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How to use this guide

Purpose and audience

This guide describes efficient methods for shared-memory programming
using an Exemplar compiler: HP Fortran 90, HP aC++ (ANSI C++),

HP Fortran 77, or HP C on computers running the HP-UX operating
system. The first four chapters cover basic concepts, including automatic
optimizations and simple manual optimizations that require minimal
programmer intervention. In the following chapters, more progressive
topics are covered, including advanced manual optimizations and the
Compiler Parallel Support Library.

The Exemplar Programming Guide is for experienced Fortran 90,
Fortran 77, C, and C++ programmers. Readers need not be familiar with
the Exemplar parallel architectures, programming model, or
optimization concepts; this book addresses these topics in the necessary
detail.

Scope

This guide covers programming methods for the following Exemplar
compilers on V2200 (or V-Class) and K-Class machines running
HP-UX 11.0 and higher:

< Exemplar HP Fortran 90 Version 2.0 (and higher)
< Exemplar HP aC++ Version 1.0 (and higher)

= Exemplar HP Fortran 77 Version 1.2.3 (and higher)
< Exemplar HP C Version 1.2.3 (and higher)

The Exemplar compilers are the same as the standard HP compilers but
also support the Exemplar programming model.

HP-UX 11.0 and higher includes the required assembler, linker, and
libraries. These utilities are also included in SPP-UX Version 5.2 and
higher. SPP-UX is the operating system on X2000 servers. (X2000
servers are also known as X-Class servers. Machines running SPP-UX
are used to discuss multidimensional parallelism.)

This guide is concerned with producing programs that efficiently exploit
the features of Hewlett-Packard Exemplar architectures and the
compilers that run on them. Producing an efficient program requires
efficient algorithms and implementation. The techniques of writing an
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efficient algorithm are beyond the scope of this guide. This guide
assumes that you have chosen the best possible algorithm for your
problem and helps you obtain the best possible performance from that
algorithm.

Suggested reading order
This book takes the following approach to presenting information.

< Chapters 1, 2 and 3 provide background information that helps you
understand Exemplar architectures and how HP compilers optimize
your code.

= Chapter 4 tells you how to derive performance gains with minimal
intervention.

= Chapters 5 and 6 explain how to use more advanced programming
techniques to further improve performance.

« Chapter 7 discusses message passing on HP-UX machines, requiring
even more manual intervention.

= Chapter 8 presents coding tips and tells you about problems you may
encounter when using the techniques of the previous chapters and
how to enable even more aggressive optimizations.

= The appendixes contain mostly reference information, including a
discussion of the Compiler Parallel Support Library (CPSlib).

If you are interested in a general, comprehensive overview of
programming for Exemplar servers, read the chapters in order.

If you are interested in simply compiling existing programs and getting
them to run with minimal effort, start with chapters 3 and 8. Following
the cross-references that interest you will probably expose you to as
much of the rest of the book as is necessary.

If you are interested in getting maximum performance gains for
minimum programming effort, read chapters 3 and 4, then proceed if
necessary.

If you are willing to spend some time adding directives and rewriting
some of your code to realize significant performance benefits (especially if
your Exemplar server is equipped with multiple hypernodes), read at
least chapters 2 through 6.
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If you are interested in running message-passing codes on your
Exemplar system, refer to Chapter 7, “Message-passing programming.”
You may also want to read chapters 2 through 6 to see how the compilers
can help you with automatic optimizations.

If you are interested in very low-level control over parallelism using the
Compiler Parallel Support Library, start with Appendix F. Again, you
may want to refer to the other chapters to see how the compiler can help
with automatic optimizations.

Notational conventions

This section discusses notational conventions used in this book.

General conventions
In general, the following conventions are used in this guide:

e [Fortran

The term “Fortran” refers to both Fortran 90 and Fortran 77. When
functionality differs between the two compilers, the terms
“Fortran 77" and “Fortran 90” will be used.

* |talic

— Designates user-supplied variables in a command line or code
example

— Introduces new and important terms
— ldentifies variables in mathematical equations

— Indicates document titles

XXi



NOTE

Constant-width font designates input and output, including
— Command names and options

— System calls

— Data structures and types

— Variables and arrays

— Function and subroutine names

— Directives, program statements, display examples, printout
examples, and error messages returned

Except where noted, the directives and pragmas described in this
book can be used with the Fortran 90, Fortran 77 and C compilers.
(The aC++ compiler does not support the pragmas, but does support
the memory classes.) In general discussion, these directives and
pragmas are presented in lowercase type, but each compiler will
recognize them regardless of their case.

Bold constant-width font designates text that must be input
by the user.

Horizontal ellipsis (...) shows repetition of the preceding item(s).

Vertical ellipsis shows that lines of code have been left out of an
example.

References to man pages appear in the form mnpgname(1), where
“mnpgname” is the name of the man page and is followed by its section
number enclosed in parentheses. To view this man page, type:

%man 1 mnpgname

A Note highlights important supplemental information.
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Command syntax

Consider this example:
COMMANIDput_file[...]{a | b} [ output_file]

COMMANMDust be typed as it appears.
input_file indicates a file name that must be supplied by the user.

The horizontal ellipsis in brackets indicates that additional, optional
input file names may be supplied.

Either a or b must be supplied.

[ output_file] indicates an optional file name.

Associated documents

Hewlett-Packard Company provides the following documents to help you
use the compilers and associated tools:

Fortran 90 Programmer’s Guide (B6056-90003)—Provides extensive
usage information (including how to compile and link), suggestions
and tools for migrating to HP Fortran 90, and how to call C and
HP-UX routines for HP Fortran 90.

Fortran 90 Programmer’s Reference (B5876-90001)—Presents
complete Fortran 90 language reference information. It also covers
compiler options, compiler directives, and library information.

HP aC++ Online Programmer’s Guide (This manual is accessed by
specifying aCCwith the +help command-line option.)—Presents
reference and tutorial information on aC++.

HP MPI User’s Guide (B6011-90001)—This book discusses
message-passing programming using Hewlett-Packard’s
Message-Passing Interface library.

Programming with Threads on HP-UX (B2355-90060)—Discusses
programming with POSIX threads.

Exemplar C and Fortran 77 Programmer’s Guide for HP-UX Systems
(B6057-90002)—Describes the extensions to the standard
Hewlett-Packard compilers in the Exemplar C and Fortran 77
compilers that support the Exemplar programming model.
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HP C/HP-UX Reference Manual (92453-90024)—Presents reference
information on the C programming language, as implemented by
Hewlett-Packard.

HP C/HP-UX Programmer’s Guide (92434-90002)—Contains
detailed discussions of selected C topics.

FORTRAN/9000 Programmer’s Reference (B3906-90002)—Presents
information on Hewlett-Packard Fortran 77 and can be used as a
language reference.

FORTRAN/9000 Programmer’s Guide (B3906-90001)—Describes
features and requirements in terms of the tasks a Fortran 77
programmer might perform. These tasks include how to compile, link,
run, debug, and optimize programs.

Programming on HP-UX (B2355-90652)—Describes how to develop
software on HP-UX, using the HP compilers, assemblers, linker,
libraries, and object files.

Managing Systems and Workgroups (B2355-90157)—Describes how
to perform various system administration tasks.

Ordering documentation

To order additional copies of this document or other documents listed in
the “Associated documents” section, call 1-800-227-8164 between 6 a.m.
and 5 p.m. PST.

To place an order from outside the United States, or if you cannot use the
1-800 number, call 415-857-5027.

Please have the order number (xxxxx-9xxxx) and the exact title of the
document available when ordering.
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Introduction

Hewlett-Packard compilers generate efficient parallel code with little
intervention on your part; however, you can increase this efficiency by
using the techniques discussed in this book.

This chapter provides a general overview of the:
< Exemplar architectures as compared to other parallel architectures
= Applicable programming models

= HP compiler optimizations

Exemplar SMP architectures

Hewlett-Packard offers single-processor systems and symmetric
multiprocessor (SMP) systems. The SMP systems, known as Exemplar
servers, can be either nonscalable or scalable systems. The remainder of
this section discusses the scalability of SMPs.

Nonscalable SMPs

Hewlett-Packard’s nonscalable SMPs are single-hypernode systems. (For
nonscalable SMPs, a hypernode is simply the set of processors and
physical memory.) Memory is shared among all the processors, with a
bus serving as the interconnect. The shared-memory architecture has a
uniform access time from each processor. For example, D-Class servers
are nonscalable SMPs.
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Exemplar SMP architectures

Scalable SMPs

HP'’s scalable Exemplar systems implement parallel processing using
scalable parallel processing technology. Scalable parallel machines can
be scaled to meet your specific needs. Current configurations range from
one to four hypernodes (or nodes), with the system having from 4 to 64
processors.

Processors communicate with each other, with memory, and with 1/0
devices via a nonblocking crossbar on each hypernode for intrahypernode
communication and eight high-speed CTI rings that link the hypernodes
together for interhypernode communication. (CTI stands for Coherent
Toroidal Interconnect.) The CTI ring design is derived from the IEEE
standard 1596-1992, SCI (Scalable Coherent Interface), but the
Exemplar implementation sacrifices complete SCI compatibility to
provide lower latencies.

Physical memory is also scalable. V2200 and X2000 servers support up to
16 Gbytes of memory.

Each process on an HP-UX 11.0 system can access a 16-terabyte (Tbyte)
virtual address space.

Exemplar vs. vector/parallel architectures

Scalable parallel processing represents a departure from traditional
vector/parallel supercomputers like the Convex C Series. The C Series
architecture is used to illustrate the difference between traditional and
Exemplar architectures below, but the same differences apply in
principle to all vector/parallel machines.

Architectural differences

Convex C Series machines contain a limited number (1-8) of custom
processors connected by a high-speed crossbar to a large, shared memory.
For connecting small numbers of processors such as these to memory,
crossbars are cost-effective and fast, allowing all processors to access all
memory with equally high speed. Each processor is equipped with one or
more vector units that speed loop computations involving arrays by
performing array arithmetic on up to 128 elements per vector
instruction. Machines containing multiple processors can further reduce
time-to-solution by adding parallelism at the process, loop, and task
level.
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The Exemplar architectures take a different approach. Rather than
using vector units to exploit fine-grained parallelism, the processors in
an Exemplar server speed scalar processing by using a reduced set of
high-speed instructions coupled with pipelining, high-speed instruction
and data caches, and a large register set.

Two-dimensional parallelism, which can benefit nested parallel
structures, is also possible on multihypernode Exemplar servers. Rather
than implementing the first dimension in the vector unit and the second
across processors (as in C Series), Exemplar servers can implement the
first level within a hypernode and the second across hypernodes.
Single-dimensional parallelism that spans hypernodes can also be
implemented.

Memory

Because of the potentially large number of processors available on a
multihypernode Exemplar server, memory access via a system-wide
crossbar is not practical. Instead, low latency, high-bandwidth memory
access is provided by shared memory. In this model, physical memory is
distributed among all hypernodes, and the entire virtual address space of
a process is accessible by every processor. Processors within a hypernode
can access hypernode-local memory via the crossbar regardless of
whether the address space is on one or more hypernodes; memory in
another hypernode can be accessed via the CTI rings. Of course,
interhypernode accesses take longer than intrahypernode accesses.
However, part of every hypernode’'s memory is dedicated to act as a
CTlcache, which holds copies of recently used data from other
hypernodes. These CTlcaches and the processor caches are coherent,
meaning that when a thread references a data item via its virtual
address, the value it receives will be the most recently-assigned value.
By holding frequently referenced data close to its referencing processes,
regardless of the actual memory location of the data, these caches
provide excellent data distribution.
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Optimizing compilers

Programs that optimize well on traditional vector/parallel machines
optimize well on Exemplar systems with little manual intervention.
Exemplar compilers automatically exploit opportunities for parallelism
and data localization in programs written for shared-memory machines.
Chapters 3 through 6 discuss manual optimizations that can yield even
more performance from such programs.

HP SMP architectures vs. clustered workstations

While the Exemplar architectures use the same processors found in HP
workstations, the following features sharply distinguish the Exemplar
servers from clustered workstations:

< Exemplar architectures’ low-latency shared memory
= Automatic optimizing compilers

= High-speed interconnections

= Shared peripherals

= User-configurability

The subsections below discuss each distinguishing feature in detail.

Memory

Each workstation in a cluster has its own private memory; there is no
shared memory. That is, any data shared among processors must be
passed over the low-performance network that connects them. While an
Exemplar server can support this method of programming, it offers the
many advantages of shared memory, as described in the “Exemplar vs.
vector/parallel architectures” section on page 2.

