' Compyter

s Museym

BASIC Language Interfacing Concepts

Part No. 09835-90600
Microfiche No. 09835-99600

Hewilett-Packard Desktop Computer Division
3404 East Harmony Road, Fort Collins, Colorado 80525

Copyright by Hewlett-Packard Company 1979




HP Computer Museum
www.hpmuseum.net

For research and education purposes only.



ii

Table of Contents

Reader’s Guide

Chapter 1: General Background Concepts

The Task of an Interface

Software ;
Data Representations in the Computer
Input/ Output Data Representations
The Five Types of HP Interfaces
The Data Transfer Process

Hardware
Logic Levels and TTL Implementations
Gates, Latches, and Flip-Flops
The Use of Jumpers

Chapter 2: Programming for Interfacing Operations
Standard 1/ O Programming
A Register Operational Model of an Interface
Select Codes
Direct Register Access
The Status and Control Registers
Binary I/ O Operations
Formatted [/ O Operations
Interrupt I/ O Programming
The Uses of Interrupt
Data Transfers with Slow Devices
Further Data Transfer Examples
User Programmed Service Routines
Interrupt Priorities
High-Speed [/ O Programming
Overview
Fast-Handshake Transfers
Direct Memory Access Transfers
Advanced 1/ O Programming
NOFORMAT Data Transfers
Variable-to-Variable Transfers
Overlapped 1/0
Memory Organization and [/ O Programming
Transfer Glitches
DMA Termination

O W W =~

10

.15

17
17
22
29

31
33
33
35
37
39
46
46
49
54
58
60
64
64
65

. 66

67
68
70
74
79

79
. 80



Chapter 3: HP Interface Cards

Interfacing and the Computer [/ O Bus : ... 81
Interface ID and Card Types . , : ... 85
The Use of the Control Register . . . . ... 86

The 98032A Bit-Paralle!l Interface o . . 88
General Operational Characteristics . - ... 88
The Handshake Process o , 93
Word and Byte Modes of Operation . : - ... 100
Data Inversion and the Transfer Process . . , ... 104

The 98033A BCD Interface . : 105
BCD Instruments , o - , 105
98033A BCD Formats , . ; 106
The 98033A Interface Registers . . .. . - 109
The 98033A Handshake Process. . - , ... 110
Connecting BCD Devices to the 98033A . , .. 112

The 98034A HP-IB Interface . .. o - , . 112
An Introduction to the HP-IB o o112
The Structure of the HP-IB . & ... 113
Addressing the Bus Devices , ... 116
Data Operations on the HP-IB o ... 119
Extended HP-IB Control Features A , .. 123
Using the 98034A Interface - - , 129

The 98036A Serial 1 /O Interface . . & 0137
An Introduction to Serial /O = . . - L . 137
Data Transmission Using Serial [/O. . .. , ........ 138
Control Lines and the RS-232C Standard . .. 145
The 98036A Serial 1 /O Interface . . o ... 149
Programming With the 98036A Interface .. . ... 160
RS-232C vs. Current Loop Operation .. . . 163

Appendix

ASCIl Character Codes . ; o , .. 170

HP-IB Universal Commands . o o171

98032 Interface . . ; S . 172

98033 Interface o , o174

98034 Interface . o . . 176

98036 Interface . , ; o ; o . 180

Keyboard, Display, Printer =~ = . . ... 182

Bibliography . . : ... 184

Subject Index ; « « . . 187



iv

Printing History
New editions of this manual will incorporate all material updated since the previous edition.
Update packages may be issued between editions and contain replacement and additional pages
to be merged into the manual by the user. Each updated page will be indicated by a revision date
at the bottom of the page. A vertical bar in the margin indicates the changes on each page. Note

that pages which are rearranged due to changes on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint

do not cause the date to change.) The manual part number changes when extensive technical
changes are incorporated.

September 1980. . . First Edition

December 1980. . . Second Edition pages: 13, 65, 66, 74, 85, 86, 87, 88, 92, 121, 133, 160, 161,
162, 177

June 1981...Third Edition. Updated pages: 79, 132

rev: 6/81



Reader’s Guide

This guide for interfacing peripheral devices to Hewlett-Packard desktop computers is designed
to provide additional information which may be helpful to the user who needs to interface his
peripheral equipment to HP desktop computers and/or program the resultant system for
interfacing applications.

[tis not intended to be a replacement for either the operating and programming manuals for the
desktop computer, or the installation and service manuals for the individual interface cards.
The maximum benefit can be obtained from this guide if these individual manuals are studied
first. They provide the user with a detailed description of the individual operations available
from the computer, and of the various functions provided by each interface card. At the same
time they assume that the user has a certain level of knowledge about the programming

techniques (software) and electronics (hardware) involved in interfacing applications.

The purpose of this interfacing guide is twofold. First, it is intended to provide some introduc-
tory hardware and software concepts which are assumed by the manuals, but with which the
user may not have previous experience. The second purpose of the guide is to present an
alternative approach to explaining the operations discussed in these manuals. For example,
while the computer operating manual discusses the use and the detailed syntax of those prog-
ramming statements associated with interrupt operations, the guide expands this information
by discussing how interrupts are implemented, and when they should and should not be used.
The guide also presents introductory information on such topics as the Hewlett-Packard Inter-
face Bus (HP-IB) and serial [/ O which is not available in the manuals for these interface cards.
In addition, since this guide is not intended to describe a single computer, interface card, or
peripheral device as a stand-alone piece of equipment, it can discuss the use of all three

elements as an integrated system.

The guide is primarily oriented around the HP 9835 /45B Desktop Computers and the five
associated interface cards: the 98032A, 98033A, 98034A, 98035A, and 98036A. Example
programs are presented in BASIC, the high-level programming language of the 9835 /45B.
However, a majority of the concepts that are discussed apply to interfacing in general and the
user should find a reading of this guide helpful in understanding the operations of other HP
desktop computers and interface cards. For example, the HP System 45B Desktop Computer
uses the same set of interface cards, and operates in a manner similar to the System 35, with the
System 35 program statements replaced by their 9845B equivalents.



vi

There are some statements and functions that the System 35/45B computers have that are
unavailable on a System 45A. The differences are minor, for the most part, and they can be

minimized with alternative programming techniques. For example:

Ar
W
i |
o
I
ool
uLr
T
$a
o
dcul
Sui
]
iy
iy
I

18 WRITE EIH 634
28 WAIT WRITE S, 4317

OUTPUT & HSIHG “#,BY:ey
IF HOT IOFLAGCE:Y THEM 2@
MEITE 10 5,434

i

HooH
0% T R S
£ ar

i
151

Chapter 1 of this guide presents general background information useful for interfacing applica-
tions. For the engineer not experienced in software concepts, information is given on computer
data representations and 1/ O (Input/ Qutput) programming. For the programmer not experi-
enced in hardware concepts, topics such as logic levels, TTL gates, latches, and flip-flops are
discussed. The reader with a background in hardware and software can proceed directly to
Chapter 2.

In Chapter 2, the discussion is centered around programming for interfacing applications. It is
not the purpose of this section to teach the BASIC programming language or to present the
detailed syntax and restrictions of those programming statements related to I/ O operations.
This is the purpose of the operating manuals. Instead, the guide tries to give the user an
appreciation for what takes place on the low level when the high level programming statements
are executed. It is the philosophy of this guide that if the user understands these low level
operations, many of the observations that appear to be strange from the high level will lose
much of their mystery. Also, such an understanding should allow the reader to make more

intelligent use of the power available in desktop computer systems.

Chapter 3 concentrates on the individual interface cards themselves. Here again, an alternative
approach to the installation and service manuals for these cards is taken, and a register-
operational model of these interfaces is developed. All of the functions provided by these cards

are described in terms of sequences of register operations.

The appendices contain a collection of useful tables, diagrams, and timing information, along

with a selected bibliography of references for additional reading.



Chapter

General Background
Concepts

The Task of an Interface
(an Overview)

In discussing interfacing peripheral devices to a desktop computer, the first question that
naturally arises is ‘*“What does an interface do, and why is it necessary?”’ In order to answer this
question, it is helpful to understand some of the characteristics of the computer and of the
peripheral devices which it is to control.

A computer by itself is not a very useful device. Its power comes from its ability to accept inputs
from an outside source, modify these inputs according to a given set of rules (as expressed by
the program in the computer), and output the results of these computations to some external
device. Some typical input devices are punched card readers, tape readers, digitizers, and
digital voltmeters. Output devices would include printers, tape punches, plotters, and graphic
displays. In addition, there is a seemingly endless list of special-purpose sensing devices (input)

and control equipment (output) designed to perform particular tasks.

Ideally, every such device that was built would conform to some standard that specified all the
characteristics of its [/ O (Input/ Output) connection, thus making all such devices ‘‘plug-to-
plug” compatible. Unfortunately, no such standard exists. As a result, four major areas of
incompatibility arise when one attempts to connect a peripheral device to a computing control-
ler. It is the task of the interface to provide the necessary compatibility in these areas.




2 General Background Concepts

Interface Functional Diagram

’— Interface 7

| |

Computer D

¢ ata )

| Compatible ] Format H gewce o ’
Connector Translator ompatible

' / Connector ~

= | .
— — __f Peripheral
Computer = - Devi% "

e T Cable |

| 7 Logic |

Logic Level
| Level .| Control || Matcher |
' Matcher Supervisor

Mechanical Compatibility

The simplest requirement for the interface to meet is that of providing mechanical compatibil-
ity. This consists of merely supplying the appropriate connector at each end of the interface,
and wiring the connectors in such a way that each input line at one end of the interface is
connected to its corresponding output line at the other end (see Figure 1). If there were no
other incompatibilities to overcome, this pair of cross-wired connectors would constitute the

entire interface. In practice, things are rarely this simple.

Electrical Compatibility

A second function of an interface is to match the electrical characteristics (i.e., current and
voltage levels, sometimes called logic levels) of the computer to those of its peripheral. Since
HP desktop computers and their associated interfaces are designed using compatible electronic
logic levels (called TTL), the logic-level-matcher functional block at the computer end of the
generalized interface shown in Figure 1 is not necessary. Fortunately, many peripheral devices
also use TTL levels in their circuitry. A discussion of TTL levels is contained in the Logic Levels
and TTL implementations section, along with information on interfacing to devices that use

other voltage levels.



Computer

Museum

Data Compatibility
Once an interface has made the computer and its peripheral device mechanically and electri-
cally compatible, they are capable of exchanging messages as electrical signals over wires
called data lines. But just as two humans who do not speak the same language need a trans-
lator, data messages between a computer and its peripheral may also require some sort of
format translation. The computer with its versatile programming capability, will usually perform
this function. But in some cases, this task is given to the interface for reasons of speed. The
98033A BCD and the 98036A Bit Serial interfaces are examples of cases where the task of data
reformatting is assigned to the interface. More discussions of this data translation process are

contained in the sections describing these interfaces.

Timing Compatibility

Humans have the remarkable ability to talk and listen at the same time (or at least in rapid
succession) without losing too much of the content of the conversation, as our speaking and
listening rates are well matched. Computers and their peripheral devices, on the other hand,
have such a wide range of operating speeds that a much more orderly mechanism is required
for successful transfer of data messages. Providing timing compatibility (sometimes called the
handshake function), along with other miscellaneous control operations, is the fourth major

task of the interface.

This overview of the various functions of an interface has been very general. The sections that
follow give more detailed information about the ways that HP interfaces implement each of
these functions, along with other background information on HP desktop computer architec-

ture, data formats, and other topics related to interfacing.

Software

Data Representations in the Computer

Since the primary purpose of interfacing is to exchange data between a computing controller
and its peripheral devices, or between two computers, it would be helpful to first look at how

this data is represented within the computer.

The memory of any digital computing device is made up of a large number of storage locations
called bits. The number of bits that make up the memory can vary from a few hundred in a
small hand-held calculator to several million in large computers. Each of these bits (“‘bit”’ is an
abbreviation for binary digit) can be set to and will maintain one of two states. Depending on
the meaning assigned to it, the bit may represent yes or no, on or off, one or zero, true or false,

etc. A single bit by itself, however, is only capable of representing simple two-state information.

General Background Concepts

3



4 General Background Concepts

To store more complex information, it is necessary to group several bits together into a logical
package. For example, if we wish to represent the decimal digits O through 9 in the computer
memory, we could collect bits into groups of four, and use the following encoding scheme.

0 1 2 3 4 5 6 7 8 9
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

Figure 2

Since each bit can take on two states (represented here by the symbols 0 and 1), a group of N
bits can take on 2N states. In this example, the groups of four bits are capable of representing
2% = 16 states. Since there are only 10 decimal digits to be represented, we do not use 6 of the
possible 16 states. To represent alphabetical information, we would need to have a representa-
tion for each of the 26 letters of the English alphabet. This would require groups of 5 bits each,
since 2% = 32. To represent both decimal digits and English letters (36 characters total) would
require 6 bits.

In the example above, we could just as easily have assigned the following encoding scheme:
0 =0110,1 = 1011, 2 = 0000, 3 = 0011, 4 = 0101, etc. And indeed, many computers use
an internal representation of letters, numbers, and symbols that make the task of performing
the desired operations on these items as simple as possible. This will vary from computer to
computer depending on how it will manipulate this data. This variety of internal representations
causes no problem until two computers or a computer and its peripheral need to exchange
data. Then it becomes necessary for both devices to use the same data representation, or for

one of the devices to be capable of translating between the two representations.

A third alternative is that each device may use whichever internal representation is most
convenient, but that all data will be input or output in some standard representation. There are
several of these standard representations that are becoming popular and widely accepted,
depending on the particular job. For example, if only numeric data is to be represented, the
encoding scheme first given in our example is widely used. This scheme is called BCD or Binary
Coded Decimal representation. One of the most general and widely-used encoding schemes for
data exchange is known as ASCII (pronounced as’ki), which is an acronym for American
Standard Code for Information Interchange. The ASCIl code commonly uses 8-bit packages
and has representations for numerical digits, upper-case, and lower-case letters, common
typewriter symbols (#,$,%,&,=,?, etc.), and special control characters (carriage-return, line-
feed, etc.). A complete table of the ASCII encoding scheme is found in the Appendix. A large
number of peripheral devices made by HP and other manufacturers use ASCII code for sending
and receiving alpha-numeric data.



General Background Concepts

HP desktop computers also use 8-bit ASCII code for the internal representation of alpha-
numeric data (called strings). These 8-bit packages are so convenient for data representations
that they have been given the name ‘‘byte.” Indeed, it is now quite common to measure
memory sizes in terms of these 8-bit bytes.

Although 8-bit bytes are ideal for storage and transfer of alpha-numeric strings of characters,
they are not very well suited for internal representation of numeric values. It is difficult to

perform arithmetic operations on numbers that are expressed as strings of ASCII symbols.

The simplest method for storing and manipulating numeric values uses the so-called binary
representation. In this method, a group of N bits is used to represent a number, and each
position in the group has a value which is a power of two. For example, to represent the
number 98 as an 8-bit binary number, we note that when broken into powers of two,
98 = 64 + 32 + 2 as shown in Figure 3.

bit # 7 6 5 4 3 210

value 128 64 32 16 8 4 2 1

Eg.,98 = 0 1.1 0 0010
Figure 3

Since any number can be expressed as a sum of powers of two in only one way, this binary
representation yields a unique pattern for each number. In numbering the bits, we have called
the least significant bit ‘‘bit zero.” It is also common to find the bits numbered starting from
one. Most of the manuals and documentation for HP desktop computers number the bits
starting with zero, since this makes the value of the n-th bit position equal to 2". But being
aware that two conventions for numbering the bits are in common usage could help to avoid
possible confusion.

In the example given above, the largest number that can be represented by the 8-bits is 255.
Thus, we say that the range of an 8-bit binary representation is zero to 255 (often written as
[0,255]). If we need to represent wider ranges of values, we can use larger groupings of bits.
Indeed, all HP desktop computers (except the 9815} use groups of 16 bits (called words) to
represent binary data inside the machine. These binary values are used for such things as

counters, limit values (as in saving the size of an array), and pointers to locations within the
memory.

5



6 General Background Concepts

One limitation of the binary system just described, however, is that only positive integers are
represented. Negative values can be easily incorporated into the system if we pick one bit
(usually the highest one) to represent the sign of the number. For example, if we use an B-bit
byte and let bit 7 be the sign bit, using the convention that O is plus and 1 is minus, then
00000101 would represent a + 5 while 10000101 would represent — 5. This convention is
called the ‘‘sign/magnitude’ binary representation. It is simple to understand, but unfortu-
nately it causes difficulties in computation. This is because the hardware processor that does
arithmetic on these numbers must have a subtractor as well as an adder. This makes the
processor more costly and less efficient, since it must first decide (from the sign bits) whether an

add or subtract must be done.

An alternative representation for both positive and negative binary values is called the “two’s
complement form.”” In this form, positive values have the same form as in the sign/ magnitude
representation. Negative numbers, however, are formed by the following rule: complement
the number (i.e., replace all ones with zeros and zeros with ones) and add one (ignoring any
carry out of the highest bit). For example, + 5 is still represented by 00000101. Minus 5 is
obtained by complementing (11111010) and adding one (11111011). Thus, in an 8-bit, 2’s-
complement representation, — 5 = 11111011. Notice that if we apply the complement-add-
one rule to the representation for — 5, we get back the representation for + 5, so that the rule is
symmetric. The advantage of 2’s-complement notation is that only an adder is required. For

example, to calculate the value of 7 — 5, we rewrite it as
7+ (- 5)=00000111+ 11111011 = 00000010 = 2.
Thus we subtracted 5 from 7 using only a binary adder.

The table below gives an example of all values that can be represented by a 3-bit binary

number in 2’s-complement form.

-4 -3 -2 -1 0 1 2 3
100 101 110 111 000 001 010 011

Figure 4

In general, an N-bit, 2’s-complement form can represent all integers in the range [—2N-1,
+2N-1—1]. For the 16-bit binary values that are used internally for counters and pointers, this
range is [ 32768, 32767]. If larger ranges of integers need to be represented, packages of
larger number of bits could be used. Notice that the representations of values is not indepen-
dent of the number of bits used in the representation. For example, in the table above, 101
represents a — 3 when using a 3-bit, 2’s-complement format; but 101 represents a + 5 in a
system using 4 or more bits.



General Background Concepts

Examples
1. Show that in 16-bit, 2’s-complement form, the two decimal values + 5000 and — 5000
are represented by 0001001110001000 and 1110110001111000 respectively.

0001001110001000 = 8 + 128 + 256 + 512 + 4096 = 5000.

To find the decimal equivalent of 1110110001111000, first convert to its positive equi-
valent by complementing the bits (yielding 0001001110000111) and add one to get
0001001110001000. Since this is the binary form of + 5000 as found above, the origi-
nal pattern represents — 5000.

2. Show that the binary numbers below have the equivalent decimal representations given.

0101011011001110 = 22222

0011000000111001 = 12345
1111111111111111 = ~-1
1000000000000001 = — 32767

Notice that when the “‘complement and add one’’ operation is performed on the binary equiva-
lent of ~ 32768, the same binary pattern is re-generated. This is because there is no 16-bit,
2’s-complement representation for a + 32768. Thus, when using the rule of converting bet-
ween positive and negative binary values, a one in the sign bit and all other bits being zeros

must be treated as a special case.

We still have not solved the problem of representing non-integer values. In the decimal system

we handle this by the use of a decimal point. For example,
12.75 = 1x(10) + 2x(1) + 7x(1/10) + 5x(1/100).

We could represent this same number in binary by the use of a ‘‘binary point’” as
12.75 = 1100.11 = 1x(8) + 1x(4) + 0x(2) + O0x(1) + 1x(1/2) + 1x(1/4).

In each system, there are some numbers that cannot be exactly represented in a finite number
of places. For example, the decimal representation of 1/3 = 0.33333... requires an infinite
number of threes to represent exactly. Similarly, the binary representation of
1,10 = 0.0001100110011... cannot be represented exactly. Since most data presented to a
computer from the real world is in decimal form (e.q., $235.17), conversion to binary form for
internal storage and computation often results in inaccuracy due to the lack of an exact rep-
resentation. This inaccuracy is in addition to any roundoff errors introduced by the subsequent

calculations performed on that value.

7



8 General Background Ceoncepts

To get around this deficiency, real numbers are stored within HP desktop computers in a

decimal format. The structure of this format is shown below.

16 bit words
exponent I l +
4 words or D1.| D2 | D3 | D4
8 bytes D5| D6 | D7 | D8
D9 |D10,D11|D12

Figure 5

Each value occupies four 16-bit words (8 bytes). Each digit uses four bits and is in BCD format,
with four digits packed into one 16-bit word. The sign and exponent of the number are en-
coded into the first word of the representation. Bit O is the sign of the value (0 = plus, 1=
minus), while bits 15-6 represent the exponent using a 10-bit, 2’s-complement form. (Bits 5-1
are not used.) All calculations are done in this so called “‘floating point”’ format, and the task of
converting between this representation and a string of ASCII characters for 1/ O purposes is

relatively straightforward.
Examples
1. Calculate the four 16-bit words that are the internal representation of the following
decimal values.

a. 2.71828182846?

Answer: 0000000000000000 exponent = 0, sign = +

0010011100011000 2718
0010100000011000 2818
0010100001000110 2846

b. — 1234.56789?

Answer: 0000000011000001 exponent = 3, sign = —
0001001000110100 1234
0101011001111000 5678

1001000000000000 9000



General Background Concepts

c. —0.00123456789?

Answer: 1111111101000001 exponent = — 3, sign = —

0001001000110100 1234
0101011001111000 5678
1001000000000000 9000

Input / Output Data Representations

We just looked at data representations within HP desktop computers. The table below sum-

marizes these representations.

Data Type Bits Used Representation
Strings 8-bit bytes ASCII
Integer 16-bit words 2’s-complement binary

(user program variables)

Numeric 64-bitregisters | Decimal floating-point
(user program variables)

Short 32-bit registers | Decimal floating-point
Short precision
(user program variables)

Figure 6

For 1/0 purposes, these internal representations must be converted into a format that can be
understood by — and is dependent upon — the particular peripheral with which the computer
is to communicate. Each peripheral can be categorized by two characteristics for purposes of
data transfer: the number of bits required for each item of data transferred, and the format of
those data bits (ASCII, binary, BCD, etc.). A small number of data types are sufficient to handle
most peripheral devices, and HP desktop computers provide interfaces for each of these major
categories. A detailed description of each of these interfaces is contained in later sections of this

guide; and here we will merely look at the types of data formats that each interface card
supports.



10 General Background Concepts

The Five Types of HP Interfaces
98032A Bit Parallel Interface

Because of its great versatility, this card is the general-purpose interface used with most stan-
dard HP peripherals and many special-purpose devices supplied by the user. It can accommo-
date data items of up to 16-bits in parallel. Assume, as an example, that this interface card is
being used to connect the computer to a printer which uses the ASCII character set. Each
character to be sent to the printer would be encoded using the 8-bit ASCII representation
shown in the Appendix. To send an entire message such as ““The value of piis 3.14159.”" to the
printer, each character would be sent all 8-bits at once in parallel. Thatis, all eight bits would be
presented to the printer at once, one on each of eight separate data lines. When all eight data
lines are set to the proper pattern of ones and zeros to represent the character being sent, the
printer is told that the data on the lines is now valid, the printer senses the pattern on those
lines, and prints the ASCII character assigned to that particular pattern. When the printer
indicates that it has printed the character just given to it, the computer then changes the data
lines to represent the next character in the message and the cycle repeats. This method of data

transfer is sometimes called ‘‘bit-parallel, character-serial transmission.”

Notice that when using the ASCII code, only 8 of the 16 data lines are used. Other peripheral
devices which use codes other than ASCII might use only a few or all 16 of the data lines to
represent their data. It is also important to note that HP desktop computers only provide ASCII
representations of /0 data automatically. That is, when high-level 1/0O statements (such as
ENTER and OUTPUT) are used in a program, they generate and expect to receive data coded
in the ASCll representation. If any other encoding scheme is used, itis up to the user’s program
to know the representation being used and to convert the bit patterns received into a form that
can be used within the computer.

Sometimes this is a simple task. For example, if a peripheral device supplied data in the form of
16-bit, 2’s-complement numbers, the program would read a 16-bit value, convert it to internal
floating point representation {see the Data Representations in Computer Section), and return
the decimal equivalent of that value which would be a number in the range — 32768 to
+ 32767. Another device, however, might send only positive values using 16-bit binary rep-
resentation. That is, it does not use the 2’s-complement form, but rather all bits represent
positive powers of two giving the 16-bit number a range of 0 to 65535. Since the READBIN

function only reads numbers in 16-bit, 2’s-complement form, the following program segment
would be required to do the necessary conversion.

A=RERDELHL 47
IF A8 THEH A=R+55538

3 R
b AR



General Background Concepts

98033A BCD Interface

Data representations from input devices fall into three major categories. These are ASCII
(directly supported by the enter statement), binary values {obtained with the READ-BIN func-
tion), and all other codes, which must be interpreted by the user’s program. Of these other
codes, one is in such common use that a special interface card has been developed to take the
burden of data translation from the user’s program. This code is called the BCD (Binary Coded
Decimal) representation. It is typically used in measurement instruments such as a digital
voltmeter (DVM). For example, assume that we have a DVM that is measuring a voltage level of
12.735 millivolts. The output connector of the DVM would supply four data lines for each digit
in the reading (see Figure 7). Each of these digits would be encoded using the 4-bit BCD
representation shown in Figure 2. In addition, a few data bits (typically 3 or 4) would be used to

represent the range that the DVM is set to (i.e., volts, kilovolts, millivolts, etc.).

BCD Instrument

I ] .

I

0001 0010 e 0111 0011 0101

Range

Figure 7

In using the 98032A Bit Parallel Interface to take a reading from this instrument, we would
encounter two major problems. Since a 5 digit reading is represented by more than 16 bits, the
DVM would need to deliver a reading in the form of two 16-bit packets. Qur program would
have to break up these two 16-bit patterns four bits at a time and convert them to digits and a
range multiplier for the value being read, then combine these digits and the multiplier to form a
number that represented the reading that was taken. This would be a complex and time

consuming task for the program.

Instead, this task is performed by the 98033A BCD Interface. This card accepts from the device
up to eight 4-bit BCD digits and a 4-bit multiplier in parallel, then converts this reading into a
sequence of ASCII characters (in our example, ‘*12.735E—3"") that can be directly read by the
computer’'s ASCII read statement. More information about the capabilities of the 98033A

interface is contained in Chapter 3.

11



12 General Background Concepts

98034A HP-IB Interface

The task of interfacing a peripheral device to the computer would be greatly simplified if the
four areas of interfacing incompatibility discussed in ‘‘The Task of an Interface” section could
be overcome. That is, if a standard were developed that completely specified the mechanical,
electrical, data, and timing characteristics of an [/O bus, then all computers and peripheral

devices that followed this standard would be “plug-to-plug’ compatible.

Such a standard has been adopted by the Institute of Electrical and Electronic Engineers (IEEE
488-1978). This standard has become so popular that dozens of manufacturers are providing
hundreds of devices which conform to its specifications and can be interfaced to one another by
simply plugging them together. There is no special representation which must be used for data
messages on this bus, although the vast majority of IEEE-488 devices have implemented ASCII

as their encoding scheme.

The 98034A HP-IB (Hewlett-Packard Interface Bus) card interfaces HP desktop computers to
the [EEE-488 bus. A more detailed description of the HP-IB is given in Chapter 3.

98036A Serial 1/ 0O Interface

A new data representation problem arises in the area of data communications. Strictly speak-
ing, any exchange of data between a computer and its peripheral devices could be called data
communications; but this term is usually reserved to mean the exchange of data between two
computers (or between a computer and a terminal) that are located at some distance from one
another. If both machines are in the same building, they are usually connected by long cables.
If they are in different buildings (or different cities) telephone lines might be used to make the
connection. In either case, the cost of the connection rises rapidly with the number of bits that
are sent in parallel. Therefore, a scheme has been devised that allows the exchanged informa-
tion to be sent over a single data line.

Using this method, not only are the characters of the message sent in a serial fashion, but the bit
patterns for each character are also sent serially, one bit after another along the single data line.
This requires some rather sophisticated timing considerations which are handled by the inter-
face itself. This allows the program to treat the interface as a simple 8-bit parallel device. That
is, the user writes his message to the interface as a sequence of 8-bit (usually ASCII) bytes, just
as he would to the 98032A interface. The Serial /O interface then performs the task of
converting each character to a bit-serial stream and sending it over the data communications
line. For input, the interface receives a sequence of bits for each character, assembles them into

a parallel 8-bit byte, and delivers this byte to the computer all at once.

More information about the particular capabilities of the 98036A interface is contained in
Chapter 3.



General Background Concepts 13

98035A Real Time Clock
It is sometimes necessary to time operations or to have an interrupt generated at a certain point

in time. The 98035A card was developed to handle these real time operations.

The real time clock contains its own rechargable battery so that the real time is maintained even
when the computer is off. The battery is recharged each time the computer is turned on and

maintains the correct time for at least two months on a full charge.

The real time clock has four timing/counting units all running off of the same 1MHz crystal. There
are also four input and four output ports which can be used in combination with the four timing/
counting units. These input and output ports act as buffers to external drivers and external receiv-

ers, respectively.

rev: 12/80



14 General Background Concepts

THIS PAGE
LEFT BLANK
INTENTIONALLY



General Background Concepts

The Data Transfer Process

Up to now, we have been concerned with how the various bit patterns on the data lines are to
be interpreted. We have talked about sending and receiving sequences of characters, but have

not mentioned how this process is accomplished.

The main difficulty involved is one of timing. If the speed of the computer and its peripheral are
not exactly matched, the faster device will somehow have to slow down the pace of its [/ O
operations so that it will not get ahead of the slower device. This is accomplished through a
mechanism known as ‘‘handshake.”’ The detailed description of the handshake process is
discussed in the sections on the interface cards, and here only the concept of the handshake

will be considered.

Handshake for the output process (Figure 8) proceeds as follows. The first of a sequence of
characters to be transmitted is placed on the data lines. When this operation is complete, the
interface indicates that the data is valid by setting a special control line. When the peripheral
detects that this control line is set, it raises another line called flag to indicate to the computer
that it is momentarily going to go busy in order to process that character. It then takes the
information from the data lines and processes it. This processing may involve printing a charac-
ter, plotting a point, or whatever other function the peripheral device is designed to perform.
Some devices do not operate from single characters, but wait until an entire sequence of
characters is received to perform their actions. For example, the 9876A /B Thermal Line
Printer contains a block of read/write memory called a buffer, into which characters to be
printed are placed. For this device, the processing of most characters consists of merely placing
that character in the buffer. Then when it receives a line-feed character (ASCII 10), it prints the
entire line contained in its buffer. In any case, when the processing of that character is com-
plete, the peripheral lowers the flag to indicate that it is again ready. The computer then places
the next character on the data lines and the entire handshake process repeats again.

DATA LINES (8 OR 16)

COMPUTER 170 “This is an output”
CONTROL “Data is available”

FLAG “OK. | got it”

PERIPHERAL

YV

Figure 8. Data Output Handshake

15



fiv weymvave o TVTIIL LUL LIpUL (I IYWE 7)) IS siuarl 10 nat Ior output. un a separate 1/0
indicator line, the computer specifies that an input operation is to be performed, and then sets
the control line. This time when the peripheral sees control go set, since the 1/0 line is
indicating input’, it knows that it is to supply the data. The peripheral first sets the flag line to
logic “‘zero’’ to indicate that it is busy, and goes to gather the requested data. This may involve
taking a sample for a DVM, advancing a paper tape, digitizing an XY coordinate, or doing
whatever the device was designed to do in order to gather data. This data is then placed on the
data lines by the peripheral and the flag line then set to logic ‘‘one’’ to indicate that the data is
now ready. The computer will then read the data and the handshake on one input character is
complete. If a complete reading consists of several characters, the computer will again set the

control line when it is ready for the next character and the process repeats.

DATA LINES (8 OR 16)

/0 Thisis iyt
COMPUTER CONTROL “Give me more data” } PER‘PHERAL

FLAG “OK. Data is on the lines”

-

Figure 9. Data Input Handshake

It is important to note that in both the input and the output processes, the computer initiates the
handshake procedure by setting the appropriate state of the 1/ O line and then setting control.
Under no circumstances does the peripheral ever initiate a data transfer operation. This con-
cept will be especially important when we discuss the interrupt process. Interrupts are always
generated by the peripheral in response to a request from the computer, and not at the

discretion of the peripheral device.

Finally, it should be mentioned that the concept of a handshake is a very general one and not
limited to the description given here. Other schemes are possible and commonly used. This
particular version of a three-wire handshake (I/ O, control, flag) is adopted by the HP 98032A
interface card and is the one that should be understood when connecting this interface to
peripheral devices.

Most data and control lines on the HP interface cards use negative-true logic. It is easy to tell
whether negative-true or positive-true logic is being used for a particular line from the schema-

tic diagram of the interface card, which is found at the back of the installation and service

1 Throughout this guide, the terms input and output are always used with the computer as the point of reference. Thus, input
means from the peripheral to the computer.



General Background Concepts

manual for that interface. If the name of the line (e.g., PFLG) appears with a bar drawn over the
top of it, that line is using negative-true logic; otherwise it is using positive-true logic. For
example, the 98032A interface has two general-purpose control lines called CTLO and CTL1.
The state of CTLO is set from the program by use of the CONTROL MASK and WAIT WRITE
statements as shown below:

CONTROL MASK <select code>; <control byte>
WAIT WRITE <select code>,5; <control byte>

The least significant bit of the control byte is used to set CTLO. Since on the schematic diagram
for this card, that line is labeled with a bar over it, it is using negative-true logic. Thus, the
statements
CONTROL MASK 6;0
WAIT WRITE 6,5;0
will set the CTLO line high, and
CONTROL MASK 6;1
WAIT WRITE 6,5;1

will set it low.

The WAIT WRITE statement is sufficient to actually store a value into the control register (R5)
of the interface. The CONTROL MASK statement is included above to assure that our control
byte is left unchanged by an ENTER or OUTPUT or some other 1 /O statement directed to the
same interface. These other [/ O statements manipulate the contro! (R5) register to accomplish
their own task, however, they do include the user’s control byte value as a mask (as set by
CONTROL MASK]) to avoid altering external lines and such. If you do register [/O to the
control register (R5), its considered good programming practice to establish the same control
byte for the CONTROL MASK (as a protective measure) as for the WAIT WRITE (to write into
R5). See “‘The Use of the Control Register” for an in-depth explanation of this process.

Hardware

Logic Levels and TTL Implementations

In previous sections we have used such phrases as ‘‘putting data on the lines,”’ ‘‘setting the

)

control line,” and ‘‘making the flag line go busy,” without really saying how these things are

electrically implemented by the interface. But when it comes time to wire the interface to a
non-standard peripheral device, it is helpful to understand how the electronic circuitry of the
interface card relates to the operational concepts we have been discussing. In this section we
will discuss some of the electronic concepts necessary to understand that circuitry.

17



18 General Background Concepts

The two main electrical concepts involved are those of voltage and current. For our purposes
here, it may be helpful to explain these concepts in terms of an analogy with a forced air heating
system found in many houses. In this system, after the air has been heated, a blower is used to
create a pressure that is higher than the surrounding atmospheric pressure in the rest of the
house. This blower is connected through a series of air ducts to the outlet registers placed
throughout the various rooms. Because the pressure at the blower is higher, the heated air is
forced to flow through the ductwork and out the registers. The pressure at any point in the
system is always at a level somewhere between the maximum pressure produced by the blower
and the atmospheric pressure at the outlets, and is determined by how much resistance the air
has encountered from the ductwork along its path from the blower to the point which we are
measuring. More air will travel along those paths in the heating system that present a lower
resistance to the air flow. Indeed, the homeowner can vary the resistance in various branches
by opening and closing louvers at the registers, resulting in redistributing the airflow through-
out the house.

In an electrical system, the voltage at any point in the system can be thought of an analogous to
the pressure in our heating network, and the current as analogous to the air flow. Just as the
blower created air pressure above the normal atmospheric level, a battery or an active power
supply is used to obtain voltage levels above some background reference point usually referred
to as ground level or simply a ground. By allowing current to flow from the power supply to
ground through appropriately chosen electrical resistors, we can obtain any desired voltage

levels in this range to be used for whatever purposes we require.

An example of this is shown in Figure 10. At the top of the circuit we connect a 5 volt power
supply, and the triangle at the bottom is a common symbol used to represent a ground point
{(e.g., a voltage level of zero).

+ 5V

Switch
N\, $R1=3K

Output
R2 =6.2K

-

Figure 10



General Background Concepts

Current flows through the two resistors (R1 and R2) establishing some intermediate voltage

level at the output. The formula for calculating this output voltage is given by

Vour =V ———R2
out = Vin * (R1+R2)

Using the values of Vi» = 5 volts, R1 = 3K (resistances are measured in units called ohms, and
K is an abbreviation for kilo-ohms = 1000 ohms), and R2 = 6.2K, we obtain a value for the
output voltage of approximately 3.4 volts. If we now connect the output point to ground
through a switch, by opening and closing this switch we can change the output voltage from
3.4V to OV. That is, when the switch is closed, the resistance in this path is almost zero (only the
small resistance of the wire itself) and practically no current flows through the R2 path. Thus the

entire 5 volts is dropped by R1 leaving the voltage at the output point zero.

If we run a wire from the output point to someone who has a voltage measuring device like a
voltmeter, as we open and close the switch he will see his voltmeter register 3.4V and 0OV
alternately. And if we now agree on some meaning to be assigned to the high and low voltage

levels, we can use this electrical circuit to transmit information.

For example, the flag line of the interface card uses the high voltage level to indicate busy, and
the low level to indicate ready. And rather than the mechanical switch, the interfaces employ
electronic devices called gates to switch between high and low levels at electronic speeds.
These gates will be discussed later in this section.

The signaling scheme described would work just as well using other values for the power supply
voltage, resistors, and output voltage. The example values given were chosen because they
correspond to the TTL (Transistor-Transistor Logic) levels that are in common usage in compu-
ter hardware. Prepackaged integrated circuits are readily available which are used in generat-
ing and detecting high and low voltage levels, and in performing certain ‘‘logic’’ operations on
these signals as will be discussed later. These chips or IC’s as they are called, are made up of a
large number of transistors and other electronic elements reduced to a very small size and
sealed in convenient packages. It is the electrical properties of these transistors that dictate the
high and low voltage levels that must be used. In general, it is very difficult and expensive to
provide circuits that will provide and detect exact voltage levels. Therefore, TTL devices allow

a range of voltages given by the table in Figure 11.

TTL High Level = 3 volts to 5 volts
Indeterminate = 0.7 volts to 3 volts
TTL Low Level = 0 volts to 0.7 volts

Figure 11

19



20 General Background Concepts

The exact values of the crossover voltages vary with the type of IC used and with the manufac-
turer, but are typically within a few tenths of a volt of the levels given. Output voltages in the
indeterminate range may result in the detecting IC sensing a high or a low, and should be

avoided when designing TTL circuits.

Because the interface is implemented in terms of high and low voltage levels and the computer
deals with bits {ones and zeros), there are two ways of assigning a correspondence between
them. That is, we can assign either high = 1 and low = 0, or high = 0 and low = 1. Both
methods are in common use, and the choice of one or the other is usually determined by other
design considerations within the computer. Further confusion can arise since these two states
are also referred to as true or false. This is the reason that when concepts such as handshake
were discussed in the previous sections, we simply referred to the states of the control and flag
lines by their logical meanings of set or clear, and ready or busy, without worrying about
whether these states were implemented as high or low voltage levels on the interface itself.
Indeed, some interface cards allow the user to define whether the ready state of the flag line, for
example, will correspond to a high or low level. This places fewer constraints on the design of

the peripheral being interfaced and is discussed further in the section on jumpers.

Because these two conventions are in common use, they have been given the names positive-
true logic and negative-true logic. The table in Figure 12 shows the meanings of these conven-

tions.

Positive-True Logic:  High = True=1
Low = False=0
Negative-True Logic: High = False= 0

Low = True=1

Figure 12

Thus if the computer placed a bit that was set to a one on a particular data line, this line would
be set high in a positive-true system and low in a negative-true system. For example, an ASCII
‘E” character (binary value 01000101) placed on the data lines would appear as LHLLLHLH if
positive-true logic were being used, and as HLHHHLHL if negative-true logic were being

used.

Certain interface processes such as the handshake discussed in the previous section involve
several lines changing their states in a definite time sequence. The exact relationship of these
lines during the sequence of events is often shown in a graphical representation called a timing
diagram. An example of a timing diagram for some of the lines involved in the handshake
process for the 98032A interface is shown in Figure 13.



General Background Concepts

thy t t ts 4
PCTL H—+— % CLEAR
I J SET
L
|l | \
oo T ——

PFLG H | T BUSY
L : i { — READY
H—+ + ; 0

Data \x | |

Lines L [ l | 1

Figure 13. An Example Timing Diagram

In this diagram, time proceeds along the horizontal axis from left to right, and the states
{high /low) of the various lines of interest are shown one above the other. A vertical line drawn
through the diagram represents the same instant in time for all of the lines. These time points
may be indefinite, such as to in the example which shows the state of the lines at some time
before the handshake has begun; or they may be definite times such as t1 which shows the point
at which the data on the lines begins to change. Sometimes, the interval between two time
points (t1 and tz in the example) is fixed by some requirement of the system, and given a name
such as T. In other cases, such as the interval between t2 and t3, there is no restriction placed on

the time that may elapse between these two events.

