Three-Dimensional Graphics Utilities
Part No. 09845-10061

-Gomputer

SiMuseum

Hewlett-Packard Desktop Computer Division

3404 East Harmony Road, Fort Collins, Colorado 80525
Copyright by Hewlett-Packard Company 1980

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

ii

Printing History

New revisions of this manual will incorporate all material updated since the previous revision.

The manual printing date and part number indicate its current revision. The printing date
changes when a new revision is printed. (Minor corrections and updates which are incorpor-
ated at reprint do not cause the date to change.) The manual part number changes when
extensive technical changes are incorporated.

April 1980...Revision A
April 1981.. Revision B. Updated pages: 2
August 1981...Revision C. Updated pages: 88

Table of Contents

Preface ..o e vii

Chapter 1: Overview

DSt P tiON L .. o 1
System Configuration e 2
Manual Usage Guide e 3
Reference Table 5
Tape Catalogues 11

Chapter 2: Methodology

Standards 15
3D Data Bases 16
I DU . 18
Manipulation 19
VI eWING .. o 20
UL DU . . 21

Chapter 3: Formulas

IDUL e 23
Manual Input 23
Line Segments 23

Circles and ArCS i 24

CIrCles o o e 24

ATCS o e 25
Digitizer Input o e 29
Three View Mechanical Drawings i i, 30
Converting Orthogonal Views to a Three-Dimensional Figure 34
Manipulation 38
Translation e 38
Rotation 38
Scaling ..o e 39
VeWING .o oo 40
VIeWpoint ... 40
ClPDING - . 42
Perspective 45
OUtDUL . 46
Wire-frame 46
Hidden-surface. 46

Chapter 4: The Data Base

VIV W . L e 51
UL o e 52

Digitizer Data Base i e 52

Manual and Post-Digitized DataBasecov i 53
Manipulation 56
eWING .« oo o e e 57
UL DU . e 58

Chapter 5: Input Utilities

Manual Entry Subprograms 61
One_obj_entry 61
Color_entry 61
Initialize e e 62
15T 62
Relist . .o e 62
Surface setup 63
Check_arrays i 64
Surface entry 64
Enter_line 64
Enter circle 64
Enter_arc 64
Save line 65
Save_circle 65
SAVEe AIC 65
Edge ver entry 66
Change_point 66
Database_delete 67
One _obj store 68
Store Color. 68
Plane_equation 68

Digitizer Entry Subprogramsot 69
I DU .o 69
ItV e WDl . L e 70
CoNStV W DIN . e 70
DS DAY .o e 71
Draw2d ... 71
Modup o 71
Recupcoordso 73

Conuert3d 73

Indbad 75
FIndsurt . oo 76

Manipulation SUbprograms e 77
L3 5 G ¢ c- S O 77
Translate 79
Rotate X 79
Rotate y 79
Rotate z 80
Scale .. 80
Center L 80
CUIVE SEtUDt 82
Circle_by 3 Pts. 83
ATC GeN . . 83
MUY . 84

Chapter 7: Viewing Utilities

Viewing SUDProgramst 85
VW PO Nt . 85
VIeWC00OTd . . 86
Perspective 87
D o 87
Level . o 88
Close poly 88

Output Subprograms 89
Plot o 89
Unp Lot o 91
Hidden surface 91
AN L 94
Plotter setup 96

BASIC Utilitieso 97
S D Lo 97
DU L 98
G DUt 98
Parse TespOnSe 99

Letterand Draw_char 100

vi

Binary Utilities 101

Using Binaries 101

Dump Graphics Binary 101

Gprint Binary 101
Chapter 10: Programming Aids

Example Driver Subprograms oot 103

Manual Entry 103

Object Transformations i e 109

Digitizer ENtry 115

Surface Color Entry 124

Programming Tipso .o i 127

GlOSSATY e e 129

Bibliography e 131

Preface

Computer graphics are being used more and more in areas of design simulation and control.
As a result, there is increased interest in three dimensional graphics. For this reason,
Hewlett-Packard has developed a pack of 3-D Utilities. These utilities can aid you in design-
ing applications software that requires 3-D graphics. Using the pack’s documented subpro-
grams should reduce your software development time and help you to minimize pro-
gramming problems.

For your convenience, each subprogram is explained in detail in this manual. In addition,
variable lists, references, and formulas are also provided.

The pack furnishes subprograms to use for input, manipulation, viewing, and output of
three dimensional figures. Also included, are subprograms that make use of advanced
algorithms for polygon clipping and hidden-surface removal.

Four “demo” drivers are made available to illustrate the features of the 3-D utilities and to
demonstrate the interaction that takes place between subprograms.

A versatile data base structure is used to maintain image data. Each 3-D object has: 1)
status, 2) vertex, 3) edge, 4) surface, and 5) object information associated with it. You will
find this hierarchical data base method to be a powerful yet flexible way of handling your
graphical data.

vii

viii

Important

The tape cartridge or disc containing the programs is very reliable,
but being a mechanical device, is subject to wear over a period of
time. To avoid having to purchase a replacement medium, we re-
commend that you immediately duplicate the contents of the tape
onto a permanent backup tape or disc. You should also keep back-
up copies of your important programs and data on a separate
medium to minimize the risk of permanent loss.

Chapter 1

Overview

Description

“Three-Dimensional Graphics Utilities’’ includes a set of subprograms to use in the input,
manipulation, viewing, and output of 3-D figures. It also provides several general utilities
such as a graphics input subprogram, a subprogram to dump the CRT graphics to an
external printer, and a comment stripper program. This pack is not meant to be used as a
stand alone but rather as a ‘‘kernel’”’ for the development of higher-level applications pro-
grams.

The input (or figure construction) subprograms are divided into two categories, manual and
digitizer. The manual routines are used to input objects by entering the coordinates of the
vertices for each surface making up the object. These surfaces can be composed of line
segments, circles, and arcs. The digitizer subprograms are used to input an object from a
mechanical drawing of the object. This is done by digitizing all of it surfaces, visible and
hidden, in each of the three orthographic views (top, front, and side). Refer to Chapters Two
and Three of this manual for more detail. Circles and arcs are not provided as primitives
when using digitizer entry. However, they can be approximated by using line segments. For
example, you can approximate a circle by digitizing a 24-sided regular polygon.

The manipulation and viewing subprograms provide choosing a viewpoint, rotation, scaling,
translation, and hither and yon clipping. Objects may then be plotted on the CRT or HP-IB
plotters via the output routines as either wireframes or with hidden surfaces removed.

The information for all figures is stored in a hierarchical data base that is described in
Chapter Four. The data base may be used as is, or tailored to a specific application.

It is important that you realize that many of the subprograms call one or more other sub-
programs. See the Reference Table provided in Chapter One. To help you get started,
example driver programs have also been included in this manual. See Chapter Ten.

System Configuration
A 9845B Model 150 Desktop Computer is required for the “Three-Dimensional Graphics
Utilities””, P/N 09845-10060, even though the second tape drive and the thermal line printer
are not mandatory. The standard 9845C Model 150 or 250 with 187K bytes of memory is
required for ‘‘Three-Dimensional Graphics Utilities”’, P/N 09845-10080. A digitizer can be
used as a means of entering data. Therefore, some of the subprograms included in this pack
were designed for use with the 9874A. Disks are recommended (though not required) due to

the large amount of storage space needed for data and programs. The following peripherals
are compatible:

Digitizer
9874A Digitizer (requires 1/ O ROM)

Mass Storage

(Requires Mass Storage ROM)
9885M/ S Floppy Disk Master and Slave
7906 Hard Disk Series

Plotters

9872A /S Plotter
7245 Printer / Plotter
7225A Mini-plotter

Printers (for use with DUMP GRAPHICS # binary)

9876 Stand Alone Flash
7245 Printer / Plotter
2631G Graphics Printer

NOTE
Unless otherwise noted, all references to the 9845B or 9845T in
this manual are considered to mean the 9845B Model 150. Refer-
ences to the 9845C imply a 9845C Model 150 or 250.

3-Dimensional Graphics Utilities, 09845-10061, Rev. B, 4/81

Manual Usage Guide

The purpose of this section is to familiarize you with this manual so that you can use it more
efficiently. Since this manual may be used with either the 09845-10060 or 09845-10080
pack, references are made to programs in both packs.

In Chapter One you will find an alphabetized quick reference of the utilities and the depen-
dent subprograms needed in memory to support them.

If you desire general information on 3-D coordinate systems, mechanical drawing, view-
points, clipping or hidden surface, refer to Chapter Two. Here you will find an overview of
these concepts.

For greater detail, including formulas, turn to Chapter Three of the manual. This section
contains the actual matrices and algorithms used to perform the functions defined and
discussed in Chapter Two.

Chapter Four provides a complete description of the data base used. This section is perti-
nent to those of you planning to incorporate any of the utilities in your applications software.

Sections Five through Eight include the local variable lists for the input, manipulation,

viewing, and output utilities respectively. Here you will also find a description of each of the
utilities.

If you require more information on the additional BASIC and binary utilities, turn to Chap-
ter Nine. A brief discussion of binaries and how to use them also appears in this section.

Chapter Ten contains demonstration programs. These provide examples of how the utilities
interact. In addition, several programming tips are provided.

Lastly, a glossary of common terms used in 3-D Graphics is provided at the end of the
manual along with the bibliography.

Reference Table

The following reference table lists all of the utilities in alphabetical order, along with their
parameter lists, definitions, dependent subprograms and page numbers. If a utility is unique
to either the pack 09845-10060 or 09845-10080, the correct pack number will be desig-
nated along with the utility. In some cases only the parameters of a utility may differ from
one pack to the other. Check the detailed subprogram descriptions found in Chapters 5

through 9 for any *“*’’ subprogram.
Other Subprograms
Name & Parameter Lists Definition Needed in Memory Page #
Arc_gen(INTEGER Subscript, Provides information necessary
SHORT Curve_array(*),Radius, | for arc generation 83
Xa,Xb,Xc,X center,Ya,Yb,Yc,
Y _center,Z value)
Center(INTEGER Edge(*), Finds approximate center of Arc_gen
N,SHORT Status(*), an object Curve_setup 80
Transform(*),Vertex(*),X mid, Multiply
Y mid,Z_mid)
Change_ point(INTEGER Changes a single vertex of a Plane_equation
Edge(*),Object(*),Pic, surface
Surface(*),Surface_count, 66
SHORT Offset(*),Range(*),
Status_inv(*),Vertex(*))
Check _arrays(INTEGER Checks to see if Vertex(*)
Edge(*),Edge_flag,Vertex flag, | or Edge(*) is full 64
SHORT Vertex(*))
Circle_by 3 pts(SHORT Finds the radius and center
Radius,Xa,Xb,Xc,X center,Ya, | point of a circle given three 83
Yb,Yc,Y center) points
Clip(INTEGER N,Sur_tmp(*), Clips three dimensional objects | Close poly 87
SHORT Transform(*)) Level
Close_poly(INTEGER Closes the clipped polygons of | Level
First flag(*),Level, SHORT an object 88
First(*),Q(*),Save(*))
(09845-10080)
Color_entry(INTEGER Enters an object’s color 61
Object(*),Pic,Surface(*), parameters
SHORT Color(*))
ConstviewpIn(INTEGER Error, | Draws viewplanes on CRT 70
Digi)
Convert3d(INTEGER Digi, Converts 3 orthogonal views to | Draw2d
Error,Ne,No,Ns,Nv,Redundfctr) | 3-D object Findsurf 73
Indbad

Other Subprograms

Name & Parameter Lists Definition Needed in Memory Page #
(09845-10060)
Crt_tra(INTEGER Edge(*), Overhead for the translations Center
Hid,N,Object(*),Pic,Surface(*}, | of 3-D objects *Ginput
Sur_tmp(*),Trans, SHORT (09845-10060)
Status(*), Transform(*),Vertex(*), *Parse response
REAL Xvp,Yvp,Zvp) (09845-10060) 77
Plot
Rotate x
Rotate vy
Rotate _z
Scale
Translate
Unplot
{09845-10080)
Crt_tra(INTEGER Edge(*),Hid, | Overhead for translation of 3-D | Center
N, Object(*),Pic,Surface(*), objects Plot
Sur_tmp(*),Trans, SHORT Rotate x
Color(*),Status(*), Transform(*), Rotate vy 78
Vertex(*),REAL Xvp,Yvp,Zvp) Rotate 2z
Scale
Translate
Unplot
Curve setup(INTEGER Rotates an arc or circle into a Circle_by 3 pts
Edge(*},1, SHORT Radius, plane parallel to the X-Y plane
Vertex(*},Xa,Xb,Xc,X center, 82
Ya,Yb,Yc,Y_center,Z:value,
REAL Rotation(*))
Database delete(INTEGER Deletes a surface from the data
Edge(*),Object,Object(*),Pic, base 67
Surface(*),Surface count,
SHORT Vertex(*))
Display(A$,INTEGER Select) Provides for digitizer display 71
Dump Dumps graphics raster to Dmpg#b
desired device (09845-10060) 98
*Ginput
(09845-10060)
Draw_char (INTEGER Draws characters for
Basic_element(*),Char, lettering
Char_index(*),Char_table(*), 100
First _compound,Index,
Penc)
Draw2d (INTEGER Digi) Draws 2D orthogonal views Constviewpln 71
Recvpcoords
Edge ver entry(INTEGER Enters edge into Edge(*) and
Edge(*),Edge_count, Vertex(*) 66

Edge_index,Edge_type,

SHORT Real pts(*),Vertex(*))

Other Subprograms

Name & Parameter Lists Definition Needed in Memory Page #
———
Enter arc(INTEGER Enters X,Y,Z coordinates of 3 Plane equation
Edge__count,Surface__flag, points of an arc
SHORT Firstpt(*),Lastpt(*), 64
Offset(*),Range(*),Real pts(*),
Tran_pts(*),REAL A A(*),B,
B(*),C,C(*),D,D(*))
Enter circle(SHORT Enters X,Y,Z coordinate of 3
Offset(*),Range(*),Real pts(*), | points of a circle 64
Tran_pts(*))
Enter line(INTEGER Enters X,Y,Z coordinates of Plane equation
Edge count,Line,Surf flag, endpoints of a line segment
SHORT Firstpt(*),Lastpt(*), 64
Offset(*),Range(*),Real pts(*),
Tran_pts(*)REAL A,A(%),
B,B(*),C,C(*),D,D(*))
Findsurf(INTEGER Edgno, Finds all possible 3D surfaces 76
Firstedg,Fsrffg,Prvedg) represented by a 2D surface
(09845-10060)
Ginput(Gprompt$ Var$) Inputs information while in Binary 98
graphics mode (09845-10060)
(09845-10060)
Hidden surface(INTEGER N, Setup for hidden surface Scan 91
Sur_tmp(*),SHORT removal
Transform(*))
(09845-10080)
Hidden _surface(INTEGER N, Set up for hidden surface Scan 92
Sur_tmp(*),SHORT Color(*), removal;also sets up plotter
Transform(*)
Indbad(INTEGER Badplane, Detects inconsistent vertex Recvpcoords
Plane,Vtx_edg_srf,\/txedgptr) information during convertion 75
to 3D
Initialize(INTEGER Edge(*),N, Initialization for 3D data base
Object(*),Surface(*), 62
SHORT Vertex(*))
InitviewpIn(INTEGER Digi,Ne2, | Initialize data base and Constviewpln 70
No2,Ns2 Nv2) viewplanes
Input(INTEGER Digi,Mneps, Digitizer input through digitizer | Convert3d
Ne,Ne2,No,No2,Ns,Ns2, key choice Display
Nv,Nv2 Redundfctr) Draw2d
Dump
Initviewpln 69
Modvp
One_obj_store
Plot

Plotter setup

Other Subprograms

Name & Parameter Lists Definition Needed in Memory Page #
_ —

Letter(INTEGER Basic__ Set up for lettering Binary
element(*),Char_index(*), (09845-10060)
Char_table(*),0ld_font, Draw_char 100
Spacing(*)) Ginput

(09845-10060)
Level(INTEGER First _flag(*), Keeps track of clipping levels:
Level, SHORT First(*),Px,Py, top, bottom, left, right, hither, 88
Pz, Pw,Q(*),Save(*)) yon
List(File$,INTEGER List X,Y,Z coordinates of a 62
List_flag) 3-D object
Modvp(S$,INTEGER Add_del, | Inputand modify three Recvpcoords 7
Digi,Mneps,Redundfctr) orthogonal views
Multiply (INTEGER Flag,N, Multiplies vertices by object’s
SHORT Status(*), Transform(*), | current Status(*) to get 84
Vertex(*)) transformed points
One_obj_entry(File$, Enters one previously stored
INTEGER Edge(*),N,Object, 3-D object into data base 61
Object(*),Pic,Surface(”),
SHORT Status(*),Vertex(*))
One_obj_store(INTEGER Stores 3-D object on desired
Edge(*),N,Object(*),Pic, mass storage medium 68
Surface(*),SHORT Status(*),
Vertex(*))
(09845-10060)
Parse response(Responses$(*), | Parses the response returned 99
Str$,INTEGER Num_ of res) from the call to Ginput
Perspective(INTEGER N, Provides perspective distortion 8
SHORT Transform(*)) 7
Plane equation(REAL AA(*), Find parameters of a plane 63
B,B(*),C,C(*),D,D(*)) Equation: AX+BY+CZ-D=0
(09845-10060)
Plot(INTEGER Edge(*),Hid,N, Plots 3-D object in data base Arc_gen
Object(*),Pic,Surface(*), Curve_setup
Sur_tmp(*),SHORT Status(*), Hidden_surface 89
Transform(*) ,Vertex(*),REAL Multiply
Xvp,Yvp,Zvp) Viewcoord
(09845-10080)
Plot(INTEGER Edge(*),Hid,N, Plots 3-D object in data base Arc_gen
Object(*),Pic,Surface(*), Curve_setup
Sur_tmp(*),SHORT Color(*), Hidden _surface 89
Status(*), Transform(*}), Multiply
Vertex(*),REAL Xvp,Yvp,Zvp) Viewcoord

Name & Parameter Lists

Plotter setup(Plotter$,

Definition

Setup for any plotter

Other Subprograms
Needed in Memory

Page #

e e

INTEGER Bus_address, 96

Select_code)

Recvpcoords(INTEGER Plane, | Recover original viewplane

Vixptr,REAL Xvp,Yvp) coordinates form the 2D Vertex 73
array coordinates

(09845-10060)

Relist{INTEGER Edge(*), List X,Y,Z coordinate of an

Object(™),Pic,Surface(*), object 62

Surface count,SHORT

Offset(*),Range(*), Transform(*})

(09845-10080)

Relist(INTEGER Edge(*),Flag, List X,Y,Z coordinates of an

Object(*),Pic,Surface(*), object;also used to add color 63

Surface count, SHORT parameters to a surface

Color(*),Offset(*),Range(*),

Transform(*))

Rotate x(SHORT Angle,Rx, Calculates 3-D rotation about 79

Ry,Rz,Status(*)) X-axis

Rotate y(SHORT Angle,Rx, Calculates 3-D rotation about 79

Ry,Rz, Status(*)) Y-axis

Rotate z(SHORT Angle,Rx, Calculates 3-D rotation about 80

Ry, Rz, Status(*)) Z-axis

Save_arc(INTEGER Prepares arc to be added to

Edge type, SHORT data base 65

Real pts(*),Status_inv(*))

Save_ circle(INTEGER Prepares circle to be added to

Edge type, SHORT data base 65

Real_pts(*),Status_inv(*))

Save_line(INTEGER Prepares line to be added to

Edge type, SHORT data base 65

Real pts(*),Status_inv(*))

Scale(SHORT Status(*), Provides the utility to increase 80

X scale,Y scale,Z scale) or diminish the size of an object

(09845-10060)

Scan(INTEGER Edgecount, Scan algorithm for hidden- 94

Elist,Polycount, SHORT surface removal

Edge(*),Poly(*))

(09845-10080)

Scan(INTEGER Edgecount, Scan algorithm for hidden— 95

Elist,Plot,Polycount, SHORT
Edge(*),Poly(*))

surface removal

10

Other Subprograms
{—Name & Parameter Lists 1 Definition Needed in Memory | %Pa e #

(09845-10080)

Store color(INTEGER Store color information 68

Object(*),SHORT Color{*))

Surface entry(INTEGER Store edge in Surface array

Closed flag,Edge_count,

Edge_index,Surface,Surface(*), 64

Surface flag, SHORT Firstpt(*),

Lastpt(*))

Surface setup(INTEGER Overhead for new surface addi-

Edge count,Object,Object(*), tion

Pic,Surface,Surface(*), 63

Surface_count,Surface_flag,

REAL A(*),B(*),C(*).D(*))

Translate{SHORT Dx,Dy,Dz, Provides the utility of moving

Status(*)) an objectin X, Y, and Z 79

directions

Unplot(INTEGER Sur_tmp(*), | Erases a plot 91

SHORT Transform(*})

Viewcoord(INTEGER Hid,N, Changes point from which an Clip

Sur_tmp(*),SHORT object is viewed Multiply 86

Transform(*),REAL Vcx,Vey, Perspective

Vsx,Vsy, Xvp,Yvp,Zvp)

Viewpoint(INTEGER View, Sets up new viewpoint *Ginput

REAL Xvp,Yvp,Zvp) (09845-10060) 85
“Parse_response
(09845-10060)

11

Tape Catalogues

Corresponding files between the packs 09845-10060 and 09845-10080 which contain
differences, can be distinguished by the last letter of the file name. For example, the last
letters of the files DginpB and DginpC are B and C, corresponding to 09845-10060 and
09845-10080

09845-10084
NAME PRO TYPE REC/FILE BYTES/REC ADDRESS

Ti% &

(b 4 en DATA i1 PG4 G
Cl_ent DATA 9 P5G ib

Init DATA o - e
Lt DATA 5 P54 %0

Riistl DATH 20 anh 37
Surset DATA i0 256 97
Check DATA o 256 &7
Surent DATA 8 296 e
l.ine DaTa 19 256 50
Circ DATA i A% A
arc DATA 27 %6 114
Sline DATA 3 256 138
Geir DATA 4 256 141
Sarc DATA 3 2596 14%
Fdgver DATA 22 256 148
Chngpt DATA 39 256 170
Surdel DATA 24 296 209
Obj st DATA @ 2G4 ax3
Cl_stC DATA & 256 242
Plneqgu DATA 4 256 248
NginpC DATH 59 256 ane
DginiC DATA 43 296 3ii
Dgeocvwl DATA ¥4 256 324
Digdsp DATH 7 256 333
Digdrw DETA g 256 340
DagmodC DATA 21 256 349
Digrve DAETA 7 2%6 440
Dgovtl DATA 72 a%h A47
Digiird DATA 27 256 5419
Digfer DATH iid 2546 G446
REVID DATA i 256 547

