicated can be selected using the default switches.
When the configuration switch defaults are used, transmit and receive speeds
are identical. The selected line speed must not exceed the capabilities of the
modem or link.

Handshake

Registers 22 and 23 configure handshake parameters. There are two types of
handshake:

Datacomm Interfaces 5-23

m Software or protocol handshake specifies which of the participants is allowed
to transmit while the other agrees to receive until the exchange is reversed.
Options include:

o No handshake, commonly used with connections to non-interactive devices
such as printers.

o DC1/DC3 handshake, with the desktop computer configured either as a
host or a terminal. Handshake characters are defined by registers 26 and
27 for BASIC/WS.

o DC1/DC3 handshake with the desktop computer as both a host and a
terminal. Handshake characters are defined by registers 26 and 27 for
BASIC/WS. This option simplifies communication between two desktop
computers.

m Hardware or modem handshake that establishes the communicating
relationship between the interface and the associated datacomm hardware
such as a modem or other link device for BASIC/WS only. The four

available options are:

0 Handshake Off, non-modem connection—most commonly used for 3-wire
direct connections to a remote device.

o Full Duplex modem connection—used with full-duplex modems or
equivalent connections.

o Half Duplex modem connection (BASIC/WS only)—used with half-duplex
modems or equivalent connections.

o Handshake On, non-modem connection (BASIC/WS only)—used with
printers and other similar devices that use the Data Carrier Detect (DCD)
and Clear-to-send (CTS) lines to signal the interface card. When DCD is
held down by the peripheral, the interface ignores incoming data. When
CTS is held down, the interface does not transmit data to the device until
CTS is raised.

Options 2 and 3 are usually associated with modems or similar devices, but
may be used occasionally with direct connections when the remote device
provides the proper signals. Refer to the table at the end of this chapter for a
list of handshake signals and how they are handled for each cable or adapter
option.

5-24 Datacomm Interfaces

BASIC/UX Modem Line Handshaking

BASIC/UX requires additional system administration before modem line
handshaking can be used with the HP98628 card. The minor numbers of any
serial device files in the /dev/rmb directory must be changed to 0xSS0009
where SS is the select code of the serial interface. For example,

crv~-rv-rv- 1 root other 1 0x090004 Feb 12 12:44 /dev/rmb/serial9

would be changed to

crv-rv-rv- 1 root other 1 0x090009 Feb 12 12:44 /dev/rmb/serial9

The mechanism used for modem line handshaking is limited by the features
provided by the HP-UX operating system. In particular, BASIC/UX uses the
simple mode of modem line handshaking with a call-out device file. A full
discussion of HP-UX facilities is beyond the scope of this manual. Refer to
modem(7) and termio(7) for more details.

HP-UX allows for three different types of opens on R5232 interfaces: call-in,
call-out, and direct connect. There are anomalies associated with each type
of open, and thus existing applications or workarounds which execute outside
the BASIC/UX environment may not work correctly as a result of changing
the device file used by BASIC/UX. Because of these anomalies, BASIC/UX
continues to use a direct connect device file for backward compatibility. See
modem(7) for more details.

HP-UX simple mode of modem line handshaking uses the following algorithm
for modem line handshaking. DTR is asserted by the interface, and DCD
and CTS must be asserted by the device before data transfers can take place.
If DCD is lowered, DTR will also be lowered until DCD is asserted again.
See MODEM(7) for a further description of the simple mode of modem line
handshaking.

Handling of Non-Data Characters for BASIC/WS

Register 24 specifies what non-data characters are to be included in the input
queue. For each bit that is set, the corresponding information is passed along
with the incoming data. If the bit is not set, the information is discarded,
and is not included in the inbound data stream that is passed to the desktop
computer by the interface.

Datacomm interfaces 5-25

Bit 0 Include handshake characters in data stream. They are defined by
Control Registers 26 and 27.

Bit 1 Include incoming end-of-line character(s). EOL characters are defined
by Control Registers 28-30.

Bit 2 Include incoming prompt character(s). Prompt is defined by Control
Registers 31-33.

Bit 3 Include any null characters encountered.
Bit 4 Include any DEL (rubout) characters in data.

Bit 5 Include any CHR$(255) encountered. This character is encountered
ONLY when 8-bit characters are received.

Bit 6 Change any characters received with parity or framing errors to an
underscore. If this bit is not set, all inbound characters are transferred
exactly as received, with or without errors.

Register 25 is not used.

Protocol Handshake Character Assignment for BASIC/WS

Registers 26 and 27 establish what characters are to be used for handshaking
between communicating machines. You can select the values of 6 (AK) or 17
(DC1) for register 26, and 5 (EQ) or 19 (DC3) for register 27. Any ASCII
value from 0 thru 255 can be used, but non-standard values should be reserved
for exceptional situations.

End-Of-Line Recognition for BASIC/WS

Registers 28, 29, and 30 operate in conjunction with registers 14 (control

block mask) and 24 (non-data character stripping) and defines the end-of-line
sequence used to identify boundaries between incoming records. Register 28
(value of 0, 1 or 2) defines the number of characters in the sequence, while
registers 29 and 30 contain the decimal equivalent of the ASCII characters. If
register 28 is set for one character, register 30 is not used. Register 29 contains
the first EOL character, and register 30, if used, contains the second. If register
28 is zero, registers 29 and 30 are ignored and the interface cannot recognize
line separators.

5-26 Datacomm Interfaces

Prompt Recognition for BASIC/WS

Registers 31, 32, and 33 operate in conjunction with registers 14 and 24 and
define the prompt sequence that identifies a request for data by the remote
device. As with end-of-line recognition, the first register defines the number
of characters (0, 1, or 2), while the second and third registers contain the
decimal equivalents of the prompt character(s). Register 33 is not used with
single-character prompts. If register 31 is zero, registers 32 and 33 are ignored
and the interface is unable to recognize any incoming prompts.

Character Format Definition

Registers 34 through 37 are used to define the character format for transmitted
and incoming data.

m Register 34 sets the character length to 5, 6, 7, or 8 bits. The value used is
the number of bits per character minus five (0=5 bits, 3=8 bits). When 8-bit
format is specified, parity must be Odd, Even, or None (parity “1” or “0” 5
cannot be used).

m Register 35 specifies the number of stop bits sent with each character. Values
of 0 or 2 are used to select 1 or 2 stop bits, respectively.

Datacomm Interfaces 5-27

® Register 36 specifies the parity to be used. Options include:

Parity Options

Register
Value Parity | Result

0 None | Characters are sent with no parity bit. No parity checks
are made on incoming data.

1 0dd! | Parity bit is set if there is an EVEN number of ones in the
character code. Incoming characters are also checked for
odd parity.

2 Even! | Parity bit is set if there is an ODD number of ones in the
character code.

3 0 | Unsupported on BASIC/UX.

4 1 | Unsupported on BASIC/UX.

! Parity sense is based on the number of ones in the character including the
parity bit. An EVEN number of ones in the character, plus the parity bit set
produces an QDD parity. An ODD number of ones in the character plus the
parity bit set produces an EVEN parity.

m Register 37 (BASIC/WS only) sets the time gap (in character times,
including start, stop, and parity bits) between one character and the next
in a transmission. It is usually included to allow a peripheral, such as a

teleprinter, to recover at the end of each character and get ready for the next

one. A value of zero causes the start bit of a new character to immediately
follow the last stop bit of the preceding character.

Break Timing for BASIC/WS

Register 39 sets the break time (2-255 character times). A Break is a time
gap sent to the remote device to signify a change in operating conditions.

It is commonly used for various interrupt functions. The interface does not
accept values less than 2. Register 6 is used to transmit a break to the remote
computer or device.

5-28 Datacomm Interfaces

Datacomm Options for Data Link Communication
for BASIC/WS

This section explains how to configure the datacomm interface for Data Link
operation. The example used shows how to set up configuration options
without considering default values. Some statements in the example are
redundant because they override interface defaults having the same value.
Others may or may not be redundant because they override configuration
switch options. The remaining statements are necessary because they override
the default values, replacing them with non-default values required for proper
operation of the example program. If you are not familiar with Data Link
protocol and terminology, consult the section called “Protocol.”

The following program lines set up all the CONTROL register options (a
9600-baud connection to an HP 1000 network host is assumed). The * marks
program lines that may be redundant because they are the same as the
interface default. The — marks program lines that may be redundant because
they override the configuration switch option.

* 1250 CONTROL Sc,14;6 ! Set Control Block Mask for ETB/ETX.
*« 1260 CONTROL Sc,15;0 ! No modem line-change notification.
1270 CONTROL Sc,16;0 ! Disable Connection timeout.
— 1280 CONTROL Sc,17;0 ! Disable No Activity timeout.
* 1290 CONTROL Sc,18;40 ! Set Lost Carrier to 400 ms.
1300 CONTROL Sc,19;10 ! Set Transmit Timeout=10 s.
— 1310 CONTROL Sc,20;14 ! Set Line Speed to 9600 baud.
* 1320 CONTROL Sc,21;1 ! Set GID character to "A".
— 1330 CONTROL Sc,22;1 ! Set DID character to "A".
— 1340 CONTROL Sc,23;0 ! Hardware Handshake 0ff for HP 13264A.
* 1350 CONTROL Sc,24;0 ! Set transmit block size to 512.
* 1360 CONTROL Sc,36;0 ! Parity not used with HP 1000.

If your application requires a different GID/DID pair, you can use either of the
following two techniques (assume: GID=“C” and DID=%@”):

1320 CONTROL Sc,21;3 ! Set GID character to "C".

1330 CONTROL Sc,22;0 t Set DID character to "@".
or

1320 CONTROL Sc,21;3,0 ! Set GID/DID to "Ce@".

Datacomm Interfaces 5-29

Here is an alternative method using string operations:

1320 CONTROL Sc,21;NUM("C")-64
1330 CONTROL Sc,22;NUM("e")-64

or
1320 CONTROL Sc,21;NUM("C")-64,NUM("@")-64

Refer to the Control Register tables in the HP BASIC' 6.2 Language Reference
as you examine the CONTROL statements. The paragraphs which follow
explain register functions and how to configure them. When the register
function is identical for both Async and Data Link, you are referred to the
previous explanation in the Async section.

Control Block Contents for BASIC/WS

Data Link configuration begins with Control Register 14. This register
determines what information is to be placed in control blocks and included
with inbound data transferred from the interface to the desktop computer.

m ETX (Bit 1) identifies the end of a transmission block that contains one or
more complete records.

s ETB (Bit 2) identifies the end of a transmission block where the last record
is continued in the next block of data.

m Bit 0 causes a control block to be inserted that identifies the beginning of a
new block of data.

ON INTR Branching Conditions and Line Speed for BASIC/WS

Registers 15 through 19 are functionally identical for both Async and Data
Link. Refer to the preceding Async section for more information. Register

20 sets the line speed for both transmitting and receiving (Data Link does
not accommodate split-speed operation). The following line speed options are
available:

5-30 Datacomm Interfaces

Data-Link Baud Rates

Register Baud Register | Baud | Register | Baud | Register | Baud
Value Rate Value | Rate | Value | Rate | Value | Rate

0 External Clock! 9 12002 12 3600 15 19 2002

7 3007 10 1800 13 4800
8 600 11 2400 14 96002

! An external clock must be provided for this option.
2 These speeds can be programmed using the default switches on the interface
card. Other speeds are accessed by CONTROL statements.

Terminal Identification for BASIC/WS

Registers 21 and 22 specify the terminal identifier characters for the datacomm
interface. Register 21 contains the GID (Group IDentifier), and register

22 contains the DID (Device IDentifier. Values of 0-26 correspond to the
characters @, A, B, ... , Z. These registers must be configured to match the
terminal identification pair assigned to your device by the Data Link Network
Manager. In the example, Line 1320 is redundant because it duplicates the
default GID value. Line 1330 overrides the DID default switch on the interface
card, and may or may not be necessary. Alternate methods for assigning
different GID/DIDs are shown following the group of configuration CONTROL
statements.

Handshake for BASIC/WS

Register 23 establishes the hardware handshake type. There is no formal
software handshake with Data Link because the network host controls all
data transfers. Hardware or modem handshake options are identical to
Asynchronous operation. Handshake should be OFF (register set to 0) when
using the HP 13264A Data Link Adapter. When you are using non-standard
interconnections such as direct or modem links to the network host, select the
handshake option that fits your application. Refer to the table at the end of
this chapter for a list of handshake signals and how they are handled for each
cable or adapter option.

Datacomm Interfaces 5-31

Transmitted Block Size for BASIC/WS

Register 24 defines the maximum transmitted block length. When transmitting
blocks of data to the network host, the block length must not exceed the
available buffer space on the receiving device. Block size can be specified for
increments of two from 2 to 512 characters per block. A value of zero forces the
block length to a maximum of 512 bytes. For other values, the block length
limit is twice the value sent to the register. For example, a register value of 130
produces a transmitted block length not exceeding 260 characters (bytes).

Parity for BASIC/WS

Register 36 defines the parity to be used. Unlike Async, Data Link has only
two parity options: None, or Odd. Odd parity is:

Data-Link Parity Options

Register
Value | Parity Application

0 NONE | Required for operation with HP 1000 network host

1 ODD |Required for operation with HP 3000 network host

Registers 25 through 35, and 37 and above are not used.

Connecting to the Line

Interface configuration is now complete. You are ready to begin connecting

to the datacomm line. The exact procedure used to connect to the line varies
slightly, depending on the type of link being used. Before you connect, you
must know what the link requirements are, including dialing procedures, if any.

5-32 Datacomm iInterfaces

Switched (Public) Telephone Links

When you are using a public or switched telecommunications link, the

modem connection between computers must be established. The HP 13265A
Modem can be used in any Async application that requires a Bell 103- or Bell
113-compatible modem operating at up to 300 baud line speed. However, the
HP 13265A Modem is not suitable for data rates exceeding 300 baud. For
higher baud rates, use a modem that is compatible with the one at the remote
computer site.

Private Telecommunications Links

Private (leased) links require modems unless the link is short enough for direct
connection (up to 50 feet, depending on line speed). The HP 13265A Modem
can be used at data rates up to 300 baud. For higher speeds, a different
modem must be used.

Direct Connection Links 5

For short distances, a direct connection may be used without modems or
adapters, provided both machines use compatible interfaces. Async connections
normally use RS-232C interfaces.

Connection Procedure for BASIC/WS

This section describes procedures for modem connections using telephone
telecommunications circuits. If you are not using a switched, modem link, skip
to the next section: Initiating the Connection.

Dialing Procedure for Switched (Public) Modem Links

Except for dialing, connection procedures do not usually vary between switched
and dedicated links. Dialing procedures depend on whether the modem is
designed for manual or automatic dialing. Automatic dialing can be used with
the HP 13265A Modem, but other modems must be operated with manual
dialing unless you design your own interface to an Automatic Calling Unit. For
manual dialing procedures, consult the operating manual for the modem you
are using.

Datacomm Interfaces 5-33

Automatic Dialing with the HP 13265A Modem

The automatic dialer in the HP 13265A Modem is accessed by Control Register
12. The CONTROL statement is followed by an OUTPUT statement that
contains the telephone number string, including dial rate and timing characters.
The two statements set up the automatic dialer, but dialing is not started

until a “start connection” command is sent to Control Register 12. Here is an
example sequence:

1600 CONTROL Sc,12;2 ! Enable the Automatic Dialer.
1510 OUTPUT Sc;'"> 9 €@0@ (303)-555-1234";

The OUTPUT statement contains several essential elements.

m The first character (“>"), if included, specifies a fast dialing rate. If it is
omitted, the default slow dialing rate is used.

m A time delay character “@” may be inserted anywhere in the string. A
one-second time delay is executed in the dialing sequence each time a delay
character is encountered.

m Numeric character sequences define the telephone number. Multiple dial-tone
sequences, such as when calling out from a PBX (Private Branch Exchange),
can be used by inserting a suitable delay to wait for the next dial tone.

m Unrecognized characters such as parentheses, hyphens, and spaces can be
included for clarity. They are ignored by the automatic dialer.

m Up to 500 characters can be included in the telephone number string.
Here is how an autodial connection is executed:

m The CONTROL Sc,12;2 statement places a “start dialing” control block in
the outbound queue to the interface. The OUTPUT statement places the
telephone number string (including spaces and other characters) in the queue
after the control block. When the interface encounters the control block, it
transfers the string to the HP 13265A Modem’s autodial circuit. No other
action is taken at this time.

m When a CONTROL Sc,12;1 statement (line 1600 in the example) is executed,
another control block is queued up. When the interface encounters the block,
it sends a “start connection” command to the modem. The modem then
disconnects from the line, waits two seconds, then reconnects. The autodialer
waits 500 milliseconds, then starts executing the telephone number string,.

5-34 Datacomm Interfaces

The string is executed character-by-character in the same sequence as sent by
the OUTPUT statement.

m If your application requires more than 500 milliseconds to guarantee a dial
tone is present, you can increase the delay by adding delay characters (“@”)
where needed, one second per character. Be sure to provide adequate delays
in multiple dial tone sequences, such as when calling through a private
branch exchange (PBX) to a public telephone network.

w When dialing is complete, the modem is connected to the line, and you are
ready to start communication. The next section explains how to determine
when connection is complete.

Two dialing rates are available: slow (default) and fast. To select the fast rate,
you must include the fast rate character (“>”) as the FIRST character in the
telephone number string. Here is a summary of differences between the two
options:

Dialing Options

Parameter Slow Dialing Fast Dialing

Click Length | 60 milliseconds |32.5 milliseconds
Click Gap | 40 milliseconds | 17.5 milliseconds

Number Gap [700 milliseconds | 300 milliseconds

One to ten dial pulses (clicks) are sent for each digit 1 through 0, respectively.
The number gap is the time lag between the end of the last click of one number
and the beginning of the first click of the next number.

Most Bell System facilities can handle both fast and slow dialing rates, but
private or independent telephone systems or companies may require slow
dialing.

Datacomm Interfaces 5-35

Initiating the Connection

After you have executed the necessary dialing procedures, if any, you are
ready to initiate the connection. The following statement is used to start the
connection:

1600 CONTROL Sc,12;1 ! Start Connection.

This statement sends a control block to the interface telling it to connect to the
datacomm line. If the HP 13265A Modem is being used, and the autodialer is
enabled, it starts dialing the number. Otherwise, the interface executes a direct
connection to the line, or tells the modem or data link adapter to connect.

The status of the connection process can be monitored by using the STATUS
statement. The following lines hold the computer in a continuous loop until the
connection is complete:

1650 Conn:STATUS Sc,12;Line_state ! Get datacomm line status.
1660 IF Line_state=2 THEN DISP "Dialing"

1670 IF Line_state=1 THEN DISP "Trying to Connect"

1680 IF Line_state3 THEN Conn

1690 DISP "Connected"

Refer to the HP BASIC 6.2 Language Reference for interpretation of the values
in Status Register 12. Only values of 1, 2, or 3 are usually encountered at this
stage of the program.

As soon as Status Register 12 indicates that connection is complete, you
are ready to continue into the main body of the terminal emulator or other
program you are writing. This completes the datacomm initialization and
connection phase of the program.

Connection Procedure for Hayes-Compatible Modems

Now that the CONTROL registers are set up for the Datacomm card (refer
back to the section “Datacomm Options for Async Communications”), you are
ready to initiate the connection. By OUTPUTing a dialing command to your
modem, the connection will automatically be made. Here is an example of a
simple dialing command:

OUTPUT Sc;"ATDT 555-1234"

5-36 Datacomm Interfaces

The OUTPUT statement contains several essential elements.

m AT is sent to get the attention of the modem and to tell it that you are
going to be sending a command. AT must precede all commands sent to the
modem.

m DT informs the modem that you want to dial using touch-tone dialing. Use
“ATD” for rotary dialing.

m Numeric character sequences define the telephone number.

Ounce the connection is made, any data which you OUTPUT/ENTER to/from
the Datacomm select code will be transmitted/received by the modem over
the data line. To return to command mode, you need to OUTPUT an escape
code. This escape code is usually “+++”_ but may vary with different modems.
Once the escape code is sent, all data sent to the Datacomm select code will be
treated by the modem as a command. Some of the commands are as follows:

AT Attention

H Hang-up

EO Turn echo off

D Dial

, Pause

A/ Re-dial

0 Return on-line (Get back to data transmit/receive mode)

Note that all of the above commands must be preceded by “AT”.

Refer to the user manual for your modem for a complete list of commands.

Datacomm Interfaces 5-37

FEzample Modem Session

A simple modem

70
80
90
100
110
120
130
140

1990
2000

3000
3010
3020
3030

CONTROL Sc,0;1

CONTROL Sc,8;2

CONTROL Sc,20;11

CONTROL Sc,22;5

CONTROL Sc,34;2

CONTROL Sc,35:0

CONTROL Sc,36;1

OUTPUT Sc;"ATDT 555-1234"

ENTER Sc;Data$
OUTPUT Sc;'"Data"

OUTPUT Sc;"+++";

OUTPUT Sc;"ATH"
END

session may be as follows:

Reset card.

Set DTR line.

Set rate to 2400.

DC1/DC3 (as terminal & host) handshake.
Seven bits per character.

One stop bit.

0dd parity.

Establish the connection.

Receive/Transmit.
Data over the connection.

Return to command mode (Send without
CR/LF).
Hang-up!

Setting up the Interrupt System for BASIC/WS

Most datacomm programs, especially complex ones, use interrupt branching
extensively to maintain efficient, orderly program operation. Branching is
usually set up for:

m I/O interrupts from peripheral devices by use of ON INTR and ENABLE
INTR statements.

m Datacomm interrupts from the datacomm interface. Statements used are the

same as for other I/O interrupts.

m Operator interrupts using softkeys for program control. A separate ON KEY
statement is used to set up the branch for each key used.

5-38 Datacomm Interfaces

m Operator interrupts using ASCII keys for program input. The ON KBD
statement is used to set up the branch, and KBDS$ is the keyboard-entry
string holding the data.

Each interrupt branch must be provided with a corresponding interrupt
service routine, with priority levels assigned when appropriate. General I/0
interrupt techniques are explained in the chapter “Interface Events.” This
section explains the interrupt structures commonly encountered in datacomm
applications.

Setting up Softkey Interrupts

Softkeys are usually set up for repetitively executed functions to improve
operator convenience and efficiency. Labels can have up to eight or 14
characters for each key, depending on CRT screen width. The following
statements add a disconnect and break capability to the emulator example we
are using:

1750 ON KEY 0 LABEL " Discomn" GOTO Disconnect
1760 ON KEY 1 LABEL " Break" GOSUB Break

Other keys can be set up and labelled as needed, but remember a service
routine is required for each label specified by a GOTO, GOSUB, CALL, or
RECOVER.

Setting Up Program Operator Inputs

Two methods are commonly used to input information from the operator
through the computer keyboard. The first method uses the LINPUT (or
INPUT) statement for data entry. An example program using the LINPUT
statement is shown in the overview of datacomm programming earlier in
this chapter. When the LINPUT statement requests a data entry, type the
information, use the keyboard editor to make any necessary corrections,
then press CONTINUE to transfer the information to the running program.
This is the simplest method for programming keyboard entry. The second
method is used in our ongoing example. It uses the ON KBD statement in
conjunction with an interrupt service routine that is responsible for all data
manipulation, including display, editing, and transfer to the program. The
following statement sets up the keyboard interrupt. The interrupt service
routine is discussed later.

Datacomm Interfaces 5-39

1770 ON KBD GOSUB Keyboard

Setting Up Datacomm Interrupts

The ON INTR and ENABLE INTR statements are used to set up program
branching for the datacomm interface. STATUS Register 4 contains
information that shows the cause(s) of the most recent interrupt. The interrupt
mask specified in the ENABLE INTR statement determines the events that are
allowed to cause an interrupt branch. Bits 0 thru 5 of the interrupt mask and
STATUS register are identical for both Async and Data Link protocols. Bits 6
and 7 are used for Async only.

The following statements set up the interrupt structure for datacomm:

1810 DN INTR Sc GOSUB Datacomm
1820 ENABLE INTR Sc;1 ! Interrupt when data received.

In more elaborate applications, you may want to enable additional interrupt
causes by changing the interrupt mask. Here are the available interrupt bits
and their functions:

Interrupt Mask Bits for Async Operation

Bit | Value Function Bit | Value Function

0 1 Data in Receive Queue 4 16 | No Activity Timeout
1 2 Prompt Received 5 32 |Lost Carrier Timeout
2 4 | Framing/Parity Error 6 64 |End-of-line Received
3 8 |Modem Line Change 7 128 | Break Received

Interrupt Mask Bits for Data Link Operation

Bit | Value Function Bit | Value Function
0 1 {Data in Receive Queue 3 8]Modem Line Change

1 2 |Block Successfully Sent | 4 16 |No Activity Timeout

2 4 Transmit or Receive 5 32 |Lost Carrier Timeout
Error

5-40 Datacomm Interfaces

Interrupt mask bits 6 and 7 are not used with Data Link protocol.

To construct the interrupt mask value, add the bit values for each function that
is to cause an interrupt. For example, to interrupt when there is data in the
receive queue (bit value=1), or a modem line change (bit value=8) or a Lost
Carrier timeout (bit value=32), the interrupt mask becomes: 1 + 8 + 32 = 41.
The ENABLE INTR statement becomes:

1820 ENABLE INTR Sc;41

Background Program Routines for BASIC/WS

After the interrupt structures have been established by the running program,
the program begins executing a “background” routine while it waits for
interrupts. Background routines vary according to application, and can consist
of anything from a simple idle loop to a very complex program. They are
called background programs or background routines because their execution is
generally suspended whenever interrupts from previously defined sources are
received. See the chapter “Interface Events” for more discussion of interrupt
and software priority.

Background program operations can affect interrupt handling under certain
conditions. For example, if the background program contains a subprogram
call, the interrupt service routines are temporarily suspended until subprogram
execution is complete if the ON INTR statements use GOSUB, or GOTO.
Incoming data is held in the receive queue during subprogram execution, and
the remote is held off by the interface when the queue is full, if handshaking
between devices is active. If handshaking is not being used in Async operation,
buffer overflow can occur. When handshake is being used, be sure that the
remote computer does not disable the link when extended hold-offs occur.

When interrupt service routines are subprograms accessed by an ON INTR ...
CALL statement, background subprograms may be temporarily suspended to
allow interrupt processing. Be careful when using subprograms to be sure that
variables are properly used for orderly flow of information between contexts.

Most BASIC programmers, to maintain clarity in program flow, place interrupt
service routines after the background routines. This technique simplifies
documentation and makes it easier for others to understand program operation.

Datacomm Interfaces 5-41

The location of subroutines or program labels in BASIC programs does not
affect efficiency or speed of execution by the desktop computer.

A detailed discussion of background programs is beyond the scope of this
chapter because they are dependent upon the individual application. In the
example shown in this chapter, a simple idle loop is sufficient. A typical idle
loop resembles the following statement:

1880 Background: GOTO Background ! Background program idle loop.

The next topics addressed are interrupt service routines for datacomm and
keyboard operations.

Interrupt Service Routines

Interrupt service routines are required to service any peripheral device or
interface that uses interrupt to access the computer. In the example we are
using, interrupt service routines are required for the datacomm interface,
computer keyboard, and softkeys. Each routine is treated separately in this
section.

Servicing Datacomm Interrupts

Whenever the datacomm interface interrupts a running BASIC program, the
interrupt request is first logged and then DISABLE INTR is automatically
executed by the system. The cause of interrupt is then placed in STATUS
Register 4. The interrupt service routine must do several things to guarantee
that: (1) the interrupt is properly handled, (2) the interrupt structure is
restored after the current interrupt is acknowledged, and (3) no data is left in
the receive queue after the last interrupt request is processed. The following
items outline the basic elements of the datacomm interrupt service routine
(similar techniques are used for other interfaces).

m Read STATUS Register 4 to clear the interrupt request and determine the
cause of the interrupt. If you do not clear the interrupt request, it remains
active and a new interrupt is generated as soon as you exit the service
routine, whether or not there is any information to process.

5-42 Datacomm Interfaces

m Use ENABLE INTR (usually without specifying a new interrupt mask) to
reactivate the datacomm interrupt system. It is usually unnecessary to
redefine the interrupt mask when this is done.

m Take appropriate action based on what caused the interrupt.

m Exit the interrupt service routine with a RETURN (or equivalent statement
as appropriate) taking care to maintain proper program structure.

In most applications, interrupts are generated when data is available for
transfer between the interface and your desktop computer. The interrupt
service routine then processes the transfer using the ENTER statement. Here
is an example of a typical datacomm interrupt service routine where A$ is
dimensioned to a length of one character (DIM A$[1]). The calling sequence
might be:

ON INTR Sc GOSUB Datacomm ENABLE INTR Sc;Mask

2090 Datacomm:STATUS Sc,4;Interrupt_cause

2100 ENABLE INTR Sc

2110 Dc: STATUS Sc,5;Rx_queue_status

2120 IF Rx_queue_status=0 THEN RETURN
2130 ENTER Sc USING "#,-K'";A$

2140 PRINT USING "#,K";A$

2150 GOTO Dc

While this interrupt service routine (ISR) looks deceptively simple, its
structure performs several important functions:

m Line 2090 acknowledges the interrupt and places the cause-of-interrupt
information in Interrupt_cause.

m Line 2100 reenables the interrupt without changing the mask.

m Line 2110 gets the receive queue status. Four values are possible:
Rx_queue_status=0: Receive queue is empty.
Rx_queue_status=1: Receive queue contains data.
Rx_queue_status=2: Receive queue contains at least one control block.

Rx_queue_status=3: Receive queue contains both data and at least one
control block.

Datacomm Interfaces 5-43

m Line 2120 checks to make sure there is data or control information available
before continuing. This prevents attempts to enter data that does not exist.
The placement of this statement is explained under Exit Conditions.

m Line 2130 enters the data. The format used guarantees that no data is
lost during searches for end-of-line delimiters. The “#” IMAGE specifier
prevents search for end-of-line (EOL) delimiters. Use of “—K” places CR,
LF, and CR-LF end-of-line delimiters in the string variable when they
are encountered. BASIC can then locate the delimiters by using separate
operations.

m Line 2140 prints the data on the current PRINTER IS device. The “#”
specifier suppresses the EOL sequence because terminators are already
contained in the string variable.

m Line 2150 goes back to check for more data before exiting. This guarantees
that no data is missed in the event that additional data arrives during
interrupt service. Otherwise, some interrupt requests may be missed.

To understand why the interrupt is handled as shown, consider the following
sequence of events:

Interface places data in queue and requests interrupt.

Interface places data in queue and requests interrupt.
Interface receives more data and requests a second interrupt.
Interface requests a third interrupt.

Y
1
I

——

S =t~ aff--n-acnccen--
*- emsans

—~
—~
D

t3

—~
—~

5
A A

: ISR begins processing second interrupt.

....-.........’.

ISR finishes first interrupt.
ISR acknowledges then reenables interrupt.
It then begins entering the data.

How BASIC Handles Datacomm Interrupts

5-44 Datacomm Interfaces

At time t0, the interface places data in the receive queue and requests interrupt
service. At t1, the ISR responds and acknowledges the interrupt. The interrupt
is reenabled, but subsequent interrupt service requests are logged but not
serviced until the routine is finished. While the ISR is processing the first
interrupt request, a second and third request are made at t2 and t3. (The
already active interrupt request line is reactivated by the third request. From
the computer’s point of view, nothing happened because the second interrupt
request was already active). When the ISR completes the first interrupt
process (t4), it exits, then acknowledges, the second interrupt (t5).

Here is what really happens when the example routine is executed: Since the
routine checks for no more data in the queue before it processes the interrupt,
and remains in the ENTER/PRINT loop until the queue is empty, all available
information is processed before exit occurs. Therefore, data placed in the queue
at the time of the second and third interrupt requests is processed before the
exit at t4, guaranteeing that nothing is left. When the second entry is made to
the routine (t5) in response to the second interrupt request, no data is in the
queue unless it was placed there between exit and reentry. In this case, the
queue is empty, so exit is immediate. The third interrupt request cannot be
recognized, because the second was still pending when it occurred.

If the routine were written differently, and only one ENTER statement was
executed for each interrupt request, the example sequence would result in
only two interrupts being acknowledged. The third interrupt request and its
corresponding data would not be processed until a fourth request caused the
third data entry to be executed. Such a structure presents a risk of data loss.

Exit Conditions

In the preceding example, line 2120 exits or continues the interrupt service
routine, depending on the status of the receive queue. The example shown
assumes that A$ can hold only a single ASCII character or data byte. The
ENTER statement is terminated as soon as A$ is filled, so data transfer is one
byte at a time. By checking for Status Register 5=0, you are guaranteed that
no data messages remain in the receive queue. Control blocks are immaterial in
this case.

When using Data Link protocol, most programmers specify data transfer
formats of one record per block. This eliminates the need to search data for
delimiters. (The HP 3000 packs multiple records per block when transferring

Datacomm Interfaces 5-45

ASCII text files, so you must decode delimiters to find record boundaries.
Consult the appropriate HP 3000 Data Link manuals for more information.)
Since the datacomm interface can receive Data Link transmission blocks

up to 1000 characters, it is wise to dimension A$ to a length exceeding the
maximum expected block length; for example, DIM A$[1050]. In such cases, it
is necessary to modify line 2120 to provide exit if a full block is not available
for A$. Instead of examining for the presence of data, a test is made to look
for a control block in the queue, indicating the presence of a full block of data.
(Control Register 14 must be set so that only ETB/ETX terminators are
allowed to create a control block.) If a control block is present, a full block

of data is also available. When the ENTER statement is executed, the input
operation terminates when the control block is encountered, and the resulting
length of A$ matches the received block length. To operate in “block mode”
instead of “character mode” as earlier, change line 2120 to:

2120 IF Rx_avail_bits<2 THEN RETURN

Only the dimension of A$ is affected by this change. Other interrupt service
routine statements remain unchanged.

Note It is good programming practice to be sure the receive queue
or input buffer is completely empty before exiting an interrupt
ﬁ service routine, and make sure there is data present before

trying to process it.

This example datacomm interrupt service routine is adequate for most
applications where data is not sent with a known, fixed format, and where
prevention of data loss is important. In other situations, where loss of data
between the end of the input variables list and the delimiter in incoming data
is unimportant, or a fixed format is used, other formats can be specified. It is
usually wise to avoid using multiple variables with the ENTER statement when
using the formats shown in this example. Here’s why:

A control block indicates End-of-data, not End-of-information. Consequently,
an ENTER statement is terminated whenever a control block is encountered
(variables are terminated by EOI, not EOD). If more than one variable is
included in the statement, and EOD (control block) occurs before the list is
filled, the unfilled variables retain their previous values which can lead to
improper results.

5-46 Datacomm Interfaces

Data Formats for Datacomm Transfers

All datacomm data transfers use the OUTPUT and ENTER statements.
Consequently, any formatting techniques that are compatible with these
statements can also be used. However, since most computers send and expect
to receive a limited variety of data formats, most data transfers use a limited
assortment of formats.

ASCII Data Transfers—In asynchronous data communications applications,
information is usually transferred as lines of ASCII text. In most cases, lines
are terminated by a carriage-return followed by a line-feed (CR-LF), or by a
carriage-return only. Other methods may be used occasionally to recognize
record boundaries in special applications.

Most Data Link applications consist of ASCII text records transferred between
the network host computer and other terminals and/or computers in the
network. Records are transmitted in blocks, one or more records per block.
When multiple-record blocks are transferred, delimiters between records are
included as part of the text, and individual records must be unpacked by the
receiver.

Non-ASCII Data Transfers—Non-ASCII data includes non-text or non-ASCII
text data that must be transmitted over the datacomm link, but may contain
characters that could be interpreted as datacomm control characters. Examples
of non-ASCII data includes encoded data files, non-text program files, or
specially formatted data. To provide a means of transferring non-ASCII

data formats requires non-standard techniques in Async, and transparent
transmission when using Data Link.

To transfer non-ASCII data using asynchronous protocol, use an eight-bit
character format with or without parity as dictated by your application.
End-of-line and prompt recognition, and any character stripping functions must
be disabled to allow passage of arbitrary character patterns. Use of Async for
such applications is uncommon, primarily because of the limited reliability of
parity checks as a means for error detection.

Transfer of non-ASCII data using Data Link protocol is much easier because
all data transmitted by the desktop computer through the datacomm interface
is sent as transparent data;i. e., data that could be mistaken for control
characters is transferred intact. Data Link transfers from the network host are
also sent as transparent data. In order to transfer non-ASCII data from the

Datacomm Interfaces 5-47

network host, a cooperating program on the host must originate the data, and
suppress end-of-line and other unwanted character sequences.

Servicing Keyboard Interrupts

The keyboard interrupt service routine has several functions. In the case of
a terminal emulator or similar application, it inputs keystrokes, interprets
them, then transmits the results to the datacomm interface. In addition, it
may be required to display the keystroke(s) or perform backspace and editing
operations (such as in line-mode terminal emulators). Certain keys may also
be reserved to perform program command functions while others are used to
transmit information to the host.

Here is a simple example of a keyboard interrupt service routine that sends
ASCII keystrokes to the datacomm interface as each key is pressed, then sends
an end-of-line (CR) if Async, or end-of-block if Data Link. The example shown
is for Async protocol; Line 2410 is changed for Data Link. The calling sequence
might be ON KBD GOSUB Keyboard. An explanation follows the example.

2290 Keyboard:K$=KBD$
2300 K: IF NOT LEN(K$) THEN RETURN

2310 Key=NUM(K$)

2320 K$=K$ [2]

2330 IF Key=255 THEN

2340 Key=NUM(K$)

2350 K$=K[2]

2360 IF Key=255 THEN

2370 Key=NUM(K$)

2380 K$=K$ [2]

2390 END IF

2400 IF Key=NUM("E") THEN
2410 OUTPUT Sc;CHR$(13);END
2420 ELSE

2430 BEEP

2440 END IF

2450 ELSE

2460 OUTPUT Sc;CHR$(Key);
2470 END IF

2480 GOTO K

To change the example for Data Link, eliminate the carriage return in line 2410
as follows:

5-48 Datacomm Interfaces

2410 OUTPUT Sc;END

This Async example assumes that the host echoes any data sent to it; that is,
when a character is sent to the host, the host sends the same character back
to the terminal where it is displayed. Consequently, keystrokes are displayed
AFTER they are returned by the host. Data Link protocol does not provide
this feature (called echo-plex). To print each keystroke on the CRT as it is
keyed in, add the following line to the Data Link example:

2465 PRINT CHR$ (Key) ;

This keyboard routine is a good illustration of how to use an IF ... THEN ...
ELSE structure to decode a keystroke, and decide whether it is ASCII,
end-of-line, or an unrecognized character. If ASCII, it is transmitted. If the
ENTER key is pressed, it sends an EOL. Any other key is ignored, but the
computer beeps to acknowledge the keystroke.

To understand the routine, you must be aware that several data formats are
found in KBD$. ASCII keystrokes are stored, one byte per stroke, as key codes
equivalent in value to the NUM value of the corresponding ASCII character
code. Non-ASCII keys are stored as two bytes; the first byte is CHR$(255), the
second byte is the keycode. If the CONTROL key is pressed simultaneously
with a non-ASCII key, a three-byte entry is made in KBD$. The first is
CHRS$(255) representing a non-ASCII key, the second is also CHR$(255)
representing the CONTROL key, and the third byte is the keystroke. Keycode
values for non-ASCII keys are listed in the Keyboard Output Codes table in
the back of the BASIC Language Reference for your computer. The following
table shows the KBD§ data format for each keystroke:

KBD$ Data Formats

Keystroke(s) First Byte Second Byte Third Byte
ASCII or ASCII keycode None None
CONTROL-ASCII
Non-ASCII Key CHR$(255) Non-ASCII None

keycode
CONTROL-Non-ASCII | CHR$(255) CHR3(255) Non-ASCII
Key keycode

Datacomm Interfaces 5-49

The contents of KBDS$ is destroyed when you transfer it to another string or
perform any other operation on KBD$. Since only one read from KBDS$ is
possible, K$ is used as a temporary storage and work area for the contents of
KBD$, permitting additional string operations.

The first IF ... THEN ... ELSE looks for a CHR$(255) indicating a
non-ASCII key. If none is found, the ASCII key is sent to the datacomm
interface. The second IF ... THEN ... ELSE is entered ONLY if the first
character indicates a non-ASCII key. It looks for a second CHR$(255), which
is discarded, if found. (Both ENTER and CTRL-ENTER are accepted

as end-of-line.) The keystroke data byte is then checked to see if it is the
ENTER key. If the value is not equivalent to NUM(“E”), the key is rejected.
Otherwise, and end-of-line/end-of-block is sent to the datacomm interface.

In more elaborate applications, other keys such as backspace or other cursor
control characters could be interpreted, and the CRT display and other
program parameters varied accordingly.

Note that the interrupt service routine remains active until the entire contents
of KBDS$ as it existed at time of interrupt is processed. If, in the meantime,
more keystrokes are placed in KBD$, a new interrupt occurs as soon as the
service routine is finished.

Service Routines for ON KEY Interrupts

ON KEY interrupt service routines are usually simpler than ON KBD service
routines. The tasks are usually well-defined and relatively simple. In this
example, KEY 0 disconnects the datacomm line, and KEY 1 sends a BREAK.
The routines are implemented as follows:

To send a BREAK on either Async or Data Link, set bit zero of Control
Register 6. Here is how:

2520 Break:CONTROL Sc,6;1
2530 RETURN

To disconnect from the datacomm line, clear Control Register 12 as follows:

2570 Disco:CONTROL Sc,12;0
2580 DISP "Disconnected"
2590 END

You now have a working terminal emulator.

5-50 Datacomm Interfaces

Cooperating Programs for BASIC/WS

Some applications, while similar in some respects to terminal emulators, require
unattended operation of the desktop computer and network host. In such
cases, cooperating programs on the host and terminal computer are used.
Applications can include such things as the desktop computer controlling a
local data gathering system, making preliminary calculations, and sending the
results to the network host. Since data integrity is important in such cases,
Data Link is frequently used because of its ability to detect transmission errors.

Here is an example of cooperating programs you can run on your desktop
computer and an HP 1000 Data Link network host computer. The FORTRAN
program COOP runs on the HP 1000, and is responsible for opening and
transferring the specified file(s) from the HP 1000 to the Data Link. A
cooperating BASIC program on the desktop computer acts as an interface
between the operator and the HP 1000. The specified file is transferred from
the Data Link to local mass storage as it is received from the HP 1000.
Assuming the file is an ASCII program file containing valid BASIC statements,
it can then be attached to the cooperating program and run. Note that
variables used by both the original BASIC program and the downloaded
program must be specified as COM variables to prevent destroying their values
during pre-RUN initialization of the downloaded program. The program
listings are as follows:

FORTRAN Program COOP for the HP 1000:

FTN4,L

PROGRAM COOP
This is a FORTRAN program that runs on the HP 1000 and cooperates
with a compatible program running simultaneously on a Series 200/300
computer.

This program waits in I/0 suspend until the Series 200/300 computer returns
a file name. When the name is received, it is parsed, and the

success status of the parse is sent to the Series 200/300 computer. If the
file name parses successfully, this program tries to open the file.

The atatus of the OPEN is also sent to the Series 200/300 computer.

oo aaa

INTEGER DCB(144),IDBUF(10),IBUF(80)
INTEGER NAME(3),SCODE, CRN

Datacomm Interfaces 5-51

INTEGER DTC,ERROR,OK
EQUIVALENCE (NAME,IDBUF), (SCODE,IDBUF(5)),(CRN,IDBUF(6))

C **xINITIALIZE DTC TO BE THE LU# OF THE SERIES 200/300 COMPUTER***
DTC=21
C #**xSend the ASCII string "SYNCHRONIZE" to the Series 200/300 computer*##

This signals the Series 200/300 computer to begin executing the sister
C program to this one.

(¢

CALL EXEC(2,DTC,11HSYNCHRONIZE,-11)

C *»#Now wait in I/0 suspend until the Series 200/300 computer sends thex*x
name of the program file that is to be downloaded to the
C Series 200/300 computer.

(¢

CALL EXEC(1,DTC,IBUF,-40)

CALL ABREG(IA,LEN)

IP=1

IF (NAMR (IDBUF, IBUF, LEN, IP)) 9200,100
100 CALL EXEC (2,DTC,2HOK,-2)

C »*x0PEN THE FILE AND SEND THE CONTENTS TO THE SERIES 200/300 COMPUTER#*#

IF (OPEN (DCB,ERROR,NAME,O,SCODE,CRN)) 9100,200
200 CALL EXEC (2,DTC,2HOK,-2)

250 CALL READF(DCB,ERROR,IBUF,80,LENGTH)
IF (LENGTH,EQ,-1) GOTO 300
CALL EXEC (2,DTC,IBUF,LENGTH)
GOTO 250

C *«+*TELL THE SERIES 200/300 COMPUTER THAT THE END OF FILE HAS BEEN#***
C REACHED, THEN STOP.

300 CALL EXEC(2,DTC,11H*ENDOFFILE*,-11)

STOP
o T T TR P P e e
C ERROR HANDLING ROUTINES

G ootk o kool o o o ool ook ok ool ol ool ol o ol ool o ol o ool o ool ook o ol o o o ool o ol o ok o o ol ook ok ool ko o o o ok kool ok ok ook ook ok ook ok o

C wxkkkkknknnhkkkkkkkTHIS ROUTINE HANDLES DISC ERRORS % ek sk sk skob o o ok ok o ok ok o o o o ok o o o o

5-52 Datacomm Interfaces

c

BY SENDING THE FMP ERROR AND CLOSING THE FILE.

9100 WRITE(DTC,9101)ERROR
9101 FORMAT ("THE OPEN FMP ERROR CODE WAS "16)

CALL CLOSE(DCB)
STOP

C #sxkkksxkkskkukxkxTHIS ROUTINE HANDLES PARSING ERRORS® %k sk sk sksakskskokskakskkdkok ok

9200 WRITE(DTC,9201)
9201 FORMAT ("THE FILE NAME RECEIVED DID NOT PARSE CORRECTLY")

STOP
END

Cooperating BASIC Program for the Desktop Computer:

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270

L T e e T R e
! This BASIC program cooperates with the FORTRAN program "COOP" and
downloads a BASIC program file from the HP 1000 for execution on

the Series 200/300 computer. While the program is not elegant, it
illustrates the basic concepts involved in downloading files to

local mass storage, then loading them into memory for execution.

The same technique is useful for transferring data files.

o KKK R o oK K oK Ko o o K o K K oK o K K ok oK R

COM Sc,Insep$[4],Prompt$[2] ! The values of these variables must be
! preserved between programs.

Sc=20 ! Set select code.

DIM Rx$[1050]1,Tx$[1050] ! Set up data transfer strings.
Insep$=CHR$ (13) &CHR$ (10)&CHR$(27)&"_" ! HP 1000 EOL string.
Esc_u_score$=CHR$ (27)&"_" ! Escape-Underscore.
INTEGER A

I L T L LR e
! Set up DATA LINK protocol

CONTROL Sc,0;1 ! Reset the interface.
CONTROL Sc,3;2 ! Set Data Link protocol
Wait: STATUS Sc,38;Al1_sent
IF NOT All_sent THEN Wait ! Wait for control block sent.
CONTROL Sc,0:1 ! Reset interface to start new protocol.

b koo ok ok Sk ok i ok ko ok KoK o Ak 3 3o o oo 3 o o o o o ok oo o o oo o koK ok ok o Kok kR K ok kK

Datacomm Interfaces 5-53

1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720

! Set up the datacomm configuration.

‘
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL

CONTROL
CONTROL

Sc,16;0 !
Sc,17;0 !
Sc,20;14 !
Sc,21;1 !
Sc,22;1 !
Sc,23;0 !

! Hardware
Sc,24;0 !
Sc¢,36;0 !

Disable Connect timeout.

Disable No Activity timeout.

Set baud rate to 9600.

GID="A",

DID="A4".

Override default switches and set
Handshake OFF, non-modem connection.
Transmit block length maximum: 512 bytes.
Set parity: NONE (HP 1000 connection).

R R R o R R R o

Sc,12;1 ! Send connection command to the interface.

Connect to the Data Link
CONTROL
DISP "Trying to connect"
Conn: STATUS Sc,12;Line_state

IF line_state3 THEN Conn ! Wait for connection complete.

DISpP "
!

Connected”

I L L T T e T T T T T T T TR T T TR T P T T P e e
'This is a MINIMAL Terminal Emulator.

1
Prompt: LINPUT Tx$
PRINT USIN
OUTPUT Sc;

'

Idle: STATUS Sc,

IF NOT Receive THEN Idle

G "#,K";Tx$
Tx$ END

5;Receive

ENTER Sc USING "#,-K";Rx$!
PRINT USING "#,K";Rx$[1,POS(Rx$,Esc_u_score$)-1] ! Print reply.

! Trap messages fr

om HP-1000:

Get line to send to network host.
Print line on CRT.
Send line to host.

Look for reply from host.

! If nothing, try again.

Get reply message.

IF POS(Rx$,"UNABLE TO COMPLETE LOG-ON") THEN Prompt ! If error,
IF POS(Rx$,"END OF SESSION") THEN Prompt ! try again.
IF POS(Rx$,"SYNCHRONIZE") THEN Coop ! When synchronized, start.

STATUS Sc,5;Receive ! Look for line with EOL characters missing.
! If not CrLfEsc_, it is a system or sub-

! system prompt from the HP 1000. Otherwise,
! go to idle loop.

IF NOT Receive AND (POS(Rx$,Insep$)=0) THEN Prompt! Prompt?

5-54 Datacomm Interfaces

1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170

GOTO Idle

“Computer
Museum

This section starts the cooperating program.

1
T osokskokokokkokk ok ok ook Rk ok koK ok ok Rk Rk ok kK ok kok kK K Kk ko ok ok ok ok ok ok
]
]

Coop:
Ti:

R1:

R2:

LINPUT "TYPE IN A FILE NAME",Tx$

STATUS Sc,4;Transmit
IF NOT BIT(1,Transmit) THEN T1
OUTPUT Sc;Tx$;END

STATUS Sc,5;Receive
IF NOT Receive THEN R1
ENTER Sc USING "#,-K'";Rx$
IF POS(Rx$,"0K") THEN R2
PRINT Rx$
STOP

STATUS Sc,5;Receive
IF NOT Receive THEN R2
ENTER Sc USING "#,-K";Rx$
IF POS(Rx$,"0K") THEN Rd_prog
PRINT Rx$
STOP

Get file name for transfer.

! Get transmit queue status.

If not empty, wait.
Send file name.

Get receive queue status.

If empty, wait for data.

Get data. Keep CR-LF.

If 0K, continue.

Not OK. Print error message.
Error. STOP.

Look for another OK from
the HP 1000.

If 0K, start download.
Not OK. Print error message.
Error. STOP.

| oskakdkkkkkokkk ok dok ok kok ko k ok ko ko k ok kok ok
! For this section to work, the HP 1000 must send the 4-character

end-of-line sequence:

CR-LF followed by escape-code, underscore.

Auto-answer must be disabled, and the data being sent from the

valid line number.

]
!
! HP 1000 MUST consist of valid BASIC program lines, each including a
1
'

Rd_prog:

R3:

Get_prog: !

ASSIGN @File TO '"DOWNLOAD"

STATUS Sc,5;Receive

IF NOT Receive THEN R3
ENTER Sc USING "#,-K";Rx$
PRINT Rx$

IF POS(Rx$,'*ENDOFFILE+") THE

GOTO R3 !

ASSIGN €File TO =*
GET "DOWNLOAD",2200,2200

Assign destination file for
file transfer.

Look for data record.

If nothing, wait for record.

Get record.

Keep CR-LF.

Print record on printer.
N get_prog !Check for end-of-file.
OUTPUT @File;Rx$[1,P0OS(Rx$,Esc_u_score$)-1 ! Store record on

Mass Storage file and repeat for next record.

File has been downloaded to local mass storage.

! Close the file.
! Get the downloaded program.

Datacomm Interfaces 5-55

2200 END ! This statement is destroyed by GET.

Program File to be Downloaded from the HP 1000:

1000 ! This program is downloaded to the desktop computer for execution.
1010 !

1020 DIM A$[20]

1040 PRINT "Now I’1l1 count to 10."

1050 FOR I=1 TO 10

1060 NEXT I

1070 PRINT "That’s the end of the demo!!"

1090 PRINT "Nice to meet you, ";A$

1100 GOTO Idle

1110 END

Modified Cooperating BASIC Program After Loading:

2080 ENTER Sc USING "#,-K";Rx$! Get record. Keep CR-LF.
2090 PRINT Rx$! Print record on printer.
2100 IF POS(Rx$,"+«ENDOFFILE*") THEN Get_prog !Check for end-of-file.
2120 GOTO R3 ‘Mass Storage file and repeat for next record.
2130 !
2140 Get_prog: ! File has been downloaded to local mass storage. Get it.
2150 ASSIGN @File TO = ! Close the downloaded file first.
2160 GET "DOWNLOAD",2200,2200 ! Get the downloaded program.
2170 !
2200 ! This program is downloaded to the desktop computer for execution.
2210 !
2220 DIM A$[20]
2230 INPUT "HJ. J’m the downloaded program. What is your name?",A$
2240 FOR I=1 TO 10
2260 PRINT "
2270 NEXT I
2280 PRINT "That’s the end of the demo!!"
2290 PRINT "Nice to meet you, ";A$
2300 GOTO Idle
2310 END
Results:

Assuming you have logged onto the HP 1000, the printed output that is
displayed on the CRT screen or current PRINTER IS device should look
something like this:

5-56 Datacomm Interfaces

RU<COOP
SYNCHRONIZE
TYPE IN A FILE NAME
FAB2::10
HI, I’m the downloaded program. What is your name?
SUE
Now I’11 count to 10
i1

W NG W

:9
:10
That’s the end of the demo!!
Nice to meet you SUE
COOP: STOP 5
EX
$END FMGR
FMG21 REMOVED
SESSION 21 OFF 1:26 PM FRI., 11 SEP., 1981
CONNECT TIME: 00 HRS., 08 MIN., 28 SEC.
CPU USAGE 00 HRS., 00 MIN., 00 SEC., 470 MS.
CUMULATIVE CONNECT TIME 01 HRS., 09 MIN., 02 SEC.
END OF SESSION

Terminal Emulator Example Programs for BASIC/WS

The following pages contain complete listings of two terminal emulator
programs based on the preceding discussion. The first program is for
asynchronous data communication with an HP 1000. It can be easily adapted
for other remote computers and different operating parameters. The second
program uses Data Link to communicate with an HP 1000 network host. It can
be used with the HP 3000, but the parity specifier must be changed, and other
changes made as appropriate.

