il

HEWLETT hp, PACKARD

A Guide To Time Shared BASIC

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

=

A GUIDE TO TIME SHARED BASIC

For Reference and Self-Instruction

Part Number 02000-90002

il

HEWLETT @ PACKARD

Software Publications

Cupertino, California
95014

August, 1969

Copyright © 1969 by
HEWLETT-PACKARD COMPANY
Printed in the United States of America

PREFACE

The Time Shared Basic system (TSB) has provided a major breakthrough by
reducing the cost of using a .computer. .Now, for the first time, it is practical
for the programmer to use his time sharing. terminal to teach himself more about
the BASIC language.

Accordingly, this publication is designed to meet two requirements:
1. To serve as a clear and concise reference text
for Time Shared BASIC; and
2. To serve as an instructional aid to the TSB
user.

A1l example programs may be used as practice exercises (as well as for
reference). They were chosen for maximum teaching value, and include pertinent
remarks. Beginners are encouraged to try the examples "on-line".

The syntax requirements of BASIC have been "translated" into English from

the traditional Backus Normal Form. Each element of a statement is underlined
separately, in red. .

This text is divided into learning-units. Each page presents a separate
item or feature, and sections are arranged in a coherent instructional sequence.

A1l items are presented in a standard, consistent format.

Please turn to the next page.

iii (869)

o
>
<
14
S
‘—f
-
o
>
(7]

CONVENTIONS USED IN THIS TEXT

SAMPLE

PLEASE LOG IN

And then...

20 PRINT X,Y

line number PRINT X,Y

return linefeed

esc ctrl

alt-mode break

Note: Both X and ...

LISTING A PROGRAM

Please examine the sample on the next page.

EXPLANATION

Black, all capitals in examples indicates

computer-output information. R

Mixed upper and lower case black is used for
regular text.

Red, all capitals indicates a statement or
command typed by the programmer.

Black Tower case italics indicates a generalized
form.

Red underlining indicates an essential part of a
general form; each underlined item is a separate,
essential element.

Represents the teleprinter keys:
Return, Linefeed, Escape, Control,

Alt-Mode, and Break.

Mixed upper and lower case italics is used for
notes.

Oversize black is used for page headings.

iv (869)

" PAGE FORMAT

The page format is as uniform as possible. This sample
shows how positioning and typeface relate to content.

SECTION TITLE

FEATURE EXPLAINED OH THIS PAGE

EXAMPLES: ———— Several sample
E— statements or commands

GENERAL FORM:
(Each essential element underlined in red.)

PURPOSE
A clear and concise explanation of the purpose
or function.
COMMENTS
A series of several items containing:
Pertinent information
Additional explanation or examples

Helpful hints.

Reference to other sections or subsections related
to the contents of this page.

"Continued on the next page" if the explanation fills
more than one page.

Section No. __ Page No. ___ (Revision Date)

v (869)

If your purpose is:

Ad
w
3
o
2
=
(o]
p g

HOW TO USE THIS BOOK

Quickly acquiring a minimum

working knowledge of Time
Shared BASIC:

Acquiring a good working
knowledge of Time Shared

BASIC:

Learning the complete Time
Shared BASIC system:

Reference only:

vii (869)

Read:

Sections I and II.

Sections I, II, III,
IV, V, VI, in that
order.

The entire book, in
sequence.

1. Contents
The index in Section IX
The index tabs to locate
the appropriate section.

CONTENTS

e - - Yo =T iii
Conventions Used in this Text. .. e eeit ittt ittt i tetenennnnns . LY
LTI T 11 B v
How to Use this BoOK. ... vvetirre ittt ittt ve v nnerossssennnnsennes vii

I,AN INTRODUCTION TO TIME SHARED BASIC

How to Read this Section......ciiuiiiiiiiiiiinirnrnneenenreennnnnnns 1-1
What is Time Sharing........ccciiiiiiiiiinninnnnnn et tieeeeneee e 1-1
Communicating with @ Computer.......coiiiiiiiiii it it iiiiennnennncnns 1-2
EXAMPLES OF BASIC STATEMENTS
N B =111 3 O 1-3
Line Number....cu ittt ittt ittt teneeetensesenocosonecasnness 1-3
Statement TypPe. vt it ittt ittt tieeeiotessossesnnnsononnas 1-3
057N =Y 2 o [P 1-3
e 0 T - 1| R 1-3
BEFORE GOING ON-LINE
Mistakes and corrections.......ciiiiiiiiiiiiiiiiinerernnnnnnnnenns 1-5
Deleting or changing @ 1ine.....veiitii ittt inieneeeenonnnennns 1-6
Listing @ program.oviiiii ittt inrenoesnsnsatacnneacensas 1-7
Connection to the COMPULEr .. ittt ittt te i et neennraconananns 1-8
Checking the connection.. ..ottt ittt ittt iiiennrenannns 1-9
I.D. Code and PasswWord. ... ccuueienenieinnreeeernseenoeennnennnnns 1-9
Log Inand Log Qut....iiitiiiiiiiiii ittt ieeeieennenreneeaennnns 1-10
Mistakes During Log In....oeieiiiniiiii it i iiiienenannannnns 1-11
Entering the Sample Program.c.cviiiiiiiiieinenennneenenenns 1-12
How to Obtain A Diagnostic Message........vevivinrnrnnnnennnannns 1-13
Running the Sample Program.......c.ccoitiiiiiiiieneinenenrenneanans 1-14
Stopping a Program: The break Key......viviiiiiiiineinnnnannnns 1-15
How the Program Works.......c.ciiiiiiiiiiiiiiiiniiieennnnecanenns 1-16

I1,THE ESSENTIALS orF BASIC

How to Read this SeCtion....ccveeitiniitiii ittt ittt ieeenennnnnns 2-1

VOCABULARY ’
NUMD O . ettt ie ittt tseeasoneeeoeenenenoneesenasanansnesoecsannss 2-2
S Vo X f- Y o 110 TR 2-2
Simple Variable. .o i iii i ittt i i it ettt it tee e e 2-3
g o) =X 30 ' 1 2-4
Arithmetic evaluation. ... vttt i ittt ettt eneanonoens 2-4

OPERATORS
N e 1111 o 2 N 2-5
T o 11173 o o 2-6
2 LT I o o] 2 1 2-7
T T 17 < 2-8
Y P 2-9
0] e 2-10
0 2-11
Order Of PrecedenCe. . v e et e vieeononnereneneseraeaaasssans 2-12

Continued on next page.

viii (869)

CONTENTS

Contents

‘ STATEMENT S et ittt i i ittt ittt ittt eteatnenianteananoncsnns 2-13

I 2-14
2] 2-15
GO TO. i ittt ittt eneveeeseesensasasooenansosesssssnsesossssnnnnnans 2-16
S I - | 1 2-17
1012 R 1 G P 2-18
NESTING FOR...NEXT LOOPS . iiveitiiriiiiiiietntneneenonsenncananens 2-20
READ, DATA, RESTORE. s vt tieetnneneeeneeneesoeesuenasoneessnaannnas 2-21
] o 2-24
PRINT .ttt ittt et te e it tseenaeososnsonnesssesescasasasanonnansan 2-26
END,y STOP . it ittt it it teerenesaneeoeseseasoanesaasosaasasannsannsan 2-28
SAMPLE PROGRAM. ¢t ittt it itteeneneeonseaseaasesnsaossensaneaneanns 2-29
COMMANDS vttt it iit st eeeoeeonenseseeessessasnsassscasssannenanssnssaans 2-33
1 8 2-34
3 2-35
0 0 2-36
RUN . 4ttt ittt iieeeaeenneeoesosoensoacosnsesseasanesasosonnnanannnns 2-37
0 3 2-38
SORAT CH. L it ittt ettt ettt reneasasnaeneaaannseesanssasassanasanans 2-39
2 T 2-40
BREZAK e v o e e oo asaseasosnaasnssasasasesssasnsaseasesensasnaasasassnas 2-41
] 2-42
TAPE .« ittt ittt eeeneneeeaeossseeaesassaesssesanasonnesessnsnoanns 2-43
0 2-44
B | 2-45
‘ IT1.ADVANCED BASIC
How to Read this SeCtion...i it ittt iitneeeeeseseeansonensanenns 3-1
VO CABULARY &« ittt it te ct e eneeseseeeseseasesesnesesoasaaansonsnansaaneas 3-2
STORING AND DELETING PROGRAMS. . i vt it iiii ittt iiereennceneoceneasnanssns 3-6
2 . 3-7
NAME .« it it ittt ittt tetteeseaeocnoaesaasonesssensesassasanennnas 3-8
LY 2N P 3-9
0 3-10
K L L s v et et ettt eeeeneeosooaeesessosososossononsessssosnneannoassns 3-11
UTILITY COMMANDS
APPEND . o ittt ittt ittt eeeeeeasaseseseeeoeososssasacssssnnsnononas 3-12
3] I 3-13
L BRARY 4 it ittt it tieeeeteeeeeaesesoeseaseesoeeasesassenasennnnnnsas 3-14
7 17V 0 3-15
SUBROUTINES AND FUNCTIONS. vt ii it teitetinennoeeenensseceanasonannns 3-16
GOSUB. . RETURN ittt ittt tieeneeeeeesonesossoscannsannsessannans 3-17
MULTIBRANCH GOSUB St vttiit ittt ieeeeeeeennsennsenesanensnnsannns 3-18
NESTING GOSUB S vt vttt ittt iieeeneneereacneossenesesnsanasnanssans 3-19
FOR...NEXT with STEP . iiiiiiiiiii it tieeeeenesensoeeennannnes 3-20
3] o 3-21
STANDARD FUNCTIONS
GENERAL MATHEMATICAL. vttt ittt ittt ineeeeeeoeneoennosocesnennnanss 3-22
TRIGONOMETRIC . st v et et teteeeeerenneoeenacecnnsossesasseassnansosans 3-23
TAB @nd SGN . iiiit it ittt iieeeeneeneenseeecnsonosssossaannes 3-24

L RSP 3-25
‘ 2P 3-26

)
(@] -
3 CONTENTS
S
3
[7,]
IV. FILES
VOC ABULARY ittt sttt eeseenoesnononeseoesosoeensosecossssencesnnnes 4-2
OPENING AND CLOSING FILES
OPEN- it te i ittt teeeeoeeeoecoseensosseanasessasssseasasanes 4-4
< 1 N 4-5
SERIAL FILES
FILES . sttt ittt ittt veeeeeeeoeeeneatecansenasossoeasssoseennanans 4-6
PRINT #ivitieee st ieeeeeesonesseosuooonessosensonsssosnsnonnoeansas 4-7
READ #.vsiisin e seeeenoeoeeseeaeooooocaennoesnsonnsenesanssases 4-8
IF END #. .. THEN tinetiiiiie it iiteneeeeneensoesenonoeoonnnnonans 4-9
STRUCTURE OF A FILE. .. e iinetitiierieeeeeeneoonesoonnnnoanosonnnns 4-10
SINGLE FILE. vt vt inieeeeeeennoeooeeessacooesensusseoscononnnss 4-11
SERIAL FILES. s st ittt iieneietnoeeeeeecoceeeoasosoaatosennosnas 4-12
FILE STRUCTURE-SUMMARY . .. vttt itiititeeeneenensneneaneannnn 4-13
RANDOM FILE ACCESS
PRINT #...5 END ti ittt ittt ittt tiititnteettentoenenocennnnns 4-14
PRINT #.ieyeer ittt eneeoenoneooenoeooaesssscesoessneonnennes 4-15
PRINT # to Reset A Pointer.. . i ittt et et et 4-16
EERB # ... 4-17
to’Reset a ‘Pointer..... . . I . il il 4-18
V. MATRICES
3 5-2
7 Y S 5-3
MAT CON. ittt i ittt cneeneunuosoossuennneosnsnesansosennsannons 5-4
ACCESS
INPUT et ittt ittt ittt eteeeeeseseoeeenennensecssenosonsononsnns 5-5
MAT INPUT . . ettt ittt e teeeeeonesencenarosesssonossasnsnnsnssons 5-6
PRINT ettt it ittt ittt veteneeeneceesesesesenssesnnneonsasoennens 5-7
MAT PRINT .ttt ittt tittteneeennnsseenonesaeessanssnennnnnans 5-8
RE D . sttt ittt ittt et ieiaeeeseseensonseesosesenssssssnseonnoss 5-9
MAT READ. ittt it ittt i eneeneoeeseoeesssnsnssnsenonosansnsns 5-10
OPERATIONS
ADDITION. vttt ittt ittt veesneessoaseneessennssasaanennes 5-11
SUBTRACT ION. 1t vttt vttt e et et eenoneneoecenssonssssnnnnsnnnenes 5-12
MULTIPLICATION. v it ittt ittt tesoneeneneeenonnnsnonnoennnss 5-13
SCALAR MULTIPLICATION. t ittt ieteeeeteteeennosesesssnsneesennns 5-14
COPYING A MATRIX .t it ittt ettt iteeesenenenneeessennnnsannnnasens 5-15
IDENT ITY MATRIX .t v et e i it ereeoueoenseseenesosnnsaneseseensnsne 5-16
MATRIX TRANSPOSITION. vttt ittt ittt ettt eesnnnnnasnsennnanss 5-17
MATRIX INVERSION. .t vt ittt ittt tonrerensensenesneasaosansenas 5-18
FILE ACCESS
AT PRINT #vviitieinneeneeenoeenneoeeneenosonneennosnesnonnns 5-19
MAT READ #.iiiriiit it tiiiie et tenenoneeeanonneeannconesannnnses 5-20

55—
VI. STRINGS

VOCABULARY &ttt it eietns et eneeetosnentesorosensssosnenencnocens 6-2
INITIALIZING
The String DIM Statement.ottt ittt 6-4
The String ASSIGNMENT Statement..........cciiiiiiiiiiiininnnn. 6-5
STRING ACCESS
INPUT s ettt ittt ittt e tee ot neneeeenanonesnsnancnaosnannnns 6-6
2 P S 6-7
0 6-8

CONTENTS
R} A 2 111 0 2SS T R PR 6-9
The LEN FUNCTION. c ot e et ie e iiieieneassonscocnnonssnnaanansannsans 6-10
FILE ACCESS
1 7 6-11
PRINT # iiiit it ieeeeeeaoeeeansoasossssssessnsssnassosassnnns 6-12
READ # it iiitieieneeneeoneseesossssssssosnsssessnossasssesans 6-13

VIT.LOGICAL OPERATIONS

RELATIONAL OPERATORS . s vt et teeeseeerenenecensnansnsaasasnnsssscnnsces 7-2
BOOLEAN OPERATORS .t vt ittt i teenetnenuconennnnnncnsssanassnsosncnos 7-4
SOME EXAMPTES . ¢t e eee s etieeeeeneeesosesoassceesoasscasensnansnsons 7-6

VIII.FOR THE PROFESSIONAL

Syntax Requirements of TSB......cuiiiiiiiiiiiiiiiiiiiiiiienannns 8-2
String Evaluation By ASCII CodeS...iieeeieunreennernnecenaccnennnens 8-7
Memory Allocation by @ TSB User.......coiiiiiiiiiiiiiiiiiiiieeenes 8-8
General INformation. ... eeeeee et ieeneeneeseenerecsneesasnscensanns 8-9
000 1)1 A R LR E TR R PR 8-9
|
APPENDICES
A. Preparing a Paper Tape Offline....ccvveiieiienieiicnnennnns A-1
B. The X-ON, X-OFF Feature.....c.ut it it iiin i ieeeneeneenennnanannss B-1
C. Sample Programs
Listing @ File. e o iiniiiiiiiiii ittt ittt verenenncasens C-1
Interest Rates...ooviiiiiiiii i it iiiiinennnnn et e eaeee s C-2
An Electronic Calendar.......cooveiniriinennnenrnenensonnnns C-4
H-P Football....cvut it iiiiiiii it it iiieitinntennscaanannns C-8
D. Diagnostic MeSSAGES .t civriieirieueneensonceennesnannsossnneesas D-1
E. An Instant Guide to Time Shared BASIC
Special Characters. ..ottt i iiiiiteieenneennanananss E-1
00T o 03 3 E-2
StatementS. oottt i i it e it i e et e E-3
COMMANGS . ¢ v vttt et vnenreeosennnnonanossasoansnssneaseansas E-5
FUNCETONS .ttt it it it it i ittt i iit i tiet i it tecenasnsesannas E-7
A% A o 1 T« 3PP E-8
= 0 o ol = E-9
FilES e it it et it ittt it e eeeeseneaasosenonnacsanannans E-11
Fo INdeX. i ittt it i ittt tiieaenneeeeeansosasasassnsnananns F-1

xi (869)

CONTENTS

SECTION I

AN INTRODUCTION TO TIME SHARED BASIC

HOW TO READ THIS SECTION

SECTION I

This section is for novices and programmers in
need of a "brush-up" on mechanical skills. The
information presented here is arranged in a tu-
torial sequence. It is assumed that the reader
has access to a Time Shared BASIC terminal, and
will use some or all of the examples as practice
exercises, depending on his own personal require-
ments.

If you are familiar with the following procedures,
skip this section, and begin at Section II:

Log in and 1log out

Correcting mistakes and changing lines
Obtaining a diagnostic message

Running and terminating a program.

WHAT IS TIME SHARING?

Time sharing is a method of computer programming
which enables many persons (users) to have access
to a single computer simultaneously.

The computer processes the requests of the users so
rapidly that it seems to each individual that he is
the only one using the machine.

Even if every user required large amounts of com-

puter time, the Tongest delay possibie for any one
user is a few seconds.

1-1 (869)

AN INTRODUCTION TO TIME SHARED BASIC

COMMUNICATING WITH A COMPUTER: THE BASIC LANGUAGE

w
m
(]
—
—
o
=
—

There are many types of languages. English is a
natural Tanguage we use to communicate with people.
To communicate with the computer we must use a for-
mal language, that is, a combination of simple Eng-
1ish and algebra.

BASIC is a formal language used to communicate with
the computer during time-sharing.

Like natural languages BASIC has grammatical rules,
but they are much simpler. For example, this series
of BASIC statements (which calculates the average of
five numbers given by you, the user) shows the funda-
mental rules:

1@ INPUT A,B,C,D,E

20 LET S = (A+B+C+D+E)/5
3@ PRINT S

49 GO TO 19

59 END

The Frames on the next page show how to interpret
these rules. Notice how the statements are written.
What they do will be explained later.

1-2 (869)

THIS IS A BASIC STATEMENT: 19 INPUT A,B,C,D,E

AN INTRODUCTION TO TIME SHARED BASIC

EXAMPLES OF BASIC STATEMENTS

Remember:
a) It is contained in one line with a maximum of 72 characters,
one teleprinter line. Blank spaces count as characters.
b) A statement may also be called a line.

EACH BASIC STATEMENT BEGINS WITH A NUMBER
(in this example, 20): 20 LET S=(A+B+C+D+E)/5

Remember:

a) The number is chosen by the user.

b) It is an integer from 1 to 9999 inclusive.

c¢) Each line has a different number.

d) The computer puts the statements in numerical order, (by line
number); it is best to leave an interval of five or ten when
choosing line numbers (you may wish to insert additional state-
ments between the ones you have already numbered).

e) Statements are acted upon in the sequence given by their state-
ment numbers.

THEN AN INSTRUCTION OR STATEMENT TYPE IS GIVEN
(in this example, PRINT): 3¢ PRINT S

NEXT, IF THE INSTRUCTION REQUIRES FURTHER
DETAILS, OPERANDS (NUMERIC DETAILS) ARE
SUPPLIED (in this example, 18; in statement 3@,S): 4p GO TO 19

Remember:
a) The operands specify what the instruction acts upon, for
example, what is INPUT or PRINTED.

The sequence of BASIC statements in these four frames
is called a program. Note that the last Tine in the

program is an END statement. This informs the com-
puter that the program is finished.

Remember:
a) The last statement is a BASIC program must be an END
statement.

Continued on next page.

1-3 (869)

AN INTRODUCTION TO TIME SHARED BASIC

EXAMPLES OF BASIC STATEMENTS, CONTINUED

One point not obvious from inspection of the sample
program is the free format feature of BASIC. Blank
spaces have no effect (as long as the statement is
contained in 72 characters). For example, these
three Tines are equivalent:

3@ PRINTS
3¢ PRINT S
38 PRINT S

When possible, leave a space between words and numbers

for better legibility.

BEFORE CONTINUING

Be sure you are familiar with these terms, introduced
in the previous section:

instruction (or statement type)
line number
operand
program
statement

1-4 (869)

AN INTRODUCTION TO TIME SHARED BASIC

BEFORE GOING ON-LINE

The following four frames explain how to correct mistakes and list
what has been entered. Since you will probably have to make several correc-
tions in your first attempts to use the teleprinter on-line (connected to the
computer), you should be familiar with these features.

Note that the return key must be pressed after each command or statement.

MISTAKES AND CORRECTIONS

The character « (shift 0) acts as a backspace, deleting the
immediately preceding character. Typing multiple «'s deletes
as many preceding characters as <'s.

Typing: 20 LR<ET S = 10 return

is equivalent to 20 LET S =19
And typing: 30 LET«<«<PRINT S return
is equivalent to 30 PRINT S

1-5 (869)

AN INTRODUCTION TO TIME SHARED BASIC

DELETING OR CHANGING A LINE

To delete the statement being typed, press the esc

or alt-mode key. This causes a \ to be printed,

and deletes the entire line.

To delete a previously typed line, type the statement
number followed by a return.

To change a previously typed line, retype it with the
desired changes. The new Tine replaces the old one.

Pressing esc
deletes the 1ine being typed: 20 LET S = esc

NOTE: The computer responds with

a \ when esc is typed.

To delete line 5 in the sequence: 5 LET S =9
19 INPUT A,B,C,D,E
20 LET S = (A+B+C+D+E)/5

NOTE: \ and / are different, and

have very different functions.

type: 5 return

Or, to change statement 5 in the
above sequence, type: 5 LET S = 5 return

The old statement is replaced by
the new one.

Typing an esc (or alt-mode) before

a return aborts the replacement Tline.
For example, typing: 5 LET esc

or: 5 esc

will have no effect on the orig-

inal statement 5.

1-6 (869)

AN INTRODUCTION TO TIME SHARED BASIC

LISTING A PROGRAM

After you have made several corrections you may wish to inspect the

entire program. Typing LIST produces a listing of all lines accepted
by the computer.

NOTE: The program has already been entered.

LIST return

The computer skips three lines, linefeed

separating the Tisting from pre- linefeed
viously printed information. linefeed
19 INPUT A,B,C,D,E
20 LET S = (A+B+C+D+E)/5
30 PRINT S
49 GO TO 19
50 END
linefeed indicates that the linefeed
listing is complete.

The LIST command followed by a dash and statement number causes the
listing to begin at the statement specified.

A list of the same sample program LIST-3@ return
will produce these Tines: linefeed
linefeed

linefeed

30 PRINT S

49 GO TO 19
50 END

linefeed

1-7 (869)

o
o
>
>
(0]
O
o+
— of
o
>
(%)

AN INTRODUCTION TO TIME SHARED BASIC

CONNECTION TO THE COMPUTER

To enter a program into the computer you must first make a connection between the
teleprinter and the computer. There are several ways of doing this, depending on
the terminal equipment used. The input-output device, such as a teleprinter or op-
tical mark reader, on your end of the Tine is called terminal equipment. Not all

users have the same type of equipment.

IF YOUR TERMINAL EQUIPMENT IS A TELEPRINTER WITH

ACOUSTIC COUPLER AND TELEPHONE:

1. Turn teleprinter control knob to
LINE.
Turn on coupler power.
If coupler has a duplex switch,
set to FULL or FULL/UP.
If coupler has a Tine switch set
it to ON-LINE.
Call the computer number.
When the computer answers with a
high pitched tone, place the hand-
set in the coupler (Be sure to
check that the handset is inserted
in the correct position; the con-
nection will not be made if it is
reversed. (The correct position
should be marked on the coupler.)
HALF DUPLEX COUPLER AND TELEPHONE

DATA SET:

Turn teleprinter control knob to
line.

Press TALK button on the Data Set.
Call the computer number.

