
Exemplar Programming Guide

for HP-UX Systems

First Edition

B6056-96002

Fortran 90, Fortran 77, C, aC++

Customer Order Number: B6056-90002

December 1997

Revision History
Edition: First

Document Number: B6056-90002
Remarks: This is the first edition of this book for HP-UX platforms.

Notice

 Copyright Hewlett-Packard Company 1997. All Rights Reserved.
Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

The information contained in this document is subject to change without
notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance
or use of this material.

Table of Contents iii

Contents

How to use this guide . xix
Purpose and audience . xix
Scope. xix
Suggested reading order .xx
Notational conventions . xxi

General conventions . xxi
Command syntax . xxiii

Associated documents . xxiii
Ordering documentation . xxiv

1 Introduction . 1

Exemplar SMP architectures .1
Nonscalable SMPs .1
Scalable SMPs .2

Exemplar vs. vector/parallel architectures .2
HP SMP architectures vs. clustered workstations 4

Exemplar programming model .7
The shared-memory paradigm. .7
The message-passing paradigm. .7
Message-passing/shared-memory hybrids .8

Overview of Exemplar optimizations .8
Basic scalar optimizations .8
Advanced scalar optimizations .9
Parallelization. .10

2 Architecture overview . 11

System organization: nonscalable SMPs .12
Memory .13

Physical memory .13
Virtual memory .13

Data caches .14
System organization: scalable SMPs .16

Memory .23
Physical memory .23
Virtual memory .24

iv Table of Contents

Data caches . 25
Cache lines . 26
Direct-mapped data caches . 27
Data alignment . 28

Cache thrashing . 29
Interleaving . 33

Interleaving example. 33
Variable-sized pages . 37

3 Compiler optimizations. 39

Optimization levels . 40
Using the optimizer . 42

General guidelines . 42
Fortran guidelines. 43
C and C++ guidelines . 44

+O0 level optimizations . 46
Constant folding . 46
Partial evaluation of test conditions . 46
Simple register assignment . 47
Data alignment on natural boundaries . 47

+O1 level optimizations . 48
Branch optimization . 49
Dead code elimination. 50
Faster register allocation . 50
Instruction scheduler . 50
Peephole optimizations . 51

+O2 level optimizations . 51
Global register allocation . 52

Register allocation in C and C++ . 53
Strength reduction of induction variables and constants. 53
Common subexpression elimination . 54
Advanced constant folding and propagation . 54
Loop-invariant code motion . 55
Store/copy optimization . 55
Unused definition elimination . 56
Software pipelining . 57

Prerequisites of Pipelining . 59
Register reassociation. 59
Loop unrolling . 61

Table of Contents v

+O3 level optimizations .63
Inlining within a single source file .64
Cloning within a single source file .65
Test promotion .66
Data localization. .67

Inhibitors of localization .68
Preventing loop reordering .79
Strip mining .80
Loop distribution .81
Loop interchange .82
Loop blocking .83

Data reuse .84
Reuse example. .85
Blocking example: simple loop .86
Blocking example: matrix multiply .88
Blocking directives and pragmas .90

Loop fusion .92
Loop peeling to enable fusion .94

Loop unroll and jam .95
Parallelization. .100

Basic operation .101
Idle thread states .106

Node-parallelism vs. thread-parallelism. .106
Parallel optimizations .109

Dynamic selection .109
Inhibitors of parallelization .111

Loop-carried dependences. .112
Reductions. .114
Preventing parallelization .116
Other parallelization directives and pragmas 117
Parallelism in HP aC++ .119

+O4 level optimization .120
Inlining across multiple source files .120
Cloning across multiple source files .121
Global and static variable optimizations .121

Global variable optimization coding standards121

vi Table of Contents

4 Basic shared-memory programming . 123

Simple manual loop, task, and region parallelization 123
Loop parallelization . 124

Combining the attributes . 127
Using the attributes. 128
prefer_parallel . 134
loop_parallel . 135
Comparing prefer_parallel and loop_parallel 137

Task parallelization . 138
Examples . 141

Region parallelization. 144
Critical sections. 148
+Onoautopar compiler option . 151
+O[no]nodepar compiler option. 151
Reentrant compilation . 151
Default stack size . 152

Loop-specific, task-specific, and region-specific data privatization . . . 153
loop_private . 154

Using loop_private with loop_parallel 156
Denoting induction variables in parallel loops. 157
Privatizing induction variables in nested loops 160

task_private . 162
parallel_private . 165
save_last[(list)] . 168

5 Memory classes . 171

Private versus shared memory . 172
Memory class addressing . 173

thread_private . 175
node_private . 176
near_shared . 176
far_shared . 177
block_shared . 177

Memory class assignments . 178
Static assignments . 181

thread_private . 181
node_private . 184
near_shared . 188
far_shared . 189
block_shared . 190

Table of Contents vii

Dynamic assignments .190
Memory class pointers .191
Default classes for dynamic memory .195
thread_private .196
node_private .197
near_shared .201
far_shared .208
block_shared .209

6 Advanced shared-memory programming . 217

Parallel information functions .217
Number of processors .218
Number of threads .218
Number of hypernodes .219
Number of threads on current hypernode. .219
Thread ID .220
Hypernode ID .220
Level of parallelism .221
Stack memory type. .222

Thread IDs and nested parallelism .223
Thread ID assignments .223

Synchronization tools .225
Gates and barriers .225
Synchronization functions .227

Allocation functions. .227
Deallocation functions. .228
Locking functions .228
Unlocking functions .229
Wait functions .229

sync_routine directive and pragma. .230
loop_parallel(ordered) .233
Critical and ordered sections .235

Synchronizing code .237
Critical sections .237
Ordered sections .242

Limitations .245
Manual synchronization. .250

viii Table of Contents

7 Message-passing programming . 263

Overview of message passing . 263
Approaches to parallelism . 264

Message passing on Exemplar systems . 264
HP MPI . 264

Message-passing programming vs. shared-memory programming. . . 265

8 Programming conventions for optimal code . 267

Aliasing in Fortran. 268
Aliasing in C . 268

ANSI algorithm. 268
Type-safe algorithm . 268
Specifying aliasing modes. 269
Iteration and stop values . 269

Using potential aliases as addresses of variables 269
Using hidden aliases as pointers . 270
Using a pointer as a loop counter . 271
Aliasing stop variables . 271

Global variables . 272
False cache line sharing . 274

Aligning data to avoid false sharing . 276
Aligning arrays on cache line boundaries 277
Aligning multidimensional arrays on cache line boundaries 277

Distributing iterations on cache line boundaries 280
Thread-specific array elements . 282
Scalars sharing a cache line . 284
Working with unaligned arrays . 285
Working with dependences . 286

Floating-point imprecision. 287
Enabling sudden underflow . 290

Invalid subscripts . 290
Misused directives and pragmas . 291

Loop-carried dependences. 291
Reductions . 294
Nondeterminism of parallel execution. 296
Hidden ordered sections . 297

Misused memory classes . 300
Improper dynamic allocations . 300
Incorrect array pointers . 304
Hidden dependences . 306

Table of Contents ix

Triangular loops. .308
Parallelizing the outer loop .310
Parallelizing the inner loop .311
Examining the code .315

Compiler assumptions .317
Incrementing by zero .318
Trip counts that may overflow. .319

Linear test replacement .320
Large trip counts at +O2 and above .322

Appendix A: Standard HP compiler directives and pragmas. 323

Fortran OPTIMIZE directives .324
Fortran 90 OPTIMIZE directives .324
Fortran 77 OPTIMIZE directives .325

C and C++ pragmas .330
Optimizer control pragmas .330

C pragmas .332
[no]inline pragmas .332
allocs_new_memory pragma. .333
float_traps_on pragma. .335
[no]ptrs_strongly_typed pragmas .335

Appendix B: Exemplar compiler directives and pragmas . 337

Overview .337
Directives and pragmas. .338

align_cti(namelist) .338
barrier(namelist) .338
begin_tasks[(attribute_list)] .339
block_loop[(block_factor= n)] .340
block_shared(allocatable_array_namelist) 340
critical_section[(gate_var)] .340
dynsel[(trip_count=n)] .341
end_critical_section .341
end_ordered_section .341
end_parallel .341
end_tasks .342
far_shared(namelist) .342
far_shared_pointer(namelist) .342
gate(namelist) .342
loop_parallel[(attribute_list)] .343
loop_private(namelist) .344
near_shared(namelist) .345
near_shared_pointer(namelist) .345

x Table of Contents

next_task . 345
no_block_loop . 345
no_distribute . 346
no_dynsel . 346
no_loop_dependence(namelist) . 346
no_loop_transform . 346
no_parallel . 346
no_side_effects(funclist) . 347
no_unroll_and_jam . 347
node_private(namelist) . 347
node_private_pointer(namelist) . 347
ordered_section(gate_var) . 348
parallel[(attribute_list)] . 348
parallel_private(namelist) . 349
prefer_parallel[(attribute_list)] . 349
reduction(namelist) . 350
save_last[(list)] . 350
scalar . 350
sync_routine(routinelist) . 351
task_private(namelist) . 351
thread_private(namelist) . 351
thread_private_pointer(namelist) . 351
unroll_and_jam[(unroll_factor= n)] 352

Appendix C: SGI directives. 353

SGI Directives in HP Fortran 90 . 353
ASSERT DO(SERIAL) . 353

Syntax. 353
ASSERT DO(CONCURRENT) . 354

Syntax. 354
ASSERT DO(VECTOR). 354

Syntax. 354
ASSERT DO PREFER(CONCURRENT). 354

Syntax. 354
ASSERT DO PREFER(SERIAL) . 355

Syntax. 355
DOACROSS . 355

Syntax. 355
NOINLINE [(routinelist)] . 356

Syntax. 356
[NO]VECTORIZE . 357

Syntax. 357

Table of Contents xi

SGI directives and their Exemplar equivalents.357
C$DOACROSS [clause [, clause] ...] .358

IF (logical_expression) .358
{LOCAL | PRIVATE} (namelist) .359
{SHARE | SHARED} (namelist) .359
{LASTLOCAL | LAST LOCAL} (namelist) 359
REDUCTION (namelist) .360
MP_SCHEDTYPE=mode .361
{CHUNK=integer_expression | BLOCKED integer_expression} . . .362

C*$*ASSERT DO(SERIAL) .362
C*$*ASSERT DO(CONCURRENT). .363
C*$*ASSERT DO PREFER(SERIAL) .363
C*$*ASSERT DO PREFER(CONCURRENT) .363
C*$*ASSERT NO RECURRENCE(variable) .364
C*$*CONCURRENTIZE .364
C*$*NOCONCURRENTIZE .364

Appendix D: Optimization options . 365

Optimization level options .365
Controlling specific optimizer features. .366

+O[no]aggressive .366
+O[no]all .367
+O[no]autopar .367
+O[no]conservative .368
+O[no]dataprefetch .368
+O[no]dynsel .369
+O[no]entrysched .369
+O[no]exemplar_model .370
+O[no]fail_safe .370
+O[no]fastaccess .371
+O[no]fltacc .371
+O[no]global_ptrs_unique[=namelist]372
+O[no]info .373
+O[no]initcheck .373
+O[no]inline[= namelist] .373
+Oinline_budget= n .374
+O[no]libcalls .375
+O[no]limit .376
+O[no]loop_block .376
+O[no]loop_transform .376
+O[no]loop_unroll[= unroll factor] .377
+O[no]loop_unroll_jam .377
+O[no]moveflops .378
+O[no]nodepar .378

xii Table of Contents

+O[no]parallel . 379
+O[no]parmsoverlap . 380
+O[no]pipeline . 380
+O[no]procelim . 381
+O[no]ptrs_ansi . 381
+O[no]ptrs_strongly_typed . 382

Example 1: How data types interact. 383
Example 2: Unsafe type cast . 384
Example 3: Generally applying type aliasing 384

+O[no]ptrs_to_globals[= namelist] . 385
+O[no]regreassoc . 386
+O[no]report[= report_type] . 387
+O[no]sharedgra . 388
+O[no]signedpointers . 388
+O[no]size . 388
+O[no]static_prediction . 389
+O[no]vectorize . 390
+O[no]volatile . 390
+O[no]whole_program_mode . 391
+tm target . 392

C aliasing options . 394

Appendix E: Optimization Report. 397

Loop Report. 398
Supplemental tables . 402

Analysis Table . 402
Privatization Table . 403
Variable Name Footnote Table . 403

Examples . 404
Example 1 . 404
Optimization Report interpretation. 406
Example 2 . 408

Optimization Report interpretation . 411
Example 3 . 415

Optimization Report interpretation . 417
+Oinfo option. 420

Table of Contents xiii

Appendix F: Compiler Parallel Support Library. 421

Introduction .421
Symmetric parallelism .421
Asymmetric parallelism .423

Accessing CPSlib .425
CPSlib and MP_NUMBER_OF_THREADS .426

CPS library functions .426
Thread-management functions .427

Symmetric thread functions .427
Asymmetric thread functions .430
Thread information and attribute functions433
High-level synchronization functions. .441
Low-level synchronization functions .444

sync_routine directive and pragma .451
Examples .454

Symmetric parallelism .454
Block parallelism. .454
Cyclic parallelism .456

Asymmetric parallelism .458
Synchronization using high-level functions .460

Barriers .460
Mutexes .463

Synchronization using low-level functions .465
Critical sections. .465
Ordered sections .467

Glossary . 471

Index. 499

xiv Table of Contents

List of Figures xv

Figures

 Figure 1 Nonscalable SMP overview. .12
 Figure 2 V2200 hypernode overview .17
 Figure 3 X2000 hypernode overview .18
 Figure 4 X2000 crossbar connections .19
 Figure 5 CTI ring connections for two-hypernode X2000 server20
 Figure 6 Unidirectional flow on a CTI ring. .21
 Figure 7 CTI ring connections for four-hypernode X2000 server 22
 Figure 8 Array layouts—cache-thrashing. .30
 Figure 9 Array layouts—non-thrashing .32
 Figure 10 V2200 and X2000 memory interleaving. .34
 Figure 11 V2200 and X2000 interleaving of arrays A and B .36
 Figure 12 LCDs in original and interchanged loops. .70
 Figure 13 Values read into array A .78
 Figure 14 Blocked array access .87
 Figure 15 Spatial reuse of A and B .88
 Figure 16 Thread activity: one-dimensional parallelism .103
 Figure 17 Conceptual strip mine for parallelization .104
 Figure 18 Parallelized loop .105
 Figure 19 Thread activity: two-dimensional parallelism .108
 Figure 20 Stride-parallelized loop .132
 Figure 21 Virtual addresses for various memory classes. .173
 Figure 22 Physical addresses for various memory classes. .174
 Figure 23 Ordered parallelization .234
 Figure 24 LOOP_PARALLEL(ORDERED) synchronization .244
 Figure 25 Data ownership by CHUNK and NTCHUNK blocks .314
 Figure 26 Symmetric parallelism .422
 Figure 27 Asymmetric parallelism .424

xvi List of Figures

List of Tables xvii

Tables

Table 1 Compiler optimization levels .40
Table 2 Loop transformations affecting data localization .67
Table 3 Computation sequence of A(I,J) : original loop .69
Table 4 Computation sequence of A(I,J) : interchanged loop70
Table 5 Iteration distribution using chunk_size = 1 .131
Table 6 Iteration distribution using chunk_size = 5 .131
Table 7 Comparison of prefer_parallel and loop_parallel 137
Table 8 Pointer class/data class combinations .194
Table 9 Levels of parallelism .221
Table 10 Stack type return values .222
Table 11 Initial mapping of array to cache lines .275
Table 12 Default distribution of the I loop .276
Table 13 Restructured mapping of array to cache lines .279
Table 14 C and C++ optimizer control pragmas .331
Table 15 SGI Directives .353
Table 16 +O[no]fltacc and floating-point optimizations .372
Table 17 Optimization Report contents .387
Table 18 +tm target and +DA/+DS .393
Table 19 Optimization Report contents .397
Table 20 Reordering transformations reported in opt. report 399
Table 21 Optimizing/special transformations in opt. report .401
Table 22 params->node /PARAMS(1) values .428
Table 23 params->threadscope /PARAMS(4) values .428
Table 24 errno values for cps_ppcall and cps_ppcalln .429
Table 25 errno values for cps_thread_create[n] .431
Table 26 cps_plevel return values .435
Table 27 Accepted CMD/cmd values .439
Table 28 WAIT(2) /wait->wait_attr values .440

xviii List of Tables

xix

How to use this guide

Purpose and audience
This guide describes efficient methods for shared-memory programming
using an Exemplar compiler: HP Fortran 90, HP aC++ (ANSI C++),
HP Fortran 77, or HP C on computers running the HP-UX operating
system. The first four chapters cover basic concepts, including automatic
optimizations and simple manual optimizations that require minimal
programmer intervention. In the following chapters, more progressive
topics are covered, including advanced manual optimizations and the
Compiler Parallel Support Library.

The Exemplar Programming Guide is for experienced Fortran 90,
Fortran 77, C, and C++ programmers. Readers need not be familiar with
the Exemplar parallel architectures, programming model, or
optimization concepts; this book addresses these topics in the necessary
detail.

Scope
This guide covers programming methods for the following Exemplar
compilers on V2200 (or V-Class) and K-Class machines running
HP-UX 11.0 and higher:

• Exemplar HP Fortran 90 Version 2.0 (and higher)

• Exemplar HP aC++ Version 1.0 (and higher)

• Exemplar HP Fortran 77 Version 1.2.3 (and higher)

• Exemplar HP C Version 1.2.3 (and higher)

The Exemplar compilers are the same as the standard HP compilers but
also support the Exemplar programming model.

HP-UX 11.0 and higher includes the required assembler, linker, and
libraries. These utilities are also included in SPP-UX Version 5.2 and
higher. SPP-UX is the operating system on X2000 servers. (X2000
servers are also known as X-Class servers. Machines running SPP-UX
are used to discuss multidimensional parallelism.)

This guide is concerned with producing programs that efficiently exploit
the features of Hewlett-Packard Exemplar architectures and the
compilers that run on them. Producing an efficient program requires
efficient algorithms and implementation. The techniques of writing an

xx

efficient algorithm are beyond the scope of this guide. This guide
assumes that you have chosen the best possible algorithm for your
problem and helps you obtain the best possible performance from that
algorithm.

Suggested reading order
This book takes the following approach to presenting information.

• Chapters 1, 2 and 3 provide background information that helps you
understand Exemplar architectures and how HP compilers optimize
your code.

• Chapter 4 tells you how to derive performance gains with minimal
intervention.

• Chapters 5 and 6 explain how to use more advanced programming
techniques to further improve performance.

• Chapter 7 discusses message passing on HP-UX machines, requiring
even more manual intervention.

• Chapter 8 presents coding tips and tells you about problems you may
encounter when using the techniques of the previous chapters and
how to enable even more aggressive optimizations.

• The appendixes contain mostly reference information, including a
discussion of the Compiler Parallel Support Library (CPSlib).

If you are interested in a general, comprehensive overview of
programming for Exemplar servers, read the chapters in order.

If you are interested in simply compiling existing programs and getting
them to run with minimal effort, start with chapters 3 and 8. Following
the cross-references that interest you will probably expose you to as
much of the rest of the book as is necessary.

If you are interested in getting maximum performance gains for
minimum programming effort, read chapters 3 and 4, then proceed if
necessary.

If you are willing to spend some time adding directives and rewriting
some of your code to realize significant performance benefits (especially if
your Exemplar server is equipped with multiple hypernodes), read at
least chapters 2 through 6.

xxi

If you are interested in running message-passing codes on your
Exemplar system, refer to Chapter 7, “Message-passing programming.”
You may also want to read chapters 2 through 6 to see how the compilers
can help you with automatic optimizations.

If you are interested in very low-level control over parallelism using the
Compiler Parallel Support Library, start with Appendix F. Again, you
may want to refer to the other chapters to see how the compiler can help
with automatic optimizations.

Notational conventions
This section discusses notational conventions used in this book.

General conventions
In general, the following conventions are used in this guide:

• Fortran

The term “Fortran” refers to both Fortran 90 and Fortran 77. When
functionality differs between the two compilers, the terms
“Fortran 77” and “Fortran 90” will be used.

• Italic

– Designates user-supplied variables in a command line or code
example

– Introduces new and important terms

– Identifies variables in mathematical equations

– Indicates document titles

xxii

• Constant-width font designates input and output, including

– Command names and options

– System calls

– Data structures and types

– Variables and arrays

– Function and subroutine names

– Directives, program statements, display examples, printout
examples, and error messages returned

Except where noted, the directives and pragmas described in this
book can be used with the Fortran 90, Fortran 77 and C compilers.
(The aC++ compiler does not support the pragmas, but does support
the memory classes.) In general discussion, these directives and
pragmas are presented in lowercase type, but each compiler will
recognize them regardless of their case.

• Bold constant-width font designates text that must be input
by the user.

• Horizontal ellipsis (...) shows repetition of the preceding item(s).

• Vertical ellipsis shows that lines of code have been left out of an
example.

References to man pages appear in the form mnpgname(1), where
“mnpgname” is the name of the man page and is followed by its section
number enclosed in parentheses. To view this man page, type:

% man 1 mnpgname

NOTE A Note highlights important supplemental information.

xxiii

Command syntax
Consider this example:

COMMANDinput_file [...] {a | b} [output_file]

COMMAND must be typed as it appears.

input_file indicates a file name that must be supplied by the user.

The horizontal ellipsis in brackets indicates that additional, optional
input file names may be supplied.

Either a or b must be supplied.

[output_file] indicates an optional file name.

Associated documents
Hewlett-Packard Company provides the following documents to help you
use the compilers and associated tools:

• Fortran 90 Programmer’s Guide (B6056-90003)—Provides extensive
usage information (including how to compile and link), suggestions
and tools for migrating to HP Fortran 90, and how to call C and
HP-UX routines for HP Fortran 90.

• Fortran 90 Programmer’s Reference (B5876-90001)—Presents
complete Fortran 90 language reference information. It also covers
compiler options, compiler directives, and library information.

• HP aC++ Online Programmer’s Guide (This manual is accessed by
specifying aCC with the +help command-line option.)—Presents
reference and tutorial information on aC++.

• HP MPI User’s Guide (B6011-90001)—This book discusses
message-passing programming using Hewlett-Packard’s
Message-Passing Interface library.

• Programming with Threads on HP-UX (B2355-90060)—Discusses
programming with POSIX threads.

• Exemplar C and Fortran 77 Programmer’s Guide for HP-UX Systems
(B6057-90002)—Describes the extensions to the standard
Hewlett-Packard compilers in the Exemplar C and Fortran 77
compilers that support the Exemplar programming model.

xxiv

• HP C/HP-UX Reference Manual (92453-90024)—Presents reference
information on the C programming language, as implemented by
Hewlett-Packard.

• HP C/HP-UX Programmer’s Guide (92434-90002)—Contains
detailed discussions of selected C topics.

• FORTRAN/9000 Programmer’s Reference (B3906-90002)—Presents
information on Hewlett-Packard Fortran 77 and can be used as a
language reference.

• FORTRAN/9000 Programmer’s Guide (B3906-90001)—Describes
features and requirements in terms of the tasks a Fortran 77
programmer might perform. These tasks include how to compile, link,
run, debug, and optimize programs.

• Programming on HP-UX (B2355-90652)—Describes how to develop
software on HP-UX, using the HP compilers, assemblers, linker,
libraries, and object files.

• Managing Systems and Workgroups (B2355-90157)—Describes how
to perform various system administration tasks.

Ordering documentation
To order additional copies of this document or other documents listed in
the “Associated documents” section, call 1-800-227-8164 between 6 a.m.
and 5 p.m. PST.

To place an order from outside the United States, or if you cannot use the
1-800 number, call 415-857-5027.

Please have the order number (xxxxx-9xxxx) and the exact title of the
document available when ordering.

Chapter 1 1

1 Introduction

Hewlett-Packard compilers generate efficient parallel code with little
intervention on your part; however, you can increase this efficiency by
using the techniques discussed in this book.

This chapter provides a general overview of the:

• Exemplar architectures as compared to other parallel architectures

• Applicable programming models

• HP compiler optimizations

Exemplar SMP architectures
Hewlett-Packard offers single-processor systems and symmetric
multiprocessor (SMP) systems. The SMP systems, known as Exemplar
servers, can be either nonscalable or scalable systems. The remainder of
this section discusses the scalability of SMPs.

Nonscalable SMPs
Hewlett-Packard’s nonscalable SMPs are single-hypernode systems. (For
nonscalable SMPs, a hypernode is simply the set of processors and
physical memory.) Memory is shared among all the processors, with a
bus serving as the interconnect. The shared-memory architecture has a
uniform access time from each processor. For example, D-Class servers
are nonscalable SMPs.

2 Chapter 1

Introduction
Exemplar SMP architectures

Scalable SMPs
HP’s scalable Exemplar systems implement parallel processing using
scalable parallel processing technology. Scalable parallel machines can
be scaled to meet your specific needs. Current configurations range from
one to four hypernodes (or nodes), with the system having from 4 to 64
processors.

Processors communicate with each other, with memory, and with I/O
devices via a nonblocking crossbar on each hypernode for intrahypernode
communication and eight high-speed CTI rings that link the hypernodes
together for interhypernode communication. (CTI stands for Coherent
Toroidal Interconnect.) The CTI ring design is derived from the IEEE
standard 1596-1992, SCI (Scalable Coherent Interface), but the
Exemplar implementation sacrifices complete SCI compatibility to
provide lower latencies.

Physical memory is also scalable. V2200 and X2000 servers support up to
16 Gbytes of memory.

Each process on an HP-UX 11.0 system can access a 16-terabyte (Tbyte)
virtual address space.

Exemplar vs. vector/parallel architectures
Scalable parallel processing represents a departure from traditional
vector/parallel supercomputers like the Convex C Series. The C Series
architecture is used to illustrate the difference between traditional and
Exemplar architectures below, but the same differences apply in
principle to all vector/parallel machines.

Architectural differences
Convex C Series machines contain a limited number (1-8) of custom
processors connected by a high-speed crossbar to a large, shared memory.
For connecting small numbers of processors such as these to memory,
crossbars are cost-effective and fast, allowing all processors to access all
memory with equally high speed. Each processor is equipped with one or
more vector units that speed loop computations involving arrays by
performing array arithmetic on up to 128 elements per vector
instruction. Machines containing multiple processors can further reduce
time-to-solution by adding parallelism at the process, loop, and task
level.

Chapter 1 3

Introduction
Exemplar SMP architectures

The Exemplar architectures take a different approach. Rather than
using vector units to exploit fine-grained parallelism, the processors in
an Exemplar server speed scalar processing by using a reduced set of
high-speed instructions coupled with pipelining, high-speed instruction
and data caches, and a large register set.

Two-dimensional parallelism, which can benefit nested parallel
structures, is also possible on multihypernode Exemplar servers. Rather
than implementing the first dimension in the vector unit and the second
across processors (as in C Series), Exemplar servers can implement the
first level within a hypernode and the second across hypernodes.
Single-dimensional parallelism that spans hypernodes can also be
implemented.

Memory
Because of the potentially large number of processors available on a
multihypernode Exemplar server, memory access via a system-wide
crossbar is not practical. Instead, low latency, high-bandwidth memory
access is provided by shared memory. In this model, physical memory is
distributed among all hypernodes, and the entire virtual address space of
a process is accessible by every processor. Processors within a hypernode
can access hypernode-local memory via the crossbar regardless of
whether the address space is on one or more hypernodes; memory in
another hypernode can be accessed via the CTI rings. Of course,
interhypernode accesses take longer than intrahypernode accesses.
However, part of every hypernode’s memory is dedicated to act as a
CTIcache, which holds copies of recently used data from other
hypernodes. These CTIcaches and the processor caches are coherent,
meaning that when a thread references a data item via its virtual
address, the value it receives will be the most recently-assigned value.
By holding frequently referenced data close to its referencing processes,
regardless of the actual memory location of the data, these caches
provide excellent data distribution.

4 Chapter 1

Introduction
Exemplar SMP architectures

Optimizing compilers
Programs that optimize well on traditional vector/parallel machines
optimize well on Exemplar systems with little manual intervention.
Exemplar compilers automatically exploit opportunities for parallelism
and data localization in programs written for shared-memory machines.
Chapters 3 through 6 discuss manual optimizations that can yield even
more performance from such programs.

HP SMP architectures vs. clustered workstations
While the Exemplar architectures use the same processors found in HP
workstations, the following features sharply distinguish the Exemplar
servers from clustered workstations:

• Exemplar architectures’ low-latency shared memory

• Automatic optimizing compilers

• High-speed interconnections

• Shared peripherals

• User-configurability

The subsections below discuss each distinguishing feature in detail.

Memory
Each workstation in a cluster has its own private memory; there is no
shared memory. That is, any data shared among processors must be
passed over the low-performance network that connects them. While an
Exemplar server can support this method of programming, it offers the
many advantages of shared memory, as described in the “Exemplar vs.
vector/parallel architectures” section on page 2.

Many workstation operating systems reserve a large amount of memory
for system use, restricting user processes to what is left. The HP-UX
operating system requires only a small fraction of each processor’s
memory, leaving a large majority of it for user processes, whether they
are using shared memory or message passing.

Chapter 1 5

Introduction
Exemplar SMP architectures

Optimizing compilers
Programs for clustered workstations are compiled using the
workstations’ compilers. If the cluster contains workstations that require
different executables (that is, if it is a heterogeneous cluster), the
programmer must generate the executables using the proper compiler.
Homogeneous clusters eliminate this requirement, but automatic
parallelization is nevertheless unavailable on any type of cluster. The
compilers used may generate efficient code for each processor, but any
parallelism or process coordination must be explicitly implemented by
the programmer via message passing.

Exemplar compilers provide fully automatic parallelism and several new
data localization optimizations designed to improve memory usage and
aid parallelization. Additionally, directives allow you to further enhance
the automatic optimizations performed on your shared-memory
program.

Exemplar compilers give the highest performance—with little or no
programmer intervention—for generic programs that exploit shared
memory. Message-passing programs, with their parallelism explicitly
coded, also benefit from Exemplar compiler optimizations.

Interprocess communication
To communicate among themselves or access each other’s data,
processors in a cluster of workstations must communicate over
low-performance networks and access distributed memory.
Communication can be handled only by passing explicit messages
between workstations over the network; because of the distributed
memory and absence of parallelizing compilers, programmers must
explicitly code parallelism. Parallel tasks running on clusters, then, must
be fairly autonomous to avoid wasting time waiting for data or
synchronization instructions to travel over the network. Clusters are
best suited to coarse-grained parallelism, such as that possible at the
process level, or to manually parallelizable algorithms that contain a
large ratio of computation to communication. In these cases, task chunks
or processes and their data are parcelled out to underused workstations,
run to completion, and the results are sent back to the parent.

Fine-grained, loop-level parallelism is difficult to efficiently perform on
clusters because of the need for frequent data accesses and
synchronization.

6 Chapter 1

Introduction
Exemplar SMP architectures

Exemplar servers are suitable for both coarse- and fine-grained
parallelism. Programs containing potential parallelism, when compiled
with Exemplar compilers, automatically exploit the parallelism,
spawning threads to run on as many processors as are available and
rejoining these threads upon completion. This fine-grained parallelism
takes full advantage of the fully coherent memory caches and high-speed
interconnects available on an Exemplar system.

While message passing is supported and can be used to speed certain
applications (refer to Chapter 7, “Message-passing programming”), with
shared memory, it is not necessary for most programs. When message
passing is used on an Exemplar server, the high-speed interconnects can
give a substantial performance increase over traditional networks. This
makes message-passing programs that exploit finer-grained parallelism
practical.

HP-UX automatically schedules threads within a hypernode to execute
on idle and underused processors as necessary. This ensures a balanced
machine load and exploits both thread- and process-level parallelism.

Peripherals
Peripheral devices connected to an Exemplar server can be accessed from
any processor on the machine. On clustered workstations, peripherals
are processor-dependent. Programs running on Exemplar systems,
therefore, have access to potentially greater mass storage space.

Configurability
In terms of configuring hardware, adding processors to a cluster can
actually degrade performance because of the low-performance network
and private memory. The network can present a bottleneck when
parallelism increases to exploit the new processors; to overcome this,
coarser granularity can be used—and this can require more private
memory than the processors can address. The absolute performance of
an Exemplar server, on the other hand, increases unhindered by a
traditional network or private-memory limits. Adding peripherals and
memory to an Exemplar server can also provide improved absolute
performance, because all processors can access both, whereas memory
and peripherals are processor-specific on clusters.

Chapter 1 7

Introduction
Exemplar programming model

Exemplar programming model
The Exemplar programming model provides three perspectives from
which a programmer can write (or adapt) code to run on an Exemplar
system. Those perspectives are the shared-memory, message-passing,
and shared-memory/message-passing hybrid paradigms. This book
focuses on using the shared-memory paradigm but also provides some
information on the other two paradigms.

The shared-memory paradigm
In the shared-memory paradigm, the compilers handle optimizations,
and, if requested, parallelization. Numerous compiler directives and
pragmas (discussed in detail in Chapter 4, “Basic shared-memory
programming,” and Chapter 5, “Memory classes,” and listed in Appendix
B, “Exemplar compiler directives and pragmas”) are available to further
increase optimization opportunities.

Chapter 4, “Basic shared-memory programming,” and Chapter 6,
“Advanced shared-memory programming,” cover shared-memory
programming in detail.

The message-passing paradigm
Hewlett Packard has implemented a version of the MPI standard known
as HP MPI. This version is finely tuned for HP technical servers.

Under the message-passing paradigm, the programmer uses functions to
explicitly spawn parallel processes, share data among them, and
coordinate their activities. There is no shared memory; each process has
its own private 16-terabyte (Tbyte) address space, and any data that
must be shared must be explicitly passed between processes.

Support of message passing allows programs written under this
paradigm for distributed-memory machines to be easily ported to HP
servers. Programmers familiar with message passing may choose to
write new programs using this paradigm rather than shared memory
and can realize a substantial performance boost over conventional
message-passing machines, even when coding finer-grained parallelism.

8 Chapter 1

Introduction
Overview of Exemplar optimizations

The few programs that require more per-process memory than possible
using shared memory will benefit from the manually-tuned
message-passing style.

For more information, see Chapter 7, “Message-passing programming” or
the book HP MPI User’s Guide.

Message-passing/shared-memory hybrids
Some programs may benefit from combining the paradigms to allow
several shared-memory processes to coordinate their activities via
message passing. This model allows the majority of the program to be
written in the familiar shared-memory style while exploiting the
process-private memory benefits of message passing.

Overview of Exemplar optimizations
Exemplar compilers perform a range of user-selectable optimizations.
These optimizations, which are specified via compiler command-line
options, are briefly introduced here. A more thorough discussion,
including the options associated with each, is given in Chapter 3,
“Compiler optimizations.”

Basic scalar optimizations
Basic scalar optimizations improve performance at the basic block and
program unit level.

A basic block is a sequence of statements that has a single entry point
and a single exit. Branches do not exist within the body of a basic block.
A program unit is a subroutine, function, or main program in Fortran or
a function (including main) in C; program units are also often generically
referred to as procedures. Basic blocks are contained within program
units; program unit-level optimizations span basic blocks.

Chapter 1 9

Introduction
Overview of Exemplar optimizations

To improve performance, basic scalar optimizations:

• Fully exploit the processor’s functional units and registers

• Reduce the number of times memory is accessed

• Simplify expressions

• Eliminate redundant operations

• Replace variables with constants

• Replace slow operations with faster equivalents

Advanced scalar optimizations
Advanced scalar optimizations are primarily intended to maximize
processor data cache usage. This is referred to as data localization.
Concentrating on loops, these optimizations strive to encache the data
most frequently used by the loop and keep it encached so as to avoid
costly memory accesses.

Advanced scalar optimizations include several loop transformations;
many of them either facilitate more efficient strip mining or are
performed on strip mined loops to optimize processor data cache usage.
All of these optimizations are covered in Chapter 3, “Compiler
optimizations.”

Advanced scalar optimizations implicitly include all basic scalar
optimizations.

10 Chapter 1

Introduction
Overview of Exemplar optimizations

Parallelization
Through parallelization you can realize the full power of a scalable
parallel computer like the Exemplar servers. Parallelization allows a
program to be executed by as many processors as are available within its
system, in most cases significantly reducing time-to-solution. Exemplar
compilers can automatically locate and exploit loop-level parallelism in
most programs, and, using the techniques described in
Chapter 5, “Memory classes,” you can assist the compilers in finding
even more parallelism in your programs.

Loops that have been data-localized are prime candidates for
parallelization; individual iterations of inner loops that contain strips of
localizable data can be parcelled out among several processors and run
simultaneously. The maximum number of processors that can be used is
limited by the number of iterations of the outer loop, and, of course, by
processor availability.

While most parallelization is done on nested, data-localized loops, other
code can also be parallelized. For example, through the use of manually
inserted compiler directives, sections of code outside of loops can also be
parallelized.

Parallelization optimizations implicitly include all scalar optimizations.

Chapter 2 11

2 Architecture overview

This chapter provides an overview of Hewlett-Packard’s multiprocessor
architectures in terms of scalability. HP servers employ either a
nonscalable or scalable SMP architecture. These overviews focus on the
information most useful for programmers.

For more information on V2200 servers, see the V-Class Architecture
manual (order number A3725-90004).

Although HP-UX is not used on X2000 servers, information on that
architecture is provided throughout this book to facilitate the discussion
of the Exemplar programming model on multinode SMPs. For additional
information on X2000 servers, see the Exemplar Architecture: S-Class
and X-Class Servers manual (order number A4716-90001).

12 Chapter 2

Architecture overview
System organization: nonscalable SMPs

System organization: nonscalable SMPs
Hewlett-Packard’s nonscalable SMPs are single-node, shared-memory
machines that have a single level of memory latency. Processors
communicate with each other, with memory, and with peripherals via a
bus. Figure 1 gives an overview of a nonscalable SMP.

 Figure 1 Nonscalable SMP overview

NOTE Although, V-Class servers are single-node machines, they are considered
scalable SMPs because the memory bandwidth on V-Class servers, which
use crossbar interconnects, is significantly greater than that on other
single-node servers.

Processor 1 Processor n...

Memory

I/O
System

Processor-Memory Bus

Chapter 2 13

Architecture overview
System organization: nonscalable SMPs

Memory
Memory is discussed in terms of physical memory and virtual memory.
The following two sections describe these types of memories for
nonscalable SMPs.

Physical memory
Memory configurations on HP’s nonscalable SMPs varies widely by
machine. However, each of these machines uses memory interleaving to
improve performance. For an explanation, see the section “Interleaving”
on page 33.

HP-UX 11.0 provides variable-sized pages to improve performance. For
more information on this feature, see the section “Variable-sized pages”
on page 37.

Virtual memory
Virtual memory is divided into five classes. For nonscalable SMPs, only
two of these classes are needed: thread_private and node_private .
The three remaining classes are automatically mapped to the
node_private class.

NOTE For applications that will be ported to Hewlett-Packard scalable SMPs,
all five virtual memory classes can be useful. For information on using
the memory classes on a scalable SMP, see the section “Virtual memory”
on page 24.

14 Chapter 2

Architecture overview
System organization: nonscalable SMPs

A brief description of the virtual memory classes follow:

thread_private

This memory is private to each thread of a process. A
thread_private data object has a unique virtual
address for each thread. These addresses map to
unique physical addresses in physical memory.
Threads access the physical copies of
thread_private data when they access
thread_private virtual addresses.

node_private

This memory is shared among the threads running on
a hypernode. (For nonscalable SMPs, a hypernode is
the set of processors and physical memory.) Data
objects of the class node_private have a single
virtual address by which they can be accessed from any
processor in the hypernode.

near_shared

This memory class is mapped to the node_private
memory class for nonscalable SMPs.

far_shared

This memory class is mapped to the node_private
memory class for nonscalable SMPs.

block_shared

This memory class is mapped to the node_private
memory class for nonscalable SMPs.

Data caches
Hewlett-Packard systems use caches to enhance performance. Cache
sizes, as well as cache line sizes, vary with the processor used. Data is
moved between the cache and memory using cache lines. A cache line
describes the size of a chunk of contiguous data that must be copied into
or out of a cache in one operation.

When a processor experiences a cache miss—that is, requests data that
is not already encached—the cache line containing the address of the
requested data is moved to the cache. This cache line also contains a
number of other data objects that were not specifically requested.

Chapter 2 15

Architecture overview
System organization: nonscalable SMPs

One reason cache lines are employed is to allow for data reuse. Data in a
cache line is subject to reuse if, while the line is encached, any of the data
elements contained in the line besides the originally requested element
are referenced by the program, or if the originally requested element is
referenced more than once.

Because data can only be moved to and from memory as part of a cache
line, both load and store operations cause their operands to be encached.
Cache-coherency hardware invalidates cache lines in other processors
when they are stored to by a particular processor. This indicates to other
processors that they must load the cache line from memory the next time
they reference its data.

For information on avoiding inefficient use of data, see the section
“Cache thrashing” on page 29.

16 Chapter 2

Architecture overview
System organization: scalable SMPs

System organization: scalable SMPs

NOTE HP-UX is the operating system on V2200 servers. Only the SPP-UX
operating system runs on Hewlett-Packard X2000 servers.

Think of a scalable Exemplar SMP as a shared-memory computer with
two levels of memory latency. Memory available on the current
hypernode (accessed through the crossbar) constitutes the first level, and
all other memory (accessed through the CTI rings) constitutes the
second.

Exemplar V2200 servers consist of one hypernode that has 4 to 16
PA-8200 processors and 256 Mbytes to 16 Gbytes of physical memory.
The X2000 servers consist of 1 to 4 hypernodes with a total of 16 to 64
PA-8000 processors and 16 Gbytes to 64 Gbytes of memory.

Processors within a hypernode communicate with each other, with
memory, and with peripherals via a nonblocking crossbar. V2200 servers
feature the HP HyperPlane crossbar. Figure 2 shows the V2200 crossbar
configuration. Figure 3 shows the crossbar configuration for X2000
servers. Processors in different hypernodes communicate via CTI rings.
These rings are configured in a one-dimensional interconnect for X2000
systems consisting of two or three hypernodes and in two-dimensional
interconnects for systems with four hypernodes.

Figure 2 and Figure 3 show overviews of a V2200 hypernode and a single
X2000 hypernode, respectively. These servers are the same except for the
V2200’s HyperPlane crossbar and the X2000’s CTI controllers. Two
CPUs and a PCI bus controller share a single CPU agent. The CPUs
communicate with the rest of the machine through the CPU agent. The
Memory Access Controllers (MACs) provide the interface between the
memory banks and the rest of the machine. All intrahypernode memory
accesses take approximately 510 nanoseconds on X2000 servers,
regardless of location, because they must traverse the crossbar, which
gives equal access to all hypernode memory from all CPUs. The CTIrings
are used for internode communication.

Figure 4 shows a more detailed view of the connections between the
CPU agents, the crossbar, and the Memory Controllers in an X2000
server.

Chapter 2 17

Architecture overview
System organization: scalable SMPs

 Figure 2 V2200 hypernode overview

PCI Agent
Processor

Processor

PCI Agent
Processor

Processor

PCI Agent
Processor

Processor

PCI Agent
Processor

Processor

PCI Agent
Processor

Processor

PCI Agent
Processor

Processor

PCI Agent
Processor

Processor

PCI Agent
Processor

Processor

Hyperplane

MAC Memory

MAC Memory

MAC Memory

MAC Memory

MAC Memory

MAC Memory

MAC Memory

MAC Memory

Crossbar

PCI: PCI Bus Controller

Agent: CPU Agent
MAC: Memory Access Controller

18 Chapter 2

Architecture overview
System organization: scalable SMPs

 Figure 3 X2000 hypernode overview

PCI Agent
Processor

Processor

PCI Agent
Processor

Processor

PCI Agent
Processor

Processor

PCI Agent
Processor

Processor

PCI Agent
Processor

Processor

PCI Agent
Processor

Processor

PCI Agent
Processor

Processor

PCI Agent
Processor

Processor

MAC CTI

MAC

Memory

CTI

MAC

Memory

CTI

MAC

Memory

CTI

MAC

Memory

CTI

MAC

Memory

CTI

MAC

Memory

CTI

MAC

Memory

CTI

Crossbar

Memory

PCI: PCI Bus Controller

Agent: CPU Agent

MAC: Memory Access Controller
CTI: CTI Controller

Chapter 2 19

Architecture overview
System organization: scalable SMPs

 Figure 4 X2000 crossbar connections

Crossbar

Routing
Controller

Routing
Controller

Routing
Controller

Routing
Controller

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

20 Chapter 2

Architecture overview
System organization: scalable SMPs

Any processor can access memory on another hypernode by routing its
request through its own crossbar to a CTI ring that attaches to that
hypernode. Data is returned via a CTI ring and then routed via the
crossbar back to the requesting processor.

Figure 5 shows the CTI ring connections between two X2000 hypernodes.
See Figure 3 on page 18 for details not available in the figure below.

 Figure 5 CTI ring connections for two-hypernode X2000 server

CTI rings are unidirectional. That is, packets can only move in one
direction on the rings. Consider the three-hypernode X2000 server
illustrated in Figure 6; for simplicity, only one of the eight rings is shown.
If Node 0 initiates communication with Node 2, it goes through the CTI
controller on Node 1 to get to Node 2. Responses from Node 2 to Node 0
travel in the same direction as the request and cover the remainder of
the ring.

CTI CTI

CTI CTI

CTI CTI

CTI CTI

CTI CTI

CTI CTI

CTI CTI

CTI CTI

Node 0 Node 1

CTI ring

Chapter 2 21

Architecture overview
System organization: scalable SMPs

 Figure 6 Unidirectional flow on a CTI ring

As a system scales, a one-dimensional interconnect becomes less efficient
because the ring grows to include a CTI controller for every hypernode in
the system. For X2000 servers, when the number of nodes exceeds three,
a one-dimensional interconnect is no longer optimal. A two-dimensional
interconnect is then used to shorten paths between requesting and
responding nodes.

The two-dimensional interconnect uses dimension-order routing to
determine the path taken by a packet. A request packet first travels the
required distance on the X-dimension ring then, if needed, the
Y-dimension ring. On the return path, the response packet again travels
the X-dimension ring first, then the Y-direction ring. Thus, the response
packet does not necessarily follow the same path as the request packet.

Figure 7 shows a four-hypernode X2000 server using a two-dimensional
interconnect. The node IDs (0, 1, 8, and 9 in the figure) are represented
in 5-bit fields, where the first three bits represent the X dimension and
the last two bits represent the Y dimension.

Nodes connected in the X dimension are:

• Node 0 (ID:00000) and node 1 (ID:00001)

• Node 8 (ID:01000) and node 9 (ID:01001)

Nodes connected in the Y dimension are:

• Node 0 (ID:00000) and node 8 (ID:01000)

• Node 1 (ID:00001) and node 9 (ID:01001)

Node 0 Node 1 Node 2

CTI ring

22 Chapter 2

Architecture overview
System organization: scalable SMPs

 Figure 7 CTI ring connections for four-hypernode X2000 server

CPUs communicate directly with their own instruction and data caches,
which can be accessed by the processor in one clock (assuming a full
pipeline). X2000 servers use 1-Mbyte off-chip instruction caches and data
caches. V2200 servers use 2-Mbyte off-chip instruction caches and data
caches.

X dimension of interconnect Y dimension of interconnect

CTI

CTI

CTI

CTI

CTI

CTI

CTI

CTI

CTI CTI

CTI CTI

CTI CTI

CTI CTI

CTI CTI

CTI CTI

CTI CTI

CTI CTI

Node 0 Node 1

Node 8Node 9

CTI

CTI

CTI

CTI

CTI

CTI

CTI

CTI

Chapter 2 23

Architecture overview
System organization: scalable SMPs

Memory
Each process running on a V-Class or K-Class server (running
HP-UX 11.0 and above) accesses its own 16-Tbyte virtual address space.
Almost all of this space is available to hold program text, data, and the
stack; the space used by the operating system is negligible.

On X2000 servers running the SPP-UX operating system, each process
can accesses its own 4-Gbyte virtual address space. Again, most of this
space is available to program text, data, and the stack with only a
negligible amount of space used by the operating system.

The stack size is configurable; refer to the section “Default stack size” on
page 152 for more information.

Processes cannot access each other’s virtual address spaces. This virtual
memory maps to the physical memory of the system on which the process
is running.

Physical memory
All memory (excluding processor caches) on V2200 servers and X2000
servers is implemented in memory banks. In 16-processor V2200 servers
and X2000 servers, each hypernode consists of 32 memory banks. This
memory is typically partitioned (by the system administrator) into
hypernode-local, system-global, CTIcache (on multinode systems), and
buffer cache. It is also interleaved as described in the “Interleaving”
section later in this chapter.

Hypernode-local memory, as its name implies, is local to its hypernode,
and cannot be accessed by other hypernodes. This is where application
and operating-system executables, as well as user process data that has
been explicitly declared private, reside.

System-global memory is accessible by all processors in a given system.

The CTIcache is used to store copies of global data fetched from other
hypernodes.

The buffer cache is a file system cache and is used to encache items that
have been read from disk and items that are to be written to disk.

24 Chapter 2

Architecture overview
System organization: scalable SMPs

Virtual memory
Virtual memory is divided into five classes. The compilers choose default
classes to provide your programs with normal SMP memory-transaction
semantics. You can also manually assign data to memory classes to
improve data locality and further increase performance. However, doing
so also requires some other aspects of optimization, particularly loop
parallelization, to be handled manually.

Brief descriptions of the virtual memory classes and their physical
memory mappings follow:

thread_private

This memory is private to each thread of a process. A
thread_private data object has a unique virtual
address for each thread within its hypernode. These
addresses map to unique physical addresses in
hypernode-local physical memory on each hypernode.
Threads access the physical copies of
thread_private data residing on their own
hypernode when they access thread_private virtual
addresses.

node_private

This memory is shared among the threads running on
a given hypernode but is inaccessible from other
hypernodes. A node_private data object has a unique
virtual address by which all threads on all hypernodes
access it. This address maps to one physical address
per hypernode; when a thread accesses the data, it
receives the value contained in the physical memory of
its own hypernode.

near_shared

Data objects of the near_shared class have a single
virtual address by which they can be accessed from any
hypernode in the system. Physically, near_shared
data is stored entirely within the memory of a
particular hypernode. All data of a near_shared
object maps to physical addresses on that hypernode.

Chapter 2 25

Architecture overview
System organization: scalable SMPs

far_shared

Data objects of the far_shared class have a single
virtual address by which they can be accessed from any
hypernode in the system. Physically, far_shared data
is distributed by pages, in a manner that is
approximately round-robin, to all the hypernodes in
the system, so the virtual address maps to a single
physical address located on one of the hypernodes.

block_shared

Data objects of the block_shared class have a single
virtual address by which they can be accessed from any
hypernode in the system. Physically, block_shared
data is distributed in blocks equally among the
hypernodes on which the process is executing, one
block per hypernode. block_shared memory must be
dynamically allocated; the programmer can then easily
ensure that threads on a hypernode make most of their
accesses to the block residing on their hypernode.

Using these memory classes is discussed in detail in Chapter 5,
“Memory classes.”

Data caches
V2200 servers and X2000 servers use high-speed data caches to improve
performance, but the architectures differ in their implementations of the
cache. CTIcaches are used to improve performance on multihypernode
systems. (A CTIcache is a partition of physical memory that exists on
each hypernode and is used to store copies of global data fetched from
other hypernodes.)

26 Chapter 2

Architecture overview
System organization: scalable SMPs

Cache lines
Before examining the specifics of caches, you must understand how data
is moved between the cache and memory. A cache line describes the size
of a chunk of contiguous data that must be copied into or out of a cache in
one operation. V2200 servers use processor cache lines; X2000 servers
use processor cache lines and CTIcache lines.

When a processor experiences a cache miss—that is, requests data that
is not already encached—the cache line containing the address of the
requested data is moved to the cache. This cache line also contains some
number of other data objects that were not specifically requested; this
number varies according to the object size and the type of cache line in
question.

A CTIcache line moves data from shared memory to the CTIcache when
a CTIcache miss occurs. For X2000 servers, the CTIcache line is 32 bytes,
and each CTIcache line matches one-to-one to a 32-byte processor cache
line. When a processor cache miss occurs, the requested data is fetched
as part of a contiguous 32-byte cache line. If this data resides in any
memory on the processor’s hypernode, it need not traverse the CTIcache;
if it resides in the memory of another hypernode, it will be fetched
through the CTIcache.

All processor-encached data not residing on the processor’s hypernode
must pass through the CTIcache, so if this data is contained in processor
cache, it is also resident in the CTIcache.

One reason cache lines are employed is to allow for data reuse. Data in a
cache line is subject to reuse if, while the line is encached, any of the data
elements contained in the line besides the requested element are
referenced by the program, or if the requested element is referenced
more than once.

Because data can only be moved to and from memory as part of a cache
line, both load and store operations cause their operands to be encached.
Cache-coherency hardware invalidates cache lines in other processors
when they are stored to by a particular processor. This indicates to other
processors that they must load the cache line from memory the next time
they reference its data.

Chapter 2 27

Architecture overview
System organization: scalable SMPs

Direct-mapped data caches
V2200 servers use 2-Mbyte off-chip write-back direct-mapped data
caches. In a direct-mapped cache, the cache address for a given data
object is a function of the object’s full virtual address. For V2200 systems,
cache addresses are computed within a process using the following
formula:

cache_address = MOD(virtual_address,2 21)

Where the MOD function yields the remainder when virtual_address is
divided by 221. The value of 221 is 2,097,152, or 2 Mbytes. Thus, a data
object’s cache address is the least-significant 21 bits of its virtual
address.

X2000 servers use 1-Mbyte off-chip write-back direct-mapped data
caches. For X2000 systems, cache addresses are computed within a
process using the following formula:

cache_address = MOD(virtual_address,2 20)

Where the MOD function yields the remainder when virtual_address is
divided by 220. The value of 220 is 1,048,576, or 1 Mbyte. Thus, a data
object’s cache address is the least-significant 20 bits of its virtual
address.

This mapping scheme can result in cache thrashing, which is discussed
in the section “Cache thrashing” on page 29.

Prefetching with the +Odataprefetch compiler option
Prefetching is supported through the command-line option
+Odataprefetch . Prefetching encaches data that will be used in future
iterations of a loop, while the processor is executing current iterations.
The prefetch distance (distance in terms of the number of processor
cycles) varies and is tuned to the target machine architecture.
Prefetching is not beneficial to loops whose data fits in the cache. For
loops whose data does not fit in the cache, performance improvement can
be substantial. This option is off (+Onodataprefetch) by default. For
additional information on this option, see Appendix D, “Optimization
options.”

28 Chapter 2

Architecture overview
System organization: scalable SMPs

Data alignment
Aligning data addresses on cache line boundaries allows for efficient data
reuse in loops (refer to Chapter 3, “Compiler optimizations”). The linker
automatically aligns data over 32 bytes on a 32-byte boundary. Also, it
aligns data greater in size than a page on a 64-byte boundary.

You can align data on 64-byte boundaries by:

• Using Fortran ALLOCATE statements. (Applies only to parallel
executables.)

• Using the C functions malloc or memory_class_malloc . (Applies
only to parallel executables.)

Only the first item in a list of data objects appearing in any of these
statements is aligned on a cache line boundary. To make most efficient
use of available memory, the total size, in bytes, of any array appearing
in one of these statements should be an integral multiple of 32. Sizing
your arrays this way prevents data following the first array from
becoming misaligned. Scalar variables should be listed after arrays and
ordered from longest data type to shortest (for example, REAL*8 scalars
should precede REAL*4 scalars).

NOTE Aliases can inhibit data alignment. Be especially careful when
equivalencing arrays in Fortran.

You can force CTIcache boundary alignment for specific scalar variables
or arrays by using the align_cti directive or pragma. The Fortran
directive has the form:

C$DIR ALIGN_CTI(namelist)

In C it has the form:

#pragma _CNX align_cti(namelist)

where namelist is a list of arrays and/or scalars that will be aligned on
CTIcache boundaries.

Chapter 2 29

Architecture overview
System organization: scalable SMPs

Cache thrashing
Cache thrashing occurs when two or more data items that are needed by
the program both map to the same cache address. Each time one of the
items is encached, it overwrites another needed item, causing cache
misses and impairing data reuse. This section explains how thrashing
happens on X2000 servers.

A type of thrashing known as false cache line sharing is discussed in the
section “False cache line sharing” on page 274.

X2000 servers use a 1-Mbyte direct-mapped data cache. Thus, cache
thrashing can become a problem on X2000 servers when two encachable
data objects are exactly a multiple of 1 Mbyte apart in virtual memory.
To eliminate the problem, you must ensure that your data is not spaced
this way.

Consider the following Fortran example:

REAL*8 ORIG(65536), NEW(65536), DISP(65536)
COMMON /BLK1/ ORIG, NEW, DISP
.
.
.
DO I = 1, N
 NEW(I) = ORIG(I) + DISP(I)
ENDDO

In this example, the arrays ORIG and DISP overwrite each other in a
1-Mbyte cache. Because the arrays are in a COMMON block, we know that
they will be allocated in contiguous memory in the order shown. Each
array element occupies 8 bytes, so each array occupies
0.5 Mbyte (8 × 65536 = 524288 bytes); therefore arrays ORIG and DISP
are exactly 1 Mbyte apart in memory, and all their elements have
identical cache addresses. The layout of the arrays in memory and in the
data cache is shown in Figure 8.

30 Chapter 2

Architecture overview
System organization: scalable SMPs

 Figure 8 Array layouts—cache-thrashing

When the addition in the body of the loop executes, the current elements
of both ORIG and DISP must be fetched from memory into the cache.
Because these elements have identical cache addresses, whichever is
fetched last will overwrite the first. Remember that processor cache data
is fetched 32 bytes at a time; to efficiently execute a loop such as this, the
unused elements in the fetched cache line (3 extra REAL*8 elements are
fetched in this case) must remain encached until they can be used in
subsequent iterations of the loop. Because ORIG and DISP thrash each
other, this reuse is never possible; every cache line of ORIG that is
fetched is overwritten by the cache line of DISP that is subsequently
fetched, and vice versa. The cache line is overwritten on every iteration;
typically, in a loop like this, it would not be overwritten until all of its
elements were used.

Because memory accesses take substantially longer than cache accesses,
this severely degrades performance. Even if the overwriting involved the
NEW array, which is stored rather than loaded on each iteration,
thrashing would occur, because stores overwrite entire cache lines the
same way loads do.

The problem is easily fixed by increasing the distance between the
arrays. You can accomplish this by either increasing the array sizes or
inserting a padding array.

ORIG

DISP

NEW

Memory

Processor data cache

ORIG,

NEW

DISP

Chapter 2 31

Architecture overview
System organization: scalable SMPs

The following example illustrates the padding approach:

REAL*8 ORIG(65536), NEW(65536), P(4),DISP(65536)
COMMON /BLK1/ ORIG, NEW, P, DISP
.
.
.

Here, the array P(4) moves DISP 32 bytes further from ORIG in memory.
Now no two elements of the same index share a cache address, and for
the given loop, this postpones cache overwriting until the entire current
cache line is completely exploited. P is 4 elements, or 32 bytes, which
prevents both processor cache thrashing and CTIcache thrashing on
X2000 servers.

The alternate approach involves increasing the size of ORIG or NEW by 4
elements (32 bytes), as shown in the following example:

REAL*8 ORIG(65536), NEW(65540), DISP(65536)
COMMON /BLK1/ ORIG, NEW, DISP
.
.
.

Here, NEW has been increased by 4 elements, providing the padding
necessary to prevent ORIG from sharing cache addresses with DISP.
Figure 9 shows how both solutions prevent thrashing.

32 Chapter 2

Architecture overview
System organization: scalable SMPs

 Figure 9 Array layouts—non-thrashing

It is important to note that this is a highly simplified, worst-case
example. On X2000 servers, thrashing can happen any time two data
items that are referenced in the same loop are an integral multiple
of 1 Mbyte apart in virtual memory. This can happen with data that is
not stored in COMMON, in which case it is much more difficult to see, as
such data can be stored noncontiguously and may be intermixed with
completely unrelated data items.

The loop blocking optimization (described in Chapter 3, “Compiler
optimizations”) will eliminate thrashing from certain nested loops, but
not from all loops. Declaring arrays with dimensions that are not powers
of two can help, but it will not necessarily eliminate the problem
completely.

Using COMMON blocks in Fortran can also help; it allows you to accurately
measure distances between data items, making thrashing problems
easier to spot before they happen.

ORIG

DISP

NEW

Memory

Processor data cache

ORIG
DISP

pad NEW

Chapter 2 33

Architecture overview
System organization: scalable SMPs

Interleaving
Physical pages are interleaved across the memory banks of a hypernode
on a cache-line basis. (There are 32 banks per node in V2200 servers and
X2000 servers). Contiguous cache lines are assigned in round-robin
fashion, first to the even banks, then to the odd, as shown in Figure 10
for V2200 servers and X2000 servers.

Interleaving speeds memory accesses by allowing several processors to
access contiguous data simultaneously. This is beneficial when a loop
that manipulates arrays is split among many processors; in the best
case, threads will access data in patterns with no bank contention. Even
in the worst case, where each thread initially needs the same data from
the same bank, after the initial contention delay, the accesses will be
spread out among the banks.

Interleaving example
The following example illustrates a nested loop that accesses memory
with very little contention. This example is greatly simplified for
illustrative purposes, but the concepts apply to arrays of any size.

REAL*8 A(12,12), B(12,12)
...
DO J = 1, N
 DO I = 1, N
 A(I,J) = B(I,J)
 ENDDO
ENDDO

Assume that arrays A and B are stored contiguously in memory, with A
starting in bank 0, CTIcache line 0, processor cache line 0, as shown in
Figure 11 on page 36 for V2200 servers and X2000 servers.

Assume the Exemplar Fortran 90 compiler parallelizes the J loop to run
on as many processors as are available in the system (up to N). Assuming
N=12 and there are four processors available when the program is run,
the J loop could be divided into four new loops, each with 3 iterations.
Each new loop would run to completion on a separate processor. We will
refer to these four processors as CPU0 through CPU3.

34 Chapter 2

Architecture overview
System organization: scalable SMPs

 Figure 10 V2200 and X2000 memory interleaving

Cache line
10

Cache line
1

Cache line
9

Cache line
16

Cache line Cache line
0 8

Cache line
2

Cache line Cache line
4 12

Cache line Cache line
6 14

Cache line
3 11

Cache line Cache line
5 13

Cache line Cache line
7 15

Cache line

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 4

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 6

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 7

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 5

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 3

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 2

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 0

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 1

Chapter 2 35

Architecture overview
System organization: scalable SMPs

NOTE This example is designed to simplify illustration. In reality, the dynamic
selection optimization (discussed in Chapter 3, “Compiler optimizations”)
would, given the iteration count and available number of processors
described, cause this loop to run serially. The overhead of going parallel
would outweigh the benefits.

In order to execute the body of the I loop, A and B must be fetched from
memory and encached. Each of the four processors running the J loop
will attempt to fetch its portion of the arrays, most likely simultaneously.

This means CPU0 will attempt to read arrays A and B starting at
elements (1,1) , CPU1 will attempt to start at elements (1,4) and so
on. For clarity, Figure 11 shows the first 32 CTIcache lines consecutively;
after these, only the initial cache lines for each processor are shown.
Each processor’s initial cache line is shaded.

Because of the number of memory banks in the V2200 and X2000
architecture, interleaving removes the contention from the beginning of
the loop from the example, as shown in Figure 11.

CPU0 needs A(1:12,1:3) and B(1:12,1:3)

CPU1 needs A(1:12,4:6) and B(1:12,4:6)

CPU2 needs A(1:12,7:9) and B(1:12,7:9)

CPU3 needs A(1:12,10:12) and B(1:12,10:12)

The data from the V2200/X2000 example above is spread out on different
memory banks as described below:

• A(1,1) , the first element of the chunk needed by CPU0, is on cache
line 0 in bank 0 on board 0

• A(1,4) , the first element needed by CPU1, is on cache line 9 in bank
1 on board 1

• A(1,7) , the first element needed by CPU2, is on cache line 18 in
bank 2 on board 2

• A(1,10) the first element needed by CPU3, is on cache line 27 in
bank 3 on board 3

Because of interleaving, no contention exists between the processors
when trying to read their respective portions of the arrays. Contention
may surface occasionally as the processors make their way through the
data, but the resulting delays are minimal compared to what could be
expected without interleaving.

36 Chapter 2

Architecture overview
System organization: scalable SMPs

 Figure 11 V2200 and X2000 interleaving of arrays A and B

Cache line
0

Cache line
8

Cache line
16

Cache line
24

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 0

Cache line
2

Cache line
10

Cache line
18

Cache line
26

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 2

Cache line
4

Cache line
12

Cache line
20

Cache line
28

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 4

Cache line
6

Cache line
14

Cache line
22

Cache line
30

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 6

Cache line
1

Cache line
9

Cache line
17

Cache line
25

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 1

Cache line
3

Cache line
11

Cache line
19

Cache line
27

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 3

Cache line
5

Cache line
13

Cache line
21

Cache line
29

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 5

Cache line
7

Cache line
15

Cache line
23

Cache line
31

Bank 0 Bank 1 Bank 2 Bank 3

Memory board 7

A(1:4,1) A(9:12,3) A(5:8,6) A(1:4,9) A(5:8,1) A(1:4,4) A(9:12,6) A(5:8,9)

A(9:12,1) A(5:8,4) A(1:4,7) A(9:12,9) A(1:4,2) A(9:12,4) A(5:8,7) A(1:4,10)

A(1:4,3) A(9:12,5) A(5:8,8) A(1:4,11) A(5:8,3) A(1:4,6) A(9:12,8) A(5:8,11)

Cache line
56

Cache line
36

Cache line
54

Cache line
63

B(9:12,7)

B(1:4,1)

B(1:4,7) B(1:4,10)

A(5:8,2) A(1:4,5) A(9:12,7) A(5:8,10) A(9:12,2) A(5:8,5) A(1:4,8) A(9:12,10)

Chapter 2 37

Architecture overview
System organization: scalable SMPs

Variable-sized pages
Variable-sized pages are used to reduce Translation Lookaside
Buffer (TLB) misses and consequently improve performance. With
variable-sized pages, each TLB entry used can map a larger portion of an
application’s virtual address space. Thus, applications with large
reference sets can be mapped using fewer TLB entries, resulting in fewer
TLB misses. (A TLB is a hardware entity used to translate a virtual
memory reference to a physical page.)

If an application is not experiencing performance degradation due to
TLB misses, using a different page size does not help. Also, if an
application uses too large a page size, fewer pages will be available to
other applications on the system, potentially resulting in increased
paging activity and performance degradation.

Valid page sizes on the PA-8000 and PA-8200 processors are 4K, 16K,
64K, 256K, 1 Mbyte, 4 Mbytes, 16 Mbytes, 64 Mbytes, and 256 Mbytes.
(The default size, which can be configured, is 4K.) Methods for specifying
a page size are described below. However, the user-specified page size is
only a request for a specific size; the operating system takes various
factors into account when selecting the page size.

The following command options and configurable kernel parameters
allow you to specify information regarding page sizes.

• Options to the chatr utility:

– +pi : affects the page size for the application’s text segment

– +pd : affects the page size for the application’s data segment

• Configurable kernel parameters:

– vps_pagesize : represents the default or minimum page size (in
kilobytes) if the user has not used chatr to specify a value; the
default is 4K

– vps_ceiling : represents the maximum page size (in kilobytes) if
the user has not used chatr to specify a value; the default is 16K

– vps_chatr_ceiling : places a restriction on the largest value (in
kilobytes) a user can specify using chatr ; the default is 64 Mbytes

For more information on the chatr utility, see the chatr(1) man page.

38 Chapter 2

Architecture overview
System organization: scalable SMPs

Chapter 3 39

Compiler optimizations

3 Compiler optimizations

This chapter discusses the various optimization levels available with the
Exemplar compilers and explains the optimizations performed at each
level.

The Fortran 90 compiler is located at /opt/fortran90/bin/f90.

The two Fortran 77 compilers are:

• f77 is the Fortran 77 compiler and is located at /opt/fortran/bin/f77

• fort77 is the POSIX-conforming Fortran 77 compiler and is located
at /opt/fortran/bin/fort77

The remainder of this manual refers to the f77 compiler. Any f77
example applies to the fort77 compiler.

The two C compilers are:

• cc is the C compiler and is located at /opt/ansic/bin/cc

• c89 is the POSIX-conforming C compiler and is located at
/opt/ansic/bin/c89

The remainder of this manual refers to the cc compiler. Any cc example
applies to the c89 compiler.

The aC++ compiler is located at /opt/aCC/bin/aCC.

40 Chapter 3

Compiler optimizations
Optimization levels

Optimization levels
Five optimization levels are available for use with the Exemplar
compilers. These options have identical names and perform identical
optimizations, regardless of which compiler you are using. They are
specified on the compiler command line along with any other options you
wish to use. Exemplar compiler optimization levels are summarized in
Table 1.

Table 1 Compiler optimization levels

*The +O4 option is not available in Fortran 90.

Option Description

+O0
(default)

(Machine instruction-level optimizations)
Constant folding and simple register assignment

+O1 (Block-level optimizations)
+O0 optimizations, plus instruction scheduling and
optimizations on basic blocks (A basic block is a linear
sequence of machine instructions with a single entry and a
single exit.)

+O2 (Routine-level optimizations)
+O1 optimizations, plus optimizations within subprograms
in a single file; loop optimizations to reduce pipeline stalls;
analysis of data flow, memory usage, loops, and
expressions

+O3 (File-level optimizations)
+O2 optimizations, plus full optimizations across all
subprograms (including inlining) within a single file; use
of parallelism-related directives and pragmas from the
Exemplar programming model when +Oparallel is also
specified

+O4* (Cross-module optimizations)
+O3 optimizations, plus full optimizations across the
entire application; optimizations include inlining across
the application; the +O4 optimizations are performed at
link time

Chapter 3 41

Compiler optimizations
Optimization levels

These options are cumulative; each option retains the optimizations of
the previous option. For example, entering the following command line
compiles the Fortran program foo.f with all +O2, +O1, and +O0
optimizations shown in Table 1.

% f90 +O2 foo.f

In addition to these options, the +Oparallel option is available for use
at +O3 and above. (+Onoparallel is the default.) When the
+Oparallel option is specified, the compiler:

• Looks for opportunities for parallel execution in loops.

• Honors the parallelism-related directives and pragmas of the
Exemplar programming model. When using
Exemplar Fortran 77 Version 1.2.3 or Exemplar C Version 1.2.3,
+Oexemplar_model (the default) must also be in effect for these
directives and pragmas to be enabled.

The +Onoautopar (no automatic parallelization) option is available for
use with +Oparallel at +O3 and above; +Oautopar is the default.
+Onoautopar causes the compiler to parallelize only those loops that
are immediately preceded by loop_parallel or prefer_parallel
directives or pragmas; for more information, refer to Chapter 4, “Basic
shared-memory programming.”

The +Onodepar (node-parallelism) option is also available for use with
+Oparallel at +O3 and above. This option causes the compiler to
generate node-parallel code (indicated by directives and pragmas that
use the nodes attribute) for a multinode, scalable SMP. (See Chapter 4,
“Basic shared-memory programming,” for information on attributes.)

The +Ononodepar option (the default) causes the compiler to generate
code for a single-node machine. When this option is used, serial code is
generated for node-parallel constructs; thus, node-parallelism is not
implemented. Thread-parallelism—both automatic and
directive-specified—is still implemented.

42 Chapter 3

Compiler optimizations
Using the optimizer

Using the optimizer
Before exploring the various optimizations that are performed, we
should examine what coding guidelines can be followed to assist the
optimizer. This section is broken down into the following subsections:

• General guidelines

• Fortran 90 and Fortran 77 guidelines

• C and C++ guidelines

General guidelines
The coding guidelines presented in this section help the optimizer to
optimize your program, regardless of the language the program is
written in.

• Where possible, use local variables to help the optimizer promote
variables to registers.

• Do not use local variables before they are initialized. When you
request +O2, +O3, or +O4 optimizations, the compiler tries to detect
and indicate violations of this rule. See the section
“+O[no]initcheck ” on page 373 for related information.

• Where possible, use constants instead of variables in arithmetic
expressions such as shift, multiplication, division, or remainder
operations.

• If a loop contains only a procedure call, position the loop inside the
procedure or use a directive to call the loop in parallel—if
appropriate.

• The code generated for a loop termination test is more efficient with a
test against zero than with a test against some other value.
Therefore, where possible, construct loops so the control variable
increases or decreases toward zero.

• Avoid referencing outside the bounds of an array. (Fortran provides
the -C option to check whether your program references outside array
bounds.)

• Avoid passing an incorrect number of arguments to functions.

Chapter 3 43

Compiler optimizations
Using the optimizer

Fortran guidelines
The coding guidelines presented in this section help the optimizer to
optimize Fortran programs.

As part of the optimization process, the compiler gathers information
about the use of variables and passes this information to the optimizer.
The optimizer uses this information to ensure that every code
transformation maintains the correctness of the program, at least to the
extent that the original unoptimized program is correct.

When gathering this information, the compiler assumes that inside a
routine (either a function or a subroutine) the only variables that can be
accessed (directly or indirectly) are:

• COMMON variables declared in the routine

• Local variables

• Parameters to this routine

Local variables include all static and nonstatic variables.

In general, you do not need to be concerned about this assumption.
However, if you have code that violates the assumption, the optimizer
can change the behavior of the program in an undesirable way.

One guideline is to avoid using variables that can be accessed by a
process other than the program. The compiler assumes that the program
is the only process accessing its data. The only exception is the shared
COMMON variable. In this case, optimization will be correct if you properly
use the $OPTIMIZE ASSUME_NO_SHARED_COMMON_PARMS Fortran 77
directive. For more information on OPTIMIZE directives, see Appendix A,
“Standard HP compiler directives and pragmas.”

A final guideline is to avoid using extensive equivalencing and
memory-mapping schemes, where possible.

See the section “General guidelines” on page 42 for additional guidelines.

44 Chapter 3

Compiler optimizations
Using the optimizer

C and C++ guidelines
The coding guidelines presented in this section help the optimizer to
optimize your C and C++ programs.

• Use do loops and for loops in place of while loops. do loops and for
loops are more efficient because opportunities for removing
loop-invariant code are greater.

• Use register variables where needed.

• When using short or char variables or bit-fields, it is more efficient
to use unsigned variables rather than signed because a signed
variable causes an extra instruction to be generated.

• Whenever possible, pass and return pointers to large structs instead
of passing and returning large structs by value.

• Use type-checking tools like lint to help eliminate semantic errors.

• Use local variables for the upper bounds (stop values) of loops; using
local variables may enable the compiler to optimize the loop.

During optimization, the compiler gathers information about the use of
variables and passes this information to the optimizer. The optimizer
uses this information to ensure that every code transformation
maintains the correctness of the program, at least to the extent that the
original unoptimized program is correct.

When gathering this information, the compiler assumes that while
inside a function, the only variables that can be accessed indirectly
through a pointer or by another function call are:

• Global variables (that is, all variables with file scope)

• Local variables that have had their addresses taken either explicitly
by the & operator, or implicitly by the automatic conversion of array
references to pointers

Chapter 3 45

Compiler optimizations
Using the optimizer

In general, you do not need to be concerned about this assumption.
Standard-compliant C and C++ programs do not violate this assumption.
However, if you have code that does violate this assumption, the
optimizer can change the behavior of the program in an undesirable way.
In particular, you should follow the coding practices below to ensure
correct program execution for optimized code:

• Avoid using variables that are accessed by external processes. Unless
a variable is declared with the volatile attribute, the compiler will
assume that a program’s data is accessed only by that program. Using
the volatile attribute may significantly slow down a program.

• Avoid accessing an array other than the one being subscripted. For
example, the construct a[b-a] , where a and b are the same type of
array, actually references the array b, because it is equivalent to
*(a+(b-a)) , which is equivalent to *b . Using this construct might
yield unexpected optimization results.

• Avoid referencing outside the bounds of the objects a pointer is
pointing to. All references of the form *(p+i) are assumed to remain
within the bounds of the variable or variables that p was assigned to
point to.

• Do not rely on the memory layout scheme when manipulating
pointers; incorrect optimizations may result. For example, if p is
pointing to the first member of a structure, do not assume that p+1
points to the second member of the structure. Another example: if p is
pointing to the first in a list of declared variables, p+1 is not
necessarily pointing to the second variable in the list.

See the section “General guidelines” on page 42 for additional guidelines.

46 Chapter 3

Compiler optimizations
+O0 level optimizations

+O0 level optimizations
At optimization level +O0, the compiler performs the following
optimizations that span no more than a single source statement:

• Constant folding

• Partial evaluation of test conditions

• Simple register assignment

• Data alignment on natural boundaries

The default optimization level is +O0.

Constant folding
Constant folding is the replacement of operations on constants with the
result of the operation. For example, Y=5+7 is replaced with Y=12.

More advanced constant folding is performed at optimization level +O2.
See the section “Advanced constant folding and propagation” on page 54
for more information.

Partial evaluation of test conditions
Where possible, the compiler determines the truth value of a logical
expression without evaluating all the operands (also known as
short-circuiting). Consider the Fortran example below:

IF ((I .EQ. J) .OR. (I .EQ. K)) GOTO 100

If (I .EQ. J) is true, control immediately goes to 100 ; otherwise,
(I .EQ. K) must be evaluated before control can go to 100 or the
following statement.

Do not rely upon partial evaluation if you use function calls in the logical
expression because:

• There is no guarantee on the order of evaluation.

• A procedure or function call can have side effects on variable values
that may or may not be partially evaluated correctly.

Chapter 3 47

Compiler optimizations
+O0 level optimizations

Simple register assignment
The compiler may place frequently used variables in registers to avoid
more costly accesses to memory.

A more advanced register assignment algorithm is used at optimization
level +O2. See the section “Global register allocation” on page 52 for more
information.

Data alignment on natural boundaries
The compiler automatically aligns data objects to their natural
boundaries in memory, providing more efficient access to data. This
means that a data object’s address is integrally divisible by the length of
its data type; for example, REAL*8 objects have addresses integrally
divisible by 8 bytes.

NOTE Aliases can inhibit data alignment. Be especially careful when
equivalencing arrays in Fortran.

You should declare scalar variables in order from longest to shortest data
length to ensure the efficient layout of such aligned data in memory. This
minimizes the amount of padding the compiler has to do to get the data
onto its natural boundary.

Consider the following Fortran example:

C CAUTION: POORLY ORDERED DATA FOLLOWS:
LOGICAL*2 BOOL
INTEGER*8 A, B
REAL*4 C
REAL*8 D

Here, the compiler must insert 6 blank bytes after BOOL in order to
correctly align A, and it must insert 4 blank bytes after C to correctly
align D.

The same data is more efficiently ordered as shown in the following
example:

C PROPERLY ORDERED DATA FOLLOWS:
 INTEGER*8 A, B
 REAL*8 D
 REAL*4 C
 LOGICAL*2 BOOL

48 Chapter 3

Compiler optimizations
+O1 level optimizations

Natural boundary alignment is performed on all data. Do not confuse It
with cache line boundary alignment, which is performed as described in
the section “Data alignment” on page 28. Also discussed in Chapter 2 are
the align_cti directive and pragma, which facilitate CTIcache line
boundary alignment.

+O1 level optimizations
At optimization level +O1, the compiler performs optimizations on a
block level. The compiler also continues to perform the optimizations
performed at +O0.

The +O1 optimizations are:

• Branch optimization

• Dead code elimination

• Faster register allocation

• Instruction scheduler

• Peephole optimizations

Chapter 3 49

Compiler optimizations
+O1 level optimizations

Branch optimization
The branch optimization involves traversing the procedure and
transforming branch instruction sequences into more efficient sequences
where possible. Examples of possible transformations are:

• Deleting branches whose target is the fall-through instruction (in
other words, the target is two instructions away).

• Changing the target of the first branch to be the target of the second
(unconditional) branch when the target of a branch is an
unconditional branch.

• Transforming an unconditional branch at the bottom of a loop that
branches to a conditional branch at the top of the loop into a
conditional branch at the bottom of the loop.

• Changing an unconditional branch to the exit of a procedure into an
exit sequence where possible.

• Changing conditional or unconditional branch instructions that
branch over a single instruction into a conditional nullification in the
following instruction.

• Looking for conditional branches over unconditional branches, where
the sense of the first branch could be inverted and the second branch
deleted. These result from null THEN clauses and from THEN clauses
that only contain GOTO statements.

For example, in the following Fortran example:

 IF (L) THEN
 A=A*2
 ELSE
 GOTO 100
 ENDIF
 B=A+1
100 C=A*10

becomes:

 IF (.NOT. L) GOTO 100
 A=A*2
 B=A+1
100 C=A*10

50 Chapter 3

Compiler optimizations
+O1 level optimizations

Dead code elimination
Dead code elimination removes unreachable code that is never executed.

For example, in C:

if(0)
 a = 1;
else
 a = 2;

becomes:

 a = 2;

Faster register allocation
Faster register allocation involves:

• Inserting entry and exit code

• Generating code for operations such as multiplication and division

• Eliminating unnecessary copy instructions

• Allocating actual registers to the dummy registers in instructions

Faster register allocation, when used at +O0 or +O1, analyzes register
use faster than the global register allocation performed at +O2.

Instruction scheduler
The instruction scheduler optimization performs the following:

• Reordering the instructions in a basic block to improve memory
pipelining. For example, where possible, a load instruction is
separated from the use of the loaded register.

• Following a branch instruction with an instruction that can be
executed as the branch occurs, where possible.

• Scheduling floating-point instructions.

Chapter 3 51

Compiler optimizations
+O2 level optimizations

Peephole optimizations
A peephole optimization is a machine-dependent optimization that
makes a pass through low-level assembly-like instruction sequences of
the program, applying patterns to a small window (peephole) of code
looking for optimization opportunities. The optimizations performed are:

• Changing the addressing mode of instructions so they use shorter
sequences

• Replacing low-level assembly-like instruction sequences with faster
(usually shorter) sequences, and removing redundant register loads
and stores

+O2 level optimizations
At optimization level +O2, the compiler performs optimizations on a
routine level. The compiler continues to perform the optimizations
performed at +O1, with the following additions:

• Global register allocation

• Strength reduction of induction variables and constants

• Common subexpression elimination

• Advanced constant folding and propagation (Simple constant folding
is done at +O0.)

• Loop-invariant code motion

• Store/copy optimization

• Unused definition elimination

• Software pipelining

• Register reassociation

• Loop unrolling

52 Chapter 3

Compiler optimizations
+O2 level optimizations

Global register allocation
Scalar variables can often be stored in registers, eliminating the need for
costly memory accesses. Global register allocation (GRA) attempts to
store commonly referenced scalar variables in registers throughout the
code in which they are most frequently accessed.

The compiler automatically determines which scalar variables are the
best candidates for GRA and allocates registers accordingly.

GRA can sometimes cause problems when parallel threads attempt to
update a shared variable that has been allocated a register. In this case,
each parallel thread will allocate a register for the shared variable; it is
then unlikely that the copy in memory will be updated correctly as each
thread executes.

Parallel assignments to the same shared variables from multiple threads
make sense only if the assignments are contained inside critical or
ordered sections, or are executed conditionally based on thread ID. GRA
will not allocate registers for shared variables that are assigned within
critical or ordered sections, as long as the sections are implemented
using compiler directives or sync_routine -defined functions (refer to
Chapter 6, “Advanced shared-memory programming”). However, for
conditional assignments based on thread ID, GRA may allocate registers
that may cause wrong answers when stored.

In such cases, GRA can be disabled only for shared variables that are
visible to multiple threads by specifying the +Onosharedgra compiler
option.

In procedures with large numbers of loops, GRA can contribute to long
compile times; therefore, GRA is only performed if the number of loops in
the procedure is below a predetermined limit. You can remove this limit
(and possibly increase compile time) by specifying the +Onolimit
compiler option.

This optimization is also known as coloring register allocation because of
the similarity to map-coloring algorithms in graph theory.

Chapter 3 53

Compiler optimizations
+O2 level optimizations

Register allocation in C and C++
In C and C++, you can help the optimizer understand when certain
variables are heavily used within a function by declaring these variables
with the register qualifier.

The global register allocator may override your choices and promote a
variable not declared register to a register over a variable that is
declared register , based on estimated speed improvements.

Strength reduction of induction variables
and constants
This optimization removes expressions that are linear functions of a loop
counter and replaces each of them with a variable that contains the
value of the function. Variables of the same linear function are computed
only once. This optimization also replaces multiplication instructions
with addition instructions wherever possible.

For example, in the following C/C++ code:

for (i=0; i<25; i++) {
 r[i] = i * k;
}

becomes:

t1 = 0;
for (i=0; i<25; i++) {
 r[i] = t1;
 t1 += k;
}

54 Chapter 3

Compiler optimizations
+O2 level optimizations

Common subexpression elimination
The common subexpression elimination optimization identifies
expressions that appear more than once and have the same result,
computes the result, and substitutes the result for each occurrence of the
expression. The subexpression types include instructions that load
values from memory, as well as arithmetic evaluation.

In Fortran, for example, the code:

A = X + Y + Z
B = X + Y + W

becomes:

T1 = X + Y
A = T1 + Z
B = T1 + W

Advanced constant folding and propagation
Constant folding computes the value of a constant expression at compile
time. Constant propagation is the automatic compile-time replacement of
variable references with a constant value previously assigned to that
variable.

For example, consider the following C/C++ code:

a = 10;
b = a + 5;
c = 4 * b;

Once a is assigned, its value is propagated to the statement where b is
assigned so that the assignment reads:

b = 10 + 5;

The expression 10 + 5 can then be folded. Now that b has been assigned
a constant, the value of b is propagated to the statement where c is
assigned. After all the folding and propagation, the original code is
replaced by:

a = 10;
b = 15;
c = 60;

Chapter 3 55

Compiler optimizations
+O2 level optimizations

Loop-invariant code motion
The loop-invariant code motion optimization recognizes instructions
inside a loop whose results do not change and then moves the
instructions outside the loop. This optimization ensures that the
invariant code is only executed once.

For example, the C/C++ code:

x = z;
for(i=0; i<10; i++)
 a[i] = 4 * x + i;

becomes:

x = z;
t1 = 4 * x;
for(i=0; i<10; i++)
 a[i] = t1 + i;

Store/copy optimization
Where possible, the store/copy optimization substitutes registers for
memory locations, by replacing store instructions with copy instructions
and deleting load instructions.

56 Chapter 3

Compiler optimizations
+O2 level optimizations

Unused definition elimination
The unused definition elimination optimization removes unused memory
location and register definitions. These definitions are often a result of
transformations made by other optimizations.

For example, the function:

f(int x){
 int a,b,c;

 a = 1;
 b = 2;
 c = x * b;
 return c;
}

becomes:

f(int x) {
 int a,b,c;

 c = x * 2;
 return c;
}

The assignment a = 1 is removed because a is not used after it is
defined. Due to another +O2 optimization (constant propagation), the
c = x * b statement becomes c = x * 2 . The assignment b = 2 is
then removed as well.

Chapter 3 57

Compiler optimizations
+O2 level optimizations

Software pipelining
Software pipelining is a code transformation that optimizes program
loops. It rearranges the order in which instructions are executed in a
loop. It generates code that overlaps operations from different loop
iterations. Software pipelining is particularly useful for loops that
contain arithmetic operations on REAL*4 and REAL*8 data in Fortran or
on float and double data in C or C++.

The goal of this optimization is to avoid processor stalls due to memory
or hardware pipeline latencies. The software pipelining transformation
partially unrolls a loop and adds code before and after the loop to achieve
a high degree of optimization within the loop.

You can enable [disable] software pipelining using the +O[no]pipeline
command-line option at +O2 and above. The default is +Opipeline . Use
+Onopipeline if a smaller program size and/or faster compile time is
more important than faster execution speed.

The following pseudo-code shows a loop before and after the software
pipelining optimization. Four significant things happen:

• A portion of the first iteration of the loop is performed before the loop.

• A portion of the last iteration of the loop is performed after the loop.

• The loop is unrolled twice.

• Operations from different loop iterations are interleaved with
each other.

Consider the following C/C++ for loop:

#define SIZ 10000
float x[SIZ], y[SIZ];
int i;
init();
for (i = 0;i<= SIZ;i++)
 x[i] = x[i] / y[i] + 4.00;

58 Chapter 3

Compiler optimizations
+O2 level optimizations

When this loop is compiled with software pipelining, the optimization
can be expressed in pseudo-code as follows:

This transformation stores intermediate results of the division
instructions in unique registers (noted as n and m). These registers are
not referenced until several instructions after the division operations.
This decreases the possibility that the long latency period of the division
instructions will stall the instruction pipeline and cause processing
delays.

R1 = 0; Initialize array index

R2 = 4.00; Load constant value

R3 = X[0]; Load first X value

R4 = Y[0]; Load first Y value

R5 = R3 / R4; Perform division on first element: n = X[0]/Y[0]

do { Begin loop

R6 = R1; Save current array index

R1++; Increment array index

R7 = X[R1]; Load current X value

R8 = Y[R1]; Load current Y value

R9 = R5 + R2; Perform addition on prior row: X[i] = n + 4.00

R10 = R7 / R8; Perform division on current row: m = X[i+1]/Y[i+1]

X[R6] = R9; Save result of operations on prior row

R6 = R1; Save current array index

R1++; Increment array index

R3 = X[R1]; Load next X value

R4 = Y[R1]; Load next Y value

R11 = R10 + R2; Perform addition on current row: X[i+1] = m + 4.00

R5 = R3 / R4; Perform division on next row: n = X[i+2]/Y[i+2]

X[R6] = R11 ; Save result of operations on current row

} while (R1 <= 100); End loop

R9 = R5 + R2; Perform addition on last row: X[i+2] = n + 4.00

X[R6] = R9; Save result of operations on last row

Chapter 3 59

Compiler optimizations
+O2 level optimizations

Prerequisites of Pipelining
Software pipelining is attempted on a loop that meets the following
criteria:

• It is the innermost loop

• There are no branches or function calls within the loop

• The loop is of moderate size

This optimization produces slightly larger program files and increases
compile time. It is most beneficial in programs containing loops that are
executed a large number of times.