Datacomm Interfaces 5-57

Both programs can be enhanced and expanded to include many additional
features. The examples shown illustrate the general structure of terminal
emulator programs, and are recommended as a basis for developing your own.

Other example programs are also included for your convenience and to further
illustrate some of the concepts discussed in this chapter. If you have an HP
46020/21A keyboard, you need to adjust the ON KEY O LABEL statement in line
1750 (and any other affected lines).

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340

2k 2k o ok ok e ok o o 2k o ol o o o e ok e o ok ke ok ol ke o o ok ok ok o ke o e o e ke e o e ok o ok o e o 3 2 o e o e o o e o e e e o ok o e ok o ok ok ok ok ok ok

* *
* *x*+xExample Async Terminal Emulator#x**x *
* *
AR A R o b o A
* This sample terminal emulator program is a simple example of the *
* program structure of general-purpose emulators. It is not elegant, *
* but contains the essential elements and illustrates commonly used *
* programming techniques. *

o5 ok 3 2K 3 o o 3 o a e o e a3 ol ok o ok ke ok o ok o ok ok o e ke o e e ol ok o ke e o ok o oo ok ke ek e o e R e e e e o e e ok o ok o o ok ok ok

Sc=20 ! Select code of datacomm interface.
DIM A$[1],K$[100] ! Set up string variables.

Reset datacomm interface and enable Async protocol.

CONTROL Sc,0;1 ! Reset card to disconnect from line.
CONTROL Sc¢,3;1 ! Select Async protocol.

Wait: STATUS Sc,38;Al1l_sent ! Wait until Control Block is sent to
IF NOT All_sent THEN Wait ! interface before resetting again.
CONTROL Sc,0;1 ! Reset card to start new protocol.

Set up datacomm options. Normally Just a few are included in the
program. This group overrides ALL defaults including switches.

CONTROL Sc,14;3 ! Set Control Block mask for EOL and Prompt.
CONTROL Sc,15;0 ! No modem line-charge notification.
CONTROL Sc,16;0 ! Disable connection timeout.

CONTROL Sc,17;0 ! Disable No Activity timeout.

CONTROL Sc,18;40 ! Lost Carrier 400ms (default).

CONTROL Sc,19;10 ! Transmit timeout 10 s (default).

CONTROL Sc,20;7 ! Transmit Speed: 300 baud.

CONTROL Sc,21;7 ! Receive Speed: 300 baud.

CONTROL Sc¢,22;2 ! EQ/AK (as terminal) handshake.

CONTROL Sc,23;1 ! Full Duplex Modem connection.

5-58 Datacomm Interfaces

1350 CONTROL Sc,24;66 ! Remove protocol characters except
1360 ! EOL. Change errors to underscores.
1370 CONTROL Sc,26;6 ! Assign AK character for EQ/AK.

]

1380 CONTROL Sc,27;5 ! Assign EQ character for EQ/AK.

1390 CONTROL Sc,28;2,13,10 ! Set EOL sequence to CR/LF (default).
1400 CONTROL Sc,31;1,17 ! Set prompt to be DC1 (default).

1405 ! Register 33 is not used.

1410 CONTROL Sc,34;2 ! Seven bits per character.

1420 CONTROL Sc,35;0 ! One stop bit per character.

1430 CONTROL Sc,36;1 ! 0dd parity.

1440 CONTROL Sc,37;0 ! No inter-character time gap (default).
1450 CONTROL Sc,39;4 ! Set BREAK to 4 character times (default)
1460 !

1470 ! You are now ready to connect to the remote computer. Optionally, this
1480 ! may include autodialing with the HP 13265A Modem.

1490 !

1500 CONTROL Sc,12;2 ! Start Autodial.

1510 OUTPUT Sc;"> 9 € (303) 555-1234" ! Send telephone number string.
1520 ! - - o -

1530 ! | ! Unrecognized characters are ignored.

1540 ! | Insert 1-second pause (used with PBX to wait for

1550 ! Select FAST dialing rate. dial tone).

1560 !

1570 ! Autodialing is not started until Start Connection is initiated by the
1580 ! following CONTROL statement:

1590 !

1600 CONTROL Sc,12;1 ! Start the connection.

1610 !

1620 ! If desired, this is the proper place to monitor STATUS Register 12 to
1630 ! see if the connection is actually made.

1640 !

1650 Conn: STATUS Sc,12;Line_state ! Get Line State from STATUS Register.
1660 IF Line_State=2 THEN DISP "Dialing" ! State=2

1670 IF Line_state=L THEN DISP "Waiting to Connect" ! State=1.

1680 IF Line_state<>3 THEN Conn ! Wait for connection.

1690 DISP "Connected" ! Connection is now complete.

1700 !

1710 ! Softkey 0 is set up so you can disconnect easily.

1720 ! Softkey 1 sends a break to the remote computer.

1730 ! Most other keys are trapped by the ON KBD interrupt service routine.
1740 !

1750 ON KEY O LABEL " Disconn' GOTO Disconnect ! Set up Softkey 0.
1760 ON KEY 1 LABEL " Break' GOTO Break ! Set up Softkey 1.
1770 ON KBD GOSUB Keyboard ! Set up keyboard interrupt.

1780 !

Datacomm Interfaces 5-59

1790 !

1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230

Now set up the datacomm ON INTR service routine then enable interrupts
for any data and/or Control Blocks (see STATUS Register 4 definition).
ON INTR Sc GOSUB Datacomm
ENABLE INTR Sc;L

Everything is handled under interrupt. The background routine can be
an idle loop doing nothing or a program that runs when interrupts are
not being processed.

Background: GOTO Background

—=>>>>>>>>5>>>>>>>>>Datacomm Interrupt Service Routine<<<<<<<<<<<<<<<-~
This emulator operations in character mode, handling only one character
at a time. It is set up for no control blocks in the receive queue,
and the dimension of A$ limits inputs from datacomm to one character.

The STATUS ... 4 acknowledges the interrupt from the card. Since only
one interrupt condition is enabled, there is no reason to check the
value of STATUS Register 4.

The ENABLE INTR allows the card to generate another interrupt when it
is ready. BASIC does not branch to the service routine until after
the RETURN exit is completed.

Since the datacomm interface can interrupt much faster than BASIC can
service, exit from the routine occurs ONLY after ALL data has been
removed from the receive queue. Since an interrupt can be generated
even though the data has already been ENTERed, we must check STATUS
Register 5 FIRST to see if any data is available.

Datacomm: STATUS Sc,4;Interrupt_bits ! Acknowledge interrupt by card.

Dc:

ENABLE INTR Sc ! Reenable interrupt.
STATUS Sc,5;Rx_avail_bits ! Get data available status bits.
IF Rx_Avail _Bits=0 THEN RETURN ! If empty, exit service routine.
ENTER Sc USING "#,-K";A$! Get next data byte.
PRINT USING "#,K";A$! Print the character.
GOTO Dc ! Check for more data available.

This keyboard routine is not very exotic, but it CAN handle a fast
typist. Some of the nested IF ... THENs are used to decode the 255-
and 255-255 notations for special and CONTROL-special keys. The only
special key allowed by this routine is ENTER (code is NUM("E™)). It

is converted to a carriage-return followed by a line turn-around
(;END) indication. A1l ASCII keys are transmitted to the card without
alteration.

5-60 Datacomm Interfaces

2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590

! The keyboard routine loops until the keyboard string has been

! completely serviced.

! datacomm interrupt service routines.

Keyboard:

K$=KBD$

K: IF NOT LEN(K$) THEN RETURN
Key=NUM(K$)
K$=K$[2]
IF Key=255 THEN

Key=NUM(K$)
K$=K$[2]
IF Key=255 THEN
Key=NUM(K$)
K$=K$ [2]
END IF
IF Key=NUM("E") THEN
OUTPUT Sc;CHR$(L3);END
ELSE
BEEP
END IF
ELSE
OUTPUT Sc;CHR$(Key);
END IF
GOTO K

Notice the similarities between the keyboard and

Stay in routine until K$ is empty
Get key or prefix (255=non-ASCII)
Strip first character from string
If not 255, transmit character
255. Get value of next character.
Strip second character.

If 255 (CONTROL),

get third character value.

Strip third character and check
for ENTER>

Check non-ASCII to see if ENTER.
Send CR then turn line around.
Illegal character.Beep and return
for next character(s).

ASCII key. Send it to the remote
computer.

End of character check routine.
Go get next keystroke, if any.

! Key 1 sends a BREAK indication to the datacomm interface card.

Break: CONTROL Sc,6;1
RETURN

Tell card to send a BREAK.
End of routine.

! Key 0 disconnects the card and stops the program.

Disconnect: CONTROL Sc,12;0
DISP "Disconnected-"
END

Disconnect gracefully.

If you have an HP 46020/21A keyboard, adjust the ON KEY statements to reflect
available keys.

1000
1010
1020
1030
1040

Vodekdokokokkokokkokokok ook ook kR ook kok ok ok ook ok okok ok ko kR kokok Rk okok ko ok dkokok kR ok kok ko ok ok ok kok Kok

! ok
1 o*
'k

*

**+¥*Example Data Link Terminal Emulator##x*# *

®

1 deaaaokokok o oK 3R AR o KK KKK K K 3K ook k36 o ok 3 ok ok o o oo o K ko o ok o ok kK

Datacomm Interfaces 5-61

1050
1060
1070
1080
1081
1090
1100
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1460
1670
1590
1600
1610
1620
1630
1640
1645
1650
1680
1690
1700

! * This sample terminal emulator program is a simple example of the *
! » program structure of general-purpose emulators. It is not elegant, =
! * but contains the essential elements and illustrates commonly used *

! % programming techniques. Line numbers are matched to the Async *

! % example for your convenience in comparing the two versions. *

R L T P T T

Sc=20 ! Select code of datacomm interface.
DIM A$[1050],K$[100] ! ***x%k%x->-> A$ now handles 1000 characters.

'

! Reset datacomm interface and enable Async protocol.

'

! CONTROL Sc,0;1 ! Reset card to disconnect from line.
CONTROL Sc,3;2 ! Select Data Link protocol.

Wait: STATUS Sc,38;A11_sent ! Wait until Control Block is sent to
IF NOT All_sent THEN Wait ! interface before resetting again.
CONTROL Sc,0;1 ! Reset card to start new protocol.

1

! Set up datacomm options. Normally just a few are included in the

! program. This group overrides ALL defaults including switches.

!

CONTROL Sc,14;6 ! Set Control Block Mask for ETB/ETX.
CONTROL Sc,15;0 ! Set ON INTR mask for data in receive queue.
CONTROL Sc,16;0 ! Disable Connection timeout.

CONTROL Sc,17;0 ! Disable Lost Carrier timeout.

CONTROL Sc,18;40 ! Set Lost Carrier to 400 ms (default).
CONTROL Sc,19;10 ! Set Transmit Timeout=10 8 (default).
CONTROL Sc,20;14 ! Set Line Speed to 9600 baud.

CONTROL Sc,21;1 ! Set GID character to "A" (default).
CONTROL Sc,22;1 ! Set DID character to "A".

CONTROL Sc,23;0 ! Hardware Handshake OFF for HP 13264A.
CONTROL Sc,24;0 ! Set transmit block size to 512 (default).
CONTROL Sc,36;0 ! Parity not used with HP 1000 (default).

'

! Now we can initiate Start Connection.

'

CONTROL Sc,12;1 ! Start the connection.

1

! If desired, this is the proper place to monitor STATUS Register 12 to

! see if the connection is actually made.

'

DISP "Trying to connect"

Conn: STATUS Sc,12;Line_state ! Get Line State from STATUS Register.
IF Line_state<>3 THEN Conn ! Wait for connection.

DISP "Connected" ! Connection is now complete.

1

5-62 Datacomm Interfaces

1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820

1830 !
1840 !
1850 !
1860 !

1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150

Softkey is set up 80 you can disconnect easily.
Softkey sends a break to the remote computer.
Most other keys are trapped by the ON KBD interrupt service routine.

ON KEY 0 LABEL " Disconn" GOTO Disconnect ! Set up Softkey.
ON KEY 1 LABEL " Break" GOSUB Break ! Set up Softkey.
ON KBD GOSUB Keyboard ! Set up keyboard interrupt.

Now set up the datacomm ON INTR service routine then enable interrupts
for anything received (see STATUS Register 4 definition). #xxxskxxkxxx
ON INTR Sc GOSUB Datacomm
ENABLE INTR Sc;L

Everything is handled under interrupt. The background routine can be
an idle loop doing nothing or a program that runs when interrupts are
not being processed.

Background: GOTO Background

1==>>>>>>>>>>>>>>>>Datacomm Interrupt Service Routine<<<<<<<<<<<<<———————~

This emulator operates in block mode, handling incoming data one block
at a time. Entire data blocks are read from the receive queue, but
they MUST be properly terminated by a Control Block.

The STATUS ... 4 acknowledges the interrupt from the card. Since only
one interrupt condition is enabled, there is no reason to check the
value of STATUS Register 4.

The ENABLE INTR allows the card to generate another interrupt when it
is ready. BASIC does not branch to the service routine until after
the RETURN exit is completed (i.e., the routine does not call itself).

Since the datacomm interface can interrupt much faster than BASIC can
service, exit from the routine occurs ONLY after ALL data has teen
removed from the receive queue. Since an interrupt can be generated
even though the data has already been ENTERed, we must check STATUS
Register 5 FIRST to see if any data is available.

Datacomm: STATUS Sc,4;Interrupt_bits ! Acknowledge interrupt by card.

ENABLE INTR Sc ! Reenable interrupt.

Dc: STATUS Sc,5;Rx_avail_bits ! Get data available status bits.
IF Rx_avail_bits<2 THEN RETURN !'*xxIf no control block, exit.
ENTER Sc USING "#,-K":A$! Get next data byte.
PRINT USING "#,K";A$! Print the incoming block.
GOTO Dc ! Check for more data available.

Datacomm Interfaces 5-63

2160
2170
2180
2190
2200
2210
2220
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2465
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590

This keyboard routine is not very exotic, but it CAN handle a fast
typist. Some of the nested IF ... THENs are used to decode the 255-
and 255-255 notations for special and CONTROL-special keys. The only
special key allowed by this routine is ENTER (code is NUM("E")). It
is connected to an end-of-block (;END) indication. All ASCII keys are
transmitted to the card without alteration.

The keyboard routine loops until the keyboard string has been
completely serviced. Notice the similarities between the keyboard and
datacomm interrupt service routines.

Keyboard: K$=KBD$

K: IF NOT LEN(K$) THEN RETURN ! Stay in routine until K$ is empty.
Key=NUM(K$) ! Get key or prefix (255=non-ASCII).
K$=K$[2] ! Strip first character from string.
IF Key=255 THEN ! If not 255, transmit character

Key=NUM(K$) ! 255, Get value of next character.
K$=K$[2] ! Strip second character.
IF Key=255 THEN ! If 255 (CONTROL).
Key=NUM(K$) ! get third character value.
K$=K$ [2] ! Strip third character and check
END IF ! for ENTER.
IF Key=NUM("E') THEN ! Check non-ASCII to see if ENTER.
QUTPUT Sc;END ! Send end-of-block.
ELSE ! Tllegal character. Beep and return
BEEP ! for next character(s).
END IF
ELSE ! ASCII key. Send it to the remote
OUTPUT Sc;CHR$(Key); ! computer.
PRINT USING "#,A";CHR$(Key) ! Print character not echoed by DL.
END IF ! End of character check routine.
GOTO K ! Go get next keystroke, if any.

1

! Key 1 sends a BREAK indication to the datacomm interface card.

1

Break: CONTROL Sc,6;1 ! Tell card to send a BREAK.

RETURN ! End of routine.

]

! Key 0 disconnects the card and stops the program.

1

Disconnects: CONTROL Sc,12;0 ! Disconnect gracefully.

DISP "Disconnected"
END

5-64 Datacomm Interfaces

Datacomm Programming Helps for BASIC/WS

This section is designed to assist you in writing datacomm programs for special
applications by discussing selected techniques and characteristics that can
present obstacles to the beginning programmer.

Terminal Prompt Messages

Care must be exercised to ensure that messages are never transmitted to

the network host if the host is not prepared to properly handle the message.
Receipt of a poll from the host does not necessarily mean that the host can
handle the message properly when it is received. Therefore, prompts or
interpretation of messages from the host are used to determine the status of the
host operating system.

Prompts are message strings sent to the terminal by a cooperating program.
They are well-defined and predictable, and are usually tailored to specific
applications. When the terminal interacts directly with RTE or one or more
subsystems, the process becomes less straightforward. Each subsystem usually
has its own prompt which is not identical to other subsystem prompts. To
maintain orderly communication with subsystems, you must interpret each
message string from the host to determine whether it is to be treated as a
prompt.

Prevention of Data Loss on the HP 1000

On the HP 1000, the RTE Operating System manages information transfer
between programs or subsystems and system I/O devices, including DSN/DL.
Terminals are continually polled by the host’s data link interface (unless
auto-poll has been disabled by use of an HP 1000 File Manager CN command).
Since there is no relationship between automatic polling and HP 1000 program
and subsystems execution, it is possible to poll a terminal when there is no
need for information from that terminal. If the terminal sends a message in
response to a poll when no data is being requested, the HP 1000 discards

the message, causing the data to be lost, and treats it as an asynchronous
interrupt. A break-mode prompt is then sent to the terminal by the host.

The terminal must determine that the host is ready to receive a message in
order to ensure that messages are properly handled by the host. This is done
by checking all messages from the host (ENTER until queue is empty) and

Datacomm Interfaces 5-65

not transmitting (OUTPUT) until a prompt message or its equivalent has
been received (unless you want to enter break-mode operation). Since the HP
1000 does not generate a consistent prompt message for all programs and
subsystems, it is easiest to use cooperating programs to generate a predictable
prompt. If your application requires interaction with other subsystems,
prompts can usually be most easily identified by the ABSENCE of the
sequence: CrLfEc_ at the end of a message. When a proper sequence has been
identified, you are reasonably certain that the host is ready for your next
message block.

Here is an example of host messages where a prompt is sent by the File
Manager (FMGR) and answered by a RUN, EDITR command. Note that the
prompt from the interactive editor fits the description of a prompt because a
line-feed is not included after the carriage-return in the sequence.

:Ec Prompt is sent by FMGR to terminal.
RU,EDITR EDITR Run command is sent to host.
SOURCE FILE File name message is sent by the host,
NAME?CrLfEc_Cr/BlEc_ followed by a prompt sequence which has
no line-feed. Sequence is different from
FMGR prompt.

Whenever an unexpected message from a terminal is received by RTE, it is
treated as an asynchronous interrupt which terminates normal communication
with that terminal. A break-mode prompt is sent to the terminal by RTE,
and the next message is expected to be a valid break-mode command. If the
message is not a valid command (such as data in a file being transferred),
the data is discarded, and an error message is sent to the terminal. If, in the
meantime, the cooperating program or subsystem generates an input request,
the next data block is sent to the proper destination, but is out of sequence
because at least one block has been lost. You can prevent such data losses
and the mass confusion that usually ensues (especially during high-speed

file transfers to the host), by disabling auto-poll on the HP 1000 data link
interface. With auto-poll OFF, no polls are sent to your terminal unless the
host is prepared to receive data.

5-66 Datacomm Interfaces

Disabling Auto-poll on the HP 1000

To operate with auto-poll OFF, log on to the network host, disable auto-poll,
perform all datacomm activities and file transfers, enable auto-poll, then log
off. If you don’t enable auto-poll at the end of a session, polling is suspended to
you terminal after log-off, and you cannot reestablish communication with the
host unless polling is restored from another terminal or the network host System
Console.

The auto-poll ON/OFF commands are:

CN,LU#,23B,101401B Auto-poll OFF!
CN,LU#,23B,001401B Auto-poll ON?

where LU# is the logical unit number assigned to your terminal.

! The File Manager CN (Control) command parameters for the multipoint
interface are described in more detail in the 917304 Multipoint Terminal
Interface Subsystem User’s Guide. 5

When auto-poll is disabled, no polls are sent to your terminal unless an input
request is initiated by the cooperating program or subsystem on the network
host. When the request is made, a poll is scheduled, and polling continues
until a reply is received from the terminal. When the reply is received,

and acknowledged, polling is suspended until the next input is scheduled.
Operating with auto-poll OFF is especially useful when transferring files to the
HP 1000. Otherwise, in most applications, it is practical to leave auto-poll ON.

Prevention of Data Loss on the HP 1000

Neither the HP 1000 nor the HP 3000 provide a DC1 poll character when they
are ready for data inputs from DSN/DL. The HP 3000, like the HP 1000, also
discards data if it has not requested the transfer. Since the HP 3000 does not
provide an auto-poll disable command, you must interpret messages from

the HP 3000 to determine that it is ready for the next data block before you
transmit the block.

Datacomm Interfaces 5-67

Secondary Channel, Half-duplex Communication

Half-duplex telecommunications links frequently use secondary channel
communication to control data transmission and provide for proper line
turn-around. This is done by using Secondary Request-to-send (SRTS) and
Secondary Data Carrier Detect (SDCD) modem signals.

Consider two devices communicating with each other: Each connects to the
datacomm link, then waits for SDCD to become active (true). As each device
connects to the line, Secondary Request-to-send is enabled, causing each
modem to activate its secondary carrier output. The Secondary Data Carrier
Detect is, in turn, activated by each modem as it receives the secondary data
carrier from the other end.

When communication begins, the first device to transmit (assumed to be your
computer, in this case) clears its Secondary Request-to-send modem line. This
removes the secondary data carrier from the line, causing the other modem to
clear SDCD to its terminal or computer, telling it that you have the line. (The
modems also maintain proper line switching and prevent timing conflicts so
both ends don’t try to get the line simultaneously.) The other device receives
data, and must not attempt to transmit until you relinquish control of the line
as indicated by SDCD true. After you finish transmitting, you must again
activate SRTS so that SDCD can be activated to the other device, allowing it
to use the line if it has a message.

The following example is a simple terminal emulator that uses secondary
channel communication to control data flow on a half-duplex link:

1000 ! ***dkdkkdrrkdkkdkkkkkkrkkkbhkkbkhrkhkkkhrrrkkkkkbbhkkkkkkkhhhhhhkrrhhkkk
1010 ! = *
1020 ! = HALF-DUPLEX TERMINAL EMULATOR FOR SECONDARY CHANNEL OPERATION =
1030 ! = *
1040 ! * This program uses secondary channel modem lines to indicate which *
1050 ! * end is in control of the line. BASIC is used to assemble data *
1060 ! * for transmission to the other end. This example is compatible *
1070 ! * with the Option 001 (male) cable only. *
1080 ! = *
1090 1 sdeskkakokokdokokokok g ok ok kokokok ok 8 ko ok ok 3ok ok ok 3 ok oK Ko K ok ok 3 ok ok 3 ok 3 ok ok i Bk ok ok ook K oKk ok
1100 !

1110 Sc=20 ! Select code of HP 98628 datacomm interface.
1120 DIM A$[1],K$[100] ! Size of datacomm and keyboard strings.

1130 !

5-68 Datacomm Interfaces

1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1255
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
15610
1520
1630
1540
15650
1560
1570

Wait:

!
!
!

Conn:

Reset the card to disconnect, then select Async protocol.

CONTROL Sc, 0;1

CONTROL Sc, 3;1

STATUS Sc,38; All_sent
IF NOT ALL_sent THEN Wait
CONTROL Sc, 0;1

Set up all the interface configuration options for Async protocol.

CONTROL Sc, 14;0 ! Set Control Block mask off.

CONTROL Sc,15;16 ! Interrupt when Secondary Carrier Detect
! modem line changes state.

CONTROL Sc,16;0 ! Disable connection timeout.

CONTROL Sc¢,17;0 ! Disable No Activity timeout.

CONTROL Sc,18;40 ! Lost Carrier 400 ms (default)

CONTROL Sc¢,19;10 ! Transmit timeout 10 ds (default).

CONTROL Sc¢,20;7,7 ! Line speed: 300 baud in both directions.

CONTROL Sc¢,22;0 ! Disable protocol handshake.

CONTROL Sc¢,23;2 ! Half duplex modem connection.

CONTROL Sc,24;255 ! Do not remove protocol characters.

CONTROL Sc,28;2,13,10! EOL sequence CR/LF (default).

CONTROL Sc,31;1,17 ! Prompt DC1 (default).

CONTROL Sc,34;2 ! 7 bits per character.

CONTROL Sc¢,35;0 ! 1 stop bit.

CONTROL Sc¢,36;1 ! odd parity.

CONTROL Sc¢,37;0 ! No inter-character gap (default).

CONTROL Sc,39;4 ! Set Break to 4 character times (default)

Initiate connection to the telecommunications line.
CONTROL Sc,12;1
Tell the operator what is happening, then wait for connection to finish.
DISP "Waiting to connect™
STATUS Sc,L2;Line_state
IF Line_state=L THEN Conn

DISP "Waiting for SDCD to become active"

Get the SDCD handshake started properly by waiting for the other end to
relinquish control of the line by activating SDCD.

Statck:STATUS Sc,7;Modem_lines

IF NOT BINAND(Modem_lines,16) THEN Statck

Datacomm Interfaces 5-69

1580
15690
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020

DISP "Connected"

Set up a key to gracefully disconnect the datacomm connection.
ON KEY O LABEL " Disconn" GOTO Disconnect

Interrupt on data received or modem line change (change in SDCD)

ON INTR Sc GOSUB Datacomm
ENABLE INTR Sc;1+8

Send a "READY" message to the remote to get things started. This is
optional.

CONTROL Sc,8;7 t Put down SRTS
OUTPUT Sc;"READY";CHR$(L3) ;END
CONTROL Sc,8;15 ! Put up SRTS

The background idle loop simply waits for interrupts to happen.

Background: GOTO Background

dkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkhkkhkhhkkhkhkhkhhkhkhkkhkhkpkhkhkkkkkkkkk

DATACOMM INTERRUPT SERVICE ROUTINE
First, acknowledge interrupt by reading STATUS register 4.
Read all existing data in the buffer.
WVhen SDCD becomes true, it indicates that the remote is through
transmitting. A LINPUT statement is provided to let the user enter a
line of data. The line is then sent to both the screen and the
datacomm card. To maintain control of the line, we disable SRTS

(Control Register 8), then reactivate it when we are through sending.

Finally, re-enable interrupts and exit the interrupt routine.

Datacomm:STATUS Sc,4;Interrupt_bits

Read:

STATUS Sc,5;Rx_avail_bits

IF Rx_avail _bits=0 THEN Chkmdm
ENTER Sc USING "#,-K";A$
PRINT USING "#,K";A$

GOTO Read

Chkmdm:STATUS Sc,7;Modem_lines

IF BINAND(Modem_lines,L6) THEN

5-70 Datacomm Interfaces

2030 CONTROL Sc,8;7! Pup down SRTS

2040 LINPUT "Line to send ... ?",K$

2050 PRINT K$

2060 OUTPUT Sc;K$;CHR$(13) ;END

2070 CONTROL Sc,8;15 ! Put up SRTS

2080 END IF

2090 ENABLE INTR Sc

2100 RETURN

2110 T I T T T P P T e e e R P e S LT
2120 ! Key O was set up to disconnect from the datacomm line.
2130 !

2140 Disconnect:CONTROL Sc,12;0

2150 DISP "Disconnected"

2160 END

Automatic Answering Applications

Desktop computers are sometimes used in applications where they may have to
be able to automatically answer incoming calls from other computers by means
of public (switched) telephone lines. For instance, a desktop computer may be
located at an unattended remote site in a data gathering network where the
network host computer periodically calls the remote site for data updates. In
other situations, the desktop computer may be the host for several computers
or terminals that originate the calls. Other applications may require that two
(or more) desktop computers be able to call each other in either direction at
will.

In automatic answering applications, the Ring Indicator (RI) modem line

is used by the desktop computer to recognize incoming calls from the host.
This enables the desktop computer to answer the call by connecting to the
datacomm line. Usually, a continuously running program on the unattended
computer contains an ON INTR statement set up to monitor the RI modem
signal. When RI is activated by the incoming call, normal program flow is
interrupted, and the connection is initiated. The desktop computer then sets
up the necessary datacomm and other program interrupts, and proceeds to the
program segment responsible for transferring data to the remote computer.
The following example illustrates the general technique and how it fits into
overall program structure:

S L L R R T T P e
1010 ! =* *

Datacomm Interfaces 5-71

1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460

TERMINAL EMULATOR WITH AUTOMATIC ANSWERING CAPABILITY

This program waits for the ring-indicator modem line to change
(indicating an incoming datacomm call), then connects to the
datacomm line. Use with Option 001 (male) modem cable.

L K K B 2 R)
#* ® % * * *

T oo o ko o ok oK o oo o o o oo K o o o o o o o o o o oo o S oo oo R oK oo o o K o

Sc=20 ! Select code of HP 98628 datacomm interface.
DIM A$[1],K$[100] ! Size of datacomm and keyboard strings.

! Reset the card to disconnect, then select Async protocol.

CONTROL Sc,0;1
CONTROL Sc,3;1
Wait: STATUS Sc,38;All_sent
IF NOT All_sent THEN Wait
CONTROL Sc,0;1
1

! Set up all the interface configuration options for Async protocol.
1

CONTROL Sc,14;0 ! Set Control Block mask off.
CONTROL Sc,15;8 ! Interrupt when Ring Indicator line changes.
CONTROL Sc,16;0 ! Disable connection timeout.
CONTROL Sc,17;0 ! Disable No Activity timeout.
CONTROL Sc,18;40 ! Lost Carrier400ms (default).

CONTROL Sc,19;10 ! Transmit timeout 10 s (default).

CONTROL Sc,20;7,7 ! Line speed: 300baud in both directions.
CONTROL Sc,22;0 ! Disable protocol handshake.
)

CONTROL Sc,23;1 ! Full duplex modem connection.

CONTROL Sc,24;255 ! Remove no protocol characters.

CONTROL Sc,28;2,13,10! EOL sequence CR/LF (default).

CONTROL Sc,31;1,17! ! Prompt DC1 (default).

CONTROL Sc,34;2 ! 7 bits per character.

CONTROL Sc,35;0 ! 1 stop bit.

CONTROL Sc,36;1 ! 0dd parity.

CONTROL Sc,37;0 ! No inter-character gap (default).

CONTROL Sc,39:4 ! Set Break to 4 character times (default).

! Wait for Ring Indicator modem line to change.

ON INTR Sc GOTO Ri_int

ENABLE INTR Sc;8

DISP "Waiting for ring to come in"
Waitri:GOTO Waitri

5-72 Datacomm Interfaces

1470
1480
1490
1500
1510
15620
15630
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690

1700 !

1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810

1820 !

1830
1840
1850
1860
1870
1880
1890
1990
1910

[}
! When interrupt occurs, initiate connection to the datacomm line.
]
Ri_int:CONTROL Sc,12;1
'
! Tell the operator what is happening, then wait for connection to finish.
'
DISP "Waiting to connect”
Conn: STATUS Sc,L2;Line_state
IF Line_state=1 THEN Conn
DISP "Connected"

Set up key 0 to gracefully disconnect from the datacomm line, then
set up key 1 to send a break.

ON KEY 0 LABEL " Disconn" GOTO Disconnect
ON KEY 1 LABEL " Break' GOSUB Break

! Interrupt on data received. Also set up keyboard interrupts.

ON INTR Sc GOSUB Datacomm
ENABLE INTR Sc;L
ON KBD GOSUB Keyboard
!
! The background idle loop simply waits for interrupts to happen.
]
Background: GOTO Background
U kokddokdok ok ook ok ok bk oo Aok ok Ak ok Ak ok ok Aok ok ko ok ok ok
DATACOMM INTERRUPT SERVICE ROUTINE

!
!
! First, acknowledge interrupt by reading STATUS register 4.
1
1

Re-enable interrupts, then read all existing data in the buffer.
]
! When the buffer is empty, exit the service routine.
]
Datacomm:STATUS Sc,4;Interrupt_bits
ENABLE INTR Sc
Read: STATUS Sc,5;Rx_avail_bits
IF Rx_avail _bits=0 THEN RETURN
ENTER Sc USING "#,-K";A$
PRINT USING "#,K";A$
GOTO Read
1 kb kokkkkkdokkokkokiokokokkkkkkkdokokk ok bk kokok ok k ks dok ok kK kb ok ke ke

! This keyboard interrupt service routine is similar to the other

Datacomm Interfaces 5-73

1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250

! examples in this chapter. It sends ASCII keys to the remote, and

! accepts ENTER as a Carriage~Return.
!
Keyboard :K$=KBD$
K: IF NOT LEN(K$) THEN RETURKN !
Key=NUM(K$) !
K$=K$[2]
IF Key=255 THEN
Key=NUM(K$) !
K$=K$[2]
IF Key=255 THEN !
Key=NUM(K$) !
K$=K$[2]
END IF
IF Key=NUM("E") THEN !
OUTPUT Sc;CHR$(L3);END !
ELSE
BEEP
END IF
ELSE
OUTPUT Sc;CHR$ (Key); !
END IF
GOTO K !

Other keys cause a BEEP.

Repeat until K$ is empty:
Get key or prefix
If prefix, get next character

If control-key prefix, get
the third character

Check for ENTER key
If so, send carriage return

ASCII key: just send it

Repeat until K$ is empty

§ 0 akakakakok ok ook ook okokok ok ok ok ok ok ook ok ok ok ok ok ook ok ok akok kok ok ok ok kol ok kok okokak ok ok k kol ok ok okok ook ok ok ok ok ok ok ok ok ok ok ke

! Key 1 vas set up to send a break.
!
Break: CONTROL Sc,6;1

RETURN
1

! Key 0 was set up to disconnect the interface from the datacomm line.

1

Disconnect : CONTROL Sc,12;0
DISP "Disconnected"
END

Communication Between Desktop Computers

Two desktop computers can be connected, directly, or by use of modems.
DC1/DC3 handshake protocol can be used conveniently to enable each
computer to transmit at will without risk of buffer or queue overruns. To
ensure proper operation, the following guidelines apply:

5-74 Datacomm Interfaces

m Set up Control Register 22 with a value of 5. This allows both computers to
act either as host or terminal in any given situation, depending on which one
initiates the action.

m Set up Control Registers 26 and 27 for DC1 and DC3 respectively, or use two
other characters if necessary.

m Data to be transmitted must NOT contain any characters matching the
contents of Control Register 26 or 27. This prevents the receiving interface
from confusing data with control characters.

m If both computers attempt to transmit large amounts of data at the same
time, a lock-up condition may result where each side is waiting for the other
to empty its buffers.

Datacomm Error Recovery

When a forced disconnect terminates the connection, the interface is placed in
a SUSPENDED state. The interface cannot be reconnected to the datacomm
line when it is SUSPENDED. CLEAR, ABORT, and RESET are used to
recover from the suspended state and resume normal card operation. Executing
OUTPUT and CONTROL statements while the card is suspended places
corresponding data and control block(s) in the transmit (outbound) queue
and can continue to do so until the queue is filled, at which time the desktop
computer operating system hangs. ENTER statements can be executed to
retrieve data that was there prior to SUSPEND until the receive (inbound)
queue is empty. Subsequent ENTER statements, if executed while the card is
suspended, hang the computer.

To recover from a SUSPENDED interface, three programmable options are
available, all of which destroy any existing data in the transmit and receive
queues. They are:

m The CLEAR statement clears the receive and transmit queues. In addition, if
the interface card is suspended, it disconnects the card from the datacomm
line. If the card is not suspended, its connection state is not changed, but
the queues are cleared.

Datacomm Interfaces 5-75

m The ABORT statement is identical to the CLEAR statement, except that the
interface card is unconditionally disconnected from the datacomm line.

m RESET interface (Control Register 0) clears all buffers and queues, and
resets all CONTROL options to their power-up state.

A fourth (keyboard only) option is available. (SHIFT) (PAUSE) (or (RESET)) causes
a hardware reset to be sent to ALL peripherals. This completely resets the
datacomm interface to its power-up state.

Datacomm Error Detection
and Program Recovery

When a timeout or datacomm error occurs, an interrupt is generated by the
interface card to BASIC. If an ON ERROR is active for that select code, the
error is trapped and handled by the error routine specified by the ON ERROR
statement. If no ON ERROR is active for that select code, the program is
stopped at the end of the current line by the BASIC operating system, and an
error message is sent to the PRINTER IS device.

When a datacomm error is trapped by an error routine, the routine must
decide what to do about the problem. Since datacomm interface errors are
not related to a specific program line, the ERRL function is always false, and
ERRN returns the error number generated by the interface card. ERRL and
ERRN are discussed in greater detail in the BASIC Programming Techniques
manual for your desktop computer.

Cable and Adapter Options and Functions

The HP 98628A Datacomm Interface is available with RS-232C DTE and DCE
cable configurations, or it can be connected to various modems or adapters for
other applications.

5-76 Datacomm Interfaces

DTE and DCE Cable Options

DTE and DCE cable options are designed to simplify connecting two desktop
computers without the use of modems. The DTE cable (male RS-232
connector) is configured to make the datacomm interface look like standard
data terminal equipment when it is connected to an RS-232C modem. The
DCE cable (female RS-232 connector) is configured so that it eliminates the
need for modems in a direct connection. When you connect two computers
to each other in a direct non-modem connection, both datacomm interfaces
are functionally identical. The DCE cable acts as an adapter so that both
interfaces behave exactly as they would if they were connected to a pair of
modems by means of DTE cables.

Several signal lines are rerouted in the DCE cable so that, in direct
connections, outputs from one interface are connected to the corresponding
inputs on the other interface. Certain outputs on each interface are also
connected to inputs on the same card by “loop-back” connections in the DCE
cable.

The schematic diagram in this section shows two datacomm interfaces directly
connected through a DTE-DCE cable pair. Note that the DCE cable wiring
complements the DTE cable so that output signals are properly routed to their
respective destinations. Signal names at the RS-232C connector interface are
the same as the signal names for the DTE interface. However, because the
DCE cable adapts signal paths, the signal name at the RS-232C connector does
not necessarily match the signal name at the DCE interface. Connector pin
numbers are included in the diagram for your convenience.

Datacomm Interfaces 5-77

RS-232C DTE (male) Cable Signal Identification Tables

Signal Signal | Interface | RS-232C
RS-232C V.24 Pin# Pin# |Mnemonic|I/0 Function
AA 101 24 1 - — | Safety Ground
BA 103 12 2 Out Transmitted Data
BB 104 42 3 In Received Data
CA 105 13 4 RTS Out [Request to Send
CB 108 44 5 CTS In |Clear to Send
CC 107 45 6 DSR In |Data Set Ready
AB 102 48 7 - — | Signal Ground
CF 109 46 8 DCD In |Data Carrier
Detect
SCF (OCR2) | 122 47 12 SDCD In [Secondary DCD
DB 114 41 15 In DCE Transmit
Timing
DD 115 43 17 In DCE Recetve
Timing
SCA (OCD2) | 120 15 19 SRTS Out |Secondary RTS
CDh 108.1 14 20 DTR Out | Data Terminal
Ready
CE (OCR1) | 125 9 22 RI In |Ring Indicator
CH (OCD1) | 111 40 23 DRS Out | Data Rate Select
DA 113 7 24 Out Terminal Transmit
Timing

5-78 Datacomm Interfaces

Optional Circuit Driver/Receiver Functions

Two optional drivers and receivers are used with the RS-232C cable options.
Their functions are as follows:

Drivers

Name |Function
OCD1 | Data Rate Select
OCD2 |[Secondary Request-to-send
OCD3 | Not used
OCD4 |Not used

Receivers
Name | Function
OCR1 | Ring Indicator
OCR2 [Secondary Data Carrier Detect

Computer
Museum

OCD2 is used for autodial pulsing in the HP 13265A Modem. None of the

optional drivers and receivers are used for Data Link and Current Loop

Adapters.

Datacomm Interfaces 5-79

98628 DTE RS-232C DCE 98628
INTERFACE #1 CABLE SIGNALS CABLE INTERFACE #2
DATA 12 . 42 DATA
= 2 3Ba (PN 2) >— >> -

DATA 42 BB (PN 3) 12 DATA
N ¢ ? ’ ? out
3 6
—-D RES (e 3ca PN 4) 5y DCD{>—

——< S e ce (PN 5)
—-4 DO (e scr (PN 8) LAY RTS<)—
‘o TS [l>
SECONDARY _ 15 . 47 . SECONDARY
RTS €——SCA(PIN 18) >— » =500 1’>—
SECONDARY, , 47 . 15 . SECONDARY
50D €——3SCF(PIN 12) >— 3T <)—
—-DDTR ce 30 (PN 20) 2 5> RI >—
| 45 DSR ::
_-<R'—<<—9—>CE (PIN 22) LW DTR<)—
—QDSR 2 3cc PN 6)
3
———< S et 0B (PN 15) 5> DCE{>—
RCV. TIMING
CE 43 7 . DCE
oV TMING ¢ 0D (PN 17) “XMIT TIMING<|

SIGNAL &2 5 PN 7) —m2 SIGNAL
GROUND GROUND
24 24
SAFETY & an (PN 1) ——2 SAFETY
GROUND —E: >_—]_— GROUND

DTE 7 NOT
XMIT THING €A (PN 24)>— opp
DRS - N NOT

——-[> & CH (PN 23)>— o0
INTERFACE MALE FEMALE INTERFACE
REAR PANEL RS—232C RS—232C REAR PANEL

CONNECTOR CONNECTOR CONNECTOR CONNECTOR

DTE/DCE Interface Cable Wiring

5-80 Datacomm Interfaces

RS-232C/CCITT V24

The following table provides information about each data communications
interface function. The pin assignments are also shown. Not all of the
functions provided by RS-232C are implemented. The functions denoted with
an * are implemented.

RS-232C/CCITT v.241

RS-232C |CCITT V.24 Signal Name
*Pin 1 101 Protective Ground. Electrical equipment frame and ac
power ground.
*Pin 22 103 Transmitied Data. Data originated by the terminal to be
transmitted via the sending modem.
*Pin 32 104 Received Data. Data from the receiving modem in response
to analog signals transmitted from the sending modem.
*Pin 4 105 Request to Send. Indicates to the sending modem that the
terminal is ready to transmit data.
*Pin 5 106 Clear to Send. Indicates to the terminal that its modem is
ready to transmit data.
*Pin 6 107 Data Set Ready. Indicates to the terminal that its modem is
not in a test mode and that modem power is ON.
*Pin 72 102 Signal Ground. Establishes common reference between the
modem and the terminal.
*Pin 8 109 Data Carrier Detect. Indicates to the terminal that its
modem is receiving carrier signals from the sending modem.
Pin 9 Reserved for test.
Pin 10 Reserved for test.

! International Telephone and Telegraph Consultative Committee European

standard.

? Signal on this pin is commonly used for three-wire (no modem) links.

Datacomm Interfaces 5-81

RS-232C/CCITT V.24 (continued)

RS-232C | CCITT V.24 Signal Name

Pin 11 Unassigned.

*Pin 12 122 Secondary Data Carrier Detect. Indicates to the terminal
that its modem is receiving secondary carrier signals from
the sending modem.

Pin 13 121 Secondary Clear to Send. Indicates to the terminal that
its modem is ready to transmit signals via the secondary
channel.

Pin 14 118 Secondary Transmitted Data. Data from the terminal to be
transmitted by the sending modem’s channel.

*Pin 15 114 Transmitter Signal Element Timing. Signal from the
modem to the transmitting terminal to provide signal
element timing information.

Pin 16 119 Secondary Received Data. Data from the modem’s
secondary channel in response to analog signals transmitted
from the sending modem.

*Pin 17 115 Recetver Signal Elemeni Timing. Signal to the receiving
terminal to provide signal element timing information.

Pin 18 Unassigned.

*Pin 19 120 Secondary Request to Send. Indicates to the modem that
the sending terminal is ready to transmit data via the
secondary channel.

*Pin 20 108.2 Data Terminal Ready. Indicates to the modem that the
associated terminal is ready to receive and transmit data.

Pin 21 110 Signal Quality Detector. Signal from the modem telling

whether a defined error rate in the received data has been
exceeded.

5-82 Datacomm Interfaces

RS-232C/CCITT V.24 (continued)

RS-232C |CCITT V.24 Signal Name

*Pin 22 125 Ring Indicator. Signal from the modem indicating that a
ringing signal is being received over the line.

*Pin 23 111 Data Signal Rate Selector. Selects one of two signaling rates
in modems having two rates.

*Pin 24 113 Transmit Signal Element Timing. Transmit clock provided
by the terminal.

Pin 25 Unassigned.

The HP 98642 4-Channel Multiplexer

This interface is supported by BASIC/UX for data communications. The
topics covered in this section are:

m Specifics on the HP 98642 4-channel multiplexer
m Using the HP 98642 4-channel multiplexer
m Keywords used by the HP 98642 4-channel Multiplexer.

Specifics on the HP 98642 4-Channel Multiplexer

The HP 98642 4-channel multiplexer has one port that functions the same

as an HP 98628 Data Communication interface card and the remaining

ports function the same as an HP 98628 interface card without the hardware
handshaking or modem control. Each port has its own set of STATUS and
CONTROL registers that are the same as those for an HP 98628 interface card.
The datacomm interface multiplexer allows your computer to communicate
with any device (such as a modem) that is compatible with standard
asynchronous data communication protocols.

Datacomm Interfaces 5-83

Using the HP 98642 4-Channel Multiplexer

To communicate with another device using the multiplexer, you need to know
the multiplexer’s select code (for example, select code 16) and the primary
address of each port on the multiplexer. The primary addresses associated with
these ports are:

00 This port functions the same as an HP 98628 interface card.

01, 02, and These ports function the same as an HP 98628 interface card
03 without hardware handshaking or modem control.

The select code and primary address together form the device selector. If the
HP 98642’s select code is 16, then it will have four ports with device selectors:
1600, 1601, 1602, and 1603. The following example shows you how to use
device selector 1600 to check for the current transmit timeout limit for a device
connected to an HP 98642 multiplexer at port 1.

STATUS 1600,19;Tran_stat

Keywords Used by the HP 98642
4-Channel Multiplexer

The following table contains a list of keyword examples used by the HP 98642
4-Channel Multiplexer and a description of the examples. Note that these same
keywords can be used by the HP 98628 Data Communications interface.

5-84 Datacomm Interfaces

Keywords Used by the HP 98642 Interface Card

Keyword Examples

Example Description

ABORTIO @Source

Terminates any active transfer associated
with the I/O path name. Assume that
the 1/O path name called ®Source was
assigned device selector 1600 (see the
keyword ASSIGN given below).

ASSIGN 1600 TO @Source
ASSIGN @Buffer TO BUFFER Real_buf (*)

Assigns the I/O path name called
@Source to device selector 1600 and
the I/O path name called @Buffer to a

named buffer called Real_buf(*).

BREAK 1601

Directs the datacomm interface located
at device selector 1601 to send a break
sequerce.

ENTER 1601 USING "K";Str_val$

Reads character values from device
selector 1601 into the string called
Str_val$.

CONTROL 1602,6;1

Causes a BREAK to be sent to device
selector 1602.

OFF TIMEGUT 1603

Cancels event-initiated branches, from
the interface at device selector 1603,
previously defined and enabled by an ON
TIMEOUT statement. An OFF TIMEOUT
without any device selector disables all of
the channels of the HP 98642 4-Channel
Multiplexer.

ON TIMEOUT 1603,10 GOSUB Time_out

Defines and enables an event-initiated
branch to be taken when an I/O timeout
occurs on the specified interface located
at device selector 1603.

OUTPUT 1602 USING "DD" ;22

Writes the integer value 22 to device
selector 1602.

Datacomm Interfaces 5-85

Keywords Used by the HP 98642 Interface Card (continued)

Keyword Examples Example Description

RESET 1603 Resets the interface located at device
selector 1603.

STATUS 1602,0;Ret_val Returns the card identification status of
device selector 1602.

TRANSFER Q@Source TO @Buffer Transfers the contents of the I/O name
path called @Source to the I/O path
name called @Buffer. Note that @Source
was created using the keyword ASSIGN
and device selector 1600, and @Buffer
was created using the secondary keyword
BUFFER with the keyword ASSIGN and
the array called Real_buf (*) (see the
keyword ASSIGN given above).

HP 98628 and HP 98642 Datacomm Interface
Status and Control Registers

Control registers accept values in the range of zero through 255. Some registers
require specified values, as indicated. Illegal values or values less than zero or
greater than 255, cause error 327.

Reset value, shown for various control registers, is the default value used
by the interface after a reset or power-up until the value is overridden by a
CONTROL statement.

STATUS 0 Card Identification

Value returned: 52 (if 180 is returned, check select code
switch cluster and make sure switch R is ON).

CONTROL 0 Card Reset

Any value, 1 thru 255, resets the card. Immediate
execution. Data in queues is destroyed.

5-86 Datacomm Interfaces

STATUS 1

STATUS 2

STATUS 3

CONTROL 3

STATUS 4

Hardware Interrupt Status (not used in most applications)
1=FEnabled 0=Disabled

Datacomm Activity (BASIC/UX)
Bit 0 set: TRANSFER in progress.

Bit 1 set: Firmware interrupts enabled (ENABLE INTR
active for this select code).

Bit 2 set: Handshake in progress. Only during multi-line
function calls.

Bit 3 set: Handshake ended with an escape.
Datacomm Activity (BASIC/WS)

0 = No activity pending on this select code.

Bit 0 set: ENTER in process.

Bit 1 set: OUTPUT in process.

Non-zero ONLY during multi-line function calls.)

Current Protocol Identification: 1 = Async, 2 = Data Link
Protocol

Protocol to be used after next card reset: CONTROL Sc,0;1
1 = Async Protocol, 2 = Data Link Protocol. (Data Link
Protocol only supported on BASIC/WS.) This register
overrides default switch configuration.

Cause of ON INTR program branch (supported on
BASIC/WS only).

Datacomm Interfaces 5-87

Bit Function: Async Protocol Function: Data Link Protocol
0 Data and/or Control Block available |Data Block Available
1 Prompt received Space available for a new
transmission block
2 Framing and/or parity error Receive or transmit error
3 Modem line change Modem line change
41 No Activity timeout (forces a No Activity timeout (forces a
disconnect) disconnect)
5! Lost carrier or connection timeout Lost carrier or connection timeout
(forces a disconnect) (forces a disconnect)
6 End-of-line received Not used
7 Break received Not used

! Supported only on BASIC/WS.

Contents of the register are cleared when a STATUS
statement is executed to it.

STATUS 5 Inbound queue status.

Value Interpretation

0 | Queue is empty
1 | Queue contains data but no control blocks
2!] Queue contains one or more control blocks but no data

3! [Queue contains both data and one or more control blocks

! Supported only on BASIC/WS.
CONTROL 5 Terminate Transmission (supported on BASIC/WS only).
QUTPUT S,5;0 is equivalent to OUTPUT S;END

5-88 Datacomm Interfaces

STATUS 6

CONTROL 6

STATUS 7

STATUS 8

Data Link: Sends previous data as a single block with an
ETX terminator, then idles the line with an EOT.

Async: Tells card to turn half-duplex line around. Does
nothing when line is full-duplex. The next data OUTPUT
automatically regains control of the line by raising the RTS
(request-to-send) modem line.

Break status.

1 = BREAK transmission pending, 0 = no BREAK
pending.

Send Break; causes a Break to be sent.

Data Link Protocol (BASIC/WS): Send Reverse Interrupt
(RVI) reply to inbound block, or CN character instead of
data in next outbound block.

Async Protocol: Transmit Break. Length is defined by 5
Control Register 39.

Note that the value sent to the register is arbitrary.

Modem receiver line states (values shown are for male cable
connecter option for connection to modems).

Bit 0: Data Mode (Data Set Ready) line

Bit 1: Receive ready (Data Carrier Detect line)
Bit 2: Clear-to-send (CTS) line

Bit 3: Incoming call (Ring Indicator line)

Bit 4: Depends on cable option or adapter used

Returns modem driver line states.

Datacomm Interfaces 5-89

CONTROL 8

STATUS 9

STATUS 10

Sets modem driver line states (values shown are for male
cable connector option for connection to modems).

Bit 0: Request-to-send (RS or RTS) line 1 = line set
(active)

Bit 1: Data Terminal Ready (DTR) line 0 = line clear
(inactive)
Bit 2: Data Rate Select (DRS) line

Bit 3: Driver 2: Depends on cable option or adapter
used

Bit 4: Driver 3: Depends on cable option or adapter
used

Bit 5: Driver 4: Depends on cable option or adapter
used

Bit 6: Sets the SIO Transmitter clock, 1 = internal, 0 =
external

Bit 7: Sets the SIO Receiver clock, 1 = internal, 0 =
external

Reset value=0 prior to connect. Post-connect value is
handshake dependent. Note that RTS line cannot be
altered (except by OUTPUT or OUTPUT ... END) for
half-duplex modem connections.

Returns control block TYPE if last ENTER terminated
on a control block (supported on BASIC/WS only). See
Status Register 10 for values.

Returns control block MODE if last ENTER terminated on
a control block (supported on BASIC/WS only).