When the computer answers with a
high pitched tone, press the DATA
button until the DATA 1ight is on,
and replace the handset.

DIRECT CONNECTION TO THE COMPUTER:

1. Follow instructions 1,2,4,5,6 Turn the teleprinter control knob to
given above. the LINE position.

Log in. (See Log In and Log Qut
in this section.)
Type ECHO-OFF return

1-8 (869)

AN INTRODUCTION TO TIME SHARED BASIC

CHECKING THE CONNECTION

The computer does not respond when the connection is established. If

you wish to make sure that the connection has been made, type any num-
ber followed by a return.

EXAMPLE: 3 return

The computer then responds with the message:

PLEASE LOG IN return linefeed

linefeed causes the teleprinter to advance to the next line.

return causes the teleprinter typeface to return to the first

print position.

This step is optional

. YOUR ID CODE AND PASSWORD

You will need your identification code and password to 1og in. These
are assigned by the system operator. The ID code is a single letter fol-

lowed by a three digit number. The password consists of one to six regu-
lar or control characters.

NOTE: Control characters are non-printing. They are represented with a
superscript "C" to indicate that they are control characters. By
using these non-printing characters, you may keep your password a
secret. For example, on the teleprinter the password SECCCRCECT
prints as:
ST
Control letters are input by pressing the letter and ctrl keys

simul taneously.

1-9 (869)

1nho/uL 607

AN INTRODUCTION TO TIME SHARED BASIC

SAMPLE LOG IN AND LOG OUT

To LOG IN, type: HELLO-H2@@,SESCCRECT return

HELLO- is a command, not a statement.
Commands are orders to the computer
which are acted upon (executed) im-
mediately. Unlike statements, com-
mands do not require 1ine numbers.

The computer acknowledges that the linefeed
user has correctly logged in, by linefeed
outputting three linefeeds. linefeed

I[f the operator has put a message
into the system for users it is
printed when the user logs in: MESSAGE TO USERS FROM OPERATOR

I[f there is no message, the computer linefeed
responds with three linefeeds, then linefeed
READY, indicating it is awaiting linefeed
input. READY

linefeed

To LOG OUT, type: BYE return

The elapsed time since log in is
then printed. PP1 MINUTES OF TERMINAL TIME

1-10 (869)

AN INTRODUCTION TO TIME SHARED BASIC

MISTAKES DURING LOG IN

n
Q)
X
1>
4]
(%]
o=
=

If you make a mistake while logging in, the computer responds with a
message informing you that something is wrong. For instance, if a user
forgets the hyphen while entering the HELLO command:

HELLO H2@@,SECCCRECT return

the computer responds with the message:

ILLEGAL FORMAT return linefeed

and the user then enters the command in the correct form.

‘ If user H2P@ enters his password incorrectly:

HELLO-H20@,SECCRCET return

Note: The final E in the password should have

c
been E .

the response is:

ILLEGAL ACCESS return linefeed

and the user tries again.

NOTE: The messages ILLEGAL ACCESS and ILLEGAL FORMAT
indicate that some or all of the input is not
acceptable (not legal) to the Time Shared Basic

system.

1-11 (869)

AN INTRODUCTION TO TIME SHARED BASIC

ENTERING THE SAMPLE PROGRAM

‘bouad adwes

The frame below shows how to enter a program. If you are not sure how
the computer responds when a line is entered, use it as a practice

exercise.

NOTE: Connection to the computer is made.

Log in:

The computer responds with a
linefeed after each line is
entered. This indicates that
the line has been checked and
accepted as a legal BASIC
statement. It informs the
user that the computer is

waiting for further input.

HELLO-H2@@, SECCCRCECT return
SYSTEM MESSAGE TO USER

READY return linefeed

19 INPUT A,B,C,D,E return
linefeed

20 LET S = (A+B+C+D+E)/5 return

linefeed

30 PRINT S return
linefeed

49 GO TO 1@ return
linefeed

50 END return

linefeed

Now the program is ready to run.

1-12 (869)

AN INTRODUCTION TO TIME SHARED BASIC

HOW TO OBTAIN A DIAGNOSTIC MESSAGE

If you make a mistake while entering a program, the computer responds with an ERROR

Diagnostic

message. This indicates that the previous 1ine has not been accepted. You may give
either of two responses to the ERROR message. The frame below shows how to obtain a
diagnostic for the probable cause of the error and how to avoid printing the diag-
nostic if you recognize the mistake.

If the user types: 30 PRIMT S return
NOTE: PRINT has been misspelled.
The computer responds: ERROR

The user then types in a colon

(or any other character) fol- return

lowed by a return. This causes

the diagnostic to be printed

on the same 1ine. The result-

ing output looks Tike this: NO STATEMENT TYPE FOUND
PRIMT has not been recognized
as a legal statement type, and
the line was not accepted.

To correct the statement, he

retypes it in the proper form: 30 PRINT S return

If you know the cause of the

ERROR message and do not wish

to see the diagnostic, type a

return after the ERROR message

is output, then retype the line: 30 PRIMT S return
ERROR return
3P PRINT S

Appendix "D" contains a 1ist of TSB diagnostic messages.

1-13 (869)

[
o
3

©
—
O]
-
-
o
ta]

AN INTRODUCTION TO TIME SHARED BASIC

RUNNING THE SAMPLE PROGRAM

This frame shows what happens when the sample program is run. The

program does not begin execution (does not run) until the command RUN

followed by a return is input.

NOTE: The program (averaging 5 numbers) has been entered.

The computer responds with four linefeed's

indicating that the command is being

l executed.

The question mark indicates that input is
expected. The five numbers being averaged
should be typed in, SEPARATED BY COMMAS,
and followed by a return.

The answer is printed:

? indicates that five more numbers are
expected:

NOTE: A ?? message indicates that more
input is required by the program.
The answer is printed:

NOTE: This program continues executing
indefinitely, unless terminated
by the user. To terminate, input
a CC return (control "C") when more

input is requested:
The program is finished:
Log off:

Time used is printed:

1-14 (869)

RUN return linefeed

linefeed

linefeed

linefeed

? 95.6,87.3,80.5,90,82.8 return

84.24 return linefeed

? -12.5,-50.6,-32,45.6,60 return

2.1 return linefeed

? CC return

DONE
BYE retuzn

PP3 MINUTES OF TERMINAL TIME

AN INTRODUCTION TO TIME SHARED BASIC

STOPPING A PROGRAM: THE »breax KEY

When the commands RUN or LIST are input,
TSB "takes over" the user's teleprinter

>
O
7
A
3
)]
e
Q

until the program or listing is complete.

To terminate a program or listing, press, then release, the
break key:

When a program is running or being listed, TSB responds
with the message:

after break is pressed.

Remember that:

and not break is used to terminate input Toops.

COMMENTS

break must be held down for at Jeast
1/10 second.

1-15 (869)

AN INTRODUCTION TO TIME SHARED BASIC

HOW THE PROGRAM WORKS

Line 10 te]]s the computer that five numbers will

m
x
L=
—_—
=3}
>
=3}
(—'.
—de
o
3

be input, and that they should be given the labels
A,B,C,D,E in sequence. The first number input is 10 INPUT A,B,C,D,E
labeled "A" by the computer, the second "B", etc.

A,B,C,D and E are called variables.

After line 10 is executed, the variables and their
assigned values, typed in by the user, are stored.
For example, using the values entered by the user
in the previous example, this information is
stored: A = -12.5; B = -50.63 C = -32;

D =145, E =6.60

Line 20 declares that a variable called S exists,
and is assigned the value of the sum of the vari-
ables A,B,C,D,E divided by 5: 20 LET S = (A+B+C+D+E)/5‘

Line 3@ instructs the computer to output the
value of S to the user's teleprinter: 3@ PRINT S

NOTE: If the PRINT statement were not given,
the value of S would be calculated and
stored, but not printed. The computer
must be given explicit instructions for
each operation to be performed.

Line 49 tells the computer to go to Tine 1@ and
execute whatever instruction is there: 44 GO TO 19

NOTE: A "loop" is formed by lines 1@ to 44.
The sequence of statements in this loop
execute until the user breaks the loop.
This particular kind of loop is called
an input loop (because the user must
cgnsistently input data). INPUTTING A
C~ WHEN INPUT IS REQUESTED BY A "?" IS
THE ONLY WAY TO BREAK AN INPUT LOOP WITH-
OUT DISCONNECTING THE TERMINAL DEVICE.
Other, more controlled loops are explained
later. Line 5@ is not executed until the
loop is broken by entering a ¢ when input
is requested.

Line 5@ informs the computer that the program is finished: 50 END
1-16 (869)

SECTION I1
THE ESSENTIALS OF BASIC

HOW TO READ THIS SECTION

- Compute,
& . Musey,

This section contains enough information to allow
you to use BASIC in simple applications, without
using the capability of storing programs.

Proceed at your own pace. The information in the
vocabulary and operators subsections is included
for completeness; experienced programmers may skip
these. Programmers with some knowledge of BASIC
may also concentrate on capabilities of the TSB
system presented in the commands subsection.

The "Operators" subsections contain brief descriptions,
rather than explanations, of the logical operators.

The novice should not expect to gain a clear under-
standing of logical operators from this presentation.
Section VII presents more details and examples of

TSB logical operations. Readers wishing to make best
use of TSB logical capabilities should consult this
section. Those unfamiliar with logical operations
should also refer to an elementary logic text.

A simple program is included at the end of this

section for reference; it contains a running commen-

tary on the uses of many of the BASIC statements presented
in the section.

2-1 (869)

SECTION I1I

THE ESSENTIALS OF BASIC

Term: NUMBER

DEFINED IN TSB AS: A Decimal number between an approximate minimum of:
-129
)

1%‘38 (or 2
and an approximate maximum of:
1¢38 (or 2127)

Zero is included in this range.

<
o
o
o
o
==
a—)
1]
S
<

TERM: "E" NOTATION

DEFINED IN TSB AS: A means of expressing numbers having more than six
decimal digits, in the form of a decimal number

raised to some power of 10.

EXAMPLES: 1.0000PE+P6 is equal to 1,000,009 and is read

"1 times 1@ to the sixth power (1x1¢6).

1.02000E+@4 is equal to 10,200
1.02000E-04 is equal to .0@@102

COMMENTS

"E" notation is used to print numbers greater than six
digits. It may also be used for input of any large number.

When entering numbers in "E" notation, leading and
trailing zeroes may be omitted from the number; the + sign
and Teading zeroes may be omitted from the exponent.

The precision of numbers is 6 to 7 decimal digits
(23 binary digits).

2-2 (869)

THE ESSENTIALS OF BASIC

TErM: SIMPLE VARIABLE

DEFINED IN TSB AS: A Tetter (from A to Z); or a letter immediately
followed by a number (from @ to 9).

EXAMPLES: AQ B
M5 C2
19 D

Vocabulary

COMMENTS

Variables are used to represent numeric values.
For instance, in the statement:
19 LET M5 = 96.7
M5 is a variable; 96.7 is the value of the variable M5.

There are two other types of variables in TSB, string

and array variables; their use is explained in Sec-
tions V and VI respectively.

2-3 (869)

THE ESSENTIALS OF BASIC

Term: EXPRESSION

DEFINED IN TSB AS: A combination of variables, constants and

operators which has a numeric value.

EXAMPLES: (P + 5)/27

(where P has previously been assigned a
numeric value.)

<
(@]
O
o
o
c
—
o
-5

<

Q- (N +4)
(where Q and N have previously been assigned
numeric values.)

TerM: ARITHMETIC EVALUATION

DEFINED IN TSB AS: The process of calculating the value of

an expression.

2-4 (869)

THE ESSENTIALS OF BASIC

THE ASSIGNMENT oPERATOR

SYMBOL : =

EXAMPLES: 19 LETA=B2=C=¢
2P LET A9 = C5
30 Y = (N-(R+5))/T

Asmt. Oper.

49 N5 = A + B2
50 P5 = P6 = P7 = A =B =98.6

GENERAL FORM: LET variable = exnression

PURPOSE

Assigns an arithmetic or logical value to a
variable.

COMMENTS

When used as an assignment operator, = is read
“takes the value of," rather than "equals". It
is, therefore, possible to use assignment state-
ments such as:

LET X = X+2

This is interpreted by TSB as: "LET X take the
value of (the present value of) X, plus two."

Several assignments may be made in the same
statement, as in statements 1§ and 5@ above.

See Section VII, "LOGICAL OPERATIONS" for a
description of logical assignments.

2-5 (869)

P
=
— o
ct
>
o
=
o}
S

THE ESSENTIALS OF BASIC

ARITHMETIC oPERATORS

SYMBOLS: DN
EXAMPLES: 49 LET N1 = X-5

50 LET C2 = N+3
60 LET A = (B-C)/4
78 LET X = ((P42)-(Y*X))/N+Q

PURPOSE

Represents an arithmetic operation, as:

exponentiate: 4
multiply: *
divide: /
add: +
subtract: -
COMMENTS
The "-" symbol is also used as a sign for negative numbers.

It is good practice to separate arithmetic operations with
parentheses when unsure of the exact order of precedence.

The order of precedence (hierarchy) is:
;r

*/
+ -
with + having the highest priority. Operators on the same level
of priority are acted upon from left to right in a statement. See
"Order of Precedence" in this Section for examples.

2-6 (869)

THE ESSENTIALS OF BASIC

RELATIONAL OPERATORS

SYMBOLS:
EXAMPLES:

IF A=B THEN 909
IF A+B >C THEN 919

IF A+B < C+E THEN 920
IF C>= D*E THEN 930

IF C9<= G¥H THEN 940
IF P2#C9 THEN 950

IF J <> K THEN 950

PURPOSE

Determines the logical relationship between two expressions, as
equality: =
inequality: # or: <>
greater than: >
less than: <
greater than or equal to: »>=
less than or equal to: <=

COMMENTS

NOTE: It is not necessary for the novice to understand the nature of
logical evaluation of relational operators, at this point. The

comments below are for the experienced programmer.

Expressions using relational operators are logically evaluated, and assigned
a value of "true" or "false" (the numeric value is 1 for "true", and @ for
false).

When the = symbol is used in such a way that it might have either an
assignment or a relational function, TSB assumes it is an assignment
operator. For a description of the assignment statement using logical
operators, see Section VII, "Logical Operations".

2-7 (869)

*dg xew-utLy

EXAMPLES:

THE ESSENTIALS OF BASIC

MIN AND MAX OPERATORS

19 LET A=A9=P2=P5=C2=X=7.5
2Q LET B5=D8=Q1=Q4=Y=B=12.0

8@ PRINT (A MIN 1¢)

9¢ LET B=(A MIN 1g)+19¢

199 IF (A MIN B5) > (C2 MIN D8) THEN 19
11@ PRINT (X MAX Y)

120 IF (A9 MAX B) <= 5 THEN 15@

PURPOSE

Selects the larger or smaller
value of two expressions.

COMMENTS

In the examples above, statement 110
selects and prints the Targer value:
since X = 7.5 and Y = 12.8, the value
of Y is printed. The evaluation is
made first, then the statement type
(PRINT) 1is executed.

2-8 (869)

THE ESSENTIALS OF BASIC

THE AND oPERATOR

SYMBOL : AND

EXAMPLES: 6@ IF A9<BT AND C#5 THEN 190

70 IF T7#T AND J=27 THEN 159
80 IF P1 AND R>1 AND N AND V2 THEN 1@
99 PRINT X AND Y

PURPOSE

Forms a logical conjunction between two expressions. If
both are "true", the conjunction is "true"; if one or both
are "false", the conjunction is "false".

NOTE: It is not necessary for the novice to understand how this
operator works. The comments below are for experienced

programmers.

COMMENTS
The numeric value of "true" is 1, of "false" is @.

A11 non-zero values are "true". For example, statement 99
would print either a @ or a 1 (the Togical value of the ex-
pression X AND Y) rather than the actual numeric values of
X and Y.

Control is transferred in an IF statement using AND, only
when all parts of the AND conjunction are "true". For in-
stance, example statement 80 requires four "true" conditions
before control is transferred to statement 10.

See Section VII, "Logical Operations" for a more complete
description of logical evaluation.

2-9 (869)

THE ESSENTIALS OF BASIC

THE OR OPERATOR

SYMBOL : OR

EXAMPLES: 1@ IF A>1 OR B<5 THEN 5p¢

11@ PRINT C OR D
120 LET D = X OR Y
139 IF (X AND Y) OR (P AND Q) THEN 609

PURPOSE

Forms the Togical disjunction of two expressions. If
either or both of the expressions is true, the OR dis-
junction is "true"; if both expressions are "false" the
OR disjunction is "false".

NOTE: It is not necessary for the novice to understand
how this operator works. The comments below are

for experienced programmers.

COMMENTS

The numeric values are: "true" = 1, "false" = P.

A1l non-zero values are true; all zero values are false.

Control is transferred in an IF statement using OR, when
either or both of the two expressions evaluate to "true".

See Section VII, "Logical Operations" for a more complete
description of logical evaluation.

2-10 (869)

THE ESSENTIALS OF BASIC

THe NOT OPERATOR

SYMBOL: NOT

EXAMPLES: PLETX =Y =0
35 IF NOT A THEN 3pp

45 IF (NOT C) AND A THEN 499
55 LET B5 = NOT P

65 PRINT NOT (X AND Y)

70 IF NOT (A=B) THEN 5@

PURPOSE

Logically evaluates the complement of a given
expression.

NOTE: It is not necessary for the novice to
unders tand how this operator works. The
comments below are intended for experi-

enced programmers.

COMMENTS

If A=0, then NOT A = 1; if A has a non-zero value,
NOT A = Q.

The numeric values are: "true" = 1, "false" = @; for
example, statement 65 above would print "1", since the
expression NOT (X AND Y) is true.

Note that the logical specifications of an expression may
be changed by evaluating the complement. In statement 35
above, if A equals zero, the evaluation would be "true" (1);
since A has a numeric value of @, it has a logical value of
"false", making NOT A "true".

See Section VII, "Logical Operations" for a more complete
description of logical evaluation.

2-11 (869)

THE ESSENTIALS OF BASIC

ORDER OF PRECEDENCE (oF ExECUTION)

The order of performing operations is:

highest precedence

o
=
(D
(@]
[}
[a R
(1]
3
(@]
(]

MIN MAX

Relational Operators

AND

OR lowest precedence

If two operators are on the same level,
the order of execution is Teft to right,

for example:

5 + 6*7 is evaluated as: 5 + (6x7)
7/14%2/5 is evaluated as: (7/14)x2
5

A MIN B MAX C MIN D 1is evaluated as:
((A MIN B) MAX C) MIN D

Parentheses override the order of precedence

in all cases.

2-12 (869)

THE ESSENTIALS OF BASIC

STATEMENTS

Be sure you know the difference between statements
and commands.

Statements are instructions to the computer. They
are contained in numbered lines within a program,
and execute in the order of their line numbers.
Statements cannot be executed without running a pro-
gram. They tell the computer what to do while a
program is running.

Commands are also instructions. They are executed

immediately, do not have 1ine numbers, and may not

be used in a program. They are used to manipulate

programs, and for utility purposes, such as logging
on and off.

Here are some examples mentioned in Section I:

Statements Commands
LET HELLO
PRINT BYE
INPUT LIST

Do not attempt to memorize every detail in the
"Statements" subsection; there is too much material
to master in a single session. By experimenting
with the sample programs, and attempting to write
your own programs, you will Tearn more quickly than
by memorizing.

2-13 (869)

Statements

131

THE ESSENTIALS OF BASIC

THE ASSIGNMENT STATEMENT

EXAMPLES: 19 LET A = 5.2
20 X=Y7=17=9
3@ B9 = 5% (X+42)
49 LET D = (3*C24N)/(A*(N/2))

GENERAL FORM:

statement number LET variable = number or expression or string or variable...

or

statement number variable = number or expression or string or variable...

PURPOSE

Used to assign or specify the value of a variable.
The value may be an expression, a number, string
or a variable of the same type.

COMMENTS

Note that LET is an optional part of the assignment
statement.

The assignment statement must contain:

1. The variable to be assigned a value.

2. The assignment operator, an = sign.

3. The number, expression or variable to be
assigned to the variable.

Statement 20 in the example above shows the use of
an assignment to give the same value (®) to several
variables. This is a valuable feature for initial-
izing variables in the beginning of a program.

2-14 (869)

THE ESSENTIALS OF BASIC

REM

EXAMPLES: 1§ REM--THIS IS AN EXAMPLE
2@ REM: OF REM STATEMENTS
30 REM
4p REM. STATEMENTS ARE NOT EXECUTED BY TSB

REM

GENERAL FORM: statement number REM any remark or series of characters,

PURPQOSE

Allows insertion of a line of remarks or comment
in the Tisting of a program.

COMMENTS

Must be preceeded by a 1ine number. Any series of
characters may follow REM.

REM 1ines are saved as part of a BASIC program, and
printed when the program is listed or punched; how-

ever, they are ignored when the program is executing.

Remarks are easier to read if REM is followed by a
punctuation mark, as in the example statements.

2-15 (869)

THE ESSENTIALS OF BASIC

GO TO aND MuLTIBRANCH GO TO

EXAMPLES : 10 LET X = 20

49 GO TO 3 OF 419,429,430

50 GOTO 199

80 GOTO 19

99 GO TO N OF 199,150,180,199

GENERAL FORM:

statement number GO TO statement number

statement number G0 T0 expression OF sequence of statement numbers

PURPQOSE

G0 TO transfers control to the statement specified.

GO TO expression...transfers control to the state-
ment number specified by the expression.

COMMENTS
G0 TO may be written: GOTO or GO TO.

Must be followed by the statement number to which control is transferred, or
expression OF, and a sequence of statement numbers.

G0 TO overrides the normal execution sequence of statements in a program.

The expression in a multibranch GO TO specifies the statement to which control is
transferred. For example, statement 40 above transfers control to statement 430.

If the expression evaluates to a number greater than the number of statements speci-
fied, or Tess than 1, the GO TO is ignored.

Useful for repeating a task infinitely, or "jumping" (GOing TO) another part of a pro-
gram if certain conditions are present.

GO TO should not be used to enter FOR-NEXT Toops; doing so may produce unpredictable
results or fatal erros.

2-16 (869)

THE ESSENTIALS OF BASIC

IF. . THEN

SAMPLE PROGRAM: LET N = 10
READ X
IF X <=N THEN 6@
PRINT "X IS 19 OR OVER"
GO TO 8¢
PRINT "X IS LESS THAN 1g"
GO TO 20
END

. THEN

IF..

GENERAL FORM: statement number IF expression THEN statement number

PURPOSE

Transfers control to a specified statement if a specified condition is
true.

COMMENTS

Sometimes described as a conditional transfer; "GO TO" is implied by
IF...THEN, if the condition is true. In the example above, if X<=10,
the message in statement 6§ is printed.

Since numbers are not always represented exactly in the computer, the
= operator should be used carefully in IF...THEN statements. <=,>=, etc.
should be used in the IF expression, rather than =, whenever possible.

If the specified condition for transfer is not true, then the program
will continue executing in sequence. In the example above, if X>=10,

the message in statement 4@ will be printed.

See "Logical Operations"”, Section VII for a more complete description
of logical evaluation.

2-17 (869)

THE ESSENTIALS OF BASIC

FOR. .+ HEXT

EXAMPLES: FOR P1 =1 T30 5
FOR Q1 = N TO X
FOR R2 = N TO X STEP 1
FOR S 1 TO X STEP Y
NEXT S
NEXT R2
NEXT Q1
NEXT P1

Sample Program - Variable Number Of Loops

PRINT "HOW MANY TIMES DO YOU WANT TO LOOP";
590 INPUT A
6@ FOR J =1 TO A
7@ PRINT "THIS IS LOOP"; J
8@ READ N1, N2, N3
99 PRINT "THESE DATA ITEMS WERE READ:" N1; N2; N3
10@ PRINT "SUM ="; (N1+N2+N3)
11¢ NEXT J
129 DATA 5, 6, 7, 8, 9, 18, 11, 12
13¢ DATA 13, 14, 15, 16, 17, 18, 19, 29, 21
14¢ DATA 22, 23, 24, 25, 26, 27, 28, 29, 30
15¢ DATA 31, 32, 33, 34
160 END

GENERAL FORM:

statement number FOR simple variable = initial value 10 final value

or

statement number FOR simple variable = initial value 10 final value STEP step value

statement number NEXT simple variable

NOTE: The same simple variable must be used in both the FOR and NEXT statements of

a loop.