The state of the PCTL and PFLG lines in the example are definite (high or low) within each time
interval. The handshake timing diagram cannot, however, show the data lines as being either
high or low during a given interval, since the state of these lines depends on the data that is
being exchanged. In this case, the two parallel (high and low) lines in the diagram simply
represent a stable state on the data lines that may be either high or low, while the crossover

represents the time during which data on these lines is in a state of transition.

The example timing diagram for an output handshake process would be read as follows. At
some time to before a data transfer has begun, the PCTL line is in its normal clear state (high),
the PFLG line is ready ({low), and the data lines are stable, still containing the last character
sent. At time ti the interface places the new data on the lines. After allowing a time interval T for
the data to become stable, the interface sets PCTL low at t2 to inform the peripheral that the
data on the lines is valid. Longer cables require longer time periods (T) for the data lines to
stabilize at their new levels. After an unrestricted time interval, the peripheral acknowledges
that it has seen control go set by raising its PFLG line to the busy state at ts. Upon receiving this
acknowledgment, the interface allows its PCTL line to return to the clear state. Finally, when
the peripheral has completed processing the information on the data lines, it indicates this fact
to the interface by returning its PFLG line to the ready state at ta. At this time, the PCTL and
PFLG lines are back to the same state as they were at to and ready to repeat the entire
handshake cycle for the next data transfer.

21



22 General Background Concepts

The complete handshake process also involves the FLLG and [/ O lines as discussed in the
section of Chapter 3 about the 98032A interface. This simplified example is intended merely to
present the essential features of timing diagram representations.

Gates, Latches, and Flip-Flops

It would be extremely difficult if not impossible to write useful computer programs without the
availability of conditionals such as the “if”’ statement which allow the program to test some
condition and perform one action if the condition is true, and another action if it is false. The
operations performed by an interface card also require the use of logic, or the ability to make
decisions. The functions of the interface card could be fully described by a flowchart or a
computer program. Indeed, if it were not for speed requirements, most of the functions of the
interface card could actually be replaced by a computer program. For example, the handshake
process described in the last section could be performed by a program which implemented the
flowchart shown in Figure 14.

(; Handshake 4:)

A -

)

data
valid

no

yes

set PCTL

PFLG no
busy
2

yes

r ciear PCTL ]

Figure 14



General Background Concepts

Gates

Since the interface cards are implemented through hardware (electronic circuits) rather than
software (computer programs), logic elements called gates are used to perform the required
decisions. In reality these gates are made up of very complex electronic networks composed
mainly of resistors and transistors. Fortunately, it is not necessary to understand the detailed
workings of these circuits in order to present the operational characteristics of these logic
elements. Before looking at how these gates are used in the construction of an interface, we will
first describe the various types of gates that are available. Figure 15 shows four of the basic
logic elements that are used as building blocks for constructing more complex logic elements

and implementing conditional operations.

AND OR

XOR NOT
D Do D
B_:)—c B_jD—c A C A—[>o-B

AB L (H B L A8 L A
L L | L L L |H
HIL[H H |H|H H [H|L H|L
Figure 15

For the AND gate, A and B are the inputs and C is the output. It performs a logic AND function
since C is high if and only if both A and B are high, otherwise C is low. This information is
presented below the symbol for the AND gate in a form called a truth table. [t simply shows the
state of the output line for any combination of states of the input lines. In the OR gate (some-
times called an inclusive OR gate), C is high if either A or B is high. In the exclusive-OR gate, C
is high if either A or B is high, but not both. And finally the NOT gate, often called an inverter,
outputs a high if the input is low, or a low if the input is high.

23



24 General Background Concepts

Several gates of the same type can be obtained in a single integrated circuit package which
makes the construction of logic circuits such as an interface card more compact and less costl

than if individual components were used. Also available are packages which combine ANDy
OR, and XOR gates with inverters on their input lines, their outputline, or both, leading to a;

wide variety of combinations. For example, AND gates with inverted outputs are available and

are called NOT-AND or simply NAND gates. Figure 16 shows the s

ymbol and truth table for this
type of gate.

NAND
A —] KLH
C
B | L HiH
= INEIT

Figure 16

Notice that the truth table is the one that would be obtained by inverting the output of an AND
gate. In general, the truth table for any logic element whose input or output lines have circles

drawn on them can be obtained from the corresponding table for the element without the
circles, and replacing the circles with inverters.

An example will serve to illustrate how these logic elements are used as building blocks in
constructing circuits that are capable of making decisions. Let’s assume that we have a
peripheral that delivers data to the computer at some time after it sees the control line (PCTL)
go set. Normally, this operation is automatic so that as soon as control is set, the device
responds by issuing a pulse (low to high and back to low transition) on a line from the
peripheral called READY. This READY line would usually be connected directly to the PFLG
line on the interface to complete the handshake. But we would like to have an alternate mode
of operation, established by the computer program, that would allow an operator at the device
to signal the ready response by pressing a button. The circuit shown in Figure 17 could
accomplish this task, making use of the logic elements that we have been discussing.



General Background Concepts 25

CTLQ
MODE (from interface)

>

I
READY > >__C
(tfrom device) B

i

+5V (to interface)
% D F )

l o—T % =

LI

Figure 17. An Example Use of Logic Elements

We first define a MODE line which determines the mode of operation: automatic when it is
high, and operator-controlled when it is low. This line is connected to one of the general
purpose control bits (CTLO on the 98032A card) so that it may be set to the desired mode of
operation by the program. When MODE is low, the input to the AND gate at pin B is low, so that
no matter whether A is high or low, the output at C is low. That is, when MODE is low (operator
control) the READY pulse is blocked by the AND gate and C remains low. When MODE is high,
C is high only when A is also high, so that the positive pulse is now passed by the AND gate and
appears at the output C.

The second AND gate controls the signal from the operator’s push button. When the switch is
open, the pull-up resistors hold the input E high (see Figure 10). Pressing the button grounds
the input E and causes it to go low, returning again to high when the button is released. (In
actual use, a debounced switch should be used to prevent multiple pulses.) Since the input E is
an inverted input, this switch presents a positive pulse to the AND gate when it is activated.
Input D operates in the same way as input B did for the READY pulse, to either block or pass
the signal from input E. But since it is an inverted input, it passes the signal when MODE is low
and blocks it when MODE is high. Thus, either the READY pulse or the one provided by the
push button will appear at C or F, while the other line remains low. If these two lines are
connected to the PFLG line through an OR gate, one and only one of the pulses will drive
PFLG, depending on the state of the MODE line.



26 General Background Concepts

Thus, this configuration of logic gates implements the function stated by: if mode is automatic,
pass the READY pulse to the PFLG line and block the pulse generated by the operator: if mode
is manual, pass the operator’s pulse and block the READY signal. Again we see that gates are

used to provide a hardware implementation of a function that could be expressed by a logical
flow diagram.

Latches

If the data output lines from the computer were directly connected to the data input lines to the
peripheral, then during the handshake process it would be the responsibility of the computer to
maintain the data on the lines until the peripheral had acknowledged that the data had been
accepted. Normally this would cause no problem since the computer is merely waiting anyway
for that acknowledgment so that it can put the next data item on the lines. But if only one
character is being sent, the computer could go on with the program if it did not have to stay in
the output driver to hold the data on the lines. This becomes more important, even essential,
when operating under interrupt. In the interrupt mode, the computer places the first character
of the output message on the data lines, tells the interface to generate an interrupt when the
peripheral has taken that character and the next one can be sent, and then goes on with
program execution instead of waiting for the handshake process to complete. This would not be

possible if the computer had to maintain the data on the lines.

Therefore, one of the functions of the interface is to be able to hold or latch the information on
the data lines until the peripheral has had a chance to take it, and thus relieve the computer of
this responsibility. In the hardware of the interface, this is accomplished through an electronic
device called a latch (Figure 18). Typically a latch has a number of input lines and a corres-
ponding number of output lines, plus an additional line usually called the clock line. When the
clock line is activated, whatever data currently is being presented on the input lines is held by
the latch and presented on the output lines. Then when the clock line is deactivated, this same
data is maintained on the output lines. The way in which the clock line is activated (i.e., positive
pulse, negative pulse, low to high transition, etc.) depends on the particular type of latch being

used, and need not concern us here.



General Background Concepts

— A QA
—{ B Qg +—
Inputs Outputs
— C Qc +—
|— D Qp —
CLK
A 4-BIT LATCH
Figure 18

Chips are available which provide latching for four bits of data on a single integrated circuit
package. Thus, to provide latching for the 16-bit output data bus, the 98032A interface uses

four of these 4-bit latches. Four more are used for the 16 data input lines. These input latches,

in a manner similar to the output operation, relieve the peripheral of the responsibility of
maintaining the data on the interface input lines until the computer has had a chance to take it.

These latches are sometimes referred to as one-character buffers, and should not be confused

with the buffers described in later sections dealing with the transfer of interrupt buffers. These

interrupt buffers are multi-character holding locations that are located in the read / write mem-

ory of the computer itself.

27



Flip-flops
A flip-flop is a device that is similar to a one-bit latch, but with more extensive control proper-

ties. There are many different types of flip-flops each designed to satisfy a different set of

requirements. Figure 19 shows a schematic representation for one common type called a
D-type flip-flop.

SET
D Q pb—
CLOCK Q —
CLEAR
Figure 19

When the clock line is activated, the current state of the D input is latched and presented at the

Q output line. On deactivating the clock signal, Q will hold its state independently of what

happens on the D input. For convenience in designing logic networks using these flip-flops, an

inverted output, Q s elso provided. Thatis, Q is always in the opposte state from that of Q.

Two additional lines are provided to set Q to the high state or to clear Q to the low state,

independently from the clock and D lines. These set and clear lines are often used to initialize

the flip-flop to the desired ‘‘wake up’’ state.

Just as the latches were used to maintain information on the data lines, flip-flops are used to
allow the interface to “‘remember’’ information about what state it is currently operating in. For
example, we will see later that the computer will send a particular message to the interface card
to tell it that it is enabled to operate in the interrupt mode. The card remains in this mode until it
is disabled by another message from the computer. In the meantime, it remembers which mode

it is in (enabled or disabled) by storing that information in one of these flip-flops.



General Background Concepts

The Use of Jumpers

In the last section we saw that flip-flops could be used to change various modes of operation on
the interface by programmable signals from the computer. For example, the interrupt-enable
flip-flop could be turned on and off by the computer at will. Other modes of operation are a
property of the system itself and do not change during the running of a program. It would be
more convenient if these modes could be set one time on the card itself, and then the program

would not have to be concerned with them.

As an example of this, consider the handshake diagram of Figure 13. The meaning assigned to
the PFLG line from the peripheral is high = busy and low = ready. We might want to interface
a device, however, whose handshake line used the opposite sense; that is, high = ready and
low = busy. The 98032A card provides for such an inverted sense by installing a jumper (i.e., a
wire connecting two terminal points in the circuit) on the interface itself. Figure 20 shows how

the use of this jumper accomplishes the desired inversion of the PFLG signal.

A\
ﬁsv B‘——-)D_C

Figure 20

The properties of the exclusive-OR gate used were given in Section I[C2. Its output, C, is high if
either A or B is high but not both. If the jumper is not installed, the resistive divider holds the B
input high. Looking at the truth table for an exclusive-OR gate, we see that in this case if A is
high, C is low; and if A is low, C is high. Thus, the signal presented at the A input appears
inverted at the C output. If we now put in the jumper, the B input is connected to ground (low)
and the state of C is always the same as the state of A. As a result, the signal seen at C is either

the same as A or the complement of A depending on whether the jumper is in or out.

It should be noted that in the particular example used, (i.e., the PFLG line on the 98032A
card), this line has already gone through a separate inverter gate before arriving at the A input
line in our diagram. As a result, the PFLG line itself is inverted when the jumper is installed, and

not inverted when the jumper is out.

29



30 General Background Concepts

Other jumpers may be used in an entirely different way from the example just given. For
instance, we will see later that the data latches on the 98032A interface are divided into two
groups of eight. In the so-called bytes mode these two groups of latches can be clocked
separately, whereas in the words (16-bit) mode they are clocked together at one time. The

jumper which selects the word mode simply connects the two clock signals for these latches
together.

Finally, we should mention that the use of jumpers provides a means of making these connec-
tions in a manner that is most economical of space on the interface card. On other cards where
room is available, miniature slide switches may be used to achieve the same result. Also,
switches are used instead of jumpers where the user might want to change the mode of opera-
tion based on the particular application. In any case, these switches and jumpers are used to

select modes that will not be required to change during the running of a particular program.

The installation and service manuals for each interface card go into more detail on the switches
and jumpers provided by each card, and their intended uses. The purpose of this section is
merely to give the reader some idea of how a jumper or switch can be used to perform the

functions described in those manuals.



Chapter 2

Programming for Interface
Operations

Standard I/ O Programming

A Register Operational Model of an Interface

An interface is a complex electronic circuit that provides mechanical, electrical, data format,
and timing compatibility between a computer and the peripheral device to which it is con-
nected. From a programmer’s point of view, however, the primary task of interfacing is to
provide a means of exchanging data between the computer and the peripheral. Thus, a well-
designed interface should isolate the programmer from the details of the electronics and timing,
and appear as a simple “‘black box’’ whose [/ O characteristics can be presented in a simple

model and described by a set of operational rules.

In Chapter 3, we will look at the various interfaces provided for HP desktop computers from a
hardware point of view and cover some of the special characteristics of each of them. In this
section, it will be sufficient to model the interface as a set of four registers through which all the

capabilities of the card can be accessed. These four registers are given in Figure 21.

(N ouT
R4 PRIMARY DATA IN PRIMARY DATA QUT
R5 STATUS CONTROL

R6 |SECONDARY DATA IN [SECONDARY DATA OUT
R7 | SECONDARY STATUS [SECONDARY CONTROL

Figure 21

The names of the four registers (R4, R5, R6, and R7) are simply names given to four address
locations in the computer memory map. These registers should be thought of as residing on the
interface card itself.




32 Programming for Interface Operations

The computer sees these interface registers as 16-bit, binary registers, and always sends and
receives 16-bit binary words when addressing them. If a particular interface utilizes less than
the full 16-bits (for example, when exchanging 8-bit ASCII data bytes) then on input the upper
(more significant) bits are received as zeros. On output to these registers, if fewer than 16 bits
are utilized by the interface, it ignores the upper bits. Thus, these bits may be ones or zeros and
are sometimes called ‘“*don’t care’ bits.

All of the interface cards use the R4 register for data I/ O operations, and the R5 register for
status and control information. The names given in the table above for the R6 and R7 registers
are only general indicators of the functions of these registers. Their exact interpretation varies

with each card and is described in more detail in the sections on the individual interfaces.

In order to give specific examples of the use of these I/ O registers, we will use the meanings
given to them by the 98032A Bit Parallel Interface, sometimes called the GPIO (General

Purpose Input Output} Interface. It defines these registers as follows.

IN ouT
R4 DATA IN DATA QUT
R5 STATUS CONTROL
R6 HIGH BYTE DATA HIGH BYTE DATA
R7 {not used) TRIGGER
Figure 22

The GPIO uses the R6 register in a special way when operating in the optional “‘byte mode’ as
described in the Chapter 3. For our purposes here, the R4 register is the one through which all
data is transmitted and received. We will give examples below of how these registers are used

to do simple input/ output operations.



Programming for Interface Operations

Select Codes

As mentioned earlier, a set of 1/ O registers R4-R7 exist on each interface card. When more
than one card is connected to the computer and, for example, an R4-in operation is performed,
we need a mechanism for determining which interface should respond. This is accomplished by
means of a 4-bit register in the computer called the Peripheral Address (or simply PA) register.
This PA register holds a binary number in the range of 0 to 15, thus allowing for up to 16
interfaces to be addressed. Each interface has an externally-settable select code switch which
can also be set to any value between zero and 15. (You should note, however, that several
select codes are for internal interfaces and should not be set as a select code for an interface
card.) Whenever an operation to one of the interface registers is performed, the computer
presents the current contents of the PA register to all of the interface cards simultaneously.

Only that card whose select code matches the PA register will respond to the operation.

When a BASIC 1 /0O statement such as OUTPUT 6; A, B, C or STATUS 6; A is executed, the
[/0O ROM automatically puts the binary value of the select code parameter (in this case,

0110 = 6) in the PA register before addressing the required interface registers.

Direct Register Access

All interface card operations are carried out by sequences of operations to and from the
interface registers. The more common tasks (reading and writing data, checking status and
setting control bits, etc.) have been provided at the BASIC programming level by simple
statements and functions such as OUTPUT, ENTER, STATUS, etc. These high-level statements

isolate the programmer from the details of the register sequences required to perform each
task.

In the event that the programmer should wish to perform some sequence of operations other
than those provided by the BASIC language, additional statements have been provided that
give the BASIC program direct access to the interface registers.

These are the write-interface-register statement and the read-interface-register statement,

whose syntaxes are given below.

WRITE IO <select code>, <register number>; <output>
READ IO <select code>, <register number>; <variable>

33



34 Programming for Interface Operations

The write-interface statement outputs a 16-bit, 2’s complement representation of the value
specified by the <output> parameter to the register specified. The read-interface statement
inputs a 16-bit 2’s-complement binary value from the specified register and returns its decimal

equivalent in the statement variable.
The register number given should be in the range of 4 to 7.

In the following section, we will see how this direct register addressing works by reducing
familiar operations such as writing data and reading status to their equivalent register sequ-

ences.

Before doing this, there are two additional lines to the interface required to complete the

functional description of the card. These may be considered as 1-bit, read-only registers called
status (STS) and flag (FLG).

The status bit (not to be confused with the status register, R5 to be discussed later) is a single bit
indicator that the interface and the peripheral connected to it is operational. For example, if a
peripheral device has a line coming from it that indicates power on, it could be connected to the
STS line. Then the program could quickly determine whether the device is turned on or off. Or
as another example, a printer might have the STS line connected to its out-of-paper indicator

(if it has one) to indicate to the program that it is no longer operational when the paper runs
out.

The flag line is a momentary ready./ busy indicator used to keep the computer from getting
ahead of the peripheral. The use of this line is covered in more detail in ‘‘The Handshake
Process” section of Chapter 3. For our purposes here, it is sufficient to know that on the flag
line, a one indicates ready and a zero indicates busy. For example, if the computer had a
sequence of ASCII characters to send to a slow printer, it would send one character {which
makes the flag line go busy) and then wait for the flag line to go ready again before sending the

next character.

These FLG and STS lines may be tested from the BASIC program by using the following

functions.

Variable = IOFLAG(<select code>)
Variable = IOSTATUS(<select code>)

These functions return a one or a zero indicating the current state of the FLG or the STS line.



Programming for Interface Operations 35

The Read and Write-interface statements and FLG-test function are usually used together to

prevent accessing an interface which is not ready, as shown below:

Self: IF NOT IOFLAG (<select code>) THEN Self
WRITE 10 <select code>, <register number>;value

The above two program lines can be combined by using the WAIT WRITE statement, and its

companion WAIT READ statement can be used for input. The syntax for each is

WAIT WRITE <select code>>, <register number>; <value>
WAIT READ <select code>, <register number>; <variable>

The Status and Control Registers

The primary purpose of the interface is to allow data to be exchanged between the computer
and the peripheral device to which it is connected. HP's 98000 series interface cards are
extremely versatile, however, and most of them are programmable. This means that they have
various optional capabilities that can be set and changed by control instructions from the
computer. Referring to the register model of the interface, this programming is done by output-
ting specific bit patterns to the R5 register. Some of the interfaces use other registers for
extended control bits and these are described in the sections covering the specific interface
cards.

The R5-out control register is usually addressed from the BASIC programming language using
the CONTROL MASK and WAIT WRITE statements combined.! For example, the statements

CONTROL MASK 6,9
WAIT WRITE 6,59

would output the binary equivalent (00001001} of a decimal 9 to the R5 register of the interface
set to select code 6, causing bits 0 and 3 of that register to be set. The effect of setting those bits
is determined by which type of interface is involved and the meaning of each of the control bits is

decribed in the section on the individual interfaces.

1 See ““The Use of the Control Register’’ section for an explanation of the CONTROL MASK-WAIT WRITE statements combina-
tion.



36 Programming for Interface Operations

The interface cards can also return information to the computer telling which optional prog-
ramming features are currently selected. This information, called the status byte, is obtained
from the interface through an R5-in operation. This status byte consists of 8 bits whose mean-
ings are determined by the particular interface card that is being addressed. These bit assign-

ments are explained in detail in the sections on the individual cards.

At the BASIC level, this status byte is obtained by using the read-status (STATUS) statement.
For example, the statement STATUS 6;A would perform an R5-in operation on the interface

set to select code 6 and return the decimal equivalent of the binary bit pattern that it received.

This status byte should not be confused with the single status bit described earlier. That status
bit is merely a 1-bit, quickly testable indicator of whether or not the card is functionally
operational whereas the status byte contains up to eight bits of information about the current

programming configuration of the card.

Whenever a STATUS statement is performed, the 8 bits of status are returned plus an artificial
9th bit that represents the single status bit (as returned by the [OSTATUS function).

the decimal equivalent of this value is
returned by the STATUS statement.

A

e

bit number 817 6 5 4 3 2 1 0

S -

v

single status bit indicator 8 bits from the status byte (R5-in)

Thus a functionally operational interface should return a value for the STATUS statement
greater than 256 (= 2% = status bit set). If the value of the status byte is read using the WAIT
READ statement directly from the R5-in register, only the 8 bits of that register are returned.



Programming for Interface Operations

Binary [/ O Operations

We are now in a position to look at the sequence of events that takes place between the
computer and the interface card when simple 1/ O operations are carried out. In particular, we
will simulate the actions of the WRITE BIN and the READ BIN statements through the use of

the direct interface access statements and functions explained in the last section.

When the [/ O ROM performs these operations, there is a considerable amount of checking and
internal “bookkeeping’’ that goes on to insure that systems conflicts are avoided. Here we will
only be concerned with the basic communication between the computer and the interface. We
will also look at this communication from the point of view of the register operational model of
the interface as described earlier. In the sections on the interface cards themselves we will look

at more detail about what actually takes place on the card.

The following BASIC program simulates the actions that take place when the statement WRITE

BIN 6;27 is executed to send the binary value 27 to a device on select code 6.

T IF MOT I02TATL THEH Card. down

28 IF MHOT IOQFLAGC&E: THEH. 28 ! Canobe replaced with
5] WRITE T2 &,4;27 ! "WAIT WRITE &, 4327"
48 WREITE I0 £,7V;d

First, the status bit is tested to make sure that the device is operational. If it is not, we branch to
the ‘“‘card-down’’ routine, which in the /O ROM would issue an error 167. If the device is
operational, we then loop until the flag line indicates ready. The data to be sent is then placed
in the R4 output register. This merely places the data in the output latches on the interface but
no output operation to the device has taken place yet. In the last line, the output to the R7
register actually triggers the data transfer to the device. {Note that the actual value sent to the
R7 register, a zero in this example, does not matter. Only the R7 out operation itself is sensed
by the interface as the trigger command.) If more data were to be sent to the same device, we
would repeat lines 10, 20, 30, and 40 for each data item. It is important that each time through
this loop we wait for the flag to indicate ready. If the flag is indicating busy, the last data item is
stillin the output latches and has not yet been taken by the device. If we were to execute line 30
in this state, the new data would overwrite the old data in the latches and the old data item
would be lost.

37



we can also use the direct register operations to simulate the input process. The following
BASIC program performs the same operations as when the function A = READBIN(6) is exe-

cuted to read a binary value from the device on select code 6 and assign it to the variable A.

1a IF HOT IOSTRATUSY

iy

THEN Dard dosn

el IF NOT IOFLAGOS) THEM 28 oo Dan be replaced witth
348 READ IO &,43A boo"WALT REEAD &,45A°

46 WRITE IO &,7;4

b IF HMOT IOFLARGEE: THEHW 5@ b Ean be replaced with
£8 RERD ID &,4;R oo "WATT REARD &, 45 R"

The first two lines of this routine are the same as in the previous simulation of the WRITEBIN

statement, and serve the same purpose. The R4 in operation in line 30 merely tells the interface

that an input operation s to be performed. When the trigger (R7 out) is done n line 40, the card
qoes busy and demands a data item from the peripheral device. Line 50 waits for the nterface

to latch the data from the peripheral, and line 60 takes the data from the interface and places its

decimal representation in the variable A. If more data items were to be input, lines 40 through
60 would be repeated. Notice that the interface has only one trigger (R7 out) register, which is
used for triggering both input and output operations. The function to be performed is deter-

mined by whether the last data operation between the computer and the interface was an input

ot an output. This is why the “dummy” input operation in line 30 is required.

Normally, the user would not get involved with the specific sequence of events that take place °
when a simple WRITEBIN or READBIN operation is performed. These sequences were pre-
sented here merely as an example of the use of the interface registers. Other examples will be
presented later that require the use of the WRITEIO and READIO instructions to accomplish
certain tasks. Also, understanding this register model of the interface will be helpful in describ-
ing the events that take place during interrupt operations in the section on Data Transfers with

Slow Devices.



Programming for Interface Operations

Formatted I/ O Operations

Strictly speaking, all simple data input/ output operations could be performed with only the
use of the write binary (WRITEBIN) and the read binary (READBIN) instructions. For example,
if we wanted to output the value of pi (3.1415926536) to a printer, we could calculate each of
the digits and send its ASCII code to the printer one at a time with the WRITEBIN statement,
taking care to output the ASCII code for a decimal point at the proper place in the sequence. In
practice, however, it is much easier to simply specify the value that we wish printed and let the
[/ O ROM perform the task of breaking it up into the proper sequence of ASCII characters. As a
result, most simple data I/ O is done using the ENTER and OUTPUT statements.

These statements are even more powerful since they work in conjunction with the IMAGE
statement. This formatting capability allows the program to specify the exact form into which
data should be put for output operations, and the sequence of characters that is expected from
an input operation. The use of the ENTER, OUTPUT, and IMAGE capabilities is discussed with

several examples in the programming manual for the IO ROM.

Since most simple data [/ O is done using the ENTER and OUTPUT statements, the question
arises of when the READBIN / WRITEBIN instructions should be used in writing a program. In
the examples that follow, it is assumed that the reader is familiar with the material presented in
Chapter 2 of the [/ O ROM Programming manual. If not, it would be helpful to read that section
before continuing here.

39



Example: Non-ASCII Characters

The OUTPUT statement accepts three kinds of parameters: strings, numerics, and arrays. A
string is a sequence of ASCII characters enclosed in quotes, such as ‘“The value of piis”. A
numeric parameter simply specifies a constant or a program variable whose value is to be
converted to a sequence of ASCI| characters to be sent. An array parameter specifies all or part
of an array variable. The table of ASCII codes (see Appendix A), however, also provides what
are called control characters. Some of these were designed specifically for controlling printing
devices, such as carriage-return, line-feed, vertical tab, form-feed, etc. Others are used in
special applications such as block transfers (start of text, end of text, etc.} and data communica-
tions (enquire, acknowledge, synchronize, etc.). Because of their effect on program listings, we
normally use the ‘B image specifier or the WRITEBIN statement to send them. For example,
we might have a printer that uses paper that is perforated into pages. After sending some lines
of output, we want the printer to skip to the top of the next page. In the ASCII character set, this
instruction, called form-feed, has a value of 12. Thus, the statement WRITEBIN 6;12 would

send an ASCII form-feed character to the printer on select code 6. It is important to note that

this operation sends only a single ASCII character whose binary value is equivalent to a decimal

12, and we would see the printer skip to the top of the next page (assuming that the printer has

this capability). Whereas if we had issued the statement OUTPUT 6;12, the ASCII characters

for a printing “1” (decimal code 49) and a printing “2”" (decimal code 50) would have been

sent, along with some number of spaces, a carriage-return, and a line-feed, and we would have
seen the actual value of ‘12" printed.

Example: Suppression of CR/LF

Another distinction between the OUTPUT and WRITEBIN statements is that the WRITEBIN
statement outputs only the values specified, while the OUTPUT statement generates character
sequences specified by the IMAGE statement, often giving unexpected results. For example,
the HP 2640A is a teletype-like terminal that has a CRT (video display)}, and can be put into
inverse video (dark characters on a light background). To put the 2640 into this inverse video
mode, an escape character (decimal 27 ASCII code) followed by the ASCII characters “‘&dB”’
must be sent. Using the WRITEBIN statement, this could be done by executing the statement
WRITEBIN 6;27,38,100,66. If instead we had executed

WRITEBIN 6;27
OUTPUT 6;*‘&dB”

we would successfully put the 2640 into inverse video, but the automatic CR/LF generated by
the OUTPUT statement would have moved the cursor on the CRT to the start of the next line.



Programming for Interface Operations

Example: Debugging Tools

Finally, the READBIN / WRITEBIN instructions are often valuable in debugging programs. For
example, suppose we have a device that sends us a numeric value 12.345, and we execute the
statement ENTER 3:A. When we execute this statement, we notice that the run light on the
computer stays on and reading does not complete. We don’t know whether we are not getting
any data at all or if something else is wrong, perhaps a hardware failure. So we execute a series
of READBIN(3) instructions and note the results.

READBINnumber: 1 2 3 4 5 6 7 8
value returned: 49 50 46 51 52 53 13 busy
ASCIIL: 1 2 . 3 4 5 CR

This tells us that the device is indeed sending what we expected to see and there is no hardware
problem. However, we notice that no line-feed has been received. Since this is required for the
ENTER statement to complete, we must use an IMAGE specifier to disable the line-feed re-

quirement. We change the ENTER statement to read:

ENTER 3 USING “#,F"";A

Now the ENTER completes, and we get the expected value. Many times this same technique of
using READBIN instructions to look at the incoming data stream one character at a time will
reveal that the input sequence is something other than what is expected, and the ENTER and

IMAGE statements must be adjusted accordingly.

There can arise some confusion from the broad range of ENTER image specifiers, and their
interactions. There are two primary categories of image specifiers, those that specify ENTER
statement terminating conditions, and those that specify variable type (and these also de-
termine the item terminating condition). Terminating condition specifiers determine when the
ENTER statement itself can terminate, but it is important to remember that termination cannot
occur before all variables in the ENTER list have been satisfied. When the terminating character
for the ENTER statement (L/F for example) is the same as the required terminating character
for the last item in the ENTER list, the termination of the statement and the variable can occur
simultaneously. For instance, satisfying a string input with an L/F will also satisfy the ENTER
statement’s L/F requirement, (if the string is the last item in the list), i.e., ENTER 6;A$. Vari-
able type specifiers determine how the incoming stream of data is to be interpreted and placed
in the ENTER list variables.

41



ENTER 3 USING “#,F;A

terminated because a L/F was not necessary to complete the ENTER statement requirements.
Satisfying the input to variable ‘‘A” was enough. Incidentally, the non-numeric character,
C/R, completed the input operation for the variable ‘‘A,”” and thus the entire ENTER statement

as well.

The ““+”” and “%’’ specifiers are intended for use with HP-IB transfers, where the EOl message
(see “The 98034A Interface”) is used by certain devices to signal the end of a data transfer.
The ““+ specifier causes EOI to be ignored as a terminator. The “%" specifier causes EOIl to

be ignored, and removes the normal L/F requirement for terminating the ENTER statement.
The variable type specifiers are described in the [/O ROM programming manual, and will not
be covered in detail here. Rather, we will go through some examples of determining the image

specifiers needed from a description of the incoming data.

e A terminal is connected to a 98036A interface, and we want to enter the data into a string

variable. Each line of data is terminated by a C/R:

Incoming line of data — “This is any string of characters” G/R

Appropriate statement — ENTER 11 USING “T”; TRL(13),A%$

The “T” specifier allows a varying number of characters (up to the size of A$) to be entered

into the string, until a delimiter is received; the TRL function allows our string input to termi-
nate with a C/R as well asa L/F delimiter.



Programming for Interface Operations

o The same terminal is connected to our 98036A interface, but the operator occasionally
hits the Line-feed key instead of Return. We don’t want our input to terminate when he
hits the L/F — only the C/R is considered an end-of-record.

Incoming data line — “‘This string has’’ L/F “‘characters” C/R
Appropriate statement — ENTER 11 NOFORMAT;TRL(13),A$

This is a sneaky solution, but the NOFORMAT mode normally requires that the string be filled
or that a specified number of characters be input. The TRL function allows us to terminate on a
specified character value, in this case C/R{= decimal 13). Now our string input is not

terminated by a L/F, but will enter everything coming in until a C/R is received, or the string is
filled.

e A 5340A HP-IB Frequency Counter sends its data in a combined form of non-numeric
and numeric characters. A set number of characters is sent each reading, and a typical
reading might look like this:

‘D - 0006.418E+3” C/RLF

Appropriate statement —

ENTER 716 USING “2(A),12N"’;Direct$,Overflow$,Frequency

The “2(A)” specifier directs the [/O ROM to take one character each for two string variables.
The parentheses around the “A’ distinguish this from the two-character input ‘“2A’. The
“12N” specifier is used here because the number of data characters is fixed and known,
although the “F specifier could also have been used successfully. The data is put into the
variables as shown below:

“D ... 0006.418E+ 3" C/RLIF
. ~ , ]
Frequency Terminates ENTER

Overflow$ Ignored
Direct$

43



44 Programming for Interface Operations

The novice programmer, and even experienced programmers, can expect some amount of

trial-and-error when debugging formatted input statements. The wide range of devices

available, and the near-infinite variety of data formats makes it difficult to correctly read

incoming data streams on the first try; especially those with complex combinations of numeric

and string data.

The following table is organized so the programmer can identify the correct image specifiers,

given a knowledge of the characteristics of the incoming data.

Condition
Type Required
of Charac- Image to Notes
Data teristics Specifier Terminate
Unknown or L/F, C/R L/E. |Use TRL function to change L/F
varying “T” TRL, terminator to some other character,
number of EOIl, or such as C/R. The “+”" and “%”’
characters string full. | specifiers prevent EOI from
terminating string input on HP-IB.
String
Fixed Receipt Enters any and all characters until
number of “{n}A” of {n} {n} characters have been input.
characters characters.
(=n)
Unknown “F” TRL, The “F” specifier recognizes ““.”’
or (American) EQI, radix, while “H”’ recognizes ‘,”
varying or or any radix. The ““+’’ and %"’ specifiers
number of “H” non-numeric | prevent EOI from terminating
digits per | (European) character. |numeric input on HP-IB.
number
Numeric
Fixed “nIN” Receipt The “N” specifier recognizes **.”
number of | (American) of {n} radix, while ‘G’ recognizes *‘,”’
digits per or characters. |radix. All characters, even non-
number “Un}G” numeric, are counted as part of {n}.
(=n) (European)

Continued




Programming for Interface Operations

Condition
Type Required
of Charac- Image to Notes
Data teristics Specifier Terminate
Byte “B” Receipt of one|lf a 16 bit interface is used,
(8 bits) data byte |only the lower 8 bits are taken to
(8 bits). satisfy the *‘B”’ specifier.
Binary
Word WY Receipt of |On an 8 bit interface, first byte
(16 bits) or one data  |received becomes most significant
Y word 8 bits of word.
(16 bits).
Skip over “{n}X” Receipt of
{n} character: {n} characters.
All
Skip over Receipt of
{n} records, “{n}/” {n} L/Fs.
delimited
by L/F
Requires all none L/F,EQI, |At least one is required, and it may
<enter list> or TRL be same as last item terminator.
variables to o3 ENTER list |Statement terminates when ENTER
ENTER | be satisfied, satisfied list input is complete.
statement | then a termi- g L/F or TRL |EOIlis ignored, but L/F or TRL is
nating char- still required (may be same as last
acter which item terminator).
can be fop ENTER list |EOI is ignored, and statement
modified satisfied terminates when ENTER list input
as shown, is complete.

45



46 Programming for Interface Operations

Interrupt I/ O Programming
The Uses of Interrupt

A computer which has the ability to operate under interrupt provides the user with additional
programming features that fall into two main categories. One of these is the optimization of
data transfer operations in which the speed of the computer can be more closely matched to the
speed of the peripheral device. The other is the ability to have a particular segment of the
program in the computer executed at a time determined by the external device. The first of
these abilities will be discussed here while the second will be covered in the section on User
Programmed Service Routines.

In Figure 23, peripheral devices have been classified as slow, medium, and fast depending on

the rate at which they are capable of transferring data.

Speed: Slow Devices | Medium-speed Devices Fast Devices
Examples: Paper Tape Thermal Printers High-speed
Readers DVM’s
Card Readers Medium-speed DVM’s | Magnetic Tapes
Teletypes A/D Converters
Plotters Discs
Digitizers
Transfer Rates: Below 1000 1000 to 10000 Above 10000
characters per characters per characters per
second second second
Without Interrupt: | wait read/write - ==
With Interrupt: interrupt read/write fast read/write
DMA
Figure 23

Although some devices clearly fall into one category or another, this division should not be
considered rigid, and the transfer rates in the table are intended to provide rough boundaries.
In general, the way in which the device is being used in a particular application, rather than its
maximum transfer rate, will determine the category to which it belongs in that application. For
example, the 9876B Thermal Line Printer can accept characters at a rate of about 40,000 per
second until a line-feed is received. It then requires 125ms (% of a second) to print that line and
be ready to accept further characters. Other devices, like digitizers, are totally time random.
That is, the rate at which data is available may depend on an operator pressing the sample

button on the digitizer.



Programming {or Interface Operations

In a computer without interrupt capability, data transfer is done via the normal ENTER and
OUTPUT operations. These operations will have their own “‘natural” (i.e., computer imposed)
speed limitations depending on such things as how much data is to be transferred, the type of
data (numeric, strings, binary), and how much formatting has to be done on the data. Depend-
ing on these factors, the natural ENTER/OUTPUT speed of the 9835745 can be anywhere

between 1000 characters per second to well over 10000 characters per second.

If the speed of the peripheral device is slower than this natural read/write speed of the
computer, the [/ O ROM will simply wait after it has transferred one character until the device
indicates that it is again ready before it sends or receives the next character. If, on the other
hand, the peripheral’s speed is faster than the natural read / write speed of the computer, the
peripheral device itself will have to wait between each character until the computer is ready for
the next transfer operation. If the peripheral cannot wait (i.e., slow down to the computer’s
natural read / write speed) then the data simply cannot be transferred between the computer
and the device.

This situation can be greatly improved if the computer can support transfer mechanisms other
than the normal ENTER / OUTPUT operations. For slow devices, we would like to have the
ability to transfer one character to or from the peripheral device, and then be able to ‘‘go
away’’ and perform other useful work while we are waiting for the device to come ready for the
next character. For fast devices, we would like to be able to separate the formatting process
from the actual transfer process, and thus increase the natural speed of the transfer process
alone. For example, if we wanted to take 100 readings from a high-speed digital voltmeter
using a programmed loop and normal ENTER statements, each reading would have to be
formatted, put into internal floating-point representation, and stored in the specified program-
ming variable before we could be ready for the next reading. It is this ‘‘overhead’ that deter-
mines the natural speed of the ENTER operation. If, however, we had a means of merely
collecting the ‘‘raw data’’ (the exact sequence of bytes or words that came in from the DVM)
and could then go back at a later time and do the formatting and conversion into internal

numeric representation, this simple data gathering process could proceed at a much higher
rate.

The 9835 /45 provides an interrupt mechanism for handling slow devices, as well as Fast-
Handshake and DMA for handling fast devices. The use of the interrupt capabilities is discussed

in the following sections, and fast read / write and DMA transfers are discussed in the High

Speed [/ O Programming sections.

Before we go on, lets take a look at the interrupt structures of the System 35/ 45 computers.
There are two fundamental categories into which interrupts are classified, with each category

being further divided into subgroups, as shown on the next page:

47



48 Programming for Interface Operations

Category I Hardware Interrupts

e These interrupts are absolutely transparent to the user program, and cannot be accessed.

A. Data Transfer Interrupts
These interrupts are used to signal “‘interface ready’’ during a data transfer.
B. Other Interrupts

These interrupts are used generally to signal some external event’s occurrence.

Category II: Software Interrupts, or End-of-Line Branches

o These “interrupts” are set up by the ON INT statement to handle real-time events with a user
program.

A. End-of-Data Transfer Branch (ENTER/ QUTPUT)

This branch indicates to the program that a data transfer has completed.

B. Timeout Branch (SET TIMEOUT)

This branch indicates that a data transfer has waited too long for a new handshake, and

that the transfer is probably hung up.
C. Data Transfer Branch (CARD ENABLE)

This branch indicates that an interface is ready to accept data — similar to the Data

Transfer Interrupt {I.A. above).

D. Everything Else (CARD ENABLE)
This branch signals some external event to the user program, such as Request-to-Send
(RTS, 98036A Interface), Service Request (SRQ, 98034A Interface), etc.

It is important to make the distinction between hardware interrupts and end-of-line branches,
as the priorities for each differ and so do the times they can occur. A hardware interrupt can
occur anytime the BASIC program is being executed; the user has no control over hardware
interrupts. (This is not entirely true, as the select code of an interface can affect its interrupt

priority.)

An end-of-line branch, however, can occur only if an ON INT statement has been executed for
the select code being considered, and if a DISABLE statement has not been executed, which
“turns off”’ all end-of-line branching. The user, then, has complete control over software
interrupts {or, end-of-line branches), including priority, protected code segments, and envi-

ronment switching.



Programming for Interface Operations

Data Transfers with Slow Devices
When an [/ O operation is done with a very slow device using the normal ENTER/OUTPUT

operations, the computer spends a considerable amount of time merely waiting for the device
to become ready for the next character transfer. Having interrupt capability gives the 983545
the ability to do other useful work while it is waiting on the device. In order to show just how
this is accomplished, we will look at an example of doing output to a slow printer both with a
normal output statement, and then using the interrupt structure of the computer. To make even
more evident what is happening, we will not use the automatic mechanism provided by the
BINT/ WINT transfer types, but will simulate their operation using the direct-register access

capability discussed in the ‘‘Direct Register Access’ section.