09845-10085

MAME PRO TYP@ REC/FILE ERBYTES/REC ADRDRESS

Ti%

Crtl DATAH 21 256 5
Trans DATA 3 256 26
Rotx DATH & 256 Py
Roty DATA 6 2545 39
Rotz DATA b 2546 414
Scale DATA 4 256 47
Centr DATA ib 256 51
Crvset DATA 28 256 b7
C by 3 DATA 16 256 A
Arcon DATA 19 2%6 114
Mult LATA 7 2596 130
Vwp t DATA 6 296 137
Viewcr DATA 22 256 143
Perspt DATA 4 ahé6 165
ClipC DATA i 2h6 169
Level DAaTh 25 256 180
Cloge DATA 20 2%6 A0%
Plotl DATA 37 2%6 ARy
Unplot DATA 4 256 262
Hidsel LATA 27 256 266
Sean(DATH 50 2%6 303
Fltstl baTa) 256 353
Strip DATA 4 256 3G
Duwmp DATA 7 256 366
Letl DATA 14 2%6 373
Drawch DATA 8 256 387
I OMan DATA 6% 256 2%
stick DATA 33 256 4460
seript DATA 723 256 473
gothic DATA 5% 256 Gié
DRIVLIC DATA 37 2%6 5714
Keysdb KEYS P 256 608
DRIVEC DATA i8 256 610
KevaTR KEYS i 256 628
DBRIVAL DATA o 256 629
DRIVAC DATA 6 254 H34
REVID DAaTa i 296 HA0

09845-10064

NAME PRO TYPE REC/FILE BYTES/REC ADDRESS
Ti% a

256 5

(b j en DATA 11 2)
Init DATA 7 256 i6
L.ist DATA Y 250 &3
RlistR DATA 1é 2596 2483
Surset DATA i0 256 44
Check DATA) ’rh S 4
HSurent DATA 8 56 59
L.ine DATA i9 “ﬁ& &7
Circ DATA i2 256 8é
Arc DATA 27 256 Qe
Sline DATA 3 256 125
Scire DATA 4 256 a8
Harc DATA 3 256 13,
Edguer DATA 22 Pﬁﬁ 135
Chngpt DATA 39 256 157
Surdel DATA 24 AT 196
bj st DATA Q a%é 220
Plnegu DATA 4 256 a2l
Dginph DATA 57 206 233
Dginil DATA 2 256 290
DacvuwR DATA Q@ 256 302
Digdsp DATA 7 2956 214
Digdrw DATA ? ALY 318
DgmodR DATA BY 256 327
Digrvc DATA 7 256 4416
DgcvtR DATA 78 256 423
Digibd DATA 27 256 495
Digfsr DATA i1 256 B

REVID DATA 1 256 933

09845-10065

NAME PRO TYPE REC/FILE RYTES/REC ADDRESS

T4% 2

Crth DaTA 24 256 5
Trans DATA 3 256 29
Rotx DATE b 256 32
Raty DATA 6 296 38
Rotz DATA & 256 44
Scale DATA 4 2596 S0
Centr DATA 16 256 54
Crvset DATA 28 258 70
¢ by 3 DATA ih 296 98
Arcgn DATA 1 256 114
Mult DATA 7 2%6 133
Vupth DATA 7 256 140
Viewor DATA 28 2%6 147
Faraspt DATA 4 296 169
Clipk DATA il 173
Level DATA 2% 184
Close DATA 20 209
PlLoth DATA 37 229
Unplot DATA 4 26
Hidsrh DATA 28 Ve 270
Scanki DATA 56 2%6 298
Pltsth DATA 1.0 254 354
Gtrip DATA 4 2%6 364
Dumplh DATA K4 a%6 368
Ginput DATA &h 2%6 377
Parse DATA s 256 403
etk DATA i4 256 408
Drawch DATA 8 256 422
roman DATA 6% 2% 4 430
stick DATA 33 296 495
seript DATA 23 256 Les
gothic DATA ©% 2546 G54
Drmpog¥h BPRG 4 2594 Hib
Binary BPRG 20 2596 &1 0
DRIViR DATH 36 256 630
Keysil KEYS o 256 bbby
DRIV2RE DATH i9 256 668
KeysTR KEYS i, 26 687
DRIVAR DATA ot 2596 688
REVID DAaTA i 256 693

Computer®
. Museum

Chapter 2
Methodology

Standards

In SIGGRAPH’s August 1979 “‘Status Report of the Graphics Standards Planning Commit-
tee’’, the basic concepts needed in graphics packages were defined. In an attempt to adhere
to these criteria the ‘““Three-Dimensional Graphics Utilities’” provides:

distinct input and output functions
similar methods for outputting to a plotter or to an interactive display

the concept of data being converted from the world coordinate system to the device or
“screen’’ coordinate system

for data display files that contain screen coordinate information

for the display file ‘‘segments’’ that may be modified (for example, a vertex, edge, or
surface ‘‘segment’ of an object may be modified.)

the user with the functions needed to transform world-coordinate data into screen
coordinates

The interaction required between the various utilities is depicted in the following diagram.

input picture defined manipulation display output
operations world coordinates & viewing file operations
operations

Figure 2.1

16

3-D Data Bases

Before beginning a discussion on graphics data bases, it is necessary that you understand
the cartesian coordinate system. In two dimensions, points (or vertices) of an object are
addressed by their X and Y numeric coordinates; the value of X increases from left to right
along the X axis, and Y likewise from bottom to top along the Y axis. Below is an example of

two points (marked with ‘““e’’s) and their (X,Y) coordinate pairs. The point where the two
axesintersect has the coordinate pair (0,0) and is called the origin of the coordinate system.

Y 10 1 (20,10)*
A
X 5 4 (10,5)
i
s
0 ST]
0 10 20
X Axis
Figure 2.2

The 2-D coordinate system can be easily extended into three dimensions by adding another
axis, the Z axis. Each point (or vertex) of a 3-D object is addressed by an XY and Z
coordinate triplet. There are two 3-D coordinate systems, a right-handed and a left-handed
one. They differ only in the orientation of the Z axis.

Y
A
Y X
. i
A Z Axis s
’i‘ X Axis
s
Z Axis
X Axis
Figure 2.3a: Left-handed System Figure 2.3b: Right-handed System

In order to manipulate and display a three-dimensional object, information about that
object must be stored into a data base. In general, there are two types of 3-D data bases,
linked vertices and mathematical models.

The “linked vertices’” approach is the most common and that used by ‘“Three-Dimensional
Graphics Utilities”’. Each vertex of an object is represented by an XY and Z coordinate
triplet, from either the left-handed or right-handed coordinate system. The values of each
coordinate triplet are stored in an array structure such as this:

X1 Y1 21
X2 | Y2 |2 Vertex array
X3 | Y3 | Z3
Xn | Yn | Zn

Figure: 2.4: Vertex array

In order to draw the object, information describing which vertices have edges between them
must be maintained. Therefore, another structure in the data base must include this linking
information. This can also be an array. The array elements then are pointers to the vertices
that create edges when connected. For example, if you wanted to store a triangle, with
(X1,Y1,21), (X2,Y2,Z2), and (X3,Y3,Z3) representing the coordinates of its three vertices,
the vertex linking array (or edge array) would look like this:

(X1,Y1,21)
112
2| 3| Edge array
3|1
(X3,Y3,23) (X2,Y2,22)
Figure 2.5a Figure 2.5b

Now, in order to form surfaces or polygons from these edges, another structure of edge
connecting information must be kept. Likewise, to create objects from surfaces, more link-
ing data must be stored. In summary, this sort of data base is a hierarchy of several data
structures, each linking together the information of the last level.

Another commonly used technique differs markedly from the linked approach. Objects are
stored in patches whose shapes are represented analytically by some mathematical model.
Vertices are not used, but rather a set of parameters defining each patch is stored into an
array. These parameters can then be used by a function to generate points for the patch.
The number of points depends upon the degree of detail needed.

17

18

Generally, it is not possible to devise one function that will mathematically describe all
patches of an object. Two of the more well known methods are the Bezier and B-Spline

models. A complete discussion of these can be found in PRINCIPLES OF INTERACTIVE
COMPUTER GRAPHICS, edition 2, by Newman and Sproull.

Input
The need to input and alter data presents a difficult problem when dealing with three-

dimensional figures. Three of the most common techniques are described in the following
discussion.

Manual Input

The alphanumeric keyboard provides one means of entering data. This ‘‘manual’”’ method,
although somewhat inconvenient, allows you to enter the precise values you desire for the
vertices of a 3-D object. Each vertex is represented by an X, Y, and Z coordinate triplet as
described in the previous section.

Digitizer Input

A pleasing alternative is to use a two dimensional input device to aid in entering a 3-D figure.
One such method is to enter the X and Y coordinates using the digitizer while entering the Z
coordinate from the keyboard. Another way is to enter the object using two views, one of
which provides the X and Z coordinates of each vertex and the other of which provides the Y
and Z coordinates for that same vertex in the second view. See the example below.

z D(2.5,5) V4

- . 4 D(0,5)
A A
i C (2.5,2.5) X

. . i * C(2.5,2.5)
S s

B (5,0)
A (0,0) , * A.B(0,0) T T
X Axis Y Axis
Figure 2.6a: X axis Figure 2.6b: Y Axis

After digitizing coordinates from the X and Z axes view and the corresponding coordinates
from the Y and Z axes view, the coordinates of each of the vertices can be determined. In
this example the vertices will be:

A - (0,0,0)

B - (5,0,0)

C -(2.5,2.5,2.5)
D - (2.5,0,5)

Computer

- Museum”

Another method, and one that is provided in ‘‘Three-Dimensional Utilities”’, is that of using
a two dimensional digitizer to enter a 3-D object from a mechanical drawing. The basic
requirement is that three orthogonal views of the object be drawn according to standard
mechanical drawing principles. (See Chapter Three for more detail.) This method provides
a simple means of entering objects from two-dimensional drawings.

If you have a model of an object, a three-dimensional input device can be used. Several
such devices have been developed, the simplest of which is an acoustic device. It uses three
microphones aligned with the axes. A stylus is used to point to the desired location in space.
This stylus generates a small spark and the microphones pick up the sound thatis generated.
The delay between the spark being created and its being received is used to determine the
distance of the point from each axis. (For more information refer to PRINCIPLES OF
INTERACTIVE COMPUTER GRAPHICS, edition 2 by Newman and Sproull.)

Manipulation

Once the information defining a figure has been stored into a data base, you may wish to
perform some transformations on these points. The transformations provided include trans-
lation, rotation, and scaling.

Translation consists of moving all the vertices of an object a certain number of units along
the X, Y, and Z axes. For example, if one vertex of an object is located at (20,40,100) and
the object is translated 100 units along the X axis, 20 units along the Y, and 30 along the Z,
the new location of that vertex will be (120,60,130).

Rotation provides the facility to move an object about a point in space. If the point happens
to be the center of the object, the object will appear to remain as a fixed location in space as
it rotates. The rotation will allow you to view different surfaces. However, if the point that
the objectis rotated about is an arbitrary point in space, the affect achieved is similar to that
of the earth (an object) rotating about the sun (a fixed point).

The rotation angle you desire is determined by measuring clockwise about the origin from a
point in the positive direction along the axis you wish to rotate about [3]. See the diagram
below:

YA z Y4

doe

0

X X O X

An angle ¢ is measured clockwise when looking toward the origin from a point on the rotation axis.
Figure 2.7a [3] Figure 2.7b [3] Figure 2.7¢ 3]

19

20

For further detail, refer to the descriptions in Chapter 3.

Scaling allows you to enlarge or diminish an object. Be aware that an object that is scaled
may appear to “‘move’’ since the center will not remain the same. Measures can be taken to
prevent this from happening. Turn to Chapter Three for a complete discussion.

Viewing
To display a two-dimensional object, it is only necessary to draw lines between connected

vertices. Most graphics systems provide automatic clipping so that no error occurs if you try
to draw outside the hard clip limits of the plotter.

When displaying 3-D objects, a two-dimensional ‘‘canvas’’ is still being used, but special
techniques must be applied to produce a realistic scene. For example, when an artist
sketches a scene with a road going off into the distance, the road seems to get narrower. In
reality it is the same width in all places, but some ‘‘depth clues’’ must be given to the viewer
so the scene does not appear flat. The artist also selects other viewing information such as
where the observer is standing and how much peripheral vision he has, and at what point
the road vanishes. If there was a car on the road, it would conceal some of the road and
scenery, conveying that the car is closer to the viewer.

The computer must mathematically calculate these visual effects to produce a realistic
representation of an actual scene. This process begins with the observer choosing a pointin
a three-dimensional coordinate system from which he wishes to view an object or scene.
This point is called the ‘‘viewpoint”. Imagine yourself standing in front of a window looking
outside. The place you are standing is your viewpoint and the window is your “‘viewport’’ to
the outside world. Note that your peripheral vision does not continue straight in front (_)f
you, but rather increases to the right, left, up and down, for as far as you can see. Thfs
viewing area outside the window is often referred to as a truncated viewing Pyramlc!. It is
bounded by right, left, top, bottom, hither and yon clipping planes. Objects lying o.ut51de. of
the viewing pyramid must be clipped from the observer’s view. In computer graphics, think
of the viewport or hither clipping plane as your CRT or plotter.

Top

Left

Viewpoint —>

Figure 2.8: Truncated Viewing Pyramid

Once a scene has been clipped for viewing, it can be displayed. The simplest display
technique is that of parallel projection. Lines of an object that are parallel in reality remain
parallel in the display. This type of display offers no depth information to the viewer. If,
however, perspective projection is used, parallel edges of an object may appear to converge
and distant objects appear smaller than near ones. Thus, an illusion of depth is created.

Output

In order to output the scene, one of two methods can be used. A quick way to display a
scene is in ‘“‘wire-frame’’ form. By wire-frame is meant that all surfaces of an object are
treated as if they were transparent. The outline of each surface is drawn and no considera-
tion is given as to which surface is in front of another. A not so simple task is that of hiding
surfaces that are partially or completely obstructed from view by other surfaces. This
technique is commonly referred to as ‘‘hidden-surface removal’. It is a time-consuming
process and is usually not done until the viewer is ready for a hard copy output. Below is an
example of a cube drawn in wire-frame form and with hidden surfaces removed.

pd

Figure 2.9a: Wire-frame Figure 2.9b: Hidden Surfaces Removed

All of the above processes are provided in this pack. Other advanced display techniques
include shadowing, highlighting and shading. A discussion of these may be found in PRIN-
CIPLES OF INTERACTIVE COMPUTER GRAPHICS, edition 2, by Newman and Sproull.

21

22

Chapter 3

Formulas

A basic knowledge of graphics theory is helpful, but a clear presentation of the necessary
algorithms is a must. For this reason, the formulas and methods used to do three-

dimensional input, manipulation, viewing, and output in this pack are included in this
section.

Input
Manual Input

The “manual’’ method of data entry found in ‘‘Three-Dimensional Utilities”” provides three
basic components to use in the construction of surfaces. These are line, arc, and circle.

Line Segments

When the “line” primitive is used, you must simply provide X, Y, and Z coordinates of the
endpoints for each line segment desired in a surface. If more than three lines are entered for
a surface, checking is done to insure that all of the segments lie in one plane. The algorithm
used to determine the equation of a plane is called the “Three-point form”. Given three
non-collinear points:

P1 = (X1,Y1,Z1)
P2 = (X2,Y2,72)
P3 = (X3,Y3,Z3)

The equation of the plane is then AX + BY + CZ — D = 0 where:

Y1l 71
A= (Y2 Z2
Y3 Z3

Z1 X1
22 X2
23 X3

X1 Y1
X2 Y2
X3 Y3

X1
X2
X3

24

Circles and Arcs

If either a circle or arc is desired, you must provide three X, Y, Z coordinate triplets. These X,
Y, and Z values are stored into the data base as entered. However, in order to be displayed,
the center point and radius of the circle or arc must be determined. The subprogram,
Circle_by 3 pts, is used to find the center and radius. Before Circle by 3 pts can be
used, the three points determining the circle (arc) must be rotated into a plane parallel to the
X-Y plane This is done by the subprogram Curve setup. The steps needed to accomplish
this are as follows. First, the equation of the plane that the circle or arc lies in is determined.
Next, the angle between the Y-Z plane and the plane that the circle or arc lies in is deter-
mined and the circle is rotated about the Z-axis. Once this is accomplished, the intersection
of the plane of the circle and the X-Y plane is a line parallel to the Y-axis. The angle between
the plane of the circle and the X-Y plane is found and the circle (arc) is rotated that number
of degrees about the Y-axis. At this time, the plane of the circle will be parallel to the X-Y
plane. The coordinates of the three points defining the circle in this plane can now be used
to calculate the center and radius of the circle. Refer to Figures 3.1a through 3.1c below.

y4 y4
1
//\7 /r,’
(ﬂ/ ’0/
Y v Y
X X

Figure 3.1a: Circle in Original Position Figure 3.1b: Circle Rotated About Z Axis

Figure 3.1c: Circle Rotated About Y Axis

A matrix containing the rotations needed to transform the circle into a plane parallel to the

X-Y plane must be saved. Its inverse is used to display the circle at its original orientation in
space.

Circles

A circle can actually be considered to be a surface (think of it as a disk). Since three points
determine a plane, no checking is needed to insure that the points are coplanar. The
algorithm used to generate the center and radius of the circle is found in the subprogram
called Circle_by 3 pts. The three points entered define a triangle in space. The triangle is
inscribed in the desired circle. The length of each side is calculated and the radius of the
circle is then found by applying the formula:

abc
r =
4s(s—a)tan({A/2) Al

In the above formula,

B
a+b+c v
2

Figure 3.2:

The center point is the intersection of the perpendicular bisectors of any two sides of the
inscribed triangle. The equations of the perpendicular bisectors of AB and BC are derived
and the point of intersection of these equations is the center of the circle. Special cases
involving horizontal and vertical lines are also handled by the algorithm. For more accurate
results, you should attempt to choose the points, A, B, and C approximately equidistant
from one another.

Arcs

An arc is also determined by three points. The first point entered is an endpoint, the second
isany point on the arc other than its endpoints, and the third is the other endpoint of the arc.

Arcs, unlike circles, cannot be used as surfaces since they are not ‘‘closed’’. They can be
used, however, in conjunction with line segments or arcs to create surfaces. Of course, this
requires that checking be done to insure the surface being constructed is planar. Similar
methods to those described for line segments are used.

In order to display an arc, the subprogram Arc_gen is used. All arcs are drawn in a clockwise
manner from the first point entered to the last. This means that if the points were entered
counterclockwise, some manipulation must be performed before the arc can be drawn.

Observe in Figure 3.3a that the arc was entered clockwise. In Figure 3.3b, it was entered
counterclockwise.

Y

Figure 3.3a Figure 3.3b

25

26

To guarantee arcs are displayed in clockwise fashion, a complicated process is followed. As
described earlier, all arcs must be rotated into a plane parallel to the X-Y plane before the
center and radius can be determined. Next, processing is done to insure the arc is drawn
clockwise. Since the arc is now in a plane parallel to the X-Y plane, only the X and Y
coordinates need be used in further computations. You may think of the arc as being
two-dimensional and the coordinate system as being the standard cartesian system.

To begin with, the center of each arc must be translated to the origin of the X-Y coordinate

system. See figures below.

5 / SC'
(0,0)
4
NI

Figure 3.4a

Y

AI

B’ (0,0)
—

e

Figure 3.4b

Next, (referring to the diagrams below) the angle between segment OA’ and the X axis, OB’
and the X axis, and OC’ and the X axis are determined. These angles will be referred to as

Thetal, Theta2, and Theta3 respectively.

Y
Y
Cc’ Theta 3
Theta2 g, e Theta 1 |
—_— A
O
Theta 1 Theta 2\.8' o y
A e ~ Theta3
Figure 3.5a Figure 3.5b

In general, an angle between the X-axis and a line segment with one endpoint at the origin is
determined by taking the Arctangent of | X/Y |, where X and Y are the coordinates of the
other endpoint of the line segment.

If the X and Y coordinates of the endpoint are both negative, then the point must lie in the
third quadrant. Therefore, to determine the number of degrees from the positive Y-axis to
the line segment joining the origin to the point (X,Y), you must subtract Theta from 270.
The result will be referred to as Theta'. See Figure 3.6 below.

00

270° 90°
Theta /)/7

I 1\
180°

Figure 3.6: Theta = 270 — Theta

Therefore, if (Y<0) and (X<0), Theta’ = 270 — Theta. Using the same process you can
derive the following rules:

1. If (Y>0) and (X>0) then Theta’ = 90 — Theta
2. If (Y>0) and (X<0) then Theta’ = 270 + Theta
3. If (Y<0) and (X<0) then Theta’ = 270 — Theta
4. If (Y<0) and (X>0) then Theta’ = 90 + Theta

Note that special cases exist when an endpoint lies on the X or Y axis. These cases are:

If the endpoint lies on the positive Y axis, Theta’ = 0.

If the endpoint lies on the positive X axis, Theta’ = 90.
If the endpoint lies on the negative Y axis, Theta’ = 180.
If the endpoint lies on the negative X axis, Theta’ = 270.

For a more complete understanding, an example showing the arcs in Figures 3.4a and 3.4b
along with plausable values for Theta’ are given below.

Y Y
Theta2 €' Theta3s Theta 1
14 \ / 450 850 ’
X N\
o Theta2 By Al
Theta 1 15 = X
, 80° ~ " Theta3
A C' 200

Figure 3.7a Figure 3.7b

27

28

Using the angles provided in Figures 3.7a and 3.7b and the above algorithm for determining
Thetal’, Theta2’, and Theta3’ results in:

Thetal’ = 90 + 80 = 170 Thetal’ =270 + 85 = 355

Theta2’ = 270 + 14 = 284 Theta2’ = 270 + 15 = 285

Theta3’ = 90 - 45 = 45 Theta3’ = 90 + 20 = 110
Figure 3.8a Figure 3.8b

You are now ready to determine if an arc is already in clockwise form or if the endpoints
need to be switched. If Thetal’ < Theta2’ and Theta2’ < Theta3’ then the points were
entered in clockwise fashion and no changes are necessary. If, however, Theta3’ < Theta2’
and Theta2’ < Thetal’, the points were entered counterclockwise. (See 3.1b). The same is
true if Thetal’ < Theta3’ but Theta2’ does not lie between them. In these cases, before the
arc is drawn, the first and last endpoints must be switched.

In the cases where it appears that the second point of the arc does not lie between the first
and last endpoint, special attention must be taken. This problem arises when the arc crosses
the positive Y axis. In order to use a “‘FOR-NEXT"’ loop to draw the arc, an offset must be
added in cases where Theta2’ does not lie between Thetal’ and Theta3’ and at the same
time, Theta3’ < Thetal’. The offsetin such a situation is 360 degrees, otherwise the offset
is O degrees.

When circles and arcs are plotted on the CRT or on a device such as the 9872, they must be
generated by plotting to a sequence of points n degrees apart. (Where n is chosen suffi-
ciently small to generate a smooth curve). For example, circles in this pack are generated
with points ever 15 degrees. For arcs, however, the number of degrees in the arc is calcu-
lated and then an appropriate value for n is computed.

The number of degrees contained in each arc can be determined by using the angle informa-
tion discussed in the above section. The number of degrees in an arc will be referred to as its
Range.

Range = | Theta3’ + Offset — Thetal’ |

Once the range is determined, an appropriate step size for drawing the arc is found. The
following algorithm is used:

If Range < 360 then Stepsize = Range/ 24
If Range < 270 then Stepsize = Range/ 18
If Range < 180 then Stepsize = Range /12
If Range < 90 then Stepsize = Range/ 6

Observe that the range is divided by the number of segments that you wish to use in
approximating a particular curve. This gives you the number of degrees between the points
used to approximate each arc. It is also possible to choose a fixed number of degrees for the
step size. This eliminates some computation.

The following examples show the range, offset, and step size for drawing the arcs displayed
in Figures 3.3a and 3.3b.