Register reassociation
Array references often require one or more instructions to compute the
virtual memory address of the array element specified by the subscript
expression. The register reassociation optimization implemented in
PA-RISC compilers tries to reduce the cost of computing the virtual
memory address expression for array references found in loops.

Within loops, the virtual memory address expression can be rearranged
and separated into a loop-variant term and a loop-invariant term.
Loop-variant terms are those items whose values may change from one
iteration of the loop to another. Loop-invariant terms are those items
whose values are constant throughout all iterations of the loop. The
loop-variant term corresponds to the difference in the virtual memory
address associated with a particular array reference from one iteration of
the loop to the next.

The register reassociation optimization dedicates a register to track the
value of the virtual memory address expression for one or more array
references in a loop and updates the register appropriately in each
iteration of a loop.

The register is initialized outside the loop to the loop-invariant portion of
the virtual memory address expression, and the register is incremented
or decremented within the loop by the loop-variant portion of the virtual
memory address expression.

The net result is that array references in loops are converted into
equivalent, but more efficient, pointer dereferences.

60 Chapter 3

Compiler optimizations
+O2 level optimizations

Consider the following C/C++ code:

int a[10][20][30];

void example (void)
{
 int i, j, k;

 for (k = 0; k < 10; k++)
 for (j = 0; j < 10;j++)
 for (i = 0; i < 10; i++)
 a[i][j][k] = 1;
}

After register reassociation is applied, the innermost loop becomes:

int a[10][20][30];

void example (void)
{
 int i, j, k;
 register int (*p)[20][30];

 for (k = 0; k < 10; k++)
 for (j = 0; j < 10; j++)
 for (p = (int (*)[20][30]) &a[0][j][k], i = 0; i < 10; i++)
 *(p++[0][0]) = 1;
}

In the above example, the compiler-generated temporary register
variable, p, strides through the array a in the innermost loop. This
register pointer variable is initialized outside the innermost loop and
auto-incremented within the innermost loop as a side-effect of the
pointer dereference.

Register reassociation can often enable another loop optimization. After
performing the register reassociation optimization, the loop variable may
be needed only to control the iteration count of the loop. If this is the
case, the original loop variable can be eliminated altogether by using the
PA-RISC ADDIB and ADDB machine instructions to control the loop
iteration count.

You can enable [disable] register reassociation using the
+O[no]regreassoc command-line option at +O2 and above. The default
is +Oregreassoc .

Chapter 3 61

Compiler optimizations
+O2 level optimizations

Loop unrolling
Loop unrolling increases a loop’s step value and replicates the loop body.
Each replication is appropriately offset from the induction variable so
that all iterations are performed, given the new step.

Unrolling can be total or partial. Total unrolling involves eliminating the
loop structure completely by replicating the loop body a number of times
equal to the iteration count and replacing the iteration variable with
constants. This makes sense only for loops with small iteration counts.

Consider the following Fortran example:

SUBROUTINE FOO(A,B)
REAL A(10,10), B(10,10)
DO J=1, 4
 DO I=1, 4
 A(I,J) = B(I,J)
 ENDDO
ENDDO
END

This loop nest is completely unrolled as shown below:

A(1,1) = B(1,1)
A(2,1) = B(2,1)
A(3,1) = B(3,1)
A(4,1) = B(4,1)

A(1,2) = B(1,2)
A(2,2) = B(2,2)
A(3,2) = B(3,2)
A(4,2) = B(4,2)

A(1,3) = B(1,3)
A(2,3) = B(2,3)
A(3,3) = B(3,3)
A(4,3) = B(4,3)

A(1,4) = B(1,4)
A(2,4) = B(2,4)
A(3,4) = B(3,4)
A(4,4) = B(4,4)

62 Chapter 3

Compiler optimizations
+O2 level optimizations

Partial unrolling is performed on loops with larger or unknown iteration
counts. It retains the loop structure, but replicates the body a number of
times equal to the unroll factor and adjusts references to the iteration
variable accordingly.

Consider the following Fortran example:

DO I = 1, 100
 A(I) = B(I) + C(I)
ENDDO

This example can be unrolled to a depth of four as shown below:

DO I = 1, 100, 4
 A(I) = B(I) + C(I)
 A(I+1) = B(I+1) + C(I+1)
 A(I+2) = B(I+2) + C(I+2)
 A(I+3) = B(I+3) + C(I+3)
ENDDO

Each iteration of the loop now computes four values of A instead of one
value. The compiler also generates code for the case where the range is
not evenly divisible by the unroll factor.

Loop unrolling and the unroll factor can be controlled using the
+O[no]loop_unroll[= unroll_factor] option. See Appendix D,
“Optimization options,” for more information on this option.

Some loop transformations cause loops to be fully or partially replicated.
Because unlimited loop replication can significantly increase compile
times, loop replication is limited by default. You can increase this limit
(and possibly increase your program’s compile time and code size) by
specifying the +Onosize and +Onolimit compiler options.

Chapter 3 63

Compiler optimizations
+O3 level optimizations

+O3 level optimizations
The +O3 optimizations include the +O2 optimizations, plus full
optimization across all subprograms within a single file. The +O3
optimizations include:

• Inlining within a single source file

• Cloning within a single source file

• Test promotion

• Data localization

• Strip mining

• Loop distribution

• Loop interchange

• Loop blocking

• Loop fusion

• Loop unroll and jam

• Parallelization

Also, +O3 is the first optimization level where +Oparallel is available.
Using +Oparallel at this optimization level (and at +O4) enables:

• Automatic and directive-specified loop parallelization

• Directive-specified task parallelization

• Directive-specified region parallelization

NOTE The HP Exemplar aC++ compiler does not support directive-specified
parallelization. It does however support the compiler parallelization
generated using the +Oparallel option.

At +O3, all the directives and pragmas of the Exemplar programming
model are available in the Fortran 90, Fortran 77, and C compilers. See
Chapter 4, “Basic shared-memory programming,” Chapter 5,
“Memory classes,” and Chapter 6, “Advanced shared-memory
programming,” for information on using the various features of the
Exemplar programming model. (The HP Exemplar aC++ compiler does
not support the pragmas of the Exemplar programming model.)

64 Chapter 3

Compiler optimizations
+O3 level optimizations

The +O3 optimizations produce faster runtime code than +O2 on code
that frequently calls small functions within a file. Linking with +O3
optimizations is faster than linking with +O4 optimizations.

Inlining within a single source file
Inlining substitutes selected function calls with copies of the function’s
object code. Only functions that meet the optimizer’s criteria are inlined.
Inlining may result in slightly larger executable files. However, this
increase in size is offset by the elimination of time-consuming procedure
calls and procedure returns.

The following is an example of inlining at the source code level. Before
inlining, the source file looks like this:

/* Return the greatest common divisor of two positive integers, */
/* int1 and int2, computed using Euclid's algorithm. (Return 0 */
/* if either is not positive.) */

int gcd(int1,int2)
 int int1;
 int int2;
{
 int inttemp;

 if ((int1 <= 0) || (int2 <= 0)) {
 return(0);
 }
 do {
 if (int1 < int2) {
 inttemp = int1;
 int1 = int2;
 int2 = inttemp;
 }
 int1 = int1 - int2;
 } while (int1 > 0);
 return(int2);
}

main()
{
 int xval,yval,gcdxy;
 .
 . /* statements before call to gcd */
 .
 gcdxy = gcd(xval,yval);
 .
 . /* statements after call to gcd */
 .
}

Chapter 3 65

Compiler optimizations
+O3 level optimizations

After inlining, main looks like this:

main()
{
 int xval,yval,gcdxy;
 .
 . /* statements before inlined version of gcd */
 .
 {
 int int1;
 int int2;

 int1 = xval;
 int2 = yval;
 {
 int inttemp;

 if ((int1 <= 0) || (int2 <= 0)){
 gcdxy = (0);
 goto AA003;
 }
 do {
 if (int1 < int2){
 inttemp = int1;
 int1 = int2;
 int2 = inttemp;
 }
 int1 = int1 - int2;
 } while (int1 > 0);
 gcdxy = (int2);
 }
 }
AA003 : ;
 .
 . /* statements after inlined version of gcd */
 .
}

At +O3, inlining is performed within a file; at +O4, it is performed across
files. Inlining is affected by the +O[no]inline[= namelist] and
+Oinline_budget= n command-line options. See Appendix D,
“Optimization options,” for more information.

Cloning within a single source file
Cloning is the replacement of a call to a routine by a call to a clone of that
routine. The clone is optimized differently than the original routine.
Cloning can expose additional opportunities for interprocedural
optimization. At +O3, cloning is performed within a file; at +O4, it is
performed across files. Cloning is enabled by default; it can be disabled
by specifying the +Onoinline command-line option.

66 Chapter 3

Compiler optimizations
+O3 level optimizations

Test promotion
Test promotion involves promoting a test out of the loop that encloses it
by replicating the containing loop(s) for each branch of the test. The
replicated loops contain fewer tests than the originals, or no tests at all,
so the loops execute much faster. Multiple tests can be promoted, and
copies of the loop are made for each test.

Consider the following Fortran loop:

DO I=1, 100
 DO J=1, 100
 IF(FOO .EQ. BAR) THEN
 A(I,J) = I + J
 ELSE
 A(I,J) = 0
 ENDIF
 ENDDO
ENDDO

Test promotion (and loop interchange) produces the following code:

IF(FOO .EQ. BAR) THEN
 DO J=1, 100
 DO I=1, 100
 A(I,J) = I + J
 ENDDO
 ENDDO
ELSE
 DO J=1, 100
 DO I=1, 100
 A(I,J) = 0
 ENDDO
 ENDDO
ENDIF

For loops containing large numbers of tests, loop replication can greatly
increase the size of the code.

Each DO loop in Fortran and for loop in C and C++ whose bounds are not
known at compile-time is implicitly tested to check that the loop will
iterate at least once. This test may be promoted, with the promotion
noted in the Optimization Report. If you see unexpected promotions in
the report, this implicit testing may be the cause. For more information
on the Optimization Report, see Appendix E, “Optimization Report.”

Chapter 3 67

Compiler optimizations
+O3 level optimizations

Data localization
Data localization occurs by means of various loop transformations that
take place at +O2 or +O3. Because optimizations are cumulative,
however, specifying +O3 or +O4 takes advantage of the transformations
that happen at +O2.

Table 2 Loop transformations affecting data localization

Data localization keeps heavily used data in the processor data cache,
thus eliminating the need for more costly CTIcache (on multinode,
scalable SMPs) or memory accesses.

Loops that manipulate arrays are the main candidates for localization
optimizations. Most of these loops are eligible for the various
transformations the compiler performs at +O3 to achieve localization.
These transformations are explained in detail in this section.

Some loop transformations cause loops to be fully or partially replicated.
Because unlimited loop replication can significantly increase compile
times, loop replication is limited by default. You can increase this limit
(and possibly increase your program’s compile time and code size) by
specifying the +Onosize and +Onolimit compiler options.

NOTE Most of the following code examples demonstrate the optimization in
question by showing the original code first and optimized code second.
While the optimized code is shown in the same language as the original
code, this is for illustrative purposes only.

Loop transformation Options required for behavior to occur

Loop unrolling +O2 +Oloop_unroll
(+Oloop_unroll is on by default at +O2 and above)

Loop distribution +O3 +Oloop_transform
(+Oloop_transform is on by default at +O3 and above)

Loop interchange +O3 +Oloop_transform

Loop blocking +O3 +Oloop_transform +Oloop_block
(+Oloop_block is off by default)

Loop fusion +O3 +Oloop_transform

Loop unroll and jam +O3 +Oloop_transform +Oloop_unroll_jam
(+Oloop_unroll_jam is on by default at +O3 and above)

68 Chapter 3

Compiler optimizations
+O3 level optimizations

Inhibitors of localization
Any of the following conditions can inhibit or prevent data localization:

• Loop-carried dependences

• Aliased scalar or array variables

• Multiple loop entries or exits

• RETURN or STOP statements in Fortran

• return or exit statements in C

• throw statements in C++

• Computed or assigned GOTO statements in Fortran

• Procedure calls

• I/O statements

The sections below discuss these conditions and their effects on data
localization.

Loop-carried dependences
A loop-carried dependence (LCD) exists when one iteration of a loop
assigns a value to an address that is referenced or assigned on another
iteration. In some cases, LCDs can inhibit loop interchange, thereby
inhibiting localization. Typically, these cases involve array indexes that
are offset in opposite directions. The Fortran loop below contains an
interchange-inhibiting LCD:

DO I = 2, M
 DO J = 2, N
 A(I,J) = A(I-1,J-1) + A(I-1,J+1)
 ENDDO
ENDDO

C and C++ loops can contain similar constructs, but to simplify
illustration, we will only consider this Fortran example.

As written, this loop uses A(I-1,J-1) and A(I-1,J+1) to compute
A(I,J) . Table 3 shows the sequence in which values of A are computed
for this loop.

Chapter 3 69

Compiler optimizations
+O3 level optimizations

Table 3 Computation sequence of A(I,J) : original loop

As enumerated in Table 3, the original loop computes the elements of the
current row of A using the elements of the previous row of A. For all rows
except the first (which is never written), the values contained in the
previous row must be written before the current row is computed. This
dependence must be honored for the loop to yield its intended results. If a
row element of A is computed before the previous row elements (that it
depends on) are computed, the result will be incorrect.

Interchanging the I and J loops yields the following code:

DO J = 2, N
 DO I = 2, M
 A(I,J) = A(I-1,J+1) + A(I-1,J-1)
 ENDDO
ENDDO

After interchange, the loop computes values of A in the sequence shown
in Table 4 below.

I J A(I,J) A(I-1,J-1) A(I-1,J+1)

2 2 A(2,2) A(1,1) A(1,3)

2 3 A(2,3) A(1,2) A(1,4)

2 4 A(2,4) A(1,3) A(1,5)

...

3 2 A(3,2) A(2,1) A(2,3)

3 3 A(3,3) A(2,2) A(2,4)

3 4 A(3,4) A(2,3) A(2,5)

...

70 Chapter 3

Compiler optimizations
+O3 level optimizations

Table 4 Computation sequence of A(I,J) : interchanged loop

Here, the elements of the current column of A are computed using the
elements of the previous column and the next column of A.

The problem here is that columns of A are being computed using
elements from the next column, which have not been written yet. This
computation violates the dependence illustrated in Table 3. The
element-to-element dependences in both the original and interchanged
loop are illustrated in Figure 12.

 Figure 12 LCDs in original and interchanged loops

I J A(I,J) A(I-1,J-1) A(I-1,J+1)

2 2 A(2,2) A(1,1) A(1,3)

3 2 A(3,2) A(2,1) A(2,3)

4 2 A(4,2) A(3,1) A(3,3)

...

2 3 A(2,3) A(1,2) A(1,4)

3 3 A(3,3) A(2,2) A(2,4)

4 3 A(4,3) A(3,2) A(3,4)

...

1 2 3 ...

1

2

3

..
.

I

J
1 2 3 ...

1

2

3

..
.

I

J

Original loop Interchanged loop

Chapter 3 71

Compiler optimizations
+O3 level optimizations

The arrows in Figure 12 represent dependences from one element to
another; the arrows point at elements that depend on the elements at the
arrows’ bases. Shaded elements indicate a typical row or column
computed in the inner loop:

• Darkly shaded elements have already been computed.

• Lightly shaded elements have not yet been computed.

This figure helps to illustrate the sequence in which the array elements
are cycled through by the respective loops: the original loop cycles across
all the columns in a row, then moves on to the next row; the interchanged
loop cycles down all the rows in a column first, then moves on to the next
column.

Interchange is only inhibited by loops that contain dependences that
change when the loop is interchanged. Most LCDs do not fall into this
category and thus do not inhibit data localization.

Occasionally the compiler encounters an apparent LCD. If it cannot
determine whether the LCD actually inhibits interchange, it
conservatively avoids interchanging the loop.

The following Fortran example illustrates this situation:

DO I = 1, N
 DO J = 2, M
 A(I,J) = A(I+IADD,J+JADD) + B(I,J)
 ENDDO
ENDDO

An analogous C example follows:

for(j=0;j<n;j++)
 for(i=1;i<m;i++)
 a[i][j] = a[i+IADD][j+JADD] + b[i][j];

In these examples, if IADD and JADD are either both positive or both
negative, the loop contains no interchange-inhibiting dependence.
However, if one and only one of the variables is negative, interchange is
inhibited. The compiler has no way of knowing the runtime values of
IADD and JADD, so it will avoid interchanging the loop. If you are sure
the IADD and JADD will either both be negative or both be positive, you
can indicate to the compiler that the loop is free of dependences using the
no_loop_dependence compiler directive or pragma.

72 Chapter 3

Compiler optimizations
+O3 level optimizations

In Fortran, this directive has the form:

C$DIR NO_LOOP_DEPENDENCE(namelist)

The no_loop_dependence C pragma has the form:

#pragma _CNX no_loop_dependence(namelist)

where

namelist is a comma-separated list of variables and/or arrays
that have no dependences for the immediately
following loop.

The previous Fortran loop can be interchanged when the
NO_LOOP_DEPENDENCE directive is specified for A on the J loop as shown
in the following code:

 DO I = 1, N
C$DIR NO_LOOP_DEPENDENCE(A)
 DO J = 2, M
 A(I,J) = A(I+IADD,J+JADD) + B(I,J)
 ENDDO
 ENDDO

The no_loop_dependence pragma can similarly be used on the C loop:

for(i=0;i<n;i++)
#pragma _CNX no_loop_dependence(a)
 for(j=1;j<m;j++)
 a[i][j] = a[i+IADD][j+JADD] + b[i][j];

If IADD and JADD acquire opposite-signed values at runtime, these loops
may result in incorrect answers.

Dependences and loop fusion
In some cases, loop fusion is also inhibited by simpler dependences than
those that inhibit interchange. Consider the following Fortran example:

DO I = 1, N-1
 A(I) = B(I+1) + C(I)
ENDDO
DO J = 1, N-1
 D(J) = A(J+1) + E(J)
ENDDO

Chapter 3 73

Compiler optimizations
+O3 level optimizations

It would appear that this loop would profit from fusion. Fusing it would
yield the following incorrect code:

DO ITEMP = 1, N-1
 A(ITEMP) = B(ITEMP+1) + C(ITEMP)
 D(ITEMP) = A(ITEMP+1) + E(ITEMP)
ENDDO

This loop produces different answers than the original loops, because the
reference to A(ITEMP+1) in the fused loop accesses a value that has not
been assigned yet, while the analogous reference to A(J+1) in the
original J loop accesses a value that was assigned in the original I loop.

An analogous C/C++ example follows:

for(i=0; i<n-1; i++)
 a[i] = b[i+1] + c[i];
for(j=0; j<n-1; j++)
 d[j] = a[j+1] + e[j];

After fusion:

for(itemp=0; itemp<n-1; itemp++) {
 a[itemp] = b[itemp+1] + c[itemp];
 d[itemp] = a[itemp+1] + e[itemp];
}

Aliasing
An alias is an alternate name for some object. Aliasing occurs in a
program when two or more names are attached to the same memory
location. Aliasing is typically caused in Fortran by use of the
EQUIVALENCE statement and in C and C++ by use of pointers. Passing
identical actual arguments into different dummy arguments in a Fortran
subprogram can also cause aliasing, as can passing the same address
into different pointers in a C or C++ function.

74 Chapter 3

Compiler optimizations
+O3 level optimizations

Aliasing interferes with data localization because it can mask LCDs, as
shown in the following Fortran example, where the arrays A and B have
been equivalenced:

INTEGER A(100,100), B(100,100), C(100,100)
EQUIVALENCE(A,B)
.
.
.
DO I = 1, N
 DO J = 2, M
 A(I,J) = B(I-1,J+1) + C(I,J)
 ENDDO
ENDDO

This loop has the same problem as the loop used to demonstrate LCDs in
the previous section; because A and B refer to the same array, the loop
contains an LCD on A, which prevents interchange and thus interferes
with localization.

The C/C++ equivalent of this loop follows. Keep in mind that C and C++
store arrays in row-major order, which requires different subscripting to
access the same elements.

int a[100][100], c[100][100], i, j;
int (*b)[100];
b = a;
.
.
.
for(i=1;i<n;i++){
 for(j=0;j<m;j++){
 a[j][i] = b[j+1][i-1] + c[j][i];
 }
}

Fortran’s EQUIVALENCE statement can be imitated in C and C++;
through the use of pointers, arrays can be effectively equivalenced, as
shown.

Passing the same address into different dummy procedure arguments
can yield the same result. Fortran passes arguments by reference while
C and C++ pass them by value, but pass-by-reference can be simulated in
C and C++ by passing the argument’s address into a pointer in the
receiving procedure or in C++ by using references.

Chapter 3 75

Compiler optimizations
+O3 level optimizations

The following Fortran code exhibits the same aliasing problem as the
previous example, but the alias is created by passing the same actual
argument into different dummy arguments.

NOTE The code below violates the Fortran standard.

.

.

.
CALL ALI(A,A,C)
.
.
.
SUBROUTINE ALI(A,B,C)
INTEGER A(100,100), B(100,100), C(100,100)
DO J = 1, N
 DO I = 2, M
 A(I,J) = B(I-1,J+1) + C(I,J)
 ENDDO
ENDDO
.
.
.

76 Chapter 3

Compiler optimizations
+O3 level optimizations

The following (legal ANSI C) code shows the same argument-passing
problem in C:

.

.

.
ali(&a,&a,&c);
.
.
.
void ali(a,b,c)
int a[100][100], b[100][100], c[100][100];
{
 int i,j;
 for(j=0;j<n;j++){
 for(i=1;i<m;i++){
 a[j][i] = b[j+1][i-1] + c[j][i];
 }
 }
}

Multiple loop entries or exits
Loops that contain multiple entries or exits inhibit data localization
because they cannot safely be interchanged. Extra loop entries are
usually created when a loop contains a branch destination. Extra exits
are more common; they are often created in C and C++ using the break
statement and in Fortran using the GOTO statement.

Consider the following C/C++ code:

for(j=0;j<n;j++){
 for(i=0;i<m;i++){
 a[i][j] = b[i][j] + c[i][j];
 if(a[i][j] == 0) break;
 .
 .
 .
 }
}

Interchanging this loop would change the order in which the values of a
are computed; the original loop computes a column-by-column, whereas
the interchanged loop would compute it row-by-row. This means that the

Chapter 3 77

Compiler optimizations
+O3 level optimizations

interchanged loop may hit the break statement and exit after computing
a different set of elements than the original loop computes. Interchange
therefore may cause the results of the loop to differ and must be avoided.

A similar loop construct written in Fortran follows:

 DO J = 1, M
 DO I = 1, N
 A(I,J) = B(I,J) + C(I,J)
 IF(A(I,J) .EQ. 0) GOTO 50
 .
 .
 .
 ENDDO
 ENDDO
 .
 .
 .
50 CONTINUE

Again, the order of computation changes if the loops are interchanged.

RETURN or STOP statements in Fortran
Like loops with multiple exits, RETURN and STOP statements in Fortran
inhibit localization because they inhibit interchange. If a loop containing
a RETURN or STOP is interchanged, its order of computation may change,
giving wrong answers.

return or exit statements in C or C++
Similar to Fortran’s RETURN and STOP statements (discussed in the
previous section), return and exit statements in C and C++ inhibit
localization because they inhibit interchange.

throw statements in C++
In C++, throw statements, like loops containing multiple exits, inhibit
localization because they inhibit interchange.

Computed or assigned GOTO statements in Fortran
When the Fortran compiler encounters a computed or assigned GOTO
statement in an otherwise interchangeable loop, it cannot always
determine whether the branch destination is within the loop. Because an
out-of-loop destination would be a loop exit, these statements often
prevent loop interchange and therefore data localization.

78 Chapter 3

Compiler optimizations
+O3 level optimizations

Procedure calls
The Exemplar compilers are unaware of the side effects of most
procedures, and therefore cannot determine whether they might
interfere with loop interchange; consequently, the compilers will not
perform loop interchange. These side effects may include data
dependences involving loop arrays, aliasing (as described in the section
“Aliasing” on page 73), and processor data cache usage that conflicts with
the loop’s usage of the cache, rendering useless any data localization
optimizations performed on the loop.

I/O statements
The order in which values are read into or written from a loop may
change if the loop is interchanged, so I/O statements inhibit interchange
and therefore data localization.

For example, consider the following Fortran code:

DO I = 1, 4
 DO J = 1, 4
 READ *, IA(I,J)
 ENDDO
ENDDO

Given a data stream consisting of alternating zeros and ones
(0,1,0,1,0,1...), the contents for A(I,J) for both the original loop and the
interchanged loop are shown in Figure 13.

 Figure 13 Values read into array A

1 2 3

1

2

3
I

J

1 2 3

I

J

Original loop Interchanged loop

4

4

4

1

2

3

4

0 1 0 1

0 1 0 1

0 1 0 1

0 1 0 1

1 1 1 1

0 00 0

1 1 1 1

0 00 0

Chapter 3 79

Compiler optimizations
+O3 level optimizations

C and C++ loops exhibit the same limitations. A C/C++ example that
produces the data patterns shown in Figure 13 follows:

for(i=1;i<5;i++)
 for(j=1;j<5;j++)
 scanf("%d",&ia[i][j]);

Preventing loop reordering
The no_loop_transform directive or pragma allows you to prevent all
loop-reordering transformations on the immediately following loop. In
Fortran, it has the form:

C$DIR NO_LOOP_TRANSFORM

In C it has the form:

#pragma _CNX no_loop_transform

You can use the command-line option +Onoloop_transform (at +O3
and above) to disable loop distribution, loop blocking, loop fusion,
loop interchange, loop unroll, and loop unroll and jam on a file basis.

80 Chapter 3

Compiler optimizations
+O3 level optimizations

Strip mining
Strip mining is a fundamental +O3 transformation. In and of itself,
strip mining is not profitable. However, it is used by loop blocking,
loop unroll and jam, and, in a sense, by parallelization.

Strip mining involves splitting a single loop into a nested loop. The
resulting inner loop iterates over a section or strip of the original loop,
and the new outer loop runs the inner loop enough times to cover all the
strips, achieving the necessary total number of iterations. The number of
iterations of the inner loop is known as the loop’s strip length.

Consider the following Fortran code:

DO I = 1, 10000
 A(I) = A(I) * B(I)
ENDDO

Strip mining this loop using a strip length of 1000 yields the following
loop nest:

DO IOUTER = 1, 10000, 1000
 DO ISTRIP = IOUTER, IOUTER+999
 A(ISTRIP) = A(ISTRIP) * B(ISTRIP)
 ENDDO
ENDDO

In this loop, the strip length integrally divides the number of iterations,
so the loop is evenly split up. If the iteration count was not an integral
multiple of the strip length, for example, if I went from 1 to 10500 rather
than 1 to 10000, the final iteration of the strip loop would execute 500
iterations instead of 1000.

Chapter 3 81

Compiler optimizations
+O3 level optimizations

Loop distribution
Loop distribution takes place at +O3 and above and is enabled by default.
Specifying +Onoloop_transform disables loop distribution (as well as
loop interchange, loop blocking, loop fusion, loop unroll, and loop unroll
and jam).

Loop distribution is another fundamental +O3 transformation that is
necessary for some more advanced transformations. These advanced
transformations require that all calculations in a nested loop be
performed inside the innermost loop. To facilitate this, loop distribution
transforms complicated nested loops into several simple loops (or nests)
that contain all computations inside the body of the innermost loop.

Consider the following Fortran code:

DO I = 1, N
 C(I) = 0
 DO J = 1, M
 A(I,J) = A(I,J) + B(I,J) * C(I)
 ENDDO
ENDDO

Loop distribution creates two copies of the I loop, separating the nested
J loop from the assignments to array C. In this way, all assignments are
moved to innermost loops. Interchange is then performed on the I and J
loops. The distribution and interchange is shown in the following
transformed code:

DO I = 1, N
 C(I) = 0
ENDDO
DO J = 1, M
 DO I = 1, N
 A(I,J) = A(I,J) + B(I,J) * C(I)
 ENDDO
ENDDO

An analogous C/C++ example follows:

for(j=0;j<n;j++) {
 c[j] = 0;
 for(i=0;i<m;i++)
 a[i][j] = a[i][j] + b[i][j] * c[j];
}

82 Chapter 3

Compiler optimizations
+O3 level optimizations

This loop is distributed and interchanged as shown below:

for(j=0;j<n;j++)
 c[j] = 0;
for(i=0;i<m;i++)
 for(j=0;j<n;j++)
 a[i][j] = a[i][j] + b[i][j] * c[j];

Distribution can improve efficiency by reducing the number of memory
references per loop iteration, and can reduce cache thrashing. It also
creates more opportunities for interchange.

Loop distribution can be disabled for specific loops by specifying the
no_distribute directive or pragma immediately before the loop.

In Fortran, it has the form:

C$DIR NO_DISTRIBUTE

In C:

#pragma _CNX no_distribute

Loop interchange
Loop interchange takes place at +O3 and above and is enabled by default.
Specifying +Onoloop_transform disables loop interchange (as well as
loop distribution, loop blocking, loop fusion, loop unroll, and loop unroll
and jam).

The compiler may interchange (or reorder) nested loops for the following
reasons:

• To facilitate other transformations

• To relocate the loop that is the most profitable to parallelize so that it
is outermost

• To optimize inner-loop memory accesses

Consider the Fortran matrix addition algorithm that follows:

DO I = 1, N
 DO J = 1, M
 A(I, J) = B(I, J) + C(I, J)
 ENDDO
ENDDO

Chapter 3 83

Compiler optimizations
+O3 level optimizations

This loop accesses the arrays A, B and C row by row, which, in Fortran, is
very inefficient. Interchanging the I and J loops, as shown in the
following example, will facilitate column by column access.

DO J = 1, M
 DO I = 1, N
 A(I, J) = B(I, J) + C(I, J)
 ENDDO
ENDDO

Unlike Fortran, C and C++ access arrays in row-major order. An
analogous example in C/C++, then, employs an opposite nest ordering, as
shown below.

for(j=0;j<m;j++)
 for(i=0;i<n;i++)
 a[i][j] = b[i][j] + c[i][j];

Interchange facilitates row-by-row access. The interchanged loop is
shown below.

for(i=0;i<n;i++)
 for(j=0;j<m;j++)
 a[i][j] = b[i][j] + c[i][j];

Loop blocking
The loop-blocking optimization is only available at +O3 (and above) in
the Fortran 90 and aC++ compilers, and in the C Version 2.0 compiler.
Loop blocking is disabled by default. To enable loop blocking, use the
+Oloop_block option. Specifying +Onoloop_block (the default)
disables both automatic and directive-specified loop blocking. Specifying
+Onoloop_transform also disables loop blocking (as well as loop
distribution, loop interchange, loop fusion, loop unroll, and loop unroll
and jam).

Loop blocking is a combination of strip mining and interchange that
maximizes data localization. It is provided primarily to deal with nested
loops that manipulate arrays that are too large to fit into the cache.
Under certain circumstances, loop blocking allows reuse of these arrays
by transforming the loops that manipulate them so that they manipulate
strips of the arrays that fit into the cache. Effectively, a blocked loop
accesses array elements in sections that are optimally sized to fit in the
cache.

84 Chapter 3

Compiler optimizations
+O3 level optimizations

Data reuse
Data reuse is important to understand when discussing blocking. There
are two types of data reuse associated with loop blocking:

• Spatial reuse

• Temporal reuse

Spatial reuse is using data that was encached as a result of fetching
another piece of data from memory. Remember that data is fetched by
cache lines; 32 bytes of data is encached on every fetch on V2200 and
X2000 servers. (Cache line sizes may be different on other HP SMPs.) On
the initial fetch of array data from memory within a stride-one loop, the
requested item can be located anywhere in the 32 bytes, unless the array
is aligned on cache line boundaries (refer to the section “Data alignment”
on page 28). Starting with the second memory fetch, the requested data
is at the beginning of the cache line, and the rest of the cache line will
contain subsequent array elements. For a REAL*4 array, this means the
requested element and the seven following elements are encached on
each fetch after the first. If any of these seven elements could then be
used, say on any subsequent iterations of the loop, the loop would be
exploiting spatial reuse. For loops with strides greater than one, spatial
reuse can still occur; however, the cache lines will contain fewer usable
elements.

Temporal reuse is using the same data item on more than one iteration
of the loop. An array element whose subscript does not change as a
function of the iterations of a surrounding loop exhibits temporal reuse
in the context of the loop.

Loops that stride through arrays are candidates for blocking when there
is an outermore loop that carries spatial or temporal reuse. Blocking the
innermore loop allows data referenced by the outermore loop to remain
in the cache across multiple iterations. Blocking exploits spatial reuse by
ensuring that once fetched, cache lines are not overwritten until their
spatial reuse is exhausted. Temporal reuse is similarly exploited.

Chapter 3 85

Compiler optimizations
+O3 level optimizations

Reuse example
The following Fortran loop nest exhibits both spatial and temporal reuse:

REAL*4 A(100,100), B(100,100), C(100)
COMMON /BLK1/ A, B, C
.
.
.
DO J = 1, 100
 DO I= 1, 100
 A(I,J) = B(J,I) + C(I)
 ENDDO
ENDDO

As written, this loop nest contains spatial reuse on the A and B arrays,
and both spatial and temporal reuse on the C array. Because the arrays
are in a COMMON block and each array is of a total length that is an
integral multiple of the X2000 CTIcache line length (32 bytes), we know
that each array will begin on a CTIcache line boundary. All cache lines
fetched will be full of reusable data. Spatial reuse is achieved on the A
array because every 8th iteration of the I loop fetches a cache line
containing 8 of its elements; the 7 iterations between main memory
accesses can proceed with virtually no load delays. This continues
throughout the entire range of the J loop.

Similar spatial reuse is achieved on the B array. During the first iteration
of J , every referenced element of B, along with its containing cache line,
will be fetched from memory. All the elements contained in this cache
line will be reusable on some subsequent iteration of one of the loops. On
subsequent iterations of J , a cache line will be fetched from memory only
if the required element was not previously encached, and all the
elements it contains will be usable. However, keep in mind that fetches
are a function of I and may occur for different J values (after J = 1)
based on the value of I . Because B’s row index is J , any unused encached
elements are used on the subsequent iterations of J for a given value
of I . Though the data is not used as immediately as it is for A, spatial
reuse is still fully exploited.

Spatial reuse is similarly achieved on the C array, but only for J = 1 .
Assuming the loop is compiled as written, when the first iteration of J
finishes, C is completely contained in the processor data cache and will
remain there for the duration of J . C can then be temporally reused for
every subsequent iteration of J .

86 Chapter 3

Compiler optimizations
+O3 level optimizations

This loop does not require blocking to achieve this reuse because the
arrays occupy less than 80 kbytes altogether, so they fit easily into the
cache. Spatial reuse is graphically illustrated for a similar but more
realistic example in the following section.

Blocking example: simple loop
In order to exploit reuse in more realistic examples that manipulate
arrays that will not all fit in the cache, the compiler can apply the
blocking transformation.

Consider the following Fortran example:

REAL*8 A(1000,1000),B(1000,1000)
REAL*8 C(1000),D(1000)
COMMON /BLK2/ A, B, C
.
.
.
DO J = 1, 1000
 DO I = 1, 1000
 A(I,J) = B(J,I) + C(I) + D(J)
 ENDDO
ENDDO

Here the array elements occupy nearly 16 Mbytes of memory—much
larger than the 2 Mbyte cache on PA-8200 processors and the 1 Mbyte
cache on PA-8000 processors. Thus, blocking becomes quite profitable.

First the compiler strip mines the I loop:

DO J = 1, 1000
 DO IOUT = 1, 1000, IBLOCK
 DO I = IOUT, IOUT+IBLOCK-1
 A(I,J) = B(J,I) + C(I) + D(J)
 ENDDO
 ENDDO
ENDDO

IBLOCK is the block factor (also referred to as the strip mine length) the
compiler chooses based on the size of the arrays and size of the cache.
Note that this example assumes the chosen IBLOCK divides 1000 evenly.

Chapter 3 87

Compiler optimizations
+O3 level optimizations

Now the compiler moves the outer strip loop (IOUT) outward as far as
possible.

DO IOUT = 1, 1000, IBLOCK
 DO J = 1, 1000
 DO I = IOUT, IOUT+IBLOCK-1
 A(I,J) = B(J,I) + C(I) + D(J)
 ENDDO
 ENDDO
ENDDO

This new nest accesses IBLOCK rows of A and IBLOCK columns of B for
every iteration of J . At every iteration of IOUT, the nest accesses 1000
IBLOCK-length columns of A (or an IBLOCK × 1000 chunk of A) and 1000
IBLOCK-width rows of B are accessed. This is illustrated in Figure 14.

 Figure 14 Blocked array access

Fetches of A encache the needed element and the three elements that are
used in the three subsequent iterations, giving spatial reuse on A. Since
the I loop traverses columns of B, fetches of B encache extra elements
that will not be spatially reused until J increments. IBLOCK is chosen by
the compiler to efficiently exploit spatial reuse of both A and B.

Figure 15 illustrates how cache lines of each array are fetched (A and B
both start on cache line boundaries because they are in COMMON and are
of lengths integrally divisible by the X2000 CTIcache line length). The
shaded area represents the initial cache line fetched.

IOUT=1

IOUT=

IOUT=1000
-IBLOCK

I

J COLUMNS

A

B

C

IBLOCK+1

ROWS

I COLUMNS

IOUT
=1

IOUT=
IBLOCK+1

J
ROWS

IOUT=
1000
-IBLOCK

D

88 Chapter 3

Compiler optimizations
+O3 level optimizations

 Figure 15 Spatial reuse of A and B

Typically, IBLOCK elements of C will remain in the cache for several
iterations of J before being overwritten, giving temporal reuse on C for
those iterations. By the time any of the arrays are overwritten, all
spatial reuse has been exhausted. The load of D is hoisted out of the I
loop so that it remains in a register for all iterations of I .

Blocking example: matrix multiply
The more complicated matrix multiply algorithm, which follows, is a
prime candidate for blocking:

REAL*8 A(1000,1000),B(1000,1000),C(1000,1000)
COMMON /BLK3/ A, B, C
.
.
.
DO I = 1, 1000
 DO J = 1, 1000
 DO K = 1, 1000
 C(I,J) = C(I,J) + A(I,K) * B(K,J)
 ENDDO
 ENDDO
ENDDO

B(1,1)

B(2,1)

B(3,1)

B(4,1)

A(1,1)

A(2,1)

A(3,1)

A(4,1)

A(5,1)

A(1,2)

A(2,2)

A(3,2)

A(4,2)

A(5,2)

When A(1,1) is

J COLUMNS

I
ROWS
(elements
accessed
down
rows first) B(5,1)

B(1,2)

B(2,2)

B(3,2)

B(4,2)

B(5,2)

I COLUMNS

J
ROWS

accessed, A(1:4,1)
are fetched; A(2:4,1)
can be used on
subsequent iterations
2,3 and 4 of I .

(elements are
accessed across
columns first)

B(1:4,1) are fetched when
I=1 , but B(2:4,1) cannot be
used until J increments to 2, 3, 4.
B(1:4,2) are fetched when I=2 .

Chapter 3 89

Compiler optimizations
+O3 level optimizations

This loop is blocked as shown below:

DO IOUT = 1, 1000, IBLOCK
 DO KOUT = 1, 1000, KBLOCK
 DO J = 1, 1000
 DO I = IOUT, IOUT+IBLOCK-1
 DO K = KOUT, KOUT+KBLOCK-1
 C(I,J) = C(I,J) + A(I,K) * B(K,J)
 ENDDO
 ENDDO
 ENDDO
 ENDDO
ENDDO

Here, we get:

• Spatial reuse of B with respect to the K loop

• Temporal reuse of B with respect to the I loop

• Spatial reuse of A with respect to the I loop

• Temporal reuse of A with respect to the J loop

• Spatial reuse of C with respect to the I loop

• Temporal reuse of C with respect to the K loop

An analogous C/C++ example follows:

static double a[1000][1000], b[1000][1000];
static double c[1000][1000];
.
.
.
for(i=0;i<1000;i++)
 for(j=0;j<1000;j++)
 for(k=0;k<1000;k++)
 c[i][j] = c[i][j] + a[i][k] * b[k][j];

90 Chapter 3

Compiler optimizations
+O3 level optimizations

Exemplar C and C++ interchange and block the loop in this example to
provide optimal access efficiency for the row-major C/C++ arrays. The
blocked loop is shown below:

for(jout=0;jout<1000;jout+=jblk)
 for(kout=0;kout<1000;kout+=kblk)
 for(i=0;i<1000;i++)
 for(j=jout;j<jout+jblk;j++)
 for(k=kout;k<kout+kblk;k++)
 c[i][j]=c[i][j]+a[i][k]*b[k][j];

As you can see, the interchange was done differently because of C/C++’s
different array storage. This code yields:

• Spatial reuse of b with respect to the j loop

• Temporal reuse of b with respect to the i loop

• Spatial reuse of a with respect to the k loop

• Temporal reuse of a with respect to the j loop

• Spatial reuse on c with respect to the j loop

• Temporal reuse on c with respect to the k loop

Blocking is inhibited when loop interchange is inhibited. If a candidate
loop nest contains loops that cannot be interchanged, blocking will not be
performed.

Blocking directives and pragmas
The +Onoloop_block command-line option (the default), disables both
automatic and directive-specified loop blocking. Loop blocking can be
enabled for specific loops using the block_loop compiler directive and
pragma. You can also advise the compiler to use a specific block factor via
the block_loop directive and pragma. You can use the no_block_loop
directive and pragma to disable loop blocking for a particular loop.

In Fortran, these directives have the following form:

C$DIR BLOCK_LOOP[(BLOCK_FACTOR = n)]
C$DIR NO_BLOCK_LOOP

In C, these pragmas have the form:

#pragma _CNX block_loop[(block_factor = n)]
#pragma _CNX no_block_loop

Chapter 3 91

Compiler optimizations
+O3 level optimizations

In the block_loop directive and pragma, n is the requested block factor,
which must be a compile-time integer constant. The compiler will use
this value as stated, so, for best performance, the block factor multiplied
by the data type size of the data in the loop should be an integral
multiple of the cache line size. In the absence of the block_factor
argument, this directive is useful for indicating which loop in a nest to
block. In this case, the compiler uses a heuristic to determine the block
factor.

These directives and pragmas affect the loop that immediately follows
them.

Reconsider the matrix multiply example, this time with a block_loop
directive:

 REAL*8 A(1000,1000),B(1000,1000)
 REAL*8 C(1000,1000)
 COMMON /BLK3/ A, B, C
 .
 .
 .
 DO I = 1,1000
 DO J = 1, 1000
C$DIR BLOCK_LOOP(BLOCK_FACTOR = 112)
 DO K = 1,1000
 C(I,J) = C(I,J) + A(I,K)*B(K,J)
 ENDDO
 ENDDO
 ENDDO

We know from the original example involving this code that the compiler
blocks the I and K loops. In this example, the BLOCK_LOOP directive
instructs the compiler to use a block factor of 112 for the K loop. This is
an efficient blocking factor for this example because 112 × 8 bytes = 896
bytes, and 896/32 bytes (the cache line size) = 28, which is an integer, so
partial cache lines will not be needed. The compiler-chosen value is still
used on the I loop.

92 Chapter 3

Compiler optimizations
+O3 level optimizations

Loop fusion
Loop fusion takes place at +O3 and above and is enabled by default.
Specifying +Onoloop_transform disables loop fusion (as well as
loop distribution, loop interchange, loop blocking, loop unroll, and
loop unroll and jam).

Loop fusion involves creating one loop out of two or more neighboring
loops that have identical loop bounds and trip counts. This reduces loop
overhead, memory accesses, and register usage, and can lead to other
optimizations. By potentially reducing the number of parallelizable loops
in a program and increasing the amount of work in each of those loops,
loop fusion can greatly reduce parallelization overhead, because fewer
spawns and joins will be necessary.

Consider the following Fortran code:

DO I = 1, N
 A(I) = B(I) + C(I)
ENDDO
DO J = 1, N
 IF(A(J) .LT. 0) A(J) = B(J)*B(J)
ENDDO

These two loops can be fused into the following loop:

DO I = 1, N
 A(I) = B(I) + C(I)
 IF(A(I) .LT. 0) A(I) = B(I)*B(I)
ENDDO

Occasionally loops that do not appear to be fusible become fusible as a
result of compiler transformations that precede fusion. For instance,
interchanging a loop may make it suitable for fusing with another loop.

Loop fusion is especially beneficial when applied to Fortran 90 array
assignments or to Fortran 90-style array assignments used in HP
Fortran 77 programs. The compiler translates these statements into
loops; when such loops do not contain code that would inhibit fusion,
they can be fused.

Chapter 3 93

Compiler optimizations
+O3 level optimizations

Consider the following Fortran example:

REAL A(100,100), B(100,100), C(100,100)
.
.
.
C = 2.0 * B
A = A + B

The compiler would first transform these Fortran 90 array assignments
into loops, generating code similar to that shown below.

DO TEMP1 = 1, 100
 DO TEMP2 = 1, 100
 C(TEMP2, TEMP1) = 2.0 * B(TEMP2, TEMP1)
 ENDDO
ENDDO
DO TEMP3 = 1, 100
 DO TEMP4 = 1, 100
 A(TEMP4,TEMP3)=A(TEMP4,TEMP3)+B(TEMP4,TEMP3)
 ENDDO
ENDDO

These two loops would then be fused as shown in the following loop nest:

DO TEMP1 = 1, 100
 DO TEMP2 = 1, 100
 C(TEMP2,TEMP1) = 2.0 * B(TEMP2, TEMP1)
 A(TEMP2,TEMP1)=A(TEMP2,TEMP1)+B(TEMP2,TEMP1)
 ENDDO
ENDDO

And the compiler can apply further optimizations to this new nest.

94 Chapter 3

Compiler optimizations
+O3 level optimizations

Loop peeling to enable fusion
When trip counts of adjacent loops differ by only a single iteration (+1
or -1), the compiler may peel an iteration from one of the two loops so
that the loops may then be fused. The peeled iteration is performed
separately from the original loop.

Consider the following example:

DO I = 1, N-1
 A(I) = I
ENDDO

DO J = 1, N
 A(J) = A(J) + 1
ENDDO

Here, the Nth iteration of the J loop is peeled, resulting in a trip count of
N - 1 . The Nth iteration is performed outside the J loop. The example
now looks like the following:

DO I = 1, N-1
 A(I) = I
ENDDO

DO J = 1, N-1
 A(J) = A(J) + 1
ENDDO

A(N) = A(N) + 1

The I and J loops now have the same trip count and can be fused, as
shown below:

DO I = 1, N-1
 A(I) = I
 A(I) = A(I) + 1
ENDDO

A(N) = A(N) + 1

Chapter 3 95

Compiler optimizations
+O3 level optimizations

Loop unroll and jam
Loop unroll and jam takes place at +O3 and above and is enabled by
default in the Fortran 90 and aC++ compilers, and in the C Version 2.0
compiler. To disable loop unroll and jam on the command line, use the
+Onoloop_unroll_jam option, which prevents both automatic and
directive-specified unroll and jam. The no_unroll_and_jam directive
and pragma (available in Fortran 90 and C) can be used to disable loop
unroll and jam for an individual loop. Also, specifying
+Onoloop_transform disables loop unroll and jam (as well as loop
distribution, loop interchange, loop blocking, loop fusion, and
loop unroll).

The loop unroll and jam transformation is primarily intended to increase
register exploitation and decrease memory loads and stores per
operation within an iteration of a nested loop. Improved register usage
decreases the need for main memory accesses and sometimes allows
better exploitation of certain machine instructions.

Unroll and jam involves partially unrolling one or more loops higher in
the nest than the innermost loop, and fusing (“jamming”) the resulting
loops back together. For unroll and jam to be effective, a loop must be
nested and must contain data references that can be temporally reused
with respect to some loop other than the innermost. (See the section
“Data reuse” on page 84 for information on temporal reuse.) The unroll
and jam optimization is automatically applied only to those loops that
consist strictly of a basic block.

Consider the following matrix multiply loop:

DO I = 1, N
DO J = 1, N

DO K = 1, N
A(I,J) = A(I,J) + B(I,K) * C(K,J)

ENDDO
ENDDO

ENDDO

Here, the compiler can exploit a maximum of 3 registers: one for A(I,J) ,
one for B(I,K) , and one for C(K,J) .

Register exploitation can be vastly increased on this loop by unrolling
and jamming the I and J loops. First, the compiler unrolls the I loop. To
simplify the illustration, we will use an unrolling factor of 2 for I . This is
the number of times the contents of the loop will be replicated.

96 Chapter 3

Compiler optimizations
+O3 level optimizations

The following Fortran example shows this replication:

DO I = 1, N, 2
DO J = 1, N

DO K = 1, N
A(I,J) = A(I,J) + B(I,K) * C(K,J)

ENDDO
ENDDO
DO J = 1, N

DO K = 1, N
A(I+1,J) = A(I+1,J) + B(I+1,K) * C(K,J)

ENDDO
ENDDO

ENDDO

The “jam” part of unroll and jam occurs when the loops are fused back
together, to create the following:

DO I = 1, N, 2
DO J = 1, N

DO K = 1, N
A(I,J) = A(I,J) + B(I,K) * C(K,J)
A(I+1,J) = A(I+1,J) + B(I+1,K) * C(K,J)

ENDDO
ENDDO

ENDDO

Chapter 3 97

Compiler optimizations
+O3 level optimizations

This new loop can exploit registers for two additional references: A(I,J)
and A(I+1,J) . However, the compiler still has the J loop to unroll and
jam. We will use an unroll factor of 4 for the J loop, in which case
unrolling gives the following:

DO I = 1, N, 2
DO J = 1, N, 4

DO K = 1, N
A(I,J) = A(I,J) + B(I,K) * C(K,J)
A(I+1,J) = A(I+1,J) + B(I+1,K) * C(K,J)

ENDDO
DO K = 1, N

A(I,J+1) = A(I,J+1) + B(I,K) * C(K,J+1)
A(I+1,J+1) = A(I+1,J+1) + B(I+1,K) * C(K,J+1)

ENDDO
DO K = 1, N

A(I,J+2) = A(I,J+2) + B(I,K) * C(K,J+2)
A(I+1,J+2) = A(I+1,J+2) + B(I+1,K) * C(K,J+2)

ENDDO
DO K = 1, N

A(I,J+3) = A(I,J+3) + B(I,K) * C(K,J+3)
A(I+1,J+3) = A(I+1,J+3) + B(I+1,K) * C(K,J+3)

ENDDO
ENDDO

ENDDO

Jamming the unrolled loop, we get:

DO I = 1, N, 2
DO J = 1, N, 4

DO K = 1, N
A(I,J) = A(I,J) + B(I,K) * C(K,J)
A(I+1,J) = A(I+1,J) + B(I+1,K) * C(K,J)
A(I,J+1) = A(I,J+1) + B(I,K) * C(K,J+1)
A(I+1,J+1) = A(I+1,J+1) + B(I+1,K) * C(K,J+1)
A(I,J+2) = A(I,J+2) + B(I,K) * C(K,J+2)
A(I+1,J+2) = A(I+1,J+2) + B(I+1,K) * C(K,J+2)
A(I,J+3) = A(I,J+3) + B(I,K) * C(K,J+3)
A(I+1,J+3) = A(I+1,J+3) + B(I+1,K) * C(K,J+3)

ENDDO
ENDDO

ENDDO

98 Chapter 3

Compiler optimizations
+O3 level optimizations

This new loop exploits more registers and requires fewer loads and
stores than the original. Recall that the original loop could use no more
than 3 registers. This unrolled-and-jammed loop can use 14, one for each
of the following references:

Fewer loads and stores per operation are required because all of the
registers containing these elements are referenced at least twice. This
particular example can also benefit from the PA-RISC FMPYFADD
instruction, which is available with PA-8x00 processors. This instruction
doubles the speed of the operations in the body of the loop by
simultaneously performing related adds and multiplies. With PA-7x00
processors, the FMPYADD instruction (notice that this instruction does not
have the second F like the PA-8x00 instruction above) would be used to
double the speed of the operations; however, with this instruction, the
adds and multiplies are unrelated.

Remember, this is a very simplified example. In reality, the compiler
attempts to exploit as many of the PA-RISC processor’s registers as
possible. For the matrix multiply algorithm used here, the compiler
would pick a larger unrolling factor, creating a much larger K loop body.
This would result in increased register exploitation and fewer loads and
stores per operation.

However, excessive unrolling may introduce extra register spills if the
unrolled and jammed loop body becomes too large. These register spills
may have negative effects on performance.

Try to choose unroll factors that align data references in the innermost
loop on cache boundaries. When this is achieved, references to the
consecutive memory regions in the innermost loop can have very high
cache hit ratios. Therefore, unroll factors of 5 or 7 may not be good
choices, because most array element sizes are either 4 bytes or 8 bytes
and the cache line size (on V2200 and X2000 servers) is 32 bytes. Thus,
an unroll factor of 2 or 4 is more likely to effectively exploit cache line
reuse for the references that access consecutive memory regions.

A(I,J) B(I,K) C(K,J) A(I+1,J)

B(I+1,K) A(I,J+1) C(K,J+1) A(I+1,J+1)

A(I,J+2) C(K,J+2) A(I,J+3) A(I+1,J+2)

A(I+1,J+3) C(K,J+3)

Chapter 3 99

Compiler optimizations
+O3 level optimizations

Unroll and jam is enabled by default at optimization levels +O3 and
higher. Unroll and jam can be disabled on the command line using the
+Onoloop_transform option.

You can specify unroll and jam for individual loops by using the
unroll_and_jam compiler directive and pragma. In Fortran, it has the
following form:

C$DIR UNROLL_AND_JAM[(UNROLL_FACTOR=n)]

The C pragma has the following form:

#pragma _CNX unroll_and_jam[(unroll_factor= n)]

Where the optional unroll_factor= n argument allows you to specify
an unroll factor for the loop in question.

You can disable unroll and jam for individual loops using the
no_unroll_and_jam directive and pragma. In Fortran, it has the
following form:

C$DIR NO_UNROLL_AND_JAM

The C pragma has the following form:

#pragma _CNX no_unroll_and_jam

NOTE Because unroll and jam is only performed on nested loops, you must
ensure that the directive or pragma is specified on a loop that, after any
compiler-initiated interchanges, is not the innermost loop. You can
determine which loop in a nest will be innermost by compiling the nest
without any directives and examining the Optimization Report. (See
Appendix E, “Optimization Report” for more information.)

As with all optimizations that replicate code, the number of new loops
created when the compiler performs the unroll and jam optimization is
limited by default to ensure reasonable compile times. To increase the
replication limit (and possibly increase your compile time and code size),
specify the +Onosize +Onolimit compiler options.

100 Chapter 3

Compiler optimizations
+O3 level optimizations

Parallelization
Using the +Oparallel option at +O3 and above allows the compiler to
automatically parallelize loops that are profitable to parallelize. Also, the
compiler recognizes the parallelism-related directives and pragmas of
the Exemplar programming model. In Fortran 77 Version 1.2.3 and
C Version 1.2.3, +Oexemplar_model (the default) must also be in effect
for these directives and pragmas to be enabled. (The HP Exemplar aC++
compiler does not support the Exemplar programming model pragmas.)

Parallelization divides a program into threads. A thread is a single flow
of control within a process. It can be a unique flow of control that
performs a specific function, or one of several instances of a flow of
control, each of which is operating on a unique data set.

The Exemplar compilers find parallelism at the loop level and generate
parallel code that will automatically run on as many processors as are
available at runtime. Normally, these are all the processors of the system
on which your program is running. You can specify a smaller number of
processors via the:

• loop_parallel(max_threads= m) directive and
pragma—available in Fortran 90, Fortran 77, and C

• prefer_parallel(max_threads= m) directive and
pragma—available in Fortran 90, Fortran 77, and C

For more information on the loop_parallel and
prefer_parallel directives and pragmas see the chapters “Basic
shared-memory programming” and “Advanced shared-memory
programming.”

• MP_NUMBER_OF_THREADS environment variable

MP_NUMBER_OF_THREADS is read at runtime by your program. If this
variable is set to some positive integer n, your program executes on n
processors; n must be less than or equal to the number of processors
in the system where the program is executing.

Automatic parallelization is useful for programs containing loops. You
can use compiler directives or pragmas to improve on the automatic
optimizations and to assist the compiler in locating additional
opportunities for parallelization.

If you are writing your program entirely under the message-passing
paradigm, you must explicitly handle parallelism yourself as discussed
in the manual HP MPI User’s Guide.

Chapter 3 101

Compiler optimizations
+O3 level optimizations

Basic operation
Parallelism can exist at the loop level, region level, and task level.
Exemplar compilers automatically exploit loop-level parallelism. You can
easily specify task-level parallelism using the begin_tasks ,
next_task and end_tasks directives and pragmas, as discussed in the
section “Task parallelization” on page 138. You can also specify parallel
regions using the parallel and end_parallel directives and
pragmas, as discussed in the section “Region parallelization” on
page 144. These directives and pragmas allow the compiler to run
identified sections of code in parallel.

Loop-level parallelism involves dividing a loop into several smaller
iteration spaces and parceling these out to run simultaneously on the
available processors.

NOTE Only loops with iteration counts that can be determined prior to loop
invocation at runtime are candidates for parallelization. Loops with
iteration counts that depend on values or conditions calculated within
the loop cannot be parallelized by any means.

Consider the following Fortran code:

PROGRAM PARAXPL
.
.
.
DO I = 1, 1024
 A(I) = B(I) + C(I)
 .
 .
 .
ENDDO

Assuming the I loop does not contain any parallelization-inhibiting code,
this program can be parallelized to run on 8 processors by running 128
iterations per processor (1024 iterations divided by 8 processors = 128
iterations each). One processor would run the loop for I = 1 to 128; the
next would run I = 129 to 256, and so on. The loop could similarly be
parallelized to run on any number of processors, with each one taking its
appropriate share of iterations. At a certain point, however, adding more
processors will not improve performance. The compiler generates code
that will run on as many processors as are available, but the dynamic
selection optimization (described in the section “Dynamic selection” on

102 Chapter 3

Compiler optimizations
+O3 level optimizations

page 109) ensures that parallel code is generated only if it is profitable to
do so. If the number of available processors does not evenly divide the
number of iterations, some processors will perform fewer iterations than
others.

On an HP SMP server, shared-memory programs run as a collection of
threads on multiple processors. When a program starts, a separate
execution thread is created on each of the processors of the system on
which the program is running. Using the CPSlib model of thread
management, HP-UX identifies each of these threads by a unique kernel
thread ID. (See Appendix F, “Compiler Parallel Support Library” for
more information on CPSlib.) All but one of these threads is then idle;
the nonidle thread is known as thread 0, and this thread runs all of the
serial code in the program.

Spawn thread IDs are assigned only to nonidle threads when they are
spawned—that is, when thread 0 encounters parallelism and “wakes up”
other idle threads to execute the parallel code. Spawn thread IDs are
consecutive. They range from 0 to nt-1, where nt is the number of threads
spawned as a result of the spawn operation; this operation defines the
current spawn context. The spawn context is the loop, task list, or region
that initiates the spawning of the threads. Spawn thread IDs are valid
only within a given spawn context.

Therefore, the idle threads are not assigned spawn thread IDs at the
time of their creation. When thread 0 encounters a parallel loop, task, or
region, it spawns the other threads, signaling them to begin execution.
The threads then become active, acquire spawn thread IDs, run until
their portion of the parallel code is finished, and go idle once again, as
shown in Figure 16.

Machine loading does not affect the number of threads spawned, but it
may affect the order in which the threads in a given spawn context
complete. Again using the CPSlib thread model, HP-UX places an
implicit barrier at the end of each parallelized loop, task, and region to
ensure that, regardless of the machine load, all child threads of a given
process execute to the completion of their spawn context before that
process’s thread 0 continues.

Chapter 3 103

Compiler optimizations
+O3 level optimizations

 Figure 16 Thread activity: one-dimensional parallelism

This example is greatly simplified for illustrative purposes. Various loop
transformations can affect the manner in which a loop is parallelized.

To implement this, the compiler transforms the loop in a manner similar
to strip mining. However, unlike the strip mining described in the section
“Strip mining” on page 80, the outer loop is conceptual. Because the
strips will be executing on different processors, there is no processor to
run an outer loop like the one created in traditional strip mining.

Instead, the loop is transformed such that the starting and stopping
iteration values are variables that are determined at runtime based on
how many threads are available and which thread is running the strip in
question.

Consider our previous Fortran example written for an unspecified
number of iterations:

DO I = 1, N
 A(I) = B(I) + C(I)
ENDDO

The code shown in Figure 17 is a conceptual representation of the
transformation the compiler performs on this example when it is
compiled for parallelization, assuming that N >= NumThreads .

Threads*
0

spawn

idle idle idle idle idle idle idle

spawn spawn spawn spawn spawn spawn

idle idle idle idle idle idle idle

I
=1,128

I
=129,
256

I
=257,
384

I
=385,
512

I
=513,
640

I
=641,
768

I
=769,
896

I
=897,
1024

* Numbers shown represent spawn thread IDs

PROGRAM PARAXPL
.
.
.
DO I=1,1024

 A(I)=B(I)+C(I)

 .
 .
 .
ENDDO
.
.
.

1 2 3 4 5 6 7

104 Chapter 3

Compiler optimizations
+O3 level optimizations

For N < NumThreads , the compiler uses N threads, assuming there is
enough work in the loop to justify the overhead of parallelizing it. If
NumThreads is not an integral divisor of N, some threads will do fewer
iterations than others.

 Figure 17 Conceptual strip mine for parallelization

NumThreads is the number of available threads. ThrdID is the ID
number of the thread this particular loop will run on, which is between 0
and NumThreads-1 . A unique ThrdID is assigned to each thread, and
the ThrdIDs are consecutive. So, for NumThreads = 8 , as in Figure 16,
8 loops would be spawned, with ThrdIDs = 0 through 7. These 8 loops
are illustrated in Figure 18.

For each available thread do:

 DO I = ThrdID*(N/NumThreads)+1,ThrdID*(N/NumThreads)+N/NumThreads

 A(I) = B(I) + C(I)

 ENDDO

Chapter 3 105

Compiler optimizations
+O3 level optimizations

 Figure 18 Parallelized loop

The strip-based parallelism described here is the default. Stride-based
parallelism is possible through use of the prefer_parallel and
loop_parallel compiler directives and pragmas, which are described
in Chapter 4, “Basic shared-memory programming.”

In these examples, the data being manipulated within the loop is
disjoint; that is, no two threads attempt to write the same data item. If
two parallel threads attempt to update the same storage location, their
actions must be synchronized. This is discussed further in Chapter 4
“Basic shared-memory programming.”

DO I = 1, 128

 A(I) = B(I) + C(I)

ENDDO

DO I = 129, 256

 A(I) = B(I) + C(I)

ENDDO

DO I = 385, 512

 A(I) = B(I) + C(I)

ENDDO

DO I = 257, 384

 A(I) = B(I) + C(I)

ENDDO

Thread 0 Thread 1

Thread 2 Thread 3

DO I = 513, 640

 A(I) = B(I) + C(I)

ENDDO

DO I = 641, 768

 A(I) = B(I) + C(I)

ENDDO

DO I = 897, 1024

 A(I) = B(I) + C(I)

ENDDO

DO I = 769, 896

 A(I) = B(I) + C(I)

ENDDO

Thread 4 Thread 5

Thread 6 Thread 7

106 Chapter 3

Compiler optimizations
+O3 level optimizations

Idle thread states
Idle threads can be suspended or spin-waiting. Suspended threads
release control of the processor; spin-waiting threads repeatedly check
an encached global semaphore that indicates whether or not they have
code to execute. Obviously, this prevents any other process from gaining
control of the CPU and can severely degrade multiprocess performance.
On the other hand, waking a suspended thread takes substantially
longer than activating a spin-waiting thread. Therefore, by default, idle
threads spin-wait briefly after creation or a join, then suspend
themselves if no work is received. This spin-wait time can be changed by
using the cps_wait_attr() function, which is described in the
“Compiler Parallel Support Library” appendix.

When threads are suspended, HP-UX may schedule threads of another
process on their processors in order to balance the machine load.
However, threads have an affinity for their original processors; HP-UX
attempts to schedule unsuspended threads to their original processors in
order to exploit the presence of any data encached during the thread’s
last timeslice. This affinity is realized only if the original processor is
available; otherwise, the thread is assigned to the first processor to
become available within the hypernode on which it was spawned.

Node-parallelism vs. thread-parallelism
Exemplar compilers support two dimensions of parallelism:
thread-parallelism and, on multihypernode systems, node-parallelism.
The compilers (excluding the HP aC++ compiler) support
node-parallelism through the specification of the nodes attribute in the
loop_parallel , prefer_parallel , parallel , and begin_tasks
directives and pragmas. Unlike thread-parallelism, node-parallelism is
not performed automatically; you must use directives or pragmas. By
supporting two dimensions of parallelism, the compilers allow you to
exploit parallelism within parallelism when it occurs in your program.

If two-dimensional parallelism is not present in a particular loop nest, or
if exploiting it would be inefficient, you can also run single-dimensional
(thread) parallelism across two or more hypernodes of the system. In
such cases, you can use the prefer_parallel , loop_parallel , or
parallel compiler directives or pragmas with the threads attribute to
parallelize across all available threads on multiple hypernodes, or to

Chapter 3 107

Compiler optimizations
+O3 level optimizations

limit parallelization to a subset of available threads or hypernodes. Refer
to Chapter 4, “Basic shared-memory programming,” for more
information on these and other parallelization directives and pragmas.

Parallel threads are started at program startup, as described in the
section “Basic operation” on page 101, without regard to the presence or
absence of two-dimensional parallelism. The level of parallelism affects
only the physical location of the threads that are activated when the
parallel construct is encountered; it does not affect the total number of
threads available to the program.

When node-parallelism is encountered, assuming the program is
running on a multihypernode system, a single thread on each hypernode
is activated. These threads are given spawn thread IDs ranging from 0
(the thread that encountered the node-parallelism) to one less than the
number of hypernodes. If thread-parallelism is then encountered within
the node-parallelism, a new spawn context is established, and the
available threads on each hypernode (assuming the parallel construct
does not limit the number of spawned threads) are activated. In this new
spawn context, the threads on each hypernode are given spawn thread
IDs ranging from 0 to one less than the number of threads on the
hypernode. This means that spawn thread IDs are duplicated on each
hypernode in the context of thread-parallel code within node-parallel
code. On a given hypernode, however, they are unique.

Consider the following Fortran example:

 PROGRAM TwoDXPL
 .
 .
 .
C$DIR PREFER_PARALLEL(NODES)
 DO J = 1, 1024
C$DIR PREFER_PARALLEL(THREADS)
 DO I = 1, 1024
 A(I,J) = B(I,J) + C(I,J)
 .
 .
 .
 ENDDO
 ENDDO

108 Chapter 3

Compiler optimizations
+O3 level optimizations

Here, assuming the loop nest does not contain any parallelization
inhibitors, the compiler parallelizes the J loop across hypernodes and the
I loop across threads within those hypernodes. Assuming this program is
running on an 8-processor system consisting of four processors from two
hypernodes, the parallelization is illustrated in Figure 19.

 Figure 19 Thread activity: two-dimensional parallelism

This example is greatly simplified for illustrative purposes. Various loop
transformations can affect the manner in which a loop is parallelized.

As shown in Figure 19, the node-parallel J loop spawns two threads, one
on each hypernode. Thread ID 0 was already running the serial code in
the program; ID 1 is activated when the node-parallel loop begins
execution.

The I loop then spawns thread-parallelism on each hypernode. The
original thread 0 maintains its spawn thread ID, and IDs 1-3 are also
spawned on hypernode 0. The thread that is spawn thread 1 in the
context of the J loop becomes spawn thread 0 in the context of the I loop,
and IDs 1-3 are also spawned on hypernode 1 in the context of the I loop.

0

J=513,
1024

J=1,
512

I=1,
256

I =
257,
512

I =
513,
768

I =
769,
1024

I=1,
256

I =
257,
512

I =
513,
768

I =
769,
1024

Hypernode 0 Hypernode 1

PROGRAM TwoDXPL
.
.
.
DO J=1,1024

DO I=1,1024
.
.
.
.

ENDDO

ENDDO
.
.
.

idle idle idle idle idle idle

spawnspawn spawn
1 2 3

spawn
1

spawn
0

spawnspawn spawn
1 2 3

idle idle idle idle idle idle idle

idle

(1)

Chapter 3 109

Compiler optimizations
+O3 level optimizations

Note that when the I loop terminates, the spawn context returns to that
of the J loop, and thread 0 on hypernode 1 becomes thread 1 again, as it
had been before the I loop began.

Node-parallelism is disabled by default. This prevents the compiler from
exploiting node-parallelism, but allows the exploitation of both
automatic and directive-specified thread-parallelism. Node-parallelism
can be enabled by specifying the +Onodepar command-line option.

Parallel optimizations
Simple loops can be parallelized without the need for extensive
transformations, as shown in the section “Basic operation” on page 101.
However, most loop transformations, if they are applicable to the loop in
question, can aid parallelization in some way. For instance, loop
interchange orders loops so that the innermost loop best exploits the
processor data cache, and the outermost loop is the most efficient loop to
parallelize. Loop blocking similarly aids parallelization by maximizing
cache data reuse on each of the processors that the loop runs on, and by
ensuring that each processor is working on nonoverlapping array data.

Dynamic selection
The compiler has no way of determining how many processors will be
available to run compiled code; therefore, it must generate both serial
and parallel code for loops that can be parallelized. Replicating the loop
in this manner is called cloning, and the resulting versions of the loop
are called clones. Cloning is also performed when the loop-iteration count
is unknown at compile-time.

It is not always profitable, however, to run the parallel clone when
multiple processors are available. Some overhead is involved in
executing parallel code. This overhead includes the time it takes to
spawn parallel threads, to privatize any variables used in the loop that
must be privatized, and to join the parallel threads when they complete
their work.

Exemplar compilers use a powerful form of dynamic selection known as
workload-based dynamic selection. When a loop’s iteration count is
available at compile time, workload-based dynamic selection determines
the profitability of parallelizing the loop and only writes a parallel
version to the executable if it is profitable to do so. Omitting the parallel

110 Chapter 3

Compiler optimizations
+O3 level optimizations

version from the executable when it will never be needed enhances
performance further by eliminating the runtime decision as to which
version to use.

The power of dynamic selection becomes more apparent when the loop’s
iteration count is unknown at compile time. In this case, the compiler
generates code that, at runtime, compares the amount of work performed
in the loop nest (given the actual iteration counts) to the parallelization
overhead for the available number of processors and runs the parallel
version of the loop only if it is profitable to do so.

Workload-based dynamic selection is enabled by default at optimization
level +O3, when +Oparallel is specified. The +Onodynsel compiler
option can be used to disable dynamic selection. When dynamic selection
is disabled, the compiler assumes that it is profitable to parallelize all
parallelizable loops, and generates both serial and parallel clones for
them. In this case the parallel version is run if there are multiple
processors at runtime, regardless of the profitability of doing so.

You can enable workload-based dynamic selection for selected loops by
using the dynsel compiler directive or pragma. In Fortran, this directive
has the following form:

C$DIR DYNSEL[(THREAD_TRIP_COUNT = n | NODE_TRIP_COUNT = m)]

The C pragma has the form:

#pragma _CNX dynsel[(thread_trip_count = n | node_trip_count = m)]

where

thread_trip_count and node_trip_count

are optional attributes used to specify threshold
iteration counts.

When thread_trip_count = n is specified, the serial version of the
loop is run if the iteration count is less than n; otherwise, the
thread-parallel version is run. When node_trip_count = m is
specified, the serial version of the loop is run if the iteration count is less
than m; otherwise, the node-parallel version is run, assuming
+Onodepar is specified. n and m must be compile-time constants.

If a trip count is not specified for a dynsel directive or pragma, the
compiler uses a heuristic to estimate the actual execution costs. This
estimate is then used to determine if it is profitable to execute the loop in
parallel.

Chapter 3 111

Compiler optimizations
+O3 level optimizations

The thread_trip_count attribute cannot be used on loops that also
specify the loop_parallel(nodes) directive or pragma. Similarly, the
node_trip_count attribute cannot be used on loops that also specify
the loop_parallel(threads) directive or pragma. These
combinations are contradictory.

These directives can be used to specify dynamic selection for specific
loops in programs compiled using the +Onodynsel option, or to provide
trip count information for specific loops in programs compiled with
dynamic selection enabled. You can disable dynamic selection for
selected loops by using the no_dynsel compiler directive or pragma. In
Fortran, this directive has the following form:

C$DIR NO_DYNSEL

The C pragma has the form:

#pragma _CNX no_dynsel

This directive or pragma can be used to disable dynamic selection on
specific loops in programs compiled with dynamic selection enabled.

As with all optimizations that replicate loops, the number of new loops
created when the compiler performs dynamic selection is limited by
default to ensure reasonable compile times. To increase the replication
limit (and possibly increase your compile time and code size), specify the
+Onosize +Onolimit compiler options.

Inhibitors of parallelization
Most constructs that inhibit data localization also inhibit parallelization.
Specifically, these are:

• Loop-carried dependences

• Aliased scalar or array variables

• Multiple loop entries or exits

• Procedure calls

• I/O statements

Most of these items inhibit parallelization for the same reasons they
inhibit localization. An exception to this is that more categories of
loop-carried dependences can inhibit parallelization than data
localization, as described in the following sections.

112 Chapter 3

Compiler optimizations
+O3 level optimizations

Loop-carried dependences
The specific loop-carried dependences (LCDs) that inhibit data
localization represent a very small portion of all loop-carried
dependences. A much broader set of LCDs, including those that inhibit
data localization, can inhibit parallelization.

LCDs fall into three categories:

• Forward LCDs

• Backward LCDs

• Output LCDs

The LCD that inhibits localization is a combination of these. Each of
these LCDs inhibit parallelization.

Forward LCDs
A forward LCD exists when one iteration references a variable whose
value is assigned on a later iteration. The Fortran loop below contains a
forward LCD on the array A.

DO I = 1, N - 1
 A(I) = A(I + 1) + B(I)
ENDDO

In this example, the first iteration assigns a value to A(1) and
references A(2) . The second iteration assigns a value to A(2) and
references A(3) . The reference to A(I) depends on the fact that the
I+1 th iteration, which assigns a new value to A(I) , has not yet
executed. Forward LCDs inhibit parallelization because if the loop is
broken up to run on several processors, when I reaches its terminal
value on one processor, A(I+1) will usually have already been computed
by another processor (it is, in fact, the first value computed by another
processor). Because the calculation depends on A(I+1) being
uncomputed, this would produce wrong answers.

An analogous C/C++ loop follows:

for(i=0;i<n-1;i++)
 a[i] = a[i+1] + b[i];

Chapter 3 113

Compiler optimizations
+O3 level optimizations

Backward LCDs
A backward LCD exists when one iteration references a variable whose
value was assigned on an earlier iteration. The Fortran loop below
contains a backward LCD on the array A.

DO I = 2, N
 A(I) = A(I-1) + B(I)
ENDDO

Here, each iteration assigns a value to A based on the value assigned to A
in the previous iteration. If A(I-1) has not been computed before A(I)
is assigned, wrong answers will result. Backward LCDs inhibit
parallelism because if the loop is broken up to run on several processors,
A(I-1) will not have been computed for the first iteration of the loop on
every processor except the processor running the chunk of the loop
containing I = 1 .

An analogous C/C++ loop follows:

for(i=1;i<n;i++)
 a[i] = a[i-1] + b[i];

Output LCDs
An output LCD exists when the same memory location is assigned values
on two or more iterations. A potential output LCD exists when the
compiler cannot determine whether an array subscript contains the
same values between loop iterations. The Fortran loop below contains a
potential output LCD on the array A:

DO I = 1, N
 A(J(I)) = B(I)
ENDDO

Here, if any referenced elements of J contain the same value, the same
element of A will be assigned several different elements of B. In this case,
as this loop is written, any A elements that are assigned more than once
should contain the final assignment at the end of the loop. If the loop is
run in parallel, however, this cannot be guaranteed.

An analogous C/C++ loop follows:

for(i=0;i<n;i++)
 a[j[i]] = b[i];

114 Chapter 3

Compiler optimizations
+O3 level optimizations

Apparent LCDs
The compiler will not parallelize loops containing apparent LCDs rather
than risk wrong answers by doing so.

If you are sure that a loop with an apparent LCD is safe to parallelize,
you can indicate this to the compiler using the no_loop_dependence
directive or pragma, which is explained in the section “Loop-carried
dependences” on page 68.

The following Fortran example illustrates a NO_LOOP_DEPENDENCE
directive being used on the output LCD example presented previously:

C$DIR NO_LOOP_DEPENDENCE(A)
 DO I = 1, N
 A(J(I)) = B(I)
 ENDDO

This effectively tells the compiler that no two elements of J are identical,
so there is no output LCD and the loop is safe to parallelize. If any of the
J values are identical, wrong answers could result.

Use of the no_loop_dependence pragma is illustrated in the following
C example:

#pragma _CNX no_loop_dependence(a)
for(i=0;i<n;i++)
 a[j[i]] = b[i];

Reductions
In many cases, the compiler can recognize and parallelize loops
containing a special class of dependence known as a reduction. In
general, a reduction has the form:

X = X operator Y

where X is a variable not assigned or used elsewhere in the loop, Y is a
loop constant expression not involving X, and operator is +, * , .AND. ,
.OR. , or .XOR. .

The compiler also recognizes reductions of the form:

X = function(X,Y)

where X is a variable not assigned or referenced elsewhere in the loop, Y
is a loop constant expression not involving X, and function is the intrinsic
MAX function or intrinsic MIN function.

Chapter 3 115

Compiler optimizations
+O3 level optimizations

Reductions commonly appear in the form of sum operations, as shown in
the following Fortran example:

DO I = 1, N
 A(I) = B(I) + C(I)
 .
 .
 .
 ASUM = ASUM + A(I)
ENDDO

Assuming this loop does not contain any parallelization-inhibiting code,
the compiler would automatically parallelize it. The code generated to
accomplish this creates temporary, thread-specific copies of ASUM for each
thread that will be running the loop. When each parallel thread
completes its portion of the loop, thread 0 for the current spawn context
accumulates the thread-specific values into the global ASUM.

Generally, the compiler automatically recognizes reductions in a loop and
is able to parallelize the loop. If the loop is under the influence of the
prefer_parallel directive or pragma, the compiler still recognizes
reductions. However, in a loop under the influence of the
loop_parallel directive or pragma, reduction analysis is not
performed. Consequently, the loop may not be correctly parallelized
unless the reduction is pointed out by using the reduction directive or
pragma.

The Fortran 90 directive has the form:

C$DIR REDUCTION(namelist)

The C pragma has the form:

#pragma _CNX reduction(namelist)

where

namelist is a comma-separated list of scalar variables

116 Chapter 3

Compiler optimizations
+O3 level optimizations

The following example shows the use of this directive:

C$DIR LOOP_PARALLEL, LOOP_PRIVATE(FUNCTEMP), REDUCTION(SUM)
 DO I = 1, N
 .
 .
 .
 FUNCTEMP = FUNC(X(I))
 SUM = SUM + FUNCTEMP
 .
 .
 .
 ENDDO

Preventing parallelization
You can prevent parallelization on a loop basis by using the
no_parallel directive or pragma. The Fortran directive has the form:

C$DIR NO_PARALLEL

The C pragma has the form:

#pragma _CNX no_parallel

You can use these directives to prevent parallelization of the loop that
immediately follows them. Only parallelization is inhibited; all other
loop optimizations will still be applied.

The following Fortran example illustrates the use of this directive:

 DO I = 1, 1000
C$DIR NO_PARALLEL
 DO J = 1, 1000
 A(I,J) = B(I,J)
 ENDDO
 ENDDO

In this example, parallelization of the J loop is prevented. The I loop can
still be parallelized.

An analogous C example follows:

for(i=0;i<1000;i++)
#pragma _CNX no_parallel
 for(j=0;j<1000;j++)
 a[i][j] = b[i][j];

Chapter 3 117

Compiler optimizations
+O3 level optimizations

The +Onoautopar compiler option is available to disable automatic
parallelization but will allow parallelization of directive-specified loops.
Refer to Chapter 4, “Basic shared-memory programming,” and
Appendix D, “Optimization options,” for more information on
+Onoautopar .

The +Ononodepar compiler option is available to disable
directive-specified node-parallelism. Thread-parallelism—both
automatic and directive-specified—is still implemented. Refer to
Chapter 4, “Basic shared-memory programming,” and Appendix D,
“Optimization options,” for more information on +Ononodepar .

Other parallelization directives and pragmas
Several directives and pragmas are available to allow you to manually
control certain aspects of loop parallelization and to parallelize tasks
outside of loops. These directives (which are not supported by the
HP aC++ compiler) are:

prefer_parallel

Requests parallelization of the immediately following
loop; accepts attributes for node- and
thread-parallelism, strip-length adjustment, maximum
number of threads, and ordered execution. The
compiler handles data privatization and does not
parallelize the loop if it is not safe to do so.

loop_parallel

Forces parallelization of the immediately following
loop. Accepts the same attributes as
prefer_parallel , but requires you to manually
privatize loop data and synchronize data dependences.

begin_tasks , next_task and end_tasks

Allow you to parallelize consecutive blocks of serial
code. Accepts attributes for node- and
thread-parallelism, ordered execution, and maximum
number of threads.

118 Chapter 3

Compiler optimizations
+O3 level optimizations

parallel and end_parallel

Allow you to parallelize a single code region to run on
multiple threads. Unlike the tasking directives, which
run discrete sections of code in parallel,
parallel /end_parallel run multiple copies of a
single section. Accepts attributes for node- and
thread-parallelism, and maximum number of threads.
Within a parallel region, loop directives
(prefer_parallel , loop_parallel) and tasking
directives (begin_tasks) may appear with the dist
attribute. The dist attribute causes the compiler to
use existing threads rather than spawning new
threads.

critical_section and end_critical_section

Allow you to isolate nonordered manipulations of a
shared variable within the loop. Only one parallel
thread can execute the code contained in the critical
section at a time, eliminating possible contention.

ordered_section and end_ordered_section

Allow you to isolate dependences within a loop so that
code contained within the ordered section executes in
iteration order. Only useful when used with the
loop_parallel(ordered) directive or pragma.

These directives and pragmas are discussed in detail in Chapter 4,
“Basic shared-memory programming,” and Chapter 6, “Advanced
shared-memory programming.”

Chapter 3 119

Compiler optimizations
+O3 level optimizations

Parallelism in HP aC++
Parallelism in the HP aC++ compiler is available through the following
command-line options or libraries:

• +O3 +Oparallel or +O4 +Oparallel —Some automatic
parallelization is available from the compiler; see the section
“Parallelization” on page 100 for more information

• HP MPI—HP’s implementation of the message-passing interface; see
Chapter 7, “Message-passing programming” and the manual
HP MPI User’s Guide for more information

• CPSlib—the Compiler Parallel Support Library provides thread
management and synchronization routines; see the cps(3) man page
or Appendix F, “Compiler Parallel Support Library,” for additional
information

• Pthreads—POSIX threads; see the pthread(3t) man page or the
manual Programming with Threads on HP-UX (B2355-90060) for
more information

Almost none of the pragmas in this book, regardless of whether they are
related to parallelism, are available in the HP aC++ compiler. However,
C++ does support the memory classes that are fully described in
Chapter 5, “Memory classes” and briefly explained in Appendix B,
“Exemplar compiler directives and pragmas.” These classes are
implemented through storage class specifiers (far_shared ,
near_shared , node_private , and thread_private).

120 Chapter 3

Compiler optimizations
+O4 level optimization

+O4 level optimization
At +O4, optimizations are performed across all files in the application
that have been compiled with +O4. All optimizations of the previous
levels are performed, and three additional optimizations are performed:

• Inlining across multiple source files

• Cloning across multiple source files

• Global and static variable optimizations

During +O4 optimizations, the compiler optimizes across the function
boundaries (of all files that have been compiled with +O4) to produce
better and faster code sequences. Normally, global optimizations are
performed within individual functions or source code files.
Interprocedural optimizations look at function interactions within a
program and transform particular code sequences into faster code.
Because information about every function within a program is required,
this level of optimization must be performed at link time. Because
analysis is done at link time, the compile time is generally shorter (than
at lower optimization levels), but linking takes more time.

Inlining across multiple source files
Inlining substitutes function calls with copies of the function’s object
code. Only functions that meet the optimizer’s criteria are inlined. This
may result in slightly larger executable files. However, this increase in
size is offset by the elimination of time-consuming procedure calls and
procedure returns. See the section “Inlining within a single source file”
on page 64 for an example of inlining.

Inlining at +O4 is performed across all procedures within the program.
Inlining at +O3 is done within one file.

Inlining is affected by the +O[no]inline[= namelist] and
+Oinline_budget= n command-line options. See Appendix D,
“Optimization options,” for more information.

Chapter 3 121

Compiler optimizations
+O4 level optimization

Cloning across multiple source files
Cloning is the replacement of a call to a routine by a call to a clone of that
routine. The clone is optimized differently than the original routine.
Cloning can expose additional opportunities for interprocedural
optimization.

Cloning at +O4 is performed across all procedures within the program.
Cloning at +O3 is done within one file. Cloning is enabled by default; it
can be disabled by specifying the +Onoinline command-line option.

Global and static variable optimizations
Global and static variable optimizations look for ways to reduce the
number of instructions required for accessing global and static variables
(COMMON and SAVE variables in Fortran; extern and static variables
in C and C++). The compiler normally generates two machine
instructions when referencing global variables. Depending on the locality
of the global variables, single machine instructions may sometimes be
used to access these variables. The linker rearranges the storage location
of global and static data to increase the number of variables that can be
referenced by single instructions.

Global variable optimization coding standards
Because this optimization rearranges the location and data alignment of
global variables, follow the programming practices given below:

• Do not make assumptions about the relative storage location of
variables, such as generating a pointer by adding an offset to the
address of another variable.

• Do not rely on pointer or address comparisons between two different
variables.

• Do not make assumptions about the alignment of variables, such as
assuming that a short integer is aligned the same as an integer.

122 Chapter 3

Compiler optimizations
+O4 level optimization

Chapter 4 123

4 Basic shared-memory
programming

This chapter discusses programming techniques that allow you to
increase code efficiency with minimal effort. The pragmas discussed in
this chapter are not available in the HP aC++ compiler.

Simple manual loop, task,
and region parallelization
The Exemplar compilers automatically exploit strip-based loop
parallelism in loops that are clearly dependence-free, as described in
Chapter 3, “Compiler optimizations.” The prefer_parallel ,
loop_parallel , and parallel directives and pragmas allow you to
increase parallelization opportunities and to manually control many
aspects of parallelization.

The compiler cannot automatically locate task parallelism, but the
tasking directives and pragmas mentioned in Chapter 3, “Compiler
optimizations,” (and discussed here) allow you to specify consecutive
blocks of code that can be run in parallel. Similarly, the parallel and
end_parallel directives and pragmas allow you to specify a code region
that can be run in its entirety on several processors.

The subsections that follow discuss specifying simple, unordered loop,
task, and region parallelism using the prefer_parallel ,
loop_parallel , begin_tasks /next_task /end_tasks , and
parallel /end_parallel directives and pragmas. These directives and
pragmas can be nested in any order as long as node-parallelism is
outside thread-parallelism.

Critical sections that do not rely on ordered execution are also covered
here. Any necessary variable privatization is provided by the
loop_private , task_private and parallel_private directives and
pragmas, which are described in detail in the “Loop-specific,
task-specific, and region-specific data privatization” section of this
chapter.

124 Chapter 4

Basic shared-memory programming
Simple manual loop, task, and region parallelization

For a detailed discussion of ordered parallelism, parallel
synchronization, and the effective use of memory classes, refer to
Chapter 5, “Memory classes,” and Chapter 6, “Advanced shared-memory
programming.”

Loop parallelization
This section discusses simple uses of the prefer_parallel and
loop_parallel directives and pragmas, which, when specified, apply to
the immediately following loop. The data privatization necessary when
using loop_parallel is illustrated in this chapter’s examples using the
loop_private directive, which is discussed in the section
“loop_private ” on page 154. Manual data privatization using memory
classes is discussed in Chapter 5, “Memory classes,” and Chapter 6,
“Advanced shared-memory programming.”

NOTE Use these directives and pragmas only on Fortran DO and C for loops
that have iteration counts that can be determined prior to loop
invocation at runtime.

prefer_parallel and loop_parallel generally take the same
attributes. The threads attribute is the default attribute for both
prefer_parallel and loop_parallel . In Fortran, these directives
have the following form:

C$DIR PREFER_PARALLEL[(attribute-list)]

and

C$DIR LOOP_PARALLEL[(attribute-list)]

In C, they have the form:

#pragma _CNX prefer_parallel[(attribute-list)]

and

#pragma _CNX loop_parallel(ivar = indvar[, attribute-list])

where

ivar = indvar
specifies that the primary loop induction variable is
indvar. ivar = indvar is optional in Fortran, but
required in C. Use it only with loop_parallel .

Chapter 4 125

Basic shared-memory programming
Simple manual loop, task, and region parallelization

the optional attribute-list
can contain one of the following case-insensitive
attributes.

