HEWLETT hp; PACKARD

HP 92065A BASIC/1000M
RTE/M Real-Time BASIC Language

Reference Manual

{ooo- 1T Y4
/1 D00= U
000~ UT

HEWLETT PACRARD

&

HP 92065A BASIC/1000M
RTE-M Real-Time

BASIC Language

Reference Manual

(This manual reflects information that is
compatible with Software Revision Code 1726.)

HEWLETT ﬁ PACKARD

HEWLETT-PACKARD COMPANY

11000 WOLFE ROAD, CUPERTINO, CALIFORNIA, 95014

Library Index Number
2RTEM.320.92065-90001

PART NO. 92065-90001

Change 1: 7/77

Printed in U.S.A. 2/77

LIST OF EFFECTIVE PAGES

Chapged pages are identified by a change number adjacent to the page number. Changed information is indicated by a
vertical line in the outer margin of the page. Original pages do not include a change number and are indicated as change
number 0 on this page. Insert latest changed pages and destroy superseded pages.

Change 0 (Original) Feb1977
Changel Juil1977
NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
TIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

- AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1977 by HEWLETT-PACKARD COMPANY

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

PREFACE

The HP 92065A Real-Time BASIC subsystem provides functions, subroutines, and statements -
which allow you to schedule tasks, control instruments, the plotter and magnetic tape devices,
and provides many additional capabilities. It runs under control of the HP 92064A RTE-M
Operating System.

This manual is a reference guide to the BASIC language, the BASIC system commands, and
the subroutines available with the system. You should be familiar with the RTE-M Operating
System. If a BASIC system has been generated and is available for your use, you will find the
information you need to create and run BASIC programs in this manual. If you must generate
the BASIC system yourself, you should be familiar with the RTE-M System Generation
Manual. This manual and other manuals that will assist you in becoming familiar with the
RTE-M Operating System are shown in the documentation map which follows this preface.

Section I introduces BASIC and describes some of its general features. Sections II through VII
describe the BASIC programming language. Expressions are defined in Section II and
statements in Section III. Section IV describes statements in relation to strings and special
characteristics of string variables and constants. Section V describes functions, lists the
functions provided with BASIC, and tells you how to define your own functions. Both BASIC
subroutines embedded in a BASIC program and external subroutines written in BASIC and
other languages are described in Section VI. Section VII describes input and output operations
to logical devices and the statements and functions which manipulate logical unit I/O features.

Section VIII tells you how to execute the BASIC Interpreter. Section IX describes the
commands used to communicate with the Interpreter once it is running.

Sections X through XII deal with the subroutines and statements which schedule tasks and
control specific hardware. Section X describes real-time task scheduling and the subroutine
calls BASIC provides for this purpose. Bit manipulation functions are described in Section XI.
Both commands and subroutine calls used to read, write, and control magnetic tape devices are
described in Section XII. Section XIII provides information about generating the Branch and
Mnemonic Tables which are required if external subroutines are used with BASIC and
describes the HP 2313/91000 Subsystem subroutine calls and configuration, the HP 6940
Subsystem configuration and routines, and the HP 7210 Plotter subroutine calls.

Appendix A contains the HP Character Set. Appendix B contains summaries of all statements,
commands, and library subroutines. Appendix C contains a summary of error messages.

The components of RTE-M Real-Time BASIC can be ordered by part number information
which is given in the HP 92065A Software Numbering Catalog, HP Part No. 92065-90002.

iii

DOCUMENTATION MAP

HP FORTRAN
Reference
Manual
02116-9015

RTE FORTRAN IV
Reference Manual

92060-90023

RTE Assembler
Reference
Manual
92065-90001

BASIC/1000M
Language
Reference
Manual
92065-90001

START
RTE-M
Programmer's
Reference
Manual
92064-90002
21MX Computer Operator's Manual
(M-Series)
RTE-M 02108-90004
System and
Generation 21MX Computer Reference Manual
Manual (M-Series)
92064-90003 02108-90002
or
21MX E-Series Computer
Operating and Reference Manual
02109-90001
RTE-M
Editor
Reference
Manual
'92064-90004
A ¥
RTE O ti
RTE-M Pocket Guide System Drivers and
92064-90007 Device Subroutines
Manual
92200-93005
A
RTE/DOS RTE-M RTE-M BASIC
Relocatable Software Software
Library Numbering Numbering
24998-90001 Catalog Catalog
92064-90001 92065-90002

7700-24

iv. Change 1

You
ARE
HERE |

CONTENTS

Preface 1ii
Documentation Map.................ciiiiiiiiinna.. iv
Section I Page
INTRODUCTION
Features i, 1-1
Conversational Programming 1-1
Multiple Peripheral Device VO 1-1
Real-Time and Event Task Scheduling 1-1
Environment 1-2
Hardware, 1-2
Softwarec 1-3
BASIC Commandscovveeinennnn . 14
BASIC Statementsccooiiivenniinonn. 1-4
BASIC Programscviveinnennn... 1-4
Correction of Typing Errors 1-5
Logical Unit Numbersccov.... 1-5
Syntax Conventionscovvii... 1-6
Section II Page
EXPRESSIONS
Constants it 2-1
Numeric Constantsccooeeiinn... 2-1
Floating-Point Numbers 2-2
Literal Stringso il 2-2
Variables............ 2-2
Functions 2-3
Operatorsc. i 2-4
Evaluating Expressions 2-5
Section III Page
STATEMENTS
LET 3-1
REM ... 3-4
GOTO. .. 3-4
END/STOP . ..o 3-5
FOR.. NEXT i 3-6
IF. . THEN i 3-8
PRINT .. 3-9
Numeric Output Formats 3-11
TAB Function 3-13
READ/DATA/RESTORE 3-13
INPUT ... 3-14
DIM .. 3-16
COM ... 3-16
PAUSE 3-17
WAIT . 3-18

Section IV Page
STRINGS
Sring . ot 4-1
String Variablel 4-2
Substring i e 4-2
Strings and Substrings ol 4-3
String DIM ...t e 4-4
String Assignmento i 4-5
String Input 4-6
Printing Strings i 4-6
Reading Stringsc il 4.7
String IF ... oo 4-8
LEN Functioncoiiiiiiiiieinnnennnnn 4-8
Strings in Data Statements 4-9
Printing Strings to a Peripheral Device 4-10
Reading Strings from a Peripheral Device......... 4-10
Section V v Page
FUNCTIONS
System-Defined Functions 5-1
User-Defined Functions 5-2
Section VI Page
SUBROUTINES
GOSUB/RETURN ... 6-1
CALL ... e 6-5
The Fail Error Option 6-8
The IERR Function 6-9
The SERR Function 6-9
Parameter Conversion 6-9
Section VII Page
LOGICAL UNIT INPUT/OUTPUT
READ # Statement 7-1
PRINT # Statement 7-2
IF EOF #. .. .THEN Statement 7-3
Section VIII Page
STARTING UP BASIC
Scheduling BASIC it 8-1
Using BASIC 8-1
Start Up Options 8-2
Multi-Terminal Monitor Environment 8-2
Section IX Page
BASIC INTERPRETER COMMANDS
LOAD 9-2
SAVE . 9-3
MERGE ... 94
DELETE i i 9-5
RUN . 9-6
BYE . 9-6
LIST . 9-7
BR 9-8

CONTENTS (continued)

Section X Page
REAL-TIME TASK SCHEDULING
Introductionc.c it 10-1
Methods of Initiating Tasks 10-1
Prioritiest 10-2
Response Timecccoviiiiunn... .. 10-3
The BASIC Scheduler 10-3
DSABL ... 10-5
ENABL ... e 10-5
SETP ... e e 10-6
START . .. 10-7
TIME ... e 10-8
TRAP Statement 10-9
TRNON ..o e e 10-11
T Y S o 10-12
Program Example 10-12
Table Preparation 10-17
Error Messagescooiiiiieniiiinnnn.. 10-17
Section XI Page
BIT MANIPULATION OPERATIONS
Bit Manipulation Word Format 11-1
AND L. e 11-1
IBCLR Bit Clear)cccoviviieiiiniinnnn.. 11-2
IBSET (Bit Set)coviiiiiniiiiiiiiiiinnnnn 11-3
IBTST (Bit Test)ooviiee e 11-3
TEOR ... 11-4
NOT . e 11-5
OR e 11-5
ISETC (Set toOctal) ..., 11-6
ISHFT (Register Shift) 11-6
Branch and Mnemonic Table Preparation 11-7
Section XII Page
MAGNETIC TAPE INPUT/OUTPUT
Magnetic Tape Operator Commands 12-1
Magnetic Tape Calls oo, 12-2
MTTRT e e 12-2
MTTRD ... e 12-2
MTTPT . e 12-3
MTTES .. e 12-4
Tape Manipulation Errors 124
Branch and Mnemonic Table Entries 12-5
Sample Program using Magnetic Tape 12-5
Section XIII Page
BASIC CALLS TO EXTERNAL SUBROUTINES
Branch and Mnemonic Table 13-1
Instrument Table 13-1

vi

HP 2313/91000 Data Acquisition Subsystem....... 13-2
Measurement of Analog Input 13-2
Analog Qutput ...ttt 13-2
HP 2313 Subsystem Subroutines 13-2

AIRDV (Random Scan) 13-3
AISQV (Sequential Scan) 13-4
AOV (Digital to Analog Conversion) 13-5
NORM ... e 13-6
PACER e 13-7
RGAIN ... e 13-8
SGAIN 13-9
HP 2313/91000 Subsystem Errors 13-9
HP 2313/91000 Table Preparation............. 13-10
HP 2313 Subsystem Concept.................. 13-10
HP 2313 Card Configuration 13-11
HP 2313/91000 Channel Numbering 13-11
Setting Gain............... 13-12

HP 6940 Multiprogrammer Subsystem 13-13

HP 6940 Subsystem Subroutines 13-13
DAC . e e e 13-13
MPNRM e 13-14
RDBIT ..o i e 13-14
RDWRD (Read Channel) 13-15
SENSE ...\t 13-16
WRBIT ... e 13-17
WRWRD (Write Channel) 13-18

HP 6940 Subsystem Errors 13-18

HP 6940 Table Preparation 13-19

- HP 6940 Card Configuration 13-19

HP 6940 Expansionc....couo... 13-20

HP 6940 Channel Numbering 13-20

HP 7210 Plotter00, 13-22
AXIS 13-22
FACT ... e 13-23
LINES ... e 13-23
LLEFT i 13-24
NUMB ..o e 13-25
PLOT . 13-25
PLTLU .. e e 13-26
SCALE ... 13-26
SEACT .. 13-27
SYMB ... 13-28
URITE e e 13-29
WHEREo 13-29
Table Preparation............................ 13-29

Appendix A Page

HP CHARACTER SET FOR COMPUTER SYSTEMS

HP Character Set for Computer Systems A-1

RTE Special Characters A4

CONTENTS (continued)

Appendix B Page Syntax Errors C-1
SUMMARY OF STATEMENTS, COMMANDS Pre-Execution Errors C-1
AND SUBROUTINES Execution Errorscociiiiiiiiiiiiiiia. C-1
Statement Summary oo, B-1
Command Summaryc.cciiiiiianian. B-3
Subroutine Summaryl B-4
Appendix D Page
HP/IB DATA CONVERSION
Appendix C Page Data Conversion Requests D-1
SUMMARY OF ERROR MESSAGES Binary-to-ASCIIo D-1
Command Errorscoiiiiiinan. C-1 ASCIIto-Binaryoooi it D-3
ILLUSTRATIONS
Title Page Title Page
RTE-M Typical System Configuration 1-2 16-Bit Wordttt 11-1
RTE-M Memory Allocation with BASIC 1-3 Record Positioning Example
Preparing a FORTRAN Function for Use by Using MTTPTot 12-3
BASIC Program ..o, 6-6 Tape Control Sample Program.................... 12-5
Preparing a FORTRAN Subroutine for Use by HP 2313 Subsystem Configuration............... 13-10
BASIC Programcciin... 6-7 HP 6940. Subsystem Configuration............... 13-19
FORTRAN Subroutine to Convert Channel Numbers for Additional 6940 13-20
String Parameter 6-10 Channel Numbers for Addition of a
Task State Definitions 10-4 6941 Extender 13-21
Task Scheduling Program Example (Part 1) 10-13 Plotter Control Sample Program #1 13-30
Structure of Program Example 10-14 Plotter Control Sample Program #2 13-31
Task Scheduling Program Example (Part 2)...... 10-15 Plotter Control Sample Program #2 (Plot) 13-32
TABLES
Title Page
Statements 3-2
BASIC Interpreter Commands 9-1
BASIC Error Messagesc.ccceuvvvenn... C-2

vii/viii

INTRODUCTION

1-1. FEATURES

HP 92065A Real-Time BASIC is a BASIC language subsystem designed for use under control of the
HP 92064A RTE-M Operating System. The BASIC subsystem provides an easy-to-use version of the
BASIC programming language for the RTE-M environment. Interaction with BASIC can be via a
keyboard terminal, mini cartridge tape, keypunched card, paper tape, or magnetic tape devices.

BASIC provides you with the following capabilities:

o Conversational programming

e Multiple peripheral device I/O including graphics display.
® Real-time and event task scheduling.

¢ Bit manipulation.

® User defined subroutines and functions.

® Character String manipulation.

1-2, CONVERSATIONAL PROGRAMMING

BASIC is a programming language that is easy to learn and use. You enter program statements,
line-by-line, directly into the BASIC subsystem from an input device. The BASIC Interpreter checks
each statement as it is entered. If the statement contains an error, a message is displayed that defines
the error so that you may correct it immediately. This type of interaction between you and the BASIC
Interpreter is called conversational programming.

Conversational programming allows you to test your programs step-by-step as you prepare them. You
are in constant contact with the system, its functioning, and its results. You can complete
programming and debugging quickly, easily, and efficiently.

1-3. MULTIPLE PERIPHERAL DEVICE /O

BASIC provides a wide selection of input/output capabilities and it can be used with either hardcopy or
display screen terminals, line printers, paper tape punches, magnetic tape units, and mini cartridge
tape devices. Data can be displayed on a hardcopy graphic plotter or TV monitor.

1-4. REAL-TIME AND EVENT TASK SCHEDULING

BASIC operates in “real-time”; that is, the order of processing may be governed by time or by the
occurrence of external events rather than by a strict sequence defined in the program itself. Because
these events can occur in random order and require different amounts of processing, conflicts may
arise between tasks. BASIC is capable of resolving these conflicts.

A task is defined as a group of BASIC statements initiated by a call to one of the BASIC scheduling
subroutines (e.g., START, TRAP, etc.) and terminated by a RETURN statement (see Section X).

Introduction

The BASIC subsystem provides statements that assign execution priority to tasks, and statements to
schedule execution of tasks as a function of time. The user can also connect task subroutines to event
interrupts such as contact closures. Each task subroutine that is to be repeated during the course of
system operations specifies the interval between successive executions of the task.

1-5. ENVIRONMENT

The minimum hardware and software requirements for support of the RTE-M BASIC subsystem are
listed in the following paragraphs.

1-6. HARDWARE

The BASIC subsystem operates within the RTE-M hardware environment. (Refer to the appropriate
system Programming and Operating Manual for equipment configurations.)

Minimum requirements are:

e HP 21MX Series computer.
e 24K words minimum memory (the BASIC subsystem occupies approximately 10K words).
® TFloating Point Hardware.

o System Console (HP 2644/2645 Terminal).

Optional devices include a line printer, card reader, paper tape reader, plotter, TV monitor, HP 2313
and HP 6940 subsystems, mini cartridges, and terminals.

A typical system configuration is depicted in Figure 1-1.

SYSTEM BACKUP

MAGNETIC Q HP 2313 HP 6940

TAPE OPTION OPTION FLEXIBLE
3 7y DISC
OPTION QPTION

MAIN PROCESSOR

> 24K MINIMUM »| LINE PRINTER
REQUIRED QPTION
SYSTEM
CONSOLE
v REQUIRED

| MINI CARTRIDGE
| TAPEDEVICE |
QPTION OPTION OPTION | [OPTION _ _ _j

REMOTE TERMINALS

Figure 1-1. RTE-M Typical System Configuration
1-2

Introduction

1-7. SOFTWARE

The BASIC subsystem is an option that executes under control of the RTE-M Operating System.

The BASIC subsystem consists of the following modules and components:

e BASIC, the main program, and a set of subroutines used for control and for input/output. The
module names are:

BASCM main program module

BASC1
BASC2
BASC3
BASC4
BASC5
BASCS8

statement syntax checking module

listing module

pre-execution module

execution module

command syntax checking and execution medule

slow statements module (includes PAUSE and STOP)

e BASIC Library.

® User-defined Branch and Mnemonic Tables, used to link BASIC to subroutines and functions.

¢ Standard Branch and Mnemonic Tables (supplied), used to link BASIC to required functions in the
FORTRAN IV Library.

¢ Trap Table module, used for keeping track of real-time tasks and traps.

The BASIC subsystem part numbers are listed in the HP 92065A Software Numbering Catalog.

Figure 1-2 illustrates the organization of the BASIC components in RTE-M system memory.

Binary Bootstrap Loader High Memory
BASIC Program
User Subroutines
Branch and Mnemonic Tables
BASIC Software BASIC Interpreter

H_esident Trap Table and
Library Task Subroutines

RTE-M System and Drivers

Low Memory

Figure 1-2. RTE-M Memory Allocation with BASIC

Introduction

1-8. BASIC COMMANDS

BASIC commands instruct the BASIC Interpreter to perform certain control functions. Commands
differ from the statements used to write a program in the BASIC language.

A command instructs the Interpreter to perform some action immediately. A statement is an
instruction to perform an action only when the program is executed. A statement is always preceded
by a statement number; a command never is.

Any BASIC command can be entered following the BASIC prompt character, >. Each command is a
single word that must be typed in its entirety. (DELETE is an exception, you may type DEL.) If
misspelled, the computer will return an error message. Some commands have parameters to further
define command operation.

For example, BYE is a command that you use to terminate the BASIC Interpreter and return to the
operating system. It has no parameters. Another command, LIST, prints the program currently being
entered. It may have parameters to specify that only part of the program is to be listed, or to indicate a
particular list device.

1-9. BASIC STATEMENTS

Statements are used to write a BASIC program that will subsequently be executed. Each statement
performs a particular action. Every statement you enter becomes part of the current program and is
kept until explicity deleted or you exit from BASIC with the BYE command.

A statement is always preceded by a statement number. This number is an integer between 1 and
9999. The statement number indicates the order of the statements in the program. Statements are
ordered by BASIC from the lowest to the highest statement number. Because this order is maintained
by the Interpreter, it is not necessary for you to enter statements in execution order so long as the
numbers are in that order.

Following each statement, you must press the RETURN key to inform the Interpreter that the
statement is complete. The Interpreter generates a linefeed and prints the prompt character, >, on the
next line to signal that the statement is accepted. If an error is made upon entering the statement, the
Interpreter prints an error message.

BASIC statements have a free format. This means that blanks are ignored in most cases (exceptions:
string literals, CALL statements). For example, all of the following statement forms are equivalent.

>30 PRINT S
>30 PRINTS
>30PRINTS

> 30 PRINTS

>3 0PRINTS

1-10. BASIC PROGRAMS

Any statement or group of statements that can be executed constitutes a program. A program may
consist of only two statements. The following is an example of such a program:

>100 PRINT 35+§
>110 END

Introduction

The first statement number is 100. PRINT is the keyword or instruction that tells the Interpreter the
kind of action to perform. In this case, it prints the result of the arithmetic expression that follows the
keyword. The expression is 35+ 5. It is evaluated by the Interpreter, and when the program is
executed, the result is printed. The END statement (statement number 110) indicates the end of the
BASIC program.

Usually, a program contains more than two statements. The following four statements are a program:

>10 INPUT A,B,C,D,E
>20 LET S = (A+B+C+D+E)/S Computer
>30 PRINT S . Museum
>40 END

This program, which calculates the average of five numbers is shown in the order of its execution. It
could be entered in any order if the statement numbers assigned to each statement were not changed.