Offset = 360 Offset = 0
Range = | 45 + 360 — 170 | =235 Range = | 110 + 0 — 355 | =245
Stepsize = 13.05 Stepsize = 13.61

Figure 3.9a Figure 3.9b

Digitizer Input
The 9874A can be used as a means of data entry for 3-D objects. This method requires that
you:
1. use 3 orthogonal views of the object you wish to enter. These are the top, front, and
side view.
2. draw the object according to ‘‘accepted mechanical drawing principles’’.
3. center each view in its view plane.

4. enter every surface of the object in each view — “hidden’’ surfaces as well as visible
surfaces.

Drawing Paper] _Cutting Plane
/ P2

Cutting Plane
(X-Y) / Intersection

(¥-2) (X-2)

Figure 3.10: Orthogonal View Drawing

T
1
]
t
1
L

Pl

Dotted lines are used to indicate surface edges
that exist but are not visible from a given view.

29

Given the three orthogonal views shown in Figure 3.10, the resulting 3-D object is:

|2

Figure 3.11

Three View Mechanical Drawings

Mechanical drawings can be very complex and the art of creating them can take months to
perfect. For an in-depth discussion, you should refer to texts on the subject. This section is
only meant to familiarize you with some general concepts.

The easiest method of introduction to this topic is through examples. Figure 3.12 depicts a
three dimensional object that can be represented by a drawing showing its three orthogonal
views — top, front, and side (right side).

Top

Front

Figure 3.12

Begin by determining the spacing of the views on your drawing surface. The top view will
appear in the upper left hand corner of your drawing space, the front view in the lower left,

and the side view in the lower right. Assume the measurements of your object are those
depicted in Figure 3.13. "
2l

<>

The width of the front view is 4" and the depth of the side view is 2". If your drawing work

space is 8%2” by 11", choose a space W between the two views (front and side). Lets choose
Wtobe 1%.

Next add 4", 2” and 1%" and subtract the total from the work space width of 11”. Divide the
result by 2 to get the value of X. X represents the width of the left and right margins of the
drawing.

Mark off these measurements with vertical tic marks on your drawing paper. See Figure
3.14. T " .

1

1!‘

- 19— 4" Ve 2" 1%

X
X w X
Figure 3.14

Referring back to Figure 3.13, the depth of the top view is 2” and the height of the front view
is 3". Choose an appropriate value for the spacing between these views. Call it Y. Let Y
equal 1”in this example. Note that the spacing Y does not have to equal that of W.

Asbefore, add the three values. Subtract the total from 8%" and divide the result by 2 to get
the value Z. Mark these vertical spacing measurements with tic marks along the left side of
your work space.

f—

z(1Y,

-

Figure 3.15

31

32

Now you are ready to draw the three views of the figure. For best results, try drawing all
views simultaneously rather than completing one view at a time. This “‘first pass’’ should be
drawn lightly for easy revision.

When finished, go back and darken the visible edges in each view and dash the hidden

edges. Observe that no dashed lines segments are needed in this particular drawing. See
Figure 3.16.

L] | 1

Figure 3.16

If, however, the original orientation of the figure were:
Top

_~

Front

N

Side
Figure 3.17

the three orthogonal views would be:

- = -

L |]]

Figure 3.18

33

Note that a three-dimensional object can be represented by a number of different three-

view drawings. Certain views, however, can present ambiguous information to the al-
gorithm that converts the three 2-D views into a 3-D object.

For example, when given the following three orthogonal views:

A
V[V

Figure 3.19

the result may be a figure that contains extraneous surfaces due to the ambiguity of the
information provided by the previous three views. A possible result is:

Figure 3.20

The subprogram generates all possible surfaces that can exist given the vertex, edge and
surface information entered. Therefore, you must use three orthogonal views that are ‘‘un-

ambiguous”’. For example, a tetrahedron can be generated correctly if the three ortho-
graphic views shown below were entered.

V|V

Figure 3.21

34

Another rule to remember is that adjacent areas must represent surfaces at different levels. If
the top view of an object is:

B
A C
TOP VIEW
Figure 3.22
The object could be one of the following:
s < 2>
© & &
Figure 3.23a Figure 3.23b Figure 3.23c Figure 3.23d

Observe that no two adjacent areas ever lie in the same plane.

Converting Orthogonal Views to a Three-Dimensional Figure

Once the orthogonal views of a figure have been digitized, you are ready to convert the
two-dimensional data to three-dimensional information. During this process, the subpro-
gram Convert 3d checks for consistency between views. At each stage of the conversion
process any inconsistencies that are found will be displayed. At this point, a modification
mode can be entered and corrections made to the view or views that show discrepencies. If
noinconsistencies are found, the object is stored as is. The process followed by Convert 3d
is described in the following paragraphs.

Given a three orthogonal view drawing, a primary, secondary, and tertiary plane are cho-
sen. First, the X-Y plane can be chosen as the primary plane, the Y-Z as the secondary
plane, and X-Z as the tertiary plane. With this orientation, the primary coordinate will be the
Y value, the secondary coordinate the Z value, and the tertiary coordinate the X value.

For each vertex, Primpt, in the primary plane, all the verticies in the secondary plane that
have a primary coordinate equal to the primary coordinate of Primpt must be found. These
vertices are saved in an array called Commonvtx. If none can be found, an “inconsistency’’
has been detected between the primary and secondary plane.

For each vertex, Cpt, in Commonvtx, all the vertices in the tertiary plane, referred to as
Tertpt, that have a secondary coordinate equal to the secondary coordinate of Cpt must be
found. If none exist, an ‘‘inconsistency’’ exists between the secondary plane and tertiary
plane.

Computer

SMuseum

All verticies satisfying the above conditions are examined for one that has a tertiary coordi-
nate equal to the tertiary coordinate of the primary point, Primpt. If none exists, there is an
“inconsistency’’ between the primary plane and the tertiary plane. If one does exist and the
primary plane happens to be the X-Y plane, then a point is added to the Vertex array. The
primary coordinate of this point is the primary coordinate of Primpt. The secondary coordi-
nate is the secondary coordinate of the Commonvtx point, Cpt. The tertiary coordinate is
the tertiary coordinate of the primary point, Primpt.

If the primary plane is either the Y-Z or the X-Z plane, do not add a vertex to the Vertex
array since it should have already been added by this time.

When a point is added to the Vertex array, an element is also added to the Vtxlink array. The
Vtxlink element is a pointer for each vertex to the vertex in each plane from which it was
derived. This information is needed in the ‘‘build edge’” section of the subprogram.

The above process is repeated with the Y-Z plane being the primary plane, X-Z the second-
ary and X-Y the tertiary plane. The primary coordinate is the Z, the secondary coordinate is
X and the tertiary coordinate is Y.

Lastly, X-Z is considered to be the primary plane, X-Y the secondary and Y-Z the tertiary
plane. At this time, the primary coordinate is X, the secondary coordinate is Y, and the
teritary coordinate is Z. Again, the process is repeated.

35

36

The following flowchart depicts the algorithm used. Three iterations are needed; one for

each of the three different plane orientations assigned.

NO

Primpt <- Next—vertex—of—primary—plane

Any vertices

in secondary plane?

Secpt <- Next—vertex—of-secondary—plane

Does primary—coord—of—Secpt NO

= primary—coord—of—Primpt?

Commonvtx array <- Secpt

Inconsistent data

Is Commonvtx array empty?

Any vertices in Commonvtx array?

Cpt <- next—element—of-Commonvtx array

exit

found—flag = 0
NO

FINISHED !!
exit

Any vertices in tertiary plane?
NO

Figure 3.24

Tertpt <- next—vertiex—of—tertiary plane

Does secondary—coord—of-Tertpt
= secondary—coord—of-Cpt?

Does tertiary—coord—of-Tertpt
= tertiary—coord—of—Primpt?

l found-flag <- 1 I

Does primary plane = X-Y plane?

NO

NO

add vertex to Vertex array

primary coordinate of vertex <- primary—coord—of—Primpt
secondary coordinate of vertex <- secondary~coord—of-Cpt
tertiary coordinate of vertex <- tertiary—coord—of-Tertpt

Figure 3.24 cont.

37

38

Manipulation

Three-dimensional objects can be moved from one point to another, rotated about an axis
or an arbitrary point, and enlarged or diminished in size. These manipulations are ac-
complished by using transformation matrices. A transformation matrix is a single mathema-
tical result that can be applied to a point (x,y,z) to generate a new point (x,y,z). The primitive
transformations are called translation, rotation, and scaling. Each of these can be expressed
as a single matrix. More complex transformations can also be expressed as a single matrix
that is the result of concatenating two or more primitive transformation matrices. If you
apply this single matrix to a point or set of points, you will obtain the same results as you
would obtain by applying each transformation in sequence.

Translation

The translation of a object on the screen is accomplished by adding aA to each coordinate.
Tx represents the number of units the object is to move along the X axis, Ty represents the
number of units the object is to move along the Y axis, and Tz represents movement along
the Z axis.

When a matrix containing the vertices of an object to be translated is multiplied by the 4 by 4
translation matrix, the result is a matrix containing the translated vertices.

1 0 0 O
el < bl [543
Tx Ty Tz 1

Figure 3.25 [3]

Rotation

In three-dimensional rotation, an object may be rotated about a point with respect to a
particular axis. This is accomplished by translating the point to the origin of the coordinate
system, performing the desired rotation, and translating the point back to its original posi-
tion. In the ““demos’ provided in this pack, all rotations take place about the computed
“center’” of the object. This ‘‘center’’ is approximated by finding the maximum and
minimum values for the X, Y, and Z coordinates of the object and computing the mean for
each.

A rotation of 6 degrees about any of the coordinate axes is accomplished with the following
matrix multiplications. (Refer to Chapter 2 of the manual to determine the sign of the angle 8
that you desire.)

Rotation about the X axis:

0 0
cos @ —sin @

sin 8 cos 8
0 0

byt = [y

SO O
—~ O OO

Figure 3.26 (3]

39

Rotation about the Y axis:

cos @ 0 sinf O
. 0 1 0 0
[xyzl] - E(VZIJ —sin 6 0 cos® O
0 0] 0 1

Figure 3.27 [3]

Rotation about the Z axis:

cosfd —-sing O 0
. sin cosf O 0
E‘V“] = E‘V“] 0 0 1 0
0 0 0 1

Figure 3.28 (3]

Scaling

The scaling of an object is achieved by multiplying each X coordinate of an object’s vertices
by the scaling factor Sx, each Y coordinate by Sy and each Z coordinate by Sz.

Note that when scaling objects containing arcs as edges or when scaling circles, the Sx, Sy,
and Sz scaling factors must be equal since ellipses are not provided for in the data base.

Observe that scaling an object will change the location of an object in addition to changing
its size. In the figure below, the triangle is scaled by a factor of 2 in the X direction, 3 in the Y
direction and 4 in the Z direction.

Zz
(2.1,2) (4.3.8)

(1,1,1)

(3,1,1)

X (2,3,4) (6,3.4)

Y

Figure 3.29 (3]

40

In order to scale an object without appearing to move it, it is necessary to find the center of
the object before scaling the object, find the center of the scaled object, and translate from
the object’s “‘new center’’ to the objects ‘‘old center’’. Demo2 demonstrates this process.

The scaling matrix used is:

Sx 0 0 0

0 0
fyel = fvel |5 0 s o
o 0 0 1

Figure 3.30 (3]

Viewing
Viewpoint
In order to establish a viewpoint, five transformations are needed. These transformations
are then concatenated into one 4 by 4 viewing matrix, V, whose purpose is to convert

vertices in a right-handed world coordinates to a left-handed eye coordinate system. The
origin of the eye coordinate system is the chosen viewpoint [3].

The first transformation, T1, translates the origin of the world coordinate system to the
viewpoint (Xvp, Yvp, Zvp), creating a ‘‘prime’’ coordinate system.

Z

ZI

(Xvp, Yvp, Zvp)
Yl
1 0 0 0 4
| o 1 0 0 , Y
T=109 0o 1 o s
-Xvp —-Yvp ~Zvp 1 _____L/
Figure 3.31a [3] X Figure 3.31b [3]

The second transformation, T2, rotates the ‘‘prime’’ coordinate system around the X axis by
—90 degrees.

ya Yy’
1 0 0 0 z -
_ 0 0 -1 0
T2=""1g 1 0 0 X’
0 0 0 1 Y
Figure 3.32a [3] Figure 3.32b[3]

The third transformation, T3, rotates the “‘prime’’ coordinate system around the Y axis by 6
degrees, so that the point (0,0,Zvp) will lie on the Z axis.

cos(8) = Yvp/+ Xvp? + Yvp? sin(@) = Xvp/y Xvp? + Yvp?

Z
Yl
N
AN
[
N X
|
S
1
Xvp N 4 Y
—-cos8 O sin @ 0 \\ /
0 1 0 0 \
= —_— — L
T3 —-sind O —cosg® O N
0 0 0 1

X Yvp AN

Figure 3.33a [3] Figure 3.33b [3]

The fourth transformation, T4, rotates the ‘‘prime’’ coordinate system abOl;lt the X axis by «
degrees, so that the origin of the world coordinate system will lie on the Z axis.

cos(x) = Xvp? + Yvp?/{Xvp? + Yvp? + Zvp? sin{x) = Zvp/+Xvp? + Yvp? + Zvp?

1 0 0 0 Y
_ 0 cos x sin o 0
T4 = 0 -sinx cosx O
0 0 0 1

Figure 3.34a [3] Figure 3.34b [3]

The fifth transformation, T5, reverses the sense of the Z axis with a scaling matrix, to
produce a left-handed coordinate system. The resulting ‘“‘prime’’ coordinate system is called
the eye coordinate system.

41

42

V4
Ye
Xe
Ze
1 0 0 0 Y
o 1 0 o0
T5 = 0 0 -1 O
0 0 0 1
X
Figure 3.35a [3] Figure 3.35b [3]

The concatenated viewing matrix V thenis: V = T1*T2*T3*T4*T5.

Clipping
Since not all surfaces of an object may be within the truncated viewing pyramid, a clipping
routine is necessary. The first step in clipping is to convert the eye coordinates into a

normalized range from O to 1. This transformation depends on the values S, D and F from
the truncated viewing plane, shown below.

Figure 3.36 [3]

These values are in eye coordinates and must be computed for every viewpoint. In this pack
S, D and F are defined as follows:

S=D/4
D = Zmin — (Zmax—Zmin) /10
F = Zmax + (Zmax—Zmin) /10

Zmax and Zmin (also in eye coordinates) are the maximum and minimum Z values of the
object. S, D and F are used in the transformation matrix P.

0 0

0 0
S/(D(1-D/F)) S/D
~S$/(1-D/F) 0

OO O
OO O

Figure 3.37 {3]

The vertices of an object are then multiplied by the concatenation of V and P. The results
are coordinate quadruplets, (X, Y, Z, W), in the clipping coordinate system. The W value is
called the homogeneous coordinate which is used by the clipping algorithm, and then later
in the perspective calculation [3].

Since objects are represented as a collection of surfaces in this pack, it is necessary to use a
surface clipping algorithm rather than a line clipper. The clipping algorithm used in this pack
is called a re-entrant surface clipper because it is recursive and clips surfaces [4]. There are
two parts to the algorithm. These are represented in flow diagrams below.

Enter with Vertex P

First point

for this level? | P->8->F

Does line
SP cross limiting
plane for this
level?

Compute intersection
1, of SP and the
limiting plane of

this level.

IsSon
visible side of
limiting
plane?

‘ Exit ’

Figure 3.38a Part One of Clipping Algorithm [4]

44

Close surface entry

Was there
any output to
this level?

__NO

Does the
line SF cross
limiting plane of
Ihis level?

YES Compute intersection
1, of line SF and
the limiting plane.

Close
next level

‘ Exit >

Figure 3.38b Part Two of Clipping Algorithm [4]

Consecutive vertices of a surface are passed to Part One, one at a time. As the program
progresses, Part One calls itself 6 times. At each level of recursion a different clipping plane
is considered. The order of the limiting planes is: top, bottom, left, right, hither, yon. Note
that each level may call Part One twice, at Output [and Output S. However, if the program
is at the sixth level, and S are the vectors of vertices of the clipped surface.

Each time a level is called, the input vertex is saved in S. Once a level has received two
vertices, it decides whether to clip the line joining them. If the line is on the visible side of the
limiting plane, the first endpoint is sent to the next level. If the line is not visible, the program
returns to the previous level. A non-trivial case arises when the line crosses the clipping
plane. To find the intersection, the visible fraction of the line, call it «, is calculated and
added to the visible endpoint. In the formula below, S and P are the visible and clipped
endpoint vertices [4].

[= o *P-S)+S

The homogeneous coordinate of a vertex, W, is used in the clipping decision at each level.
The bottom and top levels clip a line whose endpoints are outside the range —W>=Y
>=W. The visible limits of the left and right clipping planes are —W>=X >=W. The hither
and yon limiting values range from O to W. This step is essential to prevent an object from
“wrapping around’’ on the screen [4].

After all vertices of a surface have been passed to Part One, the second part of the clipping
program is called to flush out any remaining points. Part Two also calls itself at ‘‘close next
level” 6 times, once for each clipping plane. If, during Part One, no vertices were ever sent
to a level, or if the line between the first and last vertex sent to a level (F and S) does not
cross its limiting plane, the program returns to the previous level. Otherwise, the intersection
of SF and the current limiting plane is calculated and output to the next level in Part One. If
Part Two is at level 6, however, the output vector, I, is a vertex of the clipped surface. The
vertices of the new surface are stored in a temporary array Q(*) during the clipping process.

Perspective

In this pack, a single point perspective projection is used to convey depth information by
making distant objects smaller than those closer. In preparation for this step, it is necessary
to scale and translate the X and Y coordinates of each vertex into the coordinate system in
which they will be displayed. The values of the transformation matrix S depend upon
whether a wire-frame or hidden surface display is desired. The parameters Vsx and Vsy are
equal to one half of the range of the screen display coordinates in the X and Y axes. (Vcx,
Vcy) is the center point of the screen coordinates [3]. All vertices are multiplied by the
correct matrix, S, before the perspective is calculated, in order to put an object into the
screen coordinate system.

Wire-frame: Vsx = 108.13,Vsy = 100
Vsx 0 0 O Vex= 0 ,Vey= 0
5= 0 Vsy 0 O
0 0 1 0 Hidden-surface: Vsx = 245.50, Vsy = 227
Vex Vey 0 1 Vex = 313.50, Vey = 227

Figure 3.39 [3]

The perspective calculation itself is quite simple. The X, Y, and Z coordinate of each vertex
is divided by its homogeneous coordinate, W.

45

46

Output

This pack uses two methods of output, wire-frame and hidden surface removal. The clipping
and perspective algorithms previously described allow output using either.

Wire-frame

If your application only requires wire-frame output, the clipping and perspective algorithms
can be greatly simplified. See PRINCIPLES OF INTERACTIVE COMPUTER GRAPHICS,
edition 2, by Newman and Sproull for details.

After perspective division, the object may be drawn as is, using the coordinate pairs (Xs,Ys)
for a wire-frame display. For hidden surfaces to be removed, however, further calculation is
needed. The following is a summary of the viewing process up to this point.

[XYZW]=[XwYwZw 1]*V*P (clip)*S, where Xw is the X coordinate in the world
coordinate system.

Xs=X/W, Ys=Y/W,andZs =Z/W
Hidden-Surface

There are two subprograms involved in hidden-surface removal. ‘‘Hidden surface” is first
used to transform data into the hidden-surface data base as described in Chapter Four, The
Data Base. Then the utility “Scan’’ is called to perform the actual calculations using a
modified scan technique.

During the program the Edge(*) is used to hold three linked lists. The first is set in the
subprogram ‘‘Hidden surface’” and sorts the edges by their initial Y values. The head of the
list at any time is held in the variable Elist. After processing begins on an edge, it may be
sorted by its X value in either the list for the current line or for the next scan line. It is sorted
in the current scan line’s list until processed, at which time the edge’s X value is updated and
resorted into the list for the next scan line. The head of the new list is stored in the variable
Xsort.

Poly(*) is used to hold two linked lists. If active, a polygon may either be linked by its Z
value at the current sample point, or by its projected Z value for the next sample point. The
head of the next sample point list is kept in the variable, Inpoly.

Beginning at the top of the display, each raster scan line is considered one at a time. The
program then scans across the line to each occurrence of an edge intersection, called a
sample point. At each sample point intersection, all active polygons are sorted by their Z
values. This “intersection’’ is the point where a polygon would be pierced by a line parallel
to the Z axis (see the diagram 3.40). The polygon with the smallest Z value (or the head of
the Inpoly list) is visible. If an edge belongs to the polygon that is in front of any others at this
sample point, the 9845B program outputs a dot, unless the edge is a horizontal edge.

The 9845B program treats horizontal edges as a special case, since all points of such an
edge intersect a scan line. The intersecting sample points are then considered to be the
endpoints of the edge. This means that after processing the left endpoint, the right one is
immediately resorted back into the Xsort list of the current scan line. A flag is then set to tell
the program whether it is considering the left or right endpoint of the edge.

Before going on to the next sample point, the Inpoly list is updated to hold only the
polygons that are still active at the next sample point. It is at this time that horizontal edges of
the top polygon are displayed for the 9845B or surfaces are shaded for the 9845C. When all
sample points of a scan line have been processed, the edges that will be active on the next
scan line are updated. First their next Z values are computed, and then they are resorted into
the Xsort list by their next X values. The program is finished when all scan lines of the
display have been considered [1].

A surface can be in any one of four stages, depending on which sample point is being
considered. These stages are out, just active, active, and just inactive. If a particular sample
point does not intersect a polygon, that polygon is considered to be “‘out”. If it intersects the
left edge of a polygon, that polygon attains the mode “‘just active’’. If it lies between a
polygon’s left and right edge, the polygon is considered “‘active”. If it encounters the right
edge, the polygon becomes “‘just inactive’” [1]. Note that all surfaces should have the mode
of “out’’ at the end of a scan line. Below is an example of a typical surface, S, and its modes
along one scan line.

Y
I z (S=active)
I / e
| // - N
| / /
! S=out =
(a scan line) s (S=ouy (Sﬁ‘ Y
| —/ —————— /—17 —_——— -
I /. (sample point)~"/ (sample point)
l / // 7
L (' /
|/ (S=just (S=just
|/ active) inactive)
‘& X

Figure 3.40

Since the algorithm uses calculated slopes to predict the X and Z values of a surface at a
particular point, there is some inherent round off error. This does not usually present a
problem, but do not be surprised if occasionally the wrong surface appears on a scan line.

The algorithm requires that all surfaces be planar, closed, and clipped in the X, Y and Z
directions, and that all (Xs,Ys) coordinate pairs be scaled to the ranges 68 <=Xs< =559,
and 0<=Ys<=454. These values correspond to the dot units within the clipped plotting
area on the CRT.

NOTE
This algorithm does not handle surfaces that intersect other than
at edges.

47

48

SCAN

Get largest Yval
from Elist

Q__.

Any
edges left
in Elist?

NO

Flush out
output STOP
buffer

Any
more
edges start
on this
ling?

YES

Reset Xisp

@___

Take edge out Sort edge
of Elist; re- into cur-
set Elist rent Xsort

Is
edge a
horizontal
line?
(for 9845B)

Update Poly(")
NO that edgg be-
longs to in
Inpoly; update
edge for next
scan line

Resort right
endpoint in a
current line
Xsort list

Figure 3.41

Flowchart for Scan Algorithm

Is top

scan line?