Assume that we have a slow printing device that operates at 30 characters per second, and that
we wish to send to it an 80 character string to be printed. If we were to do this with the simple
OUTPUT statement, OUTPUT 6; A$, it would take approximately 2.67 seconds for the printing
to complete. During this time, we could have executed hundreds of program lines and ac-
complished a considerable amount of useful work.

In the Binary I/ O Operations section we looked at how the WRITEIO statement could be used
to simulate the operation of the WRITEBIN statement in sending a single character to an output
device. It was mentioned that if several characters were to be sent, it would be necessary to wait
for the flag line on the interface to indicate ready before sending each character. If we wanted
to do other useful work while waiting for the flag line to come ready, and we did not have
interrupt available, we could simulate the interrupt process by the following scheme. We first

provide a subroutine that will output A$ one character at'a time each time it is called.

188 Send: ! SEHD OHE CHARACTER  OF A#
118 IF I:LEHCREs THEH Exit

12m WEITE BIN S;HUM{AFEI 130

136 [=1+1

148 Exiv: FETURHM

The value of the pointer into the string, I, is initially set to 1. Each time the routine is called,
the character in the string that is pointed to by lis sent, and the pointer, I, is incremented for the
next time the routine is called. Also, if all characters in A$ have been sent {i.e., | is greater than
the length of the string) the routine simply returns without sending any more data. If we now

edited the lines in the rest of the program, so that each one alternated with the statement

IF IOFLAG(6) THEN GOSUB Send

49



30 Programming for Interface Operations

we would have simulated an interrupt capability. That is, between each line of the rest of the
program, the flag line for select code 6 is tested, and

if it has come ready, we execute a
subroutine call to the “Send”

routine to output one more character. Although this would work,
itis not a very attractive solution. What we would much prefer is not to have to test the flag line,
but rather to have the interface inform the computer when the flag line again indicated ready.
We would also rather have the branch to the subroutine be automatic; that is, we would like to
tell the computer once where to go when the flag line indicated ready,
each line. The on-interrupt (

rather than at the end of
ON INT) and card enable statements do just that. The following
program would accomplish the same task as the previous example.

1 I=1

& HE="Ewamnple
14 COMTROL MASE ¢
2@ OH IHT #& GO
a6

CHRED EHAELE &

Send: DOOUTRUOT OHE CHARHCTER

1aEE

iala WETITE BIM &3HUMCAFII4 10

IR B I=1+1

18z IF I<=LEH{AF: THEH CARD EHAELE &
13RO RETURH

The ON INT statement in line 20 essentially says “if an interrupt should come in from select
code 6, branch to the routine labeled ‘“Send’.”” Notice that this operation is entirely local to the
program and involves no communication with the interface card. It is the CARD ENABLE
statement in line 30 that informs the interface about what is happening. This statement may be

read as ““any time your flag line indicates ready, generate an interrupt request.”

From this point, the sequence of events would be as follows. Most probably, at the time line 30
is executed, the interface is ready since we have not yet done anything to cause it to go busy.
Therefore, as soon as the CARD ENABLE statement is executed, it enables the interface for
one interrupt. When this interrupt occurs, the [/ O ROM automatically disables the card for
further interrupts, thus preventing it from trying to interrupt again until its first interrupt has
been serviced. Since we want another interrupt after the current character is finished proces-
sing by the peripheral, line 1020 reenables the card for interrupts. The return statement in line
1030 causes the program to branch back to the line it would have executed next if the interrupt

had not occurred.

The rest of the program (lines 40 through 990) continues to execute while the peripheral is
busy processing the current character. At some point in time, it will finish that processing and
indicate (via the flag line) that it is ready for more data. Since we have again enabled the card to

interrupt on that condition, it will generate an interrupt to the computer. This time, however,



“Computer

-y Museum

the computer will probably be in the middle of executing some line from the main program. If it
were to immediately branch to the ‘‘Send” routine, the operations performed in ‘‘Send”” would
use the internal ‘‘scratch-pad’’ registers and make it impossible to finish the interrupted prog-
ram line correctly. So instead, the /O ROM merely makes a note of the fact that an interrupt
from select code 6 has occurred, disables the interface so that it does not keep trying to
interrupt, and then allows the current program line to complete its execution. When the end of
the line is reached and the scratch-pad registers are free, it then causes a branch to the service
routine indicated by the ON INT statement. This sequence continues until the “Send” routine
outputs the last character in A$, at which time line 1020 detects that there is no more data to
send and as a result does not execute the CARD ENABLE statement. As before, line 1030
returns control to the main program. But this time when the flag line again indicates ready, the

interface has not been reenabled and does not generate an interrupt, since the data transfer
process is completed.

Although this program is much simpler than the previous method described, it still requires the
user’s program to handle each character, keeping track of the pointer to the next character to
be sent and enabling the interrupts at the proper time. It should be possible to make this
process still more automatic and transparent to the user. This further transparency is provided
by the “INT” transfer type.

The printer we have been considering in our example is classified as a slow device because it
requires about 33 milliseconds of wait time between characters. If this printer had some
read / write memory built into it, it could then accept characters at a much faster rate, place
them in that memory (called a data buffer), and then fetch them from the buffer and print them
in the order that they were received. For short bursts of data, this slow printer with a built-in
buffer would appear to be a medium speed device. Although the printer would not print the
characters any faster, it can accept an entire line of data very quickly, and then process it out of
its storage buffer at its normal printing speed. The figure below shows a schematic representa-
tion of this process.

“Medium-speed” Printer

Computer | WwRITE BIN
Internal

Data Buffer —— Slow Printer

Figure 24

If a slow printer does not have its own built-in buffer, it can still be made to look like a
medium-speed device by allowing it to use some of the computer’'s memory as its data buffer,
which we’ll call a transfer buffer.

Programming for Interface Operations

51



52 Programming for Interface Operations

OUTPUT BINT
Computer
Transfer Slow
Internal ———» >
Data Buffer Printer

Computer Memory

Figure 25

Using this scheme, the data to be output is normally written to the transfer buffer, just as though
this buffer memory were contained in the peripheral itself. The OUTPUT...BINT statement is
used to send the data to the transfer buffer and then to the printer — at the printer’s own
speed — using the interrupt capability. This transfer process is entirely automatic and handled
totally by the I/ O ROM. The statement to accomplish this is given below.

18 UUHTRUT & EINT;Af

The BINT parameter in the OUTPUT statement specifies the transfer type which is discussed in
the next section. Once the transfer buffer is established, the I/ O ROM simply outputs to the
transfer buffer as though it were a peripheral. Since this data has simply been moved to the
buffer and not yet sent to the peripheral, this operation happens very quickly and does not
depend on the speed of the peripheral device. Depending on the size of A$, the /O ROM
places all or part of the contents of A$ into the buffer. The data in the buffer is not in the
internal representation of the computer, but represents the exact character sequence that

would have been sent to the peripheral if a buffer were not being used.

Now that some data is in the buffer, the I/ O ROM starts the process that transfers it to the
printer under interrupt. From here, the process is automatic, and handled entirely by the [ /O
ROM. Thus, the user’s program is free from having to set up for interrupts, manage the data

pointers, and terminate the process when all the data is sent.



Programming for Interface Operations 53

The execution of the QUTPUT statement itself may be complete even before the first character
has been sent.! This means that the rest of the program can continue executing, even though
there is still more data in the buffer to be transferred. Each time the peripheral device comes
ready for the next character, the running program is momentarily interrupted? and another
character is sent by the 1./ O ROM without the need for further program statements. Also, since
this transfer of the next character can be done by the ROM without using the scratch-pad
registers, it can be done when the interrupt occurs and does not have to wait until the current
program line is completed. When the last character has been sent, the ROM automatically
disables the interface from further interrupts. As a result, the entire burden on the user program

is simply to initiate the transfer process.

1 The OVERLAP mode of program execution is assumed. See the section on Overlapped /0 page 74.

2 This is actually true onfy for the System 35 :the System 45 computers have a separate [/ O processor and do not hait program
execution.



54 Programming for Interface Operations

Further Data Transfer Examples

We have seen how the OUTPUT BINT statement can be used to output data to a slow device
using interrupt. This same buffer transfer mechanism can be used to input data from a slow

device. Before looking at how this would be done automatically using the ENTER BINT state-

ment,

it would be instructive to first write a program to accomplish the same task using a

user-programmed service routine which will show all of the steps involved.

] CORTROL MASE

18 O THT #Z

28 HAEIT READ Z,4:5
25 WRTITE IO =2,7V:@
40 3

CHED EMAELE

gt !

1aaE FEAD IH
1aie RERD I0 Z,4;0

laze AfF=HELCHREE D2

pas it IF =18 THEHM 1G&0
13dR WREITE 10 3,758
1RERE CARLN EHAELE =

1Red FRETURH

Comparing this program to the analogous one for the output case in the previous section, we
see that the main difference is in the method of transferring the individual characters. In the
output “‘Send” routine, each character was sent using a simple WRITEBIN statement. In this
program, however, we cannot use the READBIN statement to input each character, but have to
resort to the use of the direct register access statements. The reason for this will become clear if
we refer back to the individual register sequences that make up the WRITEBIN and READBIN

operations (pages 20 and 21). These sequences are summarized in the following diagram.

[RATARER
el bdsy
TNt eErrupt s

o+

OHE CHHEARCTER



Programming for Interface Operations 55

WRITE BIN READ BIN
2‘; n demand data
out .
and trigger
wait for ready
no | waitfor
ready
R4 out
output data
R7 out and trigger yes
R4 in take data

Figure 26

In the output example, when the device came ready for the next character it set the flag line to
indicate ready, which caused the interface to generate an interrupt. The I/ O ROM then caused
a branch to the “Send’’ routine which did the WRITEBIN operation. Since at this time the flag
line was indicating ready, the WRITEBIN statement did not have to wait and immediately
performed the output of the next character.

Looking at the diagram for the READBIN function, however, we see that it must first demand
the data, wait for the data to come ready, and then take in the data. If we had tried to use the
same program as in the ““Send’’ example, merely replacing the WRITEBIN with a READBIN,
the following would have happened. The first CARD ENABLE statement would have caused an
immediate branch to the service routine, since nothing had caused the device to go busy. The
READBIN in the service routine would have demanded the next character and then waited for

it to come ready. Thus, we would lose any advantage of being able to avoid the wait time
through the use of interrupts.



56 Programming for Interface Operations

What we would like to do is to demand the next character and then go away and do other useful
work during the time we would normally be waiting for the character to come ready. This is
what the program given above accomplishes. Line 10 sets up for a branch to the
service routine whenever an interrupt occurs from select code 3. Line 20 tells the int

demand the next character from the device. Since we do not know whether the last

“Input”
erface to

Operation
to the card was an input or an output operation, we first execute an R4 in so that the WRITE IO

3,7 will trigger an input operation. The data received from this R4 in operation is wh

left on the data lines from the last input from the card, and does not represent usef

atever was

ul informa-
tion. Having triggered the input, the interface has now gone busy and we enable it to interrupt

when it again comes ready. In the meantime, the program in lines 50 through 990 continues
execution. The location of the CARD ENABLE statement in the sequence is very important. It

cannot be executed until we have made the interface go busy; otherwise an immediate branch
to the service routine would occur.

When the device indicates that the next character is ready, the interface generates an interrupt
to the computer; and at the end of the current program line, the [/ O ROM causes a branch to
the “Input” service routine. This routine can now complete the last phase of the READBIN
operation which is to take the new character from the interface using an R4 in operation. In this

example, we are expecting an ASCII message from the peripheral device which will be termi-

nated by a line-feed (LF = decimal 10) character. Thus, the input routine next converts the
byte received into an ASCII character and concatenates it onto the string A$, which would have

initially been set to a null string. In line 1020, we test the byte just received to see if it was a LF.
If not, we have not yet received the entire message and so we trigger another input operation

(i.e., demand another character) which again makes the device go busy, and then enable the
interface for another interrupt. Notice that this time the ‘““dummy’ READIO 3,4 is not required,
since we know that the last R4 operation to the card was an input. If the character received had
been the LF terminator, the program would not have triggered another data input operation
and would not have enabled the card to interrupt again. In either case, the RETURN statement

causes the program to branch back to where it came from in the main program.



Programming for Interface Operations

Again, this example was given to show the steps that are performed when data is input using
interrupt. In practice, there is no need for the user’s program to handle each character as it
comes in, since the ENTER BINT statement provided by the /O ROM makes the entire

process automatic. The following statement would accomplish the same task.

ENTER 3 BINT;A$

The statement specifies that data should be transferred from select code 3 to the input buffer
until there are enough characters to fill A$ or until a line-feed (decimal value 10) is received.
From this point, the entire process is automatically handled by the [/ O ROM, and the program
is free to continue execution while the buffer is being filled. Once the transfer into the buffer is
completed, the data buffer is read into the string A$ where it can be used by the rest of the

program.

The only question remaining is, how do | know when the transfer is complete so that I can
access the string A$? This is made possible by means of the ON INT capability, as demonstrated
in the following program.

5 DIM Axl288] Buffersl ia]
= IYERLAF

15 OHCIHT #3 GOSUE Complete
2R HE=""

38 EHTEE 2 BIMHT;Euffezrs

1868 Completg: ! SHYE CHEST COMRHHD OF O TEST
1aie Af=H ot f e

1B20 EHTER Z BIMT;Bufyerd

1828 RETURH

In this program, we use the ON INT statement to set up a branch to a service routine called
“Complete.”” This is similar to the ON INT branch to the “Input’ routine in the previous
example except that instead of branching to the service routine each time the next character is
ready, the branch to the “Complete” routine takes place only when the entire input operation
specified by the transfer statement is complete. In other words, using the CARD ENABLE
statement, the service routine is called when the interface indicates ready; using ENTER BINT,
the service routine is called when the transfer is complete. Thus, the ON INT statement does
not always cause a branch to the service routine when an interface interrupt occurs, since the

1/0 ROM automatically handles the interrupts associated with the transfer process.

57



58 Programming for Interface Operations

User Programmed Service Routines

The tasks that a computer performs in which interrupts may be useful fall into three major
categories: data transfer completion, timeouts, and everything else. The task of sending or
receiving data is usually a well-defined process that can be specified by a small number of
parameters; namely, how much data there is, where it is located, and the type of transfer to be
performed (i.e., interrupt, fast read / write, or DMA).

If the interrupt is for a purpose other than simple data transfer, the scope of the tasks to be
performed is so large and varied that it would be extremely difficult to provide pre-programmed
{i.e., ROM) service routines to handle even a small portion of these tasks. As a result, provisions
were made to allow the user to write the service routines required, using the same high-level
language in which the rest of the program is written. Thus the service routines can perform any
operations and execute any statements that can be done in the background (non-service

routine) segments of the program.

Most of the interface cards only have one interrupting condition, and that is when the flag line
indicates that the peripheral device is ready for another operation. Since this flag line is usually
used in conjunction with data input and output, the associated user-written service routines are
then used to specify what action is to be taken when a data transfer operation has completed.
An example of this type of service routine was given in the previous section on Further Data

Transfer Examples.

As a further example, consider a computer with a digitizer and a plotter attached. Each time a
point is entered through the digitizer, we would like this point to be plotted, thus giving a
hardcopy record of the points that were entered. In the meantime (i.e., while the program is
waiting for the next point to be digitized) we would like the program to be performing some
kind of analysis on the points that have been entered. The following program is an example of

how that task could be performed using interrupt and a user-written service routine.

18 DIM weS@as, vosae: Tigitizerd gl
11 OYERLAF
gt OF IHT #4,1 GOSUE Hew puint
i3] H=&
i EHMTER ¢4 EIMT:Digitizerd
TAEE M ol nt =i+l
1918 HEYALCDigitizerdl1,810
1AZE y=YALCDigitizerdla, 1300
1B3H FLOT =7
1aga IF HoSan THEW EWTER 4 FIfTsbigitizerd
1a5e R :
189 HOH =Y
1ETE C RETURH



Computer Programming for Interface Operations

. Museum

In this program, we dimension the X and Y arrays to hold up to 500 pairs of X, ¥ coordinates.
Having specified the location of our service routine as ‘‘New-point” and initialized a counter,
N, to zero, we then start a transfer operation from the digitizer (SC=4) to the temporary string
variable Digitizer $. Since we know that the digitizer always delivers its readings as a 14-
character ASCII sequence (+XX.XX,=YY.YYLF) it is not necessary to specify any terminating
conditions in the ENTER statement.

Each time a new point is digitized the buffer transfer completes and a branch to the service
routine is made. In this case, the service routine reads the X and Y values out of the buffer and
immediately starts another transfer operation in order to be ready to receive the next point as
quickly as possible. Before leaving the service routine, the values just read are placed in the
next available position in the X and Y arrays as indicated by the pointer N. Lines 50 through
990 of the program would contain statements to perform the desired analysis of the digitized

points, using the value of N to determine how many values in the X and Y arrays represented
valid data.

Some applications may require the use of interrupt and a user-written service routine that has
nothing to do with data input/ output. For example, the computer might be connected to a
remote temperature sensing device in a chemical processing operation. Normally, the compu-
ter is performing routine control functions throughout the rest of the system. But if the tempera-
ture in a critical location becomes too high, the sensing device would like to interrupt and have
the computer make the necessary adjustments. Assume that the sensing device has an output
line that is in one state when the temperature is normal, and goes to the other state when the
temperature exceeds the normal operating range. This line could be connected to the flag line
of the interface and the logic level jumper set to indicate BUSY in the normal range, and

READY outside of this range. The following program would then be used.

COMTROL MASE 2,
OH IHT. #2 GOZUE

=i

15

e CRRT EMAELE =
LBEE Too hot: | ROUTIME To ROJUST THE TEMFERATURE
1888 CRRT EMAELE
1898 FETURH

In the previous examples, the branch to the service routine was caused by the completion of an
interrupt transfer. In this case, the statement in line 20 specifies that interrupt should be
enabled on select code 2 (the temperature sensor). Initially the temperature is within range and
the flag line on the interface indicates ‘‘busy’ or a zero. If the temperature goes out of range,
we have wired the interface and sensor in such a way that the flag line will indicate ‘‘ready’’ or a
one. This will cause the interface to interrupt the processor. The /O ROM will detect this

interrupt and cause a branch to the ‘‘“Too hot’’ service routine.

59



In the previous examples of interrupt transfer operations, we did not use the CARD ENABLE
statement, since the I/ O ROM firmware automatically enables and disables interrupts from the
interface at the proper times in the data transfer sequence. Normally,

a program would use
either an interrupt transfer ora CARD ENABLE statement for a given sele

ct code, but not both.

It is important to notice that it is the computer and not the peripheral device that initiates an
interrupt process. The program must first establish a service routine, and then enable the
interface to interrupt. When the actual interrupt is generated, it is merely signaling the comple-
tion of the process that was started by the computer. In the case of data transfer, the interrupt
indicates that the last item sent or received is completed, and that the device is ready for
another one. In the case of service routines which are accessed through the CARD ENABLE
statement, the interrupt indicates that the condition which was specified as an interrupting
condition has occurred. Unless the computer has initiated the entire interrupt process, it will
have no idea what to do when the interrupt is received. Thus, one should never think in terms

of a peripheral device issuing an interrupt independently of the program which is controlling
that device.

Interrupt Priorities
Up until now, we have discussed interrupts from one interface at a time. When more than one

interface is operating under interrupt, it is possible that two or more of these interfaces might

generate interrupts at the same time. In this case a system of priorities must be established that

will determine the order in which the service routines are performed.

Before discussing the tules that determine these priorities, it is important to have a clear picture

each of
of the various operations that use interrupt, and the parts of the system that handle

these operations.

INT
Peripheral | PFLG Intgrf%ce Processor
N ar »
Device DMAR Hardware Interrupt
Service
A
1,0 ROM

Software Interrupt Service
} (End-of-Line Branch)

Basic
Program

Figure 28



Programming for Interface Operations

As mentioned in the last section, the peripheral device itself does not generate any interrupts to
the computer. It merely indicates to the interface card on the peripheral-flag (PFLG) line that it
is ready for more data or that a condition wired into the PFLG line is true. It is up to the
interface to translate this signal into an interrupt if it has been enabled to do so by the program
using a CARD ENABLE or a BINT transfer statement. Let us follow the sequence of events that
occur in each of the four possible cases: CARD ENABLE, interrupt transfer, fast-handshake
transfer, and DMA transfer.

If a service routine has been set up (using the ON INT statement) and a CARD ENABLE
statement is executed, this enables the interface to generate an interrupt request whenever
PFLG line indicates true. The processor is normally executing machine language (also called
assembly language) instructions which are carrying out the operations specified by the lines of
the user’'s BASIC program. When this interrupt is received, the processor suspends execution
of the machine code sequence! it was in, and branches to another block of machine code in the
[/ 0O ROM called the ROM service routine. This ROM service routine must decide whether or
not a transfer is in progress with the interface that generated the interrupt. In this case it is not,
so the ROM merely logs in the fact that the interrupt occurred and allows the processor to
resume execution® of the code it was working on before the interrupt came in. It also disables
the interface so that it will not continue interrupting, since the interrupt has been noted and
logged in. When the end of the current line of the user’s program is reached, the [/O ROM is
again given control by the processor. At this time it detects that the interrupt has been logged
in, and so it forces a branch to the user’s service routine. Notice that all that took place at the
time of the interrupt was the log-in procedure, and that this happened immediately. The branch
to the user’s service routine happened later, and was the result of that select code having

logged an interrupt and the end of the current program line being reached.

When a transfer (ENTER or OUTPUT) statement is executed using an interrupt buffer (BINT or
WINT), the /O ROM starts the first data item transfer and enables the interface to interrupt
when the PFLG line again indicates ready. The processor is then allowed to continue execution
of the program. Each time the device becomes ready, the interface generates another interrupt
to the processor. The processor branches to the ROM’s machine language service routine
which detects that a transfer is in progress, and sends or requests the next data item. When the
transfer is complete, the I/ O ROM looks to see if the ON INT statement has been executed for
this select code. If it has, the ROM logs in an end-of-line branch request, just as in the previous
CARD ENABLE; and at the end of the current line of the user’s program, a branch to the user’s

service routine is taken.

1 The System 45 computers do not actually suspend program execution to service interrupts, as they have a separate processor
to deal with interface operations.

61



62 Programming for Interface Operations

A fast handshake transfer operates in the same way, except that after the interrupt on the first
data item, the ROM does not return control to the processor? but keeps control until the entire
buffer is transferred. During this time, the processor is not executing any of the user’s program
and is not acknowledging any other interrupt requests from other interface cards. The machine
is essentially dedicated to the transfer process. When the transfer is complete, a request to
branch to the user’s service routine is logged in if an ON INT statement was executed previ-

ously, and control is returned to the processor.

In the final case of a DMA transfer, the situation is somewhat different. When the transfer
statement is executed, the 1/ O ROM first requests that the processor grant it use of the DMA
resource. Since there is only one DMA channel, if it is already in use, the | /O ROM must wait
until it is free. When the DMA channel is granted, the [/ O ROM informs the processor which
interface will now use it, what area of memory is to be used, whether an input or output
operation is to be performed, and how many words are to be transferred. The ROM then
enables the interface for a DMA transfer and returns control to the processor. Now each time
the peripheral device comes ready, the interface does not generate an interrupt but responds
on a special DMA request line (DMAR). This line causes the processor to send or receive one
more word of data using the area of memory previously specified by the [/ O ROM. These data
transfers are handled entirely by the processor and the 1/ 0O ROM is not involved. When the

transfer is complete, the processor informs the interface card of this fact, and the interface then

generates a normal interrupt. This time the ROM service routine is called, giving it a chance to
log in an end-of-line branch request if an ON INT statement has been executed for this select

code.

Thus, there are two kinds of interrupts: a true interrupt generated by the interface to the
processor and serviced by the 1/ O ROM, and a pseudo-interrupt generated by thel/ O ROM at
the end of a program line to force a branch to the user’s service routine. We often speak of
“‘generating an interrupt to the user’s service routine,” although in reality this is not a true
interrupt but merely a program branch. This distinction is important since the two types of

interrupt are completely independent of each other in the matter of interrupt priorities.

We will first look at the priorities for the true (interface generated) interrupts. This type of
interrupt is also called hardware interrupt. These interrupts are assigned two levels of priority
according to the select code of the interface that generates them. Select codes 0 through 7 are
assigned a low level priority, and select codes 8 through 15 are given a high level priority.
These levels are also called 1 {low) and 2 (high). We can also think of the processor as

operating on a given level at any time. If it is executing machine code to carry out lines of the

1 The System 45 computers do not actually suspend program execution to service interrupts, as they have a separate processor
to deal with interface operations.



Programming for Interface Operations

user’s program, we say that it is operating at level 0. When a low level interrupt comes in and
the /O ROM is in a machine-language service routine (i.e., transferring the data or logging in
an end-of-line branch request) the computer is operating at level 1. If the /O ROM is in a
machine-language service routine for a high-level interface, the computer is operating at level
2. Thus, each interface has a priority level (1 or 2) depending on its select code, and the
computer is in a certain state (0, 1, or 2) depending on whether it is executing the user’s
program lines or an [/ O ROM service routine. We can now state the rule for hardware inter-
rupts as follows: a hardware interrupt request will be granted by the processor if the level of the
interrupt is greater than the current state of the computer. If the interrupt level is less than or
equal to the current state, the interrupt will not be granted until the state becomes less than the
interrupt level. Stated in other words, a low level interrupt has priority over the user’s program,
but not over a high level or another low level service routine. A high level interrupt has priority
over everything except another high level service routine.

Completely independent of this priority scheme for hardware interrupts, there is a set of
priorities for branches to user service-routines, or software interrupts. We can define the prog-
ram state as O (not in a user written service routine), or from 1 (executing lines in a priority 1
user service routine) to 15 (the highest priority user service routine). At the end of each line of
the program, if an end-of-line branch is logged in whose defined priority level is higher than the
current program state, a branch to that service routine will be performed. Otherwise, program
line execution will continue normally. If at the end of a program line, two or more branches are
logged in on the same level, and that level is higher than the current program state, the one

corresponding to the higher select code will have its user service routine executed first.

As an example, assume that the program is executing a user service routine with a priority level
of 3. During one line of this routine, select code 9 with a priority level of 9 logs in for end-of-line
service, followed by a select code 12 with a priority level of 12. When the end of the current line
is reached, control will be given to the service routine with priority level 12. Notice that even
though 9 logged in before 12, both branches were pending by the time the end of the line was
reached and the one with the higher priority got service first. Thus two branch requests logging
in during the same line of the program are considered to have come in simultaneously. When
the RETURN statement for service routine 12 is encountered, the program drops from level 12

back to level 9. Since a level 9 branch for select code 9 is still pending, it will get service next.

During all of this processing of user written service routines, if true (hardware) interrupts had
occurred they would have been serviced by ROM service routines according to the set of
hardware priorities, independently of what user level service routines were in progress. That is,
all lines of the user’s program (background job, low level and high level user service routines)
are the same as far as determining the processor state is concerned. Alternatively, we may say

that hardware interrupts have priority over all levels of software interrupt.

63



High-Speed 1,/ 0 Programming
Overview

As discussed in the previous section, peripherals can vary in their data transfer rates, with very
slow or random rate devices being best serviced by interrupt transfers. This allows the program
to do other useful work while waiting for a slow peripheral device to come ready to send or
receive the next character of a data message. The problems encountered in dealing with very
fast devices (transfer rates over 10000 characters per second) are of an entirely different
nature, however, and will be discussed in the following sections.

Fast peripheral devices may be classified into two categories: those capable of operating at less
than their maximum speeds and those that are not. The former category consists of devices that
can deliver data on request from the computer; these are sometimes called asynchronous or
non-periodic devices. The latter category consists of devices whose data transfer rate is syn-
chronized to some external timing mechanism over which the computer has no control; these
are called synchronous or periodic devices. An example of a synchronous device is a magnetic
tape reader. To operate properly, the tape must move past the head at a constant velocity, so

the device is not capable of starting and stopping within a block of recorded data at the
command of the computer.

The distinction between medium-speed and high-speed devices may depend not only upon the

transter rate of the device, but upon the application as well. For example, a digital voltmeter
(DVM) may be capable of taking 5000 readings per second. Now, this DVM is not forced to take

readings at this fixed rate (in other words, is not synchronized to an external clock), but instead
it simply delivers a reading each time the computer asks for one — up to its limit of 5000
readings per second. Surprisingly, the fastest method of reading and processing data from the

DVM would be to use a simple ENTER statement. Interrupt transfers are primarily intended to
avoid a wait for slow devices, and are of no use here. In this case, however, the device is
sufficiently fast that the computer spends little or no time waiting for the DVM to come ready.
The simple ENTER statement does not require the overhead necessary to set up a fast-
handshake or DMA transfer, so its overall throughput is faster.

Suppose instead that we want to periodically measure a fast event whose duration is only a
fraction of a second? This might require taking many readings in a very short period of time,
with a transfer rate that is faster than the natural speed of the ENTER statement. The ENTER
statement is required to perform several functions, including gathering the raw data (say the
ASCII characters representing each reading), doing any specified conversions and formatting,
putting the data into the internal machine representation, and locating the destination variable

for final storage. All of these operations consume processor time and contribute to the overall



Programming for Interface Operations

time required for the simple ENTER statement to take data. These and other processes deter-
mine the ‘“natural’’ input speed of the simple ENTER statement. Now, if only the raw data
could be gathered and further processing put off until some later time, the actual data collecting
process could proceed at a much faster rate. This is the principle behind the fast-handshake
and the direct-memory-access (DMA} modes of operation.

Fast-Handshake Transfers

1/ O using fast-handshake transfers is very similar to I/ O using interrupt transfers. Instead of
specifying BINT or WINT, you specify BFHS or WFHS for byte or word transfers, respectively.
The firmware must now set aside a buffer large enough to hold the required number of bytes or
words for the transfer (or as much as available memory will allow). For an input operation, this
is specified by the {count} parameter; for an output operation, this can be computed from the
size of the data list. For example,

EMTER =
CUTFUT

Ty e
e

T

L

The fast handshake input operates as follows. Once the input buffer is established, the firmware
demands the first data item from the device. The /O firmware stays in a tight loop of machine
language code and gathers the data items as fast as it can. Interrupts from other interfaces are
disabled for the duration of this transfer, and all other I/O is discontinued until the fast-handshake
transfer completes. In essence, the computer has dedicated itself to the data transfer process to

obtain maximum speed, but once the transfer completes, the computer resumes normal opera-
tion.

Once the raw data has been input, the program may do any specified formatting or conversions
necessary.

If the program has executed an “ON INT"’ statement for this select code, a branch to the speci-
fied service routine is performed when the end of the current program line is reached. In certain
models of computers (the 9845B for instance), program execution can continue during the trans-
fer if NOFORMAT has been specified. This is possible because a dedicated processor is used for
1/0 transfers, thus freeing up the main processor to continue program execution. The ‘‘Advanced

1/0 Programming’’ section of this manual contains more details about NOFORMAT transfers.

rev: 12/80

65



by the program.

Direct Memory Access Transfers

For extremely high-speed requirements, the 98032A 1

6-Bit Parallel Interface offers an even
faster transfer mode known as DMA, or direct memo

o ‘ Iy access. This mode always transfers
-bit data items, but by specifying BDMA (byte mode DMA), only the lower eight bits of a

q . . ,
word are considered valid, On BDMA Input, these lower eight bits are taken from each word of

the buffer and used for the formatting and conversions necessary to get the raw data into the
correct form for the program variables in the data list. The converse applies to BDMA output,

where each byte (eight bits) of data is placed into the lower half of a word in the output buffer.

DMA transfers are similar to fast-handshake transfers, except that each time the device is ready

for (or with) the next data item, the interface interrupts on a special DMA Request line. The
next item is transferred into or out of the buffer by the processor itself, and not even the 1/0
ROM s involved in this process. The fact that the processor itself handles the data transfer is the
source of the speed of the DMA operation. This allows program execution to continue during
the transfer, and also allows other [/ O transfers to continue. However, some lack of versatility
is the price paid for this speed. For instance, the invert-data jumper on the 98032A interface is
ignored, and if positive-true data is being transferred by the device the result will be nonsense
data. (In this case, the BINCMP function or a Variable-to-Variable transfer with a conversion

table would have to be used to re-invert the data.)

It is strongly recommended that DMA transfers terminate because the specified byte count is
satisfied. Otherwise you will have to always handshake when PCTL is true and EIR is enabled to
terminate the DMA transfers. In otherwords, make sure that the proper number of bytes is sent or

received.

rev: 12/80



Programming for Interface Operations

Advanced I/ O Programming

This section presents the functions of the data transfer in greater detail than was done in
Chapters 2 and 3. We will be analyzing the tradeoffs necessary to optimize 1/ 0 for either
higher overall throughput or for higher burst transfer rates. At the end of this section is a

discussion of the effects of memory organization on I/ O programming.

There are two functional processes that make up an [/ O transfer: the formatting and conver-

sion process, and the data transfer process. The figure below illustrates this functional split.

Program Variable <¢——————» Device Buffer .¢——————3 External Device

Formatting Data Transfer
Conversions
Parity

The data transfer process is the character-by-character data exchange between the computer
and the external device. The formatting/conversion process is an internal function that is
necessary to translate between internal data representations and the codes recognized by the
external device. These two processes are normally transparent to the [/ O programmer, how-

ever, it is sometimes necessary to separate these processes to optimize the 1/ O program.

The data transfer process can be separated from the formatting process by specifying a
NOFORMAT transfer. The syntaxes for a simple data transfer without formatting are shown
below!:

ENTER <select code> NOFORMAT; <data list>
OUTPUT <select code> NOFORMAT; <data list>

Pictorially, the NOFORMAT transfers look like this:

N Data Transfer
ENTER NOFORMAT

. Data Transfer .
Source Variable SUTPUT NOEORMAT External Device

Destination Variable External Device

1 These syntaxes are the simplest case; refer to your I/ O ROM programming manual for more detailed syntax descriptions.

67



T T e T T AR SRS

(rather than a select code) as the source or destination of data. The syntaxes now look like this:!?

Source
ENTER <variabte> [USING <image> ]; <data list>

Destination
OUTPUT <variable > [USING <image> ]; <data list>
The transfers look like this pictorially:

ENTER A$
or

ENTER A(1)
Data List ~e— Source Variable
Formatting

Conversion
Parity Check

OUTPUT A$

OUTPUTALL

Data List > Destination Variable
Formattmg

Conversion
Parity Generation

The following two sections detail the NOFORMAT and the Variable-to-Variable transfers, and
give the user some insight into the why and how of using them.

NOFORMAT Data Transfers

In an earlier discussion about fast-handshake transfers, we noted the transfer rate improvement
possible by separating the raw data transfer from the formatting and conversion process. In a
normal ENTER or OUTPUT operation, this formatting and conversion process must still be
done so the data is in a form suitable for the computer to use. But suppose the data is to be sent
to another identical computer (9835 /45), or at least one whose internal data format is identical
to our own. It doesn’t make sense to use the sending processor’s time to deformat its internal
data and then use the receiving processor’s time to reformat this data. NOFORMAT transfers
allow us to bypass this formatting and conversion process, so the data list variables are sent and

received in their internal binary representation.

1 These syntaxes are the simplest case; refer to your /O ROM programming manual for more detailed syntax descriptions.



Programming for Interface Operations 69

What kind of speed improvement does a NOFORMAT data transfer have over a formatted data
transfer? The bottom line improvement depends on so many factors that it is impossible to
predict the outcome for a particular application, but for a very simple test the improvements for

input are shown below.

Noformat Transfer Rate: Formatted Transfer Rate

Transfer Type | 16 Word Integer Array | 1000 Word Integer Array

WHS 2.6:1 improvement 4:1 improvement
ENTER{ WFHS 6.0:1 improvement 65:1 improvement
WDMA 4.6:1 improvement 143:1 improvement

The above table suggests that a considerable amount of processor time is spent doing data
conversions and formatting, and that transferring large amounts of data per transfer reduces
the effect that the system overhead (necessary to execute a BASIC statement) has on overall
transfer rates. This is especially evident in the fast-handshake (WFHS) and the DMA (WDMA)

transfers.

All these speed improvements may seem impressive, but how often is our computer going to be
involved in computer-to-computer data transfers? (Rhetorical question). It turns out that
NOFORMAT transfers are useful in applications where high transfer rates and data formatting
are necessary as well. The formatting and conversion process is accomplished by the Variable-

to-Variable transfer, which is covered in the next section.

Another benefit to NOFORMAT transfers is that the user can obtain true overlap capabilities for
ENTER. The incoming data can be placed directly into a string variable or numeric array where
it can be kept until a Variable-to-Variable transfer is used to format the data into the correct
internal representation. (The Variable-to-Variable transfer is necessary only if the data needs to
be converted to numerics, or if any code conversions/ parity checking need to be done.) ASCII
strings can be input NOFORMAT with no other processing necessary, however, the user should

be aware of the difference between the following two program segments:

I

S EMTER &3RH¥ PoHormal dnput terminatez on LF
crocfull st ing.

(4%} EMHTER & HWOFORMAT;HF FOOHOFOREMAT input  termindtes
Srlie on full s=tring.

The NOFORMAT transfer (line 60) terminates only when the dimensioned length of A$ has
been filled. To terminate the transfer upon receipt of a line-feed, use the TRL (not available on

the 9845A) function as shown on the following page.



Ty
Dex

EHTER & HOFORMAT; TRLC1G . P

Now the transfer terminates when A$ is full or when an ASCII LF (decimal 10) is received. We
should note here that the Fast-Handshake and DMA transfer types allow a <count> parame-
ter, which specifies the total number of bytes or words of data to transfer.

Although a string variable is the suggested method of bufferinga NOFORMAT input, it may be
necessary to read in more data than a string will allow. The maximum size of any string variable

or array is 32 767 characters, or bytes, so an alternative variable type is needed for our large
buffer.

A numeric array provides us with the extra size needed, as shown here:

DIM Buffer_array (1:32767)

The actual size of Buffer_arrayis 32 767 elements of eight bytes per element, or 262 136 bytes

total for our buffer. This buffer size is large enough for most purposes, but a different type of

question now comes to mind...what's going to happen to the computer if we put ASCII charac-

ter data into a numeric array when the array is supposed to be in an internal BCD format?

The computer doesn’t crash like one might expect, at least as long as we don’t try to perform

numeric computations on those ASCII characters. (What's the square root of “BILL"?). It's

even possible to output the array, print it, and assign it to other numeric variables without

causing an error. The data in the array can be checked and formatted by means of a Variable-

to-Variable transfer, as done with the string variable buffer.

Variable-to-Variable Transfers

In the preceding section, we talked about the transfer portion of a data exchange, the NOFOR-
MAT transfer. In this section we will deal with the formatting and conversion portion of a data
exchange, the Variable-to-Variable transfer. The purpose of this type of transfer is to ‘‘trans-
late” between the ASCII data being transferred and the internal binary representation used by
our computer for variables. It can also take care of any conversions, such as ASCII to EBCDIC,
that need be done to communicate with the external device. Parity checking (input) and
generation (output) are also done at this stage. You can see that even though the Variable-to-
Variable transfer is done at full processor speed, there are many operations performed that
consume a large proportion of the overall time needed to actually complete a normal input or

output data transfer.



Computer

“Museurn Programming for Interface Operations

Unlike Fast-handshake, Interrupt, or DMA transfers, the Variable-to-Variable transfer does not
provide end-of-line branching upon completion of the transfer. The reason for this is easy
enough to see: the processor can execute no program lines when it is busy formatting data.
Therefore, no program lines are executed during a Variable-to-Variable transfer. The processor
can, however, do other [/ O (except Fast-handshake) because the formatting can be inter-
rupted for Interrupt transfers, and because DMA transfers require no processor attention once
initiated.

The actual Variable-to-Variable transfer is quite simple. The primary difference is that for input,
our source of data is not an external device, but is a variable such as a string array element
(where it was typically put by a NOFORMAT transfer). For output, the data is not sent to the
external device, but to a variable. From there it can later be sent to the external device by
means of a NOFORMAT transfer — at very high speed.

The diagram below depicts a combination of NOFORMAT and Variable-to-Variable transfers to

output a waveform data base to a d/a (digital-to-analog) converter:

OUTPUT

A(*) = OUTPUT Temp$;A(*) —» Temp$ —» OUTPUT 6 BFHS — D/A
NOFORMAT;Temp$ Converter

Data Formatting & Intermediate High Speed Data
(Source) ( Conversions ) ( Buffer ) ( Transfer ) (Destlnatlon)

The diagram below shows the relationship between NOFORMAT transfers and Variable-to-
Variable transfers for an input operation.

INPUT
DVM
(MXxx] @ ENTER 6 BFHS
© 0o - NOFORMAT;Temp$ —» Temp$ —3 ENTER Temp$;A(*) —— A(*)
Data High Speed Intermediat Formatting & D
(Source) ( Tgransl:ere ) ( ! Btrxnf?era e) ( Coo:laers?c?ns) (Desti:taation)

Let’s take the case of a high-speed DVM for an example. Our program is to take 1000 readings
per burst, and we want five bursts of data to process. To increase the speed of the transfers, we
will use a NOFORMAT transfer. Since the DVM transfers six characters of data per reading, we
need a string array with five elements of 6000 characters each. Our program has a pointer into
the string array, I, which keeps track of the string element currently receiving the data. As a
burst transfer completes, the pointer is incremented and another transfer is initiated, until all

five string elements are filled. At that time, the data is stored on the tape for future processing.

71



Our program merely inputs the data as rapidly as possible: any formatting or conversions to be

done must be handled later, which is the subject of the next section.

dore

cIn

biere .