2-18 (869)

THE ESSENTIALS OF BASIC

FOR...NEXT, CONTINUED

PURPOSE

Allows repetition of a group of statements
within a program.

COMMENTS

Initial value, final value and

step value may be any expression.
How the loop works:

The simple variable is assigned the value
of the initial value; the value of the sim-
ple variable is increased by 1 (or by the
step value) each time the loop executes.
When the value of the simple variable passes

the final value, control is transferred to the
statement following the "NEXT" statement.

STEP and step value are optional.

For further details on the STEP feature, see
"FOR...NEXT with STEP" in Section III.

Try running the sample program if you are not
sure what happens when FOR...NEXT loops are
used in a program.

2-19 (869)

404

IX3IN"*

THE ESSENTIALS OF BASIC

NESTING FOR...NEXT LOOPS

Multiple FOR...NEXT loops may be used in the same
program; they may also be nested (placed inside one
another). There are two important features of
FOR...NEXT Toops:

1. FOR...NEXT Tloops may be nested.

1 T0 5
NTO P

Range of Toop Al X T0 Y STEP R

Range of loop B2

Range of loop C3 NEXT C3
NEXT B2

NEXT Al

2. The range of FOR...NEXT Toops may
not overlap. The loops in the ex-
ample above are nested correctly.
This example shows improper nesting.

— 10 FOR I

3@ FOR J

The range of loops(

I and J overlap.

5@ NEXT I

—9@ NEXT J

2-20 (869)

FOR I=1 TO 5
READ A
LET X=At2

THE ESSENTIALS OF BASIC

READ, DATA anp RESTORE

Sample Program using READ and DATA

PRINT A;" SQUARED =";X
NEXT I
DATA 5.24,6.75,30.8,72.65,89.72
END

Each data item may be read only once in
this program. TSB keeps track of data
with a "pointer". When the first READ
statement is encountered, the "pointer"
indicates that the first item in the
first DATA statement is to be read; the
pointer is then moved to the second item
of data, and so on.

In this example, after the Toop has
executed five times, the pointer remains
at the end of the data 1ist. To reread
the data, it is necessary to reset the
pointer. A RESTORE statement moves the
pointer back to the first data item.

2-21 (869)

<
'.—
<
o
a
<
L
o

THE ESSENTIALS OF BASIC

READ, DATA anp RESTORE., cONTINUED

Sample Program Using READ, DATA and RESTORE

20 FOR I=1 TO 5

30 READ A

49 LET X=A+42

5@ PRINT A; "SQUARED =";X

6@ NEXT I

8@ RESTORE

180 FOR J=1 TO 5

119 READ B

129 LET Y=B+4

13¢ PRINT B; "TO THE FOURTH POWER =";Y
140 NEXT J
150 DATA 5.24,6.75,30.8,72.65,89.72
160 END

ylva ‘ay3d

GENERAL FORM:

statement number READ variable , variable ,...

statement number DATA number or string , number or string ,...

statement number RESTORE

statement number RESTORE statement number

PURPOSE

The READ statement instructs TSB to read an item from a DATA statement.

The DATA statement is used for specifying data in a program. The data
is read in sequence from first to last DATA statements, and from left to
right within the DATA statement.

The RESTORE statement resets the pointer to the first data item, allowing
data to be re-read.

RESTORE followed by a statement number resets the pointer to the first .
data item, beginning at the specified statement.

2-22 (869)

THE ESSENTIALS OF BASIC

READ, DATA AND RESTORE. CONTINUED

COMMENTS

READ statements require at least one DATA
statement in the same program

Items in a DATA statement must be separated
by commas. String and numeric data may be
mixed.

DATA statements may be placed anywhere in a
program. The data items will be read in se-
quence as required.

DATA statements do not execute; they merely
specify data.

The RUN command automatically sets the
pointer to the first data item.

If you are not sure of the effects of READ,
DATA, and RESTORE, try running the sample
programs.

Programmers mixing string and numeric data

may find the TYP function useful. See "The
TYP Function", Section III.

2-23 (869)

READ, DATA

THE ESSENTIALS OF BASIC

INPUT

This program shows several variations of the INPUT statement and their effects.

Sample Program Using INPUT

FOR M=1 TO 2

INPUT A

INPUT A1,B2,C3,Z0,729,E5

PRINT "WHAT VALUE SHOULD BE ASSIGNED TO R";
INPUT R

PRINT A;A1:B2;C3;7Z@;79;E5;"R="3R

NEXT M

?1 return
?2,3,4,5,6,7 return
WHAT VALUE SHOULD BE ASSIGNED TO R?27

1 2 3 4 5
?1.5 return ‘
72.5,3.5,4.5,6.,7.2 return
??8.1 return ?? indicates that more. input is expected
WHAT VALUE SHOULD BE ASSIGNED TO R?-99
1.5 2.5 3.5 4.5 6 7.2
8.1 R=-99

DONE
GENERAL FORM:

statement number INPUT variable , variable ,...

PURPOSE

Assigns a value input from the teleprinter to a variable.

Continued on next page, 2-24 (869)

THE ESSENTIALS OF BASIC

INPUT, CONTINUED

COMMENTS

The program will come to a halt, and a question mark will
be printed when the INPUT statement is used. The program

will not continue execution until the input requirements
are satisfied. '

Only one question mark will be printed for each INPUT
statement. The statement:

19 INPUT A, B2, C5, D, E, F, G
and

20 INPUT X

Will each cause a single "?" to be printed. Note that the
"?" generated by statement 10 requires seven input items,

separated by commas, while the "?" generated by statement

20 requires only a single input item.

The only way to terminate or exit a program when input is
required is entering: C¢ return. Note that the C® aborts
the program; it must be restarted with the RUN command.

Relevant Diagnostics:

? indicates that input is required.
?? indicates that more input is needed to satisfy an INPUT statement.
??? indicates that TSB cannot decipher your input.
EXTRA INPUT-WARNING ONLY indicates that a) extra input was
entered; b) it has been disregarded; and c) the program
is continuing execution.

See the description of the "PRINT;" format in this section
for variations on output formats.

2-25 (869)

INT¥d

THE ESSENTIALS OF BASIC

PRINT

This sample program gives a variety of examples of the PRINT statement.
The results are shown below.

190 LET A=B=C=19
20 LET D1=£9=20
3@ PRINT A,B,C,D1,E9
49 PRINT A/B,B/C/D1+ES
5@ PRINT “NOTE THE POWER TO EVALUATE AN EXPRESSION AND PRINT THE"
6@ PRINT "VALUE IN THE SAME STATEMENT."
7@ PRINT
8@ PRINT
9¢ REM* "PRINT" WITH NO OPERAND CAUSES THE TELEPRINTER TO SKIP A LINE.
PRINT "'A' DIVIDED BY 'E9' =";A/E9
PRINT “11111","22222","33333","44444" ,"55555" ,"66666"
PRINT "11111";"22222" ;"33333";"44444" ;"55555" ;"66666"

RUN return
19 10 10
1 20.05
NOTE THE POWER TO EVALUATE AN EXPRESSION AND PRINT THE
VALUE IN THE SAME STATEMENT.

'A' DIVIDED BY 'E9' = .5
1111 22222
66666
111112222233333444445555566666
DONE
NOTE: The "," and ";" used in statements 110 and 120 have very

different effects on the format.

Continued on next page.

2-26 (869)

THE ESSENTIALS OF BASIC

PRINT, CONTINUED

GENERAL FORM:

statement number expression , expression , ...

statement number "any text! ; expression ; ...

Sstatement number "text" ; expression ; "text! , "text", ...

Statement number any combination of text and/or expressions

statement number

PURPOSE

Causes the operand(s) to be output to the
teleprinter or terminal device.

Causes the teleprinter to skip a 1ine when
used without an operand.

COMMENTS

Note the effects of , and ; on the output of
the sample program. If a comma is used to
separate PRINT operands, five fields will be
printed per teleprinter Tine. If semicolon
is used, up to twelve "packed" numeric fields
will be output per teleprinter line, or 72
characters.

2-27 (869)

THE ESSENTIALS OF BASIC

END anp STOP

EXAMPLES:
209 IF A # 27.5 THEN 350

309 STOP

d01lS °*aN3

350 LET A = 27.5
509 IF B # A THEN 9999

55@ PRINT "B = A"
609 END
9999 END
GENERAL FORM:
any statement number STQOP

any statement number END

Highest statement number in program END

PURPOSE

Terminates execution of the program and returns control to TSB.

COMMENTS .

The highest numbered statement in the program must be an END statement.

END and STOP statements may be used in any portion of the program to

terminate execution.

END and STOP have identical effects; the only difference is that the
highest numbered statement in a program must be an END statement.

2-28 (869)

THE ESSENTIALS OF BASIC

SAMPLE PROGRAM

If you understand the effects of the
statement types presented up to this
point, skip to the "COMMANDS" section.

The sample program on the next two
pages uses several BASIC statement
types.

Running the program gives a good idea

of the various effects of the PRINT
statement on teleprinter output. If

you choose to run the program, you may
save time by omitting the REM statements.

After running the program, compare your
output with that shown under "RUNNING
THE SAMPLE PROGRAM". If there is a dif-
ference, LIST your version and compare
it with the one presented on the next
two pages. Check your PRINT statements
for commas and semicolons; they must be
used carefully.

2-29 (869)

o
O
<
o
Q|
—
Q
=
G
%]

[
<)
3
©
—
14
"
~
o
«Q

19

20

30

49

50

60

7

89

90

100
119
120
130
149
150
160
180
199
200
219
220
230
240
250
260
279
280
390
319
320
339
349
350
360

THE ESSENTIALS OF BASIC

SAMPLE PROGRAM

REMARK: "REMARK" OR "REM" IS USED TO INDICATE REMARKS OR COMMENTS
REMARK: THE USER WANTS TO INCLUDE IN THE TEXT OF HIS PROGRAM.

REM:

REM:
REM:
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
REM:
REM:

LET A=

REM:
REM:
PRINT
INPUT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
REM:
REM:

FOR I=

INPUT

LET S=

NEXT I
REM:

THE COMPUTER LISTS AND PUNCHES THE "REM" LINE, BUT DOES NOT

EXECUTE IT.
"PRINT" USED ALONE GENERATES A "RETURN" "LINEFEED"

"THIS PROGRAM WILL AVERAGE ANY GROUP OF NUMBERS YOU SPECIFY."

"IT WILL ASK ALL NECESSARY QUESTIONS AND GIVE INSTRUCTIONS."

‘>

"PRESS THE RETURN KEY AFTER YOU TYPE YOUR REPLY."

FIRST, ALL VARIABLES USED IN THE PROGRAM ARE INITIALIZED
TO ZERO (THEIR VALUE IS SET AT ZERO.)

N=R1=S=

NOW THE USER WILL BE GIVEN A CHANCE TO SPECIFY HOW MANY
NUMBERS HE WANTS TO AVERAGE.

"HOW MANY NUMBERS DO YOU WANT TO AVERAGE";

N

"0.K., TYPE IN ONE OF THE ";N;"NUMBERS AFTER EACH QUES. MARK."
"DON'T FORGET TO PRESS THE RETURN KEY AFTER EACH NUMBER."

"NOW, LET'S BEGIN"

“N" IS NOW USED TO SET UP A "FOR-NEXT" LOOP WHICH WILL READ
1 70 "N" NUMBERS AND KEEP A RUNNING TOTAL.

1 T0O N

A

S+A

"I" IS A VARIABLE USED AS A COUNTER FOR THE NUMBER OF TIMES

2-30 (869)

370
380
390
490
419
429
430
449
4690
47¢
480
499

509
51
520
53¢
549
550
579
580
599
600
619
620
639
640
650
669
670
680
690
700
79
720

REM:
REM:
REM:
REM:
REM:
REM:
REM:
REM:
REM:
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
REM:
REM:
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
INPUT

IF R1=

REM:

THE ESSENTIALS OF BASIC

SAMPLE PROGRAM., CONTINUED

THE TASK SPECIFIED IN THE "FOR-NEXT" LOOP IS PERFORMED.

"I" INCREASES BY 1 EACH TIME THE LOOP IS EXECUTED.

"A" IS THE VARIABLE USED TO REPRESENT THE NUMBER TO BE
AVERAGED. THE VALUE OF "A" CHANGES EACH TIME THE

USER INPUTS A NUMBER.

"S" WAS CHOSEN AS THE VARIABLE TO REPRESENT THE SUM

OF ALL NUMBERS TO BE AVERAGED.

AFTER THE LOOP IS EXECUTED "N" TIMES, THE PROGRAM CONTINUES.
A SUMMARY IS PRINTED FOR THE USER.

ample Prog.

N; "NUMBERS WERE INPUT."

"THEIR SUM IS:";S

"THEIR AVERAGE IS:";S/N

NOW THE USER WILL BE GIVEN THE OPTION OF QUITTING OR
RESTARTING THE PROGRAM.
"DO YOU WANT TO AVERAGE ANOTHER GROUP OF NUMBERS?"

"TYPE 1 IF YES, @ IF NO"
"BE SURE TO PRESS THE RETURN KEY AFTER YOUR ANSWER."

"YOUR REPLY"

R1

1 THEN 12¢

THE FOLLOWING LINES ANTICIPATE A MISTAKE IN THE REPLY.

IF R1#@ THEN 709

GO TO
PRINT
GO TO
END

720
"TO REITERATE, YOU SHOULD TYPE 1 IF YES, @ IF NO."
640

2-31 (869)

w
(=1}
=
=
—
(1]
o
-~
(=)
(=]

THE ESSENTIALS OF BASIC

RUNNING THE SAMPLE PROGRAM

RUN return

THIS PROGRAM WILL AVERAGE ANY GROUP OF NUMBERS YOU SPECIFY.
IT WILL ASK ALL NECESSARY QUESTIONS AND GIVE INSTRUCTIONS.
PRESS THE RETURN KEY AFTER YOU TYPE YOUR REPLY.

HOW MANY NUMBERS DO YOU WANT TO AVERAGE? 5 return
0.K.,TYPE IN ONE OF THE 5 NUMBERS AFTER EACH QUES. MARK.
DON'T FORGET TO PRESS THE RETURN KEY AFTER EACH NUMBER.
NOW, LET'S BEGIN

? 99 return

? 87.6 return
? 92.7 return
? 79.5 return

? 84 return

5 NUMBERS WERE INPUT.

THEIR SUM IS: 442.8

THEIR AVERAGE IS: 88.56

DO YOU WISH TO AVERAGE ANOTHER GROUP OF NUMBERS?
TYPE 1 IF YES, @ IF NO

BE SURE TO PRESS THE RETURN KEY AFTER YOUR ANSWER.
YOUR REPLY? 2 return

TO REITERATE, YOU SHOULD TYPE 1 IF YES, § IF NO.
YOUR REPLY? 1 return

HOW MANY NUMBERS DO YOU WISH TO AVERAGE? C® return
DONE

2-32 (869)

THE ESSENTIALS OF BASIC

COMMANDS

Remember the difference between commands
and statements (See "Statements" in this

section).

Commands

Commands are direct instructions to the
computer, and are executed immediately.
They are used to manipulate programs,
and for utility purposes.

Note that all TSB commands may be
abbreviated to their first three letters.
If information is required after a com-
mand, a hyphen "-" must be included. For
example, when logging in:

HEL _H2@@ , SECCRCECT return

Do not try to memorize all of the details
in the COMMANDS subsection. The various
commands and their functions will become
clear to you as you begin to write your

. own programs. |

2-33 (869)

0T13H

THE ESSENTIALS OF BASIC

HELLO

EXAMPLE: HELLO-DP@P7,POSCT return

or

HEL-D@@7, POS’T return

GENERAL FORM: HELLO- IDcode , password

or

HEL- IDcode , password

PURPOSE

The command used to log in to the TSB system.

COMMENTS

ID codes and passwords are assigned by the
system master or operator.

2-34 (869)

THE ESSENTIALS OF BASIC

BYE

EXAMPLE: BYE return
P39 MINUTES OF TERMINAL TIME

GENERAL FORM: BYE

PURPOSE

The command used to log out of the TSB system.

COMMENTS

Causes the amount of terminal time used to be
printed.

Breaks a telephone connection to the computer.

2-35 (869)

BYE

OHJ3

THE ESSENTIALS OF BASIC

ECHO-

EXAMPLES: ECHO-OFF return
ECHO-ON return

GENERAL FORM: ECHO - ON

or

ECHO - OFF

PURPOSE

Allows use of a half duplex teleprinter
terminal.

COMMENTS
Users with half duplex terminal
equipment must first log on, then
type the ECHO-OFF command; then in-

put and output becomes legible.

ECHO-ON returns a user to the full-
duplex mode.

May be abbreviated to its first three letters.

2-36 (869)

THE ESSENTIALS OF BASIC

RUN

EXAMPLE: RUN return

or

RUN- 30@ return
GENERAL FORM: RUN

RUN- statement number

PURPOSE
Starts execution of a program at the lowest numbered
statement when used without specifying a statement

number.

Starts execution of a program at the specified statement
when a statement number is used.

COMMENTS

Note that when RUN- statement number is used, all statements

before the specified statement will be skipped. Variables
defined in statements which have been skipped are therefore
considered to be undefined by TSB, and may not be used until
they are defined in an assignment, READ, or LET statement.

A running program may be terminated by pressing the breakx key;
or, to terminate a running program at some point when input is
required, type:

C
C” return

2-37 (869)

1SI7

THE ESSENTIALS OF BASIC

LIST

EXAMPLE: LIST return

or

LIST-10@ return

GENERAL FORM: LIST
LIST~- statement number

PURPOSE
Produces a Tisting of all statements in a
program (in statement number sequence) when

no statement number is specified.

When a statement number is specified, the
listing begins at that statement.

COMMENTS

A 1isting may be interrupted by pressing the
break key.

System Tibrary programs designated "RUN ONLY"
by the operator cannot be Tisted.

May be abbreviated to its first three Tletters.

2-38 (869)

THE ESSENTIALS OF BASIC

SCRATCH

EXAMPLE: SCRATCH return

or

SCR return

GENERAL FORM: SCRATCH
or

SCR

PURPOSE

Deletes (from memory) the program currently
being accessed from the teleprinter.

COMMENTS

SCRATCHed programs are not recoverable. For
information about saving programs on paper

tape or in your personal library, see the NAME
and SAVE commands in the next section, and PUNCH
in this section.

2-39 (869)

e
m
=
j
=
oo
m
o

THE ESSENTIALS OF BASIC

RENUMBER

EXAMPLES: RENUMBER return
REN return
REN-10@
REN-1@, 1 return
REN-20, 5@ return

GENERAL FORM: REN
or

REN=number assigned to first statement

or

REN=number assigned to first statement , interval between new statement numbers

PURPOSE

Renumbers statements in a program.

COMMENTS

GO TO's, GO SUB's, IF...THEN's, and RESTORE's are
automatically reassigned the appropriate new numbers.

If no first statement number is specified, renumbering
begins at statement 1@, in intervals of 10.

If no interval is specified, the new numbers are spaced
at intervals of 18, from the beginning statement.

Remember that text contained in REM and PRINT statements
is not revised by RENUMBER.

2-40 (869)

THE ESSENTIALS OF BASIC

BREAK

EXAMPLES: break (Press the break key.)

PURPOSE
Terminates a program being run.

Terminates the execution of LIST,
PUNCH, CATALOG, and LIBRARY commands.

COMMENTS

Pressing the break key signals the computer to terminate
a program, producing the message: STOP.

When break is pressed during a Tisting, the message STOP
is output.

Pressing break will not terminate the program if it is
awaiting input (data to be typed in from the teleprinter).
In this case the only means of ending the program is

typing:
¢ return

which produces the DONE message.

break Will not delete a program; however, the RUN command
must be used to restart it.

2-41 (869)

break Key

EXAMPLES:

GENERAL FORM:

THE ESSENTIALS OF BASIC

PUNCH

PUNCH return

PUN return
PUN-65 return
PUN-5 return

PUNCH
or

PN
or

PUN-statement number at which PUNCHing is to begin

PURPOSE

Punches a program, onto paper tape; also
punches the program name, and leading and
trailing guide holes on the tape; lists the
program as it is punched.

COMMENTS
If the teleprinter is not equipped with a
paper tape reader/punch, only a listing will

be produced.

Remember to press the paper tape punch "ON"
button before pressing the return after PUNCH.

PUN-statement number causes the punching to

begin at the specified statement.

2-42 (869)

THE ESSENTIALS OF BASIC

TAPE

EXAMPLES: TAPE return
TAP return

GENERAL FORM: TAPE
or

TAP

PURPOSE

Informs the computer that following input
is from paper tape.

COMMENTS

TAPE suppresses any diagnostic messages which are
generated by input errors, as well as the auto-
matic linefeed after return. The KEY command

(KEY return) or any other command, causes the di-
agnostic messages to be output to the teleprinter,
ending the TAPE mode.

TSB responds to the TAPE command with a linefeed.

2-43 (869)

TAPE

AN

THE ESSENTIALS OF BASIC

KEY

EXAMPLES: KEY return
GENERAL FORM: KEY

PURPOSE

Informs the computer that
following input will be
from the teleprinter key-
board; used only after a
TAPE (paper tape input)
sequence is complete;
causes error messages sSup-

pressed by TAPE to be out-
put to the teleprinter.

COMMENTS

KEY may not be abbreviated.

Any command followed by a
return Will have the same
effect as KEY. Commands
substituted for KEY in this
manner are not executed if
diagnostic messages were
generated during tape input.

2-44 (869)

THE ESSENTIALS OF BASIC

TINME

EXAMPLE: TIME return
CONSOLE TIME = @ MINUTES. TOTAL TIME =@@ MINUTES

GENERAL FORM: TIME

PURPOSE

Produces 1istings of terminal time used since log on, and
total time used for the account since the automatic ac-
counting system was last reset to zero.

‘ COMMENTS

Time used by each ID code is recorded automatically by
TSB. The system operator controls the accounting
system.

2-45 (869)

SECTION ITI

ADVANCED BASIC

This section describes capabilities of BASIC.

The experienced programmer has the option of
skipping the "Vocabulary" subsection, and
briefly reviewing the commands and functions
presented here. The most important features
of the TSB system -- files, matrices, and
strings are explained in the next three

sections.

The inexperienced programmer need not spend
a great deal of time on programmer-defined
and standard functions. They are shortcuts,
and some programming experience is necessary
before their specifications become apparent.

3-1 (869)

ADVANCED BASIC

TERM: ROUTINE

DEFINED IN TSB AS: A sequence of program statements

which produces a certain result.

PURPOSE

-
(=)
o
o
o
'S
—
o
=
<

Routines are used for frequently performed
operations. Using routines saves the pro-
grammer the work of defining an operation
each time he uses it, and saves computer

memory space.

COMMENTS

A routine may also be called a program,
subroutine, or sub-program.

The task performed by a routine is defined
by the programmer.

Examples of routines and subroutines are
given in this section.

3-2 (869)

ADVANCED BASIC

Term: ARRAY (or MATRIX)

DEFINED IN TSB AS: An ordered collection of numeric
data containing not more than 2500

elements (numeric values).

COMMENTS

Arrays are divided into columns (vertical) and rows (horizontal).

Vocabulary

Arrays may have one or two dimensions. For example,

1.9
2.1
3.2
4.3

is a one dimensional array, while

6 ,5,14
3,2, 1
p,9,8

is a two dimensional array.

Array elements are referenced by their column and row
position. For instance, if the examples above were ar-
rays A and Z respectively, 2.1 would be A(2); similarly,
P would be Z(3,1). The references to array elements are
called subscripts, and set apart with parentheses. For
example P(1,5) references the fifth element of the first
row of array P; 1 and 5 are the subscripts. In X(M,N),
M and N are the subscripts.

3-3 (869)

ADVANCED BASIC

TerM: STRING

DEFINED IN TSB AS: P to 72 teleprinter characters enclosed

by quotation marks.