5-90 Datacomm Interfaces

Async Protocol Control Blocks

Type | Mode Interpretation

250 1 [Break received (Channel A)

251 1' | Framing error in the following character

251 21 | Parity error in the following character

251 3! jParity and framing errors in the following character
252 1 | End-of-line terminator detected

253 1 |Prompt received from remote

0 0 No Control Block encountered

! Parity/framing error control blocks are not generated
when characters with parity and/or framing errors are
replaced by an underscore () character.

Data Link Protocol Control Blocks

Type | Mode Interpretation
254 1 | Preceding block terminated by ETB character

254 2 [Preceding block terminated by ETX character
253! [— |(See following table for Mode interpretation)

0 0 No Control Block encountered

1 This type is used primarily in specialized applications.

Datacomm Interfaces 5-91

Data Link Protocol Control Blocks

Mode Bit(s) Interpretation

0 1 = Transparent data in following block
0 = Normal data in following block

2,1 00 = Device select
01 = Group select
10 = Line select

3 1 = Command channel
2 = Data channel

STATUS 11 Returns available outbound queue space (in bytes),
provided there is sufficient space for at least three control
blocks. If not, value is zero.

STATUS 12 Datacomm Line connection status (supported for
BASIC/WS only).

Value Interpretation

0 |Disconnected

1 | Attempting Connection
Dialing

Connected?

Suspended

Currently receiving data (Data Link only)

S O A W N

Currently transmitting data (Data Link only)

1 When using Data Link: Connected - datacomm idle

CONTROL 12 Connects, initiates auto-dial sequence, and disconnects
interface from datacomm line (supported on BASIC/WS
only).

5-92 Datacomm Interfaces

Value Interpretation
0 | Disconnected
1 |Connected to datacomm line (set DTR & RTS)
2 | Start auto dial. (Followed by OUTPUT of telephone numbers)
STATUS 13 Returns current ON INTR mask.
CONTROL 13 Sets ON INTR mask.!
Data Link Protocol (BASIC/WS only)
Bit | Value Enables interrupt when:
0 1 | A full block is available in receive queue
1 2 | Transmit queue is empty
2 4 | Receive or transmit error detected
3 8 | A modem line changed
4 | 162 |No Activity timeout forced a disconnection
5 | 322 [Lost Carrier or Connection timeout caused a disconnection

Datacomm Interfaces 5-93

Async Protocol

Bit | Value Enables interrupt when:

03 1 Data or control block available in receive queue

1 2 | Prompt received from remote device

2 4 | Framing or parity error detected in incoming data

3 8 | A modem line changed
43 | 162 |No Activity timeout forced a disconnection

53 | 322 |Lost Carrier or Connection timeout caused a disconnection

6 64 | End-of-line received

7 | 128 |Break received

1 If a CONTROL statement is used to access this register,
the control block is placed in the outbound queue. If

the ENABLE INTR ... statement is used with a mask,
the mask value us placed directly in the control register,
bypassing any queue delays.

2If bits 4 and 5 are not set, the corresponding errors can be
trapped by using an ON ERROR statement.

3 Supported only on BASIC/WS.
Reset value = 0

STATUS 14 Returns current Control Block mask (supported on
BASIC/WS only).

CONTROL 14 Sets Control Block mask (supported on BASIC/WS only).
Control block information is queued sequentially with
incoming data as follows:

5-94 Datacomm Interfaces

Bit | Value

Async Control Block Passed | Data Link Control Block Passed

Prompt position Transparent/Normal Mode!
End-of-line position ETX Block Terminator?
Framing and/or Parity error® | ETB Block Terminator?

Break received

STATUS 15
CONTROL 15

! Transparen/Normal format identification control block
occurs at the beginning of a given block of data in the
receive queue.

2 ETX and ETB Block Termination identification control
blocks occur at the END of a given block of data in the
receive queue. 5

3 This control block precedes each character containing a
proty or framing error.

Reset Value: 0 (Control Blocks disabled) 6 (ETX/ETB
Enabled)

Bits 4, 5, 6, and 7 are not used.
Returns current modem line interrupt mask

Sets modem line interrupt mask. Enable an interrupt to
ON INTR when Bit 3 of Control Register 13 is set as
follows:

Datacomm Interfaces 5-95

STATUS 16

CONTROL 16

STATUS 17

CONTROL 17

STATUS 18

CONTROL 18

STATUS 19

CONTROL 19

Data Link Protocol

Bit

Value Modein Line to Cause Interrupt

T)

1 |Data Mode (Data Set Ready)

2 | Receive Ready (Data Carrier Detect)
4 | Clear-to-send

8 [OCR1, Incoming Call (Ring Indicator)
16 | OCR2, Cable or adapter dependent

Reset Value = 0

Returns current connection timeout limit (supported on

BASIC/WS only).

Sets Attempted Connection timeout limit (supported on
BASIC/WS only). Acceptable values: 1 thru 255 seconds.
0=timeout disabled. Reset Value=25 seconds

Returns current No Activity timeout limit (supported on
BASIC/WS only).

Sets No Activity timeout limit (supported on BASIC/WS
only). Acceptable values: 1 thru 255 minutes. 0=timeout
disabled. Reset Value=10 minutes (disabled if Async,
non-modem handshake).

Returns current Lost Carrier timeout limit (supported on
BASIC/WS only).

Sets Lost Carrier timeout limit in units of 10 ms
(supported on BASIC/WS only). Acceptable values: 1
thru 255. 0=timeout disabled. Reset Value=40 (400
milliseconds)

Returns current Transmit timeout limit (supported on
BASIC/WS only).

Sets Transmit timeout limit (supported on BASIC/WS
only). Note that loss of clock or CTS not returned by

5-96 Datacomm Interfaces

modem when transmission is attempted. Acceptable values:
1 thru 255.0=timeout disabled. Reset Value=10 seconds

STATUS 20 Returns current transmission/receive speed (baud rate).
See table for values.
CONTROL 20 Sets transmission speed (baud rate) as follows:
Register Register
Value Baud Rate Value Baud Rate
0 External Clock 8 600
1* 50 9 1200
2% 75 10 1800
3* 110 11 2400 5
4* 134 12 3600
5* 150 13 4800
6* 200 14 9600
7 300 15 19200
* Async only for BASIC/WS. These values cannot be
used with Data Link. These values set transmit speed
only for Async; transmit and receive speed for Data Link.
Default value is defined by the interface card configuration
switches.
STATUS 21 For BASIC/WS, protocol dependent. Returns receive

speed (Async) or GID address (Data Link) as specified by
Control Register 21.

For BASIC/UX, same as Register 20.

Datacomm Interfaces 5-97

CONTROL 21 For BASIC/WS, protocol dependent. Functions are as

follows:

Data Link:

Async:

Sets Group IDentifier (GID) for
terminal. Values 0 through 26
correspond to identifiers @, A,

B, ... ,Y, Z, respectively. Other
values cause an error. Default value
is 1 (“A”).

Sets datacomm receiver speed
(baud rate). Values and defaults

are the same as for Control Register
20.

For BASIC/UX, same as Register 20.

STATUS 22 Protocol dependent. Returns DID (Data Link) or protocol
handshake type (Async) as specified by CONTROL

Register 22.

CONTROL 22 Protocol dependent. Functions are as follows:

Data Link:

Async:

5-98 Datacomm Interfaces

For BASIC/WS only. Sets Device
IDentifier (DID) for terminal.
Values are the same as for Control
Register 21. Default is determined
by interface card configuration
switches.

Defines the asynchronous protocol
handshake type that is to be used.

Value | Handshake type

0 Protocol handshake disabled

1! [ENQ/ACK with desktop computer as the
host (ignored)

2! |ENQ/ACK with desktop computer as a
terminal (ignored)

3 [DCI1/DC3, desktop computer as host

4 |DC1/DC3, desktop computer as a
terminal

5 | DC1/DC3, desktop computer as both
host and terminal

1 Supported only on BASIC/WS.

STATUS 23

CONTROL 23

STATUS 24

CONTROL 24

Returns current hardware handshake type.
Sets hardware handshake.
0O=Handshake OFF, non-modem connection.
1=FULL-DUPLEX modem connection.

2=HALF-DUPLEX modem connection (supported only
on BASIC/WS).

3=Handshake ON, non-modem connection (supported
only on BASIC/WS).

Reset Value is determined by interface configuration
switches.

Protocol dependent (supported on BASIC/WS only).
Returns value set by preceding CONTROL statement to
Control Register 24.

Protocol dependent (supported on BASIC/WS only).
Functions as follows:

Datacomm Interfaces 5-99

Data Link protocol: Set outbound block size limit.

Value | Block size | Value | Block size
0 512 bytes | 4 8 bytes

1 2 bytes - -
2 4 bytes - -
3 6 bytes | 255 | 510 bytes

Reset outbound block size limit=512 bytes

Async Protocol: Set mask for control characters included in
receive data message queue.

Bit set: transfer character(s).

Bit cleared: delete character(s)

Bit set | Value Character(s) passed to receive queue
0 1 |Handshake characters (ENQ, ACK, DCI, DC3)
1 2 |Inbound End-of-line character(s)
2 4 |Inbound Prompt character(s)
3 8 |NUL (CHR$(0))
4 | 16 |DEL (CHR$(127))
5 32 [CHR$(255)
6 64 | Change parity /framing errors to underscores (_) if bit is set.
7 128 | Not used
Reset value=127 (bits 0 through 6 set)
STATUS 25 Returns number of received errors since power up or reset

(supported on BASIC/WS only).

5-100 Datacomm Interfaces

Note
|

Control Registers 26 through 35, Status Registers 27 through
35, and Control and Status Registers 37 and 39 are used for
ASYNC protocol only. The are not available during Data Link
operation.

STATUS 26

CONTROL 26

STATUS 27
CONTROL 27

STATUS 28

CONTROL 28

STATUS 29

Protocol dependent.

Data Link protocol: = Returns number of transmit
errors (NAKs received) since last
interface reset (supported only on

BASIC/WS).

Async protocol: Returns first protocol handshake
character (ACK or DC1).

Sets first protocol handshake character as follows:

6=ACK, 17=DC1. (BASIC/UX supports only 17=DC1.)
Other values used for special applications only. Reset
value=17 (DC1). Use ACK when Control Register 22 is set
to 1 or 2. Use DC1 when Control Register 22 is set to 3, 4,
or 5.

Returns second protocol handshake character.
Sets second protocol handshake character as follows:

5=ENQ, 19=DC2. (BASIC/UX only supports 19=DC2.)
Other values used for special applications only. Reset
value=19 (DC3). Use ENQ when Control Register 22 is set
to 1 or 2. Use DC3 when Control Register 22 is set to 3, 4,
or 5.

Returns number of characters in inbound End-of-line
delimiter sequence.

Sets number of characters in End-of-line delimiter sequence.
Acceptable values are 0 (no EOL delimiter), 1, or 2. Reset
value=2

Returns first End-of-line character. (Async only)

Datacomm Interfaces 5-101

CONTROL 29

STATUS 30
CONTROL 30

STATUS 31

CONTROL 31

STATUS 32

CONTROL 32

STATUS 33

CONTROL 33

STATUS 34
CONTROL 34

STATUS 35

Sets first End-of-line character. Reset value=13 (carriage
return) (Async only)

Returns second End-of-line character. (Async only)

Sets second End-of-line character. Reset value=10 (line
feed) (Async only)

Returns number of characters in Prompt sequence. (Async
only)

Sets number of characters in Prompt sequence. Acceptable
values are 0 (Prompt disabled), 1, or 2. Reset value=1
(Async only)

Returns first character in Prompt sequence. (Async only)

Sets first character in Prompt sequence. Reset value=17
(DC1) (Async only)

Returns second character in Prompt sequence. (Async
only)

Sets second character in Prompt sequence. Reset value=0
(null) (Async only)

Returns the number of bits per character. (Async only)

Sets the number of bits per character as follows: (Async
only)

0=>5 bits/character
1=6 bits/character

2=7 bits/character
3=8 bits/character

Reset Value is determined by the Datacomm Configuration
for HP-UX.

Returns the number of stop bits per character. (Async
only)

5-102 Datacomm Interfaces

CONTROL 35

STATUS 36
CONTROL 36

Sets the number of stop bits per character as follows:
(Async only)

For BASIC/UX:

0=1 stop bit 2=2 stop bits Reset Value is determined
by the Datacomm configuration for HP-UX.

For BASIC/WS:

0=1 stop bit 1=1.5 stop bits 2=2 stop bits Reset Value:
2 stop bits if 150 baud or less, otherwise 1 stop bit. Reset
Value is determined by interface configuration switch
settings.

Returns current Parity setting.

For BASIC/UX:

Sets the parity for transmitting and receiving asynchronous 5
protocol.

0=NONE; No parity bit is included with any characters.

1=0DD; Parity bit SET if there is an EVEN number of
“1”s in the character body.

2=EVEN; Parity bit OFF if there is an ODD number of
“1”s in the character body.

Reset Value is determined by the Datacomm configuration
for HP-UX.

Datacomm Interfaces 5-103

For BASIC/WS:

Sets Parity for transmitting and receiving as follows:

Data Link Protocol:

Async Protocol:

0=NO Parity; Network host is
HP 1000 Computer.

1-ODD Parity; Network host is
HP 3000 Computer.

Reset value=0

0=NONE; no parity bit is
included with any characters.

1=0DD; Parity bit SET if there
is an EVEN number of “1”s in
the character body.

2=EVEN; Parity bit OFF if
there is an ODD number of “1”s
in the charcter body.

3=%0”; Parity bit is always
ZEROQO, but parity is not checked
(supported only on BASIC/WS).

4=%1"; Parity bit is always
SET, but parity is not checked
(supported only on BASIC/WS).

Default is determined by interface configuration switches.
If 8 bits per character, parity must be NONE, ODD, or

EVEN.

STATUS 37 Returns inter-character time gap in character times.

CONTROL 87 Sets inter-character time gap in character times.

Acceptable values: 1—255 character times.
0=No gap between characters. Reset value=0

STATUS 38 Returns Transmit queue status.

If returned value=1, queue is empty, and there are no

pending transmissions.

5-104 Datacomm Interfaces

STATUS 39 Returns current Break time.

CONTROL 39 Sets Break time in character times. (Async only; supported
on BASIC/WS only)

Acceptable values are; 2—255. Reset value=4

Datacomm Interfaces 5-105

The GPIO Interface

Introduction

This chapter should be used in conjunction with the HP 986224 GPIO
Interface Installation manual. The best way to use these lwo documents is

to read this chapter before attempting to configure and connect the interface
according to the directions given in the installation manual. The reason for this
order of use is that knowing how the interface works and how it is driven by
BASIC programs will help you to decide how to connect it to your peripheral
device.

The HP 98622 Interface is a very flexible parallel interface that allows you

to communicate with a variety of devices. The interface sends and receives

up to 16 bits of data with a choice of several handshake methods. External
interrupt and user-definable signal lines are provided for additional flexibility.
The interface is known as the General-Purpose Input/Output (GPIO) Interface
for these reasons. This chapter describes the use of the interface’s features from

BASIC programs.

Use of some statements or suggestions for interfacing requires that you load the
TRANS BIN file.

The GPIO Interface 6-1

Interface Description

The main function of any interface obviously to transfer data between the
computer and a peripheral device. This section briefly describes the interface
lines and how they function. Using the lines from BASIC programs is more
fully described in subsequent sections.

The GPIO Interface provides 32 lines for data input and output: 16 for input
(DI0—DI15), and 16 for output (DO0—DO15).

Parallel Data Out

16

s

Parallel Data In

K 16
Data and S | Shielded Cable
O .
- Control GPIO /l Handshake «é to a Device
CO: §C<:ne 100 Interface \ 4) 8 50
onnectors Hardware c
Special Purpose o“
[
> ey F
vl I
Grounds
C—;

Block Diagram of the GPIO Interface

Two lines are dedicated to handshaking the data from source to destination
device. The Peripheral Control line (PCTL) is controlled by the interface and
is used to initiate data transfers. The Peripheral Flag line (PFLG) is controlled
by the peripheral device and is used to signal the peripheral’s readiness to
continue the transfer process.

One line is used to signal External Interrupt Requests to the computer (EIR).
The interface must be enabled to initiate interrupt branches for the interface to
detect this request. The state of the line can also be read by the program.

6-2 The GPIO Interface

Four general-purpose lines are available for any purpose that you may desire;
two are controlled by the computer and sensed by the peripheral (CTLO and
CTL1), and two are controlled by the peripheral device and sensed by the
computer (STIO and STI1).

Both Logic Ground and Safety Ground are provided by the interface. Logic
Ground provides the reference point for signals, and Safety Ground provides
earth ground for cable shields.

Interface Configuration

This section presents a brief summary of selecting the interface’s
configuration-switch settings. It is intended to be used as a checklist and to
begin to acquaint you with programming the interface. Refer to the installation
manual for the ezact location and setting of each switch.

The following sample program checks a few of these switch settings on a
GPIO Interface already installed in the computer and displays the settings.
However, many of the settings cannot be determined from BASIC programs.
If any of the displayed settings are different than desired, or if any settings are
not already known, refer to the installation manual for switch locations and
settings.

The GPIO Interface 6-3

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430

PRINTER IS 1 ! Select printer device.

PRINT CHR$(12) ! Clear screen.

!

DISP "Enter GPIO Interface Select Code (CONT=12)"

OUTPUT 2 USING "#,DD";12

ENTER 2;Isc

DISP

!

ASSIGN €Gpio TO Isc ! FORMAT ON default.

'

! Read STATUS registers 0 and 1.

STATUS Isc;Card_id,Intr_stat

!

! Is this card a GPIO?

IF Card_id<>3 THEN
PRINT "The interface at select code'";Isc
PRINT "is not a GPIO Interface."
PRINT "Program stopped."
STOP

ELSE
PRINT "The card ID of the GPIO at"
PRINT "interface select code';Isc
PRINT "is";Card_id

END IF

PRINT

!

! Calculate hardware interrupt priority.

Bits_5_and_4=BINAND(Intr_stat,32+16)

Switches=Bits_5_and_4 DIV 16

Hd_prior=Switches+3

PRINT "Hardware Interrupt Priority is'";Hd_prior

PRINT

!

END

Interface Select Code

In BASIC, allowable interface select codes range from 8 through 31; codes 1
through 7 are already used for built-in interfaces. The GPIO interface has a
factory default setting of 12, which can be changed by re-configuring the “SEL
CODE” switches on the interface.

6-4 The GPIO Interface

Hardware Interrupt Priority

Two switches are provided on the interface to allow selection of hardware
interrupt priority. The switches allow hardware priority levels 3 through 6 to
be selected. Hardware priority determines the order in which simultaneously
occurring interrupt events are logged, while software priority determines the
order in which interrupt events are serviced by the BASIC program.

Data Logic Sense

The data lines of the interface are normally low-true; in other words, when the
voltage of a data line is low, the corresponding data bit is interpreted to be a 1.
This logic sense may be changed to high-true with the Option Select Switch.
Setting the switch labeled “DIN” to the “0” position selects high-true logic
sense of Data In lines. Conversely, setting the switch labeled “DOUT” to the
“1” position inverts the logic sense of the Data Out lines. The default setting is
“1” for both.

Data Handshake Methods

This section describes the data handshake methods available with the GPIO
Interface. A general description of the handshake modes and clock sources is
given first. A more detailed discussion of each handshake is then given to allow
you to choose the handshake mode, clock source, and handshake-line logic sense
that is compatible with your peripheral device.

The GPIO Interface 6-5

As a brief review, a data handshake is a method of synchronizing the transfer
of data from the sending to the receiving device. In order to use any handshake
method, the computer and peripheral device must be in agreement as to how and
when several events will occur. With the GPIO Interface, the following events
must take place to synchronize data transfers; the first two are optional.

m The computer may optionally be directed to perform a one-time “OK check”
of the peripheral before beginning to transfer any data.

m The computer may also optionally check the peripheral to determine whether
or not the peripheral is “ready” to transfer data.

m The computer must indicate the direction of transfer and then initiate the
transfer.

s During OUTPUT operations, the peripheral must read the data sent from
the computer while valid; similarly, the computer must clock the peripheral’s
data into the interface’s Data In registers while valid during ENTER
operations.

m The peripheral must acknowledge that it has received the data.

Handshake Lines

The GPIO handshakes data with three signal lines. The Input/Output line,
I/0, is driven by the computer and is used to signal the direction of data
transfer. The Peripheral Control line, PCTL, is also driven by the computer
and is used to initiate all data transfers. The Peripheral Flag line, PFLG, is
driven by the peripheral and is used to acknowledge the computer’s requests to
transfer data.

Handshake Logic Sense

Logic senses of the PCTL and PFLG lines are selected with switches of the
same name. The logic sense of the I/0 line is High for ENTER operations

and Low for OUTPUT operations; this logic sense cannot be changed. The
available choices of handshake logic sense and handshake modes allow nearly all
types of peripheral handshakes to be accommodated by the GPIO Interface.

6-6 The GPIO Interface

Handshake Modes

There are two general handshake modes in which the PCTL and PFLG

lines may be used to synchronize data transfers: Full-Mode and Pulse-Mode
Handshakes. If the peripheral uses pulses to handshake data transfers and
meets certain hardware timing requirements, the Pulse-Mode Handshake may
be used. The Full-Mode Handshake should be used if the peripheral does not
meet the Pulse-Mode timing requirements.

The handshake mode is selected by the position of the “HSHK” switch on the
interface, as described in the installation manual. Both modes are more fully
described in subsequent sections.

Data-In Clock Source

Ensuring that the data are valid when read by the receiving device is slightly
different for OUTPUT and ENTER operations. During QUTPUTs, the
interface generally holds data valid while PCTL is in the Set state, so the
peripheral must read the data during this period. During ENTERs, the data
must be held valid by the peripheral until the peripheral signals that the

data are valid (which clocks the data into interface Data In registers) or until
the data is read by the computer. The point at which the data are valid is
signalled by a transition of PFLG. The PFLG transition that is used to signal
valid data is selected by the “CLK” switches on the interface. Subsequent
diagrams and text further explain the choices.

Optional Peripheral Status Check

Many peripheral devices are equipped with a line which is used to indicate
the device’s current “OK-or-Not-OK” status. If this line is connected to the
Peripheral Status line (PSTS) of the GPIO Interface, and the computer may
determine the status of the peripheral device by checking the state of PSTS.
The logic sense of this line may be selected by setting the “PSTS” switch.

If enabled, the computer performs a one-time check of the Peripheral Status
line (PSTS) before initiating any transfers as part of the data-transfer
handshake. If PSTS indicates “Not OK,” error 172 is reported; otherwise, the
transfer proceeds normally. If this feature is not enabled, this one-time check
is never made. This feature is available with both Full-Mode and Pulse-Mode
Handshakes. See “Using the PSTS Line” for further details.

The GPIO Interface 6-7

Full-Mode Handshakes

The Full-Mode Handshake mode is described first for two reasons. The first
reason is that the PCTL and PFLG transitions must always occur in the
order shown, so only one sequence of peripheral handshake responses needs
to be shown. Secondly, this mode will generally work when the Pulse-Mode
Handshake may not be compatible with the peripheral’s handshake signals.
The Pulse-Mode Handshake is described in the next section.

The following diagrams show the order of events of the Full-Mode OUTPUT
and ENTER Handshakes. These drawings are not drawn to any time scale;
only the order of events is important. The I/O line has been omitted to
simplify the diagrams; in all cases, it is driven Low before any OUTPUT is
initiated by the computer and High before any ENTER is initiated.

L0
Y

>
pas

First Data Second Data
Is Valid Is Valid

PCTL ' PCTL
Delay —’l Delay

Clear < AT
PCTL :
Set 45
Busy | i : 55
PFLG P !
Ready ¢ ' R
t0 ti t2 t3 t4 t5

Full-Mode OUTPUT Handshakes

6-8 The GPIO Interface

With Full-Mode Handshakes, the computer first checks to see that the
peripheral device is Ready before initiating the transfer of each byte/word (t0);
with this handshake mode, the peripheral indicates Ready when both PCTL

is Clear and PFLG is Ready. If the peripheral does not indicate Ready, the
computer waits until a Ready is indicated.

When a Ready is sensed, the computer places data on the Data Out lines (t1)
and drives the I/O line Low (not shown). The interface then waits the PCTL
Delay time before initiating the transfer by placing PCTL in the Set state (t2).

The peripheral acknowledges the computer’s request by placing the PFLG line
Busy (t3); this PFLG transition automatically Clears the PCTL line (t4).
However, the computer cannot initiate further transfers until the peripheral

is Ready with Full-Mode Handshake; the peripheral is not Ready until both
PCTL is Clear and PFLG is Ready (t5).

The data on the Data Out lines is held valid from the time PCTIL. is Set until
after the peripheral indicates Ready. The peripheral may read the data any
time within this time period.

The GPIO Interface 6-9

The PCTL and PFLG lines are used in the same manner in Full-Mode ENTER
Handshakes as in Full-Mode OUTPUT Handshakes. However, there are

three options available as to when the peripheral’s data may be valid: at the
Ready-to-Busy transition of PFLG (BSY clock source), at the Busy-to-Ready
transition of PFLG (RDY clock source), and when the Data In lines are read
with a STATUS statement (READ clock source). The first two of these options
are shown in the following two diagrams; the READ clock source is discussed
later in “Designing Your Own Transfers”.

Clear > 4%
PCTL
Set 4%
Data Must Be
Valid Here
Busy A
PFLG
Ready —& A%
Settling fgg—
Time
0
Data In
1

0t 2 t3t4 t5

Full-Mode ENTER Handshake with BSY Clock Source

As with Full-Mode OUTPUT Handshakes, the computer first checks to see

if the peripheral is Ready (t0); since PCTL is Clear and PFLG is Ready, the
handshake may proceed. The computer places the I/O line in the High state
(not shown) and then initiates the handshake by placing PCTL in the Set state

(t1).

With the “BSY” clock source, the PFLG transition to the Busy state clocks
the peripheral’s data into the interface’s Data-In registers; consequently,

the peripheral must place data on the Data-In lines (t2), allowing enough
time for the data to settle before placing PFLG in the Busy state (t3). This
PFLG transition to the Busy state automatically Clears PCTL (t4). The next

6-10 The GPIO Interface

handshake may be initiated when PFLG is placed in the Ready state by the
peripheral (t5).

Clear o 45
PCTL
Set 4 Data Must Be
Valid Here
Busy 45
PFLG
Ready — 4%
Setthing lgg—
Time
0
Data In §
1

0t 2 t3 t4 t5

Full-Mode ENTER Handshake with RDY Clock Source

As with other Full-Mode Handshakes, the computer first checks to see if 6
the peripheral is ready (t0). Since PCTL is Clear and PFLG is Ready, the

computer may drive the I/O line High (not shown) and initiate the handshake

by placing PCTL in the Set state (t1).

The peripheral may acknowledge by placing PFLG Busy (t2), which
automatically Clears PCTL (t3). Unlike the previous example, this transition
does not clock data into the interface Data-In registers. With the “RDY” clock
source, the peripheral must place the data on the Data-In lines (t4), allowing
enough time for the data to settle before placing PFLG in the Ready state (15).
The computer may then initiate a subsequent transfer.

Pulse-Mode Handshakes

The following drawings show the order of handshake-line events during
Pulse-Mode Handshakes. Notice that the main difference between Full-Mode
and Pulse-Mode Handshakes is that the PFLG is not checked for Ready
before the computer initiates Pulse-Mode Handshakes; the computer may

The GPIO Interface 6-11

initiate a subsequent data transfer as soon as the PCTL line is Cleared by the
Ready-to-Busy transition of PFLG.

Two cycles of data transfers are shown in these diagrams to illustrate that the
computer need not wait for the PFLG=Ready indication with the Pulse-Mode
Handshake. The first cycle shown in each diagram is a typical example of the
first transfer of an I/O statement. The dashed PFLG line at the beginning of
the second cycle shows that computer disregards whether or not PFLG is in
the Ready state before the next transfer is initiated.

This absence of the PFLG check allows a potentially higher data-transfer

rate than possible with the Full-Mode Handshake; however, in some cases, it
also places additional timing restrictions on the peripheral’s response time, as
described in the text.

L0 AL L.

First Data Second Data
ls Valid fs Valid

PCTL PCTL
’| Delay I‘ ,l Delay I‘

Clear — -
PCTL
Set 133 d 32
Busy . A EUSSEER , —
PFLG ' - -
Ready — 4 4
: i \ ,
; H t5
{1 t2 t3 ta

Busy Pulses with Pulse-Mode OUTPUT Handshake

The PFLG line is not checked for Ready before the computer drives the I/O
line Low (not shown) and places data on the Data-Out lines (t1). A PCTL
Delay time later, the interface initiates the transfer by placing PCTL in the Set
state (t2).

The peripheral acknowledges by placing PFLG Busy (t3); this transition
automatically Clears PCTL (t4). The dashed PFLG line shows that the

6-12 The GPIO Interface

computer may initiate another transfer any time after PCTL is Clear, possibly
before the peripheral places PFLG in the Ready state (t5).

The Busy Pulse shown in the diagram is identical to the PFLG’s response
during the previous Full-Mode handshake; however, the Pulse-Mode Handshake
works properly with this type of pulse only if the peripheral reads the data

by the time PCTL is Clear (data should be read between t2 and t3). If the
peripheral has not read the data by the time that PCTL is Clear, it might
erroneously read the data for the second transfer, since the computer might
have already changed the data and initiated the second transfer.

Clear 4% ——
PCTL '
Set 44— ! —5

0
Data In :
| &
I Settling | ¢ ; I Settling |
Time : Time
PFBUSY : Data!l Must/'_*_“-_ Data Must (R
LG i Be Malid Here| ! { Be Vvalid Here
Ready —t— i
: ; H t5

t1 t2 £3 t4

Busy Pulses with Pulse-Mode ENTER Handshakes (BSY Clock Source)

The computer does not have to check for PFLG to be Ready before placing
I/0 in the High state (not shown) and initiating the transfer by placing PCTL
in the Set state (t1).

The peripheral must place data on the Data In lines (t2), allowing enough
time for the data to settle before placing PFLG in the Busy state (t3). This
Ready-to-Busy transition of PFLG automatically Clears PCTL. The dashed
PFLG signal shows that the next transfer may be initiated before PFLG
indicates Ready.

The GPIO Interface 6-13

Computer May Computer May

Read Data Here Read Data Here
Clear A% \
PCTL '
Set —s { 45
0
Data In

1 B

Settling Settling
Time Time

Busy i ; IR ,
[L« HI

Ready 45

5
1 t2 £3 t4
Busy Pulses with Pulse-Mode ENTER Handshakes (RDY Clock Source)

The computer does not have to check for PFLG to be Ready before placing
I/0 in the High state (not shown) and initiating the transfer by placing PCTL
in the Set state (t1).

The peripheral must place data on the Data In lines (t2), allowing enough time
for the data to settle before placing PFLG Busy (t3). This requirement may
seem contradictory, since the clock source is the Busy-to-Ready transition of
PFLG. However, with Pulse-Mode handshakes, the peripheral is assumed to be
Ready whenever PCTL is Clear; consequently, the computer may read the data
any time after PCTL is cleared by the Ready-to-Busy transition of PFLG. The
PFLG transition to Busy Clears PCTL (t4), after which the peripheral may
place PFLG Ready (t5).

Note In order to use this type of pulse with the Pulse-Mode
i Handshake and RDY clock source, the peripheral must adhere
ﬁ to the stated timing restrictions.

6-14 The GPIO Interface

First D:J’ta Second Data
Is Valid Is Valid

PCTL PCTL
Delay "_ _.i Delay

NS
=
-
-

Clear t (s -
PCTL
Set ; ¥ 4% Lt
Busy — s % —
PFLG ; g H
Ready e T e SR S
£ 2 t3 t4ts

Ready Pulses with Pulse-Mode OUTPUT Handshakes

The PFLG line is not checked for Ready before the computer drives the I/0
line Low (not shown) and places data on the Data Out lines (t1). At a PCTL
Delay time later, the interface initiates the transfer by placing PCTL in the Set
state (t2).

The peripheral later acknowledges by placing PFLG in the Ready state (t3).
The handshake is completed by the peripheral placing PFLG in the Busy state
(t4), which automatically Clears PCTL (t5).

If the peripheral uses the type of Ready pulses shown, either the Pulse-Mode
handshake with default PFLG logic sense or Full-Mode handshake with
inverted PFLG logic sense may be used. With this type of pulse, the data
being output may be read by the peripheral as long as PCTL is Set.

The GPIO Interface 6-15

Clear =——— 4y
PCTL l/

Set

0
Data In

1

I ISettIingl I 3 ISettIing
Time Time l‘—

Busy ——— T Data Must—PT—
PFLG : : Be Valid
i Here
Ready —t— ! L g4-L—g¢
i : i Data Must
: : : : Be Valid
Here

1 t2 t3 t4
Ready Pulses with Pulse-Mode ENTER Handshakes (BSY Clock Source)

The computer does not have to check for PFLG to be Ready before placing
I/0 in the High state (not shown) and initiating the transfer by placing PCTL
in the Set state (t1).

The peripheral acknowledges by placing PFLG in the Ready state (t2). The
peripheral must place data on the Data In lines (t3), allowing enough time for
the data to settle before placing PFLG in the Busy state (t4). With this type
of pulse, events t2 and t3 may also occur in the reverse order.

The Ready-to-Busy transition of PFLG automatically Clears PCTL (t4). The
dashed PFLG signal shows that the state of PFLG is not checked before the
computer initiates a subsequent transfer.

6-16 The GPIO Interface

Clear — —&
PCTL "
Set 5 £ ! s 46

0
Data In

1

Settling : Settling
Time ; Time

Busy 5 : 4t
PFLG : 71
i Datai Must — é Loggenemas LS A
Ready i Be Valid ! H '
! Herel ' HE Data Must
: : I Be Valid
; ! : Pl Here
t1 t2 t3 t4 t3

Ready Pulses w/ Pulse-Mode ENTER Handshakes (RDY Clock Source)

The computer does not have to check for PFLG to be Ready before placing
I/0 in the High state (not shown) and initiating the transfer by placing PCTL
in the Set state (t1).

The peripheral must place data on the Data In lines (t2), allowing enough time
for the data to settle before placing PFLG Ready (t3). The peripheral places
PFLG in the Busy state (t4), which automatically Clears PCTL (t5).

The GPIO Interface 6-17

Interface Reset

The interface should always be reset before use to ensure that it is in a known
state. All interfaces are automatically reset by the computer at certain times:

when the computer is powered on, when is pressed ((shift}{(Reset) on
an ITF keyboard), and at other times described in the Reset Table. (See

“Useful Tables” in the HP BASIC 6.2 Language Reference.) The interface may
be optionally reset at other times under control of BASIC programs. Two
examples are as follows:

Gpio=12
CONTROL Gpio,0;1

Reset=1
CONTROL Gpio;Reset

The following action is invoked whenever the GPIO Interface is reset:

m The Peripheral Reset line (PRESET) is pulsed Low for at least 15
microseconds.

m The PCTL line is placed in the Clear state.

m If the DOUT CLEAR jumper is installed, the Data Qut lines are all cleared
(set to logic 0).

m The interrupt enable bit is cleared, disabling subsequent interrupts until
re-enabled by the program.

The following lines are unchanged by a reset of the GPIO Interface:
s The CTL0O and CTL1 output lines.

m The I/O line.

m The Data Out lines, if the DOUT CLEAR jumper is not installed.

6-18 The GPIO Interface

Outputs and Enters through the GPIO

This section describes techniques for outputting and entering data through
the GPIO Interface. The mechanism by which data are communicated are the
electrical signals on the data lines. The actual signals that appear on the data
lines depend on three things:

m the data currently being transferred,
m how this data is being represented,
m the logic sense of the data lines.

Brief explanations of ASCII and internal data representation are given in the
“Interfacing Concepts” chapter. Complete details of the freefield convention
and effects of IMAGE specifiers during OUTPUT and ENTER statements
are described in the “Outputting Data” and “Entering Data” chapters,
respectively. The section of the chapter “I/O Path Attributes” called “The
FORMAT OFF Attribute” describes how internal-form data are represented
during OUTPUT and ENTER. This section gives simple examples of how
several representations are implemented during OUTPUTs and ENTERs
through the GPIO Interface.

ASCIl and Internal Representations

When data are moved through the GPIO Interface, the data are generally sent
one byte at a time, with the most significant byte first. This byte-mode transfer
is independent of whether FORMAT ON or FORMAT OFF is the I/O path
attribute. However, there are two ezceptions; data are represented by words
when the “W” image specifier is used and when numeric data are moved with
reads of STATUS register 3 and writes to CONTROL register 3. The following
diagrams illustrate which data lines are used during byte and word transfers.

The GPIO Interface 6-19

GPIO Peripheral

Interface Device
/ L

D01i:008 Upper 8 bits are not used
DI15-DI8 (all O's during byte transfers).
NN
/ L
DO7-D0O0O
or Only lower 8 bits are used.
DI7-DIO
NN\

Byte Transfers

Example Statements that Output Data Bytes

The following diagrams show the actual logic signals that appear on the least
significant data byte (DO7 thru DOO0) as the result of the corresponding
OUTPUT statement; the most significant byte is always zeros with byte
transfers. The actual logic levels depend on how the data lines are configured
(i.e., as Low-true or High-true).

ASSIGN 0Gpio TO 12
OUTPUT €Gpio;"ASCII"

Signal Line ASCII
DOT7T............ DO0 Char.
0100 0001 A
0101 0011 S
0100 0011 c
0100 1001 I
0100 1001 I
0000 1101 Cr
0000 1010 Lp

6-20 The GPIO Interface

Gpio=12
Number=-4
OUTPUT Gpio USING "MD.DD";Number

Signal Line ASCII
DO7T............ DO6 Char
0010 1101 -
0110 0100 4
0010 1110
0011 0000 0
0011 0000 0
0000 1101 Cg
0000 1010 Lf

ASSIGN OGpio TO 12;FORMAT OFF
Integer_1=256%85+76
OUTPUT ©@Gpio;Integer_1

Signal Line ASCII
DOT............ DOO Char.

0101 0101 U
0100 1100 L

The GPIO Interface 6-21

ASSIGN @Gpio TO 12;FORMAT OFF
String$="1234"
OUTPUT ©Gpio;String$

Signal Line ASCII
DO7............ DO0 Char.
0000 0000 N,
0000 0000 Ny
0000 0000 N
0000 0100 E
0011 0001 1
0011 0010 2
0011 0011 3
0011 0100 4

Example Statements that Enter Data Bytes

The following diagrams show the variable values that result from the logic
signals being present during the corresponding ENTER statement on the least
significant data byte (DI7 thru DI0); the most significant byte is always ignored
with byte transfers. The actual logic levels required depend on how the data
lines are configured (i.e., as Low-true or High-true).

ENTER QGpio USING "#,B";Byte
DISP "Value entered='";Byte

Value entered= 65

Signal Line ASCII
DIT............ DI0 Char.

0100 0001 A

6-22 The GPIO Interface

ENTER 12;String$
DISP "String entered= ";String$

String entered= ruok?

110 1011 k
011 1111 ?

o O o o o ©

000 1010 Lf

The GPIO Interface 6-23

REAL Number

ASSIGN @Gpio TO 12
ENTER €Gpio;Number
DISP "Number=";Number

Number= 2
Signal Line ASCII
DI7............ DI0 Char.
0100 0000 e
0000 0000 Ny
0000 0000 Ny
0000 0000 N,
0000 0000 Ny
0000 0000 N,
0000 0000 N,
0000 0000 Ny
GPIO Peripheral

Interface Device

/S L
_ Upper 8 bits are used only when:
DO15rDO8 1. Writing to CONTROL register 3
D|150—D|8 (reading from STATUS register 3).
2. The "W" image specifier is used.

AYEEAY
/ L

DO7;rDOO Lower 8 bits are used for

DI7—DIO ALL data transfers.
NN\

Word Transfers

6-24 The GPIO Interface

Example Statements that Output Data Words

Data are automatically sent as words when using an I/O path with the WORD
attribute. See the “I/O Path Attributes” chapter for further information.

The following diagrams show the logic signals that appear on the Data Out
lines as a result of the corresponding BASIC statements and numeric values.
All numeric values are first rounded to an INTEGER value before being placed
on the Data Out lines. The actual logic level that appears on each line depends
on how the lines have been configured (i.e., as High-true or Low-true).

Word=3*256+3
OUTPUT @Gpio USING "#,W'";Output_word

Signal Line Signal Line

Output_16_bits=-1
CONTROL Gp_isc,3;0utput_16_bits

Signal Line Signal Line

It is important to note that no output handshake is executed when the
CONTROL statement is executed; only the states of the Data Qut lines and the
I/O line are affected. Handshake sequence, if desired, must be performed by
BASIC statements in the program. See “Designing Your Own Transfers” for
design suggestions.

Example Statements that Enter Data Words

The following diagrams show the variable values that result from entering the
logic signals on the Data In lines. Note that all sixteen-bit values entered are
interpreted as INTEGER values.

The GPIO Interface 6-25

Signal Line Signal Line

0000 0001 1111 1111

ENTER 12 USING "#,W'";Enter_16_bits
DISP "INTEGER entered='";Enter_16_bits

INTEGER entered= 511

Signal Line Signal Line

1111 1110 0000 0000

STATUS Gp_isc,3;Enter_16_bits
DISP "INTEGER entered=";Enter_16_bits

INTEGER entered= -512

It is important to note that no enter handshake is performed when the
STATUS statement is executed. The only actions taken are the I/O line being
placed in the High state and the Data In registers being read. If an enter
handshake is required, it must be performed by the BASIC program. See
“Designing Your Own Transfers” for design suggestions.

Remember also that the Data In Clock source is solely determined by the
switch setting on the interface card. Thus, when the STATUS statement is
used to read the Data In lines, the data on the lines may or may not be clocked
into the registers when the statement is executed. If the data are to be clocked
in by the STATUS statement, the “READ” clock source must be selected. See
the installation manual for further details.

6-26 The GPIO Interface

Using a GPIO Interface in
the HP-UX Environment

This section explains the interface locking and burst I/0, which are useful
when using an interface in the HP-UX environment.

Locking an Intertace to a Process

In a multi-user environment, interface cards are usually accessible to several
users. BASIC/UX supports this sharing by making no attempt to guarantee
exclusive access to an interface unless it is directed to do so. This allows you
to access instruments, for instance, on an GPIO bus that is shared with other
peripherals. Although this is not a recommended configuration, it is allowed.

BASIC/UX provides interface locking to support exclusive access to an
interface. When an interface is locked to a process, all other processes are
prevented from using that interface. For instance, this feature can prevent
the loss of important data while a process is taking measurements from an
instrument by keeping other users or processes from using the same interface.

Interface locking is enabled and disabled by using pseudo-register 255 and the
interface’s select code. For example:

CONTROL 12,255;1 FEnables GPIO interface locking.
CONTROL 12,255;0 Disables GPIO interface locking.

In order to be a “good citizen” on a multi-user system, you should unlock an
interface after you no longer need to have it locked.

Note that attempting to lock an GPIO connected to a system disc will result in
an error.

In addition, attempting to lock an interface that is already locked to another
process will cause a program to suspend execution until:

m The interface is unlocked (by the other process to which it is currently
locked).

m A timeout occurs.

m You press or Clr 1/0.

The GPIO Interface 6-27

Using the Burst I/O Mode

The default mode of HP-UX I/O transactions requires many time consuming
HP-UX system calls to send data to the destination.

Another method, “burst I/0”, maps the interface into your “user address
space”, thereby bypassing the memory buffer. This direct-write method
decreases the number of calls to HP-UX I/O system routines, which establishes
a short, highly tuned path for performing I/O operations. The interface is

also implicitly locked when burst mode is enabled (see above explanation of
interface locking).

Burst I/O provides the fastest I/O performance available with BASIC/UX
for the “smaller” I/O transactions that are typical of many instruments. For
instance, an 8-byte ENTER operation is over an order of magnitude faster
when burst mode is enabled. For larger I/O operations, of more than 4 000

bytes for example, burst mode becomes increasingly slower than the default
(buffered or DMA) I/O modes.

Burst I/0 is enabled and disabled by using register 255 and the interface’s
select code. For example:

CONTROL 12,255;3 FEnables GPIO interface burst I/0.
CONTROL 12,255;0 Disables GPIO interface burst I/0.

In order to be a “good citizen” on a multi-user system, you should unlock an
interface after you no longer need to have it locked.

In addition, attempting to use burst mode with an interface that is already
locked to another process will cause a program to suspend execution until:

m The interface is unlocked (by the other process to which it is currently
locked).

m A timeout occurs.

Note also that you cannot set up an ON TIMEOUT for an interface when
using burst mode.

6-28 The GPIO Interface

GPIO Timeouts

Timeout events were generally discussed in the chapter “Interface Events”.
However, specific details of the affects of the time parameter on the event’s
occurrence were not described. This section explains how the time parameter is
measured and describes typical service routines.

Timeout Time Parameter

There are two general time intervals measured and compared to the specified
TIMEOQUT time. The first interval is measured between the computer
initiating the first handshake (PCTL=Set) and the peripheral signalling
Ready (with the PFLG line). If the peripheral does not indicate readiness by
the specified TIMEOQOUT time parameter, a TIMEOQOUT event occurs. (The
computer optionally reads the state of the PSTS line before initiating the
transfer. See “Using the PSTS Line” for further details.)

The time elapsed during each handshake is also measured and compared to the
TIMEOUT time. The timing begins when the transfer is initiated (PCTL Set
by the computer) and, in general, ends when the peripheral responds on the
PFLG line.

Keep in mind that the TIMEQUT time parameter specifies the minimum
time that the computer will wait before initiating the ON TIMEOUT branch.
However, the computer may occasionally wait an additional 25 percent of the
specified time parameter before initiating the branch. For instance, if a time
of 0.4 seconds is specified, the computer will wait at least 0.4 seconds for the
handshake to be completed, but it may occasionally wait up to 0.5 seconds
before initiating the ON TIMEOUT branch.

Note that timeouts do not occur when burst mode is enabled.

Timeout Service Routines

The service routine usually responds by determining if the peripheral is
functioning properly (“ok”) or is down (“not ok”). The simplest action that
might be taken by the computer is to read the state of the PSTS signal line, as
shown in the following service routine.

The GPIO Interface 6-29

100 Gpio=12
110 ON TIMEQOUT Gpio, .08 GOSUB Gpio_down

200 OUTPUT Gpio;String$
210 ! Next line.

300 Gpio_down: STATUS Gpio,5;Periph_status

310 Psts=BIT(Periph_status,3) ! Read PSTS.
320 IF NOT Psts THEN

330 PRINT "GPIO interface is "

340 PRINT "non-functional"

350 PRINT "Program paused."

360 PAUSE

370 ELSE

380 ! Take other action.

390 END IF

400 RETURN

A TIMEOUT has been set up to occur if the peripheral takes approximately
more than .08 second to complete its response during a data transfer; how the
peripheral completes its response depends on the handshake mode currently
selected. With Pulse-Mode Handshakes, the peripheral completes its response
by using PFLG to Clear PCTL; with Full-Mode Handshakes, the response is
complete only after PCTL has been Cleared and PFLG is in the Ready state.

When a TIMEQUT occurs, the computer automatically ezecutes an Interface
Reset; the PCTL line is Set and then Cleared, and the PRESET line is pulsed
Low. See the section called “Interface Reset” for further effects. The Service
routine checks the PSTS line to see if the peripheral is OK or not OK. If

not OK, a message is displayed and the program is paused; if OK, program
execution is returned to the line following that in which the TIMEOUT
occurred. The service routine may be programmed to attempt the transfer
again, if desired; however, the automatic Reset performed when the TIMEQUT
occurred may make this type of response difficult to implement.

6-30 The GPIO Interface

Using Alternate Data Representations

As with any other interface, representations other than the ASCII or internal
representations may sometimes be more meaningful to the peripheral. This
section briefly describes a few techniques for implementing alternate data
representations.

BCD Representation

With OUTPUT and ENTER statements, numeric values are either represented
by ASCII characters or by one of the internal representations (INTEGER

or REAL). Another common method of representing numeric data is to use
four-bit, binary-coded decimal (BCD) characters. Only ten of the available
sixteen bit patterns need to be used to represent decimal digits “0” through
“9”. The remaining six patterns can be used for sign, decimal point, exponent,
and other special characters, as required by the application.

The following bit patterns have been chosen arbitrarily to correspond to
numeric characters. This representation cannot be used if more than six other
characters are to be represented. (Note that this is also the data representation
used by the HP 98623 BCD Interface. See the “BCD Interface” chapter for
further information.)

Bit Patterns for Numeric Characters

Decimal Bit Pattern Other Bit Pattern

Digit MSB LSB Character MSB LSB
0 0 0 0 O LineFeed 1 0 1 0
1 0 0 0 1 + 1 0 1 1
2 0 0 1 0 , 1 1 0 0
3 0 0 1 1 - 1 1 0 1
4 0 1 0 0 E 1 1 1 0
5 0 1 0 1 1 1 1 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 O
9 1 0 0 1

The GPIO Interface 6-31

The following subprogram assumes that BCD numbers are to be entered
through the GPIO Interface. Sixteen BCD characters are represented by four
16-bit words from the peripheral. The sixteen four-bit BCD characters have
the following general format.

Mantissa sign Mantissa “E" Exponent sign|Exponent
\ I A A\ A — J
v g g Y hd
1 up to 16 1 1 Up to 3

(optional) (at least one) (optional) (optional) (optional)

Each BCD character is represented by four bits of data. The first word entered
contains the four most significant BCD characters, and the last word contains
the least significant. The program changes the BCD characters to their ASCII
representation and then uses the number builder to generate the corresponding
numeric value.

6-32 The GPIO Interface

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400

ASSIGN OGpio TO 12
1]
! Define conversion string.
Conv$="0123456789"&CHR$ (10) &"+,-E."
!
CALL Enter_bcd(0Gpio,Conv$,Number)
OUTPUT 1;"The BCD number is " ;Number
1
END
!
!
SUB Enter_bcd(@Device,Conv$,Number)
COM /Enter_bcd/ INTEGER Word(1:4)
[)
! Enter 4 words (=16 BCD digits).
ENTER @Device USING "#,W";Word(*)
!
FOR W=1 TO 4 ! Process four words.
'
! Shift right multiples of four bits.
FOR Bits_rt=12 TO O STEP -4
Shifted_word=SHIFT (Word(W) ,Bits_rt)
Four_1sb=BINAND(Shifted_word,15) ! Mask MSB’s.
Ascii_char$=Conv$[Four_lsb+1;1] ! LSB’s = index.
Number$=Number$ZAscii_char$
NEXT Bits_rt
'

NEXT W
]

ENTER Number$;Number ! Use number builder.
SUBEND ! Returns BCD number as "Number".

The GPIO Interface 6-33

Character Conversions

One of the most common needs of a computer is to convert certain unused

or disallowed bit patterns into meaningful or allowed bit patterns. A typical
example is to change the radix character from a decimal point to a comma. For
instance, the following ASCII characters represent the same number.

U.S. Representation |European Representation

1,234,567.89 | 1.234.567,89

A remedy is needed to allows these types of numbers to be entered through
the number builder. To enter a number with the preceding European format,
the commas must be changed to periods and the periods changed to spaces.
The following routine changes the numeric radix from the European to the US
convention when numeric data are entered through the GPIO.

6-34 The GPIO Interface

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370

! Generate string with no conversions.

DIM Conv$[256]

FOR Code=0 TO 255
Conv$ [Code+1]=CHR$(Code)

NEXT Code

]

! Then define the conversions.

Conv$[NUM(".'")+1;1]=" " ! Change "." to " "

Conv$[NUM(",")+1;1]="." ! Change "," to "."

1

!

Number$="123.456,789"

PRINT "Before conversion " ;Number$

CALL Convert (Conv$,Number$)

PRINT "After conversion ";Number$

1

END

!

!

SUB Convert(Conv$,Data$)

]

FOR Char_pos=1 TO LEN(Data$)
Index=NUM(Data$[Char_pos])+1
Data$[Char_pos;1]1=Conv$[Index;1]

NEXT Char_pos

]

! Returns Data$ with converted characters.

SUBEND

If more characters are to be converted, simply change the default (standard
ASCII) character in Conv$ to the desired code. The speed of the conversion is
not affected by the number of characters to be converted. This routine works
for either input or output, but the characters to be converted must be in a
string variable.

Conversions can also be made by using the CONVERT attribute. See the “I/O
Path Attributes” chapter for further information.

The GPIO Interface 6-35

GPIO Interrupts

This section describes the types of and techniques for using the interrupts
available on the GPIO Interface.

Types of Interrupt Events

The GPIO Interface can sense two interrupt events: the first is the interface
becoming “Ready” for subsequent handshakes, and the second is the External
Interrupt Request line (EIR) being driven to logic low by the peripheral.

As with all interfaces, both events initiate identical computer responses—

the service routine must be able to determine which of these interrupts have
occurred if both are enabled to initiate interrupts.

Both of these types of interrupt events are level-sensitive; in other words, the
signal that caused the event should be maintained until the program has time
to determine which event has caused the interrupt. Further explanation follows
in this section.

Setting Up and Enabling Events

When either event occurs, the interrupt is logged by the BASIC operating
system. After logging the occurrence, any further interrupts from the GPIO
Interface are automatically disabled until specifically enabled by a program.
All further computer responses to either event depend entirely on the BASIC
program currently in memory.

The following program segment shows the steps involved in setting up and
enabling Ready interrupts.

100 Gpio=12

110 ON INTR Gpio GOSUB Gpio_serv
120 !

130 Mask=2

140 ENABLE INTR Gpio;Mask

6-36 The GPIO Interface

The value of the interrupt mask determines which, if any, of the GPIO
interrupt events are to be enabled to initiate the corresponding branch. Bits of
the Interrupt Mask register have the following definitions.