Many workstation operating systems reserve a large amount of memory
for system use, restricting user processes to what is left. The HP-UX
operating system requires only a small fraction of each processor’s
memory, leaving a large majority of it for user processes, whether they
are using shared memory or message passing.
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Optimizing compilers

Programs for clustered workstations are compiled using the
workstations’ compilers. If the cluster contains workstations that require
different executables (that is, if it is a heterogeneous cluster), the
programmer must generate the executables using the proper compiler.
Homogeneous clusters eliminate this requirement, but automatic
parallelization is nevertheless unavailable on any type of cluster. The
compilers used may generate efficient code for each processor, but any
parallelism or process coordination must be explicitly implemented by
the programmer via message passing.

Exemplar compilers provide fully automatic parallelism and several new
data localization optimizations designed to improve memory usage and
aid parallelization. Additionally, directives allow you to further enhance
the automatic optimizations performed on your shared-memory
program.

Exemplar compilers give the highest performance—with little or no
programmer intervention—for generic programs that exploit shared
memory. Message-passing programs, with their parallelism explicitly
coded, also benefit from Exemplar compiler optimizations.

Interprocess communication

To communicate among themselves or access each other’s data,
processors in a cluster of workstations must communicate over
low-performance networks and access distributed memory.
Communication can be handled only by passing explicit messages
between workstations over the network; because of the distributed
memory and absence of parallelizing compilers, programmers must
explicitly code parallelism. Parallel tasks running on clusters, then, must
be fairly autonomous to avoid wasting time waiting for data or
synchronization instructions to travel over the network. Clusters are
best suited to coarse-grained parallelism, such as that possible at the
process level, or to manually parallelizable algorithms that contain a
large ratio of computation to communication. In these cases, task chunks
or processes and their data are parcelled out to underused workstations,
run to completion, and the results are sent back to the parent.

Fine-grained, loop-level parallelism is difficult to efficiently perform on
clusters because of the need for frequent data accesses and
synchronization.
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Exemplar servers are suitable for both coarse- and fine-grained
parallelism. Programs containing potential parallelism, when compiled
with Exemplar compilers, automatically exploit the parallelism,
spawning threads to run on as many processors as are available and
rejoining these threads upon completion. This fine-grained parallelism
takes full advantage of the fully coherent memory caches and high-speed
interconnects available on an Exemplar system.

While message passing is supported and can be used to speed certain
applications (refer to Chapter 7, “Message-passing programming”), with
shared memory, it is not necessary for most programs. When message
passing is used on an Exemplar server, the high-speed interconnects can
give a substantial performance increase over traditional networks. This
makes message-passing programs that exploit finer-grained parallelism
practical.

HP-UX automatically schedules threads within a hypernode to execute
on idle and underused processors as necessary. This ensures a balanced
machine load and exploits both thread- and process-level parallelism.

Peripherals

Peripheral devices connected to an Exemplar server can be accessed from
any processor on the machine. On clustered workstations, peripherals
are processor-dependent. Programs running on Exemplar systems,
therefore, have access to potentially greater mass storage space.

Configurability

In terms of configuring hardware, adding processors to a cluster can
actually degrade performance because of the low-performance network
and private memory. The network can present a bottleneck when
parallelism increases to exploit the new processors; to overcome this,
coarser granularity can be used—and this can require more private
memory than the processors can address. The absolute performance of
an Exemplar server, on the other hand, increases unhindered by a
traditional network or private-memory limits. Adding peripherals and
memory to an Exemplar server can also provide improved absolute
performance, because all processors can access both, whereas memory
and peripherals are processor-specific on clusters.

6 Chapter1



Introduction
Exemplar programming model

Exemplar programming model

The Exemplar programming model provides three perspectives from
which a programmer can write (or adapt) code to run on an Exemplar
system. Those perspectives are the shared-memory, message-passing,
and shared-memory/message-passing hybrid paradigms. This book
focuses on using the shared-memory paradigm but also provides some
information on the other two paradigms.

The shared-memory paradigm

In the shared-memory paradigm, the compilers handle optimizations,
and, if requested, parallelization. Numerous compiler directives and
pragmas (discussed in detail in Chapter 4, “Basic shared-memory
programming,” and Chapter 5, “Memory classes,” and listed in Appendix
B, “Exemplar compiler directives and pragmas”) are available to further
increase optimization opportunities.

Chapter 4, “Basic shared-memory programming,” and Chapter 6,
“Advanced shared-memory programming,” cover shared-memory
programming in detail.

The message-passing paradigm

Hewlett Packard has implemented a version of the MPI standard known
as HP MPI. This version is finely tuned for HP technical servers.

Under the message-passing paradigm, the programmer uses functions to
explicitly spawn parallel processes, share data among them, and
coordinate their activities. There is no shared memory; each process has
its own private 16-terabyte (Tbyte) address space, and any data that
must be shared must be explicitly passed between processes.

Support of message passing allows programs written under this
paradigm for distributed-memory machines to be easily ported to HP
servers. Programmers familiar with message passing may choose to
write new programs using this paradigm rather than shared memory
and can realize a substantial performance boost over conventional
message-passing machines, even when coding finer-grained parallelism.
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The few programs that require more per-process memory than possible
using shared memory will benefit from the manually-tuned
message-passing style.

For more information, see Chapter 7, “Message-passing programming” or
the book HP MPI User’s Guide.

Message-passing/shared-memory hybrids

Some programs may benefit from combining the paradigms to allow
several shared-memory processes to coordinate their activities via
message passing. This model allows the majority of the program to be
written in the familiar shared-memory style while exploiting the
process-private memory benefits of message passing.

Overview of Exemplar optimizations

Exemplar compilers perform a range of user-selectable optimizations.
These optimizations, which are specified via compiler command-line
options, are briefly introduced here. A more thorough discussion,
including the options associated with each, is given in Chapter 3,
“Compiler optimizations.”

Basic scalar optimizations

Basic scalar optimizations improve performance at the basic block and
program unit level.

A basic block is a sequence of statements that has a single entry point
and a single exit. Branches do not exist within the body of a basic block.
A program unit is a subroutine, function, or main program in Fortran or
a function (including main) in C; program units are also often generically
referred to as procedures. Basic blocks are contained within program
units; program unit-level optimizations span basic blocks.
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To improve performance, basic scalar optimizations:

= Fully exploit the processor’s functional units and registers
= Reduce the number of times memory is accessed

= Simplify expressions

= Eliminate redundant operations

= Replace variables with constants

= Replace slow operations with faster equivalents

Advanced scalar optimizations

Advanced scalar optimizations are primarily intended to maximize
processor data cache usage. This is referred to as data localization.
Concentrating on loops, these optimizations strive to encache the data
most frequently used by the loop and keep it encached so as to avoid
costly memory accesses.

Advanced scalar optimizations include several loop transformations;
many of them either facilitate more efficient strip mining or are
performed on strip mined loops to optimize processor data cache usage.
All of these optimizations are covered in Chapter 3, “Compiler
optimizations.”

Advanced scalar optimizations implicitly include all basic scalar
optimizations.
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Parallelization

Through parallelization you can realize the full power of a scalable
parallel computer like the Exemplar servers. Parallelization allows a
program to be executed by as many processors as are available within its
system, in most cases significantly reducing time-to-solution. Exemplar
compilers can automatically locate and exploit loop-level parallelism in
most programs, and, using the techniques described in

Chapter 5, “Memory classes,” you can assist the compilers in finding
even more parallelism in your programs.

Loops that have been data-localized are prime candidates for
parallelization; individual iterations of inner loops that contain strips of
localizable data can be parcelled out among several processors and run
simultaneously. The maximum number of processors that can be used is
limited by the number of iterations of the outer loop, and, of course, by
processor availability.

While most parallelization is done on nested, data-localized loops, other
code can also be parallelized. For example, through the use of manually
inserted compiler directives, sections of code outside of loops can also be
parallelized.

Parallelization optimizations implicitly include all scalar optimizations.
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Architecture overview

This chapter provides an overview of Hewlett-Packard’'s multiprocessor
architectures in terms of scalability. HP servers employ either a
nonscalable or scalable SMP architecture. These overviews focus on the
information most useful for programmers.

For more information on V2200 servers, see the V-Class Architecture
manual (order number A3725-90004).

Although HP-UX is not used on X2000 servers, information on that
architecture is provided throughout this book to facilitate the discussion
of the Exemplar programming model on multinode SMPs. For additional
information on X2000 servers, see the Exemplar Architecture: S-Class
and X-Class Servers manual (order number A4716-90001).
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Figure 1

Architecture overview
System organization: nonscalable SMPs

System organization: nonscalable SMPs

Hewlett-Packard's nonscalable SMPs are single-node, shared-memory
machines that have a single level of memory latency. Processors
communicate with each other, with memory, and with peripherals via a
bus. Figure 1 gives an overview of a nonscalable SMP.

Nonscalable SMP overview

Processor 1 Processor n

I I

Processor-Memory Bus

NOTE

Although, V-Class servers are single-node machines, they are considered
scalable SMPs because the memory bandwidth on V-Class servers, which
use crossbar interconnects, is significantly greater than that on other
single-node servers.

12 Chapter2




NOTE

Architecture overview
System organization: nonscalable SMPs

Memory

Memory is discussed in terms of physical memory and virtual memory.
The following two sections describe these types of memories for
nonscalable SMPs.

Physical memory

Memory configurations on HP’s nonscalable SMPs varies widely by
machine. However, each of these machines uses memory interleaving to
improve performance. For an explanation, see the section “Interleaving”
on page 33.

HP-UX 11.0 provides variable-sized pages to improve performance. For
more information on this feature, see the section “Variable-sized pages”
on page 37.

Virtual memory

Virtual memory is divided into five classes. For nonscalable SMPs, only
two of these classes are needed: thread_private and node_private
The three remaining classes are automatically mapped to the
node_private  class.

For applications that will be ported to Hewlett-Packard scalable SMPs,
all five virtual memory classes can be useful. For information on using
the memory classes on a scalable SMP, see the section “Virtual memory”
on page 24.
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A brief description of the virtual memory classes follow:

thread_private

This memory is private to each thread of a process. A
thread_private data object has a unique virtual
address for each thread. These addresses map to
unique physical addresses in physical memory.
Threads access the physical copies of
thread_private data when they access
thread_private virtual addresses.

node_private

This memory is shared among the threads running on
a hypernode. (For nonscalable SMPs, a hypernode is
the set of processors and physical memory.) Data
objects of the class node_private  have a single
virtual address by which they can be accessed from any
processor in the hypernode.

near_shared

This memory class is mapped to the node_private
memory class for nonscalable SMPs.

far_shared

This memory class is mapped to the node_private
memory class for nonscalable SMPs.

block_shared

This memory class is mapped to the node_private
memory class for nonscalable SMPs.

Data caches

Hewlett-Packard systems use caches to enhance performance. Cache
sizes, as well as cache line sizes, vary with the processor used. Data is
moved between the cache and memory using cache lines. A cache line
describes the size of a chunk of contiguous data that must be copied into
or out of a cache in one operation.

When a processor experiences a cache miss—that is, requests data that
is not already encached—the cache line containing the address of the
requested data is moved to the cache. This cache line also contains a
number of other data objects that were not specifically requested.
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One reason cache lines are employed is to allow for data reuse. Data in a
cache line is subject to reuse if, while the line is encached, any of the data
elements contained in the line besides the originally requested element
are referenced by the program, or if the originally requested element is
referenced more than once.

Because data can only be moved to and from memory as part of a cache
line, both load and store operations cause their operands to be encached.
Cache-coherency hardware invalidates cache lines in other processors
when they are stored to by a particular processor. This indicates to other
processors that they must load the cache line from memory the next time
they reference its data.

For information on avoiding inefficient use of data, see the section
“Cache thrashing” on page 29.
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System organization: scalable SMPs

HP-UX is the operating system on V2200 servers. Only the SPP-UX
operating system runs on Hewlett-Packard X2000 servers.

Think of a scalable Exemplar SMP as a shared-memory computer with
two levels of memory latency. Memory available on the current
hypernode (accessed through the crossbar) constitutes the first level, and
all other memory (accessed through the CTI rings) constitutes the
second.

Exemplar V2200 servers consist of one hypernode that has 4 to 16
PA-8200 processors and 256 Mbytes to 16 Gbytes of physical memory.
The X2000 servers consist of 1 to 4 hypernodes with a total of 16 to 64
PA-8000 processors and 16 Gbytes to 64 Ghytes of memory.