COMMENTS

Sample strings: "ANY CHARACTERS!?%*/---" .
"TEXT 1234567..."

A8 Nqedop

Quotation marks may not be used within a

string.
-

Term: FUNCTION

DEFINED IN TSB AS: The mathematical relationship between two

variables (X and Y for example) such that
for each value of X there is one and only
one value of Y.

COMMENTS

The independent variable is called an argument;
the dependent variable is the function value.
For instance in

190 LET Y = SQR(X)
X is the argument; the function value is the
square root of X; and Y takes the value of the

function.

3-4 (869)

ADVANCED BASIC

TERM: WORD

DEFINED IN TSB AS: The amount of computer storage

space occupied by two tele-
printer characters.

COMMENTS

Numbers require two words of storage each.

TERM: RECORD

DEFINED IN TSB AS: A storage unit containing 64

2-character words.

COMMENTS

Further details on file storage
are given in Section IV, "FILES".

3-5 (869)

ADVANCED BASIC

STORING AND DELETING PROGRAMS

Up to this point manipulation of programs has
been limited to the "current" program, that is,
the program being written or run at the moment.
The only means of saving a program introduced
thus far is the PUNCH command.

The commands on the following pages allow the
user to create his own library of programs on

the Time Shared BASIC system. Library programs
are easily accessed, modified, and run.

The experienced programmer need only review
the commands briefly -- they do what their
names imply: NAME, SAVE, etc.

A word of caution for the inexperienced
programmer: it is wise to make a "hard"

copy (on paper tape) of programs you wish

to use frequently. Although it is easy and
convenient to store programs "on-system", you
will make mistakes as you learn, and may ac-
cidentally delete programs. It is much less
time consuming to enter a program from paper
tape than rewrite it.

3-6 (869)

ADVANCED BASIC

LENGTH

EXAMPLES: LENGTH return
LEN return

P0P@ WORDS
GENERAL FORM: LEN return

PURPOSE

Prints the number of two-character
words in the program currently being
accessed from the teleprinter. This
is the amount of "storage space"
needed to SAVE the program.

COMMENTS

Each user has a working "space" of
approximately 5100 two character
words. LEN is a useful check on
total program length when writing
long programs.

3-7 (869)

LEN Comm.

ADVANCED BASIC

NAME

EXAMPLE: NAME-PROG.1 return
NAME-**G0** return
NAM-ADDER return

NAM-MYPROG return

GENERAL FORM: NAME-Program name of 1 to 6 characters

or

NAM-Program name of 1 to 6 characters

PURPOSE

Assigns a name to the program currently being
accessed from the teleprinter.

COMMENTS

The first character of the program named may
not be a $.

The program name may be used in certain TSB
operations (see the KILL, GET, and APPEND
commands in this section).

3-8 (869)

ADVANCED BASIC

SAVE

EXAMPLES: SAVE return
SAV return

GENERAL FORM: SAVE
or

SAV.

SAVE

PURPOSE

Saves a copy of the current program
in the user's private library.

COMMENTS

. A program must be named before it can be saved
(See NAME, this section).

No two programs in a user's library may have the
same name. The procedure for saving a changed
version of a program is as follows (the program
name is SAMPLE):

KILL-SAMPLE return (Deletes the stored version.)
linefeed

NAME-SAMPLE return (Names the current program)
linefeed

SAVE return (Saves the current program, named SAMPLE.)

linefeed

For instructions on opening a file, see Section IV, "FILES".

3-9 (869)

139

ADVANCED BASIC

GET- anp GET-$

EXAMPLES: GET-PROGRM return
GET-MYPROG return
GET-$PUBLIC return

GET-$NAMES return

GENERAL FORM: GET- name of a program in user's library

GET-$ name of system library program

PURPOSE

GET- retrieves the specified program, making
it the program currently accessed from the
teleprinter.

GET-$ retrieves the specified program from the
system library, making it the program currently
accessed from the teleprinter.

COMMENTS

The program being accessed previous to using
GET- is not recoverable unless it has been
previously SAVEd or PUNCHed (GET- performs an
implicit SCRATCH).

For more information on public library programs,
see "LIBRARY" in this section.

3-10 (869)

ADVANCED BASY (Y

KILL-

EXAMPLE: KILL-PROG12 return 123 AL
KIL-EXMPLE return
KIL-FILE1Q return

GENERAL FORM:

KILL- program or file to be deleted

T T
A

or

KIL- program or file to be deleted

PURPOSE

Deletes the specified program or file from the user's library. (Does not a-ﬁaﬁauyfl
program currently being accessed from the teleprinter, even if it has the same name.)

COMMENTS

. CAUTION: Files have only one version, the stored one. A KlLLed file is not
recoverable.

A file may not be KILLed while it is being accessed by another user.

KILL-should be used carefully, as the KILLed program is not recoverable unless:
a) A paper tape was previously PUNCHed, or
b) The KiLLed program was also the current program.

SCRATCH deletes the program currently being accessed from the teleprinter, while KILL
deletes a program or file stored on-system. The stored and current versions of a pro-

gram occupy separate places in the system. They may differ in content, even though
they have the same name.

The sequence of commands for changing and storing a program named PROG** is:
GET-PROG** (Retrieves the program.)

‘ (make changes)
KILL-PROG** (Deletes the stored version.)
SAVE (Saves the current version.)

3-11 (869)

ADVANCED BASIC

APPEND-

EXAMPLES: APPEND-MYPROG return
APP-MYPROG return
APPEND-$PUBLIC return
APP-$SYSLIB return

GENERAL FORM: APPEND-program name

or

APP-program name

or

APP-$system library program name

PURPOSE

Retrieves the named program from the users or public library
and appends it (attaches it) to the program currently being
accessed from the teleprinter.

COMMENTS

The lowest statement number of the APPENDed program must be
greater than the highest statement number of the current
program.

CAUTION: If an APPENDed public library program is "run-only",
the entire program to which it is APPENDed becomes "run-only".
("Run-only" programs may not be listed or changed.)

The $ in system library program names is needed to APPEND
them. For details, see "LIBRARY" in this section.

3-12 (869)

ADVANCED BASIC

DELETE

EXAMPLES: DELETE-27 return
DEL-27, 5@ return

GENERAL FORM: DEL-statement number at which deletion starts

or

DEL-statement no. at which deletion starts , statement no. at which deletion ends

PURPOSE
DEL-statement number erases the current program statements
' after and including the specified statement. DEL-1 has

the same effect as SCRATCH.

DEL-statement number, statement number deletes all statements
in the current program between and including the specified

statements.

COMMENTS
It is sometimes useful to SAVE or PUNCH the original version
of a program which is being modified, before using the DELETE -

statement.

Deleted statements are not recoverable.

3-13 (869)

ADVANCED BASIC
LIBRARY

EXAMPLES: LIBRARY return

BINOPO §594 CDETER @796 CSHFLO 1598 CURFIT 1618 DIFFEQ 133 DIVID 1367
FNCTS $682 GEOMEN 9199 IN4 5449 INS 5449 INVHIL @259 LINFIT p492
ROMINT 0299 SQE 209 STAT11 p568 TAB 2Pp98 YELLOW @227 7123 9413

GENERAL FORM: L IBRARY

or

LB

PURPOSE

Produces an alphabetical 1isting of TSB system 1ibrary program and file names,
followed by the size of each, in two-character words.

COMMENTS

Public Tibrary programs are available to users; typing:

GET-$ program name return

retrieves the specified program.

Public files are accessed with the FILES statement. (See Section IV, "FILES" for
details.)

Certain programs designated "run-only" or by the system operator may be RUN but not
1isted, or punched.

LIBRARY listings may be terminated with the breax key.

3-14 (869)

ADVANCED BASIC

CATALOG

EXAMPLES: CAT return
CATALOG return
PROG1 Q@24 PROG2 2348 PROG3 1489

GENERAL FORM: CATALOG
or

CAT

PURPOSE
Produces an alphabetical listing of the
names of the programs and files stored

on-system, under the user's account name
and size of each in two-character words.

COMMENTS

May be terminated with the break key.

Programs are accessed with the GET command.

Files are accessed with a FILES statement.
See Section IV, "Files" for details.

3-15 (869)

ADVANCED BASIC

SUBROUTINES AND FUNCTIONS

The following pages show TSB features useful for repetitive
operations -- subroutines, programmer-defined and standard
functions.

The programmer-controlled features, such as multibranch
GOSUB's, FOR...NEXT with STEP, and DEF FN become more use-
ful as the user gains experience, and learns to use them
as shortcuts.

Standard mathematical and trigonometric functions are
convenient timesavers for programmers at any level. They
are treated as numeric expressions by TSB.

The utility functions TAB, SGN, TYP, and LEN also become
more valuable with experience. They are used to control
or monitor the handling of data by TSB, rather than for
performing mathematical chores.

3-16 (869)

ADVANCED BASIC

~ GOSUB, , . RETURN
EXAMPLE: 50 READ A2
60 IF A2<109 THEN 89
70 GOSUB 490

380 STOP (sToP, END, or GO TO's frequently precede
" the first statement of a subroutine, to
brevent accidental entry.)

399 REM--THIS SUBROUTINE ASKS FOR A 1 OR @ REPLY.
40 PRINT "A2 IS>1pp"

41P PRINT "DO YOU WANT TO CONTINUE";

42¢ INPUT N

43p IF N #p THEN 45¢

449 LET A2 = @

45p RETURN

609 END

GENERAL FORM: statement number GOSUB statement number starting subroutine

statement number RETURN

PURPOSE

GOSUB transfers control to the specified statement number.

RETURN transfers control to the statement following the GOSUB statement which- trans-
ferred control.

GOSUB...RETURN eliminates the need to repeat frequently used groups of statements in
a program.
COMMENTS
The portion of the program to which control is transferrred must end with a RETURN
statement.
' RETURN statements may be used at any desired exit point in a subroutine.
GOSUB...RETURN's may be nested to a level of 9 (see the next page.)

3-17 (869)

ADVANCED BASIC

MuLTIBRANCH GOSUB

EXAMPLES: 20 GOSUB 3 OF 100,200,300,400,500
60 GOSUB N+1 OF 200,210,229

7¢ GOSUB N OF 8p,180,28p,380,480,580
GENERAL FORM:

statement number GOSUB expression OF sequence of statement numbers ...

PURPOSE

Transfers control to the statement number indicated by the
expression following GOSUB.

COMMENTS

Subroutines should be exited only with a RETURN statement.

The expression indicates which of the specified subroutines will be
executed. For example, statement 2@, above transfers control to the
subroutine beginning with statement 30@. The expression specifies which
statement in the sequence of five statements is used as the starting one
in the subroutine.

The expression is evaluated as an integer. Non-integer values will be
rounded to the nearest integer.

If the expression evaluates to a number greater than the number of state-
ments specified, or less than 1, the GOSUB is ignored.

Statement numbers in the sequence following OF must be separated by commas.

3-18 (869)

ADVANCED BASIC

NesTING GOSUB’s

EXAMPLES: 199 GOSUB 200

209 LET A = R2/7
219 IF A THEN 239
22f GOSUB 259

250 IF A>B THEN 279
260 RETURN
279 GOSUB 6@p

GENERAL FORM:

statement number GOSUB expression OF sequence of statement numbers

GOSUB. ..

PURPOSE

Allows selective use of subroutines within
subroutines.

COMMENTS
GOSUB's may be nested to a level of nine.

RETURN statements may be used at any desired
exit point in a subroutine. Note, however,
that nested subroutines are exited in the or-
der in which they were entered. For example,
if subroutine 250 (above) is entered from sub-
routine 2pP, 250 is exited before subroutine

209.

3-19 (869)

ADVANCED BASIC

FOR. . .NEXT wiTH STEP

EXAMPLES: 29 FOR I5 =1 TO 2@ STEP 2
40 FOR N2 = p TO -1 STEP -1
80 FOR P =1 TO N STEP R

9@ FOR X = N TO W STEP (N+2-V)

GENERAL FORM:

statement number FOR simple variable = expression 10 expression STEP expression

LX3N" "¥04

PURPOSE

Allows the user to specify the size of the
increment of the FOR variable.

COMMENTS

The step size need not be an integer. For instance,
1080 FOR N =1 TO 2 STEP .01
is a valid statement which produces approximately
100 loop executions, incrementing N by .01 each
time. Since no binary computer represents all
decimal numbers exactly, round-off errors may in-
crease or decrease the number of steps when a non-
integer step size is used.

A step size of 1 is assumed if STEP is omitted from
a FOR statement.

A negative step size may be used, as shown in
statement 40 above.

3-20 (869)

DEF FN

EXAMPLE: 6@ DEF FNA (B2) = A+2 + (B2/C)
70 DEF FNB (B3) = 7*B3+2
8@ DEF FNZ (X) = X/5

GENERAL FORM:

statement number DEF FN single letter 4 to z (simple variable

PURPOSE

Allows the programmer to define
functions.

COMMENTS

. \ A maximum of 26 programmer-defined
functions are possible in a program
(FNA to FNZ).

Any operand in the program may be used
in the defining expression; however
such circular definitions as:

. 18 DEF FNA (Y)
20 DEF FNB (X)

FNB (X)
FNA (Y)

will cause infinite Tooping.

See the vocabulary at the beginning of
this section for a definition of
“"function".

3-21 (869)

ADVANCED BASIC

GENERAL MATHEMATICAL FUNCTIONS

EXAMPLES: 642 PRINT EXP(N); ABS(N)
652 IF RND (@)>=.5 THEN 9¢¢
662 IF INT (R) # 5 THEN 91¢
672 PRINT SQR (X); LOG (X)

GENERAL FORM: The general mathematical functions may be used as

expressions, or as parts of an expression.

[30und ‘yaey

PURPOSE

Facilitates the use of common mathematical
functions by pre-defining them, as:

ABS (expression), the absolute value of the expression;
EXP (expression), the constant e raised to the power of the expression value
(in statement 642 above, etN) .
INT (expression), the largest integer < the expression;
LOG (expression), the logarithm of the positively valued expression to the base e;
RND (expression), a random number between 1 and @: the expression is a dummy
argument;
SQR (expression), the square root of the positively valued expression.

COMMENTS

The RND function is not restartable; it is
virtually impossible to duplicate a sequence
of random numbers using RND. See Appendix C
for an example of RND in a program.

3-22 (869)

ADVANCED BASIC

TRIGONOMETRIC FUNCTIONS

EXAMPLES: 5@@ PRINT SIN(X); COS(Y)
519 PRINT 3*SIN(B); TAN (C2)

52@ PRINT ATN (22.3)
53@ IF SIN (A2) <1 THEN 8p@
549 IF SIN (B3) = 1 AND SIN(X) <1 THEN 99

PURPOSE

Trig. Funct

Facilitates the use of common trigonometric functions by
pre-defining them, as:

SIN (expression), the sine of the expression (in radians);
COS (expression

. TAN (expression

ATN (expression

, the cosine of the expression (in radians);
» the tangent of the expression (in radians);
, the arctangent of the expression (in radians).

— et e

COMMENTS

The function is of the value of the expression (the value in
parentheses, or argument).

The trigonometric functions may be used as expressions, or parts
of an expression.

ATN returns the angle in radians.

See the next three pages for other standard functions.

3-23 (869)

ADVANCED BASIC

THE TAB AND SGI{ FUNCTIONS

EXAMPLES: 509 IF SGN (X)> -1 THEN 8¢p
519 LET Y = SGN(X)
529 PRINT TAB (5); A2; TAB (2@)"TEXT"
53p PRINT TAB (N),X,Y,Z2
549 PRINT TAB (X+2) "HEADING"; R5

GENERAL FORM: The TAB and SGN functions may be used as
expressions, or parts of an expression.
The function forms are:

—
pd
[vs)
QO

3

[=%
w
o
=

TAB (expression indicating column number)

SGN (expression)

PURPOSE

TAB (expression), when used in a PRINT statement,
causes the teleprinter to move to the column num-
ber specified by the expression (@ to 71).

SGN (expression), returns a 1 if the expression

is greater than @, returns a P if the expression
equals P, returns a -1 if the expression is less
than f.

3-24 (869)

EXAMPLES:

GENERAL FORM:

ADVANCED BASIC

THE TYP FuncTION

800 IF TYP (3) = 2 THEN 1900
853 PRINT TYP (N)
99¢ IF TYP (R) # X THEN 1209

TYP may be used as an expression or as part of an

expression; the function form is:
TYP (file number formula)_

PURPOSE

If the file number formula is positive, TYP
returns these values indicating the type of
the next data item in a file: 1 = number;
2 = string; 3 = "end of file".

If the file number formula is zero, TYP returns
these values for the next data item in a DATA
statement: 1 = number; 2 = string; 3 for an
"out of data" condition.

If the file number formula is negative, TYP

returns these values for the next data item

in a file: 1 = number; 2 = string; 3 = "end
of file"; 4 = "end of record".

COMMENTS
When using files as random storage devices, the
file number formula should be negative, enabling

TYP to return an “end of record" value. (See
Section IV for details of file structure.)

3-25 (869)

TYP

N3

EXAMPLES:

GENERAL FORM:

ADVANCED BASIC

THE LEN FuncTION

580 IF LEN >= 21 THEN 9999

(B$)
800 IF LEN (C$) = R THEN 19p¢
85@ PRINT LEN (N$)
889 LET P5 = LEN (N$)

The LEN function may be used as an expression, or
part of an expression. The function form is
LEN (string variable)

PURPOSE

Returns the length (number of characters)
currently assigned to a string variable.

COMMENTS

Note the difference between the LEN function
and the LENGTH command. The command is used
outside a program, and returns the working
length of the current program in two-character
words. The LEN function may be used only in

a program statement.

3-26 (869)

SECTION IV

FILES

This section is divided into two parts:

The first part defines terms, and explains
how to open, close, read, and write on a file.
These pages contain the minimum information
needed to use files. This part was designed
to allow the problem-oriented user to quickly
obtain minimal file access.

The second part, beginning with "Structure of
a File", contains information helpful in gain-
ing an understanding of TSB files. The pro-

grammer who intends to use files consistently

for information storage and retrieval should
make an effort to learn the structure of TSB
files. Considerable time (both programmer
and machine) can be saved if the programmer
has a good understanding of files.

Note that special variations of READ and PRINT

pertinent to files have been included in both
the serial and random access sections.

4-1 (869)

SECTION IV

<
(@)
O
o
o
c
ol
o
5
<

FILES

Term: FILE

DEFINED IN TSB AS:

A storage area in the TSB system, which may be accessed

from a program. Data may be written on and read from files.

Smaller divisions within a file are called records and words.

File structure is explained later in this section.

Term: END OF RECORD

DEFINED IN TSB AS:

A marker placed (by TSB) at the end of each record used
in a file. The mark is a reference point for the computer,
and is written by the computer when a record is full,

or when the programmer has finished writing on a file

record.

4-2 (869)

Vocabulary

FILES

Term: END OF FILE

DEFINED IN TSB AS:

A mark placed (by TSB) at the end of a file. The mark

is a reference point for the computer, and may be placed
by the computer when a file is full, or when the program-
mer is finished writing on a file.

Terms: SERIAL AND RANDOM ACCESS

DEFINED IN TSB AS:

These denote the two methods of using files mentioned

previously. When files are used as serial devices the

computer selects the appropriate location within the
file to read or write data. Random file access means
that the programmer chooses to control the internal

location of data within a file.

4-3 (869)

~N3d0

FILES

OPEN

EXAMPLES: OPEN-FILE27, 85 return
’ OPEN-SAMPLE, 128 return

OPEN-**FI**, 1@ return

GENERAL FORM:

OPEN- 1 to 6 character file name , number of 64-word records in file

PURPOSE

Opens and assigns a name to a file; reserves
the specified number of 64-word records of
storage for file contents (1 word = 2 tele-
printer characters).

Places an "end of file" marker at the beginning
of each record.

COMMENTS

The minimum number of records per file is 1.

The maximum number of records per file varies
with computer options.* Contact the system op-
erator for the specific number on your system.

The maximum number of files available to each
user is determined by the system operator.

Files are accessible only to users with the
same I.D. code as their creator.

* 90 to 128

4-4 (869)

FILES

KILL-

EXAMPLE: KILL-NAMEXX return
KIL-EXMPLE return
KIL-FILE1D return

GENERAL FORM: KILL-file to be deleted
KIL-file to be deleted

PURPOSE

Deletes the named program or file from the user's library. (Does not
delete the program currently being accessed from the teleprinter, even
if it has the same name.)

COMMENTS

CAUTION: Files have only one version, the stored one. A KILLed file
is not recoverable.

It is not possible to KILL a file while it is being accessed by another
user.

KILL-should be used carefully, as the KILLed file is not recoverable
unless a paper tape was previously punched, with the data on it.

4-5 (869)

So|L4

FILES

FILES

EXAMPLE: 19 FILES MATH, DATA, AND,. SQRT, NAME5, $DATA

GENERAL FORM:

statement number FILES maximum of 8 file names, separated by commas

PURPOSE
Declares which files will be used in a program;
TSB assigns a file reference number (from 1 to 8)
to each file listed.

COMMENTS

The FILES statement may be used only once in a
program; however, the same file name may be re-
peated in a FILES statement.

Files are referenced in the order in which they
are listed in the FILES statement. For instance,
in the example above,

100 PRINT #2;A
would print the value of A on the file named DATA.

Public Files in the system library are "read only";
they are accessed with a FILES statement. Public
file names must be preceded by a $, as the file
DATA in the example above.

Users with the same ID code may share files. Only
one user at a time may write on a shared file.

4-6 (869)

FILES

PRINT #

EXAMPLES: 125 PRINT #5; Al, B2; C
139 PRINT #1; B; C; D
140 PRINT #M+N; B

GENERAL FORM:

statement number PRINT# file number formula ; ...

PURPOSE

Prints variables or text on the file number specified

PRINT#

in the file formula.

COMMENTS

Non-integer file formula numbers are rounded to the
nearest integer (from 1 through 8), since a maximum
of 8 files may be accessed by a single program.

The maximum capacity of a file varies with computer
options from 90 to 128 64-word records. Consult
your system operator for specific information.

There are several other variations of PRINT#. This
is the easiest one to use -- it fills available space
within the specified file; however, it is not always
the most efficient form of a print-to-file.

Other versions of the print-to-file, are described
in this section.

4-7 (869)

FILES

READ #

EXAMPLES: 65 READ#5; A,B,C
79 READ#3; B$

8@ READ#N; A, B$, C(5,3)
9p READ#(N+1); A,B$,C(5,3)

GENERAL FORM: statement number READ# file number formula ; ...

PURPOSE

Reads values consecutively from the specified
file.

COMMENTS

Since a maximum of 8 files may be specified
in the FILES statement, the file number for-
mula should not exceed 8. Non-integer file
formula numbers are rounded to the nearest
integer.

Each item of data stored on a file may be
read only once with this statement. Other,
more selective versions of the read-from-file
are described later ir this section.

4-8 (869)

FILES

IF END#,..THEN

EXAMPLES: 308 1F END #N THEN 8p9
310 IF END #2 THEN 830
320 IF END #3 THEN 9999

800 LET N = N + 1

819 IF N > 8 THEN 9999

826 GO TO 1

839 PRINT #3; A,B,C

849 PRINT "DATA IS STORED"

9999 END
GENERAL FORM:
statement number IF END# file number formula THEN statement number

PURPOSE

Defines an exit procedure when an "end of file" mark is encountered;
also detects "end of record" conditions.

COMMENTS

The IF END statement defines an exit procedure which remains in effect
until another IF END statement is encountered. Subsequent IF END state-
ments with the same file number formula are used to change the exit
procedure.

The normal exit procedure when an "end of file" mark is encountered, and
no IF END statement used, is termination of the program, and printing
"END OF FILE/END OF RECORD IN STATEMENT XXXX".

See "Structure of a File" in this section for further details on using
files as serial devices.

4-9 (869)

IF END 7

*ON43S BL4

FILES

STRUCTURE OF A FILE

A simple method of using files is to treat
them as "black boxes" which store information.
By using only the statements presented on the
preceeding pages, you may PRINT and READ in-
formation on files.