For example, the following program executes exactly like the program above:

>20 LET S = (A+B+C+D+E)/S
>10 INPUT A,B,C,D,E

>30 PRINT S

>40 END

It is generally a good idea to number statements in increments of 10. This allows room to intersperse
additional statements as needed.

1-11. CORRECTION OF TYPING ERRORS

You may use the following keys to correct typing errors:
o RUBOUT deletes the current line you are typing; on some terminals a DEL key is used instead.

¢ BACKSPACE deletes a character. If your terminal does not have a key labeled BACKSPACE, you
may use Control H (H¢). Press the control key (CNTL), hold it down and press the H key. The
backspace is printed as an underline, __ or a back arrow, «. If you want to delete more than one
character, repeat BACKSPACE or H¢ for each character to be deleted.

Terminals which have both upper and lower case characters should be locked into upper case mode, if
possible.

1-12. LOGICAL UNIT NUMBERS

Logical unit numbers, abbreviated LU in the remainder of this manual, are decimal integers between

0 and 63 that are used to address I/O devices. Certain logical unit numbers must always refer to
specific devices. These are as follows:

System Console

System Mass Storage (upward compatible)
Auxiliary Mass Storage (upward compatible)
Standard Output Device

Standard Input Device

Standard List Device

A oAk W N

Introduction

The standard devices may be:

output paper tape punch, magnetic tape, mini cartridge
input paper tape reader, card reader, terminal, mini cartridge

list line printer or terminal
The remaining logical unit numbers (7 through 63) may be assigned to any type of peripheral device.

Logical unit number 0 is not associated with any particular device, but is used essentially to turn off
an input or output statement. That is, an I/O statement that references LU 0 is ignored.

1-13. SYNTAX CONVENTIONS

The following syntax conventions are used in this manual to specify command and statement formats:

UPPER-CASE BLOCK LETTERS Literals that must be specified exactly as shown.

lower-case italics Type of information to be supplied by you; most param-
eters are in this form.

[,parameter] Optional parameters are enclosed in brackets.
parameter 1 One and only one of the stacked parameters must be
parameter 2 specified.

parameter 3

parameter 1 All bracketed parameters are optional, only one may be
parameter 2 specified.
parameter 3

[,paraml [,paramZ]] . Series of optional parameters; the last parameter may
be omitted with no indication; embedded parameters
must be supplied.

Ellipsis indicates that the previous parameter or series
of bracketed parameters can be repeated.

BASIC Language Syntax Conventions

EXPRESSIONS

An expression combines constants, variables, or functions with operators in an ordered sequence.
When evaluated, an expression must result in a value. An expression that, when evaluated, is
converted to an integer is called an integer expression. Constants, variables, and functions represent
values; operators tell the computer the type of operation to perform on these values.

Some examples of expressions are:

(P + 5)/27 P is a variable that must have been previously
assigned a value. 5 and 27 are constants. The
slash is the divide operator. Parentheses group

those portions of the expression to be evaluated
first.

If P = 49, this example is an integer expression
with the value 2.

N-®R+5)-T N, R, and T must all have been assigned values.

+ and — are the add and subtract operators. The
innermost parentheses enclose the part evaluated

first.

IfN=20,R =10, and T =5, the value of the integer
expression is zero.

2-1. CONSTANTS

A constant is either numeric or a literal string.

2-2. NUMERIC CONSTANTS

A numeric constant is a positive or negative decimal number including zero. It may be written in any
of the following three forms:

® As an integer - a series of digits with no decimal point.

® Asafixed point number - series of digits with one decimal point preceding, following, or embedded
within the series.

e

As a floating point number - an integer or fixed point number followed by the letter E and an
optionally signed integer.

Examples of Integers:
1234

=70
0

2-1

Expressions

Examples of Fixed Point Numbers:

1234.
1234.56
-.0123

2-3. FLOATING-POINT NUMBERS

In the floating point notation, the number preceding E is a magnitude that is multiplied by some

power of 10. The integer after E is the exponent, that is, it is the power of 10 by which the magnitude is
multiplied.

The exponent of a floating point number is used to position the decimal point. Without this notation,
describing a very large or very small number would be cumbersome:

1E+35
1E-35

100000000000000000000000000000000000
.00000000000000000000000000000000001

Examples of Floating-Point Numbers:

1E+23 =1 x 10?* = 100000000000000000000000
1.0E23 (same as above)

.001E26 (same as above)

1.02E +4 =1.02 x 10* = 10200.

1.02E-4 =.000102

Within the computer, all these constants are represented as floating-point real numbers whose
precision is 6 or 7 digits and whose size is between 107*® and 10%.

24. LITERAL STRINGS

A literal string consists of a sequence of characters in the ASCII character set enclosed within quotes.
The quote is the only character excluded from the character string.

Examples of Literal Strings:

“ABC” | ~” (a null, empty, or zero length string)
“U'WHAT A DAY ® ” (a string with two blanks)
e X Y Z »

Blank spaces are significant within a string.

2-5. VARIABLES

A variable is a name to which a value is assigned. This value may be changed during program
execution. A reference to the variable acts as a reference to its current value. Variables are either
string or numeric. Further, numeric variables are either simple or subscripted.

2-2

Expressions

Simple numeric variables are a single letter (from A to Z) or a letter immediately followed by a digit
(from 0 to 9):

A A0
P P5
X X9

A variable of this type always contains a numeric value that is represented in the computer by a real
floating-point number.

If a variable names an array, it must be subscripted. Only the alphabetic characters A through Z may
be used to name an array. When a variable is subscripted, the variable name is followed by one or two
subscript values enclosed in parentheses. If there are two subscripts, they are separated by a comma. A
subscript may be an integer constant or variable, or any expression that is evaluated to an integer
value:

A1) AN M)
P(1,1) P(Q5,N/2)
X(N+1) X(10,10)

A simple variable and a subscripted variable may have the same name with no implied relation
between the two. For example, a simple variable named A is totally distinct from a subscripted
variable named A(1,1).

Simple numeric variables can be used without being declared. Subscripted variables must be declared
with a DIM statement (see Section III) if the array dimensions are greater than 10 rows, or 10 rows and
10 columns. The first subscript is always the row number, the second the column number. The

subscript expressions must result in a value between 1 and the maximum number of rows and
columns.

A variable may also contain a string of characters. This type of variable, a string array, is identified by
a variable name consisting of a letter and $:

A$ P3

The value of a string variable is always a string of characters, possibly null or zero length. If the string
array contains a single character, it need not be declared with a DIM statement (see Section III).
String arrays differ from numeric arrays in that they have only one dimension. You may optionally
use two subscripts which refer to the first and last characters in the substring you want to reference
(See Section IV, String Arrays). You may also use one subscript to refer to the first character of the
substring. In this case, the last character of the substring will be the last character of the string.
Examples of subscripted string array names (substrings) are:

A$(1,3) ZB(N,N+M) A$(10)

2-6. FUNCTIONS

A function names an operation that is performed using one or more parameter values to produce a
single value result. A numeric function is identified by a three-letter name followed by one or more
formal parameters enclosed in parentheses. If there is more than one, the parameters are separated by
commas. The number and type of the parameters depends on the particular function. The formal
parameters in the function definition are replaced by actual parameters when the function is used.

Since a function results in a single value, it can be used anywhere in an expression where a constant or
variable can be used. To use a function, the function name followed by actual parameters in paren-
theses (known as a function call) is placed in an expression. The resulting value is used in the
evaluation of the expression.

2-3

Expressions

Examples of common functions:

SQR(x) where x is a numeric expression that results in a value = 0. When called,
it returns the square root of x. For instance, if N=2, SQRIN+2) = 2.

ABS(x) where x is any numeric expression. When called, it returns the absolute
value of x. For instance, ABS(-33) = 33.

BASIC provides many built-in functions that perform common operations such as finding the sine,tak-
ing the square root, or finding the absolute value of a number. The available functions are listed in
Section V. In addition, you may define and name your own functions should you need to repeat a
particular operation. How to write functions is described in Section V, Functions. -

2-7. OPERATORS

An operator performs a mathematical or logical operation on one or two values resulting in a single
value. Generally, an operator is between two values, but there are unary operators that precede a
single value. For instance, the minus sign in A - B is a binary operator that results in subtraction of B
from A; the minus sign in -A is a unary operator indicating that A is to be negated.

The combination of one or two operands with an operator forms an expression. The operands that
appear in an expression can be constants, variables, functions, or other expressions.

Operators may be divided into types depending on the kind of operation performed. The main types are
arithmetic, relational, and logical (or Boolean) operators.

The arithmetic operators are:

+ Add (or if unary, positive) A +Bor +A
- Subract (or if unary, negative) A-Bor-A
* Multiply AXxB

/ Divide A-+B

1or A Exponentiate AP

In an expression, the arithmetic operators cause an arithmetic operation resulting in a single numeric
value.

The relational operators are:

= Equal A=B
< Less than A Greater than A>B
<= Less than or equal to As= Greater than or equal to A=B
<>or # Not equal A#B

When relational operators are evaluated in an expression they return the value 1 if the relation is
found to be true, or the value 0 if the relation is false. For instance, A = B is evaluated as 1if A and B
are equal in value, as O if they are unequal.

2-4

Expressions

Logical or Booléan operators are:

AND Logical “and” A AND B
OR Logical “or” AORB
NOT Logical complement NOT A

Like the relational operators, the evaluation of an expression using logical operators results in the
value 1 if the expression is true, the value 0 if the expression is false.

Logical operators are evaluated as follows:

A AND B =1 (true) if A and B are both # 0; = 0 (false)if A =00or B =0
AORB =1 (true)if A # O or B # 0; = 0 (false) if both Aand B =0
NOT A =1 (true) if A = 0; = 0 (false) if A # 0

2-8. EVALUATING EXPRESSIONS

An expression is evaluated by replacing each variable with its value, evaluating any function calls and
performing the operations indicated by the operators. The order in which operations are performed is
determined by the hierarchy of operators:

1or A (highest)

NOT

*/

+ —

Relational (=, <, >, <=, >=, <>)
AND

OR (lowest)

The operator at the highest level is performed first followed by any other operators in the hierarchy
shown above. If operators are at the same level, the order is from left to right. Parentheses can be used
to override this order. Operations enclosed in parentheses are performed before any operations outside
the parentheses. When parentheses are nested, operations within the innermost pair are performed
first.

For instance: 5 + 6*7 is evaluated as 5 + (6 x 7) = 47
7/14*2/5 is evaluated as ((7/14)x2)/5 = .2

If A=1, B=2, C=3, D=3.14, E=0

then: A+B*C is evaluated as A + (B*C) = 7
A*B+C is evaluated as (A*B) + C = 5
A+B-C is evaluated as (A+B)-C =0
(A+B)*C is evaluated as (A+B)*C = 9

When a unary operator immediately follows another operator of higher precedence, the unary operator
assumes the same precedence as the preceding operator. For instance,

B 1 —-B 1 C is evaluated as (B3¢ = 1/64 or .015625
In a relation, the relational operator determines whether the relation is equal to 1 (true) or 0 (false):

(A*B) < (A—C/3) is evaluated as 0 (false) since A*B=2 which is not less than A—C/3=0
2-5

Expressions
In a logical expression, other operators are evaluated first for values of zero (false) or non-zero (true).
The logical operators determine whether the entire expression is equal to 0 (false) or 1 (true):

E AND A-C/3 is evaluated as 0 (false) since both terms in the expression are
equal to zero (false).

A+B AND A*B is evaluated as 1 (true) since both terms in the expression are
different from zero (true).

A =B OR C=SIN(D) is evaluated as 0 (false) since both expressions are false (0).

AORE is evaluated as 1 (true) since one term of the expression (A) is
not equal to zero.

NOT E is evaluated as 1 (true) since E=0.

2-6

STATEMENTS

This section describes statements used in writing a Real-Time BASIC program. Statements must be
preceded by a line number and are terminated by pressing the RETURN key when entered.
Statements are executed in numeric sequence (unless branching occurs), but may be entered in any
sequence.

Unlike Assembly language, FORTRAN, and other programming languages, BASIC statements are
interpreted at the time they are entered; thus a compile stage is not required. Invalid statements are
immediately rejected. Statements are not executed, however, until the program is executed with the
RUN command (see Section IX).

Table 3-1. lists some statements used in writing a program and briefly describes each. Detailed
explanations of each statement are provided in the remainder of the section. Additional statements
related to specific programming objectives are introduced and explained in subsequent sections of this
part of the manual. A complete list of Real-Time BASIC statements and their uses is provided in
Appendix B.

3-1. LET

This statement assigns a value to one or more variables. The value may be in the form of an
expression, a constant, a string, or another variable of the same type.

Format

When the value of the expression is assigned to a single variable, the formats are:
[LET] variable = expression
When the same value is to be assigned to more than one variable, the formats are:

[LET] variable = variable = . .. = variable = expression

In this statement, the equal sign is an assignment operator. It does not indicate equality, but is a
signal that the value on the right of the assignment operator be assigned to the variable on the left. If
any ambiguity exists between the relational operator “=" and the assignment operator, the equal sign
is treated as a relational operator.

31

Statements

Table 3-1. Statements

STATEMENTS

LET

REM
GOTO

GOTO ... OF

END/STOP

FOR . .. NEXT

IF ... THEN

PRINT

READ/DATA/RESTORE

INPUT

DIM

COM

PAUSE

WAIT

FUNCTION

Assigns the value of an expression to a variable. The word LET may be
omitted.

Introduces remarks and comments in the program listing.
Transfers control to a specified statement.

Multibranch GOTO transfers control to one of a list of statements,
depending on the value of an integer expression.

END indicates the last program statement and terminates execution of
the current program. STOP terminates execution of the current prog-
ram.

Allows repetition of a group of statements between FOR and NEXT.
The number of repetitions is determined by the initial and final values of
a FOR variable, and an optional STEP specification.

Evaluates a conditional expression and specifies action to be taken if
condition is true.

Prints the contents of a list of numeric or string expressions on the list
device, or to a specified logical unit number.

Assigns constants and string literals from one or more DATA state-
ments to the variables specified in the READ statement. Treats con-
tents of all DATA statements as a single data list.

Requests user input to one or more variables by printing a prompt and
accepts string or numeric data from the terminal.

Defines the size of arrays.

Allows a program to store data in memory for retrieval by a subsequent
BASIC program.

Stops program execution without terminating the program.

Causes an executing program to stop for a specified number of mil-
liseconds before continuing.

3-2

Statements

When a variable to be assigned a value contains subscripts, these are evaluated first from left to right,
then the expression is evaluated and the value assigned to the array element.

If a value is assigned to more than one variable, the assignment is made from right to left. For

instance, in the statement A=B=C=2, first C is assigned the value 2, then B is assigned the current
value of C, and finally A is assigned the value of B.

Examples

19 LET A = 5.p2
20 A=5.02

The variable A is assigned the value 5.02. Statements 10 and 20 have the same result.

3B X =Y7 =2 =21 = ¢

Each variable X, Y7, Z, and Z1 is set to zero. Thisis a simple method for initializing variables at the
start of a program.

35 LET M=2
49 LET AMM) = N = 9O

First M is assigned the value 2 in line 35. In line 40 N is assigned the value 9, then the array element
A(2) is assigned the value 9.

SN = @
62 LET N = N+|
78 LET ACNY = N

Statements 50 through 70 set the array element A(1) to 1. By repeating statements 60 and 70, each
array element can be set to the value of its subscript.

3-3

Statements

3-2. REM

This statement allows the insertion of a line of remarks in the listing of the program. The remarks do
not affect program execution.

Format

REM any characters

Like other statements, REM must be preceded by a statement number.

The remarks introduced by REM are saved as part of the Real-Time BASIC program, and printed when
the program is listed or punched. They are, however, ignored when the program is executed.

Remarks are easier to read if REM is followed by spaces, or a punctuation mark as in the examples.

Examples

>LIST
1?7 REM: THIS IS AN EXAMPLE
2@ REM: OF REM STATEMENTS.
3% REM -- ANY CHARACTERS MAY FOLLOW REM: "//%xx|1%8&,ETC.
40 REMe.e+.REM STATEMENTS ARE NOT EXECUTED

3-3. GOTO

GOTO overrides the normal sequential order of statement execution by transferring control to a
specified statement. The statement to which control transfers must be an existing statement in the
current program.

Format

GOTO statement number label

GOTO integer expression OF statement number label [, statement number label, . . .]

GOTO may have a single statement number label, or may be multi-branched with more than
one label. If the multi-branch GOTO is used, the value of the integer expression determines
the label in the list to which control transfers. It is rounded to the nearest integer. GOTO
may be entered as GO TO.

If the GOTO transfers to a statement that cannot be executed (such as REM or DIM), control passes to
the next sequential statement after that statement. GOTO cannot transfer into or out of a function
definition (see Section V). If it should transfer to the DEF statement, control passes to the line
following the function definition.

3-4

Statements

The statement number labels in a multi-branch GOTO are selected by numbering them sequentially
starting with 1, such that the first label is selected if the value of the expression is 1, the second label if
the expression equals 2, and so forth. If the value of the expression is less than 1 or greater than the
number of labels in the list, then the GOTO is ignored and control transfers to the statement
immediately following GOTO.

Examples

53 GO0TO 102
62 GOTO A QOF 129, 208@, 329

The first statement sends the sequence of execution to line number 100. The second statement directs
control to either line number 100, 200, or 300 depending on the current value of A

The example below shows a simple GOTO in line 200 and a multi-branch GOTO in line 600.

>LIST
19 LET 1=0
200 GOTO 6092
300 PRINT 1
400 RKEM THE VALUE OF I IS ZERO
500 LET I=1+1
60 GOTO I+1 OF 302,500,800
770 REM THE FINAL VALUE OF I IS 2
8203 PRINT I
9a@A END

>RUN

@
)

el

When run, the program prints the initial value of I and the final value of L.

34. END/STOP

The END and STOP statements are used to terminate execution of a program.

Format

END

STOP

The END statement consists of the word END; the STOP statement of the word STOP.

END and STOP have identical functions; the only difference is that the highest numbered statement

in a program must be an END statement. STOP may be used simply to halt program execution at a
given point.

3-5

Statements
Examples

op@ IF A # 27.5 THEN 359

[O%]
[
[\~
n
3
o
)

.

35¢ LET A = 27.%

S22 IF B # A THEN 9999

3339 END

3-5. FOR ... NEXT

The looping statements FOR and NEXT allow repetition of a group of statements. The FOR statement
precedes the statements to be repeated, and the NEXT statement directly follows them. The number of
times the statements are repeated is determined by the value of a simple numeric variable specified in
the FOR statement.

Format

FOR variable = initial expression TO final expression [STEP step expression]

The variable is set to the value resulting from the initial expression. The variable is
incremented after each time the loop is executed. When the value of the variable passes the
value of the final expression, the looping stops. If STEP is specified, the variable is
incremented by the value resulting from the step expression each time the group of
statements is repeated. This value can be positive or negative, but should not be zero. If a
step expression is not specified, the variable is incremented by 1.

The NEXT statement terminates the loop:
NEXT variable

The variable following- NEXT must be the same as the variable after the corresponding FOR.

3-6

Statements

When FOR is executed, the variable is assigned an initial value resulting from the expression after the
equal sign,and the final value and any step value are evaluated. Then the following steps occur:

1. Thevalue of the FOR variable is compared to the final value; if it exceeds the final value (or is less
when the STEP value is negative), control skips to the statement following NEXT.

2. All statements between the FOR statement and the NEXT statement are executed.
3. The FOR variable is incremented by 1, or if specified, by the STEP value.
4. Return to step 1.

Your program should not execute the statements in a FOR loop except through a FOR statement.
Transferring control into the middle of a loop can produce undesirable results.

FOR loops can be nested if one FOR loop is completely contained within another. They must not
overlap.
Examples

Each time the FOR statement executes, a value for R is entered and the area of a circle with that
radius is computed and printed.