Processors within a hypernode communicate with each other, with
memory, and with peripherals via a nonblocking crossbar. V2200 servers
feature the HP HyperPlane crossbar. Figure 2 shows the V2200 crossbar
configuration. Figure 3 shows the crossbar configuration for X2000
servers. Processors in different hypernodes communicate via CTI rings.
These rings are configured in a one-dimensional interconnect for X2000
systems consisting of two or three hypernodes and in two-dimensional
interconnects for systems with four hypernodes.

Figure 2 and Figure 3 show overviews of a V2200 hypernode and a single
X2000 hypernode, respectively. These servers are the same except for the
V2200's HyperPlane crossbar and the X2000’s CTI controllers. Two
CPUs and a PCI bus controller share a single CPU agent. The CPUs
communicate with the rest of the machine through the CPU agent. The
Memory Access Controllers (MACSs) provide the interface between the
memory banks and the rest of the machine. All intrahypernode memory
accesses take approximately 510 nanoseconds on X2000 servers,
regardless of location, because they must traverse the crossbar, which
gives equal access to all hypernode memory from all CPUs. The CTlrings
are used for internode communication.

Figure 4 shows a more detailed view of the connections between the
CPU agents, the crossbar, and the Memory Controllers in an X2000
server.
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Figure 2

V2200 hypernode overview

Architecture overview
System organization: scalable SMPs
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Figure 3

Architecture overview
System organization: scalable SMPs

X2000 hypernode overview
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System organization: scalable SMPs

Figure 4 X2000 crossbar connections
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Figure 5

Architecture overview
System organization: scalable SMPs

Any processor can access memory on another hypernode by routing its
request through its own crossbar to a CTI ring that attaches to that
hypernode. Data is returned via a CTI ring and then routed via the
crossbar back to the requesting processor.

Figure 5 shows the CTI ring connections between two X2000 hypernodes.
See Figure 3 on page 18 for details not available in the figure below.

CTI ring connections for two-hypernode X2000 server

CTI

\ CTlring

CTI rings are unidirectional. That is, packets can only move in one
direction on the rings. Consider the three-hypernode X2000 server
illustrated in Figure 6; for simplicity, only one of the eight rings is shown.
If Node 0 initiates communication with Node 2, it goes through the CTI
controller on Node 1 to get to Node 2. Responses from Node 2 to Node 0O
travel in the same direction as the request and cover the remainder of
the ring.

20 Chapter 2



Figure 6

Architecture overview
System organization: scalable SMPs

Unidirectional flow on a CTI ring

4+—

> '\
CTlring

As a system scales, a one-dimensional interconnect becomes less efficient
because the ring grows to include a CTI controller for every hypernode in
the system. For X2000 servers, when the number of nodes exceeds three,
a one-dimensional interconnect is no longer optimal. A two-dimensional
interconnect is then used to shorten paths between requesting and
responding nodes.

The two-dimensional interconnect uses dimension-order routing to
determine the path taken by a packet. A request packet first travels the
required distance on the X-dimension ring then, if needed, the
Y-dimension ring. On the return path, the response packet again travels
the X-dimension ring first, then the Y-direction ring. Thus, the response
packet does not necessarily follow the same path as the request packet.

Figure 7 shows a four-hypernode X2000 server using a two-dimensional
interconnect. The node IDs (0, 1, 8, and 9 in the figure) are represented
in 5-bit fields, where the first three bits represent the X dimension and

the last two bits represent the Y dimension.

Nodes connected in the X dimension are:
< Node 0 (ID:00000) and node 1 (1D:00001)
< Node 8 (ID:01000) and node 9 (1D:01001)
Nodes connected in the Y dimension are:
= Node 0 (ID:00000) and node 8 (1D:01000)
< Node 1 (ID:00001) and node 9 (1D:01001)
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Figure 7

Architecture overview
System organization: scalable SMPs

CTI ring connections for four-hypernode X2000 server
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CPUs communicate directly with their own instruction and data caches,
which can be accessed by the processor in one clock (assuming a full
pipeline). X2000 servers use 1-Mbyte off-chip instruction caches and data
caches. V2200 servers use 2-Mbyte off-chip instruction caches and data
caches.
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Memory

Each process running on a V-Class or K-Class server (running

HP-UX 11.0 and above) accesses its own 16-Tbyte virtual address space.
Almost all of this space is available to hold program text, data, and the
stack; the space used by the operating system is negligible.

On X2000 servers running the SPP-UX operating system, each process
can accesses its own 4-Ghyte virtual address space. Again, most of this
space is available to program text, data, and the stack with only a
negligible amount of space used by the operating system.

The stack size is configurable; refer to the section “Default stack size” on
page 152 for more information.

Processes cannot access each other’s virtual address spaces. This virtual
memory maps to the physical memory of the system on which the process
is running.

Physical memory

All memory (excluding processor caches) on V2200 servers and X2000
servers is implemented in memory banks. In 16-processor V2200 servers
and X2000 servers, each hypernode consists of 32 memory banks. This
memory is typically partitioned (by the system administrator) into
hypernode-local, system-global, CTlcache (on multinode systems), and
buffer cache. It is also interleaved as described in the “Interleaving”
section later in this chapter.

Hypernode-local memory, as its name implies, is local to its hypernode,
and cannot be accessed by other hypernodes. This is where application
and operating-system executables, as well as user process data that has
been explicitly declared private, reside.

System-global memory is accessible by all processors in a given system.

The CTlcache is used to store copies of global data fetched from other
hypernodes.

The buffer cache is a file system cache and is used to encache items that
have been read from disk and items that are to be written to disk.
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Virtual memory

Virtual memory is divided into five classes. The compilers choose default
classes to provide your programs with normal SMP memory-transaction
semantics. You can also manually assign data to memory classes to
improve data locality and further increase performance. However, doing
so also requires some other aspects of optimization, particularly loop
parallelization, to be handled manually.

Brief descriptions of the virtual memory classes and their physical
memory mappings follow:

thread_private

This memory is private to each thread of a process. A
thread_private data object has a unique virtual
address for each thread within its hypernode. These
addresses map to unique physical addresses in
hypernode-local physical memory on each hypernode.
Threads access the physical copies of

thread_private data residing on their own
hypernode when they access thread_private virtual
addresses.

node_private

This memory is shared among the threads running on
a given hypernode but is inaccessible from other
hypernodes. A node_private  data object has a unique
virtual address by which all threads on all hypernodes
access it. This address maps to one physical address
per hypernode; when a thread accesses the data, it
receives the value contained in the physical memory of
its own hypernode.

near_shared

Data objects of the near_shared class have a single
virtual address by which they can be accessed from any
hypernode in the system. Physically, near_shared

data is stored entirely within the memory of a
particular hypernode. All data of a near_shared

object maps to physical addresses on that hypernode.
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Data objects of the far_shared class have a single
virtual address by which they can be accessed from any
hypernode in the system. Physically, far_shared data
is distributed by pages, in a manner that is
approximately round-robin, to all the hypernodes in
the system, so the virtual address maps to a single
physical address located on one of the hypernodes.

Data objects of the block_shared class have a single
virtual address by which they can be accessed from any
hypernode in the system. Physically, block_shared
data is distributed in blocks equally among the
hypernodes on which the process is executing, one
block per hypernode. block_shared  memory must be
dynamically allocated; the programmer can then easily
ensure that threads on a hypernode make most of their
accesses to the block residing on their hypernode.

Using these memory classes is discussed in detail in Chapter 5,
“Memory classes.”

Data caches

V2200 servers and X2000 servers use high-speed data caches to improve
performance, but the architectures differ in their implementations of the
cache. CTlcaches are used to improve performance on multihypernode
systems. (A CTlcache is a partition of physical memory that exists on
each hypernode and is used to store copies of global data fetched from
other hypernodes.)

Chapter 2
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Cache lines

Before examining the specifics of caches, you must understand how data
is moved between the cache and memory. A cache line describes the size
of a chunk of contiguous data that must be copied into or out of a cache in
one operation. V2200 servers use processor cache lines; X2000 servers
use processor cache lines and CTlcache lines.

When a processor experiences a cache miss—that is, requests data that
is not already encached—the cache line containing the address of the
requested data is moved to the cache. This cache line also contains some
number of other data objects that were not specifically requested; this
number varies according to the object size and the type of cache line in
guestion.

A CTlcache line moves data from shared memory to the CTlcache when
a CTlcache miss occurs. For X2000 servers, the CTlcache line is 32 bytes,
and each CTlcache line matches one-to-one to a 32-byte processor cache
line. When a processor cache miss occurs, the requested data is fetched
as part of a contiguous 32-byte cache line. If this data resides in any
memory on the processor’s hypernode, it need not traverse the CTlcache;
if it resides in the memory of another hypernode, it will be fetched
through the CTlcache.

All processor-encached data not residing on the processor’s hypernode
must pass through the CTlcache, so if this data is contained in processor
cache, it is also resident in the CTlcache.

One reason cache lines are employed is to allow for data reuse. Data in a
cache line is subject to reuse if, while the line is encached, any of the data
elements contained in the line besides the requested element are
referenced by the program, or if the requested element is referenced
more than once.

Because data can only be moved to and from memory as part of a cache
line, both load and store operations cause their operands to be encached.
Cache-coherency hardware invalidates cache lines in other processors
when they are stored to by a particular processor. This indicates to other
processors that they must load the cache line from memory the next time
they reference its data.
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Direct-mapped data caches

V2200 servers use 2-Mbyte off-chip write-back direct-mapped data
caches. In a direct-mapped cache, the cache address for a given data
object is a function of the object’s full virtual address. For V2200 systems,
cache addresses are computed within a process using the following
formula:

cache_address = MOD( virtual_address,2 21)

Where the MOLCfunction yields the remainder when virtual_address is
divided by 221 The value of 2% is 2,097,152, or 2 Mbytes. Thus, a data
object’s cache address is the least-significant 21 bits of its virtual
address.

X2000 servers use 1-Mbyte off-chip write-back direct-mapped data
caches. For X2000 systems, cache addresses are computed within a
process using the following formula:

cache_address = MOD( virtual_address,2 20)

Where the MOLCfunction yields the remainder when virtual_address is
divided by 220 The value of 220 is 1,048,576, or 1 Mbyte. Thus, a data
object’s cache address is the least-significant 20 bits of its virtual
address.

This mapping scheme can result in cache thrashing, which is discussed
in the section “Cache thrashing” on page 29.

Prefetching with the +Odataprefetch ~ compiler option
Prefetching is supported through the command-line option
+Odataprefetch . Prefetching encaches data that will be used in future
iterations of a loop, while the processor is executing current iterations.
The prefetch distance (distance in terms of the number of processor
cycles) varies and is tuned to the target machine architecture.
Prefetching is not beneficial to loops whose data fits in the cache. For
loops whose data does not fit in the cache, performance improvement can
be substantial. This option is off (+Onodataprefetch ) by default. For
additional information on this option, see Appendix D, “Optimization
options.”
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Data alignment

Aligning data addresses on cache line boundaries allows for efficient data
reuse in loops (refer to Chapter 3, “Compiler optimizations”). The linker
automatically aligns data over 32 bytes on a 32-byte boundary. Also, it
aligns data greater in size than a page on a 64-byte boundary.

You can align data on 64-byte boundaries by:

= Using Fortran ALLOCATEstatements. (Applies only to parallel
executables.)

= Using the C functions malloc or memory_class_malloc . (Applies
only to parallel executables.)

Only the first item in a list of data objects appearing in any of these
statements is aligned on a cache line boundary. To make most efficient
use of available memory, the total size, in bytes, of any array appearing
in one of these statements should be an integral multiple of 32. Sizing
your arrays this way prevents data following the first array from
becoming misaligned. Scalar variables should be listed after arrays and
ordered from longest data type to shortest (for example, REAL*8 scalars
should precede REAL*4 scalars).

Aliases can inhibit data alignment. Be especially careful when
equivalencing arrays in Fortran.

You can force CTlcache boundary alignment for specific scalar variables
or arrays by using the align_cti directive or pragma. The Fortran
directive has the form:

C$DIR ALIGN_CTI( namelist)
In C it has the form:
#pragma _CNX align_cti( namelist)

where namelist is a list of arrays and/or scalars that will be aligned on
CTlcache boundaries.
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Cache thrashing

Cache thrashing occurs when two or more data items that are needed by
the program both map to the same cache address. Each time one of the
items is encached, it overwrites another needed item, causing cache
misses and impairing data reuse. This section explains how thrashing
happens on X2000 servers.