NOTE The values of n and m must be compile-time constants for all of the below
attributes in which they appear.

threads

Causes thread-parallelism. This is the default.
nodes

Causes thread-based node-parallelism. See the section
“nodes attribute” on page 128 for additional
information.

dist

Causes the compiler to distribute the iterations of a
loop across active threads instead of spawning new
threads. Use dist with prefer_parallel or
loop_parallel inside a parallel /end_parallel
region. The level of parallelism is determined by using
either the threads or nodes attribute in the
parallel directive or pragma. See “Region
parallelization” on page 144 for more information.

ordered

Causes ordered invocation of each loop iteration;
provides no automatic synchronization. Designed for
use with the loop_parallel directive and pragma on
loops containing ordered sections.

max_threads = m
Allows no more than m threads to be allocated to the
execution of the loop. m must be an integer constant.

chunk_size = n
Divides the loop into chunks of n or fewer iterations,
and distributes the chunks round-robin to the
processors as shown in Table 5 and Table 6 on
page 131. n must be an integer constant.

threads, ordered

Causes ordered invocation of each iteration across
threads.

126 Chapter 4

Basic shared-memory programming
Simple manual loop, task, and region parallelization

nodes, ordered

Causes ordered invocation of each iteration across
hypernodes.

dist, ordered

Causes ordered invocation of each iteration across
threads or nodes, as specified in the attribute list to the
parallel directive.

threads, max_threads = m
Causes thread-parallelism on no more than m threads.

nodes, max_threads = m
Causes node-parallelism on no more than m nodes; this
starts one thread per node on no more than m
hypernodes.

dist, max_threads = m
Causes thread-parallelism or node-parallelism (as
determined by the attribute list to the parallel
directive) on no more than m threads (if
thread-parallelism) or nodes (if node-parallelism).

ordered, max_threads = m
Causes ordered parallelism on no more than m threads.

threads, chunk_size = n
Causes thread-parallelism by chunks.

nodes, chunk_size = n
Causes node-parallelism by chunks.

dist, chunk_size = n
Causes thread-parallelism or node-parallelism (as
determined by the attribute list to the parallel
directive) by chunks.

threads, ordered, max_threads = m
Causes ordered thread-parallelism on no more than m
threads.

nodes, ordered, max_threads = m
Causes ordered node-parallelism on no more than m
hypernodes.

Chapter 4 127

Basic shared-memory programming
Simple manual loop, task, and region parallelization

dist, ordered, max_threads = m
Causes ordered thread-parallelism on no more than m
threads, or ordered node-parallelism on no more than
m hypernodes—depending on the attribute list used
with the parallel directive.

chunk_size = n, max_threads = m
Causes chunk parallelism on no more than m threads.

threads, chunk_size = n, max_threads = m
Causes thread-parallelism by chunks of size n on no
more than m threads.

nodes, chunk_size = n, max_threads = m
Causes node-parallelism by chunks of size n on no
more than m hypernodes.

dist, chunk_size = n, max_threads = m
Causes thread-parallelism by chunks on no more than
m threads, or node-parallelism by chunks on no more
than m hypernodes—depending on the attribute list
used with the parallel directive.

Combining the attributes
The allowed combinations of attributes are those combinations listed in
the preceding section. In such combinations the attributes can be listed
in any order.

The loop_parallel C pragma requires the ivar = indvar attribute,
which specifies the primary loop induction variable. If this is not present,
the compiler will issue a warning and ignore the pragma. ivar should
specify only the primary induction variable; any other loop induction
variables should be a function of this variable and should be declared
loop_private .

In Fortran, ivar is optional for DO loops; if not provided, the compiler
will pick the primary induction variable for the loop. ivar is required for
DO WHILE and hand-rolled loops in Fortran.

prefer_parallel does not require ivar , and the compiler will issue an
error if it encounters this combination.

128 Chapter 4

Basic shared-memory programming
Simple manual loop, task, and region parallelization

Using the attributes
The attributes associated with the prefer_parallel and
loop_parallel directives and pragmas are explained in the following
sections.

threads

The optional threads attribute causes parallelization across
threads; this is the default for loop_parallel and
prefer_parallel . If the threads attribute appears in a
parallelization directive on the outermost loop in a nest, the loop will
go parallel on all the threads available to the process. If the threads
attribute appears in a parallelization directive nested within a
node-parallel construct, the specified loop will go thread-parallel on
the threads available within each parallel hypernode.

nodes

The nodes attribute causes parallelization across hypernodes in a
multinode, scalable SMP system. In this case, a single thread on each
available hypernode will execute a portion of the specified loop. A
node-parallel construct cannot exist inside a thread-parallel
construct. See the section “Node-parallelism vs. thread-parallelism”
on page 106 for a comparison of the two levels of parallelism.

dist

The dist attribute tells the compiler to distribute the iterations of a
loop across the currently active threads—instead of spawning new
threads. Using currently active threads significantly reduces the
parallelization overhead. loop_parallel(dist) and
prefer_parallel(dist) should be used inside a
parallel /end_parallel region. The level of parallelism is
determined by using either the threads or nodes attribute to the
parallel directive (or pragma). See “Region parallelization” on
page 144 for information on the attributes available to the parallel
directive and pragma.

The dist attribute can be used with any prefer_parallel or
loop_parallel attribute, except the nodes or threads attributes.

NOTE Any loop under the influence of loop_parallel(dist) or of
prefer_parallel(dist) will appear in the Optimization Report
(generated by specifying the +Oreport option) as being serial, because it
is already inside a parallel region. For more information on the
Optimization Report, see Appendix E, “Optimization Report.”

Chapter 4 129

Basic shared-memory programming
Simple manual loop, task, and region parallelization

In the following example, threads are spawned when the parallel
directive is used. No additional threads are spawned until the
loop_parallel directive is used without the dist attribute:

C$DIR PARALLEL (NODES, MAX_THREADS = 4), PARALLEL_PRIVATE(A, C)
C SPAWN ONE THREAD PER NODE, UP TO A MAXIMUM OF 4

 A = B ! THIS STATEMENT WILL BE EXECUTED BY ALL 4 NODE-WAY THREADS

C$DIR LOOP_PARALLEL(DIST, MAX_THREADS = 3)
 DO I = 1, 10000
 ! THIS LOOP WILL BE DISTRIBUTED TO AT MOST 3 OF
 X(I) = Y(I) ! THE 4 ACTIVE NODE-WAY THREADS; THIS MEANS THAT
 ! EACH NODE-WAY THREAD EXECUTES
 ! ABOUT 10000/3 ITERATIONS
 ENDDO

 C = X(1) ! THIS STATEMENT WILL BE EXECUTED BY ALL
 ! NODE-WAY THREADS

C$DIR LOOP_PARALLEL(DIST)
 DO J = 1, 10000
 ! THIS LOOP WILL BE DISTRIBUTED TO THE 4 ACTIVE
 Y(J) = X(J) ! NODE-WAY THREADS, MEANING THAT EACH THREAD
 ! EXECUTES 10000/4 ITERATIONS
 ENDDO

C$DIR LOOP_PARALLEL
 DO K = 1, 10000
 ! SPAWN ADDITIONAL THREADS ON EACH NODE, UP TO THE
 W(K, MY_NODE()) = X(K) ! MAXIMUM AVAILABLE (TYPICALLY 16) AND
 ! ON EACH NODE, DISTRIBUTE THE WORK ACROSS
 ! ALL THE THREADS SO THAT
 ! EACH THREAD EXECUTES 10000/16 ITERATIONS
 ENDDO
C$DIR END_PARALLEL

loop_parallel and loop_parallel(dist) directives can be
nested as long as node-parallel loops are outside all thread-parallel
loops. The compiler will pick the loop that is most appropriate for the
directive or pragma being processed (the loop picked is usually the
outermost parallel loop).

130 Chapter 4

Basic shared-memory programming
Simple manual loop, task, and region parallelization

ordered

The ordered attribute causes the iterations of the loop to be initiated
in loop order across the processors. It is useful only in loops with
manually-synchronized dependences, so it is only useful with the
loop_parallel directive. To achieve ordered parallelism,
dependences must be synchronized within ordered sections, such as
those constructed using the ordered_section and
end_ordered_section directives. Using
loop_parallel(ordered) and its associated synchronization
directives is covered in Chapter 6, “Advanced shared-memory
programming.”

max_threads = m
The max_threads = m attribute restricts execution of the specified
loop to no more than m threads if specified alone or with the threads
attribute; if specified with the nodes attribute, execution is restricted
to m nodes running one thread each. If specified with the
chunk_size = n attribute, the chunks are parallelized across no
more than m threads. max_threads = m is useful when you know
the maximum number of threads your loop will run on efficiently.

chunk_size = n
The chunk_size = n attribute specifies a number of iterations by
which to strip mine the loop for parallelization. If this attribute is
present alone or with the threads attribute, n or fewer loop
iterations are distributed round-robin (as shown in Table 5 and
Table 6 on page 131) to each available thread until there are no
remaining iterations. If chunk_size = n is combined with the
nodes attribute, the chunks are distributed round-robin to each
available hypernode until there are no remaining chunks. If the
number of threads does not evenly divide the number of iterations,
some threads will perform one less chunk than others. n must be a
compile-time integer constant.
This stride-based parallelism differs from the default strip-based
parallelism described in Chapter 3, “Compiler optimizations,” that
divides the loop’s iterations into a number of contiguous chunks equal
to the number of available threads, and each thread computes one
chunk. The chunk_size = n attribute allows each thread to do
several noncontiguous chunks.

Specifying chunk_size = ((number of iterations - 1) / number of
threads) + 1 is similar to default strip mining for parallelization.

Chapter 4 131

Basic shared-memory programming
Simple manual loop, task, and region parallelization

Using chunk_size = 1 distributes individual iterations cyclically
across the processors. For example, if a loop has 1000 iterations to be
distributed among 4 processors, specifying chunk_size = 1 causes
the distribution shown in Table 5.

Table 5 Iteration distribution using chunk_size = 1

For chunk_size = n, with n > 1, the distribution is round-robin,
however it is not the same as specifying the ordered attribute. For
example, using the same loop as above, specifying chunk_size = 5
produces the distribution shown in Table 6.

Table 6 Iteration distribution using chunk_size = 5

Consider the following Fortran example, which uses the
PREFER_PARALLEL directive, but applies to LOOP_PARALLEL as well:

C$DIR PREFER_PARALLEL(CHUNK_SIZE = 4)
 DO I = 1, 100
 A(I) = B(I) + C(I)
 ENDDO

In this example, the loop is parallelized by parcelling out chunks of 4
iterations to each available thread. Figure 20 uses Fortran 90 array
syntax to illustrate the iterations performed by each thread,
assuming 8 available threads.

Figure 20 shows that the 100 iterations of I are parcelled out in
chunks of 4 iterations to each of the 8 available threads; after the
chunks are distributed evenly to all threads, there is one chunk left
over (iterations 97:100), which executes on thread 0.

CPU0 CPU1 CPU2 CPU3

Iterations
1 2 3 4

5 6 7 ...

CPU0 CPU1 CPU2 CPU3

Iterations
1, 2, 3, 4, 5 6, 7, 8, 9, 10 11, 12, 13, 14, 15 16, 17, 18, 19, 20

21, 22, 23, 24, 25 26, 27, 28, 29, 30 31, 32, 33, 34, 35, ...

132 Chapter 4

Basic shared-memory programming
Simple manual loop, task, and region parallelization

 Figure 20 Stride-parallelized loop

An analogous C example follows:

#pragma _CNX prefer_parallel(chunk_size = 4)
for(i=0;i<100;i++)
 a[i] = b[i] + c[i];

A(1:4)=B(1:4)+C(1:4)

...

A(65:68)=B(65:68)+C(65:68)

A(97:100)=B(97:100)+C(97:100)

A(5:8)=B(5:8)+C(5:8)

...

A(69:72)=B(69:72)+C(69:72)

A(13:16)=B(13:16)+C(13:16)

...

A(77:80)=B(77:80)+C(77:80)

A(9:12)=B(9:12)+C(9:12)

...

A(73:76)=B(73:76)+C(73:76)

THREAD 0

THREAD 1

THREAD 2 THREAD 3

A(17:20)=B(17:20)+C(17:20)

...

A(81:84)=B(81:84)+C(81:84)

A(21:24)=B(21:24)+C(21:24)

...

A(85:88)=B(85:88)+C(85:88)

A(29:32)=B(29:32)+C(29:32)

...

A(93:96)=B(93:96)+C(93:96)

A(25:28)=B(25:28)+C(25:28)

...

A(89:92)=B(89:92)+C(89:92)

THREAD 4 THREAD 5

THREAD 6 THREAD 7

Chapter 4 133

Basic shared-memory programming
Simple manual loop, task, and region parallelization

The chunk_size = n attribute is most useful on loops in which the
amount of work increases or decreases as a function of the iteration
count. (These loops are also known as triangular loops.) The
following Fortran example shows such a loop. Again,
PREFER_PARALLEL is used here, but the concept applies to
LOOP_PARALLEL also.

C$DIR PREFER_PARALLEL(CHUNK_SIZE = 4)
 DO J = 1,N
 DO I = J, N
 A(I,J) = ...
 .
 .
 .
 ENDDO
 ENDDO

Here, the work of the I loop decreases as J increases. By specifying a
chunk_size for the J loop, we more evenly balance the load across
the threads executing the loop. If this loop was strip mined in the
traditional manner, the amount of work contained in the strips
would decrease with each successive strip; the threads performing
early iterations of J would do substantially more work than those
performing later iterations.

An analogous C example follows:

#pragma _CNX prefer_parallel(chunk_size = 4)
for(j=0;j<n;j++)
 for(i=j;i<n;i++) {
 a[i][j] = ...
 .
 .
 .
 }

For more information and examples on using the chunk_size = n
attribute, see the sections “Distributing iterations on cache line
boundaries” on page 280 and “Triangular loops” on page 308.

134 Chapter 4

Basic shared-memory programming
Simple manual loop, task, and region parallelization

prefer_parallel

The prefer_parallel directive and pragma cause the compiler to
parallelize the immediately following loop if it is free of dependences and
other parallelization inhibitors. The compiler automatically privatizes
any loop variables that must be privatized. prefer_parallel requires
less manual intervention and is less forceful than the loop_parallel
directive and pragma.

On multihypernode systems, when prefer_parallel is specified
without a nodes or threads attribute, the compiler will determine if
opportunities for parallelism exist within the loop and, if possible,
parallelize the loop across threads. If the threads attribute is specified,
the compiler attempts to find and exploit thread-parallelism within the
loop. If the nodes attribute is specified, the compiler trys to locate and
exploit node-parallelism within the loop.

prefer_parallel can also be used to indicate the preferred loop in a
nest to parallelize, as shown in the following Fortran example:

 DO J = 1, 100
C$DIR PREFER_PARALLEL
 DO I = 1, 100
 .
 .
 .
 ENDDO
 ENDDO

In this example, PREFER_PARALLEL causes the compiler to choose the
innermost loop for parallelization, provided it is free of dependences.
PREFER_PARALLEL does not inhibit loop interchange.

Chapter 4 135

Basic shared-memory programming
Simple manual loop, task, and region parallelization

An analogous C example follows:

for(j=0;j<100;j++)
 #pragma _CNX prefer_parallel
 for(i=0;i<100;i++) {
 .
 .
 .
 }

Do not use the ordered attribute in a prefer_parallel directive, as it
is only useful if the loop contains synchronized dependences, and
prefer_parallel will not parallelize a loop containing any
loop-carried dependences. The ordered attribute is useful in the
loop_parallel directive, as described in Chapter 6, “Advanced
shared-memory programming.”

loop_parallel

The loop_parallel directive forces parallelization of the immediately
following loop. The compiler does not check for data dependences,
perform variable privatization, or perform parallelization analysis. You
must synchronize any dependences manually and manually privatize
loop data as necessary. In absence of a nodes or threads attribute,
loop_parallel defaults to thread parallelization.

The section “Critical sections” on page 148 contains an example of using
loop_parallel to parallelize a loop with a dependence; the dependence
is manually handled in a critical section.

The threads , nodes , chunk_size = n and max_threads = m
attributes and combinations of these attributes have exactly the same
effect as explained for prefer_parallel . loop_parallel(ordered)
is useful for manually parallelizing loops containing manually-ordered
dependences as described in Chapter 6, “Advanced shared-memory
programming.”

Parallelizing loops with calls
loop_parallel can be useful for manually parallelizing loops
containing procedure calls.

136 Chapter 4

Basic shared-memory programming
Simple manual loop, task, and region parallelization

Consider the following Fortran example:

C$DIR LOOP_PARALLEL
 DO I = 1, N
 X(I) = FUNC(I)
 ENDDO

The call to FUNC in this loop would normally prevent it from
parallelizing. However, if you are sure that FUNC has no side effects and
is compiled for reentrancy (the default on Exemplar compilers), this loop
can be safely parallelized as shown. (A function does not have side effects
if it does not modify its arguments, it does not modify the same memory
location from one call to the next, it performs no I/O, and it does not call
any procedures that have side effects. If FUNC does have side effects or is
not reentrant, this loop may yield wrong answers.

An analogous C example follows:

#pragma _CNX loop_parallel(ivar=i)
 for(i=0;i<n;i++)
 x[i] = func(i);

NOTE In some cases, global register allocation can interfere with
loop_parallel loops that contain procedure calls. Refer to the “Global
register allocation” section of Chapter 3, “Compiler optimizations,” for
more information.

Unparallelizable loops
The compiler will not parallelize any loop that does not have a number of
iterations that can be determined prior to loop invocation at execution
time, even when loop_parallel is specified.

Consider the following Fortran example:

C$DIR LOOP_PARALLEL
 DO WHILE(A(I) .GT. 0)!WILL NOT PARALLELIZE
 .
 .
 A(I) = ...
 .
 .
 ENDDO

There is no way the compiler can determine the loop’s iteration count
prior to loop invocation here, so the loop cannot be parallelized.

Chapter 4 137

Basic shared-memory programming
Simple manual loop, task, and region parallelization

Comparing prefer_parallel and loop_parallel

The prefer_parallel and loop_parallel directives (and pragmas)
are both used in parallelizing loops. Table 7 gives an overview of the
differences between the two directives (pragmas). See the sections
“prefer_parallel ” on page 134 and “loop_parallel ” on page 135 for
more information.

Table 7 Comparison of prefer_parallel and loop_parallel

Directive/pragma Advantages Disadvantages

prefer_parallel

Requests compiler to perform
parallelization analysis on the following
loop then parallelize the loop if it is safe to
do so.

When used with the +Oautopar option (the
default), prefer_parallel overrides the
compiler heuristic for picking the loop in a
loop nest to parallelize.

When used with +Onoautopar , the
compiler only performs directive-specified
parallelization (no heuristic is used to pick
the loop in a nest to parallelize); in such
cases, prefer_parallel requests loop
parallelization.

Compiler performs
parallelization
analysis and
variable
privatization for
you.

Loop may or may
not execute in
parallel.

loop_parallel

Forces compiler to parallelize the following
loop—assuming the iteration count can be
determined prior to loop invocation.

Allows you to
parallelize loops
that the compiler is
not able to
automatically
parallelize because
it cannot determine
dependences or side
effects.

You are
responsible for:

• Checking for and
synchronizing
data
dependences

• Performing
variable
privatization

138 Chapter 4

Basic shared-memory programming
Simple manual loop, task, and region parallelization

Task parallelization
The compiler does not automatically parallelize code outside a loop, but
you can use tasking directives and pragmas to instruct the compiler to
parallelize such code. The begin_tasks directive and pragma tells the
compiler to begin parallelizing a series of tasks. The next_task
directive and pragma marks the end of a task and the start of the next
task. The end_tasks directive and pragma marks the end of a series of
tasks to be parallelized and prevents execution from continuing until all
tasks have completed. The sections of code delimited by these directives
are referred to as a task list.

Within a task list, the compiler does not check for data dependences,
perform variable privatization, or perform parallelization analysis. You
must manually synchronize any dependences between tasks and
manually privatize data as necessary. In absence of a nodes or threads
attribute, begin_tasks defaults to thread parallelization.

The Fortran tasking directives have the following forms:

C$DIR BEGIN_TASKS[(attribute-list)]
C$DIR NEXT_TASK
C$DIR END_TASKS

The C tasking pragmas have the forms:

#pragma _CNX begin_tasks[(attribute-list)]
#pragma _CNX next_task
#pragma _CNX end_tasks

Chapter 4 139

Basic shared-memory programming
Simple manual loop, task, and region parallelization

The optional attribute-list can contain one of the following attribute
combinations (m is an integer constant):

• threads

• nodes

• dist

• ordered

• max_threads = m

• threads, ordered

• nodes, ordered

• dist, ordered

• threads, max_threads = m

• nodes, max_threads = m

• dist, max_threads = m

• ordered, max_threads = m

• threads, ordered, max_threads = m

• nodes, ordered, max_threads = m

• dist, ordered, max_threads = m

The threads attribute causes the tasks to run thread-parallel, and is
the default. As with parallel loops, node-parallelism cannot be nested
within thread-parallelism in task lists.

The nodes attribute causes the tasks to run node-parallel, on one thread
per available hypernode.

The dist attribute tells the compiler to distribute the tasks across the
currently active threads—instead of spawning new threads. Use the
dist attribute (along with other valid attributes) to begin_tasks
inside a parallel /end_parallel region. begin_tasks and
parallel /end_parallel must appear inside the same function. The
attribute list to the parallel directive (or pragma) determines the level
of parallelism. See “Region parallelization” on page 144 for information
on the attributes available to the parallel directive and pragma.

The ordered attribute causes the tasks to be initiated in their lexical
order; that is, the first task in the sequence begins to run on its
respective thread before the second and so on. In the absence of the

140 Chapter 4

Basic shared-memory programming
Simple manual loop, task, and region parallelization

ordered argument, the starting order will be indeterminate. While this
argument ensures an ordered starting sequence, it does not provide any
synchronization between tasks, and does not guarantee any particular
ending order. You can manually synchronize the tasks as described in
Chapter 6, “Advanced shared-memory programming,” if necessary.

The attributes specifying max_threads = m will run on no more than
m threads, where m is an integer constant of known value at compile
time. As shown, these attributes can include any combination of thread-
or node-parallel, ordered or unordered execution.

The ordered , nodes and ordered , threads attributes cause the tasks
to run ordered node-parallel and ordered thread-parallel, respectively.

NOTE Do not use tasking directives or pragmas unless you ensure that
dependences do not exist or you insert your own synchronization code, if
necessary, in the code delimited by the tasking directives or pragmas.
The compiler performs no dependence checking or synchronization on
the code in these regions. Synchronization is discussed in Chapter 6,
“Advanced shared-memory programming.”

The following Fortran example shows how to insert tasking directives
into a section of code containing three tasks that can be run in parallel:

C$DIR BEGIN_TASKS
 parallel task 1

C$DIR NEXT_TASK
 parallel task 2

C$DIR NEXT_TASK
 parallel task 3

C$DIR END_TASKS

Chapter 4 141

Basic shared-memory programming
Simple manual loop, task, and region parallelization

The example above specifies thread-parallelism by default. The compiler
transforms the code into a parallel loop and creates machine code
equivalent to the following Fortran code:

C$DIR LOOP_PARALLEL(THREADS)
 DO 40 I = 1,3
 GOTO (10,20,30)I
10 parallel task 1
 GOTO 40
20 parallel task 2
 GOTO 40
30 parallel task 3
 GOTO 40
40 CONTINUE

If there are more tasks than available threads, some threads will execute
multiple tasks; if there are more threads than tasks, some threads will
not execute tasks.

The END_TASKS directive and pragma acts as a barrier; all parallel tasks
must complete before the code following END_TASKS can execute.

Examples
The following Fortran example illustrates how to use these directives to
specify simple task-parallelism:

C$DIR BEGIN_TASKS
 DO I = 1, N - 1
 A(I) = A(I+1) + B(I)
 ENDDO
C$DIR NEXT_TASK
 CALL TSUB(X,Y)
C$DIR NEXT_TASK
 C(1:1000:2) = D(1:500)
C$DIR END_TASKS

In this example, one thread executes the DO I loop, another thread
executes the CALL TSUB(X,Y) , and a third thread assigns the elements
of the array D to every other element of C. These threads execute in
parallel, but their starting and ending orders are indeterminate.

Unless the nodes attribute is supplied with the BEGIN_TASKS directive,
the tasks are thread-parallelized. This means that there is no room for
nested parallelization within the individual parallel tasks of this
example, so the forward LCD on the DO I loop is inconsequential; there

142 Chapter 4

Basic shared-memory programming
Simple manual loop, task, and region parallelization

is no way for the loop to run but serially. The Fortran 90 array
assignment in the last task will not parallelize either, even though it is
technically parallelizable.

An analogous C example follows:

#pragma _CNX begin_tasks, task_private(i)
for(i=0;i<n-1;i++)
 a[i] = a[i+1] + b[i];
#pragma _CNX next_task
tsub(x,y);
#pragma _CNX next_task
for(i=0;i<500;i++)
 c[i*2] = d[i];
#pragma _CNX end_tasks

The loop induction variable i must be manually privatized here because
it is used to control loops in two different tasks. If i was not private, both
tasks would modify it, causing wrong answers. This is not necessary in
the Fortran example because the second loop is implemented as a
Fortran 90 array assignment, for which the compiler generates an
independent induction variable. The task_private directive and
pragma is described in detail in the section “task_private ” on
page 162.

Chapter 4 143

Basic shared-memory programming
Simple manual loop, task, and region parallelization

Nested task parallelism is also possible. In order to nest any parallelism
on an X2000 server, thread-parallelism must be nested within
node-parallelism; when nesting tasking directives or pragmas,
begin_tasks(nodes) must enclose begin_tasks(threads) . Also, if
a node-parallel task contains a parallel loop, the loop cannot go
node-parallel. Thread-parallelism nested within node-parallelism can
only run on the threads of the hypernode it is contained within.

The following Fortran example is more involved and exploits
two-dimensional parallelism:

C$DIR BEGIN_TASKS(NODES)
C$DIR LOOP_PARALLEL(THREADS)
 DO I = 1,N
 IF(B(I) .NE. 0) THEN
 A(I) = B(I)*C(I)
 ELSE
 A(I) = C(I)*D(I)
 ENDIF
 ENDDO
C$DIR NEXT_TASK
C$DIR BEGIN_TASKS(THREADS)
 CALL T1SUB()
C$DIR NEXT_TASK
 CALL T2SUB()
C$DIR NEXT_TASK
 CALL T3SUB()
C$DIR END_TASKS !(THREADS)
C$DIR NEXT_TASK
 X(1:1000) = Y(1:1000)
C$DIR END_TASKS !(NODES)

Here, the first node-parallel task contains a LOOP_PARALLEL(THREADS)
loop that goes parallel on the threads of the hypernode on which this
task is running. The second node-parallel task contains a task list of
three subroutine calls, each of which runs on a separate thread within
the hypernode. The third node-parallel task contains a Fortran 90 array
section assignment which is a candidate for parallelization.

144 Chapter 4

Basic shared-memory programming
Simple manual loop, task, and region parallelization

An analogous C example follows:

#pragma _CNX begin_tasks(nodes)
#pragma _CNX loop_parallel(threads, ivar=i)
for(i=0;i<n;i++)
 if(b[i] != 0)
 a[i] = b[i]*c[i];
 else
 a[i] = c[i]*d[i];
#pragma _CNX next_task
 #pragma _CNX begin_tasks(threads)
 t1sub();
 #pragma _CNX next_task
 t2sub();
 #pragma _CNX next_task
 t3sub();
 #pragma _CNX end_tasks /* (threads) */
#pragma _CNX next_task
for(j=0;j<1000;j++)
 x[j] = y[j];
#pragma _CNX end_tasks /* (nodes) */

Task parallelism can become even more involved, as described in
Chapter 6, “Advanced shared-memory programming.”

Region parallelization
A parallel region is a single block of code that is written to run replicated
on several (or many) threads. The idea is that any scalar code within the
parallel region is run by each thread in preparation for work-sharing
parallel constructs such as prefer_parallel(dist) ,
loop_parallel(dist) , or begin_tasks(dist) . The scalar code
typically assigns data into parallel_private variables so that
subsequent references to the data have a high cache hit rate. Within a
parallel region, code execution can be restricted to subsets of threads by
using conditional blocks that test the thread ID. For an example of how
to use the dist attribute, see the section “Using the attributes” on
page 128.

Region parallelism differs from task parallelism in that parallel tasks
are separate, contiguous blocks of code; when parallelized using the
tasking directives and pragmas, each block generally runs on a separate
thread, whereas a single parallel region runs on several threads.

Chapter 4 145

Basic shared-memory programming
Simple manual loop, task, and region parallelization

Specifying parallel tasks is also typically less time consuming because
each thread’s work is implicitly defined by the task boundaries; in region
parallelism, you must manually modify the region to identify
thread-specific code. However, region parallelism can reduce
parallelization overhead as discussed in the section explaining the dist
attribute on page 128.

The beginning of a parallel region is denoted by the parallel directive
or pragma; the end is denoted by the end_parallel directive or
pragma. end_parallel also prevents execution from continuing until
all copies of the parallel region have completed.

Within a parallel region, the compiler does not check for data
dependences, perform variable privatization, or perform parallelization
analysis; you must manually synchronize any dependences between
copies of the region and manually privatize data as necessary. In absence
of a nodes or threads attribute, parallel defaults to thread
parallelization.

The parallel /end_parallel Fortran directives have the following
form:

C$DIR PARALLEL[(attribute-list)]
C$DIR END_PARALLEL

The C pragmas have the form:

#pragma _CNX parallel(attribute-list)
#pragma _CNX end_parallel

The optional attribute-list can contain one of the following attributes (m
is an integer constant):

• threads

• nodes

• max_threads = m

• threads , max_threads = m

• nodes , max_threads = m

The threads attribute causes the region to run thread-parallel and is
the default. As with parallel loops, node-parallelism cannot be nested
within thread-parallelism in regions.

The nodes attribute causes the region to run node-parallel, on one
thread per available hypernode.

146 Chapter 4

Basic shared-memory programming
Simple manual loop, task, and region parallelization

The max_threads = m attribute will cause the region to run on no
more than m threads, where m is an integer constant. As shown, these
attributes can include any combination of thread- or node-parallel
execution.

NOTE Do not use the parallel region directives or pragmas unless you ensure
that dependences do not exist or you insert your own synchronization
code, if necessary, in the region. The compiler performs no dependence
checking or synchronization on the code delimited by the parallel region
directives and pragmas. Synchronization is discussed in Chapter 6,
“Advanced shared-memory programming.”

Consider the following Fortran example:

 REAL A(1000,8), B(1000,8), C(1000,8), RDONLY(1000), SUM(8)
 INTEGER MYTID
 .
 .
 .
C FIRST INITIALIZATION OF RDONLY IN SERIAL CODE:
 CALL INIT1(RDONLY)
 IF(NUM_THREADS() .LT. 8) STOP "NOT ENOUGH THREADS; EXITING"
C$DIR PARALLEL(MAX_THREADS = 8), PARALLEL_PRIVATE(I, J, K, MYTID)
 MYTID = MY_THREAD() + 1 !ADD 1 FOR PROPER SUBSCRIPTING
 DO I = 1, 1000
 A(I, MYTID) = B(I, MYTID) * RDONLY(I)
 ENDDO
 IF(MYTID .EQ. 1) THEN ! ONLY THREAD 0 EXECUTES SECOND
 CALL INIT2(RDONLY) ! INITIALIZATION
 ENDIF
 DO J = 1, 1000
 B(J, MYTID) = B(J, MYTID) * RDONLY(J)
 C(J, MYTID) = A(J, MYTID) * B(J, MYTID)
 ENDDO
 DO K = 1, 1000
 SUM(MYTID) = SUM(MYTID) + A(K,MYTID) + B(K,MYTID) + C(K,MYTID)
 ENDDO
C$DIR END_PARALLEL

In this example, all arrays that are written to in the parallel code have
one dimension for each of the anticipated number of parallel threads;
each thread can work on disjoint data, there is no chance of two threads
attempting to update the same element, and, therefore, there is no need

Chapter 4 147

Basic shared-memory programming
Simple manual loop, task, and region parallelization

for explicit synchronization. The RDONLY array is one-dimensional, but it
is never written to by parallel threads. Before the parallel region,
RDONLY is initialized in serial code.

The PARALLEL_PRIVATE directive is used to privatize the induction
variables used in the parallel region. This must be done so that the
various threads processing the region do not attempt to write to the same
shared induction variables. PARALLEL_PRIVATE is covered in more
detail in the section “parallel_private ” on page 165.

At the beginning of the parallel region, the NUM_THREADS() intrinsic,
which is described in detail in Chapter 6, “Advanced shared-memory
programming,” is called to ensure that the expected number of threads
are available. Then the MY_THREAD() intrinsic, which is also described
in Chapter 6, is called by each thread to determine its thread ID; all
subsequent code in the region is executed based on this ID. In the I loop,
each thread computes one row of A using RDONLY and the corresponding
row of B.

RDONLY is reinitialized in a subroutine call that is only executed by
thread 0 before it is used again in the computation of B in the J loop,
where again each thread computes a row. The J loop similarly
computes C.

Finally, the K loop sums each dimension of A, B, and C into the SUM array.
No synchronization is necessary here because each thread is running the
entire loop serially and assigning into a discrete element of SUM.

148 Chapter 4

Basic shared-memory programming
Simple manual loop, task, and region parallelization

An analogous C example follows:

float a[8][1000], b[8][1000], c[8][1000], rdonly[1000], sum[8];
int i, j, k, mytid;
 .
 .
 .
/* first initialization of rdonly in serial code: */
init1(rdonly);
if(num_threads() < 8) {
 fprintf(stderr, "not enough threads; exiting\n");
 exit(2);
}
#pragma _CNX parallel(max_threads = 8), parallel_private(i,j,k,mytid)
mytid = my_thread();
for(i=0; i<1000; i++)
 a[mytid][i] = b[mytid][i] * rdonly[i];
if(mytid == 0) init2(rdonly);
for(j=0; j<1000; j++) {
 b[mytid][j] = b[mytid][j] * rdonly[j];
 c[mytid][j] = a[mytid][j] * b[mytid][j];
}
for(k=0; k<1000; k++)
 sum[mytid] = sum[mytid] + a[mytid][k] + b[mytid][k] + c[mytid][k];
#pragma _CNX end_parallel

Critical sections
The critical_section and end_critical_section directives and
pragmas allow you to specify sections of code in parallel loops or tasks
that must be executed by only one thread at a time. These directives
cannot be used for ordered synchronization within a
loop_parallel(ordered) loop, but are suitable for simple
synchronization in any other loop_parallel loops. (Use the
ordered_section and end_ordered_section directives or pragmas
for ordered synchronization within a loop_parallel(ordered) loop.)

A critical_section directive or pragma and its associated
end_critical_section must appear in the same procedure and under
the same control flow. They do not have to appear in the same procedure
as the parallel construct in which they are used. In other words, the pair
can appear in a procedure called from a parallel loop.

Chapter 4 149

Basic shared-memory programming
Simple manual loop, task, and region parallelization

As discussed in this chapter, these directives have the following form in
Fortran:

C$DIR CRITICAL_SECTION
C$DIR END_CRITICAL_SECTION

The C pragmas have the form:

#pragma _CNX critical_section
#pragma _CNX end_critical_section

The critical_section directive and pragma can take an optional gate
attribute that allows the declaration of multiple critical sections as
described in Chapter 6, “Advanced shared-memory programming;”
however, we will only discuss simple critical sections here.

Consider the following Fortran example:

C$DIR LOOP_PARALLEL, LOOP_PRIVATE(FUNCTEMP)
 DO I = 1, N ! LOOP IS PARALLELIZABLE
 .
 .
 .
 FUNCTEMP = FUNC(X(I))
C$DIR CRITICAL_SECTION
 SUM = SUM + FUNCTEMP
C$DIR END_CRITICAL_SECTION
 .
 .
 .
 ENDDO

Because FUNC has no side effects and can be called in parallel, the I loop
can be parallelized as long as the SUM variable is only updated by one
thread at a time. The critical section created around SUM ensures this
behavior.

The LOOP_PARALLEL directive and the critical section are required to
parallelize this loop because the call to FUNC would normally inhibit
parallelization. If this call were not present, and if the loop did not
contain other parallelization inhibitors, the compiler would
automatically parallelize the reduction of SUM as described in the section
“Reductions” on page 114. However, the presence of the call necessitates
the LOOP_PARALLEL directive, which prevents the compiler from
automatically handling the reduction; this, in turn, requires using either
a critical section or the reduction directive. We will use a critical

150 Chapter 4

Basic shared-memory programming
Simple manual loop, task, and region parallelization

section for this example. Placing the call to FUNC outside of the critical
section allows FUNC to be called in parallel, decreasing the amount of
serial work within the critical section.

An analogous C example follows:

#pragma _CNX loop_parallel(ivar=i)
#pragma _CNX loop_private(functemp)
for(i=0;i<n;i++) { /* loop is parallelizable */
 .
 .
 .
 functemp = func(x(i));
 #pragma _CNX critical_section
 sum = sum + functemp;
 #pragma _CNX end_critical_section
 .
 .
 .
}

In order to justify the cost of the compiler-generated synchronization
code associated with the use of critical sections, loops that contain them
must also contain a large amount of parallelizable (non-critical section)
code. If you are unsure of the profitability of using a critical section to
help parallelize a certain loop, time the loop with and without the critical
section to see if parallelization justifies the overhead of the critical
section.

Again, for this particular example, the reduction directive or pragma
could have been used in place of the critical_section ,
end_critical_section combination. For more information, see the
section “Reductions” on page 114.

Chapter 4 151

Basic shared-memory programming
Simple manual loop, task, and region parallelization

+Onoautopar compiler option
You can disable automatic loop thread-parallelism by specifying the
+Onoautopar option on the compiler command line. +Onoautopar is
only meaningful when specified with the +Oparallel option at +O3
or +O4.

This option causes the compiler to parallelize only those loops that are
immediately preceded by a loop_parallel or prefer_parallel
directive or pragma; all other loops, even if they could normally be
automatically parallelized, are not analyzed for parallelization. Because
the compiler does not automatically find parallel tasks or regions,
user-specified task and region parallelization is not affected by this
option.

+O[no]nodepar compiler option
By default, loop, task, and region node-parallelism is disabled. In other
words, +Ononodepar is the default. The +O[no]nodepar option is only
meaningful when specified with the +Oparallel option at +O3 or +O4.

The +Ononodepar option causes the compiler to generate code for a
single-node machine. When this option is used, serial code is generated
for node-parallel constructs; thus, node-parallelism is not implemented.
Thread-parallelism—both automatic and directive-specified—is still
implemented.

Use the +Onodepar option to enable directive-specified node-parallelism
when compiling with +Oparallel at +O3 or +O4 on a multinode,
scalable SMP.

Reentrant compilation
Exemplar compilers compile for reentrancy by default in that the
compiler itself does not introduce static or global references beyond what
exist in the original code. Reentrant compilation causes procedures to
store uninitialized local variables on the stack; no locals can carry values
from one invocation of the procedure to the next (unless the variables
appear in Fortran COMMON blocks or DATA or SAVE statements or in
C/C++ static statements). This allows loops containing procedure calls
to be manually parallelized, assuming no other inhibitors of
parallelization exist.

152 Chapter 4

Basic shared-memory programming
Simple manual loop, task, and region parallelization

When procedures are called in parallel, each thread receives a private
stack on which to allocate local variables. This allows each parallel copy
of the procedure to manipulate its local variables without interfering
with any other copy’s locals of the same name. When the procedure
returns and the parallel threads join, all values on the stack are lost.

Default stack size
Thread 0’s stack can grow to the size specified in the maxssiz
configurable kernel parameter. Refer to the Managing Systems and
Workgroups manual for more information on configurable kernel
parameters.

Any threads your program spawns (as the result of loop_parallel or
tasking directives or pragmas, for example) receive a default stack size
of 80 Mbytes. This means that if:

• A parallel construct declares more than 80 Mbytes of loop_private ,
task_private , or parallel_private data, or

• A subprogram with more than 80 Mbytes of local data is called in
parallel, or

• The cumulative size of all local variables in a chain of subprograms
called in parallel exceeds 80 Mbytes,

you must modify the stack size of the spawned threads via the
CPS_STACK_SIZE environment variable. Under csh , this can be done
with the following command:

setenv CPS_STACK_SIZE size_in_kbytes

where

size_in_kbytes is the desired stack size in kbytes. This value is read at
program startup; it cannot be changed during
execution.

For example, the following command sets the thread stack size
to 100 Mbytes:

setenv CPS_STACK_SIZE 102400

Chapter 4 153

Basic shared-memory programming
Loop-specific, task-specific, and region-specific data privatization

Loop-specific, task-specific, and
region-specific data privatization
Once assigned, the memory classes discussed in detail in Chapter 5,
“Memory classes,” are in effect throughout your entire program. Any
loops that manipulate variables that have been explicitly assigned a
memory class must be manually parallelized, and once a variable is
assigned a class, its class cannot change. While very efficient programs
can be written using these memory classes, they also require a great deal
of manual intervention.

To get around these problems, the Exemplar Fortran 90, Exemplar
Fortran 77, and Exemplar C compilers support the loop_private ,
task_private , and parallel_private directives and pragmas. The
save_last directive and pragma is provided to save the value of
loop_private data objects assigned in the last iteration of the loop.
These directives and pragmas allow you to easily privatize parallel loop,
task, or region data temporarily; when used with prefer_parallel ,
they do so without inhibiting any automatic compiler optimizations.
They can help you further increase the performance of your
shared-memory program with less extra work than is required when
using the standard memory classes accompanying manual
parallelization and synchronization.

You can use the above directives on local variables and arrays of any
type, but they should not be used on data assigned one of the static or
dynamic memory classes (thread_private , node_private ,
near_shared , far_shared or block_shared).

In some cases, data declared loop_private , task_private , or
parallel_private is stored on the stacks of the spawned threads.
Spawned thread stacks default to 80 Mbytes in size; if the amount of
loop_private , task_private or parallel_private data declared
exceeds this, you can use the CPS_STACK_SIZE environment variable to
increase the default. Refer to the section “Default stack size” on page 152
for more information.

154 Chapter 4

Basic shared-memory programming
Loop-specific, task-specific, and region-specific data privatization

loop_private

The loop_private directive and pragma declares a list of variables
and/or arrays private to the immediately following Fortran DO or C for
loop. The compiler assumes that data objects declared to be
loop_private have no loop-carried dependences with respect to the
parallel loops in which they are used. If dependences exist, you must
handle them manually using the synchronization directives and
techniques described in Chapter 6, “Advanced shared-memory
programming.”

loop_private array dimensions must be determinable at compile-time.

Each parallel thread of execution receives a private copy of the
loop_private data object for the duration of the loop; no starting
values can be assumed for the data, and unless a save_last directive or
pragma is specified (as described in a following section), no ending value
can be assumed. If a loop_private data object is referenced within an
iteration of the loop, it must have been assigned a value previously on
that same iteration.

In Fortran, the LOOP_PRIVATE directive has the following form:

C$DIR LOOP_PRIVATE(namelist)

In C, the pragma has the form:

#pragma _CNX loop_private(namelist)

where

namelist is a comma-separated list of variables and/or arrays
that are to be private to the immediately following loop.
namelist cannot contain structures, dynamic arrays,
allocatable arrays, or automatic arrays.

Chapter 4 155

Basic shared-memory programming
Loop-specific, task-specific, and region-specific data privatization

Consider the following Fortran example:

C$DIR LOOP_PRIVATE(S)
 DO I = 1, N
C S IS ONLY CORRECTLY PRIVATE IF AT LEAST
C ONE IF TEST PASSES ON EACH ITERATION:
 IF(A(I) .GT. 0) S = A(I)
 IF(U(I) .LT. V(I)) S = V(I)
 IF(X(I) .LE. Y(I)) S = Z(I)
 B(I) = S * C(I) + D(I)
 ENDDO

An apparent LCD on S exists in this example; if none of the IF tests are
true on a given iteration, the value of S must wrap around from the
previous iteration. The LOOP_PRIVATE(S) directive indicates to the
compiler that S does, in fact, get assigned on every iteration, and
therefore it is safe to parallelize this loop.

If on any iteration none of the IF tests pass, an actual LCD exists and
privatizing S will result in wrong answers.

An analogous C example follows:

#pragma _CNX loop_private(s)
for(i=0;i<=n;i++) {
/* s is only private if at least one if
 test passes: */
 if(a[i] > 0) s = a[i];
 if(u[i] < v[i]) s = v[i];
 if(x[i] < y[i]) s = z[i];
 b[i] = s * c[i] + d[i];
}

156 Chapter 4

Basic shared-memory programming
Loop-specific, task-specific, and region-specific data privatization

Using loop_private with loop_parallel

Because the compiler does not automatically perform variable
privatization in loop_parallel loops, you must manually privatize
loop data requiring privatization. This can be easily done using the
loop_private directive or pragma.

Consider the following Fortran example:

 SUBROUTINE PRIV(X,Y,Z)
 REAL X(1000), Y(4,1000), Z(1000)
 REAL XMFIED(1000)
C$DIR LOOP_PARALLEL, LOOP_PRIVATE(XMFIED, J)
 DO I = 1, 4
C INITIALIZE XMFIED; MFY MUST NOT WRITE TO X:
 CALL MFY(X, XMFIED)
 DO J = 1, 999
 IF (XMFIED(J) .GE. Y(I,J)) THEN
 Y(I,J) = XMFIED(J) * Z(J)
 ELSE
 XMFIED(J+1) = XMFIED(J)
 ENDIF
 ENDDO
 ENDDO
 END

Here, the LOOP_PARALLEL directive is required to parallelize the I loop
because of the call to MFY. The X and Y arrays are in shared memory by
default. X and Z are not written to, and the portions of Y written to in the
J loop’s IF statement are disjoint, so these shared arrays require no
special attention. The local array XMFIED, however, is written to. But
because XMFIED carries no values into or out of the I loop, it can be
privatized using LOOP_PRIVATE. This gives each thread running the I
loop its own private copy of XMFIED, eliminating the expensive necessity
of synchronized access to XMFIED. Note that a loop-carried dependence
exists for XMFIED in the J loop, but because this loop runs serially on
each processor, this dependence is safe.

J is privatized as discussed in the section “Privatizing induction
variables in nested loops” on page 160.

Chapter 4 157

Basic shared-memory programming
Loop-specific, task-specific, and region-specific data privatization

An analogous C example follows:

void priv(float x[1000], float y[4][1000], float z[1000]) {
 float xmfied[1000];
 int i,j;
#pragma _CNX loop_parallel(ivar=i), loop_private(xmfied,j)
 for(i=0;i<4;i++) {
 mfy(x,xmfied);
 for(j=0;j<999;j++) {
 if(xmfied[j] >= y[i][j]) y[i][j] = xmfied[j]*z[j];
 else xmfied[j+1] = xmfied[j];
 }
 }
}

Denoting induction variables in parallel loops
To safely parallelize a loop with the loop_parallel directive or
pragma, the compiler must be able to correctly determine the loop’s
primary induction variable.

The compiler can find primary Fortran DO loop induction variables; it
may, however, have trouble with DO WHILE or hand-rolled Fortran loops,
and with all loop_parallel loops in C. Therefore, when you use the
loop_parallel directive or pragma to manually parallelize a loop
other than an explicit Fortran DO loop, you should indicate the loop’s
primary induction variable using the IVAR=indvar attribute to
loop_parallel .

Consider the following Fortran example:

 I = 1
C$DIR LOOP_PARALLEL(IVAR = I)
10 A(I) = ...
 .
 . ! ASSUME NO DEPENDENCES
 .
 I = I + 1
 IF(I .LE. N) GOTO 10

This is a hand-rolled loop that uses I as its primary induction variable.
To ensure parallelization, the LOOP_PARALLEL directive has been placed
immediately before the start of the loop, and the induction variable, I ,
has been specified.

158 Chapter 4

Basic shared-memory programming
Loop-specific, task-specific, and region-specific data privatization

Primary induction variables in C loops can be difficult for the compiler to
find, so ivar is required in all loop_parallel C loops. Its use is shown
in the following example:

#pragma _CNX loop_parallel(ivar=i)
 for(i=0; i<n; i++) {
 a[i] = ...;
 .
 . /* assume no dependences */
 .
 }
}

Secondary induction variables are variables used to track loop iterations
even though they do not appear in the Fortran DO statement. They
cannot appear in addition to the primary induction variable in the C for
statement. Such variables must be a function of the primary loop
induction variable; they cannot be independent. Secondary induction
variables must also either be assigned a memory class manually (as
described in Chapter 5, “Memory classes”) or declared loop_private .

The following Fortran example contains an incorrectly incremented
secondary induction variable:

C WARNING: INCORRECT EXAMPLE!!!!
 J = 1
C$DIR LOOP_PARALLEL
 DO I = 1, N
 J = J + 2 ! WRONG!!!

Here, J will not produce expected values in each iteration because
multiple threads are overwriting its value with no synchronization. The
compiler cannot privatize J because it is a loop-carried dependence
(LCD). This example can be corrected by privatizing J and making it a
function of I , as shown below.

C CORRECT EXAMPLE:
 J = 1
C$DIR LOOP_PARALLEL
C$DIR LOOP_PRIVATE(J) ! J IS PRIVATE
 DO I = 1, N
 J = (2*I)+1 ! J IS PRIVATE

Here, J will be assigned correct values on each iteration because it is a
function of I , and can be safely privatized.

Chapter 4 159

Basic shared-memory programming
Loop-specific, task-specific, and region-specific data privatization

In C, secondary induction variables are sometimes included in for
statements, as shown in the following example:

/* warning: unparallelizable code follows */
#pragma _CNX loop_parallel(ivar=i)
 for(i=j=0; i<n;i++,j+=2) {
 a[i] = ...;
 .
 .
 .
 }
}

Because secondary induction variables must be private to the loop and
must be a function of the primary induction variable, this example
cannot be safely parallelized using loop_parallel(ivar=i) . In the
presence of this directive, the secondary induction variable will not be
recognized. To manually parallelize this loop, you must remove j from
the for statement and either privatize it and make it a function of i , or
declare j to be shared (which is the default storage class), specify the
ordered attribute on the loop_parallel directive, and increment it
within an ordered critical section inside the loop. This latter method is
costly in terms of synchronization overhead and may degrade the
performance of the loop.

The following example demonstrates how to restructure the loop so that
j is a valid secondary induction variable:

#pragma _CNX loop_parallel(ivar=i)
#pragma _CNX loop_private(j)
 for(i=0; i<n; i++) {
 j = 2*i;
 a[i] = ...;
 .
 .
 .
 }
}

This method runs faster than placing j in a critical section because it
requires no synchronization overhead, and the private copy of j used
here can typically be more quickly accessed than a shared variable.

160 Chapter 4

Basic shared-memory programming
Loop-specific, task-specific, and region-specific data privatization

Privatizing induction variables in nested loops
The induction variables of nonparallel loops that are contained within
parallel loops must be declared loop_private with respect to their
closest enclosing parallel loop.

Consider the following Fortran example:

C$DIR LOOP_PARALLEL(THREADS)
C$DIR LOOP_PRIVATE(J)
 DO I = 1, N ! I LOOP GOES PARALLEL
 DO J = 1, M ! J LOOP IS SERIAL
 .
 .
 .
 ENDDO
 ENDDO

Here, LOOP_PARALLEL causes the I loop to be parallelized across
threads. The J loop, then, runs serially. J must be private with respect to
the I loop so that the threads that run the I loop do not attempt to
update the same copy of J . If the loop is automatically parallelized by the
compiler, or parallelized due to the presence of a PREFER_PARALLEL
directive, this privatization will be automatic. But the presence of the
LOOP_PARALLEL directive requires manual privatization.

An analogous C example follows:

#pragma _CNX loop_parallel(threads, ivar=i)
#pragma _CNX loop_private(j)
for(i=0;i<50;i++) {
 for(j=0;j<50;j++) {
 .
 .
 .
 }
}

Chapter 4 161

Basic shared-memory programming
Loop-specific, task-specific, and region-specific data privatization

This also applies to nested parallel outer loops. In this case, loop
variables contained within a parallel construct—even if they are used in
a parallel loop themselves—must be declared private with respect to the
innermost enclosing parallel loop.

Consider the following Fortran example:

C$DIR LOOP_PARALLEL(NODES), LOOP_PRIVATE(J)
 DO I = 1, N ! I LOOP GOES NODE PAR
C$DIR LOOP_PARALLEL(THREADS)
C$DIR LOOP_PRIVATE(K)
 DO J = 1, M ! J LOOP GOES THREAD PAR
 DO K = 1, L ! K LOOP IS SERIAL
 .
 .
 .
 ENDDO
 ENDDO
 ENDDO

Here, LOOP_PARALLEL is used to parallelize the I loop across
hypernodes, and the J loop across processors on each hypernode. K must
be declared private to the J loop to ensure that the thread-parallel
threads do not interfere with each other in updating it. J must be
declared private to the I loop to ensure that each node-parallel thread
gets its own copy.

An analogous C example follows:

#pragma _CNX loop_parallel(nodes, ivar=i), loop_private(j)
for(i=0;i<n;i++) {
#pragma _CNX loop_parallel(threads, ivar=j)
#pragma _CNX loop_private(k)
 for(j=0;j<m;j++) {
 for(k=0;k<l;k++) {
 .
 .
 .
 }
 }
}

162 Chapter 4

Basic shared-memory programming
Loop-specific, task-specific, and region-specific data privatization

task_private

The task_private directive declares a list of variables and/or arrays
private to the immediately following tasks; it serves the same purpose
for parallel tasks that loop_private serves for loops.

The task_private directive must immediately precede or appear on
the same line as its corresponding begin_tasks directive. The compiler
assumes that data objects declared to be task_private have no
dependences between the tasks in which they are used. If dependences
exist, you must handle them manually using the synchronization
directives and techniques described in Chapter 6, “Advanced
shared-memory programming.”

Each parallel thread of execution receives a private copy of the
task_private data object for the duration of the tasks; no starting or
ending values can be assumed for the data. If a task_private data
object is referenced within a task, it must have been assigned a value
previously in that task.

In Fortran, the TASK_PRIVATE directive has the following form:

C$DIR TASK_PRIVATE(namelist)

In C, the pragma has the form:

#pragma _CNX task_private(namelist)

where

namelist is a comma-separated list of variables and/or arrays
that are to be private to the immediately following
tasks. namelist cannot contain dynamic, allocatable, or
automatic arrays.

Chapter 4 163

Basic shared-memory programming
Loop-specific, task-specific, and region-specific data privatization

Consider the following Fortran example:

 REAL*8 A(1000), B(1000), WRK(1000)
 .
 .
 .
C$DIR BEGIN_TASKS, TASK_PRIVATE(WRK)
 DO I = 1, N
 WRK(I) = A(I)
 ENDDO
 DO I = 1, N
 A(I) = WRK(N+1-I)
 .
 .
 .
 ENDDO
C$DIR NEXT_TASK
 DO J = 1, M
 WRK(J) = B(J)
 ENDDO
 DO J = 1, M
 B(J) = WRK(M+1-J)
 .
 .
 .
 ENDDO
C$DIR END_TASKS

Here, the WRK array is used in the first task to temporarily hold the A
array so that its order can be reversed. It serves the same purpose for the
B array in the second task. WRK is assigned before it is used in each task.

164 Chapter 4

Basic shared-memory programming
Loop-specific, task-specific, and region-specific data privatization

An analogous C example follows:

float a[1000], b[1000], wrk[1000];
.
.
.
#pragma _CNX task_private(wrk)
#pragma _CNX begin_tasks
for(i=0;i<n;i++)
 wrk[i] = a[i];
for(i=0;i<n;i++) {
 a[i] = wrk[n-1-i];
 .
 .
 .
}
#pragma _CNX next_task
for(j=0;j<m;j++)
 wrk[j] = b[j];
for(j=0;j<m;j++) {
 b[j] = wrk[m-1-j];
 .
 .
 .
}
#pragma _CNX end_tasks

Chapter 4 165

Basic shared-memory programming
Loop-specific, task-specific, and region-specific data privatization

parallel_private

The parallel_private directive declares a list of variables and/or
arrays private to the immediately following parallel region; it serves the
same purpose for parallel regions that task_private serves for tasks.

The parallel_private directive must immediately precede or appear
on the same line as its corresponding parallel directive. Using
parallel_private asserts that there are no dependences in the
parallel region; do not use this directive if there are dependences.

Each parallel thread of execution receives a private copy of the
parallel_private data object for the duration of the region; no
starting or ending values can be assumed for the data. If a
parallel_private data object is referenced within a region, it must
have been assigned a value previously in the region.

In Fortran, the PARALLEL_PRIVATE directive has the form:

C$DIR PARALLEL_PRIVATE(namelist)

In C, the pragma has the form:

#pragma _CNX parallel_private(namelist)

where

namelist is a comma-separated list of variables and/or arrays
that are to be private to the immediately following
parallel region. namelist cannot contain dynamic,
allocatable, or automatic arrays.

166 Chapter 4

Basic shared-memory programming
Loop-specific, task-specific, and region-specific data privatization

Consider the following Fortran example:

 REAL A(1000,8), B(1000,8), C(1000,8), AWORK(1000), SUM(8)
 INTEGER MYTID
 .
 .
 .
C$DIR PARALLEL(MAX_THREADS = 8), PARALLEL_PRIVATE(I,J,K,L,M,AWORK,MYTID)
 IF(NUM_THREADS() .LT. 8) STOP "NOT ENOUGH THREADS; EXITING"
 MYTID = MY_THREAD() + 1 !ADD 1 FOR PROPER SUBSCRIPTING
 DO I = 1, 1000
 AWORK(I) = A(I, MYTID)
 ENDDO
 DO J = 1, 1000
 A(J, MYTID) = AWORK(J) + B(J, MYTID)
 ENDDO
 DO K = 1, 1000
 B(K, MYTID) = B(K, MYTID) * AWORK(K)
 C(K, MYTID) = A(K, MYTID) * B(K, MYTID)
 ENDDO
 DO L = 1, 1000
 SUM(MYTID) = SUM(MYTID) + A(L,MYTID) + B(L,MYTID) + C(L,MYTID)
 ENDDO
 DO M = 1, 1000
 A(M, MYTID) = AWORK(M)
 ENDDO
C$DIR END_PARALLEL

This example is similar to the one presented in the section “Region
parallelization” on page 144 in the way it checks for a certain number of
threads and divides up the work among those threads. However, the
parallel_private variable AWORK is introduced.

Each thread initializes its private copy of AWORK to the values contained
in a dimension of the array A at the beginning of the parallel region; this
allows the threads to reference AWORK without regard to thread ID,
because no thread can access any other thread’s copy of AWORK. Note that
AWORK cannot carry values into or out of the region, so it must be
initialized within the region.

Chapter 4 167

Basic shared-memory programming
Loop-specific, task-specific, and region-specific data privatization

All induction variables contained in a parallel region must be privatized.
Remember that the code contained in the region runs on all available
threads, so failing to privatize an induction variable would allow each
thread to update the same shared variable, creating indeterminate loop
counts on every thread.

In the J loop after AWORK is initialized, AWORK is effectively used in a
reduction on A (since at this point its contents are identical to the MYTID
dimension of A). After A is modified here and used in the K and L loops,
each thread restores a dimension of A’s original values from its private
copy of AWORK, which carried the appropriate dimension through the
region unaltered.

An analogous C example follows:

float a[8][1000], b[8][1000], c[8][1000], awork[1000];
int i, mytid;
 .
 .
 .
#pragma _CNX parallel(max_threads = 8)
#pragma _CNX parallel_private(i,j,k,l,m,awork,mytid)
if(num_threads() < 8) {
 fprintf(stderr, "not enough threads; exiting\n");
 exit(2);
}
mytid = my_thread();
for(i=0; i<1000; i++)
 awork[i] = a[mytid][i];
for(j=0; j<1000; j++)
 a[mytid][j] = awork[j] + b[mytid][j];
for(k=0; k<1000; k++) {
 b[mytid][k] = b[mytid][k] * awork[k];
 c[mytid][k] = a[mytid][k] * b[mytid][k];
}
for(l=0; l<1000; l++)
 sum[mytid] = sum[mytid] + a[mytid][l] + b[mytid][l] + c[mytid][l];
for(m=0; m<1000; m++)
 a[mytid][m] = awork[m];
#pragma _CNX end_parallel

168 Chapter 4

Basic shared-memory programming
Loop-specific, task-specific, and region-specific data privatization

save_last[(list)]
The save_last directive and pragma allow you to save the final value of
loop_private data objects assigned in the last iteration of the
immediately following loop. If list (the optional, comma-separated list of
loop_private data objects) is specified, only the final values of those
data objects in list are saved. If list is not specified, the final values of all
loop_private data objects assigned in the last loop iteration are saved.

The values must be assigned in the last iteration; if the assignment is
executed conditionally, it is your responsibility to ensure that the
condition is met and the assignment executes. Incorrect answers can
result if the assignment does not execute on the last iteration. For
loop_private arrays, only those elements of the array assigned on the
last iteration will be saved.

In Fortran, the SAVE_LAST directive has the form:

C$DIR SAVE_LAST[(list)]

In C, the pragma has the form:

#pragma _CNX save_last[(list)]

save_last must appear immediately before or after the associated
loop_private directive or pragma, or on the same line.

A save_last directive or pragma causes the thread that executes the
last iteration of the loop to write back the private (or local) copy of the
variable into the global reference.

Chapter 4 169

Basic shared-memory programming
Loop-specific, task-specific, and region-specific data privatization

Consider the following Fortran example:

C$DIR LOOP_PARALLEL
C$DIR LOOP_PRIVATE(ATEMP, X, Y)
C$DIR SAVE_LAST(ATEMP, X)
 DO I = 1, N
 IF (I .EQ. D(I)) ATEMP = A(I)
 IF (I .EQ. E(I)) ATEMP = B(I)
 IF (I .EQ. F(I)) ATEMP = C(I)
 A(I) = B(I) + C(I)
 B(I) = ATEMP
 X = ATEMP * A(I)
 Y = ATEMP * C(I)
 ENDDO
 .
 .
 .
 IF(ATEMP .GT. AMAX) THEN
 .
 .
 .

Here, the LOOP_PRIVATE variable ATEMP is conditionally assigned in the
loop; in order for ATEMP to be truly private, you must be sure that at least
one of the conditions is met so that ATEMP is assigned on every iteration.
When the loop terminates, the SAVE_LAST directive ensures that ATEMP
and X contain the values they are assigned on the last iteration. These
values can then be used later in the program. The value of Y however is
not available once the loop finishes because Y is not specified as an
argument to SAVE_LAST.

170 Chapter 4

Basic shared-memory programming
Loop-specific, task-specific, and region-specific data privatization

An analogous C example follows:

#pragma _CNX loop_parallel(ivar=i)
#pragma _CNX loop_private(atemp, x, y)
#pragma _CNX save_last(atemp, x)
for(i=0;i<n;i++) {
 if(i==d[i]) atemp = a[i];
 if(i==e[i]) atemp = b[i];
 if(i==f[i]) atemp = c[i];
 a[i] = b[i] + c[i];
 b[i] = atemp;
 x = atemp * a[i];
 y = atemp * c[i];
}
.
.
.
if(atemp > amax) {
.
.
.

Note that the save_last directive can be misleading in certain loop
contexts.

Consider the following Fortran example:

C$DIR LOOP_PARALLEL
C$DIR LOOP_PRIVATE(S)
C$DIR SAVE_LAST
 DO I = 1, N
 IF(G(I) .GT. 0) THEN
 S = G(I) * G(I)
 ENDIF
 ENDDO

While it may appear that the last value of S assigned (on whatever
iteration) is saved in this example, you must remember that the
SAVE_LAST directive applies only to the last (Nth) iteration, without
regard for any conditionals contained in the loop. For SAVE_LAST to be
valid here, G(N) must be greater than 0 so that the assignment to S
takes place on the final iteration. Obviously, if this condition can be
predicted, the loop can be more efficiently written to exclude the IF test,
so the presence of a SAVE_LAST in such a loop is suspect.

Chapter 5 171

5 Memory classes

Chapter 2 discusses the partitions of physical memory available on
Hewlett-Packard SMP servers.

For nonscalable SMP systems, there is only one partition,
hypernode-local memory, which is accessed using the thread_private
and node_private virtual memory classes. All other memory classes
are automatically mapped to the node_private memory class. For
applications that will be ported to HP scalable SMPs, all five memory
classes can be useful.

For multinode, scalable SMP systems, there are three partitions:

• Hypernode-local memory, which is accessed via the thread_private
and node_private virtual memory classes.

• System-global memory, which is accessed via the near_shared ,
far_shared and block_shared virtual memory classes.

• CTIcache physical memory, which holds copies of shared-memory
data that is not resident in the hypernode’s physical memory, but is
accessed by threads running on the hypernode.

NOTE The memory classes discussed here are of interest to programmers who
wish to manually optimize their shared-memory programs by using
compiler directives or pragmas to partition memory and otherwise
control compiler optimizations as discussed in Chapter 6, “Advanced
shared-memory programming.”

172 Chapter 5

Memory classes
Private versus shared memory

Private versus shared memory
Private and shared data are differentiated by their accessibility, and, as
noted above, by the physical memory classes in which they are stored.

Both node_private and thread_private data are stored in
hypernode-local memory, and are therefore inaccessible to any
hypernode other than the one on which they reside. In the case of
thread_private , access is further restricted to the declaring thread.
Latency is identical for private data items that must be fetched from
memory. near_shared , far_shared and block_shared data, on the
other hand, are stored in system-global physical memory and are
therefore accessible from any hypernode in the system on which the
process is running. Memory latency can vary for the shared-memory
classes depending on whether or not the data is resident on the
requesting hypernode.

Chapter 5 173

Memory classes
Memory class addressing

Memory class addressing
Figure 21 shows the virtual addresses associated with a data item stored
in each memory class by a single process running on a conceptual
4-hypernode, 16-processors-per-hypernode X2000 server. Each oval
represents a unique virtual address for the same data item within a
class; the memory class is indicated by the oval’s fill pattern as explained
in the illustration.

 Figure 21 Virtual addresses for various memory classes

As shown, the shared data items are accessible from any hypernode
using the same virtual address; the node_private data item has a
single unique virtual address; the thread_private item has up to 16
unique virtual addresses, one for each thread within a hypernode.

Node-private memory, all hypernodes

far_shared

near_shared

block_shared

thread_private

node_private

Shared memory

174 Chapter 5

Memory classes
Memory class addressing

Figure 22 shows the physical addresses associated with the data items
shown in Figure 21, for an identical server. For illustrative purposes, all
shared data in Figure 22 is assumed to be array data, and is represented
by circles and portions of circles rather than ovals.

 Figure 22 Physical addresses for various memory classes

Figure 22 shows the physical memory replication of the private memory
classes, as well as the distributed nature of the far_shared and
block_shared classes. You can control hypernode placement of the

H
yp

er
no

d
e

1

Hypernode 2

H
ypernod

e 3

Hypernode 0

far_shared

near_shared

block_shared

thread_private

node_private

Hypernode-local memory

H
yp

er
no

d
e-

lo
ca

l m
em

or
y

H
ypernod

e-local m
em

ory

Hypernode-local memory

System-global
memory

Chapter 5 175

Memory classes
Memory class addressing

near_shared class, shown here residing physically on logical
hypernode 0. All hypernodes can access this data, because it resides in
system-global physical memory.

The following subsections explain virtual and physical addressing for
each memory class in detail.

thread_private

thread_private data is private to each thread of a process. Each
thread_private data object has its own unique virtual address within
a hypernode. For statically-declared thread_private data on
multihypernode systems, these unique virtual addresses are replicated
on each hypernode. If the data is dynamically allocated, no virtual
address replication is done; all virtual addresses are unique.

These virtual addresses map to unique physical addresses in
hypernode-local physical memory on each hypernode; therefore, while a
thread_private data item can have identical virtual addresses on
different hypernodes, these virtual addresses map to unique physical
addresses. For example, on a 4-hypernode, 16-processors-per-hypernode
system, a single, statically allocated thread_private data item is
accessed by 16 virtual addresses that map to 64 physical addresses.

Obviously, this physical address replication can cause a single data item
to occupy a large amount of memory; similarly, virtual address
replication subtracts from the total 16-Tbyte virtual address space
available to the process.

Any sharing of thread_private data items between threads
(regardless of whether they are running on the same hypernode) must be
done by synchronized copying of the item into a shared variable, or by
message passing.

thread_private data cannot be initialized in Fortran DATA
statements.

176 Chapter 5

Memory classes
Memory class addressing

node_private

node_private data is private to the threads running on a given
hypernode. node_private data items have one virtual address, and any
thread on a hypernode can access that hypernode’s node_private data
using the same virtual address. This virtual address maps to a unique
physical address in hypernode-local memory. On a multihypernode
system, a physical copy of the data item is contained in each hypernode’s
hypernode-local memory, and this copy is accessed by the same virtual
address on any hypernode.

This physical replication will multiply the amount of physical memory a
node_private data item takes up by the number of hypernodes in the
system.

Any sharing of node_private data items between hypernodes must be
done by synchronized copying into a shared variable, or by message
passing.

near_shared

A near_shared data item is accessible by any thread running on any
hypernode of a system. However, it is physically stored entirely within
the system-global memory of a particular hypernode. This allows faster
access to the threads running on that hypernode. near_shared data has
a single virtual address through which it is accessed by every thread.
The data’s physical placement in hypernode-global memory eliminates
the need for replication. Threads running on the hypernode on which the
data is stored can access it via the crossbar (or bus, depending on the
system architecture); threads running on other hypernodes must access
the data via their CTIcache (on multinode systems) if it is encached
there; if not, they must fetch it over the CTI rings.

As explained in the section “Static assignments” on page 181, the
near_shared class is typically used for data that is accessed heavily by
threads running on the hypernode on which it resides, but which must
also be easily accessible to threads running on other hypernodes.

Chapter 5 177

Memory classes
Memory class addressing

far_shared

far_shared data is accessible by any thread running on any hypernode.
Because it is distributed evenly across the system-global memory of all
hypernodes in a system, it provides the best average access time when it
is used equally by threads running on all available hypernodes. A
far_shared data item has a single virtual address and a single physical
address, but the virtual pages of far_shared data are mapped, in an
approximately round-robin manner, to physical memory pages on all the
hypernodes in the system. The default page size is 4 kbytes. (For
information on using different page sizes, see the section “Variable-sized
pages” on page 37.)

As explained in the “Static assignments” section later in this chapter, the
far_shared class is typically used for data that is accessed equally by
all the hypernodes in a system.

The far_shared memory class is the default for any data not
specifically classified by the programmer.

block_shared

A block_shared data item has a unique virtual and a unique physical
address, and can be accessed by any thread running on any hypernode in
the system. This memory class is used to store arrays that are
dynamically allocated at runtime, when the number of hypernodes on
which the process is running is known. The virtual pages of the arrays
are then divided into a number of chunks equal to the number of
available hypernodes, and these chunks (which likely contain multiple
contiguous pages each) are distributed to the system-global physical
pages of the available hypernodes, 1 chunk per hypernode. If the number
of pages of a block_shared array is not integrally divisible by the
number of hypernodes, the array size is increased to allow integral
division.

block_shared allocation is only useful when combined with manual
parallelization of loops that use the arrays. In this case it allows you to
parallelize the loops such that a parallel section running on a given
hypernode can access the portion of the array residing on that hypernode
with low latency, but interhypernode access of the remaining elements is
also possible.

Using the block_shared class is explained in detail in the “Dynamic
assignments” section later in this chapter.

178 Chapter 5

Memory classes
Memory class assignments

Memory class assignments
In Fortran, compiler directives are used to assign memory classes to data
items. In C and C++, memory classes are assigned through the use of
syntax extensions, which are defined in the header file
/usr/include/spp_prog_model.h . This file must be included in any
C or C++ program that uses memory classes. In C++, you can also use
operator new to assign memory classes.

The following general form for Fortran memory class directives is:

C$DIR memory_class_name(namelist)

where

memory_class_name
can be THREAD_PRIVATE, NODE_PRIVATE,
NEAR_SHARED, FAR_SHARED, or BLOCK_SHARED. For
BLOCK_SHARED, namelist must include only allocatable
arrays.

namelist
is a comma-separated list of variables, arrays, and/or
COMMON block names to be assigned the class
memory_class_name.
COMMON block names must be enclosed in slashes (/),
and only entire COMMON blocks can be assigned a class.
This means arrays and variables in namelist must not
also appear in a COMMON block, and must not be
equivalenced to data objects in COMMON blocks.

These Fortran memory class declarations must appear with other
specification statements; they cannot appear within executable
statements.

Chapter 5 179

Memory classes
Memory class assignments

In C and C++, Exemplar type-qualifier extensions are used, so memory
classes are assigned in variable declarations. The general form for
assigning memory classes in C and C++ is:

#include <spp_prog_model.h>
.
.
.

[storage_class_specifier] memory_class_name type_specifier namelist

where

storage_class_specifier
specifies a nonautomatic storage class

memory_class_name
is the desired memory class (thread_private ,
node_private , near_shared , or far_shared ; the
block_shared class must be allocated dynamically, as
described in the “block_shared ” on page 209)

type_specifier
is a C or C++ data type (int , float , etc.)

namelist
is a comma-separated list of variables and/or arrays of
type type_specifier

In C and C++, data objects that are assigned a memory class must have
static storage duration. This means that if the object is declared within a
function, it must have the storage class extern or static . If such an
object is not given one of these storage classes, its storage class defaults
to automatic and it is allocated on the stack. Stack-based objects cannot
be assigned a memory class, and attempting to do so will result in a
compile-time error.

180 Chapter 5

Memory classes
Memory class assignments

Data objects declared at file scope and assigned a memory class need not
specify a storage class. For more information on C scoping rules, refer to
the manual, The C Programming Language. For information on C++
scoping rules, refer to the manual The C++ Programming Language.

NOTE All C and C++ code examples presented in this chapter assume that the
following line appears above the code presented:

#include <spp_prog_model.h>

This header file maps user symbols to the implementation reserved
space.

If operator new is used, it is also assumed that the line below appears
above the code:

#include <new.h>

If you assign a memory class to a C or C++ structure, all structure
members must be of the same class.

Once a data item is assigned a memory class, the class cannot be
changed.

The Exemplar compilers provide mechanisms for assigning memory
classes statically and dynamically. Static assignments make sense for
the private classes and for far_shared memory; dynamic assignments
make most sense for near_shared and block_shared memory. The
sections that follow explain both static and dynamic memory class
assignments in detail.

Chapter 5 181

Memory classes
Memory class assignments

Static assignments
Static memory class assignments are physically located with variable
type declarations in the source. Static memory classes are typically used
with data objects that are accessed with equal frequency by all threads;
these include objects of the thread_private , node_private , and
far_shared classes. Static assignments for all classes are explained in
the subsections that follow.

thread_private

Because thread_private variables are replicated for every thread on
every hypernode, static declarations make the most sense for them.

In Fortran, the thread_private memory class is assigned using the
THREAD_PRIVATE compiler directive, as shown in the following example:

 REAL*8 TPX(1000)
 REAL*8 TPY(1000)
 REAL*8 TPZ(1000), X, Y
 COMMON /BLK1/ TPZ, X, Y
C$DIR THREAD_PRIVATE(TPX, TPY, /BLK1/)

Each array declared here is 8000 bytes in size, and each variable is 8
bytes, for a total of 24,016 bytes of data. The entire COMMON block BLK1 is
placed in thread_private memory along with TPX and TPY. All
memory space is replicated for each thread in hypernode-local physical
memory on every hypernode.

thread_private variables and arrays cannot be initialized in Fortran
DATA statements.

182 Chapter 5

Memory classes
Memory class assignments

The following C/C++ example demonstrates several ways to declare
thread_private storage. Note that the data objects declared here are
not scoped analogously to those declared in the Fortran example:

/* tpa is global: */
thread_private double tpa[1000];
func() {
 /* tpb is local to func: */
 static thread_private double tpb[1000];
 /* tpc, a and b are declared elsewhere: */
 extern thread_private double tpc[1000],a,b;
 .
 .
 .

The C/C++ double data type provides the same precision as Fortran’s
REAL*8. The thread_private data declared here occupies the same
amount of memory as that declared in the Fortran example. tpa is
available to all functions lexically following it in the file. tpb is local to
func and inaccessible to other functions. tpc , a, and b are declared at
filescope in another file that is linked with this one.

thread_private COMMON blocks in parallel subroutines
Data local to a procedure that is called in parallel is effectively private
because storage for it is allocated on the thread’s private stack. However,
if the data is in a Fortran COMMON block (or if it appears in a DATA or
SAVE statement), it will not be stored on the stack. Parallel accesses to
such nonprivate data must be synchronized if it is assigned a shared
class; or, if the parallel copies of the procedure do not need to share the
data, it can be assigned a private class.

Chapter 5 183

Memory classes
Memory class assignments

Consider the following Fortran example:

 INTEGER A(1000,1000)
 .
 .
 .
C$DIR LOOP_PARALLEL(THREADS)
 DO I = 1, N
 CALL PARCOM(A(1,I))
 .
 .
 .
 ENDDO
 SUBROUTINE PARCOM(A)
 INTEGER A(*)
 INTEGER C(1000), D(1000)
 COMMON /BLK1/ C, D
C$DIR THREAD_PRIVATE(/BLK1/)
 INTEGER TEMP1, TEMP2
 D(1:1000) = ...
 .
 .
 .
 CALL PARCOM2(A, JTA)
 .
 .
 .
 END

 SUBROUTINE PARCOM2(B,JTA)
 INTEGER B(*), JTA
 INTEGER C(1000), D(1000)
 COMMON /BLK1/ C, D
C$DIR THREAD_PRIVATE(/BLK1/)
 DO J = 1, 1000
 C(J) = D(J) * B(J)
 ENDDO
 END
 .
 .
 .

184 Chapter 5

Memory classes
Memory class assignments

Here, COMMON block BLK1 is declared THREAD_PRIVATE, so every
parallel instance of PARCOM gets its own copy of the arrays C and D.

Because this code is already thread-parallel when the COMMON block is
defined, no further parallelism is possible, and BLK1 is therefore suitable
for use anywhere in PARCOM. The local variables TEMP1 and TEMP2 are
allocated on the stack, so each thread effectively has private copies of
them.

A similar concept applies to node_private COMMON blocks in
node-parallel loops, as described in the following “node_private ”
section.

node_private

Because the space for node_private variables is physically replicated
on every hypernode, static declarations make the most sense for them.

In Fortran, the node_private memory class is assigned using the
NODE_PRIVATE compiler directive, as shown in the following example:

 REAL*8 XNP(1000)
 REAL*8 YNP(1000)
 REAL*8 ZNP(1000), X, Y
 COMMON /BLK1/ ZNP, X, Y
C$DIR NODE_PRIVATE(XNP, YNP, /BLK1/)

Again, the data requires 24,016 bytes. The contents of BLK1 are placed in
node_private memory along with XNP and YNP. Space for each data
item is replicated once per hypernode in hypernode-local physical
memory. The same virtual address is used by each thread to access its
hypernode’s copy of a data item.

node_private variables and arrays can be initialized in Fortran DATA
statements.

Chapter 5 185

Memory classes
Memory class assignments

The following example shows several ways to declare node_private
data objects in C and C++:

/* npa is global: */
node_private double npa[1000];
func() {
 /* npb is local to func: */
 static node_private double npb[1000];
 /* npc, a and b are declared elsewhere: */
 extern node_private double npc[1000],a,b;
 .
 .
 .

The node_private data declared here occupies the same amount of
memory as that declared in the Fortran example. Scoping rules for this
data are similar to those given for the thread_private C/C++ example.

For either language example, assuming a 16-processors-per-hypernode,
4-hypernode system, each data item would require a single virtual
address, for a total of 24,016 bytes of virtual space. These virtual
addresses map to 4 physical addresses each, one per hypernode, for a
total of 96,064 bytes of physical memory.

Because node_private data is physically replicated across hypernodes
but not replicated in virtual memory, on multihypernode systems it can
effectively expand the physical space available to a process. For example,
if a process declares 2 Gbytes of data node_private , the virtual
addresses it uses to access this data map to a total of 32 Gbytes of
physical memory on a 16-hypernode system (2 Gbytes per hypernode).
Assuming this node_private data is made up of an array, you could
manually split up a loop that manipulates the array to run on several
hypernodes. Each hypernode would then compute its entire 2 Gbytes of
the array; to the hypernode, this private copy appears to be the entire
array, when in fact other hypernodes are working on private 2-Gbyte
chunks with identical array names (and thus identical virtual addresses)
that also appear to be the entire array. Through careful manual
synchronization, the results of these hypernode-private computations
can be shared through the use of “communication” arrays of the
near_shared , far_shared , or block_shared memory class.

Such an approach approximates message passing using shared-memory
constructs, and can be beneficial when arrays contain quantities of data
that surpass available virtual memory.

186 Chapter 5

Memory classes
Memory class assignments

node_private COMMON blocks in parallel subroutines
Fortran COMMON blocks created in subroutines called from node-parallel
loops must be handled in the same ways as those appearing in
thread-parallel loops, as discussed in the preceding “thread_private ”
section. One way to deal with them is to assign them the node_private
memory class, as shown in the following Fortran example:

 INTEGER A(1000,1000)
 .
 .
 .
C$DIR LOOP_PARALLEL(NODES)
 DO I = 1, N
 CALL PARCOM(A(1,I))
 .
 .
 .
 ENDDO

 SUBROUTINE PARCOM(A)
 INTEGER A(*)
 INTEGER C(1000), D(1000)
 COMMON /BLK1/ C, D
C$DIR NODE_PRIVATE(/BLK1/)
 INTEGER TEMP1, TEMP2
 D(1:1000) = ...
 .
 .
 .
 CALL PARCOM2(A, JTA)
 .
 .
 .
 END

Chapter 5 187

Memory classes
Memory class assignments

 SUBROUTINE PARCOM2(B,JTA)
 INTEGER B(*), JTA
 INTEGER C(1000), D(1000)
 COMMON /BLK1/ C, D
C$DIR NODE_PRIVATE(/BLK1/)
 DO J = 1, 1000
 C(J) = B(J) * D(J)
 ENDDO
 END
 .
 .
 .

Here, PARCOM is run on one thread per available hypernode. Each
hypernode gets its own copy of C and D in NODE_PRIVATE memory. All
threads within a hypernode can access that node’s copy of BLK1, which
contains C and D, but cannot access any other node’s copy of the COMMON
block.

If BLK1 is declared in the calling procedure (PARCOM in the example
above), it must be assigned the NODE_PRIVATE memory class there. If
BLK1 is not declared in the calling procedure, but is declared in the called
procedure, the COMMON block becomes inaccessible when the called
procedure exits.

If PARCOM initiates a thread-parallel loop or task that modifies anything
in BLK1, care must be taken to ensure that the data being modified is
either thread-privatized, modified by no more than one thread at a time,
or properly synchronized for shared access. Local variables TEMP1 and
TEMP2 are still allocated on each thread’s stack, but because each
hypernode is only running one thread as the result of the I loop (and
therefore only one copy of PARCOM), each hypernode only gets one copy of
each of TEMP1 and TEMP2.

Placing BLK1 in shared memory (the default if no class is specified) in
this example would likely cause wrong answers because each copy of
PARCOM could potentially modify the same data items in BLK1.
Additionally, storing a copy of BLK1 on each hypernode decreases access
time compared to storing it in any shared-memory class.

188 Chapter 5

Memory classes
Memory class assignments

near_shared

Static assignments of the near_shared memory class are of limited
usefulness, because they place the declared near_shared memory on
logical hypernode 0. (Logical hypernode IDs are assigned in the order in
which your program occupies the system.) The purpose of declaring the
near_shared memory is defeated unless the code that most frequently
accesses this data happens to be running on logical hypernode 0, which is
unlikely on a multihypernode system.

However, a mechanism is provided for statically declaring near_shared
memory. In Fortran, the near_shared memory class is statically
assigned using the NEAR_SHARED compiler directive, as in the following
example:

 SUBROUTINE FUNC()
 REAL*8 XNS(1000, 1000)
C$DIR NEAR_SHARED(XNS)
 .
 .
 .

Here, XNS is local to FUNC() .

near_shared variables and arrays can be initialized in Fortran DATA
statements.

A similar example in C/C++ follows:

func() {
 static near_shared double xns[1000][1000];
 .
 .
 .

Here, xns is local to func() . The near_shared storage class specifier is
also legal for global and local declarations of the extern storage class.

Both language examples allocate 8,000,000 bytes of virtual address
space, which maps to 8,000,000 bytes of physical memory on logical
hypernode 0. Any thread running on any other hypernode will
experience interhypernode access latency when accessing this data.
Therefore, this code only makes sense for single-hypernode systems or
for code that will be executed primarily on logical hypernode 0.

Chapter 5 189

Memory classes
Memory class assignments

The true power of near_shared memory is realized only when it is
resident on the hypernode that most frequently accesses it. The
near_shared class is therefore most efficiently assigned dynamically at
runtime, by the thread that will access the near_shared data object
most often, on the hypernode on which that particular thread is running.
Such dynamic allocation is discussed in the “Dynamic assignments”
section later in this chapter.

far_shared

Because far_shared memory is physically distributed among all
hypernodes and is best used when all hypernodes will be accessing it
with similar frequency, static declarations make the most sense.

In Fortran, the far_shared memory class is assigned as shown in the
following example:

 SUBROUTINE FUNC()
 REAL*8 XFS(1000,1000)
C$DIR FAR_SHARED(XFS)
 .
 .
 .

Here, XFS is local to FUNC() .

far_shared variables and arrays can be initialized in Fortran DATA
statements.

A similar C/C++ example follows:

void func() {
static far_shared double xfs[1000][1000];
.
.
.

Here, xfs is local to func() . The far_shared storage class specifier is
also legal for global and local declarations of the extern storage class.

These declarations allocate 8,000,000 bytes of virtual address space,
which is mapped round-robin to physical memory by pages to each
hypernode on a multihypernode system. When all hypernodes are
accessing the far_shared data with relatively equal frequency, this
provides the best average access times. However, if your program only
spawns threads on a subset of the hypernodes in a multihypernode

190 Chapter 5

Memory classes
Memory class assignments

system, far_shared memory is a poor choice because it will still be
distributed across all hypernodes in the system. If you know that your
program will only spawn threads on one hypernode, use the
near_shared memory class to allocate memory on that hypernode; if
your program will spawn threads on multiple hypernodes but not every
hypernode in the system, use the block_shared memory class as
described in the “Dynamic assignments” section.

block_shared

The block_shared memory class can only be allocated dynamically, as
described in the following section.

Dynamic assignments
Dynamic memory class assignments are used with:

• Exemplar Fortran ALLOCATABLE arrays

• The memory_class_malloc function in Exemplar C and C++

• Operator new in C++

In Fortran, the class assignments are located with variable declarations.
As with static assignments in Fortran, compiler directives are used to
specify the desired memory class for a previously-declared data object.
In C and C++, the memory class is specified when memory is allocated
for the object using a type-qualifier extension. The allocation is done at
the specific point in the program where the memory is needed, using the
Fortran ALLOCATE statement, the C/C++ memory_class_malloc
function, or operator new in C++. At this point, virtual memory is
allocated, and the program’s available virtual space is decreased by the
amount of memory allocated. This virtual memory does not map to
physical memory until the allocated data objects are referenced.

While any memory class can be dynamically assigned, the
block_shared class can only be assigned dynamically, and the
near_shared class is most useful when dynamically assigned.

Chapter 5 191

Memory classes
Memory class assignments

Memory class pointers
All shared memory classes are accessible to all threads when
dynamically allocated in serial code, regardless of the allocating thread,
because all threads access these classes from the same physical memory
using the same virtual addresses. However, in Fortran, if more than one
thread in a parallel construct attempts to allocate a shared class array,
only the last allocation will exist. This is because there can only be one
(internal) pointer to the allocated array; by default, this pointer is of the
same class as the allocated memory, and each allocating thread resets
this shared pointer.

This problem is overcome by adding class-specification directives of the
following form:

C$DIR memory_class_name_POINTER(allocatable-namelist)

where

memory_class_name
is one of THREAD_PRIVATE, NODE_PRIVATE,
NEAR_SHARED, or FAR_SHARED. memory_class_name
cannot contain BLOCK_SHARED because the
BLOCK_SHARED class is specifically designed to hold
array objects, and a pointer is a scalar object.

allocatable-namelist
is a comma-separated list of arrays previously declared
to be ALLOCATABLE in the same procedure. The private
classes are included in allocatable-namelist because it
is often only necessary to access a particular shared
array from the particular thread or hypernode on
which the array is being manipulated.
Allocatable private arrays are only accessible from the
thread that allocates them; threads executing
ALLOCATE statements in parallel will each be able to
access the private array they allocate. Private arrays
allocated outside of parallel constructs will only be
accessible by thread 0.

192 Chapter 5

Memory classes
Memory class assignments

The C/C++ memory_class_malloc function is very similar to standard
malloc and has the following form:

memcls_ptr = memory_class_malloc(size_t bytes, int memory_class_name);

where

memcls_ptr
is a previously-declared pointer to a variable of the
desired memory class. Note that memcls_ptr need not
be of the class indicated in memory_class_name,
allowing you to allocate one class of memory which is
accessed by a pointer of a different class. This is
analogous to using the
C$DIR memory_class_name_POINTER Fortran
directive to allocate a pointer of one class to an array of
a different class.

bytes
is the requested number of bytes.

memory_class_name
is one of THREAD_PRIVATE_MEM, NODE_PRIVATE_MEM,
NEAR_SHARED_MEM, FAR_SHARED_MEM, or
BLOCK_SHARED_MEM; these symbolic constants are
defined in spp_prog_model.h .

Chapter 5 193

Memory classes
Memory class assignments

In addition to its standard form, operator new has the following
additional forms:

#include <new.h>
#include <spp_prog_model.h>
.
.
.

memcls_ptr = new (memory_class_specifier) type_specifier;
memcls_ptr = new (memory_class_specifier)
type_specifier[array_size];

where

memcls_ptr
is a previously-declared pointer to a variable of the
desired memory class. Note that memcls_ptr need not
be of the class indicated in memory_class_specifier,
allowing you to allocate one class of memory which is
accessed by a pointer of a different class.

memory_ class_specifier
is the desired memory class specifier
(__thread_private , __node_private ,
__near_shared , __far_shared , or
__block_shared)

type_specifier
is a C++ data type (int , float , etc.)

array_size
specifies the number of elements in the array if
memcls_ptr is a pointer to an array

Not all combinations of pointer classes with data classes are supported,
and not all make sense. Observe the following general rules:

• thread_private memory must be referenced by thread_private
pointers.