1@ OPTION EASE 1

26 OYERLAF

el DIM TempFocS:laEbal

44 OH IHT #5,3 GOSUE Dum complete
by I=1

£ EMTER & EFHZS c808g MOFORNART; Temp#
g IF 1<=5% THEH V@&

Se Further gprocessing couwld be
34 !

g HZSIGH #1 TO "Zape!

I'1a FRIHNT #i;TempIu*ﬁ,EHD

1za !

1Ee FEIMT "ARLL DATH SHWED®

14a STOP

156 !

184 !

178 Dun_conplete; [=1+1

gy )

a8 IR Do THEN T

196 I ELSE Start next data transfer.
2HA EMTER & EFHSZ a2 HOFD

U SALY RETURH
228 ENT

EHAT s Temp®oin

The following program takes the data saved by the previous example and processes it one burst

(1000 readings) at a e,

1 OPTIGH BRSE 1

1a DIM Dum areawed @803y, Tenpslofaal
2B ASSIGH #1 TO “Sawe”

nh FOR I=1 TO 5

4 READ #13Temp#

44 oot e that sach valus 15 3
Gz Y This LF delimits the munbetz
jals EHTER Temp#;lum arraws)

Frocezz the data here

124 HEWT I
126 EHD

rarated byoa

LF.

ire Temp#,

Instead of appending the L/F to Temp$, we could also have specified an IMAGE reference in
our ENTER statement that disabled the normal L/F requirement to terminate the ENTER

statement.



Computer

-Museum

Unlike Fast-handshake, Interrupt, or DMA transfers, the Variable-to-Variable transfer does not
provide end-of-line branching upon completion of the transfer. The reason for this is easy
enough to see: the processor can execute no program lines when it is busy formatting data.
Therefore, no program lines are executed during a Variable-to-Variable transfer. The processor
can, however, do other 1/ 0 (except Fast-handshake) because the formatting can be inter-
rupted for Interrupt transfers, and because DMA transfers require no processor attention once

initiated.

The actual Variable-to-Variable transfer is quite simple. The primary difference is that for input,
our source of data is not an external device, but is a variable such as a string array element
(where it was typically put by a NOFORMAT transfer). For output, the data is not sent to the
external device, but to a variable. From there it can later be sent to the external device by
means of a NOFORMAT transfer — at very high speed.

The diagram below depicts a combination of NOFORMAT and Variable-to-Variable transfers to

output a waveform data base to a d/a (digital-to-analog) converter:

OUTPUT

A(*) — OUTPUT Temp$;A(*) —» Temp$ —» OUTPUT 6 BFHS ~—» D/A
NOFORMAT;Temp$ Converter

Data Formatting & Intermediate High Speed Data
Source ( Conversions ) ( Buffer ) Transfer ) Destination)

The diagram below shows the relationship between NOFORMAT transfers and Variable-to-
Variable transfers for an input operation.

INPUT
DVM
(MXXX] @ ENTER 6 BFHS
0 00 - NOFORMAT;Temp$ — Temp$ — ENTER Temp$;A(*) —— A(*)

( Data ) High Speed Intermediate Formatting & Data
Source Transfer Buffer ) ( Conversions ) (Destlnation)

Let’s take the case of a high-speed DVM for an example. Our program is to take 1000 readings
per burst, and we want five bursts of data to process. To increase the speed of the transfers, we
will use a NOFORMAT transfer. Since the DVM transfers six characters of data per reading, we
need a string array with five elements of 6000 characters each. Our program has a pointer into
the string array, I, which keeps track of the string element currently receiving the data. As a
burst transfer completes, the pointer is incremented and another transfer is initiated, until all

five string elements are filled. At that time, the data is stored on the tape for future processing.

Programming for Interface Operations

71



72 Programming for Interface Ownerations

Our program merely inputs the data as rapidly as possible: any formatting or conversions to be
done must be handled later, which is the subject of the next section.

18 OFTION BRSE 1

eS| OVERLAF

an DIM TempfFoSoLadmE]

4 O ITHT #5,3 GOSUR Dum camplete

Sl I= -

£ EHTER & EFHES SHOE HWOFOREMAT; Temp¥F oIl
7 IF 1¢=5 THEM 7@ '

?B I Further proceszing could be done here.
S !

jgats) ASSIGH #1 TO "Save

118 FREIMT #1;Temp$ixs

128 !

1z FRIAT "ALL DIRTR SAVED®

144 STOR

158 !

156 '

17f Do, complete: I=I+1

18 IF 1+% THEMW Exit

198 | ELSE  Start mest o data tranzter
R s EHTER € EBFHS 804 HOFCGREMAT:;Temp®il
i Exits FETURH

A EHD

The following program takes the data saved by the previous example and processes it one burst

(1000 readings) at a time:

1 COFTIOH EBARSE 1
14 I Dum_arrayi1EEB),Temp$[EBQE]
28 ASSIGH #1 To “Sawe"
25 FOR I=1 TO o
i RERD #1:;Temp¥
41 | HMete that sack walue {2 zeparated by a LF.
i | Thiz LF delimits the numbers in Temp®.
S EHTER Temp$;Dum _areayi)
Frocezz the data herse
1z@ HEAT I
1A EHD

Instead of appending the L/F to Temp$, we could also have specified an IMAGE reference in
our ENTER statement that disabled the normal L/F requirement to terminate the ENTER

statement.



Programming for Interface Operations 73

As we have seen, the Variable-to-Variable transfer extends the capabilities of Noformat trans-
fers beyond the scope of computer-to-computer data communications. It also allows the prog-
rammer to separate the actual data exchange from the formatting and conversion process.
There are some incidental ramifications to this separation, like the fact that during a NOFOR-
MAT transfer, processor time is not being utilized for data formatting so program execution
rates increase during Interrupt, standard-Handshake, and DMA transfers. (Recall that Fast-
handshake transfers dedicate the processor for the duration of the transfer, so a computer like

the System 35 will not be doing any program execution at all once a Fast-handshake transfer is
initiated.)

The user should be aware, however, that when a NOFORMAT transfer is used in conjunction
with a Variable-to-Variable transfer, the overall I/ O throughput is decreased. This is because
more system overhead is necessary to complete the transfer. The following two program seg-

ments are equivalent, but the second segment takes longer to execute:

n
%t

EHTER S:A,E,C,D

EHTER & HOFORMAT;TRLOIBY HE
EHMHTER HA#;3H,E,C,T

gl

a5 0
L)

The actual raw data transfer from select code 6 is faster in the second segment, but the
throughput is decreased because of the necessity of executing two statements rather than one.
Such a trade-off is desirable in certain cases, however, such as overlapped ENTER (for taking
data from multiple devices simultaneously) or maximum transfer rate (such as taking readings
from an HP3437 DVM for waveform analysis). The [/ O programmer must weigh the advan-

tages against the disadvantages of each method and design the program to accomplish the
desired result.

One last item should be mentioned here, and that is: what happens when the variable name is
an expression? In other words, assume A(1) = 4. How does

18 EHTER RAClogh

differ from

28 EMTER Roloslgl



— o= e EEE M AT LALIVILYD

Inline 10, a Variable-to-Variable transfer takes place — the source is A(1) and the destination is
V. In line 20, a normal select code ENTER occurs — the source is select code 4 and the

destination is V. The difference is caused by specifying an expression (any expression will do:
A(1) + 0 too) rather than a simple variable name.

Overlapped 1/ 0

Overlap” is a term generally used to express the concept of an object extending over and

covering part of another object in space, like so:

—~—
Overlap

As the term is used in the BASIC language of the System 3545 desktop computer, “overlap”
means the extension of one process over another in time. The processes involved can be

program execution and one or more [/ O transfers.

You have already dealt with the concept of overlap when reading about interrupt transfers. In

the simplest case, the processor executes the BASIC language program, occasionally pausing

in the process to transfer the next item of data to the external device as that device indicates

ready (by interrupt). This is how program execution can overlap with [ /O transfers.

Taking this concept a little further, picture the processor dealing with several external devices
by means of interrupt transfers. The processor now spends less of its time executing the user’s
BASIC program and more of its time shuttling back and forth transferring data with each device
as that device indicates that it is ready for (or with) data. The System 45 computers have
separate processors for /O and program execution, so program execution is not usually
affected by 1/ 0 transfers. The [/ O processor takes care of the shuttling back and forth servic-
ing the various transfers. Now we can see in our minds how various [ /O transfers might overlap

with each other.

When an OVERLAPlstatement is executed, the processor can allow various /O transfers to
occur concurrently. This is possible because in Overlap, an ENTER or OQUTPUT statement
merely initiates the transfer process, leaving the processor free to continue program execution
— which may include further ENTER and OUTPUT statements! This can be illustrated by a
simple example:

1 OVERLAP must be specified in your program or operations are performed serially.

rev: 12/80



"z
[}

OMERLAF
HATFUT
QHITRUT
QUTPUT
OLTRUT
BUTRFUT
DUTFUT

L i

EIMT; A%
EIMT; E$
BIMT;C#
EIMT:; D%
EINT;E%
EINT;F$
DUTFUT 7 EIMT;G#
OUTFUT & EIMT;H#
OUTFUT % EIMT:I#
QUTFUT 1@ EIMT;J#

(]}
o

D) B A R DV

O e SN T 0 R 10 HORS CRg i M S\

SRRt s 5

B Mk S A0 R Iy B v TR R A R o B

e e g b ek e ik ek s b
5

R =T Rl T i o N 1ot B o B I L B v

K G T e e
e}

1, vl
uon

=
RN (%}
LS
DA N i

GOTO 1818

! Mow wze the war
FE="HEXT DRTH FOF Ax"
BE="HEXT DATA FiOR BF"

Programming for Interface Operations

A ablesso

J$="HEXT DATA FOR J#°

Lets assume that each output transfer takes one second to complete, and that each program

statement takes one millisecond to execute. If we did not execute the OVERLAP statement, the

total time might be expected to be 10.010 seconds to output the data and reach line 1120. In

OVERLAP, however, the time requ

ired is closer to 1.010 seconds, almost an order of mag-

nitude faster. Each one second transfer is now ‘‘overlapping’” with the others and with the

program execution, as shown below

T e | second o 10 msec ——]

| ———— OUTPUT 1 BINT:A$ —————! |

1 msec —7 Je———— OUTPUT 2 BINT-B$ —:>| !
| |

| |<_ OUTPUT 3 BINT;C$ —T—>I |

| ¢———— OUTPUT 10 BINT;dJ$ ——mmp|

Je—— 10 msec —{

[ |
Can Use A$ Can Use J$
Here Here

(T+1 second) (T+1.010 second)

75



Naturally, certain constraints must be placed on this course of events. The processor’s firmware
must determine if successive 1/ O statements are directed to the same device, in which case
these successive statements are put in a ‘‘queue”, or a waiting line. They are waiting for a
““systemresource,” in this case the external device. As the first transfer completes, the firmware

checks to see if any transfers are still pending to the now free device, and takes the first one in
line.

Suppose your program looked like this:

DIM A#lse]l, Cs0aa]
DYERLAP
EHTER & BINT:HA%
CE=RF04; 1E]
PRIMT Cf
EHD

T A0 e Gy e
LR o I s B e £ uY ]

5K

Line 20 frees the processor to continue program execution and other 1/0 even if an 1/0
transfer is in progress. Line 30 initiates an input transfer from the device on select code 6 into
variable A$, Line 40 takes a substring of A$ and places the result in C$, which is printed in Line

50.

What happens when the processor tries to execute Line 40?

If the input transfer started in Line 30 is not yet complete, the processor has to wait. The
variable A$ may be in some intermediate state of being modified by the transfer in progress,

and it may change even as it is being accessed for the substring operation! Therefore, variables

being written into by an input transfer are flagged as “busy.” Now, any time the processor
accesses a variable, it can check to see if that variable is “‘busy” before using that variable. This
avoids the possibility of getting ‘‘garbage’’ values from a variable. As you might have guessed,
program execution in the above example pauses at Line 40 until the input transfer from select

code 6 completes.

Notice the presence of a string variable rather than a numeric variable in the above example.
The string input was not chosen by chance for an example of overlapped input — it was chosen
because neither freefield nor formatted numeric ENTERs can overlap. This fact is indicated by

the qualification ‘‘string variable only’’ in the Capabilities table at the end of this section.



Programming for Interface Operations

The reason that numeric input does not overlap (unless it is NOFORMAT) is because the
numeric formatting, (or changing ASCII characters into internal number formats) is done by the
processor that executes the BASIC program. The /0O processor simply takes the incoming
ASCII characters and delivers them to the language processor for conversion. This means that
the language processor must wait for the character input to complete before it (the processor)
can finish assembling the numbers in the ENTER statement and continue on with the next

program line.

Looking at the System 35 ENTER / OUTPUT Capabilities tables at the end of this section, some
of the yes/ no’s start to make more sense. The Overlap Compute column tells us which of the
transfer types allow the processor to continue program execution once the transfer has been
initiated. The regular and the Fast-handshake transfers require the processor’s attention to the
data handshake line of the external device, so you might expect that program execution would
be held up. The ““No’s”’ in the Overlap Compute column verify this.

You'd also expect that the processor could not afford the time to service an interrupt from an
external device while it is in a Fast-handshake transfer. And indeed, our table bears this out.
Interrupts are disabled for the duration of a Fast-handshake transfer. With DMA transfers,
however, there seems to be a discrepancy between input (ENTER) and output (OUTPUT) DMA
transfers in the overlap compute column. Since DMA transfers require no firmware interven-
tion, the system should be able to continue program execution while the transfer is in progress,
yet it doesn’t overlap computation with a DMA input transfer. Why is this? The actual reason
lies in the difference between the way the ENTER and the OUTPUT formatting is handled by
the [/O ROM firmware: although the language processor (executing the user program) is not
dedicated to the ENTER’s data transfer, it must wait for the data characters to be input so they
can be put into correct internal format. Thus, no program lines will be executed. OUTPUT
transfers differ in that the language processor simply delivers a copy of the variables and
constants in the data list to the 1./ O processor for outputting. The language processor is then
free to execute the user’'s BASIC program.

Looking at the table section labeled “NOFORMAT,” we can see that it is possible to execute a
NOFORMAT DMA input transfer that allows computation to overlap with the transfer. Again,
why is this? It's because we have done away with the need to format the incoming data, so that
— in a way — we have circumvented a restriction imposed by the system. The /O ROM’s
flexibility can go to work for us, and by using the NOFORMAT transfer in conjunction with the
Variable-to-Variable transfer, we can obtain true input overlap capabilities.

77



78 Programming for Interface Operations

SYSTEM 35
170 CAPABILITIES TABLES

ENTER Overlap Modes

Freefield/ USING NOFORMAT
Transfer Overlap Overlap with
Type Compute: | Transfer Types: | Compute: | Transfer Types:
BYTE No INT,DMA No INT,DMA
(Byte handshake) {Note 1) (Note 1)
WHS No INT,DMA No INT,DMA
(Word handshake) (Note 1) (Note 1)
BINT For string INT,DMA, Yes INT,DMA,
(Byte interrupt) variable only.| Handshake(HS) Handshake(HS)
WINT For string INT,DMA, Yes INT,DMA,
(Word interrupt) variable only| Handshake(HS) Handshake(HS)
BFHS No None No None
(Byte Fast-handshake)
WFHS No None No None
(Word Fast-handshake)
BDMA No INT, Yes INT,
(Byte DMA) Handshake(HS) Handshake(HS)
WDMA No INT, Yes INT,
(Word DMA) Handshake(HS) Handshake{HS)
Var-Var No All Not Not
Variable-to-Variable (Note 1) Applicable Applicable
Note 1: These transfers must already be in progress.
OUTPUT Overlap Modes
Freefield/ USING NOFORMAT
Transfer Overlap Overlap with Overlap Overlap with
Type Compute: | Transfer Types: | Compute: | Transfer Types:
BYTE No INT,DMA No INT,DMA
(Byte handshake) (Note 1) {Note 1}
WHS No INT,DMA No INT,DMA
(Word handshake) (Note 1) (Note 1)
BINT Yes INT,DMA, Yes INT,DMA,
(Byte Interrupt) Handshake(HS) Handshake{(HS)
WINT Yes INT,DMA, Yes INT,DMA,
{(Word interrupt) Handshake(HS) Handshake(HS)
BFHS No None No None
(Byte Fast-handshake)
WFHS No None No None
(Word Fast-handshake)
BDMA Yes INT, Yes INT,
(Byte DMA) Handshake(HS) Handshake(HS)
WDMA Yes INT, Yes INT,
(Word DMA) Handshake(HS) Handshake(HS)
Var-Var No All Not Not
Variable-to-Variable (Note 1) Applicable Applicable

Note 1: These transfers must already be in progress.




Computer Programming for Interface Operations 79
Museum >

Memory Organization
and
I/ 0 Programming

Transfer Glitches

The memory organization of the desktop computer has a definite impact on certain [/ O trans-
fers, notably DMA and fast-handshake transfer types. The 9835/45B |0 ROM manuals
mention the need to have a variable reside totally within one memory block (64K bytes of

memory) in order to avoid pauses, or ‘‘glitches’ in the transfer rate.

Due to the method of addressing used by the I/ O processor in the 9835 /45B, any transfer that
includes data outside of the current 64K memory block being addressed must be done in
segments that terminate on the block boundaries. Assume, for example, that we have a 120K
character string array to send to a D/ A converter (using DMA) in order to simulate a complex
waveform. Due to the order in which variables were dimensioned, our string array, D_a$ straddles both |

boundaries of Block 4 as shown below.

Block Block
64K Boundary 64K Boundary 64K
I
Block 6 Block 4 Block 2

a b c

g

D _a$(1:4)[30 000]

The DMA transfer of D _a$ proceeds in three stages, first segment ““a’ is set up and transferred,
then segment “b”’ and finally segment ‘‘c.”’ Although each segment is transferred at the DMA

i3}

rate, there is a pause, or ‘‘glitch,” in the transfer as the computer sets up new pointers for the
transfer of the next segment. (In the hypothetical example above, our complex waveform

becomes more complex than we intended!)

The general guidelines to follow in order to avoid these glitches are given in Appendix F of the
apppropriate /O ROM manual for your computer. There is, however, another less likely
possibility that can occur with DMA transfers crossing block boundaries, and is the subject of

the next section.

rev: 6/81



80 Programming for Interface Operations

DMA Termination

This event can create a problem if a DMA transfer is prematurely terminated by the peripheral
exactly at a block boundary. At the block boundary, the hardware DMA counter decrements to
zero and interrupts, indicating the block transfer is complete. If an interrupt from the peripheral
is received simultaneously (through the EIR line of the 98032A interface) to force early termi-

nation of the transfer, that early termination interrupt cannot be differentiated from the inter-
rupt from the DMA counter.

Hardware DMA transfers can only be a maximum of 64K bytes (32K words, or 1 block).
Therefore, any transfer that includes a variable or array which crosses block boundaries must
be done in segments. Each segment is treated as a complete, logical DMA transfer by the
processor, so each segment must be set up, initiated, and terminated. If the transfer terminates
with the DMA counter equal to zero, then the whole block or segment was transferred success-

fully. The next segment (if there are any remaining) is then set up and initiated.

If the data segment being transferred is simultaneously terminated by a zero DMA count and by
the peripheral interrupting on the EIR line, then the 1/0 ROM firmware cannot detect the
peripheral’s request for early termination. The firmware will go on with the process of setting up

and initiating the DMA transfer for each remaining data segment.

Obviously, the logical methods to use to avoid missing an early termination interrupt from the
peripheral are either to transfer 64K bytes or less, all within a memory block, or to use fast-

handshake, if possible, to transfer these larger amounts of data.



Chapter 3
HP Interface Cards

Interfacing and
the Computer [/ O Bus

In Chapter 2, we discussed the various methods of programming for 1/ O operations, and
treated the interfaces themselves as ‘‘black boxes’ which could be described by the register
model (R4, R5, R6, and R7). All input and output operations were described in terms of
sequences of reads and writes between the computer and the interface registers; and indeed
this register model is sufficient for writing interfacing programs. In the following sections, we
will go into more detail about the actual structure of the interface cards and how this register
model is implemented. This information will be helpful in actually connecting peripheral de-

vices to the interface cards and configuring [/ O systems.

Each of the interfaces has its own installation and service manual which contains detailed
information about the circuits used, the lines available, and the general operational characteris-
tics of the card. It is not the intent of this guide to duplicate the information contained in those
manuals, but rather to describe and give examples of the intended use of the various
capabilities that exist on each card so that the user may understand and make maximum use of
these capabilities. This information should be helpful in deciding which interface card to use in
a particular application, and to recognize which control features of that interface are best suited

to serve the needs of that application.

Of the four interfaces described in the following sections, the 98032A 16-Bit Parallel Interface
is the most versatile and general purpose. This is the card used to interface with many of the
current HP peripherals available for the desktop computers such as printers, plotters, tape
punches and readers, card readers, and flexible disk drives. It is also the interface that is used
most often when the user wants to connect his own special-purpose or customized peripheral
into the system. The versatility of this card allows it to support a wide range of special require-
ments in interfacing to such devices.



82 HP Interface Cards

Many instruments and measuring devices present their data in a special format called BCD or
binary-coded-decimal. This format is frequently found in digital voltmeters, multimeters, and
other measuring instruments. The 98033A BCD Interface was specifically designed to accept
inputs from these devices and to convert those inputs into a format that can be read by the
computer. Whenever a device with BCD outputs is used, this card will usually prove to be the

easiest one to interface with.

The task of interfacing a peripheral device to the computer would be greatly simplified if the use
of data and control lines, logic levels, connector configurations, and operating protocol were
standardized. If a group of computing controllers and peripheral devices were to adopt this
standard, then these devices would be “plug to plug” compatible; and the job of interfacing
them to one another would be reduced to simply plugging them together. The HP-
IB(Hewlett-Packard Interface Bus) provides this kind of compatibility. The structure and the
format of the HP-IB has become so popular that the Institute of Electrical and Electronic
Engineers has adopted it as a standard (IEEE 488-1978) and today dozens of manufacturers
provide hundreds of devices which are compatible with that standard. The 98034A HP-IB card
is also available to allow HP desktop computers to participate on this standardized bus. The
section of this guide covering that interface goes into more detail concerning the intent and the
use of the HP-IB.

A fourth broad area of interfacing deals with data communications. This area is used primarily
for information exchange between computers over long distances, although many applications
are found for peripheral communications (e.g., remote terminals connected to a central compu-
ter) and local computer networks. The special requirements of this type of interfacing are
discussed in the section on the 98036A card which provides HP desktop computers with an

access link into the area of data communications.

Before describing each of these four types of interfaces in detail, we will first look at that portion
of these cards which is common to all of them — namely, the edge of the card that connects to
the computer [/ O backplane. We saw in Chapter 2 how high-level BASIC statements such as
WRITE BIN, OUTPUT and ENTER are translated by the I/ O ROM into sequences of read and
write operations with the interface registers. A special segment of the computer’s system called
the 1/ 0O processor is responsible for converting the machine language instructions which ad-
dress these registers into a set of electrical signals which will cause the interface to perform the
desired operation. These signals are made available to the interfaces at a connector called the
computer backplane or simply the [/ O bus. It is called a bus because many interfaces can be
connected to it in parallel and all of them use the same bus over which to communicate their
signals. All of the interfaces are connected to this bus in a ‘‘wire-and” configuration and

passively allow the line to float high. The one interface that is currently selected to put its



HP Interface Cards

information on this line allows it to remain high if it requires it to be high, or pulls it to ground if
it requires it to be low. Thus, to the /0 processor, it appears as though only the selected

interface is connected to the bus at the time information is requested from that card.

The mechanism by which one card on the bus is selected to present its information to the /O
processor is called the select code method. Each interface is assigned a select code in the range
0-15. Internal devices (keyboard, display, printer, tape cartridge) have their select codes preset
or “hard wired.” External interfaces have their select codes set by an externally accessible
rotary switch on the card itself. When the 1/ O processor wishes to communicate with a given
interface, it takes the select code parameter from the program’s BASIC statement (e.g.,
OUTPUT 6,. . .) and converts it to a 4-bit binary equivalent (in this example, 0110) which it
presents on the four peripheral address lines (PAO through PA3) to the interface. Only that card
whose select code switch matches the bit pattern being presented on the peripheral address
lines will respond.

But what is the nature of this response? This question is answered by looking at the remainder

of the lines used for communication between the /O processor and the interface.

The first immediate response is to set the state of the status (STS) and the flag (FLG) lines. The
status line is a 1-bit indicator that tells the I/ O processor whether the selected interface (and
possibly the peripheral device connected to it) is operational or not. The flag line indicates
whether the interface is still busy processing the last task given to it by the [/ O processor, or is
ready for another operation. (See the Handshake Process section.) If the status and flag lines
are both low!, the I/ O processor may proceed with the next operation.

As we discussed in the previous chapter, all operations with the card are accomplished by
writing to or reading from the 8 interface registers. The 1./ O processor has 16 data lines (DIO0
through D10O15) available for this purpose. We will see later that some interface cards use all 16
of these lines while others may use only 8. Indeed, some interfaces may use different numbers
of these lines for different registers. For example, the 98032A Bit-Parallel Interface uses all 16
lines for data transfer (R4IN and R4OUT), but only 8 for taking its control byte (R50UT) and
presenting its status byte (R5IN).

Since the same set of data lines are used to exchange information between the 1/ O processor
and all eight interface registers, some means is necessary to inform the interface which register
is being addressed (R4, R5, R6, or R7) and whether the required operation is IN or OUT. This is
accomplished by the IC1 and IC2 lines which indicate the register number, and the DOUT line
which indicates the direction. The following table gives the status of the IC1 and IC2 lines used
to address the four register numbers.

1 Since all lines on the I/ O bus use negative-true logic, High = O = False and Low = 1 = True.

83



The DOUT line is high for input (interface to I/ O processor) and low for output. When the /0O
processor requests an input from an interface register, the card uses the FLG line to indicate

when the information on the data lines is valid (high = busy, low = ready). The /O processor

also needs a means of telling the interface that information on the DIO lines is valid when itis
conducting an output operation to the interface registers. It does this by momentarily pulsing
the 1/ O Strobe (IOSB) line low. On this signal, the interface routes the information on the DIO

lines to the proper register and latches it.

These lines then provide the basic operations of the interface: selecting a specific card, check-

ing that it is operational and ready, and exchanging information between the 1/0 processor
and the intetface tegisters. The remaining lines on the I/ 0O bus are used for implementing

special functions.

The first of these special functions is the ability to initialize the cards. When power is turned on
or the RESET key is pressed, an initialization line (INIT) is momentarily pulsed low. This tells all
of the interfaces connected to the /0 bus to reset their latches and flipflops to some standard

initial state. (This signal is also made available on the peripheral side of some interfaces so that

the attached device is also given a chance to re-initialize.)

Three other lines are used to provide interrupt capability. If an interface has been enabled to

interrupt on a certain condition and that condition occurs, the card responds by pulling and
holding low either the IRL or the IRH line. If its select code is 0-7, it will request a low level
interrupt on the IRL line; if it is 8-15, it will request a high level interrupt on the IRH line. In

either case, if that level of interrupt is not already in use (see ‘‘Interrupt Priorities,”” Chapter 2),
the 17O processor will poll the interfaces to determine which one requested the interrupt. It
does this by setting the interrupt line {INT) low. During this interrupt poll, the PAQ line is used
to indicate whether the 1/0 processor is polling the low level interrupts or the high level
interrupts. During a low level poll, each interface responds on the DIO line that corresponds to
its select code (select code 7 on DIO7, etc.), setting it high if it was not requesting interrupt and
low if it was. The [/ O processor thus determines which of the cards was requesting service. If
two or more cards on the same level are requesting service at the same time, the one with the
higher select code will be granted the interrupt first. During a high level poll, each card

responds on the DIO line that corresponds to its select code minus eight (select code 15 on
DIO7, etc.).



Computer
Museum
Finally, a special line (DMAR) is used for the interface card to request a DMA cycle if it has been
enabled to do so by the [/ O ROM (see ““Interrupt Priorities,” Chapter 2).

The remaining three lines are for providing electrical power to the card. These are the + 5 volt
supply, a ground line, and a shield line. All of the interfaces get their power from the compu-
ter’'s main power supply. The capacity of this power supply was designed to accommodate the
computer itself plus the number of interfaces that can be plugged directly into it. As a result, the
power supply line on the 1/0 bus should not be used to provide power for any external
devices. Doing so could result in erratic operation or even damage to the computer’s power
supply circuitry. The logic ground line is meant to provide a zero volt reference point from
which other voltages are measured. This logic ground is brought out on the peripheral side of
the card and should be connected to the logic ground line of the attached device so that all
signals are measured from a common reference point. The shield line is provided in order to
ground the metal casing used in the cable connecting the interface to the peripheral, thus
reducing the amount of radio frequency interference (RFI} emitted. The shield line is connected
to the logic ground inside the computer and should not be connected to the ground or any
other line on the peripheral. Otherwise, ground loops will be created leading to erratic opera-
tion.

Up to now, we have discussed the operation of the interface cards from the computer’'s [/ O
bus, and the description given is common to all of the interface cards. When information is
exchanged with the interface registers on the cards, the resulting action at the peripheral side of
the card depends on which interface is being used. Indeed, it is the difference in requirements
at the peripheral side that necessitates having the various types of interface cards. What these

differing requirements are and how they are implemented is the topic of the following sections.

Interface ID and Card Types

Each of the HP 9803x series of interface cards has unique characteristics suited for the needs
which they were designed to satisfy. As a result, even though they can all be described by the
same register model as presented in an earlier section, the specific use of these registers and the
order in which they are addressed will differ from one card to the next. For example, when data
is read into a buffer under interrupt, the exact sequence of R-register operations will differ
slightly depending upon whether the data is coming through a 98032 GPIO card or a 98034
HP-IB card. For this reason, the input driver (i.e., ROM instructions for reading from the

interface) must be able to distinguish among the various interface types.

In order to do this, two bits of the status byte (R5-in) have been assigned as identifier or Ileits.

These are bits 5 and 4 of the status byte and have the following meaning.

1 These ID bits are contained in the R5-in register which is not the register through which HP-IB status bytes are received. As a
result, you do not see the ID bits for the HP-IB card when the STATUS function is executed. See the description of the HP-1B
card for more details (page 112).

rev: 12/80

HP Interface Cards

85



86 HP Interface Cards

Card ID Bits

Type 5 4 Interface Card Type

0 0 0 None (no interface on this select code)

1 0 1 Serial /0 Interface (98036)

2 1 0 Gen Purpose Card (98032,98033,98035)
3! 1 1 HP-IB Interface (98034)

As the table shows, most interface cards are type 2 and all use the same protocol or register
access sequence. The HP-IB interface is different and requires a special protocol that allows it
to perform the wide variety of bus functions. Although the Serial 1/ O card is functionally the
same as the type 2 cards, giving it a unique interface ID type allows it to be distinguished from

the others.

If the ID bits are both zero, this identifies a so-called empty slot; that is, there is no interface set
to the specified select code. This means that all properly-operating interface cards of the 9803x
series will never return a value of zero for the status byte since at least one bit of the status byte

is always a one.

The Use of the Control Register

In the following sections dealing with the interface cards themselves, we will see that the RS
OUT control register is used to access the programmable capabilities contained on those cards.
For example, the control register of the 98032A Interface is used to reset the card, turn on and
off the interrupt, DMA, and auto-handshake options, and to set and clear the two user-defined
control bits. The BASIC language provides three statements for output to this control register;
namely, the wait write (WAIT WRITE), the card enable (CARD ENABLE!), and the write
interface (WRITE I0) statements. Each of these statements has slightly different operational

characteristics which will be discussed in this section. These characteristics are summarized in
the table below.

Statement Masked | Immediate | Saved | Wait for FLG (flag)
WRITE IO no yes no no
WAIT WRITE no yes no yes
CONTROL MASK S no yes S
CARD ENABLE yes no — yes

Under different conditions the control mask is written into R5 OUT by OUTPUT and ENTER

statements.

Simple ENTER and OUTPUT statements do not write the control mask to R5 OUT. ENTER or
OUTPUT using an INT or DMA option both copy the control mask at the beginning of the

1 ghe CARD ENABLE statement takes the current value of the control mask (set by CONTROL MASK) and writes it to the R5
UT register.

rev: 12/80



HP Interface Cards

transfer. An OUTPUT with the FHS option does not write the mask to R5SOUT. An ENTER with
FHS options writes the control mask after the transfer has completed (when the ENTER is satis-
fied).

When the 1O ROM is present, the program may take advantage of the interrupt capability of
the interface cards. In this case, the CARD ENABLE statement is used to allow the card to
interrupt when it finishes the last operation and again comes ready. The CARD ENABLE
statement “arms’’ the I/ O ROM firmware for interrupt service. For example, if we were to do

something to make the interface go busy, and then execute the statements

ON INT #6, 1 GOTO User-service
CONTROL MASK 6; 128
CARD ENABLE 6

the interface on select code 6 would interrupt (and the program would be sent to the user’s
service routine by the [/ O ROM) when the operation was completed and the card came ready.
A mask value of 128 was used, which set only the interrupt enable bit (see Figure 32). If we also
wanted bit 0 set (CTLO), we would have used instead

CONTROL MASK 6; 129
CARD ENABLE 6

When data buffers are being transferred under interrupt (BINT), the CARD ENABLE statement
is not normally used. That is, the [/ O ROM automatically takes care of setting and clearing the
interrupt-enable bit at the appropriate times during the transfer process. In this case, to set a
control bit, we would use the WAIT WRITE statement. To show the difference between WAIT
WRITE and CARD ENABLE, let's consider an example where data is to be read from a
peripheral using an interrupt transfer, and where CTLO is used to set the peripheral device into
some desired state. That is, if CTLO is set the device will operate one way, and if it is clear it will
perform in another manner. Suppose then that we execute the statement WAIT WRITE 6,5;1 to
set CTLO, which is the mode we want the device to be in for this particular application. If we
now execute an interrupt® transfer (OUTPUT 6 BINT;A$), the /O ROM will send a 128 to the
control register to enable interrupts, and as a result the CTLO bit will be cleared causing the
device to switch to the other mode of operation, which is not the one we require for this task.
How then do we do the transfer operation without losing the setting of the CTLO bit?

The CONTROL MASK statement provides the solution. If we had used the statements

Control byte = 1

CONTROL MASK 6;Control_byte
WAIT WRITE 6,5;Control_byte
OUTPUT 6 BINT,A$

1 DMA transfers also write a control byte to the interface. A CONTROL MASK statement should also be used with DMA transfers
to avoid unwanted changing of the control bits.

rev: 12/80

87



88 HP Interface Cards

to set the CTLO bit, two things would have happened. The control byte (1 in this case) would
have gone to the R5 OUT control register, and CTLO would be set. But in addition, a copy of
this control byte would be saved by the /O ROM because the CONTROL MASK statement
was executed with the Control byte value. Then, anytime the [ /O ROM needed to change the
state of the interrupt bits, it would automatically retain the state of the lower four bits from the
saved value of the last CONTROL MASK statement to that select code. Thus, the setting of

CTLO would remain unchanged during the entire transfer process.

It is important to note that while the CONTROL MASK statement is used primarily with the
CARD ENABLE statemnent to enable interrupts, here is a case where it is not. The CONTROL
MASK statement here merely sets up a control byte value in such a way that it is retained by the
/O ROM, and does not actually enable the card for interrupt.

The 98032A Bit-Parallel Interface

General Operational Characteristics

The 98032A Interface is the most versatile, general purpose card and is used most often to

connect the computer to those devices which do not conform to some standard format and

protocol such as BCD or HP-IB.

It can output data to a peripheral using up to 16 bits at a time in parallel, and it can input data
from the same or a different peripheral over an independent set of 16 parallel input lines. These
input and output lines can be further partitioned into two sets of 8-bits each for handling special
applications. The card can be configured to accept a wide variety of signals from the peripheral
and indicate when input data is ready or output data has been accepted. These and other

capabilities will be discussed in the following pages.

There is no restriction on the interpretation to be placed on the data being sent or received. If
the card is being used, for example, to interface to an A/ D (analog to digital) converter, the bits
received would probably be interpreted as a binary number whose value is proportional to the
voltage being measured. When interfacing to a printer, the bits would represent some al-
phanumeric character to be printed using some code that the printer can recognize such as
ASCIL Or if the data were being input from a card reader, it would simply represent a pattern of
ones and zeros corresponding to the presence or absence of punched holes or pencil marks at
specific locations on that card. It would then be up to the program in the computer to translate
these patterns into meaningful information, based on the design of the card being read. As far
as the interface is concerned, each data item is merely a set of 16 bits to be sent or received;
and any meaning to be placed on that data is based entirely on an agreement between the

computer and the peripheral as to how they will interpret it.

rev: 12/80



HP Interface Cards

In the previous section, we developed a register operational model that was general to all of the

interfaces. The table below gives the specific use of each of these registers by the 98032A

Interface.
IN ouT
R4 DATA IN DATA OUT
R5 STATUS CONTROL
R6 HIGH BYTE DATA HIGH BYTE DATA
R7 (not used) TRIGGER
Figure 31

The R4 register is the one through which data is normally sent and received. In Chapter 2, we
saw programming examples of how this register is used to exchange data between the compu-
ter and the peripheral device. These examples were based on the register model of the inter-
face. Later in this section when we discuss the handshake process, we will see what actually
takes place on the card when these registers are accessed. The R6 registers are used on the

98032A when it is operating in the optional ‘‘byte mode” and will also be discussed later.

The R7 input register is not used by this interface, and if a READIO<sc>,7;A operation is
performed, the result will always be a zero. The R7 out register is used to trigger either an input
or an output operation. The actual byte output to the R7 register does not matter. It is the act of
writing to this register itself that causes the read or write operation to be triggered. This register

is also covered in the following section on the handshake process.

The R5 register is always used as a communication link between the computer and the interface
itself. The 98032A has certain modes of operation that are programmable by the computer.
The /0 processor can make the card go in and out of these modes by outputting specific bit
patterns called the control byte to the R5 register. The bit assignments for the control byte on
the 98032A are given in Figure 32.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

INT DMA | RESET AH X X CTL1 CTLO

INT: Interrupt Enable on FLG = Ready

DMA: Direct Memory Access Enable

RESET: Reset the Card to Its Power-on State

AH: Auto Handshake Enable

X: These bits are not used and may bea 1l ora 0
CTL1,0: General User-definable Control Bits

Figure 32

89



90 HP Interface Cards

;\

When bit 7 of the control byte is set (= 1), the interface is enabled to request an interrupt to the

1/ 0 processor whenever the FLG line on the card indicates ready. We have already discussed
in the Interrupt [/ O Section how the [/ O processor uses this interrupt request to carry out data
transfer operations with buffers and other interrupt activities.

Setting the DMA enable (bit 6) programs the card to request a DMA access each time the FLG
line comes ready. Thus we see that the interface will do one of three things when the FLG line
comes ready. If bits 6 and 7 of the control register are both zero, the card will merely indicate
the ready condition on the FLG line but perform no other action. If bit 7 is set, the card will
request an interrupt. Or if bit 6 is set, it will request that another word of data be sent or
received via the DMA channel. If both bits 6 and 7 are set, the DMA request will override the
interrupt request until the DMA transfer is complete (i.e., the count of words to be transferred
has been satisfied). When the transfer completes, the card will automatically disable DMA| and
the next time the FLG line comes ready, a normal interrupt request will be generated. INT
remains enabled until disabled by the 1/ O processor, while DMA automatically disables itself

when the DMA transfer is complete. Since the DMA transfer is a complex operation and is

“handled automatically by the [/ O ROM, the user’s program would rarely set or clear the DMA

enable bit.

The RESET bit (bit 5) is used to return the card to its power-on or “‘wake-up” state. On the
98032A, this causes the PCTL handshake line to return to high (control not set), and the
program/;nable conditions of INT, DMA, and AHS to be cleared or disabled. A low pulse is also
generated on a peripheral reset line (PRESET) so that the attached peripheral device also can
receive anindication that a reset operation has been performed. The action taken on this signal
is determined by the peripheral itself. For example, the 9866A /B Thermal Line Printer clears
out its built-in data buffer when it sees this signal. This reset action can also be initiated by the
INIT line from the [/ 0O processor, which is done whenever the Control-Stop keys on the
computer are pressed. While the use of the INIT line resets all interface cards connected to the
[/ 0 bus, the RESET bit of the control byte is used to selectively reset only one interface card. It
should also be noted that the RESET bit of the control byte overrides any other bits (INT, DMA,
AHS) that may be set in that control byte.

Bit 4 of the control byte is used to set a special mode of operation called the ‘‘auto handshake”’
mode. In this mode, the use of the R7 OUT trigger operation (see examples in Chapter 2} is not
required. For data output, as soon as the data is placed in the R4 OUT register, it is automati-
cally triggered. For data input, when the current data item is read from the interface data
latches (R4 IN), this automatically triggers a demand for the next data item from the peripheral.
Again, this mode of operation is used primarily by the I/ O drivers in the /O ROM and is not

something with which the user normally need be concerned.



HP Interface Cards

Finally, the control byte provides two general-purpose control bits called CTL1 and CTLO.
These lines are made available at the peripheral side of the interface card and may be used for
whatever purpose and meaning the user may wish to assign to them. For example, the user may
have designed an input device which can either deliver a data item whenever the program
requests one, or when an operator at the device presses a GO button. If the device were
designed to switch between these two modes of operation based on the state of a control signal
externally supplied to that device, one of the two control lines (CTL1 or CTLO) could be
connected to the external control line on the peripheral so that the mode of operation could be
selected by the computer program. Other examples of the use of these control lines will appear
later in this guide.