A type of thrashing known as false cache line sharing is discussed in the
section “False cache line sharing” on page 274.

X2000 servers use a 1-Mbyte direct-mapped data cache. Thus, cache
thrashing can become a problem on X2000 servers when two encachable
data objects are exactly a multiple of 1 Mbyte apart in virtual memory.
To eliminate the problem, you must ensure that your data is not spaced
this way.

Consider the following Fortran example:

REAL*8 ORIG(65536), NEW(65536), DISP(65536)
COMMON /BLK1/ ORIG, NEW, DISP

DOI=1,N
NEW(I) = ORIG(I) + DISP(I)
ENDDO

In this example, the arrays ORIG and DISP overwrite each other in a
1-Mbyte cache. Because the arrays are in a COMMODIock, we know that
they will be allocated in contiguous memory in the order shown. Each
array element occupies 8 bytes, so each array occupies

0.5 Mbyte (8 x 65536 = 524288 bytes); therefore arrays ORIG and DISP
are exactly 1 Mbyte apart in memory, and all their elements have
identical cache addresses. The layout of the arrays in memory and in the
data cache is shown in Figure 8.
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Figure 8 Array layouts—cache-thrashing
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When the addition in the body of the loop executes, the current elements
of both ORIG and DISP must be fetched from memory into the cache.
Because these elements have identical cache addresses, whichever is
fetched last will overwrite the first. Remember that processor cache data
is fetched 32 bytes at a time; to efficiently execute a loop such as this, the
unused elements in the fetched cache line (3 extra REAL*8 elements are
fetched in this case) must remain encached until they can be used in
subsequent iterations of the loop. Because ORIG and DISP thrash each
other, this reuse is never possible; every cache line of ORIG that is
fetched is overwritten by the cache line of DISP that is subsequently
fetched, and vice versa. The cache line is overwritten on every iteration;
typically, in a loop like this, it would not be overwritten until all of its
elements were used.

Because memory accesses take substantially longer than cache accesses,
this severely degrades performance. Even if the overwriting involved the
NEWAarray, which is stored rather than loaded on each iteration,
thrashing would occur, because stores overwrite entire cache lines the
same way loads do.

The problem is easily fixed by increasing the distance between the
arrays. You can accomplish this by either increasing the array sizes or
inserting a padding array.
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The following example illustrates the padding approach:

REAL*8 ORIG(65536), NEW(65536), P(4),DISP(65536)
COMMON /BLK1/ ORIG, NEW, P, DISP

Here, the array P(4) moves DISP 32 bytes further from ORIGin memory.
Now no two elements of the same index share a cache address, and for
the given loop, this postpones cache overwriting until the entire current
cache line is completely exploited. P is 4 elements, or 32 bytes, which
prevents both processor cache thrashing and CTlcache thrashing on
X2000 servers.

The alternate approach involves increasing the size of ORIG or NEWby 4
elements (32 bytes), as shown in the following example:

REAL*8 ORIG(65536), NEW(65540), DISP(65536)
COMMON /BLK1/ ORIG, NEW, DISP

Here, NEWhas been increased by 4 elements, providing the padding
necessary to prevent ORIG from sharing cache addresses with DISP.
Figure 9 shows how both solutions prevent thrashing.
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Array layouts—non-thrashing
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It is important to note that this is a highly simplified, worst-case
example. On X2000 servers, thrashing can happen any time two data
items that are referenced in the same loop are an integral multiple

of 1 Mbyte apart in virtual memory. This can happen with data that is
not stored in COMMQNh which case it is much more difficult to see, as
such data can be stored noncontiguously and may be intermixed with
completely unrelated data items.

The loop blocking optimization (described in Chapter 3, “Compiler
optimizations”) will eliminate thrashing from certain nested loops, but
not from all loops. Declaring arrays with dimensions that are not powers
of two can help, but it will not necessarily eliminate the problem
completely.

Using COMMOBocks in Fortran can also help; it allows you to accurately
measure distances between data items, making thrashing problems
easier to spot before they happen.
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Interleaving

Physical pages are interleaved across the memory banks of a hypernode
on a cache-line basis. (There are 32 banks per node in V2200 servers and
X2000 servers). Contiguous cache lines are assigned in round-robin
fashion, first to the even banks, then to the odd, as shown in Figure 10
for V2200 servers and X2000 servers.

Interleaving speeds memory accesses by allowing several processors to
access contiguous data simultaneously. This is beneficial when a loop
that manipulates arrays is split among many processors; in the best
case, threads will access data in patterns with no bank contention. Even
in the worst case, where each thread initially needs the same data from
the same bank, after the initial contention delay, the accesses will be
spread out among the banks.

Interleaving example

The following example illustrates a nested loop that accesses memory
with very little contention. This example is greatly simplified for
illustrative purposes, but the concepts apply to arrays of any size.

REAL*8 A(12,12), B(12,12)

DOJ=1,N
DOI=1,N
A(1,J) = B(1,J)
ENDDO

ENDDO

Assume that arrays A and B are stored contiguously in memory, with A
starting in bank 0, CTlcache line 0, processor cache line 0, as shown in
Figure 11 on page 36 for V2200 servers and X2000 servers.

Assume the Exemplar Fortran 90 compiler parallelizes the J loop to run
0N as many processors as are available in the system (up to N). Assuming
N=12 and there are four processors available when the program is run,
the J loop could be divided into four new loops, each with 3 iterations.
Each new loop would run to completion on a separate processor. We will
refer to these four processors as CPUO through CPU3.
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Figure 10 V2200 and X2000 memory interleaving
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This example is designed to simplify illustration. In reality, the dynamic
selection optimization (discussed in Chapter 3, “Compiler optimizations”)
would, given the iteration count and available number of processors
described, cause this loop to run serially. The overhead of going parallel
would outweigh the benefits.

In order to execute the body of the | loop, A and B must be fetched from
memory and encached. Each of the four processors running the J loop
will attempt to fetch its portion of the arrays, most likely simultaneously.

This means CPUO will attempt to read arrays A and B starting at
elements (1,1) , CPUL will attempt to start at elements (1,4) and so
on. For clarity, Figure 11 shows the first 32 CTlcache lines consecutively;
after these, only the initial cache lines for each processor are shown.
Each processor’s initial cache line is shaded.

Because of the number of memory banks in the V2200 and X2000
architecture, interleaving removes the contention from the beginning of
the loop from the example, as shown in Figure 11.

CPUO needs A(1:12,1:3) and B(1:12,1:3)
CPUL1 needs A(1:12,4:6) and B(1:12,4:6)
CPU2 needs A(1:12,7:9) and B(1:12,7:9)
CPU3 needs A(1:12,10:12) and B(1:12,10:12)

The data from the V2200/X2000 example above is spread out on different
memory banks as described below:

< A(1,1) , the first element of the chunk needed by CPUQ, is on cache
line 0 in bank 0 on board 0

< A(1,4) , the first element needed by CPUL, is on cache line 9 in bank
1 on board 1

< A(1,7) , the first element needed by CPU2, is on cache line 18 in
bank 2 on board 2

e A(1,10) the first element needed by CPU3, is on cache line 27 in
bank 3 on board 3

Because of interleaving, no contention exists between the processors
when trying to read their respective portions of the arrays. Contention
may surface occasionally as the processors make their way through the
data, but the resulting delays are minimal compared to what could be
expected without interleaving.
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Figure 11 V2200 and X2000 interleaving of arrays A and B
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Variable-sized pages

Variable-sized pages are used to reduce Translation Lookaside

Buffer (TLB) misses and consequently improve performance. With
variable-sized pages, each TLB entry used can map a larger portion of an
application’s virtual address space. Thus, applications with large
reference sets can be mapped using fewer TLB entries, resulting in fewer
TLB misses. (A TLB is a hardware entity used to translate a virtual
memory reference to a physical page.)

If an application is not experiencing performance degradation due to
TLB misses, using a different page size does not help. Also, if an
application uses too large a page size, fewer pages will be available to
other applications on the system, potentially resulting in increased
paging activity and performance degradation.

Valid page sizes on the PA-8000 and PA-8200 processors are 4K, 16K,
64K, 256K, 1 Mbyte, 4 Mbytes, 16 Mbytes, 64 Mbytes, and 256 Mbytes.
(The default size, which can be configured, is 4K.) Methods for specifying
a page size are described below. However, the user-specified page size is
only a request for a specific size; the operating system takes various
factors into account when selecting the page size.

The following command options and configurable kernel parameters
allow you to specify information regarding page sizes.

= Options to the chatr utility:
— +pi : affects the page size for the application’s text segment

— +pd: affects the page size for the application’s data segment

= Configurable kernel parameters:

—Vps_pagesize :represents the default or minimum page size (in
kilobytes) if the user has not used chatr to specify a value; the
default is 4K

—vps_ceiling  : represents the maximum page size (in kilobytes) if
the user has not used chatr to specify a value; the default is 16K

—vps_chatr_ceiling : places a restriction on the largest value (in
kilobytes) a user can specify using chatr ; the default is 64 Mbytes

For more information on the chatr utility, see the chatr(1) man page.
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This chapter discusses the various optimization levels available with the
Exemplar compilers and explains the optimizations performed at each
level.

The Fortran 90 compiler is located at /opt/fortran90/bin/fo0.

The two Fortran 77 compilers are:

« f77 isthe Fortran 77 compiler and is located at /opt/fortran/bin/f77

- fort77 is the POSIX-conforming Fortran 77 compiler and is located
at /opt/fortran/bin/fort77

The remainder of this manual refers to the f77 compiler. Any f77
example applies to the fort77  compiler.

The two C compilers are:

= cc is the C compiler and is located at /opt/ansic/bin/cc

= 89 is the POSIX-conforming C compiler and is located at
/opt/ansic/bin/c89

The remainder of this manual refers to the cc compiler. Any cc example
applies to the c89 compiler.

The aC++ compiler is located at /opt/aCC/bin/aCC.
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Optimization levels

Five optimization levels are available for use with the Exemplar
compilers. These options have identical names and perform identical
optimizations, regardless of which compiler you are using. They are
specified on the compiler command line along with any other options you
wish to use. Exemplar compiler optimization levels are summarized in

Table 1.
Table 1 Compiler optimization levels
Option Description
+00 (Machine instruction-level optimizations)

(default) Constant folding and simple register assignment

+01 (Block-level optimizations)

+00 optimizations, plus instruction scheduling and
optimizations on basic blocks (A basic block is a linear
sequence of machine instructions with a single entry and a
single exit.)

+02 (Routine-level optimizations)

+0O1loptimizations, plus optimizations within subprograms
in a single file; loop optimizations to reduce pipeline stalls;
analysis of data flow, memory usage, loops, and
expressions

+03 (File-level optimizations)

+02 optimizations, plus full optimizations across all
subprograms (including inlining) within a single file; use
of parallelism-related directives and pragmas from the
Exemplar programming model when +Oparallel s also
specified

+04 (Cross-module optimizations)

+03 optimizations, plus full optimizations across the
entire application; optimizations include inlining across
the application; the +O4 optimizations are performed at
link time

*The +O4 option is not available in Fortran 90.
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These options are cumulative; each option retains the optimizations of
the previous option. For example, entering the following command line
compiles the Fortran program foo.f with all +O2, +O1, and +0O0
optimizations shown in Table 1.

% f90 +0O2 foo.f

In addition to these options, the +Oparallel  option is available for use
at +O3and above. (+Onoparallel is the default.) When the
+Oparallel  option is specified, the compiler:

= Looks for opportunities for parallel execution in loops.

= Honors the parallelism-related directives and pragmas of the
Exemplar programming model. When using
Exemplar Fortran 77 Version 1.2.3 or Exemplar C Version 1.2.3,
+Oexemplar_model (the default) must also be in effect for these
directives and pragmas to be enabled.

The +Onoautopar (no automatic parallelization) option is available for
use with +Oparallel  at +O3and above; +Oautopar is the default.
+Onoautopar causes the compiler to parallelize only those loops that
are immediately preceded by loop_parallel or prefer_parallel
directives or pragmas; for more information, refer to Chapter 4, “Basic
shared-memory programming.”

The +Onodepar (node-parallelism) option is also available for use with
+Oparallel  at +O3and above. This option causes the compiler to
generate node-parallel code (indicated by directives and pragmas that
use the nodes attribute) for a multinode, scalable SMP. (See Chapter 4,
“Basic shared-memory programming,” for information on attributes.)