Interrupt Enable Register (ENABLED INTR)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Enable Enable

Not used interface |EIR
ready interrupts
interrupts

value=128| value=64 | value=32} value=16| value=8 | value=4 |value=2 |value=1

m Interface Ready—Setting this bit (1) enables an interrupt to initiate the
ON INTR branch when the interface detects that it is Ready to handshake
data. If Full-Mode Handshake is selected (with the Option Select switch),
the Ready event is PCTL=Clear and PFLG=Ready. With Pulse-Mode
Handshake, the event is PCTL=Clear (independent of the state of PFLG).

m Ezternal Interrupt Request—Setting this bit (1) enables an interrupt to
initiate the ON INTR branch when the interface senses an External Interrupt
Request (EIR line=Low).

Interrupt Service Routines

If both events are enabled, the service routine must be able to differentiate
between the two. And, if both have occurred, the service routine must be able
to service both causes. The following registers contain the current state of the
Interface Ready flag and EIR signal lines, from which the interrupt cause(s)
may be determined.

STATUS Register 4 Interface is ready for a subsequent data transfer;
1=Ready, 0=Busy.

The GPIO Interface 6-37

STATUS Register 5 Peripheral Status

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 PSTS EIR line |STI1 STIO
Ok low line low |[line low

value=128| value=64 value=32| value=16| value=8 |value=4 |value=2 {value=1

As mentioned in preceding paragraphs, these two interrupt causes are both
level-sensitive events, not edge-triggered events. This fact has two important
implications. The first is that, for an event to be recognized, the corresponding
signal line must be held in the interrupting state until the computer can
interrogate the line’s logic state. If the signal line’s state is changed before

the service routine checks the line, the interrupt may be “missed”. This

will happen only if both events are enabled; if only one event is enabled,
determining the cause may not be necessary.

The second implication is that the service routine must be able to acknowledge
the request in order for the peripheral device to remove the request. If the
request is not removed after service, the same request may be serviced more
than once.

The following program shows a simple example of servicing an External
Interrupt Request. Note that only EIR-type interrupts have been enabled and
that the peripheral device provides its own interrupt cause with signals on the
STI0 and STI1 lines.

100 PRINTER IS 1

110 Gpio=12

120 CONTROL Gpio;1 ! Reset Interface.

130 !

140 ON INTR Gpio GOSUB Gpio_serv

150 ENABLE INTR Gpio;1 ! Enable EIR-type only.

160 !

170 ! Show concurrent processing.
180 Loop: Counter=Counter+1

190 DISP Counter

200 GOTO Loop

210 !

220 STOP

6-38 The GPIO Interface

230 !

240 Gpio_serv: !

250 STATUS Gpio,5;Periph_status ! Check EIR line.
260 IF BIT(Periph_status,2) THEN ! EIR interrupt.

270 !

280 IF BIT(Periph_status,0) THEN ! STIO=True.
290 BEEP

300 PRINT "Improper value; type in correct”
310 PRINT "value, and press ENTER."

320 PRINT

330 ENTER 2;Value

340 OUTPUT Gpio;Value

350 END IF

360 !

370 IF BIT(Periph_status,1) THEN ! STI1=True.
380 BEEP

390 PRINT "Reading of:";Reading;" out of range"
400 PRINT "No other action will be taken."
410 PRINT

420 WAIT 2

430 BEEP

440 END IF

450 !

460 END IF

470 !

480 ! Put Ready service routine here.

490 !

500 !

510 ENABLE INTR Gpio ! Use same mask.

520 RETURN

530 !

540 END

A slightly different method that peripherals use to communicate the cause
of their interrupt request is to place the interrupt cause on the data lines
concurrent with the interrupt request. The service routine can determine the
cause by reading STATUS register 3 and take the appropriate action.

Notice that the service routine indicates a likely place for a Ready-interrupt
service routine. The Service routine must check for the Ready condition,
acknowledge the interrupt, and then take the desired action. In this case,
no service action has been defined because Ready interrupts have not been
enabled. The next section provides an example of a Ready interrupt service
routine.

The GPIO Interface 6-39

Designing Your Own Transfers

Other specialized methods of handshaking data can be designed according to
your specific needs. The methods of synchronizing data transfers are as flexible
as the GPIO Interface hardware. However, the general techniques will probably
still require the fundamental handshake features: initiation by the sending
device, acknowledgement from the receiving device, and agreement as to when
the data are valid. The TRANSFER statement can be used to transfer data.
See the chapter “Advanced Transfer Techniques” for further information.

A wide choice of initiating events is available; obvious possibilities include use
of the PCTL, EIR, or CTLO (or CTL1) lines to signal the start of the transfer.
Data can be placed on the Data Out lines by writing to CONTROL register 3,
or data can be clocked into the Data In registers by reading STATUS register
3. Sensing acknowledgement from the peripheral can be accomplished by
reading the state of such lines as PFLG, PSTS, EIR, or STI0 (or STI1).

The feature common to all of these methods is that each byte (or word) of data
must be transferred individually. If an entire block of data is to be entered

or output, the BASIC program that implements the transfer must keep a
“pointer” to which byte/word is to be transferred.

Full Handshake Transfer

The following program implements a handshake similar to the Full OUTPUT
Handshake by controlling the PCTL and sensing the PFLG and PCTL lines.
The actual “Output” routine consists of lines 150 through 190. Timeout
capability can easily be included in the routine, if so desired.

6-40 The GPIO Interface

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280

DATA 65,66,67,68,69
1
STATUS 12,5;Periph_status ! Check PSTS.
IF BIT(Periph_status,3) THEN ! PSTS True.
1
FOR Char=1 TO 5
READ Code

Wait: STATUS 12,4;Interface_ready

IF NOT Interface_ready THEN Wait
Output: CONTROL 12,3;Code ! Data onto lines.
CONTROL 12,151 ! Set PCTL.
NEXT Char
'
ELSE ! PSTS False.
PRINT "Peripheral error"
PAUSE
END IF
!
END

Notice that each byte of data must be output separately and that the program
must keep track of which byte, of several, is to be sent. Keep in mind that the
data written to CONTROL register 3 is 16-bit words; in this case, the most
significant eight bits (byte) is all zeros. Also, using FOR ... NEXT loops to
index each byte/word to be sent may not be the most expedient way of sending
data, so your particular application may use alternative methods for handling
the data.

The following subprogram implements a handshake similar to the Full ENTER
handshake.

170
180

SUB Enter_word(@Device,Data_word)
]

190 Waitl: STATUS 12,4;Interface_ready

200
210
220

IF NOT Interface_ready THEN Waitil
STATUS 12,3;Dummy_read ! I/0 High.
CONTROL 12,1;1 { Set PCTL.

230 Wait2: STATUS 12,4;Interface_ready

240
250
260
270

IF NOT Interface_ready THEN Wait2

STATUS 12,3;Data_word ! Enter word.
'

SUBEND

The GPIO Interface 6-41

The appropriate Data-In Clock source should be selected to ensure the data
are clocked into the registers when valid. Refer to the installation manual for
further details.

Interrupt Transfers

The interrupt capabilities of the GPIO Interface can be used to synchronize the
transfer of data between the computer and peripheral. These examples describe
simple methods of synchronizing the transfer of data by using both the EIR
and the PFLG line. See the section of this chapter called “GPIO Interrupts”
for further explanation of GPIO interrupts in general.

General interrupt transfers through the GPIO Interface involve the following
elements:

m placing data on (or reading data from) the data lines
m signaling to the peripheral device to initiate the transfer

m continuing processing until an interrupt is received, at which time the
handshake is finished and transfer of the next byte/word can be initiated.

Examples of using Ready interrupts to implement interrupt transfers are given
in the remainder of this section.

Ready Interrupt Transfers

The Ready interrupt event occurs when the GPIO Interface becomes “Ready”.
Whether or not the GPIO Interface is Ready depends on the currently selected
handshake mode. If Full-Mode Handshake is selected, the interface is Ready

if both the PFLG line is Ready and the PCTL line is Clear; if Pulse-Mode is
selected, the interface is Ready if PCTL is in the Clear state, regardless of

the state of PFLG. The following program shows how to implement Ready
interrupt transfers.

100 PRINTER IS 1

110 Gpio=12

120 CONTROL Gpio;1 ! Reset Interface.
130 ON INTR Gpio GOSUB Ready_xfer
140 !

150 DIM Data_out$[256]

160 Data_out$="123ABC"

170 Pointer=1

6-42 The GPIO Interface

180 Size=LEN(Data_out$)

190 !

200 ! Initiate the transfer.

210 GOSUB Ready_xfer

220 !

230 ! Show concurrent processing.
240 Loop: Counter=Counter+1

250 DISP Counter

260 GOTO Loop

270 !

280 STOP

290 !

300 The branch to this subroutine is initiated

]

310 ! first by the program, but thereafter by
!
1

320 Ready Interrupt events.

330 !

340 Ready_xfer: !

350 !

360 IF Pointer<=Size THEN

370 Byte_out=NUM(Data_out${Pointer;1])

380 PRINT Data_out$[Pointer;1];" sent"

390 CONTROL Gpio,3;Byte_out ! Place data on lines.
400 Pointer=Pointer+1

410 CONTROL Gpio,1;1 ! Set PCTL.

420 ENABLE INTR Gpio;2 ! Enable Ready INTR’s.
430 RETURN 6
440 !

450 ELSE

460 DISABLE INTR Gpio ! Disable after done.
470 RETURN

480 !

490 END IF

500 !

510 !

520 END

Interrupt transfers that use the EIR line are similar to Ready interrupt
transfers. The main difference is that the interrupt-initiating event is the
EIR line, rather than the PCTL line (and PFLG if in Full Handshake mode)
indicating Interface Ready.

The GPIO Interface 6-43

Using the Special-Purpose Lines

Four special-purpose signal lines are available for a variety of uses. Two of
these lines are available for output (CTLO and CTL1), and the other two are
used as inputs (STIO and STI1).

Driving the Control Output Lines

Setting bits 0 and 1 of GPIO CONTROL register 2 places a logic low on CTLO
and CTL1, respectively. The definition of this CONTROL register is shown in
the following diagram.

CONTROL Register 2 Peripheral Control

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
PSTS Set. CTL1 [Set CTLO
Not used error (1= [(1=low; |(l=low;
report; 0=high) |0=high)
0=ignore)
value=128{ value=64| value=32| value=16| value=8 |value=4 |value=2 |value=1

Ct10=0 ! Clear.
Ctli=1l ! Set.
CONTROL 12,2;Ct11*2+Ct10

As indicated in the diagram, setting a bit in the register places the
corresponding line Low, while clearing the bit places a logic High on the line.
The logic polarity of these signals cannot be changed. The signal remains on
these lines until another value is written into the CONTROL register, and
Reset has no effect on the state of either line.

6-44 The GPIO Interface

Interrogating the Status Input Lines

The state of both status input lines STI0 and STI1 are determined by reading
bits 0 and 1 of STATUS register 5, respectively. A logic “1” in a bit position
indicates that the corresponding line is at logic Low, and a “0” indicates the
opposite logic state. This logic polarity cannot be changed. The definition of
GPIO STATUS register 5 follows.

STATUS Register 5 Peripheral Status

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 PSTS EIR line |STI1 STI0
Ok low line low [line low

value=128| value=64| value=32| value=16| value=8 |value=4 |value=2 |value=1

STATUS 12,5;P_status
Sti0=BIT(P_status,0)
Sti1=BIT(P_status,1)

Reading this register returns a numeric value that reflects the logic states of
these lines at the instant the computer reads the interface lines; the state of
these lines are not latched by any internal or external event.

Using the PSTS Line

The Peripheral Status line (PSTS) is generally used to indicate whether or
not the peripheral device is functional. The current state of PSTS may be
checked by reading STATUS Register 5 (bit 3). It may also optionally be
checked automatically at the beginning of an OUTPUT or ENTER statement;
normally, it is not checked. This feature is only enabled by by setting Bit 2 of
CONTROL register 2.

The GPIO Interface 6-45

CONTROL Register 2

Peripheral Control

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
PSTS Set CTL1 | Set CTLO
Not used error (1= [(1=low; [(1=low;
report; O0=high) }0=high)
0=ignore)
value=128| value=64{ value=32| value=16| value=8 |value=4 |value=2 |value=1

When Bit 2 is set and PSTS is false at the beginning of either an OUTPUT

or ENTER statement, Error 172 (Peripheral error) is reported. The error
must be trapped with ON ERROR, since it generates no INTR or TIMEOUT

branch.

Summary of GPIO STATUS and CONTROL Registers
STATUS Register 0

CONTROL Register 0

STATUS Register 1

Card Identification. Always 3.

Interface Reset. Any non-zero value causes a reset.

Interrupt and DMA Status.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Interrupts| An Interrupt | Interrupt | Burst Word DMA DMA
are interrupt |level level mode mode channel |channel
enabled |is switches |switches | DMA DMA 1 0

currently |[(hard- |(hard- enabled [enabled
requested | ware ware
priority) | priority)
value=128| value=64 | value=32| value=16|value=8 |value=4 {value=2 {value=1

CONTROL Register 1

Set PCTL Line. Any non-zero value sets the line.

6-46 The GPIO Interface

STATUS Register 2

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Handshake | Interrupts | Transfer
0 0 0 0 0 in process |[are in
enabled | progress
value=128| value=64| value=32| value=16| value=8 { value=4 value=2 |[value=1
CONTROL Register 2 Peripheral Control
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
PSTS Set CTL1 | Set CTLO
Not used error (1= {(1=low; |(1=low;
report; 0=high) |0=high)
O=ignore)
value=128| value=64| value=32| value=16| value=8 |value=4 |value=2 |[value=1
STATUS Register 3 Data In (16 bits)
CONTROL Register 3 Data Out (16 bits)
STATUS Register 4 Interface Ready. Interface is Ready for a
subsequent data transfer: 1=Ready, 0=Busy.
STATUS Register 5 Peripheral Status
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 PSTS EIR line |STI1 STI10
Ok low line low |line low
value=128| value=64| value=32] value=16| value=8 |value=4 |value=2 |value=1

The GPIO Interface 6-47

Interrupt Enable Register

(ENABLE INTR)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Enable Enable
Not used interface | EIR
ready interrupts
interrupts
value=128| value=64| value=32| value=16| value=8 |value=4 |value=2 |value=1
STATUS Register 255 0: GPIO interface unlocked and GPIO interface
burst I/O disabled. (BASIC/WS and
BASIC/DOS accept this command but always
return the value “3”.)
1: GPIO interface locked.
3: GPIO interface burst I/O enabled.
CONTROL Register 255 0: disables GPIO interface locking and GPIO
interface burst I/0. (BASIC/WS and
BASIC/DOS accept this command but always
set the value “37.)
1: enables GPIO interface locking.
3: enables GPIO interface burst I/0.

Summary of GPIO READIO and WRITEIO Registers

This section describes the GPIO Interface’s READIO and WRITEIO registers.
Keep in mind that these registers should be used only when you know the
exact consequences of their use, as using some of the registers improperly

may result in improper interface behavior. If the desired operation can be
performed with STATUS or CONTROL, you should not use READIO or

WRITEIO.

6-48 The GPIO Interface

GPIO READIO Registers

Register 0
Register 1
Register 2
Register 3
Register 4
Register 5
Register 6
Register 7

Interface Ready

Card Identification
Undefined
Interrupt Status
MSB of Data In
LSB of Data In
Undefined
Peripheral Status
READIO Register 0

READIO Register 1

READIO Register 3

Interface Ready. A 1 indicates that the interface
is Ready for subsequent data transfers, and 0
indicates Not Ready.

Card Identification. This register always contains 3,
the identification for GPIO interfaces.

Interrupt Status

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Interrupts | An Interrupt | Interrupt { Burst Word DMA DMA
are interrupt {level level mode mode channel |channel
enabled |is cur- switches |switches [DMA DMA 1 0

rently (hard- | (hard- enabled [enabled
requested| ware ware
priority) | priority)
value=128| value=64 | value=32| value=16| value=8 |value=4 |value=2 |value=1

The GPIO Interface 6-49

READIO Register 4

MSB of Data In

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DI15 DI14 DI13 DI12 DI11 DI10 DI9 DI8
value=128| value=64 | value=32| value=16 | value=8 |value=4 |value=2]value=1

READIO Register 5 LSB of Data In

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DI7 DI6 DI5 DI4 DI3 DI2 DIl DIO
value=128| value=64 | value=32{ value=16 | value=8 |value=4 |value=2 |value=1

READIO Register 7 Peripheral Status
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 PSTS EIR line |STI1 STIO
Ok low line low |[line low
value=128| value=64] value=32| value=16 | value=8 |value=4 |value=2 |value=1

GPIO WRITEIO Registers
Set PCTL

Reset Interface

WRITEIO Register 0
WRITEIO Register 1
WRITEIO Register 2
WRITEIO Register 3
WRITEIO Register 4
WRITEIO Register 5

Interrupt Mask
Interrupt and DMA Enable
MSB of Data Out
LSB of Data Out

6-50 The GPIO Interface

WRITEIO Register 6
WRITEIO Register 7
WRITEIO Register 0

WRITEIO Register 1

WRITEIO Register 2

Undefined
Set Control Output Lines

Set PCTL. Writing any non-zero numeric value to
this register places PCTL in the Set state; writing
zero causes no action.

Reset Interface. Writing any non-zero numeric
value to this register resets the interface.

Interrupt Mask

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Enable Enable
Not used interface |EIR
ready interrupts
interrupts
value=128| value=64| value=32| value=16| value=8 |value=4 |value=2 |value=1

WRITEIO Register 3

Interrupt and DMA Enable

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Enable . Enable Enable Enable Enable
interrupts Not used burst word DMA DMA

mode mode channel 1 | channel
DMA DMA 0
value=128| value=64{ value=32| value=16 | value=8 | value=4 |value=2 |value=1

The GPIO Interface 6-51

WRITFEIO Register 4

MSB of Data Out

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DO15 DO14 DO13 DO12 DO11 DO10 DO9 DO8
value=128] value=64| value=32} value=16{ value=8 |value=4 |value=2 | value=1

WRITEIO Register 5 LSB of Data Out

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DOT7T DO6 DO5 DO4 DO3 DO2 DO1 DOO
value=128| value=64 | value=32| value=16| value=8 |value=4 |value=2 | value=1

WRITEIQO Register 7 Set Control Output Lines
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Set CTL1 |Set CTLO
Not used (1=low; |(1=low;
0=high) |0=high)
value=128| value=64/ value=32| value=16| value=8 }value=4 |value=2 |value=1

6-52 The GPIO Interface

7

The BCD Interface for BASIC/WS

This chapter should be used in conjunction with the HP 98623 BCD Interface
Installation Note. The best way to use these two documents is to first read the
section of this chapter called “Brief Description of Operation” to see how the
interface works with the BASIC language. Within this section is information
about the interface’s modes of operation that will help you to understand how
you might use the interface for your application. Second, read “Configuring the
Interface” while referring to the Installation Note as necessary to configure and
connect the interface according to your application’s needs. The reason for this
order is that you will be able to configure and use the interface once you know
a little about how it works.

The main section of the chapter presents several techniques for using the
interface to move data between the computer and peripheral devices using
BASIC programs.

Parallel Data Out;\

AN

Parallel Data In
40

Data and Shielded Cable

to a Device

Control

BCD Handshake
Backplane
Interface
Connector
Hardware
< Special Purpose>

64—Pin Connector

Grounds
7

AN

Block Diagram of the BCD Interface

The BCD Interface for BASIC/WS 7-1

Brief Description of Operation

The HP 98623 Interface consists of data registers and handshake circuitry
required to transfer data to and from the computer using either BCD or binary
data formats. The interface cable contains the following sixty-four conductors:

m forty data, two sign, and one overload signal lines used to enter data from
the peripheral

eight lines used to output data to the peripheral
m two sets of handshake lines (two wires per set)

one reset line to the peripheral device

m one five-volt logic line

five logic (signal) grounds and two safety (shield) grounds

Data Representations and Formats

The BCD interface can be used to transfer data using one of two data
representations: BCD (binary-coded decimal) and binary representations. BCD
is the default data representation; the binary representation may be selected by
software (as described in the configuration section).

The BCD Data Representation

When the BCD representation is in use, data lines are handled in groups

of four, with each group representing one BCD digit. The sixteen possible
combinations of logic states and corresponding characters which each four-line
group may represent are as follows:

7-2 The BCD Interface for BASIC/WS

BCD Logic States

Data Line Data Line

Logic Sense Character Logic Sense Character

(MSB) (LSB) | Represented | (MSB) (LSB) | Represented
0000 0 1000 8
0001 1 1001 9
0010 2 1010 line-feed
0011 3 1011 +
0100 4 1100 ,
0101 5 1101 -
0110 6 1110 E
0111 7 1111

When the BCD representation is in use, the data lines are read character read,
a corresponding ASCII character (listed above) is generated. Operating system
“drivers” control both the sequence of reading the BCD-character groups and
the generation of the appropriate ASCII character which each group represents.
The sequence used by the drivers and the resultant numeric value entered
depends on which BCD format is currently in use: Standard or Optional
format.

Standard Format 7

The Standard BCD format is used to connect one peripheral to the computer.
The data lines are arranged as follows to form two numbers: one mantissa
sign bit, eight BCD mantissa characters, one exponent sign bit, and one BCD
exponent character form the first number; one overload-indicator bit and one
BCD character are combined to form the second number.

The following diagram shows how the signal lines are organized in Standard
format (i.e., the order in which the lines are read with ENTER statements).
The notation used with these diagrams is as follows: SGN1, SGN2, and
OVLD are individual signal lines, while DI1 through DI10 are groups of four
lines each. The signal lines of group DIx (in which x denotes one of the BCD

The BCD Interface for BASIC/WS 7-3

characters 1 through 10) consist of DIx-8, DIx-4, DIx-2, and DIx-1; the 8, 4, 2,

and 1 prefixes are used to denote the binary-weighted significance of each line.

Standard Format (Read One BCD Device)

BCD Char.

Signal Name Information (Pos. True) [ASCII Char.
SGN1 Mant. Sign +1011, -1101 + -
DIl MSD 0000 thru 1111 X
DI2 1 1 X
DI3 [| X
DI4 | | X
DI5 | | X
DI6 | | X
DI7 ! ! X
DI8 LSD 0000 thru 1111 X

Exp. Char. 1110 E
SGN2 Exp. Sign +1011, —-1101 + -
DI9 Exp. Digit 0000 thru 1111 X
Comma 1100 ,
OVLD |0=OVLD, 8=OVLD| 0000, 1000 Oor8
DI10 Fn. Digit 0000 thru 1111 X
Line-Feed 1010 LF

Let’s take a closer look at how data is entered into the computer with a
BASIC-language ENTER statement while using the Standard format.
(Standard format is selected when the Peripheral Status Switch marked
“OF” is in the “ON” position; further details will be given in the subsequent
configuration section.) Suppose the following logic signals are present on the
lines from the peripheral device:

7-4 The BCD Interface for BASIC/WS

BCD-Mode Standard Format

Logic BCD
Signal Name | Level | Character

SGN1

b

DI1—8§
DI1—4
DI1—2
DI1—1

1

DI2—8
DI2—4
DI2—2
DI2—1

DI3—8
DI3—4
DI3—2
DI3—1

DI4—8
DI4—4
DI4—2
DI4—1

DI5—8
DI5—4
DI5—2
DI5—1

—_ O = OO0~ O~ O OO0~ O O~ O O

The BCD Interface for BASIC/WS 7-5

BCD-Mode Standard Format (continued)

Logic BCD

Signal Name | Level | Character
DI6—8 0 6
DI6—4
DI6—2
DI6—1
DI7—8
DI7T—4
DI7—2
DI7—1
DI8—8
DI8—4
DI8—2
DI8—1
SGN2
DI9-8
DI9-4
DI19-2
DI9-1
OVLD
DI10-8
DI10-4
DI10-2
DI10-1

O = O OO OO RO © O k- OO - =
+

Number = —1.2345678E+16 Function = 2

Let’s further assume the following: the Peripheral Status Switch settings are
DATA=O0ON, SGN1=0ON, SGN2=0ON, OVLD=O0ON; and the following ENTER
statement has been executed (with the BCD Interface as the source):

ENTER Bcd;Number ,Function

The ENTER statement is executed as follows. The computer first initiates a
handshake with the CTLA signal (handshake operation is also described in the
configuration section). The peripheral responds to the request by placing data

7-6 The BCD Interface for BASIC/WS

on the lines and then completing the handshake. The states of all data lines
are now stored in registers on the interface (i.e, the data signals are “latched”).

The Standard-format driver reads the state of the SGN1 line and generates

an ASCII “4” character. The “number builder” routine of the free-field
ENTER statement (described in Chapter 5) is used to construct the number as
characters are entered for the variable Number.

The BCD digits DI1 through DI8 are then read and used to form the mantissa.
The “E” character is generated automatically by the driver, after which it
reads the SGN2 line and generates a “—” character. BCD digit DI9 is read; the
driver generates a “3” for the exponent character. A comma is automatically
generated by the driver, terminating entry into Number. The number builder
then constructs the internal representation of -0.4205, which is placed in
Number.

Since one additional numeric variable has been specified in the ENTER
statement, the computer continues to enter characters from the interface. The
OVLD signal line is read, and a “0” is generated and entered. BCD digit DI10
is read, and the resultant ASCII “2” is entered by the number builder. The
driver automatically generates the line-feed character, which terminates both
entry of characters into the Function variable and the ENTER statement.
The variable Function is assigned a value of 2, and the ENTER has finished
execution. Further examples of sending and receiving data through the BCD
Interface are given in the main section of this chapter.

Optional Format

With the Optional format, two peripherals may be connected to the interface. 7
One four-digit and one five-digit mantissa are generated with this format. The
signal lines are organized as follows with Optional format:

The BCD Interface for BASIC/WS 7-7

Optional Format (Read Two BCD Devices)

BCD Char.

Signal Name | Information| (Pos. True) |ASCII Char.
SGN1! Mant. Sign | 41011, —1101 + -
DI4! MSD 0000 thru 1111 X
DI2! 1) X
DI6! 1 ! X
DIg! LSD 0000 thru 1111 X

Comma 1100 ,

SGN2? Mant. Sign | +1011, —1101 + -
DI102 MSD 0000 thru 1111 X
DI12 1) X
DI52 | | X
DI3?] 1 X
DI7? LSD 0000 thru 1111 X
Exp. Char 1110 E

OVLD FD 0000 thru 1000 Oor 8

DI9 SD 0000 thru 1000 Oor8
Line-Feed 1010 LF

! First Device (FD) 2 Second Device (SD)

Let’s take a closer look at how data is entered into the computer by a
BASIC-language ENTER statement while using the Optional format
(“OF”=0FF). Suppose the following logic signals are present on the lines from
the peripheral device:

7-8 The BCD Interface for BASIC/WS

BCD-Mode Optional Format

Logic BCD
Signal Name | Level | Character

SGN1

—

DI4—8 4
DI4—4
DI4—2

DI4—1

DI2—s8
DI2—4
DI2—2
DI2—1

DI6—8
DI6—4
DI6—2
DI6—1

DI8—8
DI8—4
DI8—2
DI8—1

O O O =IO == OO = O Ol O = O

The BCD interface for BASIC/WS 7-9

BCD-Mode Optional Format (continued)

Logic BCD
Signal Name | Level | Character
SGN2 +

DI10—8 0

DI10—4
DI10—2
DI10—1
DI1—8
DI1—4
DI1—2
DI1—1
DI5—8
DI5—4
DI5—2
DI5—1
DI3—8
DI3—4
DI3—2
DI3—1
DI7-8
DI7-4
DI7-2
DI7-1
OVLD
DI9-8
DI9-4
DI9-2
DI9-1

o

— O O O|mlPRk = kOl =k OO~ O = Ol O O ol o O

Number_1 = —4268 Number_.2 = 1.537E+84

Let’s further assume that the Peripheral Status Switches are set as follows:

DATA=0N, SGN1=0ON, SGN2=0N, OVLD=ON;j and that the following
ENTER statement has been executed (with the BCD Interface as the source):

ENTER Bcd;Number_1,Number_2,

7-10 The BCD Interface for BASIC/WS

The computer initiates a handshake with the first peripheral (or device A) by
using the CTLA and CTLB signals (handshake operation is described in the
configuration section). The first peripheral responds to the request by placing
data on the lines and then completing the handshake. The states of all data
lines from the first device are now stored in registers on the interface (i.e, the
data signals are “latched”).

As with Standard format, the Optional-format driver reads the states of

the signal lines from the peripheral and generates the appropriate ASCII
characters. The computer uses the “number builder” routine of the free-field
ENTER statement (described in the chapter “Entering Data”) to enter the
ASCII characters from the interface and to generate the internal representation
of the number(s) represented by the BCD characters.

In this example, the logic state of SGN1 (1, or True) is read by the driver,
which generates a “—” character (see table). The BCD digits DI4, DI2, DI6,
and DI8 are read, and corresponding characters are generated. The comma
(generated by the driver) terminates entry into the first numeric variable, called
Number_1. In this case, the value assigned to Number_1 is —4268.

Since another number has been specified in the ENTER statement, the
computer continues to enter characters through the interface until the line-feed
is entered. A value of 1.537E+84 is assigned to the variable Number_2. The
line-feed character (also generated by the driver) terminates both entry of
characters into Number_2 and the ENTER statement. Further examples of
entering data through this interface are given in in the main section of this
chapter.

The Binary Data Representation

A binary data representation is available on the HP 98623 BCD Interface.
With this representation, the forty data lines (groups DI1 through DI10) are
treated as five individual data bytes which can be entered using ENTER or
STATUS statement(s).

The Binary Mode

Unlike the BCD representation, the Binary Mode has no Standard and
Optional format; thus, the setting of the Option Format switch has no effect
while in the Binary Mode.

The BCD Interface for BASIC/WS 7-11

To select the Binary Mode, write a non-zero numeric value into BCD Control
register 3; the following statement shows a typical method.

CONTROL 11,3;1

To see how the ENTER statement enters data through the BCD Interface
while in Binary Mode, let’s suppose the logic signals on the data lines are as
follows.

Binary Mode ENTER

Logic | Decimal [ASCII

Signal Name | Level | Value | Character
DI1—8 0 49 1
DI1—4
DI1—2
DI1—1
DI2—S8
DI2—4
DI2—2
DI2—1
DI3—8
DI3—4
DI3—2
DI3—1
DI4—S8
DI4—4
DI4—2
DI4—1
DI5—8
DI5—4
DI5—2
DI5—1
DI6—8
DI6—4
DI6—2
DI6—1

50 2

51 3

— -0 O O QOO OO O OO0 O =0

7-12 The BCD Interface for BASIC/WS

Binary Mode ENTER (continued)

Logic | Decimal | ASCII
Signal Name | Level | Value |Character
DI7—8 0 69 E
DI7—4 1
DI7T—2 0
DI7—1 0
DI8—8 0
DI8—4 1
DIg—2 0
DI8—1 1
DIS-8 0 53 5
DI9-4 0
DI9-2 1
DI9-1 1
DI10-8 0
DI10-4 1
DI10-2 0
DI10-1 1

Let’s make the same assumptions that have been made in the previous
examples: the logic sense of the data lines is positive-true (the “DATA” switch
is set to “ON”). Assume that the following ENTER statement has been
executed.

ENTER Bcd USING "B";Bytel,Byte2,Byte3,Byte4,Byteb

The Control signal line (CTLA) is placed in the Set state by the computer to
signal to the peripheral that a data transfer is to take place. The peripheral
responds on the Data Flag line (DFLGA), completing the handshake and
clocking (“latching”) the data on the lines into interface registers.

The Binary-Mode driver begins reading the line states as bytes in the order
DI1 through DI10; the first byte contains DI1 as the most significant bits and
DI2 as the least significant bits. The second byte contains DI3 and DI4, and so
forth. In this case, the values 49, 50, 51, 69, and 53 are given to the variables
Bytel through Byte5, respectively.

The BCD Interface for BASIC/WS 7-13

In this example, the “B” image is used to direct the computer to enter the data
on the input signal lines as bytes. A line-feed character is generated by the
driver to terminate the ENTER statement.

As another example, suppose that the data on the input lines and the switch
settings are as in the preceding example. Let’s look at how the computer would
enter the data with the following statement.

ENTER Bcd;Number

As in the preceding example, the ENTER statement latches the data into the
interface registers with the same handshake. The Binary-Mode driver begins
reading the line states as bytes in the order DI1 through DI10; the first byte
contains DI1 as the most significant bits and DI2 as the least significant

bits. The second byte contains DI3 and DI4, and so forth. In this case, the
characters “123E5” are entered, followed by a line-feed generated by the driver.
In this case, the variable Number receives a value of 1.23E+7.

Alternate Methods of Entering Data

As with other interfaces, the data signal lines’ logic states can be read with
STATUS statements. However, no handshake is performed with this method of
entering data.

With the BCD Interface, STATUS registers 5 through 9 contain digits DI1
through DI10, and STATUS register 4 contains SGN1, SGN2, and OVLD.
Examples are given in the main section of this chapter.

Outputting Data

Data may be output through the BCD Interface by using the OUTPUT
statement. Data are sent through the eight output lines in byte-serial fashion.
The eight lines are called DO-7 through DO-0, in which DO-7 is the most
significant bit. Numeric data are sent with the most significant digits first;
string data are sent with the lowest-subscripted string characters sent first.
Representation depends on whether FORMAT ON or FORMAT OFF is in
effect.

Let’s look at how data are output through the BCD Interface with the
following OUTPUT statement.

OUTPUT 11;"A2C"

7-14 The BCD Interface for BASIC/WS

With OUTPUT, each byte is transferred under control of a handshake which
is identical to a corresponding ENTER handshake. The Binary-Mode driver
does not send four-bit BCD digits, it sends entire bytes of data; so the driver
does not perform any ASCII-to-BCD translation. The items specified in the
OUTPUT list are evaluated and sent to the BCD Interface byte-serially. The
following diagram shows the logic signals that appear on the Data Output
signal lines:

Data Output
Decimal
ASCII Char. Value DO-7 DO-6 DO-5 DO-4 DO-3 DO-2 DO-1 DO-0
A 65 0 1 0 0 0 0 0 1
2 50 0 0 0 0 1 0
C 67 0 1 0 0 0 0 1 1
Cr 13 0 0 0 0 1 1 0 1
Le 10 0 0 0 0 1 0 1 0

Notice that the free-field convention is used, since the free-field form of

the OUTPUT statement was used. The CR-LF (default) EOL sequence is
sent after all items have been output. The same data may be sent with the
following statement.

OUTPUT 11 USING "#,B";65,50,67,13,10

Other examples are given in the main section of the chapter.

Configuring the Interface

This section describes the range of or recommended interface’s switch settings
for use with BASIC language. The switch locations are described in the
HP 98623 BCD Interface Installation Note.

The BCD Interface for BASIC/WS 7-15

Determining Interface Configuration

If the interface is already installed in a computer which currently has the
BASIC-language system resident, you can determine the configuration by
running the following program. If the interface is not yet installed, you may
want to check the switch settings as you read this section to see that they are
set for use with your particular application.

100 PRINTER IS 1

110 PRINT CHR$(12) ! Clear screen.

120 !

130 DISP "Enter select code of BCD Interface."
140 ENTER 2;Isc

150 DISP

160 !

170 ON ERROR GOTO Skip_status ! Skip if bad isc.
180 STATUS Isc;Id

190 Skip_status: OFF ERROR

200 !

210 PRINT "The Interface at select code ";Isc;
220 IF Id=4 THEN

230 PRINT "is a BCD Interface."

240 ELSE

250 PRINT "is NOT a BCD Interface."
260 PRINT "Program terminated."

270 STOP

280 END IF

290 PRINT

300 !

310 CONTROL Isc;1 ! Reset interface.
320 !

330 STATUS Isc,1;Intr_status

340 Mask=2"5+2"4 ! Mask out all but bits 5 and 4.

350 Bits_set=BINAND(Intr_status,Mask)

360 Hd_prior=(Bits_set MOD 16)+3 ! Shift Rt. and add 3.

370 PRINT "Hardware priority (Interrupt Level) is ";Hd_prior;"."
380 PRINT

390 !

400 STATUS Isc,3;Binary_mode

410 IF Binary_mode THEN

420 PRINT "Binary mode selected."
430 ELSE

440 STATUS Isc,4;Switches

450 IF BIT(Switches,7)=1 THEN

7-16 The BCD Interface for BASIC/WS

460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790

PRINT "BCD mode, Optional format selected (2 devices)."
ELSE
PRINT "BCD mode, Standard format selected (1 device)."
END IF
END IF
PRINT
!
PRINT "Logic sense of signals:"
IF BIT(Switches,6)=1 THEN

PRINT " Input data: Low=1, High=0."
ELSE

PRINT " Input data: Low=0, High=1."
END IF

!
IF BIT(Switches,5)=1 THEN

PRINT " SGNi: High=""+"", Log=""-nn n
ELSE

PRINT " SGN1: High=""-"", Low="r+m »
END IF

1
IF BIT(Switches,4)=1 THEN

PRINT " SGN2: High=""+"", Low=""-nn u
ELSE

PRINT " SGN2: High=""-"", Low=""4n n
END IF

!
IF BIT(Switches,3)=1 THEN

PRINT " OVLD: High=0, Low=8."
ELSE

PRINT " OVLD: High=8, Low=0."
END IF
PRINT

END

Setting the Interface Select Code

The interface’s select code setting determines the value of the interface select
code parameter in which is used in ENTER and OUTPUT statements to
specify the interface through which data is to be sent. The allowable range is 8
through 31, since internal interfaces already use select codes 1 through 7. Keep
in mind that no two interfaces should be set to the same select code.

The BCD Interface for BASIC/WS 7-17

The default select code is 11. If a different select code is desired, set the
switches as described in the installation note.

Setting the Hardware Priority (Interrupt Level)

The hardware priority assigned to an interface determines the order in which
the interrupts from the interface are logged by the system. The software
priority of interrupts determines the order of interrupt service, which is
independent of this hardware priority.

A default setting of 3 is generally used. See the installation note for switch
location and settings.

Setting the Peripheral Status Switches

The peripheral status switches are used to select the format of BCD data and
the logic sense of data input lines. The OF switch selects between the Optional
BCD format and the Standard BCD format. Set the switch to ON (default) if
Standard is desired, or to OFF if Optional format is desired. The setting of
this switch is irrelevant if the interface is only to be used in the Binary mode.

The DATA switch determines the logic sense of all 40 data input lines. If set to
ON, positive-true logic is used (logic high is a 1). If set to OFF, negative-true
logic is used; (logic low is a 1).

The SGN1 and SGN2 switches determine the logic sense of the respective
sign-bit signal lines. If set to ON, a logic high signifies a “~” and logic low
signifies a “4+”. If set to OFF, a logic high signifies a “+” and logic low
signifies a “—".

The OVLD switch determines the logic sense of the OVLD signal line. If set to
ON, a logic high is entered as an “8” and a low is entered as a “0”. If set to
OFF, alogic high is entered as a “0” and low is an “8”.

Setting the Handshake Configuration

The handshake used by the BCD Interface is a two-wire handshake that
synchronizes the exchange of data in one of two general manners: Type

1 timing or Type 2 timing. Type 1 and Type 2 timing differ in when the
peripheral’s data are clocked (latched) into the interface’s data registers.

7-18 The BCD Interface for BASIC/WS

The logic sense of both the Control lines from the computer (CTLA and
CTLB) and Data Flag lines from the peripheral (DFLGA and DFLGB) are
switch-selectable.

Type 1 Timing

With Type 1 handshake timing, the Busy-to-Ready transition of the
peripheral’s data flag line (DFLGA or DFLGB) Clears the Control line (CTLA
or CTLB) from the computer and clocks the data into the interface’s Data In
registers. The following timing diagram shows an example of how this sequence
of events takes place. Note that the CTLA and DFLGA switches are set to
OFF (Low-true).

Clear —=©— —
CTLA . .y
Set — ¢ T
Busy y_"’“__‘
DFLGA
Ready o &

0 2 &rrirrd
Data Lines 1 %7 gZZe X Da:a EVcllid

T 1 12 T3 T4

Type 1 Handshake Timing Diagram

At time t0, CTLA is Clear and DFLGA is Ready, indicating that a transfer
may be initiated. At time t1, the computer initiates the handshake. At t2, the
peripheral responds by placing DFLGA Busy. The peripheral then places the
data on the data lines. When data have settled, the peripheral completes the
handshake by placing DFLGA Ready, which also Clears CTLA and clocks the
data into the interface registers (at time t4). Another handshake cycle may
then be initiated by the computer.

The BCD Interface for BASIC/WS 7-19

Note If only one peripheral is connected to the interface, connect
the CTLB line to the DFLGB line and set both CTLB and
DFLGB switches to the OFF positions. If this is not done, the

handshake cannot be completed.

Type 2 Timing

With Type 2 handshake timing, the Ready-to-Busy transition of the
peripheral’s data flag line (DFLGA or DFLGB) Clears the Control line from
the computer; however, the Busy-to-Ready transition still clocks the data
into the interface’s Data In registers. The following timing diagram shows an
example of how this sequence of events takes place. Note that the CTLA and
DFLGA switches are set to OFF (Low-true).

Clear —©6— X3
CTLA
Set 0 d
Busy —0 -
DFLGA
Ready —©———?&——
0 [P 3
Data Lines /‘Z/ /:>< Data Valid
1 < ¢ 4 v
TO T1 T2 T3 T4

Type 2 Handshake Timing Diagram

At time t0, CTLA is Clear and DFLGA is Ready, indicating that a transfer
may be initiated. At time t1, the computer initiates the handshake. At t2, the
peripheral responds by placing DFLGA Busy, which also Clears CTLA. When
ready, the peripheral places DFLGA Ready (at time t4), which also clocks

the data into the interface registers. Another handshake cycle may then be
initiated by the computer.

7-20 The BCD Interface for BASIC/WS

Note If only one peripheral is connected to the interface, connect
i the CTLB line to the DFLGB line and set both CTLB and

t DFLGB switches to the OFF positions. If this is not done, the
handshake cannot be completed.

Configuring the Cable

The installation note describes how to connect the cable wires. Any unused
lines should be connected as follows: connect the line to the “4+5 Ref” signal
line if the line is to be read as high, or to logic ground if the line is to be read
as low. With lines such as SGN1, SGN2, and OVLD the line may be tied either
to ground or to +5V, because the logic-sense switch allows either sense to be
selected independent of other signals.

Note Be sure to follow the recommendations in the installation note
i exactly to ensure signal integrity and operator safety.

Interface Reset

The interface should always be reset to ensure that it will be in a known state
before use. All interfaces are automatically reset by the computer at certain

times: when the computer is powered on, when the ((shift}(Reset) on an
ITF keyboard) key is pressed, and at other times described in the Reset Table

(in the Useful Tables). The interface may also be reset by BASIC programs, as
in the following examples.

Bcd=11
CONTROL Bcd;1

Reset_value=1
CONTROL Bcd,O;Reset_value

RESET Bcd

The BCD Interface for BASIC/WS 7-21

The following action is take when the BCD Interface is reset:

m The peripheral reset signal line (PRESET) is pulsed low for at least 15
microseconds.

m The CTLA and CTLB handshake lines are Cleared.
m The Data Out register is cleared (set to all 0’s).

m The Interrupt Enable bit is cleared, disabling subsequent interrupts until
re-enabled by the program, and the Interrupt Request bit is set.

The state of the BCD/Binary Mode register (STATUS and CONTROL
Register 3) is unchanged by the Interface Reset.

Entering Data Through the BCD Interface

This section describes BASIC programming techniques useful for entering

data through the BCD Interface. Several examples of entering data were

given in the first section to show how the interface works in BCD Mode with
Standard and Optional formats and Binary Mode. This section gives additional
general techniques for entering data from peripheral devices. If you need
further explanation of how the ENTER statement works, refer to the chapter
“Entering Data”; the chapter entitled “Registers” discusses the STATUS
statement.

The diagrams and corresponding BASIC-language statements in this section
show how data on the interface signal lines get read by the ENTER statement
and corresponding values assigned to BASIC-language variable(s). The
notation used in the examples is that the name of the interface signal line (or
group of lines) is shown above the decimal value and ASCII character that the
driver produced by reading the line(s). The logic sense of the lines is not shown
here; see the preceding configuration section for a description of selecting the
logic sense of the interface signals.

As an example, the following drawing shows that an ASCII “4-” was generated
by the driver when it read the SGN1 signal line; similarly, the four signals

of the group DI5 produced a period character. The driver produces the “E”
(exponent), comma, and line-feed characters automatically.

7-22 The BCD Interface for BASIC/WS

SGN1 DI DI2 DI3 DI4 DI6 pI7 SGN2 DI9 OvLD DI10

3 KN EN SN 88 £ EA A S K PN KA R N

The following statements show how the preceding data might be entered and
the resultant values assigned to program variables.

Bcd=11
ENTER Bcd;Number,Function
PRINT "Number= "« Number

PRINT "Function= ";Function

The following display is the result of executing the preceding statements.

Number= 1.234678E-3
Function= 4

Entering Data from One Peripheral

There are several methods of entering data through the BCD Interface when
only one peripheral device is connected. The Standard BCD format can be
used with many devices; the Binary mode must be used with others, and some
require that you write your own “drivers.”

Entering with BCD-Mode Standard Format

Using the Standard format of BCD mode usually provides the most convenient
means of entering data from one device. This format allows up to 8 BCD
digits for mantissa and one BCD digit for exponent. The state of an
overload-indicator signal and one optional BCD digit can also be entered, if
desired.

SGN1 DI DI2 DI3 D4 DIS DI 07 DI SGN2 DI9 OvLD DI10

Ledol - Jsfefsfefofole]e]e] . Ja]e]v]

100 ENTER 11 ;Number,Function
110 PRINT "Number= " ;Number
120 IF Function>=80 THEN

The BCD Interface for BASIC/WS 7-23

130 PRINT "Overload of function ";Function-80
140 ELSE

150 PRINT "Function= ";Function

160 END IF

The following results would be printed by the preceding program segment:

Number= 3456
Overload of function 4

The ENTER statement calls the Standard-format driver, which reads the
BCD characters on the interface lines in the order shown and generates the
appropriate ASCII characters. Characters are entered until the “,” is read,
which terminates entry into the variable Number. The characters after the
comma are used to build the value of Function. The ENTER statement is
properly terminated when the line-feed (an ENTER-statement terminator) is

encountered.

Notice that an “8” is generated by the driver when the OVLD line is true. The
BASIC program must “separate” this from the “function” digit (DI10). The
method shown in the example is only one of many methods available.

If a second variable would not have been included in the preceding ENTER
statement, ENTER would have continued asking the driver for characters until
it encountered the line-feed, which terminates the statement.

To contrast the preceding example, suppose that the following statement has
been executed:

ENTER 11 USING "#,K";Number

In this case, the # specifier directs the ENTER statement to suppress

its default requirement of looking for a line-feed character (or other
statement-termination condition) to terminate the ENTER. Thus, the comma
terminates both entry of data into Number and the ENTER statement.
Consequently, a subsequent ENTER statement would begin entering characters
beginning with the “8” character (OVLD), which may not be the desired
action.

In such a case, several remedies are possible. The simplest is probably to go
ahead and include a second variable so that the driver is left pointing to the
first character after the ENTER is completed. The second variable is thus used
for a “dummy” read operation. Another remedy is to write a non-zero value
to BCD CONTROL register 1, which “resets” the driver pointer to the first

7-24 The BCD Interface for BASIC/WS

character of the format (SGN1). Executing the following statement performs
the driver reset.

CONTROL 11,1;1

This type of “problem” may also occur when the BCD device sends a line-feed
as one of the BCD characters.

SGN1 DIt DI2 DI3 DI+ DIS D6 DI7 DI3 SGN2 DI9 OvVLD DI10

[l [efwfefslelr]w]ele]o] [ofo]uw]

In such case, two numbers are sent separated by line-feeds. The following
statements would read these two numeric values and then reset the driver
pointer to the first character (the SGN1 character).

ENTER 11;Number_1,Number_2
CONTROL 11,131

If the CONTROL statement had not been executed, the driver would have
been left pointing to the “E” character.

As another example, suppose the exponent is to be ignored but the overload
and function digits are to be read. The following statement would be
appropriate in such a situation.

ENTER 11;Number_1,Number_2,Dummy,Function

The variable Dummy is so named to show that it is included in the ENTER

statement only to ensure that the overload and function digits are read and 7
assigned to a variable (i.e., it is not used for any other purposes). Of course,

the value could be used if desired.

If your application requires reading only certain characters or groups of
characters, you may want to read the chapter “Entering Data” to see more
examples of using images with ENTER statements.

Entering with the Binary Mode

If your application represents data with eight-bit ASCII characters or has a
data format that is not compatible with the Standard BCD format, the Binary
Mode can be used. With the Binary Mode, data are entered in groups of eight

The BCD Interface for BASIC/WS 7-25

bits each, rather than in groups of four-bit BCD digits. Five bytes are latched
with each handshake; the driver reads the bytes sequentially until the fifth byte
is read, after which it sends a line-feed character to terminate the ENTER.
Another handshake operation is required if more data are to be entered.

As an example, let’s assume that the following logic signals are present on the
interface lines. Only 16 signals are shown here because that is all that we will
be using for this example.

Sixteen Signals

Logic | Decimal | ASCII
Signal Name | Level | Value |Character
DI1—8 0 65 A
DI1—4 1
DI1—2 0
DI1—1 0
DI2—8 0
DI2—4 0
DI2—2 0
DI12—1 1
DI3—8 0 49 1
DI3—4 0
DI3—2 1
DI3—1 1
DI4—8 0
DI4—4 0
DI4—2 0
DI4—1 1

Assume also that the I/O path name “@Bcd” is assigned to the select code of a
BCD Interface. The following ENTER statement enters these two bytes of data
as numbers in the range 0 through 255.

ENTER €Bcd USING "B";Dil_di2,Di3_di4
The “B” specifier directs the computer to enter one byte of data from the
interface and place it into the corresponding numeric variable, which happens

two times in this case. The variables Di1_di2 and Di3_di4 receive values of 65
and 49, respectively. The ENTER statement continues to request characters

7-26 The BCD Interface for BASIC/WS

from the Binary-Mode driver until a line-feed (generated by the driver) is
returned, which terminates the ENTER statement. Even though only two
bytes were used to fill variables in this example, all five bytes of data were read
from the interface.

The following statement could be used to enter the two bytes as one 16-bit
word.

ENTER €@Bcd USING "W'";Wordil
The variable “Word1” receives a value of 16 689 (256*65 + 49).

As another example, suppose that the data on the lines are to be interpreted as
ASCII characters. The following diagrams show the ASCII representations of
data read from the interface; entering ten bytes of data in this mode requires
two handshake cycles.

DI&DI2 DI3&DI4 DIS&DI6 DI7&DI8 DIS&DIT0
N ENERENERY
DH&DI2 DI3%DI4 DIS&DI6 DI7&0I8 DIS&DIIO

Le [718 fels |

The following ENTER statement enters characters until an item terminator is
found and then calls the “number builder” routine to construct the number;
this sequence is performed for each numeric variable in the statement.

ENTER Bcd; Number_1,Number_2

In this case, Number_1 is assigned a value of 12345, and Number_2 is assigned
6.78E+5. With a Binary-Mode ENTER, the driver does not read SGN1,
SGN2, or OVLD, and does not insert any E’s, or commas; only a line-feed is
generated as a sixth character to terminate the ENTER statement.

If your application has a data format that is not compatible with the Standard
BCD format, the Binary Mode can be used in conjunction with a routine of
your own design that is tailored for your application’s requirements. Let’s look
at an example of how this might be accomplished.

The BCD Interface for BASIC/WS 7-27

Suppose that your peripheral requires five digits of mantissa but must have
three exponent digits and two function digits. A program will be used to read
the data using the desired format. If the peripheral’s handshake method is
compatible with one of the handshake types available on the BCD Interface,
the Binary mode may be used to enter the data; if not, see the example of
implementing a handshake in the next section.

For this example, suppose the following conditions exist: the mantissa is
entered from DI1 through DI5, the exponent is entered from DI6 through DIS8,
and function is entered from DI9 and DI10. The mantissa and exponent signs
and the overload indicator are still available as individual signal lines, but they
must be read with the STATUS statement.

The subroutine shown in the following program reads the data on the lines
with ENTER and STATUS statements and then formats the data as required
for the application. The formatted information is then entered from a string
variable into the desired numeric variables.

100 ! This program executes a subroutine which enters data from the
110 ¢ BCD Interface using Binary mode and formats it as follows:
120 !

130 ! SGN1 DI1 DI2 DI3 DI4 DI5S5 E SGN2 DI6 DI7 DI8 |,
140 ! OVLD DI9 DI10 LF

150 !¢

160 ! Define ordering of BCD characters.

170 Bcd_chars$="0123456789+,-E"

180 !

190 Bcd=11

200 CONTROL Bed,3;1 ! Set Binary mode.

210 !

220 GOSUB New_format ! Execute subroutine.

230 ENTER Format$;Number ,Function ! Use results for ENTER.
240 PRINT "Number=';Number
250 PRINT "Function=";Function

260 !

270 STOP

280 !

290 New_format: ! *xxxxx*x Beginning of Subroutine. *xkxxkk
300 !

310 ! Perform a Binary-mode ENTER.

320 ENTER Bcd USING "5A";Bytes$! 5 bytes read.

330 !

340 ! Use STATUS to read SGN1, SGN2, OVLD.