The interface is also capable of delivering information back to the [/ O processor concerning
the states that it is currently in. This is known as status information and is read by the processor
through an R5 IN operation. For most interface cards this status information is contained in
eight bits and is usually called the status byte. This should not be confused with the status line
(STS) which is a one-bit indicator of whether or not the interface card and its associated
peripheral are operational. The information contained in the status byte is information about
the current state of the interface card itself, and not about the peripheral device (except for
STI1 and STIO as explained later).

The status byte is obtained by the program through the use of the read-status statement,
STATUS <select code>; <return variable>. This statement takes as its parameter the select
code of the desired interface and returns a value which is the decimal equivalent of the status

byte. Since the function for testing the 1-bit status line (STS) is contained in the | O ROM, this
bit is added to the status byte as a ninth bit.

The table below gives the meanings assigned to the bits in the status byte by the 98032A
Interface, and does not include the ninth bit, STS, added by the STATUS statement.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

INT DMA 1 0 1]»] 10D STH STIO

INT: Interrupt Enabled Indicator

DMA: DMA Enabled Indicator

IID: Invert Input Data Jumper Installed
IOD: Invert Output Data Jumper Installed
STI1,0: General User-definable Status Bits

Figure 33. The 98032A Status Register

91



92 HP Interface Cards

Bits 7 and 6 of the interface control register (R5 OUT) are used for enabling and disabling
interrupt and DMA. The corresponding bits of the status byte are indicators of whether these

modes are currently enabled or not; a one indicating enabled and a zero indicating disabled.

Bit 5 is always a 1 and bit 4 is always a O for the 98032A card. These are the interface
identification bits as explained in the previous section. They allow the I/ O processor to identify
the type of interface with which it is communicating so it will know what protocol (sequence of

register operations) to use, since this protocol is different for the various card types. The

examples given in the previous chapter all assumed a 98032A class (type 2) of interface.

The 98032A Interface uses negative-true logic on its data input and output lines. This means
that it associates the + 5 volt level with a logic value of zero, and the ground level with a logic
value of one. If the particular peripheral attached uses the opposite sense of these logic levels
(positive-true logic) then the data needs to be inverted (zeros changed to ones and ones
changed to zeros) before the data is used. If this is necessary for either the input data or for the
output data, or both, there is a provision on the 98032A Interface to install jumper wires that
will indicate this fact. The presence (1) or absence (0} of these jumpers is indicated by bits 3
and 2 of the status byte. It is up to the computer to read these bits and perform the data
inversions if necessary. Normally, this is handled automatically by the I/ O ROM (the exception
being FHS and DMA).

The last two bits of the 98032A Interface are general purpose status bits called STI1 and STIO.
They may be connected to any output lines from the peripheral device to monitor any signals
that the user finds convenient in his particular application. For example, a paper tape punch
might have a line coming out that indicates when the amount of paper tape left is running low.
This line could be connected to one of the general-purpose status bits, and then monitored
periodically by the program in the computer to warn the operator when the tape is running low.

For example, with STO connected to the tape low indicator:

STATUS &30

g
=l

k
B a=1 THEH Taps low

Pt s
T e
=i
4
n
jand
bt
.—i
-

It is important to note that the contents of the input inferface registers are not related to that of
the output interface registers. They serve different functions and are not like memory locations.
In general, the bits read from the status register (R5 [N) are not related to any bits in the control
register (R5 OUT). The INT and DMA bits were assigned corresponding bit locations for con-
venience. In particular, setting a control bit such as CTL1 does not affect the state of STI1,
since they are usually connected to two different lines on the peripheral and serve different
purposes. If he wishes, however, the user can make such an association by physically connect-
ing the STI1 line to the CTL1 line so that the status bit can indicate whether the control line is

currently set high or low.

rev: 12/80



HP Interface Cards

Computer

- Miseum

The Handshake Process

In the first chapter, we discussed the handshake process from a user’s point of view, giving only
enough detail to be able to explain the concept of a handshake. In this section, we will look at
that process from a designer’s point of view giving the additional information required to be

able to actually connect a peripheral device to the 98032A Interface.

Figure 35 shows the complete timing diagrams for both the output and the input handshake
operations. In addition to the data lines, four other lines are involved in the handshake process.

The meanings and uses of these lines is given in Figure 34.

Name of Line: I,0 FLG PCTL PFLG
Driven by: Computer | Interface | Computer | Peripheral
High State: Input Busy Clear Busy
Low State: Output Ready Set Ready

Figure 34

The I/ 0 line is used by the computer to tell a peripheral device whether an input or an cutput
operation is in progress. For an input only (e.g., paper tape reader) or an output only (e.g.,
printer) device, this line would not be used. The IO bus flag line (FLG) is used by the
computer to test whether or not the interface is ready for the next operation. The peripheral
control line (PCTL) is used to tell the peripheral that the information on the data lines is valid
for an output operation, or to request the next data item on an input operation. The peripheral

flag line (PFLG) is the ready / busy indicator from the peripheral itself.

93



94 HP Interface Cards

The reader may wonder why it is necessary to have separate FLG and PFLG lines. In order to
see the reason for this, let’s look again at the simplified timing diagram, Figure 12. Here, only
the PCTL and PFLG lines are shown in addition to the data lines. For the moment, let’s assume
that the interface merely connects the computer’s FLG line directly to the peripheral’'s PLFG
line, and consider a typical output sequence. After the data is placed on the lines, control is set
{(PCTL is set at time t2) to tell the device that it can take the data. At some later time, t3, the
peripheral acknowledges that it has seen control go set by making PFLG go busy, and it begins
to read and process the data on the lines. Since there is no restriction on the length of this time
interval (t2 to t3), it is quite possible that during that interval the computer could be ready to
output the next character. It would test the FLG line (which here is the same as PFLG), see that
it is indicating ready, and place the next character on the data lines. Since the peripheral had
not yet taken the last character, it would be lost. In other words, the computer testing the FLG
line only sees a ready or a busy state. It cannot tell whether the PLFG line is indicating ready
because it has completed the processing of the data, or because it simply hasn’t gotten around
to making it indicate busy yet. To avoid these timing problems, the FLG and the PFLG lines are
separated. As soon as control goes set, the interface itself makes the FLG line go busy without
any response required from the peripheral. The FLG line remains busy until the PFLG line has

gone from ready to busy and back to ready again.

We are now ready to follow the complete sequence of events shown in the timing diagram for
the output operation in Figure 35. As we do, we will also relate these events to the register

operations that are being performed by the output drivers in the [/ O ROM.

to ty t2 t3 t4
PCTL H +—+ t CLEAR
P \ SET
Lo | |
PFLG H | —— T—— BUSY
L —L ! ‘ L READY
[ | l
H ————t & 4 0
Data | '><— ‘ : 1
Lines P *

Figure 12. Repeated



HP Interface Cards 95

Notes



96 HP Interface Cards

L Next transfer
r One transfer } can begin
/ here.
High _—
ig )
1/O LINE .
Low - { (. {
) / Y )‘V %
o I Check FLG
il } for low I — ((
/O BUS FLG LINE st | N ) )
J .
{To Calculator) Low ( _\( I / P Ed
TR ‘ )
A\ \ !
)L - \ (L (i (
DATA OUTPUT N N\ ) ) | N4 )
N X< 1 N
LINES L N N\ 7
e [ (1 /N {
J N \ ) ) \ )
’4*— T ——-i \ \
Control Clealr)L > N ! { \ {
PCTL \,:\’\\ S N )
Control Set - (— Sa N
| >~ 3 N N
‘ N AN AN '
Busy | ~ \ { N l
PFLG ! NS J RREN X
| |
Ready (— { (.
) )
Time for peripheral to r«—  Peripheral
acknowledge gets ready
T = 100ns minimum PCTL Control Set.  ———| fornew data. __,,.|
Total peripheral time delay ——————————m]
(Output data is valid)
‘ [ Next transter
‘ One transfer can begin
( { here
High { ( {(_ —
L 1)) ) ) )
/O LINE By
Low ()—/_ The calculator will
7 normally accept
[ oo e
High r)() [ [ interface here.
/O BUS FLG LINE 1) )
To Calcul d
{To Calculator) Low //
[
(( ( (L 4
DATA INPUT ) R J )] ) )
LINES \ (2" > (( ([ \ 4
\ A | S A )) \ )
| | 7 ! \ \
Control Clear %——-ﬁ i — | N (¢ _{
AN / - | AN RR \ )
PCTL - ‘ . 1~ \
N ~
Control Set 7( () 1 T( () N T ~ \
| | h N \
‘ ! A \ b ({x !
\
Busy | | \ ] DR /
PFLG 1 l Ry S a
4 ( {{ ({_
Ready ) )y )T —)
F— Peripheral PT
| puts data
' on input
‘ lines .
|
i Total
| peripheral delay ‘
PT = Peripheral lime delay to allow data to settle. T
1 Interface latches data hereif jumper £ (Low Byte Clock) or jumper 8 (High Byte Clock) are installed. @
2 Interface latches data here if jumper D (Low Byte Clock} or jumper 9 (High Byte Clock) are installed. BUSY READY ALWAYS
3 Interface latches data whenever the register is read by the calculator if Jumper C (Low Byte Clock) or

Jumper A (High Byte Clock) are installed (Data Input Lines must be stable}

Figure 35. Full Mode Timing Diagram



HP Interface Cards

Full Mode Timing

The output drivers first wait for the FLG line to indicate ready, giving the last operation with the
peripheral time to complete. When FLG is ready, the data is placed on the lines (R4 OUT
operation). Since this is an output operation, the interface sets the 1/ 0 line low, to tell the
peripheral that an output is about to take place. The 17O ROM then issues the R7 OUT trigger,
which causes the interface to set the PCTL line, after delaying long enough to allow the signals
on the data lines to settle out. At the same time, the interface makes the computer’s FLG line go
busy so that it will not try to initiate another operation before this one is completed. At some
later time, the peripheral detects that PCTL is set and that [ /O is indicating output. It sets its
PFLG line to busy, takes the data, and begins to process it. This tells the interface that it can
now return the PCTL line back to the clear state, since the peripheral has seen the data and
begun its processing. Finally, when the peripheral has completed processing the data, it returns
its PFLG line to the ready state. The interface sees this and allows the computer’s FLG line to

also go back to the ready state and the entire handshake process is complete.

An input operation proceeds in a similar manner. The [/ O ROM again waits for the FLG line to
indicate ready before initiating any action. When the FLG line is ready, the ROM does an R4 IN
operation to set the [/ O line to the input state. It then does an R7 OUT operation to demand a
data item. This causes the interface to set the FLG line busy, and to set PCTL to tell the
peripheral that a data item is being requested. Normally the peripheral would indicate busy on
the PFLG line, put the next item on the data lines, and then return PLFG to ready. This will
cause PCTL to return to a clear state, and allow FLG to indicate ready. Meanwhile, the [/ O
ROM has been waiting to see FLG indicate ready. When it does, the ROM does an R4 IN

operation to take the information from the data lines and returns the value read to the program.

Because the type of ready (PFLG) signal varies from one peripheral device to another, the
98032A allows for a variety of such signals. By setting jumpers on the interface card, the user
may specify that the information on the input data lines be clocked on the ready-to-busy
transition, on the busy-to-ready transition, or whenever the R4 IN operation is executed by the
IO ROM, independent of the state of the PFLG line.

97



98 HP Interface Cards

Next transfer

le

‘ One transfer ! can begin
[ here.
High S———
1/0 LINE "
L ’ (C
o / 3 —
| Check FLG (
High forl
/0 BUS FLG LINE T san o ] )
({To Calculator) Low A ’ / (
\\ ‘/ { )
( \ \ (¢ (
DATA OUTPUT T \4><\ v RNV o)
LINES ( > N g )L\ AN (
N \ )
SRR )
Control Clear ()— A / ) (
PCTL R !
Control Set —

Busy s_

/
\
~
AY
~ ]
PFLG \ —\ R
Read @ ! {
YT )
Peripheral time delay,
T = 100ns minimum peripheral can accept
data during this pericd

| Next transfer
F—— One transfer can begin
| here

High ¢ ¢

1

{
7 )) )
1/0 LINE
Low 4 The calculator will
/ Check FLG normally accept

for low %‘_ data from

High {{( { interface here
/0 BUS FLG LINE /) )
(To Calculator) Low (/ (
|
4 ; f
DATA INPUT V4 Ty )
LINES ( _ TR (
P | )N )
- ) | AN
y e ' \
Control Clear S——— ) T | 1 {
\ / =T | | 7 )
PCTL N L | e T
: {
Control Set V) ‘ \ N
. A\ A
¢ {( . N N {
Bus ! .
) )] O )
PFLG ( ‘ ( Sl
Read (¢ S_ {
ba )] B )
f——————— Peripheral puts data ’
oninput lines. ——»r— PT
Total ;
peripheral delay i
'y
PT - Peripheral time delay to allow data lo settle 6
1 Interface lalches data here if jJumper E (Low Byte Clock) or jumper 8 (High Byte Clock) are installed. U 2
8USY READY ALWAYS
2 Interface latches data here if jumper D (Low Byte Clock) or jumper 9 (High Byte Clock) are installed
3 Inlertace laiches data whenever the register is read by the calculator if Jumper C (Low Byte Clock) or

Jumper A (High Byte Clock) are mslalled (Data Input Lines must be stable)

Figure 36. Pulse Mode Timing Diagram



HP Interface Cards

Pulse-Mode Timing
Figure 36 shows the sequence of operations for pulse-mode operations, which is programmed
on the 98032 interface by installing jumper 6. The pulse mode is selected when the PFLG

signal from the external device indicates ‘‘transfer complete’’ rather than ready/busy.

The primary difference between the handshake mode and the pulsed mode of operation is that
in the pulsed mode the state of the peripheral’s PFLG line is not reflected by the FLG line to the
computer. Instead, the ready-to-busy transition of the PFLG line is used to tell the computer
that the peripheral either has data available or has accepted data from the interface. (The actual
transition used, ready-busy or busy-ready, is determined by the BUSY, READY, and ALWAYS

jumpers; use the ones that correspond to your device’s handshake scheme.)

The software operations used in the pulse mode of operation are the same as those used for the
handshake mode. For output, the R4 OUT operation puts the data on the lines and sets the
1/0 line low, indicating an output to the peripheral. Next, an R7 OUT trigger causes the
interface to set the PCTL line and to make the FLG line to the computer indicate busy. When
the peripheral detects PCTL set it accepts the data and pulses the PFLG line to indicate that it
has accepted the data. The interface allows the computer’s FLG line to go ready on the

appropriate transition of the PFLG line, and the handshake is complete.

Forinput, the firmware waits for the FLG line to indicate ready then does an R4 IN operation to
set the 1 /0O line to the input state. Next, an R7 OUT operation causes the interface to set the
PCTL line and to take the FLG line busy. When the peripheral has valid data on the input lines,
it pulses the PFLG line to indicate this. The FLG line to the computer is allowed to go ready on
the appropriate transition of PFLG, and the firmware then executes an R4 IN operation to read
the information from the data lines. The handshake process is repeated until the input is
complete.

99



100 HP Interface Cards

Word and Byte Modes of Operation

The data lines of the 98032A Interface are divided into 16 input lines and 16 output lines. Each
of these sets of 16 lines may be further subdivided into groups of eight for use in special

applications. In this section we will look at some of the intended uses of this byte mode of
operation.

In all of our previous examples of data exchange using the 98032A Interface, we were operat-
ing in the words mode in which we used the R4 OUT operation to place 16-bit data on the
output latches, and the R4 IN operation to read 16-bit data from the input latches. If, however,
jumpers B or F (see 98032A Installation and Service Manual) are not in place, the input or
output latches may be operated in the bytes mode, in which the upper 8 bits and the lower 8
bits of the 16 data lines may be separately addressed by the computer. In this case, the R4
register is now used to access only the lower byte, while the upper byte is accessed through the
R6 register. For example, if the 16 input lines contained the 16-bit pattern
0011010101001001, then executing a WAIT READ 4,4;A would give a 73 (binary 01001001)
while a WAIT READ 4,6;A would return the value 13568 (binary 0011010100000000). Notice
that the high byte is still positioned in bits 8-15 of a 16-bit binary pattern. When either the high
byte or the low byte is read, the other byte is replaced with eight zeros. To convert the result of
the R6 IN operation to the true decimal representation of that byte, this result must be divided
by 256 (= 28) or shifted right eight places using the bit manipulation functions.

This capability to separately address the high and low bytes is used by the /O ROMs in
implementing drivers for certain peripherals. For example, the 9862A Plotter requires sequ-
ences of 12-bit instructions to raise and lower its pen and to move to a new location. Figure 37
shows the format of these plotter control instructions. This protocol is presented merely as an
example of the use of the bytes mode on the 98032A card, and the reader need not follow the
details of the meanings for the individual bits.



bit 15:
bit 14:

bit 13:
bit 12:

HP Interface Cards

1514131211 1098|76 543210
4-bit not X,Y-position
control used (0,9999)

format of data bytes (bits 7-0) is BCD (0) or binary (1).

sync bit, set to 1 for the first of a four-word move instruction, and for pen up/down

instruction.

pen up (0) or down (1) specifier when bit 12 = 1.

instruction type bit, move {0) or pen up/down (1).

Figure 37

Raising and lowering the pen is done by sending a control word with bits 12 and 14 set and bit

13 indicating pen up or down. To move the pen to a new location, a four word sequence is

required. Since each of the X and Y coordinates is in the range 0 to 9999, two bytes are

required to specify each of them. These are sent in four instructions containing X high byte, X

low byte, Y high byte, and Y low byte. Since the upper bits contain control information and the

lower byte has coordinate information for pen moves, the plotter drivers take advantage of the

ability to separately address the high and low bytes of the data register.

If the user required this same capability from a BASIC level program, the following program

segments could be used. In both examples, the variables Hi and Lo contain the high byte and

low byte data respectively. To output data in the bytes mode, we would use the following

statements.
18 WAIT WRITE 3, &y3HIFTOH j~82
=0 WRITE IQ Z,43Lo
3 WRITE 10 Z,7:@

Whern TOFLAG = L oStore HA
L THEM St ore Lo
LT tgger

Notice that the high byte data is shifted left 8 bits before being sent to the R6 OUT register.
Also, lines 20 and 30 could be replaced by the statement WRITEBIN 3;Lo since this does the
R4 OUT, R7 OUT sequence.

101



102 HP Interface Cards

Input operations in the bytes mode is similar.

16 WALT READ 3,4;2 P Demand new dara o1
20 MRITE 10 3,736 : ?;T;;:p”?ﬂﬂﬁftf,jifT'
38 WAIT RERD %, 4;Le Bt lem bore o EEE
48 WAIT READ 3,6;H9 L Get Righ bure

S Hi=SHIFTiHi, 20 B

This program segment shows the entire sequence of events used to read data in the bytes

mode. Lines 10-30 can in practice be replaced by a simple L = READBIN(3) function. After
this operation is complete, the high-byte data may then be taken in using the R6 IN operation.

From these examples, we see that the 98032A was designed to allow the computer to sepa-
rately address the upper and lower bytes of the input and output data latches. It should be
noted, however, that the interface card is still exchanging 16-bit data with the peripheral
device. From the fact that the 98032A has a byte mode of operation, it is often mistakenly
inferred that a single 98032A can directly interface two 8-bit devices. Although this is possible,
it does require that the user provide some external hardware to properly control the handshake

operations.

As an example, let’s assume that we wish to interface an 8-bit paper tape reader and an 8-bit
paper tape punch to the desktop computer using a single 98032A card. Notice that in this case,
we do not require the use of the bytes mode since one device is an output only device and the
other is an input only device. If we merely connected the PCTL line to the control lines for each
device and the ready/ busy lines from each device to the PFLG line, these devices would not
operate independently. For example each time we try to take a reading from the tape reader,
the PCTL line would go set to demand the reading. But the punch would also see this signal
and respond by taking whatever happened to be in the output latches and punching this
information on the tape. In addition, if the punch completed its operation before the tape
reader, it would indicate ready on the flag line. Depending on the levels used {positive or
negative true logic) the interface could interpret this transition on the PFLG line to mean that
the tape reader had finished its operation; and it would take a reading from the input data lines
which might not yet be valid.

In order to prevent this, an external circuit similar to the one shown in Figure 38 could be used.



HP Interface Cards 103

PCTL

PCTL (to PUNCH)

PCTL (to READER)

170 line
(low=output)

PFLG (from READER)

PFLG —= C; V

=
-
o -
L
e

PFLG (from PUNCH)

Figure 38

This uses the I/ O line on the 98032A to gate the flag and control signals to only the device
being addressed. For example, when the I/ O line is low (output operation), only the punch
sees the control pulse, while the PCTL line to the reader remains high throughout the entire
operation. Also, no matter what transitions take place on the PFLG line from the reader, only

the transitions generated by the punch are passed on to the PFLG line on the 98032A.

If the user wanted to use a similar circuit to allow two 8-bit input devices or two 8-bit output
devices to be interfaced with one 98032A card, the I/ O line shown in Figure 38 would instead
be connected to the CTLO line. The program could then select one of the two devices by
executing either a WAIT WRITE 3,5;0 or a WAIT WRITE 3,5;1 (3 is the select code of the
interface card) to set the CTLO line high or low respectively to cause the PCTL and PFLG lines
to be gated to one or the other of the two devices. Of course this application would require the
use of the byte mode, with one device using the high byte data lines and the other using the low
byte data lines.



positive true logic, the sense of the data lines must
the data is interpreted by the program (

the complexity of the 98032A card and
room for the hardware to perform this
two jumpers (1 and 2)
beinverted. The actual

data; that s, changing

for input) or sent to the device (for output). Because of
the limited space available, the interface does not have
inversion directly. It merely contains the provision for
to indicate to the computer that the input and / or the output data must
inversion is done by the drivers in the IO ROM by complementing the -
the ones to zeros and the zeros to ones before an output operation or
after an input operation. These 1/ O drivers know that this operation is to be performed by

checking bits 2 and 3 of the status byte (see Figure 32) from the 980324 card to see if either or

both of the inversion jumpers are installed on the interface.

For the normal data operations and for transfers using interrupt buffers, this inversion process
is handled automatically by the /O ROM and the Operation is totally transparent to the user.

This is not the case for Fast-handshake (FHS) and DMA buffer transfers. In the case of the FHS
transter, this inversion is not done in order to obtain maximum 1/0 rates. In the case of DMA

transfers, it s the hardware processor, not the [/O ROM. that handles the DMA transfer. and

this processor only operates with negative true logic. Thus, in these special cases, any required
data inversions must be done by the BASIC program itself. It should also be remembered that
in the case of a FHS input buffer transfer where a terminating character can be specified, this
character will also be inverted. Referring back to the NOFORMAT transfer type discussed
under Advanced [/ O Transfers, this complementing process can be done using a conversion

table with a Variable-to-Variable transfer, and the actual data transfer done by a NOFORMAT

transfer.



HP Interface Cards

The 98033A BCD Interface
BCD Instruments

In the last section, we discussed using the 98032A Interface to connect peripheral devices
whose outputs were in the form of binary data (up to 16 bits wide), or sequences of ASCII
characters. There is a class of devices, however, known as BCD instrumens for which the
98032A is not a satisfactory interface for connecting them to the computer. To see why this is
so, we need to look at some of the characteristics of these BCD devices.

Devices which fall into the BCD class are typically measuring instruments such as digital
voltmeters and multimeters, scanners, frequency counters, gain-phase meters, digital panel
meters, and so forth. These instruments usually display the readings they take to be read by an
operator, typically showing from three to eight digits depending on the precision of the
measuring device itself. They also indicate other information about that reading. For example,
a digital multimeter (DMM) may also indicate the function being read (voltage, current,
resistance), the range being measured (100 volts, 10 milliamps, 1 kilohms) and have an
overload or out-of-range indicator. All of this information is useful to the operator taking down
the readings.

In these instruments, each digit of the reading drives one digit in the display. The value of this
digit is sent over four wires in a code called binary coded decimal or BCD. This format is also
known as 8-4-2-1 code, since these are the values or weights given to each of the four lines.

The encoding of the ten decimal digits is shown in Figure 39.

(8 (4 (2) (1) | DIGIT
0 0 0 o 0
0 0 0 1 1
0O 0 1 0 2
0 0 1 1 3
0 1 0 © 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 o0 8
1 0 0 1 9
Figure 39

These BCD lines are then sent to decoder circuits which convert them into seven-segment or
dot-matrix patterns for driving the individual display digits.

105



106 HP Interface Cards

With the advent of controlling computers, it became desirable to make it possible for the
computer to directly read these measurements, collecting large numbers of readings for proces-
sing and analysis. At the time this was done, hardware circuits for converting these readings
into a form the computer could understand were very costly. As a result, most designers merely
made all of the data lines available to the computer directly with no attempt at conversion, and
left it for the versatility of the computer program to sort out the meaning of the various lines.
Output lines are also brought out to indicate the sign of the reading (plus or minus), a power-
of-ten multiplier or exponent digit for accommodating the various ranges, an overload indi-
cator, and a set of lines to indicate the mode of operation for multi-function instruments. Thus,
an instrument which supplies six or eight digits of precision can have forty or more distinct lines

on its output connector just to represent the reading, in addition to any control lines used.

If an interface such as the 98032A were used to connect such a BCD device to the computer,
either two or three cards would have to be used in parallel, or a multiplexing scheme would
have to be used. In addition, the computer would then have to sort out of all these bits, read the
ones that represented digits, signs, exponent, function codes, etc. Instead, the 98033A BCD
Interface was designed to accept all of these parallel bits, and translate them into a sequence of
ASCII characters which represent the reading being taken. That is, the 98033A ftranslates the
data from a 43-bit parallel reading to a 16-byte, ASCII serial representation.

98033A BCD Formats

Figure 40 shows the input lines that are available on the 98033A Interface.

1 bit Mantissa sign Sm

4 bit Mantissa digit1 D1
bit Mantissa digit 2 D2
bit Mantissa digit 3 D3
bit Mantissa digit4 D4
bit Mantissa digit5 D5
bit Mantissa digit6 D6
bit Mantissa digit7 D7
bit Mantissa digit 8 D8

N N N L e

1 bit Exponent sign Se
4 bit Exponent digit De
1 bit Overload indicator Ov

4 bit Function code Fc

Figure 40



The number of lines available is usually more than sufficient to handle most BCD instruments.
If a device is connected that has fewer than eight digits, the unused digits may be connected to
the + 5 volt reference (for negative true logic) or to ground (for positive true logic) so that they
will always be read as zeros.

When a reading is taken using the 98033A Interface, the card converts the data on the input

lines into a sequence of 16 ASCII characters in the format shown in Figure 41.

HP Interface Cards

Character: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ASCII: + X X X X X X X X E =z X , Ot X LF
DataUsed: Sm D1 D2 D3 D4 D5 D6 D7 D8 Se De Ov Fc
Figure 41

The one-bit mantissa and exponent signs are converted to ASCII characters for plus or minus,
and the 4-bit BCD digits are converted into the ASCII characters for the corresponding digits.
Notice that the card itself provides the ASCII characters for the exponent notation (E), the
comma to separate the reading from the overflow indicator and the function code, and a final
line feed character (LF) to terminate the reading.

The characters indicated by an X in the ASCII representation of the format shown in Figure 41
normally correspond to digits connected from the instrument to the BCD input lines. If it is
desired, however, they may be used for other purposes. Notice that in Figure 39, only ten of the
sixteen possible binary patterns are used to represent the ten decimal digits. Figure 42 shows

the ASCII characters that have been assigned to the other six binary patterns.

(8) (4) (2) (1) ASCI
1 0 1 0 LF line feed
1 0 1 1 + plus sign
1 1 0 0 , comma
1 1 0 1 - minus
1 1 1 0 E exponent
1 1 1 1 decimal point

Figure 42

1 The Overload character is normally an ASCII ‘0", but changes to an ASCII ‘8"’ when the overload bit is set.

107



108 HP Interface Cards

Any character marked X in Figure 41 may be made to correspond to any of these ASCII
characters by connecting its four BCD lines high or low to give the required pattern. For
example, if we had a BCD instrument that has an implied decimal point to the right of the first
digit, this would be indicated on the instrument’s display panel, but this information is not part
of the reading itself (unless the instrument adjusts the exponent to account for this). If the
instrument uses negative true logic, we would connect all four lines of D2 to ground, giving it
the binary pattern for a decimal point. Then we would connect digit 1 to D1, digit 2 to D3, digit
3 to D4, and so on. Now when the computer reads the ASCII sequence from the 98033A card,
it will see a decimal point between the first and second digits of the reading. The large number
of input lines provided, combined with the ability to redefine any digit to one of the ASCII
characters in Figure 42 gives the 98033A a wide degree of flexibility for reading instruments
with diverse formats.

The 98033A provides input lines for BCD instruments having up to eight digits in their read-
ings, to accommodate high-precision instruments. Most BCD instruments will typically only
have three or four digits. For added versatility, the 98033A provides an optional format
(selected by a switch on the card) to allow two BCD instruments, or a single dual-output
instrument, to be connected to the computer using only one interface card. In this format, the

input lines are converted to the 16-character ASCIl sequence shown in Figure 43.

Character: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ASCII: + X X X X + X X X X X E Ov X LF
Data used: Sm D4 D2 D6 D8 Se Fc D1 D5 D3 D7 Ov De
Figure 43

In the optional format, pairs of readings are taken from two separate sources. This would be
particularly useful in, for example, testing electrical circuits where voltage and current readings
need to be taken simultaneously. If two separate interfaces were used, the time delay between

the execution of the two ENTER statements in the computer program would make it difficult to

take simultaneous readings.



HP Interface Cards

The 98033A Interface Registers

Operationally, the 98033A BCD card is very similar to the 98032A Bit Parallel Interface. In
fact, they are both type 2 cards (see the ““Interface ID and Card Types’’ section) and the [/ O
drivers in the computer make no distinction between them. Figure 44 shows the register

assignments for the 98033A Interface.

IN ouT
R4 DATA IN (not used)
R5 STATUS CONTROL
R6 (not used) (not used)
R7 (not used) TRIGGER
Figure 44

Since the BCD interface is for input only, it does not respond to any output operations. All data
is input through the R4 IN register, using R7 OUT as a trigger in the same way as described for
the 98032A operating in the words mode. Because all data from the BCD card is 8-bit ASCII,

the upper eight bits of the 16-bit word received are always zeros.

Figure 45 shows the bit assignments in the R5 OUT control register, accessed by a WAIT
WRITE to R5 or a CARD ENABLE statement.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

INT X RESET X X X X X

INT: Interrupt Enable on FLG = Ready
RESET: Reset Card to Its Power-on State

Figure 45

The reset and interrupt enable bits operate in an identical manner to those operations on the

98032A card. The other bits are not used and may be sent as ones or zeros.

109



110 HP Interface Cards

Similarly, only the interface identification bits (4 and 5) and an interrupt-enabled indicator are

significant in the R5 IN status byte (accessed by the WAIT READ and STATUS statements), as
shown in Figure 46.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

INT X 1 0 X X X X

INT: Interrupt enabled indicator
1,0: Interface Identification Bits (type 2)
X:  Don’tcare

Figure 46

The remaining bits are not assigned meaning and will always return zeros. As with the 98032A
Interface, when the STATUS statement is executed, the current state of the 1-bit status line
(STS) is also included in the result returned as an artificial bit 8.

The 98033A Handshake Process

The handshake process for the 98033A BCD card is very similar to that described for the
98032A Bit Parallel Interface. It sets a control line to tell the BCD instrument to take a reading,
and waits to see a response from the device on the peripheral flag line before converting the
data on the input lines into the sequence of ASCII characters to send to the computer. That is,
the computer will do 16 data byte demands from the interface before the card will set control to

request another reading from the BCD device.

Figure 47 shows the normal sequence of events that takes place during this handshake opera-

tion.
CLEAR
CTL SET
I
I
BUSY
DFLG READY : | |
| | |
ty t, ty

Figure 47



HP Interface Cards

When the interface (in response to a request from the computer) requires the next reading, it
will set the control line low to indicate to the BCD device that it should take another reading
(t1). At some later time (tz), the device will indicate that it has seen this data request by setting
its flag line (DFLG) busy, and proceed to take the reading. When the data on the input lines is
valid, the device will then (ts) indicate this fact by setting the DFLG line back to the ready state.
This causes the interface to return its control line back to the clear state and begin translating
the reading for sending to the computer. Since this process requires enough time for the
computer to input 16 bytes of data, the BCD device must maintain the data on the input lines
from the time it indicates ready (ts) until the next time the control line goes set. That is, the

device can only change the data on the input lines during the set state of the CTL line.

Some BCD devices are designed in such a way that they are armed for the next reading by the
control line going set, but will not actually take the reading until it goes clear again. In order to
accommodate these devices, the 98033A Interface provides an optional control mode (option
2) in which the CTL line will return to the clear state when the DFLG line goes from ready to
busy (tz in Figure 47). The data is still read by the interface when the DFLG line returns to the
ready state (t3). A switch on the 98033A card allows the user to select the normal mode (option
1) or this special mode (option 2) of operation for the CTL line. In addition, both the CTL and
DFLG lines can have their senses (high or low) inverted by other switches on the interface card

to accommodate positive-true or negative-true logic levels.

In the section on 98033A BCD Formats, we discussed the optional data format which allows
the 98033A to connect two BCD instruments using one interface card. As a result, two sets of
control and flag lines are provided. CTLA and DFLGA are used to handshake with one BCD
device, while CTLB and DFLGB are used for the other one. If only one device is being
interfaced using the 98033A, CTLA and DFLGA are connected to this device in the normal
manner (discussed below), and CTLB must be connected directly to DFLGB.

When two BCD devices are being used with one interface, both control lines (CTLA and CTLB)
go set at the same time. Following this, CTLA returns to the clear state based on DFLGA alone,
according to which option (CTLA-1 or CTLA-2) has been set in the configuration switches for
channel A. Channel B operates in the option mode for which it has been set, independently
from channel A. In any case, not until both channels have indicated ready on their respective
DFLG lines will the interface begin to translate the reading and send the result to the computer.
Readings are always taken from both channels simultaneously, and not until both devices have
indicated ready. In this sense, the two BCD instruments are not treated as two independent
devices. When only one BCD instrument is being interfaced, connecting CTLB to DFLGB
makes channel B appear to be immediately ready, and the reading rate is determined by

channel A alone.

111



112 HP Interface Cards

Connecting BCD Devices to the 98033A

Finally, the question arises as to which lines on the BCD instrument should the control and the
flag lines be connected. This question does not have a simple answer since BCD instruments
made by different manufacturers (and often different instruments made by the same manufac-
turer) give various names to their control and flag lines. Most BCD devices made by Hewlett-
Packard call the control line an ‘‘External Trigger,”” and the flag response line a ‘“‘Print Com-
mand.” Other common names for the control line are Trigger, External Encode, and Sample.

The line to be connected to the flag line might be called Print, Print Enable, Ready, or Data
Flag.

Often, the only way to tell which lines of the BCD instrument should be connected to the flag
and control lines is to read the description of these lines in the operating manual for that

instrument. For example, the following descriptions are taken from the reference manual for
the HP 3480A / B Digital Voltmeter.

External Trigger — LOW for >50 microseconds initiates a measurement period. LOW state

must be preceded by HIGH state for >50 microseconds.

Print Command — Goes HIGH at beginning of measurement period and LOW to indicate
completion of measurement. HIGH to LOW transition constitutes a com-

mand to print.

Here, the external trigger line is identified with the control function by the key words “‘initiates

a measurement.” n addition, the fact that the low state of this line initiates the measurement

indicates that this line has the same sense as the CTL line on the 98033A (low state is control
set}), and that the invert CTLA option should be left off. The statement that the print command
line which responds in the way required by the DFLG line on the 98033A. Its logic sense is also

correct without setting DFLG inversion.

The 98034 A HP-IB Interface
An Introduction to the HP-1B

In Chapter 2 we said that the purpose of an interface is to provide mechanical, electrical, data,
and timing compatibility between a peripheral device and the computer which controls that
device. If a standard existed which specified all of these characteristics, then two devices which
conformed to that standard would be “‘plug-to-plug’”’ compatible. We would merely plug their
connectors into one another and they would be ready to communicate. A major step in this

direction was taken in 1978 when the Institute of Electrical and Electronics Engineers adopted



HP Interface Cards

the IEEE-488-1978 standard which specifies many of these characteristics for a general pur-
pose interfacing bus, sometimes called the GPIB. The HP Interface Bus, or HP-IB, is Hewlett-
Packard’s implementation of the IEEE-488 standard.

The major advantage of this standard is that it allows devices to be designed by various
manufacturers which are immediately compatible with any other IEEE-488 device, requiring no

interfacing operation on the part of the end user.

Data messages are sent from one device to another on the bus in an 8-bit parallel, byte serial
manner. The standard does not specify how these data messages are to be encoded, although
most devices that operate on the HP-IB use standard ASCII codes. In general, data messages
most commonly consist of a sequence of ASCII characters, usually terminated by a line-feed
character (LF). Thus, the only device-dependent information necessary for the user to know is
the particular sequence of ASCII characters that cause the device to carry out each of the

functions which it was designed to perform (see ‘‘Addressing the Bus Devices’).

The HP-IB definition also allows several devices to be interconnected on the same bus. In the
following sections, we will look at the structure of the HP-IB, the method of transferring data
messages over the bus, several extended control features provided, and finally at some specific
characteristics of the 98034A Interface. It is this interface which provides HP desktop comput-
ers with the necessary electronics to meet the specifications of the IEEE-488 standard and to be

plug-to-plug compatible with all other such devices.

The Structure of the HP-IB

Phuysically, the bus itself is merely a set of sixteen wires (along with a few assorted ground wires
and an electrical shield) to which all devices on that bus are connected (see Figure 48). Eight of
these wires serve to carry the data messages back and forth over the bus. To maintain order,
only one device at a time can place information on these data lines, and that device is known as
the active talker. Any or all of the other devices on the bus may sense the information on these
data lines and act on that information. Such a device is known as an active listener. By the
nature of the actions which they perform, some devices may be only talkers (e.g., a paper tape
reader) or only listeners (e.g., a printer). Other devices such as a digital voltmeter can be either
a talker or a listener. That device is made a listener so that it can be programmed for the correct
voltage range and told when to take a reading. It is then made a talker so that it can put the
results of that reading on the data bus.

Thus there is a need for one device on the bus to set up talkers and listeners at the proper time,
issue instructions to the other devices on the bus, and in general to make sure that all traffic on
the bus proceeds in an orderly fashion. This device is called the active controller. Although any
device can be designed with controller capability, usually it is a calculator or computer with its
flexible capability that is assigned this task.

113



114 HP Interface Cards

Finally, there is one and only one special device on the bus known as the system controller.
This capability is established by the hardware of the device itself (usually by the setting of a
slide switch or a jumper) so that when power is turned on or the bus is reset, the device set to be
the system controller will also assume the role of the active controller. At any time, the current
active controller may pass control to any other device on the bus that is capable of performing
the functions of a controller. (All devices are not required to have this capability.) The role of
system controller, however, stays with the device which is physically set for that function and
cannot be passed off. At any time when the system controller determines that something has

gone wrong with the normal bus operations, it can reset the bus and get back active control.

Device A < Data Bus
(8 Lines)
Ab\e o talk,
listen, and )
control
(e.g.,
calculator)
Device B |r Data Byte
Transfer
Able to talk N Control
and listen
(e.q.,
multimeter)
General
< Interface
Device C \\ Management
Only able to
listen >
(e.g., signal
generator)
Device D
Only able to
talk
(e.g.. counter)
_‘_} DIO1..8
DAV
NRFD
NDAC
L IFC
————— AN
———— SRQ
REN
EO!

HP- IB Signal Lines

Figure 48



HP Interface Cards

Figure 48 shows the meanings given to the other eight lines that make up the HP-IB. Three of

these lines are designated as the ‘‘handshake’’ lines and are used to control the timing of data
byte exchanges so that the talker does not get ahead of the listener(s). The three handshake

lines are:

DAV — Data Valid
NRFD — Not Ready for Data
NDAC — Not Data Accepted

Using these lines, a typical data exchange would proceed as follows. All devices currently
designated as active listeners would indicate (via the NRFD line) when they are ready for data.
A device not ready would pull this line low (ground), while a device that is ready would let the
line float high. Since a low overrides a passive high (see Chapter 1), this line will stay low until
all active listeners are ready for data. When the talker senses this, it places the next data byte on
the data lines and then pulls DAV low. This tells the listeners that the information on the data
lines is valid and that they may read it. Each listener (at its own speed) then takes the data and
lets the NDAC line go high. Again, only when all listeners have let NDAC go high will the talker
sense that all listeners have read the data. It can then remove DAV (let it go high) and start the
entire sequence over again for the next byte of data. A more detailed description of the
handshake process is given in several of the HP-IB references (see Bibliography). It is not

necessary for the user to understand the details of the handshake in order to operate the HP-IB.

The five remaining lines are called control or bus management lines. Their meanings are:

ATN — Attention

I[FC — Interface Clear
REN — Remote Enable
EOI — End or [dentify
SRQ — Service Request

Each of these lines will be discussed in one or more of the following sections.

Before leaving this overview of the HP-IB and discussing the operation of the bus, some of the
limitations of the HP-IB should be considered. The first limitation is that a maximum of 15
devices may be connected together by one HP-IB. This limitation arises from electrical specifi-
cations for the line driver and receiver circuits, and how much current they can provide or sink.
Another limitation is that the total cable length connecting all of the instruments on one bus
cannot exceed 20 meters in length. Voltage levels on the various lines do not change instan-
taneously, but require a certain amount of time proportional to the length of the cable. A limit is
placed on the cable length to insure that the bus will operate properly at its rated maximum
speed. In general, then, the HP-IB is intended to provide a simple means of interconnecting
local instrumentation clusters. Other means of interfacing (such as serial [/ O to be discussed

later) are better suited to long distance communications.