The +Ononodepar option (the default) causes the compiler to generate
code for a single-node machine. When this option is used, serial code is
generated for node-parallel constructs; thus, node-parallelism is not
implemented. Thread-parallelism—both automatic and
directive-specified—is still implemented.
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Using the optimizer

Before exploring the various optimizations that are performed, we
should examine what coding guidelines can be followed to assist the
optimizer. This section is broken down into the following subsections:

= General guidelines
e Fortran 90 and Fortran 77 guidelines

e C and C++ guidelines

General guidelines

The coding guidelines presented in this section help the optimizer to
optimize your program, regardless of the language the program is
written in.

= Where possible, use local variables to help the optimizer promote
variables to registers.

= Do not use local variables before they are initialized. When you
request +O2, +O3, or +O4 optimizations, the compiler tries to detect
and indicate violations of this rule. See the section
“+0O[nolinitcheck ” on page 373 for related information.

= Where possible, use constants instead of variables in arithmetic
expressions such as shift, multiplication, division, or remainder
operations.

= If a loop contains only a procedure call, position the loop inside the
procedure or use a directive to call the loop in parallel—if
appropriate.

= The code generated for a loop termination test is more efficient with a
test against zero than with a test against some other value.
Therefore, where possible, construct loops so the control variable
increases or decreases toward zero.

= Avoid referencing outside the bounds of an array. (Fortran provides
the -C option to check whether your program references outside array
bounds.)

= Avoid passing an incorrect number of arguments to functions.
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Fortran guidelines

The coding guidelines presented in this section help the optimizer to
optimize Fortran programs.

As part of the optimization process, the compiler gathers information
about the use of variables and passes this information to the optimizer.
The optimizer uses this information to ensure that every code
transformation maintains the correctness of the program, at least to the
extent that the original unoptimized program is correct.

When gathering this information, the compiler assumes that inside a
routine (either a function or a subroutine) the only variables that can be
accessed (directly or indirectly) are:

< COMMOMariables declared in the routine

= Local variables

= Parameters to this routine

Local variables include all static and nonstatic variables.

In general, you do not need to be concerned about this assumption.
However, if you have code that violates the assumption, the optimizer
can change the behavior of the program in an undesirable way.

One guideline is to avoid using variables that can be accessed by a
process other than the program. The compiler assumes that the program
is the only process accessing its data. The only exception is the shared
COMMOWariable. In this case, optimization will be correct if you properly
use the $OPTIMIZE ASSUME_NO_SHARED_COMMON_PARKtgan 77
directive. For more information on OPTIMIZE directives, see Appendix A,
“Standard HP compiler directives and pragmas.”

A final guideline is to avoid using extensive equivalencing and
memory-mapping schemes, where possible.

See the section “General guidelines” on page 42 for additional guidelines.
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C and C++ guidelines

The coding guidelines presented in this section help the optimizer to
optimize your C and C++ programs.

= Use do loops and for loops in place of while loops. do loops and for
loops are more efficient because opportunities for removing
loop-invariant code are greater.

e Use register  variables where needed.

< When using short or char variables or bit-fields, it is more efficient
to use unsigned variables rather than signed because a signed
variable causes an extra instruction to be generated.

= Whenever possible, pass and return pointers to large structs instead
of passing and returning large structs by value.

= Use type-checking tools like lint  to help eliminate semantic errors.

= Use local variables for the upper bounds (stop values) of loops; using
local variables may enable the compiler to optimize the loop.

During optimization, the compiler gathers information about the use of
variables and passes this information to the optimizer. The optimizer
uses this information to ensure that every code transformation
maintains the correctness of the program, at least to the extent that the
original unoptimized program is correct.

When gathering this information, the compiler assumes that while
inside a function, the only variables that can be accessed indirectly
through a pointer or by another function call are:

= Global variables (that is, all variables with file scope)

= Local variables that have had their addresses taken either explicitly
by the & operator, or implicitly by the automatic conversion of array
references to pointers
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In general, you do not need to be concerned about this assumption.
Standard-compliant C and C++ programs do not violate this assumption.
However, if you have code that does violate this assumption, the
optimizer can change the behavior of the program in an undesirable way.
In particular, you should follow the coding practices below to ensure
correct program execution for optimized code:

Avoid using variables that are accessed by external processes. Unless
a variable is declared with the volatile attribute, the compiler will
assume that a program’s data is accessed only by that program. Using
the volatile attribute may significantly slow down a program.

Avoid accessing an array other than the one being subscripted. For
example, the construct alb-a] , where a and b are the same type of
array, actually references the array b, because it is equivalent to
*(a+(b-a)) , which is equivalent to *b . Using this construct might
yield unexpected optimization results.

Avoid referencing outside the bounds of the objects a pointer is
pointing to. All references of the form *(p+i) are assumed to remain
within the bounds of the variable or variables that p was assigned to
point to.

Do not rely on the memory layout scheme when manipulating
pointers; incorrect optimizations may result. For example, if p is
pointing to the first member of a structure, do not assume that p+1
points to the second member of the structure. Another example: if p is
pointing to the first in a list of declared variables, p+1 is not
necessarily pointing to the second variable in the list.

See the section “General guidelines” on page 42 for additional guidelines.
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+00 level optimizations

At optimization level +O0, the compiler performs the following
optimizations that span no more than a single source statement:

= Constant folding

= Partial evaluation of test conditions

= Simple register assignment

= Data alignment on natural boundaries

The default optimization level is +OO0.

Constant folding

Constant folding is the replacement of operations on constants with the
result of the operation. For example, Y=5+7 is replaced with Y=12.

More advanced constant folding is performed at optimization level +O2.
See the section “Advanced constant folding and propagation” on page 54
for more information.

Partial evaluation of test conditions

Where possible, the compiler determines the truth value of a logical
expression without evaluating all the operands (also known as
short-circuiting). Consider the Fortran example below:

IF (1 .EQ. J) .OR. (I .EQ. K)) GOTO 100

If (1.EQ. J) is true, control immediately goes to 100; otherwise,
(I .EQ. K) must be evaluated before control can go to 100 or the
following statement.

Do not rely upon partial evaluation if you use function calls in the logical
expression because:

= There is no guarantee on the order of evaluation.

= A procedure or function call can have side effects on variable values
that may or may not be partially evaluated correctly.
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Simple register assignment

The compiler may place frequently used variables in registers to avoid
more costly accesses to memory.

A more advanced register assignment algorithm is used at optimization
level +O2. See the section “Global register allocation” on page 52 for more
information.

Data alignment on natural boundaries

The compiler automatically aligns data objects to their natural
boundaries in memory, providing more efficient access to data. This
means that a data object’s address is integrally divisible by the length of
its data type; for example, REAL*8 objects have addresses integrally
divisible by 8 bytes.

Aliases can inhibit data alignment. Be especially careful when
equivalencing arrays in Fortran.

You should declare scalar variables in order from longest to shortest data
length to ensure the efficient layout of such aligned data in memory. This
minimizes the amount of padding the compiler has to do to get the data

onto its natural boundary.

Consider the following Fortran example:

C CAUTION: POORLY ORDERED DATA FOLLOWS:
LOGICAL*2 BOOL
INTEGER*8 A, B
REAL*4 C
REAL*8 D

Here, the compiler must insert 6 blank bytes after BOOLin order to
correctly align A, and it must insert 4 blank bytes after Cto correctly
align D.

The same data is more efficiently ordered as shown in the following
example:

C PROPERLY ORDERED DATA FOLLOWS:
INTEGER*8 A, B
REAL*8 D
REAL*4 C
LOGICAL*2 BOOL
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Natural boundary alignment is performed on all data. Do not confuse It
with cache line boundary alignment, which is performed as described in
the section “Data alignment” on page 28. Also discussed in Chapter 2 are
the align_cti directive and pragma, which facilitate CTlcache line
boundary alignment.

+01 level optimizations

At optimization level +O1, the compiler performs optimizations on a
block level. The compiler also continues to perform the optimizations
performed at +O0.

The +O1 optimizations are:
= Branch optimization

= Dead code elimination

= Faster register allocation
= Instruction scheduler

= Peephole optimizations
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Branch optimization

The branch optimization involves traversing the procedure and
transforming branch instruction sequences into more efficient sequences
where possible. Examples of possible transformations are:

Deleting branches whose target is the fall-through instruction (in
other words, the target is two instructions away).

Changing the target of the first branch to be the target of the second
(unconditional) branch when the target of a branch is an
unconditional branch.

Transforming an unconditional branch at the bottom of a loop that
branches to a conditional branch at the top of the loop into a
conditional branch at the bottom of the loop.

Changing an unconditional branch to the exit of a procedure into an
exit sequence where possible.

Changing conditional or unconditional branch instructions that
branch over a single instruction into a conditional nullification in the
following instruction.

Looking for conditional branches over unconditional branches, where
the sense of the first branch could be inverted and the second branch
deleted. These result from null THENclauses and from THENclauses
that only contain GOTGstatements.

For example, in the following Fortran example:

IF (L) THEN
A=A*2
ELSE
GOTO 100
ENDIF
B=A+1

100 C=A*10

becomes:

IF (NOT. L) GOTO 100
A=A*2
B=A+1

100 C=A*10
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Dead code elimination
Dead code elimination removes unreachable code that is never executed.

For example, in C:

if(0)
a=1;

else
a=2;

becomes:

a=2;

Faster register allocation

Faster register allocation involves:

= Inserting entry and exit code

= Generating code for operations such as multiplication and division
= Eliminating unnecessary copy instructions

= Allocating actual registers to the dummy registers in instructions

Faster register allocation, when used at +O0or +O1, analyzes register
use faster than the global register allocation performed at +O2

Instruction scheduler
The instruction scheduler optimization performs the following:

= Reordering the instructions in a basic block to improve memory
pipelining. For example, where possible, a load instruction is
separated from the use of the loaded register.

= Following a branch instruction with an instruction that can be
executed as the branch occurs, where possible.

= Scheduling floating-point instructions.
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Peephole optimizations

A peephole optimization is a machine-dependent optimization that
makes a pass through low-level assembly-like instruction sequences of
the program, applying patterns to a small window (peephole) of code
looking for optimization opportunities. The optimizations performed are:

< Changing the addressing mode of instructions so they use shorter
sequences

= Replacing low-level assembly-like instruction sequences with faster
(usually shorter) sequences, and removing redundant register loads
and stores

+02 level optimizations

At optimization level +O2, the compiler performs optimizations on a
routine level. The compiler continues to perform the optimizations
performed at +O1, with the following additions:

= Global register allocation
= Strength reduction of induction variables and constants
= Common subexpression elimination

= Advanced constant folding and propagation (Simple constant folding
is done at +00.)

= Loop-invariant code motion

= Store/copy optimization

= Unused definition elimination
= Software pipelining

= Register reassociation

= Loop unrolling
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Global register allocation

Scalar variables can often be stored in registers, eliminating the need for
costly memory accesses. Global register allocation (GRA) attempts to
store commonly referenced scalar variables in registers throughout the
code in which they are most frequently accessed.

The compiler automatically determines which scalar variables are the
best candidates for GRA and allocates registers accordingly.

GRA can sometimes cause problems when parallel threads attempt to
update a shared variable that has been allocated a register. In this case,
each parallel thread will allocate a register for the shared variable; it is
then unlikely that the copy in memory will be updated correctly as each
thread executes.

Parallel assignments to the same shared variables from multiple threads
make sense only if the assignments are contained inside critical or
ordered sections, or are executed conditionally based on thread ID. GRA
will not allocate registers for shared variables that are assigned within
critical or ordered sections, as long as the sections are implemented
using compiler directives or sync_routine  -defined functions (refer to
Chapter 6, “Advanced shared-memory programming”). However, for
conditional assignments based on thread ID, GRA may allocate registers
that may cause wrong answers when stored.

In such cases, GRA can be disabled only for shared variables that are
visible to multiple threads by specifying the +Onosharedgra compiler
option.

In procedures with large numbers of loops, GRA can contribute to long
compile times; therefore, GRA is only performed if the number of loops in
the procedure is below a predetermined limit. You can remove this limit
(and possibly increase compile time) by specifying the +Onolimit
compiler option.

This optimization is also known as coloring register allocation because of
the similarity to map-coloring algorithms in graph theory.
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Register allocation in C and C++

In C and C++, you can help the optimizer understand when certain
variables are heavily used within a function by declaring these variables
with the register  qualifier.

The global register allocator may override your choices and promote a
variable not declared register  to a register over a variable that is
declared register , based on estimated speed improvements.