NO

Set next Xlsp

©

Figure 3.41 cont.

of Inpoly Is
list just active YES Output the the YES | Dump
or just inactive, and edge to the buffer buffer
not horizontal? buffer full?
(for9845B) ’
NO NO
Update polygons
for next sample
point
Is
top of Output a
Inpoly list horizontal
horizontal edge/output
or using a surface
9845C? scan line
Is Xsort
list exhausted decrement
for current Yval

49

50

Chapter 4
The Data Base

Computer’
. Museum-

Overview

As mentioned in Chapter 2, this pack uses the ‘“‘linked vertices”” method for its main data
base. The original coordinates of an object are stored in this data base along with all the
edge type and edge connecting information. Two temporary data bases are used in the

digitizer input and display routines. Their purposes are to get the data into the main data
base format and to hold transformed data ready for display.

52

Input
Digitizer Data Base

The digitizer input routine stores points from the three orthogonal views in a temporary data
base until input is complete. This data structure is used to keep track of all vertices and edge
connecting information for each view. Vertex2d(*) contains all the vertices for each view,
along with flags used to convey information needed to convert the data into a form compat-
ible to the main data base. Edge2d(*) consists of pointers to those vertices which are
connected in each plane. As the main data base is built, other columns of Edge2d(*) are
used as a ‘‘scratch pad’’ to contain flags and pointers necessary to the conversion algorithm.
Surf2d(*) contains linked lists of pointers to the edges making up an object’s surfaces.
Object2d(*) contains linked lists of pointers into the Surf2d(*) for all three views. The
diagrams of the data base drawn below are three dimensional, one dimension per view.

Vertex2d(3,0:N,5) Edge2d(3,0:N,5)
/ 7 7 / / yA 7 7 [VA
ya / / / / / / / / /
Number Number /
of t
° Vertices / Y Ed(z;a /
Vertex | Conver-1 | Vertex | Vertex | Vertex | Vertex | Conver-|| |
I X Y Zz used sion | Pointer | Pointer | Pointer | Pointer [Sion | |/
Flag Flag Flag
I)
/ / /. / / / / / / /
/ / /. / / / / / / /

Figure 4.1

Surf2d(3,0:2*N,3) Object2d(3,0:N/2,3)
/ / / /. / /
/ / / /[/ /
Number / Number
0 of A o} ot
Edge pointers Surface Pointers
I Edge 4/ | Surface J
pointer / pointer
>
Edge Surface Y
pointer }' * / . pointer ‘ : /
. . . V . . /V
N B T | | Y

y ,
/ /
[A
2N N/2

Figure 4.1 cont.

Manual and Post-digitized Data Base

If vertices of an object are entered manually, they are transformed immediately into the
standard range and stored in the main data base. The standard range is a cube with values:
—100<=X<=100, -100<=Y<=100, —100<=Z<=100. If the object is entered using
the digitizer routines, the user must request that the data be converted into the main 3-D
data base. Since vertices entered into the temporary digitizer data base are already in the
standard range, no conversion is needed.

53

54

The main data base contains all the vertices of an object, along with all edge and surface
linking information. It’s linked structure allows for easy insertions and deletions of input

information. The diagrams below display the data base pictorially. (Note an ““*”” indicates
used with 09845-10080.)
Vertex(0:N,4) Edge(0:N,5)
S
o - o
1 Vertex | Vertex
| (X Y Zi 1 (ine) Ptr Ptr
2 Vertex | Vertex
2 Xe Y2 ze 2 (ciccle) Ptr Ptr
3 Vertex | Vertex Vertex
3 (arc) Ptr Ptr Ptr
| - P mm————
Surface(0:2*N,3) *Color(N/2,3) Object(0:N/2,3)
Il H S L 0
0 / |_— / ue at um ///
| }Edoe “Color 2| L 1 Yeur
bo / Pir ue Sat um / uPtar\ce /
g Edge 0 g Surface 0
Ptr / Ptr
Edge —
3 Ptr 0 0
%] (
S — . A
r—v\—\—‘
2%N N/2 i N/2

Figure 4.2

Vertex(*) contains all distinct (X,Y,Z) triplets for an object. The fourth column is set to 1 in
order to do matrix multiplication for transformations. As discussed in Chapter 3, this 4th
column is necessary in order to generate the homogeneous coordinates for clipping and
perspective. Row zero is used to hold special information about Vertex(*). Vertex(0,1) and
Vertex(0,2) contain pointers to the next free row and the last used row, respectively.

The first column of Edge(*) contains the edge type (1 = line, 2 = circle, 3 = arc). The
contents of the next four columns depends on the edge type. If the edge is a line, the 2nd
and 3rd columns contain pointers to the endpoints of the line. If the edge type is a circle, the
2nd, 3rd, and 5th columns contains pointers to the three vertices defining the circle. For an
arc edge type, columns 2 and 5 are pointers to the endpoints of the arc and column 3
contains a pointer to a point between the two endpoints. When a row is not being used to
hold edge information, column 5 is used as a pointer to the next free row. As in the
Vertex(*), row zero of Edge(*) contains other information. Edge(0,1) and Edge(0,2) are
pointers to the next free row and the last used row.

The fourth column of Edge(*) has purposely been left empty as a convenient way to add
non-spatial data into the data base. It can be used directly to contain a line type or a pen
number. Also, if you have another matrix of information associated with each edge such as a
label, the fourth column could contain a pointer into a string matrix.

Surface(*) contains a group of linked lists of edges which comprise the surfaces of an object.
Column 1 is a pointer to the next edge of the surface. Column 2 contains a pointer to the
row in Surface(*) containing the next edge pointer. If a row is not being used, column 3
holds a pointer to the next free row. When using 09845-10080, the 3rd column of the head
of a surface list contains a pointer into the Color(*). As in the other matrices, Surface(0,1)
and Surface(0,2) contain pointers to the next free row and the last used one.

Object(*) is a linked list of pointers to surfaces that comprise an object. The head of the list is
pointed to by the variable, Pic. The first column of a used row contains a pointer into
Surface(*) where the pointer to the first edge of the surface is found. Column 2 is the pointer
to the row in Object(*) where the next surface pointer is found. When the row is not being
used, column 3 contains the next free pointer. Object{0,1) and Object(0,2) contain pointers
to the next free row and the last used one.

Color(*) is used to hold the color parameters for each surface. These include Hue, Satura-
tion and Luminosity. (09845-10080)

55

Manipulation

All transformations, whether viewing, translation, scaling or rotation, change the status of an
object’s coordinates. As discussed in Chapter 3, these transformations may be concatenated
into one 4 by 4 matrix. The original points of an object are then multiplied by the ‘‘status’
matrix to get its transformed points. In the pack, Status(*) is used to hold the current
transformation information for an object and Transform(*) contains its transformed points.

Transform(O:N,4) Vertex{(0:N,4) Status(4,4)
[o) (o)
| { Trans_x1 | Trans_y1 { Trans_z1 1] Xy Y4 Zr 1
2] Trans_x2 | Trans_y2 | Trans_z2 1 2 X2 Yz Z2 1 X
T T 71 v T [T
Figure 4.3

Note that Edge(*), Surface(*), and Object(*) can still be used to access the transformed
points of an object.

Viewing
The first temporary data base in the display process is used in the clipping routine. All

transformed points and edge connecting information from the main data base are put into
the following format:

Sur-tmp(0:2"N,2)
*Sur-tmp(0:2*N,3) Color(N/2,3) Transform(0:N,4)
oL suffa%fes | Hue Sat Lum 0
___,_74
—T—_|"Color | § |Trans_x1Trans_y1{Trans_z1[1
I Ptr e \‘\,_——-—4“
] m
2 - 3 4 elc etc etc etc
\ Ptr \\
\\ N
_ D
— \\ -4
\ 5

e
2%N N/2 | N

Figure 4.4

Points are stored in Transform(*) as they occur in each surface. Note that circles and arcs are
broken up into line segments at this time. Sur _tmp(*) contains pointers to the beginning and
ending rows of points in Transform(*) that comprise each surface. The third column of

Sur_tmp(*) contains the link to the next used row in Sur_tmp(*). Sur_tmp(0,2) contains
the number of surfaces.

The purpose of this data structure, Sur_tmp(*), is to put the information about an object
into a form necessary for the surface clipping algorithm. During the clipping process, it
usually becomes necessary to add or delete vertices from Transform(*), as not all vertices of
a surface may be visible. In this case, Sur tmp(*) is adjusted accordingly. When using
09845-10080, the color information for each surface must also be preserved.

After clipping, if hidden-surface removal is not desired, the object may be drawn in wire-

frame from this temporary data base. If hidden-surface removal is desired, another tempor-
ary data base is required.

57

58

Output

This last temporary data base is quite different from any other previously discussed. It must
contain the endpoints of all line segments and information indicating which surface the line
belongs to, as well as the slopes of each line and surface. The two matrices of this data base
are Poly(*) and Edge(*). Due to the length of these arrays, each array subscript is described
is detailed below. Those marked with ‘“**”’ are initialized by the Scan routine, while all
others must be set before entering the Scan portion.

Edge(N,0:10)

Edge([,0) — pointer to an edge stored in Edge(*) with the next less Y initial value: last
pointer in list = O; (changed in program to reflect position in the Xsort list).

Edge(l,1) — pointer to one polygon in Poly(*) that this edge belongs to

Edge(1,2) — pointer to 2nd polygon in Poly(*) that this edge belongs to; note that one edge
may refer to two polygons

Edge(l,3) — X coordinate of the top endpoint
Edge(l,4) — Y coordinate of the top endpoint
Edge(l,5) — X coordinate of the bottom endpoint
Edge(I,6) — Y coordinate of the bottom endpoint

Edge(l,7) — X coordinate of the top endpoint; (changed in the program to be the X coordi-
nate of the current point on the edge under consideration)

Edge(I,8) — Dxdy, which is (Delta X) / (Delta Y); for horizontal lines, set this value to
99999,

Edge(l,9) — Z coordinate of the top endpoint; (changed in the program to be the Z coordi-
nate of the current point on the edge under consideration)

Edge(l,10) — Dzdy, which is (Delta Z) / (Delta Y); for horizontal lines, set this value to
99999

Poly(2*N,0:5)
**Poly(I,0) — polygon’s position in the Inpoly list
Poly(I,1) — initialize to —1; (changed in the program to be this polygon’s status flag)

**Poly(1,2) — used in the program as Z coordinate of this polygon at a point in space

Poly(l,3) — Dz/Dx, which is the range in Z with respect to X of a polygon. It is computed
by the following formula where (X1,Y1,Z1), (X2,Y2,Z2) and (X3,Y3,Z3) are
three different points on the polygon.

Yl 21

Y2 272

_1Y3 73
Dz/Dx = X1 Y1l
X2 Y2

X3 Y3

Poly(l,4) — used in the program as a pointer to the current edge of this polygon under
consideration

The following array extensions are for 09845-10080
Poly(1,5) — the hue value of this polygon
Poly(1,6) — the saturation value of this polygon
Poly(l,7) — the luminosity value of this polygon
The subprogram Hidden surface, is responsible for translating the clipping data base into

this last data structure. The subprogram Scan then processes the object in this form, one line
at a time, and outputs the object with hidden surfaces removed.

59

60

C omm er

Chapter S
Input Utilities

The Input Utilities are located on the “Input’” cartridge. This cartridge includes all the
subprograms needed for entering objects manually or with the digitizer.

Manual Entry Subprograms

The following subprograms are used when doing manual data entry. They are One_obj _
entry, Color_entry, Initialize, List, Relist, Surface setup, Check arrays, Surface entry,
Enter line, Enter circle, Enter arc, Save line, Save circle, Save arc, Edge ver entry,
Change _point, Database delete, One Ob] store, Store color and Plane _equation.

A description of each of these along with its file name and the definitions for the local
variables follows.

One_obj entry

One_obj entry(File$,INTEGER Edge(*),N, Object,Object(*), Pic, Surface(*), SHORT
Status(*), Vertex(*))

One_obj entry enters one previously stored 3-D object into the data base.

It One_obj entry is used while the program is in GRAPHICS mode on the 9845B, the

subprogram Ginput will be needed. If Ginput is used, all LINPUTs must be changed to calls
to Ginput.

Filename: Obj en

Local Variable Definitions

Flag Equals 1 if a file does not exist on the mass storage desig-
nated

Type Designates type of file; 3-D file =3

Color_entry
Color_entry(INTEGER Object(*),Pic,Surface(*),SHORT Color(*))

This subprogram inputs the color parameters for an object and links them to the data base.

Filename: Cl_enC

62

Local Variable Definitions

File_color$[12] Name of file containing color parameters
Color Index into Color(*)

Object Index into Object(*)

Return Equals 1 if file is found

Surface Index into Surface(*)

Initialize

Initialize(INTEGER Edge(*),N,Object(*), Surface(*), SHORT Vertex(*))
Initialize provides for the initialization of the 3-D data base.
Filename: Init

Local Variable Definitions

[Loop index

List
List(File$, INTEGER List_flag)

This subprogram provides for the listing of the X, Y, and Z coordinates of a 3-D object.
Filename: List

Local Variable Definitions
Printer 1 = CRT, 2= thermal line printer, 3 = no listing

Relist(09845-10060)

Relist(INTEGER Edge(*),Object(*),Pic,Surface(*), Surface count, SHORT Offset(*),
Range(*), Transform(*))

This subprogram is used to list the X,Y, and Z coordinates of an object.
Filename: RlistB

Local Variable Definitions

Next edge Pointer to next edge to process

Next surface Pointer to next surface to process

Object Pointer to first Object

X1 Calculated X-coordinate of 1st vertex

X2 Calculated X-coordinate of 2nd vertex

X3 Calculated X-coordinate of 3rd vertex (if circle or arc)

Y1 Calculated Y-coordinate of 1st vertex

63

Y2 Calculated Y-coordinate of 2nd vertex

Y3 Calculated Y-coordinate of 3rd vertex (if circle or arc)
Z1 Calculated Z-coordinate of 1st vertex

Z2 Calculated Z-coordinate of 2nd vertex

Z3 Calculated Z-coordinate of 3rd vertex (if circle or arc)

Relist(09845-10080)

Relist(INTEGER Edge(*),Flag,Object(*),Pic,Surface(*),Surface count,SHORT Color(*),
Offset(*),Range(*), Transform(*))

This subprogram is used to list the X,Y, and Z coordinates of an object. If the variable Flag is
set, it will pause after displaying the coordinates of a surface and allow you to enter color
information.

Filename: RlistC

Local Variable Definitions

Next edge Pointer to next edge to process

Next surface Pointer to next surface to process

Object Pointer to first Object

X1 Calculated X-coordinate of 1st vertex

X2 Calculated X-coordinate of 2nd vertex

X3 Calculated X-coordinate of 3rd vertex (if circle or arc)
Y1 Calculated Y-coordinate of 1st vertex

Y2 Calculated Y-coordinate of 2nd vertex

Y3 Calculated Y-coordinate of 3rd vertex (if circle or arc)
Z1 Calculated Z-coordinate of 1st vertex

22 Calculated Z-coordinate of 2nd vertex

Z3 Calculated Z-coordinate of 3rd vertex (if circle or arc)

Surface setup

Surface setup(INTEGER Edge count,Object,Object(*),Pic,Surface,Surface(*),
Surface count,Surface flag,REAL A(*),B(*),C(*),D(*))

This subprogram handles the overhead for addition of a new surface when using the manual
entry method.

Filename: Surset

Local Variable Definitions

[Loop index

64

Check arrays
Check_arrays(INTEGER Edge(*), Edge_flag, Vertex flag, SHORT Vertex(*))

This subprogram checks to see if Edge(*) or Vertex(*) are full before an edge is added to the
data base.

Filename: Check

Surface entry

Surface_entry(INTEGER Closed flag, Edge count, Edge index, Surface, Surface(*),
Surface_flag, SHORT Firstpt(*), Lastpt(*))

Surface entry stores the pointer to an edge into the Surface array.
Filename: Surent

Enter_line

Enter line (INTEGER Edge count,Line,Surf flag, SHORT Firstpt(*),Lastpt(*), Offset(*),
Range(*),Real pts(*),Tran_pts(*),REAL A,A(*),B,B(*),C,C(*),D,D(*))

This subprogram provides for the entry of line segments. The X, Y, and Z coordinates of the
endpoints are entered using this routine.

Plane equation is called from Enter line.

Filename: Line

Enter circle
Enter circle(SHORT Offset(*),Range(*), Real pts (*), Tran_pts (*))

Enter circle allows entry of a circle to the data base by entering the X, Y, and Z coordinates
of three points on the circle.

Filename: Circ

Local Variable Definitions

[Loop index

A(3,3) Matrix used to find the plane parameters of a surface
B(3,3) Matrix used to find the plane parameters of a surface
C(3,3) Matrix used to find the plane parameters of a surface
Enter arc

Enter arc (INTEGER Edge count, Surface flag, SHORT Firstpt (*), Lastpt (*), Otfset (*),
Range (*), Real pts (*), Trans pts (*), REAL A, A(*), B, B (*), C, C(*), D, D (%))

65

Enter arc provides the utility of entering X,Y and Z coordinates for three points of an arc.
These points are the two endpoints and a point on the arc.

Plane equation is called from Enter_arc.
Filename: Arc

Local Variable Definitions

E(3,3) Matrix used to determine if three points in space are col-
linear

F(3,3) Matrix used to determine if three points in space are col-
linear

G(3,3) Matrix used to determine if three points in space are col-
linear

Save line

Save line(INTEGER Edge type,SHORT Real pts(*),Status_inv(*))
Save_line prepares line to be be added to data base.
Filename: Sline

Local Variable Definitions

Temp_pts(3,4) Used to temporarily contain the Real pts(*)

Save_circle
Save_circle(INTEGER Edge type, SHORT Real pts(*),Status _inv(*))

This subprogram prepares the points determining a circle to be added to the data base.
Filename: Scir

Local Variable Definitions

Temp_pts(3,4) Used to temporarily contain the Real pts(*)

Save arc
Save_arc(INTEGER Edge type,SHORT Real pts(*),Status_inv(*))

This subprogram prepares for an arc to be added to the data base.
Filename: Sarc

Local Variable Definitions

Temp_ pts(3,4) Used to temporarily contain the Real pts(*)

66

Edge ver entry

Edge ver entry (INTEGER Edge(*),Edge count,Edge index,Edge type,SHORT
Real pts(*),Vertex(*))

This subprogram provides a method of entering edge information into the data base arrays
Edge(*) and Vertex(*).

Filename: Edgver

Local Variable Definitions

Flagl Set to 1 if 1st point to be stored is already in Vertex(*)
Flag2 Set to 1 if 2nd point to be stored is already in Vertex(*)
Flag3 Set to 1 if 3rd point (for arc or circle) is already in Vertex(*)
I Loop index

P1 index Points to next free space in Vertex(*)

P2_index Points to next free space in Vertex(*)

P3 index Points to next free space in Vertex(*)

Change_point

Change point (INTEGER Edge(*), Object (*), Pic, Surface (*), Surface_count, SHORT
Offset (*), Range (*), Status_inv (*), Vertex (*))

This subprogram changes a single vertex of a surface when entering data from manual
mode. Change point does no testing to see if the vertex you enter is already in the surface
description. It is only meant as a quick error correction routine so that you will not have to
reenter an entire surface due to a mistake in entering a single vertex.

The only subprogram called from Change point is Plane equation.
Filename: Chngpt

Local Variable Definitions

Edge Pointer to edge being examined for point being changed

Edgel Pointer to first edge containing point to be changed

Edge2 Pointer to second edge containing point to be changed

I Loop index

New vertex Pointer to next empty location in Vertex(*) to be used if a
new vertex must be added

Num _edges The number of edges containing the point to be changed

Number of surf The number of the surface containing the point to be de-
leted

Object Pointer to object

Surface Pointer to surface

Vertex Index to point that is to be changed

Vertex1 Pointer to vertex

Vertex2
Vertex3
Real pts(2,4)
Tran_pts(2,4)

X
Y
Z

A
A(3,3)
B
B(3,3)
C
C(3,3)
D
D(3,3)

Database_delete

67

Pointer to vertex
Pointer to vertex
Tran_pts(*) multiplied by current Status(*)

Contains X, Y, and Z value of point to be changed and X,
Y, and Z value of new point

X-coordinate of new point after it has been multiplied by
Status(*)

Y-coordinate of new point after it has been multiplied by
Status(*)

Z-coordinate of new point after it has been multiplied by
Status(?)

Determinant of A(*)
Matrix used to find plane parameters of a surface
Determinant of B(*)
Matrix used to find plane parameters of a surface
Determinant of C(*)
Matrix used to find plane parameters of a surface
Determinant of D(*)

Matrix used to find plane parameters of a surface

Database delete (INTEGER Edge (*), Object, Object (*), Pic, Surface (*), Surface_count,

SHORT Vertex (*))

This subprogram deletes a surface from the data base.

Filename: Surdel

Local Variable Definitions
Edge

Edge_type

Flag1

Flag2

Flag3

[
Number of surf
Obj

Surface

V1 ptr

V2 ptr

V3 ptr

Pointer to current edge of surface that is to be deleted
1 =line, 2 = circle, 3 = arc

Set to one if vertex 1 is used by another edge
Set to one if vertex 2 is used by another edge
For arcs - 1 if vertex 3 used by another edge
Loop index

The number of surface to be deleted

Pointer to object to be deleted

Pointer to surface to be deleted

Pointer to 1st vertex of edge to be deleted
Pointer to 2nd vertex of edge to be deleted
Pointer to 3rd vertex if Edge type = 2 or 3

68

One_obj_store
One_obj_store (INTEGER Edge (*), N, Object (*), Pic,Surface (*), SHORT Status (*),

Vertex (%)

This subprogram stores a 3-D object on the desired mass storage medium. If you are using
pack 09845-10060 and wish to store data while in GRAPHICS mode, replace all LINPUT or
INPUT statements with calls to Ginput.

The only subprogram called from One_obj_store is Ginput when using pack 09845-10060
and this subprogram is only needed in the case mentioned above.

Filename: Obj st

Local Variable Definitions

Answer$[3] String for YES /NO responses

File$[15] String for filename designation

Flag Equals 1 if no file already exists on the mass storage desig-
nated

Store_color (09845-10080)
Store color(INTEGER Object(*), SHORT Color(*))

This subprogram stores an object’s color information onto a data file.
Filename: Cl_stC

Local Variable Definitions

Ans$[17] String used for YES /NO response
File$[12] String used for filename designation
Return Equals 1 if no file already exists on the designated mass

storage device

Plane equation
Plane_equation(REAL A,A(*),B,B(*),C,C(*),D,D(*))

This subprogram provides the values A, B, C,and D for the plane equation Ax+By+Cz-
D=0.

Filename: Plnequ

Digitizer Entry Subprograms

The following ten subprograms are used only for digitizer entry. These allow you to enter a
three-dimensional figure by digitizing in two-dimensional information from three orthogonal
views of a mechanical drawing. Refer to Chapter 3 for a more detailed description of the
three views needed. See the digitizer input demo, Demo 3, in Chapter Ten to see how the
subprograms interact. These subprograms are Input, Initviewpln, Constviewpln, Display,
Draw2d, Modvp, Recvpcoords, Convert3d, Indbad, and Findsurf. A description of each
along with their file names and local variable definitions follow.

Input
Input (INTEGER Digi, Mneps, Ne, Ne2, No, No2, Ns, Ns2, Nv, Nv2, Redundfctr)

Input is the main subprogram for digitizer input. It provides for the digitizer function key
monitoring.