>LIST
17 REM : RADIUS EXAMPLE
20 FOR a=1 [0 5
30 INPUT ®
40 PRINT "AREA OF CIRCLE WITH KADIUS "3KH3"™ IS ":3.14159%n12
50 NEXT A
6@ END

>RUN

71

AREA OF CIRCLE WITH RADIUS 1 IS 3.14159

72

AREA OF CIRCLE WITH RADIUS 2 IS 12.5664

24

AKEA OF CIRCLE WITH RADIUS 4 IS 50.2654

28

AREA OF CIRCLE WITH RADIUS 8 IS 201.062

216

AREA OF CIKCLE WITH RADIUS 16 1S 3M4.247

BASIC READY

3-7

Statements

The FOR loop executes six times, decreasing the value of X by 1 each time:

>LIST
10 FOR X=0 TO -5 STEP -1
20 PRINT X-5
34 NEX[X
40 END

>RUN

-5

-6

-7

-8

-9

-1a

BASIC READY

>

3-6. IF ... THEN

IF . . . THEN statements are used to test for specified conditions and to specify program action
depending on the test results. When a condition is found by the program to be true, then program
action indicated by the statement is performed. When a condition is found by the program to be untrue,

program action simply continues to the next statement.

Format

statement

IF expression THEN , \oment number label

The IF ... THEN statement relationship is often described as a conditional transfer. Possible

statement transfers that may be used with the IF ... THEN condition are:

IF. . . CALL
GOSUB
GOTO
INPUT
LET
PAUSE
PRINT
PRINT #
READ
READ #
RESTORE
RETURN
STOP
WAIT

Note that the word THEN is omitted from the statement in the above operations.
3-8

Statements

Because numbers are not always represented exactly in the computer, the = operator should be used

carefully in IF . . . THEN statements. Whenever possible, < = or > = should be used instead of =.
Examples
18 IF A=B THEN 30 is equivalent to IF A = B GOTO 30

12 IF A=B PRINT C

In the following example, if X > 10, the message in statement 40 is executed. Otherwise, the message
in statement 60 is executed.

>LIST
1@ LET N=1@
20 READ #1:3X
30 IF X <= N THEN 60
40 PRINT "X IS MORE THAN";N
5@ GOTO 8@
60 PRINT X 1S LESS THAN Onr EQUAL TO*;N
7% GOTO 20
8 END

Note that the relational operator is optional in logical evaluations:

5 IF X PRINT A$
75 IF Y GOTO 99

3-7. PRINT

PRINT causes data to be output at the terminal. The data to be output is specified in a print list
following PRINT.

Format

PRINT ([print list]

The print list consists of items separated by commas or semicolons. The list may be followed
by a comma or a semicolon. If the list is omitted, PRINT causes a skip to the next line. [tems
in the list may be numeric expressions, numeric or string variables, string literals, or
tabbing functions.

The contents of the print list is printed. If there is more than one item in the print list, commas or
semicolons must separate the items. The choice of a comma or semicolon affects the output format.

The output line is divided into five consecutive fields: four of 15 characters and one of 12 characters, for
a total of 72 characters. The fields begin in columns 0, 15, 30, 45, and 60. When a comma separates
items, each item is printed starting at the beginning of the next available field. When a semicolon
separates items, each item is printed immediately following the preceding item. In either case, if there
is not enough room left in the line to print the entire item, printing of the item begins on the next line.

3-9

Statements

The .separator between items can be omitted if one or both of the items is a quoted string. In this case, a
semicolon is inserted automatically.

A carriage return and linefeed are output after PRINT has executed, unless the output list is
terminated by a comma or semicolon. In this case, the next PRINT statement begins on the same line.

If an expressign appears in the print list, it is evaluated and the result is printed. Any variable must
have been assigned a value before it is printed. Each character between quotes in a string constant is
printed.

See Section VII for information about other forms of the PRINT statement.

Examples

When items are separated by commas, they are printed in up to five fields per line; separated by
semicolons, they directly follow one another. In the example below, the items are numeric, so each
item is assigned a minimum of six characters.

>LIST
1 LET A=B=C=D=E=15
200 LET Al1=B1=C1=D1=E1=20
30 PRINT A,B,Cl,C
40 PRINT A3B3C13C3DESALDISEL
5@ PRINT A,B3C,D

60 END
>RUN
15 15 20 15
15 15 20 15 15 15 20 29 20
15 15 15 15

In the example below, the first PRINT statement evaluates and then prints three expressions. The
second PRINT skips a line. The third and fourth PRINT statements combine a string constant with a
numeric expression. No fields are used in the print line for string constants unless a comma appears as
separator. The fourth PRINT statement prints output on the same line as the third because the third
statement is terminated by a comma.

>L1IST
1 LET A=8=C=D=E=15
2n LET Al1=B1=C1=D1=E1=20
3% PRINT A+*B,B/C/D1+30,A+B
40 PRINT
SO PRINT *""AxB ='"; AxB,
60 PRINT "THE SUM OF A AND B IS '";A+RB

70 END
>RUN
225 33.05 30
A¥B =225 THE SUM OF A AND B IS 30

3-10

Statements

3-8. NUMERIC OUTPUT FORMATS

Numeric quantities are left justified in a field whose width is determined by the magnitude of tbc_a item.
The width includes a position at the left of the number for a possible sign and at least two p951t19ns t‘o
the right containing blanks. The width is always a multiple of three; the minimum width is six
characters.

Integers

An integer with a magnitude less than 1000 requires a field width of six characters:

SIGN NUMBER TRAILING BLANKS

3 DIGITS

1 L i

An integer with a magnitude between 1000 and 32767 inclusive requires a field width of nine
characters:

SIGN NUMBER TRAILING BLANKS
5 DIGITS

1 1 1 1 1 I

Examples of integers:

The integers below are less than 1000 and greater than —1000;

>LIST
18 PRINT 15999;30;3-300;3+295
20 END

>RUN

1 999 30 -380 295

These integers are between 1000 and 32767 or between —1000 and —32767:

>LIST
12 PRINT 100035+327513-3276753327617
26 END

>RUN

1200 32751 -327617 32767

These integers are mixed in magnitude, but none are greater than 32767 or less than —32767:

>L1IST
18 PRINT 1;10003999:+327515205-32767;-300525687;+286;5000
28 END
>RUN
1 1000 999 32751 20 -32767 -380 25687 286
Senn '

If an integer has a negative sign it is printed; a positive sign is not printed.

3-11

Statements

Fixed-Point Numbers

A fixed point number requires a field width of 12 positions. If the magnitude of the number is greater
than or equal to .09999995 and less than 999999.5, or is less than .1 but can be printed with six
significant digits, the number is printed as a fixed-point number. Trailing zeros are not printed, but a
trailing decimal point is printed to show the number is not exact. The number is left-justified in the

field with trailing blanks. The sign is printed only if it is negative.

SIGN NUMBER

\ \ /

6 DIGITS & DECIMAL PT.

1 1 1 L 1 1 1 1 H

Examples of fixed-point numbers:

>LIST
13 PRINT 999999.:.1;.000044
20 END

>RUN

999999. o1 « 000044

Floating-Point Numbers

Any number, integer or fixed-point, with a magnitude greater than the magnitude of the numbers
presented above, is printed as a floating-point number using a total field width of 15 positions:

TRAILING BLANKS

TRAILING BLANKS

SIGN NUMBER E + EXPONENT
6 DIGITS & DECIMAL PT. E

] 1 1] 1 | L H 1

Examples of floating-point numbers:

BASIC READY
>10 PRINT 2345678;.0000044
>20@ END
>RUN

2+ 34568E+06 4.40000E~06
BASIC READY

>1@ PRINT 234567893 .00000044
>20 END
>RUN
2.34568E+07 4.40000E-07
BASIC READY

>1@ PRINT .00003943;.0000257895
>2@ END
>RUN
3.94300E~05

3-12

2+.57895E-05

Statements

3-9. TAB FUNCTION
The TAB function moves the print position to a specified column.

Format

TAB (integer expression)

The print position is moved to the column specified by the integer expression. Print positions are
numbered from 0 to 71. If the integer expression is less than the current position, nothing is done. If the
expression is greater than 71, the print position is moved to the beginning of the next line.

Example

S PRINT A;TAB(25)3;B;TAB(50);C

3-10. READ/DATA/RESTORE

Together, the READ, DATA, and RESTORE statements provide a means to input data to a BASIC
program. The READ statement reads data specified in DATA statements into variables specified in
the READ statement. RESTORE allows the same data to be read again.

Format

READ variable list
DATA constant [, constant,]
RESTORE [statement number label]

Parameters

variable list list of variables separated by commas.
constant numeric or string constant.

statement number label identifies a DATA statement.

Constants in the DATA statement are assigned to variables in the READ statement
according to their order; the first constant to the first variable, and so forth.

When a READ statement is executed, each variable is assigned a new value from the constant list in a
DATA statement.

More than one DATA statement can be specified. All the constants in the combined DATA statements
comprise a data list. The list starts with the DATA statement having the lowest statement label and
continues to the statement with the highest label. DATA statements can be anywhere in the program;
they need not precede the READ statement, nor need they be consecutive. DATA statements do not
execute, but merely specify data.

If a variable is numeric, the next item in the data list must be numeric; if a variable is a string, the
next item in the data list must be a string constant. It is possible to determine the type of the next item
with the TYP function (see Section V).

3-13

Statements

A pointer is kept in the data list showing which constant is the next to be assigned to a variable. The
RUN command sets the pointer at the first DATA statement. It is advanced consecutively through the
data list as constants are assigned. The RESTORE statement can be used to access data constants in a
non-serial manner by specifying a particular DATA statement to which the pointer is to be moved.

When the RESTORE statement specifies a label, the pointer is moved to the first constant in the
specified statement. If the statement is not a DATA statement, the pointer is moved to the first
following DATA statement. When no label is specified, the pointer is restored to the first constant of
the first DATA statement in the program.

Examples

The data in statement 10 is read in statement 20 and printed in statement 30:

>LIST
10 DATA 3,5,7
2@ READ A,B,C
30 PRINT A,B,C
49 END
>RUN
3 5 7

Note the use of RESTORE in this example. It permits the second READ to read the same data into a
second set of variables:

>LIST
1 DIM A$(31,B$(3]
20 DATA 3,5,7
30 READ A,B,C
49 READ A%,B$%
50 DATA *AaBC","DEF"
6@ RESTORE
7@ READ D,E,F
80 PRINT A$:B$,A;B;C3;DIESF
9@ END
>RUN
ABCDEF 3 5 7 3 5 7

3-11. INPUT
The INPUT statement allows you to input data to your program from the terminal.

Format

INPUT variable list

Parameters
variable list list of variables separated by commas.

3-14

Statements

The INPUT statement requests data to be input from your terminal for subsequent assignment to a
variable. When the INPUT statement is encountered, the program comes to a halt and a question
mark is printed on the terminal. The program does not continue execution until the input require-
ments are satisfied.

Only one question mark is printed for each INPUT statement. The statements:
18 INPUT A, B2, C5, Ds» E, Fs G
and

20 INPUT X

each cause a single question mark to be printed. Note that the question mark generated by statement
10 requires seven input items, separated by commas, while that generated by statement 20 requires
only a single input item.

When you run the program, if you enter data of the wrong type or other invalid input, two question
marks (??) are printed. You may then type the correct input data.

If you want to terminate the program and return control to the BASIC Interpreter, type Control Q (Q°),
followed by a carriage return.

Example
>LIST
10 FOR M=1 TO 2
20 INPUT A
30 INPUT A1,B2,C3,20,Z9,ES5
40 PRINT *"WHAT VALUE SHOULD BE ASSIGNED TO R ';
50 INPUT R
60 PRINT A3AQl3B2:;C33ZA3293ES3 "= "R
70 NEXT M
BA END
>RUN

21
22,3,4,5,6,7
WHAT VALUE SHOULD BE ASSIGNED 0 Rr 2?27

1 2 3 4 5 6 7 n= 27

215

22e¢5153e5,4e5,60,72

78.1

WHAT VALUE SHOULD BE ASSIGNED TO R ?-99

1.5 25 3.5 4.5 6 T2
Te1 RrR= =99

3-15

Statements

3-12. DIM

The DIM (dimension) statement defines the size of an array. DIM statements may also be used with
strings (see Section IV).

Format
DIM X(integer)[,]
DIM X(integer,integer)[, . . .]
Parameters
X array name (A through Z)
integer dimension of array. (The first integer refers to rows and the second to columns).

The DIM statement defines the size of an array. 255 is the maximum dimension allowed. If a variable
is subscripted and has not been defined in a DIM or COM statement, the size of the array is assumed to
be 10. If the reference is to a two dimensional array, the array is assumed to be 10 by 10. An array may

be dimensioned only once. More than one array can be named in a DIM statement; they are separated
by commas.

There is no requirement to use all of the space reserved when you define the array. The maximum
array size depends only upon the maximum available memory in the computer. The DIM statement
can appear anywhere in a program and is not executed.

There is no way to initialize an array before execution. Values must be loaded by FOR loops or by
reading from peripheral devices.

Examples

>LIST
12 DIM F[2,3)
20 FOR I=1 TO 2
30 FOR J=1 TO 3
40 LET F{1,J)=1
50 NEXT J
60 NEXT 1
7@ END

>RUN

The size of the F array is defined and the array is initialized to contain all ones.

3-13. COM

The COM statement is used to pass data values between programs. Variables specified in a COM
statement are placed in a common area so that values assigned to these variables in one program will
be retained when loading in and executing another program. Both programs must include a COM
statement.

Format

COM variable list

3-16

Statements

COM is an array whose last location is placed in a known fixed location in memory. Upon com‘plet.ion of
the first program and the loading of the second program, the last location in the COM area is aligned
with the last location of the second load.

Numeric bounds for arrays and strings are specified as in a DIM statement. Because a variable cannot
be defined in two places at once, if the variable appears in a COM statement, it cannot a1§o be defined
in a DIM statement. An example of how the COM statement might appear in two successive programs
follows.

First Program Second Program
10 COM A(7) 10 COM C(2),B(4)
Position in Memory First Program Second Program
xxx1 A ‘
xxx2 A(2) C)
xxx3 A@3) C©2)
xxx4 A4) B(1)
xxx5 A®) B(2)
xxx6 A(6) B@)
xxx7 A(D) B(4)

Remember, it is your responsibility to ensure proper access of common areas. If program common sizes
differ, words outside the smaller common are destroyed during execution of the program with the
smaller common block.

Common areas are not initialized to UNDEFINED as arrays declared in DIM statements are. You
must not use Common area arrays before initialization or your results will be erroneous.

3-14. PAUSE

The PAUSE statement is used to stop the execution of a program without terminating the program.

Format

PAUSE [(n)]
Parameter

n optional parameter. If used, it must be enclosed in parentheses. The number n will be
printed after PAUSE when the statement is executed.

The PAUSE statement stops a running program without terminating it, that is, without sending it to
end of program. When a PAUSE statement is encountered and executed, the program is halted and the
PAUSE is printed on the terminal. If you wish the program to continue, type GO, otherwise type
Control Q (Q°) followed by a carriage return thereby instructing the program to terminate and
returning control to the BASIC Interpreter. BASIC is unable to execute real-time tasks during the
time that a program is halted by a PAUSE statement.

One use of the numeric parameter is to identify the point of pause if more than one PAUSE statement

is used within a program. The number specified is included in the PAUSE message printed on the
terminal.

3-17

Statements

3-15. WAIT

The WAIT statement is used to introduce a program delay. When a WAIT statement is encountered,
program execution is stopped for the number of milliseconds specified, then continued automatically.

Format

WAIT (number of milliseconds)

The WAIT statement introduces a program delay which allows instruments to achieve a steady state.
The number following the word WAIT is the desired delay in milliseconds. Hence the statement:

WAIT (1000)

will delay the program one full second. The range of the number of milliseconds that the program can
wait is from 0 to 32767: the maximum delay is therefore 32.767 seconds. A positive real number is
converted to an integer number of milliseconds. If the value specified is negative or zero, the WAIT
statement is ignored.

The time delay produced by WAIT is not precise.

Example

>L1IST
182 LET Y=5000
2@ LET 2=1
3@ PRINT #Z;"STATEMENT 20"
40 WAIT YY)
50 PRINT #Z3;"“STATEMENT 40"
60 GOTO 20
70 END
>RUN

3-18

STRINGS

A string is a set of characters delimited with quotation marks, such as “DDDDDE” or “45T,#”. BASIC
contains special variables and language elements for manipulating string quantities. This section
explains how to use the string features of BASIC. There is little difference in the form of statements
referencing numeric quantities and those referencing strings. One important difference, however, is
the use of subscripts which is explained later.

Lower-case alphabetic characters can be input from or output to user terminals having this capability.
When lower-case characters are output to a terminal not capable of printing them, most terminals will
print such characters as the upper-case equivalent. Lower-case characters are automatically converted
to upper-case by the system, except when they occur in strings or REM statements.

The examples and comments in this section emphasize modifications in statement form or other
special considerations in handling strings.

If you are familiar with the concepts “string”, “string variable”, and “substring”, skip directly to
paragraph 4-5.

4-1. STRING

A string is a set of characters enclosed by quotation marks or the null string (no characters). See
paragraph 4-5 for detailed information about string dimensions.

Typical Strings: “ABCDEFGHIJKLMNOP”
“12345”

“BOB AND TOM”
“MARCH 13, 1970”

Null String: «

Quotation marks cannot be used within a string because quotation marks are used as string
delimiters. '

Apostrophes and control characters are legal as string characters.

A null string has no value, as distinguished from a blank space which has a value.

4-1

Strings

Strings are manipulated in string variables. For example:

100 A$ = “THIS IS A STRING”
T T
string string
variable
200 B$ = A$1,10)
T T
string substring
variable (defined later)
300 C$ = W
T T
string null string
variable

4-2. STRING VARIABLE

A string variable consists of a single letter (A to Z) followed by a $, and is used to store strings.
A$,72$,M$ are typical string variables.

String variables must be declared before being used if they contain strings longer than one character.
See the String DIM statement, paragraph 4-5.When a string variable is declared, its "physical” length

is set. The “physical” length is the maximum size string that the variable can accommodate. For
example:

7172 DIM AS(72),B3(22),C3(5%)

During execution of a program, the “logical” length of a string variable varies. The “logical” length of
the variable is the actual number of characters that the string variable contains at any point. For
example:

100 DIM A$[72) Sets physical length of A$
200 LET A$="SAMPLE STRING" Logical length of A$ is 13
302 LET A$="LONGER SAMPLE STRING" Logical length of A8 is now 20

4-3. SUBSTRING

A substring is a single character or a set of contiguous characters from within a string variable, The
substring is defined by a subscript string variable.

A substring is defined by subscripts placed after the string variable. Characters within a string are
numbered from the left starting with one. Subscripts must be positive, non-zero, and less than or equal
to 255. Non-integer subscripts are rounded to the nearest integer.

4-2

Strings

Two subscripts, separated by a comma, specify the first and last characters of the substring. For
example:

100 DIM Z3%072)
200 LET Z%="ABCDEFGH"
300 PRINT Z3%(2,6]

prints the substring

BCDEF

A single subscript specifies the first character of the substring and implies that all characters
following are part of the substring. For example:

300 PRINT Z$(31]

prints the substring

CDEFGH

Two equal subscripts specify a single character substring. For example:

>300 PRINT Z%(2,2)

Prints the substring

B

If subscripts specify a substring larger than the physical length of the original string, blanks are
appended.

4-4, STRINGS AND SUBSTRINGS

A string can be made into a null string. This is done by assigning it the value of a substring whose
second subscript is one less than its first. For example:

128 A% = B%(6,5) A$ now contains a null string.

This is the only case in which a smaller second subscript is acceptable in a substring.

Substrings can become strings. For example:

122 A% = "ABCDEFGH"
222 B% = A$(3,5)
322 PRINT B$

4-3

Strings

prints the string

CDE

because the substring of A$ is now a string in B$.

Substrings can be used as string variables to change characters within a larger string. For example:

12e¢ A3 = “ABCDEFGH"”
200 AS(3,5) = "j23"
328 PRINT AS

prints the string

AB123FGH

Strings,substrings, and string variables can be used with relational operators. They are compared and
ordered as entries are in a dictionary. See Appendix A for the ranking of non-alphabetic characters.
For example:

1722 IF Ag = EB$ THEN 2¢@¢
222 IF A% <= “TEST' THEN 3220
389 1IF A$(S5,6) >= BS(7,3) THEN 40@¢

See the STRING IF statement description in this section.