350 STATUS Bcd,4;Sgns_and_ovld

7-28 The BCD Interface for BASIC/WS

360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750

'
! Generate two ASCII characters from each byte.
FOR Byte=1 TO 5
1
! Get numeric value of single byte from Bytes$.
Char=NUM(Bytes$[Bytel)
1
! Upper 4 bits form first ASCII char.
Up_4_bits=Char DIV 16 ! Shift right 4 places.
! Use numeric value as index into Bcd_chars$.
First_char$=Bcd_chars$[Up_4_bits+1;1]
]
! Lover 4 bits form 2nd ASCII char.
Lo_4_bits=Char MOD 16 ! Mask upper 4 bits.
! Use numeric value as index into Bcd_chars$.
Second_char$=Bcd_chars$[Lo_4_bits+1;1]
)
! Now append characters onto format string.
Digits$[2+«Byte~1]=First_char$&Second_char$
1

NEXT Byte

]

!

! Calc. SGN1’s and SGN2’s ASCII representations.
Sgn1=BIT(Sgns_and_ovld,2)

Sgn1$=CHR$(43+2*Sgn1) ! "+" if Lo; "-" if Hi.
Sgn2=BIT(Sgns_and_ovld,1)
Sgn2$=CHR$(43+2*Sgn2) ! "+" if Lo; "-" if Hi.

[}

! Calc. Overload’s ASCII representation.
0v1d=BIT(Sgns_and_ovld,0)

Ov1d$=CHR$ (48+8*0vld) ! "0" if Lo; "8" if Hi.
1
Number$=Sgn1$&Digits$[1,5]&"E"&Sgn2$&Digits$[6,8]
Function$=0v1ld$&Digits$[9,10]

Format$=Number $&'*,"&Function$&""

'

RETURN ! ***xx3»* End of Subroutine. *****xx

1

END

Entering with STATUS Statements

The preceding examples assumed that the handshake options available with
the BCD Interface are compatible with your peripheral. This section shows

The BCD Interface for BASIC/WS 7-29

examples of designing enter operations using STATUS and CONTROL
statements to implement your own handshakes.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320

Note that the program uses the Interrupt Request bit (bit 6 of register 1) to
determine when the handshake is completed by the peripheral. This bit is
cleared (0) when a Request is performed (i.e., when the handshake is initiated
by writing a non-zero value to CONTROL register 2). The bit is set when the
peripheral acknowledges the Control (CTLA/B) signal by responding with
Data Flag (DFLGA/B). The acknowledgement occurs when the Control line
is Cleared by the leading edge of Data Flag (Type 2 timing) or by its trailing

Bcd=11
CALL Enter_bytes(Bcd,Bytes$)
PRINT Bytes$

STOP

END
'

SUB Enter_bytes(Isc,Return_string$)

Check:

'
CONTROL Isc,2;1 ! Initiate handshake.
1

STATUS Isc,i;Intr_stat
Irq=BIT(Intr_stat,6)
IF NOT Irq THEN Check ! Wait for response.
1

! Now read bytes in registers 5 -> 9.

STATUS 11,5;R5,R6,R7,R8,R9

)

! Return bytes as a string.
Return_string$=CHR$ (RE) &CHR$ (R6) CHRS (RT)
Return_string$=Return_string$&CHR$ (R8)&CHR$ (R9)
1

SUBEND

edge (Type 1 timing).

The transfer of data can also be implemented with interrupts, which is
described in the BCD Interrupts section.

7-30 The BCD Interface for BASIC/WS

Entering Data from Two Peripherals

Data can be entered from two devices by using either BCD-mode Optional
format or by using STATUS statements. Optional format allows up to 4
BCD digits from the first peripheral and up to 5 BCD digits from the second
peripheral; overload from either device may also be detected. Data from each
device is handshaked independently.

Optional Format

This section describes how to use the Optional format with BASIC programs.
In order to use this format, the peripheral’s handshake convention must be
compatible with one of the handshake options available on the BCD Interface.
Since the preceding section described how to implement handshake routines
with STATUS and CONTROL statements, you should refer to that discussion
if your application requires that type of solution.

With the BCD-Mode Optional format, the data, sign, and overload signals are

read and formatted into ASCII characters in the following sequence:

SGN1 DI4 DI2 D6 DI8 SGN2 D10 DIt OIS DI3 017 ovLb DI9

X3 5 3 3 K P S S K N N B EA R K

The following program segment shows an example of how these characters
might be entered and stored in variables.

100 ENTER 11;Number_1,Number_2

110 PRINT "Number 1= ";Number_1
120 PRINT "Number 2= " ;Number_2

The following results would be printed by the preceding program segment:

Number 1= 4268
Number 2= -1537

The ENTER statement calls the Optional-format driver, which reads the
signals on the interface lines in the order shown and generates the appropriate
ASCII characters. Characters are entered and sent to the “number builder”
until the “,” is read, which terminates entry into the variable Number_1; the
internal representation of the numeric value is then generated. The characters

The BCD Interface for BASIC/WS 7-31

after the comma are used to build the value of Number_2. The ENTER
statement is properly terminated when the line-feed (an ENTER-statement
terminator) is encountered.

If a second variable would not have been included in the preceding ENTER
statement, ENTER, would have continued asking the driver for characters until
it encountered the line-feed, which terminates the statement.

It is important to note that an “8” is generated by the driver when the OVLD
line is true or when any of the bits of DI9 are true, making the possibilities

of exponent values 0, 8, 80, or 88; consequently, the BASIC program must
“separate” these overload indicators.

Separating overload information from the mantissa may be a problem when one
number can be represented in two ways; for instance, “.0001E8” and “10000”
both represent the value “1.0E+4”, but the two representations have entirely
different meanings. The first representation indicates an overload on the second
device, while the second value does not.

To solve this potential problem, the second number can be entered into a string
variable, as shown in the following segment.

100 ENTER 11;Number_1,Number_2$

110 !

120 ! Separate 2nd mantissa and exponent.
130 Exponent$=Number_2$[8,9]

140 Number_2$=Number_2$[1,6]

150 1

160 ! Place 2nd mantissa in numeric variable.
170 ENTER Number_2$;Number_2

180 !

190 PRINT "Number 1=";Number_1

200 ! Check overload information.

210 IF Exponent$[1;1]="8" THEN

220 PRINT "Overload on device 1."
230 PRINT

240 END IF

250 !

260 PRINT "Number 2=";Number_2

270 t Check overload information.

280 IF Exponent$[2]="8" THEN

290 PRINT "Overload on device 2."
300 PRINT

310 END IF

7-32 The BCD Interface for BASIC/WS

320 PRINT
330 !
340 END

The program checks the exponent digits separately and indicates an overflow
on either device.

To contrast the preceding examples, suppose that the following statement has
been executed:

ENTER 11 USING "#,K";Number

In this case, the # specifier directs the ENTER statement to suppress

its default requirement of looking for a line-feed character (or other
statement-termination condition) to terminate the ENTER. Thus, the comma
terminates both entry of data into Number and the ENTER statement.
Consequently, a subsequent ENTER statement would begin entering characters
beginning with the character following the comma (i.e., the first character of
the second number), which may not be the desired action.

In such a case, several remedies are possible. The simplest is probably to go
ahead and include a second variable so that the driver is left pointing to the
first character after the ENTER is completed. The second variable is thus used
for a “dummy” read operation. Another remedy is to write a non-zero value

to BCD CONTROL register 1, which “resets” the driver pointer to the first
character of the format (SGN1). Executing the following statement performs
the driver reset.

CONTROL 11,131

This type of situation may also occur when the BCD device sends a line-feed as
one of the BCD characters.

SGN1 DIl4 DI2 D6 DI8 SGN2 D10 DIt DIS DI3 DI7 DI9 OwD

el le]afuwf [«fofr]s]sfuw]efofolwv]

In such case, two numbers are sent separated by line-feeds. The following
statements would read these two numeric values and then reset the driver
pointer to the first character (the SGN1 character).

ENTER 11;Number_1,Number_2

The BCD Interface for BASIC/WS 7-33

CONTROL 11,1;1

If the CONTROL statement had not been executed, the driver would have
been left pointing to the “E” character.

Outputting Data Through the BCD Interface

All data outputs through the BCD Interface are made through the eight output
lines. There are two general methods of sending data to devices through the
BCD Interface—by using CONTROL statements and by using OUTPUT
statements. With CONTROL statements, the data are latched on the output
lines, but the handshake (if desired) must be performed with STATUS and
CONTROL statements. With the OUTPUT statement, each data byte is sent
individually under handshake control. With both methods, neither the setting
of the Optional Format switch nor the current Mode (BCD or Binary) has any
effect on how data are output through the interface.

Output Routines Using CONTROL and STATUS

Many applications do not require that data be sent with a handshake
operation. In such cases, the following example shows how one byte of data
may be sent to the peripheral.

100 Byte=2"6+2"4 ! Set Bits 6 and 4.
110 CONTROL 12,4;Byte ! Send data w/o handshake.

If your application requires a handshake which is not compatible with the
handshake options available on the BCD Interface, you can program your
own. The following program shows an example handshake. The transition of
the Data Flag signal that Clears the Control signals is still determined by the
setting of the CTLA-2 and CTLB-2 switches. See the configuration section for
further details.

100 Bed=11

110 Chars$="1A2B"

120 Eol$=CHR$(10) ! LF is EOL sequence.
130 CALL Output_bcd(Bcd,Chars$,Eol$)
140 !

150 END

160 !

7-34 The BCD Interface for BASIC/WS

170 SUB Output_bcd(Isc,Characters$,Ecl$)

180 !

190 Output_data$=Characters$&Eol$

200 FOR I=1 TO LEN(Output_data$)

210 CONTROL Isc,2;1 ! Initiate handshake.
220 !

230 ! Now output byte(s) to registers 4.
240 CONTROL Isc,4;NUM(Output_data$[I;1])
250 !

260 ! See if Ready for next byte.

270 Check: STATUS Isc,1;Intr_stat

280 Irq=BIT(Intr_stat,6)

290 IF NOT Irq THEN Check ! Wait for response.
300 !

310 NEXT I

320 !

330 SUBEND

The data are output on the Data Output lines in byte-serial fashion. The
program uses the Interrupt Request indicator (Bit 6 of STATUS Register 1)
to indicate the interface’s and peripheral’s joint readiness for a subsequent
handshake operation. Interrupts can also be used; for more details, see the
discussion of BCD Interrupts.

Sending Data with OUTPUT

With the OUTPUT statement, data are output byte-serially, one byte per

handshake cycle. The following program shows an example of outputting data
through the BCD Interface.

100 Bcd=11

110 OUTPUT Bcd; 123,456, "ABC","DEF"
120 OUTPUT Bcd;123,456;"ABC"; "DEF"
130 OUTPUT Bcd;"123","456";

140 !

150 END

The following diagram shows the sequence of ASCII characters sent to the
destination device with the preceding program. The notation indicates that
each ASCII character is sent through the output lines DO-7 through DO-0.

The BCD Interface for BASIC/WS 7-35

(T L] oo lel [[e e [e [o [e [r [oo cmmmmen

(TG Tl el~[e e o [[7 [e craraners]
[Tasferele]s]

Notice that when a comma follows an output item in a free-field OUTPUT
statement, a numeric item in the output data is terminated by a comma and a
string item is terminated by a CR/LF sequence (one carriage-return and one
line-feed character). If an item is followed by a semicolon, no item terminator
is sent. If an item is the last one in the output list, an end-of-line (EOL)
sequence is sent instead of the item terminator; the default EOL sequence is a
CR/LF with no time delay. Changing the EOL sequence is described in the
chapter “Outputting Data”.

In the preceding program, the FORMAT ON attribute was in effect so

the ASCII representation of each data item was generated and sent to the
peripheral device. It is also possible to OUTPUT with FORMAT OFF in effect
by using I/O path names. See Chapter 10 for further details.

It is interesting to note that all handshake cycles latch both input and output
data. In the following example, an OUTPUT statement is used to place one
byte on the Data Out lines under handshake control. A STATUS statement is
then used to read the Data In lines, since the handshake operation also latched
the data on the input lines into STATUS Registers.

7-36 The BCD Interface for BASIC/WS

100 Byte=64+32 ! Set bits 6 and 5.
110 OUTPUT 11 USING "#,B";Byte ! Handshake byte 1 out.
120 ! Now read SGN1, SGN2, OVLD, and DI1 thru DIi1O0.
130 STATUS 11,4;Reg4,Reg5,Reg6,Reg7,Reg8,Reg9

140 Sgni1=BIT(Reg4,2)

150 Sgn2=BIT(Reg4,1)

160 0v1d=BIT(Reg4,0)

170 Dil=Regb DIV 16

180 Di2=Reg5 MOD 16

190 Di3=Regé DIV 16

200 Di4=Reg6 MOD 16

The program determines the states of the sign, overload, and data lines. The
data may then be formatted as desired.

BCD Interface Timeouts

When a peripheral device does not respond to a handshake request from the
computer, it is convenient to be able to sense this condition and respond

accordingly. Using the ON TIMEOUT statement sets up and enables a branch

which will be initiated when the computer determines that the interface has

taken too much time to respond. 7

Timeout events were generally discussed in the chapter “Interface Events”.
However, specific details such as the effects of the TIMEOUT event’s
occurrence on each interface and how the time parameter is measured were not
described. This section describes such topics.

The BCD Interface for BASIC/WS 7-37

Timeout Time Parameter

When an ON TIMEOUT is set up for an interface, the time required to
complete each handshake is measured and compared to the time specified in
the ON TIMEOUT statement. The interval measured is shown in the following
diagram.

Type 2 Type 1
Timing Timing
Clear —
CTLA
Set
Busy
DFLGA
Ready
<«) —p
o Em— T1-——————-—)~

Measuring the BCD Interface’s TIMEOUT Parameter

Timing begins when the CTLA (or CTLB) signal is placed in the Set state to
initiate a handshake cycle. The computer continues to check the time elapsed
against the specified time (TIMEOUT time parameter). Timing ends when the
peripheral has completed its response; with both Type 1 and Type 2 timing,
this occurs only when the Control line is cleared and the Data Flag line is
placed in the Ready state by the peripheral.

Timeout Service Routines

When a TIMEOUT occurs, the computer automatically executes an Interface
Reset. The Peripheral Reset line to the peripheral (Preset) is pulsed low for at
least 15 microseconds, and CTLA and CTLB are then Cleared. This action
should “get the peripheral’s attention”, if it is functional. The service routine
should then take the appropriate corrective action. See a previous section
called “Interface Reset” for further effects of the reset.

Timeout service routines generally determine whether or not the peripheral
is still functional. If so, the computer may take corrective action such as to

7-38 The BCD interface for BASIC/WS

re-initiate the preceding transfer. If not, perhaps the program may inform the
operator of the condition and then proceed.

The following program shows an example of setting up a branch to a
service routine upon detecting a TIMEOUT on the BCD Interface. When a
TIMEOUT occurs while trying to send the first message, the service routine
attempts to send an escape character to the peripheral, which here is a request
for status of our fictitious peripheral. If the peripheral does not respond, the
destination of data is changed to the CRT.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430

Bcd=11

! Interface select code of BCD.

Dest=Bcd ! Destination is device is BCD.
ON TIMEOUT Bcd,2 GOSUB Try_bcd_again

Message$="This sent to BCD."
OUTPUT Dest;Message$
! If TIMEOUT, this line is executed upon RETURN.

! All subsequent data sent to Dest=CRT (if TIMEOUT).
Message$="This sent to CRT."
OUTPUT Dest ;Message$

'
STOP
'

Try_bcd_again: ON TIMEOUT Bcd,3 GOTO Forget_it

Forget_it:

1

! See if escape character is accepted.
OUTPUT Bcd USING "#,B";27

! If accepted, then 2nd TIMEOUT didn’t occur;
! so this segment might contain a routine

! that interrogates a peripheral.

'

ON TIMEQUT Bcd,3 GOSUB Try_bcd_again

GOTO Exit_point

'

PRINT "BCD Down; Data will be sent to CRT."
PRINT

Dest=1

BEEP

OFF TIMEOUT Bcd ! No longer need active TIMEOUT.
)

Exit_point: RETURN ! to line following TIMEOUT’s occurrence.

END

The BCD Interface for BASIC/WS

7-39

The timeout service routine may be programmed to attempt to continue the
transfer where it timed out; however, this action may be difficult to implement
for two reasons: the computer may not be keeping track of where in the
transfer the TIMEOUT occurred, and the automatic Interface Reset performed
when the TIMEOUT occurred may have also reset the peripheral. How your
program implements the transfer and how the peripheral responds to the reset
will determine the feasibility of continuing the transfer.

BCD Interface Interrupts

The BCD Interface can detect one type of interrupt condition: an interrupt can
be generated when the interface is Ready for a subsequent data transfer, which
generally occurs after the program initiates a handshake and the peripheral
completes it.

Setting Up and Enabling Interrupts

When an event occurs, the event is logged by the BASIC operating system.
After the event is logged, any further interrupts from the interface are disabled
until specifically re-enabled by a program. All further computer responses to
the event depend entirely on the program.

The following segment shows a typical sequence of setting up and enabling a
BCD interrupt to initiate its branch.

100 ON INTR 11 GOSUB Bcd_intr
110 Mask=1
120 ENABLE INTR 11;Mask

The value of the interrupt mask (Mask in the program) determines whether the
interrupt is to be enabled or disabled. In this case, any non-zero value enables
the Ready interrupt.

7-40 The BCD Interface for BASIC/WS

interrupt Service Routines

Since there is only one type of interrupt possible with the BCD Interface, the
service routine does not need to determine the interrupt cause. In general, all
the service routine needs to do is to determine whether another data item is to
be transferred or the transfer is to be terminated. The following segment is a
typical interrupt service routine.

100 Bced=11

110 ON INTR Bcd GOSUB Get_bytes

120 !

130 CONTROL Bcd,2;1 ! Initiate 1st handshake.

140 ENABLE INTR Bcd;1 ! Enable Ready Interrupts.

150 !

160 ! Execute background routine.

170 WHILE Iteration<1.E+6

180 Iteration=Iteration+1

190 DISP Iteration

200 END WHILE

210 '

220 Get_bytes:!

230 STATUS Bcd,5;Regb,Reg6,Reg7,Reg8,Regd

240 PRINT Reg5,Reg6,Reg7,Reg8,Regd

250 CONTROL Bcd,2;1 ! Initiate next handshake.
260 ENABLE INTR Bcd ! Re~enable (use same Mask).
270 RETURN

280 !

290 END

The main program sets up the branch location, initiates the first data-transfer
handshake, and then enables the interface to interrupt when it is Ready; the
peripheral is Ready when it has cleared the Control line(s) and placed the Data
Flag line(s) in the Ready state.

The service routine reads the data on lines DI1 through DI10, initiates the
subsequent handshake, and then re-enables another Ready interrupt. Since the
mask parameter was not included, the last specified value (1) was used.

Obviously, this is a very simplistic example; however, the main topics of using
interrupts have been shown. Your routine may need to format the data, keep
track of how many bytes have been transferred, and check for terminator
characters.

The BCD Interface for BASIC/WS 7-41

Summary of BCD
STATUS and CONTROL Registers

STATUS Register 0

CONTROL Register 0

STATUS Register 1

Card Identification = 4.

Interrupt Status

Reset Interface (if non-zero value sent).

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Interrupts |Interrupt | Hardwarel Hardware 0 0 0 0
are Request |Interrupt jInterrupt
enabled Level Level

Switches | Switches
Value=128 | Value=64] Value=32| Value=16| Value=0 | Value=0 | Value=0 | Value=0

CONTROL Register 1

Reset driver pointer (if non-zero value sent).

STATUS Register 2 Busy Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 0 Handshake | Interrupts 0
in progress | Enabled
Value=0 | Value=0 |Value=32|Value=16| Value=8 | Value=4 | Value=2 | Value=1

Bit 0 is 1 when a handshake is currently in progress.

CONTROL Register 2 Request data by Setting CTLA and CTLB (if a
non-zero value is sent); this operation also clears an
Interrupt Request (clears bit 6 of Status Register

1).

Binary Mode: 1 if the interface is currently
operating in Binary mode, and 0 if in BCD mode.

STATUS Register 3

7-42 The BCD Interface for BASIC/WS

CONTROL Register 3

Set Binary Mode: set Binary Mode if non-zero
value sent, and BCD Mode if zero sent.

STATUS Register 4 Switch and Line States
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
OF DATA SGN1 SGN2 OVLD [SGNI1 SGN2 OVLD
Switch Switch [Switch [Switch |[Switch |Input Input Input
Is ON Is ON Is ON Is ON Is ON Is True }Is True {Is True
Value=128 | Value=64| Value=32 Value=16] Value=8 | Value=4 | Value=2 | Value=1
CONTROL Register 4 Data Out Lines
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Set Set Set Set Set Set Set Set
DO-7 DO-6 DO-5 DO-4 DO-3 DO-2 DO-1 DO-0
True True True True True True True True
Value=128 | Value=64 Value=32| Value=16| Value=8 | Value=4 | Value=2 | Value=1
STATUS Register 5 BCD Digits DI1 and DI2
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DI1-8 DI1-4 DI1-2 DI1-1 DI2-8 DI2-4 DI2-2 DI2-1
1s True is True |is True |is True [i1s True |[is True |{is True |[is True
Value=128 | Value=64| Value=32 Value=16{ Value=8 | Value=4 | Value=2 | Value=1

The BCD interface for BASIC/WS 7-43

STATUS Register 6

BCD Digits DI3 and DI4

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DI3-8 DI3-4 DI3-2 DI3-1 DI4-8 DI4-4 DI4-2 DI4-1
is True is True |1s True |[is True |is True [is True [is True [is True
Value=128 | Value=64| Value=32] Value=16| Value=8 | Value=4 | Value=2 | Value=1
STATUS Register 7 BCD Digits DI5 and DI6
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DI5-8 DI5-4 DI5-2 DI5-1 DI6-8 DI6-4 DI6-2 DI6-1
i1s True 1s True |is True |[is True |is True |[is True |is True |is True
Value=128 | Value=64| Value=32| Value=16{ Value=8 | Value=4 | Value=2 | Value=1
STATUS Register 8 BCD Digits DI7 and DI8
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DI7-8 DI7-4 DI7-2 DI7-1 DIg8-8 DIg-4 DIg8-2 DI8-1
is True is True [is True |is True |is True j{is True |[is True |is True
Value=128 | Value=64| Value=32| Value=16| Value=8 | Value=4 | Value=2 | Value=1

7-44 The BCD Interface for BASIC/WS

STATUS Register 9

BCD Digits DI9 and DI10

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DI9-8 DI9-4 DI19-2 DI9-1 DI10-8 |[DI10-4 |DI10-2 |DI10-1
is True is True |is True [is True |[is True [is True |is True |[is True
Value=128 | Value=64| Value=32 Value=16] Value=8 | Value=4 | Value=2 | Value=1

Summary of

BCD READIO and WRITEIO Registers

This section describes the BCD Interface’s READIO and WRITEIO registers.
Keep in mind that these registers should be used only when an operation
cannot be performed with a STATUS or CONTROL statement.

BCD READIO Registers
Card Identification

Register 1

Register 3

Register 17
Register 19
Register 21
Register 23
Register 25
Register 27

Interface Status
DI1 and DI2
DI3 and DI4
DI5 and DI6
DI7 and DIS8
DI9 and DI10

Peripheral Status
READIO Register 1

Card Identification (The contents of this register
are always 4.)

The BCD Interface for BASIC/WS 7-45

READIO Register 3

Interrupt Status

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Interrupts |Interrupt | Hardware | Hardware 0 0 0 0
are Request | Priority | Priority
enabled (INT LVL|(INT LVL

Switches) | Switches)
Value=128 | Value=64{ Value=32 | Value=16 | Value=0 | Value=0 | Value=0 | Value=0
READIO Register 17 DI1 and DI2
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DI1-8 DI1-4 DI1-2 DI1-1 DI2-8 DI2-4 DI2-2 DI2-1
is True is True |is True [is True |}is True |[is True |[is True |[is True
Value=128 | Value=64| Value=32| Value=16| Value=8 | Value=4 | Value=2 | Value=1
RFEADIO Register 19 DI3 and DI4
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DI3-8 DI3-4 DI3-2 DI3-1 DI4-8 DI4-4 DI4-2 DI4-1
1s True is True |is True |is True |is True |[is True |is True |[is True
Value=128 | Value=64| Value=32 Value=16| Value=8 | Value=4 | Value=2 | Value=1

7-46 The BCD Interface for BASIC/WS

READIO Register 21 DI5 and DI6
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DI5-8 DI5-4 DI5-2 DI5-1 DI6-8 DI6-4 DI6-2 DI6-1
is True is True |is True |is True |is True |[is True |is True |is True
Value=128 | Value=64| Value=32 Value=16] Value=8 | Value=4 | Value=2 | Value=1
READIO Register 23 DI7 and DIS8
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DI7-8 DI7-4 DI7-2 DI7-1 DI8-8 DI8-4 DI8-2 DI8-1
is True 1s True |is True |is True |is True |is True |is True |is True
Value=128 | Value=64| Value=32 Value=16| Value=8 | Value=4 | Value=2 | Value=1
READIO Register 25 DI9 and DI10
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DI9-8 DI19-4 DI9-2 DI9-1 DI10-8 |DI10-4 |DI10-2 |DI10-1
i1s True i1s True |[is True [is True |is True |is True |is True |is True
Value=128 | Value=64| Value=32 Value=16} Value=8 | Value=4 | Value=2 | Value=1

The BCD Interface for BASIC/WS 7-47

READIO Register 27 Switch and Line States

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

OF DATA |SGN1 SGN2 OVLD |SGN1 SGN2 OVLD
Switch Switch [Switch |Switch [Switch |[Input Input Input
Is ON Is ON Is ON Is ON Is ON Is True |Is True |Is True

Value=128 | Value=64| Value=32| Value=16{ Value=8 | Value=4 | Value=2 | Value=1

BCD WRITEIO Registers

Register 1 Reset Interface

Register 3 Enable Interrupt

Register 5 Output Data

Register 7 Initiate Handshake

WRITFEIO Register 1 Reset interface (any value causes reset).

WRITEIO Register 3 Enable interrupt if Bit 7 Set (1); disable if Bit 7

Clear (0).
WRITEIO Register 5 Set Data Output Lines
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Set Set Set Set Set Set Set Set
DO-7 DO-6 DO-5 DO-4 DO-3 DO-2 DO-1 DO-0
True True True True True True True True
Value=128 | Value=64| Value=32| Value=16| Value=8 | Value=4 | Value=2 | Value=1

WRITFEIO Register 7 Initiate handshake: sending any value to this
register initiates handshake cycle by setting CTLA
and CTLB.

7-48 The BCD Interface for BASIC/WS

o
~Computer

Museum 8

EPROM Programming for BASIC/WS

Introduction

With HP Series 200/300 BASIC, erasable programmable read-only memory
(EPROM) devices are generally used like other mass storage devices. However,
EPROM can also be accessed as individual bytes or words of data. This
chapter describes both types of usage.

Accessories Required

In order to program and read EPROM memory devices with HP Series 200/300
computers, you will need the following HP accessories:

= HP 98253 EPROM Programmer card
m HP 98255 EPROM Memory card(s) and compatible EPROM devices

Hardware Installation

At this point, you should install the programmer and memory cards or verify
that they have already been properly installed. The following manuals describe
setting up your system to program EPROM devices.

m HP 98253 EPROM Programmer Installation—describes setting the select
code switches on the programmer card and installing the card.

m HP 98255 EPROM Memory Installation—describes selecting compatible
EPROM parts, loading the parts on the card, setting memory address
switches, and installing EPROM memory cards.

The first example program in the chapter describes how to interrogate EPROM
Programmer and Memory cards to determine their current configurations
(and also to determine whether or not both are operational before installing

EPROMs in the memory boards).

EPROM Programming for BASIC/WS 8-1

Brief Overview of Using EPROM Memory

EPROM memory is organized and accessed like other mass storage devices
from BASIC. Briefly, programs and data can be stored in EPROM memory
with the following procedure:

1.

Determine the EPROM Programmer card’s select code. Determine the
address of the EPROM Memory card to be programmed, relative to other
cards’ addresses, which determines its mass storage unit number.

INITIALIZE the memory unit, which writes directory and system
information in the EPROM (see “EPROM Directories” for further
information).

. Store the information using whichever one of the following statements is
appropriate:

CONTROL—store individual data words
COPY—store any type of file

SAVE—store the program as an ASCII file
STORE—store the program as a PROG file
STORE KEY—store typing-aid keys in a KEY file

Access the information with the corresponding one of the following
statements:

CAT—get a catalog listing of the files in the EPROM unit
COPY—copy an EPROM file’s contents into another file
ENTER—enter data from a file into a program variable
GET—load an ASCII program file into the computer
LOAD—Iload a BIN, KEY, or PROG file into the computer
LOADSUB—load SUB or FN subprograms from a PROG file
TRANSFER—transfer data from data file to a memory BUFFER
STATUS—read individual data words from EPROM memory

8-2 EPROM Programming for BASIC/WS

Initializing EPROM Memory

Like other mass storage media, EPROM media must be initialized before
being used for storage. Since EPROM Memory cards are organized as mass
storage units, each card being one unit, EPROM memory must be initialized
by units. The EPROM Programmer card is used to initialize and store other
information in EPROM. This section describes how to specify EPROM units
and programmer cards while initializing and accessing EPROM.

EPROM Programmer Select Code

The EPROM Programmer card is accessed like other interface cards: you
must specify its seleet code in BASIC statements. The factory default setting
of the select code is 27, which is the select code assumed in the examples in
this section. (Setting the select code is described in the HP 98253 EPROM
Programmer Installation manual.) You don’t usually need to specify the
programmer card’s select code when reading data from EPROM. This will be
explained in a later section of this chapter.

EPROM Addresses and Unit Numbers

With the BASIC system, EPROM Memory cards should be given memory
addresses 20 000 through 3FF FFF (hexadecimal). Make sure that no other
device is set to the same address range, or the EPROM memory (as well as the
other device) will not work properly. Examples of conflicting devices are:

m BASIC 4.0 ROM Systems—which occupy addresses 80 000 through FF FFF
(hexadecimal)

m BASIC 5.1 ROM Systems—which occupy addresses 100 000 through 200 000
(hexadecimal)

m HPL ROM Systems—which start at address 100 000 (hexadecimal)

m Series 300 Bit-mapped Display Frame Buffers—which start at address 200
000 and extend to 27F FFF (medium resolution), 2FF FFF (HP 98544 and
HP 98545), or 3FF FFF (HP 98547, HP 98548, and HP 98550) (hexadecimal)

s The HP 98700 display controller frame Buffer—which may start at either 200
000 or 300 000 (hexadecimal)

EPROM Programming for BASIC/WS 8-3

The address switches on EPROM Memory cards can therefore be set in

the range of 0 000 001 through 0 011 111, which result in hexadecimal base
addresses of 20 000 through 3E 000, respectively, with intervals of 20 000
bytes (hex) between base addresses. When using addresses in this range, SW2
must be set to the “AD” position. Computers featuring HP-UX memory
management capabilities, should have this switch set to the “GD” position.
(Note that differences between base addresses of cards containing 27128
EPROMs must be at least 40 000 hexadecimal. See the HP 98255 EPROM
Memory Installation manual for further explanation.)

At power-up, the system automatically gives unit numbers to all cards
according to the initialized cards’ relative memory addresses. The card with
the lowest numbered address (which is initialized) is given unit number 0; the
initialized card with the next higher address is given unit number 1, and so
forth. (Note that un-initialized EPROM units are not given unit numbers by
the system.)

As an example, suppose that two EPROM Memory cards are properly installed
in the computer with hexadecimal base addresses of 100 000 and 180 000.
Assume that they have already been initialized. At power-up, the former card
will be given unit number 0 and the latter will be given unit number 1.

If an initialized card with base address 140 000 is then installed (with power
off, of course), this card is given unit number 1 and the card at address 180
000 is given unit number 2 at power-up. (Note that, like disc media, the unit
number is not written on the media. Unit numbers are a function of relative
EPROM addresses only.)

It is a good idea to keep track of the addresses of all EPROM Memory cards in
the system so that you will know the resultant unit number of each card.

Verifying Hardware Operation

In order to INITIALIZE an EPROM unit, you will need to connect a
programmer card to it. Connect the cable from the desired programmer card
to the EPROM unit to be programmed; the power need not be turned off to
make this connection. All EPROM devices on the unit to be initialized must be
completely erased. Also, the address of the EPROM card to be initialized must
be higher than all other initialized EPROM cards in the system, which results

8-4 EPROM Programming for BASIC/WS

in the card being given a unit number one greater than the largest unit number

currently in the system.

If you have been keeping track of memory addresses, you should know the

unit number of the EPROM Memory card to be programmed. If not, you can
use the following program to determine the address of each EPROM Memory

card in the computer by plugging the connector into each memory card in
succession.

100 ! This program interrogates interfaces at select codes

110 ! 8 thru 31 to find an EPROM Programmer card. If one IS found,

120 ! the program reads and displays its STATUS registers; if one
]
]
1

130 is NOT found, the program reports this negative result.
140

150 Clear screen.

160 PRINT CHR$(12)

170 !

180 Sel_code=8) Start with select code 8.

190 Found_card=0
200 ON ERROR GOTO Next_sel_code ! Goto next select code if

210 ! no interface at this one.

220 REPEAT

230 STATUS Sel_code;Id

240 IF Id=27 THEN

250 Found_card=1

260 PRINT "EPROM Programmer card found at Select Code'";Sel_code
270 PRINT

280 END IF

290 Next_sel_code: IF NOT Found_card THEN Sel_code=Sel_code+1
300 UNTIL Found_card=1 OR Sel_code>=31

310 OFF ERROR

320 '

330 IF Found_card=0 THEN

340 PRINT "EPROM Programmer card not found."
350 PRINT "Program stopped."

360 STOP

370 END IF

380 !

390 ! Check to see if connected to memory card.

400 STATUS Sel_code,4;Capacity
410 IF Capacity=0 THEN

420 PRINT "EPROM Programmer is NOT connected ";
430 PRINT "to an EPROM Memory card"

440 STOP

450 END IF

EPROM Programming for BASIC/WS

8-5

460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830

! Read STATUS Registers 0 thru 6.
STATUS Sel_code;Reg0,Regl,Reg2,Reg3,Reg4,Reg5,Regb
[
! Show register contents.
PRINT "STATUS Register 0:"
PRINT " Card ID of EPROM Programmer card=";Id
!
PRINT "STATUS Register 6:"
PRINT USING "#,K,8D";" Connected to EPROM card at address '";Regé
Msb_hex$=IVAL$ (Reg6/65536,16) ! Get MSB’s in hex.
PRINT " (";Msb_hex$[3,4];"0 000 hexadecimal)" ! Trim leading 0’s.
!
PRINT "STATUS Register 4:"
PRINT ' Memory card size=";Reg4;" bytes';
Msb_hex$=IVAL$(Reg4/65536,16)
PRINT " (";Msb_hex$[3,4];"0 000 hex)"
!
PRINT "STATUS Register 5:"
PRINT " Number of contiguous, erased bytes=";Reg5;
Msb_hex$=IVAL$ (Reg4/65536,16) ! Get MSB’s in hex.
PRINT " (";Msb_hex$[3,4];"0 000 hex)" ! Trim leading 0’s.
)
PRINT "STATUS Register 2:"
PRINT " Current target address=";Reg2
]
PRINT "STATUS Register 3:"
Word$=IVAL$(Reg3,16)
PRINT " Word at current target address=";Reg3;" (";Word$;" hex)"
'
PRINT "STATUS Register 1:"
IF Regl=0 THEN
PRINT * Programming time = 52.5 ms"
ELSE
PRINT " Programming time
END IF
!
END

Get MSB’s in hex.
Trim leading 0’s.

13.1 ms"

The following display is a typical result of running the program.

8-6 EPROM Programming for BASIC/WS

EPROM Programmer card found at Select Code 27

STATUS Register 0:

Card ID of EPROM Programmer card= 27

STATUS Register 6:

Connected to EPROM card at address 1048576 (100 000 hexadecimal)
STATUS Register 4:

Memory card size= 262144 bytes (040 000 hexadecimal)
STATUS Register 5:

Number of contiguous, erased bytes= 0

STATUS Register 2:

Current target address= 0

STATUS Register 3:

Word at current target address= -1 (FFFF hex)

STATUS Register 1:

Programming time = 52.5 ms

Program Results

The program interrogates interfaces until it finds an EPROM Programmer
card. It then prints the values of the Programmer card’s STATUS registers.
Register 6 shows the memory address of the EPROM Memory card to which
the programmer card is connected. The program also shows that it can
determine the type of EPROM devices being used on the card (2764’s or
27128’s).

The “target address” register points to the memory location (an offset

address to the card’s base address) at which the next word of data will

be read (STATUS register 3) or written (CONTROL register 3). Target
address 0 is the first word on the EPROM card. STATUS register 1 indicates
which programming time will be used (for each word) during subsequent
programming operations; 0 indicates a program time of 52.5 milliseconds, and 1
indicates 13.1 milliseconds.

EPROM Programming for BASIC/WS 8-7

Initializing Units

To INITIALIZE an EPROM unit, you must specify the select code of the
EPROM Programmer card and the unit number of the EPROM Memory card.
For instance, the following statement initializes the memory with unit number
0 through the programmer card at select code 27.

INITIALIZE " :EPROM,27,0"

Because the unit number defaults to 0 if not specified, an equivalent statement
would be:

INITIALIZE ":EPROM,27"

An error is reported if the specified programmer card is not connected to the
specified EPROM unit. Furthermore, if the specified EPROM memory unit is
not completely erased, error 72 (drive not found or bad address) is reported.
Note that the entire card need not be filled with EPROMSs for it to appear

as entirely erased, since empty sockets and erased EPROM memory read as
“FF” data bytes. The following simple program determines whether or not the
EPROM unit contains all erased EPROMs (or erased EPROMSs and empty
sockets).

10 CONTROL 27,2;0 ! Set target address to first byte.
20 STATUS 27,4;Total_capacity,Erased_bytes

30 PRINT "EPROM card is ";

40 IF Total_capacity=Erased_bytes THEN

50 PRINT "completely erased (or empty).”
60 ELSE

70 PRINT "NOT completely erased.”

80 END IF

90 END

EPROM Directories

The INITTIALIZE operation writes a directory and system information in

the EPROM unit. This information occupies the first “sectors” of EPROM
memory (since the unit is treated like mass storage, it is logically divided into
256-byte records known as sectors). The following table shows how the BASIC
system allocates EPROM sectors.

8-8 EPROM Programming for BASIC/WS

EPROM Sector Allocation

EPROM Usable Sectors for Sectors Maximum No.
Type Sectors System Use for Users of Files
2764 511 0-6 7—510 40
27128 1023 0-11 12 — 1022 80

Note that the figures given for Total Sectors and Sectors for User are for fully
loaded memory cards. Note also that the Total Sectors is one less than you
may have expected, which shows that one sector is required by the system for
overhead.

EPROM Catalogs

Performing a CAT of the EPROM card reveals that it has been initialized.
You can either specify the select code of the programmer card or use 0, since
reading the EPROM card does not require the programmer card be connected
to it. However, if you do specify a select code, then that programmer card
must be connected to the specified EPROM unit, or error 72 will be reported.
The following statements perform the same function (specifying select code 27
would change the first line of the catalog listing accordingly):

CAT " :EPROM,0"

or
CAT " :EPROM,27" »°
:EPROM, 0

VOLUME LABEL: B9836
FILE NAME PRO TYPE REC/FILE BYTE/REC ADDRESS

This directory has the same general format as internal-disc directories, as

described in the HP BASIC 6.2 Programming Guide. You can also perform

all operations on EPROM directories that you can with other mass storage 8
directories (such as SKIP and COUNT files and CAT individual PROG files).

EPROM Programming for BASIC/WS 8-9

Programming EPROM

Once an EPROM unit is initialized, you can store data and programs in it.
The following storage operations are supported for EPROM memory:

m CHECKREAD—direct the system whether to perform an additional verify
operation after all operations that write to mass storage

m CONTROL—store individual data words in EPROM

m COPY—copy any type of file (that already exists on another mass storage
device) into EPROM

m SAVE—store the current program in an ASCII file
m STORE—store the current program in a PROG file
m STORE KEY—store the current typing-aid keys in a KEY file

Using these statements is described in the following sections of this chapter.
The topic of reading EPROM information is described in a subsequent section.

Storing Data

As a simple example of storing a data file in EPROM, suppose that you want

to store the date that the EPROM was initialized and the current number of

EPROM chips on the card in EPROM memory. The following program shows
a simple example of how you might perform this operation.

100 ! This program stores the Date that the
110 ! EPROM Memory unit was initialized.
120 ! (An EPROM file name shows the date.)
130 !

140 ! Select EPROM mass storage unit.

150 Progmr_sc=27
160 Unit_no=0
170 Eprom_msus$=":EPROM,"&VAL$(Prognr_sc)&","&VAL$(Unit_no)

180 !

190 ! Determine date to write in EPROM.

200 Correct_date=0

210 REPEAT

220 DISP "Enter date to be stored in EPROM ";
230 DISP "(Press ENTER for time shown)."

240 QUTPUT KBD;DATES$ (TIMEDATE) ;

250 ENTER KBD;Date_$

8-10 EPROM Programming for BASIC/WS

260 SET TIMEDATE DATE(Date_$)! Set date.

270 DISP "Is this correct? ' ;DATE$(TIMEDATE)
280 ENTER KBD;Ans$

290 IF UPC$(Ans$[1,1]1)="Y" THEN Correct_date=1
300 UNTIL Correct_date

310 DISP

320 !

330 ! Format Date_$ from "DD MMM YYYY"
340 ! to "MMM_DD_YY".

350 Month$=Date_$[4,6]

360 Day$=TRIM$(Date_$[1,2]) ! Strip leading space (if ome).
370 Year$=Date_$[10,11] ! Remove "19" from year.

380 File_name$=Month$&"_"&Day$&"_"&Year$

390 !

400 ! Create a one-record ASCII file on the intermal disc
410 ' (use an external disc with Model 16)

420 ! with the DATE as the file’s name.

430 Disc_msus$=":INTERNAL"

440 CREATE ASCII File_name$&Disc_msus$,1 ! Error if file exists.
450 !

460 ! Write info into EPROM file.

470 COPY File_name$&Disc_msus$ TO File_name$&Eprom_msus$

480 PURGE File_name$&Disc_msus$! Remove disc file after use.

490 !

500 ! Now read date with catalog of file names.
510 CAT Eprom_msus$

520 !

530 END

The program first prompts for the EPROM unit number (the programmer card
is assumed to be at select code 27). The program then prompts for the date by
presenting the current clock date to the user on the keyboard input line. The
user can either modify the date or accept it as it is shown.

Assuming that the program is run on a Model 226 or 236, the program stores
this information in an ASCII file on a disc in the internal drive. (It would be
much faster to store the file in a MEMORY volume or in Bubble memory.)
This information is then stored in EPROM, and the internal ASCII file is
purged.

Data Storage Rates

The information is stored in EPROM at approzimately the following rates
(program time is set by writing to CONTROL register 1):

EPROM Programming for BASIC/WS 8-11

Approximate Storage Rates

Program Seconds per Bytes per
Time Sector Second

13.1 ms 2 150

52.5 ms 7 38

Note that these times are for COPY, SAVE, and STORE operations. The
storage rate when using CONTROL is lower slightly than these figures.

Determining Unused EPROM Memory

A potential problem with the example program in the preceding section is
that there are times when you are not sure whether or not there is enough
erased EPROM memory to store your information. Unfortunately, the system
generally cannot determine beforehand whether there is sufficient room left in
an EPROM unit to store the information it has been directed to store. This
consequence is due to the fact that both blank sockets and erased EPROM
memory read as all 1’s (hexadecimal FF bytes). The system can, however,
determine when there is not enough room left on a fully loaded card (Error 64
is reported).

Thus, when the system is directed to store data in EPROM, it begins
programming the EPROMs one word at a time at the “next available”
location. After each word is programmed, the system reads the word and
compares it to what was to be written; this operation is known as “verifying”
the word. An error will be reported when the word is not verified (such as
when a blank socket, a previously programmed word, or other hardware failure
has been reached). So before you attempt to store any information in EPROM
memory, you should determine whether or not there is enough erased memory
to hold the data.

The general method of determining whether or not an EPROM memory unit
has enough erased space to store your information is as follows: Determine the
total number of usable sectors on the EPROM card, and then subtract the
number already used. The result is the number of sectors available for storing
additional information. This procedure is broken down into steps as follows (an
example follows the procedure):

8-12 EPROM Programming for BASIC/WS

1. Determine the number of usable sectors on the EPROM card.

a. Determine the number of usable sectors of EPROM by using the
following formulas:

Total Sectors=(Chips on card)*(Bytes/Chip)*(1 Sector/256 Bytes)
Usable Sectors=Total Sectors — 1 sector (used by the system)
in which:
Bytes/Chip = 16 384 (for 27128’s)
Bytes/Chip = 8 192 (for 2764’s)
b. Use the CAT statement to determine how many EPROM sectors are
already being used by files (already programmed).
2. Determine the number of sectors required to store your information.

a. For ASCII data files, this number will simply be the number of records
specified in the CREATE ASCII statement that created the file.

b. For BDAT data files, multiply the number of records in the file by the
record size (default=256 bytes), divide this product by 256, and round
any non-integer result to the next larger integer. Add one to this result
to account for the sector used by the system (for EOF pointer and
number of records).

c. For programs, place the information in a mass storage file using STORE
or SAVE (MEMORY volumes and BUBBLE memory are best suited for
this purpose). Use the CAT statement to determine how many 256-byte
sectors were required to store the information.

d. For all other types of files, a quick look at the directory of the media on
which the file is presently stored shows how many sectors are required to
store the file.

3. Compare the amount of usable memory in EPROM to the amount of
memory required for your information. If there is sufficient memory, perform

the storage operation. Otherwise, use another EPROM unit or mass storage
device.

As an example, suppose that you want to store a BDAT file that contains 20
records of 20 bytes each in EPROM. Since 20*20=400, and 400/256=1.5625

EPROM Programming for BASIC/WS 8-13

(which rounds up to the next larger integer of 2), two sectors of EPROM are
required for the data. Add one sector for system use. Therefore, three sectors
are required to store the file.

To determine how much EPROM memory is available, first calculate the total
number of sectors on the card. For this example, suppose that only two 27128
chips are on the board. The total number of sectors on the card is calculated
by applying the preceding formula:

Total sectors = 2 x 16 384 / 256 = 128
Usable sectors = Total sectors — 1 = 127

To see how many sectors have already been used, perform a CAT of the
EPROM card; assume EPROM unit 0.

CAT ":EPROM,0"

:EPROM, 0
VOLUME LABEL: B9836
FILE NAME PRO TYPE REC/FILE BYTE/REC ADDRESS

Mar_8_83 ASCII 1 256 12
EPROM_BITS ASCII 17 256 13
EPROM_INIT ASCIT 11 256 30

The CAT reveals that the last file begins at sector 30 and is 11 sectors

in length. Thus, the next unused sector begins at sector 41. Since sector
addresses start at 0, 42 sectors have already been used. Assuming that you
have not written any data in subsequent sectors (such as with the CONTROL
statement), there are 85 (=127-42) sectors of unused EPROM remaining. The
BDAT file can be stored in the unit.

Storing Programs

Storing programs in EPROM is a simple operation. Like storing programs in
other mass storage media, you can use either the STORE statement or the
SAVE statement. The one you will use depends on whether you want the
program to be stored in a PROG or an ASCII file; the STORE statement
stores the program in a PROG file, while the SAVE statement stores it in an
ASCII file. If the program is already stored on another device, use the COPY
statement.

8-14 EPROM Programming for BASIC/WS

Compiled Pascal subprograms, or “CSUBs,” can also be stored in EPROM
with COPY. For instructions on how to write these compiled subprograms, see
the HP BASIC 6.0 CSUB Utility manual.

As with storing data files, you must ensure that there is enough memory on the
card to hold the program. First execute a CAT operation on the EPROM unit
to determine how many sectors are unused. Then determine how many sectors
will be required to store the program by using STORE or SAVE to store the
program on another mass storage device. If there is enough unused EPROM
memory, execute STORE or SAVE with the destination as the desired EPROM
unit. For instance, the following statements are typical ways to store programs
in EPROM.

STORE "Prog_1:EPROM,27,0"
SAVE "Prog_1:EPROM,27"

Programming Individual Words and Bytes

You can also program individual words and bytes in EPROM with the BASIC
system. However, you should not use these techniques to program EPROMs
which are to be used as mass storage “units” in this manner. In other words,

if you are going to access the EPROM with mass storage statements, use only
operations such as SAVE, STORE, and COPY to program the EPROM unit.
If the EPROM is to be for another purpose, such as to store machine-language
code in another system, you can use these techniques to program the EPROMs.

To program individual words, use CONTROL to set the target address and
then write the desired word at that address. Repeat this process for as many
words as you need to write. Note that you need to set the target address before
every write operation. If you don’t, an error will be reported.

The automatic verify operation is still performed for each word written into
EPROM memory. The following example program shows how you might
perform this type of operation; the first 16 384 bytes of the EPROMs in sockets
marked “0U” and “OL” are programmed. (The program takes approximately
eight minutes to run.)

EPROM Programming for BASIC/WS 8-15

100 ! Assume data source is a BDAT file that contains exactly
110 ! 8192 INTEGER elements (written with FORMAT OFF).

120 !

130 ASSIGN @Source TO "EPROMWORDS:INTERNAL'"

140 INTEGER Int_array(0:8191)

150 ENTER @Source;Int_array(*)

160 !

170 ! Write 8K words (16K bytes).

180 FOR Addr=0 TO 16382 STEP 2

190 CONTROL 27,2;Addr,Int_array(Addr/2) ! Write to EVEN addresses.
200 NEXT Addr

210 !

220 END

Notice that the target address (CONTROL register 2) begins at an even
address (0) and is incremented by two for each subsequent word. Attempting
to program a word at an odd address will generate an error.

To program individual bytes, you will need to mask the byte that is not to be
programmed. For instance, suppose that you want to insert one EPROM chip
in the board and program it with data bytes. Inserting the chip in one of the
sockets marked with an “L” gives the memory odd addresses. The program will
need to be modified so that it writes only the least significant eight bits of each
word (since you can only program words, which begin at even addresses).

To program only the least significant byte, you would make the most significant
byte all 1’s so that the program operation will verify (remember that empty
sockets and erased bits read as all 1’s). The following program shows an
example of programming single bytes of data in the EPROM located in the
socket marked “0L.” Note that the only difference between this program and
the previous one is the manipulation of the upper eight bits of each integer.

100 ! Assume data source is a BDAT file that contains exactly
110 !} 8192 INTEGER elements (written with FORMAT OFF).
120 !

130 ASSIGN @Source TO "EPROMBYTES:INTERNAL"
140 INTEGER Int_array(0:8191)
150 ENTER @Source;Int_array(*)

160 !

161 ! Define mask for upper 8 bits.
162 Ff00=IVAL("FF00",16)

163 !

170 ! Write 8K bytes.

8-16 EPROM Programming for BASIC/WS

180 FOR Addr=0 TO 16382 STEP 2 ! Must still write to EVEN addresses.
181 Low_byte=BINIOR(Ff00,Int_array(Addr/2)) ! MSB=FF (LSB=unchanged).
190 CONTROL 27,2;Addr,Low_byte

200 NEXT Addr

210 !

220 END

To program bytes of an EPROM located in a socket marked “U”, you would
left-shift the 8-bit value by eight places (which shifts the least significant byte
to the most significant byte). For instance, the following statement shifts the
least significant byte to the most significant byte and then makes the least
significant byte all 1’s:

High_byte=BINIOR(SHIFT(Low_byte,-8),255)

Programming EPROM with such eight-bit values writes the eight bits into
EPROM devices at even addresses (i.e., in sockets marked with “U”).

Operations Not Allowed

Once data is written in EPROM, it cannot be selectively erased (without
erasing the entire EPROM device). Consequently, the following mass storage
operations are not allowed for EPROM mass storage:

CONTROL (cannot be used to write to registers 7 and 8 of an I/0 path
name assigned to a BDAT file)

CREATE

CREATE ASCII

CREATE BDAT

COPY (of an entire mass storage unit into EPROM)

OUTPUT

PROTECT

PURGE

RENAME

RE-SAVE 8
RE-STORE

RE-STORE KEY

TRANSFER (to an EPROM file)

Note that HF'S cannot be used with EPROM.

EPROM Programming for BASIC/WS 8-17

Reading EPROM Memory

After an EPROM unit has been programmed, you can perform the following
operations to read the information:

CAT—get a catalog listing of the files in an EPROM unit

COPY—copy an EPROM file’s (or unit’s) contents into another file (or unit)
ENTER—enter data from an ASCII or BDAT data file into program
variables

GET—load an ASCII program file into the computer

LOAD—Iload a BIN, KEY, or PROG file into the computer
LOADSUB—Iload SUB or FN subprogram(s) from a PROG file
TRANSFER—transfer data from a BDAT data file into a memory BUFFER
STATUS—read individual data words from EPROM memory

Retrieving Data and Programs

Reading data files stored in EPROM is similar to reading data files stored

in other mass storage devices; the only difference is the mass storage unit
specifier (msus), which will be of the form :EPROM,Select_code,Unit_number.
Remember that both Select_code and Unit_number parameters can be any
type of numeric expression. Also keep in mind that when reading EPROM
units you do not need to specify the select code of the EPROM programmer
card; you can specify a select code of 0. However, if you do specify the
programmer card’s select code, it must be connected to the specified EPROM
unit. If the unit number parameter is omitted, a default value of 0 is used.

The broad subject of using ENTER to read data files is discussed in the
HP BASIC 6.2 Programming Guide. This manual discusses the ENTER
statement in detail, and also describes using the TRANSFER statement to
transfer the contents of data files into memory BUFFERs.

Like reading data files, retrieving programs from EPROM is identical to
performing these operations from other mass storage devices. Refer to the
HP BASIC 6.2 Programming Guide.