The subprograms called from Input are Convert3d, Display, Draw2d, Dump Initviewpln,
Modvp, One_obj store, and Plot.

Filename: DginpB (09845-10060),DginpC (09845-10080)

Local Variable Definitions

Answer$[3] Contains YES /NO response

Dsp$[15] Message to be displayed in digitizer display

Filnam${10] File name used when getting or saving 2D information

Plotter$[20] Plotter identifier

S$[17] Status string

Add_del Switch indicating whether modification to a viewplane is to
be 0) add surfaces, 1) delete surfaces, or 2) move vertices

Bp Indicates bit position — determines what digitizer key has

Bus address

been pressed
Bus_address of plotter

Cvterror Flag returned from Convert3d that indicates if conversion
successful or not {0/ 1)

G New grid resolution input in response to key ‘‘fe’”’

Hid Parameter specifying hidden-surface or wire-frame

Key Contains the key code returned from the digitizer when a
key is pressed

N Number of vertices allowed

NeZa Number of edges allocated in Edge2d(*)

NoZ2a Number of surfaces allocated in Object2d(*)

Ns2a Number of surface elements (edges) allocated in Surf2d(*)

Num_surf ex
Nv2a

Number of surfaces user expects for object
Number of vertices allocated in Vertex2d(*)

69

Pic Pointer to head of list in Object(*)

Pn Indicates mass storage file containing 2D data

R Loop index

Rv Return variable indicating if Filenam$ already exists
S Contains digitizer status when a serial poll is performed
Select code Select code of plotter

Status(4,4) Matrix of concatenated transformations
Transform(0:N,4) Array of vertices multiplied by current Status(*)
Xvp X coordinate of viewpoint

Yvp Y coordinate of viewpoint

Zvp Z coordinate of viewpoint

Initviewpln

InitviewpIn(INTEGER Digi,Ne2,No2,Ns2,NvZ2)

Initviewpln provides for the initialization of the data base and viewplanes for the digitizer
input subprograms.

Constviewpln is called by Initviewpln.
Filename: DginiB (09845-10060),DginiC(09845-10080)

Local Variable Definitions

Cper Flag that indicates an error in the cutting plane intersection
point

Row Loop index

S Status returned from serial poll of digitizer

View Indicates what plane of the 2-D arrays is being initialized

Constviewpln

ConstviewpIn(INTEGER Error,Digi)
Constviewpln draws the viewplanes on the CRT.

Filename: DgcvwB (09845-10060), DgcvwC(09845-10080)

71

Display
Display(A$,INTEGER Select)

This subprogram provides for displaying characters on the digitizer display.
Filename: Digdsp

Local Variable Definitions

Alpha$[72] Contains the list of characters from which to choose the
correct display code from A(*)

D$[240] Contains the list of commands to be sent to the digitizer in
order to display the message contained in A$

A(72) Contains the codes used to form the alphanumeric charac-
ters on the digitizer display

I Loop index

P Position of character of interest in the character set defined
by Alpha$

Draw2d

Draw2d(INTEGER Digi)

This subprograms draws the three 2-D orthogonal views on the screen.
The subprograms called by Draw2d are Constviewpln and Recvpcoords.
Filename: Digdrw

Local Variable Definitions

Cedg Points to current edge when drawing a 2-D surface

Edg Used to retrieve the coordinates of the endpoints of a par-
ticular edge in a surface

Error Indicates error in cutting plane description if not equal to 0

Objel Points to beginning of surface description in Surf2d(*)

Plane Indicates the viewplane currently being drawn

Xpln X coordinate of a 2-D vertex in the located and scaled

plane coordinate system

Ypln Y coordinate of a 2-D vertex in the located and scaled
plane coordinate system

Modvp
Modvp(S$,INTEGER Add_ del,Digi,Mneps,Redundfctr)

This subprogram is used for the input and modification of the three orthogonal views.

Modvp calls the subprogram Recvpcoords.

72

Filename: DgmodB (09845-10060),DgmodC {09845-10080)

Local Variable Definitions
Ann$[15]

Annot

Beepdur
Beepfreq

Beginsurf
Cedg

Currsurf

De

Deletedg(Mneps,2)
Deletptr
Deletsurf(0:Redundfctr)

Ds
Edg

Edg2fptr
Edgptr
First

Key
Kydn
Lstutx

Nosrf
Obj2fptr
Obijel

Plane
S

Surf
Surf2fptr
Surfel

Annotation returned from the digitizer with a digitized
point if desired

Numeric value of annotation returned from the digitizer

Beep duration — long beep for new point, short beep for
old

Beep frequency — high beep for new point, low beep for
old

Pointer of beginning of a possible surface to be deleted

Current edge pointer used to follow a linked list surface
description

Current surface pointer; points to surface currently being
entered

Loop index; points to element of delete edge array
Array containing the edges of a surface being deleted
Points to last used element of Deletedg(*)

Array containing a list of edges that form the surface to be
deleted

Loop index; points to each surface to see if it is to be
deleted

Pointer to edge when following a linked list description of a
surface

Free pointer for the 2-D edge array
Used to point to an edge in the 2-D edge array

Flag indicating if a point is the first point of a surface being
entered; 1= 1st point, 0 = intermediate point

Key code returned from digitizer
Flag indicating a key has been pressed

Points to last vertex entered when entering 2-D surface
information

Number of possible surfaces to be deleted

Free pointer for the 2-D object array

Pointer used to follow through the 2-D surfaces of an ob-
ject

1=XY plane; 2=YZ plane; 3=XZ plane

Status returned from digitizer on serial poll

Surface element of the 2-D object array

Free pointer into 2-D surface array

Pointer used to search the 2-D surface array for unrefer-
enced edges

73

Temp Temporary storage

Vptrfirst Pointer to a vertex that begins a surface being added or
deleted

Vtx Pointer used to search vertex array for any unreferenced
vertices

Vix2fptr Free pointer for vertex array

Vixptr Points to vertex

Vtxptrl Points to vertex

X X coordinate of a vertex in the object coordinate system

Xp X coordinate of location of digitizer cursor before a point is
digitized

Xpln X coordinate of a vertex in its local plane coordinate sys-
tem

Y Y coordinate of a vertex in the object coordinate system

Yp Y coordinate of location of digitizer cursor before a point is
digitized

Ypin Y coordinate of a vertex in its local plane coordinate sys-
tem

Z Z coordinate of a vertex in the object coordinate system

Recvpcoords

Recvpcoords(INTEGER Plane,Vtxptr, REAL Xvp,Yvp)

This subprogram is needed to recover original viewplane coordinates from the 2-D vertex
array coordinates.

Filename: Digrvc

Convert3d
Convert3d(INTEGER Digi,Error,Ne,No,Ns,Nv,Redundfctr)

This subprogram converts the three arrays of two-dimensional data entered from three
orthogonal views into one array of three-dimensional data.

The subprograms called from Convert3d are Draw2d, Findsurf,and Indbad.

Filename: DgcvtB (09845-10060), DgevtC (09845-10080)

Badedgfg Flag used to indicate inconsistent edge information
Badsrffg Flag used to indicate inconsistent surface information
Badvtxfg Flag used to indicate inconsistent vertex information

C Subscript indicating column number in Commonedg(*)

Ce Number of edges is Commonedg(*)

74

Coml
Com2
Commonedg(0:Redundfctr,2)

Commonpt

Commonvtx(Redundfctr)

Cpt
Csurf2el

E

Edg

Edgetype
Edgfptr
Edglink(Ne,4)

Edgno
Foundanedgfg

Foundedgsec

Foundptfg

Foundsurffg
Fsrifg

Linkel
Obijfptr
P
Primcoord
Primedg
Primpln
Primpt
R
Seccord
Secpln
Secpt

Loop index
Loop index

Contains pointers to vertices that are connected in the
primary plane

The number of vertices in the Secondary plane that have a
primary coordinate equal to the primary coordinate of a
point in the Primary plane

Contains the vertices whose primary coordinate in the
Secondary plane equal the primary coordinates in the
Primary plane

Loop index

Current 2-D surface element used to follow a surface de-
scription

Loop index

Loop index

Edgetype is set to 1 for line segment
Free pointer for the 3-D edge array

Array containing pointers referencing each 3-D edge to its
representation in each of the three orthogonal views

Number of edges in a 2-D surface

Flag indicating that at least one 3-D edge found for a par-
ticular 2-D edge

Flag indicating that an edge in the secondary plane was
found that corresponded with the edge in the Primary
plane

Flag indicating that a 3-D vertex was found for a particular
point in the Primary plane

Flag indicates 3-D surface found

Passed back from Findsurf - indicates that a consistent sur-
face description has been found

Element of the vertex link array
Free pointer for the 3-D Object array
Loop index

Primary coordinate

Primary edge

Primary plane

Primary point

Loop index

Secondary coordinate
Secondary plane

Secondary point

Sedg
Strtedg

Sumused
Surf
Surf2el
Surffptr
Tedg
Temp
Tertcoord
Tertpln
Tertpt
Tsurfel

\%
Vixfptr

Vitxlink(Nv,3)

Indbad

Loop index

Starting edge of a surface used to find all 3-D edges that
are represented by the 1st edge of a 2-D surface

Sum of “‘used” conversion flags
Loop index

Pointer to 2-D surface element (edge)
Free pointer for the 3-D surface array
Tertiary edge

Temporary

Tertiary coordinate

Tertiary plane

Tertiary point

Element of the temporary surface array used to hold sur-
face description of a 3-D surface during the conversion
process

Loop index
Free pointer for the 3-D Vertex array

Contains pointers from each 3-D vertex to its representa-
tion in each of the three orthogonal views

Indbad(INTEGER Badplane,Plane Vtx_edg srf,Vtxedgptr)

This subprogram is used to indicate a vertex that cannot be located in another plane while
converting from the 2-D (three orthogonal views) to a three-dimensional figure.

Indbad calls Recvpcoords.
Filename: Digibd

Local Variable Definitions

Angle Angle in degrees; used to draw a circle around a vertex

Csurf2el Current 2-D surface element used to follow a surface de-
scription

Endpt Indicates which endpoint of an edge is being projected into
the inconsistent plane

SurfZel 2-D surface element used to follow a 2-D surface descrip-
tion

Xpin X coordinate of a vertex in local plane coordinates

Ypln Y coordinate of a vertex in local plane coordinates

75

76

Findsurf
Findsurf(INTEGER Edgno,Firstedg, Fsrffg,Prevedg)

Findsurf finds all possible 3-D surfaces that are represented by a 2-D surface. Since there
are a variable number of edges in the 2-D surface and a variable number of possible 3-D
edges represented by each 2-D edge of the 2-D surface, this recursive subprogram tries all
possible combinations in an effort to find the 3-D surfaces.

Filename: Digfsr

Local Variable Definitions

Edg Loop index

Computer

Chapter 6
Manipulation Utilities

The Manipulation Utilities are located on the ‘“Manipulation and Display’’ cartridge. In-
cluded among these are all subprograms needed for transformations.

Manipulation Subprograms

The subprograms included in this section are Crt_tra, Translate, Rotate x, Rotate vy,
Rotate_z, Scale, Center, Curve_setup, Circle_ by 3 _pts, Arc_gen, and Multlply

Crt_tra (09845 -10060)

Crt_tra(INTEGER Edge(*),Hid,N,Object(*),Pic,Surface(*),Sur_tmp(*),Trans,
SHORT Status (*), Transform(*),Vertex(*), REAL Xvp,Yvp,Zvp)

This subprogram takes care of the overhead involved in transforming an object. It provides

for user interaction and calls the subprograms necessary to perform the desired transforma-
tions.

The subprograms Center, Ginput, Parse_response, Plot, Rotate x,Rotate_y, Rotate z,
Scale, Translate, and Unplot are called from Crt_tra.

NOTE
If Ginput is omitted so responses are no longer made while in
GRAPHICS mode, all calls to Ginput must be replaced by an
appropriate INPUT or LINPUT statement.

Filename: CrtB

Local Variable Definitions

Axis${1] Axis of rotation
Angle$[10] Angle of rotation
Dx_dy dz$[80] Change in X, Y, and Z for translation

Responses$(10) Contains responses returned from parsing the response
string returned from Ginput

X scale$[10] X scaling factor response string
Y scale$[10] Y scaling factor response string

78

Z scale$[10]
Num_of res

Z scaling factor response string

Number of responses returned from parsing the response

string returned from Ginput

Angle Angle of rotation

Dx Change in X direction for translation

Dy Change in Y direction for translation

Dz Change in Z direction for translation

Old_x mid X coordinate of previous ‘‘center’’ of object

Old y mid Y coordinate of previous ‘‘center’’ of object

Old_z mid Z coordinate of privious ‘‘center’’ of object

Rx X coordinate of ‘‘center’’ of object used for rotating
Ry Y coordinate of ‘“‘center” of object used for rotating
Rz Z coordinate of ‘“‘center’’ of object used for rotating
X mid X coordinate of current ‘“‘center”’

X scale X scaling factor

Y mid Y coordinate of current “‘center”’

Y scale Y scaling factor

Z mid Z coordinate of current ‘‘center’”’

Z scale Z scaling factor

Crt_tra (09845-10080)

Crt_tra(INTEGER Edge(*),Hid,N,Object(*),Pic,Surface(*),Sur_tmp(*),Trans,
SHORT Color(*),Status(*), Transform(*),Vertex(*),REAL Xvp,Yvp,Zvp)

This subprogram takes care of the overhead involved in transforming an object. It provides
for user interaction and calls the subprograms necessary to perform the desired transforma-
tions.

The subprograms Center, Plot, Rotate x,Rotate_y, Rotate z, Scale, Translate, and Unplot
are called from Crt_tra.

Filename: CrtC

Local Variable Definitions

Axis$[1] Axis of rotation

Angle Angle of rotation

Dx Change in X direction for translation

Dy Change in Y direction for translation

Dz Change in Z direction for translation

Old_x mid X coordinate of previous ‘“‘center’’ of object
Old_y mid Y coordinate of previous ‘‘center’’ of object
Old_z mid Z coordinate of previous ‘‘center’’ of object

Rx X coordinate of ‘‘center’’ of object used for rotating
Ry Y coordinate of ‘‘center’’ of object used for rotating
Rz Z coordinate of ‘“‘center’’ of object used for rotating
X mid X coordinate of current ‘‘center’’

X scale X scaling factor

Y mid Y coordinate of current ‘‘center”

Y scale Y scaling factor

Z mid Z coordinate of current “‘center”

Z scale Z scaling factor

Translate

Translate(SHORT Dx,Dy,Dz, Status(*))

Translate provides the utility to move an object from its current position to a new position by
moving it the desired amount along the X, Y and Z axes.

Filename: Trans

Local Variable Definitions

T(4,4) Basic matrix used to translate an object
Temp(4,4) Temporary used when multiplying matrices
Rotate x

Rotate x(SHORT Angle,Rx,Ry,Rz,Status(*))

This subprogram computes the matrix for a rotation about the point (Rx,Ry,Rz) of ““Angle”
degrees with respect to the X-axis. It then concatenates it with the object’s current Status(*).

In DEMOZ2 the “‘center”’ of the object is used as the point about which rotation is performed.

Filename: Rotx

Local Variable Definitions

R(4,4) Basic rotation matrix

Temp1(4,4) Temporary used in multiplying matrices

Temp2(4,4) Temporary used in multiplying matrices

Trano(4,4) Matrix used in translating from origin back to (Rx,Ry,Rz)
Tranr(4,4) Matrix used in translating to the origin

Rotate y

Rotate y(SHORT Angle,Rx,Ry,Rz,Status(*))

This subprogram computes the matrix for a rotation about the point (Rx,Ry,Rz) of “Angle”’
degrees with respect to the Y-axis. It then concatenates it with the object’s current Status(*).

79

80

In DEMOZ the ‘‘center’’ of the object is used as the point about which rotation is performed.
Filemane: Roty

Local Variable Definitions

R(4,4) Basic rotation matrix

Temp1(4,4) Temporary used in multiplying matrices

Temp2(4,4) Temporary used in multiplying matrices

Trano(4,4) Matrix used in translating from origin back to (Rx,Ry,Rz)
Tranr(4,4) Matrix used in translating to the origin

Rotate z

Rotate 2(SHORT Angle,Rx,Ry,Rz,Status(*))

This subprogram computes the matrix for a rotation about the point (Rx,Ry,Rz) of ‘“‘Angle”
degrees with respect to the Z-axis. It then concatenates it with the object’s current Status(*).

In DEMOZ2 the ‘‘center’ of the objectis used as the point about which rotation is performed.
Filename: Rotz

Local Variable Definitions

R(4,4) Basic rotation matrix

Templ(4,4) Temporary used in multiplying matrices

Temp2(4,4) Temporary used in multiplying matrices

Trano(4,4) Matrix used in translating from origin back to (Rx,Ry,Rz)
Tranr(4,4) Matrix used in translating to the origin

Scale

Scale(SHORT Status(*),X scale,Y scale,Z_scale)

Scale provides the utility of enlarging or diminishing the size of a three-dimensional object.

Filename: Scale

Local Variable Definitions

S5(4,4) Basic scaling matrix
Temp(4,4) Temporary used when multiplying matrices
Center

Center(INTEGER Edge(*),N,SHORT Status(*), Transform(*),Vertex(*),X mid,
Y mid,Z mid)

This subprogram finds the approximate center point of an object. This means the center of a
rectangular solid whose corners are the maximum and minimum values in the X, Y and Z
directions. The point determined is not necessarily the center of mass. The maximum and
minimum values of the coordinates of an object are found by 1) testing the endpoints of line
segments, 2) generating points at 0, 90, 180 and 270 degrees for a circle, and 3) generating
several lines for an arc. The subprograms called by Centr are Arc_gen, Curve_setup, and

Multiply.
Filename: Centr

Local Variable Definitions
Angle

I

Index

Subscript

Curve array(26,4)

Curve_trans(26,4)
Radius
Xa

Xb

Xc

X center
X max

X min
Ya

Yb

Yc

Y center
Y max
Y min

Z value
Z max

Z min

Rotation(4,4)

Rot_mat(4,4)

Loop index
Loop index
Loop index

The number of vertices to be tested for max and min values
for circles and arcs

Temporary array for storage of values to be tested in cases
of circles and arcs

Temporary array used for matrix multiplication
Radius of circle

X-coordinate of first endpoint of arc
X-coordinate of second endpoint of arc
X-coordinate of last endpoint of arc
X-coordinate of center point of arc
Maximum value of object in X direction
Minimum value of object in X direction
Y-coordinate of first endpoint of arc
Y-coordinate of second endpoint of arc
Y-coordinate of last endpoint of arc
Y-coordinate of center point of arc
Maximum value of object in Y direction
Minimum value of object in Y direction

Z distance from X-Y plane to the parallel plane the arc was
rotated into

Maximum value of object in Z direction
Minimum value of object in Z direction

Rotation information used to rotate arc/circle into a plane
parallel to X-Y plane

Inverse of the Rotation matrix

81

82

Curve_setup

Curve_setup (INTEGER Edge (*), [, SHORT Radius, Vertex (*), Xa, Xb, Xc, X center, Ya,
Yb, Yc, Y center, Z value, REAL Rotation (*))

This subprogram allows you to rotate a circle or arc in space into a plane parallel to the X-Y
plane. This, in turn, allows you to compute the radius and center of the circle by calling
Circle_by 3 pts. Therefore, the subprogram Circle by 3 pts must be in memory.

Filename: Crvset

Local Variable Definitions

Index
A
A(3,3)

B
B(3,3)

C
C(3,3)

D
D(3,3)

Point_a(4)
Point_a prime(4)
Point_b(4)
Point_b prime(4)
Point c(4)
Point ¢ prime(4)
Theta_xy

Theta yz

Za

Zb

Zc

Rot y(4,4)

Rot z(4,4)

Loop index
Determinant of matrix A

Matrix used in determining coefficients for equation of
plane

Determinant of matrix B

Matrix used in determining coefficients for equation of
plane

Determinant of matrix C

Matrix used in determining coefficients for equation of
plane

Determinant of matrix D

Matrix used in determining coefficients for equation of
plane

Coordinates of first point of circle or arc

Temporary storage during computation

Coordinates of second point of circle or arc

Temporary storage during computation

Coordinates of third point of circle or arc

Temporary storage during computation

Angle between the plane of the circle and the X-Y plane
Angle between the plane of the circle and the Y-Z plane
Z-coordinate of first point of circle or arc

Z-coordinate of second point of circle or arc
Z-coordinate of third point of circle or arc

Matrix to rotate about the Y-axis

Matrix to rotate about the Z-axis

83

Circle_by 3 pts

Circle_by 3 pts (SHORT Radius, Xa, Xb, Xc, X_center, Ya, Yb, Yc, Y_ center)

This subprogram, when given three points, determines the radius and the center of the circle
they determine. Refer to the chapter on Formulas for a more detailed description of the
process used.

Filename: C_ by 3

Local Variable Definitions

Angle cab The measure of <CAB in degrees

Avg_side Length of a+b+c divided by 2

Side_a Length of side a

Side b Length of side b

Side ¢ Length of side ¢

Slope Slope of line segment and of perpendicular bisector

Slope1l Slope of line segment ¢ and of perpendicular bisector

Slope?2 Slope of line segment a and of perpendicular bisector

X1 X coordinate of first endpoint

X2 X coordinate of second endpoint

X prime X coordinate of midpoint of a line

Y1 Y coordinate of first endpoint

Y2 Y coordinate of second endpoint

Y prime Y coordinate of midpoint of a line

Y intercept Y coordinate where perpendicular bisector of a line crosses
the Y-axis

Arc_gen

Arc _gen (INTEGER Subscript, SHORT Curve _array (*), Radius, Xa, Xb, Xc, X _center, Ya,
Yb, Yc, Y center, Z value)

This subprogram provides information necessary for arc generation. It first finds the two
angles that each endpoint makes with the origin, then arranges the angles so the arc will be
drawn in a clockwise fashion.

Filename: Arcgn

Local Variable Definitions

Num_vertices The number of vertices generated to draw the arc

Offset Degrees added to determine the correct range

Angle Loop index

Range Number of degrees from the beginning vertex of the arc to

the ending vertex of the arc

84

Stepsize The stepsize to be used while drawing the arc

Theta Temporary storage for computed angle

Thetal Angle the first endpoint of an arc makes with the origin
Theta2 Angle the second endpoint of an arc makes with the origin
Theta3 Angle the last endpoint of an arc makes with the origin

X Temporary X coordinate used in computing angles

Y Temporary Y coordinate used in computing angles
Multiply

Multiply (INTEGER Flag, N, SHORT Status (*), Transform (*), Vertex (*})
This subprogram multiplies vertices by the current Status(*) to find the transformed points.
Filename: Mult

Local Variable Definitions

Free ptrs(0:N) Keeps the linked free pointer list
Index Loop index
Last element Last element in Vertex(*)

Next free ele Points to next free space in Vertex(*)

Chapter 7
Viewing Utilities

The Viewing Utilities are located on the ‘‘Manipulation and Display’ cartridge. They deal
with translating points from world coordinates to screen coordinates, choosing the view-
point from which the object is viewed, clipping polygons when necessary, and providing
perspective to the object being viewed.

Viewing Subprograms
The six subprograms included in this section are Viewpoint, Viewcoord, Perspective, Clip,
Level, and Close_ poly. For more detail concerning the algorithms used, see Chapter 3.