4-5. STRING DIM

Format

DIM string variable (number of characters in string)

The string DIM statement reserves storage space for strings longer than 1 character; also for arrays.

The number of characters specified for a string in its DIM statement must be expressed as an integer
from 1 to 255.

Each string having more than 1 character must be mentioned in a DIM statement before it is used in
the program.

Strings not mentioned in a DIM statement are assumed to have a length of 1 character.

The length mentioned in the DIM statement specifies the maximum number of characters which may
be assigned; the actual number of characters assigned may be smaller than this number. See the LEN
Function, paragraph 4-11, for further details.

4-4

Strings

Array dimension specifications may be used in the same DIM statement as string dimensions
(example statement 45 below).

Example

35 DIM A$(72), B$(68)
40 DIM Z$C1@
45 DIM N$C2), R(5,5), P3$(8)

4-6. STRING ASSIGNMENT

Format

“string literal”
string variable
substring variable

(LET]

= gtring variable

substring variable

The string assignment statement establishes a value for a string; the value may be a literal value in
quotation marks, or a string or substring value.

An input line may contain a total of 80 characters. One string assignment statement is allowed per
input line. Thus, a string may contain 80 characters minus assignment statement elements such as
the string variable name, equal sign, quotation marks, and any blanks inserted between these
elements. String variables having more than 1 character must be mentioned in a DIM statement (see
paragraph 4-5).

Special purpose characters, such as A¢, H¢, D¢, Y¢ or quotation marks may not be string characters.

If the source string is longer than the destination string, the source string is truncated at the
appropriate point from the right.

Example

209 LET A% = "TEXT OF STRING"
2193 B$ = "xxx TEXT 11"

220 LET C%$ = ASC1,4)

230 D$ = BSC4)

240 F3$(3,8)>=N$

Strings may be concatenated to include up to 255 characters. For example:

S DIMA$(C240)
100 AS$= "60 characters”
101 A$CB1,120)=""60 characters”
102 A$(121,180)= "60 characters”
103 A$C181,240) = "60 characters”

4-5

Strings

4-7. STRING INPUT

Format

string variable
substring variable

INPUT

g e

The string INPUT statement allows string values to be entered from the user terminal.

Placing a single string variable in an INPUT statement allows the string value to be entered without
enclosing it in quotation marks.

If multiple string variables are used in an INPUT statement, each string value must be enclosed in
quotation marks, and the values separated by commas. The same convention is true for substring

values. Mixed string and numeric values must also be separated by commas.

If a substring subscript extends beyond the boundaries of the input string, the appropriate number of
blanks are appended at the right.

Numeric variables may be used in the same INPUT statement as string variables (example statement
55 below).

Example
S INPUT 12
g5 INPUT £%,3%,C92.,LC7

6¢ INPUT A8C(1,%)
65 INPUT 3%$(2)

4-8. PRINTING STRINGS

Format

PRINT string variable [[,] string variable [,]]

substring variable substring variable

A string PRINT statement causes the current value of the specified string or substring variable to be
output to the user’s terminal device. The terminal device may be any ASCII output device.

String and numeric values may be mixed in a PRINT statement (example statements 115 and 125
below).

4-6

Strings

Specifying only one substring parameter causes the entire substring to be printed. For instance, in the
example below, if the value of B3 = 642 and C$ = “WHAT IS YOUR NAME?”, example statement 120
prints:

WHAT IS
while statement 115 prints
YOUR NAME?END OF STRING 642

Numeric and string values may be “packed” in PRINT statements without using a “semicolon”, as in
example statement 115. »

Example
125 PRINT A%
112 PRINT A%, B%, 2%
115 PRINT C$(¢(8) "END OF STRING'" B3

122 PRINT C3$(1,7)
125 PRINT "THE TOTAL 1S: *";X5

4-9. READING STRINGS

Format

string variable string variable
READ substring variable l: substring variable ’

A string READ statement causes the value of a specified string or substring variable to be read from a
DATA statement.

The dimension (length) of a string variable to be assigned more than 1 character must be declared in a
DIM statement before attempting to READ its value.

String or substring values read from a DATA statement must be enclosed in quotation marks, and
separated by commas. See paragraph 4-12 in this section.

Only the number of characters specified in the DIM statement may be assigned to a string. Blanks are
appended to substrings extending beyond the string dimensions.

Mixed string and numeric values may be read (example statement 310 below); see TYP (0), para-
graph 5-1, for a description of a data type check which may be used with DATA statements.

Example

382 READ CS

325 READ X%, Y%, 2%

31@% READ Y$(5), A,B,CS5,N$%
315 READ Y$Cl, 4

4-7

Strings

4-10. STRING IF

Format

statement number label

IF string var. relatio . stri .
g ional oper. string var. THEN statement

A string IF statement compares two strings. If the specified condition is true, control is transferred to
the statement number specified or the statement is executed. Statements allowed with IF are listed in
paragraph 3-6.

Strings are compared one character at a time, from left to right; the first difference determines the
relation. If one string ends before a difference is found, the shorter string is considered the smaller one.

Characters are compared by their ASCII representation.

If substring subscripts extend beyond the length of the string, null characters (rather than blanks) are
appended.

String compares may appear only in IF. . THEN statements and not in conjunction with logical
operators.

Strings may not use Boolean expressions.

Example

342 IF C$<D$ THEN 8¢0

352 IF C$>D$ THEN 9¢2¢

362 IF C$=D$ THEN 1000

370 IF N$(3,5)<R$(9) THEN Sg@
382 IF A$C1@2)="END" THEN 420
392 IF A$#B$ PRINT AS

4-11. LEN FUNCTION

Format

statement type LEN (string variable). . .

The LEN function supplies the current (logical) length of the specified string, in number of characters.

DIM merely specifies a maximum string length. The LEN function allows you to check the actual
number of characters currently assigned to a string variable.

4-8

Example

469
419
489
499
589

PRINT LENC(CAS)

PRINT LEN(XS$)

PRINT "TEXT'; LENCAS$); B$, C

IF LEN(P$) #5 THEN 600

LET X$(LEN(XS%)+1) = "ADDITIONAL SUBSTRING"

608 STQOP

609 PRINT "STRING LENGTH = '; LEN(PS)
4-12. STRINGS IN DATA STATEMENTS
Format

Strings

DATA “string literal” [, string literal”. . .]

The DATA statement specifies data in a program (numeric values may also be used as data).

String values must be enclosed by quotation marks and separated by commas.

String and numeric values may be mixed in a single DATA statement. They must be separated by
commas (example 520 below).

A DATA statement input line may contain a total of 80 characters. Thus, a string literal may contain
80 characters minus the word DATA, quotation marks, and any blanks, or commas and other string
literals included within the input line.

Example

589

DATA 'NOW 1S THE TIME."

512 DATA 'HOW', '"ARE", "vYQU,"
522 DATA 5.172, "NAME?", 6.47,5071

4-9

Strings
4-13. PRINTING STRINGS TO A PERIPHERAL DEVICE

Format

string variable
PRINT # logical unit number ; substring variable [, . . .]
“string literal”

The PRINT # statement prints string or substring variables or string literals on a specified logical
unit number.

String and numeric variables may be mixed on output to a device (example statement 360 below).

See Section VII for more information about printing output to a peripheral device.
Example

352 PRINT #4; "THIS IS A STRING."
355 PRINT #8; C$, B&, X&, Y3, D%

36¢ PRINT #73 X8, P$, "TEXT", 27.5.,R7
365 PRINT #N; P$ N, A(S5,5), "TEXT"

4-14. READING STRINGS FROM A PERIPHERAL DEVICE

Format

string variable string variable
substring variable ’substring variable

READ # logical unit number ; L...]

The READ # statement reads string and substring values from a specified logical unit number.

String and numeric values may be mixed on input from a device and in a READ number statement;
they must be separated by commas.

See Section VII for more information about reading input from a peripheral device.

Example

712 REAL #15 A%, 3%

715 READ #4; Cg, Al, B2, X

722 READ #55 C3(5),X3$(4,7),Y%
730 READ #N; C%, V3(2,7),R%(9)

4-10

FUNCTIONS

A function is the mathematical relationship between two variables, X and Y, for example, that returns
a single value of Y for each value of X. The independent variable is called an argument; the dependent
variable is the function value. To illustrate, in the statement:

100 LET Y = SQR(X)

X is the argument; the function value is the square root of X; and Y takes the value of the positive root.

Two types of functions are used in BASIC: system defined functions and user-defined functions.

5-1. SYSTEM-DEFINED FUNCTIONS

Real-Time BASIC provides a variety of functions that perform common operations such as finding the
sine, taking the square root, or finding the absolute value of a number. The resulting value of a
function is always numeric and can be used in the evaluation of an expression. Available system-
defined functions are listed below:

ABS(x) The ABS function gives the absolute value of the expression (x).

ATN(x) ATN is the arctangent function. ATN returns the angular argument of x in radians
adjusted to the appropriate quadrant.

COS(x) The COS function returns the cosine of x expressed in radians.

EXP(x) EXP gives the value of the constant e raised to the power of the expression (x).

IERR(x) This function returns the error code value which may have been set by a user-defined

subroutine or function. See Section VI. In this function, x is a dummy argument.
INT(x) The integer function, INT, provides the largest integer < = x.

LENx$) Determines length (no. of characters) in character string identified by string variable
x3$. See Section IV,

LOG(x) Gives base 10 logarithm of variable or expression.
LN(x) LN provides the logarithm of a positive expression to the base e.
OCT(x) This function prints the octal equivalent of an integer value. The maximum possible

range of the returned variable is 0-177777;. If x is outside the range of —32768 to
32767, 777717, is returned.

RND(x) RND generates a random number greater than or equal to zero and less than 1. The
expression x may have any value. A sequence of random numbers is repeatable if the
initial reference to the RND function contains a negative argument value and is
followed by a reference to RND containing a positive argument value. A random
sequence can be achieved with positive arguments.

5-1

Functions

SERR(x)
SGNx)
SIN(x)
SQR&x)

SWR(x)

TAB(x)

TAN(x)

TIM(x)

TYP(x)

Sets the error code which may be queried with IERR(x). See Section VI
SGN returns 1 for x >0, 0 for x =0, and —1 for x <0.

The SIN function gives the sine of x expressed in radians.

SQR provides the square root of x. The value of x must be greater than zero.

The SWR function returns the logical value, one or zero, of the Switch Register bit
position specified by x (range = 0 through 15).

The TAB function is used to advance the print position the number of positions
specified by x. The value of x may be equal to 0 through 71. See Section IIL.

The TAN function returns the tangent of x expressed in radians.

The TIM function returns the current minute, hour, day or year.

x = 0, TIM(x) = current minutes (0 to 59)

x = 1, TIM(x) = current hour (0 to 23)

x = 2, TIM(x) = current day (1 to 366)

x = 3, TIM(x) = current year (four digits).

x = —1, TIM(x) = current seconds (0 to 59)

x = =2, TIM(x) = current tens of milliseconds.

The TYP function references the DATA statements and returns the following
response: 1 = number, 2 = string, 3 = “out of data” condition. The value of argument x
must be zero.

5-2. USER-DEFINED FUNCTIONS

A user-defined function is one that you define for use in your program. It is called and used the same
way that a system-defined function is. The DEF statement is used to define a new function, that is to
equate the function to a mathematic expression.

Format

X

expression

DEF FNx(y) = expression

Parameters

stands for a letter (A-Z) that completes the name of the function. Only 26
user-defined functions may be specified: FNA through FNZ.

stands for the variable to which the function is to be applied. Any number,
string, or variable may be used in this position.

provides a formula such as X*X or X 1TAN(X). Whenever the function is called
in the program, this formula will be evaluated. |

5-2

Functions

Example

>1@ DEF FNA(Y)=Y/10
>2@ PRINT FNA(C100)
>30 END

>RUN

10

When FNA (100) is called for in statement 20, the formula defined for FNA is evaluated to determine
the value printed. Note that the results of the function may be used in computation:

35 LET X = FNA(M1) + 14 -FNA(12)

An operand in the program may be used in the defining expression, however, such circular definitions
as the one below cause infinite looping.

18 DEF FNACY) = FNB(Y)+1
20 DEF FNB(X) = FNA(X)-1

5-3/5-4

SUBROUTINES

It is often preferable to make use of the same procedure several times within a program. Rather than
re-writing the procedure each time it is to be used, you can simply refer to a given segment of code (a
subroutine) whenever that segment is needed. The GOSUB/RETURN statement sequence is used
when a subroutine is located within your own program.

There are also times when the inclusion of subroutines outside of your program is desirable. In this
case, the CALL statement is required. External subroutines are completely separate from your
program and from the BASIC Interpreter. They are routines, accessed via a memory directory, and
must have been specified by a special subroutine configuration process as described in Section XIII.

6-1. GOSUB/RETURN

GOSUB transfers control to the beginning of a simple subroutine. A subroutine consists of a collection
of statements that may be executed from more than one location in the program. In a simple
subroutine, there is no explicit indication in the program as to which statements constitute the

subroutine. A RETURN statement in the subroutine returns control to the statement following the
GOSUB statement.

Format

GOSURB statement number label

GOSUB integer expression OF statement number label [, statement number label, . . .]
RETURN

GOSUB may have a single statement number label, or may be multi-branched with more
than one label separated by commas. In a multi-branch GOSUB, the particular label to
which control transfers is determined by the value of the integer expression which is rounded
to the nearest integer. The RETURN statement consists simply of the word RETURN.

A single-branch GOSUB transfers control to the statement indicated by the label. A multi-branch
GOSUB transfers to the statement label determined by the value of the integer expression. As in a

multi-branch GOTO, if the value of the expression is less than 1 or greater than the length of the list,
no transfer takes place.

When the sequence of control within the subroutine reaches a RETURN statement, control returns to
the statement following the GOSUB statement. RETURN statements may be used at any desired exit
point in a subroutine. There may be more than one RETURN statement per GOSUB.

Within a subroutine, another subroutine can be called. This is known as nesting. When a RETURN is
executed, control transfers back to the statement following the last GOSUB executed. Up to 20

GOSUB statements can occur without an intervening RETURN; more than this causes a terminating
error.

6-1

Subroutines

Examples

In the first example, line 20 contains a simple GOSUB statement; the subroutine is in lines 50 through
70, with RETURN in line 70.

>LIST
12
29
32
49
52
50
70
ga
92

>RUN

SINE

LET 3=97

GOsSuUs 54

DRINT "SINE OF B IS "3A

GOTO 872

REM: THIS 1S THE START OF THE SUBROUTINE

LET A=SIN(RB)

RETURN

REM: PROGRAM CCONTINUES “ITH NEXT STATEMENT AFTER 202
END

OF B IS .893993

The GOSUB statement can follow the subroutine to which it transfers as in the example below.

>LIST
1@ LET B=9@
20 GOSUB 119
30 REM: THIS IS THE START OF SUBROUTINE
49 LET A=SIN(R)
5S@ RETURN
6% REM: OTHER STATEMENTS CAN APPEAR HERE
70 REM: THEY WILL NOT BE EXECUTED
80 LET a=24
90 LET B=50
100 PRINT A;B
11 GOSUB 39
120 PRINT A
130 REM: A SHOULD EQUAL 893993
146 PRINT B
15¢ REM: B SHOULD EQUAL 99
16@ END
>RUN
«8393993
90

6-2

Subroutines

It is also possible for any one subroutine to be called from several places in the coding of any one
program. The logical flow of this situation looks like this:

19 .

26 L

30 .

49 GOSUB 10209
50 .

60 .

70 .

20 GOSUB 1020
90 .

102 .

1000 .

1218 .

1920

183@ RETURNj:)

Taking the same situation one step further, it is permissable for a subroutine to, in turn, call another
subroutine:

12 .
22 .
32 .
42 GOSUB 122¢
5@ .

62 .

GOSU3 12322

129¢

1212 GOSUB 2020
1029

1833 RETURNi)

epl1e .
2e2¢ RETURN:>

6-3

Subroutines

Subroutines should be entered only with GOSUB statements rather than GO TO’s to avoid unexpected
RETURN errors (which cause the program to stop execution).

This sequence shows logically nested GOSUB’s:

12 INPUT
28 GOSUB 1009

128 IF C>0 THEN 120
1182 LET C=-C

120 GOSUB 200

139 RETURN

200 LET A=SQR(C)
219 LET C=SQR(A)
220 RETURN

390 END

The order in which this program is executed is:

when C>0:

10

20

100

120

200

210

220

130

statements after 20

when C <=0:
10

20

100

110

120

200

210

220

130
statements after 20

6-4

Subroutines

6-2. CALL

The CALL statement is used to identify and execute an external subroutine at a given point within a
program. CALL is optional, you may simply use the subroutine name and parameter list. After the
subroutine executes, control returns to the statement following the CALL unless there is a FAIL
return.

Format

[CALL]subroutine name(parameter list) [FAIL: statement]

Parameters

subroutine name name of the routine as entered into the system during system genera-
tion or when loaded on-line.

parameter list list of variables or constants to be passed to the subroutine or varia-
bles into which the subroutine places information for the calling
program. Spaces are not allowed between the subroutine name and
the left parenthesis.

FAIL: statement optional subroutine failure return. See paragraph 6-3.

To execute the subroutine calling sequence, you need to determine the following:

the name of the subroutine

the number of parameters in the call

the meaning of the contents of each parameter
the values acceptable in each parameter.

Usually this information is provided in the documentation supplied with the subroutine.

Examples

Figures 6-1 and 6-2 contain examples of routines written in FORTRAN which may be called from
BASIC.

Constant numbers, string literals, and expressions cannot be used as parameter values when calling a
subroutine if the parameter is defined as a return variable (type V, see Section XIII).

6-5

Subroutines

ey
Anume
2003
2an4
Q205
Qa6
2207
nane
gong
2n12
Ao
2312
a3
2u14
AA1L5
2416
2ai’
2318
ag13
2224
ane2l
nwe22
ngel
naz4
032%
@026
aa27
ng28
Ag29
nA30
nal3l
AR32
we3d
2R34
w35
2236
o037
2338
2039
ke X0}
2041
2042
wa4d

FTN,LsM

INTEGER FUNCTION NUM(I)

THIS FUNCTION RETURNS THE NUMERIC VALUF OF THE FIRST CHARAFTER

OF THE STRING EXPRESSION ACCORDING TO THE STANDARD CHARACTER CNNE,

FOR EXAMPLE:

19 PRINT NUM("A'™)Y
20 END
>RUN
65

THE FUNCTION'S DESCRIPTION THAT MUST Bk INPUT TN THE TAaRLE
GENERATNR TO CREATE THE PROPER ENTRY TN THE HRANCH ANMD MNEMONTC
TABLE IS AS FOLLUKS?

NUM(R), INTG, ENTENUM

WHERE R IMDICATES REAL PARAMETFR(STRINGS ARF A{WAYS REA[

OO0 00000 NO0O0O00O0O0O0 00000000

DIMENSION T(2)
RIGHT JUSTIFY CHARACTEKR BY DIVIDING

RIGHT MHALF OF THE FIRST wORD OF A STRINA IS THE CHARACTERP COUNT
AND MUST NOT BE DISTURBED,

sNeNaleRaRel

NUM =1(2)/256
RETURN
END

Figure 6-1. Preparing a FORTRAN Function for Use by BASIC Program

Subroutines

2001 FIN,L M

a0a2 SUBROUTIMNE CHRS(I,J)

PAA3 C

a4 C

P05 C

N6 C

Pe¢7 C THIS SUBROUTINE CAUSES THE NUMERIC VALUE CF THE FIRST PARAMETER
N8 C TO REPLACE THE FIRST CHARACTER OF THE SECCND PARAMETER WHICH
P29 C IS A STRING VARIABLE.