8-18 EPROM Programming for BASIC/WS

Summary of EPROM Programmer
STATUS and CONTROL Registers

STATUS Register 0 ID Register. This register contains a value of
27 (decimal) which is the ID of an EPROM
Programmer card.
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 1 1 0 1 1

Value=128 | Value=64

Value=32 Value=16

Value=8 | Value=4 | Value=2 | Value=1

CONTROL Register 0

STATUS Register 1

CONTROL Register 1

STATUS Register 2

Interface Reset. Writing any non-zero value into
this register resets the card; writing a value of zero
causes no action.

Read Program Time. A value of 0 indicates that
the program time is 52.5 milliseconds for each
16-bit word (default); a non-zero value indicates
that the program time is 13.1 milliseconds.

Set Program Time. Writing a value of 0 into this
register sets the program time to 52.5 milliseconds
for each 16-bit word; any non-zero value sets
program time to 13.1 milliseconds.

Read Target Address. This register contains the
offset address (relative to the card’s base address)
at which the next word of data will be read (via
STATUS Register 3) or written (via CONTROL
Register 3). The default address is 0, which is the
address of the first byte on the card.

EPROM Programming for BASIC/WS 8-19

CONTROL Register 2

STATUS Register 3

CONTROL Register 8

STATUS Register 4

CONTROL Register 4
STATUS Register §

Set Target Address. Writing to this register sets
the offset address at which the next word of data
will be read (via STATUS Register 3) or written
(via CONTROL Register 3). The target address
must always be an even number.

Read Word at Target Address. This register
contains the 16-bit word at the current target
address.

Write Word at Target Address. Writing a data
word to this register programs a 16-bit word at the
current target address. The target address must be
set (via CONTROL register 2) before every word is
written. Automatic verification is also performed
after the word is programmed.

Current Memory Card Capacity (in bytes). This
register contains the current capacity of a fully
loaded card in bytes; it also indirectly indicates
which type of EPROM devices are being used

on the card. If 262 144 is returned, then 27128
EPROMSs are being used; if 131 072 is returned,
then 2764 devices are being used. A 0 is returned if
the programmer card is not currently connected to
any EPROM memory card.

Undefined.

Number of Contiguous, Erased Bytes. Reading
this register causes the system to begin counting
the number of subsequent bytes, beginning at the
current target address, that are erased (or are
empty sockets). The counting is stopped when a
programmed byte (i.e., one containing at least one
logical 0) is found or when the end of the card is
reached. If the byte at the current target address is
not FF, then a count of 0 is returned. Error 84 is
reported if the programmer card is not currently
connected to any EPROM card.

8-20 EPROM Programming for BASIC/WS

CONTROL Register 5 Undefined.

STATUS Register 6 Base Address of EPROM Memory Card. This
register contains the (absolute) base address of the
EPROM memory card to which the programmer
card is currently connected; this base address is
also the absolute address of the first word on the
card. Error 84 is reported if the programmer card
is not currently connected to any EPROM memory
card.

CONTROL Register 6 Undefined.

EPROM Programming for BASIC/WS 8-21

HP-HIL Interface

The Interface to HP-HIL Devices

This chapter describes communication with the HP-HIL interface. It is
primarily a description of the use of HIL SEND and HIL EXT to handle the
HP-HIL interface. This interface is capable of supporting up to seven devices,
such as a Function Box, a system ID Module, and other peripherals generally
related to human input.

Before launching into a discussion of the workings of the HP-HIL interface, a
general overview needs to be presented. HP-HIL stands for “Hewlett-Packard
Human Interface Link”. The following diagram illustrates the basic
components.

25
B /
R
¢

£
Hewlett-Packard Human Interface Link

HP-HIL Interface 9-1

HP-HIL initialization takes place when BASIC is booted or when you execute
SCRATCH A. BASIC logs HP-HIL devices which are present on the link. The
link can deal with a maximum of seven devices at any one time (any devices
present after the seventh one are not recognized). If you add an HP-HIL device
to the HP-HIL link after the BASIC system has been booted, the device will
not automatically be recognized by the system. If you replace a device on the
link with a different device, the system may mis-interpret the data coming from
the new device. Therefore, when adding, removing, or replacing a device on the
link, either re-boot the system or execute a SCRATCH A.

The address of a particular device is merely its topological order of placement
along the link. In the above diagram, Device A has address 1, B has address 2,
and C has address 3. This is only a result of their physical order of connection.
If Device C had been connected between Devices A and B, Device A would still
have been address 1, but Device C would be address 2, and B would be address
3. The type of device is irrelevant to the address assigned to it.

After the link is operational, and during subsequent link operations, each
device looks at the data being sent down the link. If a device notices that the
destination address associated with the link data is the same as that device’s
address, that device receives and acts on the data. Otherwise, the data is
merely shuttled along to the next device.

Preview of HP-HIL Devices

HP-HIL devices can be divided into a number of categories. This section
provides you with a table that includes these categories, as well as a list of high
level and low level statements that apply to each category.

9-2 HP-HIL Interface

HP-HIL Device categories

handles as cursor-movement
input. Can also be used with
GRAPHICS INPUT IS.

Computer
Museum

HP-HIL Device High Level Low Level
Categories BASIC Access BASIC Access

HP-HIL Keyboards | BASIC Operating System ON/OFF KEY
normally handles keystrokes. ON/OFF KBD
Programs can enter text and KBD$
numbers with the statements:
INPUT, LINPUT, and ENTER.

Relative Positioner | BASIC Operating System ON/OFF KBD

(traps movement as
arrow keys and also
traps mouse buttons)
KBD$

ON/OFF KNOB
ON/OFF CDIAL
CDIAL

Absolute Positioner | Can be used with GRAPHICS HIL SEND
INPUT IS. ON HIL EXT
HILBUF$
ID Module One can be used with HIL SEND
SYSTEMS$(“SERIAL ON HIL EXT
NUMBER”) HILBUF$
Other Devices None HIL SEND
ON HIL EXT
HILBUF$

Communicating through the HP-HIL Interface

This section provides a brief description of the HP-HIL Interface Driver.
The HP-HIL Interface Driver supports a set of statements which allow
communications between the HP-HIL interface and HP-HIL devices. These
statements and commands are as follows:

HIL SEND Address; HIL_Command

allows you to send HP-HIL commands

to an HP-HIL device (e.g., HIL SEND

HP-HIL Interface 9-3

ON HIL EXT Address_.mask Branch

9-4 HP-HIL Interface

1;IDD). The BASIC HP-HIL commands
can be found in the “HP-HIL Appendix”
in this manual. The HIL_Address is the
location of the device in the HP-HIL
link. Address 1 is assigned to the first
device on the link that is addressable
(i-e., any device except HP-HIL
Extension Modules). Ascending address
are assigned to subsequent devices on

the link.

enables end-of-line interrupts from
HP-HIL devices. This statement

allows you receive interrupts from up
to seven devices on the HP-HIL link.
The Address_mask is a bit-map of the
locations of the device or devices in the
HP-HIL link. The default Address_mask
is 254 which allows up to 7 devices to
send interrupts. To select devices from
which you want to receive interrupts,
you need to raise 2 to the power of
that device’s address. For example,

if the device is the second one on the
HP-HIL link then you would raise 2 to
the 2nd power which would result in

an Address_mask of 4. If you have two
devices on the HP-HIL link, one at the
second position and the other at the
third position, then to enable interrupts
from both of these devices you would
add 2? and 23 together. The resulting
Address_mask would be 12. Branch
refers to a branch to a program line
number, label, subroutine or subprogram
using the keywords GOTO, GOSUB,
RECOVER, or CALL.

OFF HIL EXT

HILBUF$

disables end-of-line interrupts. This statement
does not require an address mask. It will disable
all previously enabled end-of-line interrupts for
HP-HIL devices.

is a function used to capture data returned from
HP-HIL devices. This function provides a buffer
for data to be stored in after execution of the
first two statements listed above. Note that this
buffer only holds up to 256 bytes of data. Once
the buffer limit is reached it will not receive any
new data until it has been emptied by reading
the buffer. The first byte stored in the string
buffer tells you if data has been lost. This byte
is initially zero (the “null” character). It is

only zero if no data has been lost; otherwise, it
contains the number of packets lost. A packet

is three or more bytes consisting of the packet
length (first byte), the device address (second
byte), and one or more bytes of data from

the device (i.e., a poll record or a response to

a command). A poll record is a set of data

sent by an HP-HIL device to HILBUF$ which
accompanies an ON HIL EXT interrupt. This
data first includes a poll record header byte
which contains information about the bytes that
follow it (covered in the “HP-HIL Appendix”
under the section titled “Poll Record”).

The poll records (see HILBUF$ above) for the devices listed below are not
available through ON HIL EXT. An Address_.mask (ON HIL EXT) can include
these devices, but no interrupts will be generated. The excluded devices are:

m any relative pointing device.

m the current GRAPHICS INPUT IS device.

m any system keyboard.

HP-HIL Interface 9-5

The HIL SEND statement operates under a different set of conditions than ON
HIL EXT:

m HIL SEND Address;IDD is allowed with all devices.
m HIL SEND Address; HIL_command is allowed if that device is not:

o a relative pointing device.
o currently a GRAPHICS INPUT IS device.

Supported HP-HIL Devices

This section provides a brief description of those devices supported by the HIL
Interface Driver, references to information for those devices not supported by
the HIL Interface Driver, a program for identifying all devices on the HP-HIL
link, and an explanation of that program. The topics are as follows:

m Selecting HP-HIL Devices (BASIC/UX only)
m Identifying All Devices on the HP-HIL Link
m Explanation of the HIL_ID Program

m HP-HIL Devices

Selecting HP-HIL Devices

When you enter BASIC/UX with the rmb command, the BASIC/UX system
uses all available devices on the HP-HIL link. This prevents other HP-UX
processes from accessing these HP-HIL devices. However, HP-HIL devices can
be selected by using the SET HIL MASK command. This allows you to select
only those HP-HIL devices required for your particular BASIC/UX task and
relinquishes the remaining devices for use by other HP-UX processes. This
section explains the use of this command.

9-6 HP-HIL Interface

Enabling HP-HIL Devices

The SET HIL MASK statement enables the specified HP-HIL device for use by
the BASIC/UX system. The syntax for this command is as follows:

SET HIL MASK address_mask

where the address_mask is obtained by raising 2 to the power of each of the
addresses of the desired devices and adding these values.

Ezample

The following program uses the HP-HIL identify and describe command to
determine the type of device that is located at address 3 in the link and gives
the device’s characteristics. The HP-HIL device shown below has address 3
assigned to it because it is the third device in the HP-HIL link.

<50
§ /
E\/|Q
¢

£
An HP-HIL Device with an Address of 3

The program then assigns the device to the current process. This prevents

another process from using the device. Finally it prints the device’s

identification number and characteristics on the screen. You can use the

“Device ID Byte Definitions” table in the “HP-HIL Appendix” in this manual 9
and the identification number to determine the name of your device.

HP-HIL Interface 9-7

100 SET HIL MASK 2°3 ! Assigns the device at address 3 to the

110 ! current BASIC/UX process (locks it).
120 HIL SEND 3;IDD ! Sends the IDD command to the device at address 3.
130 A$=HILBUF$! Assigns the IDD information found in the HP-HIL
140 ! buffer string function to the string A$.

150 FOR I=1 TO LEN(A$) ! This FOR loop prints the contents
160 B$=IVAL$ (NUM(A$[I]),16) ! of A$ as hexadecimal values. The
170 PRINT B$[31;" "; ' fourth element is the ID number
180 NEXT I ! that identifies the device.

190 END

Identifying All Devices on the HP-HIL Link

Each device in the HP-HIL link has a Device ID which identifies that device
and a Describe Record which provides you with device characteristics. This
information can be obtained by executing the HP-HIL IDD command and
parsing the string value returned by the HILBUF$ function. A program called
HIL_ID, located in the directory called /usr/1lib/rmb/demo, makes use of the
IDD command and HILBUF$ function for:

m Determining if a device is recognized as being in the HP-HIL link,
m Identifying the device at a specific address, and

m Determining the device’s characteristics (what it can do).
Assuming your HP-HIL link has a:

m Touchscreen located at address 1

m ITF Keyboard (HP 46020/21A) located at address 2

m Function Box located at address 3

9-8 HP-HIL Interface

Executing the HIL_ID program would produce the following output:

HP 35723A (Touchscreen) located at address 1
Describe Record Information
I/0 Descriptor Information
Does not support Prompts/Acknovledges 1 thru 7
Supports Proximity Detection
Does not report buttons
X and Y axis information reported
Absolute positioning device
Returns 8 bits/axis

HP 46020/21A (ITF Keyboard) located at address 2
Describe Record Information
No special features

HP 46086A (Function Box) located at address 3
Describe Record Information
I/0 Descriptor Information
Recognizes General Prompt and Acknowledge
Does not support Prompts/Acknowledges 1 thru 7
Does not report buttons
No axis information reported

NO MORE DEVICES.

HP-HIL Interface 9-9

Just what does the above information tell you? Let’s look at the first device. It
is a Touchscreen located at address 1 in the HP-HIL link. To determine what
this device can do, you need to know its characteristics. The Describe Record
provides you with this information. Describe Record information returned by
this device is as follows:

m /0 Descriptor byte information is reported. The information supplied in
this byte tells you that when you touch your finger on the screen it will be
detected and when you remove it from the screen it will be detected. This is
called proximity in/out detection.

m It is an absolute positioning device. This means that every coordinate
position on the screen is referenced to the lower left-hand corner of the
Touchscreen (X-coordinate = 0 and Y-coordinate = 0).

m X and Y axis information is reported. This tells you that Poll Records
received when communicating with this device will contain X and Y
coordinate information. These are absolute coordinate positions.

s Coordinate information is returned as 8 bits per axis. This means there will
only be one byte of X coordinate information returned in the Poll Record
and one byte of Y coordinate information returned in the Poll Record.

Putting the above information together, the Touchscreen makes a great
device for option selection from screen menus. Other uses are left up to your
creativity.

Explanation of the HIL_ID Program

The program called HIL_ID is located on your Manual Ezamples disc for
BASIC/WS, and in the directory /usr/lib/rmb/demo for BASIC/UX. This
program has been divided into four segments. Each segment of the program
will be given and explained in this section. It is not absolutely necessary for
you to read this section to gain an understanding of how to communicate with
HP-HIL devices. If you decide not to read this section, skip to the next one
titled “HP-HIL Devices.”

Segment 1 of HIL_ID

This segment of the program executes the HP-HIL command IDD for each
device in the HP-HIL link. The system places the information returned from

9-10 HP-HIL Interface

executing this command in the string buffer used by the HILBUF$ function.
The buffer information has been stored in a string array to simplify future
processing. The string buffer used by HILBUF$ is cleared each time the function
is executed.

1000 OPTION BASE 1

1010 DIM 1dd$(7)[20]

1020 INTEGER Dev_id,Address_num,Des_header,Test,Count

1030 COM INTEGER Io_header

1040 !

1050 Tpkkkkokokkkp koo ko ko kkk ko kR kg kk ko ko kkkkk ok
1060 ! This is segment 1 of the program. It stores Identify

1070 ! and Describe information in the array Idd$.
1080 lkkkkkkkkkkkkkkhkkkkkgkkhpkkkkkkkhkkkkkkkkkkkkkkkkkkk kg
1090 !

1100 ON ERROR GOTO Link_end
1110 FOR I=1 TO 7

1120 HIL SEND I;IDD

1130 1dd$(I)=HILBUF$

1140 NEXT I

1150 Link_end: !

1160 Count=I-1

1170 PRINT

1180 !

The following information is an explanation of program segment 1.
Line 1000 sets a lowerbound of 1 for the string array Idd$ in the program.
Lines 1010 to 1030 declare the variables for the program.

Line 1100 sets up a branch to the label Link_end if an error occurs. Note that
an error will occur in the FOR loop of lines 1110 to 1140 if there are less than
7 devices on the HP-HIL link. The branch to the label Link_end is designed to
prevent execution of the program from stopping when this condition occurs.

Lines 1110 to 1140 are a FOR loop which executes the HP-HIL IDD command
as many times as there are devices recognized plus one or until seven devices
have been recognized on the HP-HIL link. Identify and Describe information
from executing the IDD command is stored in the string array Idd$ for future
processing. If there are fewer than 7 HP-HIL devices in the link, then ON ERROR
causes a branch to be taken outside of the FOR loop. If there are 7 devices in
the loop, then ON ERROR branching does not take place.

HP-HIL Interface 9-11

Line 1150 is the destination label Link_end for the ON ERROR branch from the

FOR loop.

Line 1160 sets the loop Count for the FOR loop in the second segment of the
demonstration program.

Segment 2 of HIL_ID

This segment of the program is a large FOR loop with a SELECT statement

in it for selecting and identifying the various devices in the HP-HIL link.

Each CASE statement within the SELECT statement causes a message to be
displayed for the device found on the link. This message contains the HP
product number, device name and device address. After the SELECT statement
a CALL is made to the subprogram Describe_rec which is used for determining
the characteristics of the devices in the HP-HIL link. If the device is found to
report I/O Descriptor information, the Describe_rec subprogram calls the
subprogram Io_descriptor. This subprogram provides additional information
about the device.

1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1352
1354
1360
1370
1380
1390
1400

B oot o oo ok o ook o oo oo e o o o o o o o ok o R o o o e e ok ko ek Rk

This is segment 2 of the program. It identifies all
devices on the link and provides their address

in the link. It also uses two subprograms called
Describe_rec and Io_descriptor. These subprograms
describe what each device can do.

EE ISR L LIS I R L L L R LRI S S S T L EE S ST RS R L EL S 2 0

FOR I=1 TO Count

Dev_id=NUM(Idd4$(I)[4])
PRINT
]
Address_num=NUM(Idd$(I) [3])
Des_header=NUM(Idd$(I) [5])
To_header=NUM(Idd$(I) [LEN(Idd$(I))])
)
SELECT Dev_id
CASE 0 TO 30 ! Vectra Keyboard
PRINT "HP 460304 (Vectra Keyboard) located at address ";Address_num
CASE 48 ! Function Box
PRINT "HP 46086A (Function Box) located at address '";Address_num
CASE 52 ! ID Module
PRINT "HP 46084A (HP-HIL ID Module) located at address ";Address_num
CASE 92 ! Bar Code Reader

9-12 HP-HIL Interface

1410 PRINT "HP 92916A (Bar Code Reader) located at address ";Address_num

1420 CASE 96 ! Rotary Control Knob

1430 PRINT "HP 46083A (Rotary Control Knob) located at address ";
Address_num

1440 CASE 97 ! Control Dials and Quadrature Port

1450 ! This is a test to determine if the device is an HP 46085A

1460 ! or an HP 46094A. Note that both of these devices have the

1470 ! same ID number.

1480 IF (NOT BIT(Io_header,0)) THEN

1490 PRINT "One third of an HP 46085A (Control Dials) located at
address ";Address_num

1500 ELSE

1510 PRINT "HP 46094A (HP-HIL Quadrature Port) located at address ";
Address_num

1520 END IF

1530 CASE 104 ! HP Mouse

1540 PRINT "HP 46060A (HP Mouse) located at address ";Address_num

1550 CASE 140 ! Touchscreen

1560 PRINT "HP 35723A (Touchscreen) located at address ";Address_num

1570 CASE 147 ! Digitizer A

1580 PRINT "HP 46087A (Digitizer A) located at address '";Address_num

1590 CASE 148 ! Digitizer B

1600 PRINT "HP 46088A (Digitizer B) located at address ";Address_num

1610 CASE 149 ! Graphics Tablet

1620 PRINT "HP 45911A (Graphics Tablet) located at address ";Address_num

1630 CASE 160 TO 191 ! Integral Keyboard

1640 PRINT "Integral Keyboard located at address '";Address_num

1650 CASE 192 TO 223 ! HP 46020/21A Keyboard

1660 PRINT "HP 46020/21A (ITF Keyboard) located at address '';Address_num

1662 CASE 224 ! HP 98203C Keyboard

1664 PRINT "HP 98203C Keyboard located at address ";Address_num

1670 CASE ELSE

1680 PRINT "Unrecognized device located at address " ;Address_num

1690 Unknown_dev$=IVAL$(Dev_id, 16)

1700 PRINT "Device ID is " ;Unknown_dev$[3]

1710 END SELECT

1720 CALL Describe_rec(Des_header,Address_num,Dev_id)
1730 !

1740 NEXT I

1750 PRINT

1760 PRINT "NO MORE DEVICES."

1770 1

1780 END

1790 ¢

HP-HIL Interface 9-13

The following information is an explanation of program segment 2.

Lines 1270 to 1740 are a FOR loop which identifies all the devices specified by
the Count variable. It also gives the address of these devices in the HP-HIL
link.

Lines 1350 to 1710 are a SELECT statement within the FOR loop. This
statement contains CASE statements which cause a message to be printed for
each type of device found on the HP-HIL link. An example of the type of
message printed is as follows:

HP 46086A (Function Box) located at address 2

Assuming that there is a Function Box located at address 2 in your HP-HIL
link.

Note that in lines 1440 to 1520 a test is made for the type of device found with
the ID number of 97 (decimal) because there are two devices which have that
device ID number. They are the Control Dials box and the Quadrature Port.
Also, in the case of a device not being recognized, lines 1670 to 1700 will cause
the following message to be displayed:

Unrecognized device located at address 2
Device ID is 20

Assuming there is an un-recognized device located at address 2 and the ID
number of that device is 20 (hexadecimal).

Segment 3 of HIL_ID

This segment of the program is a subprogram called Describe_rec. The
subprogram interprets each bit of the Describe Record byte to characterize the
device at a specified address in the HP-HIL link. For a detail description of
the Describe Record byte, read the section in the “HP-HIL Appendix” titled
“Describe Record”.

B LTV D L e
1810 ! This is segment 3 of the program. It is a subprogram

1820 ! that provides information on each device. This
1830 ! information will help you determine what you can do
1840 ! with a particular device.

1850 !k ko bk ok Aok ok o Ak kb o Aok ook o
1860 !
1870 SUB Describe_rec(INTEGER Des_header,Address_num,Dev_id)

9-14 HP-HIL Interface

1880
1890
1900
1910
1920
1930
1940
1950

1960

1970
1980
1990

2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240

COM INTEGER Io_header

PRINT TAB(2),"Describe Record Information"

IF Des_header=0 THEN
PRINT TAB(5),"No special features"
SUBEXIT
END IF
IF BIT(Des_header,2) THEN PRINT TAB(5),"Reports Security Code
information"
IF BIT(Des_header,3) THEN PRINT TAB(5),"Supports the Extended
Describe command"
]
IF BIT(Des_header,4) THEN CALL Io_descriptor(Io_header)
IF BIT(Des_header,7) THEN PRINT TAB(5),"Contains two independent
sets of coordinate axes"
1
SELECT Des_header MOD 4
CASE 0
PRINT TAB(5),"No axis information reported"
SUBEXIT
CASE 1
PRINT TAB(5),"X axis information reported"
CASE 2
PRINT TAB(5),"X and Y axis information reported"
CASE 3
PRINT TAB(5),"X, Y and Z axis information reported"
END SELECT
|
IF BIT(Des_header,6) THEN
PRINT TAB(8),"Absolute positioning device"
ELSE
PRINT TAB(8),"Relative positioning device"
END IF
IF BIT(Des_header,5) THEN
PRINT TAB(8),"Returns 16 bits/axis"
ELSE
PRINT TAB(8),"Returns 8 bits/axis"
END IF

SUBEND

The following information is an explanation of program segment 3.

Line 1900 prints the message:

Describe Record Information

HP-HIL Interface

9-15

This indicates that the information to follow this messages was taken from the
Describe Record. Note that the Describe Record consist of up to 10 bytes

of information. This information includes a Describe Record Header, Axes
information, and an I/O Descriptor Byte.

Lines 1910 through 1940 are an IF ... THEN statement which tests to see if
there is information in the Describe Record Header byte . If the byte contains
all zeros, then the following message is printed and the subprogram is exited:

No special features

If the Describe Record Header byte is not all zeros, then the subprogram
continues to process the header information.

Line 1950 tests bit 2 of the Describe Record Header byte to determine if the
HP-HIL device reports security code information. If it does not, then the
subprogram passes on the next test. However, if it does report security code
information, then the following message is displayed:

Reports Security Code information

Line 1960 tests bit 3 of the Describe Record Header byte to determine if the
HP-HIL device supports the Extended Describe command. If it does not, then
the subprogram passes on to the next test. However, if it does support the
Extended Describe command, then the following message is displayed:

Supports the Extended Describe command

Line 1980 tests bit 4 of the Describe Record Header byte to determine
if the HP-HIL device reports I/O Descriptor information. If it does not,
the subprogram passes on to the next test. However, if it does a CALL to
the subprogram called Io_descriptor is made and I/O Descriptor byte
information is displayed.

Line 1990 tests bit 7 of the Describe Record Header byte to determine if the
HP-HIL device contains two independent sets of coordinate axes. If it does not,
the subprogram passes on to the next test. However, if it does the following
information is displayed and the subprogram passes on to the next test:

Contains two independent sets of coordinate axes

Lines 2010 through 2110 are a SELECT statement which test bits 0 and 1 for
axis information. If no axis information is reported, then the following message
is displayed and the subprogram is exited.

9-16 HP-HIL Interface

No axis information reported

However, if axis information is reported, you may receive one of the following
messages:

X axis information reported
X and Y axis information reported

X, Y, and Z axis information reported
Once this test is completed program flow passes on to the next statement.

Lines 2130 through 2170 test bit 6 of the Describe Record Header byte to
determine if the device is a relative or absolute positioning device. If bit 6 is
set, the following message is displayed:

Absolute positioning device

If bit 6 is clear (not set), the following message is displayed:

Relative positioning device

Lines 2180 through 2220 complete the subprogram called Describe_rec. They
test bit 5 of the Describe Record Header byte to determine if the device returns
8 bits per axis or 16 bits per axis. If bit 5 is set, the following message is
displayed:

Returns 16 bits/axis

If bit 5 is clear (not set), the following message is displayed:

Returns 8 bits/axis

Segment 4 of HIL_ID

This segment of the program is a subprogram called Io_descriptor. This
subprogram provides information on the number of buttons the devices has

and whether or not the device responds to general prompt and acknowledge
commands. It also provides information on whether or not the device supports
“proximity detection”. Proximity detection checks for the in and out motion of
a stylus or finger in relation to a digitizer or touchscreen. lo_descriptor is called
by the subprogram Describe_rec.

HP-HIL Interface 9-17

2250 Vhxkmkkkkkkkkkkkkokkkokiokkok ok kok kR kR Rk Rk Kk Kk ok
2260 ! This is segment 4 of the program. It is a
2270 ! subprogram that provides you with additional

2280 ! information on what a device can do.
2290 ! kakakakakokok ook skok ok sk ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok s ok o o ok o o o ok ok ok ok ok ko ok o
2300 !

2310 SUB Io_descriptor (INTEGER Io_header)

2320 PRINT TAB(5),"I/0 Descriptor Information"

2330 IF Io_header=0 THEN

2340 PRINT TAB(8),"No features"

2350 SUBEXIT

2360 END IF

2370 IF BIT(Io_header,7) THEN PRINT TAB(8),"Recognizes General Prompt and
Acknowledge"

2380 !

2390 Test_bits=(Io_header MOD 128) DIV 16

2400 SELECT Test_bits

2410 CASE 0

2420 PRINT TAB(8),"Does not support Prompts/Acknowledges 1 thru 7"
2430 CASE 1

2440 PRINT TAB(8),"Supports Prompt/Acknowledge 1"

2450 CASE 2

2460 PRINT TAB(8),"Supports Prompts/Acknowledges 1 and 2"

2470 CASE ELSE

2480 PRINT TAB(8),"Supports Prompts/Acknowledges 1 thru

"&VAL$ (Test_bits)
2490 END SELECT
2500 !
2510 IF BIT(Io_header,3) THEN PRINT TAB(8),'"Supports Proximity Detection"
2520 !
2530 Test_bits=(Io_header MOD 8)
2540 SELECT Test_bits
2550 CASE 0

2560 PRINT TAB(8),"Does not report buttons"
2570 CASE 1
2580 PRINT TAB(8),"Reports 1 button"
2590 CASE 2
2600 PRINT TAB(8),"Reports buttons 1 and 2"
2610 CASE ELSE
2620 PRINT TAB(8),"Reports buttons 1 thru "&VAL$(Test_bits)
2630 END SELECT
2640 SUBEND
9 The following information is an explanation of program segment 4.

9-18 HP-HIL Interface

Line 2320 displays the following message:

I/0 Descriptor Information

Lines 2330 through 2350 test the I/O Descriptor byte to determine if it
contains any information. If this byte is not all zeros, then the subprogram
continues on with the next test. However, if it does contain all zeros, then
the message given below is displayed and program execution is passed to the
subprogram (Describe_rec) which called it.

No features

Line 2370 tests bit 7 of the I/O Descriptor byte (Io_header) to determine
if the device being tested recognizes General Prompt and Acknowledge
commands. A message is displayed if the test is true; otherwise, no message
is displayed and the subprogram continues with the next test. The message
displayed is:

Recognizes General Prompt and Acknowledge

Line 2390 does a MOD 128 of the I/O Descriptor byte to mask off the bits
above bit 6 of the byte and then does a DIV 16 to mask off the lower four bits
of the byte and shifts the remaining bits to the right. The variable Test_bits
is assigned the result of the above operation. The result is a value in the range
of 0 through 7. Note that Test_bits is the decimal value of bits 4 through 6 of
the I0 Descriptor byte.

Lines 2400 through 2490 are a SELECT statement which tests bits 4 through 6
of the I/O Descriptor byte to determine if Prompts/Acknowledges 1 through
7 are supported by the device being tested. If they are not supported, the
following message is displayed:

Does not support Prompts/Acknowledges 1 thru 7

HP-HIL Interface 9-19

If they are supported, you will receive one of the following messages depending
upon how many Prompts/Acknowledges your device supports:

Supports Prompt/Acknowledge 1

Supports Prompis/Acknovwledges 1 and 2
Supports Prompts/Acknowledges 1 thru 3
Supports Prompts/Acknowledges 1 thru 4
Supports Prompts/Acknovledges 1 thru 5
Supports Prompts/Acknowledges 1 thru 6

Supports Prompts/Acknowledges 1 thru 7

Line 2510 tests bit 3 of the I/O Descriptor byte to determine if the device
being tested supports proximity detection. A message is displayed if the test is
true; otherwise, no message is displayed and the subprogram continues with the
next test. The message displayed is:

Supports Proximity Detection
Line 2530 does a MOD 8 of the I/0 Descriptor byte to mask off the bits
above bit 2 the byte. The variable Test_bits is assigned the result of the

above operation. The result is a value in the range of 0 through 7. Note that
Test_bits is the decimal value of bits 0 through 2 of the I0 Descriptor byte.

Lines 2540 through 2630 are a SELECT statement which tests bits 0 through 2
of the I/O Descriptor byte to determine if Buttons 1 through 7 are reported
by the device being tested. If they are not reported, the following message is
displayed:

Does not report buttons

9-20 HP-HIL Interface

If they are reported, you will receive one of the following messages depending
upon how many buttons your device reports:

Reports 1 button
Reports buttons 1 and 2
Reports buttons 1 thru 3
Reports buttons 1 thru 4
Reports buttons 1 thru 5
Reports buttons 1 thru 6

Reports buttons 1 thru 7

HP-HIL Devices

A brief description will be provided for those devices supported by HIL SEND,
ON HIL EXT, and HILBUF$. For those devices not supported by these
statements and function, there will be a reference given to help you locate
further information on that device, as well as statements you may use to
interact with it.

HP-HIL devices have been divided into the following categories:

m HP-HIL Keyboards

m Relative Positioners

m Absolute Positioners

m Security Device (the ID Module)

w Other Devices (i.e., Keyboards, Button Devices, Bar Code Reader)

HP-HIL Interface 9-21

HP-HIL Keyboards

There are three HP-HIL keyboards supported (as Keyboards) on the HP-HIL
link. They are the:

m HP 46020/21A (for information on this keyboard see the Using BASIC)
manual for your system.

m HP 98203C (this keyboard is not supported on BASIC/UX) (for information
on this keyboard see the manual titled Using HP BASIC/WS).

m Integral Keyboard (for information on this key'board see the HP-UX
Technical BASIC Getting Started Guide).

These keyboards will not cause ON HIL EXT interrupts. Using HIL SEND
to transmit a command (other than IDD) to one of these devices will cause
an error only for the HP 98203C keyboard which is also a relative positioning
device (see next section). To do interrupt branching with the keyboard keys,
you need to use the following statements and function:

ON/OFF KEY ON KEY defines and enables an event-initiated branch
to be taken when a softkey is pressed. OFF KEY cancels
event-initiated branches previously defined and enabled by
an ON KEY statement. Without the KBD binary, subsequent
softkey presses cause beeps. With the KBD binary, the
action of subsequent softkey presses depends upon the
typing-aid definitions.

ON/OFF KBD ON KBD defines and enables an event-initiated branch to be
taken when a key is pressed. OFF KBD cancels event-initiated
branches previously defined and enabled by an ON KBD
statement. Subsequent key presses are sent to the operating
system in the normal manner.

KBD$ This function returns the contents of the keyboard buffer
when ON KBD is active.

For more information on keyboards, refer to the Using BASIC manual for your
system.

Relative Positioners

9-22 HP-HIL Interface

These devices will not cause ON HIL EXT interrupts. Using HIL SEND to
transmit a command (other than IDD) to one of these devices will cause an
error. Relative positioners can be categorized into two groups: those that are
two axis devices and those that are three axis devices. A list of these devices
and their statements and functions is given below.

Examples of two-axis relative positioning devices are:

m HP 46060A /B (HP-Mouse)

m HP 46083A (Rotary Control Knob)

s HP 46094A (HP-HIL/Quadrature Port)

m HP 98203C (this keyboard is not supported on BASIC/UX)

These devices support the following statements and functions. Note that in
the case of the HP 46094A (HP-HIL/Quadrature Port) it supports statements
and functions appropriate to the quadrature device connected to it (e.g., the
HP 46095A 3-button Mouse).

ON/OFF KBD

KBD$

ON/OFF KNOB

KNOBX and KNOBY

ON KBD defines and enables an event-initiated branch
to be taken when a key is pressed. OFF KBD cancels
event-initiated branches previously defined and
enabled by an ON KBD statement. Subsequent key
presses are sent to the operating system in the normal
manner.

This function returns the contents of the keyboard
buffer.

ON KNOB defines and enables an event-initiated branch
to be taken when the knob is turned. OFF KNOB
cancels event-initiated branches previously defined
and enabled by an ON KNOB statement. Subsequent
use of the knob results in normal scrolling or cursor
movement.

return the counts accumulated for X and Y motions of
the relative positioning devices.

HP-HIL Interface 9-23

DIGITIZE

READ LOCATOR

For more information on
Language Reference, and

There are also three-axis

This statement is used when:

GRAPHICS INPUT IS KBD,"KBD"

It inputs the X and Y coordinates of a digitized point
from the locator specified by GRAPHICS INPUT 1IS.

This statement is used when:
GRAPHICS INPUT IS KBD,"KBD"

It samples the locator device, without waiting for a
digitizing operation.

these statements, refer to the HP BASIC 6.2
the HP BASIC 6.2 Programming Guide.

devices, for example the HP 46085A (Control Dials)

module contains three such devices. This device supports the following

statements and function:

ON/OFF CDIAL

CDIAL (Counter)

9-24 HP-HIL Interface

ON CDIAL enables end-of-line interrupts in response
to the rotation of one or more knobs on the HP-HIL
Control Dials device. While such interrupts are
enabled, pulses (rotation counts) are accumulated
and returned via the CDIAL function (see below).
OFF CDIAL cancels end-of-line interrupts previously
enabled by an ON CDIAL statement. After an OFF
CDIAL statement, left over counts may be read via
CDIAL (but only once), and no further accumulation
occurs.

This function is used to return counts from the
Control Dials module or other 3-axis relative
positioning devices. It is linked to a status word

and 15 counters. Fach of the 15 high order bits in
the status word corresponds to one counter, the first
counter being represented by bit 1 of the status word
(bit 0 of the status word is unused). Normally the
counters one through nine correspond to the nine
knobs on the Control Dials module. Counter 1 is the
knob in the lower left-hand corner of the module.
The remaining counters are numbered from left to

right. The status word and counters are zeroed when
an ON CDIAL statement is executed. Thereafter,
whenever a count arrives from any of the knobs, the
corresponding counter is incremented and its status
bit is set. Reading a counter zeros both the counter
and its bit in the status word. Reading the status
word does not change its value. The status word is
read as CDIAL(O).

For more information on these statements see the HP BASIC 6.2 Programming
Guide.

Note that when ON CDIAL interrupts are disabled, three-axis devices may be
used with the two-axis statements and functions.

Absolute Positioners

These devices can generate ON HIL EXT interrupts, but will not when:

GRAPHICS INPUT IS KBD,"TABLET"

is in effect. Moreover, due to the speed which data is returned from the
digitizers, a BASIC program cannot keep up with them when using ON HIL
EXT (HILBUFS overflows). Therefore, the only device in this group capable
of using the ON HIL EXT statement is the Touchscreen. Using HIL SEND to
transmit a command (other than IDD) to these devices while:

GRAPHICS INPUT IS KBD,"TABLET"
will result in an error.

The following statements should be used when:

GRAPHICS INPUT IS KBD,"TABLET"

is in effect.

DIGITIZE X_coord,Y_coord inputs the X and Y coordinates of a
digitized point.

READ LOCATOR X_coord, Y_coord samples the locator device without

waiting for a digitize operation.

HP-HIL Interface 9-25

For more information on these statements refer to the HP BASIC 6.2

Programming Guide. An explanation of each of these statements may also be
found in the HP BASIC 6.2 Language Reference.

The following are absolute position devices:

m HP 35723A (HP-HIL/Touchscreen)—This module is a screen bezel which
replaces the bezel of the HP 35731 (medium resolution black and white)
and HP 35741 (medium resolution color) 12-inch video monitors. It can be
programmed to select various functions by simply touching the screen. Note
that this device is simply a lower resolution digitizer. The Touchscreen can
be used as a GRAPHICS INPUT IS device or with the ON HIL EXT statement.

m HP 45911A (11 x 11 Graphics Tablet)—This device is best used as a
GRAPHICS INPUT IS device.

m HP 46087A (A-size Digitizer)—This device is best used as a GRAPHICS INPUT
IS device.

m HP 46088A (B-size Digitizer)—This device is best used as a GRAPHICS INPUT
IS device.

If a three-axis absolute positioning device existed, it could always be used with

HIL SEND and ON HIL EXT since it would not be recognized for use with:

GRAPHICS INPUT IS KBD,"TABLET"

Security Device

The HP 46084A (HP-HIL ID Module) is an HP-HIL device that returns

an identification number for identifying you as the computer user. The
identification number is unique to your particular ID Module. This allows
application programs to use the ID Module to control access to program
functions, data bases, and networks. Note that the identification number is the
product/exchange and serial numbers returned in a packed format as explained
in the section “ID Module” found in this chapter.

This device can be used with SYSTEM$(“SERIAL NUMBER”) or HIL SEND
device address;RSC.

Other Devices

9-26 HP-HIL Interface

These devices can generate ON HIL EXT interrupts and respond to various
HIL SEND commands. They all have HP-HIL device IDs less than 96 (60
hexadecimal).

The HP 46086A (Function Box) provides 32 keys to select software-defined
functions. It has an LED that acts as a visual prompt for any purpose you
assign to it. This device uses a non-standard keycode set (Keycode Set 2)
which is shown below.

0/1 2/3 4/5 6/7
8/9 10/11 12/13 14/15 16/17 18/19
20/21 22/23 24/25 26/27 28/29 30/31
32/33 34/35 36/37 38/39 40/41 42/43
44/45 46/47 48/49 50/51 52/53 54/55
56/57 58/59 60/61 62/63

Keycode Set 2 for the Function Box
(press value/release value)

The HP 46086A (Function Box) responds to the following HP-HIL commands
when sent by the HIL SEND statement:

= PRM
m ACK
m DKA
m EKA 1
m EKA 2

The HP 46030A (Vectra Keyboard) provides 103 keys to select software-defined
functions. It has three LEDs which act as visual prompts for any purpose

you assign to them. This device uses Keycode Set 3 which is described in the
“HP-HIL Appendix.” This keyboard is not supported on BASIC/UX.

The Vectra Keyboard responds to the following HP-HIL commands when sent
by the HIL SEND statement:

m PRM 1 through 3

HP-HIL Interface 9-27

m ACK 1 through 3
a DKA

m EKA 1

m FKA 2

For BASIC/WS, to use an HP 46030A (Vectra Keyboard) as an auxiliary input
device, you must have a computer capable of using the HP 98203C keyboard.
It need not have an HP 98203C keyboard.

The HP 92916A (Bar-Code Reader) reads all standard bar-codes using a wand
as the input device. It provides you with an effective and reliable alternative
to the time consuming keyboard for data entry. Note that BASIC supports
this device in both the ASCII transmit mode, where the input from the device
is ASCII characters, and in the Keyboard mode, where it transmits the same
keycodes as an HP 46020/21A Keyboard. (In Keyboard mode, this device also
returns an HP-HIL ID in the same range as an HP 46020/21A Keyboard.) The
codes that can be read by the Bar-Code Reader are: 3 of 9, Interleaved 2 out
of 5, UPC/EAN, and Codabars USD-4 and ABC.

When the HP 92916A (Bar-Code Reader) is in the ASCII transmit mode use
the following statement:

ON HIL EXT

When the HP 92916A (Bar-Code Reader) is in the Keyboard mode use the
following statements:

ON KBD
ENTER KBD
INPUT

LINPUT

9-28 HP-HIL Interface

Communicating with HP-HIL Devices

This section of the chapter covers the use HP-HIL devices which support the
HIL SEND and ON HIL EXT statements. In the examples covered in this
section, you will be looking at four HP-HIL devices and how to use them in the
HP-HIL link.

a ID Module

a Function Box

m Touchscreen

m Bar Code Reader

HP-HIL Device Characteristics

Once the HP-HIL device is in the link, you will need to verify its address and
determine its characteristics. Accessing this information is the purpose of this
section.

To verify a device’s address and determine its characteristics, use the HIL SEND
address ; IDD statement and HILBUF$ function. The HIL SEND address;IDD
statement executes the HP-HIL Identify and Describe command. Data
resulting from the execution of this command is placed in the buffer used by
the HILBUF$ function. Assuming that the address of your device is 1, entering
this program and running it will give you the information you need. Note that
the information returned is hexadecimal and will have to be interpreted using
the information found in the “HP-HIL Appendix” of this manual.

100 HIL SEND 1;IDD

110 A$=HILBUF$

120 FOR I= 1 TO LEN(A$)

130 B$=IVAL$(NUM(A$[I1),16)
140 PRINT B$[31;" ";

150 NEXT I

160 END

Results from executing this program can be found under the topic heading
“Device Characteristics” in each of these sections:

m ID Module
m Function Box and Vectra Keyboard
m Touchscreen 9

m Bar Code Reader

HP-HIL Interface 9-29

ID Module

This module provides a means for securing your software. In this section, you
will be:

m Determining ID Module characteristics,
m Verifying your ID Module’s product/exchange and serial numbers,

m Learning how to install and remove the ID Module.

Device Characteristics

This section provides and explains the results from executing the program
found in the section titled “HP-HIL Device Characteristics”. Remember that
these results assume your ID Module is located at address 1. The program
results are as follows:

00 04 01 34 04

where:

00 is a buffer overflow count. Zero means the buffer has not overflowed
since last read. If the buffer of the HILBUF$ function overflowed,
this value would represent the number of packets of information lost.

04 is the number of bytes of data to follow this byte and including this
byte. The number of bytes is 4.

01 is the address of the device in the loop. The address of the device in
this case is 1 which means that it is the first device in the link with
an address.

34 is the type of device located at the address given. The device in this
case, as interpreted from the “Device ID Byte Definitions” table
found in the “HP-HIL Appendix” in this manual, is the ID Module.

04 is the Describe Record for the device. This record helps you

determine the device characteristics. To interpret this hexadecimal
value, you need to turn to the “HP-HIL Appendix” found in this
manual. Looking in the section titled “Describe Record”, you

will find that if bit 2 is set then the device reports security code
information.

9-30 HP-HIL Interface

Interpreting ID Module Data

In this section, you will learn how to verify the product/exchange and serial
numbers for your ID Module.

To verify your product/exchange number, type in and execute the following
program:
100 Sn$=SYSTEM$ ("SERIAL NUMBER")
110 OUTPUT Sn_disp$ USING "9D";256%(256%(256.*(NUM(Sn$[8]) MOD 64)
+NUM(Sn$[7]))+NUM(Sn$[6])) +NUM(Sn$[5])
120 PRINT VAL$(256%(256.*BIT(NUM(Sn$[4]),7)+NUM(Sn$[3]))+NUM(Sn$[2]))
£CHR$ (NUM(Sn$[4]) MOD 128),Sn_disp$[1,4]&CHR$ (NUM(Sn$[91)
MOD 128)&Sn_disp$([5]
130 END

The results from executing the above program look similar to this:

460844 2529410988

The same results can be obtained using the HP-HIL Report Security Code
command (RSC) in the above program. This requires replacing program line
100 with three additional program lines as shown below. Note that you may
need to replace line 120 with additional statements if your program is also
using HILBUFS$ to return other data.

100 HIL SEND 3;RSC

110 Temp_sn$=HILBUF$

120 Sn$=Temp_sn$[4,12]

130 OUTPUT Sn_disp$ USING "9D";256%(256%*(256.* (NUM(Sn$(8]) MOD 64)
+NUM(Sn$[7]1))+NUM(Sn$[6]))+NUM(Sn$ [5])

140 PRINT VAL$(256%(256.#BIT(NUM(Sn$[4]1),7)+NUM(Sn$[3]))+NUM(Sn$[2]1))
&CHR$ (NUM(Sn$[4]1) MOD 128),Sn_disp$[1,4]&CHR$(NUM(Sn$[9])
MOD 128)&Sn_disp$ (5]

150 END

Note about Installing and Removing ID Modules

The HP 46084 (ID Module) is an HP-HIL device which connects to the

computer through the HP-HIL (HP Human-interface Link) interface. Normally

you will be connecting this module to the computer before booting the system.

When the KBD binary is loaded, the system recognizes that the module is

installed. The SYSTEM$ function reads the module’s contents each time the

function is accessed, rather than keeping the contents in memory. 9

HP-HIL Interface 9-31

The ID Module can also be installed while the computer is running. However,
in order for BASIC to recognize that it has been connected, you must execute
this statement:

SCRATCH A

Executing this statement performs a “re-configuration” of the link, after which
the BASIC system recognizes and can properly talk to any additional HP-HIL
device.

If your machine has both an ID PROM and an ID Module, the ID Module
has precedence. In other words, if both are installed (and recognized at boot
or SCRATCH A), then the ID Module’s contents are read and returned by the
SYSTEM$ function.

If you remove the ID Module and do not re-boot or execute SCRATCH A, then
the SYSTEM$ function will return a null string (even if an ID PROM is present).
This behavior is due to the fact that the system still expects the ID Module

to be installed, and thus reads nothing when you attempt to read it with
SYSTEMS.

Conversely, if you install an ID Module in a machine with an ID PROM after
booting BASIC and without performing a SCRATCH A, then SYSTEM$ ("SERIAL
NUMBER") will return the ID PROM’s contents (because it does not recognize
that the ID Module is present).

9-32 HP-HIL Interface

Function Box and Vectra Keyboard

This section deals mainly with the Function Box and not the Vectra Keyboard.
However, to use the Vectra Keyboard with BASIC/WS you would use the
same techniques as used for the Function Box. The main difference between
the two devices are the number of keys and the keycode sets used. The

Vectra Keyboard has 103 keys and uses Keycode Set 3 found in the “HP-HIL
Appendix.” The Function Box has 32 keys and uses Keycode Set 2 which is
found in the section entitled “Other Keyboards and Button Devices.” Note
that in order to use a Vectra Keyboard as an auxiliary input device, you must
have a computer capable of using the HP 98203C Keyboard (or any keyboard
for that matter). This section covers the following topics:

m Determining Function Box characteristics.
m Activating the Function Box.

= Trapping key presses.

m Assigning functions to keys.

Determining Function Box Characteristics

This section provides and explains the results from executing the program
found in the section titled “HP-HIL Device Characteristics”. These results
assume your ID Module is located at address 1. The program results are as
follows:

00 05 01 30 10 80

where:

00 is an overflow indicator. If the buffer to the HILBUF$ function
overflowed, this value would represent the number of packets of
information lost.

05 is the number of bytes contained in the packet of information sent to
the buffer used by the HILBUF$ function including that byte.

01 is the address of the device within the HP-HIL link. The address of
the device is 1 in this example.

30 is the ID number of the device. This number helps to determine

what devices are connected in the HP-HIL link. Hexadecimal 30
is the ID number for the Button Box as found in the table titled
“Device ID Byte Definitions” in the “HP-HIL Appendix.”

HP-HIL Interface 9-33

10 is the Describe Record Header. It returns information, such as what
type of HP-HIL commands are supported by this device, proximity
in/out information, and coordinate information. By use of the
Describe Record Header information provided in the “HP-HIL
Appendix” you will be able to interpret the information contained in
this byte. In this case, the 4th bit of the Describe Record byte is set
which indicates that the last byte in the packet of information is the
I/0O Descriptor Byte.

80 is the I/O Descriptor Byte. This byte contains information as found
in the “I/O Descriptor Byte” table in the “HP-HIL Appendix.” You
will find that bit 7 of this byte has been set. This indicates that the
HP-HIL General Prompt and Acknowledge are supported by this
device.

Activating the Function Box

A status light is located in the upper-right corner of your Function Box. You
could use this light to indicate whether the buttons on the Function Box

are active or non-active. The following program which is titled “Activate”
can be found in the directory called /usr/l1ib/rmb/demo. Note that the
program assumes your Function Box’s address is 2. You may have to change
this address if your Function Box’s address is different from that found in the
program.

9-34 HP-HIL Interface

100 CLEAR SCREEN

110 DISP "Do you want to activate the Function Box?";
120 DISP " Enter Yes or No.";

130 INPUT "",Response$

140 IF LWC$(Response$[1,1])="y" THEN

150 HIL SEND 3;PRM

160 ON HIL EXT 8 CALL Key_service

170 PRINT TABXY(15,10),"The status light is on and keys are active."
180 ELSE

190 HIL SEND 3;ACK

200 OFF HIL EXT

210 PRINT TABXY(15,10),"The status light is off and keys are not active."”
220 END IF

230 Loop: GOTO Loop

240 END

260 !

260 SUB Key_service

270 PRINT "Key_service called."

280 SUBEND

This program executes the HP-HII, General Prompt and Acknowledge
commands using the statements found on lines 150 and 190 of the above
program. When the program is run you are prompt by the following message:

Do you want to activate the Function Box? Enter Yes or No.

You need to type in either Yes or No. If your answer is Yes, the status light on
the Function Box lights up and this message is displayed:

The status light is on and keys are active.

Each time a button on the Function Box is pressed or released, this message is
displayed:

Key_service called.

Note that the subprogram called Key_service just prints a message that it
has been called. It is left up to you to write your own subprograms to assign
processes to the keys. If you answered No to the prompt, the status light either
remains off if it was already off or is turned off if it was on and the following
message is displayed:

The status light is off and keys are not active.

Press the key which pauses the program and allows you to re-run it or
to go on to the next example.

HP-HIL Interface 9-35

Trapping Key Presses

Key presses are recognized as interrupts and cause end-of-line branching when
the ON HIL EXT statement is executed in your program. Recognition of a key
press and then branching to a subprogram is called “trapping” a key press.
The program given in this section provides a good example of trapping key
presses. This program is called “Mul_press” and can be found in the directory
called /usr/1ib/rmb/demo. When you enter and run this program a Function
Box key matrix is displayed on the screen. Each time you press a key that
key’s location in the key matrix is displayed on the screen. Note that you
should only press one key at a time because the Function Box does not provide
for multi-key presses. For example, pressing key number 12 on the Function
Box results in the following being displayed:

Releasing the same key you pressed causes key 12’s matrix location to go
blank. The following program titled “Mul_press” produced the above results.
Note that this program assumes a Function Box address of 3. If your Function
Box is not located at address 3, then you need to change the addresses on both
lines 120 and 290 of the program to the proper address for your Function Box.

100 CLEAR SCREEN

110 ! Assumes button box at location 3.
120 HIL SEND 3;DKA ! Disable Key Auto-repeat.
130 !

140 COM INTEGER Array(31,1:2)

9-36 HP-HIL Interface

150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590

DATA 2,1,3
DATA 1,2,2,
DATA 1,3,2
DATA 1,4,2,

INTEGER Key,Packet_length,Packet_start,Index,Packet_end
INTEGER Keycode

DIM A$[256]

(]

’1’

»

[3l]

i
2
3,2,3,
»4, 4

DATA1,5,2,5,3, ,4,5,5,5,6,5
DATA 2,6,3, ,4,6,5,6

READ Array (%)
Framework
! enable device at location 3 (button box)

ON HIL EXT 2°3 GOSUB Service_req
]

Loop:GOTO Loop

Service_req:!

A$=HILBUF$
IF LEN(A$)=1 THEN RETURN ! no data in buffer
Packet_start=2
REPEAT
Packet_length=NUM(A$[Packet_start])
Packet_end=Packet_start+Packet_length-1
FOR Index=Packet_start+3 TO Packet_end
Keycode=NUM(A$[Index])
Key=(Keycode DIV 2)
Disp_key(Key,NOT BIT(Keycode,0))
NEXT Index
Packet_start=Packet_end+1
UNTIL Packet_start>LEN(A$)
RETURN
!
END
SUB Disp_key(INTEGER N,On)
COM INTEGER Array(*)

IF On THEN ! Even=’downstroke’.
PRINT TABXY(2+Array(N,1)+17,2#*Array(N,2)+4),"";
ELSE ' 0dd=>’upstroke’.