Viewpoint (09845-10060)
Viewpoint(INTEGER View,REAL Xvp,Yvp,Zvp)

This subprogram provides the setup for choosing a new viewpoint. If View=1, the object is

viewed from the front, 2 means side, 3 means top, 4 means isometric, and 5 for user
defined.

If the viewpoint is to be changed while the screen is in GRAPHICS mode, Ginput and

Parse response are called from Viewpoint, so these two subprograms must also be in
memory.

NOTE
If Ginput is not used, you must replace all calls to Ginput with
appropriate INPUT or LINPUT statements.

Filename: VwptB

Local Variable Definitions
Num of res Number of responses returned from parsing the response
string returned from Ginput

Responses$(10) Contains responses returned from parsing the response
string returned from Ginput

Xyz vp$[80] X, Y, and Z viewpoint response string

86

Viewpoint (09845-10080)
Viewpoint(INTEGER View,REAL Xvp,Yvp,Zvp)

This subprogram provides the setup for choosing a new viewpoint. If View=1, the object is
viewed from the front, 2 means side, 3 means top, 4 means isometric, and 5 for user
defined.

Filename: VwptC

Viewcoord

Viewcoord(INTEGER Hid,N,Sur_tmp(*),SHORT Transform(*),REAL Vcx,Vcy,Vsx,Vsy,
Xvp, Yvp,Zvp)

The subprogram, Viewcoord, allows you to change the point from which the three dimen-
sional object is viewed.

The subprograms called from Viewcoord are Clip, Multiply, and Perspective.
Filename: Viewcr

Local Variable Definitions

I Index

Denoml Square root of (Xvp squared + Yvp squared)

Dist Distance from the viewpoint to the origin of the object
coordinate system

Distscr Distance to the screen from the eye

F Zmax+(Zmax-Zmin) /10

Scrsize Half the width of the screen

T1(4,4) Matrix to translate the origin of the world coordinate sys-

tem to the viewpoint (Xvp,Yvp,Zvp)

T2(4,4) Matrix to rotates the ‘‘prime’’ coordinate system around X'
axis by —90 degrees.

T3(4,4) Matrix to rotate the “prin}e” coordinate system around Y’
so (0,0,Zvp) lies on the Z axis

T4(4,4) Matrix to rotate the “prime’”” coordinate system about the
X' axis so that the origin of the world coordinate system
will lie on the Z' axis

T5(4,4) Matrix to reverse the sense of the Z' axis to produce a
left-handed coordinate system.

P(4,4) Perspective matrix that provides homogeneous coordi-
nates

S5(4,4) Matrix to scale and translate the X and Y coordinates of

each vertex into the coordinate system in which they will
be displayed

T(4,4) Temporary matrix used when calling Multiply
Temp(4,4) Temporary matrix used during multiplication
Temp vertex(0:N,4) Temporary vertex array used when calling Multiply
V(4,4) Is the product of matrices T1,T2,T3,T4 and T5
Perspective

Perspective(INTEGER N, SHORT Transform(*))

This subprogram is used to provide the perspective distortion for three-dimensional figures.
This is done by dividing each coordinate of a point by the associated homogeneous coordi-
nate for that point.

Filename: Perspt

Local Variable Definitions

I Loop index

Temp(0:N,4) Temporary array used to hold vertices while division for
perspective is performed

Clip
Clip(INTEGER N,Sur_tmp(*),SHORT Transform(*))
This subprogram implements a recursive polygon clipping algorithm designed by Ivan

Sutherland and Gary Hodgeman. The algorithm can be found in SIGGRAPH ’79. A flow-
chart of this algorithm can be found in Chapter Four of this manual.

Clip calls the subprograms Close _poly and Level.
Filename: ClipB (09845-10060), ClipC(09845-10080)

Local Variable Definitions

Count Number of surfaces in Transform(*)

First _flag(6) Each subscript refers to a level of recursion. An element
equals 0 if no points have been passed to this level before,
or 1 if the level has been passed at least one point before.

Level Level of recursion

Surface Loop index

Surface count Number of clipped surfaces

Vertex Loop index

First(6,4) In this array, row indicates the level of recursion and ele-

ments contained in each row are the X,Y,Z and W coordi-
nate of the first point passed to that level of recursion.

Q(0:N,4) Output points of surface clipper

87

88

Save(6,4) In this array, row indicates the level of recursion and the
elements contained in each row are the X,Y,Z and W coor-
dinate of the last point passed to that level of recursion.

Surface clip(0:N,2) Temporary storage for clipped surfaces
Temp tran(0:N,4) Temporary storage for Transform(*)
Level

Level (INTEGER First _flag (*), Level, SHORT First (*), Px, Py, Pz, Pw, Q (*), Save (*))
This subprogram is called by Clip to process all surface points at a given level. There are six

levels. These correspond to the six limiting planes of the viewing pyramid which are top,

bottom, left, right, hither, and yon. See the description of the clipping algorithm found in
Chapter 3.

Level calls itself.
Filename: Level

Local Variable Definitions

Alpha Fraction of the line left after clipping

Ix X coordinate of intersection point

Iy Y coordinate of intersection point

Iz Z coordinate of intersection point

Iw Homogeneous coordinate of intersection point
Close

Close_poly (INTEGER First flag(*),Level, SHORT First(*),Q(*),Save(*))

This subprogram is called by the subprogram Clip. Its purpose is to close polygons that have
been clipped.

Close _poly calls the subprogram Level.
Filename: Close

Local Variable Definitions

Alpha The clipped fraction of the line

Ix The X coordinate of the intersection of line SF and the
limiting plane

Iy The Y coordinate of the intersection of line SF and the
limiting plane

Iz The Z coordinate of the intersection of line SF and the
limiting plane

Iw The homogeneous coordinate of the intersection of the
line SF and the limiting plane

3-Dimensional Graphics Utilities, 09845-10061, Rev. C 8/81

Chapter 8
Output Utilities

The Output Utilities are located on the ‘‘Manipulation and Display’’ cartridge. They include
the subprograms needed to plot an object as a wire-frame or with hidden surfaces removed.
Also included is a subprogram that allows for plotting an object on a peripheral plotting
device.

Output Subprograms

These utilities include Plot, Unplot, Hidden surface, Scan, and Plotter setup. A descrip-
tion of each follows.

Plot

(09845-10060)
Plot(INTEGER Edge(*),Hid,N,Object(*),Pic,Surface(*),Sur _tmp(*),SHORT Status(*),
Transform(*),Vertex(*),REAL Xvp,Yvp,Zvp)

(09845-10080)
Plot(INTEGER Edge(*),Hid,N,Object(*),Pic,Surface(*),Sur tmp(*),SHORT Color(*),
Status(*), Transform(*),Vertex(*},REAL Xvp,Yvp,Zvp)

This subprogram plots a wire-frame three-dimensional object and provides the setup for the
hidden-surface removal subprogram. Subprograms called by Plot are Arc_gen, Curve
setup, Hidden surface, Multiply, and Viewcoord.

Filename: PlotB(09845-10060),PlotC(09845-10080)

Local Variable Definitions

Angle Loop index

Count Index into Temp_tran(*)

Edge Pointer to current edge being processed
Edge next Index to next edge in Edge(*)

[Loop index

Object Index into Object(*)

Subscript Number of elements in Curve _array(*)
Surface Index into Surface(*)

Surface count Index into Sur_tmp(*)

90

Surface_flag
Vertex1

Vertex2
Curve_array(26,4)

Curve trans(26,4)
Old_x2

Old_y2
Old z2

Radius
Temp tran(0:N,4)
Temp x1

Temp yl
Temp z1

Xa
Xb
Xc
X center

X1
X2
Ya
Yb
Yc
Y center

Y1
Y2
Z_value

Z1
Z2
Rotation(4,4)

Set to 0O if first edge of a surface
Index into Transform(*) where surface begins
Index into Transform(*) where surface ends

Array of vertices for line segments composing a circle or
arc; generated in plane parallel to X-Y plane

Circle’s or arc’s endpoints in 3-D

Temporary variable to hold old X coordinate of 2nd end-
point

Temporary variable to hold old Y coordinate of 2nd end-
point

Temporary variable to hold old Z coordinate of 2nd end-
point

Radius of circle or arc
Temporary used to store transformed points

Temporary variable to hold old X coordinate of 1st end-
point

Temporary variable to hold old Y coordinate of 1st end-
point

Temporary variable to hold old Z coordinate of 1st end-
point

X-coordinate of 1st point of circle or arc
X-coordinate of 2nd point of circle or arc
X-coordinate of 3rd point of circle or arc

X-coordinate of center point that is calculated in Circle
by 3 pts

Temporary X coordinate

Temporary X coordinate

Y-coordinate of 1st point of circle or arc

Y-coordinate of 2nd point of circle or arc

Y-coordinate of 3rd point of circle or arc

Y-coordinate of center point that is calculated in Circle
by 3 pts

Temporary Y coordinate

Temporary Y coordinate

Z distance from X-Y plane to the plane the circle or arc was
rotated into

Temporary Z coordinate
Temporary Z coordinate

Rotation information used to rotate arc or circle into a
plane parallel to the X-Y plane

Rot_mat(4,4) Inverse of Rotation(*) used to rotate arc or circle back to
original orientation

Vex X-coordinate of center point of screen in screen coordi-
nates

Vey Y-coordinate of center point of screen in screen coordi-
nates

Vsx Half the X range of the screen in screen coordinates

Vsy Half the Y range of the screen in screen coordinates

Unplot

Unplot(INTEGER Sur_tmp(*),SHORT Transform(*))

Unplot erases a wire-frame plot, when GCLEAR is not desired.
Filename: Unplot

Local Variable Definitions

I Loop index
Surface Loop index
Vertex1 Points to vertex of segment to be erased
Vertex2 Points to vertex of segment to be erased

Hidden surface (09845-10060)
Hidden _surface(INTEGER N,Sur_tmp(*),SHORT Transform(*))

This subprogram sets up the data base for the hidden-surface algorithm. More detail about
the hidden surface algorithm used here can be found in Chapter Three of the manual.

The subprogram Scan is called by Hidden _surface.

Filename: HidsrB

Local Variable Definitions

Edge hid Index denoting next available space in Edge hid(*)

Edgesort(N) Contains indices to Edge hid(*) in sorted order (from
largest to smallest) - sorted on initial y values for each
edge.

Elist Pointer to the first edge stored in Edge(*) by its Y max
value

First vertex Pointer to first vertex of a surface

[Loop index

J Loop index

J1 Temporary used for subscript when sorting Edge hid(*)

J2 Temporary used for subscript when sorting Edge__hid(*)

91

Last vertex
M1

M2

Point count
Poly

Surface
Swap

Temp
Vertex
Denom

Dxdy
Dzdy

Dzdx
Edge hid(N,0:10)
Numer

Poly hid(2*N,0:4)

Sum

Temp(3,3)
Xinit

Xfinal
Yinit
Yfinal

Zinit

Pointer to last vertex of a surface

Subscript used when calculating Dzdx for a polygon
Subscript used when calculating Dzdx for a polygon
Contains the count for points used in calculating Dzdx
Number of polygons in Poly hid(*)

Loop index

Indicates the number of swaps that have taken place while
sorting Edge hid(*)

Temporary used when sorting Edge hid(*)
Loop index

Temporary used in calculating the change in Z with respect
to X for a plane

Change in X with respect to Y for an edge of a polygon (set
to 99999 if Yinit=Yfinal)

Change in Z with respect to Y for an edge of a polygon (set
to 99999 if Yinit=Yfinal)

Change in Z with respect to X for a polygon
List of edge-defining vertices

Temporary used in calculating the change in Z with respect
to X for a plane

List of surface-defining information

Value returned when calculating numerator or de-
nominator for Dzdx

Temporary array used in calculation of Dzdx

The X value of the endpoint of an edge that has the largest
Y value.

The X value of the endpoint of an edge that has the small-
est Y value.

The Y value of the endpoint of an edge that has the largest
Y value

The Y value of the endpoint of an edge that has the small-
est Y value

The Z value of the point along an edge that has the largest
Y value

Hidden surface (09845-10080)
Hidden surface(INTEGER N,Sur tmp(*),SHORT Color(*), Transform(*))

This subprogram sets up the data base for the hidden-surface algorithm. More detail about
the hidden surface algorithm used here can be found in Chapter Three of the manual.

If you use the 9872 as a color output device, pens must be put into stalls 1 through 4 in the
following order: black, red, green, blue. The program will then convert the area color
parameters of each surface to a pen color.

If you are making overhead slides, be sure to slow down the pen by inserting the following
statements after the plotter is declared: PRINTER IS Select code,Bus_address

PRINT *V§10;”
PRINTER IS 16

The subprogram Scan is called by Hidden _surface.
Filename: HidsrC

Local Variable Definitions

Bus address
Edge hid
Edgesort(N)

Elist

First vertex
[

J

J1

J2

Last vertex
M1

M2

Pen

Plot

Point count
Poly

Select code
Surface
Swap

Temp
Vertex
Denom

Computer
Museum

Bus address of 9872
Index denoting next available space in Edge hid(*)

Contains indices to Edge hid(*) in sorted order (from
largest to smallest); sorted on initial y values for each edge.

Pointer to the first edge stored in Edge(*) by its Y
maximum value

Pointer to first vertex of a surface

Loop index

Loop index

Temporary used for subscript when sorting Edge _hid(*)
Temporary used for subscript when sorting Edge hid(*)
Pointer to last vertex of a surface

Subscript used when calculating Dzdx for a polygon
Subscript used when calculating Dzdx for a polygon
Loop index

Equals O for plot on CRT; equals 1 to 4 depending on
current pen selection for 9872 plot

Contains the count for points used in calculating Dzdx
Number of polygons in Poly _hid(*)

Select code of 9872

Loop index

Indicates the number of swaps that have taken place while
sorting Edge hid(*)

Temporary used when sorting Edge _hid(*)
Loop index

Temporary used in calculating the change in Z with respect
to X for a plane

93

94

Dxdy
Dzdy

Dzdx
Edge hid(N,0:10)
Numer

Poly hid(2*N,0:7)
Sum

Temp(3,3)
Xinit

Xfinal
Yinit
Yfinal

Zinit

Scan (09845-10060)

Change in X with respect to Y for an edge of a polygon (set
to 99999 if Yinit=Yfinal)

Change in Z with respect to Y for an edge of a polygon (set
to 99999 if Yinit=Yfinal)

Change in Z with respect to X for a polygon
List of edge-defining vertices

Temporary used in calculating the change in Z with respect
to X for a plane

List of surface-defining information

Value returned when calculating numerator or de-
nominator for Dzdx

Temporary array used in calculation of Dzdx

The X value of the endpoint of an edge that has the largest
Y value

The X value of the endpoint of an edge that has the small-
est Y value

The Y value of the endpoint of an edge that has the largest
Y value

The Y value of the endpoint of an edge that has the small-
est value

The Z value of the endpoint of an edge that has the largest
Y value

Scan(INTEGER Edgecount,Elist,Polycount, SHORT Edge(*),Poly(*))

This subprogram is used to remove hidden surfaces, one scan line at a time. The outline of

each visible surface is plotted.

Filename: ScanB

Local Variable Definitions

E

I

Index
Inpend
Inpoly

Insert flag

Old_edge
Old xend
Outcount

Pointer to new edge being processed
Loop index

Loop index

Pointer to end of Inpoly list

Pointer to the head of list of active polygons sorted by Z
values

Flag used to indicate when the head of list insertions are
allowed

Edge pointer used to determine if last edge was horizontal
Previous end of the Xsort list
Number of dots in dot buffer

Output(1:10,1:2)

|
Polytmp
Pptr

S

T

T1
Temp_xend
Temp xsort
Xend

Xptr

Xsort

Y

Yval

Dx

Oldxlsp

Y

Xlsp

Xrsp

Scan (09845-10080)

Dot buffer

Pointer to a polygon being sorted into Inpoly list
Temporary pointer to Inpoly during update of list
Pointer to Inpoly list during update of list

Subscript used to indicate pointer to 1st polygon and 2nd
(if there is one) that edge being processed belongs to

Temporary pointer to present edge in Xsort list
Temporary pointer to next edge in Xsort list
Temporary pointer to end of Xsort list

Temporary pointer to head of Xsort list

Pointer to end of Xsort list

Pointer into Xsort list

Pointer to head of list of all edges sorted by X value
Y value of point during output

Y value of current scan line

Distance from current sample point to next sample point
Saves the value of the Xlsp

X-coordinate of new edge being sorted by X value
X-coordinate of left sample point

X-coordinate of right sample point

Scan(INTEGER Edgecount,Elist,Plot,Polycount, SHORT Edge(*),Poly(*))

This subprogram is used to remove hidden surfaces, one scan line at a time. Color shading is

used to display a surface.
Filename: ScanC

Local Variable Definitions

Buffer count Number of line segments buffered on a scan line

E Pointer to new edge being processed

| Loop index

Inpend Pointer to end of Inpoly list

Inpoly Pointr to head of list of active polygons sorted by Z values

Insert flag Flag used to indicate when the head of list insertions are
allowed

Old xend Previous end of the Xsort list

|3 Pointer to a polygon being sorted into Inpoly list

Polytmp Temporary pointer to Inpoly during update of list

Pptr Pointer to Inpoly list during update of list

95

S Subscript used to indicate pointer to 1st polygon and 2nc
(if there is one) that edge being processed belongs to

T Temporary pointer to present edge in Xsort list

T1 Temporary pointer to next edge in Xsort list

Temp xend Temporary pointer to end of Xsort list

Temp xsort Temporary pointer to head of Xsort list

Xend Pointer to end of Xsort list

Xptr Pointer into Xsort list

Xsort Pointer to head of list of all edges sorted by X value
Yval Y value of current scan line

Buffer(100,2) Array of X left and X right sample points for a scan line
Dx Distance from current sample point to next sample point
Vv X-coordinate of new edge being sorted by X value

X draw X-coordinate of point to draw to

X move X-coordinate of point to move to

Xlsp X-coordinate of left sample point

Xrsp X-coordinate of right sample point

Plotter setup (09845-10060)
Plotter setup(Plotter$ INTEGER,Bus_address,Select code)

This program provides the setup for plotting to a p]ot{ér other than the CRT.
If used from GRAPHICS mode, Plotter setup must call Ginput.
Filename: PltstB

Local Variable Definitions

Answer$[3] Contains YES /NO response

Bus address$[2] Bus address of HP-IB plotter in string form
Select code$[2] Select code of plotter in string form
Plotter 1= CRT, 2 = other plotter

Plotter setup (09845-10080)
Plotter setup (Plotter$ INTEGER,Bus _address,Select_code)

This program provides the setup for plotting to a plotter other than the CRT.
Filename: PltstC

Local Variable Definitions

Answer$[3] Contains YES/ NO response
Plotter 1= CRT, 2 = other plotter

Chapter 9
Additional Utilities

The Additional Utilities are also found on the ‘‘Manipulation and Display’’ cartridge. They
include one program, five subprograms and two binary programs. The program Strip can be
used to remove comments from a program to save memory. The subprograms Dump,
Ginput and Parse response, and Letter and Draw_ char provide for dumping graphics to a
printer, entering responses while in GRAPHICS mode and lettering with different fonts
while in graphics, respectively. The two binary programs mentioned above are used in
conjunction with the subprograms Dump and Ginput. The binary Dmpg#b provides the
special utility of dumping graphics to a specified HP-IB printer and the binary called Binary
provides the special utility of entering data while in GRAPHICS mode. Ginput, Parse
response and the two binaries are for use on the 9845B with pack 09845-10060.

BASIC Utilities
Strip

This utility is a main program by itself. It is used to strip out all comment lines from a
program. Since most of the subprograms in this pack are heavily commented, you may wish
to delete these remarks to save memory. Note that you must have already created the
destination file.

Filename: Strip

Local Variable Definitions

Destination$[10] New file containing no comments
Line$[160] Used to hold one line of program code
Source$[10] Old file containing commented program

98

Dump (09845-10060)
Dump

This subprogram dumps the 9845 graphics raster to the internal thermal line printer or other
Hewlett-Packard dot matrix printer from GRAPHICS mode.

When used from GRAPHICS mode, Dump calls Ginput. In any case Dump requires the
binary, Dmpg#b.

NOTE
If you do not wish to use Ginput, replace all calls to Ginput with an
analogous INPUT or LINPUT statement.

Filename: DumpB

Local Variable Definitions

Answer$[3] Answer to YES /NO question

Bus address$[3] Response string for bus address
Printer$[2] Response string for printer choice

Select code$[2] Response string for select code

Bus address Bus address

Printer Printer choice,1=internal printer,2=other
Select code Select code of printing device

Dump (09845-10080)

Dump

This subprogram dumps the 9845 graphics raster to the internal thermal line printer or other
Hewlett-Packard dot matrix printer.

Filename: DumpC

Local Variable Definitions

Answer$[3] Answer to YES /NO question

Bus address Bus address

Printer Printer choice,1=internal printer,2=other
Select code Select code of printing device

Ginput (09845-10060)
Ginput(Gprompt$,Var$)

99

This subprogam allows the user to input data while in GRAPHICS mode. Since the informa-
tion is returned in string form, it is up to the user to parse the string for numbers or
expressions. It requires that the binary program called Binary be present in memory. See
section on binary programs for more information.

NOTE
Ginput must be removed and analogous INPUT or LINPUT
statements used in place of the CALL statements if you wish to
enter data from alphanumeric mode as opposed to GRAPHICS
mode.

Filename: Ginput

Local Variable Definitions

Kbd$[80] Buffer holding input information; used in conjunction with
ON KBD statement

Save$[80] Temporary string used when removing control characters
form input lines

C1 ASCII value of control key

Cpos Current cursor position in dot units

[Loop index

Insflag Equals 1 while in character inserting mode

Ipos Vertical position where input line begins

J Loop index

Lpos Current position of cursor in letter units

Numbr ASCII value of pressed key

Ppos Vertical position where prompt line begins

Spos Horizontal position where prompt line begins

Parse response (09845-10060)
Parse_response(Responses$(*),5tr$,INTEGER Num_of res)

This recursive subprogram parses the response string returned by the Ginput subprogram.
You can have up to nine, one character responses.

NOTE
Parse response is only needed if the subprogram, Ginput, is
used.
Filename: Parse
Local Variable Definitions
Comma If non-zero, then a comma was encountered in the string

Length Length of the string being processed

100

Letter and Draw_char

These two subprograms are used to provide the user with four lettering fonts: Stick, Script,
Roman and Gothic. The subprogram Letter does the initial setup for the lettering, while
Draw_char does the actual drawing. The lettering fonts are stored on the four data files
“stick’’, “‘script’”’, ‘‘roman’’, and ‘‘gothic’’. Note that the Stick and Roman fonts include
foreign characters. For pack 09845-10060, the subprogram ‘“‘Ginput’’ and the binary pro-
gram “Binary’’ must also be in memory, since Ginput is called from Letter.