Strength reduction of induction variables
and constants

This optimization removes expressions that are linear functions of a loop
counter and replaces each of them with a variable that contains the
value of the function. Variables of the same linear function are computed
only once. This optimization also replaces multiplication instructions
with addition instructions wherever possible.

For example, in the following C/C++ code:
for (i=0; i<25; i++) {

] =i*k;
}

becomes:

t1=0;

for (i=0; i<25; i++) {
rli] = t1;
t1 +=k;

}
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Common subexpression elimination

The common subexpression elimination optimization identifies
expressions that appear more than once and have the same result,
computes the result, and substitutes the result for each occurrence of the
expression. The subexpression types include instructions that load
values from memory, as well as arithmetic evaluation.

In Fortran, for example, the code:

A=X+Y+Z
B=X+Y+W
becomes:
T1=X+Y
A=T1+2Z
B=T1+W

Advanced constant folding and propagation

Constant folding computes the value of a constant expression at compile
time. Constant propagation is the automatic compile-time replacement of
variable references with a constant value previously assigned to that
variable.

For example, consider the following C/C++ code:

a=10;
b=a+5;
c=4*b;

Once a is assigned, its value is propagated to the statement where b is
assigned so that the assignment reads:

b=10+5;

The expression 10+5 can then be folded. Now that b has been assigned
a constant, the value of b is propagated to the statement where c is
assigned. After all the folding and propagation, the original code is
replaced by:

a=10;
b = 15;
Cc =60;
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Loop-invariant code motion

The loop-invariant code motion optimization recognizes instructions
inside a loop whose results do not change and then moves the
instructions outside the loop. This optimization ensures that the
invariant code is only executed once.

For example, the C/C++ code:

X =12

for(i=0; i<10; i++)
afilj=4*x+i;

becomes:

X =12

t1=4*x;

for(i=0; i<10; i++)
afil =tl +1i;

Store/copy optimization

Where possible, the store/copy optimization substitutes registers for
memory locations, by replacing store instructions with copy instructions
and deleting load instructions.
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Unused definition elimination

The unused definition elimination optimization removes unused memory
location and register definitions. These definitions are often a result of
transformations made by other optimizations.

For example, the function:
f(int x){
int a,b,c;

a=1;
b=2;

cC=Xx%*b;
return c;

}

becomes:

f(int x) {
int a,b,c;

C=X*2;
return c;

}

The assignmenta = 1 is removed because a is not used after it is
defined. Due to another +O2 optimization (constant propagation), the
C = X * b statement becomesc = x * 2 . The assignmentb = 2 is
then removed as well.
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Software pipelining

Software pipelining is a code transformation that optimizes program
loops. It rearranges the order in which instructions are executed in a
loop. It generates code that overlaps operations from different loop
iterations. Software pipelining is particularly useful for loops that
contain arithmetic operations on REAL*4 and REAL*8 data in Fortran or
on float and double datain C or C++.

The goal of this optimization is to avoid processor stalls due to memory
or hardware pipeline latencies. The software pipelining transformation
partially unrolls a loop and adds code before and after the loop to achieve
a high degree of optimization within the loop.

You can enable [disable] software pipelining using the +O[no]pipeline
command-line option at +O2 and above. The default is +Opipeline . Use
+Onopipeline  if a smaller program size and/or faster compile time is
more important than faster execution speed.

The following pseudo-code shows a loop before and after the software
pipelining optimization. Four significant things happen:

= A portion of the first iteration of the loop is performed before the loop.
= A portion of the last iteration of the loop is performed after the loop.
= The loop is unrolled twice.

= Operations from different loop iterations are interleaved with
each other.

Consider the following C/C++ for loop:

#define SIZ 10000

float x[S1Z], y[SIZ];

int i

init();

for (i = 0;i<= SIZ;i++)
X[i] = x[i] / y[i] + 4.00;
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When this loop is compiled with software pipelining, the optimization
can be expressed in pseudo-code as follows:

R1=0;

R2 = 4.00;

R3 = X][0];

R4 = Y[O];

R5 =R3/R4;

do {

R6 = R1;
R1++;
R7 = X[R1];
R8 = Y[R1];
R9 =R5 + R2;
R10 = R7 / RS;
X[R6] = RY;
R6 = R1;
R1++;
R3 = X[R1];
R4 = Y[R1];
R11 = R10 + R2;
R5 = R3/ R4;
X[R6]=R11 ;

} while (R1 <= 100);

R9 = R5 + R2;

X[R6] = RY;

Initialize array index

Load constant value

Load first X value

Load first Y value

Perform division on first element: n = X[0]/Y[0]
Begin loop

Save current array index

Increment array index

Load current X value

Load current Y value

Perform addition on prior row: X[i] = n + 4.00
Perform division on current row: m = X[i+1])/Y[i+1]
Save result of operations on prior row

Save current array index

Increment array index

Load next X value

Load next Y value

Perform addition on current row: X[i+1] = m + 4.00
Perform division on next row: n = X[i+2]/Y[i+2]
Save result of operations on current row

End loop

Perform addition on last row: X[i+2] = n + 4.00

Save result of operations on last row

This transformation stores intermediate results of the division
instructions in unique registers (noted as n and m). These registers are
not referenced until several instructions after the division operations.
This decreases the possibility that the long latency period of the division
instructions will stall the instruction pipeline and cause processing

delays.
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Prerequisites of Pipelining

Software pipelining is attempted on a loop that meets the following
criteria:

= Itis the innermost loop
= There are no branches or function calls within the loop
= The loop is of moderate size

This optimization produces slightly larger program files and increases
compile time. It is most beneficial in programs containing loops that are
executed a large number of times.

Register reassociation

Array references often require one or more instructions to compute the
virtual memory address of the array element specified by the subscript
expression. The register reassociation optimization implemented in
PA-RISC compilers tries to reduce the cost of computing the virtual
memory address expression for array references found in loops.

Within loops, the virtual memory address expression can be rearranged
and separated into a loop-variant term and a loop-invariant term.
Loop-variant terms are those items whose values may change from one
iteration of the loop to another. Loop-invariant terms are those items
whose values are constant throughout all iterations of the loop. The
loop-variant term corresponds to the difference in the virtual memory
address associated with a particular array reference from one iteration of
the loop to the next.

The register reassociation optimization dedicates a register to track the
value of the virtual memory address expression for one or more array
references in a loop and updates the register appropriately in each
iteration of a loop.

The register is initialized outside the loop to the loop-invariant portion of
the virtual memory address expression, and the register is incremented

or decremented within the loop by the loop-variant portion of the virtual
memory address expression.

The net result is that array references in loops are converted into
equivalent, but more efficient, pointer dereferences.
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Consider the following C/C++ code:
int a[10][20][30];

void example (void)

{
inti, j, k;
for (k = 0; k < 10; k++)
for (j = 0; j < 10:j++)
for (i=0; i < 10; i++)
afilfillk] = 1;

After register reassociation is applied, the innermost loop becomes:

register int (*p)[20][30];

for (k = 0; k < 10; k++)
for (j = 0;j < 10; j++)
for (p = (int (*)[20][30]) &a[O][jl[K], i = 0; i < 10; i++)
*(p++[0][0]) = 1;

In the above example, the compiler-generated temporary register
variable, p, strides through the array a in the innermost loop. This
register pointer variable is initialized outside the innermost loop and
auto-incremented within the innermost loop as a side-effect of the
pointer dereference.

Register reassociation can often enable another loop optimization. After
performing the register reassociation optimization, the loop variable may
be needed only to control the iteration count of the loop. If this is the
case, the original loop variable can be eliminated altogether by using the
PA-RISC ADDIB and ADDBmachine instructions to control the loop
iteration count.

You can enable [disable] register reassociation using the
+0O[no]regreassoc command-line option at +O2and above. The default
is +Oregreassoc
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Loop unrolling

Loop unrolling increases a loop’s step value and replicates the loop body.
Each replication is appropriately offset from the induction variable so
that all iterations are performed, given the new step.

Unrolling can be total or partial. Total unrolling involves eliminating the
loop structure completely by replicating the loop body a number of times
equal to the iteration count and replacing the iteration variable with
constants. This makes sense only for loops with small iteration counts.

Consider the following Fortran example:

SUBROUTINE FOO(A,B)
REAL A(10,10), B(10,10)
DO J=1, 4

DO I=1, 4

A(1,J) = B(1,J)

ENDDO
ENDDO
END

This loop nest is completely unrolled as shown below:

A(1,1) = B(1,1)
A2,1) = B(2,1)
A(3,1) = B(3,1)
A(4,1) = B(4,1)

A(1,2) = B(1,2)
A(2,2) = B(2,2)
A(3,2) = B(3,2)
A(4,2) = B(4,2)

A(1,3) = B(1,3)
A(2,3) = B(2,3)
A(3,3) = B(3,3)
A(4,3) = B(4,3)

A(1,4) =B(1,4)
A(2,4) = B(2,4)
A(3,4) = B(3,4)
A(4,4) = B(4,4)
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Partial unrolling is performed on loops with larger or unknown iteration
counts. It retains the loop structure, but replicates the body a number of
times equal to the unroll factor and adjusts references to the iteration
variable accordingly.

Consider the following Fortran example:

DO | =1, 100
A(l) = B(l) + C(l)
ENDDO

This example can be unrolled to a depth of four as shown below:

DO I=1, 100, 4
A(l) = B(I) + C(l)
A(I+1) = B(I+1) + C(I+1)
A(I+2) = B(1+2) + C(I+2)
A(1+3) = B(I+3) + C(I+3)
ENDDO

Each iteration of the loop now computes four values of A instead of one
value. The compiler also generates code for the case where the range is
not evenly divisible by the unroll factor.

Loop unrolling and the unroll factor can be controlled using the
+OI[no]loop_unroll[= unroll_factor] option. See Appendix D,
“Optimization options,” for more information on this option.

Some loop transformations cause loops to be fully or partially replicated.
Because unlimited loop replication can significantly increase compile
times, loop replication is limited by default. You can increase this limit
(and possibly increase your program’s compile time and code size) by
specifying the +Onosize and +Onolimit  compiler options.
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+03level optimizations

The +O3 optimizations include the +O2 optimizations, plus full
optimization across all subprograms within a single file. The +O3
optimizations include:

= Inlining within a single source file
= Cloning within a single source file
« Test promotion

= Data localization

= Strip mining

= Loop distribution

= Loop interchange

= Loop blocking

= Loop fusion

< Loop unroll and jam

= Parallelization

Also, +O3is the first optimization level where +Oparallel  is available.
Using +Oparallel  at this optimization level (and at +O4) enables:

= Automatic and directive-specified loop parallelization
= Directive-specified task parallelization

= Directive-specified region parallelization

The HP Exemplar aC++ compiler does not support directive-specified
parallelization. It does however support the compiler parallelization
generated using the +Oparallel  option.

At +03, all the directives and pragmas of the Exemplar programming
model are available in the Fortran 90, Fortran 77, and C compilers. See
Chapter 4, “Basic shared-memory programming,” Chapter 5,

“Memory classes,” and Chapter 6, “Advanced shared-memory
programming,” for information on using the various features of the
Exemplar programming model. (The HP Exemplar aC++ compiler does
not support the pragmas of the Exemplar programming model.)
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The +O3 optimizations produce faster runtime code than +O2 on code
that frequently calls small functions within a file. Linking with +O3
optimizations is faster than linking with +O4 optimizations.

Inlining within a single source file

Inlining substitutes selected function calls with copies of the function’s
object code. Only functions that meet the optimizer’s criteria are inlined.
Inlining may result in slightly larger executable files. However, this
increase in size is offset by the elimination of time-consuming procedure
calls and procedure returns.

The following is an example of inlining at the source code level. Before
inlining, the source file looks like this:
/* Return the greatest common divisor of two positive integers, */
/*intl and int2, computed using Euclid's algorithm. (Return 0 */
/* if either is not positive.) */
int gcd(intl,int2)
intintl;
int int2;
int inttemp;

if ((intl <=0) || (int2<=0)){
return(0);

do {
if (intl < int2) {
inttemp = int1;
intl =int2;
int2 = inttemp;
}
intl = intl - int2;
} while (int1 > 0);
return(int2);
main()
int xval,yval,gcdxy;
' [* statements before call to gcd */
chxy = gcd(xval,yval);

[* statements after call to gcd */
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After inlining, main looks like this:
main()
int xval,yval,gcdxy;

[* statements before inlined version of gcd */

intintl;
int int2;
intl = xval;
int2 = yval;
int inttemp;

if ((intl <=0) || (int2 <= 0) }{
gedxy = (0);
goto AAQ0OS3;
}
do {
if (intl < int2){
inttemp = intl;
intl =int2;
int2 = inttemp;

}
intl = intl - int2;
} while (intl > 0);
gcdxy = (int2);
}

}
AA003 : ;
' [* statements after inlined version of gcd */
.
At +03, inlining is performed within a file; at +O4, it is performed across
files. Inlining is affected by the +O[no]inline[= namelist] and

+Oinline_budget= n command-line options. See Appendix D,
“Optimization options,” for more information.