Pty C

aR1r C

a2 C FOR EXAMPLE:

a3 C

an14 C 19 DIM As (1)

as C 20 AS="YECDE"

Palo C 30 CHRS(65,A%)

@217 C 40 PRINT As

wors C 5@ ENC

2019 C

pu2e C >RUN

na2l C

ap22 C ABCDE

P23 C

ap24 C

naz2s C

Ap26 C THE FUNCIION DESCRIPIION THAT MUST BE INPUT TO THE TABLE
27 C GENERATOR TO CREATE THE PROPER ENTRY IN THE BRANCH AND MNEMONIC
Pp28 C TABLE IS AS FOLLOWS:s

on29 C

o3 C CHRS(I,RVA), END=CHRS

pa31 C

P32 C WHEREs 1 INDICATES AN INTEGER VARIABLE PASSED TO “CHRS”
op33 C RVA INDICATES A REAL VARIABLE (STRINGS ARE ALWAYS
34 C SPECIFIED AS REAL) RETURNED FROM “CHRS”
nn3s C :

A3c C

wu37 C

pu3s C

Pu39 C

a4 C

a4l C

©a42 DIMENSION J(2)

a3 C

P44 C PLACE CHARACTER IN FIRST CHARACTER POSITICN OF STRING ~J7
an4s C

P40 C THE RIGHT HALF OF THE FIRST WORD OF A STRING IS THE CHARACTER
#o47 C COUNT AND MUST NOT BE DISTURBED.

a4t C

apagy J(2)=]AND(J(2),377B)

e1715Y0) J(2)=]0R([*250, J(2))

2351 RETURM

7252 END

Figure 6-2. Preparing a FORTRAN Subroutine for Use by BASIC Program

Subroutines

6-3. THE FAIL ERROR OPTION

Some of the externally defined subroutines supplied with the BASIC Interpreter make error checks at
execution time. For example, the TRNON routine checks both the time schedule table and the trap
table for overflow before adding a new entry. If an execution time error is detected, an appropriate
error message is printed, the ERRCD flag is set, the program is aborted, and the BASIC Interpreter
returns to command input mode.

You may avoid aborting your program by using the FAIL option as part of the subroutine call

statement. Any statement which can appear in an IF statement can be added to the end of a subroutine
CALL statement following the word FAIL:.

For example:

100 CALL TRNON(2000,122536)FAIL: GO TO 9000

If the called subroutine detects an error during execution, the error message is printed but the
Interpreter executes the statement following FAIL: instead of aborting the program. The error
message format is:

ERROR rn IN LINE xxx where n is the ERRCD value.

The FAIL: option may be used with the following routines:

SETP
TRNON Task
START Control
ENABL Statements
DSABL
RDBIT)
RDWRD
WRBIT
WRWRD % HP 6940
DAC Calls
MPNRM
SENSE J
AISQV
SGAIN
RGAIN HP 2313
AOV Calls
NORM
PACER

n aam—

These routines are described in Sections X and XIII.

If ERRCD equals zero, the FAIL statement is not executed.

6-8

Subroutines

6-4. THE IERR FUNCTION

Since the action desired may depend on which error occurred, the function IERR is supplied to
interrogate the ERRCD flag. It is a BASIC function and must be used as an operand in an expression.
It returns the value of ERRCD. IERR requires one dummy parameter which is ignored. Any call to
another external subroutine or execution of a PRINT statement resets the value of IERR(x).

Example
128 CALL TRNON(22R¢,124515)FAIL:GOTO 98@@ Specify task 2000 to be executed
. at 12:45 and 15 sec. If error, go to
. 9000.
9020 IF IERR(X) = 1 GOTO 9128 If error is 1, go to 9100.
9818 1F IERR(X) = 2 GOTO 922¢ If error is 2, go to 9200.

6-5. THE SERR FUNCTION

You may use the SERR function to set the ERRCD flag to a particular value in a subroutine. For
example, the statement:

110 I= SERR(N) (I is a dummy variable)

sets the ERRCD flag to the value of N. After execution of your subroutine you can examine the error
code by using the IERR function. The value of I is unchanged.

The CALL statement initializes ERRCD to 0, however, you should initialize it at the beginning of your
program and reset it to zero after you have detected an error in a routine and taken appropriate action

to avoid leaving it set in case there are no more CALLs. You initialize the error code as follows:

10 I= SERR (0)

6-6. PARAMETER CONVERSION

BASIC has two data types: number (real) and string. The format of real data is:

S MANTISSA
MANTISSA EXPONENT | S
and for string is: 15 87 0
/ Character
A Count
1st char. 2nd char.
15 8 7 0

6-9

Subroutines

The leftmost half of the 1st word may contain information used internally by BASIC.

If you want to pass parameters to or from external subroutines, you must be aware of the internal
representation of these two data types. BASIC converts real data variables and arrays to integer and
vice versa, and thus provides you with the ability to transfer data between BASIC and subroutines
that use integer type data. For example, if the subroutine passes an integer array to BASIC, you must
specify that parameter as an integer returned array when generating the Branch and Mnemonic
Tables. (See Section XIII.)

Some RTE-M EXEC calls use string parameters but do not follow the BASIC string format convention.
If you want to call one of these subroutines, you must first write an interface routine to convert the
BASIC string to the necessary format. Figure 6-3 contains a FORTRAN routine which converts the
program name to the FORTRAN string format.

BASIC does not pass the character string address to a FORTRAN subroutine. It passes the address of
the word containing the specified character.

0021 FIN,L,M

g0e2 SUBROUTINE EXFCOC(I)
200a3
2004
200b
2086
aoay
2008
09
201
001!
g012
2913
0014
081
Jdayoe
V17
2018
0019
2029
0021
2422
2023
gv24
2025
ge2o
2027
Q028
2629
0a30
2031
gu32
9033
0034
3035
2036 plrehslon Ita)
2037 .
@38 CaLl £XelL(y,1(2g)) FORTRAN Subroutine
2039 KETURN

0040 ENL

THIS SUBROUTINE CALLS THE RTE 'EXEC! 10 SCHEDULL A PROGRAM WITH WAIT
FOR EXAMPLE:
1 DIM AS(6)

20 PRINT "INPUT PROGRAM NAML";
39 INPUT AS

49 LALL EXECO(AS) BASIC program
58 END
>RUN

INPUT PROGRAM NAMEZ?PROGA

THE SUBROUTINE'S DESCRIPTION THAY MUST BE INPUT TO THE TABLE
GENERAYOR T0O CREATE THE PROPER ENTRY IN THE BRANCH AND MNEMQONIC
TABLE 1S AS FOLLOWS:

EXECO(RA), INTG, LNT=ELXECS

WRERES RA INDICATES KEAL ARRAY PARAMETER(STRINGS
Akt ALwAYS SFECIFIED AS KEAL)

OO0 00O 0000000000000

(]

Figure 6-3. FORTRAN Subroutine to Convert String Parameter
6-10

LOGICAL UNIT INPUT/OUTPUT

For situations that require permanent data storage external to a particular program, BASIC provides
a logical unit I/O capability. This capability allows direct reading from and writing to peripheral /O
devices.

The statements you may use to perform I/O operations from and to peripheral devices are:

e READ #
e PRINT #
e IF EOF #.... THEN

These statements are described in the remainder of this section.

7-1. READ # STATEMENT

The READ # statement is used to read items from a peripheral device into numeric or string variables.

Format

READ # lu number; variable list

lu number a number, variable, or expression whose value represents a
logical unit number. This is the peripheral device from which
the data is to be read.

variable list a series of variables separated by commas. The rules governing
this list are the same as those described for the READ
statement described in Section 111

The READ # statement fills the variables in the list by performing a serial read operation on the
device associated with the specified LU number.

String data and numeric data may be intermixed in the source data list, but the type of data in the
variable list and the source data list must correspond in the correct order. That is, the destination for a
string value must be a string variable and that for a numeric value must be a numeric variable.

If you attempt to read beyond a logical or physical end-of-file, an end-of-file error condition results. The

program terminates unless an IF EOF # THEN statement (paragraph 7-3) transfers control to
another statement.

Example

400 READ #5;A,B(3),R(1,3)

Logical Unit I/O

7-2. PRINT # STATEMENT

The PRINT # statement writes data items to a peripheral device. The items may be string or numeric
data.

Format

PRINT # lu number; print list

lu number a number, variable, or expression whose value represents a
logical unit number. This is the peripheral device to which the
data is to be written.

print list a series of numeric expressions, humeric or string variables, or
string literals.

The PRINT # statement performs essentially the same operation as the ordinary PRINT statement,
except that data is written to a specified peripheral device. No line formatting takes place, the comma
and semicolon act only as delimiters and may not be used as actual data unless the LU number refers
to a teleprinter or lineprinter. (See the PRINT statement, paragraph 3-7.)

Examples
30 PRINT #1;A,'"SAMPLE",AS The value of A, the string literal SAMPLE, and the
string value of A$ are written to LU 1.
60 PRINT #9;"SUMMARY" The string literal SUMMARY is written to LU 9.
150 PRINT #4;A,B,C The values of the variables A, B, and C are written to the
standard output device, LU 4.
21 PRINT #M;2,42,A,B,C,D(3,5) The items in the print list are written to the peripheral

device associated with the value of M.

7-2

Logical Unit I/O

7-3. IF EOF # THEN STATEMENT

The IF EOF # THEN statement checks the status of a specified peripheral device so that if an
“end-of file (EOF) condition has been encountered in reading from a peripheral device, control is
transferred to a specified statement.

Format

IF EOF # lu number THEN statement number

lu number a number, variable, or expression whose value represents a
logical unit number for the peripheral device whose status is to
be checked.

statement number the number of a BASIC statement to which control transfers on

an EOF condition.

An end-of-file condition occurs when execution of a READ # statement encounters a logical or physical
EOF.

Example

10 IF EOF #5 THEN 125 When a logical or physical EOF occurs on LU 5, control
transfers to program statement 125.

7-3/7-4

STARTING UP BASIC

BASIC is a program, and as such must be made available for use on your system. Procedures for
loading BASIC are provided in the HP 92064A RTE-M System Generation Manual. Once BASIC is
loaded and ready for use, you need simply schedule BASIC for operation as described below.

8-1. SCHEDULING BASIC
The command to start the BASIC Interpreter is:

*RU,BASIC [console[list[,input[,output]l]]

console is the LU number of the keyboard device you are using. Default is LU 1, the system
console.

list is the LU number of the list device you want to use. Default is LU 1, the system console.

input is the LU number of the input device you want to use. Default is LU 5, the standard input
device.

output is the LU number of the output device you want to use. Default is LU 4, the standard

output device.

If you omit the optional parameters, the default device specified above automatically will be used by
BASIC. You must type a comma in place of an omitted parameter if you specify subsequent
parameters. If you want to alter the devices used, enter the LU numbers of the devices that you prefer.

The following is an example of the RUN command used to schedule BASIC. Once BASIC begins
execution, a “ready” message is displayed and followed with a “greater than” symbol:

RU,BASIC

BASIC READY
>

8-2. USING BASIC

BASIC prompts for commands and program statements with the “greater than” symbol (>). Following
the display of this prompt, you may enter any legal BASIC command or statement.

8-1

Starting Up Basic

8-3. START UP OPTIONS

You may start BASIC directly from the console, or you may schedule BASIC from another program.
The program may be written in FORTRAN, ALGOL, Assembly Language, or BASIC.

Examples
1. To start BASIC from the console, enter the following command:
#*RU,BASIC
2. To initiate BASIC from another program, use the following calling sequences:

Assembly Language:

JSB EXEC Transfer control to RTE-M

DEF #+6

DEF .9 Request code (.10 if schedule without wait)
DEF BASIC Program name (BASIC).

DEF P1

DEF P2 Parameters.

DEF P3

DEF P4

Continue execution of program.

9 DEC 9 Schedule with wait.

BASIC ASC,3,BASIC BASIC Interpreter name.
P1 DEC 1 Console logical unit number.
P2 DEC 6 List logical unit number.
P3 DEC 1 Input logical unit number.
P4 DEC 4 Output logical unit number.
FORTRAN:
DIMENSION NAME(3) Store name of BASIC in integer array name.

NAME(1)=41101B

NAME(2)=51511B

NAME(3)=41440B ,

CALL EXEC(9,NAME,1,6,1,4) Transfer control to RTE-M.

For additional information on scheduling BASIC from programs, see the RTE-M Programmers
Reference Manual.

8-4. MULTI-TERMINAL MONITOR ENVIRONMENT

Because of memory space limitations, Hewlett-Packard recommends that you include support of the
Multi-Terminal Monitor (MTM) only in an RTE-MIII System having at least 48K words of memory. In
such a system, you may execute BASIC on up to four terminals. A separate copy of the BASIC
Interpreter may be created for each terminal connected to the system. The HP 92064A RTE-M System
Generation Manual and the HP 92064A RTE-M Programmers Reference Manual contain the
information you need to generate a system that supports MTM and to create multiple copies of BASIC.

When scheduling BASIC in an MTM envrionment, you use the same RUN command syntax described
in paragraph 8-1.

8-2

Starting Up Basic

Note that the default values for RUN command parameters are those described in paragraph 8-1.
Thus, when scheduling BASIC from an MTM terminal you should specify the LU number of your
terminal in parameter 1. For example, to schedule a copy of BASIC from a terminal associated with
LU 7, enter:

*RU,BAS07,7

If you do not specify an LU number in parameter 1, BAS07 will be scheduled at the system console
(LU 1).

See paragraph 8-1 for additional information concerning the scheduling of BASIC.

8-3/8-4

BASIC INTERPRETER COMMANDS

IX

This section describes the BASIC commands. Unlike the statements discussed in earlier sections,
commands are not part of a program, nor are they preceded by line numbers. When entered, a
command is executed immediately.

Table 9-1 lists and defines the various operator commands available to you with BASIC. Detailed
explanations of most of the commands are provided in the remainder of the section. Additional
commands used in specific situations such as magnetic tape drive manipulation are introduced and
explained in subsequent sections. A complete summary of of the commands and their uses is provided

in Appendix B.

Table 9-1. BASIC Interpreter Commands

LOAD
SAVE
MERGE
DELETE

RUN

.BYE
LIST
*BR,BASIC
REWIND
SKIPF
BACKF

WEOF

Loads a source program from a peripheral device into memory.

Stores the program currently in memory on a peripheral device.

Merges a source program from a peripheral device with a program in memory.
Deletes a program from memory.

L.oads and executes a program from a peripheral device or executes a program
currently in memory.

Terminates the execution of the BASIC Interpreter.

Lists the program currently in memory on a peripheral device.
Breaks (interrupts) execution of the current program.

Rewinds magnetic tape.*

Skips to end-of-file on magnetic tape.*

Backspaces to end-of-file on magnetic tape.*

Writes end-of-file on magnetic tape.*

*This command is described in Section Xl

9-1

Basic Interpreter Commands

9-1. LOAD

The LOAD command enables you to load all or a portion of a source program from a peripheral device
identified by a specified logical unit number.

Format

LOAD [line-1,line-2] [FROM lu number]
filename

line-1,line-2 the beginning and ending line numbers of the portion of the
program you want loaded. If omitted, the entire program is
loaded. The value of line-2 must be equal to or greater than that of
line-1.

FROM lu number a number whose value represents a logical unit number. This is
the peripheral device containing the program to be loaded. If
omitted, the default is LU 5 or the LU number specified as the
input device parameter in the RUN,BASIC command. If this
parameter is specified, the keyword FROM must be included.

FROM filename filename can be used only if the optional file handler is present.
Filename is a NAMR specification for the flexible disc file in
which the program is stored. The form of NAMR is:

file [:sc[:crn[:typelfile sizell]l:

file = file name

sc = security code

crn = cartridge label number if positive disc logical unit
number if negative

type = always type 4

file size = number of blocks in file (one block = 128 words)

The LOAD command reads in all program statements between and including the line numbers
specified. If no line numbers are specified, the entire program is loaded.

Once loaded, a program is ready for execution or editing.

Examples
>L0OAD Loads from default input device.
>LOAD 150,250 FROM 8 Loads program statements 150 through 250 from LU 8.

9-2 Change 1

9-2. SAVE

Basic Interpreter Commands

The SAVE command stores the BASIC program currently in memory on a peripheral device.

Format

line-1,line-2

ON lu number

ON filename

SAVE [line-1,line-2] |:ON lu number]
filename

the beginning and ending line numbers of the program to be
saved. If no line numbers are specified, the entire program
currently in memory is saved. The value of line-2 must be equal to
or greater than that of line-1.

a number whose value represents a logical unit number. This is
the LU number of the peripheral device on which the program is
to be saved. If omitted, the program will be saved on LU 4 or the
LU number specified as the output device parameter in the
RUN,BASIC command. If this parameter is specified, the
keyword ON must be included.

filename can be used only if the optional file handler is present.
Filename is a NAMR specification for the flexible disc file onto
which the program is to be stored. If the file does not already exist
it is created for you. The form of NAMR is:

file [:sc[:crn(:typelfile sizel]ll:

file = file name
sc = gecurity code
crn = cartridge label number if positive disc logical unit

number if negative
type always type 4
file size = number of blocks in file (one block = 128 words)

It

The SAVE command stores only those statements between and including the line numbers you
specify. If no line numbers are specified the entire program is saved.

A program stored using the SAVE command can be edited with the RTE-M Editor (EDITM) as well as

with the BASIC Interpreter. Subsequently, you may load and execute the program as needed.

Examples
>SAVE

>SAVE 100,260

The current source program is written to the default output device.

Lines 100 through 260 of the current source program are written to the default

output device.

Change 1

9-3

Basic Interpreter Commands

9-3. MERGE

The MERGE command merges a source program or a portion of a source program on a peripheral
device with a program residing in memory.

Format

MERGE [line-1,line-2] [FROM lu number]
filename

line-1,line-2 the beginning and ending line numbers of the program to be
merged. If omitted, the entire program is merged. The value of
line-2 must be equal to or greater than that of line-1.

FROM [u number a number whose value represents a logical unit number. This is
the peripheral device from which a program is to be merged. If
omitted, LU 5 or the LU number specified as the input device in
the RUN, BASIC command is assumed. If this parameter is
specified, the keyword FROM must be included.

FROM filename filename can be used only if the optional file handler is present.
Filename is a NAMR specification for the flexible disc file in
which the program is stored. The form of NAMR is:

file {:sc[:crn(:typelfile size]l]l:

file = file name

sc = security code

crn = cartridge label number if positive disc logical unit
number if negative

type = always type 4

file size = number of blocks in file (one block = 128 words)

You use the MERGE command to combine BASIC program statements from a peripheral device with
BASIC program statements currently in memory.

MERGE will not replace line numbers in memory with duplicate line numbers from a peripheral
device. If any line number from a device is encountered that duplicates a line number already in
memory, the new line number is ignored. This is useful if you want to load a program that contains
syntax errors. Simply type the corrected statement into memory using the same line number as the
statement in the original program. Then, use the MERGE command to merge in the original program
from a peripheral device. The corrected statements in memory will remain intact. The erroneous
statements from the original program will be ignored.

Examples
>MERGE Merges source statements from the default input device.
>MERGE 120,190 FROM 8 Merges source statement lines 120 through 190 from LU 8.

9-4 Change 1

9-4. DELETE

Basic Interpreter Commands

The DELETE command enables you to remove a program or a portion of a program from memory.

Format

DELETE [line-1,line-2]

line-1,line-2

the beginning and ending line numbers of the portion of the
program to be deleted. If no line numbers are specified, the entire
program is deleted. The value of line-2 must be equal to or greater
than that of line-1.

DELETE effectively erases the program currently in memory. The line number parameters allow you
to delete specific portions of a program. The DELETE command may be abbreviated; you may use DEL

when entering the command.

A single statement may be deleted simply by typing the statement number and pressing RETURN.

Examples
->DELETE Deletes the current program from memory.
>DEL 50,425 Deletes statement numbers 50 through 425 of the current program.
>DEL Deletes the current program from memory.
>45 Deletes line 45 of the current program.

Basic Interpreter Commands

9-5. RUN
The RUN command enables you to load and execute a program or portion of a program in one
operation.
Format
I RUN [line-1,line-2] [FROM lu number}
filename

line-1,line-2 the beginning and ending line numbers of the portion of the
program to be executed. If no line numbers are specified, the
entire program is executed. The value of line-2 must be equal to or
greater than that of line-1.

FROM lu number a number whose value represents a logical unit number. This is
the peripheral device from which the program to be executed is
loaded. If omitted, it is assumed that the program is currently in
memory. If this parameter is specified, the keyword FROM must
be included.

FROM filename filename can be used only if the optional file handler is present.