• node_private memory should be referenced by near_shared or
far_shared pointers.

194 Chapter 5

Memory classes
Memory class assignments

• When shared data objects are referenced by private pointers, direct
access to the object is restricted by the scope of the pointer. For
example, if a thread_private pointer is used, access is restricted to
the thread from which the pointer was allocated. If a node_private
pointer is used, access is restricted to the threads on the hypernode
from which the pointer was allocated. To access shared data using a
thread_private pointer from a thread other than the thread that
allocated the pointer, you must pass the pointer between threads.
node_private pointers must similarly be passed between
hypernodes when they are used.

• Allocatable block_shared arrays are never explicitly assigned a
pointer in Fortran.

• Using shared-class pointers to point to shared-class memory provides
pointer access to all threads, but, as with any shared-memory data,
appropriate latency rules apply to the pointers.

• In Fortran, when one of the memory_class_name_POINTER directives
is not used, dynamically allocated memory is accessed via a pointer of
the same class as the allocated data.

Table 8 shows proper and improper pointer/data class combinations.

Table 8 Pointer class/data class combinations

In the table above, OK means the pointer/data class combination is
acceptable; NR means the combination is not recommended.

Pointer class

Data class

th
re

a
d

_
p

ri
va

te

n
o

d
e

_
p

ri
va

te

n
e

a
r_

sh
a

re
d

fa
r_

sh
a

re
d

b
lo

ck
_

sh
a

re
d

thread_private_pointer OK NR OK OK OK

node_private_pointer NR OK OK OK OK

near_shared_pointer NR OK OK OK OK

far_shared_pointer NR OK OK OK OK

Chapter 5 195

Memory classes
Memory class assignments

While pointer classes are provided for private variables, they are
typically only needed when allocating shared memory.

Default classes for dynamic memory

NOTE For applications that run on nonscalable, single-node systems,
far_shared memory, near_shared memory, and block_shared
memory are automatically mapped to node_private memory.

Using standard malloc in a shared-memory C or C++ program allocates,
by default, far_shared memory. Memory allocated by either standard
malloc or memory_class_malloc can be deallocated using the free
function. In C++, operator new allocates far_shared memory by
default. Operator delete deallocates memory.

In Fortran, memory allocated using the ALLOCATE statement and not
specifically assigned a class will be assigned the far_shared class by
default. Such memory is deallocated using the DEALLOCATE statement.

The stack can exist in only one physical space, so it is allocated in
near_shared memory by default. This means that all local data is
near_shared and resides on logical hypernode 0 by default. (In Fortran,
local data is all data not declared in COMMON blocks, is a dummy
argument, or SAVEd. Within a C/C++ function, local data is all data not
assigned a storage class of static or extern .)

Using each dynamic memory class is explained in detail in the sections
that follow.

196 Chapter 5

Memory classes
Memory class assignments

thread_private

Because only the allocating thread can access dynamically allocated
thread_private memory, it should be allocated (and deallocated)
inside thread-parallel constructs, where each thread can allocate its own
copy.

Consider the following Fortran example:

 REAL*8 XTP(:)
C$DIR THREAD_PRIVATE(XTP)
 ALLOCATABLE XTP
 .
 .
 .
C$DIR LOOP_PARALLEL(THREADS), LOOP_PRIVATE(J)
 DO I = 1, NUM_THREADS()
C THE FOLLOWING CODE MUST OCCUR INSIDE A
C THREAD-PARALLEL CONSTRUCT
 ALLOCATE(XTP(N))
 DO J = 1, N
 . !COMPUTATIONS USING XTP
 .
 .
 ENDDO
 DEALLOCATE(XTP)
 ENDDO

This example assumes that the ALLOCATE statement is contained within
a manually-created parallel loop or task. Then each parallel thread
would get a private copy of the XTP array, of size N elements. Note the
nested construct, in which the outer loop allocates and deallocates the
thread_private array, and the inner loop uses it in computation. The
outer loop calls the NUM_THREADS() intrinsic, which returns the number
of threads on which the process is running, as described in Chapter 6,
“Advanced shared-memory programming.”

If this code was executed inside a node-parallel construct, each thread on
each hypernode would allocate XTP.

If the ALLOCATE in this example was executed in a nonparallel section of
code, only thread 0 would be able to reference XTP.

Chapter 5 197

Memory classes
Memory class assignments

A similar C example follows:

static thread_private double *xtp;
int nt = num_threads();
.
.
.
#pragma _CNX loop_parallel(threads, ivar=i), loop_private(j)
for(i=0;i<nt;i++) {
/* the following statement must occur inside a
 parallel construct */
 xtp=(double *)memory_class_malloc(sizeof(double)*n,
 THREAD_PRIVATE_MEM);
 for(j=0;j<n;j++) {
 . /*computations using xtp*/
 .
 .
 }

 free(xtp);
}

This example allocates memory in the same manner as the Fortran
example.

node_private

Recall that all threads access node_private memory via the same
virtual addresses, and that these virtual addresses map to different
physical addresses on each hypernode. Dynamic allocations of
node_private memory should be executed in serial code. If you require
physical memory on every hypernode and wish to reference it using the
same virtual addresses from every hypernode, you can allocate the
memory from serial code using a shared pointer. Allocation examples are
given later in this section.

In order to access dynamically allocated node_private memory from
node-parallel code, a shared pointer is needed. This is because when
serial Fortran code running on logical hypernode 0 executes the
ALLOCATE statement, the default node_private array pointer is
assigned on that hypernode only. It is true that the virtual address maps
to physical memory on every hypernode, but only the pointer of the
assigning hypernode gets a value; the pointers on other hypernodes are
unassigned. If logical hypernode 0 is the only hypernode requiring access

198 Chapter 5

Memory classes
Memory class assignments

to the array, all the threads running on it will be able to access the array
via this node_private pointer. However, because the physical memory
associated with the other hypernodes’ pointers has not been assigned,
attempting to use the values it contains will cause an error. Therefore,
arrays dynamically allocated in serial code that are to be accessed in
parallel code must be accessed with explicitly-declared near_shared or
far_shared pointers. Because the allocation takes place in serial code,
there is no advantage to using one shared class over the other; both will
be stored in physical memory on logical hypernode 0, causing pointer
accesses from other hypernodes to take longer.

In Fortran, pointers default to the same memory class as the objects to
which they point, so compiler directives are used to assign different
memory classes to pointers. In C/C++, the pointers must be explicitly
declared separately, so the memory class assignment is handled in the
pointer declaration.

Consider the following Fortran example:

 REAL*8 XNP(:)
C$DIR NODE_PRIVATE(XNP)
C$DIR FAR_SHARED_POINTER(XNP)
 ALLOCATABLE XNP
 .
 .
 .
C THE FOLLOWING CODE SHOULD OCCUR OUTSIDE
C ANY PARALLEL CONSTRUCT:
 ALLOCATE(XNP(1000))

This example assumes that the ALLOCATE statement is contained within
a nonparallel section of code. Assuming this code is running on a
4-hypernode system, when the ALLOCATE statement executes, 8,000
bytes (1000 elements × 8 bytes per element) of virtual space are allocated
for XNP. If the array is then accessed from a node-parallel construct, a
unique physical copy of XNP will be created on any accessing hypernodes,
and each accessing thread will access its hypernode’s copy of XNP. If
every hypernode on the system accesses the array, it will occupy a total of
32,000 bytes of physical memory.

Chapter 5 199

Memory classes
Memory class assignments

A similar C/C++ example follows:

static far_shared double *xnp;
.
.
.
/* the following statement should occur outside any
 parallel construct: */
xnp = (double *)memory_class_malloc(sizeof(double)*1000,
 NODE_PRIVATE_MEM);

The same example using operator new:

static far_shared double *xnp;
.
.
.
// the following statement should occur outside any
// parallel construct:
xnp = new (__node_private) double[1000];

These examples allocate memory in the same manner as the Fortran
example. Note that the pointer to xnp is explicitly assigned the
far_shared class in its declaration.

The preceding examples allow you to use the same names to access
physically unique node_private arrays on each hypernode from
node-parallel code. This can effectively increase your program’s virtual
memory space, because the same amount of virtual space is used for the
arrays no matter how many hypernodes hold physical copies or run code
that accesses them.

Parallel allocations of node_private memory should normally be done
outside parallel code. This memory should then be accessed via shared
pointers. When memory is allocated in such a fashion, threads will only
be able to access the data that is stored physically on their hypernode. To
access node_private data that is stored on another hypernode, the
data must be passed via a shared variable.

These allocations are useful when private work arrays are needed by
each hypernode in a node-parallel construct.

200 Chapter 5

Memory classes
Memory class assignments

Consider the following Fortran example:

 REAL*8 NODE_V(:)
 ALLOCATABLE NODE_V
C$DIR NODE_PRIVATE(NODE_V)
C$DIR FAR_SHARED_POINTER(NODE_V)
 .
 .
 .
 NN = NUM_NODES()
 JLMT = (JTOT/NN) + 1
 ALLOCATE(NODE_V(JLMT))
C$DIR LOOP_PARALLEL(NODES, CHUNK_SIZE = 1)
C$DIR LOOP_PRIVATE(J)
 DO I = 1, M
C$DIR LOOP_PARALLEL(THREADS)
 DO J = 1, JLMT
 NODE_V(J) = PI*(RAD(J)**2)*L(I,J)
 P(I,J) = (N(I,J)*R*T(I,J))/NODE_V(J)
 ENDDO
C$DIR LOOP_PARALLEL(THREADS)
 DO J = 2, JLMT
 IF((NODE_V(J) .GT. NODE_V(J-1)).AND.
 > (NODE_V(J) .GT. NODE_V(J+1)))
 > LMAX_V(I,J) = NODE_V(J)
 ENDDO
 .
 .
 .
 ENDDO
 DEALLOCATE(NODE_V)

Here, the NODE_V array is used privately by each hypernode in the
computation of the array P and to find values for LMAX_V. NODE_V is not
needed outside of the I loop. Note that the NUM_NODES() intrinsic
(described in Chapter 6, “Advanced shared-memory programming”) is
used to determine the number of hypernodes on which the process is
running.

Chapter 5 201

Memory classes
Memory class assignments

An analogous C example follows:

static far_shared double *node_v;
.
.
.
nn = num_nodes();
jlmt = (jtot/nn) + 1;
node_v = (double*)memory_class_malloc(jlmt*sizeof(double),
 NODE_PRIVATE_MEM);
#pragma _CNX loop_parallel(nodes, chunk_size = 1, ivar=i)
#pragma _CNX loop_private(j)
for(i=0; i<m; i++) {
#pragma _CNX loop_parallel(threads, ivar=j)
 for(j=0; j<jlmt; j++) {
 node_v[j] = pi*rad[j]*rad[j]*l[i,j];
 p[i,j] = (n[i,j]*r*t[i,j])/node_v[j];
 }
#pragma _CNX loop_parallel(threads, ivar=j)
 for(j=1; j<jlmt; j++) {
 if((node_v[j] > node_v[j-1]) && (node_v[j] > node_v[j+1]))
 lmax_v[i,j] = node_v[j];
 }
}
free(node_v);

near_shared

To be most useful, near_shared memory must be dynamically allocated
on the hypernode that will most heavily access it. near_shared memory
should be allocated from within explicitly-defined node-parallel
structures to ensure that it is allocated on the hypernodes that will use it
most. Node-parallel structures are manually defined by the programmer
using the loop_parallel(nodes) , parallel(nodes) , or
begin_tasks(nodes) directives and pragmas, which are discussed in
detail in Chapter 4, “Basic shared-memory programming.”

Unconditionally allocating near_shared arrays in node-parallel
structures is possible and is discussed later. However, to take full
advantage of near_shared arrays, they should be allocated
conditionally, based on the allocating hypernode, within node-parallel
code.

202 Chapter 5

Memory classes
Memory class assignments

A Fortran example of this follows. For simplicity, we assume this
example will always run on a 2-hypernode system.

 REAL*8 XNS(:), YNS(:)
 ALLOCATABLE XNS, YNS
C$DIR NEAR_SHARED(XNS, YNS)
 .
 .
 .
C THE FOLLOWING CODE MUST RUN NODE-PARALLEL
C$DIR LOOP_PARALLEL(NODES) ! 2-NODE SUBCMPLX
C$DIR LOOP_PRIVATE(NODE_ID)! IS ASSUMED
 DO I = 1, NUM_NODES()
 NODE_ID = MY_NODE()
 IF(NODE_ID .EQ. 0) THEN
 ALLOCATE(XNS(1000))
 ELSE
 ALLOCATE(YNS(1000))
 ENDIF
 .
 .
 .
 ENDDO

The LOOP_PARALLEL(NODES) directive is used to achieve
node-parallelism; the MY_NODE() function returns the hypernode ID of
the hypernode on which the current thread is executing. These are both
discussed in more detail in Chapter 6, “Advanced shared-memory
programming.” This example allocates a near_shared XNS(1000)
array for logical hypernode 0, and a near_shared YNS(1000) array for
logical hypernode 1. When accessed, XNS is stored in hypernode-global
physical memory on logical hypernode 0; it is therefore accessible from
that hypernode with the least latency. Similarly, YNS is physically stored
on and quickly accessible from logical hypernode 1. The arrays’ unique
virtual addresses allow either to be accessed by the hypernode it does not
occupy, and more latency is involved in such accesses. This example
presumes that code that follows in the program conditionally
manipulates these arrays on their respective hypernodes, but that some
sharing of the array data between hypernodes also occurs.

Chapter 5 203

Memory classes
Memory class assignments

A C example that allocates memory in the same fashion follows. Again
we assume that this code will always run on a two-hypernode system.

static near_shared double *xns, *yns;int node_id;
int nn = num_nodes();
.
.
.
/* the following code must run node-parallel on a 2-node
 system: */
#pragma _CNX loop_parallel(nodes, ivar=i), loop_private(node_id)
for(i=0;i<nn;i++) {
 node_id = my_node();
 if(node_id == 0)
 xns = (double *)memory_class_malloc(sizeof(double)*1000,
 NEAR_SHARED_MEM);
 else
 yns = (double *)memory_class_malloc(sizeof(double)*1000,
 NEAR_SHARED_MEM);
.
.
.
}

Note that in C and C++, the pointer class is assigned with the type
declaration, and the data class is assigned by the
memory_class_malloc function. In C++, the data class can also be
assigned by operator new.

Recall that near_shared data objects have a single virtual address used
by all hypernodes, and, when accessed, a single physical address (on the
allocating hypernode). In the above examples, the pointers used to access
the near_shared arrays were of the same memory class as the arrays
(by default in Fortran and by explicit typing in C and C++). The
allocations are not thread-parallel, so a single thread on each hypernode
will allocate its respective array. If, at some point later in the program,
the code goes thread-parallel, all threads on a given hypernode will be
able to access the arrays via their near_shared pointers.

However, if you wish to allocate near_shared memory from within a
thread-parallel structure, the near_shared pointer can present a
problem when the near_shared data space is actually allocated: all
threads will be allocating the space using the same shared pointer, so

204 Chapter 5

Memory classes
Memory class assignments

each thread’s ALLOCATE will reset the pointer. In C and C++ the pointer
class is directly controllable, but in Fortran the memory_class_POINTER
directive must be used to assign a pointer of a different class to the array.

Table 8 on page 194 covers acceptable pointer classes to use for
near_shared data. While a certain combination may be allowed, it may
not make sense for the task at hand.

In the following Fortran example, the pointer to ZNS is assigned the
THREAD_PRIVATE memory class, because ZNS is being allocated in a
thread-parallel structure. This causes each thread to allocate its own
near_shared copy of ZNS on its hypernode.

 REAL*8 ZNS(:)
 ALLOCATABLE ZNS
C$DIR NEAR_SHARED(ZNS)
C$DIR THREAD_PRIVATE_POINTER(ZNS)
 .
 .
 .
C THE FOLLOWING CODE MUST RUN THREAD-PARALLEL
C$DIR LOOP_PARALLEL(THREADS)
 DO I = 1, NUM_THREADS()
 ALLOCATE(ZNS(1000))
 .
 .
 .
 ENDDO

Here, thread-parallelism is achieved using the
LOOP_PARALLEL(THREADS) directive, which is discussed further in
Chapter 4, “Basic shared-memory programming.” The hypernode on
which the ALLOCATE statement executes allocates a near_shared copy
of ZNS for each thread. Each thread running on that hypernode can then
reference its copy of ZNS via the thread_private pointers provided by
the THREAD_PRIVATE_POINTER directive on ZNS. If the thread-parallel
section of code shown is also running node-parallel, each hypernode
running it will allocate as many near_shared ZNS arrays as it has
threads. For example, if 8 threads are running on each of 2 hypernodes,
16 physical and virtual copies of ZNS will be created. However, because of
the thread-private pointers, these near_shared copies will lose their
direct-accessibility; accesses by any thread other than the allocating
thread is only possible in C and C++ and will require sharing of the
thread_private pointers.

Chapter 5 205

Memory classes
Memory class assignments

A similar C example follows:

static thread_private double *zns;
int nt = num_threads();
.
.
.
/* the following code must run thread-parallel */
#pragma _CNX loop_parallel(threads, ivar=i)
for(i=0;i<nt;i++)
 zns = (double *)memory_class_malloc(sizeof(double)*1000,
 NEAR_SHARED_MEM);
.
.
.

This example allocates memory in the same manner as the Fortran
example.

When only one parallel hypernode in a group of hypernode-parallel tasks
needs a private array, the near_shared class can be allocated
dynamically from within the task in question, a near_shared pointer
can be used to provide low-latency access to the array.

The following Fortran code shows a parallel allocation for a single
parallel hypernode:

 REAL*8 NODE_SCRATCH(:)
 ALLOCATABLE NODE_SCRATCH
C$DIR NEAR_SHARED(NODE_SCRATCH)
 .
 .
 .
C$DIR BEGIN_TASKS(NODES), TASK_PRIVATE(I)
 DO I = 1, N
 A(I) = B(I) + C(I)
 ENDDO
C$DIR NEXT_TASK
 CALL TSUB(X,Y)
 .
 .
 .

206 Chapter 5

Memory classes
Memory class assignments

C$DIR NEXT_TASK
 ALLOCATE(NODE_SCRATCH(1000))

C$DIR LOOP_PARALLEL(THREADS)
 DO I = 1, 1000
 NODE_SCRATCH(I) = Z(I)
 ENDDO
C$DIR LOOP_PARALLEL(THREADS)
 DO I = 1, 999
 Z(I) = NODE_SCRATCH(I+1)
 .
 .
 .
 ENDDO
 DEALLOCATE(NODE_SCRATCH)
C$DIR END_TASKS
 .
 .
 .

Here, the final task in the list allocates the temporary near_shared
work array NODE_SCRATCH, uses it, and deallocates it. The compiler will
thread-parallelize both loops within this task because of the
LOOP_PARALLEL directives on them, and they will both be able to access
the NODE_SCRATCH array with minimal latency. Because this array is
near_shared , it can also be accessed by any other hypernode, though
that does not happen in this example. Using LOOP_PARALLEL to
manually parallelize loops is further discussed in Chapter 6, “Advanced
shared-memory programming.”

Chapter 5 207

Memory classes
Memory class assignments

An analogous C example follows:

static near_shared double *node_scratch;
.
.
.
#pragma _CNX begin_tasks(nodes), task_private(i)
for (i=0; i<n; i++) {
 a[i] = b[i] + c[i];
}
#pragma _CNX next_task
tsub(x,y);
.
.
.

#pragma _CNX next_task
node_scratch = (double *)memory_class_malloc(1000*sizeof(double),
 NEAR_SHARED_MEM);
#pragma _CNX loop_parallel(threads, ivar=i)
for(i=0; i<1000; i++) {
 node_scratch[i] = z[i];
}
#pragma _CNX loop_parallel(threads, ivar=i)
for(i=0; i<999; i++) {
 z[i] = node_scratch[i+1];
 .
 .
 .
}
free(node_scratch);
#pragma _CNX end_tasks
.
.
.

208 Chapter 5

Memory classes
Memory class assignments

far_shared

Because far_shared memory is distributed across all hypernodes in the
system, it is best dynamically allocated in nonparallel structures.
Allocating far_shared memory in a thread- or node-parallel structure
would create multiple copies of the requested far_shared array, one for
each allocating thread or hypernode in the structure. This replication
increases the amount of memory, both physical and virtual, used by the
process, and is of questionable utility.

Consider the following Fortran example:

 REAL*8 XFS(:)
 ALLOCATABLE XFS
C$DIR FAR_SHARED(XFS)
 .
 .
 .
C THE FOLLOWING CODE SHOULD BE EXECUTED IN
C A NONPARALLEL STRUCTURE:
 ALLOCATE(XFS(10000))

Because the far_shared data in this example is allocated outside of
parallel code, the default far_shared pointer is suitable; the array is
allocated once, and there is no danger of parallel allocations resetting the
pointer. When the ALLOCATE statement executes, 80,000 bytes of virtual
space is allocated. When the array is accessed, this maps to 80,000 bytes
of physical memory, which is distributed, in an approximately
round-robin manner, by pages to each hypernode in the system.

A similar C/C++ example follows:

static far_shared double *xfs;
.
.
.
/* the following code should run in a nonparallel
 structure: */
xfs = (double *)memory_class_malloc(sizeof(double)*10000,
 FAR_SHARED_MEM);

This example allocates memory in the same manner as the Fortran
example.

Chapter 5 209

Memory classes
Memory class assignments

The same example using operator new:

static far_shared double *xfs;
.
.
.
// the following code should run in a nonparallel
// structure:
xfs = new (__far_shared) double[10000];

Keep in mind that even dynamically allocated far_shared memory is
distributed across all hypernodes in the system, not just across the
hypernodes on which your program can spawn threads. Therefore, if your
program is constrained to a subset of the hypernodes available in its
system, you should use the block_shared or near_shared memory
classes to avoid placing data on unused hypernodes.

far_shared is the default memory class for all data not otherwise
assigned a class. (On nonscalable systems, far_shared is the same as
node_private .)

block_shared

block_shared memory is specifically provided for dynamic allocation
by a process running on multiple hypernodes. It is ideal for
array-manipulating loops that will parallelize across hypernodes, with
each hypernode computing chunks of contiguous elements of the arrays.
Using block_shared memory for such arrays distributes the chunks
across the hypernodes on which the program is running; work can then
be distributed so that each hypernode accesses the elements that reside
on it most frequently. If necessary, hypernodes can still directly access
each other’s block_shared data.

As with far_shared data, this block_shared data allocation should
take place outside of parallel structures; in this case, the compiler will
automatically distribute the data evenly across the hypernodes of the
system. Allocating block_shared memory from parallel structures will
cause multiple copies (one per parallel thread) of the block_shared
data to be created, a situation that wastes memory and is of questionable
utility.

210 Chapter 5

Memory classes
Memory class assignments

Consider the following Fortran example:

 REAL*8 XBS(:), YBS(:)
 ALLOCATABLE(XBS, YBS)
C$DIR BLOCK_SHARED (XBS,YBS)
 .
 .
 .
C THE FOLLOWING CODE SHOULD BE EXECUTED IN
C A NONPARALLEL STRUCTURE:
 ALLOCATE(XBS(10240), YBS(7680))

Here, 81,920 bytes of virtual space is requested for XBS, and 61,440 bytes
is requested for YBS. Assuming this code is running on a 4-hypernode
system, these block_shared arrays will have their physical pages
divided equally, in contiguous chunks, among the 4 hypernodes. Recall
that the default page size is 4,096 bytes, so XBS occupies 20 pages
(81,920/4,096 = 20). The number of hypernodes, 4, is an integral divisor
of 20, giving 5 pages per hypernode. So the first 5 pages of XBS are
physically mapped to logical hypernode 0 (yet still accessible via their
virtual addresses from any other hypernode), the second 5 pages go to
logical hypernode 1, the third 5 pages to logical hypernode 2, and the last
5 pages to logical hypernode 3.

The 61,440 bytes of YBS, on the other hand, occupy 15 pages. 4 does not
integrally divide 15, so the size of YBS is automatically increased just
enough to allow the number of hypernodes to integrally divide its pages.
YBS becomes an 8,192 element array; it now occupies 65,536 bytes or 16
pages of memory. These 16 pages are divided up so that the first 4 pages
map to logical hypernode 0 and so on, with the last 4 mapping to logical
hypernode 3.

Any hypernode-parallel code that follows the above allocation should be
written such that the portion running on a particular hypernode accesses
the array elements resident on that hypernode. For example, the code
running on logical hypernode 2 should make most frequent use of
XBS(5121:7680) and YBS(3841:5760) . The “Accessing
hypernode-local block_shared elements” section, which follows, discusses
how to determine which elements of a block_shared array are on a
given hypernode.

Chapter 5 211

Memory classes
Memory class assignments

A similar C/C++ example follows:

static near_shared double *xbs, *ybs;
.
.
.
/* the following code should be run in a nonparallel
 section of code: */
xbs = (double *)memory_class_malloc(sizeof(double)*10240,
 BLOCK_SHARED_MEM);
ybs = (double *)memory_class_malloc(sizeof(double)*7680,
 BLOCK_SHARED_MEM);

The same example using operator new:

static near_shared double *xbs, *ybs;
.
.
.
// the following code should be run in a nonparallel
// section of code:
xbs = new (__block_shared) double[10240];
ybs = new (__block_shared) double[7680];

These examples allocate and distribute xbs and ybs as block_shared
arrays exactly as the Fortran example did, including the automatic
resizing of ybs . near_shared pointers are used to access the arrays.

When allocated, block_shared arrays are distributed across all
hypernodes available to your program; you cannot constrain the number
of hypernodes that the arrays occupy. This makes the block_shared
class especially suitable for programs whose data sets scale with the
number of available hypernodes. If there is any question as to whether
your block_shared arrays will occupy enough pages to efficiently use
the number of hypernodes available to your program, you should roughly
compute the number of pages the array in question is likely to occupy. If
this number is not at least equal to the number of hypernodes that will
typically be available to the program, you can still use the
block_shared class, but your program might waste some memory by
expanding the array to occupy at least one page per hypernode.

While you cannot constrain the allocation of block_shared memory
from within your program, you can constrain the number of hypernodes
on which your program runs by using the max_threads attribute to
loop_parallel . block_shared memory is only allocated on the

212 Chapter 5

Memory classes
Memory class assignments

hypernodes on which your program can spawn threads, so if your
program is constrained in this way, block_shared memory is preferable
to far_shared memory, which is distributed across all hypernodes in
the system.

Accessing hypernode-local block_shared elements
Determining the range of block_shared array element indexes located
on a given hypernode is easily computable given the page size, number of
hypernodes, element size, and number of elements. The following
Fortran function takes these parameters along with the current
hypernode number as arguments and returns the base index for the
elements on the current hypernode:

 INTEGER FUNCTION MIN_NODE_ELT(PGSZ,NN,ELTSZ,NELTS,CUR_NODE)
 INTEGER PGSZ, NN, ELTSZ, NELTS, CUR_NODE
 INTEGER NUM_PGS, PGS_PER_NODE
 NUM_PGS = 1 + (NELTS*ELTSZ - 1)/PGSZ
 PGS_PER_NODE = 1 + (NUM_PGS - 1)/NN
C ADJUST MIN_NODE_ELT BY +1 TO COMPENSATE FOR ARRAY INDEXING
C FROM 1:
 MIN_NODE_ELT = (CUR_NODE*PGS_PER_NODE*PGSZ/ELTSZ) + 1
 RETURN
 END

This Fortran example assumes the array is indexed from 1.

The analogous C/C++ function, which assumes indexing begins at 0, is
shown below.

int min_node_elt(int pgsz,int nn,int eltsz,int nelts,int cur_node)
{
 int num_pgs, pgs_per_node;
 num_pgs = 1 + (nelts*eltsz - 1)/pgsz;
 pgs_per_node = 1 + (num_pgs - 1)/nn;
 return (cur_node*pgs_per_node*pgsz/eltsz);
}

Chapter 5 213

Memory classes
Memory class assignments

The following Fortran example shows one way in which MIN_NODE_ELT
can be used in a hypernode-parallel loop so that each hypernode accesses
only its local array elements. This example assumes that the number of
pages occupied by XBS is large enough to efficiently exploit all available
hypernodes.

 REAL*8 XBS(:)
 INTEGER ARSZ
 ALLOCATABLE XBS
C$DIR BLOCK_SHARED(XBS)
 .
 .
 .
C **NO PARALLELISM**
 ALLOCATE(XBS(ARSZ))
 NN = NUM_NODES()
C$DIR LOOP_PARALLEL(NODES), LOOP_PRIVATE(J, MN, MIN_ELT, MAX_ELT)
 DO I = 1, NN ! DO ON EACH NODE:
 MN = MY_NODE() ! GET CURRENT NODE NUMBER
C GET MIN AND MAX ELEMENT NUMBERS FOR CURRENT NODE:
 MIN_ELT = MIN_NODE_ELT(PGSZ,NN,8,ARSZ,MN)
 MAX_ELT = MIN_NODE_ELT(PGSZ,NN,8,ARSZ,MN+1) - 1
C GO THREAD PARALLEL ON CURRENT NODE:
C$DIR LOOP_PARALLEL(THREADS)
 DO J = MIN_ELT, MAX_ELT ! LOOP OVER LOCAL ELEMENTS
 XBS(J) = ...
 .
 .
 .
 ENDDO
 ENDDO

Here, the array XBS is allocated in serial code. When the program goes
node-parallel, each iteration calls MY_NODE to get its hypernode ID
(which ranges from 0..NUM_NODES), then uses this ID in the following
calls to MIN_NODE_ELT to determine the minimum and maximum
indexes of the hypernode-local elements of XBS. Each hypernode then
computes its elements of XBS in a thread-parallel loop that iterates over
only the resident elements of XBS.

214 Chapter 5

Memory classes
Memory class assignments

The analogous C code follows:

static near_shared double *xbs;
.
.
.
/********************** no parallelism **********************/
xbs = (double *)memory_class_malloc(sizeof(double)*arsz,
 BLOCK_SHARED_MEM);
nn = num_nodes();
#pragma _CNX loop_parallel(nodes, ivar=i)
#pragma _CNX loop_private(j, mn, min_elt, max_elt)
for(i=0; i<nn; i++) { /* do on each node: */
 mn = my_node(); /* get current node number */
 /* get min and max element numbers for current node: */
 min_elt = min_node_elt(pgsz,nn,sizeof(double),arsz,mn);
 max_elt = min_node_elt(pgsz,nn,sizeof(double),arsz,mn+1) - 1;
 /* go thread parallel on current node: */
#pragma _CNX loop_parallel(threads, ivar=j)
 for(j=min_elt; j<=max_elt; j++) { /* loop over local elts */
 xbs[j] = ...
 .
 .
 .
 }
}

Another easy way to access hypernode-local elements is to add a
dimension of size 1..num_nodes() to your block_shared array when
you allocate it.

Chapter 5 215

Memory classes
Memory class assignments

The following Fortran example shows such an allocation:

 REAL*8 ABS(:,:)
 ALLOCATABLE ABS
C$DIR BLOCK_SHARED(ABS)
 .
 .
 .
C **NO PARALLELISM**
 ALLOCATE(ABS(N,NUM_NODES()))
 .
 .
 .
C$DIR LOOP_PARALLEL(NODES), LOOP_PRIVATE(J)
 DO I = 1, NUM_NODES()
C$DIR LOOP_PARALLEL(THREADS)
 DO J = 1, N
 ABS(J,I) = ...
 .
 .
 .
 ENDDO
 ENDDO

Here, N—which must be an integral multiple of the page size (the default
page size is 4 kbytes)—is chosen so that N*NUM_NODES() is equal to or
greater than the total number of ABS elements required. We assume that
the original problem (before it is rewritten for parallelization) does not
require a two-dimensional array, and that the second dimension is
provided only to allow each parallel hypernode to easily index its local
elements. Inside the J loop, the I index into ABS ensures that each
parallel hypernode accesses its local elements automatically.

216 Chapter 5

Memory classes
Memory class assignments

Chapter 6 217

6 Advanced shared-memory
programming

Most of the manual parallelization techniques discussed in Chapter 4,
“Basic shared-memory programming,” allow you to take advantage of the
compilers’ automatic dependence checking and data privatization. The
examples that used the LOOP_PRIVATE and TASK_PRIVATE directives
and pragmas are exceptions to this; in these cases, manual privatization
was required, but it was done on a loop-by-loop basis. Only the simplest
data dependences were handled in Chapter 4.

This chapter is concerned with manual parallelizations that use the
program-wide memory classes discussed in Chapter 5, “Memory classes,”
and that handle multiple and ordered data dependences.

Before we can discuss specific examples of such parallelization, however,
we must introduce the remaining underlying concepts and available
functions.

Parallel information functions
Several intrinsics are available to provide information regarding the
parallelism or potential parallelism of your program. These are all
integer functions, available in both 4- and 8-byte lengths; they can
appear in executable statements anywhere an integer expression is
legal. The 8-byte versions, which are suffixed with _8 , are typically only
used in Fortran programs in which the default data lengths have been
changed using the -I8 or similar compiler options. When default integer
lengths are modified via compiler options in Fortran, the correct intrinsic
is automatically chosen regardless of which is specified. These versions
expect 8-byte input arguments and return 8-byte values.

NOTE All C/C++ code examples presented in this chapter assume that the line

#include <spp_prog_model.h>

appears above the C/C++ code presented. This header file contains the
necessary type and function definitions.

The subsections that follow describe these functions.

218 Chapter 6

Advanced shared-memory programming
Parallel information functions

Number of processors
These functions return the total number of processors on which the
process has initiated threads. These threads are not necessarily active.

In Fortran, these functions have the forms:

INTEGER NUM_PROCS()
INTEGER*8 NUM_PROCS_8()

In C, they have the forms:

int num_procs(void);
long long num_procs_8(void);

num_procs can be used to dimension automatic and adjustable arrays in
Fortran, and may be used in Fortran, C, and C++ to dynamically specify
array dimensions and allocate storage.

Number of threads
These functions return the total number of threads the process creates at
initiation, regardless of how many hypernodes the threads occupy, and
regardless of how many are idle or active. They are typically used to
manually define thread-parallel loops which may span hypernodes.

In Fortran, these functions have the forms:

INTEGER NUM_THREADS()
INTEGER*8 NUM_THREADS_8()

In C, they have the forms:

int num_threads(void);
long long num_threads_8(void);

The return value will only differ from num_procs if threads are
oversubscribed.

Chapter 6 219

Advanced shared-memory programming
Parallel information functions

Number of hypernodes
These functions return the number of hypernodes on which the process is
running. They can be used to dimension automatic and adjustable arrays
in Fortran and can be used in Fortran, C, and C++ to dynamically specify
array dimensions and allocate storage.

In Fortran, these functions have the forms:

INTEGER NUM_NODES()
INTEGER*8 NUM_NODES_8()

In C, they have the forms:

int num_nodes(void);
long long num_nodes_8(void);

Number of threads on current hypernode
These functions return the number of the calling process’s threads
running on the hypernode from which the function is called. This
number can vary from one hypernode to another depending on system
configurations, usage of manual parallelization directives, and the
number of processors installed on each hypernode.

In Fortran, these functions have the forms:

INTEGER NUM_NODE_THREADS()
INTEGER*8 NUM_NODE_THREADS_8()

In C, they have the forms:

int num_node_threads(void);
long long num_node_threads_8(void);

220 Chapter 6

Advanced shared-memory programming
Parallel information functions

Thread ID
When called from parallel code these functions return the spawn thread
ID of the calling thread, in the range 0..nst-1, where nst is the number of
threads in the current spawn context (the number of threads spawned by
the last parallel construct). Use them when you wish to direct specific
tasks to specific threads inside parallel constructs.

In Fortran, these functions have the forms:

INTEGER MY_THREAD()
INTEGER*8 MY_THREAD_8()

In C, they have the forms:

int my_thread(void);
long long my_thread_8(void);

When called from serial code, these functions return 0.

Hypernode ID
These functions return the logical hypernode ID of the hypernode on
which the calling thread is running, in the range 0..num_nodes() -1. Use
them when you wish to direct specific tasks to specific hypernodes inside
parallel constructs.

In Fortran, these functions have the forms:

INTEGER MY_NODE()
INTEGER*8 MY_NODE_8()

In C, they have the forms:

int my_node(void);
long long my_node_8(void);

Logical hypernode IDs range from 0..n-1, where n is the number of
available hypernodes in the system. Logical IDs are assigned in the order
in which your program occupies the system. The hypernode that your
program’s thread 0 runs on is considered logical hypernode 0; any
hypernodes it expands to later are assigned increasing logical ID
numbers. Because the operating system starts a program on the
least-loaded hypernode, mapping of logical hypernode IDs to physical
hypernodes can differ between programs due to load balancing; thus two
programs running on the same system are unlikely to address identical
hypernodes with identical logical IDs.

Chapter 6 221

Advanced shared-memory programming
Parallel information functions

Logical hypernode IDs are mapped to physical hypernode IDs, which are
unique for each hypernode at the machine level.

Level of parallelism
These functions return a value representing the level of parallelism of
the calling process.

In Fortran, these functions have the forms:

INTEGER LEVEL_OF_PARALLELISM()
INTEGER*8 LEVEL_OF_PARALLELISM_8()

In C and C++, they have the forms:

int level_of_parallelism(void);
long long level_of_parallelism_8(void);

The return value is one or a sum (bit-wise OR) of the values shown in
Table 9. In C and C++, these values are #defined as symbolic constants
in spp_prog_model.h .

Table 9 Levels of parallelism

As an example of how these can be summed, assume the return value
is 6. This means the process is two-dimensionally parallel; it first went
parallel across hypernodes, and, within the current hypernode, it went
parallel again on the threads of the hypernode. This differs from a return
value of 8, which means the process went one-dimensionally
thread-parallel and occupies all available threads on all available
hypernodes with no nested parallelism.

The valid sum values are: 3,5,6,7, and 9.

Function
return value

C/C++ symbolic
constant name Meaning

0 CPS_PL_NONE Not parallel

1 CPS_PL_PARALLEL Asymmetric thread active

2 CPS_PL_NODE Node-parallelism

4 CPS_PL_NTHREAD Thread-parallelism within
a hypernode

8 CPS_PL_THREAD Single-dimensional
thread-parallelism

222 Chapter 6

Advanced shared-memory programming
Parallel information functions

A return value of 1, or a sum including 1, means an asymmetric thread is
active in the calling program. Asymmetric parallelism is currently only
supported by the Compiler Parallel Support Library. Refer to
Appendix F, “Compiler Parallel Support Library,” for more information.

Stack memory type
These functions return a value representing the memory class that the
current thread stack is allocated from. The thread stack holds all the
procedure-local arrays and variables not manually assigned a class. The
thread stack is created in near_shared memory by default. (For
nonscalable SMP systems, near_shared memory is automatically
mapped to node_private memory.)

In Fortran, these functions have the forms:

INTEGER MEMORY_TYPE_OF_STACK()
INTEGER*8 MEMORY_TYPE_OF_STACK_8()

In C and C++, they have the forms:

int memory_type_of_stack(void);
long long memory_type_of_stack_8(void);

These functions return one of the values described in Table 10.

Table 10 Stack type return values

Function
return value

C/C++ symbolic
constant name Stack memory type

4 FAR_SHARED_MEM far_shared

3 NEAR_SHARED_MEM near_shared

2 NODE_PRIVATE_MEM node_private

Chapter 6 223

Advanced shared-memory programming
Thread IDs and nested parallelism

Thread IDs and nested parallelism
As discussed in Chapter 4, “Basic shared-memory programming,” you
can manually parallelize nested loops and tasks to exploit up to two
dimensions of parallelism. If you choose to do this, the first dimension
must be node-parallel and the second must be thread-parallel. If
thread-parallelism is exploited first, no dimensions are left; it is a
programming error to attempt to spawn node-parallelism from within a
thread-parallel construct. However, single-dimensional thread-parallel
code can exploit all the threads on a system, even if they span
hypernodes.

If you attempt to spawn thread-parallelism from within a thread-parallel
construct and the two constructs are in the same routine, the compiler
will ignore your directives on the inner thread-parallel construct.
Consequently, the inner parallel construct will simply run serially.
Calling a thread-parallel routine from another thread-parallel routine is
considered an error but is not caught at compile-time.

Thread ID assignments
Chapter 3, “Compiler optimizations,” discusses how programs are
initiated as a collection of threads, one per available processor, and how
all but thread 0 are idle until parallelism is encountered. We will now
discuss the details of how threads are spawned and assigned IDs.

When a process begins, the threads created to run it have unique kernel
thread IDs. Thread 0, which runs all the serial code in the program, has
kernel thread ID 0; the rest of the threads have unique but unspecified
kernel thread IDs at this point. The num_threads() intrinsic will
return the number of threads created, regardless of how many are active
when it is called.

When thread 0 encounters parallelism, it spawns some or all of the
threads created at program start. This means it causes these threads to
go from idle to active, at which point they begin working on their share of
the parallel code. All available threads are spawned by default, but this
can be changed using various compiler directives.

If the parallel structure is thread-parallel, then num_threads() threads
will be spawned, subject to user-specified limits. At this point, kernel
thread 0 becomes spawn thread 0, and the spawned threads are assigned

224 Chapter 6

Advanced shared-memory programming
Thread IDs and nested parallelism

spawn thread IDs ranging from 0..num_threads() -1 (this range begins
at what used to be kernel thread 0). If you manually limit the number of
spawned threads, these IDs will range from 0 to one less than your limit.
If you attempt to spawn thread-parallelism within an already
thread-parallel structure, the thread attempting to spawn will acquire
spawn thread ID 0. If all threads attempt to spawn thread-parallelism in
this manner, they will all become spawn thread 0, each in a unique
context.

If the parallel structure is node-parallel, then num_nodes() threads will
be spawned, one per available hypernode, subject to user-specified limits.
Again, kernel thread 0 becomes spawn thread 0, and in this case, the
spawn thread IDs range from 0..num_nodes() -1, subject to user limits
as described above.

If thread-parallelism is then encountered within this node-parallelism,
num_node_threads() threads will be spawned on the hypernode or
hypernodes encountering the thread-parallelism. These spawned
threads will have spawn thread IDs, which are specific to the hypernode
they are running on, ranging from 0..num_node_threads() -1, with
spawn thread ID 0 belonging to the initial thread that executes the
spawn. num_node_threads() may return a different value on each
hypernode when called from node-parallel code.

Note that, with nested parallelism, a node-parallel thread that
encounters a thread-parallel construct becomes spawn thread 0 on that
hypernode regardless of its previous spawn thread ID. When this thread
exits the thread-parallel construct, it returns to its previous spawn
thread ID. The my_thread() intrinsic function returns the caller’s
spawn thread ID, which depends on the level of parallelism.

Chapter 6 225

Advanced shared-memory programming
Synchronization tools

Synchronization tools
The compiler cannot automatically parallelize loops containing complex
dependences. However, a rich set of directives, pragmas and data types is
available to help you manually parallelize such loops by synchronizing
(and, if necessary, ordering) access to the code containing the
dependence. These directives can also be used to synchronize
dependences in parallel tasks. They allow you to efficiently exploit
parallelism in structures that would otherwise be unparallelizable.

Gates and barriers
Gates allow you to restrict execution of a block of code to a single thread.
They can be allocated, locked, unlocked and deallocated via the functions
described in the section “Synchronization functions” on page 227, or they
can be used with the ordered or critical section directives, which
automate the locking and unlocking functions.

Barriers block further execution until all executing threads reach the
barrier.

Gates and barriers use dynamically allocatable variables, declared using
compiler directives in Fortran and using data type statements in C and
C++. They may be initialized and referenced only by passing them as
arguments to the functions discussed in the following “Synchronization
functions” section.

In C and C++, gates and barriers are declared using the gate_t ,
gate8_t , barrier_t and barrier8_t variable declarations, which
have the following forms:

gate_t namelist;
gate8_t namelist;
barrier_t namelist;
barrier8_t namelist;

where

namelist is a comma-separated list of one or more gate or barrier
names, as appropriate.

gate8_t and barrier8_t are used to declare 8-byte gate and barrier
variables. The other declarations declare default-size variables.

226 Chapter 6

Advanced shared-memory programming
Synchronization tools

In C and C++, gates and barriers should appear only in definition and
declaration statements, and as formal and actual arguments.

In Fortran, gates and barriers are declared using the GATE and BARRIER
compiler directives, which have the forms:

C$DIR GATE(namelist)
C$DIR BARRIER(namelist)

where

namelist is a comma-separated list of one or more gate or barrier
names, as appropriate.

These declare variables of the appropriate size; separate 4- and 8-byte
versions are not needed in Fortran. No other type declarations are
necessary for these variables; the compiler directives alone are sufficient.

In Fortran, gates and barriers can only appear:

• In COMMON statements (statement must precede GATE
directive/BARRIER directive)

• In DIMENSION statements (statement must precede GATE
directive/BARRIER directive)

• In preceding type statements

• As dummy arguments

• As actual arguments

Gate and barrier types override other types declared using the same
names prior to the gate/barrier declaration. Once a variable is declared
as a gate or barrier, it cannot be redeclared as another type. Gates and
barriers cannot be equivalenced. If you place gates or barriers in
COMMON, the COMMON block declaration must precede the GATE
directive/BARRIER directive, and the COMMON block should contain only
gates or only barriers. Arrays of gates or barriers must be dimensioned
using DIMENSION statements. The DIMENSION statement must precede
the GATE directive/BARRIER directive.

Chapter 6 227

Advanced shared-memory programming
Synchronization tools

Synchronization functions
The Fortran, C, and C++ allocation, deallocation, lock and unlock
functions provided for use with gates and barriers are listed here. 4- and
8-byte versions are provided; the 8-byte Fortran functions are primarily
for use with compiler options that change the default data size to 8 bytes
(for example, -I8). You must be consistent in your choice of
versions—memory allocated using an 8-byte function must be
deallocated using an 8-byte function.

Examples of using these functions are presented and explained in the
“Synchronizing code” section, which follows.

Allocation functions
These functions allocate memory for a gate or barrier. When first
allocated, gate variables are unlocked.

The Fortran gate and barrier allocation functions have the following
declarations:

INTEGER FUNCTION ALLOC_GATE(gate)
INTEGER*8 FUNCTION ALLOC_GATE_8(gate)
INTEGER FUNCTION ALLOC_BARRIER(barrier)
INTEGER*8 FUNCTION ALLOC_BARRIER_8(barrier)

Where gate and barrier are the gate or barrier variables, as appropriate.
These variables must be declared as described in the “Gates and
barriers” section of this chapter.

In C and C++, the functions have the declarations:

int alloc_gate(gate_t * gate_p);
long long alloc_gate_8(gate8_t * gate_p);
int alloc_barrier(barrier_t * barrier_p);
long long alloc_barrier_8(barrier8_t * barrier_p);

Where gate_p and barrier_p are pointers of the indicated type, which
have been previously declared as described in the “Gates and barriers”
section of this chapter.

228 Chapter 6

Advanced shared-memory programming
Synchronization tools

Deallocation functions
These functions free the memory assigned to the specified gate or barrier
variable.

The Fortran gate and barrier deallocation functions have the following
declarations:

INTEGER FUNCTION FREE_GATE(gate)
INTEGER*8 FUNCTION FREE_GATE_8(gate)
INTEGER FUNCTION FREE_BARRIER(barrier)
INTEGER*8 FUNCTION FREE_BARRIER_8(barrier)

Where gate and barrier are the previously-declared gate or barrier
variables, as appropriate.

In C and C++, the functions have the declarations:

int free_gate(gate_t * gate_p);
long long free_gate_8(gate8_t * gate_p);
int free_barrier(barrier_t * barrier_p);
long long free_barrier_8(barrier8_t * barrier_p);

Always free gates and barriers when you are done using them.

Locking functions
These functions acquire a gate for exclusive access. If the gate cannot be
immediately acquired, the calling thread waits for it. The conditional
locking functions, which are prefixed with COND_ or cond_ , acquire a
gate if doing so does not require a wait. If the gate is acquired, the
functions return 0; if not, they return -1.

The Fortran gate locking functions have the declarations:

INTEGER FUNCTION LOCK_GATE(gate)
INTEGER*8 FUNCTION LOCK_GATE_8(gate)
INTEGER FUNCTION COND_LOCK_GATE(gate)
INTEGER*8 FUNCTION COND_LOCK_GATE_8(gate)

Where gate is a gate variable.

Chapter 6 229

Advanced shared-memory programming
Synchronization tools

In C and C++, the functions have the following declarations:

int lock_gate(gate_t * gate_p);
long long lock_gate_8(gate8_t * gate_p);
int cond_lock_gate(gate_t * gate_p);
long long cond_lock_gate_8(gate8_t * gate_p);

Where gate_p is a pointer of the indicated type.

Unlocking functions
These functions release a gate from exclusive access. Gates are typically
released by the thread that locks them, unless a gate was locked by
thread 0 in serial code. In that case it might be unlocked by a single
different thread in a parallel construct.

The Fortran gate unlocking functions have the following declarations:

INTEGER FUNCTION UNLOCK_GATE(gate)
INTEGER*8 FUNCTION UNLOCK_GATE_8(gate)

Where gate is a gate variable.

In C and C++, the functions have the declarations:

int unlock_gate(gate_t * gate_p);
long long unlock_gate_8(gate8_t * gate_p);

Where gate_p is a pointer of the indicated type.

Wait functions
These functions use a barrier to cause the calling thread to wait until the
specified number of threads call the function, at which point all threads
are released from the function simultaneously.

The Fortran barrier wait functions have the following declarations:

INTEGER FUNCTION WAIT_BARRIER(barrier, nthr)
INTEGER*8 FUNCTION WAIT_BARRIER_8(barrier, nthr)

Where barrier is a barrier variable of the indicated type and nthr is the
number of threads calling the routine.

230 Chapter 6

Advanced shared-memory programming
Synchronization tools

In C and C++, the functions have the declarations:

int wait_barrier(barrier_t * barrier_p,const int * nthr);
long long wait_barrier_8(barrier8_t * barrier_p,const long long * nthr);

Where barrier_p is a pointer of the indicated type and nthr is a pointer
referencing the number of threads calling the routine.

A barrier variable can be used in multiple calls to the wait function, as
long as the programmer ensures that two such barriers are not
simultaneously active. It is also the programmer’s responsibility to
ensure that nthr reflects the correct number of threads.

sync_routine directive and pragma
Among the most basic optimizations performed by the Exemplar
compiler is code motion, which is described in Chapter 3, “Compiler
optimizations.” This optimization can move some code across routine
calls. If the routine call is to a synchronization function that the compiler
cannot identify as such, and the code moved must execute on a certain
side of it, this movement can cause wrong answers.

The compiler is aware of all synchronization functions presented in this
chapter and in Chapter 4, “Basic shared-memory programming,” and will
not move code across them when they appear directly in code. However, if
the synchronization function is hidden in a user-defined routine, the
compiler has no way of knowing about it and may move code across it.

Anytime you call synchronization functions indirectly via your own
routines (or directly via CPSlib), you must identify your routines with a
sync_routine directive or pragma.

In Fortran, sync_routine has the form:

C$DIR SYNC_ROUTINE (routinelist)

In C, it has the form:

#pragma _CNX sync_routine (routinelist)

where

routinelist is a comma-separated list of synchronization routines.

sync_routine is only effective for the listed routines that lexically
follow it in the file in which it appears.

Chapter 6 231

Advanced shared-memory programming
Synchronization tools

Consider the following Fortran example:

 INTEGER MY_LOCK, MY_UNLOCK
C$DIR GATE(LOCK)
C$DIR SYNC_ROUTINE(MY_LOCK, MY_UNLOCK)
 .
 .
 .
 LCK = ALLOC_GATE(LOCK)
C$DIR LOOP_PARALLEL
 DO I = 1, N
 LCK = MY_LOCK(LOCK)
 .
 .
 .
 SUM = SUM + A(I)
 LCK = MY_UNLOCK(LOCK)
 ENDDO
 .
 .
 .
 INTEGER FUNCTION MY_LOCK(LOCK)
C$DIR GATE(LOCK)
 LCK = LOCK_GATE(LOCK)
 MY_LOCK = LCK
 RETURN
 END

 INTEGER FUNCTION MY_UNLOCK(LOCK)
C$DIR GATE(LOCK)
 LCK = UNLOCK_GATE(LOCK)
 MY_UNLOCK = LCK
 RETURN
 END

Here, MY_LOCK and MY_UNLOCK are user functions that call the
LOCK_GATE and UNLOCK_GATE intrinsics. The SYNC_ROUTINE directive
prevents the compiler from moving code across the calls to MY_LOCK and
MY_UNLOCK.

Such a programming technique might be used to implement code that is
portable across several parallel architectures that support critical
sections using different syntax; MY_LOCK and MY_UNLOCK could simply
be modified to call the correct locking and unlocking functions.

232 Chapter 6

Advanced shared-memory programming
Synchronization tools

An analogous C example follows:

#include <spp_prog_model.h>
main() {
 int i, n, lck, sum, a[1000];
 gate_t lock;
#pragma _CNX sync_routine(mylock, myunlock)
 .
 .
 .
 lck = alloc_gate(&lock);
#pragma _CNX loop_parallel(ivar=i)
 for(i=0; i<n; i++) {
 lck = mylock(&lock);
 .
 .
 .
 sum = sum+a[i];
 lck = myunlock(&lock);
 }
}

int mylock(gate_t *lock) {
 int lck;
 lck = lock_gate(lock); return lck;
}
int myunlock(gate_t *lock) {
 int lck;
 lck = unlock_gate(lock);
 return lck;
}

sync_routine is also useful when CPSlib routines are used for
synchronization. Refer to Appendix F, “Compiler Parallel Support
Library,” for more information.

Chapter 6 233

Advanced shared-memory programming
Synchronization tools

loop_parallel(ordered)

The loop_parallel(ordered) directive and pragma was briefly
introduced in Chapter 4, “Basic shared-memory programming.” It is
designed to be used with ordered sections (which are discussed in the
next section) to execute loops with ordered dependences in loop order. It
accomplishes this by parallelizing the loop so that consecutive iterations
are initiated on separate processors, in loop order. While
loop_parallel(ordered) guarantees starting order, it does not
guarantee ending order, and it provides no automatic synchronization.
To avoid wrong answers, you must manually synchronize dependences
using the ordered section directives, pragmas, or the synchronization
intrinsics.

Consider the following Fortran example:

C$DIR LOOP_PARALLEL(ORDERED)
 DO I = 1, 100
 .
 . !CODE CONTAINING ORDERED SECTION
 .
 ENDDO

Or the analogous C code:

#pragma _CNX loop_parallel(ordered, ivar=i)
for(i=0;i<100;i++) {
 .
 . /* code containing ordered section */
 .
}

Assume that the body of this loop contains code that is parallelizable
except for an ordered data dependence (otherwise there is no need to
order the parallelization). This dependence is isolated using directives
described in the next section. Also assume that 8 threads, numbered 0..7,
are available to run the loop in parallel. Each thread would then execute
code equivalent to the following:

DO I = (my_thread()+1), 100, num_threads()
 ...
ENDDO

234 Chapter 6

Advanced shared-memory programming
Synchronization tools

Figure 23 illustrates the idea.

 Figure 23 Ordered parallelization

Here, thread 0 executes first, followed by thread 1, and so on; each
thread starts its iteration after the preceding iteration has started. A
manually-defined ordered section will prevent one thread from executing
the code in the ordered section until the previous thread exits the
section, so thread 0 cannot enter the section for iteration 9 until thread 7
exits it for iteration 8. Obviously, this is only efficient if the loop body
contains enough code to keep a thread busy until all other threads start
their consecutive iterations, thus taking advantage of parallelism. You
may find the max_threads attribute helpful when fine-tuning
loop_parallel(ordered) loops to fully exploit their parallel code.

Examples of synchronizing loop_parallel(ordered) loops are given
in the “Synchronizing code” section.

DO I = 1,100,8
 ...
ENDDO

DO I = 3,100,8
...

ENDDO

DO I = 2,100,8
...

ENDDO

DO I = 4,100,8
...

ENDDO

DO I = 5,100,8
...

ENDDO

DO I = 6,100,8
 ...

ENDDO

DO I = 7,100,8
...

ENDDO

DO I = 8,100,8
...

ENDDO

THREAD 0 THREAD 1 THREAD 2 THREAD 3

THREAD 4 THREAD 5 THREAD 6 THREAD 7

Chapter 6 235

Advanced shared-memory programming
Synchronization tools

Critical and ordered sections
As discussed in Chapter 4, “Basic shared-memory programming,” critical
sections allow you to synchronize simple, nonordered dependences.

The critical_section and end_critical_section directives and
pragmas are used to specify critical sections. In Fortran, these directives
have the following form:

C$DIR CRITICAL_SECTION[(gate)]
...

C$DIR END_CRITICAL_SECTION

In C, these pragmas have the form:

#pragma _CNX critical_section[(gate)]
...

#pragma _CNX end_critical_section

where

gate is an optional gate variable used for access to the
critical section. gate must be appropriately declared as
described in the “Gates and barriers” section of this
chapter.

The gate variable is required when synchronizing access to a shared
variable from multiple parallel tasks. When a gate variable is specified,
it must be allocated (using the alloc_gate intrinsic) outside of parallel
code prior to use. If no gate is specified, the compiler creates a unique
gate for the critical section. When a gate is no longer needed, it should be
deallocated using the free_gate function.

Critical sections must be entered through the critical_section and
exited through the end_critical_section directive or pragma. They
must not contain branches to outside the section. The two directives
must appear in the same procedure, but they do not have to be in the
same procedure as the parallel construct in which they are used; that is,
the directives can exist in a procedure which is called in parallel.

Ordered sections, discussed in detail here for the first time, allow you to
synchronize dependences that must execute in iteration order.

236 Chapter 6

Advanced shared-memory programming
Synchronization tools

The ordered_section and end_ordered_section directives and
pragmas are used to specify critical sections within manually-defined,
ordered loop_parallel loops only. In Fortran, these directives have the
following form:

C$DIR ORDERED_SECTION(gate)
...

C$DIR END_ORDERED_SECTION

In C, these pragmas have the form:

#pragma _CNX ordered_section(gate)
...

#pragma _CNX end_ordered_section

where

gate is a required gate variable that must be allocated and,
if necessary, unlocked prior to invocation of the parallel
loop containing the ordered section. gate must be
appropriately declared as described in the “Gates and
barriers” section of this chapter.

Ordered sections must be entered through the ordered_section and
exited through the end_ordered_section directive or pragma; they
cannot contain branches to outside the section. Ordered sections are
subject to the same control flow rules as critical sections.

Use critical and ordered sections with care, as they add synchronization
overhead to your program. They should only be used when the amount of
parallel code is significantly larger than the amount of code containing
the dependence.

Chapter 6 237

Advanced shared-memory programming
Synchronizing code

Synchronizing code
Code containing dependences can be parallelized by synchronizing the
way the parallel tasks access the dependence. This can be done manually
using the gates, barriers and synchronization functions, or
semiautomatically using critical and ordered sections.

Critical sections
The critical section example shown in “Critical sections” on page 148
isolates a single critical section in a loop, so the critical_section
directive does not require a gate. In this case, the critical section
directives automate allocation, locking, unlocking and deallocation of the
needed gate. Multiple dependences and dependences in
manually-defined parallel tasks can be handled when user-defined gates
are used with the directives.

Consider the following Fortran example:

 REAL GLOBAL_SUM
C$DIR FAR_SHARED(GLOBAL_SUM)
C$DIR GATE(SUM_GATE)
 .
 .
 .
 LOCK = ALLOC_GATE(SUM_GATE)
C$DIR BEGIN_TASKS
 CONTRIB1 = 0.0
 DO J = 1, M
 CONTRIB1 = CONTRIB1 + FUNC1(J)
 ENDDO
 .
 .
 .
C$DIR CRITICAL_SECTION (SUM_GATE)
 GLOBAL_SUM = GLOBAL_SUM + CONTRIB1
C$DIR END_CRITICAL_SECTION
 .
 .
 .

238 Chapter 6

Advanced shared-memory programming
Synchronizing code

C$DIR NEXT_TASK
 CONTRIB2 = 0.0
 DO I = 1, N
 CONTRIB2 = CONTRIB2 + FUNC2(J)
 ENDDO
 .
 .
 .
C$DIR CRITICAL_SECTION (SUM_GATE)
 GLOBAL_SUM = GLOBAL_SUM + CONTRIB2
C$DIR END_CRITICAL_SECTION
 .
 .
 .
C$DIR END_TASKS
 LOCK = FREE_GATE(SUM_GATE)

Here, both parallel tasks must access the shared GLOBAL_SUM variable,
which is assigned a function of itself. To ensure that GLOBAL_SUM is only
updated by one task at a time, it is placed in a critical section. The
critical sections both reference the SUM_GATE variable; this variable is
unlocked on entry into the parallel code (gates are always unlocked when
they are allocated). When one task reaches the critical section, the
CRITICAL_SECTION directive automatically locks SUM_GATE. The
END_CRITICAL_SECTION directive unlocks SUM_GATE on exit from the
section. Because access to both critical sections is controlled by a single
gate, the sections must execute one at a time.

Chapter 6 239

Advanced shared-memory programming
Synchronizing code

An analogous C example follows:

static far_shared float global_sum;
static gate_t sum_gate;
.
.
.
lock = alloc_gate(&sum_gate);
#pragma _CNX begin_tasks
contrib1 = 0.0;
for(j=0;j<m;j++)
 contrib1 = contrib1 + func1(j);
.
.
.
#pragma _CNX critical_section(sum_gate)
global_sum = global_sum + contrib1;
#pragma _CNX end_critical_section
.
.
.
#pragma _CNX next_task
contrib2 = 0.0;
for(i=0;i<n;i++)
 contrib2 = contrib2 + func2(j);
.
.
.

#pragma _CNX critical_section(sum_gate)
global_sum = global_sum + contrib2;
#pragma _CNX end_critical_section
.
.
.
#pragma _CNX end_tasks
lock = free_gate(&sum_gate);

Gated critical sections are also useful in loops containing multiple
critical sections when there are dependences between the critical
sections. If no dependences exist between the sections, gates are not
needed, as the compiler will automatically supply a unique gate for every
critical section lacking a gate.

240 Chapter 6

Advanced shared-memory programming
Synchronizing code

Consider the following Fortran example:

 REAL ABSUM
C$DIR FAR_SHARED(ABSUM)
C$DIR GATE(GATE1)
 LOGICAL ADJB(100)
 .
 .
 .
 LOCK = ALLOC_GATE(GATE1)
C$DIR LOOP_PARALLEL
 DO I = 1, N
 A(I) = B(I) + C(I)
C$DIR CRITICAL_SECTION(GATE1)
 ABSUM = ABSUM + A(I)
C$DIR END_CRITICAL_SECTION
 IF(ADJB(I)) THEN
 B(I) = C(I) + D(I)
C$DIR CRITICAL_SECTION(GATE1)
 ABSUM = ABSUM + B(I)
C$DIR END_CRITICAL_SECTION
 ENDIF
 .
 .
 .
 ENDDO
 LOCK = FREE_GATE(GATE1)

Here, the shared variable ABSUM must be updated after A(I) is assigned
and again if B(I) is assigned. Access to ABSUM must be guarded by the
same gate to ensure that two threads do not attempt to update it at once.
The critical sections protecting the assignment to ABSUM must explicitly
name this gate, or the compiler will choose unique gates for each section,
potentially resulting in incorrect answers. Note that there must be a
substantial amount of parallelizable code outside of these critical
sections to make parallelizing this loop cost-effective.

Chapter 6 241

Advanced shared-memory programming
Synchronizing code

An analogous C example follows:

static far_shared float absum;
static gate_t gate1;
int adjb[...];
.
.
.
lock = alloc_gate(&gate1);
#pragma _CNX loop_parallel(ivar=i)
for(i=0;i<n;i++) {
 a[i] = b[i] + c[i];
#pragma _CNX critical_section(gate1)
 absum = absum + a[i];
#pragma _CNX end_critical_section
 if(adjb[i]) {
 b[i] = c[i] + d[i];
#pragma _CNX critical_section(gate1)
 absum = absum + b[i];
#pragma _CNX end_critical_section
 }
 .
 .
 .
}
lock = free_gate(&gate1);

242 Chapter 6

Advanced shared-memory programming
Synchronizing code

Ordered sections
Like critical sections, ordered sections lock and unlock a specified gate to
isolate a section of code in a loop. However, they also ensure that the
enclosed section of code executes in the same order as the iterations of
the ordered parallel loop that contains it. Once a given thread passes
through an ordered section, it cannot enter again until all other threads
have passed through in order. This ordering is difficult to implement
without using the ordered section directives or pragmas.

NOTE You must use a loop_parallel(ordered) directive or pragma to
parallelize any loop containing an ordered section.

Consider the following Fortran code, which contains a backward
loop-carried dependence on the array A that would normally inhibit
parallelization.

DO I = 2, N
 . ! PARALLELIZABLE CODE...
 .
 .
 A(I) = A(I-1) + B(I)
 . ! MORE PARALLELIZABLE CODE...
 .
 .
ENDDO

To simplify illustration, we will use only Fortran, but an analogous C
example could similarly be parallelized.

Chapter 6 243

Advanced shared-memory programming
Synchronizing code

Assuming that the dependence shown is the only one in the loop, and
that a significant amount of parallel code exists elsewhere in the loop, we
can isolate the dependence and parallelize the loop as shown in the
following example:

C$DIR GATE(LCD)
 LOCK = ALLOC_GATE(LCD)
 .
 .
 .
 LOCK = UNLOCK_GATE(LCD)
C$DIR LOOP_PARALLEL(ORDERED)
 DO I = 2, N
 . ! PARALLELIZABLE CODE...
 .
 .
C$DIR ORDERED_SECTION(LCD)
 A(I) = A(I-1) + B(I)
C$DIR END_ORDERED_SECTION
 . ! MORE PARALLELIZABLE CODE...
 .
 .
 ENDDO
 LOCK = FREE_GATE(LCD)

The loop is now parallelized in the manner described in the section
“loop_parallel(ordered) ” on page 233 and the ordered section
containing the A(I) assignment will execute in iteration order, ensuring
that the value of A(I-1) used in the assignment is always valid.
Assuming this loop runs on 4 threads, the synchronization of statement
execution between threads is illustrated in Figure 24.

244 Chapter 6

Advanced shared-memory programming
Synchronizing code

 Figure 24 LOOP_PARALLEL(ORDERED) synchronization

As shown by the dashed lines between initial iterations for each thread,
one ordered section must be done before the next is allowed to begin
execution. Once a thread exits an ordered section, it cannot reenter it
until all other threads have passed through in sequence. Overlap of
nonordered statements, represented as lightly shaded boxes, allows all
threads to proceed fully loaded, with only brief idle periods on 1, 2, and 3
at the beginning of the loop, and on 0, 1, and 2 at the end.

T
H

R
E

A
D

S

0

1

2

3

I=1 I=5 I=9 I=13 I=17

I=2 I=6 I=10 I=14 I=18

I=3 I=7 I=11 I=15 I=19

I=4 I=8 I=12 I=16 I=20

Order of statement execution

Statements contained within ordered sections
Nonordered section statements

Chapter 6 245

Advanced shared-memory programming
Synchronizing code

Limitations
Each thread in a parallel loop containing an ordered section must pass
through the ordered section exactly once on every iteration of the loop. If
you execute an ordered section conditionally, you must execute it in all
possible branches of the condition; if the code contained in the section is
not valid for some branches, you can insert a blank ordered section, as
shown in the following Fortran example:

C$DIR GATE (LCD)
 .
 .
 .
 LOCK = ALLOC_GATE(LCD)
C$DIR LOOP_PARALLEL(ORDERED)
 DO I = 1, N
 .
 .
 .
 IF (Z(I) .GT. 0.0) THEN
C$DIR ORDERED_SECTION(LCD)
C HERE’S THE BACKWARD LCD:
 A(I) = A(I-1) + B(I)
C$DIR END_ORDERED_SECTION
 ELSE
C HERE IS THE BLANK ORDERED SECTION:
C$DIR ORDERED_SECTION(LCD)
C$DIR END_ORDERED_SECTION
 ENDIF
 .
 .
 .
 ENDDO
 LOCK = FREE_GATE(LCD)

Here, no matter which path through the IF statement the loop takes, it
must pass through the ordered section, even though the ELSE section is
empty. This allows the compiler to properly synchronize the ordered loop.
Note that again, we assume a substantial amount of parallel code exists
outside the ordered sections, to offset the synchronization overhead.

246 Chapter 6

Advanced shared-memory programming
Synchronizing code

An analogous C example follows:

static gate_t lcd;
.
.
.
lock = alloc_gate(&lcd);
#pragma _CNX loop_parallel(ordered,ivar=i)
for(i=0;i<n;i++) {
 .
 .
 .
 if(z[i] > 0.0) {
#pragma _CNX ordered_section(lcd)
 a[i] = a[i-1] + b[i]; /* backward lcd */
#pragma _CNX end_ordered_section
 } else {
#pragma _CNX ordered_section(lcd)
 /* here is the blank ordered section */
#pragma _CNX end_ordered_section
 }
 .
 .
 .
}
lock = free_gate(&lcd);

Chapter 6 247

Advanced shared-memory programming
Synchronizing code

Ordered sections within nested loops can create similar, but more
difficult to recognize, problems. Consider the following Fortran example
(gate manipulation is omitted for brevity):

C$DIR LOOP_PARALLEL(ORDERED)
 DO I = 1, 99
 DO J = 1,M
 .
 .
 .
C$DIR ORDERED_SECTION(ORDGATE)
 A(I,J) = A(I+1,J)
C$DIR END_ORDERED_SECTION
 .
 .
 .
 ENDDO
 ENDDO

Recall that once a given thread has passed through an ordered section, it
cannot reenter it until all other threads have passed through in order.
This is only possible in the given example if the number of available
threads integrally divides 99 (the I loop limit). If not, deadlock results.

To see why, assume 6 threads, numbered 0 through 5, are running the
parallel I loop. For I = 1, J = 1, thread 0 passes through the ordered
section and loops back through J , stopping when it reaches the ordered
section again for I = 1, J = 2. It cannot enter until threads 1 through 5
(which are executing I = 2 through 6, J = 1 respectively) pass through in
sequence. This is not a problem, and the loop proceeds through I = 96 in
this fashion in parallel. However, for I > 96, all 6 threads are no longer
needed. In a single loop nest this would not pose a problem; the
leftover 3 iterations would be handled by threads 0 through 2; when
thread 2 exited the ordered section it would hit the ENDDO and the I loop
would terminate normally. But in this example, the J loop isolates the
ordered section from the I loop, so thread 0 executes J = 1 for I = 97,
loops through J and waits during J = 2 at the ordered section for
thread 5, which has gone idle, to complete. Threads 1 and 2 similarly
execute J = 1 for I = 98 and I = 99, and similarly wait after incrementing
J to 2. The entire J loop must terminate before the I loop can terminate,
but the J loop can never terminate because the idle threads 3, 4, and 5
never pass through the ordered section. Deadlock results.

248 Chapter 6

Advanced shared-memory programming
Synchronizing code

The analogous C code looks like this:

#pragma _CNX loop_parallel(ordered,ivar=i)
for(i=0;i<99;i++) {
 for(j=0;j<m;j++) {
 .
 .
 .
#pragma _CNX ordered_section(ordgate)
 a[i][j] = a[i+1][j];
#pragma _CNX end_ordered_section
 .
 .
 .
 }
}

To handle this problem, you can expand the ordered section to include
the entire J loop, as shown in the following Fortran example:

C$DIR LOOP_PARALLEL(ORDERED)
 DO I = 1, 99
C$DIR ORDERED_SECTION(ORDGATE)
 DO J = 1,M
 .
 .
 .
 A(I,J) = A(I+1,J)
 .
 .
 .
 ENDDO
C$DIR END_ORDERED_SECTION
 ENDDO

In this approach, each thread executes the entire J loop each time it
enters the ordered section, allowing the I loop to terminate normally
regardless of the number of threads available.

Chapter 6 249

Advanced shared-memory programming
Synchronizing code

The analogous C code follows:

#pragma _CNX loop_parallel(ordered,ivar=i)
for(i=0;i<99;i++) {
#pragma _CNX ordered_section(ordgate)
 for(j=0;j<m;j++) {
 .
 .
 .
 a[i][j] = a[i+1][j];
 .
 .
 .
 }
#pragma _CNX end_ordered_section
}

Another approach is to manually interchange the I and J loops, as
shown in the following example:

 DO J = 1, M
 LOCK = UNLOCK_GATE(ORDGATE)
C$DIR LOOP_PARALLEL(ORDERED)
 DO I = 1, 99
 .
 .
 .
C$DIR ORDERED_SECTION(ORDGATE)
 A(I,J) = A(I+1,J)
C$DIR END_ORDERED_SECTION
 .
 .
 .
 ENDDO
 ENDDO

Here, the I loop is parallelized on every iteration of the J loop. Again, the
ordered section is not isolated from its parent loop, so the loop can
terminate normally. This example has added benefits; elements of A are
accessed more efficiently, and this nest can be further optimized by
parallelizing the J loop across hypernodes by using a
LOOP_PARALLEL(NODES) directive.

250 Chapter 6

Advanced shared-memory programming
Synchronizing code

The analogous C code follows:

for(j=0;j<99;j++) {
lock = unlock_gate(ordgate);
#pragma _CNX loop_parallel(ordered,ivar=i)
 for(i=0;i<m;i++) {
 .
 .
 .
#pragma _CNX ordered_section(ordgate)
 a[i][j] = a[i+1][j];
#pragma _CNX end_ordered_section
 .
 .
 .
 }
}

Manual synchronization
Ordered and critical sections allow you to isolate dependences in a
structured, semiautomatic manner. The same isolation can be
accomplished manually using the functions discussed in the
“Synchronization functions” section of this chapter.

Recall our simple critical section example:

C$DIR LOOP_PARALLEL
 DO I = 1, N ! LOOP IS PARALLELIZABLE
 .
 .
 .
C$DIR CRITICAL_SECTION
 SUM = SUM + X(I)
C$DIR END_CRITICAL_SECTION
 .
 .
 .
 ENDDO

Chapter 6 251

Advanced shared-memory programming
Synchronizing code

As shown, this example is easily implemented using critical sections. It
can be manually implemented in Fortran as shown below.

C$DIR GATE(CRITSEC)
 .
 .
 .
 LOCK = ALLOC_GATE(CRITSEC)
C$DIR LOOP_PARALLEL
 DO I = 1, N
 .
 .
 .
 LOCK = LOCK_GATE(CRITSEC)
 SUM = SUM + X(I)
 LOCK = UNLOCK_GATE(CRITSEC)
 .
 .
 .
 ENDDO
 LOCK = FREE_GATE(CRITSEC)

As shown, the manual implementation requires declaring, allocating and
deallocating a gate, which must be locked on entry into the critical
section using the LOCK_GATE function and unlocked on exit using
UNLOCK_GATE.

252 Chapter 6

Advanced shared-memory programming
Synchronizing code

An analogous manual C implementation follows:

static gate_t critsec;
.
.
.
lock = alloc_gate(&critsec);
#pragma _CNX loop_parallel(ivar=i)
for(i=0;i<n;i++) {
 .
 .
 .
 lock = lock_gate(&critsec);
 sum = sum + x[i];
 lock = unlock_gate(&critsec);
 .
 .
 .
}
lock = free_gate(&critsec);

Using synchronization functions to implement critical and ordered
sections generally requires more work, and the compiler will not check
such constructs for errors as thoroughly as it will check
directive-delimited sections. However, because the functions are
unstructured, they can be used to create more complex critical regions
than are supported by the directives.

Chapter 6 253

Advanced shared-memory programming
Synchronizing code

Consider the following Fortran example:

C$DIR GATE(TASK1, TASK2)
 .
 .
 .
 LOK1 = ALLOC_GATE(TASK1)
 LOK2 = ALLOC_GATE(TASK2)
 LOK1 = LOCK_GATE (TASK1) ! LOCKING HERE PREVENTS 3RD TASK
 LOK2 = LOCK_GATE (TASK2) ! FROM ACCESSING A OR B BEFORE
 ! FIRST TWO TASKS ASSIGN THEM
C$DIR BEGIN_TASKS(ORDERED) ! TASK ONE:
 DO I = 1, N
 A(I) = 2.0 * A(I) + C(I) ! A GETS ASSIGNED IN THIS TASK
 ENDDO
 LOK1 = UNLOCK_GATE (TASK1) ! A CAN NOW BE ACCESSED
C$DIR NEXT_TASK ! TASK TWO:
 DO J = 1, N
 B(J) = C(J) * SIN (X(J)) ! B GETS ASSIGNED IN THIS TASK
 ENDDO
 LOK2 = UNLOCK_GATE (TASK2) ! B CAN NOW BE ACCESSED
C$DIR NEXT_TASK ! TASK THREE:
 DO K = 1, N ! COMPUTE P IN PARALLEL WITH A AND B:
 P(K) = EXP (3.0 * SQRT (Q(K))) / ATAN (R(K))
 ENDDO
 LOK1 = LOCK_GATE (TASK1) ! WAIT FOR UNLOCK IN TASK 1
 LOK1 = UNLOCK_GATE (TASK1) ! WHEN LOCK IS ATTAINED,UNLOCK
 LOK2 = LOCK_GATE (TASK2) ! WAIT FOR UNLOCK IN TASK 2
 LOK2 = UNLOCK_GATE (TASK2) ! WHEN ATTAINED, UNLOCK
 DO L = 1, N ! WHEN WE HAVE BOTH LOCKS,
 D(L) = P(L) * B(L) / A(L) ! COMPUTE D
 ENDDO
C$DIR NEXT_TASK ! TASK FOUR:
 DO M = 1, N ! NO DEPENDENCES IN THIS TASK
 Y(M) = X(M) * Y(M) / Z(M) ! Y CAN BE COMPUTED WITH
 ENDDO ! A, B, P, D
C$DIR END_TASKS
 LOK1 = FREE_GATE(TASK1)
 LOK2 = FREE_GATE(TASK2)

Here, the BEGIN_TASKS(ORDERED) directive guarantees that the
following parallel tasks begin in lexical order (ending order is
indeterminate). Ordered sections, however, cannot be used with parallel

254 Chapter 6

Advanced shared-memory programming
Synchronizing code

tasks. To order the dependence in task 3 of this code, where the
computation of D assumes that A, B and P are fully computed, we must
use manually locked and unlocked gates. A task that is waiting on
another task must lexically follow the task it is waiting on.

Tasks 1, 2, 4 and the K loop of task 3 can all run in parallel. To allow this
while postponing execution of the L loop in task 3 until A, B and P are
computed, we allocate and lock two gates, named TASK1 and TASK2,
before the parallel tasks begin. TASK1 remains locked until A is
computed, at which point it is unlocked; TASK2 remains locked until B is
computed, and is then unlocked. The I and J loops are free to run in
parallel, along with the K loop in task 3 and the M loop in task 4, because
none of these loops depend on each other’s gates. The L loop in task 3,
however, cannot begin execution until task 3 can lock both TASK1 and
TASK2 gates. Task 3 immediately unlocks these gates because it does not
need them; their purpose was to force it to wait until A, B and P were
computed. Once task 3 has acquired and relinquished both locks, the L
loop is free to run.

Chapter 6 255

Advanced shared-memory programming
Synchronizing code

A similar C example follows:

static gate_t task1, task2;
.
.
.
lok1 = alloc_gate(&task1);
lok2 = alloc_gate(&task2);
lok1 = lock_gate(&task1); /* locking here prevents 3rd task */
lok2 = lock_gate(&task2); /* from accessing a or b before */
 /* first two tasks assign them */
#pragma _CNX begin_tasks(ordered) /* task 1: */
for(i=0;i<n;i++)
 a[i] = 2.0 * a[i] + c[i]; /* a gets assigned in this task */
lok1 = unlock_gate(&task1); /* a can now be accessed */
#pragma _CNX next_task /* task 2: */
for(j=0;j<n;j++)
 b[j] = c[j] * sin(x[j]); /* b gets assigned in this task */
lok2 = unlock_gate(&task2); /* b can now be accessed */
#pragma _CNX next_task /* task 3: */
for(k=0;k<n;k++) /* compute p in parallel with a and b */
 p[k] = exp(3.0*sqrt(q[k]))/atan(r[k]);
lok1 = lock_gate(&task1); /* wait for unlock in task 1 */
lok1 = unlock_gate(&task1); /* when lock is attained, unlock */
lok2 = lock_gate(&task2); /* wait for unlock in task 2 */
lok2 = unlock_gate(&task2); /* when attained, unlock */
for(l=0;l<n;l++) /* when we have both locks, */
 d[l] = p[l] * b[l]/a[l]; /* compute d */
#pragma _CNX next_task /* task 4: */
for(m=0;m<n;m++) /* no dependences in this task */
 y[m] = x[m] * y[m]/z[m]; /* y can be computed with a,b,p,d */
#pragma _CNX end_tasks
lok1 = free_gate(&task1);
lok2 = free_gate(&task2);

Another advantage of manually defined critical sections is the ability to
conditionally lock them. This allows the task that wishes to execute the
section to proceed with other work if the lock cannot be acquired. This
construct is useful, for example, in situations where one thread is
performing I/O for several other parallel threads; while a processing
thread is reading from the input queue, the queue is locked, and the I/O
thread can move on to do output. While a processing thread is writing to
the output queue, the I/O thread can do input. This allows the I/O thread

256 Chapter 6

Advanced shared-memory programming
Synchronizing code

to keep as busy as possible while the parallel computational threads
execute their (presumably large) computational code. This situation is
illustrated in the following Fortran 90 example. Task 1 performs I/O for
the 7 other tasks, which perform parallel computations by calling the
THREAD_WRK subroutine.

 COMMON INGATE,OUTGATE,COMPBAR
C$DIR GATE (INGATE, OUTGATE)
C$DIR BARRIER (COMPBAR)
 REAL DIN(:), DOUT(:) ! I/O BUFFERS FOR TASK 1
 ALLOCATABLE DIN, DOUT ! THREAD 0 WILL ALLOCATE
 REAL QIN(1000,1000), QOUT(1000,1000) ! SHARED I/O QUEUES
 INTEGER NIN/0/,NOUT/0/ ! QUEUE ENTRY COUNTERS
C CIRCULAR BUFFER POINTERS:
 INTEGER IN_QIN/1/,OUT_QIN/1/,IN_QOUT/1/,OUT_QOUT/1/
 COMMON /DONE/ DONEIN, DONECOMP
 LOGICAL DONECOMP, DONEIN
C SIGNALS FOR COMPUTATION DONE AND INPUT DONE
 LOGICAL COMPDONE, INDONE
C FUNCTIONS TO RETURN DONECOMP AND DONEIN
 LOGICAL INFLAG, OUTFLAG ! INPUT READ AND OUTPUT WRITE FLAGS
C$DIR THREAD_PRIVATE (INFLAG,OUTFLAG) ! ONLY NEEDED BY TASK 1
C (WHICH RUNS ON THREAD 0)
 IF (NUM_THREADS() .LT. 8) STOP 1
 IN = 10
 OUT = 11
 LOCK = ALLOC_GATE(INGATE)
 LOCK = ALLOC_GATE(OUTGATE)
 IBAR = ALLOC_BARRIER(COMPBAR)
 DONECOMP = .FALSE.

Chapter 6 257

Advanced shared-memory programming
Synchronizing code

C$DIR BEGIN_TASKS ! TASK 1 STARTS HERE
 INFLAG = .TRUE.
 DONEIN = .FALSE.
 ALLOCATE(DIN(1000),DOUT(1000)) ! ALLOCATE LOCAL BUFFERS
 DO WHILE(.NOT. INDONE() .OR. .NOT. COMPDONE() .OR. NOUT .GT. 0)
C DO TILL EOF AND COMPUTATION DONE AND OUTPUT DONE
 IF(NIN.LT.1000.AND.(.NOT.COMPDONE()) .AND.(.NOT. INDONE())) THEN
C FILL QUEUE
 IF (INFLAG) THEN ! FILL BUFFER FIRST:
 READ(IN, IOSTAT = IOS) DIN ! READ A RECORD; QUIT ON EOF
 IF(IOS .EQ. -1) THEN
 DONEIN = .TRUE. ! SIGNAL THAT INPUT IS DONE
 INFLAG = .TRUE.
 ELSE
 INFLAG = .FALSE.
 ENDIF
 ENDIF
C SYNCHRONOUSLY ENTER INTO INPUT QUEUE:
C BLOCK QUEUE ACCESS WITH INGATE:
 IF (COND_LOCK_GATE(INGATE) .EQ. 0 .AND. .NOT. INDONE()) THEN
 QIN(:,IN_QIN) = DIN(:) ! COPY INPUT BUFFER INTO QIN
 IN_QIN=1+MOD(IN_QIN,1000) ! INCREMENT INPUT BUFFER PTR
 NIN = NIN + 1 ! INCREMENT INPUT QUEUE ENTRY COUNTER
 INFLAG = .TRUE.
 LOCK = UNLOCK_GATE(INGATE) ! ALLOW INPUT QUEUE ACCESS
 ENDIF
 ENDIF
C SYNCHRONOUSLY REMOVE FROM OUTPUT QUEUE:
C BLOCK QUEUE ACCESS WITH OUTGATE:
 IF (COND_LOCK_GATE(OUTGATE) .EQ. 0) THEN
 IF (NOUT .GT. 0) THEN
 DOUT(:)=QOUT(:,OUT_QOUT) ! COPY OUTPUT QUE INTO BUFFR
 OUT_QOUT=1+MOD(OUT_QOUT,1000)
C INCREMENT OUTPUT BUFR PTR
 NOUT = NOUT - 1 ! DECREMENT OUTPUT QUEUE ENTRY COUNTR
 OUTFLAG = .TRUE.
 ELSE
 OUTFLAG = .FALSE.
 ENDIF
 LOCK = UNLOCK_GATE(OUTGATE)
C ALLOW OUTPUT QUEUE ACCESS
 IF (OUTFLAG) WRITE(OUT) DOUT ! WRITE A RECORD
 ENDIF
 ENDDO
C TASK 1 ENDS HERE

258 Chapter 6

Advanced shared-memory programming
Synchronizing code

C$DIR NEXT_TASK ! TASK 2:
 CALL THREAD_WRK(NIN,NOUT,QIN,QOUT,IN_QIN,OUT_QIN,IN_QOUT,OUT_QOUT)
 IBAR = WAIT_BARRIER(COMPBAR,7)
C$DIR NEXT_TASK ! TASK 3:
 CALL THREAD_WRK(NIN,NOUT,QIN,QOUT,IN_QIN,OUT_QIN,IN_QOUT,OUT_QOUT)
 IBAR = WAIT_BARRIER(COMPBAR,7)
C$DIR NEXT_TASK ! TASK 4:
 CALL THREAD_WRK(NIN,NOUT,QIN,QOUT,IN_QIN,OUT_QIN,IN_QOUT,OUT_QOUT)
 IBAR = WAIT_BARRIER(COMPBAR,7)
C$DIR NEXT_TASK ! TASK 5:
 CALL THREAD_WRK(NIN,NOUT,QIN,QOUT,IN_QIN,OUT_QIN,IN_QOUT,OUT_QOUT)
 IBAR = WAIT_BARRIER(COMPBAR,7)
C$DIR NEXT_TASK ! TASK 6:
 CALL THREAD_WRK(NIN,NOUT,QIN,QOUT,IN_QIN,OUT_QIN,IN_QOUT,OUT_QOUT)
 IBAR = WAIT_BARRIER(COMPBAR,7)
C$DIR NEXT_TASK ! TASK 7:
 CALL THREAD_WRK(NIN,NOUT,QIN,QOUT,IN_QIN,OUT_QIN,IN_QOUT,OUT_QOUT)
 IBAR = WAIT_BARRIER(COMPBAR,7)
C$DIR NEXT_TASK ! TASK 8:
 CALL THREAD_WRK(NIN,NOUT,QIN,QOUT,IN_QIN,OUT_QIN,IN_QOUT,OUT_QOUT)
 IBAR = WAIT_BARRIER(COMPBAR,7)
 DONECOMP = .TRUE.
C$DIR END_TASKS
 END

Before looking at the THREAD_WRK subroutine we will examine these
parallel tasks, particularly task 1, the I/O server.

Task 1 does all the I/O required by all the tasks; the other 7 tasks do
computational work, receiving their input from and sending their output
to task 1’s queues. Conditionally locked gates control task 1’s access to
one section of code that fills the input queue and one that empties the
output queue. Task 1 works by first filling an input buffer; the code that
does this does not require gate protection because no other tasks attempt
to access the input buffer array. The section of code where the input
buffer is copied into the input queue, however, must be protected by
gates to prevent any threads from trying to read the input queue while it
is being filled.

Chapter 6 259

Advanced shared-memory programming
Synchronizing code

Similarly, if a task acquires a lock on the input queue, task 1 cannot fill it
until the task is done reading from it. When task 1 cannot get a lock to
access the input queue code, it goes on and tries to lock the output queue
code. If it gets a lock here, it can copy the output queue into the output
buffer array and relinquish the lock; it can then proceed to empty the
output buffer. If another task is writing to the output queue, task 1 loops
back and begins the entire process over again. When the end of the input
file is reached, all computation is complete, and the output queue is
empty, task 1 is finished. Note that the task loops on DONEIN (via
INDONE()), which is initially false. When input is exhausted, DONEIN is
set to true, signalling all tasks that there is no more input.

The INDONE() function references DONEIN, forcing a memory reference.
If DONEIN were referenced directly, the compiler might optimize it into a
register and consequently not detect a change in its value.