There are disadvantages to this method:

a) File space may be wasted by creating
files larger than necessary.

b) Time may be wasted if a file is too
small: it terminates the program,
and must be enlarged, and the program
re-run.

It is much more efficient to use files as
one, or a group of, random storage devices.
The next pages show the structure of files
as random devices.

4-10 (869)

Record 1

Record 2

Recoxrd 3

Last
Record

FILES

STRUCTURE AND STORAGE PATTERN

—_—
r.-;: ——————————— End of
Record

Mark

_____ —

End of

-«+— File

Mark

COMMENTS
—pand — — pindicate the order of record use when record numbers

are not specified in PRINT and READ statements.

Each record contains 64 words of storage space.

One file contains a maximum of 90-128 records (see your system operator

for the exact limit).

Continued on the next page.

4-11 (869)

File Struc.

*In43S 3 l4

FILES

SERIAL FILES

(See the previous page for details of the structure of a single file.)

End of File Mark

Last File

Up to 8 files may be accessed in series (or any other
configuration) by using the IF END statement.

— —— jindicates the sequence of file access, using an
IF END# statement, but not record-controlled PRINT or
READ statements. For example, the sequence

199 PRINT #N; A,B,C

119 IF END #N THEN 899

80P LET N=N+1
819 GO TO 19
fills files sequentially, moving to the next file

when the current file is filled.

4-12 (869)

FILES

FILE STRUCTURE-SUMMARY

Each file is made up of a maximum of 90 to
128 64-word records. (Consult your system
operator for the exact figure.)

Each word = 2 teleprinter characters.

Numerical data requires 2 words of file
space. String data requires about 1/2 word
of file space per string character.

File Struc

The formula for determining the number of

words needed to store strings is:

number of characters in string + 1

2
if the number of characters is odd.

1+

or

number of characters in string

2
if the number of character is even.

1 +

Each file has a "pointer" used to reference
data printed on or read from that file. This
pointer references data sequentially when
statements described previously are used to
access files.

The following pages describe how the programmer

may access files at random, by manipulating
file pointers.

4-13 (869)

FILES

PRINT#...,, END

EXAMPLES: 95 PRINT #N ; A,B2,END
198 PRINT #(X+1); R3,S1, "TEXT", END

119 PRINT #2; G5, H$,P, END

GENERAL FORM:
statement number PRINT# file number formula -3 items to be printed o END

PURPOSE

Places an "end of file" marker after the value
written on the file; significant only when the
"end of file" marker is the last item written.

)
=
—_
=
=
e
v

m
=
=)

COMMENTS

The "end of file" marker written by this
statement is a logical marker, rather than a
physical boundary marker.

The "end of file" is overlaid by the first item
in the next PRINT statement. An "end of file"
condition is generated only on READ attempts, or
an attempt to PRINT beyond the physical boundary
of a file.

PRINT#...,END may be used to put an "end of file"
mark in the middle of a data file, to be used as
a flag for an "IF END#" statement.

The IF END# statement transfers control when this
end marker is encountered.

4-14 (869)

FILES

PRINT#. v 00

EXAMPLES: 165 PRINT #N,X; G2,H,I, "TEXT"
179 PRINT #1,3; X, Y4, Z
175 PRINT #(N+1), (X+2);F,P5

GENERAL FORM:

statement number PRINT# file number formula , record number formula ; print list

PURPOSE

Prints to a specified file and specified record within
that file; permits selective positioning of data within
a file.

COMMENTS

The record number formula should evaluate to an integer
between 1 and the number of records in the file. Non-
integers are rounded to the nearest integer value.

The corresponding controlled READ statement works in the
same manner as the controlled PRINT. See "READ"...,..."
in this section for details.

PRINT to a specified record erases the record before writing

the new information. PRINT without specifying a record fills
the file sequentially.

4-15 (869)

FILES

PRINT TO RESET A POINTER

EXAMPLES: 32¢ PRINT #M+N, R+S
33@ PRINT #(N-P),X

348 PRINT #5,1

GENERAL FORM:

statement number PRINT# file number formula , record number formula

PURPQSE

Resets the file pointer to the first
position in the specified record.

P3Y 03 INIYd

Erases the contents of the specified

record.

COMMENTS

File and record number formulas should
evaluate to integers. Non-integers will be
rounded to the nearest integer value.

Only the contents of the specified record are
erased; the rest of the file remains intact.

A specified record may be rewritten during a
program without a separate "print-to-reset" by
including the record number formula in the
PRINT statement. Remember that PRINT without
specifying a record must be used to fill a file
sequentially.

4-16 (869)

EXAMPLES:

. GENERAL FORM:

FILES

READ#,vv.uu,

199 READ #2,3; A,B,C3,X$
119 READ #N,2; N1,N2,N3

12¢ READ #N,M; R2, P7, A$, T(3,5)
130 READ #(N+1);(M+2); X,Y$,Z(S,S)

statement number READ# file number formula, record number formula; variable,variable...

PURPOSE

Reads data from a specified
record of a file.

COMMENTS

The record formula number should
evaluate to an integer between 1
and the number of records allowed
per file.

Non-integers will be rounded to
the nearest integer value.

To read data sequentially, use READ
without specifying a record number.

The corresponding PRINT statement

works in the same manner as the
controlled READ. See "PRINT#...,..."
in this section for details.

4-17 (869)

sad 03 Qy3y

FILES

READ# To RESET A POINTER

EXAMPLES: 419 READ #2, 3
42p READ #N, 1
43@ READ #(N-P), 5
449 READ # N, P3

GENERAL FORM:
statement number READ# file formula number

or

statement number READ# file number formula , record number formula

PURPOSE

Resets the file pointer to the first position
of the specified record.

COMMENTS

A specified record may be reread without
resetting the pointer.

READ# to reset a file pointer does not erase
the specified record.

File and record numbers should evaluate to
integers. Non-integers will be rounded to
the nearest integer value.

Once a record is accessed, READ without

specifying a record is used to read sequen-
tially from the file.

4-18 (869)

SECTIONW V

MATRICES

This section explains matrix manipulation. It is intended
to show the matrix capabilities of TSB, and assumes that the
programmer has some knowledge of matrix theory.

TerM: MATRIX (ARRAY)

SECTION V

DEFINED IN TSB AS: An ordered collection of numeric data
containing not more than 25¢@ elements

(numeric values).

Matrix elements are referenced by subscripts following the
matrix variable, indicating the row and column of the ele-
ment. For example, if matrix A is:

1 2 3

4 5 6

7 8 9
the element 5 is referenced by A(2,2); likewise 9 is A(3,3).

. See Section III, "Vocabulary" for a more complete description
of matrices.

5-1 (869)

WIQ LYW

MATRICES

DIM

50), B(20,20)
5,20)
5,25)
4,4)

EXAMPLES: 110 DIM A
120 DIM Z

13¢ DIM S
14 DIM R

(
(
(
(

GENERAL FORM:
statement number DIM matrix variable (integer)

or

statement number DIM matrix variable (integer , integer) .

PURPOSE

Reserves working space in the TSB system for a matrix within
the 1imits set by the original DIM statement.

COMMENTS

The integers refer to the number of matrix elements if only one
dimension is supplied, or to the number of row and column elements
respectively, if two dimensions are given.

A matrix (array) variable is any single letter from A to Z.

Arrays not mentioned in a DIM statement are assumed to have 10 elements
if one dimensional, or 10 rows and columns if two dimensional.

The working size of a matrix may be smaller than its physical size. For
example an array declared 9 x 9 in a DIM statement may be used to store
fewer than 81 elements; the DIM statement supplies only an upper bound
on the number of elements.

The absolute maximum matrix size is 2500 elements; a matrix of this size
is practical only in conjunction with a very small program.

5-2 (869)

FIRIKIVEDS

MAT...ZER

EXAMPLES: 3¢5 MAT A = ZER
319 MAT Z = ZER (N)
315 MAT X = ZER (39, 19)
320 MAT R = ZER (N, P)

GENERAL FORM:
statement number MAT matrix variable = ZER

or

statement number MAT matrix variable = ZER (expression)

or

statement number MAT matrix variable = ZER (expression , expression)

PURPOSE

Sets all elements of the specified matrix
equal to @; a new working size may be

' established.

COMMENTS

The new working size in a MAT...ZER is an
implicit DIM statement within the limits

set by the DIM statement on the total num-
ber of elements.

Since @ has a logical value of "false",
MAT...ZER is useful in logical initialization.

5-3 (869)

MATRICES

MAT...CON

EXAMPLES: 295 MAT C = CON
219 MAT A = CON (N,N)
22p MAT Z = CON (5,20)
239 MAT Y = CON (50)

GENERAL FORM:

statement number MAT matrix variable = CON

or

statement number MAT matrix variable = CON (expression)

or

statement number MAT matrix variable = CON (expression , expression)

PURPOSE

Sets up a matrix with all elements equal to 1;

a new working size may be specified, within the
limits of the original DIM statement on the total

number of elements.

COMMENTS

The new working size (an implicit DIM statement)
may be omitted, as in example statement 205.

Note that since 1 has a logical value of "true",
the MAT...CON statement is useful for logical
initialization.

The expressions in new size specifications should
evaluate to integers. Non-integers will be rounded
to the nearest integer value.

5-4 (869)

MATRICES

INPUT

EXAMPLES: 6@@ INPUT A(5
61@ INPUT B(5

62@ INPUT R(X
(X

(X

)

,8)

), N§, A(3,3)

,Y)s P3, W$

,Y), Z(X+1, Y+1), Z(X+R3, Y+S2)

630 INPUT Z
640 INPUT Z

GENERAL FORM:
statement number INPUT matrix variable (expression) .

or

statement number INPUT matrix variable (expression , expression) ...

PURPOSE

Allows input of a specified matrix element(s)
from the teleprinter.

COMMENTS

Expression should evaluate to integers. Non-
integers will be rounded to the nearest integer
value.

The subscripts (expressions) used after the matrix
variable designate the row and column of the matrix
element. Do not confuse these expressions with
working size specifications, such as those following
a MAT INPUT statement.

See MAT INPUT and DIM in this section for further
details on matrix input.

5-5 (869)

=
=
=
Logn |
=
0
ey
—

MATRICES

MAT INPUT

EXAMPLES: 355 MAT INPUT A
36@ MAT INPUT B(5
365 MAT INPUT Z(5,
370 MAT INPUT A(N)
375 MAT INPUT B(N,M)

)
5)

GENERAL FORM:
statement number MAT INPUT matrix variable

or

statement number MAT INPUT matrix variable (expression).,

or

statement number MAT INPUT matrix variable (expression , expression)...

PURPOSE

Allows input of an entire matrix from the teleprinter; a new working size may be .
specified, within the Timits of the DIM statement on total number of elements.

COMMENTS

Do not confuse the size specifications following MAT INPUT with element specifications.
For example, INPUT X(5,5) causes the fifth element of the fifth row of matrix X to be
input, while MAT INPUT X(5,5) requires input of the entire matrix called X, and sets
the working size at 5 rows of 5 columns.

Example statements 360 through 375 require input of the specified number of matrix
elements, because they specify a new size.

Elements being input must be separated by commas.
A "??" response to an input item means that more input is required.

Only one ? will be generated by a MAT INPUT statement, regardless of the number of

elements. .

MAT INPUT causes the entire matrix to be filled from teleprinter input in the (row,

col.) order: 1,1;1,2;1,3; etc.

5-6 (869)

MATRICES

PRINT

)
»3)3
)3E$s C5;3R(N)
Y)
Y), Z(1,5), Z(X+N, Y+M)

EXAMPLES: 8@ PRINT A(3
81(PRINT A(3
82f PRINT F(X
83() PRINT G(X,
84f) PRINT Z(X,

GENERAL FORM:

statement number PRINT matrix variable (expression) ...

or

statement number PRINT matrix variable (expression , expression) ...

PURPOSE

Causes the specified matrix element(s) to be printed.

PRINT(elem.)

COMMENTS

Expressions (subscripts) should evaluate to integers.
Non-integers will be rounded to the nearest integer
value.

A trailing semicolon packs output into twelve

elements per teleprinter line, if possible. A trailing
comma prints five elements per line.

Expressions (subscripts) following the matrix

variable designate the row and column of the ma-

trix element. Do not confuse these with new work-

ing size specifications, such as those following a

MAT INPUT statement.

This statement prints a single matrix element. MAT
PRINT is used to print an entire matrix.

5-7 (869)

MATRICES

MAT PRINT

EXAMPLES: 500 MAT PRINT A
505 MAT PRINT A;
515 MAT PRINT A,B,C
52@ MAT PRINT A,B,C;

GENERAL FORM:
statement number MAT PRINT matrix variable

or

statement number MAT PRINT matrix variable, matrix variable ...

PURPOSE

Causes an entire matrix to be
printed, row by row, with double
spacing between rows.

COMMENTS

Matrices may be printed in "packed"
rows up to 12 elements wide by us-

ing the ";" separator, as in example
statement 5@5. Normal separation (",")
prints 5 elements per row.

5-8 (869)

MATRICES

READ

EXAMPLES: 9p@ READ A(6)
919 READ A(9,9)
92p READ C(X); P$; R7
93p READ C(X,Y)
949 READ Z(X,Y), P(R2, S5), X(4)

GENERAL FORM:

statement number READ matrix variable _(_ expression)_

or

statement number READ matrix variable (expression , expression) ...

PURPOSE

Causes the specified matrix element to be
read from the current DATA statement.

READ(elem.

COMMENTS

Expressions (subscripts) should evaluate to
integers. Non-integers will be rounded to
the nearest integer.

Expressions following the matrix variable
designate the row and column of the matrix
element. Do not confuse these with working
size specifications, such as those following
MAT INPUT statement.

The MAT READ statement is used to read an

entire matrix from DATA statements. See
details in this section.

5-9.(869)

MATRICES

MAT READ

EXAMPLES: 350 MAT READ A
379 MAT READ B(5),C,D
38 MAT READ Z (5,8)
39p MAT READ N (P3,Q7)

GENERAL FORM:
statement number MAT READ matrix variable

or

statement number MAT READ matrix variable (expression) ...

or

statement numher MAT READ matrix variable (expression ., expression) ..

PURPOSE

Reads an entire matrix from DATA statements.

A new working size may be specified, within
the 1Timits of the original DIM statement.

COMMENTS

MAT READ causes the entire matrix to be filled
from the current DATA statement in the (row, col.)
order: 1,15 1,25 1,3; etc. In this case the

DIM statement controls the number of elements
read.

5-10 (869)

MATRICES

MATRIX ADDITION

EXAMPLES: 31 MAT C = B + A
320 MAT X = X + Y
330 MAT P =N+ M

GENERAL FORM:

statement number MAT matrix variable = matrix variable + matrix variable

PURPOSE

Establishes a matrix equal to the
sum of two matrices of identical

dimensions; addition is element-

by-element.

COMMENTS

The resulting matrix must be previously
mentioned in a DIM statement, if it has
more than 10 elements, or 10 x 10 ele-
ments if two dimensional. Dimensions

must be the same as the component matrices.

The same matrix may appear on both sides
of the = sign, as in example statement 320.

5-11 (869)

MATRICES

MATRIX SUBTRACTION

EXAMPLES: 550 MAT C = A - B
560 MAT B =8B - Z

5790 MAT X = X - A
GENERAL FORM:

statement number MAT matrix variable = matrix variable - matrix variable

PURPOSE

Establishes a matrix equal to the
difference of two matrices of
identical dimensions; subtraction
is element-by-element.

b
'
w
c
oo
—
e

COMMENTS

The resulting matrix must be previously
mentioned in a DIM statement if it has
more than 10 elements, or 10 x 10 elements
if two dimensional, Its dimension must be
the same as the component matrices.

The same matrix may appear on both sides
of the = sign, as in example statement 560.

5-12 (869)

MATRICES

MATRIX MULTIPLICATION

EXAMPLES: 93@ MAT Z
940 MAT X

95¢ MAT C

GENERAL FORM:

statement number MAT matrix variable = matrix variable * matrix variable

PURPOSE

Establishes a matrix equal to the
product of the two specified matrices.

Compute:
. Museum

COMMENTS

Following the rules of matrix multiplication,
if the dimensions of matrix B = (P,N) and ma-
trix C = (N,Q), multiplying B*C results in a
matrix of dimensions (P,Q).

Note that the resulting matrix must have an
appropriate working size.

The same matrix variable may not appear on
both sides of the = sign.

5-13 (869)

o
pg
=
p-d
)
=
c
-
—

EXAMPLES:

GENERAL FORM:

MATRICES

SCALAR MULTIPLICATION

119 MAT A
115 MAT C
120 MAT C
13@ MAT P

5) *
19) *
N/3)

Q7*N5) * R

B
C
* X

(
(
(
(

statement number MAT matrix variable = (expression) * matrix variable

PURPOSE

Establishes a matrix equal to the product
of a matrix multiplied by a specified num-
ber, that is, each element of the original
matrix is multiplied by the number.

COMMENTS
The resulting matrix must be previously
mentioned in a DIM statement, if it con-
tains more than 10 elements (10x10 if two

dimensional).

The same matrix variable may appear on
both sides of the = sign.

Both matrices must have the same working
size.

5-14 (869)

MATRICES

COPYING A MATRIX

EXAMPLES: 495 MAT B
419 MAT X
420 MAT Z

GENERAL FORM:

statement number MAT matrix variable = matrix variable

PURPOSE

Copies a specified matrix into a matrix
of the same dimensions; copying is ele- |
ment-by-element.

>
o
Q
(B
[
<C
=

COMMENTS

The resulting matrix must be previously
mentioned in a DIM statement if it has

more than 10 elements, or 10x10 if two

dimensional. It must have the same di-
mensions as the copied matrix.

5-15 (869)

MATRICES

IDENTITY MATRIX

EXAMPLES: 205 MAT A = IDN
219 MAT B = IDN (3,3)
215 MAT Z = IDN (Q5, Q5)
22¢ MAT S = IDN (6, 6)

GENERAL FORM:
statement number MAT array variable = IDN

or

statement number MAT array variable = IDN (expression , expression)

PURPOSE

Establishes an identity matrix (all @'s, with
a diagonal of all 1's): a new working size may
be specified.

COMMENTS

The IDN matrix must be two dimensional and square.

Specifying a new working size has the effect of a
DIM statement.

Sample identity matrix:

" W -
- - s
- e v

5-16 (869)

MATRICES

MATRIX TRANSPOSITION

EXAMPLES: 959 MAT Z = TRN (A)
969 MAT X = TRN (B)
979 MAT Z = TRN (C)

GENERAL FORM:

statement number MAT matrix variable = TRN (matrix variable)

PURPOSE

Establishes a matrix as the transposition of
a specified matrix; transposes rows and columns.

COMMENTS

Sample transposition:

Original Transposed
12 3 1 4 7
4 5 6 2 5 8
7 8 9 3 6 9

Note that the dimensions of the resulting matrix
must be the reverse of the original matrix. For
instance, if A has dimensions of 6,5 and MAT C =
TRN (A), C must have dimensions of 5,6.

5-17 (869)

MATRICES

MATRIX INVERSIOW

EXAMPLES: 389 MAT A = INV(B)
39¢ MAT C = INV(A)
490 MAT Z = INV(Z)

GENERAL FORM:

statement number MAT matrix variable = INV (matrix variable)

PURPOSE

Establishes a square matrix as the inverse
of the specified square matrix of the same
dimensions.

COMMENTS

[
=
<
m
x
w
g
o
=

A matrix may be inverted into itself, as in
example statement 49@, above.

Number representation in TSB is accurate to
6-7 decimal digits; matrix elements are
rounded accordingly.

5-18 (869)

MATRICES

MAT PRINT#

EXAMPLES: 520 MAT PRINT #5; A
" 53@ MAT PRINT #6, 3; B
549 MAT PRINT #4,M; A
55@ MAT PRINT #N,M; A

GENERAL FORM:
statement number MAT PRINT# file number formula ; matrix variable ...

or

stat. no. MAT PRINT# file no. form. , record no. form.; matrix var. ...

PURPOSE

Prints an entire matrix on a file, or on a
specified record within a file.

MAT PRINT

COMMENTS

When printing on a specified file record,
remember that each record holds a maximum
of 32 numbers. Attempting a MAT PRINT of
a matrix having more than 32 elements gen-
erates an error diagnostic, terminating
the program.

5-19 (869)

MATRICES

MAT READ# .

EXAMPLES: 729 MAT READ #2;A
730 MAT READ #2,3;B
74 MAT READ #M,N;B(5)
750 MAT READ #M,N;B(P7,R5)

GENERAL FORM:
statement number MAT READ# file formula number ; matrix variable ...

or

statement no. MAT READ# file formula no. , record no. formula ; matrix variable...

or

statement no. MAT READ# file form. no. , record no. form. ; matrix var. { expression)...

or

stmt. no. MAT READ# file form. no. , record no. form. ; matrix var. (expr. , expr.)...

PURPOSE

#QYIH LV

Reads a matrix from a file, or specified
record within a file. A new working size
may be specified.

COMMENTS

MAT READ# fills the entire matrix in a row-by-row
sequence of elements as: 1,1; 1,2; 1,35 1,4 ...

Remember that a maximum of 32 numbers may be
stored on a file record.

5-20 (869)

SECTION VI

STRINGS

This section explains how to manipulate
strings with BASIC statements. There is
1ittle difference in the form of state-
ments manipulating strings and those used
with numeric variables. One important dif-
ference however, is the use of subscripts
to reference strings and substrings.

The examples and comments in this section
emphasize modifications in statement form,
or other special considerations in handling
strings.

If you are familiar with the definitions of

"string" and "substring", skip to "The String
DIM Statement."

6-1 (869)

Section VI

STRINGS

Term: STRING

DEFINED IN P to 72 teleprinter characters,
TSB AS: enclosed by quotation marks.

COMMENTS

Special purpose characters such
as « , esc {or alt-mode) and
quotation marks may not be used
as string characters.

Apostrophes (single quotes) and
control characters are legal
string characters.

String variables must be a single
Tetter (A to Z) followed by a § ,
for example: A$,Z$,X$.

-l
o
o
12
o
c
—
<]
S
<

6-2 (869)

STRINGS

Term: SUBSTRING

DEFINED IN TSB AS: A certain character or characters

contained within a string.

COMMENTS

A substring is referenced by subscripts placed after the string variable.
For example, if the string Z$ = ABCDEF, the statement:

3¢@ PRINT Z$(2,6)
prints the substring:

BCDEF

Two subscripts specify the first and last characters of the substring.

Using single subscript, as:

316 PRINT Z$(3)
prints the substring:

CDEF

The single subscript identifies the first character of the substring; all
characters after it are considered to be part of the substring.

Both strings and substrings may be used with relational operators.

A substring may be a single character; using string Z$ above, substring
2$(2,2) = B.

A substring may also be defined as a null string (no value, as distinguished
from a blank space which has a value.) This is done by making the second

subscript one less than the first, as: A$(6,5). This is the only case in
which a smaller second subscript is acceptable.

6-3 (869)

>
[
-]
—
=
a
o
o
o
=

STRINGS

THe STRING DIM STATEMENT

EXAMPLES: 35 DIM A$ (72), B$(69)
49 DIM Z$ (19)
45 DIM N$ (2), R(5,5), P$(8)

GENERAL FORM:

statement number DIM string variable j_ number of characters in string _)_

PURPOSE

Reserves storage space for strings longer
than 1 character; also for matrices (arrays).

COMMENTS

The number of characters specified for a string
in its DIM statement must be expressed as an in-
teger from 1 to 72.

WIQ Buiusas

Each string having more than 1 character must be
mentioned in a DIM statement before it is used in
the program.

Strings not mentioned in a DIM statement are
assumed to have a length of 1 character.

The length mentioned in the DIM statement specifies
the maximum number of characters which may be as-
signed; the actual number of characters assigned
may be smaller than this number. See "The LEN
Function" in this section for further details.

6-4 (869)

STRINGS

THE STRING ASSIGNMENT STATEMENT

NOTE: These strings have been mentioned in a DIM statement

EXAMPLES: 209 LET A$ = "TEXT OF STRING"
219 B$ = "*%* TEXT 111"
229 LET C$ = A$(1,4)
23¢9 D$ = B$(4)
249 F$(3,8)=N$

GENERAL FORM:

statement number LET string variable = " string value "

or

statement number LET string variable = string or substring variable

or

Statement number string variable = " string value "

or

statement number string variable = string or substring variable

PURPOSE

Establishes a value for a string; the value
may be Titeral value in quotation marks, or
a string or substring value.