Filename is a NAMR specification for the flexible disc file in
which the program is stored. The form of NAMR is:

file [:scl:crn[:typelfile size]ll]:

file = file name

sc = security code

crn = cartridge label number if positive disc logical unit
number if negative

type = always type 4

file size = number of blocks in file (one block = 128 words)

The RUN command loads and executes a program or portion of a program. It is used for a program
already in memory or for a program residing at an input device.

Examples
>RUN Executes the program currently in memory.

>RUN 50,75 FROM 12 Loads and executes line numbers 50 through 75 from LU 12.

9-6 Change 1

Basic Interpreter Commands

9-6. BYE

- The BYE command is used to terminate execution of the BASIC Interpreter.

Format

BYE

Upon entry of the BYE command, the execution of the BASIC Interpreter is terminated immediately.
Control is returned to the RTE-M Operating System or the program that scheduled BASIC. You
should always use the BYE command (not *OFF,BASIC,1) to terminate your BASIC session.

9-7. LIST

The LIST command enables you to copy a program or portion of a program to a specific peripheral
device.

Format

LIST [line-1,line-2} [ON lu numberil

filename

line-1,line-2 the beginning and ending line numbers of the portion of the
program to be listed. If omitted, the entire program is listed. The
value of line-2 must be equal to or greater than line-1.

ON lu number a number whose value represents a logical unit number. This is
the peripheral device on which the program will be listed. If
omitted, LU 1 or the LU number for the list device specified in the
RUN,BASIC command is assumed. If this parameter is specified,
the keyword ON must be included.

ON filename filename can be used only if the optional file handler is present.

Filename is a NAMR specification for the flexible disc file onto
which the program is to be stored. If the file does not already exist
it is created for you. The form of NAMR is:

file [:sc[:crn[:typelfile sizellll:

file = file name
sc = security code
crn = cartridge label number if positive disc logical unit

number if negative
type = always type 4
file size number of blocks in file (one block = 128 words)

Change 1 9-7

Basic Interpreter Commands

The LIST command enables you to list a program or portion of a program in memory on a specific
device. The program is listed in ascending sequence by statement number. You may request a partial
list by specifying line numbers. Any FOR NEXT statement pairs are indented two spaces for easy
identification of program loops.

Examples

SLIST Lists the current program in memory.

>LIST 120,180 Lists statements 120 through 180 from the current program in memory.
9-8. *BR

The *BR command permits you to interrupt an executing BASIC program or the listing of a program.
It is used as follows:

® When a program is executing and you wish to interrupt it, press any key at your terminal.
® The RTE-M system prompt is printed.

e Enter BR as follows:

Format

*BR,interpreter program name

interpreter program name the name under which the BASIC Interpreter program
exists within your RTE-M system. See the RTE-M System
Generation Manual, Section V, for information about
naming the BASIC Interpreter program in MTM and
flexible disc drive environments.

The program is interrupted immediately. Control is returned to the Interpreter at this point and the
message OPERATOR TERMINATION IN LINE rnnnn is printed on the console, where nnnn is the
program statement number where the break occurred.

To break execution of a program which is waiting for a response to an INPUT, READ #, or PAUSE
statement, type Control Q (Q°) and press RETURN.

Examples
*BR,BASIC Break (interrupt) the BASIC program currently being executed by the BASIC
Interpreter.
13>BR,BAS13 Under MTM control, break (interrupt) the BASIC program currently being

executed by a copy of the BASIC Interpreter named BAS13.

9-8 Change 1

REAL-TIME TASK SCHEDULING

10-1. INTRODUCTION

BASIC is said to operate in real-time because the order of processing is governed by time or by the
occurrence of external events rather than by a strict sequence defined in the program itself. Because
these events can occur in a random order and require different amounts of processing, a real-time
system must be capable of resolving conflicts between tasks.

A task is defined as a group of BASIC statements initiated by a call to one of the BASIC scheduling
subroutines (e.g. START, TRAP, etc.) and terminated by a RETURN statement. Each task is uniquely
identified by the line number of the first statement in the task. If a task is initiated by executing line
2000 of the BASIC program, that task will be represented in all scheduling calls as 2000. No blanks
are allowed in the name or between the subroutine name and the left parenthesis preceding the
parameter list. The facilities provided by these routines require that the TRAP subroutine reside in
the System Resident Library. If the scheduling routines are not to be used, the external reference to
the TRAP entry point may be satisfied by the Dummy Trap subroutine. The Dummy Trap subroutine
must be relocated together with the BASIC Interpreter.

10-2. METHODS OF INITIATING TASKS

A task can be initiated in three different ways:
® at a specified time of day,
¢ after a specified delay,

e upon the occurrence of an external event.

To initiate a task at a given time of day, use the TRNON routine. For example:

193 CALL TRNON(2@2@3,124585)
initiates task 2000 five seconds after 12:45 p.m.

The system clock must be set if it is to reflect the correct time-of-day. To do this, use the RTE operator
command TM after loading the RTE Operating System.

To initiate a task after a delay, use the START routine. For example:

12¢ CALL START(2000,15)

executes task 2000 fifteen seconds after statement 100 is executed. This form of scheduling allows you
to schedule a task repetitively. For example:

1886 CALL START(2000,15) Schedule task 2000 in 15 seconds.
998 WAIT (50 Execute idle-loop.
999 GOTO 998
20003 CALL START(2008,10) Schedule task 2000 again in 10 seconds.
2010 PRINT "TASK 2000 AT 10 SECOND INTERVALS' Execute task 2000.
2020 RETURN
3808 END
>RUN

TASK 20080 AT 10 SECOND INTERVALS

10-1

Real-Time Task Scheduling

Lines 998 and 999 comprise an idle-loop and keep the program in execution mode indefinitely. When
no task is executing, the program continuously cycles waiting for something to happen. All real-time
programs should have some type of idle-loop. The idle-loop may be a useful statement such as a PRINT
to continuously log the results of your calculations.

To terminate this example, press any key on the system console or your terminal. The RTE-M System
responds by printing the system prompt character. Type BR followed by a comma and the BASIC
Interpreter program name. Then press RETURN. The example program will be aborted and the
Interpreter returned to Command mode. For information about the BASIC Interpreter program name,
see the RTE-M System Generation manual, Section V.

One common error occurs when a task reschedules itself every few seconds. For example, if a task
reschedules itself every two seconds and the START statement is at the end of the task, the delay will
be two seconds plus the amount of time necessary to execute the task statements which precede the
START statement and the time required for all interim processing by the operating system. Therefore
it is recommended that the statement used to reschedule the task be the first in the task in order to
avoid the cumulative effect of the time delays.

If you give a series of consecutive task initiation commands, you should not specify a delay of zero
(immediate start) for each one. The first task encountered must run to completion before another
program statement can be executed. Subsequent tasks are delayed by the amount of time required to
initiate preceding ones. To remedy this situation it is recommended that you schedule each task with a
one second delay, thus allowing enough time for all of the initiating statements to be executed before
any of the tasks are executed.

Toinitiate a task in response to an external event, the task must be associated with a trap number. For
example:

120 TRAP 5 GQOSUB 22009

associates task 2000 with trap number 5. Once the trap number is associated with the task, various
events can refer to the trap number by using HP 6940 SENSE calls (for events sensed by the HP 6940)
or a TTYS call (for an auxiliary teleprinter event).

BASIC senses when an external event interrupt occurs, signals that the event has occurred, and
records significant information about the event. The recording of an event takes place concurrently
with the execution of a BASIC language statement. When statement execution completes, the BASIC
Scheduler determines whether a task has been scheduled, compares its priority with the task
currently executing and decides whether or not to suspend the current task in favor of the new one.

10-3. PRIORITIES

Since a program may contain up to 16 tasks, more than one task may try to execute at the same time.
To resolve these conflicts you may assign a priority number to each task. Priorities are established to
provide some delineation between actions which must occur immediately and actions which have a
more relaxed requirement. A task priority may be from 1 (the highest) to 99 (the lowest). A task of
higher priority can interrupt the processing of a lower priority task if the interrupt scheduling the
higher priority task occurs while the lower priority task is executing.

The following statement sets the priority of task 2000 to 50:

116 CALL SETP(2008,50)

Any task whose priority has not been specified is given a priority of 99.

10-2

Real-Time Task Scheduling

10-4. RESPONSE TIME

To determine how often and how quickly an event interrupt will be processed, you must consider the
length of time required to complete execution of the BASIC statement being processed when the
interrupt occurs. The amount of time required to process BASIC statements varies widely; a range of
0.5 to 3 milliseconds (ms) is typical. If it takes 3 ms to process a particular BASIC statement, and the
event occurs after 1 ms has elapsed, then obviously the event will be noted but task execution will not
begin for at least 2 ms. Since you do not know which statement will be executing when the interrupt
occurs, the statement in your program with the longest execution time determines the maximum
response time required to service an interrupt.

If you are deing real-time processing, it is recommended that you avoid statements which require
operator intervention such as PAUSE, INPUT, and READ# lu. Interrupts may be lost while the
program waits for a response from the operator.

Interrupt processing may also be delayed indefinitely or interrupts ignored as a result of the operator
suspending the BASIC program with the RTE SUSPEND command or the operator entering RTE
commands while BASIC is outputting to the system console or your terminal.

10-5. THE BASIC SCHEDULER

The BASIC Scheduler keeps track of tasks and tells the Interpreter when to initiate execution of each
task. The Scheduler maintains information passed to it by the task scheduling statements and uses it
to make decisions concerning the tasks. The information includes the following:

® line number of the first statement in the task.
® priority of the task.

e trap number associated with the task.

e whether task is enabled or disabled.

e the current state of the task.

The BASIC Scheduler considers a task to be in one of five states at all times. For purposes of
discussion, these states will be labeled A, B, C, D, and E. Refer to Figure 10-1.

When the BASIC Interpreter completes execution of a line of BASIC code, it transfers control to the
Scheduler. The Scheduler examines the real-time clock and puts any time scheduled tasks that are
ready for execution into State C (pending) or State D (pending/disabled). (Event scheduled tasks go to
State C or D immediately upon occurrence of the event.) The Scheduler then determines which is the
highest priority task in State C. If the priority of this task is higher than the currently executing task,
the Scheduler puts it in State B (dormant) and tells the Interpreter to suspend the currently executing
task and begin executing the highest priority pending task.

The BASIC Interpreter suspends the currently executing task and stores the line number of the next
statement to be executed. It then stores the priority of the new task and begins executing the first line

of that task. Task execution, once initiated, is independent of the Scheduler. The task can be
interrupted but not disabled.

The Interpreter maintains the priority of the currently executing task which is determined when
execution is initiated and does not change. It is independent of the priority kept by the Scheduler. Each
time the Interpreter transfers control to the Scheduler after executing a statement, the priority is
made available so the Scheduler can decide whether or not to suspend the currently executing task and
initiate a new one. The Scheduler cannot change the priority of the currently executing task.

10-3

Real-Time Task Scheduling

Once the Scheduler initiates a task, the execution of that task is controlled by the Interpreter. The
Scheduler does not know which task is executing and is only concerned with which task should be
initiated next. Thus, while a task is executing, it is possible that the same task may be initiated a
second time. If its priority has been raised, the second initiation may interrupt the first execution of

the task since the first retains the original priority.

State A — Undefined

A statement referencing the task has not yet been executed.

State B — Dormant

A statement referencing the task has been executed (the BASIC Interpreter has information about the task)
but neither an external event nor the real-time clock has indicated that the task should be executed.

State C — Pending

An external event or the real-time clock indicate the task should be executed but execution has not yet
begun. The task is actively vying for the computer resources. Execution is delayed until:

e the BASIC Interpreter completes execution of the current program statement, or
¢ a higher priority task completes execution.

State D — Pending/Disabled

A CALL DSABL has disabled the task which would otherwise be in State C (pending). The task is no longer
vying for resources but once it is enabled, it will go directly to State C. A disabled task will not be initiated.

State E — Dormant/Disabled

A CALL DSABL has disabled the task which would otherwise be in State B (dormant). Once enabled, it will
go directly to State B. If an interrupt indicates the task should be executed, it will go to State D (pending/
disabled).

104

Figure 10-1. Task State Definitions

Real-Time Task Scheduling

10-6. DSABL

The DSABL routine disables a specified task.

Format

CALL DSABL(statement number label) [FAIL: statement]

Parameter

statement number label first statement number of the task to be disabled. If zero, all
tasks are disabled. If negative, the task is removed from the
task table (which controls the task), and any previous
scheduling is nullified.

FAIL: statement optional error return statement.

The DSABL routine tells the BASIC Scheduler not to initiate a task or tasks. If the argument is
positive, the task beginning with that statement is placed in State D or E as appropriate. If it is 0, all
tasks are placed in State D or E. If the argument is negative, the task beginning with the statement
number equal to the absolute value of the argument is placed in State A. Any task scheduling
statement referring to a disabled task enables it (puts it in State B or C). If the task was in State A, any
previous priority or trap number is lost.

Example

35¢ CALL DSABL(2¢22) Disables task 2000.

10-7. ENABL

The ENABL routine allows the scheduling of a previously disabled task.

Format

CALL ENABL(statement number label) [FAIL: statement]

Parameter

statement number label first statement number of task to be enabled. If 0, all tasks are
enabled.

FAIL: statement optional error return statement.

A call to ENABL allows the initiation of a task which has been turned off previously by DSABL.
A positive argument transfers the task from State D or E to State B or C. A zero argument
transfers all tasks to State B or C. If the argument is negative, the SCHED-4 error message is
printed (see paragraph 10-16) and the ERRCD flag is set to 4. It may be interrogated with IERR.

10-5

Real-Time Task Scheduling

Note that if a task has been disabled by a DSABL call, it may also be enabled by any other call
(except DSABL).

You may use DSABL and ENABL to prevent a task from being interrupted. For example:

122 CALL START(1222,5) Initiate task 1000 in 5 seconds.
. Disable all other tasks. Task 1000 is initiated
1202 CALL LCSABL(Z) and then this statement is executed, it will not be
. disabled. Processing proceeds uninterrupted to
. 1100.
11280 CALL ENABL(®) Enable all tasks.
10-8. SETP

The SETP routine sets the priority of a task.

Format

CALL SETP(statement number label, priority) [FAIL: statement]

Parameters

statement number label first statement in the task to have priority set.

priority a number from 1 to 99. 1 is the highest priority and 99 is the
lowest.

FAIL: statement optional error return statement.

The priority of a task is used to resolve scheduling conflicts. Tasks with lower numbered priorities are
selected for execution before tasks with higher numbered priorities. If no SETP call is made for a task
its priority is 99.

Example

502 CALL SETP(150@,45) Task 1500 is given priority 45.

10-6

Real-Time Task Scheduling

10-9. START

The START routine schedules a task for processing after a specified delay.

Format

CALL START(statement number label, sec) [FAIL: statement]

Parameters

statement number label first statement number of task to be initiated.
sec number of seconds until execution is initiated.
FAIL: statement optional error return statement.

If you CALL START with sec = 0 it is the same as using GOSUB, the task executes immediately and
runs to completion. All subsequent tasks will be delayed by the execution time of this task unless they
have a higher priority.

Example

655 CALL START(3300,35) Task 3300 will be scheduled in 35 seconds.

10-7

Real-Time Task Scheduling

10-10. TIME

The TIME routine returns the time according to the system real-time clock.

Format

CALL TIME(time)
Parameter

time a variable equal to the time-of-day to the nearest tenth of a second. time is
expressed as the number of seconds past midnight.

The following program converts the time parameter to hours, minutes, and seconds in the format
hh:mm:ss and prints the converted result every five seconds on LU 17.

>LIST
10 LET L=17
20 CALL START(100,6)
29 WAIT (¢100)
30 GOTO 29
188 CALL START(108,5)
116 CALL TIME(T1)
120 LET S1=INT(T1/60)
130 LET S=INT(T1-51%60)
140 LET H=INT(S1/60)
150 LET M=INT(S1-H*6@)
160 PRINT #L3H3TAB(2)3"t'"5sM;TAB(S)3"e1"3 5
170 RETURN

180 END

>RUN

9 149 t3
9 149 H

9 149 t13
9 149 218
9 149 123
9 149 128

10-8

Real-Time Task Scheduling

10-11. TRAP STATEMENT

The TRAP* statement associates a trap number with a task which then may be associated with a
hardware interrupt.

Format

TRAP trapn GOSUB statement number label

Parameters
trapn trap number, a constant between 1 and 16 inclusive.
statement number label first statement number of the associated task.

The trap number is a parameter in the HP 6940 SENSE routine, auxiliary teleprinter TTYS routine
and the HP-IB SRQSN routine. For example:

CALL SENSE(chan,nbit,bit,trapn)
CALL TTYS(u,trapn)
CALL SRQSN(u,trapn)

When an interrupt to either of these routines occurs, the task associated with the trapn number is
executed and the task is run. The TRAP association statement must already have been executed.

Only one trap number may be associated with each task and vice versa. Any attempt to associate more
than one trap number to a statement number causes a SCHED-3 error (see paragraph 10-16), and the
ERRCD flag to be set to 3. You may interrogate the ERRCD flag with IERR.

There are two methods of changing the association between a trap number and a task. Assume an
association has been made as follows:

758 TRAP 5 GOSUB 1000

The first method is to simply assign a new task statement number as follows:

1290 TRAP 5 GOSUB 2800

This forces the old task (1000) into State A (undefined, see figure 10-1), and nullifies any interrupts
that have occurred to trap number 5. All future interrupts to trap number 5 will be transferred to
statement 2000.

The second method is to use a negative statement number as follows:
19¢ TRAP S GCQOSUB -2002
The minus sign indicates you want to save any interrupts that have occurred to trap number 5. These

interrupts will be transferred to statement 2000. The task at statement 1000 is forced to State A. All
future interrupts to trap number 5 will be transferred to statement 2000.

*Within the Multiple Terminal Monitor environment, only one copy of the BASIC Interpreter can
utilize TRAP and task scheduling calls at one time.

10-9

Real-Time Task Scheduling

If the error TRAP-1 is printed, the trap number is negative, the task was not found at syntax time, or
the GOSUB part of the statement is missing.

Examples

128 TRAP 3 GOSUB 10209
112 TRAP 3 GOSUB 2g¢@@

After executing statement 110, trap number 3 is
associated with task 2000 only.

Do not change two values at once, you will get ambiguous results.

12”2 TRAP 3 GOSUB 1009
119 TRAP 4 GOSUB 2¢@@
12¢ TRAP 3 GOSUB 2000

TRAP 7 GOSUB 174
12 SENSE(5,4,1,7)

168 GOTO 1602

170 CALL WRBIT(2,4,1)
180 PRINT "RELAY CLOSED"
192 RETURN

42 TRAP 7 GOSUB 960
5@ SENSE(S5,1,J,7)
69 CALL WRBIT(2,4,@)

96@ PRINT 'RELAY CLOSED"
9784 TRAP 7 GOSUB 1009
983 CALL WRBIT(2,4,1)
992 RETURN

1200 CALL WRBIT(2,4,2)
1013 PRINT '"RELAY OPEN"
1820 STOP ‘

10-10

Statement 120 causes error SCHED-3 (see paragraph
10-16) since task 2000 is associated with two trap
numbers.

Trap 7 transfers to statement 170.

A contact closure on bit 4 of channel 5 on a HP
6940 event sense card traps to statement 170.

This statement writes a bit on a channel.

A message is printed and control returns to the
statement following the one completed before the
interruption.

Set trap 7 to task 960.

First time SENSE interrupt occurs it traps to
statement 960.

Task prints message.
Changes trap 7 so it is associated with task 1000.

The next time statement 50 is executed, the inter-
rupt will trap to statement 1000.

Real-Time Task Scheduling

10-12. TRNON

The TRNON routine executes a task at a specified time.

Format

CALL TRNON(statement number label,time) [FAIL: statement]

Parameters

statement number label first statement of task to be initiated at specified time.

time variable containing six digit number equal to Ahmmss, the
time in hours, minutes, and seconds. Hours must be based on a
24 hour clock.

FAIL: statement optional error return statement.

The call to TRNON starts a task when the real-time clock equals the time parameter.