115



Addressing the Bus Devices

The primary use of the HP-IB is for the transfer of data messages from one device to another on
the bus. While the HP-IB does provide a wide variety of extended control features (such as
serial and parallel polling, service requesting, etc. which are discussed in the next section),
many instruments can be fully operated through simple data transfers alone. For example,
sending the ASCII character string “‘F2R3"’ to the HP 3490A Digital Multimeter would cause it
to be programmed into function 2 (AC Volts) and range 3 (100 Volts). Another simple ASCII
message, ‘M3E"”, would tell it to go into mode 3 (single sample with output) and to execute a
reading. The result of this reading would also be sent back to the listening device as a stream of
ASCII characters representing the value read. Thus, a great many HP-IB devices can be prog-
rammed and operated by merely knowing how to send and receive data messages on the bus,
and the list of messages that a particular device on the bus can respond to. Since these
“command” messages are not specified by the IEEE-488 standard, the operating manual for

each device should be consulted to find the list of commands to which it will respond. How then

are messages sent and received over the HP-IB using the System 35 or 45? In order to isolate

the user from the required bus protocol (i.e., setting up the talker and listener, sequencing the
handshake lines, etc.) the /O ROM and the interface take care of these tasks, leaving to the

user only the requirement of specifying what the data message should be and which device on

the bus is to receive it. For this purpose, the same OUTPUT statement used to send datatoa

nintrooteroutput deviecan bevsed [wewihedtosenda messag foaprneron selor

code 6, we would simply execute the statement OUTPUT 6; “Hello”. The process is slightly
complicated, however, by the fact that each HP-IB can have several devices attached to it. If a

particular HP-IB interface were set to select code 7, execution of the statement
OUTPUT 7; “F2R3” to program the 3490A Multimeter would be ambiguous, since the [/0
ROM would not know which device on the bus should receive the message. Thus, to

completely specify a destination for such a message, it is necessary to give not only the select

code of the HP-IB interface, but also some way of indicating one of the many devices on that
bus. For this purpose, each device is assigned an address or a device number. This device
number can be in the range 0 to 30 and each device on the bus must have a different address in
this range. A unique device on the bus may now be specified by giving both its select code and
device number. For example, if the 3490A in the previous example were set to device number
23, the statement OUTPUT 723; “F2R3"” would specify that the data message ‘‘F2R3’’ should
be sent to device number 23 on the HP-IB set to select code 7. Since the normal select code
range is [0,16], the I/ O ROM would interpret this three-digit select code as specifying a device
on the HP-IB, and automatically use the proper HP-IB protocol. This protocol would consist of
setting up the computer as the talker, the instrument set to device number 23 as the listener,

and then sending the data message.



HP Interface Cards

Both the addressing information and the data message are sent over the same set of eight data
lines. In order to distinguish one from the other, one of the bus control lines called the attention
(ATN) line is used. When this ATN line is false, the 8-bit pattern on the lines is interpreted as a
character (usually ASCII) in the data message. When the ATN line is true, the pattern on the
data lines in interpreted as control or addressing information. In this mode, only seven of the
eight data lines are used. Depending on the setting of bits 5 and 6, the character sentin the ATN

true mode will fall into one of four classes, shown in Figure 49.

Bit#: 76543210

Bus Command Xooccccc

Listen Address X01LLLLL

Talk Address: X1O0TTTTT

Secondary Address: X 1 1 SSSSS
(X = ““don’t care,” 1 or Q)
Figure 49

If the class bits (5 and 6) are both zeros, the remaining five bits (4-0) are used to encode various
bus commands which are discussed in a later section. When they are 01, the following five bits
specify one of the 31 possible listen addresses; and when they are 10, bits 4-0 specify one of
the 31 possible talk addresses. These addresses are in the range [0,30]. Address 31 (bits 4-0 all
set to ones) is not a legal device address, but is interpreted as an unlisten (0111111) or an

untalk (1011111) command to cancel any currently addressed talker or listeners.

Returning to our previous example, execution of the statement OUTPUT 723; “F2R3" would

cause the sequence of message bytes shown in Figure 50 to be sent over the bus.

ATN Data Lines ASCII Meaning

T 01010101 U Computer (device 21)
is a talker

T 00111111 ?  Unlisten any previous
listeners

T 00110111 7 Device 23 is a listener

F 01000110 F  First data byte

F 00110010 2 Second data byte

F 01010010 R  Third data byte

F 00110011 3  Fourth data byte

F 00001101 CR Carriage return

F 00001010 LF Linefeed

Figure 50

117



118 HP Interface Cards

Notice that the computer (which is also the controller in this case, since it is doing the bus
addressing) has a device number, 21, just like any other device on the bus. With the ATN line
true, it sends out its own talk address, an unlisten to unaddress any listeners from previous
operations, and sets up device 23 as the listener for the data message that will follow. Notice
that the controller did not have to send an ‘‘untalk” command. Since there can be only one
talker addressed at a time, the bus standard requires that a device addressed to talk must
become unaddressed as a talker as soon as any other device is designated as a talker. Also, the
bytes on the data lines appear as normal ASCII characters. They are given their special addres-
sing interpretations shown in Figure 49 only because the ATN line is true while they are being
sent. Once the addressing is complete, the controller sets the ATN line false (data mode) and
begins to output the ASCIl data message. The listening device (3490A) receives this message
and decodes it to set the specified function and range. Notice that while all characters sent in
the ATN true mode have meanings specified by the bus standard, those sent in the ATN false
{data) mode are defined by the device itself as to what action they will cause. In this case, the
3490A has been designed to interpret these data bytes as programming information for setting
its function and range. Finally, most HP-IB devices send and recognize CR/LF (or sometimes
just LF) as marking the end of a data message. Some devices, however, may choose other

end-of-message delimiters and the user should consult the individual operating manuals for

these devices.

When it is time for the 3490A to deliver the voltage reading it has taken, the sequence shown in

Figure 51 is generated.

ATN Data Lines ASCII Meaning

T 00111111 ?  Unlisten

00110101 5 Computer is a listener

01010111 W Device 23 is a talker
(ASCII characters for voltage reading)

00001101 CR Carriage Return

00001010 LF Line Feed

momom H

Figure 51

To take the reading, the computer (controller) sends out the unlisten, listen address 21, and
talk address 23 in the ATN true mode. It then sets ATN false (data mode) and then waits for the
talker (3490A) to place the data bytes on the data lines. Notice that even though the 3490A is
the talker in this case, it is the computer acting as the controller which sets up the talker and

listener and then gives the 3490A “permission to start talking” by setting the ATN line false.



HP Interface Cards

The controller is always responsible for determining the sequence of events on the bus! From
the computer, this input operation would have been initiated by the execution of the statement
ENTER 723; A; this would specify that a numeric reading should be taken from device 23 on
the HP-IB set to select code 7, and the result stored in the program variable A.

There is a common misconception when using the HP-IB that a device on the bus has a talk
address which is different from its listen address. For example, when addressing the 3490A in
this example, an ASCII ““7" was used for the listen address, and an ASCII **W” for the talk
address. In looking at the 5-bit pattern (10111 = decimal 23) that forms its actual device
number, it is the same for both. It is merely the difference in the talk (10) or listen (01) bits that
gives rise to a different ASCII representation for each. The fact that the device has only one
address is more evident in the high-level specification for its address, 723, used in both the
ENTER and OUTPUT statements.

From Figure 49 we see that the class bits (5 and 6) can also be both ones. In this case, the
remaining five bits (4-0) are interpreted as a secondary command or extended address. The
device receiving this secondary command is the one whose primary (talk/listen) address im-
mediately preceded it, and the device is free to choose how it will interpret this additional
addressing information. This information will be found in the individual operating manuals for
those HP-IB devices which use secondary addresses. To send a secondary address (assuming
that the System 35 is the active controller) the user simply appends a decimal point and two
more digits in the range 0 to 31 to the normal select code and device number. For example, the
statement OUTPUT 723.05; <data> would cause the /O ROM to issue a listen address of 23
(00110111) followed by a secondary address of 5 (01100101) to the HP-IB on select code 7

during the addressing portion of the output sequence.

Data Operations on the HP-IB

In the last section, we discussed the use of normal read and write statements to send and
receive data messages over the HP-IB. If the instrument that is being addressed is a slow one,
and the program can do other useful work while the data exchange is taking place, the interrupt
transfer methods discussed in Chapter 2 can also be used with an HP-IB device. For example,
assume that the System 35 is connected to a digital voltmeter (DVM) on the HP-IB with a
device number of 5, and that each reading consists of a string of 16 ASCII characters. The

following program segment

1 QY ERLAF

i@ DIM HoformatdFl 168817

28 OH THT #7,2 GO0sUR Eead

z9 EMTER - ¥@% BINT HOFOEHAT:Hobormat$

188 Read: Lo Frocess whe readings.

119



-\

fiicliigalce CLalds

would set up a string buffer called Noformat$ large enough to hold 100 readings. The input
statement in line 30 would automatically start reading data bytes into the buffer until it is filled.
Setting up device 5 as the talker, the computer as the listener, and servicing the interrupts as
each byte comes ready are all handled by the I/ O ROM while the remainder of the program
continues executing. When the string buffer has filled, a branc

h to the user’s service routine
labeled ‘“‘Read” will take place, where the program can read

the data out of the buffer and
process it. It should be carefully noted, however, that during this Noformat transfer the main

program should not attempt to do any I/O operations to the HP-IB on select code 7. Even
though the System 35 is capable of doing other programming tasks while the buffer transfer is
taking place, the HP-IB itself can only handle one data exchange at a time. For example, if

during the data transfer the main program were to execute an OUTPUT 723;... statement, the

computer would be addressed as a talker, thereby unaddressing the DVM (device 5) as a talker,
and the 100 readings would never be completed.

In all of the previous examples we have assumed that the System 35 was the active controller

on the HP-IB, and treated devices on that bus like any other peripheral device by merely
appending the device number to the select code. We also assumed that the devices we were

addressing as the controller would properly respond by taking the data we sent when we

addressed them as listeners, and would not place their own data on the bus until we addressed

them to talk. In short, we assumed that as the controller we were running the show!

The System 35 and 45 computers are also capable of acting as a non-controller; that is, acting

just like any other talker /listener on the bus. Two new questions arise when the computer is
connected to the HP-IB in this non-controller mode. How does the computer know when it

should talk and listen? And how does it read from and write to the bus without the automatic

setting of talkers and listeners which would be illegal when it is not the controller?

Two solutions are provided to the first problem. The first way is to check the status byte from
the 98034A interface itself, obtained as the result of the status statement; e.g., STATUS 7;A.
Figure 52 shows the meanings assigned to the various bits in this status byte.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

SRQ ACT TLK LST SAC 1 SPL EOR

Figure 52



HP Interface Cards

Bit 5is set (= 1) when the computer is addressed as a talker, and bit 4 is set when it is addressed
as a listener. (The meanings of the other bits will be discussed in a later section.) Thus the
program can periodically read the status byte and test the appropriate bits to see if it has been

addressed to talk or listen.

A more convenient method makes use of the interrupt capability so that the program does not
have to periodically sample and test the status byte. While the other interface cards have only
one interrupting condition (flag line indicating ready) the HP-IB interface can be set to interrupt
on any combination of seven conditions specified in an interrupt-enable mask (see Figure 56
page 133). In this mask, bits 4 and 5 being set to one enable an interrupt on the conditions
addressed-to-listen and addressed-to-talk respectively. Thus, the program can enable the inter-
face to interrupt and have the /O ROM branch to a user-written service routine whenever the
computer is addressed as a talker or listener. As an example, assume that the System 35 is on an

HP-IB as a non-controller, and is also interfaced to a DVM using a 98033A BCD Interface (Figure
53).

(SC=2) (SC=7) Devices

BCD Card rl;/HP -IB Card Other HP-IB

DVM 9835A CONTROLLER

Figure 53

Normally the System 35 is running a local computation program (background job). But when
the controller asks for a reading (i.e., makes the System 35 a talker) the System 35 is to take a
reading from the DVM and place the result on the HP-IB. Also, the DVM is operating as a
two-channel device (see “98033A BCD Formats’') and the controller can tell the System 35
whether it wants a reading from channel 1 or channel 2 by addressing it as a listener and
sending it the ASCII character ““1” or “2”. The following program in the System 35 would
accomplish this task.

rev: 12/80

121



122 HP Interface Cards

¥ FRSS

Lo OM INT #7,3 4

ZH COMTROL HMADE e - -

o abt e o5 PR, LITTEH ITrtory I s

CARD EHAELE 7

EACKGEOUND - JOE ERECUTES HERE,

A

Serice:

i ais STATUS TrA
4548 IF BITC R :"=14T:éu .
R, S THEH Tz

451 I =
488 Liztern: EHTER 73FRead
478 FﬂHTp“*'A:'"_“

. CUHTRESL MASE e I Epabile fem Tal L
P 0T et CErmable for TALE Inteis
421 !
498 Tl EMTER Z:f,E boTake readir
& e ~ obEEEs readings.
:U? IF “Fead varals 07 ¢Read BEPEY THEH grrmpﬂ
Zia CHH Fead war GOTO Heits 2, Hrite b -
511 ! T
528 Errop: GUTFUT FiYErdar fead var
538 COMTEDL MASK 716 ‘ T

. R PRy Poonabde for LISTEH Inter
s 3070 Exit LISTEH=Trt e,
541 !
298 Hrite a: GUTFUT 73A
Sen COMTROL MASE 7i18 ' Enable ¢ LIsT

: CONT 7 lE Cokrnable for LISTEH “Ihitei:
57 GOTO Euiy o
371 !
S8 Write b CDUTRUT 73k
ok ! CONTRELL TilE PoErnabls for LISTER Ieter
591 !
o e - CAHRD EMAELE 7
E16 RETURH
e EHD

Line 10 specifies that if an interrupt occurs on select code 7, the program should branch to the
routine labeled “‘Service.”” Line 30 then enables the HP-IB interface to interrupt on either
being addressed to talk or listen. The interrupt enable mask, decimal 48, corresponds to a
binary pattern of 00110000 (i.e., 16+ 32) which sets bits 4 and 5. The main program in lines 40

through 430 then proceeds with its execution.

When the System 35 is addressed as either a talker or a listener by the controller, the program
branches to the service routine at line 140. Since the interrupt enable mask specified either of
two conditions (talker or listener), line 450 then tests the status byte to determine which
condition caused the branch to the service routine. If the System 35 was addressed as a
listener, the program merely reads and saves in Read var the new channel number, and then
returns to continue with the background job. If it was addressed as a talker, it goes out to the
DVM on select code 2 and takes readings from channels 1 and 2 into the variables A and B.

Then depending on the value of Read var, one of the two readings is output to the bus.



HP Interface Cards 123

The other important point to notice in this program is that all input from and output to the bus
used only the interface select code. This is the standard procedure when the computer is not
the controller on that bus. Since no device number is specified, the I/ O ROM merely inputs or

outputs data on the bus without attempting to do any automatic addressing.

Extended HP-IB Control Features

In the previous sections, we have discussed exchanging data messages on the HP-IB. To this
extent, devices on the HP-IB only differ from devices connected to the computer by other
interfaces in that more than one device may be connected to the computer using a single
98034A Interface card. The real power of the HP-IB comes from its implementation of ex-
tended control features. If a measuring instrument is connected to the computer using for
example, the 98032A General-Purpose 16-Bit Interface, any remote control of that instru-
ment’s extended functions (such as resetting it to its power-on state, disabling its front panel
controls, or detecting when it requires service) is most probably done by setting external
control lines high or low. Each instrument’s capabilities and method of controlling these func-
tions will be different, and a good deal of skill and knowledge of interfacing is required to
properly control these functions using the lines available on the interface chosen. With the
HP-IB, on the other hand, many of these functions have been standardized and all instruments
that provide for these extended control features have them accessed by the controller in the
same way. It is the nature and use of these extended control features that make up the topic of

this section.

In general, the types of operations that can be remotely controlled or programmed for a device
on the HP-IB fall into two categories: those that are specific to that device, and those that are
general to all devices. For example, the setting of the type of measurement to be taken (e.g.,
voltage, current, resistance, etc.} and the range (100 volts, 10K ohms, etc.) make sense for a
digital multimeter on the bus, but have no meaning for a printer or a frequency counter. Thus,
function and range setting would be an example of a device-dependent control operation. To
make this type of control as general as possible, data messages are used and each device is free
to interpret these data messages as it chooses. We saw in a previous example how a 3490A
interpreted the data message “F2R3"’ as a command to switch to the 100 Volts AC range. Each
device on the bus has some set of operations that can be programmed through these data

messages, a list of which is found in the operating manuals for that specific device.



124 HP Interface Cards

In this section, we will look at the other category of device control messages which are common
to all devices on the bus. For example, if we wish to reset a device on the bus, the IEEE-488
standard defines a message called device-clear which is recognized by all devices on the bus. It
should be noted that the standard does not require all devices to implement the device-clear
operation; but for those that do implement it, it is always accessed in the same way using the
device-clear message. Also, using the same example, the standard does not define what exactly
is to be cleared or reset. This is left up to the individual device. Some devices on receiving this
message may reset everything to the power-on state, while others may only clear selected
conditions. In any case, the controller does not require any device-dependent information in
order to issue the device-clear message. The remainder of this section will discuss these

device-independent messages that can be sent, and the general types of action that will take
place if the device implements a response to that message.

When we refer to these as device-independent messages, we simply mean that all devices on
the bus will recognize that a particular message (for example, device-clear) is being sent,
regardless of how it chooses to respond. These command messages are encoded on the data
lines as 7-bit ASCII characters, and are distinguished from normal data characters by the setting
of the attention (ATN) line. That is, when the ATN line is false, bytes on the data lines are
interpreted as simple data characters. But when the ATN line is true, the data lines become the
carriers of command information. The set of 128 ASCII characters that can be placed on the
data lines during this ATN-true mode are divided into four classes as shown in Figure 49 and
Appendix A. We have already seen how three of these classes are used to generate talk
addresses, listen addresses, and secondary addresses. The fourth class, bus commands, is the

one used to encode these device-independent control messages.

In addition to data and command messages, there are five other bus messages that, because of
their importance and timing considerations, have hardware lines dedicated to them. These are

shown in Figure 48.

We have already seen how the attention line (ATN) is used to distinguish between simple data
and command information of the eight data lines. The meanings of the four remaining lines are

explained next.



HP Interface Cards

Interface Clear

(IFC): Only the hardwired system controller can issue the IFC message. By pulling the IFC line
low, all bus activity is unconditionally terminated, the system controller regains (if it has been
passed to another device) the status of active controller, and any current talker and listeners
become unaddressed. Normally, this message is only used to abort an unwanted operation, or
to allow the system controller to regain control of a bus where something has gone wrong. It

overrides any other activity that is currently taking place on the bus.

Remote Enable
(REN): This line is used to allow instruments on the bus to be programmed remotely by another

device on the bus, usually (but not necessarily) the active controller. Its use is discussed in more
detail later in this section.

End or Identify

(EOI): Normally, data messages sent over the HP-IB are sent using the standard ASCII code
and are terminated by the ASCII line-feed character (LF = decimal 10). A device (e.g., a disk)
may wish to send blocks of information in 8-bit bytes which represent general binary patterns;
and no specific 8-bit pattern can be designated as a terminating character since it could occur
anywhere in the data stream. In this case, the EOI line is used to mark the end of the data
message. When the listeners detect that the EOI line is set, they recognize that the byte on the
data lines is the last one of the data message.

The EOI line is also used during an identity (parallel poll) sequence to be discussed later.

Service Request

(SRQ: The active controller is always in charge of the order of events on the HP-IB. If a device
on the bus has some information of which the controller should be aware, it can use the service
request line to ask for the controller’s attention. For example, a printer might request service to
inform the controller that it is out of paper. Or a digitizer might assert service request to tell the
controller that its sample button was pressed by the operator and a reading is ready to be taken.
This represents a request (NOT a demand), and it is up to the controller when and how it will
service that device. However, the device will continue to assert SRQ until it has been satisfied.

Exactly what will satisfy a service request depends on each individual device and will be
contained in the operating manual for that device.

Figure 54 shows the device-independent control messages that can be sent, and the statements
used by the [/ O ROM to generate these messages. The two columns in Figure 54 show the
results of these statements when they are sent to the entire bus (select code only specified) or to
a particular device on the bus (select code and device number specified.)

125



126 HP Interface Cards

Extended Bus Control Messages

BASIC Statement <SC> only <SC> <DN>

CLEAR DCL SDC
ABORTIO IFC (error)
TRIGGER GET <L> + GET
REMOTE REN on REN + <L>
LOCAL REN off <L> + GTL
LOCAL LOCKOUT LLO (error)
STATUS 98034A serial poll
status byte

PPOLL parallel poll (error)

PPOLL CONFIGURE (error) <L> + PPC + PPE

PPOLL UNCONFIGURE PPU <L> + PPC + PPD

REQUEST SRQ (error)

PASS CONTROL {error) <T> + TCT
<L> = specified device addressed as a listener
<T> = specified device addressed as a talker
<SC> = interface select code only

<SC><DN> = select code and device address

Figure 54

When the CLEAR statement is executed, all devices on the bus execute their clear operation in
response to the device clear (DCL) message. If a device number is specified (e.g., CLEAR
711), then that device is addressed as a listener and it alone responds to the selective device
clear (SDC) message. Each device on the bus may choose how it will respond to the selective
{SDC) or universal (DCL) clear instruction. If the computer is set to be the system controller, it
may also execute the clear interface (ABORT I0) statement which causes the IFC line to be

pulsed low issuing the interface clear message discussed above.

In some applications it is desirable to have two or more instruments start their operations at the
same time. For example, we might like to apply a step voltage function to a circuit under test
and measure the transient response at some node in that circuit. A signal generator would be
programmed to apply the voltage step and a digital voltmeter would be programmed to take the
voltage measurements. In order to start both instruments off at the same time, the TRIGGER
statement would be executed which would issue a group-execute-trigger (GET) message over
the bus.



Com
Musoorer HP Interface Cards

Many bus instruments such as digital voltmeters can have their various functions and ranges
selected either locally by manually setting their front panel controls, or remotely by
programming messages from a controller. In order to program such an instrument via the bus,
the remote enable (REN) line must be set. When the REN line is set, addressing the device as a
listener makes it capable of receiving programming instructions from the bus. When the
98034A Interface powers up (or following the IFC message) the REN line is automatically set. It
may be set by using the REMOTE statement or cleared by using the local (LOCAL) statement.
If the LOCAL statement is executed specifying both a select code and a device number (e.g.,
LOCAL 715), the REN line is not cleared, but the specified device is addressed as a listener and
that one device receives a go-to-local (GTL) message. The instrument responds to the GTL
message by switching control from the bus to the front panel manual controls, allowing an
operator to set its programming controls. In many instruments, the operator can switch from
remote operation to local operation by pressing a return-to-local button on the instrument. If
the program controlling the instrument wishes to prevent manual operation by an unauthorized
operator, it can execute the LOCAL LOCKOUT statement. This issues a local lockout (LLO)
message on the bus that makes the return-to-local buttons on the bus instruments inoperative.
In this state, the only way to transfer control to manual operation on a particular instrument is
through the GTL bus message. Using combinations of these remote/local messages, a
controller can set up any combination it chooses of instruments operating either remotely or

locally as determined by the particular application.

We have already seen how the STATUS statement is used to obtain a status byte from the
98034A Interface. This status byte contains information such as the current addressing state
(talker, listener, controller, etc.} of the card. Each instrument on the bus can also have a status
byte which contains useful information about that device itself. The meaning of the information
in this status byte is determined by each device and found in the operating manual for that
device. In order to obtain this device status byte, the same STATUS statement used to get the
status byte of the interface is executed, but a select code and the device number is given. For
example, the statement STATUS 713;A would return the status byte from device 13 on the
HP-IB set to select code 7. On the HP-IB, reading this status byte is referred to as a serial poll
operation. The device is addressed as a talker, a special control message called serial poll
enable (SPE) is issued, and the bus is placed in the data (ATN false) mode. Because of the SPE
message, the device addressed as a talker knows not to put normal data on the lines, but rather
its serial poll (status) byte. The controller reads this byte, and then issues a serial poll disable
(SPD) message to cancel the SPE message. All of the bits in this status byte are defined by the
device itself to encode any information it chooses, with the exception of bit 6. If this bit is set, it
identifies that device as being one which is currently asserting a service request. Thus, when the
controller recognizes that some device on the bus is requesting service (by the SRQ line being
set) it can serially poll each device to find out which one (there may be more than one) requires
service.

127



128 HP Interface Cards

When several devices on the bus are capable of requesting service, the controller does not have
to poll each device serially to determine which one it is. Another operation called a parallel
poll is capable of polling up to eight devices at one time. Each device is assigned one of the
eight data lines on which to respond when a parallel poll is conducted. When the controller
senses SRQ), it conducts a parallel poll by setting both ATN and EQOI true at the same time.
(Note: In the data mode the EOI line has the meaning of ‘‘end-of-message.”’ In the ATN true
mode, it has the meaning of “‘identify”’ in the sense of a parallel poll.) All devices currently
requesting service will then respond on their assigned data line. By checking the bits in this poll
byte, the controller can immediately determine which devices require service without serially
polling each one. If the device requesting service has more than one possible reason for
asserting SRQ), the controller may also conduct a serial poll on that one device; and its status
byte could contain more detailed information about why SRQ was asserted.

Most devices that are designed to respond to the parallel poll operation determine which data
bit to respond on and what logic sense (high or low) to use by switches or jumpers set on the

instrument itself. Some devices, however, allow the controller to program them for this

information. This is done using the parallel poll configure statement PPOLL CONFIGURE

which addresses the device as a listener, sends the parallel poll configure (PPC) bus message,
followed by a parallel poll enable (PPE) byte as specified in the PPOLL CONFIGURE
statement. The bits of this byte are 0110SPPP, where PPP is the binary equivalent of the data
line on which the device should respond (0 through 7) and Sis a 1 or a 0 response on that line.
A device that has been programmed for its parallel poll response may be disabled for parallel
poll response by executing the parallel poll unconfigue PPOLL UNCONFIGURE statement.
This sends the parallel poll disable (PPD = 01110000) message to that device which cancels
any previous PPE message. If the PPOLL UNCONFIGURE statement is executed using a select
code only, with no device number, a universal parallel poll unconfigure (PPU) message is
sent. This deactivates all devices on the bus whose parallel poll response can be remotely

programmed.

If the System 35 is not the active controller on the bus, it too may wish to set a service request
(SRQ) to get the controller’s attention. This is done using the request service (REQUEST)
statement. This statement has two parameters which specify the select code of the HP-IB, and
the serial poll response byte, with bit 6 determining whether the SRQ line should be set. For
example, executing the statement REQUEST 7;37 would set a decimal 37 (binary 00100101)
as the serial poll response byte. This byte is stored on the 98034A Interface to be delivered
anytime the controller conducts a serial poll. The statement REQUEST 7:67 would set a
decimal 67 (binary 01000011) as the serial poll response byte, and set the SRQ line, since bit 6

is set.



HP Interface Cards

Finally, executing the pass control statement (PASS CONTROL) specifying a select code and a
device number will cause that device to be addressed as a talker and the take control (TCT)
message to be sent. This will result in passing active control from the computer to the specified
device, which will then have responsibility for sequencing bus activity. By addressing the
device as a talker (which automatically unaddresses any previous talker), this protocol guaran-
tees that only one device will respond to the take control message and that there will be only

one active controller on the bus at any time.

Using the 98034A Interface

Most of the HP-IB operations discussed in the preceding sections are implemented
automatically by the [/ O ROM and by a microprocessor contained on the 98034A Interface
card itself. Since these operations are well defined by the IEEE-488-1978 standard, and have
been made transparent by the high-level programming language, it is less important that a user

of the HP-IB understand the detailed workings of the interface card.

There are, however, a few operational characteristics of the 98034A which the user should
understand in order to properly program the interface for such activities as interrupt operation,
acting as a non-controller, using the EOI capability, and so on. These characteristics will be

discussed in this section.

NOTE

The HP 98034A Interface has been revised to alleviate cer-
tain irregularities which can become apparent when the
98034A Interface is used with System 3545 desktop com-
puters. To avoid problems, use the HP 98034A Revised In-
terface for HP-IB operations. This is only of concern to users
who purchased a System 35 or 45 for use with an older
version of the 98034A Interface.

129



130 HP Interface Cards

Because of the increased complexity of the 98034A Interface, four status bytes are required to
contain all of the information about the card which might be of interest to the computer
controlling that interface. Figure 55 shows the meanings assigned to the various bits in these
four status bytes. The information which is most often used is collected in the fourth® of these
status bytes, and is the one returned as the result of executing the STATUS statement. The
other three status bytes contain less-frequently used information, and can be obtained from the
status operation by specifying additional return variables (see System 35 or 45 1,0 ROM
Programming Manual).

First Status Byte:

Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 0 DCL 0 ERROR

Bit 0: Is 1 when error detected.

Bit 2: Is 1 when Device Clear received.

Figure 55a

Second Status Byte:

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Bits 0-4: HP-IB address

Figure 55b

1 Note that the order in which these status bytes is returned by the status statement is different than their actual order on the
98034A interface. Refer to the I /O ROM programming manual for further details.



HP Interface Cards

Third Status Byte:

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0

EOI REN SRQ ATN IFC NDAC | NRFD DAV

Logical 1 indicates corresponding signal line is true.

Figure 55c

In the first status byte, the error bit {bit 0) is set whenever an illegal operation on the bus is
attempted. This would include attempting to talk or listen when the card has not been
addressed to do so, or attempting to specify bus addressing information when the 98034A is
not the active controller on the bus. Normally, these operations are handled automatically by

the I/ O ROM and the user need not be concerned with this error indicator.

If the 98034A is not the controller on the bus, and the controller sends a device clear message,
bit 2 of the first status byte will be set to indicate that this condition occurred. Both the error and
the device clear bits will remain set until the status is read, at which time they will automatically

clear to be ready for the next occurrence of these conditions.

The second status byte contains the bus address (in the range 0 to 30) that has been set on the
98034A card, in bits 4 through 0. This information is normally used by the IO ROM when it
needs to issue its own talk or listen address as part of the automatic addressing sequence
associated with ENTER and QUTPUT statements. It is available to the user, however, if he
should wish to check the address that the interface card has been set to.

The third status byte simply contains a direct mapping of the five bus control lines and the three
handshake lines {(Figure 48). Again, this information is required by the automatic bus drivers in
the IO ROM and does not normally represent information that is directly useful to the user’s
program.

131



132 HP Interface Cards

Fourth Status Byte:

Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O

STS SRQ ACT TLK LST SAC 1 SPL EOR

Bit 8: Peripheral Status

Bit 7. Is 1 when the SRQ signal line is true.

Bit 6: Is 1 when the calculator is the active controller.

Bit 5: Is 1 when the calculator is the active talker.

Bit 4: Is 1 when the calculator is an active listener.

Bit 3: Is 1 when the calculator is the active system controller.
Bit 2: Isalways 1.

Bit 1: Is 1 when a serial poll is in process.

Bit 0: s 1 when the EOI (end of record) line is true.

Figure 55d

The information which is most useful to the user’s program is contained in the fourth status
byte, which is the one returned as the result of the read-status operation when only the select
code of the HP-IB card itself is specified.

Bit 7 of this byte is an indicator that a service request is currently active. Notice that bit 5 of the
third status byte also deals with the service request line (SRQ). Bit 5 is a one whenever the
SRQ line itself is set, and becomes a zero whenever the SRQ line is cleared. The service request
bit in the fourth status byte, however, is only set if SRQ is set and the 98034A card is the active
controller. Thus it indicates that this is a request which the System 35, as active controller, is
being asked to service.

Bits 6 through 3 indicate which combination of the four possible bus roles (talker, listener,
active controller, and system controller) is currently true for the 98034A card. Bit 1 indicates
that a serial poll operation is being conducted on the 98034A card by the active controller on
the bus.

Bit 0 is set whenever a data character is received by the 98034A (as a listener) with the EOl line
set. While the EOI indicator (bit 7 of the third status byte) is a direct indicator of the state of the
EOQI line, the EOR bit (bit O of the fourth status byte) is set only when data is received with EOI

true, and is cleared when the status byte is read by the computer.

rev: 6/81



HP Interface Cards

Unlike the other interface cards whose only interrupting condition is the ready state of the flag
line (see “The 98032 Bit Parallel Interface”), the 98034A can interrupt on seven distinct
conditions. The most common of these is an interrupt for a service request (SRQ) from another

device on the bus.

R5 OUT

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

SRQ ACT TLK LST IRF ORE |OTHER| EOI

Bit 7: Logical 1 enables interrupt on SRQ.

Bit 6: Logical 1 enables interrupt on active controller.

Bit 5: Logical 1 enables interrupt on active talker.

Bit 4: Logical 1 enables interrupt on active listener.

Bit 3: Logical 1 enables interrupt on input register full.

Bit 2: Logical 1 enables interrupt on output register empty.

Bit 1: Logical 1 enables interrupt when error detected,
device clear or selective device clear /received (when
not active controller), or EOI received.

Bit 0: Enable EOI to clear status line {STS).

Figure 56

Figure 56 shows the eight conditions which can be specified in the interrupt enable mask. Bit 6

indicates that an interrupt should be generated whenever the 98034 card is made the active

controller (i.e., a take-control message is sent from the current active controller). Bits 5 and 4

enabled an interrupt upon being addressed as a talker, or addressed as a listener. The interrupt .

for these conditions will be generated by the 98034 as a result of two possible circumstances.
Either the interrupt enable bit is set and the corresponding condition becomes true, or the inter-
rupt bit is enabled and that condition is already true (that is, the condition is true at the time the
interrupt enable mask is sent to the 98034), Thus, for example, the fact that the talker-enabled
bit is set and the card addressed as a talker generates an interrupt. As long as the card is addres-
sed as a talker and the bit is set the interrupt is generated. As a result, it is necessary to enable
and disable the interface for interrupts on these conditions. If the “‘interrupt on addressed to
talk)) bit is set, an interrupt will be generated each time the 98034 received its talk address from
the controller. These three bits remain set until the user’s program clears them with another
interrupt enable mask containing a zero in these positions {or when the interface is reset from the

computer).

rev: 12/80

133



134 HP Interface Cards

Bit 1 of the interrupt enable mask allows an interrupt to occur if the device-clear or error bits
(status byte one} are set. The remaining interrupt conditions (bits 3,2, and 0) are used by the
/0 ROM during buffer transfer operations. Their correct use is highly dependent on timing
and protocol considerations; and as such, they do not represent interrupting conditions which
can be useful to a high-level program. Bit 0 cannot actually interrupt the computer, but when
set, is used to clear the STS line.

Figure 57 shows the register assignments used by the 98034A Interface card.

IN ouT
R4 DATA IN DATA OUT
R5 STATUS CONTROL
R6 STATUS/DATA COMMANDS
R7 PARALLEL POLL DIRECT BUS CONTROL

Figure 57

Most HP-IB operations use complex sequences of these register operations, which are handled
automatically by the /O ROM in response to high-level statements discussed in previous
sections. As a result, in most cases it is neither practical nor desirable for the user’s program to
attempt to carry out HP-IB operations by using the interface IO statements to directly access

these registers.

The one exception to this is in the use of EOQl. We have seen that the EOI line is used to indicate
the end of a data message when binary data is being sent over the bus. Normally, when ASCII
data is being sent, a special character such as LF (line feed) is used to terminate the message. [f
EOI must be used, buffer transfers will recognize this condition as a termination of the input
transfer operation. The 9845A does not, however, send EQI automatically’ with any data
messages. If the user’s program wishes to set EQI, this can be done using an R7 OUT operation.
In fact, all five of the bus control lines can be set or cleared using the bit mapping shown in
Figure 58.

1 The System 35 and later versions of the System 45 desktop computers have an EQl statement that generates the EOl message
automatically.



HP Interface Cards

R7 OUT

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1 0 0 EOI IFC ATN REN SRQ

Figure 58

When the upper three bits of the R7 OUT register are 100, the lower five bits directly address
the bus control lines. In each position, a 1 will set and a 0 will clear the corresponding line. For

example, to send 100 bytes of data using EOI with the last byte, the following program could be
used.

1806 DUTFUT TL3 USIHG “#, L9 sHE0L, 93]

ila EQT FaHUMOASDtaG: 110

1ea I

138 L HOTE THE EOD STATEMEHT 15 ERUIVALENT TO..
146 [ WATT: WEITE. 7,731144

150 1 WEITE BIH ~FsHliMepsling: 110

Before sending the last byte, the program addresses select code 7 and outputs a 144 (binary
10010000) to the R7 register to set EOI. Then the last byte is sent with EQOI set. Remember that
all five bus lines are set or cleared by this operation. Thus, for example, if we wanted to set EOl
and leave REN set (assuming that it was set before this operation) we would have used a 146
(binary 10010010) instead of the 144.

It should also be kept in mind that not every device on the bus is allowed to set the bus control

lines. Figure 59 shows the role that a device must currently have to set each of these lines.

EOl Talker

IFC  System Controller
ATN Active Controller
REN System Controller
SRQ Non-controller

Figure 59

135



136 HP Interface Cards

Finally, Figure 60 shows the responses of the 98034A when it receives the various bus control

messages.

ATN: As a non-controller, the 98034A gives its attention to the controller and will not
respond (flag indicates busy) to the computer during ATN true.

IFC: Clears all registers and indicators to the power-on state except for the
interrupt-enable mask and the serial poll response byte.

REN: No response.

EOL Terminates data input transfer to a buffer. Does not terminate simple read
statement.

SRQ: Sets the service request bit (bit 7 of fourth status byte) and interrupts if bit 7 of

interrupt mask is set.
DCL, SDC: Sets bit 2 of first status byte and interrupts if bit 1 of interrupt mask is set.

GTL,LLO: No response.

GET: No response.
Serial poll:  98034A delivers the currently set serial poll response byte without computer
intervention.

Parallel poll: 98034A responds to a parallel poll using the line and sense set by the switches
on the card.

PPU, PPC: Parallel poll response is switch settable and not programmable by the control-

ler. No response.

TCT: 98034A assumes active control of the HP-IB.

Figure 60



HP Interface Cards

The 98036A Serial 1/ O Interface
An Introduction to Serial 1/ O

In the previous sections we have discussed interfacing peripheral devices to the computer in
various formats including 16-bit parallel (98032A), BCD (98033A), and the HP-IB instrumen-
tation bus (98034A). In all of these cases, the cards are used to interface local peripherals and
instrumentation clusters which are physically located near the computer itself. Some applica-
tions, however, may require the use of peripheral devices which are located at considerable

distances from the computer.

Historically, this need arose when the size and speed of computers made it practical for them to
do multitasking; that is, being shared by several users at the same time. To do this, each user
required his own port into the computer, called a terminal, through which he could enter
programs and data and get back printed results. This so-called time-sharing made it possible for
each user to access a central computer from a terminal located in his own office or work space.
The standard methods of interfacing, however, were not practical in this case since the cost of
running cables containing many wires over these distances would quickly become prohibitive.
A method of interfacing was needed that would require the fewest number of wires to connect

the terminal to the computer.

The solution to this problem was found in a new method of data transmission called serial [/ O.
In this method, all data is sent and received over a single pair of wires in a bit-serial manner;
that is, a word or byte of data is transmitted on a single wire, and received on a second wire,
one bit at a time. We will see later that in some cases, more than two wires are used to achieve
special features. But in all these cases, the transmission of data one bit after the other is a

characteristic of serial interfacing.

This method of connecting terminals to a computer soon led to connecting one computer to
another so that they could exchange programs and data. And it became possible to connect
terminals and computers located in different buildings, cities, and even countries by making use
of the already existing telephone lines. But because telephone lines were not designed to
transmit digital (i.e., discrete voltage level) signals, a device that would translate the digital
signals produced by a serial interface into analog (i.e., modulated audio tones) signals that
could be carried over telephone lines was required. Such a device is known as a data set or a
modem (modulator-demodulator). Figure 61 shows how a pair of such modems would be used

to connect a computer to a remote terminal or to another computer.

137



138 HP Interface Cards

' digital data ~N
COMPUTER TERMINAL

DIRECT SERIAL 1/0 LINK

COMPUTER T MODEM MODEM T TERMINAL I

digital data analog data digital data

TELEPHONE SERIAL 170 LINK

Figure 61

Although the interfacing of remote devices is the primary use of serial | /O, it is by no means
restricted to this use. Many peripheral devices such as keyboards and printers are available
which use a serial communications link to the computer, even though they may be physically
located very near that computer. Because of the large number of manufacturers making mo-
dems and data terminal equipment, a need for some standard for compatibility was recognized
leading to the RS$-232-C standard for serial interfacing in the late 1960’s. Since this was the
most common standard available prior to the IEEE-488-1978 (see the previous section), many

manufacturers of peripheral devices designed them with serial interfaces to take advantage of
this compatibility.

Data Transmission Using Serial I/ O

In this section, we will discuss in detail the method by which data is transmitted over a serial
communications link, and introduce some of the terminology associated with serial 1/ O. The

concepts involved are not difficult, but unless they are understood a great deal of confusion can
result.

As with the other methods of interfacing, information is most commonly transmitted over the
data line using two voltage levels to represent the two possible states of a binary digit or bit (1 or
0). We will see later that another convention called current loop is sometimes used in which
current levels, rather than voltage levels, are used to represent this information. Figure 62

shows the voltage levels for these two states, and the meanings assigned to each.