Cloning within a single source file

Cloning is the replacement of a call to a routine by a call to a clone of that
routine. The clone is optimized differently than the original routine.
Cloning can expose additional opportunities for interprocedural
optimization. At +O3, cloning is performed within a file; at +0O4, it is
performed across files. Cloning is enabled by default; it can be disabled
by specifying the +Onoinline  command-line option.
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Test promotion

Test promotion involves promoting a test out of the loop that encloses it
by replicating the containing loop(s) for each branch of the test. The
replicated loops contain fewer tests than the originals, or no tests at all,
so the loops execute much faster. Multiple tests can be promoted, and
copies of the loop are made for each test.

Consider the following Fortran loop:

DO I=1, 100

DO J=1, 100
IF(FOO .EQ. BAR) THEN
AL =1+
ELSE
A(,J) =0
ENDIF

ENDDO

ENDDO

Test promotion (and loop interchange) produces the following code:

IF(FOO .EQ. BAR) THEN
DO J=1, 100
DO I=1, 100
AL =1+
ENDDO
ENDDO
ELSE
DO J=1, 100
DO I=1, 100
A(,J) =0
ENDDO
ENDDO
ENDIF

For loops containing large numbers of tests, loop replication can greatly
increase the size of the code.

Each DOloop in Fortran and for loop in C and C++ whose bounds are not
known at compile-time is implicitly tested to check that the loop will
iterate at least once. This test may be promoted, with the promotion
noted in the Optimization Report. If you see unexpected promotions in
the report, this implicit testing may be the cause. For more information
on the Optimization Report, see Appendix E, “Optimization Report.”
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Table 2

Compiler optimizations
+0O3level optimizations

Data localization

Data localization occurs by means of various loop transformations that
take place at +O2 or +O3. Because optimizations are cumulative,
however, specifying +O3 or +0O4 takes advantage of the transformations
that happen at +O2.

Loop transformations affecting data localization

Loop transformation Options required for behavior to occur

Loop unrolling

+02 +Oloop_unroll
(+Oloop_unroll is on by default at +O2 and above)

Loop distribution

+03 +Oloop_transform
(+Oloop_transform is on by default at +O3 and above)

Loop interchange

+03 +Oloop_transform

Loop blocking

+03 +Oloop_transform +Oloop_block
(+Oloop_block s off by default)

Loop fusion

+03 +Oloop_transform

Loop unroll and jam +03 +Oloop_transform +Oloop_unroll_jam

(+Oloop_unroll_jam is on by default at +O3 and above)

NOTE

Data localization keeps heavily used data in the processor data cache,
thus eliminating the need for more costly CTlcache (on multinode,
scalable SMPs) or memory accesses.

Loops that manipulate arrays are the main candidates for localization
optimizations. Most of these loops are eligible for the various
transformations the compiler performs at +O3to achieve localization.
These transformations are explained in detail in this section.

Some loop transformations cause loops to be fully or partially replicated.
Because unlimited loop replication can significantly increase compile
times, loop replication is limited by default. You can increase this limit
(and possibly increase your program’s compile time and code size) by
specifying the +Onosize and +Onolimit  compiler options.

Most of the following code examples demonstrate the optimization in
guestion by showing the original code first and optimized code second.
While the optimized code is shown in the same language as the original
code, this is for illustrative purposes only.
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Inhibitors of localization

Any of the following conditions can inhibit or prevent data localization:

= Loop-carried dependences

= Aliased scalar or array variables

= Multiple loop entries or exits

< RETURNr STOPstatements in Fortran

e return orexit statementsinC

= throw statementsin C++

< Computed or assigned GOTGtatements in Fortran
= Procedure calls

= 1/O statements

The sections below discuss these conditions and their effects on data
localization.

Loop-carried dependences

A loop-carried dependence (LCD) exists when one iteration of a loop
assigns a value to an address that is referenced or assigned on another
iteration. In some cases, LCDs can inhibit loop interchange, thereby
inhibiting localization. Typically, these cases involve array indexes that
are offset in opposite directions. The Fortran loop below contains an
interchange-inhibiting LCD:

DOI=2,M
DOJ=2,N
A(1,J) = A(I-1,3-1) + A(I-1,J+1)
ENDDO
ENDDO

C and C++ loops can contain similar constructs, but to simplify
illustration, we will only consider this Fortran example.

As written, this loop uses A(l-1,J-1) and A(l-1,J+1) to compute
A(l,J) . Table 3 shows the sequence in which values of A are computed
for this loop.
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Computation sequence of A(l,J) : original loop

| J AJ)  A(-1,J-1)  A(-1,d+1)
2 2 A(2,2) A(1,1) A(,3)
2 3 A(2,3) A(1,2) A(l,4)
2 4 A(2,4) A(1,3) A(1,5)
3 2 A(3,2) A(2,1) A(2,3)
3 3 A(3,3) A(2,2) A(2,4)
3 4 A(3,4) A(2,3) A(2,5)

As enumerated in Table 3, the original loop computes the elements of the
current row of A using the elements of the previous row of A. For all rows
except the first (which is never written), the values contained in the
previous row must be written before the current row is computed. This
dependence must be honored for the loop to yield its intended results. If a
row element of A is computed before the previous row elements (that it
depends on) are computed, the result will be incorrect.

Interchanging the | and J loops yields the following code:

DOJ=2,N
DOI=2,M
A(1,J) = A(-1,J+1) + A(I-1,3-1)
ENDDO
ENDDO

After interchange, the loop computes values of A in the sequence shown
in Table 4 below.
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Table 4

Figure 12

Compiler optimizations
+0O3level optimizations

Computation sequence of A(l,J) : interchanged loop

| J A(,J) A(I-1,3-1) A(I-1,3+1)
2 2 A(2,2) A(1,1) A(,3)
2 A(3,2) A(2,1) A(2,3)
4 2 A(4,2) A(3,1) A3,3)
2 3 A(2,3) A(1,2) A(l,4)
3 A(3,3) A(2,2) A(2,4)
4 3 A(4,3) A(3,2) A(3,4)

Here, the elements of the current column of A are computed using the
elements of the previous column and the next column of A.

The problem here is that columns of A are being computed using
elements from the next column, which have not been written yet. This
computation violates the dependence illustrated in Table 3. The
element-to-element dependences in both the original and interchanged
loop are illustrated in Figure 12.

LCDs in original and interchanged loops

Original loop Interchanged loop

J J
1 2 3 .. 1 2 3 ..

w N e
K
LY
N
K|
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The arrows in Figure 12 represent dependences from one element to
another; the arrows point at elements that depend on the elements at the
arrows’ bases. Shaded elements indicate a typical row or column
computed in the inner loop:

=« Darkly shaded elements have already been computed.
= Lightly shaded elements have not yet been computed.

This figure helps to illustrate the sequence in which the array elements
are cycled through by the respective loops: the original loop cycles across
all the columns in a row, then moves on to the next row; the interchanged
loop cycles down all the rows in a column first, then moves on to the next
column.

Interchange is only inhibited by loops that contain dependences that
change when the loop is interchanged. Most LCDs do not fall into this
category and thus do not inhibit data localization.

Occasionally the compiler encounters an apparent LCD. If it cannot
determine whether the LCD actually inhibits interchange, it
conservatively avoids interchanging the loop.

The following Fortran example illustrates this situation:

DOI=1,N
DOJ=2,M

A(1,J) = A(I+IADD,J+JADD) + B(l,J)
ENDDO
ENDDO

An analogous C example follows:
for(j=0;j<n;j++)
for(i=1;i<m;i++)
a[i][jl = a[i+IADD][j+JADD] + b[i][jl;

In these examples, if IADD and JADDare either both positive or both
negative, the loop contains no interchange-inhibiting dependence.
However, if one and only one of the variables is negative, interchange is
inhibited. The compiler has no way of knowing the runtime values of
IADD and JADD so it will avoid interchanging the loop. If you are sure
the IADD and JADDwill either both be negative or both be positive, you
can indicate to the compiler that the loop is free of dependences using the
no_loop_dependence compiler directive or pragma.
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In Fortran, this directive has the form:

C$DIR NO_LOOP_DEPENDENCHE&Mmelist)

The no_loop_dependence C pragma has the form:
#pragma _CNX no_loop_dependence( namelist)
where

namelist is a comma-separated list of variables and/or arrays
that have no dependences for the immediately
following loop.

The previous Fortran loop can be interchanged when the
NO_LOOP_DEPENDEN@Eective is specified for Aon the J loop as shown
in the following code:

DOI=1,N
C$DIR NO_LOOP_DEPENDENCE(A)
DOJ=2,M
A(1,J) = A(I+IADD,J+JADD) + B(l,J)
ENDDO
ENDDO

The no_loop_dependence pragma can similarly be used on the Cloop:

for(i=0;i<n;i++)
#pragma _CNX no_loop_dependence(a)
for(j=1;j<m;j++)
a[i][j] = ali+IADD][j+JADD] + bIi][jl;

If IADD and JADDacquire opposite-signed values at runtime, these loops
may result in incorrect answers.

Dependences and loop fusion
In some cases, loop fusion is also inhibited by simpler dependences than
those that inhibit interchange. Consider the following Fortran example:

DO I=1,N-1

A(l) = B(I+1) + C()
ENDDO

DO J=1,N-1

D(J) = A(J+1) + EQJ)
ENDDO
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It would appear that this loop would profit from fusion. Fusing it would
yield the following incorrect code:

DO ITEMP =1, N-1
A(TEMP) = B(TEMP+1) + C(ITEMP)
D(ITEMP) = A(ITEMP+1) + E(TEMP)
ENDDO

This loop produces different answers than the original loops, because the
reference to A(ITEMP+1) in the fused loop accesses a value that has not
been assigned yet, while the analogous reference to A(J+1) in the

original J loop accesses a value that was assigned in the original | loop.

An analogous C/C++ example follows:

for(i=0; i<n-1; i++)
a[i] = b[i+1] + c[i];
for(j=0; j<n-1; j++)
dij] = afj+1] + efi];

After fusion:

for(itemp=0; itemp<n-1; itemp++) {
afitemp] = b[itemp+1] + c[itemp];
d[itemp] = afitemp+1] + e[itemp];
}

Aliasing

An alias is an alternate name for some object. Aliasing occurs in a
program when two or more names are attached to the same memory
location. Aliasing is typically caused in Fortran by use of the
EQUIVALENCEstatement and in C and C++ by use of pointers. Passing
identical actual arguments into different dummy arguments in a Fortran
subprogram can also cause aliasing, as can passing the same address
into different pointers in a C or C++ function.
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Aliasing interferes with data localization because it can mask LCDs, as
shown in the following Fortran example, where the arrays A and B have
been equivalenced:

INTEGER A(100,100), B(100,100), C(100,100)
EQUIVALENCE(A,B)

DOI=1,N
DOJ=2,M
A(1,J) = B(I-1,J+1) + C(1,J)
ENDDO
ENDDO

This loop has the same problem as the loop used to demonstrate LCDs in
the previous section; because A and B refer to the same array, the loop
contains an LCD on A, which prevents interchange and thus interferes
with localization.

The C/C++ equivalent of this loop follows. Keep in mind that C and C++
store arrays in row-major order, which requires different subscripting to
access the same elements.

int a[100][100], c[100][100], i, j;
int (*b)[100];
b=a;

1;or(i=1;i<n;i++){
for(j=0;j<m;j++){
}a[i][i] = b{j+1][i-1] + c[il[i];
}

Fortran's EQUIVALENCEstatement can be imitated in C and C++;
through the use of pointers, arrays can be effectively equivalenced, as
shown.

Passing the same address into different dummy procedure arguments
can yield the same result. Fortran passes arguments by reference while
C and C++ pass them by value, but pass-by-reference can be simulated in
C and C++ by passing the argument’s address into a pointer in the
receiving procedure or in C++ by using references.
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The following Fortran code exhibits the same aliasing problem as the
previous example, but the alias is created by passing the same actual
argument into different dummy arguments.