Str. ASSIGN

COMMENTS

Strings contain a maximum of 72 characters, enclosed by
quotation marks. Strings having more than 1 character
must be mentioned in a DIM statement.

Special purpose characters, such as < or (esc or alt-mode)
may not be string characters.

If the assigned value is longer than the string length,
the assigned value is truncated at the appropriate point.

6-5 (869)

STRINGS

The STRING INPUT STATEMENT

NOTE: These string variables have been mentioned in a DIM

statement.

EXAMPLES: 50 INPUT R$
55 INPUT A$,BS

6@ INPUT A$(1,5)
65 INPUT B$(3)

GENERAL FORM:
statement number INPUT string or substring variable... .

PURPOSE

Allows string values to be entered from the
teleprinter.

COMMENTS
wm
o
’ Placing a single string variable in an INPUT statement
E allows the string value to be entered without enclosing
- it in quotation marks.

If multiple string variables are used in an INPUT state-
ment, each string value must be enclosed in quotation
marks, and the values separated by commas. The same con-
vention is true for substring values. Mixed string and
numeric values must also be separated by commas.

If a substring subscript extends beyond the boundaries
of the input string, the appropriate number of blanks are
appended.

6-6 (869)

STRINGS

PRINTING STRINGS

EXAMPLES:

199 LET B3 = 642
195 PRINT A$

119 PRINT A$, B$, Z$

115 PRINT C$(8) "END OF STRING" B3
129 PRINT C$(1,7)

139 PRINT “THE TOTAL IS:";X5

GENERAL FORM:

statement number PRINT string or substring variable , string or substring variable...

PURPOSE

Causes the current value of the specified
string or substring variable to be output
to the teleprinter.

COMMENTS
String and numeric values may be mixed in a PRINT statement.

Specifying only one substring parameter causes the entire
substring to be printed. For instance, if C§ = "WHAT IS
YOUR NAME?", example statement 120 prints:

WHAT IS
while statement 115 prints

YOUR NAME?END OF STRING 642

Numeric and string values may be "packed" in PRINT statements

without using a ";", as in example statement 115.

0% and N© generate a return and linefeed respectively when
. printed as string characters.

6-7 (869)

Str. PRINT

STRINGS

READING STRINGS

EXAMPLES: 3p@ READ C$
305 READ X$, Y$, Z$
319 READ Y$(5), A,B,C5,N$

315 READ Y$(1,4)
GENERAL FORM:

statement number READ string or substring variable , string or substring variable ,...

PURPOSE

Causes the value of specified string or substring
variable to be read from a DATA statement.

COMMENTS

A string variable (to be assigned more than 1 character)
must be mentioned in a DIM statement before attempting
to READ its value.

ELIEED

String or substring values read from a DATA statement
must be enclosed in quotation marks, and separated by
commas. See "Strings in DATA Statements" in this section.

Only the number of characters specified in the DIM statement
may be assigned to a string. Blanks are appended to sub-
strings extending beyond the string dimensions.

Mixed string and numeric values may be read; see "The TYP

Function", Section III for description of a data type check
which may be used with DATA statements. ‘

6-8 (869)

STRINGS

STrRING IF

EXAMPLES: 349 IF C$<D$ THEN 8PP
359 IF C$>=D$ THEN 999
360 IF C$#D$ THEN 1000
370 IF N$(3,5)<R$(9) THEN 5p9
380 IF A$(1@)="END" THEN 40p

GENERAL FORM:

statement no. 1F string variable relational oper. string var. THEN statement no.

PURPOSE

Compares two strings. If the specified condition
is true, control is transferred to the specified
statement.

COMMENTS

Strings are compared one character at a time, from left
to right; the first difference determines the relation.
If one string ends before a difference is found, the short-

er string is considered the smaller one.
Characters are compared by their A.S.C.I.I. representation.
. See Section VII, "String Evaluation by ASCII Codes" for

details.

If substring subscripts extend beyond the Tength of the
string, null characters (rather than blanks) are appended.

6-9 (869)

STRINGS

THe LEN FuncTION

EXAMPLE: PRINT LEN (A$)
PRINT LEN (X$)
PRINT "TEXT"; LEN(A$); B$, C
IF LEN (P$) #5 THEN 6p@
IF LEN (= 5 THEN 6@9

P$)
IF LEN (P$) = 5 OR LEN (P$) = 1¢ THEN 19

LET X$(LEN(X$)+1) = "ADDITIONAL SUBSTRING"

6@0@ STOP
609 PRINT "STRING LENGTH = "; LEN (P$)

GENERAL FORM:
statement number statement type LEN (string variable) ...

PURPOSE

Supplies the current (logical) length of the specified
string, in number of characters.

m
=
!
|
poe
(@]
o+
-t
(=]
poe

COMMENTS

DIM merely specifies a maximum string length. The LEN
function allows the user to check the actual number of
characters currently assigned to a string variable.

Note that LEN is a directly executable command (See
Section III), while LEN (...$) is a pre-defined function
used only as an operand in a statement. The LEN command
gives the working program length; the LEN function gives
the current length of a string.

6-10 (869)

STRINGS

StriINGS IN DATA STATEMENTS

EXAMPLES: 50@ DATA "NOW IS THE TIME."
519 DATA "HOW", "ARE", "YOU,"

52@ DATA 5.172, "NAME?", 6.47,5071

GENERAL FQRM:
statement number DATA " string text " , " string text " ...

PURPOSE

Specifies data in a program (string values may
also be used as data).

COMMENTS

String values must be enclosed by quotation:
marks and separated by commas.

String and numeric values may be mixed in a
single DATA statement. They must be separated

Str. DATA

by commas.

Strings up to 72 characters long may be stored
. in a DATA statement.

See "The TYP Function", Section III, for

description of a data type (string, numeric)
check which may be used with DATA statements.

6-11 (869)

v
o+
X

©
-
—
=
—
4

STRINGS

PRINTING STRINGS ON FILES

EXAMPLES: 35@ PRINT #5; "THIS IS A STRING."
355 PRINT #8; C$, B, X$, Y$, D$
36@ PRINT #7,3; X$, P$, "TEXT", 27.5,R7
365 PRINT #N,R; P$, N, A(5,5), "TEXT"

GENERAL FORM:

statement number PRINT file number , record number formula ; string variable .-

or

statement number PRINT file number formula , record number formula ; " string text "...

or

statement number PRINT file number formula ; string variable or substring variable-- -

PURPOSE

Prints string or substring variables on a file.

COMMENTS

String and numeric variables may be mixed in a single file
or record within a file (example statement 360 above).

The formula for determining the number of 2-character words
required for storage of a string on a file is:

number of characters in string if the number of characters is even;

1+ 5
1+ number of characters in string + 1 if the number of characters is odd.
2

A maximum of 124 string characters may be stored on 1 file record.

See "The TYP Function", Section III for description of a data

type check. ’

6-12 (869)

L4

STRINGS

READING STRINGS FROM FILES

EXAMPLES: 719 READ #1, 5; A$, BS
715 READ #2; C$, A1, B2, X
72p READ #3,65 C$(5),X$(4,7),Y$

739 READ #N,P; C$, V$(2,7), R$(9)
GENERAL FORM:

statement no. READ# file no. formula , record no. formula ; string or substring variable. ..

or

statement no. READ# file no. formula ; string or substring variable...

PURPOSE

Reads string and substring values

‘ from a file.

COMMENTS

String and numeric values may be
mixed in a file and in a READ#
statement; they must be separated
by commas.

See "The TYP Function", Section III,
for description of a data type check.

6-13 (869)

SECTION VII

LOGICAL QPERATIONS

LOGICAL VALUES AND NUMERIC VALUES

A distinction should be made between logical values and
the numeric values produced by logical evaluation, when
using the logical capability of Time Shared BASIC.

The logical value of an expression is determined by
definitions established in the user's program.

The numeric values produced by logical evaluation are

assigned by Time Shared BASIC. The user may not assign
these values.

Logical value is the value of an expression or statement,
using the criteria:

any nonzero expression value = "true"

any expression value of zero = "false"

When an expression or statement is logically evaluated,
it is assigned one of two numeric values, either:

1, meaning the expression or statement is "true",
or
P, meaning the expression or statement is "false".

7-1 (869)

LOGICAL OPERATIONS

RELATIONAL OPERATORS

There are two ways to use the relational operators in logical evaluations:
1. As a simple check on the numeric value of an expression.

EXAMPLES: 159 IF B=7 THEN 600
20P IF A9#27.65 THEN 709
309 IF (Z/19)>=@ THEN 8¢9

When a statement is evaluated, if the "IF" condition is currently true (for
example, in statement 150, if B = 7), then control is transferred to the
specified statement.

Note that the numeric value produced by the logical evaluation is unimportant
when the relational operators are used in this way. The user is concerned
only with the presence or absence of the condition indicated in the IF

statement.

Continued on the next page.

7-2 (869)

LOGICAL OPERATIONS

RELATIONAL OPERATORS, CONTINUED

2. As a check on the numeric value produced by logically
evaluating an expression, that is: "true" =1, "false" = @.

EXAMPLES: 610 LET X=27
615 PRINT X=27
620 PRINT X#27

63@ PRINT X>=27

The example PRINT statements give the numeric values produced
by logical evaluation. For instance, statement 615 is inter-
preted by TSB as "Print 1 if X equals 27, @ if X does not equal
27." There are only two logical alternatives; 1 is used to
represent "true", and @ "false".

The numeric value of the logical evaluation is dependent on, but
distinct from, the value of the expression. In the example above,
X equals 27, but the numeric value of the logical expression X=27
is 1, since it describes a "true" condition.

7-3 (869)

Rel, Oper.

*dQ uesajoog

LOGICAL OPERATIONS

BOOLEAN OPERATORS

There are two ways to use the Boolean Operators.
1. As logical checks on the value of an expression or expressions.

EXAMPLES: 519 IF AT OR B THEN 670
52¢ IF B3 AND C9 THEN 68¢
53¢ IF NOT C9 THEN 699
549 IF X THEN 799

Statement 51p is interpreted: "if either Al is true (has a nonzero value) or B is true
(has a nonzero value) then transfer control to statement 67p."

Similarly, statement 54p is interpreted: "if X is true (has a nonzero value) then
transfer control to statement 7¢@."

The Boolean operators evaluate expressions for their logical values only; these are

“true" = any non-zero value, “"false" = zero. For example, if B3 = 9 and C9 = -5,
statement 520 would evaluate to “"true", since both B3 and C9 have a nonzero value.

2. As a check on the numeric value produced by logically evaluating an expression,
that is: "true" = 1, "false" = .

i

EXAMPLES: 499 LET B =C = 7
5¢@ PRINT B AND C
519 PRINT C OR B
52¢ PRINT NOT B

Statements 5@@ - 520 returns a numeric value of either: 1, indicating that the state-
ment has a logical value of "true", or @, indicating a logical value of "false".

Note that the criteria for determining the logical values are:
true = any nonzero expression value
false = an expression value of @.

The numeric value 1 or @ is assigned accordingly.

7-4 (869)

LOGICAL OPERATIONS

SOME EXAMPLES

These examples show some of the possibilities for combining
logical operators in a statement.

It is advisable tc use parentheses wherever possible when
combining logical operators.

EXAMPLES: 319 IF (A9 MIN B7)<@ OR (A9 MAX B7)>1@@ THEN 9gp
31¢ PRINT (A>B) AND (X<Y)
32¢ LET C = NOT D
339 IF (C7 OR D4) AND (X2 OR Y3) THEN 93@
349 IF (A1 AND B2) AND (X2 AND Y3) THEN 94¢

The numerical value of "true" or "false" may be used in
algebraic operations. For example, this sequence counts
the number of zero values in a file:

99 LET X

198 FOR 1 =1 TO N

1190 READ #1; A

129 LET X = X+(A=9)

13@ NEXT I

14@ PRINT N; "VALUES WERE READ."

150 PRINT X; "WERE ZEROES."

160 PRINT (N-X); "WERE NONZERO."

Examples

Note that X is increased by 1 or @ each time A is read; when
A = @, the expression A = @ is true, and X is increased by 1.

7-5 (869)

SECTION VIII

FOR THE PROFESSIONAL

This section contains the most precise reference authority --
the syntax requirements of Time Shared BASIC. The syntax
requirements are explicit and unambiguous. They may be used
in all cases to clarify any ambiguity in descriptions of
BASIC Tanguage features presented in other sections.

The other subsections give technical information of interest
to the sophisticated user.

8-1 (869)

Section VIII

FOR THE PROFESSIONAL

SYNTAX REQUIREMENTS OF TSB

LEGEND

::= "js defined as..."

or
< > enclose an element of Time Shared BASIC

LANGUAGE RULES

1. Exponents have 1 or 2 digit integers only.

2. A <parameter> primary appears only in the defining formula of a
<DEF statement>.

3. A <sequence number> must lie between 1 and 9999 inclusive.

4, An array bound must lie between 1 and 9999 inclusive; a string
variable bound must 1ie between 1 and 72 inclusive.

5. The character string for a <REM statement> may include the

il
.

character

6. An array may not be transposed into itself, nor may it be both
an operand and the result of a matrix multiplication.

Note: Parentheses, (), and square brackets, [], are accepted

interchangeably by the syntax analyzer.

Continued on the next page.

X@IUAS

8-2 (869)

<constant>
<number>

<decimal number>
<integer>

<digit>

<exponent part>
<literal string>
<character string>

<character>

<variable>

<simple variable>
<letter>

<subscripted variable>
<sublist>

<string variable>
<string simple variable>
<expression>
<conjunction>
<relation>

<minmax>

<sum>

<term>

. <subterm>

FOR THE PROFESSIONAL

SYNTAX REQUIREMENTS OF TSB

<number> | +<number> | - <number> | <literal string>
<decimal number>|<decimal number><exponent part>
<integer>|<integer>. |<integer>.<integer>|.<integer>
<digit>|<integer><digit>

gl112|3]4]5|6(|7]8]9
E<integer>|E+<integer>|E-integer (see rule 1)
"<character string>"

<character>|<character string><character>

any ASCII character except null, Tine feed, return, x-off,

alt-mode, escape, «, " , and rubout

<simple variable>|<subscripted variable>
<letter>|<letter><digit>
A|B|C|D|E|F|GIH|I|J|K|L|M[N|O|P|Q|R|S|T|U|V|W|X]|Y|Z
<letter>(<sublist>)

<expression>|<expression>,<expression>

<string simple variable>|<string simple variable>(<sublist>)
<letter>$
<conjunction>|<expression>0R<conjunction>
<relation>|<conjunction>AND<relation>

<minmax>| <minmax><relational operator><minmax>

<sum>| <minmax>MIN<sum> | <minmax>MAX <sum>

<term>| <sum>+<term> | <sum>- <term>
<factor>| <subterm>*<factor>|<subterms>/<factor>

<denial>|<signed factor>

8- 3 (869)

FOR THE PROFESSIONAL

SYNTAX REQUIREMENTS OF TSB, CONTINUED

<denial>
<signed factor>
<factor>
<primary>

<relational operator>
<parameter>
<functional>

<function identifier>
<pre-defined function>
<source string>
<destination string>
<file reference>
<file formula>
<record formula>
<array identifier>
<sequence number>
<program statement>
<BASIC statement>

<LET statement>

<leftpart>
<IF statement>

<decision expression>

<comparison string 1>
<comparison string 2>

<factor>|NOT<factor>
+<factor>|-<factor>
<primary>|<factor>+<primary>

<variable>|<number>|<functional>|<parameter> (rule 2) |
(<expression>)

<|<=|=|#|<>|>=|>
<letter>|<letter><digit>

<function identifier>(<expression>)
<pre-defined function>(<expression>)|
LEN (<string simple variable>)

FN <letter>

SIN|COS|TAN|ATN|EXP |LOG|ABS|SQR| INT|RND|SGN|TYP
<string variable>|<literal string>

<string variable>

#<file formula>|#<file formula>,<record formula>
<expression>

<expression>

<letter>

<integer> (see rule 3)

<sequence number><BASIC statement>carriage return

<LET statement>|<IF statement>|<GOTO statement>|
<GOSUB statement>|<RETURN statement>|<FOR statement> |
<NEXT statement>|<STOP statement>|<END statement> |
<DATA statement>|<READ statement>|<INPUT statement>|
<PRINT statement>|<RESTORE statement>|<DIM statement>|
<DEF statement>|<FILES statement>|<REM statement> |
<MAT statement>

LET <leftpart><expression>|

LET <destination string>=<source string>|
<leftpart><expression>|

<destination string>=<source string>

<variable>=|<leftpart><variable>=

IF<decision expression>THEN<sequence number>|
IF END #<file formula>THEN<sequence number>

<expression>|
<comparison string 1><relational operator>
<comparison string 2>

<string variable>
<string variable>|<literal string>

8-4 (869)

<G0TO statement>

<sequence 1ist>
<GOSUB statement>

<RETURN statement>
<FOR statement>

<for variable>
<initial value>
<final value>
<step size>
<NEXT statement>
<STOP statement>
<END statement>
<DATA statement>
<READ statement>

<variable list>
<read variable>
<INPUT statement>
<PRINT statement>

<type statement>
<print 1>

<print 2>

<print 3>

<print expression>

FOR THE PROFESSIONAL

SYNTAX REQUIREMENTS OF TSB, CONTINUED

<file write statement> 1=

<write expression>
<RESTORE statement>

GOTO <sequence numbers>|
GOTO <expression>OF<sequence list>

<sequence number>|<sequence 1ist>,<sequence numbers

GOSUB <sequence number>|
GOSUB <expression>0F <sequence 1ist>

RETURN

FOR <for variable>=<initial value>TO<final value>|
FOR <for variable>=<initial value>TO<final value>
STEP<step size>

<simple variable>

<expression>

<expression>

<expression>

NEXT<for variable>

STOP

END

DATA<constant>|<DATA statement>,<constant>

READ<variable list>|READ<file reference>|
READ<file reference>;<variable list>

<read variable>|<variable 1ist>,<read variable>
<variable>|<destination string>
INPUT<variable list>

<type statement>|<file write statement>|
PRINT<file reference>

<print 1>|<print 2>

PRINT | <print 2>,|<print 2>;|<print 3>

<print 1><print expression>|<print 3>

<type statement><literal string>
<expression>|TAB(<expression>) |<source string>

PRINT<file reference>;<write expression>|
<file write statement>,<write expression>]|
<file write statement>;<write expression>|
<file write statement><literal string>|
<file write statement><literal string>
write expression>

Syntax

<expression>|END|<source string>
RESTORE | RESTORE <sequence number>

8-5 (869)

FOR THE PROFESSIONAL

SYNTAX REQUIREMENTS OF TSB, cONTINUED

<DIM statement> ::= DIM<dimspec>|<DIM statement>,<dimspec>

<dimspec> ::= <array identifier>(<bound>)|
<array identifier>(<bound>, <bound>) |
<string simple variable>(<bound>)

<bound> ::= <integer> (see rule 4)

<DEF statement> ::= DEF<function identifiers>(<parameters>)=<expression>
<FILES statement> ::= FILES<file name>|<FILES statement>,<file name>
<file name> ::= a string of 1 to 6 printing characters

<REM statement> ::= REM<character string> (see rule 5)

<MAT statement> ::= <MAT READ statement>|<MAT INPUT statement> |

<MAT PRINT statement>|<MAT initialization statement>|
<MAT assignment statement>

<MAT READ statement> ::= MAT READ<actual array>|
MAT READ<file reference>;<actual array>|
<MAT READ statement>,<actual array>

<actual array> ::= <array identifier>|<array identifier>(<dimensions>)
<dimensions> ::= <expression>|<expression>,<expression>
<MAT INPUT statement> ;1= MAT INPUT<actual array>|
<MAT INPUT statement>,<actual array>
<MAT PRINT statement> 1i= <MAT PRINT 1>|<MAT PRINT 2> ‘
<MAT PRINT 1> ::= MAT PRINT<array identifier>|

MAT PRINT<file reference>;<array identifier>|
<MAT PRINT 2><array identifier>

<MAT PRINT2> ::= <MAT PRINT 1>, |<MAT PRINT 1>;
<MAT initialization
statement>::= MAT<array identifier>=<initialization function>|
MAT<array identifier>=<initialization function>
(<dimensions>)
<initialization function>::= ZER|CON|IDN
<MAT assignment
statement>(rule 6) ::= MAT<array identifier>=<array identifiers|

MAT<array identifier>=<array identifier><mat operator>
<array identifier>|

MAT<array identifier>=INV(<array identifier>)

MAT<array identifier>=TRN(<array identifier>)]|
MAT<array identifier>=(<expression>)*<array identifier>

-

XeRUAS

<mat operator>

8-6 (869)

FOR THE PROFESSIONAL

STRING EVALUATION BY ASCII CODES

Each teleprinter character is represented by an A.S.C.I.I.
(American Standard Code for Information Interchange)
number.

Strings are compared by their A.S.C.I.I. representation.
The A.S.C.I.1. sequence, from lowest to highest is:

Lowest: bell
space

!

#

$

%

o :

W 00 N O O,

¥ e o~
v il

+

]

ASCII Code

I O m Mmoo O W I @ <

A B2wWw N =] N
>0/ M N < X E < C 4 w0n T O VWO =Z - x & -

Highest

. Quotation marks are used to delimit strings, and may not
be used within a string.

8-7 (869)

FOR THE PROFESSIONAL

MEMORY ALLOCATION BY A TSB USER

Approximate number of 2-character words per user: 5,440
System overhead (approx.): 320
Space available for user allocation: 5,120 2-character words

SOME EXAMPLES OF USER-DETERMINED ALLOCATION*

a) Introduction of each simple, string, or matrix
variable uses 4 words.

b) A 9 word stack is reserved for GOSUB's.
c) 6 X (maximum level of FOR...NEXT loop nesting)

d) FEach file name mentioned in a FILES statement
reserves 64 words for buffer space. |

e) An approximate estimate of space required for
a program is:
11 words per BASIC statement
+2X (number of matrix elements dimensioned)
+1/2X(number of string characters used)

* This is variable "system overhead"; it is not included

in word counts produced by the LEN command.

22eds Auowo

8-8 (869)

APPENDIX A

HOW TO PREPARE A PAPER TAPE OFF-LINE

To prepare a paper tape for input:

1. Turn teleprinter control knob
to "LOCAL".

2. Press the "ON" button (on tape
punch).

3. Press the "HERE IS" key; or press
@“ (control shift "P") several
times to put Teading holes on the
tape.

4. Type program as usual, following
each line with return linefeed.

5. Press "HERE IS"; or press @°several
times to put trailing holes on the
tape.

6. Press the "OFF" button on the tape
punch.

COMMENTS

1. The standard on-line editing features,
such as esc, +, and repeating the same
line number may be punched on tape; esc
must be followed by return linefeed.

2. Pressing the "B.SP." (backspace) button
on the tape punch, then the "RUBOUT" key
will physically delete the previous char-
acter from a paper tape.

A-1 (869)

Appendix A

APPENDIX B

THE X-ON, X-OFF FEATURE

Teleprinters equipped with the X-ON, X-OFF
feature may be used to input data from a
paper tape while a program is running.

Data is punched on paper tape in this format:

_ line of data items separated by commas x-off return linefeed

(x~off, return and linefeed are teleprinter keys.)

COMMENTS

Remember that each line of data must end

with x-off return linefeed.

See Appendix A, "Preparing A Paper Tape
0ffline", for instructions on editing a
paper tape.

B-1 (869)

Appendi x B.

APPENDIX C

SaMPLE ProGRAM-LISTING A FILE

This program shows the use of the multi-branch GOTO
and the TYP function.