HP Interface Cards

State: LOW HIGH

Voltage range: —-3to —25V +3to +25V

Binary state: logic 1 logic O

Level name: mark space
Figure 62

When data is not being transmitted, the line is held in the LOW state. Unlike the other methods
of interfacing, the serial protocol does not use any type of handshake process. When the
transmitting device has a byte of information ready to send, it merely puts the information on
the data line, expecting the receiving device to be ready to take it. If the first bit of the data byte
sent happens to be a logical 1 (LOW state), the receiver could not distinguish this bit from the
quiet line, which is also a LOW state. Therefore, each byte of data is preceded by a start bit,
which is defined to be in the HIGH state. This transition from the LOW state (idle line) to the
HIGH state (start bit) lets the receiver know that a byte of data is being transmitted. As an
example, let’s look at how the transmitter would encode the ASCII character “‘E” to be sent

over the data line.

Figure 63 shows the state changes that take place on the data line to send the ASCII “E.”” The
transmitting device first pulls the data line HIGH (start bit) to tell the receiver that a data byte is
coming. It holds the line high for an amount of time agreed upon between the transmitter and
the receiver, called a bit time. Following the start bit, the bits of the data byte itself are placed
on the data line. The least significant bit (bit 0} is sent first, and each bit is held on the line by the
transmitter for one bit time. When the receiver senses the leading edge of the start bit, it waits
for one half of a bit time in order to synchronize itself as closely as possible to the center of that
start bit. Then, each bit time interval after that, it samples the state of the data line and reads a
logic 1 or 0. These time intervals at which the receiver samples the data line are marked by ticks
in Figure 63. After the last (most significant) data bit has been sent, the transmitter may also
send a parity bit (marked P in Figure 63) which will be discussed later.

ASCII “E” = 69 (decimal) = 105 (octal) = 01000101 (binary)

—e
-

il
I L ¥

} —
} | I—f —

|
1
ST 1 0 1 0 0 0 1 0 P STP ST..

[Sp——
1 bit time
interval

Figure 63

139



140 HP Interface Cards

From this diagram, we see that the successful transmission of a data byte is highly dependent
on precision timing. If the receiver is sampling the data line at a rate significantly faster or
slower than the transmitter is setting that line, it is possible that the receiver will either miss a bit,

or sample the same bit twice, resulting in erroneous data being received.

After the last data bit has been sent, the transmitter then allows the line to stay in the idle (low)
state for some set minimum time interval before sending the next start bit to begin the next
character transmission. This idle time is sometimes called a stop bit, although it does not
actually represent a bit of real data. It merely allows the receiver time to process the data byte
just received before the next one comes along. For some devices, one bit time may not be
enough to process the previous character and be ready for the next one. In this case, the
transmitter and receiver may agree that the transmitter will wait in the idle state for 1.5 or 2 bit

times before sending the next start bit.

In the example used in Figure 63, we sent the character “‘E’’ using an 8-bit ASCII code. That is,
eight of the bits sent represented the actual data. If we include the start bit, a parity bit, and one
stop bit, we see that 11 bit times are actually required to send an 8-bit byte of data. As an
example, lets assume that the overall transmission rate we are using is 10 characters per
second. This data rate is very common among printing terminals such as the popular Teletype

ASR Model 33. Figure 64 shows the timing characteristics for an example case.

Character length = 7 bit

Bits / character = 7 + Start + Parity + 2 Stop = 11

Data Rate = 10 characters / second

Bit rate = (10 char/sec)(11 bits/char) = 110 bits/ sec

Bit time = 1/110 bits/sec = 0.009091 sec = 9.1 msec
Figure 64

Thus we see that at 110 bits per second, each bit is held on the data line for approximately 9.1

milliseconds.



Camputer

“Museuin HP Interface Cards

This bit rate of 110 bits per second is sometimes referred to as a baud rate, and we often speak
of the data channel running at 110 baud. Strictly speaking, a binary data channel (i.e., one
using low and high voltage levels) should only be described by the term bit rate, the word baud
being reserved to characterize the data transmission rate of the analog signals sent between
modems. Because of bit compression schemes used in some modems, the bit rate and the baud
rate may not always have the same value. For our purposes, we will treat modems as transpa-
rent devices that convert digital information to analog and back to digital for long distance

communication; and as such, we will only be concerned with bit rates.

The field of data communications and serial 1/ O probably has more terms associated with it
than any other method of interfacing. It is probably also the area in which the terms are most
commonly misunderstood and misused. In order to avoid some of this confusion, we will spend
the remainder of this section discussing some of those terms and concepts that will be useful to
understand when using the 98036A Serial [/ O Interface.

Returning to Figure 63, we see that although the bits within the data byte must be sent at precise
intervals, there is no restriction on the time between characters except that the required stop time
be allowed. Indeed, it is this lack of a time restriction that makes the start bit necessary, so that
the receiver will recognize the next character. This mode of transmission is called bit-

synchronous, character-asynchronous or simply asynchronous transmission.

Up until now we have talked about serial transmission as though it took place over a single wire.
Obviously, a common signal ground is also required so that both the transmitter and the
receiver can measure the voltage levels on the data line with respect to the same reference

point. Thus the simplest form of serial communication requires two wires for the data transmis-
sion.

If communication over the data line is always in one direction, the data channel is said to be
operating in the “‘simplex’”” mode. For example, an RS-232-C printer wouid only receive
information, while a device such as a tape reader would only transmit data. A terminal, how-
ever, may both send and receive data since it has both a keyboard (data transmitter) and a
printer or a CRT (data receiver). In the previous section, we saw that the HP-IB allows bidirec-
tional communications over a set of data lines. That is, the same set of data lines is used for
sending information from device A to device B, and for sending information from device B to
device A. A special HP-IB protocol (i.e., addressing talkers and listeners) is used to control the
traffic on this set of data lines.

141



142 HP Interface Cards

Since communication in one direction over an RS-232-C link uses only one wire, such pro-
tocols can be avoided by allocating separate transmit and receive data lines, with a common

signal ground line used for reference. Figure 65 shows a schematic representation of such an
RS-232-C data link.

DATA <
COMMUNICATIONS Transmitted Data DATA
DEVICE Received Data | TERMINAL
(Computer or Signal Ground DEVICE
Modem)

Figure 65

Typically, the devices represented in Figure 65 will be a computer (or a modem for remote
communications) and a terminal. But this same diagram can also represent a link between any
two RS-232-C devices. For this reason, the two devices are often referred to by the more
general terms Data Communications Equipment (DCE) and Data Terminal Equipment {DTE).
Also, the terms transmitted data and received data are defined relative to the terminal (DTE

device).

An output-only device operating in the simplex mode would only implement the transmit and
ground lines, not using the received data line. An input-only device would implement the
received data and ground lines. If a device can both transmit and receive data, it would
implement all three lines. Such a device is said to be operating in the ‘‘duplex’” mode.

When two devices are directly connected over an RS-232-C link, they normally operate in what
is called a full-duplex mode. This means that data may be transmitted and received simultane-
ously. Information may be carried from the DTE to the DCE on the transmitted data line at the

same time that information is being sent from the DCE to the DTE on the received data line.

If these devices are connected over telephone lines using a pair of modems, only one data path
(the phone line) interconnects the two modems. In this case, full duplex operation is still
possible since many modems are capable of multiplexing the two signals representing the
transmitted and the received data. As the transmission speed (baud rate) increases, however,
the amount of information being sent by both transmitters simultaneously eventually exceeds
the capacity of the telephone line. Thus, when using high-speed modems, a special protocol is
used called half-duplex in which only one device at a time is allowed to transmit data to its

modem for sending over the telephone line.



Figure 66 shows a schematic representation of all three of these modes of operation. Notice
that while the computer is playing the part of a modem in the simplex and full-duplex modes, in

the half-duplex mode it is operating as a terminal, as is shown by the labeling of the transmitted

and received data lines.

COMPUTER

HP Interface Cards

(not connected)

w4

Transmitted Data
Received Data

Signal Ground

COMPUTER

SIMPLEX MODE

RECEIVE-ONLY
DEVICE

(Printer)

Transmitted Data
Received Data

Signal Ground

FULL-DUPLEX MODE

TERMINAL

Transmitted Data
Received Data

Signal Ground

TERMINAL

Transmitted Data
Received Data

ﬁ’)/l/oﬂ
@ s
S|, |MopeEMm,
[oN BN =
o|= l
[eh]
[ I
I
MODEM

Signal Ground

So far we have been using the terms half-duplex and full-duplex to describe the characteristics
of the communications line itself. These terms are also applied to classify terminal types with

similar, but not quite identical meanings. To clarify this, lets look at the characteristics of a

terminal in operation.

HALF-DUPLEX MODE

Figure 66

COMPUTER

143



144 HP Interface Cards

Figure 67 shows a schematic representation for a half-duplex terminal. It consists of a keyboard
for entering information to be sent to the computer, an output device such as a printer or a CRT
for displaying information sent back by the computer, and some electronic hardware for select-

ing the transmit or the receive mode of operation on the half-duplex data line.

— — — — — — = =
| | PRINTER [« |

A /0 < COMPUTER
| SELECTOR f—[—————> UTE

KEYBOARD >
| TERMINAL |
L
Figure 67

Information typed in on the keyboard is sent to the computer, and its responses are sent to the
terminal’s printer. Since it is very difficult to type on the keyboard without some visual feed-
back as to which keys have been pressed, the half-duplex terminal will also send its keystrokes
to the printer as indicated by the arrow in the figure. Thus the printer shows a record of both the
input from the keyboard as well as the output from the computer.

If, due to electrical noise on the data line, a bit is dropped (i.e., a transmitted 1 or 0 is received
asa0or 1) the computer will not receive the same message as sent by the terminal. But since
the information on the printer was generated by the keyboard, the message looks correct even
though the computer responds with an error indicating that it did not understand the message
received. This problem can be alleviated by operating the terminal in the full-duplex mode, and
taking advantage of a capability offered by many timeshare computers called echo-back or

simply echo. Figure 68 shows how a terminal would operate in this mode.

r-—-— — — — 7/ /7
| PRINTER |« — — et Received [ -

Data \

I/0 . /) COMPUTER

| KEYBOARD o __l Transmitted .| ./

Data
| | ECHO

TERMINAL

Lo ]

Figure 68



HP Interface Cards

The keyboard on the terminal does not directly drive the printer. Instead, as each key is
pressed, it is transmitted to the computer which receives it for processing, and also echoed back
to the terminal to be output on the printer. In this mode, the operator at the terminal still gets
visual feedback of what has been typed. But the characters printed are those received by the
computer and echoed back. Now if there is a transmission error, the operator sees the incorrect

character on the printer and can send a backspace character and retype the correct character.

Some terminals operate in only the half-duplex or the full-duplex mode while others will
operate in either mode, usually selectable by a switch on the terminal itself. If a terminal is
operating in the half-duplex mode with a computer which echoes characters back, each key-
stroke will be printed twice — once from the keyboard and once from the echo-back. Thus
typing the message ‘‘HELLO" would result in the printer showing “HHEELLLLOO.” On the
other hand, if a full-duplex terminal is communicating with a computer that has no echo-back
capability (or has this feature turned off), neither the computer nor the keyboard is driving the
printer during the typing of messages at the terminal, and the operator is ‘‘running blind.”” This
close association between half and full duplex operation of a terminal, and having echo turned
on or off, can lead to confusion unless this association is understood. When a selectable
terminal is run in the half-duplex mode, the keyboard drives the printer and echo on the
computer should be suppressed. In the full-duplex mode the keyboard does not drive the
printer, and the echo-back feature of the computer should be on. If the particular computer
being used cannot have its echo turned on or off, this will dictate the mode of operation of the

terminal.

Control Lines and the RS-232-C Standard

Until now we have been concerned only with data transmission over serial 1/ 0O lines. This
method provides a simple means of communication over a minimum number of wires, but does
not allow for much flexibility. As data communications equipment became more sophisticated,
the need for more control arose. For example, if a data terminal device offered the ability to
perform more complex tasks (e.g., save a block of received data on a magnetic tape unit), it
might require more than the provided stop-bit time between characters to perform these opera-
tions. With the advent of telephone communications and modem equipment, other new needs
arose such as the ability to detect when a computer was trying to dial up a modem, and when it
had dropped the line (i.e., hung up) at the end of the communication. In an attempt to prevent
total confusion in this area with every manufacturer implementing these control features in
whatever manner they chose, resulting in lack of compatibility between serial I/ O devices, the
Electronic Industries Association (EIA) tried to define a standard to guide designers of serial
1/ 0O equipment. After several proposals and earlier standards, the EIA RS-232-C standard was
adopted in 1969 and is used today by a large number of manufacturers of data gommunications
equipment.

145



146 HP Interface Cards

Even though the RS-232-C standard is the most popular one in use today, several other
standards exist which allow for more capabilities in certain areas of application. Some of these
are very close to the RS-232-C in their definitions. And the user setting up a serial [/ O system
should be careful to recognize equipment which claims to be RS-232-C compatible but may
have ‘‘slight” differences. In any given application, these differences may or may not be
enough to prevent compatibility with a true RS-232-C device.

Data communications devices which are RS-232-C compatible use a standard EIA 25-pin
connector, shown in Figure 69. The computer or modem (DCE) cable terminates with a female
connector, and terminal devices (DTE) use a male connector. Although this polarity is the
common one, some devices will be found which use the opposite type of connector. The

problems that this can cause will be discussed in a later section.

Figure 69

Figure 73 shows the various data and control lines that have been assigned to each of the
connector pins by the RS-232-C standard. The arrows are used to show the direction of each
line. That is, an arrow to the right signifies that the signal described is generated by the DCE
device and received by the DTE; while an arrow to the left signifies a signal from the DTE to the
DCE. Notice that the terms transmitted and received data (pins 2 and 3) are named relative to
the data terminal device. In the following paragraphs, we will describe each of these lines; not
in the order of their pin assignments, but collected into logical groups according to their

functions.



HP Interface Cards

Protective Ground (Pin 1)

This line is connected to the chassis ground of the device which is usually connected to the

external ground of the power supply for safety reasons.

Transmitted Data (pin 2)
Received Data (pin 3)
Signal or Logic Ground (pin 7)

These three lines are used to obtain full-duplex data exchange and have already been discus-

sed under ‘‘Data Transmission Using Serial 1/ O.”

Request to Send (pin 4)
Clear to Send (pin 5)

Data Set Ready (pin 6)

Data Terminal Ready (pin 20)

These four lines perform status indication functions between the modem and the terminal, and
indicate various go/no-go conditions. The Data Set Ready (DSR) and Data Terminal Ready
(DTR) lines are similar to the PSTS line on the 98032A card. When they are on (high voltage
level), they indicate that the device is operational. For example, the data set (modem) might
turn off DSR if it were switched into the test or dial mode, or if it lost the carrier signal on the
telephone lines. Similarly, the terminal would turn off DTR if it were switched from the on-line
to the local mode of operation.

The Request to Send (RTS) and Clear to Send (CTS) lines perform different functions depend-
ing on the mode of operation. In the half-duplex mode, they are used to control the channel
direction, or direction of communication flow on the data line.

Normally these lines are used by data communications equipment manufacturers to implement
the various serial [/ O protocols, and are not of concern in simple data exchanges between
RS-232-C devices. The user should be aware, however, that some modems and terminals will
not operate properly unless certain of these lines are set to the on state. We will discuss this

further in the next section when we see how the 98036A card sets and clears these lines.

Ring Indicator (pin 22)

Carrier Detect (pin 8)

Signal Quality Detector (pin 21)
Data Signal Rate Selector (pin 23)

These four lines are used when the terminal is operating with a modem using telephone
communications. The Ring Indicator indicates that the telephone ringing signal is being re-
ceived on the communication channel. The Carrier Detect indicates that the acoustic signal or

tone that is modulated to carry the data information is being received. Loss of this catrier

147



148 HP Interface Cards

indicates that the communication channel is no longer established. Some modems can detect
from the waveform of the carrier signal when there is a high probability of an error in the
received data. This condition is indicated by the state of the Signal Quality Detect line. The
Data Signal Rate Selector line is used by some modems with dual rate capability to switch
between two data signaling rates.

When connecting RS-232-C devices to HP desktop computers using the 98036A Interface,
these lines would not normally be used, although they are made available for setting and
testing by the interface.

Transmitter Clock (pin 15)
Receiver Clock (pin 17)

Transmitter Clock (terminal source) {pin 24)

Normally, each device has its own internal clock signal used to send and receive data bit
patterns at the correct bit-time intervals. If a device does not have its own clock, or if it wishes to
use the other device’s clock for special data rates or synchronization purposes, these lines are
used to transmit those clock pulses.

Secondary Transmitted Data (pin 14)
Secondary Received Data (pin 16)
Secondary Request to Send (pin 19)
Secondary Clear to Send (pin 13)
Secondary Carrier Detect (pin 12)

These lines are assigned by the RS-232-C standard in order to allow for a second data com-
munications channel. The 98036A does not support this secondary channel, although two of
the control lines assigned for this channel (Secondary Request to Send and Secondary Carrier
Detect) are made available to the computer and can be used for whatever purpose the user
finds convenient. This assumes, of course, that the device being interfaced to does not use

these lines for their assigned meanings.

As we will see in the next section, some of these lines are implemented by the 98036A Interface
while others are not. For example, the transmitter and receiver clocks (pins 15 and 17) can be
externally controlled on the 98036A, while the terminal source transmitter clock (pin 24) is not
implemented. Some of the secondary channel lines are provided since they are sometimes used
in implementing half-duplex protocols.



HP Interface Cards

The 98036A Serial 1/ O Interface

In this chapter, we showed how a serial communications link is used to connect a computer to a
remote terminal. Using the 98036A Interface card, HP desktop computers can participate in
this communications link, acting as a substitute for either the computer, the terminal, or both.
In the last case, the serial [/ O link is used to allow two desktop computers to be connected
together for program and data exchange. Figure 70 shows a schematic representation of these
three methods of interfacing.

DESKTOP |(— ,/digital data\‘
COMPUTER TERMINAL

_i98036A (Standard)
DIRECT SERIAL I/O LINK

COMPUTER

COMPUTER MODEM MODEM ﬁ DESKTOP

digital data digital data

analog data 98036A

TELEPHONE SERIAL I/0O LINK (Option 001)

DESKTOP |— ’/digital data ~ DESKTOP

COMPUTER —t 7 COMPUTER
98036A 98036A

(Std.) (Option 001)
DIRECT SERIAL I/O LINK

Figure 70

The desktop computer can be any one that uses the 98036A Interface, and we will be using the
System 35 as a representative example. Depending on whether the System 35 is assuming the
role of the computer or that of the terminal, the RS-232-C pin assignments will be slightly
different. For example, as a terminal, the 98036A card should transmit its data on pin 2 and
receive on pin 3 (see Figure 73). But the same 98036A card on the computer end of this link
will receive data on pin 2 and transmit on pin 3. (Remember that the terms transmit and receive
are named relative to the terminal.) Therefore, two versions of the 98036A Interface are
required. The standard version makes the System 35 ook like a computer or a modem, and is
used to connect it to a terminal device. The option 1 version makes the System 35 look like a

149



150 HP Interface Cards

terminal and allows it to be connected to a computer or a modem. When we say that the System
35 looks like a modem or a terminal, we mean only the way in which it handles the data
communications channel. Additional software (i.e., a program in the System 35) is required to
allow it to emulate the actual operation of a modem or a terminal. The only function of the
interface card is to send and receive information over the data line, and to make the various
RS-232-C control lines available for setting and testing. Any higher capability such as terminal

emulation must be handled by a running program in the System 35.

Figure 71 shows the meanings that have been given to the interface registers on the 98036A in

order to access the various data and control lines.

IN ouT
R4 DATA IN, R4E® DATA OUT, R4C, R4D'
RS STATUS CONTROL
R6 LINE STATUS LINE CONTROL
R7 {not used) TRIGGER
Figure 71

Data input and output with the 98036A is handled in the same way as described for the 98032A
Interface. That is, data bytes are sent and received through the R4 registers, and the R7 OUT
register is used as a trigger. The same drivers presented in the section for the 98032A Interface
are used to exchange data with the 98036A Interface. Using these drivers, the card is operated
in the half-duplex mode only. Data may be sent or received, but not both at the same time. We
will see later how the interrupt structure of the System 35 can be used to allow full-duplex

operation.

Data exchange with the 98036A card is done as though it were an 8-bit parallel interface. An
entire byte of data is sent to the card via the R4 OUT register. When the R7 QUT trigger is
issued, the interface automatically breaks it down into a sequence of serial bits and supplies the
required start and stop bit (plus a parity bit if parity is being used). It also takes care of the

necessary timing requirements.

Most of the complex protocol for exchanging data over the RS-232-C channel is handled by a
large-scale integrated circuit (Intel 8251) called a USART (Universal Synchronous/Asyn-
chronous Receiver and Transmitter). This USART is the heart of the 98036A and implements
most of the data, timing, and control requirements specified by the RS-232-C standard. The

1 These registers are also used for special status and control information.



Computer

Miseum HP Interface Cards

remaining electronics of the 98036A provide an interface between this USART and the I/0
backplane of the desktop computer. It should be mentioned that even though the USART is
capable of supporting synchronous communications on the data channel, a complex driver
would also be required in the desktop computer to implement one of the byte-oriented syn-
chronous protocols (e.g., BISYNC), since these protocols are not provided by the USART
itself. As a result, only the asynchronous mode of operation is supported on the System 35
using the 98036A Interface.

The status (R5 IN) and control {R5 QUT) registers on the 98036A are used for setting and

testing various modes of operation of the interface card itself. Figure 72a shows the assign-

ments that have been made for the bits in these registers.

R5 OUT Register

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
R4 Control
Interface Programmed Interrupt Interrupt 0=Data IN/
Interrupt Interface Control 2 Control 2 ouT
Enable Reset Receiver Transmitter | {=Controlf
Control Control Status
R5 IN Register

Bit 8 Bit 7 Bit 6 Bit5 Bit 4 Bit3 Bit 2 Bit 1 Bit0 ]
Peripheral :n:erface Control gontrol
Status 1 [-; erl;lllpt 0 interface Interface 0 0 Status 2 Tta(us 1
Mode nable 1.D.0 1.D. 1 Receiver ransmitter

Status Mode

Figure 72a

Most of these bits are used for operating the card in the interrupt mode, and will be discussed in

the next section on interrupt programming. The remaining bits will be discussed here.

Bits 4 and 5 of the status (R5 IN) byte contain the interface type identification bits (see Chapter
2). Bit 5 of the control byte (R5 OUT) is set to a 1 to cause the 98036A to return to its power-on
state. The USART itself on the 98036A card makes use of two full bytes of control information,
and provides one byte of its own status information. Since there are not enough bits in the RS
registers to contain all of this information, the 98036A card utilizes a multiplexing scheme to
gain access to these USART registers. This scheme works in the following manner. If bit O of the
control byte (R5 OUT) is set to a zero, the R4 registers have their normal meanings of data in
and data out. If, on the other hand, this bit is set to a one, the R4 registers are now used to
access the USART status, mode, and control bytes. Because of this mode of access, these
USART registers have been given the names R4C, R4D, and R4E. Figure 72b shows the

meanings given to the various bits in these registers.

151



152 HP Interface Cards

R4C Mode Word

Bit7 | Bité Bit5 Bit 4 Bts | itz Bit1 | sito
T T T

Number of Stop Bits Character Length Bit Rate Factor

00=not valid Parity Type Parity Enable 00=5 bits 00=not used

01=1 bit 0=0dd O=Disabie 01=6 bits 01=1 X bit rate clock

10=1.5 bits 1=Even 1=Enable 10=7 bits 10=1/16 X bit rate clock

11=2 bits 11=8 bits 11=1/64 X bit rate clock
1 — 1

R4D USART Control Word

Bit 7 Bit6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
C]ear To Send Data Set Ready
USART Pin 5 (Standard) | Reset Status Pin 6 (Standard'
Always 0 - A Requesi To Bits of USART Send Break Enab!e Data Data Terminal Data Epable
eset : Pin 4 Status Word Character Receiver Ready Pin 20 Transmitter
(Option 001) (Option 001)

R4E USART Status Word

Bit7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Always 0 Framing Qverrun Parity Transmitter Receiver Transmitter
y Error Error Error Empty Ready Ready

Figure 72b

Before discussing the meanings of these bits, let’s look at how each of them is accessed. The
USART Status Byte (R4E) would be obtained by setting bit O of the interface control register
(R5 OUT) and as a precaution, bit 0 of the CONTROL MASK control byte to a one. A normal
data input operation is then performed. Since this control bit is set to a one, this tells the
interface to place the USART status byte in the input (R4 IN) register, rather than a normal data
byte. When this sequence is finished, the card should be returned to the data mode by setting
bit 0 of the control byte (R5 OUT) back to a zero. Thus, the sequence

18 WAIT WRITE 11,531
2n A=READEIMCLLY
o) WAIT WRITE 11,S53@

would result in reading the USART status byte (R4E) and placing its decimal equivalent in the

variable A. In a similar manner, the sequence



HP Interface Cards

WATT WEITE 11,5;
MREITE BIM 11
MATT WRITE 11,5;8

Pefer TS Rer and Traons: Erabls

would output the contents of the variable X to the USART control byte (R4D). The USART also

uses a mode word (R4C) which is accessed through the following sequence.

MATT WRITE 11,%5:1
WRITE EBIW 11;64,0,

WHIT WRITE 11,5;6

E

[O% I U
L aon O v e ok

The 98036A (set to select code 11) is set to the control mode and a decimal 64 (binary
01000000) is sent to the USART control byte (R4D) as in the example above. This sets bit 6 of
the R4D register, which is a reset for the USART. In addition to its other reset functions, it also
places the USART in the mode where the next two bytes output are sent to the R4C and the
R4D registers respectively. In the example above, the value of variable A would be sent to R4C
and variable B to R4D. Of course, bit 6 of the binary representation of B should notbe a1 or
the USART will again be reset, nullifying the output to R4C and R4D.

The R-232-C standard specifies certain characteristics of the data line such as the voltage levels
used, the start/stop protocol, etc. Other characteristics of the data transmission are left more
flexible by the standard. These include the following: the bit rate (bits per second) at which the
data is transmitted; the number of bits per character; the type of parity (even, odd, or none) to
be used; and the number of stop bits. These characteristics can be chosen to suit the given
application, so long as the sender and the receiver both agree on the particular set of charac-
teristics to be used. Unless all four of these characteristics are the same for each end of the
channel, the data transmitted will not be properly interpreted by the receiver. For example, if
the transmitter is sending data at 300 bits per second (bps) and the receiver is operating at 600
bps, the data pattern 10010... transmitted will be received as 1100001100... since the receiver
is sampling the data line twice as fast as the transmitter is setting it. When the receiver displays
the characters it thinks it has received, they will appear totally unintelligible. Such received data

is usually referred to as ‘‘garbage.”

153



154 HP Interface Cards

The 98036A allows for a wide range of flexibility in each of these four categories. The data rate
may be set to all of the more common values in the range 75 to 9600 bps. The character length
may be set to 5, 6, 7, or 8 bits per character. Most ASCIl devices will use 7 or 8 bits per
character, with the 5 and 6 bit options only used by special devices that use more limited
character sets. The number of stop bits may be set for 1, 1.5, or 2. As mentioned before, these

are not actual bits but rather the minimum time that the data line must be held in the quiet (low)
state before the next start bit can be sent.

Because of the nature of serial 1/ O transmission, data on the line is very susceptible to “‘drop-
ping bits,”” that is, having a bitsentasaQora 1 being received as a 1 or a 0. In order to detect
when this happens, a scheme called parity checking is often used. The transmitter will supply
an extra bit that is not part of the data itself to be sent with each character . This parity bit is set
in such a way that the total number of bits (both data and parity) set to a one is always even or
always odd. Each character that the receiver gets is checked to make sure that the received data
has the proper parity. For example, Figure 63 shows the bit pattern used for sending an ASCII
“E” character. Since there is an odd number of 1’s (three) in the ASCII representation of an
“E,” and the parity bit is a zero, this particular example is using odd parity. If even parity were
being used, the parity bit would be set to a one to bring the total number of 1’s to an even
number (four).

Itis important to note that if parity is not being used, the parity bit is not even transmitted. This
can lead to some confusion because of the manner in which other methods of interfacing
handle parity. For example, when 7-bit ASCII data is being sent over an 8-bit parallel interface
(such as the HP-IB), the eighth bit is not being used for the 7-bit ASCII characters and is
sometimes used to send a parity bit along with each data character. If parity is not being used,
the eighth data line is still there and is usually always set to a zero. This sometimes leads to the
conclusion that in serial 1/ O, if parity is not being used, the parity bit is always set to a zero. But

in actuality, if parity is not used the parity bit is not even sent.

When connecting a 98036A card to another serial I/ O device, the user must know the values
for each of the four characteristics, bit rate, bits per character, parity and stop bits, and set the
98036A to match them. This information is usually contained in the operating manual for that
device, or from a timeshare service if the user is going to go on-line to a timeshare computer. As
an example of the difficulty that can arise, such a manual or a timeshare service might specify
“8-bit data, even parity.”’ After some trial-and-error evaluation, it becomes clear that the
device is actually using 7 data bits plus parity, and in their specification they are considering the
parity bit to be part of the data. Being aware of this lack of consistent terminology can some-

times save much time in determining the operating characteristics of a serial | /O data line.



HP Interface Cards

All of these options for data line characteristics can be set on the 98036A card by the use of
switches, (see the 98036A Installation and Service Manual). In addition, the character length,
number of stop bits, and parity can be set through the R4C Mode Word, overriding the switch

settings on the card.

The Mode Word also allows the setting of a value called the bit rate factor. Previously, we
discussed how both the transmitter and the receiver must measure time intervals called bit
times to determine when to set or sample the data line for the next bit. The more precisely these
bit time intervals can be measured, the less likely it is that the time intervals of the transmitter
and receiver will drift with respect to one another and cause an incorrect data exchange.
Normally, an internal clock on the 98036A card is set to run at 64 times the bit rate being used.
By dividing the bit time interval into 64 parts, the exact center of a bit on the data line (Figure
63) can be more precisely located. At bit rates greater than 2400 bps, however, the internal
clock cannot run this fast. As a result, at 4800 and 9600 bps the bit time intervals are divided
into 16 parts instead of 64, dropping the demands on the internal clock back into a range in

which it can operate. This bit time interval divider and its associated restrictions are in the
USART itself.

The R4D control byte is used to control various functions on the USART itself. We have already
discussed how bit 6 is used to reset the USART and to address the R4C mode word. When the
98036A is reset (either by pressing CONTROL-STOP on the System 35 or by setting bit 5 of
the interface control register, R5 OUT), a default value of 5 is set for R4D. This sets bits 0 and 2
which enable the USART for data transmission and reception. Normally, these bits are always
left on and any output to the R4D register should include these bits. Two other bits, 1 and 5, are
used to set or clear the two most commonly used RS-232-C control lines. These are Clear to
Send and Data Set Ready when the 98036A is acting as a computer or modem interface; or
Request to Send and Data Terminal Ready when the 98036A is acting as a terminal interface
(option 001). As mentioned before, many terminals or modems will not operate unless they see

one or both of these lines set.

When the data channel is operating in the half-duplex mode, the computer and the terminal
follow an agreed upon set of rules that determine when each of them will transmit on the data
line. If the computer is currently transmitting a large block of information, the terminal cannot
transmit. If it would like to get the computer’s attention (for example, to abort the data transfer)
it would follow some agreed upon protocol for interrupting the transmission and turning
around the communications link. In full-duplex operation, this is accomplished by sending
what is called a break character. Strictly speaking, this is not a character in the sense of a
transmitted data character. It merely holds the data line high for a period of time that is longer

than one complete character time, typically about 200 milliseconds. The receiver of the trans-

155



156 HP Interface Cards

mitting device detects this, and can act on it as it chooses. Most timeshare computers are set up
to abort the current 1/ O sequence and return control to the terminal when a break character is
detected. We will discuss the 98036A’s response to receiving a break character. The break
character is sent by setting bit 3 of the R4D register. This holds the transmitted data line high
until this bit it again cleared to a zero. For example, the sequence

ey
B

ia WAIT WEITE 11,551
28 WEITE BIH 113147
=8 WAIT Zoé

48 WEITE EBIM 11;39
56 WARIT WRITE 11,%;4

R

would set bit 3 of R4D and then clear it after a 200 millisecond wait period. During both the
setting and clearing of the break bit, bits 5, 2, 1, and 0 are specified (47 decimal = 00101111
binary) in the logic 1 state so that the transmitter and receiver remain enabled, and the two
control lines {bits 1 and 5) remain set.

We will see that three of the bits in the USART Status Byte (R4E) are used as error indicators.

Bit 4 of the R4D register is used to clear all three of these error indicators.

The R4E register returns a status byte from the USART itself containing information about
various situations that can occur there. Bit 7 is used to monitor either the Request to Send line
(standard card) or the Data Set Ready line (option 001 card). Normally these lines are only
used when implementing special protocols.

Three of the bits in R4E indicate the status of the input (bit 1) and output (bits 2 and 0) buffers
on the USART. During normal program operation, these indicators are of no interest. They are
useful, however, in either debugging a program or in making sure that the data channel is
properly set up. For example, if a terminal is connected to a System 35 using the 98036A, and
data cannot be input from the terminal, checking bit 1 will tell whether data is being received
and improperly handled by the program or not being received at all. This bit is set when a

character is received by the USART and cleared when the computer takes that character.

The remaining three bits of the R4E register (5, 4, and 3) indicate a framing error, and overrun
error, and a parity error respectively. Taken individually, these three errors have simple mean-
ings. A framing error indicates that at the time the receiver was expecting to see the stop bits
(low level), the data line was actually high. This could be caused by having the wrong bit rate
set. For example, if the transmitter were sending at 300 bps and the receiver was set to
600 bps, the receiver would finish sampling for the data bits (doubly reading most of them!)



HP Interface Cards

when the transmitter was only about half finished sending. The receiver would then look for the
stop bit (or bits) in the data region of the character transmission. If the data line went high

during this time, the framing error indicator would be set.

It is interesting to notice that the data being transmitted during the time that the receiver is
looking for the stop bits could, by chance, be ““1” bits (low level) and appear to the receiver to
be correct stop bits. Thus, an incorrect character could be received without the framing error
indicator being set. The probability of this situation (accidental matching of data bits with stop
bits) decreases rapidly with the number of characters received. That is, if several characters can
be received without the framing error being set, it is very unlikely that the bit rate selector is

improperly set. With only one or two characters, it is difficult to be sure.

It should also be mentioned that once an error indicator is set, it can only be cleared by a reset
operation; i.e., a card reset, a USART reset, or the specific error flags reset in bit 4 of R4D. For
example, receiving a character without a framing error will not clear the framing error bit if it
was set by a previous character that was improperly received. Otherwise, if the last character
received were incorrect but accidentally matched the expected stop bits with data bits, the

entire string would appear to have been properly received.

The overrun error indicator is set whenever a data character has been received but not taken by
the computer before the next one came along. This error indicates that one or more data
characters have been lost. The situation can be corrected for future transmissions by either
slowing down the data rate, or by using a faster programming method to take the data as it

comes in.

The parity error indicator is set when the 98036A is enabled to check parity on received data,
and the expected parity bit is not correct.

Although the meanings of the three error conditions are straightforward, when combinations
are considered the meaning can sometimes be confusing. Examples of this are apparent from
the transmission of the ASCII “E’” shown in Figure 63. Assume that the transmitter is sending
the pattern as shown, but that the receiver is set for no parity. After reading the last data bit,
since no parity bit is expected the receiver will expect the stop bit to immediately follow. Since
the line is high at this time (transmitter is sending a parity bit of 0), a framing error is detected.
Thus, even though the problem is caused by the fact that the transmitter is set for parity and the
receiver is not, it is a framing error that is indicated by the error bits in the USART status word.
This points up the necessity of knowing the data transmission characteristics of the device being
interfaced with over the serial [/ O channel. If these characteristics are not known, it can
sometimes be a tricky bit of detective work to analyze the errors indicated and isolate the true
cause of the problem.

157



158 HP Interface Cards

When connecting an unknown terminal using the 98036A card, it is unwise to try running a
complex applications program until simple read binary and write binary operations from the
keyboard can be made to work. Otherwise, the user may waste considerable time trying to
debug a correct program when the actual cause of the problem is that one or more of these data
transmission characteristics is improperly set for that device.

Finally, when the bit rate has been properly set so that a framing error does not normélly occur,
the presence of a framing error indicates the reception of the break character. Since the line is
held high for 200 milliseconds during a break, even at the slowest bit rate, the line will be high
for longer than one character time and cause the expected stop bits to be missed. Depending on
the number of bits per character set and the type of parity being used, the parity error may also

be set during the reception of a break character.

The remainder of the RS-232-C control lines are only used for special applications, and are
accessed through various bits in the R6 register. The specific bits that can be set (R6 OUT) or
tested (R6 IN) depend on whether the 98036A is acting as a computer or modem (standard
card), or as a terminal (option 001). These registers are accessed from the system using the
read interface (WAIT READ) and write interface {(WAIT WRITE) statements. Although these
control lines are usually used for special applications only, they may control lines required by
some devices in simple applications. Some terminals will not transmit data unless the Carrier
Detect line (bit 0 of R6 OUT) is set, along with Data Set Ready and Clear to Send. Again,
successful operation demands that the user know the requirements of the device being inter-

faced.

Figure 73 shows the RS-232-C pin assignments implemented by the 98036A Interface, along
with the names and directions of these lines. On the left is shown the pin connector numbers on
the standard 98036A card, and the interface registers used to access each of them. On the right
is shown the same information for the Option 001 98036A card.



HP Interface Cards

Note 2: this line unassigned by RS-232-C
Note 3: switch selectable on 98036A

Note 4: can be set high by switch on 98036A

Figure 73

DCE (Standard) RS232-C DTE (Option 001)
Register Standard || Direction Option 001 Register
Access Pin # <> Pin # Signal Name Pin # Access
n.a. 1 > 1 Protective Ground 1 n.a.
read 3 <« 2 Transmitted Data 2 write
write 2 —-> 3 Received Data 3 read
R4E, bit 7 6 €« 4 Request to Send 4 R4D, bit 5
R4D, bit 5 4 —d 5 Clear to Send 5 (Note 1)
R4D, bit 1 17 —d 6 Data Set Ready 6 R4E, bit 7
n.a. 7 - 7 Logic Ground 7 n.a.
R6 OUT, bit 0 16 —d 8 Carrier Detect 8 R6IN, bit 0
n.a. — 9 (Reserved for test) — n.a.
n.a. — 10 (Reserved for test) — n.a.
n.a. — > 11 Data Rate Select (U.K.) 11 R6 QUT, bit 2
(Note 2)
R6 OUT, bit 1 13 rd 12 Second Carrier Detect 12 R6 IN, bit 2
n.a. — rd 13 Second CTS — n.a.
n.a. — €« 14 Second TXD — n.a.
n.a. — I 15 Transmitter Clock 15 (Note 3)
n.a. — - 16 Second RXD — n.a.
n.a. — rd 17 Receiver Clock 14 (Note 3)
n.a. — 18 — —_ n.a.
R6 IN, bit 0 8 €« 19 Second RTS 1 R6 OUT, bit 0
(Notes 1,4) 5 <« 20 Data Terminal Ready 17 R4D, bit 1
R6 QUT, bit 2 11 d 21 Signal Quality Detect — n.a.

R6 OUT, bit 3 10 - 22 Ring Indicator 9 R6IN, bit 1
R6 IN, bit 1 9 <« 23 Data Rate Select 13 R6 QUT, bit 1
n.a. — <« 24 Transmit clock (term) — n.a.

n.a. — 25 — 10 R6 OQUT, bit 3
Note 1: this line cannot be read

159



160 HP Interface Cards

Programming with the 98036A Interface

For half-duplex operation, the 98036A is programmed in the same manner as the 98032A

Bit-Parallel Interface. Output is done using the OUTPUT or WRITE BIN statements and input is
done with ENTER or READ BIN operations of the /O ROM.

When using the 98036A card in full duplex mode, the programming becomes more complex.
One would assume that with the I/O structure of the 9835/45 it would be possible to utilize an
interrupt process to handle one direction of data flow (interrupt transfers) and use the flag line

that is dedicated to the interface for data flow in the other direction.

One example might be using an ENTER BINT statement for incoming data and using an QUT-
PUT statement for transmitting data. The limitation with this comes about with the overlap pro-
cessing capabilities of the 9835/45. There is a select code queue that is associated with each
select code in the 9835/45. If the ENTER BINT staternent is executed, the select code queue
associated with the ENTER BINT is then dedicated to an input process. This select code queue is
then dedicated to incoming data until the ENTER BINT statement is completed. If at the same
time an QUTPUT statement is executed, the processor looks at the select code queue associated
with that output operation and sees that it is dedicated 1o an input operation. The processor then
queues up the request for the output operation in its process queue and continually checks the
select code queue that is associated with the OUTPUT statement to see if it has been released by
the ENTER BINT statement. When the input process has been terminated the processor then
releases the queue for that select code. When the processor again checks its process queue and
sees that it has a request queued up, it checks the select code queue associated with the output
operation. This time the queue is available and the processor then dedicates the select code

queue to an output operation and begins the output transfer.