PRINT TABXY(2*Array(N,1)+17,2%Array(N,2)+4)," ";
END IF
SUBEND
SUB Framework
FOR I=0 TO 10 STEP 2

HP-HIL Interface

9-37

600 PRINT TABXY(18,I45);"~~--—m-mmmmm- "
610 PRINT TABXY(18,I+6);"} [1 | | | |*
620 NEXT I

630 PRINT TABXY(18,17);"-—---mmmmmmmn "
640 SUBEND

Here is an explanation of the above program.
Line 100 clears the display.

Line 120 disables the auto-keyswitch repeat mode by executing the HP-HIL
command DKA.

Lines 140 through 170 declare the variables for the program.

Lines 190 through 240 provide values for the element locations in the two
dimensional array called Array. Note that OPTION BASE O is used for this
program.

Line 260 is a READ statement which assigns all of the values in the DATA
statements of lines 190 to 240 to the elements in the array called Array.

Line 270 calls the subprogram Framework which causes a 6 by 6 Function Box
key matrix to be displayed on the screen. The subprogram Framework consist
of lines 580 to 640.

Line 290 enables end-of-line branching when a key on the Function Box is
pressed.

Line 310 is a continuous loop which allows the program to wait for key presses.

Line 330 is the label for the beginning of the service routine called
Service_req.

Line 840 assigns the value of the buffer used by the function HILBUF$ to the
string array called A$.

Line 350 tests the string length. If the string length is 1, then the data
that generated this interrupt has already been read and a return from the
subroutine is made.

Line 360 assigns the value of 2 to the integer variable Packet_start. Note
that Packet_start initially is the subscript for the second element in A$. This
element tells how many elements there are in the first packet of information

9-38 HP-HIL interface

including that element. This variable will also be the counter used to
determine the starting position of each packet of information in the string (48$).

Lines 370 through 460 are a REPEAT loop used to search the data in the
string (A$) for each packet of key press information. Lines 400 through 440
scan the packet for the up or down key presses. Line 430 detects the up or
down key press and passes this parameter to the subprogram called Disp_key.
Note that the integer variable Key is the key which was either pressed or
released.

Line 470 is the return back from the subroutine.

Lines 500 through 570 are the subprogram called Disp_key. This subprogram
has a test in it for an up or down press of a key on the Function Box. Each
time you press a key that key’s location in the key matrix is displayed on

the screen as an inverse video character. When you release that key a blank
appears in the key matrix.

Lines 580 through 640 are the subprogram called Framework which draws the
key matrix on the display.

Assigning Functions to Keys

It was previously mentioned that processes or functions can be assigned to each
key on the Function Box. These functions are not assigned in the same manner
as those assigned to typing-aids keys nor do they have softkey labels which
appear at the bottom of the display.

A function is assigned by pressing a key which causes an interrupt. This
interrupt is trapped and causes a branch to a subprogram which sets a process
in motion. Once the process is completed the subprogram returns execution
back to the main program and waits for another key press. An example of
this can be seen by LOADing and executing the following program called
“Button._box” can be found in the directory called /usr/1ib/rmb/demo. Keep
in mind that only two keys are being used in this program. These keys are
located in the top row starting from the left. Pressing the first key stops the
program, pressing the second key draws a series of circles. Any other key press
causes the following message to appear on the display:

This key is not implemented.

HP-HIL Interface 9-39

Note that you must have the graphics binary (GRAPH) loaded in order for this
program to work. Also, lines 120, 130, and 400 may have to be changed if your
Function Box is not located at address 3 in order for the program to work.

100 INTEGER Packet_length,Packet_start,Packet_end
110 DIM A$[256]

120 ON HIL EXT 2°3 GOSUB Service_req
130 HIL SEND 3;PRM

140 CLEAR SCREEN

150 GINIT

160 PEN O

170 GRAPHICS ON

180 Loop:GOTO Loop

190 !

200 Service_req: !

210 A$=HILBUF$

220 IF LEN(A$)=1 THEN RETURN

230 Packet_start=2

240 REPEAT

250 Packet_length=NUM(A$[Packet_start])
260 Packet_end=Packet_start+Packet_length-1
270 FOR Index=Packet_start+3 TO Packet_end
280 Key_check (NUM(A$ [Index]))

290 NEXT Index

300 Packet_start=Packet_end+1

310 UNTIL Packet_start>LEN(A$)

320 RETURN

330 !

340 Prog_done:END

350 !

360 SUB Key_check(INTEGER Key_num)

370 SELECT Key_num

380 CASE 0,1

390 DISP "The program has STOPPED!"
400 HIL SEND 3;ACK

410 STOP

420 CASE 2

430 MOVE 50,50

440 FOR I=1 TO 20

450 POLYGON I,20,20

460 NEXT I

470 FOR I=20 TO 1 STEP -1

480 POLYGON I,20,20

490 NEXT I

500 GCLEAR

9-40 HP-HIL Interface

510 CASE ELSE

520 IF (Key_num MOD 2)=0 THEN

530 PRINT TABXY(20,10),"This key is not implemented."
540 WAIT 1

550 CLEAR SCREEN

560 END IF

570 END SELECT

580 SUBEND

The following is an explanation of the above program. This program assumes
your Function Box is located at address 3 in the HP-HIL link.

Lines 100 and 110 declare the integer and string variables.

Line 120 executes the statement ON HIL EXT 8 which sets up a branch to

be made to the subprogram Service_req. At the same time this branch is
initiated Poll Record data is sent to the buffer used by the function HILBUF$.
This data contains information on which key was pressed. You can trap these
key presses and use them to activate various process.

Line 130 turns on the status light of the Function Box.
Line 140 clears the alpha display.

Line 150 set the graphics parameters to their default values.
Line 160 sets the graphics pen value to zero (0).

Line 170 turns the graphics display on.

Line 180 causes the program to loop until a key is pressed.

Line 200 is the label for the beginning of the service routine called
Service_req.

Line 210 assigns the value of the buffer used by the function HILBUF$ to the
string called A$.

Line 220 tests the string length. If the string length is 1, then the data
associated with this interrupt has already been processed, and a return from
the subroutine is made.

Line 230 assigns the value of 2 to the integer variable Packet_start. Note
that Packet_start initially is the subscript for the second element in A$. This
element tells how many elements there are in the first packet of information

HP-HIL Interface 9-41

including that element. This variable will also be the counter used to
determine the starting position of each packet of information in the string (4$).

Lines 240 through 310 are a REPEAT loop used to search the data in the
string (A$) for each packet of key press information. Lines 270 through 290
search the packet for up or down key presses. Line 280 calls the subprogram
Key_check and passes it the value of the key you have pressed.

Line 320 is the return back from the subroutine.

Lines 360 through 580 are the subprogram called Key_check. This subprogram
is a large SELECT structure starting at line 370 and going to line 570. This
structure selects a particular process to be performed depending on which key
has been pressed. One process can be found in each of the three different CASE
segments.

Lines 380 through 410 are the first CASE segment. This segment when executed
causes the following message to be displayed:

The program has STOPPED!

It also executes the HP-HIL command ACK (General Acknowledge) which turns
the status light on the Function Box off and terminates the program.

Lines 420 through 500 are the second CASE segment. This segment causes
circles to be displayed one inside the other starting with a small circle and
going to a large one. It then erases these circles in the reverse order.

9-42 HP-HIL Interface

Lines 510 to 560 are the third CASE segment. All key releases come through
this CASE segment and are ignored due to line 520. This includes the release
of key 2. Any key press coming here causes the following message to be
displayed:

This button is not implemented.

Remember there are only two keys whose interrupts were recognized as a result
of running this program. When you press one of the keys which does not cause
a process to become activated the above message is displayed.

HP-HIL Interface 9-43

Using a Touchscreen

As its name indicates, the Touchscreen responds to a touch of the screen. A
touch of the screen will report you are in proximity and a release of this touch
will report you are out of proximity. At the same time this device is reporting
in and out proximity information it is also returning X and Y axis coordinate
information for the screen touch. Combining both of these characteristics, the
user is able to do location selection using the Touchscreen. Below is a list of
the topics covered in this section:

m Determining Touchscreen characteristics,
m Plotting selected locations.
Device Characteristics

Assuming the Touchscreen is located at address 2, it will return Identify and
Describe information as follows:

00 OB 02 8C 52 0A 01 38 00 2A 00 08

where:

00 is the overflow counter.

OB indicates the number of bytes of data to follow including this byte
(in this case there are 11).

02 is the address of the device.

8C is the device type. In this case, it is the Touchscreen as determined
from the table titled, “Device ID Byte Definitions.”

52 is the Describe Record. This gives information about the device.

The bit pattern for a Describe Record of 52 is as follows:

m Bit 0 is not set and bit 1 is. This says the device will return X
and Y coordinates.

m Bit 4 is set. This indicates that the last byte of the Describe
Record is the I/O Descriptor byte.

m Bit 5 is not set. This indicates that the X and Y coordinates
returned will only be 8 bits each (one byte).

9-44 HP-HIL Interface

m Bit 6 is set. This indicates that Absolute Positional data will be
returned by the device.

0A01 These two bytes are combined to give 0104 (i.e., the 2nd byte is the
more significant part of the number). Since bit 5 of the Describe
Record is not set, this value is the number of counts per meter (in
this case 266).

3800 These two bytes are combined to give 0038. (i.e., the 2nd byte is the
more significant part of the number). This value represents the total
number of absolute graphics units in the X-axis (in this case 56).

2400 These two bytes are combined to give 002A. (i.e., the 2nd byte is the
more significant part of the number). This value represents the total
number of absolute graphics units in the Y-axis (in this case 42).

08 is the I/O Descriptor Byte. Bit 3 of this byte is set indicating that
the device indicates changes in proximity in or out status in its Poll
Record (only returned when the status changes).

Plotting Selected Locations

This task requires the use of the statement ON HIL EXT. Information returned
by the Touchscreen can be found in the buffer used by the HILBUF$ function.

The following program called “Touch_plot”, found in the directory called
/usr/1ib/rmb/demo, continuously displays the X and Y coordinates of your
finger or stylus as you move it across the screen. The first release of your
touch on the screen will cause a MOVE to that position. Any subsequent screen
releases will cause a line to be draw from the last coordinate position to the
present one. This particular program only allows you to plot and draw lines to
6 different locations on the screen.

Below are some sample results which you could receive from entering and
running the program in this section.

HP-HIL Interface 9-45

Point 6 : X=40 Y=40

. J

The following program called “Touch_plot” returned the above results. Note
that in order for this program to work on your BASIC system you need to
change the address on line 210 to the address of your Touchscreen. The address
currently assigned to this HP-HIL device in the program is 1.

100 CLEAR SCREEN ! Clear alpha.

110 GINIT ! Initializes graphics.

120 GRAPHICS ON ! Turn on graphics.

130 WINDOW 0,56,0,43 ! Scale to match Touchscreen resolution.
140 !

150 INTEGER Test,Point,Packet_start,Packet_length,Packet_end

160 INTEGER In_proximity,X_coord,Y_coord

170 DIM A$[256]

180 !

190 PRINT TABXY(16,12),"Touch the screen at 6 different locations."

9-46 HP-HIL Interface

200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580

The following is an explanation of the above program.

ON HIL EXT 2 GOSUB Service_req ! Assumes the Touchscreen is the
! first device on the link.

Point=1
4
Loop:GOTO Loop
1
Service_req: !
IF Point=1 THEN CLEAR SCREEN
A$=HILBUF$
IF LEN(A$)=1 THEN RETURN
Packet_start=2
REPEAT
Packet_length=NUM(A$[Packet_start])
Packet_end=Packet_start+Packet_length-1
IF BIT(NUM(A$[Packet_start+2]),1)=1 THEN
X_coord=NUM(A$[Packet_start+3])
Y_coord=NUM(A$[Packet_start+4])

DISP "Point ";Point;": X = ";X_coord;" Y = ";Y_coord

END IF
IF BIT(NUM(A$[Packet_start+2]),6)=1 THEN
In_proximity=NUM(A$[Packet_end])
IF In_proximity=142 THEN
IF Point=1 THEN
MOVE X_coord,Y_coord

ELSE ! Point=2 thru 6.
DRAW X_coord,Y_coord
END IF
END IF
END IF

Packet_start=Packet_end+1
UNTIL Packet_start>LEN(A$)
IF In_proximity=143 THEN

Point=Point+1
END IF
IF Point<7 THEN RETURN
DISP "You’re Done"

]

END

Line 100 clears the alpha screen.

Line 110 initializes graphics to its default values.

HP-HIL Interface

9-47

Line 120 turns graphics on.
Line 130 sets the graphics scale to match the Touchscreen resolution.
Lines 150 through 170 declare the program variables.

Line 190 prompts the user to make 6 screen touches. This means moving your
finger or stylus in and out of proximity 6 times.

Line 210 enables end-of-line interrupts from the Touchscreen located at address
1.

Line 230 initializes the counter variable to 1. The counter variable is called
Point and it keeps track of the number of times you have released your finger
or stylus from the screen.

Line 250 is a continuous loop which allows the system to wait for either a
screen touch or release.

Lines 270 through 560 are a subroutine called Service_req. Whenever a touch
or release of the screen is made, this service routine is called.

Line 290 assigns the value of the buffer used by the function HILBUF$ to the
string called A$.

Line 300 tests the string length. If the string length is 1, then the data
associated with this interrupt has already been processed, and a return from
the subroutine is made.

Line 310 assigns the value of 2 to the integer variable Packet_start. Note
that Packet_start initially is the subscript for the second element in A$. This
element tells how many elements there are in the first packet of information
including that element. This variable will also be the counter used to
determine the starting position of each packet of information in the string (A$).

Lines 320 through 510 are a REPEAT loop used to search the data in the
string (A$) for each packet of screen touch and release information. Lines 350
through 490 check the packet for coordinate and proximity information. The
REPEAT loop continues until the last element in the string A$ is reached.

Lines 400 through 480 test for proximity in and out. As long as proximity in is
detected the coordinates of your present finger or stylus position are printed.
Lines 430 through 470 determine whether to draw a line on the display or to
move the graphics pen to the initial position before plotting.

9-48 HP-HIL Interface

Line 560 is reached when the sixth point is plotted on the screen. This line
will cause the following to be displayed:

You’re Done

Using a Bar Code Reader

A Bar Code Reader may either act as a keyboard or a transmitter of ASCII
characters. In this section, you will assume it is a transmitter of ASCII
characters. When your Bar Code Reader is acting as a keyboard it is returning
keyboard presses. When it is acting as an ASCII transmitter it is sending
ASCII characters.

To use this HP-HIL device as a reader of ASCII characters you need to
program the switches on its underside for the proper settings. The settings for
these keys are explained in the installation manual for this device. Below is a
list of settings you need to verify on the Bar Code Reader before booting the
system.

m The four switches used to define the Transmission Type (i.e., switches 5
through 8 on the right-hand set of switches) should be set to all zeros. This
puts you in the non-keyboard mode.

m The Appended Key switch setting (i.e., switches 2 and 3 on the right-hand
set of switches) should be set for none. This assures that no key operation
will be appended to the end of your bar-code reading.

m The Bar Code Reader should have its Auto Recognition switch set (i.e.,
switch 1 on the right-hand set of switches) and the bar code you are going to
be reading selected (use the eight left-hand set of switches). The following
are possible bar code selections:

o Interleaved 2/5

o Code 3/9

o Extended Code 3/9

o CODABAR USD-4 and ABC
o UPC/EAN/JAN

o UPC E (8 digits)

HP-HIL Interface 9-49

Note that the Automatic code recognition does not mean that the bar-code
reader will automatically know the codes you intend to read, you have to select
them first. It does mean that it will automatically recognize the codes you have
selected. For example, if you wanted to read bar codes that may be either the
Interleaved 2 of 5 bar code or the 3 of 9 bar code, you would set the right-hand
set of switches to the following:

m switch 8 to 1
m switch 7 to 1
m switches 6 through 1 to 0

Topics covered in this section are:

m Determining device characteristics, and
m Transmitting ASCII Characters.

Determining Bar Code Reader Characteristics

The following results assume the Bar Code Reader is at address 4. The Bar
Code Reader returns Identify and Describe information as follows:

00 04 04 5C 00

If this is not the case, you need to check the switch settings on the underside of
your Bar Code reader again.

After the system has been re-booted you should do another Identify and
Describe of the device to see that it is recognized as a Bar Code Reader. The
program used to obtain this information is found in the section titled “HP-HIL
Device Characteristics.” Your results after entering and running this program
should be as follows:

00 04 04 5C 00

where:

00 is the null character (packet overflow count).

04 is the number of bytes to follow including this byte.

04 is the address of the device.

5C is the type of device which in this case is the Bar Code Reader.
00 is the Describe Record Header with no special features.

9-50 HP-HIL Interface

Reading a Selected Bar Code

Once you have selected the type of bar code you wish to read, you are ready
to use your bar code reader. To do this, enter the program called “Bar_code”
found on your Manual Ezamples disc for BASIC/WS or in the directory called
/usr/1ib/rmb/demo for BASIC/UX and run it. Note that if your Bar Code
Reader is not located at address 4, then you need to change line 100 of the
program to match your devices address.

100 ON HIL EXT 2°4 CALL Disp_buf
110 Loop:GOTO Loop

120 END

130 !

140 SUB Disp_buf

150 DIM A$[256]

160 A$=HILBUF$

170 IF LEN(A$)=1 THEN RETURN

180 Packet_start=2

190 REPEAT

200 Packet_length=NUM(A$[Packet_start])
210 Packet_end=Packet_start+Packet_length-1
220 PRINT A$[Packet_start+3,Packet_end];
230 Packet_start=Packet_end+1

240 UNTIL Packet_start>LEN(A$)

250 PRINT

260 SUBEND

HP-HIL Interface 9-51

To have data displayed on the screen, you need to move the Bar Code Reader’s
wand rapidly and at a constant speed across the bar code. The wand should
also be held as shown:

Maximum 15°

A

The Correct Method for Holding the Bar Code Reader

The following is an explanation of the program provided in this section.

Line 100 enables end-of-line branching on movement of the wand across the
bar code.

Line 110 is a continuous loop which allows the program to idle while waiting
for a bar-code reading.

Line 140 is the beginning of the subprogram Disp_buf. This subprogram is
used to display the data read by the Bar Code Reader.

Line 160 dimensions the string A$.

Line 170 tests for an empty buffer. If the buffer is empty the data that caused
the interrupt has already been processed by a previous invocation of the service
routine, so it simply returns to the idle loop on line 110.

If the buffer is not empty, a REPEAT loop in lines 190 through 240 causes
ASCII bar code information to be displayed.

9-52 HP-HIL Interface

Line 180 assigns the value of 2 to the integer variable Packet_start. Note
that Packet_start initially is the subscript for the second element in A$. This
element tells how many elements there are in the first packet of information
including that element. This variable will also be the counter used to
determine the starting position of each packet of information in the string (A$).

Lines 190 through 240 are a REPEAT loop used to search the data in the
string (A$) for each packet of information in the string A$.

Line 220 prints out the ASCII characters found in each packet.
To end the program press the key.

Interaction Among Multiple HP-HIL Devices

End-of-line interrupts can be handled when they come from more than one
HP-HIL device during program execution. To demonstrate this a program
called Multi_dev, found on your Manual Ezamples disc for BASIC/WS or in
the directory /usr/lib/rmb/demo for BASIC/UX, has been provided for you
to load and run. The program and its explanation are included in this section.
Note that line 1030 of this program assumes that you have a Touchscreen
located at address 1 and a Function Box located at address 3. If these are not
the correct addresses for your devices, you will have to change the address
mask on line 1030 of this program. For information on how to change the
address mask, read the section in this chapter titled “Communicating through
the HP-HIL Interface.”

The interaction covered in this section is between a Touchscreen and a
Function Box. Both of these devices could easily be replaced by two other
HP-HIL devices which are supported by the ON HIL EXT and/or HIL SEND
statements. To do this, you would have to make a few variables changes to suit
the new program and write new subprograms which would be appropriate for
the HP-HIL devices you are using.

1000 DIM Buf$[256],Packet$[15]
1010 INTEGER Index,Hil_addr

1020 !
1030 ON HIL EXT 10 GOSUB Disp_buf ! Set up interrupts for
1040 ! addresses 1 and 3.

1050 GINIT ! Initialize
1060 GRAPHICS ON ! Turn on graphics.
1070 PRINT TABXY(16,4)," This program allows you to touch a point on"

HP-HIL Interface 9-53

1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520

PRINT TAB(16),"the screen and draw a figure at that location"
PRINT TAB(16),"by pressing a key on the Function Box. The"
PRINT TAB(16),"keys are numbered from left to right starting"
PRINT TAB(16),"with the top row of Function Box keys."

PRINT

PRINT TAB(21),"Key 1 draws a TRIANGLE."

PRINT TAB(21),"Key 2 draws a SQUARE."
PRINT TAB(21),"Key 3 draws a PENTAGON.
PRINT TAB(21),"Key 4 draws a CIRCLE,"
PRINT

PRINT TAB(16),"To continue with the program:"

PRINT

PRINT TAB(21),"Press ’Continue’, or"

PRINT TAB(21),"Type ’CONT’ and press ’Return’."

PAUSE

CLEAR SCREEN ! Clear the alpha display.

WINDOW 0,56,0,43 ! Scale to match Touchscreen resolution.
)

Loop:GOTO Loop
]

Disp_buf:!
Buf$=HILBUF$
IF LEN(Buf$)=1 THEN RETURN ! Data already processed.
Packet_start=2 ! Skip "overflow" indicator.
REPEAT
Packet_length=NUM(Buf$[Packet_start]) ! Determine packet length.
Packet_end=Packet_start+Packet_length-1 ! Find end of packet.
Packet$=Buf$[Packet_start,Packet_end]
]
Hil_addr=NUM(Packet$[2])
SELECT Hil_addr
CASE 1 ! Touchscreen
CALL Touchscreen(Packet$)
CASE 3 ! Function box
CALL Function_box(Packet$[4])
END SELECT
'
Packet_start=Packet_end+1 ! Prepare for next packet.
]

UNTIL Packet_start>LEN(Buf$)
!

RETURN

END

[}

SUB Touchscreen{Coordinate$)

9-54 HP-HIL Interface

1530 !
1540 IF BIT(NUM(Coordinate$[3]),1)=1 THEN

1550 X_coord=NUM(Coordinate$[4])
1560 Y_coord=NUM(Coordinate$[5])
1570 MOVE X_coord,Y_coord

1580 END IF

1590 SUBEND

1600 !

1610 SUB Function_box(Key_press$)
1620 INTEGER Key_num
1630 WHILE LEN(Key_press$)

1640 Key_num=NUM(Key_press$)
1650 SELECT Key_num

1660 CASE 0,1

1670 POLYGON 5,3,3

1680 CASE 2,3

1690 POLYGON 5,4,4

1700 CASE 4,5

1710 POLYGON 5,5,5

1720 CASE 6,7

1730 POLYGON 5,50,50

1740 CASE ELSE

1750 BEEP

1760 END SELECT

1770 Key_press$=Key_press$[2]
1780 END WHILE

1790 SUBEND

The following is an explanation of the above program. This program, as lines
1070 to 1110 state, allows you to touch a point on the screen and draw a
figure at that location by pressing a key on the Function Box. The keys are
numbered from left to right starting with the top row of Function Box keys.

Line 1030 initiates the end-of-line interrupts for the HP-HIL devices located
at addresses 1 and 3. To do this you need to know how to set up the mask
which will cause end-of-line interrupts to be recognized by both devices. The
mask value is obtained by raising 2 by the power of each of the addresses and
adding these values. For example, 2 raised to the first power added to 2 raised
to the third power results in the value 10 for your mask. When an interrupt is
received from either of the HP-HII, devices, program execution branches to the
subroutine called Disp_buf.

The subroutine Disp_buf includes lines 1280 through 1490. This subroutine 9
separates the packets of data sent by each HP-HIL device to the string buffer

HP-HIL Interface 9-55

of the function HILBUF$ and sends those packets to appropriate subprograms
which process this data. In other words, packets containing the address 1 are
sent to the subprogram called Touchscreen and those packets with address 3
are sent to the subprogram called Function_box. Once the string buffer has
been completely processed the subroutine is exited.

Touchscreen is the subprogram located in lines 1520 through 1590 which
searches the string Coordinate$ to determine if it has X and Y axis coordinate
information. If coordinate information is available, it is assigned to the
variables X_coord and Y_coord. The graphics pen is next moved to the
location of these coordinates. Plotting of the figures will start at these
locations. Once the pen move is made program execution is returned to the
main program.

Now that a screen location has been selected pressing a key on the Function
Box will cause a triangle, square, pentagon or circle to be drawn at that
location. The subprogram called Function_box located at lines 1610 to 1790
receives the string called Key_press$ and looks at it for the number of the key
which was pressed and assigns that value to the variable called Key_num. The
SELECT structure uses the variable Key_num to choose which figure should be
drawn at the last selected screen location. Note that the CASE segment will
responded to both the press and release of a Function Box key. The WHILE
loop on lines 1630 through 1780 handles multiple keys in the packet, since the
program only expects keycodes from the Function Box.

Modifying the Interactive Program

The program explained in the previous section made the assumption that there
was a Touchscreen located at address 1 and a Function Box located at address
3. If you didn’t have those HP-HIL devices or they weren’t located at the
addresses given above, you would need a way of determining what devices were
on your HP-HIL link and their address. This section provides a method for
doing this.

9-56 HP-HIL Interface

Determining which HP-HIL devices are on the HP-HIL link and their address,
can be accomplished by adding the following FOR loop to the your program:

1030 ON ERROR GOTO Link_end
1040 FOR I=1 TO 7

1050 HIL SEND I;IDD
1060 Buf$=HILBUF$
1070 Idd(I)=NUM(Buf$(4])

1080 NEXT I
1090 Link_end: ! OFF ERROR

These program lines can be inserted in the previous program just after line
1020. The FOR loop consisting of lines 1040 through 1080 is designed to loop
7 times because that is the maximum number of addressable devices you may
have on the HP-HIL link at any time. If there are less than 7 devices on the
link an error occurs and the FOR loop exits to line 1090 labeled Link_end.
This branch to the label Link_end is a result of the ON ERROR statement on line
1030.

Line 1050 uses the HIL SEND statement along with the HP-HIL IDD command
to determine the device’s location in the HP-HIL link, as well as its Device
ID. Using the Device ID number returned upon executing the HIL SEND
address ; IDD statement, you can determine what your device is by looking the
number up in the “Device ID Byte Definition” table found in the “HP-HIL
Appendix” in the back of this manual.

Information returned after executing the HIL SENDaddress ; IDD statement
is placed in the string buffer of the HILBUF$ function. Line 1060 takes the
information found in this string buffer and assigns it to the string variable
Buf$.

Line 1070 assigns the integer value of the fourth element of Buf$ to the integer
array variable Idd(I). The fourth element in Buf$ is the Device ID number.
“I” (device address) in the subscript portion of the array is incremented as
many times as there are devices in the link.

HP-HIL Interface 9-57

A SELECT structure, lines 1500 through 1610, can be added to the program to
access various subprograms which perform a process for a specified HP-HIL
device on the link. A device address called Hil_addr is used as an index to the
array Idd to obtain the device ID number associated with the index value. For
example, if 1 is assign to the variable Hil_addr and Hil_addr is used as the
index to the array Idd and the device ID number found at that index is 48
(decimal), the subprogram Function_box is called and its process is executed.
Note that the additional SELECT structure should follow line 1370 of the
program. The SELECT structure contains the following program lines:

1500 SELECT Idd(Hil_addr)
1510 CASE 0 to 31

1520 Vectra(Packet$)

1530 CASE 48

1540 Function_box(Packet$[4])
1550 CASE 92

1560 Bar_code (Packet$)
1570 CASE 140

1580 Touchscreen(Packet$)
1590 CASE ELSE

1600 ! Ignore

1610 END SELECT

9-58 HP-HIL Interface

10

The Parallel Interface

Introduction

This chapter describes the HP Parallel interface. The HP Parallel interface
provides compatibility for Centronics compatible printers.

Note HP BASIC/UX does not directly support the HP Parallel
interface. However, the user can use parallel peripherals on
d HP-UX via unnamed pipes. For example, instead of typing

PRINTER is 23, type PRINTER IS "| 1p" where 1p spools to the
parallel printer. For more information about unnamed pipes,
refer to HP BASIC 6.2 Advanced Programming Techniques.

The HP Parallel interface supports bidirectional data flow between the
interface and peripherals with parallel interfaces. The HP Parallel interface
does not support input from devices using IBM’s parallel input protocol.

Note For most printing applications you need not address the
interface at a register level. Refer to the “Using a Printer”

chapter in the HP BASIC 6.2 Programming Guide for more
information.

Required Software and Hardware

In order to drive the HP Parallel interface, you must first LOAD BIN the
PLLEL binary.

An HP parallel port is provided with the HP 9000 Model 345, 375, 380, 362,
and 382 computers.

The Parallel Interface 10-1

10

10

Bus Description

HP computers that provide support for the HP Parallel interface provide a 25
pin connection. Peripherals generally provide a 36 pin connection. There are
17 lines used for communicating data between the host and the peripheral,
consisting of:

m Fight data lines

m Four handshake lines

m Two error lines

m Two device status lines
= One reset line

Some lines are used only by the peripheral or host while other lines are used
by the active sender or receiver. The following table shows the HP Parallel
interface pin outs. Note that the n preceding the line labels indicates this line
is asserted low (e.g., nStrobe).

When discussing the setting or resetting of signals on the bus, this chapter uses
the term assert to indicate the signal has been set, and release to indicate the
signal has been reset. When a signal is asserted, it is driven to its active state.
For example, when the Busy signal is asserted, it is driven high, and when

the nStrobe signal is asserted, it is driven low. Alternatively, when a signal is
released, it is driven to its inactive state. For example, when the Busy signal is

released, it is driven low, and when the nStrobe signal is released, it is driven
high.

10-2 The Parallel Interface

HP Parallel Interface Pin Outs

Host Peripheral
(25 pins) (36 pins)
Pin No. Line Label Pin No.

1 nStrobe 1
2 Data 1 2
3 Data 2 3
4 Data 3 4
5 Data 4 5
6 Data 5 6
7 Data 6 7
8 Data 7 8
9 Data 8 9
10 nAck 10
11 Busy 11
12 PError 12
13 Select 13
14 Wr/nRd (sometimes nAutoFd) 14
15 nError (sometimes nFault) 32
16 nlnit (sometimes nReset) 31
17 nSelectIn 36

The Data Lines

These lines carry the binary signals that make up the byte being transmitted.
Because there is only one set of data lines, communication is half duplex (input

and output cannot happen simultaneously).

The Parallel Interface

10-3

10

10

The Handshake Lines
Line Label
nStrobe

nAck

Busy

Wr/nRd

The Error Lines
Line Label
PError

nError

Description

This signal is used by the sender to qualify the data
currently being asserted on the data lines.

This signal is a pulse used by the peripheral to inform
the host that it is ready to receive data. Not all
peripherals use this line, however all HP bidirectional
devices must use it.

This signal is used by the receiver to indicate it is not
ready to receive another byte of data.

This signal is used by the host to set the direction of
data flow over the interface. Wr/nRd asserted (high)
indicates an output data direction (out from the host to
the peripheral.

Description

This signal is used by the peripheral to indicate to the
host that there is currently a paper error of some sort.
Generally this signal is expanded upon to indicate

that an error has occurred that requires operator
intervention. This signal is not released until the paper
error has been cleared up. (The HP ScanJet optical
scanner uses this line for all error conditions.)

This signal is used by the peripheral to indicate to
the host that an error other than a paper error has
occurred. This signal is not released until the error
condition has been cleared up. (The HP ScanJet
optical scanner does not use this signal.)

10-4 The Parallel Interface

The Status Lines
Line Label
Select

nSelectIn

The Reset Line
Line Label

nlnit

10

Description

This line is used by the peripheral to indicate to the
host that it is online. During error conditions this line
is usually released.

This line is used by the host to indicate to the
peripheral that it is online.

Description

This line is used by the host to cause the peripheral

to clear its buffers and do a soft reset (restoring the
peripheral to power on conditions). Not all peripherals
use this line; however, all HP bidirectional devices must
use if.

Summary of Parallel Interface STATUS and CONTROL

Registers
STATUS Register 0

Card Identification. 6 is always returned.

CONTROL Register 0 Interface Reset. Any non-zero value causes a reset.

STATUS Register 1

Interrupt and DMA Status.

Bit 7 Bit 6

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Interrupt |Interrupt
enabled [requested

Interrupt | Interrupt | 0 0 DMA1 |DMAO
level level

value=128| value=64

value=32| value=16| value=8 | value=4 |value=2 |value=1

Bit 7 is set (1) if interrupts are currently enabled.

The Parallel Interface 10-5

10

Bit 6 is set (1) when the card is currently requesting service. (This bit is
independent of Interrupt Enabled, bit 7).

Bits 5 and 4 constitute the card’s hardware interrupt level:

Hardware Interrupt
Bit 5 Bit 4 Level
0 0 3
0 1 4
1 0 5
1 1 6

Bits 3 and 2 are not used (always 0).
Bit 1 is set (1) if DMA channel one is currently enabled.
Bit 0 is set (1) if DMA channel is currently enabled.

On POR (Power on Reset), interrupts are disabled (Bit 7=0) and both DMA
channels are disabled. The interrupt level reflects the hardware state and is

always the same.

STATUS Register 10

Peripheral Status.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 0 nError Select PError
value=128] value=64| value=32| value=16| value=8 | value=4 value=2 |value=1

Bits 7-3

Bit 2 (nError)
Bit 1 (Select)
Bit 0 (PError)

Not used (always 0).
If this bit is set (1), nError is asserted low.
If this bit is set (1), Select is asserted high.
If this bit is set (1), PError is asserted high.

10-6 The Parallel interface

10

These bus lines are controlled by the peripheral. This register merely reflects
the state of these bus lines, and therefore does not have a default POR setting.

STATUS Register 11

Communication Status

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 FIFO FIFO nStrobe | Busy nAck
Full Empty
value=128| value=64| value=32| value=16| value=8 |value=4 |value=2 |[value=1
Bits 7-5 Not used (always 0).

Bit 4 (FIFO Full

Bit 3 (FIFO Empty)

Bit 2 (nStrobe)
Bit 1 (Busy)
Bit 0 (nAck)

On POR the hardware FIFO (first in/first out register) is empty, the nStrobe
line should not be asserted, and the remaining lines are controlled by the
peripheral. This register reflects the state of the peripheral owned lines, and
therefore these register bits do not have a default POR setting.

STATUS Register 12
CONTROL Register 12

If this bit is set (1), the hardware FIFO is full.
If this bit is set (1)
If this bit is set (1)
If this bit is set (1), Busy is asserted high.
If this bit is set (1), nAck is asserted low.

, the hardware FIFO is empty.

, nAck is asserted low.

Host Line Control
Host Line Control

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 0 nlnit nSelectln | Wr/nRd
value=128| value=64| value=32| value=16| value=8 |value=4 |value=2 |value=1
Bits 7-3 Not used (always 0).

Bit 2 (nlnit)

If this bit is set (1), nInit is asserted low.

The Parallel Interface 10-7

10

Bit 1 (nSelectIn) If this bit is set (1), nSelectIn is asserted low.
Bit 0 (Wr/nRd) If this bit is set (1), Wr/nRd is asserted high.

On POR, nlnit is asserted low, nSelectIn is asserted high, and Wr/nRd is
released high.

STATUS Register 13 I/O Control.
CONTROL Register 13 1/0 Control.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 0 0 I/0 Input/
Modifier | nOutput

value=128| value=64] value=32| value=16| value=8 |value=4 |value=2 |value=1

Bits 7-2 Not used (always 0)

Bit 1 (I/O Modifier) If cleared, outbound transfers handshake with both
BUSY and nAck and inbound transfers will use the
FIFO. If set, outbound transfers will handshake
with BUSY only and inbound transfers will only use
one location in the FIFQ (FIFO disabled).

Bit 0 (Input/nOutput) If this bit is set to 1, Input is selected. If this bit is
reset (0), output is selected.

On POR bits 1 and 0 are reset to 0.
STATUS Register 14 FIFO
CONTROL Register 14 FIFO

In order to get valid information when reading the hardware FIFO, the I/O
direction must be “input” and the FIFO must not be empty (see the Hardware
I/O Status and Control register and the Communication Status register). If
either of these conditions are not true, reading this register will not cause an
error, but unpredictable results may occur.

10-8 The Parallel Interface

For writing, the same rules apply. The I/O direction must be “output” and the
FIFO must not be full. If either of these conditions are not true, writing this
register will not cause an error, but the data written will not be entered into

the hardware FIFO.

Note This register should not be used unless the program has full
control of this select code. For example, if this register is being
used while the driver is attempting a transfer, it is very likely
the transfer will fail.
STATUS Register 20 Peripheral Type
Decimal
value Peripheral type
0 No device attached.
1 Output-only device is currently attached.
2 An HP bidirectional device is attached.
10 User-specified no device.
11 User-specified output only device.
12 User-specified HP bidirectional device.

CONTROL Register 20

Peripheral Type

Decimal
value

Peripheral type

10
11
12

No device attached.

User-specified no device.

User-specified output only device.

User-specified HP bidirectional device.

The Parallel Interface 10-9

10

CONTROL Register 22 Peripheral Reset

Writing any non-zero value to this register causes the driver to attempt a
hardware soft reset on the attached peripheral. The driver will assert the nlnit
line, wait, release the nlnit line, and wait for Busy to be released.

STATUS Register 23 Interrupt State
Interrupt Enable Register (ENABLE INTR)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
FIFO FIFO 0 Busy nAck nError | Select PError
Full Empty

value=128| value=64| value=32| value=16| value=8 |value=4 |value=2 |value=1

This register returns the interrupt requests that are currently being made by
the driver.

Bit 7 (FIFO Full) If this bit is set (1), an interrupt will be requested
when the hardware FIFO transitions to full.

Bit 6 (FIFO Empty) If this bit is set (1), an interrupt will be requested
when the hardware FIFO transitions to empty.

Bit 5 Not used (always 0).

Bit 4 (Busy) If this bit is set (1), an interrupt will be requested

when the Busy signal is low.

Bit 3 (nAck) If this bit is set (1), an interrupt will be requested
when the nAck signal transitions low.

Bit 2 (nError) If this bit is set (1), an interrupt will be requested
when the nError signal transitions.

Bit 1 (Select) If this bit is set (1), an interrupt will be requested
when the Select signal transitions.

Bit 0 (PError) If this bit is set (1), an interrupt will be requested
when the PError signal transitions.

10-10 The Parallel Interface

On POR the driver disables all interrupt conditions, thus this register will

return a 0 on POR.
STATUS Register 24

CONTROL Register 24

Driver Options

Driver Options

Bit 7 Bit 6

Bit 5

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Ignore | Write Wr/nRd | Use nAck
PError | Verify low

value=128| value=64| value=32| value=16] value=8 | value=4 |value=2 [value=1

Bits 7-4
Bit 3 (Ignore PError)

Bit 2 (Write Verify)

Bit 1 (Wr/nRd low)

Bit 0 (Use nAck)

Not used (always 0).

If this bit is set to 1, the interface will communicate
with the device despite PError assertion.

If this bit is set to 0 (the default), an error occurs
on a communication attempt with PError asserted.

If this bit is set to 1, the interface verifies that the
peripheral receives data on each byte sent.

If this bit is set to 0 (the default), verification does
not occur.

If this bit is set to 1, Wr/nRd is always LOW.

If this bit is set to 0 (the default), Wr/nRd HIGH
on ouput, LOW on input.

If this bit is set to 1, the interface uses nAck to
complete the output handshake.

If this bit is set to 0 (the default), the interface uses
Busy to complete the output handshake.

The Parallel Interface 10-11

10

10

STATUS Register 26 Driver State

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Disable Inactive | Write Read 0 0 0 Active
by user |[ERROR Xfer
value=128| value=64 | value=32{ value=16| value=8 |value=4 |value=2 |[value=1

The driver states are:

DISABLED BY_USER =80h (hexidecimal)

INACTIVE_.ERROR =40h
INACTIVE_WRITE =20h
ACTIVE.-WRITE =21h
INACTIVE_READ =10h
ACTIVE_READ =11h

If the POR state of the peripheral type is not “user specified no device” (see
register 20) then the POR state for this register is INACTIVE_ERROR.

Otherwise, the POR state is DISABLED_BY_USER.
STATUS Register 27 Driver Information
nAck set =1

When reading data from the HP Parallel interface one byte at a time, it may
be necessary to determine if the peripheral has indicated end of transmission
by pulsing the nAck line. Bit 0 of Status Register 27 is provided for this

purpose.

10-12 The Parallel Interface

10

Summary of Parallel Interface
READIO and WRITEIO Registers

This section describes the HP Parallel interface’s READIO and WRITEIO
registers. Keep in mind that these registers should be used only when you
know the exact consequences of their use, as using some of the registers
improperly may result in improper interface behavior. If the desired operation
can be performed with STATUS or CONTROL, you should not use READIO
or WRITEIO.

Parallel READIO Registers
Register 1 ID Reset

Register 3 Parallel Interface Status

Register 5 Parallel Device Status

Register 7 Parallel Device Control

Register 9 Parallel Interrupt Status

Register 11 Parallel FIFO Data Register

READIO Register 1 Interface ID. Returns the interface ID byte for the

HP Parallel interface (always 6).

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 0 1 1 0

value=128| value=64| value=32| value=16| value=8 |value=4 |value=2 |value=1

The Parallel Interface 10-13

10

READIO Register 3

Parallel Interface Status

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Interrupts| Interrupt | Interrupt | Interrupt [10 1/0 DMA1 |DMAO
enabled |requested|level level modifier |direction

(IL1) (1IL0)
value=128| value=64| value=32| value=16 | value=8 |value=4 [value=2 |value=1

Bit 7 is set (1) if interrupts are currently enabled.

Bit 6 is set (1) when the card is currently requesting service.

Bits 5 and 4 constitute the card’s hardware interrupt level:

Hardware Interrupt
Bit 5 Bit 4 Level
0 0 3
0 1 4
1 0 5
1 1 6

Bit 3: if cleared, outbound transfers handshake with Busy and nAck. Inbound
transfers use the FIFO. If set, outbound transfers handshake with Busy only
and inbound transfers only use one location in the FIFO (FIFO disable).

Bit 2: 0 = output. 1 = input.

Bit 1 is set (1) if DMA channel one is currently enabled.
Bit 0 is set (1) if DMA channel zero is currently enabled.

10-14 The Parallel interface

READIO Register 5

Parallel Device Status

10

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
FIFO full |FIFO STROBE| BUSY nACK nERROR]| SELECT | PError
empty
value=128| value=64| value=32| value=16| value=8 | value=4 | value=2 |value=1

Bit 7 (FIFO full)
Bit 6 (FIFO empty)
Bit 5 (STROBE)

Bit 4 (BUSY)
Bit 3 (nACK)
Bit 2 (nERROR)

Bit 1 (SELECT)
Bit 0 (PError)

READIO Register 7

If this bit is 1, the FIFO is full.
If this bit is 1, the FIFO is empty.

If this bit is 1, the nSTROBE line is asserted (data
may be read from the parallel bus by the CPU).

If this bit is 1, the BUSY line is asserted.
If this bit is 1, the nACK line is asserted.

If this bit is 1, a hardware error on the peripheral
has occured.

If this bit is 1, SELECT has been asserted.

If this bit is 1, the PError (paper error) line is
asserted.

Parallel Device Status

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 0 nINIT nSelectIn| WRnRD
value=128| value=64| value=32| value=16| value=8 | value=4 {value=2 |value=1
Bits 7-3 Not used (always 0).

Bit 2 (nINIT)

If this bit is 1, the nINIT line is asserted (peripheral
soft reset).

The Parallel Interface 10-15

10

Bit 1 (nSelectIn) If this bit is 1, the nSelectIn line is asserted (CPU
on line).
Bit 0 (WRnRD) If this bit is 1, the I/O direction is “output”
(write).
RFEADIO Register 9 Parallel Interrupt Status
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
FIFO full | FIFO 0 BUSY nACK nERROR | SELECT | PError
interrupt |empty low transi- transition | transition | transition
request |interrupt interrupt | tion low | (high/low)| (high/low) (high/low
request request |interrupt [interrupt [interrupt [interrupt
request |request request request
value=128| value=64| value=32] value=16| value=8 |value=4 |value=2 |value=1
Bit 7 If this bit is 1, a “FIFO full” interrupt is requested.
Bit 6 If this bit is 1, a “FIFO empty” interrupt is requested.
Bit 5 Not used (always 0).
Bit 4 If this bit is 1, a “BUSYlow” interrupt is requested.
Bit 3 If this bit is 1, an interrupt has been requested on an nACK
transition low.
Bit 2 If this bit is 1, an interrupt has been requested on an nError
transition (high or low).
Bit 1 If this bit is 1, an interrupt has been requested on a SELECT
transtion (high or low).
Bit 0 If this bit is 1, an interrupt has been requested on a PError

transition (high or low).

10-16 The Parallel Interface

READIO Register 11

Parallel FIFO Data Register

10

If register 3, bit 2, is set (input) I/O is set, a read from Register 11 will return
the next byte from the FIFO.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
d7 d6 db d4 d3 d2 dl d0
value=128] value=64 | value=32| value=16] value=8 | value=4 [value=2 |value=1

Parallel WRITEIO Registers

Register 1
Register 3
Register 5
Register 7
Register 9
Register 11

WRITFEIO Register 1

ID Reset

Parallel Interface Control
Parallel Device Status
Parallel Device Control
Parallel Interrupt Control
Parallel FIFO Data Register

Reset. Write any value to this register to reset the

card.
WRITFEIO Register 3 Parallel Interface Control.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Interrupt | Not used | Not used | Not used | IO I/0 DMA1 {DMAO
enable modifier |direction
value=128| value=64| value=32| value=16{ value=8 | value=4 |value=2 |value=1

Bit 7 Set this bit to 1 to enable interrupts.
Bit 6-4 Not used (indeterminant).

The Parallel Interface 10-17

10

Bit 3 If cleared, outbound transfers handshake with BUSY and
NACK. Inbound transfers use the FIFO. If set, outbound
transfers handshake with BUSY only and inbound transfers
only use 1 location in the FIFO (FIFO disable).

Bit 2 0 = output. 1 = input.
Bit 1 Set this bit to 1 to enable DMA channel 1.
Bit 0 Set this bit to 1 to enable DMA channel 0.

WRITEIQ Register 7

Parallel Device Control

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Not used nINIT nSelectIn] WRnRD
value=128| value=64| value=32| value=16| value=8 |value=4 |value=2 |value=1

Bits 7-3
Bit 2 (nINIT)

Bit 1 (nSelectIn)
Bit 0 (WRaRD)

WRITEIO Register 9

Not used (indeterminant).

If this bit is 1, the nINIT line is asserted (peripheral
soft reset).

If this bit is 1, the nSelectIn line is asserted (CPU
on line).

If this bit is 1, the I/O direction is “output”
(write).

Parallel Interrupt Control

10-18 The Parallel Interface

10

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Enable Enable |0 Enable |Enable {Enable Enable Enable
FIFO full | FIFO BUSY nACK nERROR {SELECT |PError
interrupt |empty low transi- | transition | transition |transition

interrupt interrupt | tion low [(high/low) (high/low)f (high/low)
interrupt | interrupt |interrupt |interrupt
value=128| value=64 | value=32| value=16| value=8 | value=4 [value=2 |[value=1
Bit 7 If this bit is 1, a “FIFO full” interrupt is enabled.
Bit 6 If this bit is 1, a “FIFO empty” interrupt is enabled.
Bit 5 Not used (always 0).
Bit 4 If this bit is 1, a “BUSYlow” interrupt is enabled.
Bit 3 If this bit is 1, an interrupt is enabled for an nACK transition
low.
Bit 2 If this bit is 1, an interrupt is enabled for an nError transition
(high or low).
Bit 1 If this bit is 1, an interrupt is enabled for a SELECT transition
(high or low).
Bit 0 If this bit is 1, an interrupt is enabled for a PError transition

(high or low).

WRITEIO Register 11 Parallel FIFO Data Register

If register 3, bit 2, is cleared (output), writing data to Register 11 writes data

to the FIFO.
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
d7 dé d5 d4 d3 d2 d1 do
value=128| value=64{ value=32| value=16| value=8 |value=4 |value=2 |value=1

The Parallel Interface 10-19

A

HP-HIL Appendix

This appendix contains information necessary for the development of

drivers for HP-HIL devices. The contents of this appendix should be used in
conjunction with the chapter in this manual entitled “HP-HIL Devices”. This
appendix has been divided into the following section:

m HP-HIL Command Reference
m Device ID Byte

m Describe Record

m Extended Describe Record

m Poll Record

m Report Security Code Record
m Accessible Keycode Definitions

For more information on how HP-HIL devices work, order the HP-HIL
Technical Reference Manual (HP product number 45918A).

HP-HIL Command Reference

This section provides information for each of the existing HP-HIL commands
which are supported by BASIC. The usage of the command is given first,
followed by a brief listing of the characteristics of the command.

HP-HIL Appendix A-1

The characteristics of the commands include;

m how or what the command is used for

o device identification

o data input
o data output

m what commands are not supported by most devices

m a verbal description of the operation of the command

If a device does not support a particular command, it will ignore the command

when sent to it.

Identify and Describe (IDD)

Usage:

Characteristics:

Description:

The IDD command is used to determine the type of the
attached devices, as well as some general characteristics of
the device required to understand the data it reports.

Used for device identification.

A device responds to the IDD command by first
transmitting the device ID byte. The Device ID Byte
is used to identify the general class of device and the
nationality (in the case of a keyboard other than the
HP 98203C). After the ID byte, a series of data bytes,
referred to as the Describe Record, is transmitted. This
record varies in length and is terminated by a null byte.
This means that all bytes of the Describe Record are
transmitted with the exception of trailing null bytes and .
these bytes are ignored. See the “Device ID Byte” and
“Describe Record” sections of the “HP-HIL Appendix”.

Read Register (RRG)

Usage:

Characteristics:

Read Register provides the System with an alternate
method of collecting data from a device supporting RRG.
Note that RRG is not supported by most HP-HIL devices.

Used for data input. Not supported by most devices.

A-2 HP-HIL Appendix

Description:

A device indicates support of the Read Register command
in the Extended Describe Record, also indicating the
specific read registers contained in the device. To perform
a register read, the System transmits the address of the
register to be read, with the Read Register command.
The device, upon receiving the command, transmits the
contents of the register.

HP-HIL register errors are not supported. If an HP-HIL
register error does occur, the command that caused the
error is ignored.

Devices which do not support the Read Register command
will ignore it (no Register I/O Error is sent).

Write Register (WRG)

Usage:

Characteristics:

Description:

Write Register provides a means of setting the contents of
individual registers in devices supporting this advanced
feature.

Used for data output. Not supported by most devices.

There are two forms of the Write Register command.
Devices indicate support of either of these two forms (or
both) in the Extended Describe Record. Both Write
Register forms are supported to accommodate devices
which support only one or the other form, but they are
equivalent capabilities as supported by BASIC.

HP-HIL register errors are not supported. If an HP-HIL
register error does occur, the command that caused the
error is ignored.

Devices which do not support the Write Register
command will ignore it (no Register I/O error is sent).

HP-HIL Appendix A-3

Report Name (RNM)

Usage:

Characteristics:

Description:

Report Name is used to request a string of up to 15
characters (8-bit ASCII) which would aid in describing the
device to the user.

Used for device identification. Not supported by most
devices.

Characters returned are US ASCII. Devices indicate
support of the Report Name command in the Extended
Describe Record.

This record varies in length and is terminated by a null
byte. This means that all bytes of the Extended Describe
Record are transmitted with the exception of trailing null
bytes and these bytes are ignored.

Report Status (RST)

Usage:

Characteristics:

Description:

Report Status is used to extract device-specific status
information from devices configured on the Link.

Used for data input. Not supported by most devices.

Devices indicate support of the Report Status command
in the Extended Describe Record. This record varies in
length and is terminated by a null byte. This means that
all bytes of the Extended Describe Record are transmitted
with the exception of trailing null bytes and these bytes
are ignored. Interpretation of the status bytes will
necessarily depend upon the device in question.

Extended Describe (EXD)

Usage:

Characteristics:

Extended Describe provides additional information
concerning more advanced device features which may not
be required for basic operation.

Used for device identification. Not supported by most
devices.

A-4 HP-HIL Appendix

Description:

Support of the Extended Describe command is indicated
in the Describe Record. Devices supporting the EXD
command respond with a series of data bytes referred

to as the Extended Describe Record. This record varies
in length and is terminated by a null byte. This means
that all bytes of the Extended Describe Record are
transmitted with the exception of trailing null bytes and
these bytes are ignored. Detailed information on the
Extended Describe Record can be found in the section of
this appendix entitled “Extended Describe Record”.

Report Security Code (RSC)

Usage:

Characteristics:

Description:

The Report Security Code command is used to extract a
unique identifier from a device.

Used for data input. Not supported by most devices.

Support of the command is indicated in the Describe
Record. The Security Code Record consists of a Header
and a variable number of bytes of data terminated by

a null byte. This means that all bytes of the Describe
Record are transmitted with the exception of trailing

null bytes and these bytes are ignored. See the “Report
Security Code Record” section of this appendix for further
information.

Disable Keyswitch Autorepeat (DKA)

Usage:

Characteristics:

Description:

This command is used to disable the “repeating keys”
feature in the addressed device, reducing returned data to
one report per keyswitch transition.

Not supported by most devices.