9@@2 REM LISTS THE CONTENTS OF A FILE.
9p9@3 LET N=1

99P4 DIM A$[72]

99P5 LET I=p

99P6 LET I=I+]

9p@7 READ #N,I

9@P8 PRINT "**FILE#"N

9@@9 PRINT "RECORD"I

9¢1@ GOTO TYP(-N) OF 9911,9014,9017,90@6
9911 READ #N;A

9912 PRINT A;

9913 GOTO 9919

9%14 READ #N;A$

9915 PRINT A$

9¢16 GOTO 9¢19

917 PRINT “"**END OF FILE"N"**

9p18 LET N=N+1

90919 GOTO 9@@5

9@2¢ STOP

9999 END

C-1 (869)

APPENDIX C

SampLE PrROGRAM-INTEREST RATES

This program calculates the interest rate of a loan. Note the checks
included to guide the user -- they are skipped over if the data remains
within pre-defined Timits.

9@@3 PRINT "* TRUE ANNUAL INTEREST RATE *"
994 PRINT

9919 PRINT "THIS PROGRAM CALCULATES THE TRUE ANNUAL INTEREST RATE"
992@ PRINT "ON AN INSTALLMENT LOAN"

9P3@ PRINT

9943 PRINT

995@ PRINT "IF YOU NEED INSTRUCTIONS TYPE 1, OTHERWISE TYPE @: "
9p6@ INPUT X

9979 IF X=p THEN 912¢

9¢8@ PRINT "TO USE THIS PROGRAM IT IS NECESSARY FOR YOU TO SUPPLY"
9p9@ PRINT "FOUR VARIABLES: A = AMOUNT OF LOAN (IN §), P = AMOUNT OF" ‘
919@ PRINT "PAYMENT ($), N = THE TOTAL NUMBER OF PAYMENTS DUE, AND K = NUMBER"
911¢ PRINT "OF PAYMENTS DUE IN ONE YEAR."

9115 PRINT ‘

912@ PRINT "WHAT ARE A,P,N,K “;

913p INPUT A,P,N,K

914@ PRINT

915¢ IF N=1 THEN 955¢

9160 IF P*N >= A THEN 9229

917¢ PRINT

9189 PRINT "THATS NOT REASONABLE; THE PAYMENTS ADD UP TO LESS THAN THE AMOUNT"
919¢ PRINT "OWED. TRY AGAIN."

92¢@ PRINT

9219 GOTO 9129

922@ LET R=p

923¢ LET D=1p¢

9249 GOSUB 933p

9250 IF P=P1 THEN 9430

c-2 (869)

APPENDIX C

SampLE ProGrAM-INTEREST RATES, cONTINUED

926@ IF P>P1 THEN 9299
927 LET R=R-D
928¢ GOTO 93pp
929¢ LET R=R+D
93p@ LET D=D/2
9319 IF D<.PP@1 THEN 9430
932¢ GOTO 9249
933@ LET R1=R/(19g*K)
9349 LET Q=1+R1
935¢ IF N*LOG(Q)/LOG(1@) <= 75 THEN 938¢
9369 LET P1=A*R1
937¢ RETURN
938¢ IF Q>1 THEN 9419
939¢ LET P1=A/N
94¢9@ RETURN
9419 LET P1=A*Q+N*R1/(QtN-1)
942¢ RETURN
943p LET R=.p1*INT(.5+19@*R)
944¢ IF R<199.5 THEN 95@¢
945¢ PRINT
946 PRINT "ARE YOU SURE THE DATA IS CORRECT? THE INTEREST RATE IS OVER"
947@ PRINT "2@@ PERCENT. TRY AGAIN."
948p PRINT
949¢ GOTO 9120
95@@ PRINT "THE TRUE ANNUAL INTEREST RATE = ";R
951¢ PRINT
952¢ PRINT
9539 PRINT "ANOTHER CASE?? TYPE 'N' TO QUIT, 'Y' TO TRY AGAIN";
9532 INPUT Q$
9534 IF Q$="N" THEN 9999
954¢ GOTO 9129
955@ LET R=(P/A-1)*K
9560 LET R=1@@*R
9579 GOTO 9439
9999 END
C-3 (869)

(&)
>
or—
o
<
(]
o
o
<C

D XLpuaddy

This

APPENDIX C

SampLE PrograM~AN ELECTRONIC CALENDAR

program depends on a series of IF... THEN statements to find a day

of the week. Note the use of the INT function, and the choice given in
statements 9080 - 9882 in which only a "NO" reply is significant.

9pp2
9003
9904
9p@5
9906
9pp7
998
9909
9919
9911
9912
9913
9914
9915
9916
9917
90918
9919
992p
9921
9022
9p23
9924
9025
90926
9p27
90928
9929
9030

PRINT "THIS PROGRAM DETERMINES THE DAY OF THE WEEK"
PRINT "ON WHICH A GIVEN DATE FALLS."
DIM A$[5]

LET W=W1=p

DIM F[12],L[12]

MAT READ F

MAT READ L

GOTO 9976

IF Y<1 THEN 9927

IF M>12 THEN 9027

IF M<1 THEN 9@27

IF D<1 THEN 9@27

IF Y>1752 THEN 9034

IF Y<1582 THEN 9929

IF Y=1752 THEN 9@23

IF Y=1582 THEN 9@19

GOTO 9431

IF M<1@ THEN 9929

IF M>1@ THEN 9031

IF D<15 THEN 9029

GOTO 9@31

IF M<9 THEN 9931

IF M>9 THEN 9¢34

IF D<14 THEN 9031

GOTO 9034

PRINT "UNACCEPTABLE DATA -- TRY AGAIN."
GOTO 9p78

LET G1=0

GOTO 9032

C-4 (869)

9931
9932
9033
9934
9035
9p36
9037
9938
9939
9p4p
9941
9042
9943
9p4s
9p45
9046
9947
9p4s8
9049
9p5¢
9951
9p52
9953
9954
9955
9056
9957
9958
9959
9060
9961
9062
9063

APPENDIX C

SampLE ProGrAM-AN ELECTRONIC CALENDAR, CONTINUED

LET G1=1
LET J1=1

"GOTO 9836

LET G1=1

LET J1=p

IF J1 <> 1 THEN 994

LET L1=p

LET A=Y+INT((Y+3)/4)

IF Y <> INT(Y/4)*4 THEN 9944
LET L1=1

IF M<3 THEN 9944

LET L=1

GOTO 9945

LET L=

LET Z=A+D+L+F[M]+5

LET Z=Z-INT(Z/7)*7

LET Q=L[M]

IF M <> 2 THEN 9@5p

LET Q=Q+L1

IF D>Q THEN 9927

PRINT "OLD STYLE CALENDAR: ";
LET W=

GOSUB 9989

IF G1 <> 1 THEN 9@8p

LET L1=p

LET Y=Y-4@p*INT(Y/409)

LET A=Y+INT((Y+3)/4)-INT((Y-1)/1¢9)
IF Y <> INT(Y/4)*4 THEN 9065
IF Y=p THEN 9961

IF Y=19@*INT(Y/19@8) THEN 9965
LET L1=T

IF M<3 THEN 9065

LET L=1

C-5 (869)

x>
4]
=]
Q.
-
x
[

9064
9065
9066
9967
9068
9069
99790
9971
9@72
9973
9974
9975
9076
9p77
9078
9979
9p8p
9081
9@82
9p83
9984
9085
9p86
9987
9p88
9989
9999
9991
90992
9093
9094
9¢95

APPENDIX C

SampLE ProGrRAM-AN ELECTRONIC CALENDAR, coONTINUED

GOTO 9@66

LET L=0@

LET Z=A+D+L+F[M]

LET Z=Z-INT(Z/7)*7

LET Q=L[M]

IF M <> 2 THEN 9@71

LET Q=Q+L1

IF D>Q THEN 9@27

IF W=@ THEN 9874

PRINT "NEW STYLE CALENDAR: ";
GOSUB 9089

GOTO 9@8p

PRINT "ENTER MONTH NUMBER, DATE, AND YEAR."
PRINT

INPUT M,D,Y

IF Wl=p THEN 9919

PRINT "IS THERE ANOTHER DATE YOU WANT TO KNOW";
INPUT A$

IF A$="NO" THEN 9999

PRINT

PRINT "ENTER DATE: ";

LET W=0

LET Wi1=1

INPUT M,D,Y

GOTO 9919

GOTO Z+1 OF 9@909,9092,9094,9096,9098,9109,9102
PRINT "FRIDAY"

RETURN

PRINT "SATURDAY"

RETURN

PRINT "SUNDAY"

RETURN

C-6 (869)

APPENDIX C

SaMpLE ProGrAM-AN ELECTRONIC CALENDAR, CONTINUED

9096 PRINT "MONDAY"

9397 RETURN

9p98 PRINT "TUESDAY"

9999 RETURN

9199 PRINT "WEDNESDAY"

91@1 RETURN

9192 PRINT "THURSDAY"

9193 RETURN

9909 DATA @,3,3,6,1,4,6,2,5,0,3,5
9991 DATA 31,28,31,39,31,30,31,31,30,31,30,31
9999 END

C-7 (869)

Appendix C

9 XLpuaddy

APPENDIX C

SAMPLE PROGRAMS

H-P_FOOTBALL

This program is a football game, based on the random number generator.
Notice how the GO TO's and GOSUB' save repeating statements. Also note
that the coin toss allows the user to specify a number, then generates

as many random numbers, and uses the final number to determine the result.

1 PRINT "WELCOME TO THE CUPERTINO DIVISION FOOTBALL CHAMPIONSHIP GAME".
2@ PRINT "THE DIVISION PLAYOFF IS BETWEEN THE. HEWLETT HORNETS"

39 PRINT "AND THE PACKARD PANTHERS."

49 PRINT

5@ PRINT "WE'LL NEED SOME HELP. WILL YOU CALL THE PLAYS FOR HEWLETT";
6@ DIM W$[12]

70 INPUT W$

8¢ PRINT "FINE. THE COMPUTER WILL CALL THE PLAYS FOR PACKARD."

9@ PRINT

19@ PRINT “OK, COACH- FIRST, LET'S GET ACQUAINTED. WHAT'S YOUR NAME";
119 INPUT W$

12¢ PRINT "OK "W$", TYPE ONE OF THE PLAY NUMBERS FOLLOWED BY A RETURN"
139 PRINT "THE PLAY NUMBERS ARE:"

14¢ PRINT "1 = SIMPLE RUN; 2 = TRICKY RUN; 3 = SHORT PASS;"

15 PRINT "4 = LONG PASS; 5 = PUNT; 6 = QUICK KICK; 7 = PLACE KICK."
16@ PRINT

178 LET P1=51

189 LET Q1=

199 LET T=9

200 LET S[1]=p

219 LET S[3]=¢

22¢ PRINT "T0SS OF THE COIN-TYPE A NUMBER FROM 1 TO 3@@ (THEN RETURN)."
23p INPUT Z1

249 FOR I=1 TO Z1

250 LET X=RND(Q1)

26 NEXT I

27¢ IF RND(Q1)>1/2 THEN 3¢9

280 PRINT “PACKARD WON THE TOSS."

C-8 (869)

APPENDIX C

SAMPLE PROGRAMS. CONTINUED

H-P_FOOTBALL

299 GOTO 1580

3p@ PRINT "HEWLETT WON THE T0SS."

319 PRINT "HEWLETT'S BALL ON ITS OWN 2@."
32¢ LET P=1

330 LET X=2¢

340 LET X1=20

35¢ LET D=1

360 GOTO 1729

37¢ PRINT "CALL IT, "W$".";

389 INPUT Z

399 LET R=RND(Q1)

499 LET R=R*(.97+P*.(3)

419 LET T=T+

42¢ IF T<P1 THEN 549

43p PRINT P1-1; "PLAYS HAVE BEEN MADE. DO YOU WISH TO STOP NOW?"
449 PRINT "TYPE 1 FOR YES, @ FOR NO.""YOUR REPLY";
459 INPUT DI

46p GOTO D1+1 OF 520, 49p

479 GOTO 439

48p PRINT

499 PRINT "END OF GAME ***"

5@@ PRINT "FINAL SCORE: HEWLETT";S[3];" PACKARD";S[1]
519 STOP

52@ PRINT "2@ MORE PLAYS WILL BE ALLOWED."
539 LET P1=P1+2¢

549 LET R1=RND(Q1)

550 LET F=p

560 IF Z>4 THEN 620

570 IF Z=1 THEN 740

580 IF Z=2 THEN 790

599 PRINT "PASS PLAY----- "

609 IF Z=3 THEN 860

619 GOTO 1919

620 REM PUNT

639 LET Y=INT(19@*(R-.5)43+35)

649 IF Z=7 THEN 233p

650 IF D=4 THEN 679

660 LET Y=INT(Y*1.3)

679 PRINT "PUNT GOOD FOR"Y "YARDS"

680 IF D<4 THEN 720

699 LET Y1=INT(R142%20)+(1-P)*INT(R+2*3p)
78@ PRINT "RUN BACK FOR "Y1 "YARDS"

719 LET Y=Y-Y1

720 LET F=-1

739 GOTO 1189

749 REM SIMPLE RUN

750 PRINT "RUNNING PLAY--";

760 LET Y=INT(24*(R-.5)43+3)

779 IF R1<.@5 THEN 83¢

C-9 (869)

Appendix C

9 XLpuaddy

780
790
809
819
820
830
849
850
869
870
88p
899
900
919
920
930
949
950
960
979
980
990
1000
1919
1020
1030
1040
1850
1060
1079
1080
1999
1199
1110
1120
1130
1149
1150
1160
1179
1189
1190
1200
1219
1220
1230
1249
1250
1260

APPENDIX C

SAMPLE. PROGRAMS. CONTINUED

H-P FOOTBALL

GOTO 1979
REM TRICKY RUN
PRINT "RUNNING PLAY--";
LET Y=INT(2@*R-5)
[F R1>.1 THEN 1979
LET F=-1
PRINT "#*** FUMBLE AFTER ";
GOTO 1979
REM SHORT PASS
IF R<.@5 THEN 929
IF R<.15 THEN 989
IF R<.55 THEN 950
PRINT "COMPLETE. ";
GOTO 1979
PRINT "INTERCEPTED. "
LET F=-1
GOTO 1180
PRINT "INCOMPLETE. "3
LET Y=0
GOTO 1979
PRINT "PASSER TACKLED. *“;
LET Y=-INT(19*R1)
GOTO 1979
REM LONG PASS
LET Y=INT(16@*(R1-.5)43+3p)
IF R<.1 THEN 929
IF R<.25 THEN 989
IF R<.7 THEN 950
GOTO 909
REM RESULT OF PLAY
LET X2=X+P*Y
IF X2 >= 1p@ THEN 1269
IF X2 <= @ THEN 1760
IF Y<@ THEN 1150
IF Y=p THEN 1179
PRINT "GAIN OF"Y"YARDS"
GOTO 118¢
PRINT "LOSS OF"-Y"YARDS"
GOTO 1189
PRINT "NO GAIN"
LET X=X+P*Y
IF X <= @ THEN 1760
IF X>5@ THEN 1239
PRINT "BALL ON HEWLETT'S"X"YARD LINE. “;
GOTO 1449
IF X >= 19@ THEN 1260
PRINT "BALL ON PACKARD'S"1@@-X;"YARD LINE, ";
GOTO 1449
IF P<@ THEN 1349

C-10 (869)

APPENDIX C

SAMPI.LE PROGRAMS, CONTINUED

H-P FOOTBALL

1270 IF F<@ THEN 1329

1280 PRINT "TOUCHDOWN!!!'

1290 LET P=-1

1309 GOSUB 2250

1319 GOTO 1589

1329 PRINT "TOUCHBACK FOR PACKARD."
1339 GOTO 1580

1349 IF F<@ THEN 1419

1350 PRINT "SAFETY!"

1360 GOSUB 2210

1379 PRINT "TOUCHDOWN FOF. HEWLETT!!!"
1388 LET X=49

1399 LET P=1

1499 GOTO 1610

1419 PRINT "TOUCHDOWN HEWLETT!!!"
142¢ GOSUB 2250

1439 GOTO 1580

144p LET D=D+1

1450 IF F >= @ THEN 1549

146@ IF P>@ THEN 1519

1479 PRINT

148Q PRINT "HEWLETT'S BALL."

1499 LET P=1

1509 GOTO 1619

1518 PRINT

1520 PRINT "PACKARD'S BALL."

1530 GOTO 1609

154@ IF P*(X-X1) >= 1@ THEN 1619
1550 IF D<5 THEN 1720

1560 IF P<@ THEN 1470

1579 GOTO 1519

1580 LET X=80

1599 PRINT "PACKARD'S BALL ON ITS OWN 2¢."
1609 LET P=-1

1610 LET D=1

162¢ PRINT "FIRST DOWN."

1630 IF P<@ THEN 1670

1640 IF X<99 THEN 1700

1650 LET X1=99

1669 GOTO 1739

1670 IF X>19 THEN 1709

1680 LET X1=19

1699 GOTO 1739

1790 LET X1=X

1719 GOTO 1739

172¢ PRINT "DOWN"D;"AND"1@+P*(S1-S);"YARDS TO GO."
1739 PRINT :

1748 IF P>@ THEN 379

1750 GOTO 1949

C-11 (869)

Appendix C

APPENDIX C

SAMPLE PROGRAMS., CONTINUED

H-P_FOOTBALL

176@ IF F<p THEN 1889

1779 IF P>p THEN 1829

178¢ PRINT "TOUCHDOWN!!!"
1799 LET P=1

1899 GOSUB 225@

1819 GOTO 319

1829 PRINT "SAFETY!!"

1830 GOSUB 2219

1849 PRINT "PACKARD GETS THE BALL ON ITS OWN 4p."
1850 LET X=6@

186@ LET P=-1

187¢ GOTO 1619

1889 IF P>p THEN 1919

1899 PRINT "TOUCHBACK FOR HEWLETT."
1909 GOTO 319

1919 PRINT "TOUCHDOWN PACKARD!!!™"
1920 GOSUB 225@

193p GOTO 319

1959 LET P=-1

196¢ IF D>1 THEN 2@2¢

197@ IF RND(Q1)>1/3 THEN 20¢9
1989 LET Z=3

1999 GOTO 2199

20090 LET Z=1

2019 GOTO 2199

2020 IF D<4 THEN 2099

2030 IF X <= 3@ THEN 2060
2049 LET Z=5

205¢ GOTO 2199

2060 IF 1@+X-X1<3 THEN 1979
2070 LET Z=7

208p GOTO 2199

2099 IF 19+X-X1<5 THEN 1979
2199 IF X>X1 THEN 2160

2119 IF RND(Q1)>1/2 THEN 2149
2129 LET Z=2

213¢ GOTO 2199

2149 LET Z=4

2150 GOTO 2199

2169 IF RND(Q1)>1/4 THEN 2189
2179 GOTO 212¢

218¢ GOTO 2149

219¢ GOTO 399

220@ REM KEEP SCORE

2219 LET S[2-P]=S[2-P]+7

2229 PRINT "SCORE: HEWLETT "S[3];"PACKARD"S[1]
2230 PRINT

224 RETURN

225@¢ IF RND(Q1)>.8 THEN 229¢

C-12 (869)

J xlpuaday

APPENDIX C

SAMPLE PROGRAMS., CONTINUED

H-P_FOOTBALL

226@ PRINT "KICK IS GOOD"

2279 LET S[2-P]=S[2-P]+7

228p GOTO 2229

2299 PRINT "KICK IS OFF TO THE SIDE"
230@ LET S[2-P]=S[2-P]+6

2310 GOTO 2219

2320 PRINT

2330 REM FIELD GOAL

2340 PRINT "PLACE KICK"

235@ LET F=-1

236@ IF R>.15 THEN 2399

2370 PRINT "KICK IS BLOCKED***"

238@ GOTO 1189

2399 IF P<@ THEN 2500

2400 IF X+Y >= 119 THEN 2460

2410 IF X+Y<8@ THEN 2449

2429 PRINT "KICK IS OFF 70 THE SIDE"
2430 GOTO 1329

2440 PRINT "KICK IS OFF TO THE SIDE"
245p GOTO 1180

246@ PRINT "FIELD GOAL!!!"

247@ LET S[3]=S[3]+3

2480 GOSUB 222¢

2499 GOTO 1589

2500 IF X-Y <= -1¢ THEN 2549

2510 IF X-Y>2@ THEN 2440

252@ PRINT "KICK IS OFF TO THE SIDE."
2530 GOTO 1899

2540 PRINT "FIELD GOAL!!!"

2550 LET S[1]=S[1]+3

2560 GOSUB 222¢

2579 GOTO 319

258p END

C-13 (869)

(&]
>
o
h=]
<
()]
j=1
j=1
<<

APPENDIX D

DIAGNOSTIC MESSAGES

ARGUMENT OF SIN OR TAN T0O BIG

ARRAY OF UNKNOWN DIMENSIONS
ARRAY TOO LARGE

BAD FORMAT IN FILES STATEMENT
BAD INPUT, RETYPE FROM ITEM
CHARACTERS AFTER COMMAND END
CHARACTERS AFTER STATEMENT END
DATA OF WRONG TYPE

DIMENSIONS NOT COMPATIBLE
DIVIDE BY ZERO - WARNING ONLY
END-OF-FILE/END OF RECORD

EXP OVERFLOW - WARNING ONLY
EXTRA INPUT - WARNING ONLY
EXTRANEQOUS LIST DELIMITER
FUNCTION DEFINED TWICE

GOSUBS NESTED TEN DEEP
TLLEGAL EXPONENT

ILLEGAL OR MISSING INTEGER
ILLEGAL READ VARIABLE

ILLEGAL SYMBOL FOLLOWS 'MAT'
LAST INPUT IGNORED, RETYPE IT
LAST STATEMENT NOT 'END '

D-1 (869)

“MISSING

LOG OF NEGATIVE ARGUMENT
LOG OF ZERO - WARNING ONLY
MATRIX CANNOT BE ON BOTH SIDES
MATRIX NOT SQUARE

MISSING ASSIGNMENT OPERATOR
MISSING LEFT PARENTHESIS
MISSING OR BAD ARRAY VARIABLE

MISSING OR BAD FILE REFERENCE

MISSING OR BAD FUNCTION NAME

MISSING OR BAD LIST DELIMITER

MISSING OR BAD SIMPLE VARIABLE

MISSING OR BAD STRING OPERAND

MISSING OR ILLEGAL DATA ITEM

MISSING OR ILLEGAL 'OF'

OR ILLEGAL 'STEP'

MISSING OR ILLEGAL
ILLEGAL

ILLEGAL

SUBSCRIPT

MISSING OR 'THEN'

MISSING OR ‘70!

MISSING OR PROTECTED FILE

MISSING RELATIONAL OPERATOR
MISSING RIGHT PARENTHESIS

NEARLY SINGULAR MATRIX

Appendix D

APPENDIX D

DIAGNOSTIC MESSAGES, CONTINUED

NEGATIVE NUMBER TO REAL POWER

NEGATIVE STRING LENGTH

NEXT WITHOUT MATCHING FOR

NO '*' AFTER RIGHT PARENTHESIS
NO LEGAL BINARY OPERATOR FOUND
NO CLOSING QUOTE
NON-CONTIGUOUS STRING CREATED
NON-EXISTENT FILE REQUESTED

NO STATEMENT TYPE FOUND

OUT OF DATA

OUT OF STORAGE

OVERFLOW - WARNING ONLY
OVER/UNDERFLOWS - WARNING ONLY
PARAMETER NOT STRING VARIABLE
READ-ONLY FILES:

REDIMENSIONED ARRAY TOO LARGE
RETURN WITH NO PRIOR GOSUB
SAME FOR-VARIABLE NESTED

SECOND FILES STATEMENT

72 CHARACTERS MAX FOR STRING
SIGN WITHOUT NUMBER

STATEMENT HAS EXCESSIVE LENGTH
STRING OVERFLOW

STRING VARIABLE NOT LEGAL HERE
SQR OF NEGATIVE ARGUMENT
SUBSCRIPT OUT OF BOUNDS
UNDECIPHERABLE OPERAND
UNDEFINED FUNCTION

UNDEFINED STATEMENT REFERENCE

UNDEFINED VALUE ACCESSED
UNDERFLOW - WARNING ONLY
UNMATCHED FOR

VARIABLE DIMENSIONED TWICE
WRITE TRIED ON READ-ONLY FILE
ZERO TO NEGATIVE POWER-WARNING
ZERO TO ZERO POWER

Diagnostic messages printed while entering a program refer only to the

first error found in a line.