The way around this is with the TOPEN! statement. This statement utilizes the interrupt structure
of the card for data input. When a character comes into the interface it signals the mainframe
with an interrupt. The TOPEN statement puts each character from the card into a circular buffer
called TBUF$. TOPEN accomplishes this interrupt transfer without using the select code queue of
the processor. It therefore frees up the processor to do an output {(which ties up the select code
queue) while the TOPEN is handling input characters. The other consideration is that an interrupt
type of output transfer is not allowed instead of the OUTPUT statement. This is because the
TOPEN is already using the interrupt resources of the card for input. Therefore the only type of
transfer that can take place for an output is one that uses the dedicated flag line of the interface
card (i.e. OUTPUT). The other side of the coin would be trying to do an interrupt type of output
transfer and a normal type of input transfer. There is no corresponding statement to TOPEN for
an output operation. Therefore, for the same reasons that it is not possible todo interrupt type
input transfers with normal type output transfers without TOPEN, it would not be possible to do

interrupt type output transfers with normal type input transfers.

1 The TOPEN statement is not on the HP 9835 1/O ROM. Recognition of TOPEN can be put into the 9835 using a binary tape.
rev: 12/80



HP Interface Cards 161

The following program gives an example of a simple program to output information to a
computer connected to a System 45 via a 98036A Interface, and to print any information sent
to the System 45 by the computer. The printing is done on a 9876A Printer set to select code
701, and the 98036A card is on select code 11.

18 DIt Irmput 04881, _crd 1@ IHE DIMEWHSIONS STRIMGS

8 COMTREOL MASE 1131 ! SOBETS WP THE INHTEREUET HMAZKE

T HMAIT EERD 11,4;Dummy i (5. THE CHED FOR A DUMMyY BEAD

48 HWEITE IO 11,734 1-TEIGGERS THE RERD

54 CRED EMAELE 11 LEHAELED THE CHRED FORE IHTERELET

(=25 oM KEY #8,3 GOSUER Ee.d LOOH CREEY . FOR O SEMDIMG DATH

e TOREM 11 GOSUERE Feceiw LUSETS UP THE TOFEW STATEMEHT

S0 Loopt I=I+1 PUEETS BRCKGEOUMT LOOF

R DIsF I

1éda GOTO Loop

11 Zend: ITHPUT "IHFUT DATH - THAT S0 WAMT TS SEMDY, Send#

1z CDUTFUT 11; Send#$ POOUTRUTS DATA TO OTHER: MHACHINE

1z FETURN

Ida Recgiue! IrputF=Irnput E5TEUFS L DUMPS TEUFS INTO IMPUT BTRI

141 IF HOT FOSCInmput®, CHEECIA D THEM RETURHN

181V IF THERE IS HOT A COMPLETE LIHE THEH RETURM CHECHZ -THE
POSITIOWM OF THE FIRZT LIME FEED

PP m=F020 Input §, CHR$ 1@

TERCPRINT Input$ll,x-11] FoPRIMTS THE LIHE UP TO THAT FOIMT

128 IThnput$=sInput $0E+11] FOMAYES THE DARTA TO THE EBEGIMMIHG DF THE

191 LOSTRIMG

2P LOTO 1o@ LOCHECE CFORCANOTHER LIHE FEET

218 EHD

This program sets up two buffers called “Inputs$’” and “‘Send$’’ to store received data and store

data to be output, respectively.

The CONTROL MASK statement coupled with the CARD ENABLE statement enables the R5

register for an interrupt on a received character.

The WAIT READ statement sets the 98036A card busy so that an interrupt is not generated
immediately. The WRITE IO statement then triggers the READ statement.

The ON KEY statement directs the program to a subroutine which requests input. The input is
stered into the buffer “Send$’’ and then output to the 98036A card which in turn outputs it on

the serial line.

When a character is received an end-of-line branch is logged in the system. When the current
executing line is finished the machine checks to see if the software priority associated with
TOPEN is greater than the current system software priority. If it is, the machine branches to the
Receive subroutine. If it is not, then the machine holds off the end-of-line branch until the system

software priority is lower than the priority of TOPEN. During this time TOPEN continues to take

rev: 12/80



162 HP Interface Cards

incoming characters from the 98036A and put them into TBUF$. TBUF$ is a temporary 320
character circular buffer in machine memory. If the program cannot dump TBUF$ into a user
buffer before 320 characters are received then for each character received above 320 one char-

acter at the front of the buffer is overwritten.

The Receive subroutine takes whatever is in TBUF$ and puts it into “Input$”. (The character(s)
must be put into a user buffer because any direct operation on TBUF$ clears that buffer.) The
subroutine then checks for a linefeed. 1f no linefeed has been received the program returns to its
background loop. If a linefeed has been received the line is printed up to the first linefeed, the
data in “Input$’’ is then moved to the first character position of “Input$” and the program
branches back to line 160 to check for another linefeed. If no other linefeed is present then the
program returns to the background loop. If another linefeed is present then the line is processed

as was done before.
Lines 80 to 100 are simply a background loop to represent a processing section of the program.

With a suitable BASIC program, it is possible for the System 45 to emulate an RS-232-C termin-
al. Such a program would cause the System 45 to mimic many of the operations of a terminal
such as transmitting information entered through the keyboard to the computer and printing
information received from the computer. It should be remembered, however, that HP desktop
computers are designed to be stand-alone computational and controlling devices, and not pri-
marily as terminal replacements. Also, it is not necessary to provide (via a high-level program) a
complete terminal emulator in order to exchange data with another computer over an RS-232-C
communications link. Within an applications program, data may be exchanged with a remote
computer without any operator intervention (other than establishing the communications link if a

modem is involved).

rev: 12/80



HP Interface Cards

RS-232-C vs. Current Loop Operation

In the previous sections we have discussed two methods of interfacing for which standards exist
that specify certain electrical, mechanical, and functional parameters. Most manufacturers of
devices which are compatible with the IEEE-488-1978 (HP-IB) standard adhere closely to its
definitions. And as a result most of these devices are plug-to-plug compatible. Unfortunately,
this is not always true of devices that claim to be RS-232-C compatible. In particular, the fact

that a serial /0O device uses an EIA 25-pin connector does not automatically make it an
RS-232-C device.

Even when a device is RS-232-C compatible, variations from the expected configurations may
still exist. We mentioned earlier that the common convention used for connectors is that the
data terminal equipment {DTE) will use the male connector while the data communications
equipment (DCE) will use the female connector. Indeed, the 98036A Interface is available in
two configurations (see Figure 70) so that the desktop computer can play the part of either the
DCE or the DTE. As an example of the difficulties that can arise, consider a terminal device
(DTE) which terminates in a female 25-pin connector. Since the desktop computer is to act as a
modem (DCE) in this system, the standard 98036A card will be used. But since both devices
have female connectors, they cannot be plugged together. In this case, we will have to obtain a
special female-to-female adapter in order to make the connection. But the fact that this adapter
is necessary at all should alert the user to the possibility that all of the pin assignments for the
terminal’s connector may not be as expected. In particular, the transmitted data line {pin 2) and
the received data line (pin 3) often need to be interchanged on one of the connectors or

cross-wired in the adapter.

In general, when two RS-232-C devices are connected and do not appear to operate properly,
there are two areas which should be thoroughly checked out before suspecting either a pro-
gramming error or a hardware malfunction. The first is to insure that all of the pin assignments
in both devices are as expected. For the 98036A Interface these pin assignments are found in
Figure 73, while the assignments for the device being connected should be contained in the
operating manual for that device. If these pin assignments are all correct, the user should then
check to see if any control lines (Clear to Send, Data Set Ready, Carrier Detect, etc.) required
by the device being interfaced are not set. The 98036A is capable of setting any of these control
lines; but is the responsibility of the user to determine which lines his particular device requires
and include the instructions for setting them within his program. For the 98036A card itself,
these requirements are as follows: The standard 98036A (acting as a DCE device) requires the
Data Terminal Ready (DTE, pin 20) signal to be true before it will transmit. Most terminals will
automatically set this line when they are switched into the remote or on-line configuration. The
Option 001 98036A (acting as a DTE device) requires the Clear to Send (CTS, pin 5) signal to
be true for proper operation. If the DCE device being interfaced cannot supply this signal, it
may be set on the 98036A card itself {(see 98036A Installation and Service Manual).

163



164 HP Interface Cards

The problem of connecting serial [/ O devices is further complicated by the fact that a second
data transmission convention known as ‘‘current loop” exists. As the name implies, this
method of transmission uses the presence or absence of a current flow in the data line to
represent the two logic states {1 or 0) rather than two different voltage levels as specified by the
RS-232-C standard. It should be noted that a device operating in the current loop mode is not
an RS-232-C device, even though it uses many of the same conventions such as start and stop
bits, parity, etc., of the RS-232-C data format.

Historically, the first serial [/ O devices operated in this current loop mode. With the advent of
the RS-232-C standard, most manufacturers of serial [/ O devices switched over to the use of
voltage levels on the data lines. Even so, many current loop devices are still available. One
reason for this is that while the practical operating distance for a direct (not using modems)
RS-232-C data link is about 50 feet (15 meters), much longer distances are obtainable in the

current loop mode.

Figure 74 shows the three basic elements that make up a current loop. The element labeled
SOURCE is an active current supply. Typically, there is one and only one active source in any

current loop, with all other elements acting passively.

5.
T- SOURCE R+
DI >» MODULATOR DETECTOR Do
Data Data
In Out
T+ R-
Figure 74

In the quiet (no data transmission) state, this source maintains a continuous current flow
through the loop. When data is presented to the transmitter at the data-in line, the modulator
converts this digital information (ones and zeros) into a matching sequence of current-on and

current-off states by either allowing the current in the loop to flow, or blocking it. Since the



HP Interface Cards

same current pulses flowing through the modulator also flow through the detector, the detector
can sense these current on/ off states and translate them back into digital information in a form
(usually voltage levels) that can be recognized by the receiving device. The order in which each

of these devices appear in the loop is not important.

In simplex operation, the source and modulator are located in the transmitting device, while the
detector is located in the receiving device. For full-duplex operation, each device contains a
transmitter (source plus modulator) and a receiver (detector). The transmitter of each device is
connected to the receiver of the other device, thus creating two complete, independent current
loops.

Most data terminals that operate in the current loop mode are passive devices; that is, they
have a modulator and a detector, but not a current source. They depend instead on the DCE
device to provide the current source. The 98036A card, when operating in the current loop
mode, is capable of supplying the required current (20ma). Figure 75 shows how such a passive

terminal should be connected to a 98036A for half-duplex current loop operation.

SOURCE R+ T
DI >/ MoD |——Peceived Data | [oer »| PRINTER
R_
. T+ 1 |
DO < DET Transmitted Data MOD KEYBOARD
L -0 Ground L<>—IJ ‘
T~ TERMINAL
98036A A o I
Figure 75

Several points should be noted about this connection. It is necessary to jumper (connect
together) the R— and the T+ leads at the terminal in order to complete the loop. Also, in
half-duplex current loop mode the ground lead from the 98036A is not connected. If the
terminal also has an active current source, Figure 75 could be modified for full-duplex opera-
tion by disconnecting the R—/ T+ jumper and reconnecting R— to ground and T+ to the
terminal’s current source.

165



166 HP Interface Cards

In the half-duplex arrangement shown, there are actually five elements in the loop: a source,
two modulators, and two detectors. Only one modulator at a time is allowed to modify the
current flow (i.e., encode information to be sent around the loop), which is why this is a
half-duplex arrangement. Both detectors, however, can be active at the same time. This also
means that since the terminal’s detector receives the information sent by the terminal’s mod-

ulator, no special circuitry is required to get the effect of an echo-back.

In the figures above we have labeled the current loop connections at T+, T—, R+, and R-.
Various manufacturers may use different designations to label these connections, such as T5,
T6, T7, and T8. The exact labeling for a given device can be obtained from the operating
manual for that device. Figure 76 shows three typical receiver (detector) circuits and may be

helpful in recognizing the R+ /R— connections from the schematic diagrams in the operating
manual for the terminal being connected.

0 LI 3 O

REED RELAY INPUT TRANSISTOR OPTO-ISOLATOR

Figure 76

Up to now we have discussed current-loop operation in terms of presence or absence of current
in the loop, without saying anything about the amount of current flowing. Most current sources
for use in current loop operation provide either 20 milliamps {ma) or 60ma. The 98036A
Interface card can supply (acting as a source) 20ma. Its receiver is capable of sinking (acting as
a detector) either 20ma or 60ma with no modifications or switch settings required on the card

to select 20ma or 60ma operation.

The current source in the 98036A operates from a 12 volt power supply, and the detector in the
98036A requires 6 volts to operate properly. This means that the other passive elements in the
loop (terminal modulator and detectors) must not drop the voltage of the current passing
through them more than 6 volts. Converting this voltage drop to the equivalent resistance at

20ma we have

R =V /I = (6v)/({20ma) = 300 ohms



HP Interface Cards
Computer
Museum

Thus, when the combined resistance of the external elements in the loop exceeds 300 ohms,
the detector in the 98036A will no longer be able to reliably distinguish logical ones from zeros.
This external resistance is made up not only of the elements in the loop, but also of the wire in
the loop itself. And since the resistance of a wire is proportional to its length, this limit on

external resistance is what ultimately determines the maximum operating distance of the serial
170 link in the current loop mode.

167






169

Appendix

ASCII Character Codes , 170
HP-IB Universal Commands 171
98032 Interface 172
98033 Interface 174
98034 Interface .. 176
98036 Interface 180
Keyboard, Display, Printer 182

Bibliography : 184



170 Appendix

ASCII Character Codes

e |
gf.fr“ _E;‘i%‘i'}“‘:f F:S@FE_C | E‘; EQUIVALENT FORMS Ascil EQUIVALENT FORMS
Char. | Binary Char. .| - Binary Oct | Hex | De¢
NULL :00000000: | 600 | 00 | @ 01000000 | 01100000 | 140 | e | ek
SOH | 00000601 ] 001 | 01 ! | ‘ ! 00100001 | oa1 | 21 | 33 & lowoooeot {101 | a1’ [ s a 01100001} 141 | 611 o7
STX 00000010 1 002 02 ( 2 ; ‘J ” 00100010 | 042 22 34 B 01000010 | 102 42 66 b. 011000107 142 &2 9B
ETX | 00000011 | 003 | 03 | 3 ‘[ I # |oot00011 | oas | 23 | 35 c 01000011 | 103 | 43 | g7 ¢ ]o1100011 ] 143 ] 63 | 99
EOT | 00000160 { 004 | 04 | 4 i ( $ 100100100 | 044 724 | 36 D 101000100 | 104 | 44| 68 d* 01100100 | 144 | 64| 100
ENQ. 1000001017005 | 05 | 5 | \\ % | 00100101 | 045 | 25 | ‘37 E | 01000101 [ 105 | 45 | 63 e 01100101 | 145 | e | qoy
ACK 1000001101 006 086 6 . & 00100110 | 046 26 38 F: 01000110°| 106 46 70 f 01100110 145 66 102
BELL 1'00000111}:007 07 % 7 ‘ ’ 00100111 | 047 27 39 G 01000111 107 47 71 g 01100111} 147 67 103
BS |00001000-{ 010 | 08 | 8 (- {00101000 | 050} 28" |40 H . 101001000-| 110 | 48 |72 b 10101000 | 150 | 68 104
HT 1000010017 011 | 09 | o ) -footoroor | 051} 29 | | o10010010 111 | 497193 i 101101008 | 151 | 69 | v
LE 00001010 {012 0A 10 ‘ * 60101010 ; 052 2A 42 d 01001010 | 112 44 74 j 011010107152 B4 106
VT 00001011 | 013 | 0B | 11| |+ |oo010m1 | 053 | 2B | 43 Ko 10100011 | 131 a1 s k' fototoir| 153 L e |07
FF.| 00001100 1018 | oc | 12 , 100101200 | 054} 26 | 4a Lo 01001100 134 | ac |7 v forotton | 154 | ec | 108
CR ' toooorior-|ois | op | 13 ~ 00101101 | 05| 251 45 M 01001101 | 135} 4pd 7 m 01301108 ) 185 | &b ) 100
SO 100001110 | 016° | 0E | 14 00101110 | 056 | 2E7| ‘46 Noboteot110.§ 116 | 4k ] 78 w o {otiotite | iss |oee |t
st loogotair o017 ] oF | 15 ! lootornnn | 057 2r g O - Tot0otIvt f 117 | 4F |39 o {outoriir 17l e L
DLE | 000100061020 | 10 | 16 ? ] 0 |00110000| 060:| 30° | s Bl 6101600C | 120 |50 |80 p 01110000 | 160 | 70 1112
DCI [00010001 021§ 11 | 17 | | 1 Looviooot [oe1 | 1| as Q- |otowooor {121 +os1 ) 81 q lomteoor el | 7o via
pez | ooeioo1n 022 | 12 | 18 2 |oo110010°) 062 | 32 50 R |o1o10010-{ 122 | 52 | 82 v {ottiooto L e b oyl ie
DC3 | 00010011 {023 | 13 | 19 J 3 00110011 |“063.| 3 | 51 S Lo1010011 {71237 | 537 83 s Pornborr b aes o7 | s
DG4 | 00010100 024 | 14 | 20 ‘ 4 100110100 | 0641 34 | 5z T 101010100 124 | 54 |84 01110100 164 | 74 [1ie
NAK: 100010101 4025 15 21 [ 00110101 -} 065 35 53 U 01010101 | 125 55 85 u 01110101 1165 75 117
SYNC 100010110026 16 22 ’ 6 00110110 i- 066 36 54. ¥ 01016110 126 56 86 v 011101181 166 16 118
g8 loogiotiborr | 17 1 o3 \ 7 Loo1to111 | 067 |37 55 W letot0in | 127 | 57 | &7 wi |OUI0HL {167 | 77 1 1ie
caN: | ooo11000 10307 18 4 2 ‘ " 8 Joo111000 | 070 | 38 | %6 % Toiorioon | 130 | 58 | & x| otiiono L 170 L 78 1120
BN obot1o01 | 031 19 \ 25 | L 9 - loo111001 } 071} 49 57 v Lo1017001 | 131 | 59 | 89 v Portitent’| tm | e agi
SUB:1D0011010°) 032 1A | 26 i 00111010 { 072 3a 58 Z 01011010° {132 S5A 90. z QUIT1010 1172 TH 122
ESC: [ 000110111033 1B , 27 N 060111011 | 073 3B 59 [ 6101101177 133 5B a1 { FOI1LI01L TS 78 123
ES | 00011100 | 033 ic g 28 \ < Toouico | o7a -} 3¢ 160 Vo olorito0 | 134 | sC | 92 I"letiriioe f 178 L 70 | 128
&8s 000111011 035 1D j 29 l “ = 00111101.§ 075 3D a1 ] 0101110171135 5D 93 } 01113101175 7D 125
RS Loooirito Foss{ 1E | 30 | . > |oomino | 076 [3E L]k A l01011110 136 | 58 | 94 = loiitiie e | TE Lze
us. Q0011111 1037 1F ] 31 1 ? 00111111°} 077 3F 63 L_ 01011111 137 5F 95 DEL " {-Gt1if111 1774_7—F 127




Primary Command Group (PCG)

HP-IB Universal Commands (ATN true)

Appendix

Decimal ASCI Interface

Value Character Message Description
0 NUL
1 SOH GTL Go To Local
2 STX
3 ETX
4 EOT SDC Selected Device Clear
5 ENQ PPC Parallel Poll Configure
6 ACK
7 BEL
8 BS GET Group Execute Trigger
9 HT TCT Take Control
10 LF
11 VT
12 FF
13 CR
14 SO
15 Sl
16 DLE
17 DC1 LLO Local Lockout
18 DC2
19 DC3
20 DC4 DCL Device Clear
21 NAK PPU Parallel Poll Unconfigure
22 SYN
23 ETB
24 CAN SPE Serijal Poll Enable
25 EM SPD Serial Poll Disable
26 SUB
27 ESC
28 FS
29 GS
30 RS
31 Us

32-62 SPto > LAG Listen Address Group

(Numbers, special char)

63 ? UNL Unlisten

64-94 @to? TAG Talk Address Group

(Upper case ASCII)

95 — UNT Untalk

96-126 (lowercase ASCII) SCG Secondary Command Group
127 DEL

171



172 Appendix

98032A Interface
Register Map
IN ouT
R4 DATA IN DATA OUT
R5 STATUS CONTROL
R6 | HIGH BYTE DATA HIGH BYTE DATA
R7 (not used) TRIGGER

R4-IN: Read 16 bits {lower 8 bits if jumper B is not installed) of data from the input data
latches. Sets [/ O line to input.

R4-OUT: Write 16 bits (lower 8 bits if jumper F is not installed) of data to the output data
latches. Sets [/ O line to output.

R5-IN: Read 98032A card status byte.

R5IN

Bit 7 Bit 6 BitS Bit 4 Bit 3 Bit2 | Bit1 Bit 0

INT DMA 1 0 11D 10D ST STIo

R5-OUT: Write 98032A card control byte.

R5 OUT

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

INT DMA | RESET | AH — — CTLA CTLO

R6-IN: Read 16 bits (upper 8 bits if jumper B is not installed) of data from the input data

latches. Does not affect 1/ 0 line.

R6-OUT: Write 16 bits (upper 8 bits if jumper F is not installed) of data to the output data
latches. Does not affect [/ O line.

R7-OUT: Sets PCTL to initiate an input/ output handshake, depending on the state of the
I/ O line from the last R4 access.



Computer
. Museum

Jumper Options

Jumper

Function (when installed)

—

MmO O W P> WO 00 a0 0 AW N

Indicates input data lines are positive-true.
Indicates output data lines are positive-true.
Inverts PCTL to high = set, low = clear.
Inverts PFLG to high = ready, low = busy.
Inverts PSTS to high = not OK, low = OK.

Set for pulse-mode handshake.

i

Required for DMA transfers.

Clock high input byte when PFLG goes from ready to busy.
Clock high input byte when PFLG goes from busy to ready.

Clock high input byte on R6-IN operation.

Select words (16 bit) input mode.

Clock low input byte on R4-IN operation.

Clock low input byte when PFLG goes from busy to ready.
Clock low input byte when PFLG goes from ready to busy.
Select words (16 bit) output mode.

1 Select only one of these three.

Appendix

173



174 Appendix

R4-IN:

R5-IN:

98033A Interface
Register Map
IN OouT
R4 DATA IN (not used)
R5 STATUS CONTROL
R6 (not used) (not used)
R7 (not used) TRIGGER

Read one 8-bit ASCII character from the 98033A BCD-to-ASCII translator.

Read 98033A card status byte.

R5IN
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
INT 0 1 0 0 0 0 0
R5-OUT: Write 98033A card control byte.
R5 OUT
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
INT — RESET — — — — —

R7-OUT:

An output to R7 (actual value outputis a ‘“‘don’t care’’) causes the 98033A to place
the next ASCII character in the sequence representing the reading into the R4-IN
register. After 16 characters have been so placed, the next R7-OUT causes a new
reading to be taken (i.e., the card sets CTLA and CTLB to start a data handshake
with the BCD device) and places the first character of that reading in the R4-IN

register.




Switch Configurations

Switch set to

"ON" will :
Invert DFLGA ~[wm]
Invert DFLGB o wa]
Select CTLA- 2 o)
Select CTLB- 2 «(mm] | S2
Invert CTLA o]
Invert CTLB ~[Cwm]
Select Optional Format L=

Invert SGN2
Invert SGN1
invert OVLD

Invert Data

Handshake Diagram

CTLA-1 MODE (Select CTLA-2 switch off).

CTLA

DFLGA

CTLA-2 MODE (Select CTLA-2 switch on).

CTLA

Appendix

o

S3
[ m]

OZ ¢&—

—————— CLEAR

SET

BUSY
READY

DFLGA

CLEAR
SET

BUSY
READY

At time ‘‘t” the data on the BCD input lines is valid and the BCD-to-ASCII translation process

begins. CTLB and DFLGB operate in a similar manner.

175



176 Appendix

98034 A Interface
Register Map

ON ouT
R4 DATAIN DATAOUT
R5 STATUS CONTROL
R6 STATUS/DATA COMMANDS
R7 PARALLEL POLL DIRECT BUS CONTROL

R4-IN: Initiates a data byte input sequence.

R4-OUT: Transfers one byte of data to the bus.

R5-IN: Initiates a status read sequence.

R5-OUT: Outputs a control byte to enable the 98034A for various interrupt conditions.

R5 OUT

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

SRQ ACT TLK LST IRF ORE | OTHER| EOI

R6-IN: Completes a data byte input sequence. Clears ATN.
Delivers 98034A status bytes.
Completes a parallel poll input sequence.

R6-OUT: Sets the ATN line true and outputs a byte of command or addressing information.

R7-IN: Initiates a parallel poll byte request.

R7-OUT: Direct! bus control.

1 After executing this R7-OUT instruction, the 98034A will clear the STS line if an illegal operation (e.g., specifying ATN if the
98034A is not active controller) is indicated.



Appendix 177

R7 OUT, Bit 7=1

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1 0 0 EOI IFC ATN REN SRQ

Service Request control and serial-poll response byte.

R7 OUT, Bit 7=0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 SRQ X X X X X X

X = user definable.

98034 A Interface

Operational Sequences
General

Any operation with the 98034A should be preceded by testing the flag (FLG) line and waiting
for it to indicate ready. Otherwise, erroneous operation can result.

After a sequence of operations, the status (STS) line should be tested. It will be cleared if an

illegal operation was specified, otherwise it will remain set.

Controller Talker Addressing (TAD)

This sequence addresses the 98034A as a talker, and one or more bus devices as listeners.
When used in other operational sequences, it will be abbreviated as TAD.

. R6-OUT Send 98034A talk address.

R6-OUT Send unlisten (63) command.

R6-OUT Send device listen address.

R6-OUT Send device secondary address if specified.

ooR e N

Repeat 3 and 4 for any multiple listeners.

rev: 12/80



178 Appendix

Controller Listener Addressing (LAD)
1. R6-OUT Send unlisten (63) command.
2. R6-OUT Send 98034A listen address.
3. R6-OUT Send device talk address.
4, R6-OUT Send device secondary address if specified.
5. R6-OUT Send device listen address for multiple listener.
6. R6-OUT Send device secondary address if specified.
7

Repeat 5 and 6 for any other multiple listeners.

Data Output
1. TAD Address the bus.
2. R4-OUT Send the first data byte.
3. Repeat 2 for each data byte.

Data Output Using EOI
1. TAD Address the bus.
2. R4-OUT Send the first data byte.
3. Repeat 2 for each data byte.
4. R7-OUT Send a 144 to R7 to set EOI with REN false, or 146 to set EOl with REN true.
5. R4-OUT Send the last data byte. The 98034A will automatically clear EOI after the

handshake is completed.

Data Input

1. LAD Address the bus.

2. R4-IN Start acceptor handshake (set NRFD false).

3. R6-IN Take in the received data byte.

4, Repeat 2 and 3 for each data byte.
By setting bit 0 of R5-OUT, the 98034A is enabled to clear STS if EOl is set. In this case the
STS line would be tested after step 3.

Read Status
1. R5-IN: [nitiate status read sequence. In the byte received, bits 4 and 5 are ones,

indicating an HP-IB card type. No other bits are meaningful.
2. R6-IN: Get status byte 1.

STATUS BYTE 1

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O

0 0 0 0 0 DCL 0 ERROR




3. R6-IN: Get status byte 2.
STATUS BYTE 2
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 1 0 As As As Az A
4. R6-IN: Get status byte 3.
STATUS BYTE 3
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
EOI REN SRQ ATN IFC NDAC | NRFD | DAV
5. R6-IN: Get status byte 4.
STATUS BYTE 4
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
SRQ ACT TLK LST SAC 1 SPL EOR

Appendix 179

The 98034A is not monitoring the bus during this sequence. Thus, if the 98034A is not the

controller, this sequence must be completed within 100 microseconds to satisfy IEEE-488

timing specifications. This sequence also resets the status (STS) line if it had been cleared by a

previous illegal operation.

Serial Poll

1.

A

LAD
R6-OUT
R4-IN
R6-IN
R6-OUT
R6-IN

Address the bus.

Send SPE (24) command.
Initiate a data input handshake.
Take in the serial poll byte.
Send SPD (25) command.

Optional dummy operation to clear ATN.



180 Appendix

Parallel Poll

1. R7-OUT Send 148 to R7 to set ATN and EOI.

2. R7-IN Initiate parallel poll byte request.

3. R6-IN Take in the parallel poll byte.

4. R7-OUT Send 128 (or 130 if REN should be set) to R7 to clear ATN and EQOI.

Passing Control
1. R6-OUT Send unlisten (63) command.
2. R6-OUT Send device talk address.
3. R6-OUT Send TCT (9) command.

4. R6-IN Clear ATN line to complete transfer of control.

98036A Interface
Register Map

IN OuT
R4 DATA IN, R4E DATA OUT, R4C, R4D
R5 STATUS CONTROL
R6 LINE STATUS LINE CONTROL
R7 (not used) TRIGGER
R4C Mode Word
Bit7 | Bits Bit 5 Bit 4 Bits | itz Bit1 | Bito
1 T T
Number of Stop Bits Character Length Bit Rate Factor
00=not valid Parity Type Parity Enable 00=5 bits 00=not used
01=1 bit 0=0dd 0=Disable 01=6 bits 01=1 X bit rate clock
10=1.5 bits 1=Even 1=Enable 10=7 bits 10=1/16 X bit rate clock
11=2 bitsl 11=8 bits 11=1/64 X bit rate clock
1 ~L
R4D USART Control Word
Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
g::a; ;l;a?:ir:d) Data Set Ready
Reset Status Pin 6 (Standard)
Always 0 USART Request To Bits of USART| Send Break Enab!e Data Data Terminal ?ata E,':fb'e
Reset Send Pin 4 Status Word Character eceiver Ready Pin 20 ransmitter
{Option 001) {Option 001)
R4E USART Status Word
Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Always 0 Framing Overrun Parity Transmitter Receiver Transmitter
ways Error Error Error Empty Ready Ready




Appendix 181

R5 OUT Register
Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
| . R4 Control
nterrup Interrupt 0=Data IN/
Interface Programmed
Interrupt interface Control 2 Control 2 ouT
Receiver Transmitter 1=Control/
Enable Reset
Control Control Status
R5 IN Register
Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit g
) Intertace Control Control
glear:ﬂ:e;a' Interrupt 0 interface Interface 0 0 Status 2 Status 1
Mode Enable 1.D. 0 1.D. 1 Receiver Transmitter
Status Mode
R6 OUT Register (standard cable)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0Q
Half/Full Ring 8‘9"""(' Secondary Line Sianal
Speed Control indicator D:ta ty Line Signal Det t%’.‘ P
(Interface) Pin 22 P o4 Detect Pin 12 | ~€€ctFin
in 21
R6 IN Register (standard cable)
Bit 7 Bit 6 Bit 5 Bit4 Bit 3 Bit 2 Bit 1 Bit 0
Data Signal Secondary
Always 1 Always 1 Always 1 Always 1 Always 1 Always 0 Rate Select Request
Pin 23 To Send
Pin 15
R6 OUT Register (Option 001 cable)
Bit 7 Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 Bit 0
Special Data Signal Data Signal gecondtary
Half/Full Purpose Rate Select Rate Select Teqsuesd
Speed Control | piq 5 (UK)Pin 11 | Pin23 0 Sen
Pin 19
R6 IN Register (Option 001 cable)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0Q
Secondary Ring . .
Always 1 Always 1 Always 1 Always 1 Always 1 Line Signal Indicator Line Signal
Detect Pin 12 | Pin 22 Detect Pin 8




182 Appendix

9835 Keyboard./Display/Printer Registers

When the peripheral address is set to zero, the keyboard, display, and printer are addressed. In
this case, the [/ O registers have the following meanings.

IN ouT
R4 |KEYBOARD KEYCODE DISPLAY DATA
R5 STATUS CONTROL
R6 (not used) PRINTER DATA
R7 (not used) CHARACTER SET SELECT

R4-IN: Returns an 8-bit keycode from the keyboard (bits 0-6) plus bit 7 indicating
1 = shift, 0 = no shift.

R4-QUT: OQutput one character to the rightmost position of the 32-character shift buffer for
the display. Bit 7 indicates cursor on (= 1) or off (= 0) for this character (9835B only).

R5-IN: bit 0: Always 1.
bit 1: Printer out-of-paper (= 1) indicator.
bit 2: Printer busy (= 1) or ready (= 0) indicator.
bit 3: Control key (= 0) if Control Key is pressed.
bit 4: Key flag (= 1) if a key has been pressed; cleared by R4 IN.

R5-OUT: bit 0: Dump printer buffer to printer.
bit 1: Dump display buffer to single line display.
bit 2: Trigger beeper.
bit 3: Set busy light off.
bit 4: Set busy light on. 98358 only
bit 5: Select insert cursor for display.

bit 6: Select replace cursor for display.
R6-OUT: Output one character to the rightmost position of the printer shift buffer.

R7-OUT: bit 0: 0 = Select standard character set.

1 = Select alternate character set (if available}.



Computer

Appendix

M(ia’@“f-n

9845 Keyboard and Printer Registers

When the peripheral address is set to zero, the keyboard, display, and printer are addressed. In

this case, the [/ O registers have the following meanings.

R4-OUT:

R5-IN:

R5-OUT:

R6-IN:

R7-IN:

R7-OUT:

IN ouT
R4 (not used) PRINTER DATA
R5 PRINTER STATUS PRINTER CONTROL
R6 | KEYBOARD KEYCODE (not used)
R7 | KEYBOARD STATUS KEYBOARD CONTROL

Outputs one 8-bit character to the next left justified position of the printer’s 80

character buffer.

bit 0: Printer interrupt (=1).

bit 1: Print head fault (=1).

bit 5: Printer present (=1).

bit 7: Printer interrupt mode is enabled (=1) or disabled (=0).

bit 5: Immediate printer reset (=1).

bit 7. Enable (=1) or disable (=0) printer interrupt mode.

Returns a 7-bit keycode from the keyboard (bits 0-6).

bit 0: Keyboard interrupted (=1).

bit 12: PRINTALL key down (=1).

bit 13: AUTOST key down (=1).

bit 14: CONTROL key down (=1).

bit 15: SHIFT key down (=1).

Note:  Bits 12-15 are updated only when the keyboard interrupts.

Clear interrupt request (acknowledge interrupt) and BEEP if bit 15=1.

183



184 Bibliography

Bibliography

General
e System 351/0 ROM Programming (HP #09835-90060)

e System 45 [/ O ROM Programming (HP #09845-91060)

o Calculator Users Guide and Dictionary, Charles J. Sippl (Champaign, lllinois: Matrix
Publishers, Inc.). A survey of calculator and desktop computer products, plus a glossary of

hundreds of commonly used computer terms and concepts.

HP-IB
o [EEE Standard Digital Interface for Programmable Instrumentation. IEEE Std. 488-1978.
(Institute of Electrical and Electronics Engineers, Inc., 345 E. 47th Street, New York,
N.Y., 10017, USA). This is the complete and formalized description of the HP-IB, intended
for use by an engineer designing a bus compatible instrument. It is not a good starting

point for learning about the bus.

e Condensed Description of the Hewlett-Packard Interface Bus (HP #59401-90030). A
reference guide to the HP-IB extracting the operational aspects from the IEEE Std. 488-
1978.

e HP-IB Improving Measurements in Engineering and Manufacturing (HP #59300-90005).
Operating characteristics for nineteen popular HP-IB instruments, along with sample

9825 programs for each instrument.

Serial 1/0
e Guidebook to Data Communications (HP #5955-1715). An extensive survey of terms,

concepts, and equipment used in data communications.



185

Notes



186

Notes



Subject Index

a

Active Control ... 125
Active Controller 113,123
Adaptor, Serial Interface 150
AHS Auto Handshake 89
AND Gate , 23
ASCII 113,124,170

Asynchronous Transmission
ATN Attention Line

141,151
114,115,118,124

“Auto Handshake’ Mode 89
Backplane . 82
Baud Rate 140
BCD 48,105
BCD Interface 11,82,105,122
Binary 59
Bits 5
Bit Parallel Interface 10,81
Bit Rate 140,158
Bit Rate Factor 155
Bit Serial Interface 12,82,137
Bit Time 140
Break Character 156
Buffer 27,65,71,161
Burst Read 65
Byte 5
Byte Mode 100

C

CARD ENABLE Statement 48,51,55,57,60

Card Types 85
Carrier Detect 147
Clock 148,155
Control Byte 35,86—-89,109,151
Control Character 40

CONTROL MASK Statement 50,54,87—88
Control Register 35,86

Controller
Compiement

CTLO, CTL1

CTS Clear to Send
Current

Current Loop

Data Buffer

Data Communications
Data [nversion

Data Set

Data Signal Rate Selector
DAV — Data Valid

Subject Index 187

113,114
6

89
147,152
18
163-167

27,65,71,161

12,82,137-145

29,66,104
137

147
115,131

DCE — Data Communications Equipment

DCL Device Clear
Device Buffer
Device Number
DFLAG Data Flag
Display

DMA — Direct Memory Access

DMA Transfer

DMAR — DMA Request Line

“Don’t Care’’ Bits
DOUT Line
DSR Data Set Ready

142,146,159
126,136

67

. 116

110

182

66,89
62,64,66
66,85,90

32

83,84
147,152,163

DTE Data Terminal Equipment

DTR Data Terminal Ready
Duplex

e
Echo

Emulator, Terminal
End-of-Line Branch
ENTER Statement

EOI End or ldentify
EOR End-of-Record

142,146,159
147,152,163
142-144,165

144,145
160-162
60-63
57,65,68,69,73
115,125,136

. 120



188 Subject Index

f

Fast Handshake Transfer 62,64,65
FLG Flag Line 22,34 83 94
Flip-Flop 28
Floating Point Format 8
Format 39-45
Framing Error 156,157
Full Duplex 142-144,165
Gates 22
GET Group Execute Trigger 126,136
GPIB 113
Ground 18,142,143,147
GTL Go to Local 127,136
Half Duplex 142-144,165
Handshake 15,16,93,97,99
Hardware . 17
Hardware Interrupt 48,62,63
HP-IB 112-115
HP-IB Interface 12,112
HP-IB Limitations 115
i
IC1, IC2 Lines 83,84
ID Bits 85,86
IEEE 488-1975 12,112,113
IFC Line, Interface Clear 125,126,136
IMAGE Statement 39-45
INIT Initialization 84
INT Line, Interrupt 84
Interface 1-3,81-85
Interface Registers 31-37,172-182
Interrupt 46-63
Interrupt Buffer .. 49
Interrupt Priorities .60

Inversion

29.66,104

Inverter 23
170,170 Bus 82-85
170 Backplane 82
1/0 Line 16,93-99
IOSB, 1/ O Strobe Line ; 84
IRH Line, Interrupt High ... 84
IRL Line, Interrupt Low .84
j
Jumper ... 29
Latch 26
Listen Address 116—-119
Listener 113
LLLLO Local Lockout 127,136
Logic Ground 85

m

Modem 137,138,142,143

n

NAND Gate 24

NDAC Not Data Accepted 115,131
Negative True Logic 20,104
NOFORMAT Transfers 67,68
Non-Controller Mode 120-122
NOT Gate 23
NRFD Not Ready for Data 115,131

O

ON INT Statement 50,51,54,57-63,65,87
On Interrupt 50,51,54,57-63,65
OR Gate , 23
Overrun Error 152,157



Subject Index 189

Start Bit . 139
p STATUS Statement 36
PAO Line , 84 Status Bit . 3436
Parallel Pol 128  StatusByte | 32
Parity Bit 139,140,154,157 5110, STI1 130,105
Parity Error 157 ~ StopBit 39,
PCTL Line, Peripheral Control Strings as Buffers 52,57,69,70,76
’ 90,93,97,99,103 STS Line, Status 34,36,83,91
Peripheral Address Register 33,83 Synchronous Transmission 141
PFLG Line, Peripheral Flag 93,97,99,103  System Controller 114,132
Positive True Logic 20,104
Power Supply 18,85 t
PPC Parallel Poll Configure 126,128,136
PPD Parallel Poll Disable 128,136 _
PPE Parallel Poll Enable 128136 2l Address te-1
PPU Parallel Poll Unconfigure 126,128,136 TCT Take Control 126 ‘129 136
PRESET Line, Peripheral Reset 90 Termi Caa
. erminal 137,138,143-149
Printer 49-51  Torminal Emulator 160,161
Timing Diagram 21,96,98
r Transfer Buffer 52
Transfer Rate 46,49,64 69
READBIN Function 37-39,41,64  pranster Tpes 46’fgé6_4i22
READ IO Statement 38 g omied Data o
Received Data 147,151 Two’s Complement ’ 6
REN Remote Enable 125
RESET Bit , 89,109,151
Ring Indicator 147,159 u
RS-232-C Standard 138,153,158,163
RTS Request to Send 147,152,159 USART — Universal Synchronous/

Asynchronous Receiver and Transmitter

S : 150,151

SDC Selective Device Clear 126,136 v

Secondary Address 119

Secondary Channel 148 Variable-to-Variable Transfers . 70-74
Secondary Command 119 Voltage 18-20
Select Code 33,83

Serial [/ O Interface 12,137

Serial Pol! 127,136 W

Service Request 125,128,131,132,136

Service Routine 58-61 WAIT READ Statement 35
Shield Line 85 WAIT WRITE Statement 35
Signal Quality Detect 147 Words 5
‘Sign /Magnitude’’ Binary 6 Word Mode 100
Simplex 141-144,165, WRITE BIN Statement . 37,39,40
Software . 3 WRITE IO Statement 35
Software Interrupt 48

SPD Serial Poll Disable 127

SPE Serial Poll Enable 127 x

SRQ Service Request
125,128,131,132,135,136 XOR Gate . ... 23,29






Part No. 09835-90600
Microfiche No. 09835-99600

K

HEWLETT
PACKARD

Printed i1 U. 0.4
Third Edition (June 1981)

-

sydeouo) Buioepiaiu] abenbue] DISvg