So task 1 has four main jobs to do:

1. Read input into input buffer—no other tasks access the input buffer,
so this can be done in parallel regardless of what other tasks are
doing, as long as the buffer needs filling.

2. Copy input buffer into input queue—the other tasks read their input
from the input queue; therefore it can only be filled when no
computational task is reading it. This section of code is protected by
the INGATE gate. It can run in parallel with the computational
portions of other tasks, but only one task can access the input queue
at a time.

3. Copy output queue into output buffer—the output queue is where
other tasks write their output, so it can only be emptied when no
computational task is writing to it. This section of code is protected by
the OUTGATE gate. It can run in parallel with the computational
portions of other tasks, but only one task can access the output queue
at a time.

4. Write out output buffer—no other tasks access the output buffer, so
this can be done in parallel regardless of what the other tasks are
doing.

260 Chapter 6

Advanced shared-memory programming
Synchronizing code

Now we will look at the subroutine THREAD_WRK, which tasks 2-7 call to
perform computations.

 SUBROUTINE
 > THREAD_WRK(NIN,NOUT,QIN,QOUT,IN_QIN,OUT_QIN,IN_QOUT,OUT_QOUT)
 INTEGER NIN,NOUT
 REAL QIN(1000,1000), QOUT(1000,1000) ! SHARED I/O QUEUES
 INTEGER OUT_QIN, OUT_QOUT
 COMMON INGATE,OUTGATE,COMPBAR
C$DIR GATE(INGATE, OUTGATE)
 REAL WORK(1000) ! LOCAL THREAD PRIVATE WORK ARRAY
 LOGICAL OUTFLAG, INDONE
 OUTFLAG = .FALSE.
C$DIR THREAD_PRIVATE (WORK) ! EVERY THREAD WILL CREATE A COPY

 DO WHILE(.NOT. INDONE() .OR. NIN.GT.0 .OR. OUTFLAG)
C WORK/QOUT EMPTYING LOOP
 IF (.NOT. OUTFLAG) THEN ! IF NO PENDING OUTPUT
C$DIR CRITICAL_SECTION (INGATE) ! BLOCK ACCESS TO INPUT QUE
 IF (NIN .GT. 0) THEN ! MORE WORK TO DO
 WORK(:) = QIN(:,OUT_QIN)
 OUT_QIN = 1 + MOD(OUT_QIN, 1000)
 NIN = NIN - 1
 OUTFLAG = .TRUE.
C INDICATE THAT INPUT DATA HAS BEEN RECEIVED
 ENDIF
C$DIR END_CRITICAL_SECTION
 .
 . ! SIGNIFICANT PARALLEL CODE HERE USING WORK ARRAY
 .
 ENDIF
 IF (OUTFLAG) THEN ! IF PENDING OUTPUT, MOVE TO OUTPUT QUEUE
C AFTER INPUT QUEUE IS USED IN COMPUTATION, FILL OUTPUT QUEUE:
C$DIR CRITICAL_SECTION (OUTGATE) ! BLOCK ACCESS TO OUTPUT QUEUE
 IF(NOUT.LT.1000) THEN
C IF THERE IS ROOM IN THE OUTPUT QUEUE
 QOUT(:,IN_QOUT) = WORK(:) ! COPY WORK INTO OUTPUT QUEUE
 IN_QOUT =1+MOD(IN_QOUT,1000) ! INCREMENT BUFFER PTR
 NOUT = NOUT + 1 ! INCREMENT OUTPUT QUEUE ENTRY COUNTER
 OUTFLAG = .FALSE. ! INDICATE NO OUTPUT PENDING
 ENDIF
C$DIR END_CRITICAL_SECTION
 ENDIF
 ENDDO ! END WORK/QOUT EMPTYING LOOP
 END ! END THREAD_WRK

 LOGICAL FUNCTION INDONE()
C THIS FUNCTION FORCES A MEMORY REFERENCE TO GET THE DONEIN VALUE
 LOGICAL DONEIN
 COMMON /DONE/ DONEIN, DONECOMP
 INDONE = DONEIN
 END

 LOGICAL FUNCTION COMPDONE()
C THIS FUNCTION FORCES A MEMORY REFERENCE TO GET THE DONECOMP VALUE
 LOGICAL DONECOMP
 COMMON /DONE/ DONEIN, DONECOMP
 COMPDONE= DONECOMP
 END

Chapter 6 261

Advanced shared-memory programming
Synchronizing code

Notice that the gates are accessed through COMMON blocks, and that each
thread that calls this subroutine will allocate a thread_private WORK
array.

This subroutine contains a loop that tests INDONE() . The loop copies the
input queue into the local WORK array, then does a presumably significant
amount of computational work that has been omitted for simplicity
(because the computational work is the main code that executes in
parallel, if there is not a large amount of it, the overhead of setting up
these parallel tasks and critical sections cannot be justified). The loop
encompasses this computation, and also the section of code that copies
the WORK array to the output queue. This construct allows final output to
be written after all input has been used in computation.

To avoid accessing the input queue while it is being filled or accessed by
another thread, the section of code that copies it into the local WORK
array is protected by a critical section. This section must be
unconditionally locked; the computational threads cannot do something
else until they receive their input. Once the input queue has been copied,
THREAD_WRK can perform its large section of computational code in
parallel with whatever the other tasks are doing. After the
computational section is finished, another unconditional critical section
must be entered so that the results can be written to the output queue.
This prevents two threads from accessing the output queue at once.

Problems like this require performance testing and tuning to achieve
optimal parallel efficiency. Variables such as the number of
computational threads and the size of the I/O queues can be adjusted
with experience to yield the best processor utilization.

262 Chapter 6

Advanced shared-memory programming
Synchronizing code

Chapter 7 263

7 Message-passing
programming

This chapter presents a high-level overview of message passing using
MPI and lists sources for more information.

A brief overview of the message-passing and shared-memory paradigms
is given in Chapter 1, “Introduction.”

Overview of message passing
Message passing is an approach to writing portable parallel programs.
An application that uses message passing consists of several concurrent
tasks, each with its own data and memory, using messages to
communicate with one another. Message passing requires the
programmer to explicitly handle all parallelism and data distribution.

Message-passing programs are inherently parallel, and unless explicitly
coordinated by waiting for messages, all processes execute
independently. In a conventionally coded message-passing program, all
variables are private to each process. So, regardless of whether variables
have been declared to be in any of the memory classes, no process can
access the variables of any other process. Synchronization among the
processes occurs explicitly through message passing.

264 Chapter 7

Message-passing programming
Message passing on Exemplar systems

Approaches to parallelism
Message-passing programs generally take one of two approaches to
parallelism: the multiple-program multiple-data (MPMD) approach (also
known as the manager/worker approach) or the single-program
multiple-data (SPMD) approach.

With MPMD, a set of computational worker processes perform work for
one or more manager processes. This method is generally used when
little synchronization is required between worker processes.

With SPMD, the program spawns several identical processes that
perform the same work independently on different data sets. With this
method, synchronization is often required between processes. Exemplar
systems are especially suited to this model because of their fast
shared-memory communication, which minimizes synchronization
delays.

Message passing on Exemplar systems
A Hewlett-Packard implementation of the MPI message-passing library,
known as HP MPI, has been developed specifically for HP-UX systems.
Special compilation utilities are provided with HP MPI for compiling
applications written in Fortran 90, Fortran 77, C, or C++.

HP MPI
HP MPI is an optional product. It is a native implementation of
version 1.2 of the Message-Passing Interface (MPI) standard. HP MPI is
optimized for HP-UX workstations, servers, and Exemplar systems. It
allows you to create and run applications composed of one or more
processes that interact using the MPI communication model.

The default location for HP MPI is the /opt/mpi directory. Example
programs are available in the /opt/mpi/help directory. For information on
specific utilities, refer to the man page for the utility in question. Man
pages are stored in the directory /opt/mpi/share/man. For more
information on using HP MPI, refer to the HP MPI User’s
Guide (B6011-90001).

Chapter 7 265

Message-passing programming
Message-passing programming vs. shared-memory programming

Message-passing programming vs.
shared-memory programming
The message-passing and shared-memory programming paradigms each
have advantages and disadvantages. For example, programs that use
message passing can be easily ported between architectures. In the
Exemplar V2200 and X2000 architectures, these programs benefit from
low-latency interconnects that guarantee minimal overhead in parallel
synchronization and data distribution. However, message-passing code
generally requires more software overhead than parallel shared-memory
code.

The shared-memory style of programming is convenient because the
compiler automatically optimizes computations that can be safely
parallelized. In addition, the compiler allows you to manually parallelize
(by using high-level directives, pragmas, CPSlib functions, or Pthreads
functions) those computations that the compiler cannot parallelize
automatically. Also, the compiler’s command-line options give you the
ability to enable (or disable) many of the parallel optimizations on an
individual basis.

However, shared-memory programming requires you to handle the
synchronization in some cases. In addition, although the directives,
pragmas, and CPSlib functions allow you to get better performance from
your programs, their functionality is not directly portable to other
vendors’ platforms. Other vendors’ compilers will, however, ignore the
Exemplar programming model directives and pragmas. Also, the
memory classes provided in the shared-memory programming paradigm
are unique to the Exemplar programming model.

Given the benefits and drawbacks of the two paradigms, determining
whether to use one over the other, or a combination of the two, should be
done on a case-by-case basis.

266 Chapter 7

Message-passing programming
Message-passing programming vs. shared-memory programming

Chapter 8 267

8 Programming conventions
for optimal code

This chapter discusses coding tips and common optimization problems
you may encounter when developing programs for SMP servers and
presents some possible solutions.

Optimization can remove instructions, replace them, and change the
order in which they execute. In some cases, improper optimizations can
cause unexpected or incorrect results or code that slows down at higher
optimization levels. In some cases, user error can cause similar problems
in code that contains syntactically-correct constructs or directives that
are used improperly. If you encounter any of these problems, look for the
following possible causes:

• Aliasing

• False cache line sharing

• Floating-point imprecision (roundoff error)

• Invalid subscripts

• Misused directives and pragmas

• Misused memory classes

• Triangular loops

• Compiler assumptions

NOTE Compilers perform optimizations assuming that the source code being
compiled is valid. Optimizations done on source that violates certain
ANSI standard rules can cause the compilers to generate incorrect code.

268 Chapter 8

Programming conventions for optimal code
Aliasing in Fortran

Aliasing in Fortran
As described in the section “Inhibitors of localization” on page 68, an
alias is an alternate name for some object. Fortran EQUIVALENCE
statements, C pointers, and procedure calls in both languages can
potentially cause aliasing problems. The examples presented in
Chapter 3 concern aliasing problems that occur at optimization levels
+O3 and above. However, code motion can also cause aliasing problems at
optimization levels +O1 and above.

Aliasing in C
Because they frequently use pointers, C programs are especially
susceptible to aliasing problems. By default, the optimizer assumes that
a pointer can point to any object in the entire application. Thus, any two
pointers are potential aliases. The C compiler has two algorithms you
can specify in place of the default: an ANSI-C aliasing algorithm and a
type-safe algorithm. The ANSI-C algorithm is enabled [disabled] through
the +O[no]ptrs_ansi option. The type-safe algorithm is enabled
[disabled] by specifying the command-line option
+O[no]ptrs_strongly_typed . The defaults for these options are
+Onoptrs_ansi and +Onoptrs_strongly_typed .

ANSI algorithm
ANSI C provides strict type-checking. Pointers and variables cannot
alias with pointers or variables of a different base type. The ANSI C
aliasing algorithm may not be safe if your program is not ANSI
compliant.

Type-safe algorithm
The type-safe algorithm provides stricter type-checking. This allows the
C compiler to use a stricter algorithm that eliminates many potential
aliases found by the ANSI algorithm.

Chapter 8 269

Programming conventions for optimal code
Aliasing in C

Specifying aliasing modes
To specify an aliasing mode, use one of the following options on the C
compiler command line:

• +Optrs_ansi

• +Optrs_strongly_typed

These and other C aliasing options are further discussed in Appendix D,
“Optimization options.”

Iteration and stop values
Aliasing a variable in an array subscript can make it unsafe for the
compiler to parallelize a loop. Below are several situations that can
prevent parallelization.

Using potential aliases as addresses of variables
In the following example, the code passes &j to getval ; getval can use
that address in any number of ways, including possibly assigning it to
iptr . (Even though iptr is not passed to getval , getval might still
access it as a global variable or through another alias.) This situation
makes j a potential alias for *iptr .

void subex(iptr, n, j)
int *iptr, n, j;
{
 n = getval(&j,n);

 for (j--; j<n; j++)
 iptr[j] += 1;
}

This potential alias means that j and iptr[j] might occupy the same
memory space for some value of j . The assignment to iptr[j] on that
iteration would also change the value of j itself. The possible alteration
of j prevents the compiler from safely parallelizing the loop. In this case,
the Optimization Report says that no induction variable could be found
for the loop, and the compiler does not parallelize the loop. (For
information on Optimization Reports, see Appendix D, “Optimization
Report.”

270 Chapter 8

Programming conventions for optimal code
Aliasing in C

Avoid taking the address of any variable that will be used as the
iteration variable for a loop. To parallelize the loop in subex , use a
temporary variable i as shown in the following example:

void subex(iptr, n, j)
int *iptr, n, j;
{
 int i;
 n = getval(&j,n);
 i=j;
 for (i--; i<n; i++)
 iptr[i] += 1;
}

Using hidden aliases as pointers
In the next example, ialex takes the address of j and assigns it to *ip .
Thus, j becomes an alias for *ip and, potentially, for *iptr . Assigned
values to iptr[j] within the loop could alter the value of j . As a result,
the compiler cannot use j as an induction variable and, without an
induction variable, it cannot count the iterations of the loop. When the
compiler cannot find the loop’s iteration count, the compiler cannot
parallelize the loop.

int *ip;
void ialex(iptr)
int *iptr;{
 int j;
 *ip = &j;
 for (j=0; j<2048; j++)
 iptr[j] = 107;
}

To parallelize this loop, remove the line of code that takes the address of
j or introduce a temporary variable.

Chapter 8 271

Programming conventions for optimal code
Aliasing in C

Using a pointer as a loop counter
Compiling the following function, the compiler finds that *j is not an
induction variable (because an assignment to iptr[*j] could alter the
value of *j within the loop.) The compiler does not parallelize the loop.

void ialex2(iptr, j, n)
int *iptr;
int *j, n;
{
 for (*j=0; *j<n; (*j)++)
 iptr[*j] = 107;
}

Again, this problem can be solved by introducing a temporary iteration
variable.

Aliasing stop variables
In the following code, the stop variable n becomes a possible alias for
*iptr when &n is passed to foo . This means that n can be altered
during the execution of the loop. As a result, the compiler cannot count
the number of iterations and cannot parallelize the loop.

void salex(int *iptr, int n)
{
 int i;
 foo(&n);
 for (i=0; i < n; i++)
 iptr[i] += iptr[i];
 return;
}

272 Chapter 8

Programming conventions for optimal code
Aliasing in C

To parallelize the affected loop, eliminate the call to foo , move the call
below the loop (in which case flow-sensitive analysis takes care of the
aliasing), or create a temporary variable as shown below:

void salex(int *iptr, int n)
{
 int i, tmp;
 foo(&n);
 tmp = n;
 for (i=0; i < tmp; i++)
 iptr[i] += iptr[i];
 return;
}

Because tmp is not aliased to iptr , the loop has a fixed stop value and
the compiler parallelizes it.

Global variables
Potential aliases involving global variables cause optimization problems
in many programs. The compiler cannot tell whether another function
causes a global variable to become aliased.

The following code uses a global variable, n, as a stop value. Because n
may have its address taken and assigned to ik outside the scope of the
function, n must be considered a potential alias for *ik . The value of n,
therefore, can be altered on any iteration of the loop. The compiler
cannot determine the stop value and cannot parallelize the loop.

int n, *ik;
void foo(int *ik)
{
 int i;

 for (i=0; i<n; i++)
 ik[i]=i;
}

Chapter 8 273

Programming conventions for optimal code
Aliasing in C

Using a temporary local variable solves the problem.

int n;
void foo(int *ik)
{
 int i,stop = n;

 for (i=0; i<stop; ++i)
 ik[i]=i;
}

If ik is a global variable instead of a pointer, the problem does not occur.
Global variables do not cause aliasing problems except when pointers are
involved. The following code will parallelize:

int n, ik[1000];
void foo()
{
 int i;

 for (i=0; i<n; i++)
 ik[i] = i;
}

274 Chapter 8

Programming conventions for optimal code
False cache line sharing

False cache line sharing
False cache line sharing is a form of cache thrashing. It occurs whenever
two or more threads in a parallel program are assigning different data
items in the same cache line. This section discusses how to avoid false
cache line sharing by restructuring the data layout and controlling the
distribution of loop iterations among threads. To simplify explanations,
only Fortran examples are given.

Consider the following example:

REAL*4 A(8)
DO I = 1, 8
 A(I) = ...
 .
 .
 .
ENDDO

Imagine eight threads, each executing one of the above iterations.
Assume that A(1) is on a processor cache line boundary (32-byte
boundary for V2200 and X2000 servers) so that all eight elements are in
the same cache line. Only one thread at a time can “own” the cache line,
so not only is the above loop, in effect, run serially, but every assignment
by a thread requires an invalidation of the line in the cache of its
previous “owner.” These problems would likely eliminate any benefit of
parallelization.

Now consider this example:

REAL*4 B(100,100)
DO I = 1, 100
 DO J = 1, 100
 B(I,J) = ...B(I,J-1)...
 ENDDO
ENDDO

Imagine 8 threads working on the I loop in parallel (the J loop cannot be
parallelized because of the dependence). Table 11 shows how the array
maps to cache lines, assuming that B(1,1) is on a cache line boundary.
Array entries that fall on cache line boundaries are in shaded cells.

Chapter 8 275

Programming conventions for optimal code
False cache line sharing

Table 11 Initial mapping of array to cache lines

Array entries in shaded cells are on cache line boundaries.

The Exemplar compilers, by default, give each thread about the same
number of iterations, assigning (if necessary) one extra iteration to some
threads until all iterations are assigned to a thread. Table 12 shows the
default distribution of the I loop across 8 threads.

 1, 1 1, 2 1, 3 1, 4 . . . 1, 99 1,100

 2, 1 2, 2 2, 3 2, 4 . . . 2, 99 2,100

 3, 1 3, 2 3, 3 3, 4 . . . 3, 99 3,100

 4, 1 4, 2 4, 3 4, 4 . . . 4, 99 4,100

 5, 1 5, 2 5, 3 5, 4 . . . 5, 99 5,100

 6, 1 6, 2 6, 3 6, 4 . . . 6, 99 6,100

 7, 1 7, 2 7, 3 7, 4 . . . 7, 99 7,100

 8, 1 8, 2 8, 3 8, 4 . . . 8, 99 8,100

 9, 1 9, 2 9, 3 9, 4 . . . 9, 99 9,100

 10, 1 10, 2 10, 3 10, 4 . . . 10, 99 10,100

 11, 1 11, 2 11, 3 11, 4 . . . 11, 99 11,100

 12, 1 12, 2 12, 3 12, 4 . . . 12, 99 12,100

 13, 1 13, 2 13, 3 13, 4 . . . 13, 99 13, 100

. .

 97, 1 97, 2 97, 3 97, 4 . . . 97, 99 97,100

 98, 1 98, 2 98, 3 98, 4 . . . 98, 99 98,100

 99, 1 99, 2 99, 3 99, 4 . . . 99, 99 99,100

100, 1 100, 2 100, 3 100, 4 . . . 100, 99 100,100

276 Chapter 8

Programming conventions for optimal code
False cache line sharing

Table 12 Default distribution of the I loop

This distribution of iterations causes threads to share cache lines. For
example, thread 0 assigns the elements B(9:12,1) and thread 1 assigns
elements B(13:16,1) in the same cache line. In fact, every thread
shares cache lines with at least one other thread; most share cache lines
with two other threads. This type of sharing is called false because it is a
result of the data layout and the compiler’s distribution of iterations; it is
not inherent in the algorithm itself. Therefore, it can be reduced or even
removed by

1. Restructuring the data layout by aligning data on cache line
boundaries

2. Controlling the iteration distribution

Aligning data to avoid false sharing
Because false cache line sharing is partially due to the layout of the data,
one step in avoiding it is to adjust the layout. Typically, these
adjustments are made by aligning data on cache line boundaries.
(Aligning arrays generally improves performance; however, it can
occasionally decrease performance.) The second step in avoiding false
cache line sharing (which is covered in the section, “Distributing
iterations on cache line boundaries” on page 280) is to adjust the
distribution of loop iterations.

Thread ID Iteration range Number
of iterations

0 1-12 12

1 13-25 13

2 26-37 12

3 38-50 13

4 51-62 12

5 63-75 13

6 76-87 12

7 88-100 13

Chapter 8 277

Programming conventions for optimal code
False cache line sharing

Aligning arrays on cache line boundaries
Note the assumption that in the previous example, array B starts on a
cache line boundary. The methods below force arrays in Fortran to start
on cache line boundaries:

• Using uninitialized COMMON blocks (blocks with no DATA statements).
These blocks start on 64-byte boundaries.

• Using ALLOCATE statements. These statements return addresses on
64-byte boundaries. (Applies only to parallel executables.)

• Using the directive ALIGN_CTI on an X2000 server. This directive
forces arrays of any size to start on CTIcache boundaries (32 bytes on
X2000 servers).

The methods below force arrays in C to start on cache line boundaries:

• Using the functions malloc or memory_class_malloc . These
functions return pointers on 64-byte boundaries. (Applies only to
parallel executables.)

• Using uninitialized global arrays or structs that are at least 32 bytes.
Such arrays and structs are aligned on 64-byte boundaries.

• Using the pragma align_cti on an X2000 server. This pragma
forces arrays of any size to start on CTIcache boundaries (32 bytes on
X2000 servers).

• Using uninitialized data of the external storage class in C that is at
least 32 bytes. Data is aligned on 64-byte boundaries.

Aligning multidimensional arrays on cache line
boundaries
Multidimensional arrays can also be aligned on cache line boundaries.
Recall that in the example from the beginning of the section:

REAL*4 B(100,100)
DO I = 1, 100
 DO J = 1, 100
 B(I,J) = ...B(I,J-1)...
 ENDDO
ENDDO

we assumed B(1,1) starts on a cache line boundary. However, because
the iteration distribution caused alignment on cache line boundaries to
vary from dimension to dimension, performance suffered. Choose a

278 Chapter 8

Programming conventions for optimal code
False cache line sharing

value x for the leftmost dimension (rightmost in C and C++) in arrays so
that x times the data size (in bytes) is an integral multiple of the
CTIcache line size. (The code that follows gives an example of this idea.)
Using such a value aligns data on CTIcache line boundaries at the same
index points in all dimensions.

On X2000 servers, both the processor cache lines and the CTIcache lines
are 32 bytes. (V2200 servers and nonscalable SMPs do not have
CTIcaches.)

For general use, try to align everything on 32-byte boundaries for V2200
and X2000 servers. This alignment will help to eliminate false cache line
sharing between processor caches and also between CTIcaches where the
penalty for false sharing is even higher. Where possible, try to
parameterize cache line size in anticipation of future systems that might
have different cache line sizes.

Changing the example so that array B is aligned and padded
(to 64 bytes), the leftmost dimension is now 112 instead of 100. (See the
modified example below.) The number 112 is the smallest value x greater
than 100 such that x times the data size (4 bytes) is an integral multiple
of 64.

REAL*4 B(112,100)
COMMON /ALIGNED/ B
 DO I = 1, 100
 DO J = 1, 100
 B(I,J) = ...B(I,J-1)...
 ENDDO
 ENDDO

Note that loop limits have not changed. Placing B in a COMMON block has
forced B(1,1) onto a cache line boundary (64 bytes), and changing the
first dimension to 112 assures that B(1,2) , B(1,3) , ..., B(1,100) all
start on cache line boundaries. Table 13 shows how the restructured
array maps to (processor) cache lines.

The next section, “Distributing iterations on cache line boundaries,”
explains how to make the compiler distribute iterations so that threads
work on whole cache lines.

Chapter 8 279

Programming conventions for optimal code
False cache line sharing

Table 13 Restructured mapping of array to cache lines

Array entries in shaded cells are on cache line boundaries.

 1, 1 1, 2 1, 3 1, 4 . . . 1, 99 1,100

2, 1 2, 2 2, 3 2, 4 . . . 2, 99 2,100

3, 1 3, 2 3, 3 3, 4 . . . 3, 99 3,100

4, 1 4, 2 4, 3 4, 4 . . . 4, 99 4,100

5, 1 5, 2 5, 3 5, 4 . . . 5, 99 5,100

6, 1 6, 2 6, 3 6, 4 . . . 6, 99 6,100

7, 1 7, 2 7, 3 7, 4 . . . 7, 99 7,100

8, 1 8, 2 8, 3 8, 4 . . . 8, 99 8,100

 9, 1 9, 2 9, 3 9, 4 . . . 9, 99 9,100

10, 1 10, 2 10, 3 10, 4 . . . 10, 99 10,100

11, 1 11, 2 11, 3 11, 4 . . . 11, 99 11,100

12, 1 12, 2 12, 3 12, 4 . . . 12, 99 12,100

. .

 97, 1 97, 2 97, 3 97, 4 . . . 97, 99 97,100

98, 1 98, 2 98, 3 98, 4 . . . 98, 99 98,100

99, 1 99, 2 99, 3 99, 4 . . . 99, 99 99,100

100, 1 100, 2 100, 3 100, 4 . . . 100, 99 100,100

101, 1 101, 2 101, 3 101, 4 . . . 101, 99 101,101

102, 1 102, 2 102, 3 102, 4 . . . 102, 99 102,102

103, 1 103, 2 103, 3 103, 4 . . . 103, 99 103,103

104, 1 104, 2 104, 3 104, 4 . . . 104, 99 104,104

 105, 1 105, 2 105, 3 105, 4 . . . 105, 99 105,105

106, 1 106, 2 106, 3 106, 4 . . . 106, 99 106,106

107, 1 107, 2 107, 3 107, 4 . . . 107, 99 107,107

108, 1 108, 2 108, 3 108, 4 . . . 108, 99 108,108

109, 1 109, 2 109, 3 109, 4 . . . 109, 99 109,109

110, 1 110, 2 110, 3 110, 4 . . . 110, 99 110,110

111, 1 111, 2 111, 3 111, 4 . . . 111, 99 111,112

112, 1 112, 2 112, 3 112, 4 . . . 112, 99 112,112

280 Chapter 8

Programming conventions for optimal code
False cache line sharing

Distributing iterations on cache line
boundaries
Recall that the default iteration distribution causes thread 0 to work on
iterations 1-12 and thread 1 to work on iterations 13-25, and so on. Even
though the cache lines are aligned across the columns of the array (see
Table 13), we still need to change the iteration distribution. Use
CHUNK_SIZE to change the distribution:

 REAL*4 B(112,100)
 COMMON /ALIGNED/ B
C$DIR PREFER_PARALLEL (CHUNK_SIZE=16)
 DO I = 1, 100
 DO J = 1, 100
 B(I,J) = ...B(I,J-1)...
 ENDDO
 ENDDO

You must specify a constant CHUNK_SIZE. However, the ideal would be to
distribute work so that all but one thread works on the same number of
whole cache lines, and the remaining thread works on any partial cache
line. For example, given:

the ideal CHUNK_SIZE would be:

CHUNK_SIZE = LSIZE * (1 + ((1 + (NITS - 1) / LSIZE) - 1)/NTHDS)

NITS = number of iterations
NTHDS = number of threads
LSIZE = CTIcache line size in words (8 for 4-byte data,

4 for 8-byte data, 2 for 16-byte data on X2000 servers)

Chapter 8 281

Programming conventions for optimal code
False cache line sharing

For the code above, these numbers are:

CHUNK_SIZE = 8 * (1 + ((1 + (100 - 1) / 8) - 1) / 8)
 = 8 * (1 + ((1 + 12) - 1) / 8)
 = 8 * (1 + (12) / 8)
 = 8 * (1 + 1)
 = 16

CHUNK_SIZE = 16 causes threads 0, 1, ..., 6 to execute iterations 1-16,
17-32, ..., 81-96, respectively. Thread 7 executes iterations 97-100. As a
result there is no false cache line sharing, and parallel performance is
greatly improved.

While you cannot specify the ideal CHUNK_SIZE for every loop, using

CHUNK_SIZE = x

where x times the data size (in bytes) is an integral multiple of 32 will
eliminate false cache line sharing if the two conditions below are met:

• The arrays are already properly aligned (as discussed earlier in this
section).

• The first iteration accesses the first element of each array being
assigned. (For example, in a loop DO I = 2, N , because the loop
starts at I = 2 , the first iteration does not access the first element of
the array; consequently, the iteration distribution does not match the
cache line alignment.)

The number 32 is used because the CTIcache line size is 32 bytes for
X2000 servers.

NITS = 100
NTHDS = 8
LSIZE = 8 (aligns on X2000 CTIcache boundaries for

4-byte data)

282 Chapter 8

Programming conventions for optimal code
False cache line sharing

Thread-specific array elements
Sometimes a parallel loop has each thread update a unique element of a
shared array which is further processed by thread 0 outside the loop.

Consider the following Fortran example:

 REAL*4 S(8)
C$DIR LOOP_PARALLEL
 DO I = 1, N
 .
 .
 .
 S(MY_THREAD()+1) = ... ! EACH THREAD ASSIGNS ONE ELEMENT OF S
 .
 .
 .
 ENDDO
C$DIR NO_PARALLEL
 DO J = 1, NUM_THREADS()
 = ...S(J) ! THREAD 0 POST-PROCESSES S
 ENDDO

Chapter 8 283

Programming conventions for optimal code
False cache line sharing

The problem here is that potentially all the elements of S are in a single
cache line, so the assignments cause false sharing. One approach is to
change the code to force the unique elements into different cache lines, as
indicated below:

 REAL*4 S(8,8)
C$DIR LOOP_PARALLEL
 DO I = 1, N
 .
 .
 .
 S(1,MY_THREAD()+1) = ... ! EACH THREAD ASSIGNS ONE ELEMENT OF S
 .
 .
 .
 ENDDO
C$DIR NO_PARALLEL
 DO J = 1, NUM_THREADS()
 = ...S(1,J) ! THREAD 0 POST-PROCESSES S
 ENDDO

For multihypernode applications on X2000 servers, the dimensions
should be S(8, number_of_threads) because the CTIcache line size is 32
bytes, and the data size is 4 bytes.

284 Chapter 8

Programming conventions for optimal code
False cache line sharing

Scalars sharing a cache line
Sometimes parallel tasks will assign unique scalar variables that are in
the same cache line, as in the following example:

 COMMON /RESULTS/ SUM, PRODUCT
C$DIR BEGIN_TASKS
 DO I = 1, N
 .
 .
 .
 SUM = SUM + ...
 .
 .
 .
 ENDDO
C$DIR NEXT_TASK
 DO J = 1, M
 .
 .
 .
 PRODUCT = PRODUCT * ...
 .
 .
 .
 ENDDO
C$DIR END_TASKS

This problem is similar to the example in the previous section
(“Thread-specific array elements”), and can be avoided by padding
enough space between the two scalar variables so that the variables are
in separate CTIcache lines:

COMMON /RESULTS/ SUM, PAD(7), PRODUCT

where PAD(7) represents 28 bytes—SUM and PAD(7) together take up
32 bytes, forcing PRODUCT into the next CTIcache line on multinode
X2000 applications because the CTIcache lines are 32 bytes.

Chapter 8 285

Programming conventions for optimal code
False cache line sharing

Working with unaligned arrays
The most common cache-thrashing complication using arrays and loops
will be that arrays assigned within a loop are unaligned (and possibly
unalignable) with each other. There are several possible causes for this:

• Arrays that are local to a routine are allocated on the stack.

• Array dummy arguments might be passed an element other than the
first in the actual argument.

• Array elements might be assigned with different offset indexes.

Consider the following Fortran example:

COMMON /OKAY/ X(112,100)
 ...
CALL UNALIGNED (X(I,J))
 ...
SUBROUTINE UNALIGNED (Y)
REAL*4 Y(*)
 ! Y(1) PROBABLY NOT ON A CACHE LINE BOUNDARY

The address of Y(1) is unknown. However, if elements of Y are heavily
assigned in this routine, it may be worthwhile to compute an alignment,
given by the following formula:

LREM = LSIZE - ((MOD (LOC(Y(1))-4, LSIZE* x) + 4) / x)

where

LSIZE is the appropriate cache line size in words

x is the data size for elements of Y

For this case, assume LSIZE is CTIcache line size (32 bytes on X2000
servers) in single precision words (8 words). Note that

((MOD (LOC(Y(1))-4, LSIZE*4) + 4) /4)

returns a value in the set 1, 2, 3, ..., LSIZE , so LREM is in the range 0 to 7.

286 Chapter 8

Programming conventions for optimal code
False cache line sharing

Then a loop such as:

DO I = 1, N
 Y(I) = ...
ENDDO

can be transformed to:

C$DIR NO_PARALLEL
 DO I = 1, MIN (LREM, N) ! 0 <= LREM < 8
 Y(I) = ...
 ENDDO
C$DIR PREFER_PARALLEL (CHUNK_SIZE = 16)
 DO I = LREM+1, N
 ! Y(LREM+1) IS ON A CACHE LINE BOUNDARY
 Y(I) = ...
 ENDDO

The first loop takes care of elements from the first (if any) partial cache
line of data. The second loop begins on a cache line boundary, and can be
controlled with CHUNK_SIZE to avoid false sharing among the threads.

Working with dependences
Data dependences in loops may prevent parallelization and prevent the
elimination of false cache line sharing. If certain conditions are met,
some performance gains can be achieved.

For example, consider the following code:

COMMON /ALIGNED / P(128,128), Q(128,128), R(128,128)
REAL*4 P, Q, R
DO J = 2, 128
 DO I = 2, 127
 P(I-1,J) = SQRT (P(I-1,J-1) + 1./3.)
 Q(I ,J) = SQRT (Q(I ,J-1) + 1./3.)
 R(I+1,J) = SQRT (R(I+1,J-1) + 1./3.)
 ENDDO
ENDDO

Only the I loop can be parallelized. (Because of the loop-carried
dependences in the J loop, it cannot be parallelized.) It is impossible to
distribute the iterations such that there will be no false cache line
sharing in the above loop. If all loops that refer to these arrays always

Chapter 8 287

Programming conventions for optimal code
Floating-point imprecision

use the same offsets (which is unlikely) then you could make dimension
adjustments that would allow a better iteration distribution. For
example, the following would work well for 8 threads:

 COMMON /ADJUSTED/ P(128,128), PAD1(15), Q(128,128),
 > PAD2(15), R(128,128)

 DO J = 2, 128
C$DIR PREFER_PARALLEL (CHUNK_SIZE=16)
 DO I = 2, 127
 P(I-1,J) = SQRT (P(I-1,J-1) + 1./3.)
 Q(I ,J) = SQRT (Q(I ,J-1) + 1./3.)
 R(I+1,J) = SQRT (R(I+1,J-1) + 1./3.)
 ENDDO
 ENDDO

Padding 60 bytes before the declarations of both Q and R causes the
P(1,J) , Q(2,J) , and R(3,J) to be aligned on 64-byte boundaries for all
J . Combined with a CHUNK_SIZE of 16, this causes threads to assign
data to unique whole cache lines.

Often in real-world code you will find a mix of all the above problems in
some CPU-intensive loops. You will not be able to avoid all false cache
line sharing, but by careful inspection of the problems and careful
application of some of the workarounds shown here, you will usually be
able to significantly enhance performance of your parallel loops.

Floating-point imprecision
The compiler applies normal arithmetic rules to real numbers. It
assumes that two arithmetically equivalent expressions produce the
same numerical result.

Most real numbers cannot be represented exactly in digital computers.
Instead, these numbers are rounded to a floating-point value that can be
represented. When optimization changes the evaluation order of a
floating-point expression, the results can change. Possible consequences
of floating-point roundoff include program aborts, division by zero,
address errors, and incorrect results.

288 Chapter 8

Programming conventions for optimal code
Floating-point imprecision

In any parallel program, the execution order of the instructions will
differ from the serial version of the same program. This can cause
noticeable roundoff differences between the two versions. Running a
parallel code under different machine configurations or conditions can
also yield roundoff differences, because the execution order can differ
under differing machine conditions, causing roundoff errors to propagate
in different orders between executions. Accumulator variables
(reductions) are especially susceptible to these problems.

Consider the following Fortran example:

C$DIR GATE(ACCUM_LOCK)
 LK = ALLOC_GATE(ACCUM_LOCK)
 .
 .
 .
 LK = UNLOCK_GATE(ACCUM_LOCK)
C$DIR BEGIN_TASKS, TASK_PRIVATE(I)
 CALL COMPUTE(A)
C$DIR CRITICAL_SECTION(ACCUM_LOCK)
 ACCUM = ACCUM + A
C$DIR END_CRITICAL_SECTION
C$DIR NEXT_TASK

 DO I = 1, 10000
 B(I) = FUNC(I)
C$DIR CRITICAL_SECTION(ACCUM_LOCK)
 ACCUM = ACCUM + B(I)
C$DIR END_CRITICAL_SECTION
 .
 .
 .
 ENDDO

C$DIR NEXT_TASK
 DO I = 1, 10000
 X = X + C(I) + D(I)
 ENDDO
C$DIR CRITICAL_SECTION(ACCUM_LOCK)
 ACCUM = ACCUM/X
C$DIR END_CRITICAL_SECTION
C$DIR END_TASKS

Chapter 8 289

Programming conventions for optimal code
Floating-point imprecision

Here, three parallel tasks are all manipulating the real variable ACCUM,
using real variables which have themselves been manipulated. Each
manipulation is subject to roundoff error, so the total roundoff error here
might be substantial. When the program runs in serial, the tasks execute
in their written order, and the roundoff errors accumulate in that order.
However, if the tasks run in parallel, there is no guarantee as to what
order the tasks will run in, meaning the roundoff error will accumulate
in a different order than it does during the serial run. Depending on
machine conditions, the tasks may run in different orders during
different parallel runs also, potentially accumulating roundoff errors
differently and yielding different answers.

An analogous C example follows:

static gate_t accum_lock;
lk = alloc_gate(&accum_lock);
.
.
.
lk = unlock_gate(&accum_lock);
#pragma _CNX begin_tasks, task_private(i)
compute(a);
#pragma _CNX critical_section(accum_lock)
accum = accum + a;
#pragma _CNX end_critical_section
#pragma _CNX next_task
for(i=0;i<10000;i++) {
 b[i] = func[i];
#pragma _CNX critical_section(accum_lock)
 accum = accum + b[i];
#pragma _CNX end_critical_section
.
.
.
}
#pragma _CNX next_task
for(i=0;i<10000;i++)
 x = x + c[i] + d[i];
#pragma _CNX critical_section(accum_lock)
accum = accum/x;
#pragma _CNX end_critical_section
#pragma _CNX end_tasks

290 Chapter 8

Programming conventions for optimal code
Invalid subscripts

Problems with floating-point precision can also occur when a program
tests the value of a variable without allowing enough tolerance for
roundoff errors. To solve the problem, adjust the tolerances to allow for
greater roundoff errors or declare the variables to be of a higher
precision (use the double type instead of float in C and C++, or
REAL*8 rather than REAL*4 in Fortran). It is always poor practice to test
floating point numbers for exact equality.

Enabling sudden underflow
By default, PA-RISC processor hardware represents a floating point
number in denormalized format when the number is tiny. A floating
point number is considered tiny if its exponent field is zero but its
mantissa is nonzero (for more information, refer to the HP-UX
Floating-Point Guide). This practice is extremely costly in terms of
execution time and seldom provides any benefit. You can enable sudden
underflow (flush to zero) of denormalized values by passing the +FPD flag
to the linker. This is done using the -W compiler option.

The following example shows such an f90 command line:

%f90 -Wl,+FPD prog.f

This command line compiles the program prog.f and instructs the
linker to enable sudden underflow.

Invalid subscripts
An array reference in which any subscript falls outside declared bounds
for that dimension is called an invalid subscript. Invalid subscripts are a
common cause of answers that vary between optimization levels and
programs that abort and dump core. Use the command-line option -C
(check subscripts) with f90 or f77 to check that each subscript is within
its array bounds. See the f90(1) or f77(1) man page for more information.
The C and aC++ compilers do not have an option corresponding to the
Fortran compilers’ -C option.

Chapter 8 291

Programming conventions for optimal code
Misused directives and pragmas

Misused directives and pragmas
Misused directives and pragmas are a common cause of wrong answers.
Some of the more common misuses of directives and pragmas involve the
following:

• Loop-carried dependences

• Reductions

• Nondeterminism of parallel execution

• Hidden ordered sections

Descriptions of, and methods for, avoiding the items listed above are in
the sections below.

Loop-carried dependences
For example, forcing parallelization of a loop containing a call is safe only
if the called routine contains no dependences.

Do not assume that it is always safe to parallelize a loop whose data is
safe to localize. You can safely localize loop data in loops that do not
contain a loop-carried dependence (LCD) of the form shown in the
following Fortran loop:

DO I = 2, M
 DO J = 1, N
 A(I,J) = A(I+IADD,J+JADD) + B(I,J)
 ENDDO
ENDDO

where one of IADD and JADD is negative and the other is positive. This is
explained in detail in the section “Inhibitors of localization” on page 68.

You cannot safely parallelize a loop that contains any kind of LCD,
except by using ordered sections around the LCDs as described in the
section “Ordered sections” on page 242. Also see the section “Inhibitors of
parallelization” on page 111.

The MAIN section of the Fortran program that follows initializes A, calls
CALC, and outputs the new array values. In subroutine CALC, the
indirect index used in A(IN(I)) introduces a potential dependence that
prevents the compiler from parallelizing CALC’s I loop.

292 Chapter 8

Programming conventions for optimal code
Misused directives and pragmas

PROGRAM MAIN
REAL A(1025)
INTEGER IN(1025)
COMMON /DATA/ A
DO I = 1, 1025
 IN(I) = I
ENDDO
CALL CALC(IN)
CALL OUTPUT(A)
END

SUBROUTINE CALC(IN)
INTEGER IN(1025)
REAL A(1025)
COMMON /DATA/ A
DO I = 1, 1025
 A(I) = A(IN(I))
ENDDO
RETURN
END

An analogous C example follows:

float arra[1025];

void calc(int in[])
{
 int i,j;

 for(i = 0; i < 1025; i++)
 arra[i] = arra[in[i]];
}
main()
{
 int i,j,in[1025];

 for(i = 0; i < 1025; i++)
 in[i] = i;
 calc(in);
 output(arra);
}

Chapter 8 293

Programming conventions for optimal code
Misused directives and pragmas

Because you know that IN(I) = I , you can use the
NO_LOOP_DEPENDENCE directive, as shown below. This directive allows
the compiler to ignore the apparent dependence and parallelize the loop,
when compiling with +O3 +Oparallel .

 SUBROUTINE CALC(IN)
 INTEGER IN(1025)
 REAL A(1025)
 COMMON /DATA/ A
C$DIR NO_LOOP_DEPENDENCE(A)
 DO I = 1, 1025
 A(I) = A(IN(I))
 ENDDO
 RETURN
 END

In C:

void calc(int in[])
{
 int i,j;
 #pragma _CNX no_loop_dependence(arra)
 for(i = 0; i < 1025; i++)
 arra[i] = arra[in[i]];
}

294 Chapter 8

Programming conventions for optimal code
Misused directives and pragmas

Reductions
Reductions are a special class of dependence that the compiler can
parallelize. An apparent LCD can prevent the compiler from
parallelizing a loop containing a reduction. The loop in the following
Fortran example is not parallelized because of an apparent dependence
between the references to A(I) on line 6 and the assignment to
A(JA(J)) on line 7. The compiler does not realize that the values of the
elements of JA never coincide with the values of I , and so, assuming that
they might, conservatively avoids parallelizing the loop.

DO I = 1,100
 JA(I) = I + 10
ENDDO
DO I = 1, 100
 DO J = I, 100
 A(I) = A(I) + B(J) * C(J) !LINE 6
 A(JA(J)) = B(J) + C(J) !LINE 7
 ENDDO
ENDDO

NOTE In this example as well as the examples that follow, the apparent
dependence becomes real if any of the values of the elements of JA are
equal to the values iterated over by I .

A no_loop_dependence directive or pragma placed before the J loop
tells the compiler that the indirect subscript does not cause a true
dependence. Because reductions are a form of dependence, this directive
also tells the compiler to ignore the reduction on A(I) , which it would
normally handle. Ignoring this reduction causes the compiler to generate
incorrect code for the assignment on line 6; the apparent dependence on
line 7 is properly handled because of the directive. The resulting code
runs fast but produces incorrect answers.

Chapter 8 295

Programming conventions for optimal code
Misused directives and pragmas

In the following analogous C example, the apparent dependence is
between the reference to a[i] on line 5 and a[ja[j]] on line 6:

for (i=0;i<100;i++)
 ja[i] = i + 10;
for (i=0; i<100; i++)
 for (j=0; j<100; j++) {
 a[i] += b[j] * c[j]; /* line 5 */
 a[ja[j]] = b[j] + c[j]; /* line 6 */
 }

To solve this problem, distribute the J loop, isolating the reduction from
the other statements, as shown in the following Fortran example:

 DO I = 1, 100
 DO J = I, 100
 A(I) = A(I) + B(J) * C(J)
 ENDDO
 ENDDO
C$DIR NO_LOOP_DEPENDENCE(A)
 DO I = 1, 100
 DO J = I, 100
 A(JA(J)) = B(J) + C(J)
 ENDDO
 ENDDO

And in C:

for (i=0; i<100; i++)
 for (j=i; j<100; j++)
 a[i] += b[j] * c[j];
#pragma _CNX no_loop_dependence(a)
for (i=0; i<100; i++)
 for (j=i; j<100; j++)
 a[ja[j]] = b[j] + c[j];

The apparent dependence is removed, and both loops can be optimized.

296 Chapter 8

Programming conventions for optimal code
Misused directives and pragmas

Nondeterminism of parallel execution
In a parallel program, threads do not execute in a predictable or
determined order. If you force the compiler to parallelize a loop when a
dependence exists, the results are unpredictable and can vary from one
execution to the next.

Consider the following Fortran example:

DO I = 1, N-1
 A(I) = A(I+1) * B(I)
 .
 .
 .
ENDDO

The compiler will not parallelize this code as written because of the
dependence on A(I) . This dependence requires that the original value of
A(I+1) is available for the computation of A(I) . If this code was
parallelized, some values of A would be assigned by some processors
before they were used by others, resulting in incorrect assignments.
Because the results depend on the order in which statements execute,
the errors are nondeterministic. The loop must therefore execute in
iteration order to ensure that all values of A are computed correctly.

The analogous C code follows:

for(i=0;i<n-1;i++) {
 a[i] = a[i+1] * b[i];
 .
 .
 .
}

Loops containing dependences can sometimes be manually parallelized
using the LOOP_PARALLEL(ORDERED) directive as described in
Chapter 6, “Advanced shared-memory programming.” Otherwise, unless
you are sure that no loop-carried dependence exists, it is safest to let the
compiler choose which loops to parallelize.

Chapter 8 297

Programming conventions for optimal code
Misused directives and pragmas

Hidden ordered sections
While it is legal and sometimes useful to place ordered sections in
separate routines from their parent ordered loops, this practice can cause
runtime deadlock in some situations. Consider the following Fortran
example:

 PROGRAM SEPMAIN
 REAL A(100)
 .
 .
 .
C$DIR BEGIN_TASKS(NODES)
 CALL SUB1(A)
 .
 .
 .
C$DIR NEXT_TASK
 CALL SUBN
 .
 .
 .
C$DIR END_TASKS
 .
 .
 .
 END

 SUBROUTINE SUB1(A)
 COMMON LOCK
 REAL A(100)
C$DIR GATE(LOCK)
 LK = ALLOC_GATE(LOCK)
C$DIR LOOP_PARALLEL(ORDERED)
 DO I = 2, 100
 CALL SUB2(LOCK,A,I)
 ENDDO
 LK = FREE_GATE(LOCK)
 END

 SUBROUTINE SUB2(LOCK,A,I)
C$DIR GATE(LOCK)
 REAL A(100)
 INTEGER I
C$DIR ORDERED_SECTION(LOCK)
 A(I) = A(I-1)
C$DIR END_ORDERED_SECTION
 END

298 Chapter 8

Programming conventions for optimal code
Misused directives and pragmas

The ordered section in SUB2 should be associated with the
loop_parallel construct. However, if for any reason that construct
does not execute in parallel, the ordered section is then associated with
the closest parallel construct; in this case, the begin_tasks construct.

The ordered section in SUB2 expects that it will be executed by all
parallel threads. Only thread 0 from the node-level spawn is executing
SUB1, because only the first task calls it; thread 0 therefore runs the DO
loop in SUB1 and passes through the ordered section in SUB2. After this,
the ordered section will wait for thread 1 to enter before allowing
thread 0 back in on the next iteration of the I loop. Thread 1 never calls
SUB1, so it never has the opportunity to enter the ordered section. This
can cause the program to deadlock in the ordered section.

If you encounter this kind of problem, try moving the ordered section into
the same routine as its parent loop. Also, you should apply the
NO_DYNSEL directive to the loop_parallel loop or use the
+Onodynsel command-line option so that it does not run serially.

Chapter 8 299

Programming conventions for optimal code
Misused directives and pragmas

The analogous C code follows:

void sub2(gate_t lock, float *a, int i) {
#pragma _CNX ordered_section(lock)
 a[i] = a[i-1];
#pragma _CNX end_ordered_section
}

void sub1(float *a) {
 static gate_t lock;
 int i, lk;
 lk = alloc_gate(&lock);
#pragma _CNX loop_parallel(ordered, ivar=i)
 for(i=1;i<100;i++)
 sub2(lock,a,i);
 lk = free_gate(&lock);
}

main() {
 float a[100];
 .
 .
 .
#pragma _CNX begin_tasks(nodes)
 sub1(a);
 .
 .
 .
#pragma _CNX next_task
 subn();
 .
 .
 .
#pragma _CNX end_tasks
 .
 .
 .
}

300 Chapter 8

Programming conventions for optimal code
Misused memory classes

Misused memory classes
While manually assigned memory classes can substantially boost
performance when coupled with manual parallelization, assigning the
wrong memory class to data can cause wrong answers and in some cases
degrade performance. This section discusses some common misuses of
memory classes.

Improper dynamic allocations
Dynamically allocating thread_private memory from serial code can
give unexpected results if the memory is later accessed from parallel
code.

Consider the following incorrect Fortran example:

C INCORRECT EXAMPLE FOLLOWS!!!!
 REAL*8 WRONGTP(:)
C$DIR THREAD_PRIVATE(WRONGTP)
 ALLOCATABLE WRONGTP
 .
 .
 .
C THE FOLLOWING ALLOCATE ONLY ALLOCATES
C WRONGTP(N) FOR THREAD 0:
 ALLOCATE(WRONGTP(N))
C$DIR LOOP_PARALLEL(THREADS, IVAR = I)
C$DIR LOOP_PRIVATE(J)
 DO I = 1, NUM_THREADS()
 DO J = 1, N
 WRONGTP(J) = ... ! ONLY EXISTS FOR
 . ! THREAD 0
 .
 .
 ENDDO
 ENDDO

Here, the array WRONGTP is allocated, but because the allocation takes
place in serial code, which is run by thread 0, only thread 0 allocates the
array. When other threads attempt to access the array in the J loop, it
does not exist. To fix this, allocate the array inside the thread-parallel I
loop, as discussed in Chapter 5, “Memory classes.”

Chapter 8 301

Programming conventions for optimal code
Misused memory classes

An analogous C example follows:

/* INCORRECT EXAMPLE FOLLOWS!!! */
static thread_private double *wrongtp;
.
.
.
/* the following memory_class_malloc only allocates wrongtp
 for thread 0 */
wrongtp=(double *)memory_class_malloc(sizeof(double)*n,
 THREAD_PRIVATE_MEM);
#pragma _CNX loop_parallel(threads, ivar=i)
#pragma _CNX loop_private(j)
for(i=0;i<num_threads();i++) {
 for(j=0;j<n;j++) {
 wrongtp[j] = ... /* only exists for thread 0 */
 .
 .
 .
 }
}

302 Chapter 8

Programming conventions for optimal code
Misused memory classes

In general, memory of classes other than thread_private should be
dynamically allocated in serial code. Allocating node_private ,
near_shared , far_shared and block_shared memory from within
parallel code will create wasteful redundant copies.

Consider the following incorrect Fortran example:

C INCORRECT EXAMPLE FOLLOWS!!!
 REAL*8 WRONGNP(:)
C$DIR NODE_PRIVATE(WRONGNP)
C$DIR FAR_SHARED_POINTER(WRONGNP)
 ALLOCATABLE WRONGNP
 .
 .
 .
 N = NUM_NODES
C$DIR LOOP_PARALLEL(NODES, IVAR = I)
 DO I = 1, N
 ALLOCATE(WRONGNP(M))
 .
 .
 .
 ENDDO

Recall from Chapter 5, “Memory classes,” that when a node_private
array is allocated, a physical copy is created on each hypernode on which
the program is running. Here, each loop iteration executes the ALLOCATE
statement (or memory_class_malloc function in C), thus allocating N
copies of the array. This is N-1 times more copies than are actually
needed. To further complicate things, node_private arrays
manipulated in parallel code must be accessed by shared pointers, which
is why the Fortran example includes a far_shared_pointer
statement. In the code above, this pointer would be overwritten every
time the I loop executed the ALLOCATE statement (or
memory_class_malloc function in C), meaning that only the final copy
allocated would be accessible. Since the hypernodes’ execution of the loop
code is not perfectly synchronized, the actual memory accessed by
WRONGNP(I) would vary depending on which hypernode was last to
perform the allocation.

Chapter 8 303

Programming conventions for optimal code
Misused memory classes

An analogous C example follows:

/* INCORRECT EXAMPLE FOLLOWS!!! */
static far_shared double *wrongnp;
.
.
.
n = numnodes();
#pragma _CNX loop_parallel(nodes, ivar=i)
for(i=0;i<n;i++) {
 wrongnp = (double *)memory_class_malloc(sizeof(double)*m,
 NODE_PRIVATE_MEM);
 .
 .
 .
}

While dynamically allocated near_shared , far_shared and
block_shared arrays do not normally require special pointer types,
they suffer from the same redundant-copy problem. Allocating any
shared-memory arrays from within parallel code will create as many
copies of the data as there are hypernodes (or threads) executing the
ALLOCATE (or memory_class_malloc) statement. As with the
node_private example above, the actual memory accessed will depend
on which hypernode most recently executed the ALLOCATE statement.
After all hypernodes have executed the ALLOCATE, the memory allocated
by all but the last will be lost. Such lost arrays are not only unusable,
they cannot be deallocated.

To avoid such redundancy problems, follow the allocation examples
discussed in Chapter 5, “Memory classes,” and only allocate memory
from within parallel constructs as described there.

304 Chapter 8

Programming conventions for optimal code
Misused memory classes

Incorrect array pointers
As mentioned in the previous section, sometimes it is necessary to access
dynamically allocated arrays using pointers of different memory classes.
For example, when accessing node_private arrays from node-parallel
code, far_shared pointers must be used (refer to Chapter 5,
“Memory classes”). Failing to do this will render the copies of the arrays
on all but logical hypernode 0 inaccessible.

Consider the following incorrect Fortran example:

C INCORRECT EXAMPLE FOLLOWS!!!!
 REAL*8 N0NP(:)
C$DIR NODE_PRIVATE(N0NP)
 ALLOCATABLE N0NP
 .
 .
 .
 ALLOCATE(N0NP(M))
 N = NUM_NODES
C$DIR LOOP_PARALLEL(NODES), LOOP_PRIVATE(J)
 DO I = 1, N
C$DIR LOOP_PARALLEL(THREADS)
 DO J = 1, M
 N0NP(J) = ...
 .
 .
 .
 ENDDO
 ENDDO

While the N0NP array is correctly allocated in serial code here, it is not
explicitly given a shared pointer, so the arrays created will be accessed
by the default node_private pointer. A physical copy of N0NP will be
created on every hypernode, but the node_private pointer by which
these copies are accessed will only be initialized on logical hypernode 0,
because it is the only hypernode executing the ALLOCATE statement (or
memory_class_malloc in C). The contents of the (node_private)
pointers on other hypernodes are uninitialized and therefore
indeterminate. When, in the hypernode-parallel J loop, these other
hypernodes attempt to access N0NP, they will do so using the garbage
contents of their uninitialized pointers, typically causing a runtime error.

Chapter 8 305

Programming conventions for optimal code
Misused memory classes

An analogous C example follows:

/* INCORRECT EXAMPLE FOLLOWS!!! */
static node_private double *n0np;
.
.
.
n0np = (double *)memory_class_malloc(sizeof(double)*m,
 NODE_PRIVATE_MEM);
n = numnodes();
#pragma _CNX loop_parallel(nodes, ivar=i), loop_private(j)
for(i=0;i<n;i++) {
#pragma _CNX loop_parallel(threads, ivar=j)
 for(j=0;j<m;j++) {
 n0np[j] = ...
 .
 .
 .
 }
}

Chapter 5, “Memory classes,” covers correct pointer/data combinations
and explains the situations in which nondefault pointers should be used.
To avoid uninitialized pointer problems such as the one described above,
follow the recommendations of Chapter 5 carefully.

306 Chapter 8

Programming conventions for optimal code
Misused memory classes

Hidden dependences
Improperly accessing a shared variable from parallel threads can create
an unapparent dependence that can cause wrong answers.

Consider the following Fortran code:

 PROGRAM HOLDER
 REAL HOLD
C$DIR FAR_SHARED(HOLD)
C$DIR TASK_PRIVATE(X,Y)
C$DIR BEGIN_TASKS
 X = ...
 .
 .
 .
 CALL ADDHOLD(HOLD, X)
C$DIR NEXT_TASK
 Y = ...
 .
 .
 .
 CALL ADDHOLD(HOLD,Y)
C$DIR END_TASKS
 END

 SUBROUTINE ADDHOLD(HOLD,Z)
 REAL HOLD, Z
 HOLD = HOLD+Z
 END

Here, the far_shared variable HOLD is updated as a function of itself in
the subroutine ADDHOLD, which is called from the potentially parallel
tasks. If HOLD was updated within the tasks rather than in a subroutine,
the dependence would be more obvious to the programmer, who may not
have ready access to ADDHOLD’s source.

Isolating the assignment to HOLD inside a critical section would allow the
tasks to safely parallelize, whether the assignment took place in a
subroutine or inside the tasks themselves.

Chapter 8 307

Programming conventions for optimal code
Misused memory classes

An analogous C example follows:

void addhold(float *hold, float z) {
 *hold = *hold + z;
}
main() {
 static far_shared float hold;
 static float x,y;
#pragma _CNX task_private(x,y)
#pragma _CNX begin_tasks
 x = ...;
 .
 .
 .
 addhold(&hold,x);
#pragma _CNX next_task
 y = ...;
 .
 .
 .
 addhold(&hold,y);
#pragma _CNX end_tasks
}

Always use caution when parallelizing a call to a procedure that passes
the same shared variable from every thread.

308 Chapter 8

Programming conventions for optimal code
Triangular loops

Triangular loops
A triangular loop is a loop nest with an inner loop whose upper or lower
bound (but not both) is a function of the outer loop’s index. Examples of a
lower triangular loop and an upper triangular loop are given below. To
simplify explanations, only Fortran examples are given in this section.

Lower triangular loop

DO J = 1, N
 DO I = J+1, N
 F(I) = F(I) + ... + X(I,J) + ...

..
.

Elements
referenced
in Array X
(shaded cells)

J

3

...

I

1

2

321

Chapter 8 309

Programming conventions for optimal code
Triangular loops

While the compiler can usually auto-parallelize one of the outer or inner
loops, there are typically performance problems in either case:

• If the outer loop is parallelized by assigning contiguous chunks of
iterations to each of the threads, the load will be severely imbalanced.
For example, in the lower triangular example above, the thread doing
the last chunk of iterations does far less work than the thread doing
the first chunk.

• If the inner loop is auto-parallelized, then on each outer iteration in
the J loop, the threads are assigned to work on a different set of
iterations in the I loop, thus losing access to some of their previously
encached elements of F and thrashing each other’s caches in the
process.

By manually controlling the parallelization, you can greatly improve the
performance of a triangular loop. Parallelizing the outer loop is generally
more beneficial than parallelizing the inner loop. The next two sections
(“Parallelizing the outer loop” and “Parallelizing the inner loop”) explain
how to achieve the enhanced performance.

Upper triangular loop

DO J = 1, N
 DO I = 1, J-1
 F(I) = F(I) + ... + X(I,J) + ...

Elements
referenced
in Array X
(shaded cells)

..
.

J

3

...

I

1

2

321

310 Chapter 8

Programming conventions for optimal code
Triangular loops

Parallelizing the outer loop
Using directives you can control the parallelization of the outer loop in a
triangular loop to optimize the performance of the loop nest.

For the outer loop, it is preferable to assign iterations to threads in a
more balanced manner. The simplest method is to assign the threads one
at a time using the attribute CHUNK_SIZE:

C$DIR PREFER_PARALLEL (CHUNK_SIZE = 1)
 DO J = 1, N
 DO I = J+1, N
 Y(I,J) = Y(I,J) + ...X(I,J)...

This causes each thread to execute in the following manner:

 DO J = MY_THREAD() + 1, N, NUM_THREADS()
 DO I = J+1, N
 Y(I,J) = Y(I,J) + ...X(I,J)...

where 0 <= MY_THREAD() < NUM_THREADS()

In this case, the first thread still does more work than the last, but the
imbalance is greatly reduced. For example, assume N = 128 and there
are 8 threads. Then the default parallel compilation would cause thread
0 to do J = 1 to 16, resulting in 1912 inner iterations, whereas thread 7
does J = 113 to 128, resulting in 120 inner iterations. With chunk_size
= 1 , thread 0 does 1072 inner iterations, and thread 7 does 1023.

Chapter 8 311

Programming conventions for optimal code
Triangular loops

Parallelizing the inner loop
If the outer loop cannot be parallelized, parallelize the inner loop if
possible. There are two issues to be aware of when parallelizing the inner
loop:

• Cache thrashing

Consider the parallelization of the following inner loop:

DO J = I+1, N
 F(J) = F(J) + SQRT(A(J)**2 - B(I)**2)

where I varies in the outer loop iteration.

The default iteration distribution has each thread processing a
contiguous chunk of iterations of approximately the same number as
every other thread. The amount of work per thread is about the same;
however, from one outer iteration to the next, threads work on
different elements in F, resulting in cache thrashing.

• The overhead of parallelization

If the loop cannot be interchanged to be outermost (or at least
outermore), then the overhead of parallelization is compounded by
the number of outer loop iterations.

312 Chapter 8

Programming conventions for optimal code
Triangular loops

Below is a scheme that assigns “ownership” of elements to threads on a
cache line basis so that threads always work on the same cache lines and
retain data locality from one iteration to the next. In addition, the
parallel directive (see the section “parallel[(attribute_list)] ” on
page 348) is used to spawn threads just once. The outer, nonparallel loop
is replicated on all processors, and the inner loop iterations are manually
distributed to the threads.

C F IS KNOWN TO BEGIN ON A CACHE LINE BOUNDARY
 NTHD = NUM_THREADS()
 CHUNK = 8 ! CHUNK * DATA SIZE (4 BYTES)
 ! EQUALS PROCESSOR CACHE LINE SIZE;
 ! A SINGLE THREAD WORKS ON CHUNK = 8
 ! ITERATIONS AT A TIME
 NTCHUNK = NTHD * CHUNK ! A CHUNK TO BE SPLIT AMONG THE THREADS
 ...
C$DIR PARALLEL,PARALLEL_PRIVATE(ID,JS,JJ,J,I)
 ID = MY_THREAD() + 1 ! UNIQUE THREAD ID
 DO I = 1, N
 JS = ((I+1 + NTCHUNK-1 - ID*CHUNK) / NTCHUNK) * NTCHUNK
 > + (ID-1) * CHUNK + 1
 DO JJ = JS, N, NTCHUNK
 DO J = MAX (JJ, I+1), MIN (N, JJ+CHUNK-1)
 F(J) = F(J) + SQRT(A(J)**2 - B(I)**2)
 ENDDO
 ENDDO
 ENDDO
C$DIR END_PARALLEL

Chapter 8 313

Programming conventions for optimal code
Triangular loops

The idea is to assign a fixed ownership of cache lines of F and to assign a
distribution of those cache lines to threads that keeps as many threads
busy computing whole cache lines for as long as possible. Using
CHUNK = 8 for 4-byte data makes each thread work on 8 iterations
covering a total of 32 bytes—the processor cache line size for V2200 and
X2000 servers. In general, set CHUNK equal to the smallest value that
multiplies by the data size to give a multiple of 32 (the processor
cache line size on V2200 servers; also, the processor cache line size and
CTIcache line size on X2000 servers). Smaller values of CHUNK keep most
threads busy most of the time; however, setting CHUNK to obtain a
multiple of 32 is better if the application is on an X2000 system and is
executing on more than one hypernode, which implies that it is using the
CTIcache.

When, because of the ever-decreasing work in the triangular loop, there
are fewer cache lines left to compute than there are threads, threads
drop out until there is only one thread left to compute those iterations
associated with the last cache line. Compare this distribution to the
default distribution that causes false cache line sharing (see the section
“False cache line sharing” in this chapter) and consequent thrashing
when all threads attempt to compute data into a few cache lines.

The scheme above maps a sequence of NTCHUNK-sized blocks over the F
array. Within each block, each thread owns a specific cache line of data.
The relationship between data, threads, and blocks of size NTCHUNK is
shown in Figure 25.

314 Chapter 8

Programming conventions for optimal code
Triangular loops

 Figure 25 Data ownership by CHUNK and NTCHUNK blocks

CHUNK is the number of iterations a thread will work on at one time. The
idea is to make a thread work on the same elements of F from one
iteration of I to the next (except for those that are already complete). The
scheme above causes thread 0 to do all work associated with the cache
lines starting at F(1) , F(1+NTCHUNK), F(1+2*NTCHUNK) , and so on.
Likewise, thread 1 does the work associated with the cache lines starting
at F(9) , F(9+NTCHUNK), F(9+2*NTCHUNK) , and so on. Thus, if a thread

NTCHUNK 1

NTCHUNK 2

thread 0

thread 1

thread 2

thread 7

thread 0

thread 1

F(17) ... F(24)

F(25) ... F(32)

F(1) ... F(8)

F(9) ... F(16)

F(33) ... F(40)

...

CHUNKs of F Associated

F(41) ... F(48)

F(49) ... F(56)

F(57) ... F(64)

F(65) ... F(72)

F(73) ... F(80)

F(81) ...

thread 5

thread 3

thread 4

thread 6

thread

CHUNKs of F Associated
thread

Chapter 8 315

Programming conventions for optimal code
Triangular loops

assigns certain elements of F for I = 2, then it is certain that the same
thread encached those elements of F in iteration I = 1, thus eliminating
cache thrashing among the threads.

Examining the code
Having established the idea of assigning cache line ownership, consider
the following Fortran example in more detail:

C$DIR PARALLEL,PARALLEL_PRIVATE(ID,JS,JJ,J,I)
 ID = MY_THREAD() + 1 ! UNIQUE THREAD ID
 DO I = 1, N
 JS = ((I+1 + NTCHUNK-1 - ID*CHUNK) / NTCHUNK) * NTCHUNK
 > + (ID-1) * CHUNK + 1
 DO JJ = JS, N, NTCHUNK
 DO J = MAX (JJ, I+1), MIN (N, JJ+CHUNK-1)
 F(J) = F(J) + SQRT(A(J)**2 - B(I)**2)
 ENDDO
 ENDDO
 ENDDO
C$DIR END_PARALLEL

C$DIR PARALLEL, PARALLEL_PRIVATE(ID,JS,JJ,J,I)

The PARALLEL directive spawns threads, each of which
begins executing the statements in the parallel region.
Each thread has a private version of the variables ID ,
JS, JJ , J , and I .

ID = MY_THREAD() + 1 ! UNIQUE THREAD ID

This establishes a unique ID for each thread, in the
range 1 to num_threads() .

DO I = 1, N

All threads execute the I loop redundantly (instead of
thread 0 executing it alone).

316 Chapter 8

Programming conventions for optimal code
Triangular loops

JS = ((I+1 + NTCHUNK-1 - ID*CHUNK) / NTCHUNK) * NTCHUNK
+ (ID-1) * CHUNK + 1

For a given value of I+1 , the above line determines in
which NTCHUNK the value I+1 falls, then assigns a
unique CHUNK of it to each thread ID . Suppose that
there are ntc NTCHUNKs, where ntc is approximately
N/NTCHUNK. Then the expression:

(I+1 + NTCHUNK-1 - ID*CHUNK) / NTCHUNK)

returns a value in the range 1 to ntc for a given value of
I+1 . Then the expression:

((I+1 + NTCHUNK-1 - ID*CHUNK) / NTCHUNK) * NTCHUNK

identifies the start of an NTCHUNK that contains I+1 or
is immediately above I+1 for a given value of ID .

For the NTCHUNK that contains I+1 , if the cache lines
owned by a thread either contain I+1 or are above I+1
in memory, this expression returns this NTCHUNK. If the
cache lines owned by a thread are below I+1 in this
NTCHUNK, this expression returns the next highest
NTCHUNK. In other words, if there is no work for a
particular thread to do in this NTCHUNK, then start
working in the next one.

(ID-1) * CHUNK + 1

identifies the start of the particular cache line for the
thread to compute within this NTCHUNK.

DO JJ = JS, N, NTCHUNK

Each thread does a unique set of cache lines starting at
its specific JS and continuing into succeeding
NTCHUNKs until all the work is done.

DO J = MAX (JJ, I+1), MIN (N, JJ+CHUNK-1)

This does the work within a single cache line. If the
starting index (I+1) is greater than the first element in
the cache line (JS) then start with I+1 . If the ending
index (N) is less than the last element in the cache line,
then finish with N.

Chapter 8 317

Programming conventions for optimal code
Compiler assumptions

More generally, notice that:

• Most of the “complicated” arithmetic is in outer loop iterations.

• Divides could be replaced, by the programmer, with shift instructions
because they involve powers of two.

• If this application were to be run on an X2000 multihypernode
system, choosing a chunk size of 8 for 4-byte data (32 bytes is the
X2000 CTIcache line size) would be appropriate.

Compiler assumptions
Compiler assumptions can produce faulty optimized code when the
source code contains:

• Iterations by zero

• Trip counts that may overflow at optimization levels +O2 and above

Descriptions of, and methods for, avoiding the items listed above are in
the following sections.

318 Chapter 8

Programming conventions for optimal code
Compiler assumptions

Incrementing by zero
The compiler assumes that whenever a variable is being incremented on
each iteration of a loop, the variable is being incremented by a
loop-invariant amount other than zero. If the compiler parallelizes a loop
that increments a variable by zero on each trip, the loop can produce
incorrect answers or cause the program to abort. This error can occur
when a variable used as an incrementation value is accidentally set to
zero. If the compiler detects that the variable has been set to zero, the
compiler does not parallelize the loop. If the compiler cannot detect the
assignment, however, the symptoms described below occur.

The following Fortran example shows two loops that increment by zero:

CALL SUB1(0)
.
.
.
SUBROUTINE SUB1(IZR)
DIMENSION A(100), B(100), C(100)
J = 1
DO I = 1, 100, IZR ! INCREMENT VALUE OF 0 IS
 ! NON-STANDARD
 A(I) = B(I)
ENDDO
PRINT *, A(11)
DO I = 1, 100
 J = J + IZR
 B(I) = A(J)
 A(J) = C(I)
ENDDO
PRINT *, A(1)
PRINT *, B(11)
END

Because IZR is an argument passed to SUB1, the compiler does not detect
that IZR has been set to zero. Both loops parallelize at
+O3 +Oparallel +Onodynsel .

The loops compile at +O3, but the first loop, which specifies the step as
part of the DO statement (or as part of the for statement in C), attempts
to parcel out loop iterations by a step of IZR . At runtime, this loop is
infinite.

Chapter 8 319

Programming conventions for optimal code
Compiler assumptions

Due to dependences, the second loop would not behave predictably when
parallelized—if it were ever reached at runtime. The compiler does not
detect the dependences because it assumes J is an induction variable.

The analogous C code follows:

float a[100],b[100],c[100];

void sub1(int izr)
{
 int i,j = 1;

for(i=0; i<100; i+=izr)
 a[i] = b[i];

printf(“%f \n”, a[11]);
for(i=0; i<100;i++) {

 j = j + izr;
 b[i] = a[j];
 a[j] = c[i];
 }

printf(“%f \n”, a[1]);
printf(“%f \n”, b[11]);

}

main()
{
 sub1(0);
}

Trip counts that may overflow
Some loop optimizations at +O2 and above may cause the variable on
which the trip count is based to overflow. (A loop’s trip count is the
number of times the loop executes.) The compiler assumes that each
induction variable is increasing (or decreasing) without overflow during
the loop. Any overflowing induction variable may be used by the compiler
as a basis for the trip count. The following sections discuss when this
overflow may occur and how to avoid it.

320 Chapter 8

Programming conventions for optimal code
Compiler assumptions

Linear test replacement
When optimizing loops, the compiler often disregards the original
induction variable, using instead a variable or value that better indicates
the actual stride of the loop. A loop’s stride is the value by which the
iteration variable increases on each iteration. By picking the largest
possible stride, the compiler reduces the execution time of the loop by
reducing the number of arithmetic operations within each iteration.

The Fortran code below contains an example of a loop in which the
induction variable may be replaced by the compiler.

 ICONST = 64
 ITOT = 0
 DO IND = 1,N
 IPACK = (IND*1024)*ICONST**2
 IF(IPACK .LE. (N/2)*1024*ICONST**2)
 > ITOT = ITOT + IPACK
 .
 .
 .
 ENDDO
 END

Executing this loop using IND as the induction variable with a stride of 1
would be extremely inefficient, so the compiler picks IPACK as the
induction variable and uses the amount by which it increases on each
iteration, 1024*642 or 222, as the stride.

The trip count (N in the example), or just trip, is the number of times the
loop executes, and the start value is the initial value of the induction
variable.

Chapter 8 321

Programming conventions for optimal code
Compiler assumptions

The following C function also contains an induction variable that may be
replaced:

#include <math.h>
int ind, ipack, iconst, itot, n;
iconst = 64;
itot = 0;
for(ind=0; ind<n; ind++) {
 ipack = (ind*1024)*pow(iconst,2);
 if(ipack < (n/2)*1024*pow(iconst,2))
 itot += ipack;
 .
 .
 .
}

Here, as in the Fortran example, ipack , rather than ind , is used as the
induction variable—again producing a stride of 222.

Linear test replacement, a standard optimization at levels +O2 and
above, normally does not cause problems. However, when the loop stride
is very large, as in the examples above, a large trip count can cause the
loop limit value (start+((trip-1)*stride)) to overflow.

In the examples above, the induction variable is a 4-byte integer, which
occupies 32 bits in memory. That means if start+((trip-1)*stride)
(1+((N-1)*222)) is greater than 231-1, the value overflows into the sign bit
and is treated as a negative number. If the stride value is negative, the
absolute value of start+((trip-1)*stride) must be not exceed 231. When a
loop has a positive stride and the trip count overflows, the loop stops
executing when the overflow occurs because the limit becomes
negative—assuming a positive stride—and the termination test fails.

Because the largest allowable value for start+((trip-1)*stride) is 231-1,
the start value is 1, and the stride is 222, the maximum trip count for the
loop can be found.

322 Chapter 8

Programming conventions for optimal code
Compiler assumptions

The stride, trip, and start values for a loop must satisfy the following
inequality:

start + ((trip - 1) * stride) ≤ 2 31

The start value is 1, so trip can be solved for as follows:

start + ((trip - 1) * stride) ≤ 2 31

1 + (trip - 1) * 2 22 ≤ 2 31

(trip - 1) * 2 22 ≤ 2 31 - 1

trip - 1 ≤ 2 9 - 2 -22

trip ≤ 2 9 - 2 -22 + 1

trip ≤ 512

The maximum value for n in the given loop, then, is 512.

If you find that certain loops give wrong answers at optimization levels
+O2 or higher, the problem may be test replacement. If you still want to
optimize these loops at +O2 or above, restructure them to force the
compiler to choose a different induction variable.

Large trip counts at +O2 and above
When a loop is optimized at level +O2 or above, its trip count must
occupy no more than a signed 32-bit storage location. The largest
positive value that can fit in this space is 231 - 1 (2,147,483,647). Loops
with trip counts that cannot be determined at compile time but that
exceed 231 - 1 at runtime will yield wrong answers.

This limitation only applies at optimization levels +O2 and above.

A loop with a trip count that overflows 32 bits can be optimized by
manually strip mining the loop.

Appendix A 323

A Standard HP compiler
directives and pragmas

The standard Hewlett-Packard compilers provide the following directives
and pragmas to control optimization levels and to inform the compiler
about program behavior:

• OPTIMIZE directives

• optimize and opt_level pragmas

• [no]inline pragmas

• allocs_new_memory pragma

• float_traps_on pragma

• [no]ptrs_strongly_typed pragmas

This appendix discusses these directives and pragmas, which can be
used in addition to the command-line optimization options described in
Appendix D, “Optimization options.” However, unlike the command-line
options, the directives and pragmas allow you to specify optimizations on
a function-by-function basis.

See Appendix B, “Exemplar compiler directives and pragmas,” for an
overview of the directives and pragmas that make up part of the
Exemplar programming model.

The HP Exemplar compilers support most of the directives and pragmas
available in the standard HP compilers. For information on those
directives and pragmas, see the appropriate manual. (The section
“Associated documents” on page xxv lists related manuals.)

324 Appendix A

Standard HP compiler directives and pragmas
Fortran OPTIMIZE directives

Fortran OPTIMIZE directives
If you wish to control compilation in finer detail than what is allowed
using command-line options, use the OPTIMIZE compiler directives. If
you use one of the OPTIMIZE directives, you must also specify a
command-line option that sets the optimization level (+O1, +O2, +O3,
+O4, or -O). You cannot use an OPTIMIZE directive to raise the
optimization level above the level specified by the command-line option;
the compiler uses the lower of the two optimization levels.

The OPTIMIZE directives control which functions are optimized and, for
Fortran 77, which set of optimizations is performed. Some directives
must be placed before the function to be optimized, while others can
appear anywhere within the function. The Fortran 77 OPTIMIZE
directives allow you to control the level of optimization as well as the
assumptions the optimizer makes when compiling a program.

If an optional [ON|OFF] is omitted, it defaults to an ON setting. Once
turned on, OPTIMIZE directives remain in effect—for all program units
that lexically follow them in the source file—until they are revoked by
another OPTIMIZE directive.

Fortran 90 OPTIMIZE directives
The HP OPTIMIZE directive enables or disables the level of
optimization that was specified on the command line for the following
program units.

The syntax and descriptions of the OPTIMIZE directives are given below.

!HP OPTIMIZE [ON|OFF]

!HP OPTIMIZE OFF

Specifies level 0 (+O0) optimizations.
!HP OPTIMIZE ON

Specifies the level of optimization set by the
command-line option +O0, +O1, +O2, +O3, +O4, or -O .

This directive is effective for all program units that follow it in your
program. It should be placed outside and before the program units it is to
affect.

Appendix A 325

Standard HP compiler directives and pragmas
Fortran OPTIMIZE directives

Fortran 77 OPTIMIZE directives
In Fortran 77, OPTIMIZE directives using the
ASSUME_NO_SIDE_EFFECTS or the ASSUME_PARM_TYPES_MATCHED
options can appear anywhere within a program unit. All other directives
must appear outside a program unit.

The options to the Fortran 77 OPTIMIZE directive are listed below:

• [ON|OFF]

• LEVEL1 [ON|OFF]

• LEVEL2 [ON|OFF]

• LEVEL2_MIN [ON|OFF]

• LEVEL2_MAX [ON|OFF]

• LEVEL3 [ON|OFF]

• LEVEL4 [ON|OFF]

• [NO]INLINE=[namelist]

• ASSUME_NO_EXTERNAL_PARMS [ON|OFF]

• ASSUME_NO_FLOATING_INVARIANT [ON|OFF]

• ASSUME_NO_HIDDEN_POINTER_ALIASING [ON|OFF]

• ASSUME_NO_PARAMETER_OVERLAPS [ON|OFF]

• ASSUME_NO_SHARED_COMMON_PARMS [ON|OFF]

• ASSUME_NO_SIDE_EFFECTS [ON|OFF]

• ASSUME_PARM_TYPES_MATCHED [ON|OFF]

The syntax and descriptions of the OPTIMIZE directives are given below.

$OPTIMIZE OFF

Specifies level 0 (+O0) optimizations. This directive is
the default.

$OPTIMIZE ON

Specifies the level of optimization set by the
command-line option +O0, +O1, +O2, +O3, +O4, or -O . If
the level of optimization was not set by an option, this
directive is ignored.

326 Appendix A

Standard HP compiler directives and pragmas
Fortran OPTIMIZE directives

$OPTIMIZE LEVEL1 [ON|OFF]

Turns on or off level 1 (+O1) optimizations (optimizes
only within each basic block).

$OPTIMIZE LEVEL2 [ON|OFF]

Turns on or off level 2 (+O2) optimizations, with the
following ASSUME settings:
ASSUME_NO_PARAMETERS_OVERLAPS ON
ASSUME_PARM_TYPES_MATCHED ON
ASSUME_NO_EXTERNAL_PARMS ON
ASSUME_NO_SHARED_COMMON_PARMS ON
ASSUME_NO_SIDE_EFFECTS OFF
ASSUME_NO_FLOATING_INVARIANT ON
ASSUME_NO_HIDDEN_POINTER_ALIASING ON

$OPTIMIZE LEVEL2_MIN [ON|OFF]

Turns on or off level 2 (+O2) optimizations with all the
ASSUME settings at OFF.

$OPTIMIZE LEVEL2_MAX [ON|OFF]

Turns on or off level 2 (+O2) optimizations with all the
ASSUME settings at ON.

$OPTIMIZE LEVEL3 [ON|OFF]

Turns on or off level 3 (+O3) optimizations.
$OPTIMIZE LEVEL4 [ON|OFF]

Turns on or off level 4 (+O4) optimizations.

Appendix A 327

Standard HP compiler directives and pragmas
Fortran OPTIMIZE directives

$OPTIMIZE [NO]INLINE[= namelist]
The compiler directive $OPTIMIZE [NO]INLINE is
analogous to the +O[no]inline command-line option:
it is used either to request inlining or to disable it.
(Inlining can occur only at optimization levels +O3 and
above; it is enabled by default whenever you specify the
+O3 or +O4 option.)
The syntax for using this directive is:
$OPTIMIZE [NO]INLINE[= namelist]
where
namelist is a comma-separated list of routine

names.
When you use the $OPTIMIZE INLINE directive to
enable inlining, the optimizer treats the directive as a
request to inline. If you specify a list of procedure
names with the directive and inlining is already on by
default (that is, you have also used the +O3 or +O4
option), the optimizer gives special consideration to the
named procedures.
When you use the $OPTIMIZE NOINLINE directive to
disable inlining and do not specify a list of names, the
optimizer disables inlining for all procedures it
encounters thereafter. If you specify a list of procedure
names, the optimizer only disables inlining for the
named procedures.

$OPTIMIZE ASSUME_NO_EXTERNAL_PARMS [ON|OFF]

Turns on or off the ASSUME setting that none of the
parameters passed to the current procedure are from
an external space. (External space refers to space that
is different from the user’s own data space.)
Parameters can come from another space if they come
from operating system space or if they are in a space
shared by other users. If
ASSUME_NO_EXTERNAL_PARMS is OFF, the compiler is
unable to perform certain optimizations, such as
array-accessing optimization.

$OPTIMIZE ASSUME_NO_FLOATING_INVARIANT [ON|OFF]

Turns on or off the ASSUME setting that no
loop-invariant floating-point operations can cause an
exception if executed outside the loop.

328 Appendix A

Standard HP compiler directives and pragmas
Fortran OPTIMIZE directives

$OPTIMIZE ASSUME_NO_HIDDEN_POINTER_ALIASING [ON|OFF]

Turns on or off the ASSUME setting that Fortran
pointers are not used to:

• Save Argument Addresses Across Procedure Calls
• Access variables whose addresses have not been

explicitly taken with an address-returning intrinsic
This directive should be turned OFF when any of the
following conditions are true:

• A subroutine or function saves the address of any of
its arguments between invocations (either in
COMMON or in SAVE variables).

• Any function returns the address of any of its
arguments.

• A variable is modified through a pointer access even
though its address was not explicitly taken with one
of the address-returning intrinsics (%LOC, LOC,
BADDRESS, IADDR). For example, assume that the
address of a variable in COMMON is taken and the
result incremented by some number of bytes. It is
then assigned to a pointer in order to update
another variable in that COMMON block. In such
cases, the other variable is modified through a
pointer without its address being explicitly taken.

Turning the
ASSUME_NO_HIDDEN_POINTER_ALIASING setting
OFF can increase the time it takes the compiler to
optimize the program.

$OPTIMIZE ASSUME_NO_PARAMETER_OVERLAPS [ON|OFF]

Turns on or off the ASSUME setting that no actual
parameters have overlapping storage in the calling
program.

Appendix A 329

Standard HP compiler directives and pragmas
Fortran OPTIMIZE directives

$OPTIMIZE ASSUME_NO_SHARED_COMMON_PARMS [ON|OFF]

Turns on or off the ASSUME setting that none of the
parameters passed to the current procedure are from a
shared COMMON block. If there is a shared COMMON block
parameter, the compiler needs to be informed of it so
that the compiler always returns to memory to access
the values of these variables instead of keeping them
as register variables. This directive should also be used
when all of the following are true:

• The parameter passed to the current procedure is
part of a COMMON block used by that procedure.

• The parameter is named differently than the
variable name it has in the COMMON block.

• The parameter is reassigned with the same value
within the procedure.

$OPTIMIZE ASSUME_NO_SIDE_EFFECTS [ON|OFF]

Turns on or off the ASSUME setting that the current
procedure changes only local variables. It does not
change any variables in COMMON, nor does it change
parameters.

$OPTIMIZE ASSUME_PARM_TYPES_MATCHED [ON|OFF]

Turns on or off the ASSUME setting that formal and
actual parameter pairs in the current procedure unit
match in type.

330 Appendix A

Standard HP compiler directives and pragmas
C and C++ pragmas

C and C++ pragmas
The compiler pragmas discussed in this section, available in both the C
and aC++ compilers, allow you to control compilation in finer detail than
what is possible using command-line options. These pragmas also enable
you to give information about your program to the compiler.

Pragmas cannot cross line boundaries and the word pragma must be in
lowercase letters. The optimizer pragmas discussed in this section may
not appear inside a function.

Optimizer control pragmas
The OPTIMIZE and opt_level pragmas control which functions are
optimized and which set of optimizations are performed. These pragmas
can be placed before any function definition and will override any
previous pragma. These pragmas cannot raise the optimization level
above the level specified on the command line. Once turned on, these
directives remain in effect for the remainder of the file or until
superseded by another pragma. For these pragmas to work, the source
must be compiled with one of the optimization level options (+O0, +O1,
+O2, +O3, +O4, or -O).

The opt_level 1 and opt_level 2 pragmas provide more control over
optimization than the +O1 and +O2 compiler options because these
pragmas can be used to raise or lower optimization on a
function-by-function basis inside the source file using different levels for
different functions. The opt_level 3 and opt_level 4 pragmas can
only be used at the beginning of the source file.

Table 14 summarizes the values of OPTIMIZE and opt_level .

Appendix A 331

Standard HP compiler directives and pragmas
C and C++ pragmas

Table 14 C and C++ optimizer control pragmas

*opt_level 3 and opt_level 4 must be specified at the top of the source file.

Pragma* Description

#pragma OPTIMIZE ON Turns optimization on
(the compiler uses the optimization level
specified on the command line)

#pragma OPTIMIZE OFF Turns optimization off

#pragma opt_level 1 Optimize only within small blocks of code

#pragma opt_level 2 Optimize within each procedure

#pragma opt_level 3 Optimize across all procedures within a
source file

#pragma opt_level 4 Optimize across all procedures within a
program

332 Appendix A

Standard HP compiler directives and pragmas
C pragmas

C pragmas
The compiler pragmas discussed in this section, available only in
the C compiler, allow you to control compilation in finer detail than what
is possible using command-line options. These pragmas also enable you
to give information about your program to the compiler.

Pragmas cannot cross line boundaries and the word pragma must be in
lowercase letters. The optimizer pragmas discussed in this section may
not appear inside a function.

[no]inline pragmas
The syntax for the [no]inline pragma is:

#pragma [no]inline [namelist]

where

namelist is a comma-separated list of function names.

When inline is specified without namelist, any function can be inlined.
When specified with namelist, the functions given in namelist are
candidates for inlining.

The noinline pragma disables inlining for all functions or those
functions specified in namelist.

For example, to specify inlining of the two subprograms checkstat and
getinput , use:

#pragma inline checkstat, getinput

Appendix A 333

Standard HP compiler directives and pragmas
C pragmas

To specify that an infrequently called routine should not be inlined when
compiling at +O3 or +O4, use:

#pragma noinline opendb

See the related +O[no]inline optimization option in the section
“+O[no]inline[= namelist] ” on page 373.

allocs_new_memory pragma
The compiler gathers information about each function (such as
information about function calls, variables, parameters, and return
values) and passes this information to the optimizer. The
allocs_new_memory pragma tells the optimizer to make assumptions
it cannot normally make, resulting in improved compile-time and
runtime speed. The pragma changes the default information the
compiler collects.

The allocs_new_memory function_name pragma states that the
function function_name returns a pointer to new memory that either it
allocates or a routine that it calls allocates. The new memory must be
memory that was either newly allocated or was previously freed and is
now reallocated. For example, the standard routines malloc() and
calloc() satisfy this requirement.