Letter (INTEGER Basic _element (*), Char _index, Char_table (*), Old_font, Spacing(*))
Filename: LetrB (09845-10060) , LetrC (09845-10080)

Local Variable Definitions

A$[80] String to be labeled

Font$[1] Type of font in string form

Size$[1] Size of letters in string form

Char_val ASCII value of character to be drawn

First compound Pointer to first compound element in Char_table(*)

Font_ Equals 1 for stick, 2 for script, 3 for roman, 4 for gothic

[Loop index

Index Pointer to first compound element in the Char_index(*)
table

Penc Pen control parameter

Size Equals 1 for small, 2 for medium, 3 for large

X Used in positioning a character

X1 Used in positioning a character

X2 Used in positioning a character

Y Used in positioning a character

Draw_char (INTEGER Basic_element (*), Char, Char_index (*), Char_table (*), First
compound, Index, Penc)

Filename: Drawch

Local Variable Definitions

Delta x X increment of next point to draw to
Delta_y Y increment of next point to draw to
Ele Value of character to be drawn

I Loop index

Binary Utilities
Using Binaries
Two binary programs are provided for pack 09845-10060. For those of you who have never
used a binary, there are a few simple rules.
To load a binary program into memory:

1. Type: LOAD BIN “‘(name of binary)”’
2. Press: EXECUTE

From then on you can only get other programs into memory that were saved in data form, or
else you will destroy the binary. Binaries may be repeatedly loaded in without affecting any
type of program already in memory. Please note that binaries cannot be separated once in

memory.
To store a program WITH a binary in it:

1. Type: STORE ‘‘(name of program)”’
2. Press: EXECUTE

To save a program WITHOUT the binary in it:

1. Type: SAVE ‘“‘(name of program)”’
2. Press: EXECUTE

Once a binary has been stored with a program, use the normal LOAD command to load the
program along with the binary back into memory.

Binary programs may be copied like any other file. On a file catalog their program type is
BPRG.

Dump Graphics Binary (09845-10060)

This 9845B binary is used to dump the graphics raster to a dot matrix printer. It is located on
file “Dmpg#b’’ and contains only one keyword. It has the following syntax:

DUMP GRAPHICS #Select code[[[, <Bus_address>]<; Lower>]<, Upper>]

Select_code is the select code of the printer. Bus address is the HP-IB bus address of the
printer . Lower is the last row of dots to be dumped. Upper is the first row of dots to be
dumped.

Gprint Binary (09845-10060)

This 9845B binary is used to implement a “GINPUT’ command. It is located on file ‘‘Bi-
nary’’ and contains the three keywords, GPRINT, GERASE, and LCURSOR.

GPRINT will print a string on the graphics raster and has the following syntax:

GPRINT <X>,<Y>, <string variable>

101

102

X and Y are the coordinates of the lower left corner of the first character to be printed (in dot
units). The string variable is the string to be printed.

GERASE will erase a block of dots on the graphics raster and has the following syntax.

GERASE <X>,<Y>, <delta X>,<delta Y>

X and Y are the coordinates of the lower left corner of the area to be erased (in dot units).
Delta X and delta Y define the length and width of the block to be erased (also in dot units).

LCURSOR s used to position the cursor on the graphics raster and has the following syntax:

LCURSOR <X> <Y>

All characters printed using the GPRINT keyword fit in a block 7 by 12 dots. So, when
positioning the cursor beneath a character, X refers to the middle dot of the character and Y
is the row of dots the cursor is to appear on.

Chapter 10

Programming Aids

Example Driver Programs

The programs described in the following pages provide examples for utilizing the Three-
Dimensional Graphics Utilities. A list of User Instructions has been provided for each demo
driver. It is important that you realize the demos were not designed to solve any specific
application but to familiarize you with the utilities and how they interact. These driver
programs demonstrate 1) Manual Entry, 2) Object Transformations, 3) Digitizer Entry, and
for pack 09845-10080, 4) Surface Color Entry. The drivers are saved as DRIV1B, DRIV2B
and DRIV3B for 09845-10060, and as DRIV1C, DRIV2C, DRIV3C, and DRIV4C for

09845-10080. The driver programs can be located on the Manipulation and Display car-
tridge.

Manual Entry

This driver provides for the use of the alphanumeric keyboard as a means of entering
three-dimensional objects. Each object is made up of surfaces that are comprised of circles,
arcs or line segments. Circles may be considered surfaces in themselves. If an object that
contains a curved surface is desired, the curved surface must be approximated using line
segments. For example, to enter a cone, the following figure could be entered.

omputer
Museum

Figure 10.1

In this figure, trianglar surfaces are used to approximate the curved surface of a cone.

104

09845-10060

For pack 09845-10060, the subprograms that must be in memory are: One_obj_entry,
Initialize, Multiply, List, Relist, Surface setup, Check arrays, Enter_line, Plane __equation,
Save line, Edge ver entry, Surface _entry, Enter circle, Save c1rc1e Enter arc,
Save arc, Database delete,Change __point, and One ob] store.

After getting DRIV1B, link the subprogram files: ObJ_en Init, Mult, List, RlistB, Surset,
Check, Line, Plnequ, Sline, Edgver, Surent, Circ, Scir, Arc, Sarc, Surdel, Chngpt, and
Obj_st. Store on file “DEMO1”’. Use the KEYS file named ‘‘Keys3D”’ along with DEMO1.

09845-10080

For pack 09845-10080, the subprograms that must be in memory are: One_obj_entry,
Initialize, Multiply, List, Relist, Surface setup, Check arrays, Enter line, Plane __equation,
Save line, Edge ver entry, Surface __entry, Enter circle, Save c1rcle Enter_arc
Save arc, Database delete, Change __point, and One ob) store.

After getting DRIV1C, link the subprogram files: Obj_en “Init, Mult, List, RlistC, Surset,
Check, Line, Plnequ, Sline, Edgver, Surent, Circ, Scir, Arc, Sarc, Surdel, Chngpt, and
Obj_st. Store on file “DEMO1”. Use the KEYS file named ‘‘Keys3D’’ when using DEMO1.

Demo 1 User Instructions
1. To load in the demo and begin execution:
a. Type: LOAD *‘DEMO1”
b. Press: EXECUTE
c. Press: RUN

2. When “ENTER MINIMUM X VALUE,MAXIMUM X VALUE"” is displayed:

a. Enter: minimum x value of data range, maximum x value of data range (Default is
-100,100)

b. Press;: CONT

3. When “ENTER MINIMUM Y VALUE,MAXIMUM Y VALUE” is displayed:

a. Enter: minimum y value of data range, maximum y value of data range (Default is
-100,100)

b. Press: CONT
4. When “ENTER MINIMUM Z VALUE MAXIMUM Z VALUE" is displayed:

a. Enter: minimum z value of data range, maximum z value of data range (Default is
-100,100)

b. Press: CONT

5. When “DO YOU WISH TO USE A PRIVIOUSLY STORED FILE?” is displayed:

a.
b.

C.

Enter: YES for yes
Enter: NO for no
Press: CONT

6. If you entered “YES”’ then answer the prompts to get the file in memory.

~

The special function keys will be displayed.

8. To enter a surface:

a.
b.

Press: KO or K24

The number of the surface being entered will be displayed.

c. Enter the surface desired using K1,K2,K3. NOTE: A surface can be made up of

line segments, line segments in conjunction with arcs, two or more arcs, or it can
be a circle.

. Go to 8b.

NOTE
You must press this key (KO or K24) before defining any new
surface except for circles!

9. To enter a line:

® oo oo

—

Press: K1 or K25

Enter: coordinates of first endpoint

Enter: coordinates of second endpoint

The coordinates of the line segment will be displayed

The program will stay in line drawing mode until another special function key is
pressed.

Goto 9c.

10. To enter a circle by 3 points.

® A0 o0

—

Press: K2 or K26 (Do not press KO before pressing K2)
Enter: coordinates of point 1
Enter: coordinates of point 2
Enter: coordinates of point 3

If 2 or 3 points are coincidental, or if all 3 points are collinear, an error message
will be displayed.

The program will stay in circle drawing mode until another special function key is
pressed.

. Go to 10b.

105

106

11. To enter an arc by 3 points:

Press: K3 or K27

Enter: coordinates of first endpoint
Enter: coordinates of second point on arc
Enter: coordinates of last endpoint

® &0 TP

If 2 or 3 points are coincidental, or if all 3 points are collinear, an error message
will be displayed.

laal

The program will stay in arc drawing mode until another special function key is
pressed.

g. Goto11b.

12. To delete a surface:

a. Press; K5 or K29
b. Enter: number of surface to be deleted

c. The program will stay in surface deleting mode until another special function key
is pressed.

d. Goto 12b.

13. Tochange a point:

a. Press: K6 or K30

b. Enter: number of surface containing the point

c. Enter: coordinates of point to be changed

d. Enter: new coordinates of point

e. The program will stay in change point mode until another special function key is
pressed.

f. Goto 13b.

NOTE
Change pointis only an error correction routine to be used when
a point has been entered incorrectly. It cannot be used to “‘rede-
sign’’ a surface. If a surface needs massive changes you should
delete it and enter a new surface.

14. To store the object:

a. Press: K7 or K31
b. Enter: file name by following the prompts

Filename: DRIV1B (09845-10060)

Local Variable Definitions

Answer$[3]
File$[12]
Closed flag
Edge(0:250,5)

Edge count
Edge flag
Edge index
Edge type
Line

List flag

N

Object
Object(0:125,3)
Pic

Surface
Surface(0:500,3)
Surface count
Surface flag
Vertex flag
Firstpt(3)
Lastpt(3)
Offset(3)
Range(3)

Real pts(3,4)

Status(4,4)
Status _inv(4,4)
Trans_pts(3,4)

Transform(0:250,4)

Vertex(0:250,4)
Xmax
Xmin
Ymax
Ymin

Contains YES /NO response
Name of file to be used
Equals 1 if surface is now closed

Linked list of pointers to vertices that comprise edges; also
includes edge type

Number of edges in the surface currently being defined
Equals 1 if Edge array is full

Pointer to stored edge in Edge array

Equals 1 for line, 2 for circle, 3 for arc

Equals O if first line of sequence to be drawn; equals 1 if
already in line drawing mode

0 if a list is not desired; 1 if a list is desired

Number used in dimensioning data base arrays
Pointer to last surface pointer of object in Object array
Linked list of pointers to surfaces that comprise objects
Pointer to first surface in object array

Pointer to first edge of surface to be defined

Linked list of pointers to edges that comprise surfaces
Current number of surfaces in an object

Equals 1 if surface has been declared

Equals 1 if vertex array is full

Coordinates of first point in surface

Coordinates of last point in surface

Absolute values of XY and Z values

Ranges of X,Y and Z values

Coordinates of endpoints that will be stored in the data
base

Matrix of concatenated transformations

Inverse of Status matrix

Coordinates of endpoints in user units

Array of vertices multiplied by current Status array
Linked list of all edge-defining vertices

Maximum X value in user units

Minimum X value in user units

Maximum Y value in user units

Minimum Y value in user units

108

Zmax
Zmin
A
A(3,3)
B
B(3,3)
C
C(3,3)
D
D(3,3)

Maximun Z value in user units

Minimum Z value in user units
Determinant of A(*)

Matrix used to determine plane that surface is in
Determinant of B(*)
Matrix used to determine plane that surface is in
Determinant of C(*)
Matrix used to determine plane that surface is in
Determinant of D({*)
Matrix used to determine plane that surface is in

Filename: DRIV1C (09845-10080)

Local Variable Definitions

Answer$[3]
File$[12]
Closed_flag
Edge(0:250,5)

Edge count
Edge flag
Edge index
Edge type
Line

List flag

N

Object
Object(0:125,3)
Pic

Surface
Surface(0:500,3)
Surface count
Surface flag
Vertex flag
Color(125,3)
Firstpt(3)
Lastpt(3)
Offset(3)

Contains YES /NO response
Name of file to be used
Equals 1 if surface is now closed

Linked list of pointers to vertices that comprise edges; also
includes edge type

Number of edges in the surface currently being defined
Equals 1 if Edge array is full

Pointer to stored edge in Edge array

Equals 1 for line, 2 for circle, 3 for arc

Equals O if first line of sequence to be drawn; equals 1 if
already in line drawing mode

0 if a list is not desired; 1 if a list is desired

Number used in dimensioning data base arrays
Pointer to last element used in Object array

Linked list of pointers to surfaces that comprise objects
Pointer to first surface in object array

Pointer to first edge of surface to be defined

Linked list of pointers to edges that comprise surfaces
Current number of surfaces in an object

Equals 1 if surface has been declared

Equals 1 if vertex array is full

Color parameters for the current object

Coordinates of first point in surface

Coordinates of last point in surface

Absolute values of X,Y and Z values

109

Range(3) Ranges of X,Y and Z values

Real pts(3,4) Coordinates of endpoints that will be stored in the data
base

Status(4,4) Matrix of concatenated transformations

Status_inv(4,4) Inverse of Status matrix

Trans_pts(3,4) Coordinates of endpoints in user units

Transform(0:250,4) Array of vertices multiplied by current Status array

Vertex(0:250,4) Linked list of all edge-defining vertices

Xmax Maximum X value in user units

Xmin Minimum X value in user units

Ymax Maximum Y value in user units

Ymin Minimum Y value in user units

Zmax Maximun Z value in user units

Zmin Minimum Z value in user units

A Determinant of A(*)

A(3,3) Matrix used to determine plane that surface is in

B Determinant of B(*)

B(3,3) Matrix used to determine plane that surface is in

C Determinant of C(”)

C(3,3) Matrix used to determine plane that surface is in

D Determinant of D(*)

D(3,3) Matrix used to determine plane that surface is in

Object Transformations

This driver demonstrates translation, rotation, and scaling of an object. It also allows for
choosing the viewpoint from which to observe the object. Once a particular view is chosen
that view of the object can be drawn on a plotter or dumped to a printer. Also, hidden
surfaces of the object can be removed and the result plotted to the CRT (or the 9872 plotter
if using 09845-10080).

09845-10060

The following subprograms and binaries must be present in addition to DRIVZB:

One_obj_entry, Ginput, Parse response, Viewpoint, Plot, Multiply, Curve_setup,
Circle by 3_pts, Arc_gen, Viewcoord, Clip, Level, Close poly, Perspective, Crt tra,
Center, Rotate x, Rotate vy, Rotate z, Unplot, Translate, Scale, Dump, Plotter setup,
Hldden surface, Scan, One ~_obj__ store, Binary, and Dmpg#b.

After loading the binaries called Binary and Dmpg#b and getting DRIV2B into memory, link
the subprogram files: Obj en, Ginput, Parse, VwptB, PlotB, Mult, Crvset, C by 3,

Arcgn, Viewcr, ClipB, Level, Close Perspt, CrtB, Centr, Rotx, Roty, Rotz, Unplot, Trans,
Scale, DumpB, PltstB, HldSl‘B ScanB, Obj st. Then store on file “DEMO2”. Use KEYS file
“KeysTR” when using DEMOZ. B

110

09845-10080

The following subprograms must be present in addition to DRIV2C: One_obj entry,
Color_entry, Viewpoint, Plot, Multiply, Curve_setup, Circle_by 3 pts, Arc_gen, View-
coord, Clip, Level, Close poly, Perspective, Crt tra, Center, Rotate x, Rotate _y,

Rotate z, Unplot, Translate Scale, Dump, Plotter ~_setup, Hldden surface, Scan, and
One_ob]_store

After getting DRIVZC, link the subprogram files: Obj en, Cl_enC, VwptC, PlotC, Mult,
Crvset, C by 3, Arcgn, Viewcr, ClipC, Level, Close, Perspt, CrtC, Centr, Rotx, Roty, Rotz,
Unplot, Trans, Scale, DumpC, PltstC, HidsrC, ScanC, Obj_st. Then store on file
“DEMOQOZ2". Use KEYS file ‘“‘KeysTR”’ when using DEMOZ2.

If you will be using the 9872 for a color hard copy of an object with hidden surfaces

removed, put the pens into stalls one through four in the following order: black, red, green,
blue.

Demo 2 User Instructions
1. Toload in the demo and begin execution:

a. Type: LOAD “DEMO2”
b. Press;: EXECUTE
¢. Press: RUN

2. When “ENTER FILE NAME: MASS STORAGE” is displayed:

a. Enter: name of file to be transformed
b. Press: CONT

3. If using 09845-10080, when “ENTER COLOR FILE NAME : MASS STORAGE” is
displayed:
a. Enter: name of corresponding color file
b. Press: CONT

4. The special function keys and “INPUT X,Y,Z OF NEW VIEWPOINT (DEFAULT 300,
-300,300)”’ will be displayed.

a. Enter: values for new viewpoint
b. Press: CONT

5. The object will be displayed from the viewpoint requested. (The point you choose for
the viewpoint determines the line of sight from the viewer to the origin of the object’s
coordinate system. As a result, a ‘‘bad’’ viewpoint may prevent any portion of the
object from being plotted.)

111

6. To translate the object:

a. Press: KO or K24
b. When “ENTER X, Y AND Z INCREMENTS FOR TRANSLATING” is displayed:

1) Enter: values for XY and Z
2) Press: CONT

7. To rotate the object: (Rotation takes place about the approximate center. See Chapter

3 for more detail.)

a. Press: K1 or K25
b. When “ABOUT WHICH AXIS? ENTER X,Y OR Z” is displayed:

1) Enter: axis you wish figure rotated about
2) Press: CONT

c. When “ENTER ROTATION ANGLE” is displayed:

1) Enter: rotation in degrees (See the Section in chapter 3 on rotation).
2) Press: CONT

d. The object will be rotated.

8. To scale the object:
a. Press: K2 or K26
b. When “ENTER SCALE IN X DIRECTION”’ is displayed:

1) Enter: X scale factor
2) Press: CONT

c. When “ENTER SCALE IN Y DIRECTION” is displayed:

1) Enter: Y scale factor
2) Press: CONT

d. When “ENTER SCALE IN Z DIRECTION”’ is displayed:

1) Enter: Z scale factor
2) Press: CONT

NOTE
Curved surfaces must be scaled the same in X,Y, and Z direction
since ellipses are not provided for in the data base.

112

9. To choose a new viewpoint:

a. Press: K3 or K27
b. When “CHOOSE VIEWPOINT: FRONT(1), END(2), TOP(3), ISOMETRIC(4),
OTHER(5)” is displayed:

1) Enter: the number corresponding to the viewpoint desired
2) Press: CONT

NOTE
FRONT - Indicates you are looking down the negative Y-axis
toward the origin. Unless the figure is centered about the origin,
you will be viewing the figure from an angle.

END - Indicates you are looking down the positive X-axis toward
the origin. Again, unless the figure is centered about the origin,
you will be viewing the end (or side) of the figure at an angle.

TOP — Indicates you are looking down the positive Z-axis toward
the origin. As before, unless the figure is centered around the
origin, you will be observing it from an angle.

c. It “OTHER” is chosen:

1) When “INPUT X,Y,Z OF NEW VIEWPOINT (DEFAULT 300,-300,300) is
displayed:
a) Enter: values for new viewpoint
b) Press: CONT

10. To plot the object on the CRT or another plotting device:

a. Press: K4 or K28
b. Answer questions about device to be plotted to.
c. The object will be plotted.

11. To remove hidden surfaces or to return to wire-frame mode:

a. Press: K5 or K29
b. When “DO YOU WISH TO REMOVE HIDDEN SURFACES? (Y,N)” is displayed:

1) Enter: desired response
2) Press;: CONT

c. If you are using 09845-10080, answer prompts to enter the desired plotter. Plots
on the 9872 will take four times as long as those on the CRT.

113

12. To dump the object to a printer:

a. Press: K6 or K30

b. Answer questions about device to be dumped to.

c. The object will be dumped.

13. To store the transformed object:

a. Press: K7 or K31

b. Answer prompts to enter the file name.

Filename: DRIVZ2B (09845-10060)

Local Variable Definitions

Answer$[3]
File$[20]
Plotter$[20]
Bus address
Edge(0:250,5)

Hid

N

Object(0:125,3)
Old_ hid

Pic

Select_code
Surface(0:500,3)
Sur_tmp(0:500,2)

Trans
View

Status(4,4)
Transform(0:250,4)
Vertex(0:250,4)
Xvp

Yvp

Zvp

Contains YES/NO response
Name of file to be used
Plotter identification

Bus address for HP-IB device

Linked list of pointers to vertices that comprise edges; also
includes edge type

Equals O for no hidden-surface removal, 1 for hidden sur-
faces to be removed

Number used in dimensioning data base arrays
Linked list of pointers to edges that comprise objects
Contains last value of Hid

Pointer to head of list in Object(*)

Select code of plotter

Linked list of pointers to edges that comprise surfaces

Temporary list of pointers to vertices that comprise sur-
faces; also contains pointers to color information

Equals 1 for rotation, 2 for translation, 3 for scaling

Equals 1 for front, 2 for side, 3 for top, 4 forisometric, 5 for
user defined

Concatenated transformations

Array of vertices multiplied by current Status array
Linked list of vertices

X value of viewpoint

Y value of viewpoint

Z value of viewpoint

114

Filename: DRIV2C (09845-10080)

Local Variable Definitions

Answer$[3]
File$[20]
Plotter$[20]
Bus address
Edge(0:250,5)

Hid

N

Object(0:125,3)
Old_ hid

Pic

Select code
Surface(0:500,3)
Sur_tmp(0:500,2)

Trans
View

Color(125,3)
Status(4,4)
Transform(0:250,4)
Vertex(0:250,4)
Xvp

Yvp

Zvp

Contains YES /NO response
Name of file to be used
Plotter identification

Bus address for HP-IB device

Linked list of pointers to vertices that comprise edges; also
includes edge type

Equals O for no hidden-surface removal, 1 for hidden sur-
faces to be removed

Number used in dimensioning data base arrays
Linked list of pointers to edges that comprise objects
Contains last value of Hid

Pointer to head of list in Object(*)

Select code of plotter

Linked list of pointers to edges that comprise surfaces

Temporary list of pointers to vertices that comprise sur-
faces; also contains pointers to color information

Equals 1 for rotation, 2 for translation, 3 for scaling

Equals 1 for front, 2 for side, 3 for top, 4 for isometric, 5 for
user defined

Color parameters for the current object
Concatenated transformations

Array of vertices multiplied by current Status array
Linked list of vertices

X value of viewpoint

Y value of viewpoint

Z value of viewpoint

115

Digitizer Entry

This program demonstrates the use of the digitizer in entering three-dimensional objects.
An object is entered from a mechanical drawing that provides three orthogonal views. Each
surface must be composed of line segments. Once the object is entered, it can be stored,

drawn on a plotter, or dumped to a printer. Both the 09845-10060 and 09845-10080 packs
require the I/ O ROM for this demo.

09845-10060

The subprograms and binaries required are: Input, Initviewpln, Constviewpln, Display,
Draw2d, Recvpcoords, Modvp, Convert3d, Indbad, Findsurf, Dump, Viewpoint, Plotter
setup, Plot, Multiply, Curve setup, Circle_by 3 pts, Arc_gen, Viewcoord, Parse
response, Clip, Level, Close poly, Perspective, One _obj_store, Dmpg#b, and Binary.

After loading the binaries, Dmpg#b and Binary, and getting DRIV3B, link the subprogram
files: DginpB, DginiB, DgcvwB, Digdsp, Digdrw, Digrvc, DgmodB, DgcvtB, Digibd, Digfsr,
DumpB, VwptB, PltstB, PlotB, Mult, Crvset, C_by 3, Arcgn, Viewcr, Parse, ClipB, Level,
Close, Perspt and Obj_ st. Store on f11e “DEMOS”

NOTE
Remember to replace all CALL Ginput statements in the subpro-
grams Plotter setup, Dump and Viewcoord with analogous LIN-
PUT statements. For example:

CALL Ginput (“ENTER PRINTER SELECT CODE, “Select
code$)

becomes

LINPUT “ENTER PRINTER SELECT CODE,** Select_code$

09845-10080

The subprograms needed in memory are: Input, Initviewpln, Constviewpln, Display,
Draw2d, Recvpcoords, Modvp, Convert3d, Indbad, Findsurf, Dump, Viewpoint, Plotter
setup, Plot, Multiply, Curve_setup, Circle_by 3 pts, Arc_gen, Viewcoord, Clip,
Level,Close_poly, Perspective, and One_obj_store.