The default condition of devices supporting DKA and
EKA AutoRepeat Commands is Keyswitch AutoRepeat
Disabled. More advanced key repeat features may be
implemented using device specific commands.

HP-HIL Appendix A-5

Note that this AutoRepeat is independent of the normal

Keyboard AutoRepeat implemented by Series 200 and 300
computers.

Enable Keyswitch Autorepeat (EKA 1,EKA 2)

Usage: These two commands are used to enable the “repeating
keys” feature in the addressed device (if the feature is
supported).

Characteristics: Not supported by most devices.

Description: When Keyswitch AutoRepeat is enabled, most keys will

repeat at the rate of one report every 40 milliseconds.
Following a keyswitch down transition, a delay of 200

ms will occur and the key begins to repeat. Modifier

keys ((shift), (CTRL), (Extend char), etc.) will not repeat,
while based on the argument of the Enable Keyswitch
AutoRepeat command the Cursor Keys (cursor left, right,
up, and down) will repeat at either 20 millisecond or 40
millisecond intervals. Most keys repeat by generating
repeated down transitions corresponding to the key
position being repeated, although repeating cursor

keys on an ITF Keyboard will report a keycode of
02(hexadecimal). Since the BASIC system does not
recognize 02 as a valid Keycode, the effect is no cursor key
autorepeat for either argument with the ITF Keyboard.

Note that this autorepeat is independent of the normal
Keyboard AutoRepeat implemented by Series 200 and 300
computers.

Prompt 1 thru Prompt 7 (PRM 1 .. PRM 7)

Usage: These commands are used to provide an audible or
visual stimulus to the user, perhaps indicating that the
System is ready for a particular type of input. Although
intended to be directly associated with Acknowledge 1
thru Acknowledge 7 and Button 1 thru Button 7, this
association is not a requirement.

A-6 HP-HIL Appendix

Characteristics: Used for data output. Not supported by most devices. A

Description: The Prompts and Acknowledges supported are indicated
in the Describe Record. All unsupported Prompts will be
treated the same as other unsupported commands.

Prompt (PRM)

Usage: Intended as a general-purpose stimulus to the user.
Prompt is not intended to be associated with a particular
Button as are Prompt 1 thru Prompt 7.

Characteristics: Used for data output. Not supported by most devices.
Description: A device indicates support of Prompt in the Describe
Record.

Acknowledge 1 thru Acknowledge 7 (ACK 1.. ACK 7)

Usage: These commands, similar to the Prompt 1 thru Prompt
7 commands, are intended to provide an audible or visual
response to the user, and are generally directly associated
with the corresponding Prompt and Button of the same
number, although this is not a requirement.

Characteristics: Used for data output. Not supported by most devices.

Description: Since there is no explicit “Prompt Off” function provided,
this functionality may be part of the Acknowledge
definition for a particular device.

The Prompts and Acknowledges supported by the devices
are indicated in the Describe Record, and all unsupported
Prompts will be treated the same as other unsupported
commands.

HP-HIL Appendix A-7

Acknowledge (ACK)

Usage:

Characteristics:

Description:

Similar to Prompt, Acknowledge is not associated with
any particular Button, but is intended merely as a general
purpose audio or visual response to the user.

Used for data output. Not supported by most devices.

Since there is no explicit “Prompt Off” function provided,
this functionality may be part of the Acknowledge
definition for a particular device. Support of Prompt and
Acknowledge is indicated in the Describe Record.

Device-Dependent Commands (DDC 128 .. 239)

Usage:

Characteristics:

Description:

A range of 112 commands has been reserved for use as
“device-dependent” commands.

Not supported by most devices.

These commands are intended for use by devices with
special requirements which the other HP-HIL commands
do not really support. Devices should use Read and Write
Registers and the Prompts and Acknowledges for special
functionality where possible.

Device ID Byte

This section defines the device ID bytes for all types of devices currently
defined or anticipated and lists the ID numbers which have currently been
allocated. Nationalization for Keyboards is given in the second table.

The Device ID Byte is used to identify the general class of device and the
nationality (language) in the case of a Keyboard. Since it is not possible to
designate the characteristics of all future devices, the ID Byte should be used
to identify only the basic type of device and the nationality (for a Keyboard).

The following table gives device ID Byte definitions for general classes of
devices (keyboards, absolute positioners, etc.). For keyboard type devices other

A-8 HP-HIL Appendix

than the HP 98203C, note that the ID has a range of 00 to IF. This allows for
the nationalization to be embedded in the ID Byte. The table of nationalized
ID definitions gives the lower five bits of the ID Byte. Thus a French ITF

keyboard (with an ID range of C0O to DF), would report its ID Byte as DB (CO

+1B).
Device ID Byte Definitions
Device ID Range Assigned HP Product
Type (hexadecimal) | Device IDs | HP-HIL Device Name Number

Keyboard JAO0.. FF CO0 .. DF ITF Keyboard 46020/21A
Group 1 A0 .. BF [Integral Keyboard —
Absolute 80 .. 9F 95 11x11 Graphics Tablet |45911A
Positioners 94 Size-B Digitizer 46088A

93 Size-A Digitizer 46087A
Relative 60 .. 7F 66 2-Button Mouse 46060A
Positioners 68 3-Button Mouse 46060B

62 Quadrature Port 46094A

61 Control Dials 46085A

60 Rotary Control Knob 46083A
Character (40 .. 5F 5C Barcode Reader 92916A
Entry
Other 20 .. 3F 34 ID Module 46084A
Devices 30 Function Box 46086 A
Keyboard (00 .. 1F 00 .. 1F Vectra Keyboard 46030A
Group 2 (BASIC/WS only)

HP-HIL Appendix A-9

Keyboard Nationalized ID Definition

A
Lower 5 Bits of Device ID Byte Nationality of
(hexadecimal) Keyboard/Keypad
00 Other! 2
01 reserved
02 Kanji
03 Swiss/French
04 Portuguese?
05 Arabic?
06 Hebrew?
07 Canadian/English
08 Turkish?
09 Greek?
0A Thai (Thailand)?
0B Italian
0C Hangul (Korea)?
0D Dutch
OE Swedish
OF German
10 Chinese-PRC (China)?
11 Chinese-ROC (Taiwan)?
12 Swiss/French II
13 Spanish
14 Swiss/German II
15 Belgian (Flemish)
16 Finnish
17 United Kingdom
18 French/Canadian
19 Swiss/German

1 See the section “Extended Describe Record” for usage.

2 Not supported by BASIC, treated as US ASCIL

A-10 HP-HIL Appendix

Keyboard Nationalized ID Definition (continued)

A
Lower 5 Bits of Device ID Byte Nationality of
(hexadecimal) Keyboard/Keypad
1A Norwegian
1B French
1C Danish
1D Katakana
1E Latin American/Spanish
1F United States

Describe Record

The Identify and Describe command is used to determine the type of device(s)
attached to the Link and also what their characteristics are.

When a device receives the IDD command, the device will respond by
returning a device ID byte followed by the Describe Record. The Record
consists of 1 to 10 bytes of information. The first byte of the Describe Record
is the Describe Record Header. If the device reports positional information,
then 2 bytes will follow containing the resolution of the device. If the device is
an absolute positioner, then the maximum count per axis is then reported (for
each axis), 2 bytes per axis. The last byte of the Describe Record is the I/0O
Descriptor Byte.

HP-HIL Appendix A-11

A The Describe Record is shown graphically below:

Device 1D

Describe Record Header

Number of counts / cm (m) Low Byte

Number of counts / cm (m) High Byte

Maximum Count X-axis Low Byte

Maximum Count X-axis High Byte

Maximum Count Y-axis Low Byte

Maximum Count Y-axis High Byte

Maximum Count Z-axis Low Byte

Maximum Count Z-axis High Byte

I/O Descriptor Byte

Every device will respond to the IDD command with at least 2 bytes of

data, the Device ID Byte, and the Describe Record (1 to 10 bytes). Cursor
positioning devices and devices containing buttons, proximity detection, and/or
prompt /acknowledge functions will need to report additional information.

The Describe Record Header contains some information about the device and
provides an indicator of how much additional information is to follow the
Header. The description of the Describe Record Header follows:

Bit 7 Set if the device contains two independent sets of coordinate axes.
Consider, for example, a device which interfaces two joysticks to
HP-HIL, each with its own independent set of X, Y axes. It is
assumed, however, that both sets of coordinate axes share common
characteristics as identified in the remainder of the record. Default
(clear) indicates a maximum of one set of axes.

A-12 HP-HIL Appendix

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1,0

Set if the device is to return absolute positional data (unsigned

integers). Default (clear) indicates relative data (2’s complement).

Set if the device returns all positional information at 16-bits/axis.

Default (clear) is 8-bits/axis.

Set if the I/O Descriptor Byte is to follow later in the Describe
Record. Default (clear) indicates that the device has no buttons, no
proximity detection, and no prompt/acknowledge functionality, with

no I/0 Descriptor Byte to follow.

Set if the device supports the Extended Describe command. Default
(clear) indicates Extended Describe command is not supported.

Set if the device supports the Report Security Code command.
Default (clear) indicates Report Security Code is not supported.

Bit 1 and bit 0 indicate the coordinate axes the device will report.
If non-zero, then following the header will be 16 bits describing the
resolution of the device, and in the case of an absolute positioner, 16

bits/axis detailing the extent of each coordinate axis.

Bit 1 § Bit 0 | Axes Reported
0 0 [none
0 1 X
1 0 |XandY
1 1 X,Y,and Z

Computer
Museum

If the Describe Record Header indicates a non-zero number of axes for which
the device will report positional information, then following the Header will be
16 bits describing the resolution of the device in counts per centimeter if the
device reports data in a 16-bit format, or in counts per meter if 8-bit format.
In the case of an absolute positioner, following the Number of Counts/cm

(m) will be 16 bits per axis indicating the maximum extent of each axis for
which the device reports data, assuming an origin at the lower left. This is
the maximum count per axis the device is capable of reporting, based on a

HP-HIL Appendix A-13

minimum value of 0. Note that these values are reported as 16 bits regardless
of whether the device indicates 8-bit or 16-bit data reporting format.

The I/0O Descriptor Byte indicates the buttons the device will report

keycodes for, whether the device has proximity detection, and what
Prompt/Acknowledge functions, if any, are implemented in the device. Note
that Prompt and Acknowledge are treated as a set, and no device may indicate
support of any particular Prompt or Acknowledge without also supporting its
counterpart. If none of the above features are implemented, the I/O Descriptor
byte may not be transmitted. The following is the definition of the I/O
Descriptor byte:

Bit 7 Set if the device implements the general purpose Prompt and
Acknowledge functions. Default (clear) implies these functions
are not implemented.

Bits 6,5,4 Bits 6, 5, and 4 indicate specific Prompt/Acknowledges (Prompt
1 thru 7 and Acknowledge 1 thru 7) implemented by the device.
Default (clear) indicates none.

Prompt /Acks.
Bit 6 | Bit 5 | Bit 4 | Implemented
0 0 0 |none
0 0 1 |1
0 1 0 |1and2
0 1 1 1,2, and 3
1 0 0 §1thrud
1 0 1 1 thru b
1 1 0 {1thru6
1 1 1 1 thru 7
Bit 3 Set if the device will report the Proximity In/OQut keycodes.

Default (clear) indicates no proximity detection.

A-14 HP-HIL Appendix

Bits 2,1,0 Bits 2, 1, and 0 indicate the buttons for which the device will
report keycodes.

Bit 2 | Bit 1 | Bit 0 | Buttons Reported
0 0 0 [none
0 1 |1

0 1 0 1 and 2

0 1 1 |1,2,and 3

1 0 0 1 thru 4

1 0 1 |1thrub

1 1 0 1 thru 6

1 1 1 |1lthru?

Extended Describe Record

Support of the Extended Describe command is indicated in the Describe
Record Header. The Extended Describe Record provides additional information
concerning more advanced features which may not be required for basic
operation.

HP-HIL Appendix A-15

Devices supporting the Extended Describe command respond with a series of
data bytes referred to as the Extended Describe Record. The record length
may vary from 1 to 15 bytes (although only 6 bytes are currently defined). The
Extended Describe Record has the following format:

Extended Describe Record Header

Maximum Read Register Support

Maximum Write Register Support

Maximum Write Buffer Length Low Byte

Maximum Write Buffer Length High Byte

Localization Code

Devices responding to the Extended Describe command return at least 1 byte
of data, the Extended Describe Record Header. Devices supporting Read
Register or Write Register or those returning a Localization Code will need

to report additional information so that their capabilities may be more fully
defined. The Extended Describe Record Header both supplies some of the
parameters of the device and provides an indication of how much additional
information is to follow. The meanings of the individual bits in the Header are
as follows:

Bit 7 Reserved for future use. Default will be clear.

Bit 6 Set if the Localization Code is supported. If set, then following
the Maximum Write Buffer Length High Byte will be one byte
indicating the nationality of the device (keyboard). See the table in
the previous section for a listing of the Localization Codes. Default
(clear) indicates that the Localization Code is not supported.

Bit 5 Set if the Report Status command is supported. Default (clear)
indicates Report Status not supported.

Bit 4 Set if the Report Name command is supported. Default (clear)
indicates Report Name not supported.

A-16 HP-HIL Appendix

Bit 3 Reserved for future use. Default will be clear.

Bit 2 Set if Read Register supported. If set, immediately following the
Header is a byte indicating the registers supported for reading in
the device. Default will be clear, indicating Read Register not
supported.

Bit 1,0 Bit 1 and bit 0 indicate support of the Write Register command. If
bit 1 is set, Write Register Type 2 is supported by the device. If
bit 0 is set, Write Register Type 1 is supported. If both bits are
set, then the device supports both Type 1 and Type 2. If either bit
1 or bit 0 is set, then following in the Record will be information
indicating the registers supported for writing in the device. If bit
1 is set, then an additional 16 bits will be returned indicating the
maximum number of data bytes which may be written to the device
at a time using Write Register Type 2 without data loss.

If the device indicated support for the Read Register command in the Header,
then following the Header is a byte indicating the read registers supported by
the device. This byte, the Maximum Read Register Supported byte, indicates
the largest read register address supported. Note that it is assumed that all
addresses less than this maximum are also supported. Thus a byte of OFh
indicates that the device contains 16 read registers, addressed as read registers
0 thru 15. HP-HIL protocol allows for devices containing up to 128 read
registers, addressed as 0 thru 127.

If Write Register (Type 1 or Type 2) support is indicated, then next is a

byte indicating the write registers supported. The Maximum Write Register
Supported byte indicates the largest write register address supported in the
device. It is assumed that all addresses less than the maximum are also
supported. Up to 128 write registers, addressed as 0 thru 127, are supported in
the HP-HIL protocol.

If Write Register Type 2 is supported, as indicated by bit 1 of the Extended
Describe Record Header being set, then following the Maximum Write
Register Supported byte is 16 bits of data indicating the maximum number of
bytes which may be transmitted to the device in a Type 2 transfer without
overflowing the device’s internal buffer. This number, transmitted first low
byte, then high byte, represents the buffer length of the device minus 1. Thus
a device capable of buffering 1024 bytes of data would transmit a Maximum

HP-HIL Appendix A-17

Buffer Length Low Byte of FFh and a Maximum Buffer Length High Byte of
03h.

If the Localization code is supported, then the Localization Code byte will be
included in the Extended Describe Record. The Localization Code is an 8 bit
number which corresponds to a nationality (language) of a keyboard. The
table in the previous section, lists currently assigned Localization Codes and
languages (values from 20 through FF are reserved).

A-18 HP-HIL Appendix

Poll Record A

The Poll command is the fundamental means for extracting data from the
input devices attached to the Link. Data is sent back to the host in the form
of a record, which may contain character data, position data, or some status
information.

Data returned from HP-HIL devices is in record form, similar to the response
to the Describe command. Each device transmits its individual Poll Record.
Note that it may not be required for the device to report all available
information in response to a single Poll request; data may be split between
Polls provided correct formatting is observed for each record reported. The
Poll Record is structured as follows:

Poll Record Header

X-axis Data Low Byte

X-axis Data High Byte

Y-axis Data Low Byte

Y-axis Data High Byte

Z-axis Data Low Byte

Z-axis Data High Byte

Character Data

Character Data

HP-HIL Appendix A-19

The function of the Poll Record Header is to indicate to the System the
type and quantity of information to follow, as well as to report simple status
information. The bits of the Header are assigned as follows:

Bit 7

Bit 6,5,4

Bit 3

Bit 2

Set if the device is reporting data from the second set of
coordinate axes. Default (clear) indicates data from set 1.

Based on the value of these 3 bits, following all position
information will be character data (up to 8 bytes):

Bit 6 | Bit 5 | Bit 4 Character Data Description
0 0 0 No character data to follow
0 0 1 Reserved Character Set 1
0 1 0 {US ASCII Characters
0 1 1 Binary Data
1 0 0 Keycode Set 1
1 0 1 | Reserved Character Set 2
1 1 0 Keycode Set 2 *
1 1 1 Keycode Set 3

* These keycodes are device dependent. They use the LSB
to indicate the key transition (0 = Down, 1 = Up); 126 keys
maximum.

Set indicates request for status check. Clear (default) indicates
status unchanged.

Set indicates device ready for data. Default (clear) indicates not
ready for data transfer at this time.

A-20 HP-HIL Appendix

Bit 1,0 Bit 1 and bit 0 indicate the coordinate axes the device is A
reporting:

Bit 1 | Bit 0 | Axes Reported
0 0 |none
0 11X
1 0 [XandY
1 1 |X,Y,and Z

Following the Header is the device data. If the device indicated that it would
report coordinate information 16-bits/axis in the Describe Record, then

for each axis reported will be first the low, then high byte coordinate data.
Otherwise, the high byte will not be transmitted. In general, the Poll Record
format indicates the maximum data which can be reported; most devices will
transmit only a subset each time. Following the positional information will be
up to 8 bytes of character data, as specified in the Poll Record Header. The
different types of character data may not be mixed. Note that more than one
device may respond to the Poll command; each will respond with an individual
Poll Record, distinguishable from the previous by the address field of the data.

The BASIC system automatically sends poll commands at approximately 20
millisecond intervals.

Report Security Code Record

The Report Security Code command is used to extract a unique identifier

from the device. Support of the command is indicated in the Describe Record
Header. The Report Security Code Record consists of a header (1 byte) which
defines the format of the data following the header (the remaining 1 to 14 bytes
of data). Bits 7 through 4 of the header byte describe the data format type.
Currently, only one data format type is defined, Type 1. Bits 3 through 0 are
reserved, and should be set to 0. Thus the only currently valid header is for a
Type 1 format (hexadecimal 10). The Report Security Code Record is similar

HP-HIL Appendix A-21

in purpose to a serial number, it may also contain information related to user
identity, network address, or other information which is unique to a particular
user or environment.

The only data transmitted by the ID Module is in response to the Report
Security Command. However, the following information applies to any device
that supports the Report Security command.

The data format consists of a one byte header and eight bytes of binary data.
The eight data bytes are the packed product and serial numbers of the HP-HIL
device. In the case where an ID Module is an exchange module signified by

a ten digit part number, the five digit prefix number remains the same and

the product number letter is replaced by the least significant digit of the part
number.

The product, exchange and serial number formats are:

Header : H (1 byte header)

Product number is : DDDDDA (5 digits and 1 ASCII character)
Exchange part number : DDDDDd (5 digits and 1 ASCII character)
Serial number is : YYWWONNNNN (9 digits and 1 ASCII character)
where:

H is the data header.

DDDDD is the product number (e.g., 46084).

A is the product number alpha character.

d is the least significant numeric character of the exchange number.
YY is the year code (year less 60).

WW is the week code (0 to 51).

Q is the serial country of manufacturing code.

NNNNN is the serial suffix (0 to 99 999)

The header byte is transmitted before the eight data bytes. The header’s
purpose is to allow for other data formats, however none are currently
implemented.

A-22 HP-HIL Appendix

The five digits of the product or exchange part prefix number are converted

to a two byte binary number and the high order bit of a third byte. The
remaining lower seven bits of the third byte contain the ASCII character. In
products where two alpha characters are used in the product number, only the
first character is used in the data format. The order of the bytes have been
arranged to transmit the least significant byte of the number first.

In a similar manner, the nine digits of the serial number are converted to a four
byte binary number. The country code of manufacturing is in the last byte to
be transmitted and is an ASCII character.

The Report Security data bytes are transmitted in the following order, starting
with byte 1 and going through byte 9. Bits are numbered starting with bit 0 at
the right most position of the byte (least significant bit) and going through bit

7 (most significant bit), left most position.

Header (10 hexadecimal)

Product Number Bits 7 .. 0

Product Number Bits 15 .. 8

Product Number Bit 16 Product Letter Suffix ASCII (7 Bits)

Serial Number Bits 7 .. 0

Serial Number Bits 15 .. 8

Serial Number Bits 23 .. 16

0 0 Serial Number Bits 29 .. 24

0 Country of Manufacture USASCII (7 Bits)

HP-HIL Appendix A-23

A

The report security data format is:

Byte

Bit(s)

Description

1

7-0

The first byte is the header containing the number 10 hexadecimal
for the following format. The general scheme for the header is:

Bits 7 - 4 are assigned as format variations, where format 1 is the
only assignment.

Bits 3 - 0 are undefined, but set to zero.

(IS

-~~~
)
==}

The second and third bytes and the 7th bit of the fourth byte
represent the 5 digits of the product or exchange part number
DDDDD in binary form. The least significant bit is bit 0 of byte
two.

The least significant seven bits of byte four represent the product
letter or the least significant digit of the exchange number numeric
character. The character is the US ASCII 7 bit representation of
the character.

The fifth, sixth, seventh bytes and the six least significant

bits of byte eight represent the 9 digits of the serial number
YYWWNNNNN in binary form, without the alpha character. The
least significant bit is bit 0 of byte 5.

o Q- O O

The two most significant bits of byte eight are reserved for future
use and are set to zero.

The least significant seven bits of byte 9 represent the serial number
letter. The character is the US ASCII 7 bit representation of the
character.

The most significant bit of byte nine is reserved for future use and
is set to zero.

A-24 HP-HIL Appendix

Sample of Report Security Format for a Product Module

The following information is returned upon receiving a Report Security
command for a Product Module. The data is based on the data format
described in the last section. Byte 1 is the first byte sent from the module to
the host.

The sample results given are based on the product number 46084A and serial
number 2519A00001. The serial number corresponds with the year of 1985,
week 19, and serial number suffix 00001. Note that by adding 60 to the above
serial numbers first two digits you get the year 85.

Byte No. | Data (hex) Description
1 10 Header
2 04 Part of product number HP 46084
3 B4 Part of product number HP 46084
4 41 Product letter “A” and part of product number
HP 46084
5 61 Part of serial number
6 B0 Part of serial number
7 03 Part of serial number
8 0F Part of serial number
9 41 Country of manufacturing code

Sample of Report Security Format for An Exchange Module

The following information is returned upon receiving a Report Security
command for an Exchange Module. The data is based on the data format
described in the section, “Report Security Code (RSC)”. Byte 1 is the first
byte sent from the module to the host.

The sample results given are based on the exchange number 46084-69901 and
serial number 2519A00001. The serial number corresponds with the year of

HP-HIL Appendix A-25

1985, week 19, and serial number suffix 00001. Note that by adding 60 to the

above serial numbers first two digits you get the year 85.

Byte No. | Data (hex) Description
1 10 Header
2 04 Part of product number HP 46084
3 B4 Part of product number HP 46084
4 31 US ASCII character “1” which is part of the
product number HP 460841
5 61 Part of serial number
6 BO Part of serial number
7 03 Part of serial number
8 OF Part of serial number
9 41 Country of manufacturing code

Since the sample is an exchange module, the exchange part number
transmitted is 460841. Byte 4 is the hexadecimal value of 31 which represent
the US ASCII character “1”. Note, the prefix number 46084 does not change
from the sample of the product module and the character “1” is really an
ASCII character.

A-26 HP-HIL Appendix

Accessible Keycode Definitions

This section covers a subset of Keycode Set 1. Keycode Set 1 provides the
keycodes for the down and up keystrokes of ITF keyboards (HP 46020/21A).
Note that both the ITF Keycode Set 1 and the version of Keycode Set 2 used
by the HP 98203C keyboard are always processed by the system and thus

are never available through the buffer used by the HILBUF$ function. The
subset of Keycode Set 1 which is used by HP-HIL Graphics Tablets is the small
portion of Keycode Set 1 covered in this section. The HP 46066A Function
Box uses Keycode Set 2. Its keys are numbered 0 through 31 starting with the
upper-left key and going from left to right, then down. Key down generates
Keycode 2xn and key up generates Keycode 2xn+1 where n is the key
number. Keycode Set 3 provides the keycodes for the down and up keystrokes
of the HP 46030A Vectra Keyboard for BASIC/WS.

Keycode Set 1

Keycode for Down Keycode for Up United States
Transition (hex) Transition (hex) Keycap Legend Notes
80 81 <BUTTON 1> !
82 83 <BUTTON 2> !
84 85 <BUTTON 3> !
86 87 <BUTTON 4> 1
88 89 <BUTTON 5> 1
8A 8B <BUTTON 6> !
8C 8D <BUTTON 7> !
8E 8F <PROXIMITY IN/OUT> 1

1 Typically used in positioning devices and not found on keyboards.

HP-HIL Appendix A-27

Keycode Set 3: Vectra Keycodes (BASIC/WS)

Keycode for Down Keycode for Up United States
Transition (hex) Transition (hex) Keycap Legend Notes
00 80 Reserved
01 81 ESC
02 82 ®/0
03 83 /
04 84 /@
05 85 @/®
06 86 /
07 87 6
08 88 @/
09 89 14Q)
0A 8A ®/0
0B 8B @©/0Q
0C 8C Q/0
0D 8D =)/
OE 8E
0F 8F
10 90 @
11 91
12 92
13 93 ®)
14 94
15 95

A-28 HP-HIL Appendix

Keycode Set 3: Vectra Keycodes (continued)

Keycode for Down Keycode for Up United States
Transition (hex) Transition (hex) Keycap Legend Notes
16 96
17 97 0)
18 98 ©)
19 99 ®
1A 9A Q/D
1B 9B D/D
1C 9C
1D 9D
1E 9E
1F 9F
20 A0 ©)
21 Al
22 A2
23 A3
24 A4
25 A5
26 A6
27 A7 Q/0
28 A8 0Q/0)
29 A9 0/0
2A AA Left side
2B AB ®/0

HP-HIL Appendix A-29

Keycode Set 3: Vectra Keycodes (continued)

Keycode for Down Keycode for Up United States
Transition (hex) Transition (hex) Keycap Legend Notes
2C AC
2D AD
2E AE
2F AF
30 B0
31 B1)
32 B2 (D)
33 B3 Q/
34 B4 Q/
35 B5 @/
36 B6 Right side
37 B7 (*)/ Prt Sc
38 B8 Alt
39 B9 <space bar>
3A BA Caps lock
3B BB F1
3C BC F2
3D BD F3
3E BE F4
3F BF F5
40 Co F6
41 C1 F7

A-30 HP-HIL Appendix

Keycode Set 3: Vectra Keycodes (continued)

Keycode for Down Keycode for Up United States
Transition (hex) Transition (hex) Keycap Legend Notes

42 C2 F8
43 C3 F9
44 C4 F10
45 Ch Num lock
46 C6 / ScrLck
47 C7 Home /
48 C8 @/
49 C9 Pg Up / (9)
4A CA @)
4B CB @/@
4C CcC ®)
4D CD ®/6
4E CE
4F CF End /
50 DO ™/
51 D1 Pg Dn /
52 D2 Ins / @)
53 D3 /0
54 D4 Sysreq
55 D5 Reserved
56 D6 Reserved
57 D7 Reserved

HP-HIL Appendix A-31

Keycode Set 3: Vectra Keycodes (continued)

Keycode for Down

Keycode for Up

United States

Transition (hex) Transition (hex) Keycap Legend Notes
58 D8 Reserved
59 D9 Reserved
5A DA Reserved
5B DB Reserved
5C DC Reserved
5D DD Reserved
5E DE Left side 3
5F DF Right side 3
60 E0 @) Cursor pad
61 El) Cursor pad
62 E2 ™ Cursor pad
63 E3 ® Cursor pad
64 E4 Home Cursor pad
65 E5 Pg Up Cursor pad
66 E6 End Cursor pad
67 E7 Pg Dn Cursor pad
68 E8 Ins Cursor pad
69 E9 DEL Cursor pad
6A EA <unlabeled> Cursor pad
6B EB Reserved
6C EC Reserved

A-32 HP-HIL Appendix

3 Key position is not loaded. Position is covered by a non-positional filler key.

Keycode Set 3: Vectra Keycodes (continued)

Keycode for Down Keycode for Up United States
Transition (hex) Transition (hex) Keycap Legend Notes
6D ED Reserved
6E EE Reserved
6F EF Reserved
70 FO
71 F1
72 F2
73 F3
74 F4
75 F5
76 F6
77 F7
78 F8 Reserved
79 F9 Reserved
TA FA Reserved
7B FB Reserved
7C FC Reserved
7D FD Reserved
7E FE Reserved
7F FF Reserved

HP-HIL Appendix A-33

Index

A

abort message, 3-23

ABORT statement, 3-12, 3-16, 5-76

above-screen lines, 1-27

absolute positioners, 9-25

active controller, 3-34

addressed to listen, HP-IB, 3-9

addressed to talk, HP-IB, 3-9

addressing multiple listeners on the HP-
IB bus, 3-11

addressing, non-active HP-IB controller,
3-43

addressing, secondary, 3-12

ALPHA HEIGHT statement, 1-6

alpha pen colors, 1-12

ALPHA PEN statement, 1-10, 1-36

ASCII and non-ASCII keys, 2-5

ASCII data transfers, 5-47

ASCII representations, 6-19

async and data link operation, BOTH, 5-
15

asynchronous communication protocol, 5-
3

asynchronous data communication, 4-2

async operation ONLY, 5-15

attention line (ATN), HP-IB, 3-54

automatic answering applications, data-
comm, 5-71

automatic dialing with the HP 13265A
modem, 5-34

auto-poll on the HP 1000, disabling, 5-67

auto-repeat, keyboard, 2-11

background datacomm program routines,
5-41

bar code reader, using a, 9-49

baud rate (RS-232C), 4-12

baud rate, RS-232C handshake and, 4-6

baud rate select switches, 4-8

BCD binary data representation, 7-11

BCD binary mode, 7-11

BCD binary mode entry, 7-25

BCD cable configuration, 7-21

BCD data entry, 7-22

BCD data output, 7-14, 7-34

BCD data representation, 7-2

BCD ENABLE INTR, 7-40

BCD handshake configuration, 7-18

BCD hardware priority, 7-18

BCD interface, 7-1

BCD interface configuration, 7-15

BCD interface interrupts, 7-40

BCD interface reset, 7-21

BCD interface select code, 7-17

BCD interface timeouts, 7-37

BCD interrupt service routines, 7-41

BCD interrupts, setting up and enabling,
7-40

BCD-mode standard format, 7-23

BCD operation, 7-2

BCD optional format, 7-7, 7-31

BCD output routines using CONTROL
and STATUS, 7-34

BCD peripheral status switches, 7-18

Index-1

Index

Index

BCD representation, 6-31

BCD standard format, 7-3

BCD STATUS and CONTROL registers,
7-42

BCD STATUS statement entry, 7-29

BCD timeout service routines, 7-38

BCD timeout time parameter, 7-38

BCD type 1 timing, 7-19

BCD type 2 timing, 7-20

BREAK message, 4-24

break received, 4-18

break timing, datacomm, 5-28

burst I/O mode, 3-6, 6-28

Cc

cable options and functions, datacomm,
5-76

cable options, RS-232C, 4-37

caps lock mode, 2-9

CDIAL function, 9-25

character conversions, 6-34

character fofmat definition, datacomm, 5-
27

character format and parity, RS-232C, 4-
13

character format parameters, RS-232C, 4-
6

character length (RS-232C), 4-6

circuit driver/receiver functions, optional,
4-39

clearing the Screen, 1-6

clear lockout/local message, 3-23

clear message, 3-23

CLEAR SCREEN statement, 1-6

CLEAR statement, 3-12, 3-16

Clear to Send (CTS), RS-232C, 4-6

closure keys, 2-24

CMD secondary keyword, 3-31

color enhancements, 1-24

communicating with HP-IB devices, 3-3

Index-2

communication between desktop comput-
ers, datacomm, 5-74

computer as a non-active controller on the
HP-IB bus, 3-34

configuration switches, 4-57

configuring parallel poll responses, 3-19

control block contents, datacomm, 5-21,
5-30

control-character functions, 1-20

control characters, 1-18

control characters, generating, 2-6, 2-8

controller address, HP-IB, 3-35

controller’s address, changing the HP-IB,
3-36

controller status, HP-IB, 3-35

control, passing, 3-36

cooperating programs, 5-51

CRT STATUS and CONTROL registers,
1-40

D

Data Carrier Detect (DCD or CD), RS-
232C, 4-6

datacomm adapter options and functions,
5-76

datacomm automatic answering applica-
tions, 5-71

datacomm, break timing, 5-28

datacomm character format definition, 5-
27

datacomm communication between desk-
top computers, 5-74

datacomm configuration for BASIC/UX,
5-16

datacomm connection, 5-15

datacomm control block contents, 5-30

datacomm data transfers between com-
puter and interface, 5-6

datacomm ENABLE INTR, 5-21

datacomm error detection and program
recovery, H-76

datacomm error recovery, 5-75
datacomm exit conditions, 5-45
datacomm handshake, 5-31
datacomm interface protocol, 5-3
datacomm interfaces, 5-1
datacomm interrupts, 5-38, 5-40, 5-42
datacomm interrupt service routines, 5-42
datacomm interrupt system, setting up
the, 5-38
datacomm line connection, 5-32
datacomm line timeouts, 5-22, 5-30
datacomm options for async communica-
tions, 5-20
datacomm options for data link commu-
nication, 5-29
datacomm parity, 5-32
datacomm parity option
EVEN, 5-4
NONE, 5-4
ODD, 5-4
datacomm programming, 5-11
datacomm programming helps, 5-65
datacomm program operator inputs, set-
ting up, 5-39
datacomm prompt recognition, 5-27
datacomm protocol and link operating
parameters, 5-15
datacomm protocol selection, 5-19
datacomm service routines for ON KEY
interrupts, 5-50
datacomm start bits, 5-4
datacomm stop bits, 5-4
datacomm time gap, 5-4
datacomm timeouts, 5-22
datacomm transfers, data formats for, 5-
47
datacomm transmitted block size, 5-32
Data Communication Equipment (DCE),
RS-232C, 4-37
data entry, RS-232C, 4-15

data formats for datacomm transfers, 5-
47

data-link baud rates, 5-31

data link communication protocol, 5-4

data link operation ONLY, 5-15

data loss prevention on the HP 1000, 5-65

data message, 3-9, 3-22, 3-30

data on the HP-IB bus, sending, 3-30

data output, RS-232C, 4-14

DATA secondary keyword, 3-31

Data Set Ready (DSR), RS-232C, 4-6

Data Terminal Equipment (DTE), RS-
232C, 4-37

data to the keyboard, sending, 2-15

data transfers, RS-232C, 4-14

data valid (DAV), HP-IB, 3-54

DCE cable option, 4-37

DCE cable options, 4-39, 5-77

DCE cable, RS-232C, 4-39

dialing procedure for switched (public)
modem links, 5-33

DIGITIZE statement, 9-24

direct connection links, datacomm, 5-33

disabling auto-poll on the HP 1000, 5-67

disabling the cursor character, 1-37

display-enhancement characters, 1-21

display enhancement guidelines, 1-25

display features, overview of, 1-4

display functions mode, 1-25

DISPLAY FUNCTIONS statement, 1-25

display interfaces, 1-1

display line, output area and the, 1-6

display regions, 1-4, 1-10

display regions affected by pen color
statements, 1-11

display types, 1-2

DISP line, 1-35

DRS and SRTS modem lines, program-
ming the, 4-25

DRS modem line, programming the, 4-25

DTE cable options, 4-39, 5-77

Index-3

Index

Index

DTE cable, RS-232C, 4-37

E

ENABLE INTR, BCD, 7-40

ENABLE INTR, datacomm, 5-21

ENABLE INTR, GPIO, 6-37

ENABLE INTR statement, 3-18, 5-38, 5-
40

enabling and setting up GPIO events, 6-
36

enabling local control, 3-15

enabling the insert mode, 1-37

end-of-line recognition, datacomm, 5-26

end or identify line (EOI), 3-55

enhanced keyboard control, 2-29

entering data from the keyboard, 2-13

entering from the CRT, 1-32

EOI signal, sending the, 2-15

EPROM addresses and unit numbers, 8-3

EPROM catalogs, 8-9

EPROM data storage rates, 8-11

EPROM directories, 8-8

EPROM hardware operation, 8-4

EPROM memory initialization, 8-3

EPROM memory overview, 8-2

EPROM memory, reading, 8-18

EPROM memory which is unused, 8-12

EPROM programmer select code, 8-3

EPROM programmer STATUS and CON-
TROL registers, 8-19

EPROM programming, 8-1, 8-10

EPROM, programming individual words
and bytes in, 8-15

EPROM, reading data files stored in, 8-18

EPROM, storing data in, 8-10

EPROM to store programs, using the, 8-
14

EPROM unit initialization, 8-8

ERRL function, 5-76

ERRN function, 5-76

Index-4

error detection and program recovery,
datacomm, 5-76

error detection, RS-232C, 4-4

error recovery, datacomm, 5-75

exit conditions, datacomm, 5-45

external interrupt request, 6-37

F

framing error (RS-232C), 4-4, 4-18

function box, 9-33

function box, activating the, 9-34

function box key presses, trapping, 9-36

function box keys, assigning functions to,
9-39

G

globalized BASIC
display-enhancement characters, 1-21

GPIO burst I/O mode, 6-28

GPIO control output lines, driving the,
6-44

GPIO data handshake methods, 6-5

GPIO data-in clock source, 6-7

GPIO data logic sence, 6-5

GPIO ENABLE INTR, 6-37

GPIO events, enabling and setting up, 6-
36

GPIO full handshake transfer, 6-40

GPIO full-mode handshakes, 6-8

GPIO handshake lines, 6-6

GPIO handshake logic sence, 6-6

GPIO handshake modes, 6-7

GPIO hardware interrupt priority, 6-5

GPIO interface, 6-1

GPIO interface configuration, 6-3

GPIO interface reset, 6-18

GPIO interface select code, 6-4

GPIO interrupts, 6-36

GPIO interrupt transfers, 6-42

GPIO optional peripheral status check, 6-
7

GPIO OUTPUT of data, 7-35

GPIO, outputs and enters through the, 6-
19

GPIO pulse-mode handshakes, 6-11

GPIO ready interrupt transfers, 6-42

GPIO special-purpose lines, 6-44

GPIO statements that enter data bytes,
6-22

GPIO statements that enter data words,
6-25

GPIO statements that output data bytes,
6-20

GPIO statements that output data words,
6-25

GPIO STATUS and CONTROL registers,
6-46

GPIO status input lines, interrogating
the, 6-45

GPIO timeouts, 6-29

GPIO transfer design, 6-40

GPIO, types of interrupt events, 6-36

H

half-duplex telecommunications, 5-68

handshake, 3-9

handshake and baud rate, R5-232C, 4-6

handshake character assignment, data-
comm protocol, 5-26

handshake, datacomm, 5-23, 5-31

handshake lines, HP-IB, 3-54

HILBUFS$ function, 9-5

HIL Devices, re-configuring, 2-4

HILID program, 9-9

HIL_ID program explanation, 9-10

HIL SEND statement, 9-4

HP 1000, disabling auto-poll on the, 5-67

HP 13265A modem, automatic dialing
with the, 5-34

HP 13265 modem, 5-3

HP 13266A current loop adapter, 5-3

HP 35723A (HP-HIL/Touchscreen), 9-26

HP 45911A (11 x 11 Graphics Tablet),
9-26

HP 46020/21A keyboard, 9-22

HP 46060A (HP-mouse), 9-23

HP 46083A (rotary control knob), 9-23

HP 46084A (HP-HIL ID module), 9-26

HP 46086A (function box), 9-27

HP 46087A (A-size digitizer), 9-26

HP 46088A (B-size digitizer), 9-26

HP 46094A (HP-HIL/quadrature port),
9-23

HP 92916A (bar-code reader), 9-28

HP 98203C keyboard, 9-22

HP 98622 interface, 6-1

HP 98626 and HP 98644 card ID register,
4-56

HP 98626 optional driver receiver circuits,
4-56

HP 98626 RS-232 serial interface, 4-55

HP 98628 data communications interface,
5-1

HP 98628 serial interface STATUS and
CONTROL registers, 4-46

HP 98642 4-channel multiplexer, 5-83

HP 98642 data communications interface,
5-1

HP 98642 serial interface STATUS and
CONTROL registers, 4-46

HP 98644 baud-rate and line-control
registers, 4-60

HP 98644 card ID register, 4-59

HP 98644 coverplate connector, 4-57

HP 98644 optional driver/receiver regis-
ters, 4-59

HP 98644 RS-232 serial interface, 4-55

HP-HIL device characteristics, 9-29

HP-HIL device preview, 9-2

HP-HIL devices, 9-21

HP-HIL devices, communicating with, 9-
29

Index-5

Index

HP-HIL devices, interaction between mul-
tiple, 9-53
HP-HIL devices supported by the HIL
interface driver, 9-6
HP-HIL ID module data, interpreting, 9-
31
HP-HIL ID modules, note about in-
stalling and removing, 9-31
HP-HIL initialization, 9-2
HP-HIL interface, 9-1
HP-HIL interface, communicating through
the, 9-3
HP-HIL interface driver statements, 9-3
HP-HIL keyboards, 9-22
HP-HIL link, identifying all devices on
the, 9-8
HP-HIL, other devices, 9-26
HP-HIL security device, 9-26
HP-IB
abort message, 3-23
clear lockout/local message, 3-23
clear message, 3-23
data message, 3-22
local lockout message, 3-23
local message, 3-23
pass control message, 3-23
remote message, 3-23
service request message, 3-23
status bit message, 3-23
status byte message, 3-23
trigger message, 3-22
HP-IB ABORT, 3-12
HP-IB active controller, 3-9, 3-34
HP-IB address commands and codes, 3-26
HP-IB addressed to listen, 3-9
HP-IB addressed to talk, 3-9
HP-IB attention line (ATN), 3-9, 3-54
HP-1B burst I/O mode, 3-6
HP-IB bus activity, aborting, 3-16
HP-IB bus, addressing multiple listeners
on the, 3-11

Index-6

HP-1B bus commands and codes, 3-24

HP-IB bus-line states, determining, 3-56

HP-IB bus management, 3-12

HP-IB bus management, advanced, 3-22

HP-IB bus messages, explicit, 3-28

HP-1B bus message types, 3-22

HP-IB bus sequences, 3-10

HP-1B CLEAR, 3-12

HP-IB controller address, 3-35

HP-1B controller status, 3-35

HP-IB control lines, 3-53

HP-IB data movement, 3-4

HP-1B data valid (DAV), 3-54

HP-IB devices, clearing, 3-16

HP-IB devices, communicating with, 3-3

HP-1IB device selectors, 3-3

HP-IB devices, polling, 3-19

HP-IB devices, triggering, 3-15

HP-IB ENABLE INTR, 3-18

HP-IB end-or-identify line (EOI), 3-55

HP-IB handshake lines, 3-54

HP-IB installation and verification, 3-2

HP-1B interface, 3-1

HP-IB, interface clear line (IFC), 3-55

HP-IB interface-state information, 3-48

HP-IB interlocking handshake, 3-54

HP-IB interrupts that require data trans-
fers, servicing, 3-50

HP-IB LOCAL, 3-12

HP-IB LOCAL LOCKOUT, 3-13

HP-IB message mnemonics, 3-31

HP-IB messages, 3-22

HP-IB NDAC holdoft, 3-61

HP-IB not data accepted (NDAC), 3-54

HP-IB not ready for data (NRFD), 3-54

HP-IB ON INTR, 3-17

HP-1B PPOLL, 3-13

HP-IB PPOLL CONFIGURE, 3-13

HP-IB PPOLL UNCONFIGURE, 3-13

HP-IB REMOTE, 3-13

HP-IB remote enable line (REN), 3-55

HP-IB secondary addressing, 3-12

HP-IB select code, 3-4

HP-IB SEND, 3-13

HP-IB service request line (SRQ), 3-56

HP-IB service requests, 3-17, 3-44

HP-IB SPOLL, 3-13

HP-IB SRQ interrupts, 3-17

HP-IB STATUS and CONTROL regis-
ters, 3-58

HP-IB structure, 3-7

HP-IB system controller, 3-34

HP-IB TRIGGER, 3-13

inbound control blocks, datacomm, 5-7

inbound datacomm data messages, 5-10

initiating the datacomm connection, 5-36

INPUT statement, 5-39

integral keyboard, 9-22

interactive keyboard, 2-33

interface clear line (IFC), HP-IB, 3-55

interface differences, 4-55

interface ready, 6-37

interface reset, RS-232C, 4-11

internal representations, 6-19

interrupt mask bits for async operation,
5-40

interrupt mask bits for data link opera-
tion, H-40

interrupt service routine (ISR), 5-43, 6-37

interrupt service routines, datacomm, 5-
42

interrupts, non-active HP-IB controller,
3-37

K

KBDS$ function, 2-29-30, 9-22

KBD LINE PEN statement, 1-10
KBD status and control registers, 2-36
keyboard auto-repeat, 2-11

keyboard CAPS LOCK mode, 2-9

keyboard ENTER, 2-13

keyboard features, 2-4

keyboard, interactive, 2-33

keyboard interfaces, 2-1

keyboard interrupts, servicing datacomm,
5-48

keyboard, locking out the, 2-34

keyboard operating modes, 2-9

keyboard OUTPUT, 2-15

keyboards, description of, 2-1

keyboard types, 2-1

KEY LABELS ON/OFF statement, 1-39

KEY LABELS PEN statement, 1-10

keystrokes, trapping, 2-30

knob rotation, 2-27

KNOBX function, 2-28

KNOBY function, 2-28

L

line connection, datacomm, 5-32

line-contro! switches, RS-232C, 4-8

line speed (baud rate), datacomm, 5-23,
5-30

LINPUT statement, 5-39

local control, enabling, 3-15

local lockout message, 3-23

LOCAL LOCKOUT statement, 3-13

local message, 3-23

LOCAL statement, 3-12

locking an interface to a process, 3-6, 6-27

locking out local control, 3-14

locking out the keyboard, 2-34

Model 216 and 217 built-In interface
differences, 4-55

modem control register, RS-232C, 4-24

modem handshake lines, RS-232C, 4-24

modem-initiated ON INTR branching
conditions, datacomm, 5-21

modem-line disconnect switches, 4-7

Index-7

index

modem line handshaking, RS-232C, 4-15

monochrome enhancement characters, 1-
22

mouse keys, 2-32

multiplexer, HP 98642 4-channel, 5-83

NDAC holdoff, HP-IB, 3-61

non-active HP-IB controller addressing,
3-43

non-active HP-IB controller interrupts, 3-
37

non-ASCII data transfers, 5-47

non-ASCII keystrokes, 2-16

non-data datacomm characters, handling
of, 5-25

not data accepted (NDAC), HP-IB, 3-54

not ready for data (NRFD), HP-IB, 3-54

numeric outputs, 1-17

o

OFF HIL EXT statement, 9-5

OFF KBD statement, 2-30

ON ERROR statement, 4-19, 5-76

ON HIL EXT statement, 9-4

ON INTR branching conditions, data-
comm, 5-30

ON INTR branching conditions, data-
comm modem-initiated, 5-21

ON INTR statement, 3-17, 5-38, 5-40

ON KBD statement, 2-29

ON KEY interrupts, datacomm service
routines for, 5-50

ON KNOB statement, 2-27, 2-33

ON/OFF CDIAL statement, 9-24

ON/OFF KBD statement, 9-22

ON/OFF KEY statement, 9-22

ON/OFF KNOB statement, 9-23

ON TIMEOUT statement, 7-38

operating parameters, RS-232C, 4-6

outbound control blocks, datacomm, 5-6

Index-8

outbound datacomm data messages, 5-9
output Area and the display line, 1-6
output-area memory, 1-27

output to the CRT, 1-17

overrun error (RS-232C), 4-4, 4-18

p

parallel interface, 10-1
parallel interface STATUS and CON-
TROL registers, 10-5
parallel poll, conducting a, 3-20
parallel poll responses, configuring, 3-19
parallel poll responses, disabling, 3-20
parallel polls, responding to, 3-45
parity bit, RS-232C, 4-3
parity, datacomm, 5-32
parity enable (RS-232C), 4-6
parity error (RS-232C), 4-4, 4-18
parity option
EVEN, 4-4
NONE, 44
ODD, 44
parity options, datacomm, 5-4
parity, RS-232C character format and, 4-
13
parity sense (RS-232C), 4-6
pass control message, 3-23
passing control, 3-36
pen colors, 1-12
changing, 1-36
pen colors in display regions, changing, 1-
10
peripheral status line (PSTS), 6-45
plotting selected locations on a Touch-
screen, 9-45
PPOLL CONFIGURE statement, 3-13,
3-19
PPOLL statement, 3-13, 3-20
PPOLL UNCONFIGURE statement, 3-
13, 3-20
primary addresses, 3-4

primary keyboard, 2-3

PRINT ALL mode, 2-10

PRINT PEN statement, 1-10, 1-36

PRINT position, 1-29

private telecommunications links, 5-33

program control (RS-232C), 4-11

program flow (RS-232C), 4-14

prompt recognition, datacomm, 5-27

protocol, 5-3

protocol handshake character assignment,
datacomm, 5-26

R

reading a screen line, 1-32
reading the entire output-area memory,
1-33
READIO and WRITEIO interface hard-
ware registers, 4-27
READIO and WRITEIO registers, 4-26
READIO statement, 4-26
READ LOCATOR statement, 9-24
received BREAKSs, 4-4
relative positioners, 9-22
remote control of HP-IB devices, 3-13
remote enable line (REN), HP-IB, 3-55
remote message, 3-23
REMOTE statement, 3-13
repeat and delay intervals, 2-11
resetting the datacomm interface, 5-18
RESUME INTERACTIVE statement, 2-
33
Ring Indicator (RI), RS-232C, 4-6
rotary control knob, 2-33
RS-232C
Clear to Send (CTS), 4-6
Data Carrier Detect (DCD or CD), 4-6
Data Set Ready (DSR), 4-6
Ring Indicator (RI), 4-6
RS-232C character format, 4-2
RS-232C character format parameters, 4-
6

RS-232C compatible cables, 4-59

RS-232C data error detection and han-
dling, incoming, 4-18

RS-232C data transfers between com-
puter and peripheral, 4-5

RS-232C DTE and DCE cable configura-
tions, 4-37

RS-232C error detection, 4-4

RS-232C framing errors, 4-4

RS-232C handshake and baud rate, 4-6

RS-232C interface defaults to simplify
programming, using, 4-7

RS-232C modem control register, 4-24

RS-232C modem handshake lines, 4-24

RS-232C operating parameters, 4-6

RS-232C optional circuit driver/receiver
functions, 5-79

RS-232C overrun errors, 4-4

RS-232C parity bit, 4-3

RS-232C parity errors, 4-4

RS-232C received BREAKS, 4-4

RS-232C Serial Interface, 4-1

RS-232C serial interface self-test opera-
tions, 4-25

]

screenwidth, determining, 1-8
scrolling, disabling, 2-10

scrolling the display, 1-30

secondary addressing, 3-12

SEND statement, 3-13, 3-28

serial interface, 4-1

serial interface errors, trapping, 4-19
serial interface programming, 4-5

serial poll, conducting a, 3-21

serial polls, responding to, 3-48

Series 300 built-in 98644 interface, 4-61
service request, HP-IB, 3-44

service request line (SRQ), HP-IB, 3-56
service request message, 3-23

service request (SRQ), 3-17

Index-9

Index

Index

shift and control keys, 2-5

signal functions, RS-232C, 4-37

softkey interrupts, datacomm, 5-39

softkey label colors, 1-40

softkey labels, 1-38

softkeys, 2-26

softkeys and knob rotation, 2-33

SPOLL statement, 3-13, 3-21

SRQ interrupts, HP-IB, 3-17

SRQ interrupts, servicing HP-IB, 3-18

Ssrial configuration for BASIC/UX, 4-9

start bits, datacomm, 5-4

status bit message, 3-23

status byte message, 3-23

stop bits, datacomm, 5-4

stop bits (RS-232C), 4-6

stty, 4-10

SUSPEND INTERACTIVE statement,
2-33

switched (public) modem links, dialing
procedure for, 5-33

switched (public) telephone links, 5-33

system controller, 3-8, 3-34

SYSTEM$(“CRT ID”) function, 1-9

SYSTEM$(“SERIAL NUMBER”), 9-26

Index-10

T

telecommunications links, private, 5-33
telephone links, switched (public), 5-33
terminal emulator, 5-57

terminal identification, datacomm, 5-31
terminal prompt messages, 5-65

time gap, datacomm, 5-4

timeouts, datacomm, 5-22

timeout service routines, 6-29
TIMEOUT time parameter, 6-29
Touchscreen, using a, 9-44

transfers, RS-232C data, 4-14
TRANSFER statement, 6-40
transmitted block size, datacomm, 5-32
trapping function box key presses, 9-36
trapping keystrokes, 2-30

trapping serial interface errors, 4-19
trigger message, 3-22

TRIGGER statement, 3-13, 3-15

U
UART registers, 4-29

w

WRITEIO registers, READIO and, 4-26
WRITEIO statement, 4-26

(ﬁp HEWLETT

PACKARD

HP Part Number
98616-90013

TR RO IR

Printed in U.S.A. E0691 98616-90630 Manufacturing Number