If used, the allocs_new_memory pragma should appear before the first
function defined in a file and is in effect for the entire file.

The allocs_new_memory pragma has the form:

#pragma allocs_new_memory namelist

where

namelist is a comma-separated list of function names.

334 Appendix A

Standard HP compiler directives and pragmas
C pragmas

Large applications might have routines that are layered above
malloc() and calloc() . These interface routines make the calls to
malloc() and calloc() , initialize the memory, and return the pointer
that malloc() or calloc() returns. For example, consider the program
below:

struct_type *get_new_record(void) {
 struct_type *p;

 if ((p=malloc(sizeof(*p))) == NULL) {
 printf("get_new_record():out of memory\n");
 abort();
 }
 else {
 /* initialize the struct */
 .
 .
 .
 return p;
 }
}

The routine get_new_record falls under this category, and can be
included in namelist in the allocs_new_memory namelist pragma.

Appendix A 335

Standard HP compiler directives and pragmas
C pragmas

float_traps_on pragma
This pragma informs the compiler that the function(s) may enable
floating-point trap handling. When the compiler is so informed, it will
not perform loop-invariant code motion on floating-point operations in
the function(s) named in the pragma. This pragma is required for proper
code generation when floating-point traps are enabled.

The pragma has the following form:

#pragma float_traps_on [namelist]

where

namelist is a comma-separated list of function names.

For example:

#pragma float_traps_on xyz,abc

informs the compiler and optimizer that xyz and abc have floating-point
traps turned on and therefore loop-invariant code motion should not be
performed.

[no]ptrs_strongly_typed pragmas
The ptrs_strongly_typed pragma allows you to specify when a
subset of types are type-safe. This provides a finer level of control than
the +O[no]ptrs_strongly_typed command-line option that is
discussed in Appendix D, “Optimization options.”

The ptrs_strongly_typed pragma has the following form:

#pragma ptrs_strongly_typed begin
 ...
#pragma ptrs_strongly_typed end

Similarly, the noptrs_strongly_typed pragma has the form:

#pragma noptrs_strongly_typed begin
 ...
#pragma noptrs_strongly_typed end

The type-safe assumptions apply to all types that are defined between a
#pragma ptrs_strongly_typed begin /end pair. These pragmas are
not allowed to nest. For each begin , an associated end must be defined
in the compilation unit.

336 Appendix A

Standard HP compiler directives and pragmas
C pragmas

The pragma takes precedence over the +O[no]ptrs_strongly_typed
command-line option. Although, sometimes both are required as shown
in the example below.

In this example only two types, pointer-to-int and pointer-to-float will
be assumed to not be type-safe. Assume the following program is named
foo.c:

double *d;
.
.
.
#pragma noptrs_strongly_typed begin
int *i;
float *f;
#pragma noptrs_strongly_typed end
.
.
.
main(){
.
.
.
}

If foo.c is compiled as in the following command line:

% cc +Optrs_strongly_typed foo.c

then all types are assumed to be type-safe except the types bracketed by
#pragma noptrs_strongly_typed .

Appendix B 337

B Exemplar compiler
directives and pragmas

This appendix presents an alphabetical list of all the Fortran 90
directives, Fortran 77 directives, and C pragmas that are part of the
Exemplar programming model. See Appendix A, “Standard HP compiler
directives and pragmas,” for information on additional directives and
pragmas available in the Exemplar compilers.

The HP aC++ compiler does not support the pragmas described in this
appendix; however, it does support the typedefs (barrier_t and
gate_t) and storage class specifiers (far_shared , near_shared ,
node_private , and thread_private) explained in this appendix.

Overview
This appendix provides a brief overview of the directives and pragmas
available in the Exemplar programming model. More specific
information and examples can be found elsewhere in this guide. The
Fortran directives not supported as C pragmas are expressed in C as
either storage class extensions (thread_private , etc.) or as typedefs
(gate_t , barrier_t , etc.) in the spp_prog_model.h file and are
described in Chapter 5, “Memory classes,” and Chapter 6, “Advanced
shared-memory programming.”

NOTE The forms of the directives and pragmas discussed in this appendix differ
from the forms for the directives and pragmas described in Appendix A,
“Standard HP compiler directives and pragmas.”

The form of an Exemplar Fortran compiler directive is:

C$DIR directive-list

The form of an Exemplar C pragma is:

#pragma _CNX directive-list

where

directive-list
is a comma-separated list of one or more of the
directives/pragmas described in this chapter.

338 Appendix B

Exemplar compiler directives and pragmas
Directives and pragmas

Directive names are presented here in lowercase; they may be specified
in either case in both languages, but #pragma must always appear in
lowercase in C. In the sections that follow, namelist represents a
comma-separated list of names. These names can be variables, arrays, or
COMMON blocks. In the case of a COMMON block, its name must be enclosed
within slashes. The occurrence of a lowercase n or m is used to indicate
an integer constant. Occurrences of gate_var are for variables that have
been, or are being, defined as gates. Any parameters that appear within
square brackets ([]) are optional.

Directives and pragmas
Brief descriptions of the available directives and pragmas follow in this
section. Where appropriate, cross references to chapters containing more
detailed information are included.

align_cti(namelist)
This directive or pragma aligns the variables and arrays listed in
namelist on CTIcache boundaries. This allows for more efficient data
reuse. The CTIcache is 32 bytes on X2000 systems. (V2200 servers and
nonscalable SMPs do not use a CTIcache.)

barrier(namelist)
This Fortran directive denotes a list of variables, as given in namelist,
that will be used as the synchronization variables for the barrier
routines. This does not imply any synchronization in itself, it is simply
defining the barrier variables. In C, barrier is a typedef (barrier_t),
rather than a pragma. For more information, refer to Chapter 6,
“Advanced shared-memory programming.”

Appendix B 339

Exemplar compiler directives and pragmas
Directives and pragmas

begin_tasks[(attribute_list)]
This directive or pragma defines the beginning of a section (or sections;
see next_task) of code that will be executed as an independent, parallel
task. Each task is executed by a separate thread. begin_tasks must
have an accompanying end_tasks in the same program unit.

The optional attribute_list can be any of the following legal combinations
(m is an integer constant):

• threads (default)

• nodes

• dist

• ordered

• max_threads =m

• threads, ordered

• nodes, ordered

• dist, ordered

• threads, max_threads =m

• nodes, max_threads =m

• dist, max_threads =m

• ordered, max_threads =m

• threads, ordered, max_threads =m

• nodes, ordered, max_threads =m

• dist, ordered, max_threads =m

Attributes may be listed in any order. The compilers flag any attribute
combinations other than those listed above with a warning and ignore
the directive.

Refer to Chapter 4, “Basic shared-memory programming,” and
Chapter 6, “Advanced shared-memory programming,” for a complete
discussion of parallel tasking.

340 Appendix B

Exemplar compiler directives and pragmas
Directives and pragmas

block_loop[(block_factor= n)]

This directive or pragma indicates a specific loop to block, and optionally,
the block factor n (n must be an integer constant greater than or equal
to 2) that will be used in the compiler’s internal computation of loop nest
based data reuse. If no block_factor is specified, the compiler uses a
heuristic to determine the block_factor . Refer to Chapter 3,
“Compiler optimizations,” for more information on blocking.

block_shared(allocatable_array_namelist)
This Fortran directive is used to declare arrays as being of type
block_shared . Block-shared arrays are sized to be an integral multiple
of the page size. The pages of the array are distributed in same-size
blocks across the hypernodes on which the process is executing in the
system. If the user-specified size is not an integral multiple of
page size × num_nodes() , then the size is automatically rounded up to
meet this criterion. Refer to Chapter 5, “Memory classes,” for more
information.

critical_section[(gate_var)]

This directive or pragma defines the beginning of a code block in which
only one thread may be executing at a time. The end of the code block
must be indicated by an end_critical_section directive or pragma,
which must appear in the same flow of control within the same program
unit. The optional gate_var can be used to differentiate between parallel
tasks. Refer to Chapter 4, “Basic shared-memory programming,” and
Chapter 6, “Advanced shared-memory programming,” for more
information.

Appendix B 341

Exemplar compiler directives and pragmas
Directives and pragmas

dynsel[(trip_count=n)]

This directive or pragma enables workload-based dynamic selection for
the immediately following loop. trip_count represents either the
thread_trip_count or node_trip_count attribute, and n is an
integer constant. When thread_trip_count = n is specified, the
serial version of the loop is run if the iteration count is less than n;
otherwise, the thread-parallel version is run. When
node_trip_count = n is specified, the serial version of the loop is run
if the iteration count is less than n; otherwise, the node-parallel version
is run—assuming +Onodepar is specified. Refer to Chapter 3, “Compiler
optimizations” for more information on dynamic selection.

end_critical_section

This directive or pragma defines the end of the critical section that was
begun with the critical_section directive or pragma.
critical_section and end_critical_section must appear as a
pair. Refer to Chapter 4, “Basic shared-memory programming,” and
Chapter 6, “Advanced shared-memory programming,” for more
information.

end_ordered_section

This directive or pragma defines the end of the ordered section that was
begun with the ordered_section directive or pragma.
ordered_section and end_ordered_section must appear as a pair.
Refer to Chapter 6, “Advanced shared-memory programming,” for more
information on ordered sections.

end_parallel

This directive or pragma signifies the end of a parallel region. The
parallel directive signifies the beginning of a parallel region. Refer to
Chapter 4, “Basic shared-memory programming,” for more information.

342 Appendix B

Exemplar compiler directives and pragmas
Directives and pragmas

end_tasks

This directive or pragma terminates the specification of parallel tasks
indicated by begin_tasks and next_task . It must appear at the end of
the last section of parallel code defined by these directives or pragmas.
All of these must appear in the same program unit. Refer to Chapter 4,
“Basic shared-memory programming,” and Chapter 6, “Advanced
shared-memory programming,” for more information.

far_shared(namelist)
This Fortran directive causes the compiler to place the data objects in
namelist (variables, arrays, or COMMON blocks) into far_shared memory.
far_shared memory is the most general form that is distributed on a
page basis across the memories of all hypernodes in a system. The
far_shared data objects of a process are addressable by all threads of
that process. In C and C++, far_shared is a storage class specifier.
Refer to Chapter 5, “Memory classes,” for more information on memory
classes.

far_shared_pointer(namelist)
This Fortran directive causes the compiler to place the
(compiler-generated, hidden) pointers to the allocated objects (specified
in namelist) in far_shared memory, regardless of the memory classes to
which the respective objects are allocated.

This directive applies only to Fortran 90 allocatable data objects and to
Fortran 90-style allocatable data objects used in HP Fortran 77
programs. Refer to Chapter 5, “Memory classes,” for more information on
memory classes.

gate(namelist)
This Fortran directive specifies a list of gate variables that will be
subsequently used in a critical section, ordered section, or passed as an
argument to the synchronization intrinsics. In C and C++, gate is a
typedef (gate_t), rather than a pragma. Refer to Chapter 6, “Advanced
shared-memory programming,” for more information.

Appendix B 343

Exemplar compiler directives and pragmas
Directives and pragmas

loop_parallel[(attribute_list)]
This directive or pragma is an explicit instruction to the compiler to
parallelize the immediately following loop. The loop iterations will be run
in an indeterminate order unless the optional ordered attribute
appears. The user is responsible for any required data privatization and
loop synchronization, as described in Chapter 4, “Basic shared-memory
programming,” and Chapter 6, “Advanced shared-memory
programming.” The optional attribute_list can be any of the following
combinations (n and m are integer constants):

• threads (default)

• nodes

• dist

• ordered

• max_threads= m

• chunk_size= n

• threads, ordered

• nodes, ordered

• dist, ordered

• threads, max_threads= m

• nodes, max_threads= m

• dist, max_threads= m

• ordered, max_threads= m

• threads, chunk_size= n

• nodes, chunk_size= n

• dist, chunk_size= n

• threads, ordered, max_threads= m

• nodes, ordered, max_threads= m

• dist, ordered, max_threads= m

• chunk_size= n, max_threads= m

• threads, chunk_size= n, max_threads= m

344 Appendix B

Exemplar compiler directives and pragmas
Directives and pragmas

• nodes, chunk_size= n, max_threads= m

• dist, chunk_size= n, max_threads= m

• ivar= indvar

The ivar= indvar attribute is:

• Required for all loops in C and for DO WHILE and hand-rolled loops in
Fortran

• Optional for Fortran DO loops

• Compatible with any other attribute

Attributes may be listed in any order. The compilers flag any attribute
combinations other than those listed above with a warning and ignore
the directive.

Refer to Chapter 6, “Advanced shared-memory programming,” for more
information.

loop_private(namelist)
This directive or pragma declares a list of variables and/or arrays private
to the immediately following loop. No values may be carried into the loop
by loop_private variables. To be loop private, the variables and/or
arrays must be assigned before they are used on each iteration of the
immediately following loop. These private data items are distinct from
the shared items of the same name that exist outside the loop. Values
assigned to loop_private variables on the final iteration (that is, the
nth iteration of a loop with n iterations) may be saved into the shared
variables of the same name if the save_last directive or pragma also
appears on this loop. If save_last is not used, then the value of any
shared variable declared to be loop_private is undefined at loop
termination. Refer to Chapter 4, “Basic shared-memory programming,”
and Chapter 6, “Advanced shared-memory programming,” for more
information.

Appendix B 345

Exemplar compiler directives and pragmas
Directives and pragmas

near_shared(namelist)
When applied to static variables at compile-time, this Fortran directive
will cause all pages of the data objects in namelist to be mapped to
physical pages on logical hypernode 0. If applied to allocatable arrays,
then the pages of such arrays will be mapped to physical pages on the
hypernode of the allocating thread. near_shared data can be addressed
by any thread of a process on any hypernode in the system but it is
“closer” (in terms of access latency) to the threads on the hypernode that
allocates the data. In C and C++, near_shared is a storage class
specifier. Refer to Chapter 5, “Memory classes,” for more information on
memory classes.

near_shared_pointer(namelist)
This Fortran directive causes the compiler to place the
(compiler-generated, hidden) pointers to the allocated objects (specified
in namelist) in near_shared memory, regardless of the memory classes
to which the objects are allocated.

This directive applies only to Fortran 90 allocatable data objects and to
Fortran 90-style allocatable data objects used in HP Fortran 77
programs. Refer to Chapter 5, “Memory classes,” for more information on
memory classes.

next_task

This directive or pragma starts a block of code following a begin_tasks
block that will be executed as a parallel task. The end of the code block is
marked by another next_task or by an end_tasks directive or pragma.

This directive must appear within a begin_tasks and end_tasks pair.
There is no limit on the number of next_task directives that can
appear. Refer to Chapter 4, “Basic shared-memory programming,” and
Chapter 6, “Advanced shared-memory programming,” for more
information.

no_block_loop

This directive or pragma disables loop blocking on the immediately
following loop. Refer to Chapter 3, “Compiler optimizations,” for more
information on loop blocking.

346 Appendix B

Exemplar compiler directives and pragmas
Directives and pragmas

no_distribute

This directive or pragma disables loop distribution for the immediately
following loop. Refer to Chapter 3, “Compiler optimizations,” for more
information on loop distribution.

no_dynsel

This directive or pragma disables workload-based dynamic selection for
the immediately following loop. Refer to Chapter 3, “Compiler
optimizations,” for more information on dynamic selection.

no_loop_dependence(namelist)
This directive or pragma informs the compiler that the arrays in
namelist do not have any dependences for iterations of the immediately
following loop. Use no_loop_dependence for arrays only; use
loop_private to indicate dependence-free scalar variables.

This directive or pragma causes the compiler to ignore any dependences
that it perceives to exist. This can enhance the compiler’s ability to
optimize the loop, including the possibility of parallelization.

Refer to Chapter 3, “Compiler optimizations,” and Chapter 8,
“Programming conventions for optimal code,” for more information.

no_loop_transform

This directive or pragma prevents the compiler from performing
reordering transformations on the following loop. The compiler will not
distribute, fuse, block, interchange, unroll, unroll and jam, or parallelize
a loop on which this directive appears. Refer to Chapter 3, “Compiler
optimizations,” for more information.

no_parallel

This directive or pragma prevents the compiler from generating parallel
code for the immediately following loop. Refer to Chapter 3, “Compiler
optimizations,” for more information.

Appendix B 347

Exemplar compiler directives and pragmas
Directives and pragmas

no_side_effects(funclist)
This directive or pragma informs the compiler that the functions
appearing in funclist have no side effects wherever they appear lexically
following the directive. Side effects include modifying a function
argument, modifying a Fortran COMMON variable, performing I/O, or
calling another routine that does any of the above. The compiler can
sometimes eliminate calls to procedures that have no side effects; also
the compiler may be able to parallelize loops with calls when informed
that the called routines do not have side effects.

no_unroll_and_jam

This directive or pragma disables loop unroll and jam for the immediately
following loop. Refer to the section“Loop unroll and jam” on page 95 for
more information.

node_private(namelist)
This Fortran directive causes the variables and arrays specified in
namelist to be replicated in the physical memory of each hypernode on
which the process is executing. Thus, while each data object has a single
image in virtual memory, it maps to a different physical location on each
hypernode. The threads of a process within a hypernode all share access
to the copy on their hypernode and cannot access the copies on other
hypernodes. In C and C++, node_private is a storage class specifier.
Refer to Chapter 5, “Memory classes,” for more information.

node_private_pointer(namelist)
This Fortran directive causes the compiler to place the
(compiler-generated, hidden) pointers to the allocated objects (specified
in namelist) in node_private memory, regardless of the memory
classes to which the objects are allocated.

This directive applies only to Fortran 90 allocatable data objects and to
Fortran 90-style allocatable data objects used in HP Fortran 77
programs. Refer to Chapter 5, “Memory classes,” for more information.

348 Appendix B

Exemplar compiler directives and pragmas
Directives and pragmas

ordered_section(gate_var)

This directive or pragma defines the beginning of an ordered section. An
ordered section is the same as a critical section (a code block in which
only one thread may be executing at a time) with the additional
restriction that the threads must pass through the ordered section in
iteration order. The end of the code block must be indicated by an
end_ordered_section directive or pragma. Ordered sections must
appear within the control flow of a loop_parallel(ordered)
directive. Refer to Chapter 6, “Advanced shared-memory programming,”
for more information.

parallel[(attribute_list)]
This directive or pragma signifies the beginning of a parallel region of
code. All code up to the following end_parallel directive or pragma
will be run on all available threads. No loop transformations, data
privatization, or parallelization analysis will be performed by the
compiler on the code in the region.

The optional attribute_list can be any of the following legal combinations
(m is an integer constant):

• threads (default)

• nodes

• max_threads= m

• threads, max_threads= m

• nodes, max_threads= m

Attributes may be listed in any order. The compilers flag any attribute
combinations other than those listed above with a warning and ignore
the directive.

Refer to Chapter 4, “Basic shared-memory programming,” for more
information.

Appendix B 349

Exemplar compiler directives and pragmas
Directives and pragmas

parallel_private(namelist)
This directive or pragma declares a list of variables or arrays private to
the immediately following parallel region. It serves the same purpose for
parallel regions that task_private serves for tasks. The privatized
variables and arrays will not carry their values beyond the
end_parallel directive or pragma. Refer to Chapter 4, “Basic
shared-memory programming,” for more information.

prefer_parallel[(attribute_list)]
This directive or pragma instructs the compiler to parallelize the
following loop but only if it is safe to do so. A loop is safe to parallelize if
it has an iteration count that can be determined at runtime before loop
invocation, and contains no loop-carried dependences (LCDs), procedure
calls, or I/O operations. Refer to Chapter 4, “Basic shared-memory
programming,” for more information.

The optional attribute_list can be any of the following combinations (n
and m are integer constants):

• threads (default)

• nodes

• dist

• max_threads= m

• chunk_size= n

• threads, max_threads= m

• nodes, max_threads= m

• dist, max_threads= m

• threads, chunk_size= n

• nodes, chunk_size= n

• dist, chunk_size= n

• chunk_size= n, max_threads= m

• threads, chunk_size= n, max_threads= m

• nodes, chunk_size= n, max_threads= m

• dist, chunk_size= n, max_threads= m

350 Appendix B

Exemplar compiler directives and pragmas
Directives and pragmas

Attributes may be listed in any order. The compilers flag any attribute
combinations other than those listed above with a warning and ignore
the directive.

reduction(namelist)
This directive or pragma—which is only to be used with
loop_parallel —specifies that the scalar variables in the
comma-separated namelist are involved in reductions. The reduction
directive and pragma are used to inform the compiler of reductions in
loop_parallel loops. Once the compiler is informed of the reductions,
the compiler generates code to perform the reduction while parallelizing
the loop—assuming no other parallelization inhibitors are present in the
loop. Refer to the section “Reductions” on page 114 for more information.

save_last[(list)]
This directive or pragma specifies that the variables in the
comma-separated list that are also named in an associated
loop_private(namelist) directive or pragma must have their last
values saved into the “shared” variable of the same name at loop
termination. (A variable’s last value in a loop of n iterations is the value
it is assigned in the nth iteration.)

If the optional list is not used, save_last specifies that all variables
named in an associated loop_private(namelist) directive or pragma
must have their last values saved into the “shared” variable of the same
name at loop termination.

If save_last is not specified then the values in any privatized variables
or arrays are indeterminate at loop termination. Refer to Chapter 6,
“Advanced shared-memory programming,” for more information.

scalar

This directive or pragma prevents the compiler from performing
reordering transformations on the following loop. The compiler will not
distribute, fuse, block, interchange, unroll, unroll and jam, or parallelize
a loop on which this directive appears.

The no_loop_transform directive or pragma provides the same
functionality as the scalar directive or pragma and is recommended in
place of the scalar directive or pragma.

Appendix B 351

Exemplar compiler directives and pragmas
Directives and pragmas

sync_routine(routinelist)
This directive or pragma indicates to the compiler that the routines
listed in routinelist are user-defined synchronization routines, so that the
compiler does not attempt to move code across these routine calls. Use
sync_routine anytime you hide a call to a compiler synchronization
function inside another routine call, or anytime you use CPSlib functions
for synchronization.

sync_routine is only effective for the listed routines in the file in which
it appears.

task_private(namelist)
This directive or pragma will privatize the variables and arrays specified
in namelist for each task specified in the immediately following
begin_tasks /end_tasks block. If a task_private data object is
referenced within a task, it must have been assigned a value previously
in that task. The privatized variables and arrays do not carry their
values beyond the end_tasks directive or pragma. Refer to Chapter 4,
“Basic shared-memory programming,” and Chapter 6, “Advanced
shared-memory programming,” for more information.

thread_private(namelist)
This Fortran directive will cause the variables and arrays specified in
namelist to be treated as being thread_private . thread_private
data objects map to unique node_private addresses for each thread of
a process. In C and C++, thread_private is a storage class specifier.
Refer to Chapter 5, “Memory classes,” for more information.

thread_private_pointer(namelist)
This Fortran directive causes the compiler to place the
(compiler-generated, hidden) pointers to the allocated objects (specified
in namelist) in thread_private memory, regardless of the memory
classes to which the objects are allocated.

This directive applies only to Fortran 90 allocatable data objects and to
Fortran 90-style allocatable data objects used in HP Fortran 77
programs. Refer to Chapter 5, “Memory classes,” for more information.

352 Appendix B

Exemplar compiler directives and pragmas
Directives and pragmas

unroll_and_jam[(unroll_factor= n)]

This directive or pragma causes one or more noninnermost loops in the
immediately following nest to be partially unrolled (to a depth of n if
unroll_factor is specified), then fuses the resulting loops back together.
It must be placed on a loop that ends up being noninnermost after any
compiler-initiated interchanges. Refer to the section“Loop unroll and jam”
on page 95 for more information.

Appendix C 353

C SGI directives

This appendix describes SGI directives that are supported in
HP Fortran 90. It also provides a mapping between SGI directives and
Exemplar directives. This appendix does not address any of the
parallelization pragmas from SGI’s Power C.

SGI Directives in HP Fortran 90
HP Fortran 90 supports the SGI compiler directives listed in this section
to facilitate compiling and running SGI-native Fortran codes on
HP platforms.

The following SGI directives are supported by HP Fortran 90.

Table 15 SGI Directives

These SGI directives are supported with the restrictions noted in the
following descriptions.

ASSERT DO(SERIAL)

Forces the immediately following loop to run serially (not in parallel).

Syntax
!*$* ASSERT DO(SERIAL)

The prefix !*$* may be specified as C*$* in fixed-format programs.

{!|C}*$*ASSERT DO {!|C}*$*ASSERT DO PREFER

{!|C}$DOACROSS {!|C}*$*[NO]VECTORIZE

{!|C}*$*NOINLINE

354 Appendix C

SGI directives
SGI Directives in HP Fortran 90

ASSERT DO(CONCURRENT)

Instructs the compiler to ignore any assumed data dependences in the
immediately following loop. Unless known data dependences exist in the
loop, the compiler parallelizes the loop when the directive
ASSERT DO(CONCURRENT) is specified.

Syntax
!*$* ASSERT DO(CONCURRENT)

The prefix !*$* may be specified as C*$* in fixed-format programs.

ASSERT DO(VECTOR)

Causes the compiler to attempt to replace certain loops with calls to the
math library whenever possible. This directive applies to the
immediately following loop (or set of nested loops).

You must specify the +Ovectorize option for this directive to be
effective.

Syntax
!*$* ASSERT DO(VECTOR)

The prefix !*$* may be specified as C*$* in fixed-format programs.

ASSERT DO PREFER(CONCURRENT)

Causes the immediately following DO loop to be run in parallel if no
dependences or other conditions prevent the compiler from parallelizing
it.

Syntax
!*$*ASSERT DOPREFER(CONCURRENT)

The prefix !*$* may be specified as C*$* in fixed-format programs.

Appendix C 355

SGI directives
SGI Directives in HP Fortran 90

ASSERT DO PREFER(SERIAL)

Forces the immediately following DO loop to run in serial (not parallel).

Syntax
!*$* ASSERT DO PREFER(SERIAL)

The prefix !*$* may be specified as C*$* in fixed-format programs.

DOACROSS

The C$DOACROSS directive causes the compiler to generate parallel code
for the immediately following DO loop.

Syntax
!$DOACROSS [clause [, clause] ...]

The prefix !$ may be specified as C$ in fixed-format programs.

clause can have the following values:

• IF(expression)

When clause is IF , the logical expression (expression) determines
whether the immediately following DO loop is parallelized. If
expression evaluates to true, the loop is parallelized. If expression is
false, it is run serially.

• SHARE(namelist)

For SHARE, variables listed in namelist, the same copy of the variable
is used for all iterations of the loop.

• LOCAL(namelist)

For LOCAL, variables listed in namelist, an uninitialized copy of the
variable is used for each iteration of the loop.

• LASTLOCAL(namelist)

LASTLOCAL specifies that variables in namelist have their final
values from the last iteration of the loop saved, for possible use
following the loop (however, an uninitialized copy of the variable is
used for each iteration of the loop).

356 Appendix C

SGI directives
SGI Directives in HP Fortran 90

• MP_SCHEDTYPE=schedtype

NOTE The MP_SCHEDTYPE clause is not supported in HP Fortran 90.

• CHUNK=n

The CHUNK clause causes the loop to be divided into sections of n
iterations, where n is the value specified. Each group of n iterations is
executed independently. Once a process completes a group of
iterations, it begins on the next available set of iterations.

(Note that because the MP_SCHEDTYPE clause is not supported, when
the CHUNK clause is specified a scheduling type of DYNAMIC is
assumed.)

• REDUCTION(scalarlist)

NOTE The REDUCTION clause is not supported in HP Fortran 90.

NOINLINE [(routinelist)]
Specifies that the listed routines are not to be inlined.

Syntax
!*$*NOINLINE [(routinelist)] {HERE|ROUTINE|GLOBAL}

The prefix !*$* may be specified as C*$* in fixed-format programs.

routinelist is a comma-separated list of routine names. If routinelist is
not specified, the directive applies to all routines.

If HERE is specified, the directive applies only to the next line of code.

ROUTINE indicates that occurrences of the listed routines should not be
inlined within the current routine.

GLOBAL causes the listed routines to not be inlined throughout the entire
source file.

Appendix C 357

SGI directives
SGI directives and their Exemplar equivalents

[NO]VECTORIZE

Causes the compiler to attempt to replace certain loops with calls to the
math library whenever possible. This directive applies to the
immediately following loop (or set of nested loops).

You must specify the +Ovectorize option for this directive to be
effective.

Syntax
!*$* [NO]VECTORIZE

The prefix !*$* may be specified as C*$* in fixed-format programs.

SGI directives and their Exemplar
equivalents
This section presents the SGI Fortran 77 directives that can be mapped
to Exemplar directive(s) and/or command-line options. Each SGI
directive is briefly described and its corresponding Exemplar Fortran
directive, directive combination, and/or command-line option are given.
HP Fortran 90 directly supports the SGI directives described in the
section “SGI Directives in HP Fortran 90” on page 353. For more
information on the Exemplar directives, follow the cross references to
their respective descriptions. The SGI directives listed in this section are
available only in SGI’s Power Fortran 77.

NOTE The mappings between SGI and Exemplar directives presented in this
section are approximate; there may be slight differences in functionality.

In the sections below, namelist represents a comma-separated list of
variable names. Any Exemplar directive mentioned below is available
when compiling with +Oparallel at +O3 and above; additionally, in
Fortran 77 Version 1.2.3 and C Version 1.2.3, the +Onoexemplar_model
option must not be specified.

358 Appendix C

SGI directives
SGI directives and their Exemplar equivalents

The SGI directives discussed in this section are:

• C$DOACROSS [clause [, clause] ...]

• C*$*ASSERT DO(SERIAL)

• C*$*ASSERT DO(CONCURRENT)

• C*$*ASSERT DO PREFER(SERIAL)

• C*$*ASSERT DO PREFER(CONCURRENT)

• C*$*ASSERT NO RECURRENCE(variable)

• C*$*CONCURRENTIZE

• C*$*NOCONCURRENTIZE

C$DOACROSS [clause [, clause] ...]

This directive causes the SGI compiler to parallelize the immediately
following DO loop.

Valid values for the optional clause of C$DOACROSS are given below.
These clauses may be the default behavior for the Exemplar compilers or
may require you to use additional Exemplar directives or directive
attributes, as indicated in each description.

IF (logical_expression)

Determines if the following loop is executed in parallel or serially. If
logical_expression is true, the loop is parallelized; otherwise, the loop
runs serially.

Equivalent Exemplar directive: This clause has no equivalent
Exemplar directive.

Although the Exemplar compilers do not have a directive that is
equivalent to SGI’s IF clause, they do provide the
DYNSEL(trip_count=n) directive. This directive allows you to specify
that a loop should (or should not) run in parallel based on the iteration
count given by the integer n. For more information on the DYNSEL
directive, see the section “dynsel[(trip_count=n)] ” on page 341.

Appendix C 359

SGI directives
SGI directives and their Exemplar equivalents

{LOCAL | PRIVATE} (namelist)
Specifies that each variable in namelist must be a thread-private
variable for the loop.

Equivalent Exemplar directive: LOOP_PARALLEL (IVAR attribute
may be needed); LOOP_PRIVATE may be needed

If the variable from the LOCAL (or PRIVATE) clause is not the primary
loop induction variable, place it in a LOOP_PRIVATE argument list and
use the LOOP_PARALLEL directive on the loop. For more information on
the LOOP_PRIVATE directive, see the section
“loop_private(namelist) ” on page 344.

If the variable is the primary loop induction variable, specify it as the
induction variable using the IVAR attribute to the LOOP_PARALLEL
directive. For more information on the LOOP_PARALLEL directive, see the
section “loop_parallel[(attribute_list)] ” on page 343.

{SHARE | SHARED} (namelist)
Causes all iterations of the loop to use the same copy of the variables
given in namelist.

Equivalent Exemplar directive: default when using LOOP_PARALLEL

The SHARE (or SHARED) clauses represent the default behavior of the
Exemplar compilers when using the LOOP_PARALLEL directive. You only
need to use LOOP_PARALLEL to achieve this behavior.

{LASTLOCAL | LAST LOCAL} (namelist)
Causes each iteration of the loop to have its own copy of the variables
given in namelist and saves the variable’s last value. (A variable’s last
value in a loop of n iterations is the value it is assigned in the nth
iteration.)

Equivalent Exemplar directive combination:
LOOP_PARALLEL, LOOP_PRIVATE(namelist) , SAVE_LAST(namelist)

To duplicate this behavior in an Exemplar compiler, place the variables
in namelist in the argument lists of both the LOOP_PRIVATE and
SAVE_LAST directives and apply the LOOP_PARALLEL directive to the
loop.

360 Appendix C

SGI directives
SGI directives and their Exemplar equivalents

Consider the following example:

C$DOACROSS LASTLOCAL(ATEMP)
DO I = 1, 1000

X(I) = Y(I) + Z(I)
ATEMP = Z(I)

ENDDO

Using Exemplar directives, this example is as follows:

C$DIR LOOP_PARALLEL
C$DIR LOOP_PRIVATE(ATEMP), SAVE_LAST(ATEMP)

DO I = 1, 1000
X(I) = Y(I) + Z(I)
ATEMP = Z(I)

ENDDO

For more information on the LOOP_PARALLEL directive, see the section
“loop_parallel[(attribute_list)] ” on page 343. For more information
on the LOOP_PRIVATE directive, see the section
“loop_private(namelist) ” on page 344. For more information on the
SAVE_LAST directive, see the section “save_last[(list)] on page 350.

REDUCTION (namelist)
Specifies that the variables given in namelist are involved in a reduction
operation.

Equivalent Exemplar directive:
LOOP_PARALLEL, REDUCTION(namelist)

To duplicate this behavior in an Exemplar compiler, place the variables
in namelist in the argument list of the REDUCTION directive and apply
the LOOP_PARALLEL directive to the loop. For more information on the
LOOP_PARALLEL directive, see the section
“loop_parallel[(attribute_list)] ” on page 343. For more information
on the REDUCTION directive, see the section “reduction(namelist) ” on
page 350.

Appendix C 361

SGI directives
SGI directives and their Exemplar equivalents

MP_SCHEDTYPE=mode
Schedules work in a parallel loop according to mode, where mode has one
of the following values:

{SIMPLE | STATIC}

Schedules approximately equal-sized contiguous chunks of
iterations to the threads.

Equivalent Exemplar directive: default when using
LOOP_PARALLEL

This mode represents the default behavior of the Exemplar
compilers when using the LOOP_PARALLEL directive. You
only need to use LOOP_PARALLEL to achieve this behavior.

DYNAMIC

Causes threads to compete for CHUNK-sized assignments,
where CHUNK is the SGI directive clause.

Equivalent Exemplar directive: This clause has no
equivalent Exemplar directive.

{INTERLEAVE | INTERLEAVED}

Distributes each chunk of iterations among the available
threads by interleaving. The number of consecutive
iterations given to each thread is determined by SGI’s CHUNK
clause, which is shown later in this list.

Equivalent Exemplar directive:
LOOP_PARALLEL (CHUNK_SIZE=n)

Use the CHUNK_SIZE=n attribute to LOOP_PARALLEL
(where n is an integer constant) to duplicate this
behavior. For more information on the LOOP_PARALLEL
directive, see the section
“loop_parallel[(attribute_list)] ” on page 343.

{GUIDED | GSS}

Dynamically allocates chunks of iterations to threads; the
chunks initially distributed are larger than the chunks
distributed at the end.

Equivalent Exemplar directive: This clause has no
equivalent Exemplar directive.

362 Appendix C

SGI directives
SGI directives and their Exemplar equivalents

RUNTIME

Instructs the compiler to use environment variables to
manage scheduling.

Equivalent Exemplar directive: This clause has no
equivalent Exemplar directive.

{CHUNK=integer_expression | BLOCKED
integer_expression}

Specifies that integer_expression or fewer iterations are to be executed by
each thread.

Equivalent Exemplar directive:
LOOP_PARALLEL (CHUNK_SIZE=n) , when applicable

If CHUNK or BLOCKED is used with INTERLEAVE (or INTERLEAVED), use
the LOOP_PARALLEL directive with the attribute CHUNK_SIZE=n,
where n is an integer constant. Otherwise, there is no Exemplar
equivalent. (Although these SGI clauses accept integer expressions, the
equivalent Exemplar directive requires integer constants.)

C*$*ASSERT DO(SERIAL)

This directive instructs the SGI compiler to run the following loop
serially.

Equivalent Exemplar directive: NO_PARALLEL

Use the Exemplar NO_PARALLEL directive to duplicate the SGI behavior.
NO_PARALLEL applies only to the following loop; it does not affect any
loops enclosing the following loop, as the SGI directive does. For more
information on the NO_PARALLEL directive, see the section
“no_parallel ” on page 346.

Appendix C 363

SGI directives
SGI directives and their Exemplar equivalents

C*$*ASSERT DO(CONCURRENT)

This directive forces the SGI compiler to ignore any apparent
dependences in the following loop that could prevent the loop from being
parallelized.

Equivalent Exemplar directive: LOOP_PARALLEL

Use the LOOP_PARALLEL directive to duplicate this behavior in an
Exemplar compiler. For more information on the LOOP_PARALLEL
directive, see the section “loop_parallel[(attribute_list)] ” on
page 343.

C*$*ASSERT DO PREFER(SERIAL)

This directive instructs the SGI compiler to execute the following DO loop
serially.

Equivalent Exemplar directive: NO_PARALLEL

Use the NO_PARALLEL directive to duplicate this behavior in an
Exemplar compiler. For more information on the NO_PARALLEL directive,
see the section “no_parallel ” on page 346.

C*$*ASSERT DO PREFER(CONCURRENT)

Used in a loop nest, this SGI directive requests that the compiler run a
particular loop in the nest in parallel.

Equivalent Exemplar directive: PREFER_PARALLEL

Use the PREFER_PARALLEL directive to duplicate this behavior in an
Exemplar compiler. For more information on the PREFER_PARALLEL
directive, see the section “prefer_parallel[(attribute_list)] ” on
page 349.

364 Appendix C

SGI directives
SGI directives and their Exemplar equivalents

C*$*ASSERT NO RECURRENCE(variable)

This directive instructs the SGI compiler to ignore all data dependences
(apparent and real) associated with variable.

Equivalent Exemplar directive: LOOP_PRIVATE(namelist)

Use the LOOP_PRIVATE directive, placing variable in LOOP_PRIVATE’s
namelist, to duplicate this behavior in an Exemplar compiler. For more
information on the LOOP_PRIVATE directive, see the section
“loop_private(namelist) ” on page 344.

C*$*CONCURRENTIZE

This directive causes the SGI compiler to parallelize eligible loops.

Equivalent Exemplar directive or options: PREFER_PARALLEL or
+O3 +Oparallel

If the SGI directive is used on a single loop, use PREFER_PARALLEL. If
C*$*CONCURRENTIZE is used globally, compile using the command-line
options +O3 +Oparallel —without specifying +Onoautopar . For more
information on the PREFER_PARALLEL directive, see the section
“prefer_parallel[(attribute_list)] ” on page 349. For more
information on the command-line options, see the sections “Optimization
level options” on page 365 and “+O[no]parallel ” on page 379.

C*$*NOCONCURRENTIZE

This directive prevents the SGI compiler from parallelizing the following
loop.

Equivalent Exemplar directive or option: NO_PARALLEL or
+Onoautopar

If the SGI directive is used on a single loop, use NO_PARALLEL. If it is
used globally, use the command-line option +Onoautopar to duplicate
the behavior in an Exemplar compiler. For more information on the
NO_PARALLEL directive, see the section “no_parallel ” on page 346. For
more information on the +Onoautopar option, see the section
“+O[no]autopar ” on page 367.

Appendix D 365

Optimization options
Optimization level options

D Optimization options

This appendix lists and briefly describes the optimization options
available for use with Exemplar compilers. Refer to the section “Using
the optimizer” on page 42 for information on coding guidelines that
assist the optimizer. See the f90(1), f77(1), cc(1), and aCC(1) man pages
for information on compiler options in general. The options described in
this appendix are available in all Exemplar compilers unless otherwise
stated.

Optimization level options
The options listed in this section specify the level of optimization desired.

+O0 (Machine instruction-level optimizations) Constant
folding and simple register assignment

+O1 (Block-level optimizations) +O0 optimizations, plus
instruction scheduling and optimizations on basic
blocks

+O2 (Routine-level optimizations) +O1 optimizations, plus
optimizations within a single subprogram; loop
optimizations to reduce pipeline stalls; analysis of data
flow, memory usage, loops, and expressions

+O3 (File-level optimizations) +O2 optimizations, plus full
optimizations across all subprograms (including
inlining) within a single file; use of parallelism-related
directives and pragmas from the Exemplar
programming model when +Oparallel is also
specified

+O4 (Cross-module optimizations) +O3 optimizations, plus
full optimizations across all files in the application that
have been compiled at +O4; optimizations include

366 Appendix D

Optimization options
Controlling specific optimizer features

inlining across the entire application; optimizations are
performed at link time (This option is not available in
Fortran 90.)

Controlling specific optimizer features
At each optimization level, you can turn specific optimizations on or off
using the +O[no] optimization option. The optimization parameter is the
name of a specific optimization described below. The optional prefix [no]
disables the specified optimization.

The following sections describe the optimizations that can be turned on
or off, their defaults, and the optimization levels at which they may be
used. In syntax descriptions, namelist represents a comma-separated list
of names.

+O[no]aggressive

Optimization level(s): +O2, +O3, +O4

Default: +Onoaggressive

The +O[no]aggressive option enables optimizations that can result in
significant performance improvement, but that can change a program’s
behavior. These optimizations include the optimizations invoked by the
following advanced options (which are discussed separately in this
appendix):

• +OSIGNEDPOINTERS(C and C++)

• +oentrysched

• +Onofltacc

• +Olibcalls

• +Onoinitcheck

• +Ovectorize

Appendix D 367

Optimization options
Controlling specific optimizer features

+O[no]all

Optimization level(s): can be used at any level

Default: +Onoall

The +Oall option performs maximum optimization, including aggressive
optimizations and optimizations that can significantly increase compile
time and memory usage. Specifying the +Oall option is equivalent to
specifying the following list of options: +O4 +Oaggressive +Onolimit .

+O[no]autopar

Optimization level(s): +O3, +O4 (+Oparallel must be specified to enable
+O[no]autopar)

Default: +Oautopar

When used with +Oparallel option, +Oautopar (the default) causes
the compiler to automatically parallelize loops that are safe to
parallelize.

A loop is safe to parallelize if it has an iteration count that can be
determined at runtime before loop invocation, and contains no
loop-carried dependences, procedure calls, or I/O operations.
A loop-carried dependence exists when one iteration of a loop assigns a
value to an address that is referenced or assigned on another iteration.

You can use Fortran directives and C pragmas to improve on the
automatic optimizations and to assist the compiler in locating additional
opportunities for parallelization.

When used with +Oparallel , the +Onoautopar option causes the
compiler to parallelize only those loops marked by the loop_parallel
or prefer_parallel directives or pragmas. Because the compiler does
not automatically find parallel tasks or regions, user-specified task and
region parallelization is not affected by this option.

Because parallelization takes places only at +O3 and above,
+O[no]autopar is useful only at +O3 and above.

368 Appendix D

Optimization options
Controlling specific optimizer features

+O[no]conservative

Optimization level(s): +O2, +O3, +O4

Default: +Onoconservative

The +O[no]conservative option causes the optimizer to [not] make
conservative assumptions about the code when optimizing it. Use
+Oconservative when conservative assumptions are necessary due to
the coding style, as with programs that are not standard-compliant.
(Specifying +Oconservative disables any optimizations that assume
standard-compliant code.)

+Oconservative is equivalent to +Onoaggressive .

+O[no]dataprefetch

Optimization level(s): +O2, +O3, +O4

Default: +Onodataprefetch

When +Odataprefetch is enabled, the optimizer will insert
instructions within innermost loops to explicitly prefetch data from
memory into the data cache. For cache lines containing data that will be
written, +Odataprefetch prefetches the cache lines so that they are
valid for both read and write access. Data prefetch instructions will be
inserted only for data referenced within innermost loops using simple
loop varying addresses (that is, in a simple arithmetic progression). It is
only available for PA-RISC 2.0 targets.

The math library libm contains special prefetching versions of vector
routines. If you have a PA-RISC 2.0 application that contains operations
on arrays larger than 1 megabyte in size, using +Ovectorize in
conjunction with +Odataprefetch may improve performance
substantially.

Use the +Odataprefetch option for applications that have high data
cache miss overhead.

Appendix D 369

Optimization options
Controlling specific optimizer features

+O[no]dynsel

Optimization level(s): +O3, +O4 (+Oparallel must be specified to enable
+O[no]dynsel)

Default: +Odynsel

When specified with +Oparallel , +Odynsel enables workload-based
dynamic selection. For parallelizable loops whose iteration counts are
known at compile time, +Odynsel causes the compiler to generate either
a parallel or a serial version of the loop—depending on which is more
profitable.

This optimization also causes the compiler to generate both parallel and
serial versions of parallelizable loops whose iteration counts are
unknown at compile time. At runtime, the loop’s workload is compared to
parallelization overhead, and the parallel version is run only if it is
profitable to do so.

The +Onodynsel option disables dynamic selection and tells the
compiler that it is profitable to parallelize all parallelizable loops. The
dynsel directive and pragma can be used to enable dynamic selection
for specific loops when +Onodynsel is in effect. See the section “Dynamic
selection” on page 109 for additional information.

+O[no]entrysched

Optimization level(s): +O1, +O2, +O3, +O4

Default: +Onoentrysched

The +Oentrysched option optimizes instruction scheduling on a
procedure’s entry and exit sequences. Enabling this option can speed up
an application. The option affects unwinding in the entry and exit
regions.

This option can change the behavior of programs that perform
exception-handling or that handle asynchronous interrupts. The
behavior of setjmp() and longjmp() is not affected.

370 Appendix D

Optimization options
Controlling specific optimizer features

+O[no]exemplar_model

Optimization level(s): +O0, +O1, +O2, +O3, +O4

Default: +Oexemplar_model

This option is available only in Exemplar Fortran 77 Version 1.2.3 and
Exemplar C Version 1.2.3.

+Oexemplar_model (the default) causes the compiler to accept the
Exemplar programming model. This option allows you to use the
directives, pragmas, and associated command-line options that make up
the programming model. At lower optimization levels (+O0, +O1, +O2),
this option enables only the following components of the programming
model:

• Synchronization directives (Fortran)

• Synchronization pragmas (C)

• Synchronization typedefs (C and C++)

• Memory class directives (Fortran)

• Memory storage class specifiers (C and C++)

At +O3 and +O4, using +Oexemplar_model enables (in addition to the
features enabled at the lower levels) the parallelism-related directives
and pragmas. See Appendix B, “Exemplar compiler directives and
pragmas,” for additional information.

The +Onoexemplar_model option turns off support for the Exemplar
programming model. If you use this option, directives and pragmas from
the Exemplar programming model will be ignored.

+O[no]fail_safe

Optimization level(s): +O1, +O2, +O3, +O4

Default: +Ofail_safe

The +Ofail_safe option allows compilations with internal optimization
errors to continue by issuing a warning message and restarting the
compilation at +O0.

Use +Onofail_safe when you want the internal optimization errors to
abort your compilation.

Appendix D 371

Optimization options
Controlling specific optimizer features

The +Ofail_safe option is disabled when compiling for parallelization
(that is, when you specify +Oparallel with +O3 or +O4).

+O[no]fastaccess

Optimization level(s): +O0, +O1, +O2, +O3, +O4

Default: +Onofastaccess at +O0, +O1, +O2 and +O3;
+Ofastaccess at +O4

The +Ofastaccess option optimizes for fast access to global data items.

Use +Ofastaccess to improve execution speed at the expense of longer
compile times.

+O[no]fltacc

Optimization level(s): +O2, +O3, +O4

Default: neither (See Table 16.)

The +O[no]fltacc option [enables] disables optimizations that cause
imprecise floating-point results.

Use +Onofltacc to improve execution speed at the expense of
floating-point precision. The +Onofltacc option allows the compiler to
perform floating-point optimizations that are algebraically correct but
that may result in numerical differences. In general, these differences
will be insignificant. The +Onofltacc option also enables the optimizer
to generate Fused Multiply-Add (FMA) instructions.

+Ofltacc disables optimizations that cause imprecise floating-point
results. Specifying +Ofltacc disables the generation of FMA
instructions as well as other floating-point optimizations. Use +Ofltacc
if it is important that the compiler evaluates floating-point expressions
according to the order specified by the language standard.

If you are optimizing code at +O2 or higher and do not specify
+Onofltacc or +Ofltacc , the optimizer will use FMA instructions, but
will not perform floating-point optimizations that involve expression
reordering. FMA is implemented by the PA-8x00 instructions FMPYFADD
and FMPYNFADD and improves performance but occasionally produces
results that may differ in accuracy from results produced by code without
FMA. In general, the differences are slight.

372 Appendix D

Optimization options
Controlling specific optimizer features

Table 16 presents a summary of the preceding information.

Table 16 +O[no]fltacc and floating-point optimizations

*+O[no]fltacc is only available at +O2 and above.

+O[no]global_ptrs_unique[=namelist]

Optimization level(s): +O2, +O3, +O4

Default: +Onoglobal_ptrs_unique

This option is not available in C++.

Use this C compiler option to identify unique global pointers, so that the
optimizer can generate more efficient code in the presence of unique
pointers, for example by using copy propagation and common
subexpression elimination. A global pointer is unique if it does not alias
with any variable in the entire program.

This option supports a comma-separated list of unique global pointer
variable names, represented by namelist in
+O[no]global_ptrs_unique[= namelist] . If namelist is not specified,
using +O[no]global_ptrs_unique informs the compiler that all [no]
global pointers are unique.

The example below states that no global pointers are unique except a
and b:

+Oglobal_ptrs_unique=a,b

The next example says that all global pointers are unique except a and b:

+Onoglobal_ptrs_unique=a,b

Option specified* FMA optimizations Other floating-point
optimizations

+Ofltacc Disabled Disabled

+Onofltacc Enabled Enabled

neither option
is specified

Enabled Disabled

Appendix D 373

Optimization options
Controlling specific optimizer features

+O[no]info

Optimization level(s): +O0, +O1, +O2, +O3, +O4

Default: +Onoinfo

+Oinfo displays informational messages about the optimization process.
This option can be used at all optimization levels, but is most useful at
+O3 and +O4.

+O[no]initcheck

Optimization level(s): +O2, +O3, +O4

Default: unspecified

The initialization checking feature of the optimizer has three possible
states: on, off, or unspecified. When on (+Oinitcheck), the optimizer
initializes to zero any local, scalar, nonstatic variables that are
uninitialized with respect to at least one path leading to a use of the
variable.

When off (+Onoinitcheck), the optimizer issues warning messages
when it discovers definitely uninitialized variables, but does not
initialize them.

When unspecified, the optimizer initializes to zero any local, scalar,
nonstatic variables that are definitely uninitialized with respect to all
paths leading to a use of the variable.

+O[no]inline[= namelist]
Optimization level(s): +O3, +O4

Default: +Oinline

The Fortran 90 and aC++ compilers accept only +O[no]inline ;
no namelist values are accepted.

When +Oinline is specified without a name list, any function can be
inlined. For inlining to be successful, follow the prototype definitions for
function calls in the appropriate header files.

374 Appendix D

Optimization options
Controlling specific optimizer features

When specified with a name list, the named functions are important
candidates for inlining. For example, saying

+Oinline=foo,bar +Onoinline

indicates that inlining be strongly considered for foo and bar ; all other
routines will not be considered for inlining because +Onoinline is
given.

When this option is disabled with a name list, the compiler will not
consider the specified routines as candidates for inlining. For example,
by stating:

+Onoinline=baz,x

indicates that inlining should not be considered for baz and x ; all other
routines will be considered for inlining because +Oinline is the default.

Use this option when you need to precisely control which subprograms
are inlined. Use of this option can be guided by knowledge of the
frequency with which certain routines are called and may be warranted
by code size concerns.

+Oinline_budget= n
Optimization level(s): +O3, +O4

Default: +Oinline_budget=100

In +Oinline_budget= n, n is an integer in the range 1 to 1000000 that
specifies the level of aggressiveness, as follows:

n = 100 Default level of inlining.

n > 100 More aggressive inlining.

The optimizer is less restricted by compilation time
and code size when searching for eligible routines to
inline.

n = 1 Only inline if it reduces code size.

The +Onolimit and +Osize options also affect inlining. Specifying the
+Onolimit option implies specifying +Oinline_budget=200 . The
+Osize option implies +Oinline_budget=1 . Note, however, that the
+Oinline_budget option takes precedence over both of these options.
This means that you can override the effects on inlining of the
+Onolimit and +Osize options by specifying the +Oinline_budget
option on the same compile line.

Appendix D 375

Optimization options
Controlling specific optimizer features

+O[no]libcalls

Optimization level(s): +O0, +O1, +O2, +O3, +O4

Default: +Onolibcalls at +O0 and +O1;
+Olibcalls at +O2, +O3, and +O4

Use the +Olibcalls option to increase the runtime performance of code
that calls standard library routines in simple contexts. The +Olibcalls
option expands the following library calls inline:

• strcpy()

• sqrt()

• fabs()

• alloca()

Inlining will take place only if the function call follows the prototype
definition in the appropriate header file. A single call to printf() may
be replaced by a series of calls to putchar() . Calls to sprintf() and
strlen() may be optimized more effectively, including elimination of
some calls producing unused results. Calls to setjmp() and longjmp()
may be replaced by their equivalents _setjmp() and _longjmp() ,
which do not manipulate the process’s signal mask.

Using the +Olibcalls option invokes millicode versions of frequently
called math functions. Currently, there are millicode versions for the
following functions:

See the HP-UX Floating-Point Guide for the most up-to-date listing of
the math library functions.

Use +Olibcalls to improve the performance of selected library routines
only when you are not performing error checking for these routines. The
calling code must not expect to access ERRNO after the function’s return.

Using +Olibcalls with +Ofltacc will give different floating-point
calculation results than those given using +Olibcalls without
+Ofltacc .

acos asin atan atan2

cos exp log log10

pow sin tan

376 Appendix D

Optimization options
Controlling specific optimizer features

+O[no]limit

Optimization level(s): +O2, +O3, +O4

Default: +Olimit

The +Olimit option suppresses optimizations that significantly increase
compile-time or that can consume a considerable amount of memory.

The +Onolimit option allows optimizations to be performed regardless
of their effects on compile-time and memory usage. Specifying the
+Onolimit option implies specifying +Oinline_budget=200 . See the
section “+Oinline_budget= n” on page 374 for more information.

+O[no]loop_block

Optimization level(s): +O3, +O4

Default: +Onoloop_block

This option is not available in Fortran 77 Version 1.2.3 or
C Version 1.2.3.

The +O[no]loop_block option enables [disables] blocking of eligible
loops for improved cache performance. The +Onoloop_block option
disables both automatic and directive-specified loop blocking. For more
information on loop blocking, see the section “Loop blocking” on page 83.

+O[no]loop_transform

Optimization level(s): +O3, +O4

Default: +Oloop_transform

The +O[no]loop_transform option enables [disables] transformation
of eligible loops for improved cache performance. The most important
transformation is the reordering (interchange) of nested loops to make
the inner loop unit stride, resulting in fewer cache misses. The other
transformations affected by +O[no]loop_transform are loop
distribution, loop blocking, loop fusion, loop unroll, and loop unroll and
jam. See Chapter 3, “Compiler optimizations,” for information on loop
transformations.

+Onoloop_transform may be a helpful option if you experience any
problem while using +Oparallel .

Appendix D 377

Optimization options
Controlling specific optimizer features

+O[no]loop_unroll[= unroll factor]

Optimization level(s): +O2, +O3, +O4

Default: +Oloop_unroll=4

The +Oloop_unroll option turns on loop unrolling. When you use
+Oloop_unroll , you can also suggest the unroll factor to control the
code expansion. The default unroll factor is 4; in other words, the loop
body is replicated four times. By experimenting with different factors,
you may improve the performance of your program. In some cases, the
compiler uses its own unroll factor. The +Onoloop_unroll option turns
off partial and complete unrolling. Loop unrolling improves efficiency by
eliminating loop overhead and can create opportunities for other
optimizations, such as improved register use and more efficient
scheduling. See the section “Loop unrolling” on page 61 for more
information on unrolling.

+O[no]loop_unroll_jam

Optimization level(s): +O3, +O4

Default: +Oloop_unroll_jam

This option is not available in Fortran 77 Version 1.2.3 or
C Version 1.2.3.

The +O[no]loop_unroll_jam option enables [disables] loop unrolling
and jamming. The +Onoloop_unroll_jam option disables both
automatic and directive-specified unroll and jam. Loop unrolling and
jamming increases register exploitation. For more information on the
unroll and jam optimization, see the section “Loop unroll and jam” on
page 95.

378 Appendix D

Optimization options
Controlling specific optimizer features

+O[no]moveflops

Optimization level(s): +O2, +O3, +O4

Default: +Omoveflops

Allows [disallows] moving conditional floating point instructions out of
loops. The behavior of floating-point exception handling may be altered
by this option.

Use +Onomoveflops if floating-point traps are enabled and you do not
want the behavior of floating-point exceptions to be altered by the
relocation of floating-point instructions.

+O[no]nodepar

Optimization level(s): +O3, +O4 (+Oparallel must be specified to enable
+O[no]nodepar)

Default: +Ononodepar

The +Ononodepar option disables node-parallelism by causing the
compiler to generate code for a single-node machine. When this option is
used, serial code is generated for node-parallel constructs. Specifying the
+Ononodepar option prevents the compiler from implementing
node-parallelism, but allows the implementation of both automatic and
directive-specified thread-parallelism.

The +Onodepar option causes the compiler to perform node-parallelism
where it has been specified using the nodes attribute with the
loop_parallel , prefer_parallel , parallel , or begin_tasks
directives or pragmas. Also, the +Onodepar option causes the compiler
to honor the node_trip_count attribute to the dynsel directive or
pragma.

The +O[no]nodepar option is effective only when specified with the
+Oparallel option at +O3 and above.

Appendix D 379

Optimization options
Controlling specific optimizer features

+O[no]parallel

Optimization level(s): +O3, +O4

Default: +Onoparallel

NOTE If you compile one or more files in an application using +Oparallel ,
then the application must be linked (using the compiler driver) with the
+Oparallel option to link in the proper start-up files and runtime
support.

The +Oparallel option causes the compiler to:

• Honor the directives and pragmas of the Exemplar programming
model that involve parallelism, such as begin_tasks ,
loop_parallel , and prefer_parallel . (These directives and
pragmas are not recognized in Fortran 77 Version 1.2.3 or
C Version 1.2.3 if the +Onoexemplar_model option is also specified.)

• Look for opportunities for parallel execution in loops.

The following methods can be used to specify the number of processors
used in executing your parallel programs:

• loop_parallel(max_threads= m) directive and pragma

• prefer_parallel(max_threads= m) directive and pragma

For more information on the directives and pragmas see the chapters
“Basic shared-memory programming” and “Advanced shared-memory
programming.” (These pragmas are not available in the aC++
compiler.)

• MP_NUMBER_OF_THREADS environment variable, which is read at
runtime by your program. If this variable is set to some positive
integer n, your program executes on n processors; n must be less than
or equal to the number of processors in the system where the program
is executing.

380 Appendix D

Optimization options
Controlling specific optimizer features

The +Oparallel option is valid only at optimization level +O3 and
above. For information on parallelization, see the section
“Parallelization” on page 100.

Using the +Oparallel option disables +Ofail_safe , which is on by
default. See the section “+O[no]fail_safe ” on page 370 for more
information.

The +Onoparallel option is the default for all optimization levels. This
option disables automatic and directive-specified parallelization.

+O[no]parmsoverlap

Optimization level(s): +O2, +O3, +O4

Default for Fortran: +Onoparmsoverlap

Default for C: +Oparmsoverlap

The option +Oparmsoverlap causes the optimizer to assume that the
actual arguments of function calls overlap in memory.

+O[no]pipeline

Optimization level(s): +O2, +O3, +O4

Default: +Opipeline

Enables [disables] software pipelining.

Use +Onopipeline if program size is more important than execution
speed.

Software pipelining is particularly useful for loops that contain
arithmetic operations on REAL or REAL*8 variables in Fortran or on
float or double variables in C and C++.

Appendix D 381

Optimization options
Controlling specific optimizer features

+O[no]procelim

Optimization level(s): +O0, +O1, +O2, +O3, +O4

Default: +Onoprocelim at +O0, +01 , +O2, +O3;
+Oprocelim at +O4

When +Oprocelim is specified, procedures that are not referenced by
the application are eliminated from the output executable file. The
+Oprocelim option reduces the size of the executable file, especially
when optimizing at +O3 and +O4, at which inlining may have removed
all of the calls to some routines.

When +Onoprocelim is specified, procedures that are not referenced by
the application are not eliminated from the output executable file.

If the +Oall option is enabled, the +Oprocelim option is enabled.

+O[no]ptrs_ansi

Optimization level(s): +O2, +O3, +O4

Default: +Onoptrs_ansi

This option is not available in C++.

Use the C compiler option +Optrs_ansi to make the following two
assumptions, which the more aggressive +Optrs_strongly_typed
does not make:

• int *p is assumed to point to an int field of a struct or union.

• char * is assumed to point to any type of object.

When both +Optrs_ansi and +Optrs_strongly_typed are specified,
+Optrs_ansi takes precedence.

382 Appendix D

Optimization options
Controlling specific optimizer features

+O[no]ptrs_strongly_typed

Optimization level(s): +O2, +O3, +O4

Default: +Onoptrs_strongly_typed

This option is not available in C++.

Use the C compiler option +Optrs_strongly_typed when pointers are
type-safe. The optimizer can use this information to generate more
efficient code.

Type-safe (that is, strongly-typed) pointers are pointers to a specific type
that only point to objects of that type. For example, a pointer declared as
a pointer to an int is considered type-safe if that pointer points to an
object only of type int .

Based on the type-safe concept, a set of groups are built based on object
types. A given group includes all the objects of the same type.

The term type-inferred aliasing is a concept that means any pointer of a
type in a given group (of objects of the same type) can only point to any
object from the same group; it cannot point to a typed object from any
other group.

Type casting to a different type violates type-inferring aliasing rules. See
Example 2 below.

Dynamic casting is allowed. See Example 3 below.

For finer detail, see the use the [no]ptrs_strongly_typed pragma as
discussed in Appendix A, “Standard HP compiler directives and
pragmas.”

Appendix D 383

Optimization options
Controlling specific optimizer features

Example 1: How data types interact
The optimizer generally spills all global data from registers to memory
before any modification to global variables or any loads through pointers.
However, you can instruct the optimizer on how data types interact so
that it can generate more efficient code.

Consider the following example (line numbers are provided for
reference):

1 int *p;
2 float *q;
3 int a,b,c;
4 float d,e,f;
5 foo()
6 {
7 for (i=1;i<10;i++) {
8 d=e;
9 *p=...;
10 e=d+f;
11 f=*q;
12 }
13 }

With +Onoptrs_strongly_typed turned on, the pointers p and q will
be assumed to be disjoint because the types they point to are different
types. Without type-inferred aliasing, *p is assumed to invalidate all the
definitions. So, the use of d and f on line 10 have to be loaded from
memory. With type-inferred aliasing, the optimizer can propagate the
copy of d and f and thus avoid two loads and two stores.

This option can be used for any application involving the use of pointers,
where those pointers are type safe. To specify when a subset of types are
type-safe, use the ptrs_strongly_typed pragma. The compiler issues
warnings for any incompatible pointer assignments that may violate the
type-inferred aliasing rules discussed in the section “C aliasing options”
on page 394.

384 Appendix D

Optimization options
Controlling specific optimizer features

Example 2: Unsafe type cast
Any type cast to a different type violates type-inferred aliasing rules. Do
not use +Optrs_strongly_typed with code that has these “unsafe”
type casts. Use the [no]ptrs_strongly_typed pragma to prevent the
application of type-inferred aliasing to the unsafe type casts.

struct foo{
 int a;
 int b;
 } *P;

 struct bar {
 float a;
 int b;
 float c;
 } *q;

 P = (struct foo *) q;
 /* Incompatible pointer assignment
 through type cast */

Example 3: Generally applying type aliasing
Dynamic casting is allowed with +Optrs_strongly_typed or
+Optrs_ansi . A pointer dereference is called dynamic casting if a cast is
applied on the pointer to a different type.

In the example below, type-inferred aliasing is applied on P generally, not
just to the particular dereference. Type-aliasing will be applied to any
other dereferences of P.

 struct s {
 short int a;
 short int b;
 int c;
 } *P
 * (int *)P = 0;

For more information about type aliasing see the section “C aliasing
options” on page 394.

Appendix D 385

Optimization options
Controlling specific optimizer features

+O[no]ptrs_to_globals[= namelist]
Optimization level(s): +O2, +O3, +O4

Default: +Optrs_to_globals

This option is not available in C++.

By default, global variables are conservatively assumed to be modified
anywhere in the program. Use the C compiler option
+Onoptrs_to_globals to specify which global variables are not
modified through pointers, so that the optimizer can make your program
run more efficiently by incorporating copy propagation and common
subexpression elimination.

This option can be used to specify all global variables as not modified via
pointers, or to specify a comma-separated list of global variables as not
modified via pointers.

Note that the on state for this option disables some optimizations, such
as aggressive optimizations on the program’s global symbols.

For example, use the command-line option
+Onoptrs_to_globals=a,b,c to specify global variables a, b, and c as
not being accessed through pointers. No pointer can access these global
variables. The optimizer will perform copy propagation and constant
folding because storing to *p will not modify a or b.

int a, b, c;
 float *p;
 foo()
 {
 a = 10;
 b = 20;
 *p = 1.0;
 c = a + b;
 }

If all global variables are unique, use the +Onoptrs_to_globals option
without listing the global variables (in other words, without using
namelist).

386 Appendix D

Optimization options
Controlling specific optimizer features

In the example below, the address of b is taken. This means b can be
accessed indirectly through the pointer. You can still use
+Onoptrs_to_globals as:
+Onoptrs_to_globals +Optrs_to_globals =b.

 int b,c;
 int *p;

 p=&b;

 foo()

For more information about type aliasing see the section “C aliasing
options” on page 394.

+O[no]regreassoc

Optimization level(s): +O2, +O3, +O4

Default: +Oregreassoc

The +O[no]regreassoc option enables [disables] register
reassociation. Register reassociation is a technique for folding and
eliminating integer arithmetic operations within loops, especially those
used for array address computations. This optimization is a
code-improving transformation that supplements loop-invariant code
motion and strength reduction. When performed in conjunction with
software pipelining, register reassociation can yield significant
performance improvement.

Appendix D 387

Optimization options
Controlling specific optimizer features

+O[no]report[= report_type]

Optimization level(s): +O3, +O4

Default: +Onoreport

+Oreport[= report_type] specifies the contents of the Optimization
Report. Values of report_type and the Optimization Reports they produce
are shown in Table 17.

Table 17 Optimization Report contents

The Loop Report gives information on optimizations performed on loops
and calls. Using +Oreport (without =report_type) also produces the
Loop Report.

The Privatization Table provides information on loop variables that are
privatized by the compiler.

The +Oreport[= report_type] option is active only at +O3 and above.
The +Onoreport option does not accept any of the report_type values.
For more information about the Optimization Report, refer to Appendix
E, “Optimization Report.”

The option +Oinfo also displays information on the various
optimizations being performed by the compilers. +Oinfo can be used at
any optimization level but is most useful at +O3 and above. The default,
at all optimization levels, is +Onoinfo .

report_type value Report contents

all Loop Report and Privatization Table

loop Loop Report

private Loop Report and Privatization Table

report_type not given
(default)

Loop Report

388 Appendix D

Optimization options
Controlling specific optimizer features

+O[no]sharedgra

Optimization level(s): +O2, +O3, +O4

Default: +Osharedgra

The +Onosharedgra option disables global register allocation for
shared-memory variables that are visible to multiple threads. This
option may help if a variable shared among parallel threads is causing
wrong answers. See the section “Global register allocation” on page 52
for more information.

Global register allocation (+Osharedgra) is enabled by default at
optimization level +O2 and higher.

+O[no]signedpointers

Optimization level(s): +O2, +O3, +O4

Default: +Onosignedpointers

The C and C++ option +O[no]signedpointers requests that the
compiler perform [does not perform] optimizations related to treating
pointers as signed quantities. Applications that allocate shared memory
and that compare a pointer to shared memory with a pointer to private
memory may run incorrectly if this optimization is enabled.

Use +Osignedpointers to improve application runtime speed.

+O[no]size

Optimization level(s): +O2, +O3, +O4

Default: +Onosize

The +Osize option suppresses optimizations that significantly increase
code size. Specifying +Osize implies specifying +Oinline_budget=1 .
See the section “+Oinline_budget= n” on page 374 for additional
information.

The +Onosize option does not prevent optimizations that can increase
code size.

Appendix D 389

Optimization options
Controlling specific optimizer features

+O[no]static_prediction

Optimization level(s): +O0, +O1, +O2, +O3, +O4

Default: +Onostatic_prediction

+Ostatic_prediction turns on static branch prediction for
PA-RISC 2.0 targets.

PA-RISC 2.0 has two means of predicting which way conditional
branches will go:

• Dynamic branch prediction

Dynamic branch prediction uses a hardware history mechanism to
predict future executions of a branch from its last three executions. It
is transparent and quite effective, unless the hardware buffers
involved are overwhelmed by a large program with poor locality.

• Static branch prediction

With static branch prediction on, each branch is predicted based on
implicit hints encoded in the branch instruction itself. Static branch
prediction’s role is to handle large codes with poor locality for which
the small dynamic hardware facility will prove inadequate. Use
+Ostatic_prediction to better optimize large programs with poor
instruction locality, such as operating system and database code.

390 Appendix D

Optimization options
Controlling specific optimizer features

+O[no]vectorize

Optimization level(s): +O3, +O4

Default: +Onovectorize

This option is not available in C++.

+Ovectorize allows the compiler to replace certain loops with calls to
vector routines.

Use +Ovectorize to increase the execution speed of loops.

When +Onovectorize is specified, loops are not replaced with calls to
vector routines.

Because the +Ovectorize option may change the order of floating-point
operations in an application, it may also change the results of those
operations slightly. See the HP-UX Floating-Point Guide for details.

The math library contains special prefetching versions of vector routines.
If you have a PA2.0 application that contains operations on very large
arrays (larger than 1 megabyte in size), using +Ovectorize in
conjunction with +Odataprefetch may improve performance
substantially.

+Ovectorize is also included as part of the +Oaggressive and +Oall
options.

+O[no]volatile

Optimization level(s): +O1, +O2, +O3, +O4

Default: +Onovolatile

The C and C++ option +Ovolatile implies that memory references to
global variables cannot be removed during optimization.

The +Onovolatile option implies that all globals are not of volatile
class. This means that references to global variables can be removed
during optimization.

Use this option to control the volatile semantics for all global variables.

Appendix D 391

Optimization options
Controlling specific optimizer features

+O[no]whole_program_mode

Optimization level(s): +O4

Default: +Onowhole_program_mode

This option is not available in Fortran 90 or C++.

The +Owhole_program_mode option enables the assertion that only the
files that are compiled with this option directly reference any global
variables and procedures that are defined in these files. In other words,
this option asserts that there are no unseen accesses to the globals.

When this assertion is in effect, the optimizer can hold global variables
in registers longer and delete inlined or cloned global procedures.

All files compiled with +Owhole_program_mode must also be compiled
with +O4. If any of the files were compiled with +O4 but were not
compiled with +Owhole_program_mode , the linker disables the
assertion for all files in the program.

The default, +Onowhole_program_mode , disables the assertion.

Use this option to increase performance speed, but only when you are
certain that only the files compiled with +Owhole_program_mode
directly access any globals that are defined in these files.

392 Appendix D

Optimization options
Controlling specific optimizer features

+tm target
Optimization level(s): +O0, +O1, +O2, +O3, +O4

Default target value: corresponds to the machine on which you invoke
the compiler

This option specifies the target machine architecture for which
compilation is to be performed. Using this option causes the compiler to
perform architecture-specific optimizations. target takes one of the
following values:

• K7200 to specify K-Class servers using PA-7200 processors

• K8000 to specify K-Class servers using PA-8000 processors

• V2200 to specify V2200 servers

• S2000 to specify S2000 servers

• X2000 to specify X2000 servers

Exemplar Fortran 77 and Exemplar C Version 1.2.3 accept only the
S2000 and X2000 target values.

This option is valid at all optimization levels. The default target value
corresponds to the machine on which you invoke the compiler.

Appendix D 393

Optimization options
Controlling specific optimizer features

Using the +tm target option implies +DA and +DS settings as described in
Table 18. +DAarchitecture causes the compiler to generate code for the
architecture specified by architecture. +DSmodel causes the compiler to
use the instruction scheduler tuned to model. See the f77(1) man page or
the cc(1) man page for more information on the +DA and +DS options.

Table 18 +tm target and +DA/+DS

If you specify +DA or +DS on the compiler command line, your setting
takes precedence over the setting implied by +tm target.

target value specified +DAarchitecture
implied

+DSmodel
implied

K7200 1.1 1.1

K8000 2.0 2.0

V2200 2.0 2.0

S2000 2.0 2.0

X2000 2.0 2.0

394 Appendix D

Optimization options
C aliasing options

C aliasing options
To be conservative, the optimizer assumes that a pointer can point to any
object in the entire application. Command-line options to the C compiler
are available to inform the optimizer of an application’s pointer usage.
Using this information, the optimizer can generate more efficient code,
due to the elimination of some false assumptions. Pointer behavior can
be communicated to the optimizer by using the following options (which
are discussed earlier in this appendix):

• +O[no]ptrs_strongly_typed

• +O[no]ptrs_to_globals[= namelist]

• +O[no]global_ptrs_unique[= namelist]

• +O[no]ptrs_ansi

where

namelist is a comma-separated list of global variable names.

Here are the type-inferred aliasing rules:

• Type-aliasing optimizations are based on the assumption that pointer
dereferences obey their declared types.

• A C variable is considered address-exposed if and only if the address
of that variable is assigned to another variable or passed to a function
as an actual parameter. In general, address-exposed objects are
collected into a separate group based on their declared types. Global
and static variables are considered address-exposed by default. Local
variables and actual parameters are considered address-exposed only
if their addresses have been computed using the address operator &.

Appendix D 395

Optimization options
C aliasing options

• Dereferences of pointers to a certain type will be assumed to only
alias with the corresponding equivalent group. An equivalent group
includes all the address-exposed objects of the same type. The
dereferences of pointers are also assumed to alias with other pointer
dereferences associated with the same equivalent group.

For example, in the following line:

int *p, *q;

*p and *q are assumed to alias with any objects of type int . Also, *p
and *q are assumed to alias with each other.

• Signed/unsigned type distinctions are ignored in grouping objects into
an equivalent group. Likewise, long and int types are considered to
map to the same equivalent group. However, the volatile type
qualifier is considered significant in grouping objects into equivalent
groups (for example, a pointer to int will not be considered to alias
with a volatile int object).

• If two type names reduce to the same type, they are considered
synonymous.

In the following example, both types type_old and type_new will
reduce to the same type, struct foo .

typedef struct foo_st type_old;
typedef type_old type_new;

• Each field of a structure type is placed in a separate equivalent group
that is distinct from the equivalent group of the field’s base type. (The
assumption here is that a pointer to int will not be assigned the
address of a structure field whose type is int). The actual type name
of a structure type is not considered significant in constructing
equivalent groups (for example, dereferences of a struct foo pointer
and a struct bar pointer will be assumed to alias with each other
even if struct foo and struct bar have identical field
declarations).

• All fields of a union type are placed in the same equivalent group,
which is distinct from the equivalent group of any of the field’s base
types. (Thus, all dereferences of pointers to a particular union type
will be assumed to alias with each other, regardless of which union
field is being accessed.)

• Address-exposed array variables are grouped into the equivalent
group of the array element type.

396 Appendix D

Optimization options
C aliasing options

• Applying an explicit pointer typecast to an expression value causes
any later use of the typecast expression value to be associated with
the equivalent group of the typecast expression value.

For example, an int pointer that is typecast into a float pointer and
then dereferenced will be assumed to potentially access objects in the
float equivalent group—and not the int equivalent group.

However, type-incompatible assignments to pointer variables will not
alter the aliasing assumptions on subsequent references of such
pointer variables.

In general, type-incompatible assignments can potentially invalidate
some of the type-safe assumptions, and such constructs may elicit
compiler warning messages.

Appendix E 397

E Optimization Report

This appendix provides a complete description of the
Optimization Report produced by the HP Exemplar Fortran 90,
HP Exemplar aC++, HP Exemplar Fortran 77, and HP Exemplar C
compilers. When you compile a program with the
+Oreport[= report_type] option at +O3 (or +O4), the compiler generates
an Optimization Report for each program unit. The
+Oreport[= report_type] option determines the report’s contents based
on the value of report_type, as shown in Table 19.

Table 19 Optimization Report contents

The +Onoreport option does not accept any of the report_type values.
Examples of Optimization Reports are given in the section “Examples”
on page 404.

report_type value Report contents

all Loop Report and Privatization Table

loop Loop Report

private Loop Report and Privatization Table

report_type not given
(default)

Loop Report

398 Appendix E

Optimization Report
Loop Report

Loop Report
The Loop Report lists the optimizations that were performed on loops
and calls; and, if appropriate, the report gives reasons why a possible
optimization was not performed. Loop nests are reported in the order in
which they are encountered and separated by a blank line. A description
of each column of the Loop Report follows:

Line Num.

Specifies the source line of the beginning of the loop, or
of the loop from which it was derived. For cloned calls
and inlined calls, the Line Num. column specifies the
source line at which the call statement appears.

Id Num.

Specifies a unique ID number for every optimized loop
and for every optimized call. This ID number can then
be referenced by other parts of the report. Both loops
appearing in the original program source and loops
created by the compiler are given loop ID numbers;
loops created by the compiler are also enumerated in
the New Id Nums column as described later. No
distinction between compiler-generated loops and loops
that existed in the original source is made in the
Id Num column; loops are assigned unique, sequential
numbers as they are encountered.

Var Name

Specifies the name of the iteration variable controlling
the loop or the called procedure if the line represents a
call. If the variable is compiler-generated, its name is
listed as *VAR* . If it consists of a truncated variable
name followed by a colon and a number, the number is
a reference to the variable name footnote table which
appears after the Loop Report and Analysis Table in
the Optimization Report.

Appendix E 399

Optimization Report
Loop Report

Reordering Transformation

Indicates which reordering transformations were
performed. Reordering transformations are performed
on loops, calls, and loop nests, and typically involve
reordering and/or duplicating sections of code to
facilitate more efficient execution. This column has one
of the values shown in Table 20.

Table 20 Reordering transformations reported in opt. report

Value Explanation

Block Loop blocking was performed. The new loop order
will be indicated under the Optimizing/Special
Transformation column, as shown in Table 21.

Cloned call A call to a subroutine was cloned.

Dist Loop distribution was performed.

DynSel Dynamic selection was performed. The numbers in
the New Id Nums column correspond to the loops
created; for parallel loops, these generally include
a PARALLEL and a Serial version.

Fused The loops were fused into another loop and no
longer exist. The original loops and the new loop
will be indicated under the Optimizing/Special
Transformation column, as shown in Table 21.

Inlined call A call to a subroutine was inlined.

Interchange Loop interchange was performed. The new loop
order will be indicated under the
Optimizing/Special Transformation
column, as shown in Table 21.

None No reordering transformation was performed on
the call.

PARALLEL The loop runs in thread-parallel mode.

PAR-NODE The loop runs in node-parallel mode.

Peel The first or last iteration of the loop was peeled in
order to fuse the loop with an adjacent loop.

Promote Test promotion was performed.

400 Appendix E

Optimization Report
Loop Report

New Id Nums

Specifies the ID number(s) for loops or calls created by
the compiler. These ID numbers are listed in the
Id Num. column and can be referenced in other parts of
the report; however, the loops and calls they represent
were not present in the original source code. In the case
of loop fusion, the number in this column indicates the
new loop created by merging all the fused loops. New
ID numbers are also created for cloned calls, inlined
calls, loop blocking, loop distribution, loop interchange,
loop unroll and jam, dynamic selection, and test
promotion.

Optimizing / Special Transformation

Indicates which, if any, optimizing transformations
were performed. An optimizing transformation reduces
the number of operations executed, or replaces
operations with simpler operations. A special
transformation allows the compiler to optimize code
under special circumstances. When appropriate, this
column has one of the values shown in Table 21.

Serial No reordering transformation was performed on
the loop.

Unroll and Jam The loop was unrolled and the nested loops were
jammed (fused).

VECTOR The loop was fully or partially replaced with more
efficient calls to one or more vector routines.

* Appears at left of loop-producing transformation
optimizations (distribution, dynamic selection,
blocking, fusion, interchange, call cloning, call
inlining, peeling, promotion, unroll and jam).

Value Explanation

Appendix E 401

Optimization Report
Loop Report

Table 21 Optimizing/special transformations in opt. report

Value Explanation

Fused The loop was fused into another loop and no longer
exists.

Reduction The compiler recognized a reduction in the loop.

Removed The compiler removed the loop.

Unrolled The loop was completely unrolled.

(OrigOrder) -> (InterchangedOrder) This information appears when Interchange is
reported under Reordering Transformation .
OrigOrder indicates the order of loops in the original
nest; InterchangedOrder indicates the new order that
occurs due to interchange. OrigOrder and
InterchangedOrder consist of user iteration variables
presented in outermost to innermost order.

(OrigLoops)->(NewLoop) This information appears when Fused is reported
under Reordering Transformation . OrigLoops
indicates the original loops that were fused by the
compiler to form the loop indicated by NewLoop.
OrigLoops and NewLoop refer to loops based on the
values from the Id Num. and New Id Nums columns
in the Loop Report.

(OrigLoopNest)->(BlockedLoopNest) This information appears when Block is reported
under Reordering Transformation .
OrigLoopNest indicates the order of the original loop
nest containing a loop that was blocked.
BlockedLoopNest indicates the order of loops after
blocking. OrigLoopNest and BlockedLoopNest refer to
user iteration variables presented in outermost to
innermost order.

402 Appendix E

Optimization Report
Loop Report

Supplemental tables
The tables described in this section are included in the
Optimization Report—if necessary—to provide information
supplemental to the Loop Report.

Analysis Table
If necessary, an Analysis Table is included in the Optimization Report to
further elaborate on optimizations reported in the Loop Report. A
description of each column of the Analysis Table follows:

Line Num. Specifies the source line of the beginning of the loop or
call.

Id Num. References the ID number assigned to the loop or call
in the Loop Report.

Var Name Specifies the name of the iteration variable controlling
the loop, *VAR* (as discussed in the Var Name
description in the section “Loop Report” on page 398),
or the name of the called procedure (as described in the
“Loop Report” section of this appendix).

Analysis Indicates why a transformation or optimization was
not performed, or additional information on what was
done.

Appendix E 403

Optimization Report
Loop Report

Privatization Table
This table reports any user variables contained in a parallelized loop
that are privatized by the compiler. Because the Privatization Table
refers to loops, the Loop Report is automatically provided with it. A
description of each column in the Privatization Table follows:

Line Num.

Specifies the source line of the beginning of the loop.
Id Num.

References the ID number assigned to the loop in the
loop table.

Var Name

Specifies the name of the iteration variable controlling
the loop. *VAR* may also appear in this column, as
discussed in the Var Name description in the section
“Loop Report” on page 398.

Priv Var

Specifies the name of the privatized user variable.
Compiler-generated variables that are privatized are
not reported here.

Privatization Information for Parallel Loops

Provides more detail on the variable privatizations
performed.

Variable Name Footnote Table
Variable names that are too long to fit in the Var Name columns of the
other tables are truncated and followed by a colon and a footnote
number. These footnotes are explained in the Variable Name Footnote
Table. The headings in the Variable Name Footnote Table are explained
below.

Footnoted Var Name Specifies the truncated variable name
and its footnote number.

User Var Name Specifies the full name of the variable
as given by the user in the source
code.

404 Appendix E

Optimization Report
Examples

Examples
The following Fortran examples enumerate the contents of the
Optimization Report. In discussing the examples, loops are referred to by
their ID numbers.

While only Fortran examples are given, analogous C and C++ code would
produce similar Optimization Reports.

Example 1
Consider the following program. (Line numbers are provided for
reference.)

1 PROGRAM EXAMPLE1
2 REAL A(100), B(100), C(100)
3 CALL SUB1(A,B,C)
4 END
5
6 SUBROUTINE SUB1(A,B,C)
7 REAL A(100), B(100), C(100)
8 DO ILOOPINDEX=1,100
9 A(ILOOPINDEX) = ILOOPINDEX
10 ENDDO
11 DO JLOOPINDEX=1,100
12 B(JLOOPINDEX) = A(JLOOPINDEX)**2
13 ENDDO
14 DO KLOOPINDEX=1, 100
15 C(KLOOPINDEX) = A(KLOOPINDEX) + B(KLOOPINDEX)
16 ENDDO
17 PRINT *, A(1), B(50), C(100)
18 END

Appendix E 405

Optimization Report
Examples

The following Optimization Report is generated by compiling the
program EXAMPLE1 with the command-line options +O3 +Oparallel
+Oreport=all +Oinline=sub1 :

% f77 +O3 +Oparallel +Oreport=all +Oinline=sub1 example1.f

 Optimization for example1

Line Id Var Reordering New Optimizing / Special
Num. Num. Name Transformation Id Nums Transformation

 3 1 sub1 *Inlined call (2-4)
 8 2 iloopi:1 Serial Fused
 11 3 jloopi:2 Serial Fused
 14 4 kloopi:3 Serial Fused
 *Fused (5) (2 3 4) -> (5)
 8 5 iloopi:1 PARALLEL

Footnoted User
Var Name Var Name

iloopi:1 iloopindex
jloopi:2 jloopindex
kloopi:3 kloopindex

 Optimization for sub1

Line Id Var Reordering New Optimizing / Special
Num. Num. Name Transformation Id Nums Transformation

 8 1 iloopi:1 Serial Fused
 11 2 jloopi:2 Serial Fused
 14 3 kloopi:3 Serial Fused
 *Fused (4) (1 2 3) -> (4)
 8 4 iloopi:1 PARALLEL

Footnoted User

Var Name Var Name

iloopi:1 iloopindex

jloopi:2 jloopindex

kloopi:3 kloopindex

406 Appendix E

Optimization Report
Examples

Optimization Report interpretation
This section uses fragments from the program EXAMPLE1 to explain the
information in the Optimization Report for EXAMPLE1. Again, line
numbers are listed for reference.

EXAMPLE1’s Loop Report provides the following information:

The first line of the Loop Report:

3 1 sub1 *Inlined call (2-4)

tells us that the call to sub1 was inlined. The inlining produced three
new loops in EXAMPLE1: Loop #2 , Loop #3 , and Loop #4 . Internally,
the EXAMPLE1 module that originally looked like:

1 PROGRAM EXAMPLE1
2 REAL A(100), B(100), C(100)
3 CALL SUB1(A,B,C)
4 END

now looks like the following:

 PROGRAM EXAMPLE1
 REAL A(100), B(100), C(100)
 DO ILOOPINDEX=1,100 !Loop #2
 A(ILOOPINDEX) = ILOOPINDEX
 ENDDO
 DO JLOOPINDEX=1,100 !Loop #3
 B(JLOOPINDEX) = A(JLOOPINDEX)**2
 ENDDO
 DO KLOOPINDEX=1, 100 !Loop #4
 C(KLOOPINDEX) = A(KLOOPINDEX) + B(KLOOPINDEX)
 ENDDO
 PRINT *, A(1), B(50), C(100)
 END

Appendix E 407

Optimization Report
Examples

The next four lines indicate that the new loops have been fused; the
fourth line informs us that the three loops were fused into one new loop,
Loop #5 .

 8 2 iloopi:1 Serial Fused
 11 3 jloopi:2 Serial Fused
 14 4 kloopi:3 Serial Fused
 *Fused (5) (2 3 4) -> (5)

After fusing, the code internally appears as the following:

 PROGRAM EXAMPLE1
 REAL A(100), B(100), C(100)
 DO ILOOPINDEX=1,100 !Loop #5
 A(ILOOPINDEX) = ILOOPINDEX
 B(ILOOPINDEX) = A(ILOOPINDEX)**2
 C(ILOOPINDEX) = A(ILOOPINDEX) + B(ILOOPINDEX)
 ENDDO
 PRINT *, A(1), B(50), C(100)
 END

As indicated by the following Loop Report line:

8 5 iloopi:1 PARALLEL

Loop #5 uses iloopi:1 as the iteration variable (referencing the
Variable Name Footnote Table, we see that iloopi:1 corresponds to
iloopindex). From that same line in the report, we learn that the
newly-created Loop #5 was parallelized.

According to the Variable Name Footnote Table (duplicated below), the
original variable iloopindex is abbreviated—to fit in the Var Name
columns of other reports—by the compiler as iloopi:1 ; similarly,
jloopindex and kloopindex are abbreviated as jloopi:2 and
kloopi:3 , respectively. These names are used throughout the report to
refer to these iteration variables.

Footnoted User

Var Name Var Name

iloopi:1 iloopindex

jloopi:2 jloopindex

kloopi:3 kloopindex

408 Appendix E

Optimization Report
Examples

Example 2
The following Fortran code provides an example of other transformations
the compiler performs. (Line numbers are listed for reference.)