After getting DRIV3C link the subprogram files: DginpC, DginiC, DgcvwC, Digdsp, Digdrw,
Digrvc, DgmodC, DgcvtC, Digibd, Digfsr, DumpC, VwptC, PltstC, PlotC, Mult, Crvset,
C_by_3, Arcgn, Viewcr, ClipC, Level, Close, Perspt and Obj _st. Store on file “DEMO3"".

116

Demo 3 User Instructions
1. Toload in the demo and begin execution:

a. Type: LOAD “DEMO3”
b. Press;: EXECUTE
¢. Press: RUN

2. When “ENTER DIGITIZER SELECT CODE AND BUS ADDRESS(706)” is displayed:

a. Enter: select code and bus address. (Default is set to 706)
b. Press: CONT

3. The data base will be initialized at this point. “INITIALIZING DATA BASE” is dis-
played on the CRT.

4. When “DIGITIZE TWO POINTS ON HORIZONTAL LINE OF DRAWING” is dis-
played:
a. Using the digitizer (9874), digitize a point on any horizontal line of the drawing. (A
BEEP will indicate the point has been digitized.)

b. Digitize a second point on the horizontal line. (A BEEP will indicate the point has
been digitized.)

NOTE ‘
The greater the distance between the points, the more accurate
your horizontal line will be.

5. When “DIGITIZE LOWER LEFT AND UPPER RIGHT CORNERS OF DRAWING” is
displayed:

a. Digitize the lower left corner of the rectangle enclosing the orthographic views.
(Do NOT expect a BEEP at this point.) In figure 10.2 the point described is
labeled LL.

b. Digitize the upper right corner of the rectangle enclosing the orthographic views.
(A BEEP will indicate that both points have been digitized.) This point is indicated
by URin figure 10.2.

6. When “DIGITIZE INTERSECTION OF CUTTING PLANES”’ is displayed:

a. Digitize the point at which the horizontal line and vertical line that separate the
three orthogonal views meet. (A BEEP will indicate the point has been digitized.)
In figure 10.2, the point labeled CP designates the intersection of the cutting
planes.

UR

CP

LL

Figure 10.2: Standard ‘‘3-view’’ arrangement

7. 1IF an error has occurred during the digitizing of the boundaries, ‘ERROR MADE
DURING ENTRY - PLEASE REENTER POINTS INDICATED” will appear on the

CRT and the program will go to step 4.

8. When ““Select function” is displayed by the digitizer, use the digitizer special function
keys to choose desired action. You should create a key overlay for your convenience.

The labels should be as follows:

-

\

. levrapl SAVE |

al ADD |®[DEL

| GeT_J, [oops], [DMP

¢"'MOVE | [KILLVP| ¢| GRID
[)
L J

T

J

Figure 10.3: Digitizer Key Overlay

9. To add surfaces using orthographic views:

a. Press: fa

b. When ““Add SURFACES"’ appears on the digitizer display:

1) Position the puck in the desired plane and digitize vertices of a surface.(A
beep will sound as each vertex point has been digitized. A high-pitched short
beep denotes a point that has not been digitized before. A low-pitched short
beep denotes a point that has been digitized before. A long low-pitched beep

denotes a surface is being closed at that point.)

117

118

2) The program will stay in add surface mode until another digitizer special
function key is pressed.

3) Goto9b.1.

10. To delete surfaces:

a. Press: fb
b. When “DELETE SURFACES’ appears on the digitizer display:

1) Position the puck in the desired plane and digitize vertices of the surface to
be deleted.

2) The program will stay in delete surface mode until another digitizer special
function key is pressed.

3) Goto 10b.1.

11. To move vertices:

a. Press: fc
b. When “CHANGE POINTS” appears on the digitizer display:
1) Position the puck on the vertex to be moved and digitize that point. (If the

point you digitized has not been entered before, you will receive a low-
pitched BEEP and NO action will be taken.)

2) Position the puck at the new location for the vertex and digitize that point.
3) Goto11b.1.

12. To delete an entire view plane:

a. Press: fd

b. When “ENTER PLANE NO.”’ appears:
1) Enter: the number of the plane you wish to delete
2) Press: ENTER
3) Goto 8.

13. To change the error tolerance so as to make entering an object easier:
a. Press: fe
b. When “Grid IS <current error tolerance>’’ appears on the digitizer display:
1) Enter: new tolerance desired (using digitizer keypad)
2) Press: ENTER
3) Goto 8.

14. To save the two-dimensional (three orthographic view) information:

a. Press: sfb (PREFIX fb)

b. “DO YOU WANT TO CHANGE MASS STORAGE DEVICE? (Y /N) will appear
on the CRT.

1) If your response is yes ‘‘SPECIFY MASS STORAGE DEVICE”

C.

When “‘FILE no.? [Sa]’ appears on the digitizer display:

1) Enter: the number you desire (Your file will be stored on the mass storage
device as ‘‘P”’ followed by the number you entered. If you entered a 555, for
example, a file named “P555" will be created on your storage device.) If you
wish to save information on a file that has already been created, enter the
negative of the file number when the file number is requested.

2) Press: ENTER
3) Goto 8.

15. To convert the three orthogonal views to a 3-D representation:

a.
b.

C.

d.

Press: sfa (PREFIX fa)
Vertex, Edge, and Surface information will be computed at this point.

If inconsistencies are found, enter a modification mode (fa,fb,fc,fd, or fe). Once
modifications are made, go to 15a.

If no inconsistencies are found, “ENTER THE NUMBER OF SURFACES THE
OBJECT HAS” will appear on the CRT.

1) ENTER: number of surfaces you expect for the object

If the number you enter does not agree with the number of surfaces generated by
the program, “NUMBER OF SURFACES GENERATED ()<> NUMBER OF
SURFACES EXPECTED ()’ will appear on the CRT.

“DO YOU WISH TO DISPLAY THE 3-D OBJECT? (Y/N)”’ will appear on the
CRT.
1) If your response is yes, the object will be displayed using a default viewpoint
of (300,-300,300), no clipping and no hidden surface.

2) “DO YOU WANT TO DUMP THE GRAPHICS CRT? (Y/N” will be dis-
played next. Answer the questions that follow.

“DO YOU WANT TO STORE THE 3-D OBJECT? (Y /N) will appear on the CRT.
1) If your response is yes, then answer prompts to input file name when “EN-
TER FILE NAME:MASS STORAGE" appears on the CRT.
2) Goto 8.

“DO YOU WANT TO ENTER A DIFFERENT FIGURE? (Y /N)”’ will be displayed
on the CRT.

1) If your response is ‘‘yes’’, the program exits so you can enter an entirely new
object.

2) If yourresponseis “‘no’’, you may clear the current viewplanes or leave them
asis.

119

120

16. To get two-dimensional (three orthographic view) information that has been previ-
ously stored:

a. Press: sfc (PREFIX fc)
b. “DO YOU WANT TO CHANGE MASS STORAGE DEVICE? (Y /N)’’ will appear

on the CRT.
1) If your response is yes, “‘SPECIFY MASS STORAGE DEVICE” will
appear.

c. When “FILE no.? [get]’ appears on the digitizer display:

1) Enter: the number you desire
2) Press: ENTER
3) Goto8.

17. To delete all vertices of the current surface being entered:

a. Press: sfd (PREFIX fd)
b. Continue in the mode in which you were currently working

18. To dump the current graphics display:

a. Press: sfe (PREFIX fe)
b. Goto 8.

Filename: DRIV3B (09845-10060), DRIV3C (09845-10080)

COMMOM Variable Definitions

Vertex(0:100,4) Linked list of all edge-defining vertices

Edge(0:100,5) Linked list of pointers to vertices that comprise edges; also
includes edge type

Surface(0:200,3) Linked list of pointers to edges that comprise surfaces

Object(0:50,3) Linked list of pointers to surfaces that comprise objects

Vertex2d(3,0:100,5) Contains vertex information entered from three orthog-
onal views

Edge2d(3,0:100,5) Contains edge information entered from three orthogonal
views

Surf2d(3,0:200,3) Contains surface information entered from three orthog-
onal views

Object2d(3,0:50,3) Contains pointers to surfaces for object entered from three
orthogonal views

Xcp X value of cutting plane intersection of mechanical drawing

Ycp Y value of cutting plane intersection of mechanical drawing

Digiratio Ratio of the width to the height of the area of the digitizer;

defined by lower left and upper right corners of input
document

Plotwidth
Plotheight
Planeratio
Grid

Possedg(0:10,30)

Tempsurf(30)

121

Plotter width in GDU’s
Plotter height in GDU'’s
Ratio of height of plane 1 to height of plane 2

Number of User Units by which at least one of the coordi-
nates of 2 vertices must differ in order for them to be con-
sidered distinct vertices

Array containing all possible 3-D edges that are represent-
ed by the 2-D edges of a 2-D surface

Temporary storage for surface information

Filename: DRIV3B (09845-10060), DRIV3C (09845-10080)

Local Variable Definitions

Digi
Mneps
Ne
Ne2
No
No2
Ns
Ns2
Nv
Nv2
Redundfctr

Digitizer select code and bus address

Maximum number of edges allowed per surface
Number of edges allowed

Number of 2-D edges allowed

Number of objects allowed

Number of 2-D objects allowed

Number of surface elements allowed

Number of 2-D surface elements allowed
Number of vertices allowed

Number of 2-D vertices allowed

Maximum number of 2-D or 3-D edges that may be repre-
sented by a single 2-D edge

122

Handling Errors Detected

NOTE
Before attempting error correction, check to see what the error
tolerance is. The default error tolerance is 2. Setting the tolerance
to a larger number will eliminate most errors caused by careless
digitizing.

When converting orthographic views to 3-D object, there are three phases in the conversion
process. These are:

a. computation of 3-D vertices
b. computation of 3-D edges
c. computation of 3-D surfaces

Any of these phases may find inconsistencies in the orthographic views that have been
entered. Such errors will cause the three views to be redrawn with dashed lines indicating
the nature and location of the error or errors. All errors found during a phase will be
designated before control is returned to the digitizer keypad. Note that the next phase in the
sequence will be entered only if the last phase was completed without detecting any incon-
sistencies.

The following is an example of what will result if errors are found in the first phase.(compu-
tation of 3-D vertices)

1 i
- —— — —— +——— — 5 F————— — — |
——+5A

|
|
T 3
I
|El
I
A |
b — b L =

Figure 10.4: Lines indicating inconsistent vertices

The dashed lines indicate where the vertex conversion algorithm has found inconsistencies
in the input data. The vertices in question are encircled. The circles enclosing these vertices
have a radius equal to the defined grid spacing.(This grid spacing can be altered using
PREFIX fe. Refer to the User Instructions for DEMO3.)

This feedback alone is of little use unless you have some knowledge of the algorithm used.
Basicly, each vertex is projected into the other two view planes in order to determine its
representation in each of them. The vertices are projected as follows:

1. FROM planel TO plane 2 TO plane 3
2. FROM plane2 TO plane 3 TO plane 1
3. FROM plane3 TO plane 1 TO plane 2

In the example shown above, you see that points A and B of plane 1 have no corresponding
points in plane 2 when they are projected. Points C and D have no corresponding points
when projected into plane 3. Point E, however, has a corresponding point in plane 2 but not
in plane 1. Point F has no corresponding point in plane 2. Point G has no corresponding
point in either plane 2 or plane 1.

Below is an example of what you can expect if inconsistencies are found during phase
two.(computation of 3-D edges)

2 3
AT T T T T S B T
B-———-— —-————<L——8~ —————]

Figure 10.5: Lines indicating inconsistent edges

123

124

Observe, if an edge is indicated by a dotted segment, it means that the edge so indicated
connects two vertices that are not connected in one of the other view planes. Edge AB, for
example, indicates a connection between points A and B in view plane 2. Points A and B in
plane 2 correspond to points A and B in view plane 3. The dashed lines indicate that the
points A and B were never connected as an edge in view plane 3. (For example, assume
you entered only three surfaces in this third view plane - the top, middle, and bottom
rectangular surfaces.)

As with vertices, the projection sequence is:

1. FROM planel TO plane2 TO plane3
2. FROM plane2 TO plane3 TO planel
3. FROM plane3 TO planel TO plane2

Lastly, during phase three, it is possible to detect a surface represented in one of the view
planes for which a collection of 3-D edges that form a closed path cannot be found. If such a
3-D surface is not found for a 2-D surface of a view, that 2-D surface is considered inconsis-
tent and is indicated by redrawing that surface using broken line segments.

Surface Color Entry
09845-10080

This driver allows you to take a previously entered object and add color information to its
surfaces. The color parameters are then stored on a data file to be used with the 9845C
version of the Object Transformation Demo. There are no special function keys used. The
subprograms that need to be in memory are: One_obj entry, Multiply, Relist (9845C
version) and Store_color. After getting DRIV4C link the subprogram files Obj en, Mult,
RlistC and C1_stC. Store the program on file “DEMO4”". -

NOTE
An object’s color file must be reentered every time an object’s
surface information is altered.

125

Demo 4 User Instructions

1. Toload in the demo and begin execution:

a. Type: LOAD “DEMO4”
b. Press;: EXECUTE
c. Press: RUN

2. When “ENTER FILE NAME MASS STORAGE" is displayed:
a. Enter: file name of 3-D object
b. Press: CONT
c. If the file cannot be found, the program will return to 2.

3. The name of the demo and column headings will be displayed on the CRT.

4. The coordinates and connecting information for the objects first surface will be dis-
played on the CRT.

5. When Hue, Saturation and Luminosity FOR SURFACE 1 = ?” is displayed:
a. Enter: the hue, saturation and luminosity values for surface 1
b. Press: CONT
c. If you enter a value outside the range O to 1, the program will return to 5.

6. The program will repeat steps 4 and 5 until all surfaces have been assigned color
parameters.

7. When “ENTER NAME OF COLOR FILE: MASS STORAGE” is displayed:
a. Enter: file name for color information
b. Press: CONT
c. If the file already exists, “‘(file) ALREADY EXISTS. USE IT ANYWAY?” will be
displayed.
1) To use the same file name:

a) Enter: YES
b) Press;: CONT

2) To use a different file name:

a) Enter: NO
b) Press: CONT
c) The program will return to step 7.

8. The color information will be stored.

126

Local Variable Definitions for DRIV4AC

File$[12]
Edge(0:250,5)
Flag

N

Object
Object{0:50,3)
Pic

Surface (0:500,3)
Surface count
Color (12.5,3)

Offset(3)

Range(3)

Status (4,4)
Transform(0:250,4)
Vertex(0:250,4)

Object’s file name

Array containing edge connecting information

Set to 1 before calling Relist to indicate color entry
Number used in dimensioning data arrays

Pointer to last element used in Object array

Linked list of pointers to surfaces that comprise an object
Pointer to head of Object(*)’s linked list.

Linked list of pointers to edges that comprise surfaces
Actual number of surfaces in an object

Array containing color parameters for AREA COLOR
statement

Absolute values of X, Y and Z axes minimum values.
Ranges of X, Y and Z values

Matrix of concatenated transformations

Array of vertices multiplied by current Status array
Linked list of all edge-defining vertices

Programming Tips

Before beginning to program, it would be wise to study the subprogram definitions and how
they interact via the four demo programs. The demos are not included to provide a
“turnkey” solution to any application, but they do provide an example of the correct calling
sequence needed to perform a certain action, such as rotation or clipping. The following
paragraphs include tips on 1) memory size, 2) mass storage, 3) key definitions, 4) preparing
data to be stored, 5) using the 9874 Digitizer and 6) using advanced shading techniques
with the 9845C.

With a memory of 187K bytes, you can have a fairly large program and data base in memory
at one time. For example, “DEMO1”’ contains about 1300 lines of code, and has a data base
of 250 vertices and edges. Keep in mind however, the larger the data base, the longer it
takes to do pictorial processing. You can change the number of vertices for DEMO1 and
DEMOZ by altering the array declaration statements in the demo drivers and setting the
value of the variable N to the desired number of vertices. For DEMO 3, you must change the
COMMON variable declarations and appropriate variables.

It is easy to see how an application program could become very large. Just considering the
demo programs, DEMOZ2 takes up 377 records and DEMOS3 takes 444 on a mass storage
device. Because of tape access time, it is suggested you strongly consider using a flexible
disc. Also, remember to use the comment stripper utility to remove unnecessary remarks.

There are two ways to define the special function keys. The first alternative is that of using a
keys file. This provides immediate interrupts only while in INPUT and PAUSE statements.
However, there is a fault with this method of key definition on the 9845B. If you are in
graphics mode, pressing a special function key will cause CRT to momentarily blink out of
graphics mode. The reason being that since the keys are also typing aids, the definition of
the key will be momentarily displayed in the alpha mode. The second alternative is that of
defining the special function keys with the ON KEY# statement in the program. This way
will not blink you out and back into graphics mode, but has other drawbacks. The keys are
not recognized in an INPUT or PAUSE statement, and are only defined in their own envi-
ronment. This means a key defined this way in the main program is undefined in any
subprogram.

It is advisable to display special function keys on the CRT when possible. This alleviates the
problem of lost overlays. In the demo programs for the 9845B, special function key defini-
tions are “LABELED” or ““‘GPRINTED” onto the graphics raster, and ‘‘PRINTED”’ onto the
alpha raster. The 9845C, however, has the convenient command ‘“LABEL KEYS” that
displays key definitions along the bottom of the CRT.

In most cases, when an (X,Y,Z) coordinate is entered, it is not in the form it will be stored.
This pack uses two arrays, Range(*} and Offset(*}, to convert from user units to the range
—100,100 for all three X, Y and Z axes. This is to insure all coordinates are in the same
range for scaling purposes of the active plotter. In the digitizer entry program, this range is
set up as the default. If the coordinates are entered manually, this conversion must be done
programmatically. Also, since this pack allows transformations of objects, you must apply
the inverse of its Status(*) to a point before storing it. If this multiplication was not per-
formed, it would be difficult to edit an object after transforming it.

127

128

The 9845B and 9845C may appear to interact the same with the 9874 Digitizer to a user,
but the programming techniques are different. The 9845B views the digitizer as another
plotter and most interactiveness was programmed through the I/ O ROM. The 9845C sees

the digitizer as a ‘““GRAPHICS INPUT DEVICE” and uses new commands to talk to it as
such.

The first difference comes when trying to moniter the digitizer keys. The 9845B merely sits
in a loop waiting for the status word to change. It is then a simple matter of checking bit 2 for
a digitized point or bit 7 for a pressed key, to see what was pressed. The 9845C, however,
clears out the pressed digitizer button or key bit as soon as its pressed. This is due to the new
“ON GKEY” command. Therefore, it is necessary to set up on “ON GKEY”’ interrupt that
branches to another routine. Here the ““CURSOR XY, Status$’’ command is executed,
then Status$ is analyzed to determine what key was last pressed.

The second difference is not quite so complicated. In order to get the marker of your CRT to
follow the movements of the cursor of the 9874, the 9845B stays in a small loop of four
statements. After the digitizer is declared on, the CURSOR statement interrogates the input
device to find the X,Y location of the cursor. Then the CRT is declared on and the POINTER
statement is executed to position the CRT’s marker to the corresponding X,Y location. The
9845C has the command ‘“TRACK <plotter select code:> IS ON./OFF’’ which sets this
“Track’” mode for you.

The last major difference is that the 9845C may have multiple plotters on at one time. When
programming with the 9845B it is sufficient to just turn the current plotter on, and the

previously active plotter would be turned off. For the 9845C you must be sure to program-
matically turn plotters off.

Instead of assigning each surface of an object its own color, you may wish to generate a
more realistic picture. Normally an object is the same color all over. One way you can
distinguish separate surfaces is by varying the intensity of each surface by the amount of
light it would receive. If you pick the light source to be the same as your viewpoint, this
calculation can be greatly simplified.

This computation would have to be done in the subprogram Hidden _surface before Scan is
called. In order to assign each surface by its average intensity, you simply need to calculate
(COS0)?, where 0 is the angle between the light source vector and the normal vector to the

surface. If this value is normalized from O to 1, it may be used directly as the third parameter
in the AREA COLOR statement.

clipping

coordinate system

concatenation of matrix trans-
formations

digitizer

edge

eye coordinate system
hidden-line removal

hidden-surface removal

homogeneous coordinate

homogeneous point
matrix

object coordinate system
(world coordinate system)
perspective

raster-scan display
rotation

scaling

scan line algorithm
screen coordinate system
surface

vertex

viewbox

Glossary

a technique used to select those parts of a picture that lie
on the screen or in cases of three dimensions, within the
viewing pyramid

a method of addressing points in a plane or in space

the product of two or more matrix transformations result-
ing in one matrix that represents a sequence of transforma-
tions

a device used to enter coodinate data

as used in this pack, an edge can be a line segment, a
circle, or an arc

has its origin fixed at the viewpoint and its Z-axis pointed in
the direction of the view

removing lines of an object (scene) that are hidden from
view by opaque objects

removing parts of an object that are invisible because they
face away from the viewer or are obscured by other parts
of the object

a scale factor used as the fourth component of a vector
describing a point in three-dimensional space

a vector [X,Y,Z, W] that represents a point (X,Y,Z)
an M by N array of elements

the coordinate system in which an object is defined

conveys depth information by making distant object small-
er and foreshortening objects that are near

the display is determined by the intensity of each dot in a
rectangular matrix of dots that covers the entire screen

the movement of an object about a fixed point
increasing or diminishing the size of an object

involves using a test line (scan line) to determine all pixels
(dots) of a polygon that need to be turned on for a raster
display
the coordinate system made use of for the display on the
screen

as used in this pack, a surface can be a closed polygon
made up of line segments, a circle, or an arc with one or
more line or arc segments used to close the surface

a point where two or more edges meet

a truncated viewing pyramid mapped into the clipping
coordinate system that describes the region in which an
object must lie in order to be visible

129

130

viewing pyramid

viewpoint
viewport

world coordinate system
(object coordinate system)
window

windowing

wire-frame

designates a region of the eye coordinate system in which
an object must lie in order to be visible

the origin of the eye coordinate system

a rectangle on the display screen where the contents of the
“window’’ is to be displayed

the coordinate system in which an object is defined

a rectangle of the object coordinate system that is of in-
terest to the viewer

specifying a rectangle that surrounds the information de-
sired in the display

a diplay technique that shows all edges of an object
whether hidden to the viewer or not

Bibliography
Eastman, J.F.: “An Efficient Scan Conversion and Hidden Surface Removal Al-
gorithm’’, Computer Graphics, Vol. 1, pp. 215-220, 1975.

Gilio, W.K.: Interactive Computer Graphics, Prentice-Hall, Englewood Cliffs, New
Jersey, 1978.

Newman, W.M. and R.F. Sproull: Principles of Interactive Graphics, Second Edition,
McGraw-Hill, New York, 1979.

Sutherland, I.E. and G.W. Hodgman: Reentrant Polygon Clipping, ‘‘CACM Com-
munication of ACM, Vol. 17, January, 1974

Gusecke, Mitchell, Spencer, Hill: Technical Drawings, Sixth Edition, Macmillan Pub-
lishing Co. Inc., New York, 1974.

131

132

(éﬁ HEWLETT

PACKARD

Part No. 09845-10061 Printed in U.S.A.
Rev. C Third Edition (Aug. 1981)