Example
122 LET T=12001S Initialize T to 12 p.m. and 15 seconds.
112 LET I=5§ Set increment = 5 seconds.
122 CALL TRNCMC122Z,T) Schedule Task 1000 at 12 p.m. 15 sec.
399 (0TO 3393 Idle-loop.
1222 LET T=T+I Increment T by 5 seconds. If sec = 60,

1212 IF T=-INT(T/Z1232)%172>=67 LET T=T+42 increment by 40 (minute by 1).
1222 IF T=INT(T/122¢2)%12220>=620C LET T=T+402¢C

1232 1IF T>=2422¢¢ LET T=T-24202¢ If min = 60, increment hr by 1
1242 CALL TRNCNC1222,T) (min + sec by 4000).

. Reschedule task. If hr = 24, reset to 0 hours.

: Execute task code.

102 TETUEREM End of task.

10-11

Real-Time Task Scheduling

10-13. TTYS

The TTYS routine allows an auxiliary teleprinter to interrupt the BASIC system.

Format

CALL TTYS(u,trapn)

Parameters
lu logical unit number of the teleprinter.
trapn trap number associated with a TRAP statement

A user at an auxiliary teleprinter can interrupt BASIC by pressing any key and the trap associated
with the logical unit number of the teleprinter will be executed. The routine does not service LU 1, the
system console. If the error TTY-1 is printed, the logical unit number is less than 7. (LU 1 through 6
are reserved for standard devices.)

Example

12 TREAP 5 GOSUB 122 Associate trap number 5 and task 100.
22 CALL TTYS(1@,5)

Define trap to be executed when interrupt occurs
29 WAITC1@0) f p i

on LU 10. Insert idle-loop.

3¢ GOTO 29 :

19¢ TIME(T) When a key closure generates an interrupt on LU
110 PRINT#10:T 10, task 100 prints the number of seconds past
12¢ RETUSN midnight.

10-14. PROGRAM EXAMPLE

Figure 10-3 represents the structure of the working program shown in figure 10-4. The routine shown
in figure 10-2 generates the data required by the program in figure 10-4.

Line 999 in figure 10-4 defines an idle-loop. In order to get some idea of how much time is spent in
looping, a counter can be installed as part of the loop. Different variables are used for each task since
one task may destroy the contents of variables used by another task. When a variable is to be shared
by more than one task, you must analyze the implications of interrupts breaking into the statement
sequence.

10-12

Real-Time Task Scheduling

4 LET La=4 27,855 10,5984
12 LET C1=20 26,9359 4,74923
2¢ LET C2=1 32.7251 §.6409
3¢ LET C3=1¢ 32.4648 8.21229
42 LET Cu4=3 26,0227 5.0453)
5S¢ LET C5=5 23,1503 7.74416
6@ LET Cé=.1 23.0191 17,4607
7¢ LET M1=36 12,6957 13.2719
122 FOE I=1 TO 1¢@ 12,1831 9,28012
112 LET X=Cé6x1I 8,38145 19,2826
12¢ GOSUZ 1¢o0 3,45362 18,99
132 NEXT 1 -.724108 246351
140 PRINT# L43999 -1.182726 22.21u
152 STOP =5.77463 25.88H1
1823 LET Y=C1*COSCC2%%)+C3%SIN(C4%*X)+C5-2+xCS*AND(X) «7.25732 20.5753
1825 PRINT# La3v -18,37u4 e, 426
1212 LET P=V+M1 -£,12697 21.1262
1822 IF P<Ml GOTO 1220 =13.2137 19,.68¢4
1832 IF P>M1 GOTO 13¢9 ~12,8658 16,6932
l@4@ PRINT# Lé63TAB(MI); Y =6,25166 14,040
165¢ RETUBN =5,8536y 16,0963
12¢2 PRINT# L635TAB(P):"X"; -f,8207 6.51914
1212 PRINT# L6&3TAS(M1Y;"LY .4,75¢U7 4,82M18
1222 RETURM »7.68372 .951558
1320 PRINT# L63TABMMI)S"1"S »6,940030 -6,74977
1313 PRINT# L63TAB(P); X" -12,7432 7.4339%
1392 RETU®RN -13,3n99 l,08A¢d
148¢ END =16,9722 .13,6210
-18,1321 -15,5273
=24,8142 -11.5115
=17 ,064% “14.503
=22,897¢8 -9.28221
-24,363 -8,73984
'gg-gjgé -8, M10B5
NOTE: This routine generates the data at the right. The generated =21 :97i09 “2. ”U/
data is then fed into the following routine which demonstrates -28,5017 :3';;:;2
the scheduling capabilities of BASIC. -22,5021 _g. 53069
11,5363 el
10,8942 iSens
-, 624RB6 -18 1544
2.30719 ~19.4267
6.92991 “23 P569
8,10068 -26. 4572
12.2503 “26.6669
13,2217 ~28,2566
15,5333 -23,6533
10,9137 999
8.84168

Figure 10-2. Task Scheduling Program Example (Part 1)

10-13

Real-Time Task Scheduling

1-20
ASSIGN PERIPHERALS
100-300
INITIALIZATION OF TASKS
999
IDLE LOOP
1000-1320
READING & PLOTTING DATA
RETURN
2000-2150
PRINTING CALCULATION RESULTS ONTO TELETYPE
RETURN
3000-3090
GIVE TIME AND SUMMARY CALCULATIONS WHEN KEYED
RETURN
40004300
GIVE MESSAGE AT 8 AM
RETURN
5000-5100
GIVE MESSAGE AT 12 NOON
RETURN
60006100
GIVE MESSAGE AT 5 PM
RETURN
7000-7030
GIVE MESSAGE AT 00:05 AM
RETURN
80008120
BAD DATA PROCESSOR
RETURN
9000-9060
CONVERT SECONDS TO HHMMSS
RETURN

TASK 1

10-14

Figure 10-3. Structure of Program Example in Figure 10-4.

Real-Time Task Scheduling

LET L1=1 Initialize variables which assign outputs to
LET L2=11 specific devices.

LET L3=11

LET L4=4

LET LS=5

LET L6=6

13 LET L3=11

280 LET D=10202 Lines 100 through 900 schedule tasks 1000
103 REMx*xkx**kkk*x SET UP TASK 1809 *xx%x%x through 7000.

119 LET DiI=1

123 LET Al1=0Q

142 LET N1=0

1603 SET®(1223,52) Set priority = 50.

178 START(18%%,D1) Tell Scheduler to initiate task 1000 D1 seconds
203 REM*xk*kkkx*k SET UP TASK 2007 *k*xkx*

o e W -

from now.
21@ LET S2=0 .
550 LET N2=0 Since DI =1, task 1000 executes 1 second after
239 LET D2=173 statement 170 executes. This allows time for all
ou0 qETD(‘D@ﬂ;ﬂ, 709 other tasks to be initiated.
258 START(27232,D2) Execute task 2000 in 10 seconds (D2=10.)
300 REM***kxxx*x*xSET UP TASK 3307 **x*x*
312 SETP(37%72,5) Set priority to 5.
328 TRAP | GOSURB 3329 Associate trap 1 with task 3000.
330 TTYSC11,1) Associate LU 11 with trap 1. Pressing any key on

4373 REMiokkkkk*%SET UP TASK 4877 *%%kx LU 11 interrupts BASIC and starts task 3000.
423 SETP(4092,99)

437 TRNONC4B2AZ,83337) Start task 4000 at 8 a.m.

SOF TEMxkxkkkk%kSET 1D TASK S@77 *%x*x%

5172 SET®(597%3,62)

523 TRNONCSAGF, 123333) Start task 5000 at 12 noon.

607 REM*xxx*kk*k%xSET UUP TASK 60037 *kkx*

6173 SETP(6A3A,1)

629 TRNON(6237A,170327) Start task 6000 at 5 p.m.

TR REM**kxxk*xkkSET 1JP TASK 7227 kkkx*

713 TRNON(7203,135) Start task 7000 at I min. 5 sec. after midnight.
9AF TEMAkkkkkkkIDLE LOOP skokokkokkkkokkk

999 GOTO 999 Forces program to continue executing while wait-
122G REM ing for tasks to be scheduled. Control returns
1282 REM xx TASK 10072 *%x READ DATA AND PLOT ITx here if no task is scheduled.
1264 REM

1812 START(1823, D1) Note that task 1000 and 2000 will try to execute
1328 READ# LS5;3¥X!I simultaneously. Task 1000 has a higher priority
1233 IF X1>36 0® X1<-36 GOTO 8320 than task 2000 so will be scheduled first or may
1242 LET Al=Al+X! interrupt task 1000 which must wait.

1258 LET N!=NI]+l

1363 LET P1=36+X1

1873 1IF ®1>36 GOTO 1237 The tasks defined in lines 1000 to 9060 are iden-
1283 1F ©1<36 GOTO 1307 tical to subroutines.
1290 PRINT# L63TAB(36); v

1128 RETURN

1203 PRINT# L65TAB(36)3""]1";

121@ OPRINT #L63TAB(Pl)Ys X"

1223 RETURN

13003 °2INT# LA TA3(P1)Y ;' ;

13123 PRINT# L63TAB(36);"1”

13234 RETURN

20727 REM

2322 WEM *x*x TASK 24773 *x*x DATA COMPRESSION ROUTINEx*
28724 REM

2012 START(2373,D2)

27215 GOSURB 9329

Figure 10-4. Task Scheduling Program Example (Part 2)

10-15

Real-Time Task Scheduling

2823 LET A2=A1/N!

20372 LET S2=S52+Al

2047 LET N2=N2+Nl

2753 LET B2=A2/N2

20605 PRINT# L43A2,N1,82,N2,T

237% LET Al1=2

2083 LET N1=32

21372 PRINT#LI

2112 PRINT# L15'"AT TIME 3 T3 TAB(?);

2127 PRINT# L13'" THE AVERAGE IS ";B2:;TAB(2):
21373 PRINT# L1353 FROM "3;N23TAB(?2);'" DATA POINTS."
214% PRINT# L15"THE AVERAGE FOR THE LAST PERIOD WAS v
2145 PRINT# LI

2152 RETURN

32273 REM

3332 REM x* TASK 3030 %x EVENT SCHEDULED TASK *x
3234 REM

3213 GOSUB 9227

3315 PRINT# L3

32273 PRINT# L35"THE CURRENT TIME IS '";T;TA3(?):
3225 PRINT# L33, SO0 FAR WE HAVE"

3347 LET N3=N2+N1

3252 LET A3=(S2+A1)>/N3

3877 PRINT# L3:N35TAS(3)s' DATA POINTS WITH AN AVERAGE OF "3A3
33873 PRINT# L3

372973 RETURN

490737 REM

42332 REM %% TASK 49233 *x

4334 REM

4213 FOR la=1 TO 8

432% PRINT# L2

43¢ WAIT(D)

4843 NEXT 14

419372 PRINT# L2;'"GOOD MORNING '

4223 PRINT#L2;:;1 HOPE YOU HAD A GOOD NIGHTS REST
4327 RETURN

53232 2EM

SP32 REM %% TASK S283 *xx

5024 REM

56173 FOR 15=1 TO 12

53279 PRINT# Lo

5333 YAIT(D)

5247 NEXT 15

557 PRINT# L2;"TIME FOR LUNCH, LET'S EAT."

5182 RETURN

63733 REM

6732 REM %% TASK 6303 *x

6034 REM

63183 FOR 16= 1 TO 5

6823 PRINT# L2:""

66330 WAIT(D)

6@47 NEXT 16

6357 PRINT# L23"TIME TO GO HOME, SEE YOU TOMORROV.'
612@ RETURN

7332 TNEM

7332 REM *xx TASK 70087 x*xx

T334 REM

7317 PRINT# L23"EITHER YOU ARE WORKING LATE, OR";
7322 PRINT# L2 YOU FORGOT TO SET THE TIME"

7¢3% RETUDN

e
D
o)

Figure 10-4. Task Scheduling Program Example (Part 2) (Continued)
10-16

Real-Time Task Scheduling

820 REM

82@4 REM

8120 STOP

8335 TIME(TS)

93183 LET S9=INT(T9/67)
9328 LET S=T9-S9%63
9¢3% LET H=INT(S9/68)
9242 LET M=S9-Hx*60

9062 RETURN
9999 END

8@32 REM ** THIS ROUTINE STOPS WHEN OUT OF DATA **

821@ PRINT "EITHER Y0QU HAVE RUN OUT OF DATA, 0% YOU HAVE";
8727 PRINT ' READ A BAD DATA POINT."

98@@ REM *%* SUBRQUTINE TO CONVERT TIME *x

9853 LET T=INT((H*100+M)*133+S)

Figure 10-4. Task Scheduling Program Example (Part 2) (Continued)

10-15. TABLE PREPARATION

In order to use the task scheduling subroutines, you must add the names of the subroutines you want
to use to the Branch and Mnemonic Tables. Generation of these tables is described in the HP 92064 A
RTE-M System Generation manual. A list of the RTMTG commands required to add the subroutines

described in this section is given there.

10-16. ERROR MESSAGES

The following errors may result from execution of the task scheduling routines:

ERROR SCHED-2 IN LINE nnnn
ERROR SCHED-3 IN LINE nnnn
ERROR SCHED-4 IN LINE nnnn
ERROR SCHED-5 IN LINE nnnn
ERROR SCHED-6 IN LINE nnnn

Task table overflow.

Impossible to resolve combination in TRAP statement.
Attempt to ENABL or DSABL non-exixtent entry.
Time schedule table overflow.

Time to execute scheduled task, but its entry has been
deleted from the Task Table.

In all cases the ERRCD flag is set to the error number. You may use the FAIL: option and IERR to
interrogate the flag. See paragraphs 6-3 and 6-4.

10-17/10-18

BIT MANIPULATION OPERATIONS

BASIC performs all arithmetic operation in 32-bit floating point format (i.e., two 16-bit computer
words). In instrument-related systems it is frequently necessary to manipulate the internal floating
point number as though' it were a 16-bit integer. This capability is especially important when the
BASIC program communicates with instruments that require special bit patterns as input and/or
output parameters. The following integer bit manipulation routines are designed to allow the BASIC
programmer to perform inclusive OR, exclusive OR, NOT, AND, shift, set bit, clear bit, and test bit
operations. These functions may be incorporated in the BASIC system at generation time by placing
the proper name, entry point and parameter conversion in the Branch and Mnemonic table (see the HP
92064A RTE-M System Generation manual).

11-1. BIT MANIPULATION WORD FORMAT

Each word within the computer can be thought of as a 16-bit shift register. The bits are numbered from
right to left as shown in Figure 11-1. Each set of three bits is weighted 4-2-1. For example, a bit pattern
of 101 has an octal value of 5.

I ¥
15114 13 1211 10 9 8 7 6 |5 4 3 2 1 0

Figure 11-1. 16-Bit Word

For the purposes of bit manipulation, there are no sign bits or any significance other than a positional
relationship.

In all cases of bit manipulation functions the operations are performed bit-by-bit. There is no carry
from one set of bits to adjacent bits. Thus, in an OR function, for example, there is no carry from
column-to-column.

11-2. AND

The AND function logically multiplies two words bit-by-bit.

Format
A = AND (argl, arg2)
Parameters
argl first value to be ANDed.
arg? second value to be ANDed.
result A returned value of the operation.

111

Bit Manipulation Operations

The AND statement requires that both of the values be “1” in order to have the product be “1”. Refer to
the following truth table:

argl 0011
arg2 0101

result 0001

Example
12 X = ISETC("762') ISETC function described in paragraph 11-9.
20 Y = ISETC("543'")

3% CALL AND(X,Y)
48 PRINT OCT(Z)

5@ END

Results
X =762 =111-110-010
Y =543 =101-100-011
Z =542 =101-100-010

11-3. IBCLR (Bit Clear)

This function sets selected bit positions to zero. The position to be set to zero is determined by the
number given in the bit posit parameter where the bits are referenced right to left starting with zero.
Refer to Figure 11-1 for the bit positions. Note that only one bit can be set to “0” at a time.

Format

A = IBCLR (value, bit posit)
Parameters
value starting value.

bit posit position of the bit to be cleared. The least significant bit is zero. If bit posit
exceeds 15, the value of result is set to the starting value (value).

result A returned value.
Example
14 X = ISETC("767")
20 Z = IBCLR(X,3)
33 PRINT OCT(Z)
4@ END
Results
X =767 =111-110-111

) Bit position 8 is cleared (set to zero).
Z =367 =011-110-111

11-2

Bit Manipulations Operations

11-4. IBSET (Bit Set)

This function sets selected bit positions to “1”. The position to be set to one is determineq by the
number given in the bit posit parameter where the bits are referenced right to left starting with zero.
Refer to Figure 11-1 for the bit positions. Note that only one bit can be set to “1” at a time.

Format

A = IBSET (value, bit posit)
Parameters

value starting value.

bit posit position of the bit to be set. The least significant bit is zero. If bit posit exceeds
15, the value result, is set to the starting value (value).

result A returned value.
Example
10 X = ISETC(¢"452')
20 Z = IBSET(X,7)
33 PRINT OCT ¢2)
9% END
Results

X =452 =100-101-010
i Bit position 7 is set to 1.
Z =652 =110-101-010

11-5. IBTST (Bit Test)

This function tests a selected bit in a word. It is used to return the value of a certain bit within a word
without disturbing the original word.

Format

A = IBTST (value, test posit)
Parameters

value value to be tested.

test posit the position of the bit is to be tested. The least significant bit is zero. If test posit
is greater than 15 or less than zero, result is set to zero.

result A value of the tested bit (either a “1” or “0”).

11-3

Bit Manipulation Operations

Example

13 Z = IBTST(X,15)
28 PRINT 0CT(Z)
38 END

X the value to be tested.
15 = the left-most bit, or bit 15.
Z = a “1” or “0” depending on the value of bit 15 in word X.

11-6. IEOR

The IEOR function executes the modulo-two sum (Exclusive OR) between two words, bit-by-bit.

Format

A = 1IEOR (argl, arg2)

Parameters

argl first value to be Exclusive OR’ed.
arg2 second value to be Exclusive OR’ed.
result A returned value of the operation.

The exclusive OR operation is primarily used in compare operations. When performing the exclusive
OR, the result will be “1” if one and only one of the bits is “1”. Refer to the following truth table:

argl 0011
arg? 0101

result 0110

Example
12 X = ISETC('564")
2¢ v = ISETC("371")
38 7 = IEQR(X,Y)
42 PRINT 0OCT(Z)
S@ END

Results

X =564 =101-110-100
Y =371 =011-111-001
Z =615 =110-001-101

114

Bit Manipulation Operations
11-7. NOT

This function complements a word bit-by-bit. It causes the complement of a value to appear in the
result. That is, a “1” in value becomes a “0” in result and vice versa.

Format
A = NOT (value)
Parameters
value value to be complemented.
result A returned value of the operation.
Example

18 CALL ISETC("1762",X)
290 CALL NOT(¥X,2Z)
32 PRINT OCT(Z)

48 END
Results
X = 1762 =0-000-001-111-110-010

Z =176015 =1-111-110-000-001-101

11-8. OR

The OR function executes the logical sum (Inclusive OR) between two words bit-by-bit.

Format
A = OR (argl, arg2)
Parameters
argl first value to be Inclusive OR’ed.
arg2 second value to be Inclusive OR’ed.
result A returned value of the operation.

The Inclusive OR operation is primarily used in compare operations. When performing the Inclusive
OR, the result is “1” if either of the bits in argument 1 or 2 is “1”. Refer to the following truth table.

argl 0011
arg2 0101

result 0111

11-5

Bit Manipulation Operations

Example
13 X = ISETC("461')
28 Y = ISETC("S577")

32 2 IOR(XLY)
4% PRINT 0CT(Z)
58 END

Results

X =461 =100-110-001
Y =577 =101-111-111
Z =577 =101-111-111

11-9. ISETC (Set to Octal)

ISETC converts the octal number to its floating point equivalent. Therefore, whenever using the
PRINT statement to print the number, use the OCT option. Otherwise, the decimal equivalent of the
number is printed. For example, if you use the octal number 177777, and the PRINT statement
without the OCT option, the decimal number —1 is printed.