? (Input is required to continue execution.)

?? (More input is required to continue execution.)

?2? (Input is unintelligible.)

[]

D-2 (869)

Note:

AN INSTANT GUIDE TO TIME SHARED BASIC

SPECIAL CHARACTERS

Superscript "C" indicates a control character (Press ctrl and character
simultaneously.) ’

KEY

alt-mode

break

Cc

esc

linefeed

NC
OC

return

FUNCTION

Deletes & line being typed. (Same as esc).
Terminates a running program, listing, or punching.

Terminates an input loop (CC return); causes a jump to the
END statement.

Deletes a line being typed (same as alt-mode).
Causes the teleprinter to advance one line.
Generates a linefeed when used in a PRINT statement.
Generates a return when used in a PRINT statement.

1. Must follow every command or statement.

2. Causes the teleprinter typeface to return to the first
print position.

3. TSB responds with a linefeed.

Backspace. Deletes as many preceeding characters as «'s
are typed in.

Computer
Museum
i

E-1 (869)

Appendix E

AN INSTANT GUIDE, Continued

OPERATORS
SYMBOL SAMPLE STATEMENT PURPOSE/MEANING/TYPE
= 100 A=B=C=) Assignment operator; assigns a value to
a variable;
110 LET A =0 May also be used with LET.
+ 120 PRINT X+2 Exponentiate (as in X2).
* 139 LET C5 = (A*B)*N2 Multiply
/ 149 PRINT T5/4 Divide
+ 150 LET P = R1 +19 Add
- 160 X3 = R3 - P Subtract
NOTE: The numeric values used in logical evaluation are: "true" = any nonzero
number; "false" = (.
= 17@ IF D=E THEN 6@@ expression "equals" expression
189 IF (D+E)#(2*D)THEN 710 expression "does not equal" expression
<> 18¢ IF(D+E)<>(2*D)THEN 799 expression "does not equal" expression
> 199 IF X>10 THEN 620 expression "is greater than" expression ’
< 200 IF R8<P7 THEN 640 expression "is less than" expression
>= 210 IF R8>=P7 THEN 719 expression "is greater than or equal to"
expression
<= 220 IF X2<=1p THEN 650 expression "is less than or equal to"
expression
AND 239 IF G2 AND H5 THEN 909 expressionl AND expression2 must both be
S "true" for statement to be "true"
OR 249 IF G2 OR H5 THEN 919 If either expressionl OR expression2 is
“true", statement is “true
NOT 2560 IF NOT G5 THEN 95¢ Statement is "true" when expression (NOT G5)
is "false".
MAX 260 LET B = A2 MAX C3 Evaluates for the larger of the two
expressions
MIN 27¢ LET B1 = A7 MIN A9 Evaluates for the smaller of the two
expressions
>
(':D
oy E-2 (869)
x N
m

NAME

DATA
DIM

END

FOR...NEXT

GO TO
GO TO...OF
GOSUB

GOSUB. ..OF

IF...THEN
INPUT
LET

NEXT
READ
REM

PRINT

330
412
429

415

340

399

300

355
360
320

356

357

358

395

AN INSTANT GUIDE, Continued

STATEMENTS

GO TO 999
GO TO n OF 199.19.20
GOSUB 8¢9

GOSUB n OF 100,10,20

IF A#19 THEN 3%¢
INPUT X$,Y2,B4
LET A=B=C=p

NEXT J
READ A,B,C
REM--ANY TEXT**!!

PRINT A,B,C$

PRINT X;Y3Z$:P3Q3R(5)

PRINT

PRINT#

EXAMPLE

36@ DATA 99,1@6.7, "HI!",16.2
319 DIM A(72)

409 END

350 FOR J=1 TO N STEP 3

E-3 (869)

PURPQSE

Specifies data; read from left to right.

Specifies maximum string or matrix
size.

Terminates the program; the last
statement in a program must be an END
statement.

Executes statements between FOR and
NEXT the specified number of times (a
Toop), and in increments of the size
indicated after STEP; STEP and sTEP
SIZE may be omitted.

Transfers control (jumps) to specified
statement number.

Transfers control to the nth statement
of the statements listed after "OF".

Begins executing the subroutine at
specified statement (see RETURN).

Begins executing the subroutine n of
the subroutines listed after "OF"
(See RETURN).

Logical test of specified condition;
transfers control if "true".

Allows data to be entered from tele
printer while a program is running.

Assigns variable a value; LET is op-
tional. '

Marks the boundary of the FOR loop.
Reads information from DATA statement.

Inserts non-executable remarks in a
program.

Prints the specified values; 5 fields
per line when commas are used as
separators.

Prints the specified values; 12 fields
per line when semicolons are used as
separators.

Causes the teleprinter to advance one
line.

See "Files" in this section.

Apbpendi x

AN INSTANT GUIDE, Continued

STATEMENTS , coNTINUED

NAME EXAMPLE : PURPOSE

RESTORE 38p RESTORE Permits re-reading data without re-
running the program.

385 RESTORE n Permits data to be re-read, beginning

in statement n.

RETURN 850 RETURN Transfers control to statement follow-
ing its GOSUB.

STOP 419 STOP Terminates the program; may be used

anywhere in program.

E-4 (869)

I>
o
j=}
1
3
Q.
-—te
e
m

AN INSTANT GUIDE, Continued

COMMANDS

NOTE: Commands are executed immediately; they do not require statement numbers.

FULL NAME EXAMPLE PURPOSE

APPEND APP-PROG. 1 Appends the named program to current program.

BYE BYE Log off.

CATALOG CAT Produces a listing of user library program names
and length in two-character words.

DELETE DEL-199 Deletes all statements after and including the
specified one.

DEL-100, 209 Deletes all statements between and including the

specified ones. .

ECHO ECH-OFF Permits use of a half duplex coupler; entered after
logging in.

ECH-ON Returns user to full duplex mode.

GET GET-SAMPLE Retrieves the specified program from the user's
library and makes it the current program.

GET-$ GET-$PROG Retrieves the named program from the system library.

HELLO- HEL-D(DW,PCDc Log on. User needs I.D. code and Password.

KEY KEY Returns control to keyboard after TAPE inputs.

KILL KIL-SAMPLE Deletes the specified program from the user's library
(does not modify the current program).

LENGTH LEN Produces a Tisting of the current program length in
two-character words.

LIBRARY LIB Produces a listing of system library program names,

and size in two-character words.

Continued on next page.

E-5 (869)

3 Xlpuaddy

FULL NAME EXAMPLE
LIST LIS
LIS-150
NAME NAM-SAMPLE
PUNCH PUN
PUN-5@
RENUMBER REN
REN-50
REN-60,y
RUN RUN
RUN-50
SAVE SAV
SCRATCH SCR
TAPE TAP
TIME TIM

AN INSTANT GUIDE, Continued

COMMANDS, CONTINUED

PURPOSE

Produces a listing of current program.

Produces a listing, starting at specified statement.

Assigns specified name to the current program; name
may be 1 to 6 characters in length and must include
only printing characters.

Punches current program to paper tape.

Punches program to paper tape, beginning at
specified statement.

Renumbers program from 10 in multiples of 10.

Renumbers program from specified statement number
in multiples of 10.

Renumbers program from specified statement number
in multiples of y.

Starts program execution.

Starts program execution at specified statement.
Saves the current program in user's library.
Erases current program (but not program name.)

Informs computer that following input is from paper
tape.

Produces a listing of terminal and account time.

E-6 (869)

FULL NAME

AN INSTANT GUIDE, Continued

FUNCTIONS

other statement types may be used.

NOTE: PRINT is used for examples only;

EXAMPLE PURPQSE

DEF FN 308 DEF FNA (X)=(M*X)+B Allows the programmer to define functions;

ABS

EXP

INT
LOG
RND
SQR
SIN
Cas
TAN
ATN
LEN
TAB

TYP

SGN

(X)

(X)

310

320

330
349
350
360
370
380
39¢
49
419
429

430

44p

PRINT ABS

PRINT EXP

PRINT INT
PRINT LOG
PRINT RND
PRINT SQR
PRINT SIN
PRINT COS
PRINT TAN
PRINT ATN
PRINT LEN
PRINT TAB

PRINT TYP

PRINT SGN

(X)
(X)

(A$)

(X);A

(X)s

E-7 (869)

the function label (A) must be a Tletter
from A to Z; the argument (X) must be men-
tioned in the function definition.

?iges the absolute value of the expression
X).

Gives the constant e raised to the power of
the expression value (X); in this example,
etX.

?i{es the largest integer < the expression
X).

Gives the natural logarithm of an express-
ion; expression must have a positive value.

Generates a random number between @ and 1;
the expression (X) is a dummy argument.

Gives the square root of the expression (X);
expression must have a positive value.

Gives the sine of the expression (X); X is
real and in radians.

Gives the cosine of the expression (X); X
is real and in radians.

Gives the tangent of the expression (X); X
is real and in radians.

Gives the arctangent of the expression (X);
is real and in radians.

Gives the current length of a string (A}),
i.e., number of characters.

Tabs to the specified position (X), then
prints the specified value (A).

If argument (X) is negative, gives the type
of data in a file as: 1=number; 2=string;
3="end of file"; 4="end of record"; or if
argument (X) is positive, gives the type of
data in a file as: l1=number; 2=string; 3=
"end of file". (For sequential access to
files - skips over "end of records".)

If argument (X) = @, gives the type of data
in a DATA statement as: l=number; 2=string;
3="out of data".

19f X0,

Gives: pif X=g, -1 if X<p

Appendix E

AN INSTANT GUIDE, Continued
STRINGS

NOTES: 1. A string is 1 to 72 teleprinter characters enclosed in gquotes; it may be
assigned to a string variable (an A to Z letter followed by a §).

2. Each string variable used in a program must be dimensioned (with a DIM
statement), if it has a length of more than one character.

3. Substrings are described by subscripted string variables. For example,
if A§ = "ABCDEF", AS (2,2) = B, and AS (1,4) = "ABCD".

3. The LEN function returns the current string length, for example:
1¢@ PRINT LEN (AS).

FULL NAME EXAMPLE PURPOSE

DIM 19 A$ (27) Declares string length in characters.

LET 20 A$ = "**TEXT 1" Assigns the character string in quotes
to a string variable.

LEN 30 PRINT (B$) Gives the current length of the speci-
fied string.

= 195 IF A$=C$ THEN 609 String operators. They allow comparison

119 IF B$#X$ THEN 650 of strings, and substrings, and transfer

> 115 IF N$(2,2)>B$(3,3) THEN 19 to a specified statement. Comparison is

< 120 IF N$<B$ THEN 999 made in ASCII codes, character by charac-

>= 125 IF P$ (5,8)>=Y$(4,7)THEN 18 ter, left to right until a difference is

<= 13¢ IF X$<=Z$ THEN 999 found. If the strings are of unequal

length, the shorter string is considered
smaller if it is identical to the ini-
tial substring of the longer.

INPUT 205 INPUT N$ Accepts the appropriate number of char-
acters (followed by a return). The char-
acters need not be in quotation marks if
only one string is input.

INPUT 219 INPUT N$,X$,Y$ Inputs the specified strings; input must
be in quotes and separated by commas.
READ 215 READ P$ Reads a string from a DATA statement;
each string read must be enclosed in
quotes.
READ# 22p READ#5; A$,B$ Reads strings from the specified file.
PRINT# 319 PRINT#2; A$,C$ Prints strings on a file.
X
©
©
[¢°)
a E-8 (869)
>—<l-
m

AN INSTANT GUIDE, Continued

MATRICES

NOTES: 1. Absolute maximum matrix size is 2500 elements.

2. Matrix variables must be a single letter from A to Z.

NAME SAMPLE STATEMENT PURPOSE

DIM 1p DIM A (19, 29) Allocates space for a matrix of the speci-
fied dimensions.

MAT IDN 15 MAT X

IDN (m,n) Establishes an identity matrix (with all
ones down the diagonal). A new working
size (m,n) may be specified;

MAT ZER 20 MAT B = ZER Sets all elements of the specified matrix
equal to .
25 MAT D = ZER (m.n) A new working size (m,n) may be specified
after ZER.
MAT CON 3@ MAT Cc = CON Sets all elements of the specified matrix
equal to 1
35 MAT E = CON (m,n) A new working size (m,n) may be specified
’ . after CON.
INPUT 49 INPUT A(5,5) Allows input from the teleprinter of a
specified matrix element.
45 MAT INPUT A(5,5) Allows input of a matrix from the teleprint-
er; a new working size may be specified.
MAT PRINT 5@ MAT PRINT A Prints the specified matrix on the
teleprinter.
55 PRINT A(X,Y) Prints the specified element of a matrix on
the teleprinter; element specifications X
and Y may be any expression.
6@ PRINT #2; A(1,5) Prints matrix element on the specified file
number.
65 MAT PRINT #2,3;A Prints matrix on a specified file and
record.
MAT READ 70 MAT READ A Reads matrix from DATA statements.
75 MAT READ A(5,5) Reads matrix of specified size from DATA
statements.
89 READ A(X,Y) Reads the specified matrix element from a
DATA statement.
85 MAT READ #3; A Reads matrix from the specified file.
. 9@ MAT READ #3,5; A Reads matrix from the specified record of a
file.

Continued on the next page.

E-9 (869)

AN INSTANT GUIDE, Continued

MATRICES., cONTINUED

NAME SAMPLE STATEMENT PURPOSE

MAT + 199 MATC = A + B Matrix addition; A and B must be the same
size.

MAT - 119 MATC = A - B Matrix subtraction; A,B, and C must be the
same size.

MAT* 120 MATC = A * B Matrix multiplication; No. columns in A
must equal No. rows in B.

MAT = 13 MAT A =B Establishes equality of two matrices; as-
signs values of B to A.

MAT TRN 149 MAT B = TRN (A) Transposes an m by n matrix to an n by m
matrix.

MAT INV 150 MAT C = INV (B) Inverts a square matrix into a square

matrix of the same size; matrix may be in-
verted into itself.

E-10 (869)

3 XLpuaddy

AN INSTANT GUIDE, Continued

‘ FILES

NOTES: 1. STRUCTURE OF A FILE: 1 to 128 64-word records. Maximum size varies
with systems; consult system operator. Files have logical "end of record"
markers and "end of file" markers. Attempting to read an "end of file"
or "end of record'" marker will terminate the program unless an IF END#
statement is used.

2. File names may be 1 to 6 printing characters.
3. The formula for allocating file space for strings is:

1 + number of charecters in the string 1if there are an even number of

}

Z characters,

number of charecters in the string + 1 1if the number of characters

z is odd.

or 1 +

This formula gives the required storage space in 2-character words.

FULL NAME EXAMPLE (Abbreviation) PURPOSE

OPEN- OPE-MYFILE,85 Opens file; assigns specified name and
’ number of 64-word records.

KILL- KIL-MYFILE Deletes specified file.

FILES 18 FILES FILE#1, SECOND,... Tells the system which files to use (max-

imum of 8); used only once in a program.
Files are assigned reference numbers
(1 to 8) sequentially.

PRINT# 129 PRINT# 1; A,B,C Prints the specified values (A,B,C) on a
specified file number (file reference
numbers are assigned consecutively from
the FILES statement).

130 PRINT# X,Y; A,B,C Prints the specified information on file
number (X), record number (Y); X and Y
are rounded to integer values.

149 PRINT# 2; A,B,END Prints value on specified file; inserts
: an “end of file" marker immediately after
the printed value.

160 PRINT# 3,5 Sets the file pointer to the beginning
of the specified file (3), and the speci-
fied record (5); erases the specified

record.
READ# 179 READ# 1; A,B2,C Reads the specified values from a speci-
fied file (numbered consecutively by the
' system, from those given in the FILES
statement).
Continued on the next page. N
=
E-11 (869) 2
a
=

INDEX, cONTINUED

0002-6

* ESCAPE KEY «.«.CONTROL CHARACTERS .
*t eee2-6 EXP oo03-22

= ees2=5, 2-7 EXP FUNCTION «o.3-22

/ eee2-6 EXPONENTIATION +..2-6

< eee2-7 EXPRESSION +..2-4"

<= eep2-7 FILE STRUCTURE .«..4-10

> ...2-7 FILES 0004‘1

>= eee2-7 FILES STATEMENT «..4-6

ABS 0003‘22

ABS FUNCTION 0003‘22

ADDITION +«++2-6

ALT-MODE +..1-6

AND 00-2‘9

AND OPERATOR ...2-9

APPEND +¢43-12

ARITHMETIC EVALUATION ++.2-4
ARITHMETIC OPERATOR +¢s+2-6
ASCII CODES +«+¢+8-7

ASSIGNMENT OPERATIO +..2-5
ATN FUNCTION 0003'23

BREAK +e¢e¢1-15,2-4]

BREAK KEY eeel=-15, 2-4]

BYE +¢ee1-10, 2-35

CATALOG 0003'15

COMBINING LOGICAL OPERATORS +..7-6
COMMANDS +..2-34

CONNECTION TO THE COMPUTER +e¢1-8
CONTROL C eeel1-14

CONTROL N 0.06'7: E'l

CONTROL' O eeeb=-7, E~-1
CONVENTIONS 1S THIS BOOK eeelIV
COPYING A MATRIX +e¢45-15
CORRECTING MISTAKES +e¢e1-6

COS 0003‘23

COSINE FUNCTION +..3-23

DATA .«..2-215, 6-10

DATA ON PAPER TAPE +«..B-1

DATA TYPE +«.+3-25

DEF FN 0003-21

DEFINING FUNCTIONS ...3-21
DELETE ++¢3-13

DELETING A LINE /0001'6
DIAGNOSTIC MESSAGES < ¢s.1-13s D-1
DIM 0005‘2) 6-4

DIMENSIONING A MATRIX +.e¢5-2
DIVISION 0.02‘6

ECHO 0002'36

END OF FILE ++¢04-14

END STATEMENT +..2~28

ENTERING DATA FROM TAPE .+..B-1
ESC +«..1-6

FOR +..2-18

FOROO.NEXT WITH STEP 0003‘28
FORMAL LANGUAGE ++.1-2
FUNCTIONS 0003‘16 '

GET 0003‘10

GET-S 0003‘1@

GO TO +.e2-16

GO TOeeeOF 0002’16

GOSUB +¢e¢¢3-17

GOSUB-..OF eee3~19

HELLO~- ...2-34

HIERARCHY OF OPERATORS ...2-12
HOW TO USE THIS BOOK ++sVII
1D CODE .0001‘9

IDENTITY MATRIX +«¢e¢5-16

IF END# STATEMENT <+ 4-9
IF...THEN 0002‘17

INPUT «ee2-24, 5-5, 6-6
INPUT OF MATRIX ELEMENTS e+¢e¢5-5 ‘
INT 0003-22

INT FUNCTION +..3-22
INVERTING A MATRIX ++¢5-18
KEY +«e¢¢2-44

KILL 0003‘11

KILL' 0004'5

LEN COMMAND «+¢3-7

LEN FUNCTION +++6-9

LET eee2-14, 6-5

LIBRARY +¢+¢.3-14

LINE NUMBER +¢¢e¢1-3
LINEFEED +¢es1=-9,1-12

LIST eesl=7, 2-38

LISTING A FILE +..C-1
LISTING A PROGRAM «eel1-7
LOG 0003'22

LOG . FUNCTION +.¢3-22

LOG IN AND LOG OUT +..1-108
LOGICAL OPERATIONS +..7-2
MAT CON 0005‘4

MAT PRINT «+¢+5-8

MAT READ ++¢¢5-10

MAT ZER oo-5°3
MATHEMATICAL FUNCTIONS ...3-22

Continued on the next page.

X9pui

F-2 (869)

- INDEX., CONTINUED

.
MATRICES +ee5-1
MATRIX ADDITION
MATRIX EQUALITY ««e5-15
MATRIX MULTIPLICATION «..5-13
MATRIX SUBTRACTION +ee¢5-12
MATRIX TRANSPOSITION +e¢e1-17
MAX 0002‘8
MEMORY ALLOCATION
MIN ooe2-8
MIN-MAX OPERATORS ...2-8
MISTAKES AND CORRECTIONS ++¢.1-5
MISTAKES DURING LOG IN «..1-11
MULTIBRANCH GOSUB +.¢3-18
MULTIBRANCH GOTO +..2-1
MULTIPLICATION +ee2-6

NAME ++.3-8
NATURAL LANGUAGE
NESTING GOSUBS
NEXT eee2-1E»
NOT eee2-11
NOT OPERATOR
NUMBER ++.2-2
OPEN‘ 0004‘4
OPENING AND CLOSING FILES
OPERANDS +¢.1-3
OPERATIOR «++2-5,FF

OR +¢.2-10

OR OPERATOR +..2-10
ORDER OF PRECEDENCE (OPERSe)
PAGE FORMAT «seV
POINTER »RESETTING
PREFACE +e.oII1
PRINT TO FILE eee4-7
PRINT#e+oENP ooad-14
PROGRAMMER-DEFINED FUNCTICON
PUNCH «.+2-42

PUNCHING TAPE OFFLINE
QUICK REFERENCE SECTION
RAISE TO A POWER +..2-6
RANDOM FILE ACCESS «ee4-14,FF
READ «ee2-215 4-8, 4-17, 6-8,
READ FROM FILE ...4-8
READING, WRITING MATRICES

0005“11

0008"8

0001‘2
eee3-19
3-20

0002-11

;064-4FF

0002-12
ceed=-16s 4-18
+s+3-21
oooA“l
o--E‘llFF
6-12

".S-SJFF

Continued on the next page.

F-3 (869)

"RESTORE

JX-ON:

REM ..-2-15
RENUMBER <+ 2-40
eee2-21
RETURN «..1-9

RND 0003’22

RUN +e.2-37

SAVE «..3-9

SCALAR MULTIPLICATION
SCRATCH ...2-39 :
SERIAL FILES «e¢e4-65FF
SGN FUNCTION .«..3-24
SIMPLE VARIABLE +..2-3
SIN +..3-23
SPECIAL CHARACTERS
SR +.¢3-22
STANDARD FUNCTIONS
STATEMENTS «+¢2-13
STOP ...2-28
STORINGs,DELETING PROGRAMS
STRING ASSIGNMENT e«e¢.6-5
STRING DIM «..6-4

STRING EVALUATIONCASCII)
STRING IF «ee6-9
STRING INPUT +.e6-6
STRING LET <e¢e6-5
STRING PRINT TO FILE
STRING READ +..6-8
STRING READ FROM FILE
STRINGS «eceb-1, 6-2 .
SUBROUTINES AND FUNCTIONS ...3-16,FF
SUBSTRING «¢.6-3
SUBTRACTION «..2-6

SYNTAX REQUIREMENTS OF TSB
TAB «..3-24
TAN FUNCTION
TAPE «..2-43
TIME 0002’45
TIME SHARING
TRANSPOSING A

eee5-14

.ooE"l

0003'22)FF
0003'6

0008-7

0006’12

0006-11

0008;2’

+++3-23

0001-1

MATRIX +e45-17
TRIGONOMETRIC FUNCTIONS .«..3-23
TYP FUNCTION «..3-26

UTILITY COMMANDS «..3-12,FF
X-0OFF +..B~1

TEAR AL* LINE

HEWLETT @ PACKARD

READER COMMENT SHEET
A Guide To Time Shared BASIC

FROM
NAME:

ADDRESS:

NO POSTAGE NECESSARY IF MAILED IN U.S.A.

FOLD ON DOTTED LINES AS SHOWN ON OTHER SIDE AND TAPE

TAPE TAPE

[t 4

FIRST CLASS
PERMIT NO. 141
CUPERTINO
CALIFORNIA

NI “‘N yval

L
BUSINESS REPLY MAIL —
|
No Postage Necessary if Mailed in the United States Postage will be pad by L]
|
]
SUPERVISOR, SOFTWARE PUBLICATIONS T
HEWLETT-PACKARD COMPANY —
11000 Wolfe Road —
Cupertino, California -__
95014 ——
|
]
-]

a

Tl T T TSI T T T T T T "o

'
{i
HEWLETT hp, PACKARD
g
:
02000-90002