1 PROGRAM EXAMPLE2
2
3 INTEGER IA1(100), IA2(100), IA3(100)
4 INTEGER I1, I2
5
6 DO I = 1, 100
7 IA1(I) = I
8 IA2(I) = I * 2
9 IA3(I) = I * 3
10 ENDDO
11
12 I1 = 0
13 I2 = 100
14 CALL SUB1 (IA1, IA2, IA3, I1, I2)
15 END
16
17 SUBROUTINE SUB1(A, B, C, S, N)
18 INTEGER A(N), B(N), C(N), S, I, J
19 DO J = 1, N
20 DO I = 1, N
21 IF (I .EQ. 1) THEN
22 S = S + A(I)
23 ELSE IF (I .EQ. N) THEN
24 S = S + B(I)
25 ELSE
26 S = S + C(I)
27 ENDIF
28 ENDDO
29 ENDDO
30 END

Appendix E 409

Optimization Report
Examples

The following Optimization Report is generated by compiling the
program EXAMPLE2 for parallelization:

% f90 +O3 +Oparallel +Oreport=all example2.f

 Optimization for SUB1

Line Id Var Reordering New Optimizing / Special
Num. Num. Name Transformation Id Nums Transformation

 19 1 j *Interchange (2) (j i) -> (i j)
 20 2 i *DynSel (3-4)
 20 3 i PARALLEL Reduction
 19 5 j *Promote (6-7)
 19 6 j Serial
 19 7 j Serial

 20 4 i Serial
 19 8 j *Promote (9-10)
 19 9 j Serial
 19 10 j *Promote (11-12)
 19 11 j Serial
 19 12 j Serial

Line Id Var Analysis
Num. Num. Name

 19 5 j Test on line 21 promoted out of loop
 19 8 j Test on line 21 promoted out of loop
 19 10 j Test on line 23 promoted out of loop

The report is continued on the next page.

410 Appendix E

Optimization Report
Examples

 Optimization for clone 1 of SUB1 (6_e70_cl_sub1)

Line Id Var Reordering New Optimizing / Special
Num. Num. Name Transformation Id Nums Transformation

 19 1 j *Interchange (2) (j i) -> (i j)
 20 2 i PARALLEL Reduction
 19 3 j *Promote (4-5)
 19 4 j Serial
 19 5 j *Promote (6-7)
 19 6 j Serial
 19 7 j Serial

Line Id Var Analysis
Num. Num. Name

 19 3 j Test on line 21 promoted out of loop
 19 5 j Test on line 23 promoted out of loop

 Optimization for example2

Line Id Var Reordering New Optimizing / Special
Num. Num. Name Transformation Id Nums Transformation

 6 1 i Serial

 14 2 sub1 *Cloned call (3)
 14 3 sub1 None

Line Id Var Analysis
Num. Num. Name

 14 2 sub1 Call target changed to clone 1 of SUB1 (6_e70_cl_sub1)

Appendix E 411

Optimization Report
Examples

Optimization Report interpretation
This section uses fragments from the program EXAMPLE2 to explain the
information in the Optimization Report for EXAMPLE2. Again, line
numbers are listed for reference.

The Optimization Report first shows Optimization Reports for the
subroutine and its clone. We shall now examine the optimizations to the
subroutine. Originally, the subroutine appeared as below:

17 SUBROUTINE SUB1(A, B, C, S, N)
18 INTEGER A(N), B(N), C(N), S, I, J
19 DO J = 1, N
20 DO I = 1, N
21 IF (I .EQ. 1) THEN
22 S = S + A(I)
23 ELSE IF (I .EQ. N) THEN
24 S = S + B(I)
25 ELSE
26 S = S + C(I)
27 ENDIF
28 ENDDO
29 ENDDO
30 END

First, the compiler performs loop interchange (listed as Interchange in
the report) to maximize cache performance:

19 1 j *Interchange (2) (j i) -> (i j)

412 Appendix E

Optimization Report
Examples

Internally, the subroutine then becomes the following:

17 SUBROUTINE SUB1(A, B, C, S, N)
18 INTEGER A(N), B(N), C(N), S, I, J
19 DO I = 1, N ! Loop #2
20 DO J = 1, N ! Loop #1
21 IF (I .EQ. 1) THEN
22 S = S + A(I)
23 ELSE IF (I .EQ. N) THEN
24 S = S + B(I)
25 ELSE
26 S = S + C(I)
27 ENDIF
28 ENDDO
29 ENDDO
30 END

The program is then optimized for parallelization. The compiler would
like to parallelize the outermost loop in the nest (which is now the
I loop). However because the value of N is not known, the compiler does
not know how many times the I loop needs to be executed. To ensure
that the loop is executed as efficiently as possible at runtime, the
compiler replaces the I loop nest with two new copies of the I loop nest,
one to be run in parallel, the other to be run serially. An IF is then
inserted to select the more efficient version of the loop to execute at
runtime. This method of making one copy for parallel execution and one
copy for serial execution is known as dynamic selection, which is enabled
by default when +O3 +Oparallel is specified. (See “Dynamic selection”
on page 109 for more information.) This optimization is reported in the
Loop Report in the line:

20 2 i *DynSel (3-4)

Appendix E 413

Optimization Report
Examples

According to the report, Loop #2 was used to create the new loops,
Loop #3 and Loop #4 . Internally, the code now is represented as
follows:

 SUBROUTINE SUB1(A, B, C, S, N)
 INTEGER A(N), B(N), C(N), S, I, J
 IF (N .GT. some_threshold) THEN
 DO (parallel) I = 1, N ! Loop #3
 DO J = 1, N ! Loop #5
 IF (I .EQ. 1) THEN
 S = S + A(I)
 ELSE IF (I .EQ. N) THEN
 S = S + B(I)
 ELSE
 S = S + C(I)
 ENDIF
 ENDDO
 ENDDO
 ELSE
 DO I = 1, N ! Loop #4
 DO J = 1, N ! Loop #8
 IF (I .EQ. 1) THEN
 S = S + A(I)
 ELSE IF (I .EQ. N) THEN
 S = S + B(I)
 ELSE
 S = S + C(I)
 ENDIF
 ENDDO
 ENDDO
 ENDIF
 END

As indicated by the Optimizing / Special Transformation column
of the report, Loop #3 (which was parallelized) also contained one or
more reductions. The Reordering Transformation column indicates
that the IF statements were promoted out of Loop #5 , Loop #8 , and
Loop #10 .

414 Appendix E

Optimization Report
Examples

The Analysis Table, which immediately follows the Loop Report, shows
the line numbers of the IF statements that were promoted. The first test
in Loop #5 was promoted, creating two new loops, Loop #6 and
Loop #7 . Similarly, Loop #8 has a test promoted, creating Loop #9
and Loop #10 . The test remaining in Loop #10 is then promoted,
thereby creating two additional loops. (A “promoted test” is an IF
statement that is hoisted out of a loop. See the section “Test promotion”
on page 66 for more information.) The Analysis Table contents are shown
below:

 19 5 j Test on line 21 promoted out of loop
 19 8 j Test on line 21 promoted out of loop
 19 10 j Test on line 23 promoted out of loop

Moving to the Optimization Report for EXAMPLE2, we find that the
following DO loop:

6 DO I = 1, 100
7 IA1(I) = I
8 IA2(I) = I * 2
9 IA3(I) = I * 3
10 ENDDO

does not undergo any reordering transformation. This fact is reported by
the line

6 1 i Serial

The call to the subroutine sub1 is cloned. As indicated by the
asterisk (*), the compiler produced a new call. The new call is given the
ID (3) listed in the New Id Nums column. The new call is then listed;
None indicates that no reordering transformation was performed on the
call to the new subroutine.

14 2 sub1 *Cloned call (3)
14 3 sub1 None

The Analysis Table is then appended to the Loop Report to elaborate on
the Cloned call transformation. This line informs us that the clone
was called in place of the original subroutine.

14 2 sub1 Call target changed to clone 1 of SUB1 (6_e70_cl_sub1)

Appendix E 415

Optimization Report
Examples

Example 3
This last example shows loop blocking, loop peeling, loop distribution,
and loop unroll and jam, among other transformations. (Line numbers
are listed for reference.)

1 PROGRAM EXAMPLE3
2
3 REAL*8 A(1000,1000), B(1000,1000), C(1000)
4 REAL*8 D(1000), E(1000)
5 INTEGER M, N
6
7 N = 1000
8 M = 1000
9
10 DO I = 1, N
11 C(I) = 0
12 DO J = 1, M
13 A(I,J) = A(I,J) + B(I,J) * C(I)
14 ENDDO
15 ENDDO
16
17 DO I = 1, N-1
18 D(I) = I
19 ENDDO
20
21 DO J = 1, N
22 E(J) = D(J) + 1
23 ENDDO
24
25 PRINT *, A(103,103), B(517, 517), D(11), E(29)
26
27 END

416 Appendix E

Optimization Report
Examples

The following Optimization Report is generated by compiling program
EXAMPLE3 as follows:

% f90 +O3 +Oreport +Oloop_block example3.f

 Optimization for example3

Line Id Var Reordering New Optimizing / Special
Num. Num. Name Transformation Id Nums Transformation

 10 1 i:1 *Dist (2-3)
 10 2 i:1 Serial

 10 3 i:1 *Interchange (4) (i:1 j:1) -> (j:1 i:1)
 12 4 j:1 *Block (5) (j:1 i:1) -> (i:1 j:1 i:1)
 10 5 i:1 *Promote (6-7)
 10 6 i:1 Serial Removed
 10 7 i:1 Serial
 12 8 j:1 *Unroll And Jam (9)
 12 9 j:1 *Promote (10-11)
 12 10 j:1 Serial Removed
 12 11 j:1 Serial
 10 12 i:1 Serial

 17 13 i:2 Serial Fused
 21 14 j:2 *Peel (15)
 21 15 j:2 Serial Fused
 *Fused (16) (13 15) -> (16)
 17 16 i:2 Serial

Line Id Var Analysis
Num. Num. Name

 10 5 i:1 Loop blocked by 56 iterations
 10 5 i:1 Test on line 12 promoted out of loop
 10 6 i:1 Loop blocked by 56 iterations
 10 7 i:1 Loop blocked by 56 iterations
 12 8 j:1 Loop unrolled by 8 iterations and jammed into the
innermost loop
 12 9 j:1 Test on line 10 promoted out of loop
 21 14 j:2 Peeled last iteration of loop

Appendix E 417

Optimization Report
Examples

Optimization Report interpretation
This section uses fragments from program EXAMPLE3 to explain the
information in the Optimization Report for EXAMPLE3. Again, line
numbers are listed for reference.

Notice that in this report, the Var Name column has entries such as i:1 ,
j:1 , i:2 , and j:2 . This type of entry appears when a variable is used
more than once. For example, in EXAMPLE3, I is used as an iteration
variable twice; consequently, i:1 refers to the first occurrence, and i:2
refers to the second occurrence.

The first line of the report tells us that the loop on line 10 of EXAMPLE3
(that is, Loop #1) is distributed to create Loop #2 and Loop #3 :

10 1 i:1 *Dist (2-3)

Initially, Loop #1 appears as shown below.

 DO I = 1, N ! Loop #1
 C(I) = 0
 DO J = 1, M
 A(I,J) = A(I,J) + B(I,J) * C(I)
 ENDDO
 ENDDO

It is then distributed as follows:

 DO I = 1, N ! Loop #2
 C(I) = 0
 ENDDO

 DO I = 1, N ! Loop #3
 DO J = 1, M
 A(I,J) = A(I,J) + B(I,J) * C(I)
 ENDDO
 ENDDO

The third line informs us that Loop #3 is then interchanged to create
Loop #4 :

10 3 i:1 *Interchange (4) (i:1 j:1) -> (j:1 i:1)

418 Appendix E

Optimization Report
Examples

Now, the loop looks like the following code:

 DO J = 1, M ! Loop #4
 DO I = 1, N
 A(I,J) = A(I,J) + B(I,J) * C(I)
 ENDDO
 ENDDO

The next line of the Optimization Report indicates that the nest rooted at
Loop #4 is blocked:

12 4 j:1 *Block (5) (j:1 i:1) -> (i:1 j:1 i:1)

The blocked nest internally appears as follows:

 DO IOUT = 1, N, 56 ! Loop #5
 DO J = 1, M
 DO I = IOUT, IOUT + 55
 A(I,J) = A(I,J) + B(I,J) * C(I)
 ENDDO
 ENDDO
 ENDDO

Loop #5 (the loop with iteration variable i:1) is the loop that was
actually blocked. The report shows *Block on Loop #4 (the j:1 loop)
because the entire nest rooted at Loop #4 is replaced by the blocked
nest.

The IOUT variable is introduced to facilitate the loop blocking. The
compiler uses a step value of 56 for the IOUT loop as reported in the
Analysis Table:

10 5 i:1 Loop blocked by 56 iterations

The next three lines of the report tell us that a test was promoted out of
Loop #5 , creating Loop #6 (which is removed) and Loop #7 (which is
run serially). This test—which does not appear in the source code—is an
implicit test that the compiler inserts in the code to ensure that the loop
iterates at least once.

10 5 i:1 *Promote (6-7)
10 6 i:1 Serial Removed
10 7 i:1 Serial

This test is referenced again in the following line from the
Analysis Table:

10 5 i:1 Test on line 12 promoted out of loop

Appendix E 419

Optimization Report
Examples

Looking back to the report, we see that the J is unrolled and jammed,
creating Loop #9 :

12 8 j:1 *Unroll And Jam (9)

The Analysis Table also tells us that the J loop is unrolled and jammed,
stating that the loop was unrolled by 8 iterations:

12 8 j:1 Loop unrolled by 8 iterations and jammed into the innermost loop

The unrolled and jammed loop looks like the following code:

 DO IOUT = 1, N, 56 ! Loop #5
 DO J = 1, M, 8 ! Loop #8
 DO I = IOUT, IOUT + 55 ! Loop #9
 A(I,J) = A(I,J) + B(I,J) * C(I)
 A(I,J+1) = A(I,J+1) + B(I,J+1) * C(I)
 A(I,J+2) = A(I,J+2) + B(I,J+2) * C(I)
 A(I,J+3) = A(I,J+3) + B(I,J+3) * C(I)
 A(I,J+4) = A(I,J+4) + B(I,J+4) * C(I)
 A(I,J+5) = A(I,J+5) + B(I,J+5) * C(I)
 A(I,J+6) = A(I,J+6) + B(I,J+6) * C(I)
 A(I,J+7) = A(I,J+7) + B(I,J+7) * C(I)
 ENDDO
 ENDDO
 ENDDO

The Optimization Report informs us that the compiler-inserted test in
Loop #9 is promoted out the loop, creating Loop #10 and Loop #11 .

12 9 j:1 *Promote (10-11)
12 10 j:1 Serial Removed
12 11 j:1 Serial

According to the report, the last two loops in the program are fused (once
an iteration is peeled off the second loop), then the new loop is run
serially.

17 13 i:2 Serial Fused
21 14 j:2 *Peel (15)
21 15 j:2 Serial Fused
 *Fused (16) (13 15) -> (16)
17 16 i:2 Serial

420 Appendix E

Optimization Report
+Oinfo option

Combining that information with the following line from the
Analysis Table:

21 14 j:2 Peeled last iteration of loop

we know that initially, Loop #14 has an iteration peeled to create
Loop #15 , as shown below. (The loop peeling is performed to enable loop
fusion.)

 DO I = 1, N-1 ! Loop #13
 D(I) = I
 ENDDO

 DO J = 1, N-1 ! Loop #15
 E(J) = D(J) + 1
 ENDDO

Loop #13 and Loop #15 are then fused to produce Loop #16 :

 DO I = 1, N-1 ! Loop #16
 D(I) = I
 E(I) = D(I) + 1
 ENDDO

+Oinfo option
The +Oinfo option, which displays informational messages about the
optimization process, can also be used to provide information. This
option is only useful at +O3 and above. The default is +Onoinfo .

Appendix F 421

F Compiler Parallel
Support Library

Introduction
The Compiler Parallel Support Library (CPSlib) is a library of thread
management and synchronization routines for use in controlling
parallelism. Most programs can fully exploit their parallelism via
higher-level devices such as automatic parallelization, compiler
directives, and message-passing; CPSlib is provided for those few cases
requiring a lower-level interface. Using CPSlib requires you to manually
control all aspects of parallelism, synchronization, and data partitioning.

This appendix includes a discussion of the forms of parallelism available
via CPSlib, instructions for accessing CPSlib, a brief description of each
routine included in CPSlib, and examples of common programming
constructs as implemented using CPSlib routines. For further
information, refer to the section 3 man pages for the routine in question,
or to the cps(3) man page for an overview.

CPSlib supports two forms of parallelism: symmetric and asymmetric.

Symmetric parallelism
In symmetric parallelism, several threads execute the same instruction
stream. Symmetric parallelism is typically used by the compilers to
parallelize a loop; the description of parallelism given in Chapter 3,
“Compiler optimizations,” is a description of symmetric parallelism.

Symmetric parallel threads are spawned using cps_ppcall() or
cps_ppcalln() , which, along with all CPSlib routines, are described in
detail further on. These functions automatically spawn a given number
of threads, which call a specified routine in parallel. All parallel work
must occur in the called routine. When the routine returns,
cps_ppcall() or cps_ppcalln() automatically executes a join and
the program proceeds in serial.

Figure 26 shows a cps_ppcall() that spawns two threads, each of
which in turn spawns four threads. The arrows represent a thread’s
instruction flow; the numbers labeling the arrows indicate the spawn
thread IDs. Kernel and spawn thread IDs are also discussed in the
section “Thread ID assignments” on page 223.

422 Appendix F

Compiler Parallel Support Library
Introduction

 Figure 26 Symmetric parallelism

Shaded boxes represent operations hidden from the user by
cps_ppcall() . As shown in the left branch of the first spawn, when a
cps_ppcall() or cps_ppcalln() is processed, the parent thread is
allocated to the computation as spawn thread ID 0; its kernel thread ID,
which is uninteresting to the user, is unchanged. Additional peer threads
in both spawned threads are spawned and assigned spawn thread IDs
from one to the number of threads spawned minus one.

When the threads join, the original parent thread (spawn thread ID 0)
leaves the join after all other threads that were spawned last have also
joined. The join operation contains an implicit barrier, so that all threads
must reach the join before the original thread continues.

Spawn

Computation

Join

0

0 1

0 1

2 3

0 1

0

Spawn Spawn

Computation
Computation

Computation

0 1 2 3

Join

Join

Computation
Computation

Computation
Computation

cps_ppcall()

cps_ppcall() cps_ppcall()

Appendix F 423

Compiler Parallel Support Library
Introduction

Spawns and joins may thus be arbitrarily nested; however, each thread
that was allocated as a result of a spawn must eventually join for correct
program operation. The spawn thread ID has a scope between the
immediately enclosing spawn/join pair; a single thread may change its
spawn thread ID as the result of executing a spawn or join operation.

Asymmetric parallelism
Asymmetric parallelism is used when each thread executes a different,
independent instruction stream. Asymmetric threads are analogous to
the Unix fork system call construct; the threads are disjoint. Either the
parent or the child may terminate first in any order. Either or both the
parent and the child may spawn additional symmetric or asymmetric
threads.

Asymmetric threads are spawned using the cps_thread_create()
function and terminated using the cps_thread_exit() function.
Asymmetric threads cannot join with their parent thread; they
terminate separately. If you do not specifically call cps_thread_exit()
to terminate an asymmetric thread, the thread will automatically
terminate when the procedure called by cps_thread_create()
successfully terminates.

Figure 27 shows an asymmetric thread tree. Asymmetrically spawned
child threads do not have spawn thread IDs; they do, however, have
unique kernel thread IDs, which are assigned in no particular order. The
parent which executed the cps_thread_create() retains the same
kernel thread ID it had before it spawned the child thread.

424 Appendix F

Compiler Parallel Support Library
Introduction

 Figure 27 Asymmetric parallelism

You can spawn symmetric threads from asymmetric threads using
cps_ppcall and cps_ppcalln . In this case, the parent thread retains
its kernel thread ID and, along with the symmetric threads, receives a
spawn thread ID. These symmetric threads must join before the
asymmetric parent can exit; if an asymmetric parent attempts to exit
while its symmetric children are still active, it will join instead.

cps_thread_exit

cps_thread_create

Computation

cps_thread_create

Computation

cps_thread_create

Computation

cps_thread_exit

Appendix F 425

Compiler Parallel Support Library
Accessing CPSlib

Accessing CPSlib
C and C++ programs using CPSlib functions must include the following
header file:

#include <cps.h>

To access errno symbolic constant values in C or C++, you must also
include the following header file:

#include <errno.h>

The Fortran 90, Fortran 77, aC++, and C compilers share a common
interface to CPSlib; the same library, libcps.sl, allows access to the
CPSlib functions from any of the languages.

In the Exemplar compilers, CPSlib is automatically linked in only at +O3
(and above) when +Oparallel is specified. If your program explicitly
calls CPSlib routines or calls other libraries that use CPS routines and
you are not linking at +O3 (or +O4) with +Oparallel , you must
explicitly link in CPSlib as shown in the example below.

Assume prog.c contains calls to CPSlib routines:

% cc prog.c -lpthread -lcps -lpthread

Linking in CPSlib requires specifying—in the order given—all of the
string -lpthread -lcps -lpthread . The pthread library is required
because CPSlib uses Pthreads routines. Pthreads routines can be used
independently of CPSlib. For more information on using Pthreads, see
the pthread(3t) man page or the book Programming with Threads on
HP-UX (B2355-90060).

426 Appendix F

Compiler Parallel Support Library
CPS library functions

CPSlib and MP_NUMBER_OF_THREADS

CPSlib checks the value of the MP_NUMBER_OF_THREADS environment
variable to determine how many processors to generate code for. This
variable is read at runtime. If this variable is set to some positive
integer n, your program executes on n processors; n must be less than or
equal to the number of processors in the system where the program is
executing. The default value for MP_NUMBER_OF_THREADS is 1.

The following command line shows the C shell syntax to use when
setting the variable to 8 processors:

% setenv MP_NUMBER_OF_THREADS 8

CPS library functions
CPSlib provides thread-management functions, high-level
synchronization functions, and low-level synchronization functions. This
section briefly describes each function and its arguments.

Default versions of the functions presented here return 4-byte values
and take 4-byte arguments. 8-byte versions are also available; the names
of these functions are suffixed with _8 (for example, the 8-byte version of
cps_ppcall is cps_ppcall_8), and the functions take eight-byte
arguments. Refer to the appropriate man pages for more information.

All C/C++ examples presented here assume that cps.h is included in the
program. Note that the NULL value in C and C++ is equivalent to 0
(zero) in Fortran.

NOTE CPSlib routines are incompatible with system functions of the form
cnx_* ; mixing the two will cause wrong answers, deadlock or runtime
errors. Mixing CPSlib routines and certain compiler directives may
cause wrong answers at +O1 or higher; if this happens, lower the
optimization level or refer to the section “Global register allocation” on
page 52. Do not mix CPSlib routines and Pthreads routines.

Appendix F 427

Compiler Parallel Support Library
CPS library functions

Thread-management functions
These functions allow you to spawn and join or terminate threads.

Symmetric thread functions
Symmetric threads are spawned, execute in parallel, and join via a single
CPSlib function call. By definition, all parallel symmetric threads must
execute to completion before the join operation can take place; therefore
no exit or wait functions are provided.

cps_ppcall and cps_ppcalln
The cps_ppcall and cps_ppcalln functions allow you to spawn
symmetrically parallel threads. In Fortran, these functions have the
following forms:

INTEGER FUNCTION CPS_PPCALL(PARAMS, FUNC, ARG)
INTEGER PARAMS(4) !ELEMENTS ARE ANALOGOUS TO ELEMENTS OF params
 !STRUCTURE IN C CODE
EXTERNAL FUNC
INTEGER FUNCTION CPS_PPCALLN(PARAMS,FUNC,n,ARG1,...,ARG n)
INTEGER PARAMS(4) !ELEMENTS ARE ANALOGOUS TO ELEMENTS OF params
 !STRUCTURE IN C CODE
EXTERNAL FUNC

Because the subprogram FUNC is used as an actual argument in the
function reference, it must be declared EXTERNAL.

In C and C++:

typedef struct {
 int node; /* node to place allocated threads on */
 int min; /* minimum number of threads to allocate */
 int max; /* maximum number of threads to allocate */
 int threadscope; /* thread scope attributes */
} spawn_sym_t;
int cps_ppcall(spawn_sym_t *params,void (*func)(void *),void *arg);
int cps_ppcalln(spawn_sym_t *params,void (*func)(void *),
 const int * n, void *arg1, ..., void *arg n);

The elements params->node and PARAMS(1) control what hypernodes
threads are allocated on. They can contain the logical hypernode ID of
the hypernode on which to allocate the threads, or they can take one of
the values shown in Table 22.

428 Appendix F

Compiler Parallel Support Library
CPS library functions

Table 22 params->node /PARAMS(1) values

params->min and PARAMS(2) specify the minimum number of threads
to allocate; params->max and PARAMS(3) specify the maximum number
of threads to allocate.

params->threadscope and PARAMS(4) control the creation strategy
for new threads. Table 23 shows acceptable values for these parameters.
Except where noted, the logical or of two or more of these values can be
used.

Table 23 params->threadscope /PARAMS(4) values

cps_ppcall spawns the number of threads designated in the argument
params and arranges for each thread, including the calling thread, to
call the argument function func with the argument arg . After returning

C/C++ symbolic
constant name Value Meaning

CPS_SAME_NODE -1 Allocate threads on same
hypernode as calling thread

CPS_ANY_NODE -2 Allocate threads on any
hypernode

CPS_DIFFERENT_NODE -3 Allocate threads on different
hypernode than that of the
calling thread

C/C++ symbolic constant
name Value Meaning

CPS_THREAD_PARALLEL 1 Allocate multiple threads per hypernode;
mutually exclusive with CPS_NODE_PARALLEL

CPS_NODE_PARALLEL 2 Allocate one thread per hypernode; mutually
exclusive with CPS_THREAD_PARALLEL

CPS_OVER_SUBSCRIBE 4 Allows multiple threads per CPU; if not set, no
more than one thread per CPU can be started

CPS_IGNORE_STACKSCOPE 8 Allows the spawning of new threads which may
not be able to validly address their parent’s
stack or thread_private data

Appendix F 429

Compiler Parallel Support Library
CPS library functions

from func , each thread automatically joins. When all threads have
joined, the parent continues executing the code following the
cps_ppcall or cps_ppcalln .

cps_ppcalln is identical to cps_ppcall , except that it will pass n
arguments to the function func , where n ranges from 0 to 256.

The thread that calls cps_ppcall or cps_ppcalln is considered the
parent thread; if the call is successful, it will become spawn thread 0
prior to calling the function. Other threads spawned will be assigned
increasing spawn thread IDs ranging from 1 to m-1, where m is the
number of threads spawned.

After all of the threads return from func , the parent thread will restore
its previous thread state and continue execution after cps_ppcall or
cps_ppcalln .

If successful, these functions return the number of threads spawned
including the parent. If an error occurs, they return -1 and, in C and
C++, errno is set as shown in Table 24.

Table 24 errno values for cps_ppcall and cps_ppcalln

Nested cps_ppcall and/or cps_ppcalln calls are permitted.

NOTE Each thread spawned to run func receives a default local stack
of 80 Mbytes. If func declares local variables that occupy more
than 80 Mbytes, you must change this default using the
CPS_STACK_SIZE environment variable. CPS_STACK_SIZE specifies the
default stack size for spawned parallel functions in kbytes. It is read once
at program startup; the spawn thread stack size cannot be changed
during execution. Thread 0’s default stack size is specified by HP-UX.

For more information, refer to the cps_ppcall(3) man page.

errno value Meaning

EAGAIN The minimum number of threads could not be
allocated

EINVAL Either the hypernode specified by params->node
(or PARAMS(1)) is not a valid logical hypernode ID,
or the value of params->min (PARAMS(2)) or
params->max (PARAMS(3)) is less than 0

430 Appendix F

Compiler Parallel Support Library
CPS library functions

Asymmetric thread functions
By definition, asymmetric threads execute independently of one another.
Rather than join, asymmetric threads terminate; that is, because their
execution is independent, one asymmetric thread has no need to know
when another has completed, so no join is necessary or possible.

cps_thread_create and cps_thread_createn
The cps_thread_create and cps_thread_createn functions allow
you to spawn asymmetrically parallel threads. In Fortran, these
functions have the following form:

INTEGER FUNCTION CPS_THREAD_CREATE(NODE, FUNC, ARG)
INTEGER NODE
EXTERNAL FUNC
INTEGER FUNCTION CPS_THREAD_CREATEN(NODE, FUNC,n, ARG1, ..., ARG n)
INTEGER NODEEXTERNAL FUNC

Because the subprogram FUNC is used as an actual argument in the
function reference, it must be declared EXTERNAL.

In C and C++:

int cps_thread_create(const int *node, void (*func) (void *),
 void *arg);
int cps_thread_createn(const int *node, void (*func) (void*),
 const int * n, void *arg1, ..., void *arg n);

cps_thread_create spawns a single asymmetric thread on the
hypernode specified by node and arranges for the asymmetric thread to
call the argument function func with the parameter arg . On return
from func , the asymmetric thread will automatically call
cps_thread_exit() ; this function can also be manually called from
within func to terminate the asymmetric thread.

node takes the same CPS_SAME_NODE and CPS_ANY_NODE values as the
node argument to cps_ppcall , which is described in the section
“Symmetric thread functions” on page 427.

cps_thread_createn is identical to cps_thread_create , except that
it will pass n arguments to the function func , where n ranges from 0 to
256.

If successful, these functions return the kernel thread ID of the newly
spawned thread. No assumptions can be made about kernel thread IDs
except that they are unique. Asymmetric threads do not have spawn
thread IDs.

Appendix F 431

Compiler Parallel Support Library
CPS library functions

NOTE cps_thread_create and cps_thread_createn return immediately
after initiating func , and both func and the parent thread execute in
parallel until one terminates. If the parent thread manipulates arg after
returning from cps_thread_create[n] but before func exits, you
must ensure that this manipulation is synchronized between the parent
and func , or the value of arg will be indeterminate.

If unsuccessful, these functions return -1 and, in C and C++, set errno
as shown in Table 25.

Table 25 errno values for cps_thread_create[n]

Nested calls to cps_thread_create and/or cps_thread_createn are
permitted.

For more information, refer to the cps_thread_create(3) man page.

cps_thread_exit
This function terminates the asymmetric thread call made by
cps_thread_create . In Fortran it has the following form:

INTEGER FUNCTION CPS_THREAD_EXIT()

In C and C++:

int cps_thread_exit(void);

Upon successful completion of func (specified in cps_thread_create),
asymmetric threads spawned with cps_thread_create will
automatically call cps_thread_exit . The function is provided for cases
in which you wish to terminate an asymmetric thread before func
normally returns.

If successful, cps_thread_exit does not return. If unsuccessful it
returns -1 and, in C and C++, sets errno to EINVAL if it was called from
a symmetric thread.

For more information, refer to the cps_thread_create(3) man page.

errno value Meaning

EAGAIN The asymmetric thread could not be allocated

EINVAL node is not a valid logical hypernode ID in the
program-assigned system

432 Appendix F

Compiler Parallel Support Library
CPS library functions

cps_thread_wait
This function can be used to wait until all asymmetric threads have
terminated, or to find out the number of active asymmetric threads. In
Fortran it has the following form:

INTEGER FUNCTION CPS_THREAD_WAIT(FLAG)

In C and C++:

int cps_thread_wait(const int *flag);

If flag is set, this routine waits until all asymmetric threads in the
program have terminated. If flag is not set, it returns the number of
active asymmetric threads in the program.

cps_thread_wait cannot be called with flag set from an asymmetric
thread because the active state of the calling thread will prevent the
function from returning, resulting in deadlock.

To use cps_thread_wait in an asymmetric thread to wait for all child
asymmetric threads to terminate, you must know how many asymmetric
threads were spawned before the calling thread. With this information,
you can construct a loop that calls cps_thread_wait with flag equal
to 0 until the number of active threads is equal to the number of
previously spawned threads plus 1 (the calling thread), as shown in the
following Fortran example:

10 IWAIT = CPS_THREAD_WAIT(0) ! FIND NUMBER OF ASYM THREADS
 IF(IWAIT .LT. 0) PRINT*, "CPS_THREAD_WAIT FAILED"
 IF(IWAIT .GT. PREVTHRDS+1) GOTO 10 ! SPIN UNTIL ALL
 ! CHILDREN TERMINATE

Here, CPS_THREAD_WAIT returns the total number of asymmetric
threads at line 10; the next line is a routine error trap, and the third line
checks the returned number against the known number of threads that
are not children of the calling thread. PREVTHRDS is a user-defined and
user-incremented variable. The loop cannot terminate until the returned
number indicates that all of the calling thread’s children have
terminated.

If unsuccessful, cps_thread_wait returns -1 and, in C and C++, sets
errno to EDEADLK if it was called from an asymmetric thread or the
child of an asymmetric thread with flag set.

For more information, refer to the cps_thread_create(3) man page.

Appendix F 433

Compiler Parallel Support Library
CPS library functions

Thread information and attribute functions
These functions provide information on active parallel threads, the
system configuration, and CPS attributes. For information beyond that
which follows, refer to the cps_info(3) man page.

cps_stid
This function returns the spawn thread ID of the calling thread. In
Fortran cps_stid has the following form:

INTEGER FUNCTION CPS_STID()

In C and C++:

stid_t cps_stid(void);

Spawn thread IDs range from 0..n-1, where n is the number of currently
active symmetric threads in the current spawn context (refer to
cps_nsthreads).

If unsuccessful, this function returns -1. Because asymmetric threads
have no spawn thread IDs, cps_stid() returns -1 when called from an
asymmetric thread.

cps_ktid
This function returns the kernel thread ID of the calling thread. In
Fortran, cps_ktid has the following form:

INTEGER FUNCTION CPS_KTID()

In C and C++:

tid_t cps_ktid(void);

Note that kernel threads IDs are generated with no regularity; they are
simply unique IDs.

434 Appendix F

Compiler Parallel Support Library
CPS library functions

cps_nsthreads
This function returns the number of threads in the current CPS spawn
context. Each spawn establishes a spawn context and the number
returned by cps_nsthreads can vary from spawn to spawn. For
example, if you have a cps_ppcall that spawns 2 threads nested within
a cps_ppcall that spawns 4 threads, cps_nsthreads returns 2 when
called from the inner spawn context, and 4 when called from the outer
spawn context.

In Fortran, cps_nsthreads has the following form:

INTEGER FUNCTION CPS_NSTHREADS()

In C and C++:

int cps_nsthreads(void);

cps_plevel
This function can be used to determine the current level of parallelism.
In Fortran, it has the following form:

INTEGER FUNCTION CPS_PLEVEL()

In C and C++:

int cps_plevel(void);

The return value is a bit mask. The possible return values are a sum of
those shown in Table 26.

Appendix F 435

Compiler Parallel Support Library
CPS library functions

Table 26 cps_plevel return values

cps_node_id
This function returns the logical ID of the hypernode on which the
calling thread is executing. In Fortran, cps_node_id has the following
form:

INTEGER CPS_NODE_ID()

In C and C++:

int cps_node_id(void);

Logical hypernode IDs range from 0..n-1, where n is the number of
available hypernodes in the system. Logical IDs are assigned in the order
in which your program occupies the system. The hypernode that your
program’s thread 0 runs on is considered logical hypernode 0; any
hypernodes it expands to later are assigned increasing logical ID
numbers. Because the operating system starts a program on the
least-loaded hypernode, logical hypernode IDs can differ between
programs due to load balancing; thus two programs running on the same
system are unlikely to address identical hypernodes with identical
logical IDs.

Logical hypernode IDs have no correlation to physical hypernode IDs,
which are unique for each hypernode at the machine level.

C/C++ symbolic
constant name Value Meaning

CPS_PL_NONE 0 No parallel threads

CPS_PL_PARALLEL 1 Asymmetric parallel threads are
active

CPS_PL_NODE 2 Hypernode-parallel threads are
active

CPS_PL_NTHREAD 4 Parallel threads are active on the
current hypernode

CPS_PL_THREAD 8 Parallel threads are active across
multiple hypernodes

CPS_PL_ASYMMETRIC 16 Current thread is an asymmetric
thread or a child of one

436 Appendix F

Compiler Parallel Support Library
CPS library functions

cps_node_cpus
This function returns the number of threads available to the caller on the
hypernode on which it is running. In Fortran it has the following form:

INTEGER CPS_NODE_CPUS()

In C and C++:

int cps_node_cpus(void);

Note that the return value represents the number of threads visible to
the calling application, and does not necessarily indicate the total
number of threads on the hypernode.

cps_node_nthreads
This function returns the number of active threads belonging to the
calling application that are running on the hypernode on which the call
is executing. In Fortran it has the following form:

INTEGER CPS_NODE_NTHREADS()

In C and C++:

int cps_node_nthreads(void);

Active threads include threads spawned by cps_ppcall , cps_ppcalln ,
or cps_thread_create , as well as threads spawned automatically due
to compiler-generated parallelism.

Appendix F 437

Compiler Parallel Support Library
CPS library functions

cps_is_parallel
This function returns 1 if the program has parallel code and can go
parallel; otherwise it returns 0. In Fortran it has the following form:

INTEGER CPS_IS_PARALLEL()

In C and C++:

int cps_is_parallel(void);

cps_complex_cpus
This function returns the total number of threads available to the
application. In Fortran, it has the following form:

INTEGER CPS_COMPLEX_CPUS()

In C and C++:

int cps_complex_cpus(void);

cps_complex_nthreads
This function returns the number of active threads belonging to the
calling application that are running on the system on which the call is
executing. In Fortran, it has the following form:

INTEGER CPS_COMPLEX_NTHREADS()

In C and C++:

int cps_complex_nthreads(void);

Active threads include threads spawned by cps_ppcall , cps_ppcalln ,
or cps_thread_create , as well as threads spawned automatically due
to compiler-generated parallelism.

cps_complex_nodes
This function returns the total number of logical hypernodes available to
the application from which it is called in the application’s system. In
Fortran it has the following form:

INTEGER CPS_COMPLEX_NODES()

In C and C++:

int cps_complex_nodes(void);

438 Appendix F

Compiler Parallel Support Library
CPS library functions

cps_set_threads
This function sets the number of threads CPS has in its pool of free
threads to count , where count is in the range from 1 to the value
returned by cps_complex_cps . In Fortran it has the following form:

INTEGER FUNCTION CPS_SET_THREADS(COUNT)
INTEGER COUNT

In C and C++:

int cps_set_threads(const int *count)

If successful, cps_set_threads returns 0. Otherwise, -1 is returned,
and, in C and C++, errno is set to:

• EINVAL if count is greater than the value returned by
cps_complex_cpus or if count is less than or equal to 0

• EBUSY if there are any active CPS threads (other than the main
thread)

cps_topology
This function fills an array with the application’s view of the topology of
the system on which it is running. In Fortran it has the following form:

INTEGER CPS_TOPOLOGY(NODES,N)INTEGER NODES(N)

In C and C++:

int cps_topology(int nodes[], int n)

Each element of the NODES or nodes array corresponds to a logical
hypernode, with the first element corresponding to logical hypernode 0,
the second to logical hypernode 1, etc. Therefore, given default
subscripting in Fortran, NODES(1) represents logical hypernode 0. Given
default subscripting in C and C++, nodes[0] corresponds to logical
hypernode 0. On return from cps_topology , each element contains the
number of threads running on the corresponding hypernode that belong
to the calling application.

N or n represents the number of elements in the array. If there are more
elements than actual hypernodes, the remaining elements are set to 0.

Appendix F 439

Compiler Parallel Support Library
CPS library functions

cps_wait_attr
As described in Chapter 3, “Compiler optimizations,” idle threads can
either be suspended or spin-waiting. This function allows you to get or
change the current CPSlib thread wait attributes. In Fortran it has the
following form:

INTEGER CPS_WAIT_ATTR(CMD, WAIT)
INTEGER CMD, WAIT(2)

In C and C++:

typedef struct {
 int wait_attr; /* idle wait attribute */
 int wait_time; /*wait time in milliseconds*/
} cps_spin_state_t;
int cps_wait_attr(int *cmd,cps_wait_attr_t *wait);

Where CMD or cmd, depending on its contents, indicates whether to get or
change the current wait attributes. Accepted values are shown in
Table 27.

Table 27 Accepted CMD/cmd values

The WAIT array or the structure pointed to by wait contain the new or
current wait attributes, depending on the value of cmd. WAIT(2) and
wait->wait_attr take one of the values shown in Table 28.

C/C++ symbolic
constant name Value Meaning

CPS_GETWAIT 0 Get the current wait attribute
values and store them in the WAIT
array or in the structure pointed
to by wait

CPS_SETWAIT 1 Set the wait attributes to the
values in the WAIT array or
pointed to by wait ; these values
become effective after the next
join or cps_thread_exit is
executed

CPS_SETWAITI 2 Set the wait attributes as
CPS_SETWAIT does, but force all
active threads to join immediately

440 Appendix F

Compiler Parallel Support Library
CPS library functions

Table 28 WAIT(2) /wait->wait_attr values

WAIT(2) and wait->wait_time take an integer representing the
number of milliseconds the thread is to spin-wait before suspending
itself (assuming the wait attribute is set to CPS_SUSPEND). These values
default to 50 ms for non-oversubscribed threads and 0 ms for
oversubscribed threads.

If unsuccessful, cps_wait_attr returns -1 and, in C and C++, sets
errno to EINVAL if:

• wait_time is greater than CPS_WAIT_MAX, and wait_attr is set to
CPS_SUSPEND

• wait_attr is not set to CPS_SUSPEND or CPS_SPINWAIT or cmd is
not CPS_GETWAIT, CPS_SETWAIT, or CPS_SETWAITI

C/C++ symbolic
constant name Value Meaning

CPS_SUSPEND 1 Suspend the thread after waiting
the time specified in WAIT(2) or
wait->wait_time

CPS_SPINWAIT 2 Spin-wait until the thread is
reactivated

Appendix F 441

Compiler Parallel Support Library
CPS library functions

High-level synchronization functions
These routines manipulate the barriers and mutexes that are used for
synchronization. CPSlib barriers can be used to construct barriers such
as those that can be constructed with compiler directives as described in
Chapter 6, “Advanced shared-memory programming.” Mutexes are areas
of mutual exclusion, and are analogous to directive-controlled critical
sections described in Chapter 6.

These constructs offer a lower degree of automation and a higher degree
of control than those directive-specified constructs described in
Chapter 6. However, they offer a higher degree of automation and a
lower degree of control than the constructs that can be manually built
using low-level synchronization functions described in the following
section.

All of the functions described in this section return 0 on success and -1 on
failure.

For information beyond that which follows, refer to the cps_barrier(3)
and cps_mutex(3) man pages.

cps_barrier_alloc
This function allocates the barrier barr and sets its associated shared
counter to zero. When each thread reaches the barrier, it increments the
counter; when the counter equals the number of parallel threads, all
threads may proceed.

In Fortran this function has the form:

INTEGER FUNCTION CPS_BARRIER_ALLOC(BARR)
INTEGER BARRIER

In C and C++:

int cps_barrier_alloc(barrier_t *barr);

If this function fails when called from C or C++, errno is set to ENOMEM if
the memory required for barr cannot be allocated.

442 Appendix F

Compiler Parallel Support Library
CPS library functions

cps_barrier_free
This function releases the barrier barr . In Fortran it has the form:

INTEGER FUNCTION CPS_BARRIER_FREE(BARR)
INTEGER BARR

In C and C++:

int cps_barrier_free(barrier_t *barr);

If this function fails when called from C or C++, errno is set to EINVAL if
barr was not allocated with a CPSlib barrier allocation function, or to
EBUSY if the counter associated with barr is nonzero.

cps_barrier
This function increments the shared counter associated with the barrier
barr . When the value of the shared counter is equal to the argument
nthreads , the function returns, and the counter is set to zero. In
Fortran, cps_barrier has the following form:

INTEGER FUNCTION CPS_BARRIER(BARR,NTHREADS)
INTEGER BARR, NTHREADS

In C and C++:

int cps_barrier(barrier_t *barr, const int *nthreads);

If this function fails when called from C or C++ because barr was not
allocated with a CPSlib barrier allocation function, errno is set to
EINVAL.

cps_mutex_alloc
This function allocates the mutex mutx and unlocks it. In Fortran it has
the form:

INTEGER FUNCTION CPS_MUTEX_ALLOC(MUTX)
INTEGER MUTX

In C and C++:

int cps_mutex_alloc(cps_mutex_t *mutx);

This function does not check whether mutx is already allocated;
therefore, when successful, it always allocates a new mutex. When it
fails, mutx is set to NULL (in Fortran, MUTX is set to 0).

If this function fails when called from C or C++, it sets errno to ENOMEM
if it cannot allocate the required memory.

Appendix F 443

Compiler Parallel Support Library
CPS library functions

cps_mutex_free
This function releases the mutex mutx . In Fortran it has the form:

INTEGER FUNCTION CPS_MUTEX_FREE(MUTX)
INTEGER MUTX

In C and C++:

int cps_mutex_free(cps_mutex_t *mutx);

If this function is successful when called from C or C++, mutx is set to
NULL. In Fortran, MUTX is undefined.

If unsuccessful when called from C or C++, it sets errno to EINVAL if
mutx was not allocated by a CPSlib allocation function, or to EBUSY if
mutx has already been acquired.

cps_mutex_lock
If the mutex mutx is unlocked, this function acquires it and returns; if it
is locked by another thread, cps_mutex_lock will wait until it is
acquired before returning.

In Fortran, cps_mutex_lock has the following form:

INTEGER FUNCTION CPS_MUTEX_LOCK(MUTX)
INTEGER MUTX

In C and C++:

int cps_mutex_lock(cps_mutex_t *mutx);

If the calling thread has already acquired mutx this function returns -1
and, in C and C++, sets errno to EDEADLK.

cps_mutex_unlock
This function releases the mutex mutx so that other threads may acquire
it. In Fortran it has the following form:

INTEGER FUNCTION CPS_MUTEX_UNLOCK(MUTX)
INTEGER MUTX

In C and C++:

int cps_mutex_unlock(cps_mutex_t *mutx);

444 Appendix F

Compiler Parallel Support Library
CPS library functions

cps_mutex_trylock
This function attempts to acquire mutx ; if mutx is already locked by
another thread, cps_mutex_trylock will return -1.

In Fortran, cps_mutex_trylock has the following form:

INTEGER FUNCTION CPS_MUTEX_TRYLOCK(MUTX)
INTEGER MUTX

In C and C++:

int cps_mutex_trylock(cps_mutex_t *mutx);

If the calling thread has already acquired mutx this function returns -1
and, in C and C++, sets errno to EDEADLK.

Low-level synchronization functions
These functions manipulate the counters and semaphores used for
low-level synchronization. These functions require you to create and
manually control your own synchronization semaphores.

Semaphores can be cache- or memory-based. Cache-based semaphores
can be stored in the processor data cache, making them best for use in
situations that generate minimal semaphore contention. Memory-based
semaphores are never brought into the processor data cache, making
them preferable in situations that generate semaphore contention.

Because each semaphore has an associated counter, it can be used both
as a lock (to implement, for example, a critical section) and a counter (to
implement, for example, an ordered section).

For information beyond that which follows, refer to the cps_sema(3) man
page.

c_init32
This function allocates the cache-based semaphore cs and initializes its
associated counter to value . In Fortran it has the following form:

INTEGER FUNCTION C_INIT32(CS, VALUE)
INTEGER CS, VALUE

In C and C++:

int c_init32(cache_sema_t *cs,const int *value);

If successful, c_init32 returns the counter value; otherwise it
returns -1.

Appendix F 445

Compiler Parallel Support Library
CPS library functions

c_free32
This function frees the cache-based semaphore cs and sets it to NULL
on success. In Fortran it has the following form:

INTEGER FUNCTION C_FREE32(CS)
INTEGER CS

In C and C++:

int c_free32(cache_sema_t *cs);

If unsuccessful, this function returns -1.

c_lock
This function acquires a cache-based semaphore cs . In Fortran it has the
following form:

INTEGER FUNCTION C_LOCK(CS)
INTEGER CS

In C and C++:

int c_lock(cache_sema_t *cs);

If the semaphore is already acquired, c_lock will wait until the
semaphore is released before returning. It may or may not give up the
processor in the interim.

c_unlock
This function releases the cache-based semaphore cs so that other
threads may acquire it. In Fortran it has the following form:

INTEGER FUNCTION C_UNLOCK(CS)
INTEGER CS

In C and C++:

int c_unlock(cache_sema_t *cs);

If unsuccessful, this function returns -1.

446 Appendix F

Compiler Parallel Support Library
CPS library functions

c_cond_lock
If the cache-based semaphore cs is available, this function acquires it;
otherwise, it returns -1 without waiting and allows execution to continue
in the calling thread. In Fortran it has the following form:

INTEGER FUNCTION C_COND_LOCK(CS)
INTEGER CS

In C and C++:

int c_cond_lock(cache_sema_t *cs);

c_fetch32
This function returns the value of the counter associated with the
cache-based semaphore cs . In Fortran it has the following form:

INTEGER FUNCTION C_FETCH32(CS)
INTEGER CS

In C and C++:

int c_fetch32(cache_sema_t *cs);

If unsuccessful, this function returns -1.

c_fetch_and_inc32
This function increments the value of the counter associated with the
semaphore cs and returns the old value.

In Fortran it has the following form:

INTEGER FUNCTION C_FETCH_AND_INC32(CS)
INTEGER CS

In C and C++:

int c_fetch_and_inc32(cache_sema_t *cs);

If unsuccessful, this function returns -1.

Appendix F 447

Compiler Parallel Support Library
CPS library functions

c_fetch_and_dec32
This function decrements the value of the counter associated with the
semaphore cs and returns the old value. In Fortran it has the following
form:

INTEGER FUNCTION C_FETCH_AND_DEC32(CS)
INTEGER CS

In C and C++:

int c_fetch_and_dec32(cache_sema_t *cs);

If unsuccessful, this function returns -1.

c_fetch_and_clear32
This function returns the current value of the counter associated with
the semaphore cs and clears the counter. In Fortran it has the following
form:

INTEGER FUNCTION C_FETCH_AND_CLEAR32(CS)
INTEGER CS

In C and C++:

int c_fetch_and_clear32(cache_sema_t *cs);

If unsuccessful, this function returns -1.

c_fetch_and_add32
This function adds value to the counter associated with the semaphore
cs and returns the old value . In Fortran it has the following form:

INTEGER FUNCTION C_FETCH_AND_ADD32(CS, VALUE)
INTEGER CS, VALUE

In C and C++:

int c_fetch_and_add32(cache_sema_t *cs,
 const int *value);

If unsuccessful, this function returns -1.

448 Appendix F

Compiler Parallel Support Library
CPS library functions

c_fetch_and_set32
This function returns the current value of the counter associated with
the semaphore cs , and sets the semaphore to the new value contained in
newval . In Fortran it has the following form:

INTEGER FUNCTION C_FETCH_AND_SET32(CS, NEWVAL)
INTEGER CS, NEWVAL

In C and C++:

int c_fetch_and_set32(cache_sema_t *cs,
 const int *newval);

If unsuccessful, this function returns -1.

m_init32
This function allocates the memory-based semaphore ms and initializes
the counter associated with it to value. In Fortran it has the following
form:

INTEGER FUNCTION M_INIT32(MS,VALUE)
INTEGER MS, VALUE

In C and C++:

int m_init32(mem_sema_t *ms,const int *value);

If successful, this function returns the counter value; otherwise it
returns -1.

Appendix F 449

Compiler Parallel Support Library
CPS library functions

m_free32
This function releases the memory-based semaphore ms and sets it to
NULL on success. In Fortran it has the following form:

INTEGER FUNCTION M_FREE32(MS)
INTEGER MS

In C and C++:

int m_free32(mem_sema_t *ms);

If unsuccessful, this function returns -1.

m_lock
This function acquires the memory-based semaphore ms. If the
semaphore is already acquired, m_lock will wait until the semaphore is
released before returning. It may or may not give up the processor in the
interim. In Fortran it has the following form:

INTEGER FUNCTION M_LOCK(MS)
INTEGER MS

In C and C++:

int m_lock(mem_sema_t *ms);

m_unlock
This function releases the memory-based semaphore ms so that other
threads may acquire it. In Fortran it has the following form:

INTEGER FUNCTION M_UNLOCK(MS)
INTEGER MS

In C and C++:

int m_unlock(mem_sema_t *ms)

If unsuccessful, this function returns -1.

450 Appendix F

Compiler Parallel Support Library
CPS library functions

m_cond_lock
If the memory-based semaphore ms is available, this function acquires it;
otherwise it returns -1 without waiting and allows execution to continue
in the calling thread. In Fortran it has the following form:

INTEGER FUNCTION M_COND_LOCK(MS)
INTEGER MS

In C and C++:

int m_cond_lock(mem_sema_t *ms);

m_fetch32
This function returns the value of the counter associated with the
memory-based semaphore ms. In Fortran it has the following form:

INTEGER FUNCTION M_FETCH32(MS)
INTEGER MS

In C and C++:

int m_fetch32(mem_sema_t *ms);

If unsuccessful, this function returns -1.

m_fetch_and_inc32
This function increments the value of the counter associated with the
semaphore ms and returns the old value. In Fortran it has the following
form:

INTEGER FUNCTION M_FETCH_AND_INC32(MS)
INTEGER MS

In C and C++:

int m_fetch_and_inc32(mem_sema_t *ms);

If unsuccessful, this function returns -1.

Appendix F 451

Compiler Parallel Support Library
sync_routine directive and pragma

m_fetch_and_dec32
This function decrements the value of the counter associated with the
semaphore ms and returns the old value. In Fortran it has the following
form:

INTEGER FUNCTION M_FETCH_AND_DEC32(MS)
INTEGER MS

In C and C++:

int m_fetch_and_dec32(mem_sema_t *ms);

If unsuccessful, this function returns -1.

m_fetch_and_clear32
This function returns the current value of the counter associated with
the semaphore ms and clears the counter. In Fortran it has the following
form:

INTEGER FUNCTION M_FETCH_AND_CLEAR32(MS)
INTEGER MS

In C and C++:

int m_fetch_and_clear32(mem_sema_t *ms);

If unsuccessful, this function returns -1.

sync_routine directive and pragma
Among the most basic optimizations performed by an Exemplar compiler
is code motion, which is described in Chapter 3, “Compiler
optimizations.” This optimization can move some code across routine
calls. If the routine call is to a synchronization or parallelization function
and the code moved must execute on a certain side of it, this movement
can cause wrong answers. Anytime you use CPSlib functions in Fortran
or C rather than the directives or functions described in Chapter 4,
“Basic shared-memory programming,” and Chapter 6, “Advanced
shared-memory programming,” to synchronize or parallelize code, you
must identify the functions with a sync_routine directive or pragma.
sync_routine should be used to identify all CPSlib functions, as well as

452 Appendix F

Compiler Parallel Support Library
sync_routine directive and pragma

any user-written routines that accomplish synchronization or
parallelization or hide calls to any synchronization or parallelization
routines.

In Fortran, sync_routine has the following form:

C$DIR SYNC_ROUTINE (routinelist)

In C, it has the following form:

#pragma _CNX sync_routine (routinelist)

where

routinelist is a comma-separated list of synchronization
procedures.

sync_routine is only effective for the listed routines that lexically
follow it in the file in which it appears.

Consider the following Fortran example:

 SUBROUTINE WORK(ARG1, ARG2, MUTX)
 INTEGER ARG1, ARG2, MUTX, CPS_MUTEX_LOCK, CPS_MUTEX_UNLOCK
C$DIR SYNC_ROUTINE(CPS_MUTEX_LOCK, CPS_MUTEX_UNLOCK)
 .
 .
 .
 DO I = 1, N
 .
 .
 .
 LCK = CPS_MUTEX_LOCK(MUTX)
 .
 .
 .
 LCK = CPS_MUTEX_UNLOCK(MUTX)
 ENDDO
 .
 .
 .
 END

Appendix F 453

Compiler Parallel Support Library
sync_routine directive and pragma

Here, the subroutine WORK is called in parallel and contains a loop that
contains a critical section protected by calls to CPSlib functions. Listing
these CPSlib functions in a SYNC_PARALLEL directive at the beginning
of the subroutine prevents the compiler from moving code out of the
critical section.

An analogous C example follows:

#include <spp_prog_model.h>
work(int arg1, int arg2, int mutx) {
 int i, lck;
#pragma _CNX sync_routine(cps_mutex_lock, cps_mutex_unlock)
 .
 .
 .
#pragma _CNX loop_parallel(ivar=i)
 for(i=0; i<n; i++) {
 .
 .
 .
 lck = cps_mutex_lock(&mutx);
 .
 .
 .
 lck = cps_mutex_unlock(&mutx);
 }
}

454 Appendix F

Compiler Parallel Support Library
Examples

Examples
The examples presented here demonstrate various constructs that can be
programmed using the CPSlib functions described in the previous
sections.

Symmetric parallelism
There are two forms of symmetric parallelism: block parallelism, and
cyclic parallelism. The CPSlib functions used in the examples that follow
are described in detail in the section “CPS library functions” on page 426.

Block parallelism
Block parallelism is the most commonly used form of parallelism; it is
the form generated by default by Exemplar compilers. It involves
splitting up the iterations of a loop into iteration blocks of similar size,
and running each block on a separate processor.

Appendix F 455

Compiler Parallel Support Library
Examples

A simple Fortran example that uses CPSlib to implement block
parallelism follows. The CPSlib functions used here are described in
detail in the “CPS library functions” section.

 PROGRAM CPSBLOCK
 REAL X(1000), Y(1000), Z(1000)
 INTEGER PARGS(4), CPS_PPCALLN, NTHR, CPS_NODE_CPUS
C$DIR SYNC_ROUTINE(CPS_PPCALLN, CPS_NODE_CPUS)
 EXTERNAL PARBLK ! REQUIRED BECAUSE PARBLK IS AN ARGUMENT
C INITIALIZE PARGS ARRAY:
 PARGS(1) = -2 ! ALLOCATE THREADS ON CALLING THREAD’S NODE
 PARGS(2) = 2 ! MINIMUM OF 2 THREADS
 PARGS(3) = CPS_NODE_CPUS() ! MAXIMUM # OF THREADS
 PARGS(4) = 1 ! ALLOCATE MULTIPLE THREADS PER HYPERNODE
C SPAWN THREADS:
 ITHREAD = CPS_PPCALLN(PARGS, PARBLK, 4, X, Y, Z, NTHR)
C IF SPAWN FAILS, REPORT:
 IF (ITHREAD .LT. 0) PRINT *,’PPCALLN FAILED’
 .
 . ! SERIAL CODE
 .
 END

 SUBROUTINE PARBLK (X, Y, Z, NTHR)
 REAL X(1000), Y(1000), Z(1000)
 INTEGER CPS_NSTHREADS, CPS_STID, STID, NTHR
C$DIR SYNC_ROUTINE(CPS_NSTHREADS, CPS_STID)
 STID = CPS_STID() ! GET MY STID
 NTHR = CPS_NSTHREADS() ! GET NUMBER OF THREADS SPAWNED
 ITPERPROC = 1000/NTHR ! COMPUTE ITERATIONS PER THREAD
 IEXCESS = 1000-ITPERPROC*NTHR ! COMPUTE EXCESS ITERATIONS
C COMPUTE LOOP START AND END FOR CASES OF NO EXCESS OR FOR THREADS
C THAT DO NOT HANDLE EXCESS:
 IF(STID .GE. IEXCESS) THEN
 MYSTART = STID*ITPERROC + IEXCESS + 1
 MYEND = MYSTART + ITPERPROC - 1
C COMPUTE LOOP START AND END FOR THREADS THAT HANDLE EXCESS:
 ELSE
 MYSTART = STID * (ITPERPROC+1) + 1
 MYEND = MYSTART + (ITPERPROC+1) - 1
 ENDIF
C ACTUAL COMPUTATION:
 DO J = MYSTART, MYEND
 Z(J) = X(J) + Y(J)
 ENDDO
 RETURN
 END

456 Appendix F

Compiler Parallel Support Library
Examples

This example calls CPS_NODE_CPUS to find the number of available
threads, then calls CPS_PPCALLN to spawn parallel threads to run the
subroutine PARBLK.

PARBLK then determines the number of iterations necessary per
processor; if the number of processors does not integrally divide the
number of iterations, it automatically adjusts some blocks to handle the
extra iterations. Finally, the loop in PARBLK performs its body in parallel,
with each thread operating on the appropriate iteration range.

Note the error trap immediately after the call to CPS_PPCALLN; this is
important, as it provides the only means of knowing if the spawn failed.

Cyclic parallelism
Cyclic parallelism distributes consecutive iterations of a loop to separate
processors. It is similar to the parallelism achieved through use of the
loop_parallel(ordered) directive and pragma, but it does not order
the iterations automatically; you must handle any necessary ordering
manually. loop_parallel(ordered) is discussed in the section
“loop_parallel(ordered) ” on page 233 in Chapter 6, “Advanced
shared-memory programming.”

Appendix F 457

Compiler Parallel Support Library
Examples

A simple Fortran example that uses CPSlib to implement cyclic
parallelism follows. The CPSlib functions used here are described in
detail in the “CPS library functions” section.

 PROGRAM CPSCYCLE
 REAL X(1000), Y(1000), Z(1000), SUM
 INTEGER PARGS(4), CPS_PPCALLN, NTHR, CPS_NODE_CPUS
C$DIR SYNC_ROUTINE(CPS_PPCALLN, CPS_NODE_CPUS)
 EXTERNAL PARCYC ! PARCYC IS AN ARGUMENT
 READ *, NPROCSC
C INITIALIZE PARGS ARRAY:
 PARGS(1) = -2 ! ALLOCATE THREADS ON CALLING THREAD’S NODE
 PARGS(2) = 2 ! MINIMUM OF 2 THREADS
 PARGS(3) = CPS_NODE_CPUS() ! MAXIMUM # OF THREADS
 PARGS(4) = 1 ! ALLOCATE MULTIPLE THREADS PER HYPERNODE
C SPAWN THREADS:
 ITHREAD = CPS_PPCALLN (PARGS, PARCYC, 4, X, Y, Z, NTHR)
C IF SPAWN FAILS, REPORT:
 IF (ITHREAD .LT. 0) PRINT *,’PPCALLN FAILED’
 .
 . ! SERIAL CODE
 .
 END

 SUBROUTINE PARCYC (X, Y, Z, NTHR)
 REAL X(1000), Y(1000), Z(1000)
 INTEGER CPS_NSTHREADS, CPS_STID, STID, NTHR
C$DIR SYNC_ROUTINE(CPS_NSTHREADS, CPS_STID)
 STID = CPS_STID() ! GET MY STID
 NTHR = CPS_NSTHREADS() ! GET NUMBER OF THREADS SPAWNED
C ACTUAL COMPUTATION:
 DO J = 1+STID, 1000, NTHR ! STEP BY NUMBER OF THREADS
 Z(J) = X(J) + Y(J)
 ENDDO
 RETURN
 END

This example works exactly like the block parallelism example, except
the loop in PARCYC, its parallel subroutine, is cyclically parallel. Cyclic
parallelism is accomplished here by offsetting the loop start value by
spawn thread ID and stepping the loop by the number of parallel

458 Appendix F

Compiler Parallel Support Library
Examples

threads. This ensures that each thread computes a unique array element
on every step of the loop; NTHR elements are computed per step.
Contiguous STIDs compute contiguous elements.

Asymmetric parallelism
A simple Fortran program that implements asymmetric parallelism
follows. The CPSlib functions used here are described in detail in the
“CPS library functions” section.

 PROGRAM ASYM
 REAL X1(1000), X2(1000), Y1(1000), Y2(1000), Z(1000)
 INTEGER CPS_THREAD_CREATE, CPS_THREAD_WAIT
C$DIR SYNC_ROUTINE(CPS_THREAD_CREATE, CPS_THREAD_WAIT)
 COMMON /POINTS/ X1, X2, Y1, Y2
 EXTERNAL DISTANCE ! DISTANCE IS AN ARGUMENT
 .
 . ! SERIAL CODE
 . ! EXAMPLE CONTINUED
C SPAWN ASYMMETRIC THREAD TO EXECUTE SUBROUTINE DISTANCE:
 ITHREAD = CPS_THREAD_CREATE(-2, DISTANCE, Z)
 IF (ITHREAD .LT. 0) PRINT*, "THREAD_CREATE FAILED IN MAIN"
 .
 . ! THIS CODE RUNS IN PARALLEL WITH DISTANCE
 .
 IWAIT = CPS_THREAD_WAIT(1) ! WAIT FOR ALL ASYMMETRIC
 ! THREADS TO TERMINATE
 IF(IWAIT .LT. 0) PRINT*, "CPS_THREAD_WAIT FAILED"
 .
 . ! THIS CODE RUNS SERIALLY AFTER PARALLEL THREADS
 . ! TERMINATE
 END

Appendix F 459

Compiler Parallel Support Library
Examples

 SUBROUTINE DISTANCE(Z)
 REAL X1(1000), X2(1000), Y1(1000), Y2(1000), Z(1000)
 REAL X3(1000), Y3(1000)
 INTEGER CPS_THREAD_CREATE, CPS_THREAD_WAIT
C$DIR SYNC_ROUTINE(CPS_THREAD_CREATE, CPS_THREAD_WAIT)
 COMMON /POINTS/ X1, X2, Y1, Y2
 EXTERNAL FINDX ! FINDX IS AN ARGUMENT
C SPAWN ASYMMETRIC THREAD TO EXECUTE SUBROUTINE FINDX:
 JTHREAD = CPS_THREAD_CREATE(-2, FINDX, X3)
 IF (JTHREAD .LT. 0) PRINT*, "THREAD_CREATE FAILED IN DISTANCE"

 DO I = 1, 1000 ! COMPUTE Y3 IN PARALLEL WITH FINDX
 Y3(I) = (Y2(I) - Y1(I))**2
 ENDDO
10 IWAIT = CPS_THREAD_WAIT(0) ! FIND NUMBER OF ASYM THREADS
 IF(IWAIT .LT. 0) PRINT*, "CPS_THREAD_WAIT FAILED"
 IF(IWAIT .GT. 1) GOTO 10 ! SPIN UNTIL ONLY THIS THREAD
 ! IS ACTIVE
 DO I = 1, 1000 ! COMPUTE Z SERIALLY AFTER X3 AND Y3
 Z(I) = SQRT(X3(I) + Y3(I))
 ENDDO
 RETURN
 END

 SUBROUTINE FINDX(X3) ! RUNS IN PARALLEL WITH COMPUTATION
 ! OF Y3
 REAL X1(1000), X2(1000), Y1(1000), Y2(1000), X3(1000)
 COMMON /POINTS/ X1, X2, Y1, Y2
 DO I = 1, 1000
 X3(I) = (X2(I) - X1(I))**2
 ENDDO
 RETURN
 END

In this example, the arrays X3 and Y3 must be computed before the array
Z can be computed. The main program spawns an asymmetric parallel
thread to run DISTANCE, which spawns an asymmetric thread to run
FINDX. DISTANCE then computes Y3 while FINDX computes X3; all the
while, the main program can be doing other work in parallel with both
subroutines. When DISTANCE is done with Y3, it waits until FINDX is
done with X3, then computes Z. The main program waits until DISTANCE
is done, then proceeds with more work.

460 Appendix F

Compiler Parallel Support Library
Examples

Note the way in which CPS_THREAD_WAIT is used when called from
DISTANCE; this is explained further in the “CPS library functions”
section.

Synchronization using high-level functions
This section demonstrates how to use barriers and mutexes to
synchronize symmetrically parallel code.

Barriers
Remember that, when you use cps_ppcall() to spawn symmetric
parallelism, before the function returns, a join operation takes place
after all spawned threads terminate. This join is an implicit barrier,
since thread 0 cannot proceed until all parallel threads terminate. In
many cases, this is the only barrier synchronization you will require.

However, the cps_barrier() high-level synchronization functions
allow you to explicitly create barriers if necessary.

Appendix F 461

Compiler Parallel Support Library
Examples

The following Fortran example is similar to the symmetric parallelism
example in the section “Block parallelism” on page 454 except that
instead of relying on the implicit barrier contained in the call to
CPS_PPCALL() , it contains an explicit CPS_BARRIER() in the
subroutine SUMMER.

 PROGRAM BAR
 REAL A(1000)
 REAL SUM(:), TOTSUM
 INTEGER PARGS(4), SUMBAR, CPS_NODE_CPUS, CPS_PPCALLN
 INTEGER CPS_BARRIER_ALLOC, CPS_BARRIER_FREE
C$DIR SYNC_ROUTINE(CPS_BARRIER_ALLOC,CPS_BARRIER_FREE)
C$DIR SYNC_ROUTINE(CPS_NODE_CPUS,CPS_PPCALLN)
 EXTERNAL SUMMER
 ALLOCATABLE SUM
 NCPUS = CPS_NODE_CPUS()
 ALLOCATE(SUM(0:NCPUS-1)) ! ONE ELEMENT FOR EACH CPU
 PARGS(1) = -2 ! ALLOCATE THREADS ON CALLING THREAD’S NODE
 PARGS(2) = 2 ! MINIMUM OF 2 THREADS PER NODE
 PARGS(3) = NCPUS ! MAXIMUM # OF THREADS PER NODE
 PARGS(4) = 1 ! ALLOCATE MULTIPLE THREADS PER NODE
 DO I = 0, NCPUS-1 ! INITIALIZE SUM
 SUM(I) = 0.0
 ENDDO
 .
 . ! SERIAL CODE
 .
 IERR = CPS_BARRIER_ALLOC(SUMBAR) ! ALLOCATE BARRIER
 IF (IERR .LT. 0) PRINT*, "BARRIER ALLOCATION FAILED"

C SPAWN PARALLEL THREADS:
 IERR = CPS_PPCALLN(PARGS,SUMMER,5,A,SUM,TOTSUM,SUMBAR,NCPUS)
 IF (IERR .LT. 0) PRINT*, "PPCALL FAILED"
 IERR = CPS_BARRIER_FREE(SUMBAR) ! FREE BARRIER
 IF (IERR .LT. 0) PRINT*, "BARRIER FREE FAILED"
 .
 . ! SERIAL CODE
 .
 END

462 Appendix F

Compiler Parallel Support Library
Examples

 SUBROUTINE SUMMER(A,SUM,TOTSUM,SUMBAR,NCPUS)
 INTEGER STID, NTHR, SUMBAR
 INTEGER CPS_STID, CPS_NSTHREADS, CPS_BARRIER
C$DIR SYNC_ROUTINE(CPS_STID, CPS_NSTHREADS, CPS_BARRIER)
 REAL A(1000), SUM(0:NCPUS-1), TOTSUM
 STID = CPS_STID() ! GET MY STID
 NTHR = CPS_NSTHREADS() ! GET NUMBER OF THREADS SPAWNED
 ITPERPROC = 1000/NTHR ! COMPUTE ITERATIONS PER THREAD
 IEXCESS = 1000-ITPERPROC*NTHR ! COMPUTE EXCESS ITERATIONS
C COMPUTE LOOP START AND END FOR CASES OF NO EXCESS OR FOR THREADS
C THAT DO NOT HANDLE EXCESS:
 IF(STID .GE. IEXCESS) THEN
 MYSTART = STID*ITPERROC + IEXCESS + 1
 MYEND = MYSTART + ITPERPROC - 1
C COMPUTE LOOP START AND END FOR THREADS THAT HANDLE EXCESS:
 ELSE
 MYSTART = STID * (ITPERPROC+1) + 1
 MYEND = MYSTART + (ITPERPROC+1) - 1
 ENDIF
C ACTUAL COMPUTATION:
 DO J = MYSTART, MYEND ! EACH THREAD COMPUTES LOCAL SUM
 SUM(STID) = SUM(STID) + A(J)
 ENDDO
C WAIT UNTIL ALL THREADS ARE DONE COMPUTING THEIR PORTION OF SUM:
 IERR = CPS_BARRIER(SUMBAR, NTHR)
 IF (IERR .LT. 0) PRINT*, "BARRIER FAILED"
 IF(STID .EQ. 0) THEN ! THREAD 0 COMPUTES TOTAL SUM
 DO I = 0, NTHR-1
 TOTSUM = TOTSUM + SUM(I)
 ENDDO
 ENDIF
 RETURN
 END

Here, the subroutine SUMMER is called in parallel to compute the sum of
the elements of array A. Each parallel thread computes its own sum in
an element of the array SUM. The CPS_BARRIER function is used to
prevent execution of any further code until all threads have finished
computing their portion of SUM. When CPS_BARRIER returns, thread 0
computes TOTSUM, and SUMMER returns.

Appendix F 463

Compiler Parallel Support Library
Examples

Mutexes
CPSlib mutexes allow you to limit access to the sections of code they
delimit to one thread at a time, allowing you to construct critical sections
similar to those discussed in Chapter 4, “Basic shared-memory
programming.”

In the following Fortran example, the routine SUMMER performs the same
task it did in the preceding barrier example. However, here access to the
TOTSUM computation takes place in fully parallel code; it is limited to one
thread at a time by the mutex SUMMUTEX. This eliminates the need for
each thread to compute independent SUM arrays as in the preceding
barrier example.

 PROGRAM MUT
 REAL A(1000)
 REAL TOTSUM
 INTEGER PARGS(4), SUMMUTEX
 INTEGER CPS_NODE_CPUS,CPS_PPCALLN
 INTEGER CPS_MUTEX_ALLOC,CPS_MUTEX_FREE
C$DIR SYNC_ROUTINE(CPS_NODE_CPUS,CPS_PPCALLN)
C$DIR SYNC_ROUTINE(CPS_MUTEX_ALLOC,CPS_MUTEX_FREE)
 EXTERNAL SUMMER
 NCPUS = CPS_NODE_CPUS()
 PARGS(1) = -2 ! ALLOCATE THREADS ON CALLING THREAD’S NODE
 PARGS(2) = 2 ! MINIMUM OF 2 THREADS PER NODE
 PARGS(3) = NCPUS ! MAXIMUM # OF THREADS PER NODE
 PARGS(4) = 1 ! ALLOCATE MULTIPLE THREADS PER NODE
 TOTSUM = 0.0 ! INITIALIZE TOTSUM
 .
 . ! SERIAL CODE
 .
 IERR = CPS_MUTEX_ALLOC(SUMMUTEX) ! ALLOCATE MUTEX
 IF (IERR .LT. 0) PRINT*, "MUTEX ALLOCATION FAILED"

464 Appendix F

Compiler Parallel Support Library
Examples

C SPAWN PARALLEL THREADS:
 IERR = CPS_PPCALLN(PARGS,SUMMER,3,A,TOTSUM,SUMMUTEX)
 IF (IERR .LT. 0) PRINT*, "PPCALL FAILED"
 IERR = CPS_MUTEX_FREE(SUMMUTEX) ! FREE MUTEX
 IF (IERR .LT. 0) PRINT*, "MUTEX FREE FAILED"
 .
 . ! SERIAL CODE
 .
 END

 SUBROUTINE SUMMER(A,TOTSUM,SUMMUTEX)
 INTEGER STID, NTHR, SUMMUTEX
 INTEGER CPS_STID, CPS_NSTHREADS
 INTEGER CPS_MUTEX_LOCK, CPS_MUTEX_UNLOCK
C$DIR SYNC_ROUTINE(CPS_STID, CPS_NSTHREADS)
C$DIR SYNC_ROUTINE(CPS_MUTEX_LOCK, CPS_MUTEX_UNLOCK)
 REAL A(1000),TOTSUM
 STID = CPS_STID() ! GET MY STID
 NTHR = CPS_NSTHREADS() ! GET NUMBER OF THREADS SPAWNED
 ITPERPROC = 1000/NTHR ! COMPUTE ITERATIONS PER THREAD
 IEXCESS = 1000-ITPERPROC*NTHR ! COMPUTE EXCESS ITERATIONS
C COMPUTE LOOP START AND END FOR CASES OF NO EXCESS OR FOR THREADS
C THAT DO NOT HANDLE EXCESS:
 IF(STID .GE. IEXCESS) THEN
 MYSTART = STID*ITPERROC + IEXCESS + 1
 MYEND = MYSTART + ITPERPROC - 1
C COMPUTE LOOP START AND END FOR THREADS THAT HANDLE EXCESS:
 ELSE
 MYSTART = STID * (ITPERPROC+1) + 1
 MYEND = MYSTART + (ITPERPROC+1) - 1
 ENDIF
C ACTUAL COMPUTATION:
 DO J = MYSTART, MYEND
C MUTEX LIMITS ACCESS TO TOTSUM TO ONE THREAD AT A TIME:
 IERR = CPS_MUTEX_LOCK(SUMMUTEX)
 IF (IERR .LT. 0) PRINT*, "MUTEX LOCK FAILED"
 TOTSUM = TOTSUM + A(J)
 IERR = CPS_MUTEX_UNLOCK(SUMMUTEX)
 IF(IERR .LT. 0) PRINT*, "MUTEX UNLOCK FAILED"
 ENDDO
 RETURN
 END

Appendix F 465

Compiler Parallel Support Library
Examples

Here, as in the barrier example, SUMMER is called in parallel. Each
parallel thread then waits until it can lock SUMMUTEX before updating
TOTSUM.

Synchronization using low-level functions
This section demonstrates how to use semaphores to synchronize
symmetrically parallel code.

Critical sections
Critical sections like the one in the preceding mutex example can be
implemented in a similar fashion using cache-based or memory-based
semaphores.

The following Fortran example is identical to the mutex example, but
implements the critical section using a memory-based semaphore
instead of a mutex:

 PROGRAM SEM
 REAL A(1000)
 REAL TOTSUM
 INTEGER PARGS(4), SUMSEM, SEMCNT
 INTEGER CPS_NODE_CPUS, CPS_PPCALLN, M_INIT32, M_FREE32
C$DIR SYNC_ROUTINE(CPS_NODE_CPUS, CPS_PPCALLN, M_INIT32, M_FREE32)
 EXTERNAL SUMMER
 NCPUS = CPS_NODE_CPUS()
 PARGS(1) = -2 ! ALLOCATE THREADS ON CALLING THREAD’S NODE
 PARGS(2) = 2 ! MINIMUM OF 2 THREADS PER NODE
 PARGS(3) = NCPUS ! MAXIMUM # OF THREADS PER NODE
 PARGS(4) = 1 ! ALLOCATE MULTIPLE THREADS PER NODE
 TOTSUM = 0.0 ! INITIALIZE TOTSUM
 SEMCNT = 0 ! COUNTER FOR SEMAPHORE; VALUE IS IRRELEVANT
 .
 . ! SERIAL CODE
 .
 IERR = M_INIT32(SUMSEM,SEMCNT) ! ALLOCATE SUMSEM
 IF (IERR .LT. 0) PRINT*, "SEMAPHORE ALLOCATION FAILED"
 IERR = CPS_PPCALLN(PARGS,SUMMER,3,A,TOTSUM,SUMSEM)
 IF (IERR .LT. 0) PRINT*, "PPCALL FAILED"
 IERR = M_FREE32(SUMSEM)

466 Appendix F

Compiler Parallel Support Library
Examples

 IF (IERR .LT. 0) PRINT*, "SEMAPHORE FREE FAILED"
 .
 . ! SERIAL CODE
 .
 END

 SUBROUTINE SUMMER(A,TOTSUM,SUMSEM)
 INTEGER STID, NTHR, SUMSEM
 INTEGER CPS_STID, CPS_NSTHREADS, M_LOCK, M_UNLOCK
 REAL A(1000),TOTSUM

C$DIR SYNC_ROUTINE(CPS_STID, CPS_NSTHREADS, M_LOCK, M_UNLOCK)
 STID = CPS_STID() ! GET MY STID
 NTHR = CPS_NSTHREADS() ! GET NUMBER OF THREADS SPAWNED
 ITPERPROC = 1000/NTHR ! COMPUTE ITERATIONS PER THREAD
 IEXCESS = 1000-ITPERPROC*NTHR ! COMPUTE EXCESS ITERATIONS
C COMPUTE LOOP START AND END FOR CASES OF NO EXCESS OR FOR THREADS
C THAT DO NOT HANDLE EXCESS:
 IF(STID .GE. IEXCESS) THEN
 MYSTART = STID*ITPERROC + IEXCESS + 1
 MYEND = MYSTART + ITPERPROC - 1
C COMPUTE LOOP START AND END FOR THREADS THAT HANDLE EXCESS:
 ELSE
 MYSTART = STID * (ITPERPROC+1) + 1
 MYEND = MYSTART + (ITPERPROC+1) - 1
 ENDIF
C ACTUAL COMPUTATION:
 DO J = MYSTART, MYEND
C SEMAPHORE LIMITS ACCESS TO TOTSUM TO ONE THREAD AT A TIME:
 IERR = M_LOCK(SUMSEM)
 IF (IERR .LT. 0) PRINT*, "SEMAPHORE LOCK FAILED"
 TOTSUM = TOTSUM + A(J)
 IERR = M_UNLOCK(SUMSEM)
 IF(IERR .LT. 0) PRINT*, "SEMAPHORE UNLOCK FAILED"
 ENDDO
 RETURN
 END

Here as in the mutex example, SUMMER is called in parallel. Each parallel
thread then waits until it can lock the memory-based semaphore SUMSEM
before updating TOTSUM.

Appendix F 467

Compiler Parallel Support Library
Examples

Ordered sections
Semaphores can also be used to construct ordered sections such as those
constructed using the loop_parallel(ordered) ,
begin_ordered_section and end_ordered_section directives and
pragmas, which are described in Chapter 6, “Advanced shared-memory
programming.”

The parallel loop in the following Fortran example contains a backward
LCD, which is isolated using low-level synchronization functions so that
the threads must execute the LCD in iteration order.

 PROGRAM ORDERED ! DEMONSTRATES ORDERED SECTIONS USING CPS
 ! LOW LEVEL SYNCHRONIZATION
 REAL X(1000), Y(1000)
 INTEGER PARGS(4), CPS_PPCALLN, NTHR, CPS_NODE_CPUS
 INTEGER M_INIT32, M_FREE32
C$DIR SYNC_ROUTINE(CPS_PPCALLN, CPS_NODE_CPUS, M_INIT32, M_FREE32)
 INTEGER ORDSEM, SEMCNT
 EXTERNAL ORDWORK
 PARGS(1) = -2 ! ALLOCATE THREADS CALLING THREAD'S NODE
 PARGS(2) = 2 ! MINIMUM OF 2 THREADS
 PARGS(3) = CPS_NODE_CPUS() ! MAXIMUM OF NPROCS THREADS
 PARGS(4) = 1 ! ALLOCATE MULTIPLE THREADS PER HYPERNODE
 SEMCNT = 0
 .
 . ! SERIAL CODE
 .
 IERR = M_INIT32(ORDSEM,SEMCNT) ! ALLOCATE ORDSEM
 IF (IERR .LT. 0) PRINT*, "SEMAPHORE ALLOCATION FAILED"
C SPAWN THREADS:
 ITHREAD = CPS_PPCALLN(PARGS,ORDWORK,5,X,Y,NTHR,ORDSEM,SEMCNT)
 IF (ITHREAD .LT. 0) PRINT *,"PPCALLN FAILED"
 IERR = M_FREE32(ORDSEM)
 IF (IERR .LT. 0) PRINT*, "SEMAPHORE FREE FAILED"
 .
 . ! SERIAL CODE
 .
 END

468 Appendix F

Compiler Parallel Support Library
Examples

 SUBROUTINE ORDWORK (X, Y, NTHR,ORDSEM,SEMCNT)
 REAL X(1000), Y(1000)
 INTEGER CPS_NSTHREADS, CPS_STID, M_FETCH32
 INTEGER ORDSEM,SEMCNT,STID, NTHR, CNTVAL
 INTEGER M_FETCH_AND_INC32, M_FETCH_AND_CLEAR32
C$DIR SYNC_ROUTINE(CPS_NSTHREADS, CPS_STID, M_FETCH32)
C$DIR SYNC_ROUTINE(M_FETCH_AND_INC32, M_FETCH_AND_CLEAR32)
 STID = CPS_STID() ! GET MY STID
 NTHR = CPS_NSTHREADS() ! GET NUMBER OF THREADS SPAWNED

C ACTUAL COMPUTATION:
 DO J = 2+STID, 1000, NTHR ! CYCLIC DECOMPOSITION
 .
 . ! DEPENDENCE-FREE PARALLEL CODE
 .
10 CNTVAL = M_FETCH32(ORDSEM) ! GET SEMAPHORE COUNTER VALUE
 IF(CNTVAL .EQ. STID) THEN ! IF IT'S MY STID'S TURN
C PERFORM LCD COMPUTATION:
 X(J) = X(J-1) + Y(J)
 IF(CNTVAL .GE. NTHR-1) THEN ! HIGHEST STID
 IERR = M_FETCH_AND_CLEAR32(ORDSEM) ! RESETS COUNTER
 IF(IERR .LT. 0) PRINT*, "FETCH-CLEAR FAILED"
 ELSE ! ALL OTHER STIDS INCREMENT COUNTER:
 IERR = M_FETCH_AND_INC32(ORDSEM)
 IF(IERR .LT. 0) PRINT*, "FETCH-INC FAILED"
 ENDIF
 ELSE
 GOTO 10 ! LOOP AND TRY AGAIN IF CNTVAL .NE. STID
 ENDIF
 ENDDO
 RETURN
 END

This example uses a cyclic decomposition in the parallel J loop because,
by definition, ordered sections must be executed in iteration order, and
this is impossible using a block decomposition.

As in the example in the “Cyclic parallelism” section, here the starting
index is offset according to spawn thread ID and the loop steps by the
number of parallel threads. This ensures that each thread computes a
unique array element on every step of the loop; NTHR elements are
computed per step. Contiguous STIDs compute contiguous elements.

Appendix F 469

Compiler Parallel Support Library
Examples

The loop is ordered by the first IF statement in the loop, which only
allows the body of the loop (including the LCD) to execute if the counter
associated with the semaphore ORDSEM is equal to the current STID .
This counter is incremented (or reset when the highest STID is reached)
in the body of the loop, forcing the threads to execute in iteration order.
The counter associated with ORDSEM controls access to the LCD; no
explicit semaphore lock is needed.

Substantial nonordered work must be present in this loop to make the
overhead of the ordered section worthwhile. Assuming this condition is
met, once all the threads pass through the ordered section once, their
execution of the nonordered code will be staggered such that they will
stay busy while they are outside the ordered code.

The ordered parallelism described here is similar to that achieved
through use of compiler directives in the “Ordered sections” section of
Chapter 6, “Advanced shared-memory programming.”

470 Appendix F

Compiler Parallel Support Library
Examples

Glossary 471

Glossary

absolute address An address that does not undergo virtual-to-physical
address translation when used to reference memory or the I/O register
area.

accumulator A variable used to accumulate value. Accumulators are
typically assigned a function of themselves, which can create
dependences when done in loops.

actual argument In Fortran, a value that is passed by a call to a
procedure (function or subroutine). The actual argument appears in the
source of the calling procedure; the argument that appears in the source
of the called procedure is a dummy argument. C and C++ conventions
refer to actual arguments as actual parameters.

actual parameter In C and C++, a value that is passed by a call to a
procedure (function). The actual parameter appears in the source of the
calling procedure; the parameter that appears in the source of the called
procedure is a formal parameter. Fortran conventions refer to actual
parameters as actual arguments.

address A number used by the operating system to identify a storage
location.

address space Memory space, either physical or virtual, available to a
process.

agent The gate array on V2200 and X2000 servers that provides a
high-speed interface between pairs of PA-RISC processors and the
crossbar. Also called the CPU Agent and the CPA.

alias An alternative name for some object, especially an alternative
variable name that refers to a memory location. Aliases can cause data
dependences, which prevent the compiler from parallelizing parts of a
program.

472 Glossary

alignment A condition in which the address, in memory, of a given data
item is integrally divisible by a particular integer value, often the size of
the data item itself. Alignment simplifies the addressing of such data
items.

allocatable array In Fortran 90, a named array whose rank is specified
at compile time, but whose bounds are determined at run time.

allocate An action performed by a program at runtime in which memory
is reserved to hold data of a given type. In Fortran 90, this is done
through the creation of allocatable arrays. In C, it is done through the
dynamic creation of memory blocks using malloc . In C++, it is done
through the dynamic creation of memory blocks using malloc or new.

ALU Arithmetic logic unit. A basic element of the central processing unit
(CPU) where arithmetic and logical operations are performed.

Amdahl’s law A statement that the ultimate performance of a computer
system is limited by the slowest component. In the context of Exemplar
servers this is interpreted to mean that the serial component of the
application code will restrict the maximum speed-up that is achievable.

American National Standards Institute (ANSI) A repository and
coordinating agency for standards implemented in the U.S. Its activities
include the production of Federal Information Processing (FIPS)
standards for the Department of Defense (DoD).

ANSI See American National Standards Institute.

apparent recurrence A condition or construct that fails to provide the
compiler with sufficient information to determine whether or not a
recurrence exists. Also called a potential recurrence.

argument In Fortran, either a variable declared in the argument list of
a procedure (function or subroutine) that receives a value when the
procedure is called (dummy argument) or the variable or constant that is
passed by a call to a procedure (actual argument). C and C++ conventions
refer to arguments as parameters.

arithmetic logic unit (ALU) A basic element of the central processing
unit (CPU) where arithmetic and logical operations are performed.

array An ordered structure of operands of the same data type. The
structure of an array is defined by its rank, shape, and data type.

Glossary 473

array section A Fortran 90 construct that defines a subset of an array
by providing starting and ending elements and strides for each
dimension. For an array A(4,4) , A(2:4:2,2:4:2) is an array section
containing only the evenly indexed elements A(2,2) , A(4,2) , A(2,4) ,
and A(4,4) .

array-valued argument In Fortran 90, an array section that is an
actual argument to a subprogram.