NOTE The code below violates the Fortran standard.

CALL ALI(A,A,C)

SUBROUTINE ALI(A,B,C)
INTEGER A(100,100), B(100,100), C(100,100)
DOJ=1,N
DO =2, M
A(1,3) = B(I-1,3+1) + C(1,J)
ENDDO
ENDDO
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The following (legal ANSI C) code shows the same argument-passing
problem in C:

ali(&a,&a,&c);

;/oid ali(a,b,c)
int a[100][100], b[100][100], c[100][100];

intij;
for(j=0;j<n;j++){
for(i=1;i<m;i++){
}a[i][i] = b[j+1][i-1] + c[i][i];
}
}

Multiple loop entries or exits

Loops that contain multiple entries or exits inhibit data localization
because they cannot safely be interchanged. Extra loop entries are
usually created when a loop contains a branch destination. Extra exits
are more common; they are often created in C and C++ using the break
statement and in Fortran using the GOTGtatement.

Consider the following C/C++ code:
for(j=0;j<n;j++X
for(i=0;i<m;i++){
alifi] = b[i[] + c[illl;
if(a[i][j] == 0) break;

}
}
Interchanging this loop would change the order in which the values of a

are computed; the original loop computes a column-by-column, whereas
the interchanged loop would compute it row-by-row. This means that the
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interchanged loop may hit the break statement and exit after computing
a different set of elements than the original loop computes. Interchange
therefore may cause the results of the loop to differ and must be avoided.

A similar loop construct written in Fortran follows:

DOJ=1,M
DOI1=1,N
A(1,J) = B(1,3) + C(1,3)
IF(A(1,d) .EQ. 0) GOTO 50

ENDDO
ENDDO

50 CONTINUE

Again, the order of computation changes if the loops are interchanged.

RETURNor STOPstatements in Fortran

Like loops with multiple exits, RETURNand STOPstatements in Fortran
inhibit localization because they inhibit interchange. If a loop containing
a RETURNr STOPIs interchanged, its order of computation may change,
giving wrong answers.

return or exit statementsin C or C++

Similar to Fortran's RETURNand STOPstatements (discussed in the
previous section), return and exit statements in C and C++ inhibit
localization because they inhibit interchange.

throw statements in C++
In C++, throw statements, like loops containing multiple exits, inhibit
localization because they inhibit interchange.

Computed or assigned GOTGstatements in Fortran

When the Fortran compiler encounters a computed or assigned GOTO
statement in an otherwise interchangeable loop, it cannot always
determine whether the branch destination is within the loop. Because an
out-of-loop destination would be a loop exit, these statements often
prevent loop interchange and therefore data localization.
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Procedure calls

The Exemplar compilers are unaware of the side effects of most
procedures, and therefore cannot determine whether they might
interfere with loop interchange; consequently, the compilers will not
perform loop interchange. These side effects may include data
dependences involving loop arrays, aliasing (as described in the section
“Aliasing” on page 73), and processor data cache usage that conflicts with
the loop’s usage of the cache, rendering useless any data localization
optimizations performed on the loop.

I/O statements

The order in which values are read into or written from a loop may
change if the loop is interchanged, so I/O statements inhibit interchange
and therefore data localization.

For example, consider the following Fortran code:

DOI=1,4
DOJ=1,4
READ *, 1A(1,J)
ENDDO

ENDDO

Given a data stream consisting of alternating zeros and ones
(0,1,0,1,0,1...), the contents for A(l,J)  for both the original loop and the
interchanged loop are shown in Figure 13.

Values read into array A

Original loop Interchanged loop
J J
1 2 3 4 1 2 3 4
1101101 11111112
I 210 ]110]1 I 2/ 0[0|0|0
3(0(1]0(1 g 11|11
40101 4/0[0]0]|0
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C and C++ loops exhibit the same limitations. A C/C++ example that
produces the data patterns shown in Figure 13 follows:

for(i=1;i<5;i++)
for(j=1;j<5;j++)
scanf("%d",&ial[i][i]):

Preventing loop reordering

The no_loop_transform directive or pragma allows you to prevent all
loop-reordering transformations on the immediately following loop. In
Fortran, it has the form:

C$DIR NO_LOOP_TRANSFORM
In C it has the form:
#pragma _CNX no_loop_transform

You can use the command-line option +Onoloop_transform (at +O3
and above) to disable loop distribution, loop blocking, loop fusion,
loop interchange, loop unroll, and loop unroll and jam on a file basis.
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Strip mining

Strip mining is a fundamental +O3 transformation. In and of itself,
strip mining is not profitable. However, it is used by loop blocking,
loop unroll and jam, and, in a sense, by parallelization.

Strip mining involves splitting a single loop into a nested loop. The
resulting inner loop iterates over a section or strip of the original loop,
and the new outer loop runs the inner loop enough times to cover all the
strips, achieving the necessary total number of iterations. The number of
iterations of the inner loop is known as the loop’s strip length.

Consider the following Fortran code:

DO | = 1, 10000
A(l) = A(l) * B())
ENDDO

Strip mining this loop using a strip length of 1000 yields the following
loop nest:

DO IOUTER = 1, 10000, 1000

DO ISTRIP = IOUTER, IOUTER+999
A(ISTRIP) = A(ISTRIP) * B(ISTRIP)
ENDDO

ENDDO

In this loop, the strip length integrally divides the number of iterations,
so the loop is evenly split up. If the iteration count was not an integral
multiple of the strip length, for example, if | went from 1 to 10500 rather
than 1 to 10000, the final iteration of the strip loop would execute 500
iterations instead of 1000.
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Loop distribution

Loop distribution takes place at +O3and above and is enabled by default.
Specifying +Onoloop_transform disables loop distribution (as well as

loop interchange, loop blocking, loop fusion, loop unroll, and loop unroll

and jam).

Loop distribution is another fundamental +O3 transformation that is
necessary for some more advanced transformations. These advanced
transformations require that all calculations in a nested loop be
performed inside the innermost loop. To facilitate this, loop distribution
transforms complicated nested loops into several simple loops (or nests)
that contain all computations inside the body of the innermost loop.

Consider the following Fortran code:

DOI=1,N
cih=0
DOJ=1,M
A(1,J) = A(1LJ) + B(1,3) * C(I)
ENDDO
ENDDO

Loop distribution creates two copies of the | loop, separating the nested
J loop from the assignments to array C. In this way, all assignments are
moved to innermost loops. Interchange is then performed on the | and J
loops. The distribution and interchange is shown in the following
transformed code:

DOI=1,N
cih=0
ENDDO
DOJ=1,M
DOI=1,N
A(1,J) = A(1,J) + B(1,3) * C(I)
ENDDO
ENDDO

An analogous C/C++ example follows:
for(j=0;j<nij++) {

cfj] =0;

for(i=0;i<m;i++)
}wm:wm+mwvmr
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This loop is distributed and interchanged as shown below:
for(j=0sj<n;j++)
cfi] = 0;
for(i=0;i<m;i++)
for(j=0sj<n;j++)
a[i](i] = afi][j] + b[i{] * cfil;
Distribution can improve efficiency by reducing the number of memory

references per loop iteration, and can reduce cache thrashing. It also
creates more opportunities for interchange.

Loop distribution can be disabled for specific loops by specifying the
no_distribute directive or pragma immediately before the loop.

In Fortran, it has the form:
C$DIR NO_DISTRIBUTE
InC:

#pragma _CNX no_distribute

Loop interchange

Loop interchange takes place at +O3and above and is enabled by default.
Specifying +Onoloop_transform disables loop interchange (as well as
loop distribution, loop blocking, loop fusion, loop unroll, and loop unroll

and jam).

The compiler may interchange (or reorder) nested loops for the following
reasons:

= To facilitate other transformations

= To relocate the loop that is the most profitable to parallelize so that it
is outermost

= To optimize inner-loop memory accesses
Consider the Fortran matrix addition algorithm that follows:
DOI=1,N
DOJ=1,M
A(l, J) =B(l, J) + C(1, J)

ENDDO
ENDDO
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This loop accesses the arrays A, B and C row by row, which, in Fortran, is
very inefficient. Interchanging the I and J loops, as shown in the
following example, will facilitate column by column access.

DOJ=1,M
DOI=1,N

A(l, J) = B(l, J) + C(l, J)
ENDDO
ENDDO

Unlike Fortran, C and C++ access arrays in row-major order. An
analogous example in C/C++, then, employs an opposite nest ordering, as
shown below.
for(j=0;j<m;j++)

for(i=0;i<n;i++)

a[i]{i] = b{i][j] + c[ilfi;

Interchange facilitates row-by-row access. The interchanged loop is
shown below.

for(i=0;i<n;i++)
for(j=0;j<m;j++)

a[i][j] = b0 + cfilil;

Loop blocking

The loop-blocking optimization is only available at +O3 (and above) in
the Fortran 90 and aC++ compilers, and in the C Version 2.0 compiler.
Loop blocking is disabled by default. To enable loop blocking, use the
+Oloop_block  option. Specifying +Onoloop_block  (the default)
disables both automatic and directive-specified loop blocking. Specifying
+Onoloop_transform also disables loop blocking (as well as loop
distribution, loop interchange, loop fusion, loop unroll, and loop unroll
and jam).

Loop blocking is a combination of strip mining and interchange that
maximizes data localization. It is provided primarily to deal with nested
loops that manipulate arrays that are too large to fit into the cache.
Under certain circumstances, loop blocking allows reuse of these arrays
by transforming the loops that manipulate them so that they manipulate
strips of the arrays that fit into the cache. Effectively, a blocked loop
accesses array elements in sections that are optimally sized to fit in the
cache.
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Data reuse

Data reuse is important to understand when discussing blocking. There
are two types of data reuse associated with loop blocking:

= Spatial reuse
= Temporal reuse

Spatial reuse is using data that was encached as a result of fetching
another piece of data from memory. Remember that data is fetched by
cache lines; 32 bytes of data is encached on every fetch on V2200 and
X2000 servers. (Cache line sizes may be different on other HP SMPs.) On
the initial fetch of array data from memory within a stride-one loop, the
requested item can be located anywhere in the 32 bytes, unless the array
is aligned on cache line boundaries (refer to the section “Data alignment”
on page 28). Starting with the second memory fetch, the requested data
is at the beginning of the cache line, and the rest of the cache line will
contain subsequent array elements. For a REAL*4 array, this means the
requested element and the seven following elements are encached on
each fetch after the first. If any of these seven elements could then be
used, say on any subsequent iterations of the loop, the loop would be
exploiting spatial reuse. For loops with strides greater than one, spatial
reuse can still occur; however, the cache lines will contain fewer usable
elements.

Temporal reuse is using the same data item on more than one iteration
of the loop. An array element whose subscript does not change as a
function of the iterations of a surrounding loop exhibits temporal reuse
in the context of the loop.

Loops that stride through arrays are candidates for blocking when there
is an outermore loop that carries spatial or temporal reuse. Blocking the
innermore loop allows data referenced by the outermore loop to remain
in the cache across multiple iterations. Blocking exploits spatial reuse by
ensuring that once fetched, cache lines are not overwritten until their
spatial reuse is exhausted. Temporal reuse is similarly exploited.
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Reuse example
The following Fortran loop nest exhibits both spatial and temporal reuse:

REAL*4 A(100,100), B(100,100), C(100)
COMMON /BLK1/ A, B, C

DO J=1, 100

DO I= 1, 100
A(1,J) = B(J,l) + C(l)
ENDDO

ENDDO

As written, this loop nest contains spatial reuse on the A and B arrays,
and both spatial and temporal reuse on the C array. Because the arrays
are in a COMMOblock and each array is of a total length that is an
integral multiple of the X2000 CTlcache line length (32 bytes), we know
that each array will begin on a CTlcache line boundary. All cache lines
fetched will be full of reusable data. Spatial reuse is achieved on the A
array because every 8th iteration of the | loop fetches a cache line
containing 8 of its elements; the 7 iterations between main memory
accesses can proceed with virtually no load delays. This continues
throughout the entire range of the J loop.

Similar spatial reuse is achieved on the B array. During the first iteration
of J, every referenced element of B, along with its containing cache line,
will be fetched from memory. All the elements contained in this cache
line will be reusable on some subsequent iteration of one of the loops. On
subsequent iterations of J, a cache line will be fetched from memory only
if the required element was not previously encached, and all the
elements it contains will be usable. However, keep in mind that fetches
are a function of I and may occur for different J values (a