ASCII American Standard Code for Information Interchange. This
encodes printable and non-printable characters into a range of integers.

assembler A program that converts assembly language programs into
executable machine code.

assembly language A programming language whose executable
statements can each be translated directly into a corresponding machine
instruction of a particular computer system.

automatic array In Fortran, an array of explicit rank that is not a
dummy argument and is declared in a subprogram.

bandwidth A measure of the rate at which data can be moved through a
device or circuit. Bandwidth is usually measured in millions of bytes per
second (Mbytes/sec) or millions of bits per second (Mbits/sec).

bank conflict An attempt to access a particular memory bank before a
previous access to the bank is complete.

barrier A structure used by the compiler in barrier synchronization.
Also sometimes used to refer to the construct used to implement barrier
synchronization. See also barrier synchronization.

barrier synchronization A control mechanism used in parallel
programming that ensures all threads have completed an operation
before continuing with the next operation. On Exemplar servers, barrier
synchronization can be automated by certain CPSlib routines and
compiler directives. See also barrier.

basic block A linear sequence of machine instructions with a single
entry and a single exit.

bit A binary digit.

474 Glossary

block-shared memory Memory that is addressed by the same virtual
address from any hypernode in the system on which the memory was
allocated. This memory class is used to store arrays that are dynamically
allocated at runtime, when the number of hypernodes on which the
process is running is known. The virtual pages of the arrays are then
divided into a number of chunks equal to the number of available
hypernodes, and these chunks (which likely contain multiple contiguous
pages each) are distributed to the system-global physical pages of the
available hypernodes, 1 chunk per hypernode. If the number of pages of a
block_shared array is not integrally divisible by the number of
hypernodes, the array size is increased to allow integral division.
Compare with node-private memory, thread-private memory, near-shared
memory, and far-shared memory.

blocking factor Integer representing the stride of the outer strip of a
pair of loops created by blocking.

branch A class of instructions which change the value of the program
counter to a value other than that of the next sequential instruction.

byte A group of contiguous bits starting on an addressable boundary.
Generally, a byte is 8 bits in length.

cache A small, high-speed buffer memory used in modern computer
systems to hold temporarily those portions of the contents of the memory
that are, or are believed to be, currently in use. Cache memory is
physically separate from main memory and can be accessed with
substantially less latency. The Exemplar series of computers employs
separate data and instruction cache memories.

cache, direct mapped A form of cache memory that addresses
encached data by a function of the data’s virtual address. On V2200
servers, the processor cache address is identical to the least-significant
21 bits of the data’s virtual address. This means cache thrashing can
occur when the virtual addresses of two data items are an exact multiple
of 2 Mbyte (21 bits) apart. On X2000 servers, the processor cache address
is identical to the least-significant 20 bits of the data’s virtual address,
meaning cache thrashing can occur when the virtual addresses of two
data items are an exact multiple of 1 Mbyte (20 bits) apart.

cache hit A cache hit occurs if data to be loaded is residing in the cache.

Glossary 475

cache line A chunk of contiguous data that is copied into a cache in one
operation. On V2200 servers, processor cache lines are 32 bytes (V2200
servers and other single-node SMP servers do not employ CTIcache
lines). On X2000 servers, both processor cache lines and CTIcache lines
consist of 32 bytes of data. When a processor cache miss occurs and data
must be fetched from outside the processor cache, the requested data is
brought in as part of a 32-byte cache line.

cache memory A small, high-speed buffer memory used in modern
computer systems to hold temporarily those portions of the contents of
the memory that are, or are believed to be, currently in use. Cache
memory is physically separate from main memory and can be accessed
with substantially less latency. V2200 servers and X2000 servers employ
separate data and instruction caches.

cache miss A cache miss occurs if data to be loaded is not residing in the
cache.

cache purge The act of invalidating or removing entries in a cache
memory.

cache thrashing Cache thrashing occurs when two or more data items
that are frequently needed by the program map to the same cache
address. In this case, each time one of the items is encached it overwrites
another needed item, causing constant cache misses and impairing data
reuse. Cache thrashing also occurs when two or more threads are
simultaneously writing to the same cache line.

CMC The Coherent Memory Controller gate array, which, among other
tasks, provides an interface to the CTI interface and to memory and
maintains cache coherency information. Each pair of processors has a
CMC.

central processing unit (CPU) The central processing unit (CPU) is
that portion of a computer that recognizes and executes the instruction
set.

clock cycle The duration of the square wave pulse sent throughout a
computer system to synchronize operations.

clone A compiler-generated copy of a loop or procedure. When the
Exemplar compilers generate code for a parallelizable loop, they
generate two versions: a serial clone and a parallel clone. See also
dynamic selection.

476 Glossary

code A computer program, either in source form or in the form of an
executable image on a machine.

coherency A term frequently applied to caches. If a data item is
referenced by a particular processor on a multiprocessor system, the data
is copied into that processor’s cache and is updated there if the processor
modifies the data. If another processor references the data while a copy is
still in the first processor’s cache, a mechanism is needed to ensure that
the second processor does not use an outdated copy of the data from
memory. The state that is achieved when both processors’ caches always
have the latest value for the data is called cache coherency. On
V2200 servers and X2000 servers, an item of data may reside
concurrently in several processors’ caches.

column-major order Memory representation of an array such that the
columns are stored contiguously. For example, given a two-dimensional
array A(3,4) , the array element A(3,1) immediately precedes element
A(1,2) in memory. This is the default storage method for arrays in
Fortran.

compiler A computer program that translates computer code written in
a high-level programming language, such as Fortran, into equivalent
machine language.

Compiler Parallel Support library (CPSlib) A library of low-level
parallelization and synchronization routines. Refer to Appendix F,
“Compiler Parallel Support Library,” for more information.

concurrent In parallel processing, threads that can execute at the
same time are called concurrent threads.

conditional induction variable A loop induction variable that is not
necessarily incremented on every iteration.

constant folding Replacement of an operation on constant operands
with the result of the operation.

constant propagation The automatic compile-time replacement of
variable references with a constant value previously assigned to that
variable. Constant propagation is performed within a single procedure by
conventional compilers.

conventional compiler A compiler that cannot perform
interprocedural optimization.

Glossary 477

counter A variable that is used to count the number of times an
operation occurs. CPSlib semaphores are associated with counters so
that they can facilitate barrier synchronization or the creation of ordered
sections.

CPA CPU Agent. The gate array on V2200 servers and X2000 servers
that provides a high-speed interface between pairs of PA-RISC
processors and the crossbar. Also called the CPU Agent and the agent.

CPSlib (Compiler Parallel Support library) A library of low-level
parallelization and synchronization routines. Refer to Appendix F,
“Compiler Parallel Support Library,” for more information.

CPU Central processing unit. The central processing unit (CPU) is that
portion of a computer that recognizes and executes the instruction set.

CPU Agent The gate array on V2200 servers and X2000 servers that
provides a high-speed interface between pairs of PA-RISC processors and
the crossbar. Also called the agent and the CPA.

CPU-private memory Data that is accessible by a single thread only
(not shared among the threads constituting a process). A thread-private
data object has a unique virtual address which maps to a unique physical
address within each hypernode. Threads access the physical copies of
thread-private data residing on their own hypernode when they access
thread-private virtual addresses. Compare with node-private memory,
near-shared memory, far-shared memory, and block-shared memory.

CPU time The amount of time the CPU requires to execute a program.
Because programs share access to a CPU, the wall clock time of a
program may not be the same as its CPU time. If a program can use
multiple processors, the CPU time may be greater than the wall clock
time. (See wall clock time.)

critical section A portion of a parallel program that can be executed by
only one thread at a time.

crossbar A switching device that connects the CPUs, banks of memory,
and I/O controller on a single hypernode of a V2200 server or of an X2000
server. Because the crossbar is nonblocking, all ports can run at full
bandwidth simultaneously, provided there is not contention for a
particular port.

CSR Control/Status Register. A CSR is a software-addressable hardware
register used to hold control information or state.

478 Glossary

CTIcache A partition of physical memory that exists on each hypernode
and is used to store copies of global data fetched from other hypernodes.

CTI interface The hardware interface between the CTI rings and the
CMC.

CTI (Coherent Toroidal Interface) ring The ring interconnect that
connects all the hypernodes of a multihypernode Exemplar server
together in a ring topology. While the CTI ring is derived from the IEEE
SCI standard, complete compatibility is sacrificed to provide lower
latencies.

data cache (Dcache) A small cache memory with a fast access time.
This cache holds prefetched and current data. On X2000 servers,
processors have 1-Mbyte off-chip caches. On V2200 servers, processors
have 2-Mbyte off-chip caches. See also cache, direct mapped.

data dependence A relationship between two statements in a program,
such that one statement must precede the other to produce the intended
result. (See also loop-carried dependence (LCD) and loop-independent
dependence (LID).)

data localization Optimizations designed to keep frequently used data
in the processor data cache, thus eliminating the need for more costly
CTIcache or memory accesses.

data type A property of a data item that determines how its bits are
grouped and interpreted. For processor instructions, the data type
identifies the size of the operand and the significance of the bits in the
operand. Some example data types include INTEGER, int , REAL, and
float .

Dcache Data cache. A small cache memory with a one clock cycle access
time. This cache holds prefetched and current data. On X2000 servers,
this cache is 1 Mbyte in size. On V2200 servers, this cache is 2 Mbytes.

deadlock A condition in which a thread waits indefinitely for some
condition or action that cannot, or will not, occur.

direct memory access (DMA) A method for gaining direct access to
memory and achieving data transfers without involving the CPU.

Glossary 479

distributed memory A memory architecture used in multi-CPU
systems, in which the system’s memory is physically divided among the
processors. In most distributed-memory architectures, distributed
memory is accessible from only a single processor; sharing of data
requires explicit message passing.

distributed part A loop generated by the compiler in the process of loop
distribution.

DMA Direct memory access. A method for gaining direct access to
memory and achieving data transfers without involving the CPU.

double A double-precision floating-point number that is stored in 64
bits in C and C++.

doubleword A primitive data operand which is 8 bytes (64 bits) in
length. Also called a longword. See also word.

dummy argument In Fortran, a variable declared in the argument list
of a procedure (function or subroutine) that receives a value when the
procedure is called. The dummy argument appears in the source of the
called procedure; the parameter that appears in the source of the calling
procedure is an actual argument. C and C++ conventions refer to dummy
arguments as formal parameters.

dynamic selection The process by which the compiler chooses the
appropriate runtime clone of a loop. See also clone.

encache To copy data or instructions into a cache.

exception A hardware-detected event that interrupts the running of a
program, process, or system. See also fault.

execution stream A series of instructions executed by a CPU.

far-shared memory Memory that is addressed by the same virtual
address from any hypernode in the system on which the memory was
allocated. Far-shared memory is physically distributed by pages, in a
manner that is approximately round-robin, to all the hypernodes in the
system, so the virtual address maps to a single physical address located
on one of the hypernodes. Access latencies therefore vary as a function of
hypernode and data element. Compare with node-private memory,
thread-private memory, near-shared memory, and block-shared memory.

480 Glossary

fault A type of interruption caused by an instruction requesting a
legitimate action that cannot be carried out immediately due to a system
problem.

floating point A numerical representation of a real number. On V2200
servers and X2000 servers, a floating point operand has a sign (positive
or negative) part, an exponent part, and a fraction part. The fraction is a
fractional representation. The exponent is the value used to produce a
power of two scale factor (or portion) that is subsequently used to
multiply the fraction to produce an unsigned value.

FLOPS Floating-point operations per second. A standard measure of
computer processing power in the scientific community.

formal parameter In C and C++, a variable declared in the parameter
list of a procedure (function) that receives a value when the procedure is
called. The formal parameter appears in the source of the called
procedure; the parameter that appears in the source of the calling
procedure is an actual parameter. Fortran conventions refer to formal
parameters as dummy arguments.

Fortran A high-level software language used mainly for scientific
applications.

Fortran 90 The international standard for Fortran adopted in 1991.

function A procedure whose call can be imbedded within another
statement, such as an assignment or test. Any procedure in C or C++ or a
procedure defined as a FUNCTION in Fortran.

functional unit (FU) A part of a CPU that performs a set of operations
on quantities stored in registers.

gate A construct that restricts execution of a block of code to a single
thread. A thread locks a gate on entering the gated block of code and
unlocks the gate on exiting the block. When the gate is locked, no other
threads can enter. Compiler directives can be used to automate gate
constructs; gates can also be implemented using semaphores.

Gbyte See gigabyte.

gigabyte 1073741824 (230) bytes.

Glossary 481

global optimization A restructuring of program statements that is not
confined to a single basic block. Global optimization, unlike
interprocedural optimization, is confined to a single procedure. Global
optimization is done by Exemplar compilers at optimization level +O2
and above.

global register allocation (GRA) A method by which the compiler
attempts to store commonly-referenced scalar variables in registers
throughout the code in which they are most frequently accessed.

global variable A variable whose scope is greater than a single
procedure. In C and C++ programs, a global variable is a variable that is
defined outside of any one procedure. Fortran has no global variables per
se, but COMMON blocks can be used to make certain memory locations
globally accessible.

granularity In the context of parallelism, a measure of the relative size
of the computation done by a thread or parallel construct. Performance is
generally an increasing function of the granularity. In higher-level
language programs, possible sizes are routine, loop, block, statement,
and expression. Fine granularity is exhibited by parallel loops, tasks and
expressions; coarse granularity is exhibited by parallel processes.

hand-rolled loop A loop, more common in Fortran than C or C++, that
is constructed using IF tests and GOTO statements rather than a
language-provided loop structure such as DO.

hidden alias An alias that, because of the structure of a program or the
standards of the language, goes undetected by the compiler. Hidden
aliases can result in undetected data dependences, which may result in
wrong answers.

High Performance Fortran (HPF) An ad-hoc language extension of
Fortran 90 that provides user-directed data distribution and alignment.
HPF is not a standard, but rather a set of features desirable for parallel
programming.

hoist An optimization process that moves a memory load operation from
within a loop to the basic block preceding the loop.

HP Hewlett-Packard, the manufacturer of the PA-RISC chips used as
processors in V2200 servers and X2000 servers.

HP-UX Hewlett-Packard’s Unix-based operating system for its PA-RISC
workstations and servers.

482 Glossary

hypercube A topology used in some massively parallel processing
systems. Each processor is connected to its binary neighbors. The
number of processors in the system is always a power of two; that power
is referred to as the dimension of the hypercube. For example, a
10-dimensional hypercube has 210, or 1,024 processors.

hypernode A set of processors and physical memory organized as a
symmetric multiprocessor (SMP) running a single image of the operating
system microkernel. Nonscalable servers and V2200 servers consist of
one hypernode. X2000 servers consist of one or more hypernodes, with a
high speed CTI ring connecting the hypernodes. When discussing
multidimensional parallelism or memory classes, hypernodes are
generally called nodes.

Icache Instruction cache. This cache holds prefetched instructions and
permits the simultaneous decoding of one instruction with the execution
of a previous instruction. On X2000 servers, this cache is 1 Mbyte in size.
On V2200 servers, this cache is 2 Mbytes.

IEEE Institute for Electrical and Electronic Engineers. An international
professional organization and a member of ANSI and ISO.

induction variable A variable that changes linearly within the loop,
that is, whose value is incremented by a constant amount on every
iteration. For example, in the following Fortran loop, I , J and K are
induction variables, but L is not.

DO I = 1, N
 J = J + 2
 K = K + N
 L = L + I
ENDDO

inlining The replacement of a procedure (function or subroutine) call,
within the source of a calling procedure, by a copy of the called
procedure’s code.

Institute for Electrical and Electronic Engineers (IEEE) An
international professional organization and a member of ANSI and ISO.

instruction One of the basic operations performed by a CPU.

Glossary 483

instruction cache (Icache) This cache holds prefetched instructions
and permits the simultaneous decoding of one instruction with the
execution of a previous instruction. On X2000 servers, this cache is
1 Mbyte in size. On V2200 servers, this cache is 2 Mbytes.

instruction mnemonic A symbolic name for a machine instruction.

integral division Division that results in a whole number solution with
no remainder. For example, 10 is integrally divisible by 2, but not by 3.

interface A logical path between any two modules or systems.

interleaved memory Memory that is divided into multiple banks to
permit concurrent memory accesses. The number of separate memory
banks is referred to as the memory stride.

interprocedural optimization Automatic analysis of relationships
and interfaces between all subroutines and data structures within a
program. Traditional compilers analyze only the relationships within the
procedure being compiled.

interprocessor communication The process of moving or sharing
data, and synchronizing operations between processors on a
multiprocessor system.

intrinsic A function or subroutine that is an inherent part of a computer
language. For example, SIN is a Fortran intrinsic.

job scheduler That portion of the operating system that schedules and
manages the execution of all processes.

join The synchronized termination of parallel execution by spawned
tasks or threads.

jump Departure from normal one-step incrementing of the program
counter.

kbyte See kilobyte.

kernel The core of the operating system where basic system facilities,
such as file access and memory management functions, are performed.

kernel thread identifier (ktid) A unique integer identifier (not
necessarily sequential) assigned when a thread is created.

484 Glossary

kilobyte 1024 (210) bytes.

latency The time delay between the issuing of an instruction and the
completion of the operation. A common benchmark used for comparing
systems is the latency of coherent memory access instructions. This
particular latency measurement is believed to be a good indication of the
scalability of a system; low latency equates to low system overhead as
system size increases.

linker A software tool that combines separate object code modules into a
single object code module or executable program.

load An instruction used to move the contents of a memory location into
a register.

locality of reference An attribute of a memory reference pattern that
refers to the likelihood of an address of a memory reference being
physically close to the CPU making the reference.

local optimization Restructuring of program statements within the
scope of a basic block. Local optimization is done by Exemplar compilers
at optimization level +O1 and above.

localization Data localization. Optimizations designed to keep
frequently used data in the processor data cache, thus eliminating the
need for more costly CTIcache or memory accesses.

logical address Logical address space is that address as seen by the
application program.

logical hypernode ID Logical hypernode IDs range from 0..n-1, where
n is the number of available hypernodes in the system. Logical IDs are
assigned in the order in which your program occupies the system. The
hypernode that your program’s thread 0 runs on is considered logical
hypernode 0; any hypernodes it expands to later are assigned increasing
logical ID numbers.

logical memory Virtual memory. The memory space as seen by the
program, which may be larger than the available physical memory. The
virtual memory of a V2200 server can be up to 16 Tbytes. The virtual
memory of an X2000 server can be up to 4 Gbytes (however, through use
of node-private memory, this 4 Gbytes can be mapped to a larger set of
physical memory). HP-UX can map this virtual memory to a smaller set
of physical memory, using disk space to make up the difference if
necessary. Also called virtual memory.

Glossary 485

longword (l) Doubleword. A primitive data operand which is 8 bytes (64
bits) in length. See also word.

loop blocking A loop transformation that strip mines and interchanges
a loop to provide optimal reuse of the encachable loop data.

loop-carried dependence (LCD) A dependence between two
operations executed on different iterations of a given loop and on the
same iteration of all enclosing loops. A loop carries a dependence from an
indexed assignment to an indexed use if, for some iteration of the loop,
the assignment stores into an address that is referred to on a different
iteration of the loop. To parallelize a loop containing an LCD, you
generally must manually synchronize the LCD assignment and
manually parallelize the loop.

loop constant A constant or expression whose value does not change
within a loop.

loop distribution The restructuring of a loop nest to create simple loop
nests. Loop distribution creates two or more loops, called distributed
parts, which can serve to make parallelization more efficient by
increasing the opportunities for loop interchange and isolating code that
must run serially from parallelizable code. It can also improve data
localization and other optimizations.

loop-independent dependence (LID) A dependence between two
operations executed on the same iteration of all enclosing loops such that
one operation must precede the other to produce correct results.

loop induction variable See induction variable.

loop interchange The reordering of nested loops. Loop interchange is
generally done to increase the granularity of the parallelizable loop(s)
present or to allow more efficient access to loop data.

loop invariant Loop constant. A constant or expression whose value
does not change within a loop.

loop invariant computation An operation that yields the same result
on every iteration of a loop.

loop replication The process of transforming one loop into more than
one loop to facilitate an optimization. The optimizations that replicate
loops are IF-DO and if-for optimizations, dynamic selection, loop
unrolling, and loop blocking.

486 Glossary

machine exception A fatal error in the system that cannot be handled
by the operating system. See also exception.

main memory Physical memory other than the processor caches. On
multinode servers, main memory is the physical memory other than the
processor caches that is not allocated as part of the CTIcache.

main procedure A procedure invoked by the operating system when an
application program starts up. The main procedure is the main program
in Fortran; in C and C++, it is the function main().

main program In a Fortran program, the program section invoked by
the operating system when the program starts up.

Mbyte See megabyte (Mbyte).

megabyte (Mbyte) 1048576 (220) bytes.

megaflops (MFLOPS) One million floating-point operations per
second.

memory bank conflict An attempt to access a particular memory bank
before a previous access to the bank is complete.

memory management The hardware and software that control
memory page mapping and memory protection.

message Data copied from one process to another (or the same) process.
The copy is initiated by the sending process, which specifies the receiving
process. The sending and receiving processes need not share a common
address space. (Note: depending on the context, a process may be a
thread.)

Message-Passing Interface (MPI) A message-passing and process
control library. For information on the Hewlett-Packard implementation
of MPI, refer to the HP MPI User’s Guide (B6011-90001).

message passing A type of programming in which program modules
(often running on different processors or different hosts) communicate
with each other by means of system library calls that package, transmit,
and receive data. All message-passing library calls must be explicitly
coded by the programmer.

Glossary 487

MIMD (multiple instruction stream multiple data stream) A
computer architecture that uses multiple processors, each processing its
own set of instructions simultaneously and independently of others.
MIMD also describes when processes are performing different operations
on different data. Compare with SIMD.

multiprocessing The creation and scheduling of processes on any
subset of CPUs in a system configuration.

mutex A variable used to construct an area (region of code) of mutual
exclusion. When a mutex is locked, entry to the area is prohibited; when
the mutex is free, entry is allowed.

mutual exclusion A protocol that prevents access to a given resource
by more than one thread at a time.

near-shared memory Memory that is addressable by the same virtual
address from any hypernode in the system on which the memory was
allocated. Near-shared memory resides physically on the hypernode from
which it was allocated, and is accessed with lowest latency from that
hypernode. Access latencies are higher from other hypernodes. Compare
with thread-private memory, node-private memory, block-shared memory,
and far-shared memory.

negate An instruction that changes the sign of a number.

network A system of interconnected computers that enables machines
and their users to exchange information and share resources. X2000
servers provide support for FDDI networks.

node On HP scalable and nonscalable servers, a node is equivalent to a
hypernode. The term “node” is generally used in place of hypernode when
discussing parallelism or memory classes.

node-private memory Memory residing on a hypernode that is
accessible only by CPUs on the same hypernode. A node-private data
object has a unique virtual address by which all threads on all
hypernodes access it. This address maps to one physical address per
hypernode; when a thread accesses the data, it receives the value
contained in the physical memory of its own hypernode. Compare with
thread-private memory, near-shared memory, block-shared memory, and
far-shared memory.

488 Glossary

non-uniform memory access (NUMA) This term describes memory
access times in systems in which accessing different types of memory (for
example, memory local to the current hypernode or memory remote to
the current hypernode) results in non-uniform access times.

nonblocking crossbar A switching device that connects the CPUs,
banks of memory, and I/O controller on a single hypernode. Because the
crossbar is nonblocking, all ports can run at full bandwidth
simultaneously provided there is not contention for a particular port.

NUMA Non-uniform memory access. This term describes memory access
times in systems in which accessing different types of memory (for
example, memory local to the current hypernode or memory remote to
the current hypernode) results in non-uniform access times.

offset In the context of a process address space, an integer value that is
added to a base address to calculate a memory address. Offsets in V2200
servers are 64-bit values, and must keep address values within a single
16-Tbyte memory space. Offsets in X2000 servers are 32-bit values, and
must keep address values within a single 4-Gbyte memory space.

opcode A predefined sequence of bits in an instruction that specifies the
operation to be performed.

operating system The program that manages the resources of a
computer system. V2200 servers use the HP-UX operating system.
X2000 servers use the SPP-UX operating system, which is compatible
with the HP-UX operating system.

optimization The refining of application software programs to
minimize processing time. Optimization takes maximum advantage of a
computer’s hardware features and minimizes input/output traffic and
idle processor time.

optimization level The degree to which source code is optimized by the
compiler. The Exemplar compilers have five levels of optimization:
level +O0, +O1, +O2, +O3, and +O4. (The +O4 option is not available in
Fortran 90.)

oversubscript An array reference that falls outside declared bounds.

oversubscription In the context of parallel threads, a process attribute
that permits the creation of more threads within a process than the
number of processors available to the process.

Glossary 489

PA-RISC The Hewlett-Packard Precision Architecture reduced
instruction set processor chip. This is the processor chip used in V2200
servers and X2000 servers.

packet A group of related items. A packet may refer to the arguments of
a subroutine or to a group of bytes that is transmitted over a network.

page A page is the unit of virtual or physical memory controlled by the
memory management hardware and software. On HP-UX servers, the
default page size is 4 K (4,096) contiguous bytes. Valid page sizes are:
4 K, 16 K, 64 K, 256 K, 1 Mbyte, 4 Mbytes, 16 Mbytes, 64 Mbytes, and
256 Mbytes. See also virtual memory.

page fault A page fault occurs when a process requests data that is not
currently in memory. This requires the operating system to retrieve the
page containing the requested data from disk.

page frame A page frame is the unit of physical memory in which pages
are placed. Referenced and modified bits associated with each page
frame aid in memory management.

parallel optimization The transformation of source code into parallel
code (parallelization) and restructuring of code to enhance parallel
performance.

parallelization The process of transforming serial code to a form of code
that can run simultaneously on multiple CPUs while preserving
semantics. When +O3 +Oparallel is specified, the Exemplar compilers
automatically parallelize loops in your program and recognize compiler
directives and pragmas with which you can manually specify
parallelization of loops, tasks, and regions.

parallelization, loop The process of splitting a loop into several
smaller loops, each of which operates on a subset of the data of the
original loop, and generating code to run these loops on separate
processors in parallel.

parallelization, ordered The process of splitting a loop into several
smaller loops, each of which iterates over a subset of the original data
with a stride equal to the number of loops created, and generating code
to run these loops on separate processors. Each iteration in an ordered
parallel loop begins execution in the original iteration order, allowing
dependences within the loop to be synchronized to yield correct results
via gate constructs.

490 Glossary

parallelization, stride-based The process of splitting up a loop into
several smaller loops, each of which iterates over several discontiguous
chunks of data, and generating code to run these loops on separate
processors in parallel. Stride-based parallelism can only be achieved
manually by using compiler directives or CPSlib functions.

parallelization, strip-based The process of splitting up a loop into
several smaller loops, each of which iterates over a single contiguous
subset of the data of the original loop, and generating code to run these
loops on separate processors in parallel. Strip-based parallelism is the
default for automatic parallelism and for directive-initiated loop
parallelism in absence of the chunk_size = n or ordered attributes.

parallelization, task The process of splitting up source code into
independent sections which can safely be run in parallel on available
processors. Exemplar programming languages provide compiler
directives and pragmas that allow you to identify parallel tasks in source
code.

parameter In C and C++, either a variable declared in the parameter
list of a procedure (function) that receives a value when the procedure is
called (formal parameter) or the variable or constant that is passed by a
call to a procedure (actual parameter). In Fortran, a symbolic name for a
constant.

path An environment variable that you set in your shell configuration
file that allows you to access commands in various directories without
having to specify a complete path name.

physical address A unique identifier that selects a particular location
in the computer’s memory. Because HP-UX supports virtual memory,
programs address data by its virtual address; HP-UX then maps this
address to the appropriate physical address. See also virtual address.

physical address space The set of possible addresses for a particular
physical memory.

physical memory Computer hardware that stores data. V2200 servers
can contain up to 16 Gbytes of physical memory on a 16-processor
hypernode. X2000 servers can contain up to 16 Gbytes of physical
memory per hypernode, for a total of 64 Gbytes of physical memory on a
full 4-hypernode system.

Glossary 491

pipeline An overlapping operating cycle function that is used to
increase the speed of computers. Pipelining provides a means by which
multiple operations occur concurrently by beginning one instruction
sequence before another has completed. Maximum efficiency is achieved
when the pipeline is “full,” that is, when all stages are operating on
separate instructions.

pipelining Issuing instructions in an order that best utilizes the
pipeline.

procedure A unit of program code. In Fortran, a function, subroutine or
main program; in C and C++, a function.

process A collection of one or more execution streams within a single
logical address space; an executable program. A process is made up of
one or more threads.

process memory The portion of system memory that is used by an
executing process.

programming model A description of the features available to
efficiently program a certain computer architecture.

program unit A procedure or main section of a program.

queue A data structure in which entries are made at one end and
deletions at the other. Often referred to as first-in, first-out (FIFO).

rank The number of dimensions of an array.

read A memory operation in which the contents of a memory location
are copied and passed to another part of the system.

recurrence A cycle of dependences among the operations within a loop
in which an operation in one iteration depends on the result of a
following operation that executes in a previous iteration.

recursion An operation that is defined, at least in part, by a repeated
application of itself.

recursive call A condition in which the sequence of instructions in a
procedure causes the procedure itself to be invoked again. Such a
procedure must be compiled for reentrancy.

492 Glossary

reduced instruction set computer (RISC) An architectural concept
that applies to the definition of the instruction set of a processor. A RISC
instruction set is an orthogonal instruction set that is easy to decode in
hardware and for which a compiler can generate highly optimized code.
The PA-RISC processor used in V2200 servers and X2000 servers
employs a RISC architecture.

reduction An arithmetic operation that performs a transformation on
an array to produce a scalar result.

reentrancy The ability of a program unit to be executed by multiple
threads at the same time. Each invocation maintains a thread-private
copy of its local data and a thread-private stack to store
compiler-generated temporary variables. Procedures must be compiled
for reentrancy in order to be invoked in parallel or to be used for
recursive calls. Exemplar compilers compile for reentrancy by default.

reference Any operation that requires a cache line to be encached; this
includes load as well as store operations, because writing to any element
in a cache line requires the entire cache line to be encached.

register A hardware entity that contains an address, operand, or
instruction status information.

reuse, data In the context of a loop, the ability to use data fetched for
one loop operation in another operation. In the context of a cache,
reusing data that was encached for a previous operation; because data is
fetched as part of a cache line, if any of the other items in the cache line
are used before the line is flushed to memory, reuse has occurred.

reuse, spatial Reusing data that resides in the cache as a result of the
fetching of another piece of data from memory. Typically, this involves
using array elements that are contiguous to (and therefore part of the
cache line of) an element that has already been used, and therefore is
already encached.

reuse, temporal Reusing a data item that has been used previously.

RISC Reduced instruction set computer. An architectural concept that
applies to the definition of the instruction set of a processor. A RISC
instruction set is an orthogonal instruction set that is easy to decode in
hardware and for which a compiler can generate highly optimized code.
The PA-RISC processor used in V2200 servers and X2000 servers
employs a RISC architecture.

Glossary 493

rounding A method of obtaining a representation of a number that has
less precision than the original in which the closest number
representable under the lower precision system is used.

row-major order Memory representation of an array such that the
rows of an array are stored contiguously. For example, given a
two-dimensional array A[3][4] , array element A[0][3] immediately
precedes A[1][0] in memory. This is the default storage method for
arrays in C.

SCI Scalable Coherent Interface. This is defined by IEEE standard
1596-1992. The interface is physically defined as a pair of 18-bit,
differential ECL, unidirectional links. Each link provides 16 bits of data
with two control signals. Data is sampled on both the rising and falling
edges of the clock. This interface provides the basis for the CTI rings
used in X2000 servers; however, total compatibility with the standard
has been sacrificed to provide increased performance.

scope The domain in which a variable is visible in source code. The rules
that determine scope are different for Fortran and C/C++.

semaphore An integer variable assigned one of two values: one value to
indicate that it is “locked,” and another to indicate that it is “free.”
Semaphores can be used to synchronize parallel threads. CPSlib provides
a set of manipulation functions to facilitate this.

shape The number of elements in each dimension of an array.

shared virtual memory A memory architecture in which memory can
be accessed by all processors in the system. This architecture can also
support virtual memory.

shell An interactive command interpreter that is the interface between
the user and the operating system.

SIMD (single instruction stream multiple data stream) A
computer architecture that performs one operation on multiple sets of
data. A processor (separate from the SMP array) is used for the control
logic, and the processors in the SMP array perform the instruction on the
data. Compare with MIMD (multiple instruction stream multiple data
stream).

single A single-precision floating-point number stored in 32 bits. See
also double.

494 Glossary

SMP Symmetric multiprocessor. A multiprocessor computer in which all
the processors have equal access to all machine resources. Symmetric
multiprocessors have no manager or worker processors; the operating
system runs on any or all of the processors.

socket An endpoint used for interprocess communication.

socket pair Bidirectional pipes that enable application programs to set
up two-way communication between processes that share a common
ancestor.

source code The uncompiled version of a program, written in a
high-level language such as Fortran or C.

source file A file that contains program source code.

space A contiguous range of virtual addresses within the system-wide
virtual address space. Spaces are 4 Gbytes in size in X2000 servers and
16 Tbytes in V2200 servers.

spatial reference An attribute of a memory reference pattern that
pertains to the likelihood of a subsequent memory reference address
being numerically close to a previously referenced address.

spawn To activate existing threads.

spawn context A parallel loop, task list, or region that initiates the
spawning of threads and defines the structure within which the threads’
spawn thread IDs are valid.

spawn thread identifier (stid) A sequential integer identifier
associated with a particular thread that has been spawned. stids are only
assigned to spawned threads, and they are assigned within a spawn
context; therefore, duplicate stids may be present amongst the threads of
a program, but stids are always unique within the scope of their spawn
context. stids are assigned sequentially and run from 0 to one less than
the number of threads spawned in a particular spawn context.

SPMD Single program multiple data. A single program executing
simultaneously on several processors. This is usually taken to mean that
there is redundant execution of sequential scalar code on all processors.

Glossary 495

stack A data structure in which the last item entered is the first to be
removed. Also referred to as last-in, first-out (LIFO). HP-UX provides
every thread with a stack which is used to pass arguments to functions
and subroutines and for local variable storage.

store An instruction used to move the contents of a register to memory.

strip length, parallel In strip-based parallelism, the amount by which
the induction variable of a parallel inner loop is advanced on each
iteration of the (conceptual) controlling outer loop.

strip mining The transformation of a single loop into two nested loops.
Conceptually, this is how parallel loops are created by default. A
conceptual outer loop advances the initial value of the inner loop’s
induction variable by the parallel strip length. The parallel strip length
is based on the trip count of the loop and the amount of code in the loop
body. Strip mining is also used by the data localization optimization.

subroutine A software module that can be invoked from anywhere in a
program.

superscalar A class of RISC processors that allow multiple instructions
to be issued on each clock period.

Symmetric Multiprocessor (SMP) A multiprocessor computer in
which all the processors have equal access to all machine resources.
Symmetric multiprocessors have no manager or worker processors; the
operating system runs on any or all of the processors.

synchronization A method of coordinating the actions of multiple
threads so that operations occur in the right sequence. When manually
optimizing code, you can synchronize programs using compiler
directives, calls to library routines, or assembly-language instructions.
You do so, however, at the cost of additional overhead; synchronization
may cause at least one CPU to wait for another.

system administrator (sysadmin) The system manager.

system manager The person responsible for the management and
operation of a computer system. Also called the system administrator
and the sysadmin.

Tbyte See terabyte (Tbyte).

terabyte (Tbyte) 1099511627776 (240) bytes.

496 Glossary

term A constant or symbolic name that is part of an expression.

thread An independent execution stream that is executed by a CPU.
One or more threads, each of which can execute on a different CPU, make
up each process. Memory, files, signals, and other process attributes are
generally shared among threads in a given process, enabling the threads
to cooperate in solving the common problem. Threads are created and
terminated by instructions that can be automatically generated by
Exemplar compilers, inserted by adding compiler directives to source
code, or coded explicitly using library calls or assembly-language.

thread create To activate existing threads.

thread identifier An integer identifier associated with a particular
thread. See thread identifier, kernel (ktid) and thread identifier, spawn
(stid).

thread identifier, kernel (ktid) A unique integer identifier (not
necessarily sequential) assigned when a thread is created.

thread identifier, spawn (stid) A sequential integer identifier
associated with a particular thread that has been spawned. stids are only
assigned to spawned threads, and they are assigned within a spawn
context; therefore, duplicate stids may be present amongst the threads of
a program, but stids are always unique within the scope of their spawn
context. stids are assigned sequentially and run from 0 to one less than
the number of threads spawned in a particular spawn context.

thread-private memory Data that is accessible by a single thread only
(not shared among the threads constituting a process). A thread-private
data object has a unique virtual address that maps to a unique physical
address within each hypernode. Threads access the physical copies of
thread-private data residing on their own hypernode when they access
thread-private virtual addresses. Compare with node-private memory,
near-shared memory, far-shared memory, and block-shared memory.

translation lookaside buffer A hardware entity that contains
information necessary to translate a virtual memory reference to the
corresponding physical page and to validate memory accesses.

TLB See translation lookaside buffer.

trip count The number of iterations a loop executes.

unsigned A value that is always positive.

Glossary 497

user interface The portion of a computer program that processes input
entered by a human and provides output for human users.

utility A software tool designed to perform a frequently used support
function.

vector An ordered list of items in a computer’s memory, contained
within an array. A simple vector is defined as having a starting address,
a length, and a stride. An indirect address vector is defined as having a
relative base address and a vector of values to be applied as offsets to the
base.

vector processor A processor whose instruction set includes
instructions that perform operations on a vector of data (such as a row or
column of an array) in an optimized fashion. Convex C Series systems
employ vector processors; V2200 servers and X2000 servers do not.

virtual address The address by which programs access their data.
HP-UX maps this address to the appropriate physical memory address.
See also space.

virtual aliases Two different virtual addresses that map to the same
physical memory address.

virtual machine A collection of computing resources configured so that
a user or process can access any of the resources, regardless of their
physical location or operating system, from a single interface.

virtual memory The memory space as seen by the program, which is
typically larger than the available physical memory. The virtual memory
of a V2200 server can be up to 16 Tbytes. The virtual memory of an
X2000 server can be up to 4 Gbytes (however, through use of
node-private memory, this 4 Gbytes can be mapped to a larger set of
physical memory). The operating system maps this virtual memory to a
smaller set of physical memory, using disk space to make up the
difference if necessary. Also called logical memory.

wall clock time The chronological time an application requires to
complete its processing. If an application starts running at 1:00 p.m. and
finishes at 5:00 a.m. the following morning, its wall clock time is sixteen
hours. Compare with CPU time.

498 Glossary

word A contiguous group of bytes that make up a primitive data
operand and start on an addressable boundary. In V2200 servers and
X2000 servers, a word is four bytes (32 bits) in length. See also
doubleword.

workstation A stand-alone computer that has its own processor,
memory, and possibly a disk drive and can typically sit on a user’s desk.

write A memory operation in which a memory location is updated with
new data.

zero In floating point number representations, zero is represented by the
sign bit with a value of zero and the exponent with a value of zero.

Index 499

Index

Symbols
* (asterisk) entry

in the Optimization Report, 400

A
aborts

program, 290, 318
absolute address

defined, 471
aC++ compiler, 39
aC++ operators

delete, 195
new, 193

accumulator
defined, 471

accumulator variables
and floating-point imprecision, 288

actual argument
defined, 471

actual parameter
defined, 471

address
defined, 471

address space
defined, 471

affinity
threads to CPUs, 106

agent
defined, 471

alias, 73
defined, 471

aliases
hidden, 268

aliasing, 268
and ANSI C, 268
ANSI C, sometimes unsafe, 268
command-line options, 269
global variables, 272
in C, 268
stop variable, 271

ALIGN_CTI directive and pragma, 28, 338
aligning data, 28, 276

on CTIcache boundaries, 28
alignment

and ALIGN_CTI directive and pragma, 277,
338

data, 28, 47, 276
defined, 472
of arrays, 276
on natural boundaries, 47

alloc_barrier function, 227
alloc_barrier_8 function, 227
alloc_gate function, 227
alloc_gate_8 function, 227
allocatable array

defined, 472
allocate

defined, 472
allocation

of barriers, 227
of gates, 227

allocs_new_memory pragma, 333
ALU

defined, 472
Amdahl’s law

defined, 472
American National Standards Institute (ANSI)

defined, 472
analysis column

in Analysis Table, 402
Analysis Table

in the Optimization Report, 402
ANSI

defined, 472
ANSI C aliasing, 268
ANSI C aliasing algorithm, 268
apparent dependence, 293, 294
apparent LCDs, 114, 294, 295
apparent recurrence

defined, 472
architecture

memory, 23
overview, 11

500 Index

argument
actual, 471
defined, 472

arithmetic logic unit (ALU)
defined, 472

array
defined, 472

array section
defined, 473

arrays
aligning, 277
dimensions and thrashing, 32

array-valued argument
defined, 473

ASCII
defined, 473

assembler
defined, 473

assembly language
defined, 473

assigned GOTO statements, 68
asterisk (*) entry

in the Optimization Report, 400
asymmetric parallelism, 423

CPSlib example, 458
asymmetric threads

compiler parallel support library functions, 430
attributes

for directives and pragmas, 125, 339
automatic array

defined, 473
automatic parallelization, 100

disabling, 151, 367

B
backward LCDs, 113
bandwidth

defined, 473
bank conflict

defined, 473

barrier
defined, 473

barrier synchronization
defined, 473

barrier_t data type, 225
barrier8_t data type, 225
barriers, 225, 338

allocating, 227
allocating with cps_barrier_alloc function, 441
and the compiler parallel support library, 441
CPSlib example, 460
deallocation, 228
freeing with cps_barrier_free function, 442
in C, 225
in Fortran, 226
incrementing with cps_barrier function, 442
wait_barrier function, 229

basic block
defined, 473

BEGIN_TASKS directive and pragma, 138, 339
bit

defined, 473
block parallelism, 125, 454

CPSlib example, 454
BLOCK_LOOP directive and pragma, 90, 340
BLOCK_SHARED directive, 340
block_shared memory, 177

defined, 474
dynamic allocation, 209
static assignments, 190

block_shared memory class, 340
blocking factor

defined, 474
specifying, 340

branch
defined, 474
optimization, 49

byte
defined, 474

C
C and register allocation, 53
C compilers

c89, 39
cc, 39

C++ compiler
aC++, 39

C++ operators
delete, 195
new, 178, 190, 195, 203

Index 501

c_cond_lock function, 446
c_fetch_and_add32 function, 447
c_fetch_and_clear32 function, 447
c_fetch_and_dec32 function, 447
c_fetch_and_inc32 function, 446
c_fetch_and_set32 function, 448
c_fetch32 function, 446
c_free32 function, 445
c_init32 function, 444
c_lock function, 445
c_unlock function, 445
c89 C compiler, 39
cache

based semaphores, 444
data, 22
defined, 474
instruction, 22
interconnect, 23
preventing thrashing, 30
thrashing, 29
thrashing and COMMON blocks, 32
thrashing example, 29, 274

cache addresses, 27
cache coherency, 3
cache hit

defined, 474
cache line

defined, 475
cache lines, 14, 26

CTI, 26
false sharing, 274
processor, 26

cache memory
defined, 475

cache miss
defined, 475

cache purge
defined, 475

cache thrashing, 29
defined, 475
illustrated, 30

caches, 22

cc C compiler, 39
central processing unit (CPU)

defined, 475
chunk_size

attribute to loop_parallel, 125
chunk-based parallelism, 125, 130

example, 131
clock cycle

defined, 475
clone

defined, 475
clones

loop, 109
cloning

loop, 109
routine, 65, 121

clustered workstations
compilers, 5
interprocess communication, 5
memory, 4
peripherals, 6

CMC
defined, 475

code
defined, 476

code motion, 55
and wrong answers, 268

coherency
defined, 476
in caches, 3

Coherent Toroidal Interconnect, 2
coloring register allocation, 52
column-major order

defined, 476
COMMON blocks

and cache thrashing, 32
common subexpression elimination, 54
compiler

defined, 476
compiler optimizations, 40

options, 41
overview, 8

502 Index

compiler options
C aliasing, 269, 394
+DA, 393
+DS, 393
+O0, 40, 46, 365
+O1, 40, 48, 365
+O2, 40, 51, 365
+O3, 40, 63, 365
+O4, 40, 120, 365
+O[no]aggressive, 366
+O[no]all, 367
+O[no]autopar, 41, 117, 151, 367
+O[no]conservative, 368
+O[no]dataprefetch, 368
+O[no]dynsel, 110, 111, 298, 369
+O[no]entrysched, 369
+O[no]exemplar_model, 41, 100, 370
+O[no]fail_safe, 370
+O[no]fastaccess, 371
+O[no]fltacc, 371
+O[no]global_ptrs_unique, 372, 394
+O[no]info, 373, 420
+O[no]initcheck, 373
+O[no]inline, 65, 120, 373
+Oinline_budget=n, 65, 120, 374
+O[no]libcalls, 375
+O[no]limit, 62, 67, 99, 111, 376
+O[no]loop_block, 83, 90, 376
+O[no]loop_transform, 79, 81, 82, 83, 92, 95,

376
+O[no]loop_unroll, 62, 377
+O[no]loop_unroll_jam, 95, 377
+O[no]moveflops, 378
+O[no]nodepar, 41, 109, 117, 151, 378
+O[no]parallel, 41, 63, 100, 110, 379
+O[no]parmsoverlap, 380
+O[no]pipeline, 57, 380
+O[no]procelim, 381
+O[no]ptrs_ansi, 268, 381, 394
+O[no]ptrs_strongly_typed, 268, 382, 394
+O[no]ptrs_to_globals, 385, 394
+O[no]regreassoc, 60, 386
+O[no]report, 387, 397
+Oreport=all, 387, 397
+Oreport=loop, 387, 397
+Oreport=private, 387, 397
+O[no]sharedgra, 52, 388
+O[no]signedpointers, 388
+O[no]size, 62, 67, 99, 111, 388
+O[no]static_prediction, 389
+O[no]vectorize, 390
+O[no]volatile, 390
+O[no]whole_program_mode, 391

compiler parallel support library, 421
accessing, 425
and asymmetric parallelism, 423
and MP_NUMBER_OF_THREADS, 426
and symmetric parallelism, 421
and sync_routine, 451
asymmetric parallelism example, 458
asymmetric thread functions, 430
barriers, 441, 460
block parallelism example, 454
c_cond_lock function, 446
c_fetch_and_add32 function, 447
c_fetch_and_clear32 function, 447
c_fetch_and_dec32 function, 447
c_fetch_and_inc32 function, 446
c_fetch_and_set32 function, 448
c_fetch32 function, 446
c_free32 function, 445
c_init32 function, 444
c_lock function, 445
c_unlock function, 445
cps_barrier function, 442
cps_barrier_alloc function, 441
cps_barrier_free function, 442
cps_complex_cpus function, 437
cps_complex_nodes function, 437
cps_complex_nthreads function, 437
cps_is_parallel function, 437
cps_ktid, 433
cps_mutex_alloc function, 442
cps_mutex_free function, 443
cps_mutex_lock function, 443
cps_mutex_trylock function, 444
cps_mutex_unlock function, 443
cps_node_cpus function, 436
cps_node_id function, 435
cps_node_nthreads function, 436
cps_nsthreads function, 434
cps_plevel function, 434
cps_ppcall function, 427
cps_ppcalln function, 427
cps_stid function, 433
cps_thread_create function, 430
cps_thread_exit function, 431
cps_thread_wait function, 432
cps_topology function, 438
cps_wait_attr function, 439
critical sections using low-level functions, 465
cyclic parallelism example, 457
defined, 476
finding hypernode ID, 435
finding kernel thread ID, 433
finding number of cpus, 436
finding number of threads, 434
finding spawn thread ID, 433

Index 503

high-level synchronization functions, 441, 460
low-level ordered section example, 467
low-level semaphores and critical sections, 465
low-level semaphores and ordered sections, 467
low-level synchronization functions, 444, 465
m_cond_lock function, 450
m_fetch_and_clear32 function, 451
m_fetch_and_dec32 function, 451
m_fetch_and_inc32 function, 450
m_fetch32 function, 450
m_free32 function, 449
m_init32 function, 448
m_lock function, 449
m_unlock function, 449
mutexes, 441, 463
PARAMS values, 427
params->max values, 428
params->min values, 428
params->node values, 427
params->threadscope values, 428
setting stack size for spawned threads, 429
spawning symmetric threads, 427
symmetric parallelism examples, 454
thread information functions, 433
thread-management functions, 427

compilers
aC++, 39
c89, 39
cc, 39
f77, 39
f90, 39
fort77, 39

computed statements, 68
concurrent

defined, 476
cond_lock_gate function, 228
cond_lock_gate_8 function, 228
conditional induction variable

defined, 476
constant folding

advanced, 54
defined, 476
simple, 46

constant propagation, 54
defined, 476

conventional compiler
defined, 476

count
trip, 321

counted loop, 270
counter

defined, 477
CPA

defined, 477
cps.h, 425

CPS_ANY_NODE constant, 428
cps_barrier function, 442
cps_barrier_alloc function, 441
cps_barrier_free function, 442
cps_complex_cpus function, 437
cps_complex_nodes function, 437
cps_complex_nthreads function, 437
CPS_DIFFERENT_NODE constant, 428
CPS_GETWAIT constant, 439
cps_is_parallel function, 437
cps_ktid function, 433
cps_mutex_alloc function, 442
cps_mutex_free function, 443
cps_mutex_lock function, 443
cps_mutex_trylock function, 444
cps_mutex_unlock function, 443
cps_node_cpus function, 436
cps_node_id function, 435
cps_node_nthreads function, 436
CPS_NODE_PARALLEL constant, 428
cps_nsthreads function, 434
CPS_PL_ASYMMETRIC constant, 435
CPS_PL_NODE constant, 435
CPS_PL_NONE constant, 435
CPS_PL_NTHREAD constant, 435
CPS_PL_PARALLEL constant, 435
CPS_PL_THREAD constant, 435
cps_plevel function, 434
cps_ppcall function, 427

setting stack size for spawned threads, 429
cps_ppcalln function, 427
CPS_SAME_NODE constant, 428
CPS_SETWAIT constant, 439
CPS_SETWAITI constant, 439
CPS_SPINWAIT constant, 440
CPS_STACK_SIZE environment variable

and CPSlib parallelism, 429
and loop_parallel, 152
and loop_private data, 153
and task_private data, 153

cps_stid function, 433
CPS_SUSPEND constant, 440
cps_thread_create function, 430
cps_thread_exit function, 431
CPS_THREAD_PARALLEL constant, 428
cps_thread_wait function, 432
cps_topology function, 438
cps_wait_attr function, 439
CPSlib, 425

defined, 477
linking in, 425
See compiler parallel support library

CPU
defined, 477

504 Index

CPU agent
defined, 477

CPU time
defined, 477

CPU-private memory
defined, 477

CPUs
and thread affinity, 106

critical section
defined, 477

critical sections, 148, 149, 340
and gates, 235
and the compiler parallel support library, 441
low-level CPSlib example, 465
manually implemented, 253
multiple, 237
using CPSlib mutexes, 463

CRITICAL_SECTION directive and pragma, 149,
340

crossbar, 16
defined, 477

crossbar (V2200), illustrated, 17
crossbar (X2000), illustrated, 18, 19
CSR

defined, 477
CTI, 2
CTI interface

defined, 478
CTI ring

defined, 478
CTI rings, 2
CTI rings (X2000), illustrated, 20, 22
CTIcache, 171

defined, 478
CTIcache lines, 26

interleaving, 33
cyclic parallelism

and CPSlib ordered sections, 468
example, 456

D
+DA option, 393
data alignment

on CTIcache lines, 28, 277
on natural boundaries, 47

data cache, 22
defined, 478

data dependence
defined, 478

data localization, 67
data reuse, 84
defined, 478
inhibitors, 68
preventing, 79, 346, 350
spatial reuse, 84
strip mining, 80

data ordering, 47
data prefetching, 27
data privatization

and prefer_parallel, 134
in parallel loops, 344
in parallel regions, 165
in parallel tasks, 162
in tasks, 351
loop, 154

data reuse, 84
defined, 492
example, 85
spatial, 84
temporal, 84

data type
defined, 478

dead code elimination, 50
deadlock

defined, 478
delete operator in C++, 195
dependence, 291
dependences

apparent, 293
C example, 292
Fortran example, 291
hidden, 306
ignoring, 346
isolating with ordered sections, 243
loop-carried, 68, 291
ordering, 348
reductions, 114, 294
unordered, 148, 340

determined order of execution, 296
direct mapped cache

defined, 474
direct memory access

defined, 478

Index 505

directives, 337
ALIGN_CTI, 28, 338
attributes, 125, 339
BARRIER, 226, 338
BEGIN_TASKS, 138, 339
BLOCK_LOOP, 340
BLOCK_SHARED, 340
CRITICAL_SECTION, 149, 235, 340
DYNSEL, 110, 341, 378
END_CRITICAL_SECTION, 149, 235, 341
END_ORDERED_SECTION, 236, 341
END_PARALLEL, 145, 341
END_TASKS, 138, 342
FAR_SHARED, 342
FAR_SHARED_POINTER, 342
form, 337
Fortran compiler, 337
GATE, 226, 342
loop blocking, 90
LOOP_PARALLEL, 115, 124, 343, 350, 360
LOOP_PARALLEL(ORDERED) example, 233
LOOP_PRIVATE, 154, 344
memory class, 178
misused, 267, 291
NEAR_SHARED, 345
NEAR_SHARED_POINTER, 345
NEXT_TASK, 138, 345
NO_BLOCK_LOOP, 90, 345
NO_DISTRIBUTE, 82, 346
NO_DYNSEL, 111, 298, 346, 378
NO_LOOP_DEPENDENCE, 72, 114, 293, 294,

346
NO_LOOP_TRANSFORM, 79, 346
NO_PARALLEL, 116, 346
NO_SIDE_EFFECTS, 347
NO_UNROLL_AND_JAM, 99, 347
NODE_PRIVATE, 347
NODE_PRIVATE_POINTER, 347
OPTIMIZE, 324

ASSUME_NO_EXTERNAL_PARMS, 327
ASSUME_NO_FLOATING_INVARIANT, 327
ASSUME_NO_HIDDEN_POINTER_ALIASI

NG, 328
ASSUME_NO_PARAMETER_OVERLAPS,

328
ASSUME_NO_SHARED_COMMON_PARMS,

329
ASSUME_NO_SIDE_EFFECTS, 329
ASSUME_PARM_TYPES_MATCHED, 329

[NO]INLINE, 327
LEVEL1, 326
LEVEL2, 326
LEVEL3, 326
LEVEL4, 326

ORDERED_SECTION, 236, 348
PARALLEL, 145, 312, 348
PARALLEL_PRIVATE, 165, 349
PREFER_PARALLEL, 115, 124, 349
REDUCTION, 115, 350, 360
SAVE_LAST, 168, 350
SCALAR, 350
SGI, 353
SGI’s C$DOACROSS, 358
SGI’s C*$*ASSERT DO

PREFER(CONCURRENT), 363
SGI’s C*$*ASSERT DO PREFER(SERIAL), 363
SGI’s C*$*ASSERT DO(CONCURRENT), 363
SGI’s C*$*ASSERT DO(SERIAL), 362
SGI’s C*$*ASSERT NO RECURRENCE, 364
SGI’s C*$*CONCURRENTIZE, 364
SGI’s C*$*NOCONCURRENTIZE, 364
SYNC_ROUTINE, 230, 351
TASK_PRIVATE, 162, 351
tasking, 138
THREAD_PRIVATE, 351
THREAD_PRIVATE_POINTER, 351
UNROLL_AND_JAM, 99, 352

dist
attribute to BEGIN_TASKS, 139
attribute to LOOP_PARALLEL, 125, 128
attribute to PREFER_PARALLEL, 125, 128

Dist entry
in the Optimization Report, 399

distributed memory
defined, 479

distributed part
defined, 479

distribution
loop, 81

DoD, 472
double

defined, 479
doubleword

defined, 479
+DS option, 393
dummy argument

defined, 479

506 Index

dynamic memory
and memory class pointers, 191
and memory_class_malloc, 192
assigning block_shared class, 209
assigning classes, 195
assigning far_shared class, 208
assigning near_shared class, 201
assigning node_private class, 197
assigning thread_private class, 196
class assignments, 190
default classes, 195

dynamic memory class assignments, 190
and wrong answers, 300
incorrect pointer use, 304

dynamic selection, 109, 369
and dynsel directive and pragma, 341
defined, 479
workload-based, 109

DYNSEL directive and pragma, 110, 341, 358,
378

DynSel entry
in the Optimization Report, 399

E
elimination

of common subexpressions, 54
of dead code, 50
of unused definitions, 56

encache
defined, 479

END_CRITICAL_SECTION directive and
pragma, 149, 341

END_ORDERED_SECTION directive and
pragma, 341

END_PARALLEL directive and pragma, 145, 341
END_TASKS directive and pragma, 138, 342
entries

multiple routine, 68, 111
environment variables

CPS_STACK_SIZE, 152, 429
MP_NUMBER_OF_THREADS, 100, 379, 426

errno.h, 425
exception

defined, 479
execution stream

defined, 479
Exemplar programming model, xxi, 7, 40, 41, 63,

100, 337, 370
Exemplar system overview, 1
exits

multiple routine, 68, 111

F
f77 Fortran 77 compiler, 39
f90 Fortran 90 compiler, 39
false cache line sharing, 313
FAR_SHARED directive, 342
far_shared memory, 177

defined, 479
static assignments, 189

far_shared memory class, 342
FAR_SHARED_POINTER directive, 194, 302,

342
faster register allocation, 50
fault

defined, 480
Federal Information Processing (FIPS), 472
float_traps_on pragma, 335
floating point

defined, 480
floating-point

accuracy and +O[no]fltacc, 371
imprecision, 267, 290

example, 288
FLOPS

defined, 480
FMPYADD instruction, 98
FMPYFADD instruction, 98
folding

of constants (advanced), 54
of constants (simple), 46

Footnoted Iter. Var. column
in Variable Name Footnote Table, 403

footnotes
in the Optimization Report, 403
in the Optimization Report, example, 406

for loops
specifying induction variables for

parallelization, 127
formal parameter

defined, 480
fort77 Fortran 77 compiler, 39
Fortran

defined, 480
Fortran 77 compilers

f77, 39
fort77, 39

Fortran 90
defined, 480

Fortran 90 compiler
f90, 39

forward LCDs, 112
free_barrier function, 228
free_barrier_8 function, 228
free_gate function, 228
free_gate_8 function, 228

Index 507

function
defined, 480

functional unit
defined, 480

functions
parallelization of intrinsic, 114

fusion
of loops, 92

G
gate

defined, 480
gate_t data type, 225
gate8_t data type, 225
gates, 225, 342

allocating, 227
deallocation, 228
in C, 225
in Fortran, 226
locking, 228
unlocking, 229

Gbyte
defined, 480

gigabyte
defined, 480

global
variable aliasing, 272

global optimization
defined, 481

global register allocation, 52
global variable

defined, 481
GRA, 52
granularity

defined, 481
guidelines for using the optimizer, 42

in C, 44
in C++, 44
in Fortran 77, 43
in Fortran 90, 43

H
hand-rolled loop

defined, 481
hand-rolled loops

manually parallelizing, 157
header files

cps.h, 425
errno.h, 425
math.h, 321

spp_prog_model.h, 178, 180, 192, 217, 221, 232,
337, 453

hidden alias
defined, 481

hidden dependences, 306
Fortran example, 306

hidden ordered sections, 297
Fortran example, 297

High Performance Fortran (HPF)
defined, 481

high-level synchronization functions, 441
hoist

defined, 481
HP

defined, 481
HP-UX

defined, 481
hypercube

defined, 482
hypernode

defined, 482
finding logical ID using compiler parallel

support library, 435
finding logical ID using my_node() function, 220
nonscalable SMP, illustrated, 12
V2200, illustrated, 17
X2000, illustrated, 18

hypernode-local memory, 23
hypernode-parallelism, 378

disabling, 41, 109, 151
enabling, 41
vs. thread-parallelism, 106

hypernodes
finding available using compiler parallel support

library, 437
finding number of active threads using compiler

parallel support library, 436
finding thread topology, 438

I
Id Num.

in Analysis Table, 402
in Loop Report, 398

Id Num. column
in Privatization Table, 403

idle threads
setting wait attributes, 439
specifying states, 439
spin-waiting, 106
states of, 106
suspended, 106

508 Index

incorrect answers
and array pointers, 304
and floating point imprecision, 287
and hidden dependences, 306
and incrementing by zero, 318
and large trip counts, 322
and misused directives, 291
and misused memory classes, 300
and no_loop_dependence, 294
and ordered sections, 297
and parallel execution, 296
and parallelism, 298

incrementing by zero, 318
examples, 319

induction variables, 271, 320, 321
and parallelization directives, 124
and test replacement, 320
in parallel hand-rolled loops, 157
indicating to compiler, 157
primary, 157
privatizing secondary, 158
replacement, 320
secondary, 158

inhibitors of localization, 68
aliasing, 73
GOTO statements, 77
I/O statements, 78
loop-carried dependences, 68
multiple entries/exits, 76
procedure calls, 78
return/exit statements, 77
RETURN/STOP statements, 77

inhibitors of parallelization, 111
loop-carried dependences, 112

inline pragma, 332
inlining, 64, 120

and C’s [no]inline pragma, 332
and Fortran 77’s OPTIMIZE INLINE directive,

327
defined, 482
+O[no]inline option, 65, 120, 373
+Oinline_budget=n option, 374, 120, 65

Institute for Electrical and Electronic
Engineers(IEEE)

defined, 482
instruction

defined, 482
instruction cache, 22

defined, 483
instruction mnemonic

defined, 483
instruction scheduling, 50
integral division

defined, 483

interchange
loop, 82

Interchange entry
in the Optimization Report, 399

interconnect cache, 23
interface

defined, 483
interleaved memory

defined, 483
interleaving, 33

example, 33
interprocedural optimization

defined, 483
interprocessor communication

defined, 483
intrinsic

defined, 483
intrinsic functions

parallelization of, 114
invalid subscripts, 290
Iter. Var.

in Analysis Table, 402
in Loop Report, 398

Iter. Var. column
in Privatization Table, 403

iteration variables, 318

J
job scheduler

defined, 483
join

defined, 483
joins

and cps_ppcall, 429
and CPSlib asymmetric threads, 423
and CPSlib symmetric parallelism, 422
as implicit barrier, 460

jump
defined, 483

K
kbyte

defined, 483
kernel

defined, 483
kernel thread ID, 223

finding using compiler parallel support library,
433

kernel thread identifier
defined, 496

kilobyte
defined, 484

ktid
defined, 483

Index 509

L
large trip counts, 322
latency

defined, 484
level of parallelism

finding, 221
level_of_parallelism() function, 221
limits of optimization, 267
Line Num. column

in Analysis Table, 402
in Loop Report, 398
in Privatization Table, 403

linker
defined, 484

load
defined, 484

load balancing
and logical hypernode ID, 220

local optimization
defined, 484

locality of reference
defined, 484

localization
of data, 67
preventing, 346, 350

lock_gate function, 228
lock_gate_8 function, 228
logical address

defined, 484
logical hypernode ID

finding using CPSlib, 435
finding using my_node() function, 220

loop
counter pointer, 271

loop blocking, 83
and +O[no]loop_block option, 83, 376
and +O[no]loop_transform option, 83, 376
BLOCK_LOOP directive and pragma, 90, 340
data reuse, 84
defined, 485
example, 86
explained, 83
illustration, 87
in the Optimization Report, 399, 401, 416
matrix multiply example, 88
NO_BLOCK_LOOP directive and pragma, 90,

345
related directives and pragmas, 90

spatial reuse, 84
temporal reuse, 84

loop-carried dependence
illustrated, 70
defined, 485

loop-carried dependences, 68, 291
and parallelization, 111
apparent, 114
backward, 113
forward, 112
NO_LOOP_DEPENDENCE directive and

pragma, 346
ordering, 348
output, 113
unordered, 340

loop cloning, 109
loop constant

defined, 485
loop distribution, 81

and +O[no]loop_transform option, 81, 376
defined, 485
NO_DISTRIBUTE directive and pragma, 346

loop fusion, 92, 95
and +O[no]loop_transform option, 92, 95, 376
and Fortran 90 array assignments, 92
and loop peeling to enable fusion, 94

loop ID number
in the Optimization Report, 400

loop induction variable
defined, 485

loop interchange, 82
and +O[no]loop_transform option, 82, 83, 376
defined, 485

loop invariant computation
defined, 485

loop jamming, 95
loop limit value, 321
loop parallelization

defined, 489
loop peeling, 94, 399, 419
loop private data

SAVE_LAST directive and pragma, 168, 350
loop replication

defined, 485
Loop Report, 387
loop start value, 320
loop stride, 321
loop termination test, 321

510 Index

loop unroll and jam, 95
and +O[no]loop_transform option, 95, 376
and +O[no]loop_unroll_jam option, 95, 377
compiler options, 95, 99, 376, 377

loop unrolling
and jamming, 95
compiler option, 377
factor, 62
partial, 62
total, 61

LOOP_PARALLEL directive and pragma, 115,
124, 135, 343, 350, 359, 360, 361, 362, 363

LOOP_PARALLEL(chunk_size) directive and
pragma, 125

LOOP_PARALLEL(dist) directive and pragma,
125, 128

LOOP_PARALLEL(ivar) directive and pragma,
124

LOOP_PARALLEL(max_threads) directive and
pragma, 125

LOOP_PARALLEL(nodes) directive and pragma,
125

LOOP_PARALLEL(ordered) directive and
pragma, 125, 233

LOOP_PARALLEL(threads) directive and
pragma, 125

LOOP_PRIVATE directive and pragma, 154, 344,
359, 364

and CPS_STACK_SIZE, 153
Fortran example, 155

loop-independent dependence (LID)
defined, 485

loop-invariant code motion, 55
loops with calls

parallelizing, 135
low-level synchronization functions, 444

M
m_cond_lock function, 450
m_fetch_and_clear32 function, 451
m_fetch_and_dec32 function, 451
m_fetch_and_inc32 function, 450
m_fetch32 function, 450
m_free32 function, 449
m_init32 function, 448
m_lock function, 449
m_unlock function, 449
machine exception

defined, 486
main procedure

defined, 486
main program

defined, 486
manual synchronization, 250

mapping SGI directives to Exemplar directives,
353

math.h, 321
matrix multiplication, 82
matrix multiply

blocking example, 88
max_threads

attribute to loop_parallel, 125
maximum trip count, 321

equation, 322
Mbyte

defined, 486
megabyte

defined, 486
megaflops

defined, 486
memory

defined, 486
physical, 13, 23
private vs. shared, 172
virtual, 13, 24

memory class pointers, 191
C, 192
C++, 192
Fortran, 191
private pointers with shared data, 194

memory classes, 171
acceptable pointer/data class combinations, 193
and spp_prog_model.h, 180, 217
and suitable pointer classes, 194
assigning in C, 179
assigning in C++, 179
assigning in Fortran, 178
assignments, 178
block_shared, 177, 340
default for dynamic allocation, 195
dynamic assignments, 190
dynamically assigning block_shared, 209
dynamically assigning far_shared, 208
dynamically assigning near_shared, 201
dynamically assigning node_private, 197
dynamically assigning thread_private, 196
far_shared, 177
FAR_SHARED directive, 342
FAR_SHARED_POINTER directive, 342
incorrect use examples, 300
near_shared, 176
near_shared_pointer, 345
node_private, 176, 347
node_private_pointer, 347
physical addressing illustrated, 174
pointers, 191
static assignments, 181
static far_shared assignments, 189
static near_shared assignments, 188

Index 511

static node_private assignments, 184
static thread_private assignments, 181
thread_private, 175, 351
thread_private_pointer, 351
virtual addressing illustrated, 173
virtual to physical mapping, 173

memory configurations, 2
memory management

defined, 486
memory type of stack

finding, 222
memory_class_malloc function, 192
memory_type_of_stack() function, 222
message

defined, 486
message passing, 7, 263

defined, 486
parallelism of programs, 263

message passing/shared memory hybrids, 8
MIMD

defined, 487
misused directives, 267
misused pragmas, 267
MP_NUMBER_OF_THREADS environment

variable, 100, 379, 426
MPI message passing, 264
multiple routine entries, 68, 111
multiprocessing

defined, 487
mutex

defined, 487
mutexes

allocating with cps_mutex_alloc function, 442
conditionally acquiring with cps_mutex_trylock

function, 444
CPSlib example, 463
defined, 441
freeing with cps_mutex_free function, 443
locking with cps_mutex_lock function, 443
unlocking with cps_mutex_unlock function, 443

mutual exclusion
defined, 487

mutual exclusion areas
CPSlib example, 463

my_node() function, 220
my_thread() function, 220

N
natural data type boundaries

alignment on, 47
NEAR_SHARED directive, 345
near_shared memory, 176

defined, 487
dynamic allocation, 201
static assignments, 188

NEAR_SHARED_POINTER directive, 345
negate

defined, 487
nested parallelism, 106
network

defined, 487
new loops

in Loop Report, 400
new operator in C++, 178, 190, 193, 195, 203
NEXT_TASK directive and pragma, 138, 345
NO_BLOCK_LOOP directive and pragma, 90,

345
NO_DISTRIBUTE directive and pragma, 82, 346
NO_DYNSEL directive and pragma, 111, 298,

346
NO_LOOP_DEPENDENCE directive and

pragma, 72, 293, 294, 346
and apparent dependences, 293
improper use, 294

NO_LOOP_TRANSFORM directive and pragma,
79, 346

NO_PARALLEL directive and pragma, 116, 346,
362, 363, 364

NO_SIDE_EFFECTS directive and pragma, 347
NO_UNROLL_AND_JAM directive and pragma,

99, 347
node

defined, 487
node-parallelism, 378

disabling, 151
enabling, 41
specifying for loops, 125
specifying for regions, 145
specifying for tasks, 139
vs. thread-parallelism, 106

NODE_PRIVATE directive, 347
node_private memory, 176, 487

dynamic allocation, 197
incorrect pointer use example, 305
incorrect use example, 303
static assignments, 184

NODE_PRIVATE_POINTER directive, 347

512 Index

nodes
attribute to BEGIN_TASKS, 139
attribute to LOOP_PARALLEL, 125
attribute to PARALLEL, 145
attribute to PREFER_PARALLEL, 125

noinline pragma, 332
nonblocking crossbar

defined, 488
nondeterminism

parallel, 296
non-uniform memory access (NUMA)

defined, 488
noptrs_strongly_typed pragma, 335
notational conventions, xxiii
num_node_threads() function, 219
num_nodes() function, 219
num_procs() function, 218
num_threads() function, 218
number of hypernodes

finding, 219
number of processors

finding, 218
number of threads

finding, 218
number of threads on hypernode

finding, 219

O
+O0 option, 40, 46, 365
+O1 option, 40, 48, 365
+O2 option, 40, 51, 365
+O3 option, 40, 63, 364, 365
+O4 option, 40, 120, 365
+O[no]aggressive option, 366
+O[no]all option, 367
+O[no]autopar option, 41, 117, 151, 364, 367
+O[no]conservative option, 368
+O[no]dataprefetch option, 368
+O[no]dynsel option, 110, 111, 298, 369
+O[no]entrysched option, 369
+O[no]exemplar_model option, 41, 100, 370
+O[no]fail_safe option, 370
+O[no]fastaccess option, 371
offset

defined, 488
+O[no]fltacc option, 371
+O[no]global_ptrs_unique option, 372, 394

+O[no]info option, 373, 387, 420
+O[no]initcheck option, 373
+O[no]inline option, 65, 120, 373
+Oinline_budget=n option, 65, 120, 374
+O[no]libcalls option, 375
+O[no]limit option, 376

and data localization, 67
and dynamic selection, 99, 111
and loop unrolling, 62
and global register allocation, 52

+O[no]loop_block option, 83, 90, 376
+O[no]loop_transform option, 79, 81, 82, 83, 92,

95, 376
+O[no]loop_unroll option, 62, 377
+O[no]loop_unroll_jam option, 95, 377
+O[no]moveflops option, 378
+O[no]nodepar option, 41, 109, 117, 151, 378
+O[no]report option, 387
+O[no]sharedgra option, 388
+O[no]parallel option, 41, 63, 100, 110, 364, 379
+O[no]parmsoverlap option, 380
opcode

defined, 488
operating system

defined, 488
operators in C++

delete, 195
new, 178, 190, 193, 195, 203

+O[no]pipeline option, 57, 380
+O[no]procelim option, 381
opt_level pragma, 331
optimization, 272

defined, 488
general guidelines for using the optimizer, 42
guidelines for using the optimizer in C, 44
guidelines for using the optimizer in C++, 44
guidelines for using the optimizer in Fortran 77,

43
guidelines for using the optimizer in Fortran 90,

43
limits of, 267
peephole, 51
Report, 269, 397
store/copy, 55

optimization level, 40, 365
defined, 488

Index 513

optimization options
+O0, 46, 365
+O1, 40, 48, 365
+O2, 40, 51, 365
+O3, 40, 63, 364, 365
+O4, 40, 120, 365
+O[no]aggressive, 366
+O[no]all, 367
+O[no]autopar, 41, 117, 364, 367
+O[no]conservative, 368
+O[no]dataprefetch, 368
+O[no]dynsel, 110, 111, 298, 369
+O[no]entrysched, 369
+O[no]exemplar_model, 41, 100, 370
+O[no]fail_safe, 370
+O[no]fastaccess, 371
+O[no]fltacc, 371
+O[no]global_ptrs_unique, 372, 394
+O[no]info, 373, 420
+O[no]initcheck, 373
+O[no]inline, 65, 120, 373
+Oinline_budget=n, 65, 120, 374
+O[no]libcalls, 375
+O[no]limit, 62, 67, 99, 111, 376
+O[no]loop_block, 83, 90, 376
+O[no]loop_transform, 79, 81, 82, 83, 92, 95,

376
+O[no]loop_unroll, 62, 377
+O[no]loop_unroll_jam, 95, 377
+O[no]moveflops, 378
+O[no]nodepar, 109, 117, 151, 378
+O[no]parallel, 41, 63, 100, 110, 364, 379
+O[no]parmsoverlap, 380
+O[no]pipeline, 57, 380
+O[no]procelim, 381
+O[no]ptrs_ansi, 268, 381, 394
+O[no]ptrs_strongly_typed, 268, 382, 394
+O[no]ptrs_to_globals, 385, 394
+O[no]regreassoc, 60, 386
+O[no]report, 387
+O[no]sharedgra, 52, 388
+O[no]signedpointers, 388
+O[no]size, 62, 67, 99, 111, 388
+O[no]static_prediction, 389
+O[no]vectorize, 390

+O[no]volatile, 390
+O[no]whole_program_mode, 391

Optimization Report, 387, 397
* entry, 400
analysis column, 402
Analysis Table, 402
Block entry, 399
Cloned call entry, 399
contents, 397
Dist entry, 399
DynSel entry, 399
Fused entry, 401
ID number column, 398, 402
Inlined call entry, 399
Inter entry, 399
Interchange entry, 401
iteration variable column, 398, 402, 403
line number column, 398
nested loop example, 404
new loops column, 400
optimizing/special transformations column, 400
PARALLEL entry, 399
PAR-NODE entry, 399
Peel entry, 399, 419
Promote entry, 399
Reduction entry, 401
Removed entry, 401
reordering transformation column, 399
Serial entry, 400
single loop example, 408
Unroll and jam entry, 400
Unrolled entry, 401
variable name footnotes, 403
VECTOR entry, 400

Optimization Reports
Loop Report, 387
Privatization Table, 387

OPTIMIZE directive, 324
optimize pragma, 331
optimizing/special transformations

in Loop Report, 400
+O[no]ptrs_ansi option, 268, 381, 394
+O[no]ptrs_strongly_typed option, 268, 382, 394
+O[no]ptrs_to_globals option, 385, 394

514 Index

ordered
attribute to loop_parallel, 125

ordered parallelism, 233
example, 234

ordered parallelization
defined, 489

ordered sections, 242, 348
and dependences, 242
and gates, 236
hidden, 297
low-level CPSlib example, 467

ordered task parallelization, 139
ORDERED_SECTION directive and pragma, 348
ordering

of data for proper alignment, 47
+O[no]regreassoc option, 60, 386
+O[no]report option, 387
+Oreport=all option, 387
+Oreport=loop option, 387
+Oreport=private option, 387
+O[no]sharedgra option, 52, 388
+O[no]signedpointers option, 388
+O[no]size option, 62, 67, 99, 111, 388
+O[no]static_prediction option, 389
output LCDs, 113
+O[no]vectorize option, 390
overhead

parallelization, 109
oversubscript

defined, 488
oversubscripting, 290
oversubscription, 290

defined, 488
+O[no]volatile option, 390
+O[no]whole_program_mode option, 391

P
packet

defined, 489
page

defined, 489
valid sizes, 37

page fault
defined, 489

page frame
defined, 489

PARALLEL directive and pragma, 145, 312, 348
PARALLEL entry

in the Optimization Report, 399
parallel optimization

defined, 489
parallel regions, 144

and END_PARALLEL directive and pragma,
341

and PARALLEL directive and pragma, 144, 348
privatizing data in, 349

parallel strip length
defined, 495

parallel tasks
BEGIN_TASKS directive and pragma, 339
END_TASKS directive and pragma, 342
NEXT_TASK directive and pragma, 345

PARALLEL_PRIVATE directive and pragma,
165, 348

example, 166
parallelism

and CPSlib barriers, 460
and loop induction variables, 124
asymmetric example, 458
block, 454
chunk-based, 130
cyclic, 456
default, 102, 105
disabling automatic, 151, 367
enabling node-level, 151
finding level of using compiler parallel support

library, 434
nested, 106
node vs. thread, 106
ordered example, 233
simple example, 101
stride-based, 130
strip-based, 103
symmetric, 454
thread activity for two-dimensional, 108
using compiler parallel support library to

determine presence, 437
parallelism in C++, 119

Index 515

parallelization
asymmetric, using CPSlib, 423
automatic implementation, 103
basic operation, 101
BEGIN_TASKS directive and pragma, 339
by chunks, 125
CPSlib, 425
defined, 489
in the Optimization Report, 406
inhibitors of, 111
limitations, 136
LOOP_PARALLEL directive and pragma, 343
LOOP_PRIVATE directive and pragma, 344
maximum threads in a loop, 125
NEXT_TASK directive and pragma, 345
nondeterministic execution, 296
+O[no]autopar, 41, 151, 367
of for loops, 127
of Fortran loops, 127
of loops with calls, 135
+O[no]nodepar, 41, 151, 378
+O[no]parallel, 41, 380
optimization level +O3, 100
optimization overview, 10
optimizations, 109
ordered, 125, 233
ordering dependences, 348
PREFER_PARALLEL directive and pragma,

349
preventing, 116, 346, 350
region node-way, 145
region thread-way, 145
simple manual loop, 124
simple manual task, 138
specifying node, 125
specifying threads, 125
symmetric, using CPSlib, 421
task node-way, 139
task thread-way, 139
TASK_PRIVATE directive and pragma, 351

parallelization directives
list, 117

parallelization overhead, 109

parameter
actual, 471
defined, 490

PA-RISC
defined, 489

PAR-NODE entry
in the Optimization Report, 399

partial evaluation of test conditions, 46
partial loop unrolling, 62
path

defined, 490
Peel entry in Optimization Report, 399, 419
peeling (loop iterations), 94, 399, 419
peephole optimizations, 51
physical address

defined, 490
physical address space

defined, 490
physical hypernode ID, 221, 435
physical memory, 13, 23

access times, 16
classes, 171
configurations, 2, 3
defined, 490
hypernode local, 23
interconnect cache, 23
interleaving, 33
partitioning, 23

pipeline
defined, 491

pipelining, 57
compiler option, 57, 380
defined, 491
prerequisites, 59

pointer
loop counter, 271

pointers
default memory classes, 195
memory class, 191
memory class in Fortran, 191
memory_class_malloc form, 192
to shared data, 194

POSIX threads, 425

516 Index

pragmas, 337
align_cti, 28, 338
allocs_new_memory, 333
begin_tasks, 339
block_loop, 90, 340
C compiler, 337
critical_section, 149, 235, 340
dynsel, 110, 341, 378
end_critical_section, 149, 235, 341
end_ordered_section, 236, 341
end_parallel, 145, 341
end_tasks, 342
float_traps_on, 335
form, 337
gate, 342
inline, 332
loop blocking, 90
loop_parallel, 115, 124, 343, 350, 360
loop_private, 154, 344
misused, 267, 291
next_task, 345
no_block_loop, 90, 345
no_distribute, 82, 346
no_dynsel, 111, 298, 346
no_loop_dependence, 72, 293, 346
no_loop_transform, 79, 346
no_parallel, 116, 346
no_side_effects, 347
no_unroll_and_jam, 99, 347
noinline, 332
noptrs_strongly_typed, 335
opt_level, 331
optimize, 331
ordered_section, 236, 348
parallel, 145, 348
parallel_private, 349
prefer_parallel, 115, 124, 349
ptrs_strongly_typed, 335
reduction, 115, 350, 360
save_last, 168, 350
scalar, 350
sync_routine, 230, 351
task_private, 162, 351
unroll_and_jam, 99, 352

PREFER_PARALLEL directive and pragma, 115,
124, 134, 349, 363, 364

prefetching, 27
Priv. Var. column

in Privatization Table, 403
private data objects, 14, 24
privatization

of secondary induction variables, 158
privatization information

in the Optimization Report, 403
Privatization Table, 387, 403

procedure
defined, 491

procedure calls
parallelizing, 135

process
defined, 491

process memory
defined, 491

processor cache line, 26
processors, specifying how many to use, 100
program unit

defined, 491
programming model, 7, 370

defined, 491
message passing, 7, 263
message passing/shared memory hybrids, 8
shared memory, 7

Promote entry
in the Optimization Report, 399

promotion
test, 66

Pthreads, 119, 425
ptrs_strongly_typed pragma, 335

Q
queue

defined, 491

R
rank

defined, 491
read

defined, 491
recurrence

defined, 491
recursion

defined, 491
recursive call

defined, 491
reduced instruction set computer (RISC)

defined, 492
reduction

as dependence, 294
C example, 295
defined, 492
Fortran example, 294
parallelizable, 114

REDUCTION directive and pragma, 115, 350,
360

reentrancy
defined, 492

reentrant compilation, 151
reference, 492

Index 517

region parallelization, 144
and other optimizations, 146
and PARALLEL directive and pragma, 145, 348
example, 146
specifying maximum threads, 145

register
allocation and +O[no]sharedgra, 388
allocation in C, 53
allocation of, 47
defined, 492
faster allocation, 50
reassociation, 59, 386

register allocation, 388
registers

global allocation of, 52
reordering transformation

in Loop Report, 399
Report

Optimization, 387
RISC

defined, 492
rounding

defined, 493
roundoff error, 267, 290
row-major order

defined, 493

S
SAVE_LAST directive and pragma, 168, 350, 359
Scalable Coherent Interface, 2

defined, 493
SCALAR directive and pragma, 350
scheduling of instructions, 50
SCI, 2

defined, 493
scope

defined, 493
Secondary, 158
semaphore

defined, 493
semaphores

acquiring cache-based, 445
allocating cache-based for synchronization, 444
allocating memory-based, 448
and compiler parallel support library functions,

444
conditionally acquiring cache-based, 446
conditionally locking memory-based, 450
CPSlib low-level and critical sections, 465
CPSlib low-level and ordered sections, 467
freeing cache-based, 445
freeing memory-based, 449
locking memory-based, 449
unlocking cache-based, 445

unlocking memory-based, 449
Serial entry

in the Optimization Report, 400
serial execution

specifying for a loop, 346, 350
SGI directives, 353

C$DOACROSS, 358
C*$*ASSERT DO PREFER(CONCURRENT),

363
C*$*ASSERT DO PREFER(SERIAL), 363
C*$*ASSERT DO(CONCURRENT), 363
C*$*ASSERT DO(SERIAL), 362
C*$*ASSERT NO RECURRENCE, 364
C*$*CONCURRENTIZE, 364
C*$*NOCONCURRENTIZE, 364
in HP Fortran 90, 353

shape
defined, 493

shared data objects, 14, 24
shared memory

basic programming, 123
shared-memory programming, 7

advanced, 217
shell

defined, 493
short-circuit evaluation of conditionals, 46
side effects

ignoring, 347
SIMD

defined, 493
single

defined, 493
SMP

defined, 495
socket

defined, 494
socket pair

defined, 494
software pipelining, 57

compiler option, 57, 380
prerequisites, 59

source code
defined, 494

source file
defined, 494

space
defined, 494

spatial reference
defined, 494

spatial reuse, 84
defined, 492

spawn
defined, 494

spawn context, 434
defined, 494

518 Index

spawn thread ID, 223
finding using compiler parallel support library,

433
spawn thread identifier

defined, 496
spawn_sym_t structure

declared, 427
spawning

and compiler parallelism, 104
and two-dimensional parallelism, 108
using CPSlib, 427

specifying how many processors to use, 100
spin-waiting, 106
SPMD

defined, 494
spp_prog_model.h, 178, 180, 192, 217, 221, 232,

337, 453
stack

defined, 495
finding memory class of, 222
for spawned threads, 152
setting size for spawn threads, 152, 429

start value
loop, 320

static memory class assignments, 181
stid

defined, 494
stop value, 271, 272

global variable, 272
variable aliasing, 271

store
defined, 495

store/copy optimization, 55
strength reduction

of constants, 53
of induction variables, 53

stride, 320
loop, 321

stride-based parallelism, 130
stride-based parallelization

defined, 490
stride-parallelized loop

example, 131
strip mining, 80

conceptual example, 104
defined, 495

strip-based parallelism, 103, 105, 130
strip-based parallelization

defined, 490
subroutine

defined, 495
subscripts

invalid, 290

superscalar
defined, 495

suspended threads, 106
symmetric multiprocessor

defined, 495
symmetric parallelism, 421

block, 454
cyclic, 456
examples, 454

symmetric threads
compiler parallel support library spawn

functions, 427
SYNC_ROUTINE directive and pragma, 230, 351

and CPSlib, 451
synchronization

and critical sections, 237
barriers, 225
CPSlib high-level functions, 460
defined, 495
denoting CPSlib routines, 451
denoting routines, 230
functions, 227
gates, 225
high-level functions, 441
in ordered parallel loops, 243
low-level CPSlib functions, 465
low-level functions, 444
manual, 250
tools for, 225

synchronizing code, 225
sysadmin

defined, 495
system administrator

defined, 495
system manager

defined, 495
system organization, 16

T
task list

defined, 138
task parallelization

defined, 490
examples, 141
ordered, 139
specifying maximum threads, 139

task private data, 162, 351
TASK_PRIVATE directive and pragma, 162, 351

and CPS_STACK_SIZE, 153
C example, 163

tasking directives, 138, 140

Index 519

Tbyte
defined, 495

temporal reuse, 84
defined, 492

terabyte
defined, 495

term
defined, 496

test promotion, 66
of implicit tests, 66

test replacement, 321
C example, 321
Fortran example, 320

thread
defined, 100, 496
idle states, 106

thread affinity, 106
thread create

defined, 496
thread identifier

defined, 496
thread IDs, 223

and my_thread(), 224
and num_nodes(), 224
and num_threads(), 223
assignments, 223
finding, 220
kernel, 223
num_node_threads(), 224
spawn, 223

thread-management functions
in compiler parallel support library, 427

thread parallelization
specifying for regions, 145
specifying for tasks, 139

THREAD_PRIVATE directive, 351
thread_private memory, 175

dynamic allocation, 196
incorrect use, 301
static assignments, 181

THREAD_PRIVATE_POINTER directive, 351
thread-parallelism

specifying for loops, 125
within node-parallelism, 108

thread-private
defined, 496

threads

attribute to BEGIN_TASKS, 139
attribute to LOOP_PARALLEL, 125
attribute to PARALLEL, 145
attribute to PREFER_PARALLEL, 125
finding topology on hypernodes, 438
setting wait attributes, 439
suspended, 106

+tm target option
K7200 target value, 392
K8000 target value, 392
S2000 target value, 392
V2200 target value, 392
X2000 target value, 392

topology
of threads on hypernodes, 438

traditional parallel computers, 2
triangular loops, 308

auto-parallelization, 309
parallelizing the inner loop, 311
parallelizing the outer loop, 310

trip count, 320, 321
defined, 496
overflow, 322

typographic conventions, xxiii

U
unlock_gate function, 229
unlock_gate_8 function, 229
unroll and jam

and loop replication, 99
of loops, 95

Unroll and jam entry
in the Optimization Report, 400

UNROLL_AND_JAM directive and pragma, 99,
352

unrolling
factor, 62

unsigned
defined, 496

unused definition elimination, 56
user interface

defined, 497
User Variable Name column

in Variable Name Footnote Table, 403
utility

defined, 497

520 Index

V
V2200 servers, and V-Class servers, xxi
value

iteration, 318
variable optimizations, 121
variable privatization

in the Optimization Report, 403
loop example, 155
LOOP_PRIVATE directive and pragma, 154
of secondary induction variables, 158
PARALLEL_PRIVATE directive and pragma,

165
region example, 166
saving last values, 168
task example, 163
TASK_PRIVATE directive and pragma, 162

variables
abbreviated in the Optimization Report, 403
footnoted in the Optimization Report, 406

variable-sized pages, 37
vector

defined, 497
vector processor

defined, 497
virtual address

defined, 497
virtual address space, 23
virtual aliases

defined, 497
virtual machine

defined, 497
virtual memory, 13, 24

block_shared, 14, 25
classes, 14, 24
defined, 497

far_shared, 14, 25
near_shared, 14, 24
node_private, 14, 24
thread_private, 14, 24

W
wait attributes

for idle threads, 439
wait_barrier function, 229
wait_barrier_8 function, 229
wall clock time

defined, 497
word

defined, 498
workload-based dynamic selection, 109
workstation

defined, 498
write

defined, 498
wrong answers

and aliases, 268
and floating point imprecision, 287
and large trip counts, 322
and memory classes, 300
and no_loop_dependence, 294

X
X2000 servers, and X-Class servers, xxi

Z
zero

defined, 498
zero stride, 318