Format
_ “octal numb” >
4= ISETC(string variable
Parameters
octal numb six-character or less octal number enclosed in quotes (* ”)
which is to be set into variable. Any characters other than 0
through 7 will cause an error message: ERROR -26 IN LINE
nnnn.
string variable variable containing a string of numeric characters.
variable A parameter that receives the octal number.
Example

13 X = ISETC("27765")
28 PRINT 0OCT(X)
3@ END

Results

X is printed as 27765.

11-10. ISHFT (Register Shift)

This function shifts the bit contents of a variable left or right a given number of positions. It shifts the
entire word as though the word were a shift register. The bits shifted out of the word are lost.
Replacement bits coming into the word are zeros.

11-6

Bit Manipulation Operations

Format

A = ISHFT (value, shift numb)

Parameters

value argument to be shifted.

shift numb direction of shift and number of positions.
numb <0 shift right “n” positions.

numb >0 shift left “n” positions.

numb =0 no shifting.

result is set to zero.

numb < — 15
numb > + 15

result A returned value of the operation.
Example
19 X = ISETC('"276") Shifts all bits two positions left.
20 Z = ISHFT(X,2)
3% PRINT 0CT(Z)
40 END
Results

X =276 =010-111-110
Z =1370 =001-011-111-000

11-11. BRANCH AND MNEMONIC TABLE PREPARATION

In order to use the routines described in this section, you must enter the names of the functions and
other information in the Branch and Mnemonic Tables. The procedure for doing this is described in the
HP 92064A RTE-M System Generation manual with a list of the precise commands required.

11-7/11-8

MAGNETIC TAPE INPUT/QOUTPUT

The magnetic tape drive enhances BASIC’s effectiveness by providing sorting, manipulation, storage,
and retrieval capabilities. The magnetic tape drive allows the system to save information that is too
voluminous for storing in memory, or on paper tape. There are two primary advantages to using
magnetic tape over paper tape:

® The speed and capacity of a magnetic tape.

® The ability to rewind and reread material solely on command from the computer.

Data is written to the tape drive as a set of contiguous data called a record. Each tape record is a direct
result of a command from the program to write a record onto a magnetic tape. Sets of consecutive
records all associated with the same logical program and function are called files. It is possible to have
more than one file on a single tape, and, except for the fact that they are on the same physical reel,
they do not necessarily have to be related. At the end of each of the files, the program can write a
special record called an end-of-file (EOF) which signifies the end of a file.

You should not mix READ and WRITE commands as you progress through a tape. Since records are
not spaced a precise distance apart, extraneous data may be left on the tape if you write a record and
then read the record which follows it. Always write onto a tape consecutively and then rewind and read
it later. It is unacceptable to update a tape by replacing records.

12-1. MAGNETIC TAPE OPERATOR COMMANDS

There are several operator commands available that allow you to manipulate the tape drive from the
system console. The command format consists of a control word and the logical unit number of the
magnetic tape device.

Format
Command Purpose

REWIND [u number Rewind the magnetic tape all the way back to the
beginning.

WEOF [u number Write an end-of-file mark on the tape.

SKIPF lu number Skip to the end of the current file and stop at the
beginning of the next file on the magnetic tape.

BACKEF lu number Backspace past the previous file mark and stop.

lu number The logical unit number associated with fhe
magnetic tape device.

121

Magnetic Tape I/O

12-2. MAGNETIC TAPE CALLS

Descriptions of all magnetic tape calls available in BASIC are provided in the remainder of this
section. Figure 12-2 contains a sample program which uses the routines described here.

12-3. MTTRT

The MTTRT routine writes a record ento a tape.

Format
CALL MTTRT(u,array,numb,eof,length)
Parameters
lu logical unit number of magnetic tape device.
array first element of an array of data to be written.
numb number of elements requested to be transferred from memory to the tape.
eof dummy variable always set to zero on return.
length actual number of elements transferred from memory to tape.

The number of elements requested to be transferred is always repeated in the length parameter since a
tape WRITE always writes the specified number of variables. If there is a problem with writing on a
bad portion of tape, the statement causes a skip over the bad portion of tape and rewrites on good tape.

Example

355 CALL MTTRT(I3,A(1),1087, E, N) Writes 100 elements of array A on LU 13.

12-4. MTTRD

The MTTRD routine reads a record from a tape into an array.

Format

CALL MTTRD(lu,array,numb,eof,length)

Parameters

lu logical unit number of the magnetic tape device.

array first element of an array into which data is read.

numb number of elements requested to be read from the tape.

eof variable set to 1 if EOF is encountered during a READ operation, set to 0
otherwise.

length actual number of elements transferred from the tape to memory. Useful when
the record read is shorter than the value specified by numb.

12-2

Magnetic Tape 1/O

The routine transfers up to numb elements. If the record length is smaller than numb, only the record
is transferred. If the record is larger than numb, the remaining data in the record is lost.

The length parameter provides the actual number of elements transferred to the array. Length can
never exceed numb; therefore, if length = numb, the record may have been too long.

After the last record in a file is read, the next READ returns an end-of-file indication (if there is one) in
parameter eof.

Example

503 CALL MTTRD(12,B(1),288,E,N) Read 200 elements into array B from LU 12.

12-5. MTTPT
The MTTPT routine positions the tape forward or backward a certain number of files and/or records.

Format

CALL MTTPT(lu,fspace,rspace)

Parameters

lu logical unit number of the magnetic tape device.

[space number of files to skip. If positive, skips forward, if negative, skips backward.

rspace number of records to skip. If positive skips forward, if negative, skips back-
ward.

Forward positioning is accomplished by reading files or records until the number you request have
been skipped or an EOF is read.

RECORD RECORD RECORD

A B c

EOF1 EOF2

Figure 12-1. Record Positioning Example Using MTTPT

Examples (Refer to figure 12-1)

1. File position is immediately after record C, and fspace = —1 (backspace 1 file). File position moves
to immediately after record B before EQF2.

2. File position is immediately after record C; fspace = —2 (backspace 2 files) and rspace = 1 (forward
space 1 record). File position moves to immediately after EOF1 before record A.

3. File position is immediately after record C, and rspace = —3 (backspace 3 records). File position
moves between record A and B.

12-3

Magnetic Tape 1/0

12-6. MTTFS

The MTTFS routine writes an end-of-file or rewinds the tape.

Format

CALL MTTFS(lu,func)

Parameters
lu logical unit number of the magnetic tape device.
func specific tape drive control or function:

0 = WRITE a 4 inch gap.
1 = WRITE an EOF mark.

2 = REWIND the tape but leave the tape, when finished, available for use again
(at load point).

3 = REWIND the tape and when the rewind is complete, make the tape device no
longer available to the system (rewind and unload).

Examples
435 CALL MTTFSc12,1) WRITE an EOF on LU 12.
864 CALL MTTFS(11.,2) REWIND LU 11. Control returns to program
immediately.
755 CALL MTTFS(11,3) REWIND LU 11 and make tape device unavaila-
ble.
95@ CALL MTTFS(C12,8) Erase 4 inches of tape on LU 10.

12-7. TAPE MANIPULATION ERRORS

The following message is given when tape errors occur:
ERROR MAGTP-x IN LINE nnnn

If x equals:
1 An illegal logical unit number has been specified for a tape.
2 An illegal request for tape manipulation has been made.

3 A WRITE request has been given but the write-ring (file-protect-ring) is not in place on the
reel.

The line in the BASIC program where the error occurred is supplied as nnnn.

124

Magnetic Tape 1/O

12-8. BRANCH AND MNEMONIC TABLE ENTRIES

During system generation, the routines described in this section must be entered in the Branch and
Mnemonic Tables if the magnetic tape drive calls are to be used. The procedure for doing this is
described in the HP 92064A RTE-M System Generation manual.

12-9. SAMPLE PROGRAM USING MAGNETIC TAPE

Figure 12-2 contains a sample program which demonstrates some of the previously described routines.
The tape is rewound, file records are written on it, it is rewound again and then read until an
end-of-file is encountered. The tape is then backspaced two records to allow the last data record to be
reread.

>LIST
1@ REM - MAGNETIC TAPE EXAMPLE
20 DIM VvI12AA),W(109]
22 FOR I=1 TO 122
24 LET W(I)=I
26 NEXT I
3" REM - REWIND THE TAPE UNIT TO LOAD POINT
40 CALL MTTFS(8,2)
5@ REM - WRITE FIVE RECORDS

69 FOrR I=1 TO S
70 CALL MTTRT(R,VI11,1AA,X,E)
87 NEXT 1

9% REM - WRITE END-OF-FILE MARK

10 CALL MTTFS(8,1)

114 REM - REWIND THE TAPE UNIT TO LOAD POINT
120 CALL MTTFS(R,2)

139 REM - NOW READ ALL THE RECORDS

147 CALL MTTRD(S,W(11,10A,E,N)

150 IF E=1 THEN 170

t6a GOTO 139

1706 REM - - BACKSPACE TWO RECORDS
1R® CALL MTTPT(R,A,-2)
198 END

Figure 12-2. Tape Control Sample Program

12-5/12-6

BASIC CALLS TO
EXTERNAL SUBROUTINES |[xii

The BASIC Subsystem requires Branch and Mnemonic Tables if your programs make calls to
subroutines and functions external to BASIC. Further, for instrument subsystems such as the HP
2313 and HP 6940, BASIC requires an Instrument Table.

You create these tables using table generator programs. Once the tables are loaded into RTE-M, the
BASIC Subsystem uses them for the transfer of program execution between the BASIC Interpreter
and the external subroutine or function called.

In most instances, BASIC does not directly call an external subroutine. Instead, a BASIC program call
is made via the Branch and Mnemonic Table to a BASIC callable subroutine which re-issues the call in
a format acceptable to the external subroutine library.

For example, the HP 2313 subroutine AISQV (paragraph 13-8) is a BASIC callable subroutine. When
a call is issued to this subroutine, AISQV reformats the call and passes it on to call the AISQW
subroutine (FORTRAN callable subroutine) from the ISA FORTRAN Extension Package library.

13-1. BRANCH AND MNEMONIC TABLE

External subroutines and functions written in BASIC, FORTRAN, ALGOL, or HP Assembler
language are defined in a Branch and Mnemonic Table. The RTE-M Table Generator (RTMTG) is used
to create the Branch and Mnemonic Table. Detailed instructions for generating this table are given in
Section V of the HP 92064A RTE-M System Generation Manual.

Once you generate this table, you may load it into memory as a relocatable module either during
RTE-M System generation or on-line using the relocating loader, RTMLD.

13-2. INSTRUMENT TABLE

To support the HP 2313 and HP 6940 Subsystems with your RTE-M Operating System, you must
include an Instrument Table during system generation. The Instrument Table contains all of the
information about the HP 2313 and 6940 Subsystems required by the operating system.

Currently, you cannot execute the RTE Instrument Table Generator program in RTE-M. You must
generate the Instrument Table on an RTE-II or RTE-III Operating System. The RTE-II or RTE-III
Table Generator program produces a file containing the Instrument Table that you load into your
RTE-M System. Before loading the Instrument Table file, be sure that the HP 2313 and HP 6940 cards
are in the proper order as described in paragraph 13-17 and 13-31.

Instructions for executing the Instrument Table Generator program are given in the HP ISA
FORTRAN Extension Package Reference Manual.

13-1

External Subroutines

13-3. HP 2313/91000 DATA ACQUISITION SUBSYSTEM

The following paragraphs describe the BASIC calls used to communicate with the HP 2313/91000
Data Acquisition Subsystem. Information about generating a system containing the instrument
(subsystem) subroutines is provided in paragraph 13-15.

13-4. MEASUREMENT OF ANALOG INPUT

The HP 2313 Subsystem is capable of measuring single-ended high-level inputs or differential high- or
low-level inputs, with 12-bit resolution. The system can be equipped with a plug-in Programmable
Pacer for timing measurements with 50 nanosecond precision. High-level input is +10.24 volts full
scale and low-level input is programmable in eight ranges from +10 millivolts to + 800 millivolts full
scale. Measurement ranges on the various low-level channels are preassigned in a table in memory so
no distinction has to be made between high- and low-level channels when programming specific
measurements.

The HP 91000 Plug-In 20 KHz Analog-to-Digital Interface Subsystem is capable of measuring 16
high-level single-ended or 8 high-level differential inputs. Each plug-in card constitutes a subsystem
and can be programmed with the appropriate commands described in this section.

13-5. ANALOG OUTPUT

The HP 2313 Subsystem can also be used for analog outputs. A dual 12-bit digital-analog converter
card, providing two analog outputs, can be installed in any of the working card spaces provided in the
basic or expanded measurement subsystem. Analog output speeds can be timed precisely by the pacer
option.

13-6. HP 2313 SUBSYSTEM SUBROUTINES
A series of subroutines are used to perform various 2313 operations. These subroutines are called in

the same way as other BASIC subroutines:

CALL name(parameters as required)

Each call is listed in alphabetical order by name.

13-2

External Subroutines

13-7. AIRDV (Random Scan)

The AIRDV subroutine reads analog input in a random manner.

Format

CALL AIRDV (numb,achan,volt,error)

Parameters

numb number of channels to be read. If numb is negative, the readings are paced
by the system pacer (see PACER call).

achan array whose contents are channel numbers and whose positional relation-
ship is the same as the voltage in volt. If you designate a channel number
in achan, the corresponding voltage appears in the corresponding position
in the volt array.

volt first location of an array where the voltages to be read are placed.

error variable set to one of the following values upon return from the routine:

0 = No error.

1 = Overload has occurred. The voltage available at the sensor multiplied
by the gain you specified exceeds the voltage range of the analog-to-
digital converter.

2 = Pace error. The subsystem was not ready when a pace pulse occurred.
Normally this is caused by too rapid a pace rate or failing to turn off
the pacer after a paced operation.

Example

Assume the channel number array A has been initialized to the channel numbers. The values in the V
array correspond on a one-to-one basis to the channel numbers in the A array.

13 DIM V(75),AC7S) Reads 75 voltages into the V array.
22 LET N=7S%5
3% CALL AIRDV(NLACLIILV(I)LED

13-3

External Subroutines

13-8. AISQV (Sequential Scan)

The AISQV routine reads analog input sequentially.

Format

CALL AISQV (numb,schan,volt,error)

Parameters

numb number of channels to be read. This, in conjunction with the starting
address in schan defines the starting place and number of channels to be
addressed. If numb is negative, numb readings are taken on the channel
and are paced by the system pacer (see PACER call).

schan starting channel number of the sequential scan (the first reading is taken
on this channel). If schan is negative, numb readings are taken on channel
schan.

volt first location of an array where the voltages to be read are placed.

error variable set to one of the following values upon return from the routine:

0 = No error.

1 = Overload has occurred. The voltage available at the sensor multiplied
by the gain you specify exceeds the voltage range of the analog-to-
digital converter.

2 = Pace Error. The subsystem was not ready when a pace pulse occurred.
Normally this is caused by too rapid a pace rate or failing to turn off
the pacer after a paced operation.

Example
198 LET N = 100 Read 100 voltages into the V array beginning
118 LET C = 50 with the 50th channel.

126 DIM V(13,18)
139 CALL AISQV(N,C,V(1,1),E)

13-4

External Subroutines
13-9. AOV (Digital to Analog Conversion)

The AOV routine converts digital information to analog voltage output.

Format
CALL AOV(numb,achan,volt,error)
Parameters
numb the number of channels to be output. If numb is negative, the analog
output is paced by the system pacer.
achan array containing channel numbers corresponding to voltages in volt array.
volt array of voltages to be output to the channels defined by achan.
error variable set to one of the following values upon return from the routine:
0 = No error.
1 = Overload has occurred. The gain you specified is outside the range of
the digital-to-analog converter.
2 = Pace error. The subsystem was not ready when a pace pulse occurred.
Normally this is caused by too rapid a pace rate or failing to turn off
the pacer after a paced operation.
Example

303 CALL AQV(25,C(1),V(1),E) A Convert data from channels in the C array to
analog voltages and store in V array.

13-5

External Subroutines

13-10. NORM

The NORM routine normalizes the subsystem, resets it to a home or known state.

Format

CALL NORM [(unit)]

Parameter

unit HP 2313/91000 unit number. This number is defined as part of the
Instrument Table. See paragraph 13-2. If the unit number is going to be
supplied, the NORM subroutine must be modified in the Branch and
Mnemonic Tables to accommodate the parameter. If not, it is assumed to be
one.

Unless specifically excluded, all numbers are floating point numbers. Either the actual number or a
reference to the number may be given.

Example
228 LET Z = 2 Set subsystem unit equal to 2.
210 CALL NORM(Z) Normalize the HP 2313 Subsystem.

All DACs (Digital to Analog Converters) are set to 0. The HP 2313 pacer and the LAD (Last Address
Detector) is turned off. The gain settings on the LLMPX channels are not changed.

13-6

13-11. PACER

External Subroutines

The PACER routine sets the pace rate of the HP 2313 system. The HP 91000 Subsystem pacer is not
controlled by this call.

Format

Parameters

rate

mult

start

unit

CALL PACER(rate,mult,start[,unit])

basic pacer rate in microseconds. Basic rate must be between 0 and 255
inclusive.

rate multiplier. This parameter specifies one of eight ranges (0 - 7) which is
a power of ten multiplier applied to the basic pace rate.

For example:

rate = 25 (25 microseconds)

mult 3 results in a pace period of 25 milliseconds.

external and internal start/stop control for the pacer.

Change Period or External
Value Start/Stop Start/Stop
0 Immediately Disable
1 Next pace pulse Disable
2 Immediately Enable
3 Next pace pulse Enable

HP 2313 unit number. This number is defined as part of the instrument
table. See paragraph 13-15. If unit is to be supplied, the PACER subroutine
must be modified in the Branch and Mnemonic Tables.

13-7

External Subroutines

If start is zero, a 10-millisecond delay is inserted by the PACER routine. This allows time for the
analog input or output statement to be executed so that no pace error occurs.

Example
102 REM NORMALIZE SYSTEM Perform a paced reading on a single channel
11@ CALL NORM with a period of 1 millisecond.
203 REM RATE = 1*19t3 MICROSECONDS
219 CALL PACER(1,3,%)
322 REM TAKE 2% READINGS FROM CHANNEL 5
318 CALL AISQV(20,=-5,V(1),E)
4% REM TURN OFF PACER
419 CALL PACER(#3.,0,0)

13-12,

RGAIN

The RGAIN routine tells you what the gain setting is on a particular channel.

Format

CALL RGAIN(chan,gain)

Parameters
chan the channel number which must be greater than or equal to 1.
gain location which upon return contains the discrete number 1, 12.5, 25, 50,

100, 125, 250, 500, or 1000 representing the setting of the gain amplifier on
that particular channel.

The gain for any particular channel is initially set during system configuration. This call allows you to
determine the present gain setting of any channel.

Example

40@ CALL RGAIN(55,X) Determine present gain on channel 55 and store

13-8

it in X.

External Subroutines

13-13. SGAIN

The SGAIN routine sets the gain for all channels in a group.

Format

CALL SGAIN(chan,gain)

Parameters
chan LLMPX channel number which must be greater than or equal to 1.
gain value of the gain to which you wish a specified channel to be set. It should

be one of the discrete values: 12.5, 25, 50, 100, 125, 250, 500, or 1000. These
are the only values available on the multiplexers. If the gain specified is
not one of these, it will be set to the next lowest gain in relation to its
absolute value. If it is < 12.5, 12.5 is used. For example, 5 or —5 will be set
to 12.5, — 999 will be set to 500, and 1001 will be set to 1000.

In multiple channel groups all of the channels in the group have the same gain, so changing the gain
on a single channel sets all of the channels in the group to the new gain. This does not apply if the
groups have been specified as one channel per group during configuration.

Example

50@ CALL SGAIN(CH,12.5) The channel CH is set to 12.5.

13-14. HP 2313/91000 SUBSYSTEM ERRORS

All error messages generated by the previous subroutines take the following form:

ERROR name-numb IN LINE xx

where name is the module name, numb is the error type, and xx is the line in which the error occurs.

The following is a list of HP 2313/91000 Subsystem errors (name-numb values):

HLMPX/LLMPX

ADC-1 Driver timeout
ADC-2 Parameter value outside defined range
ADC-3 Attempt to set gain on HLMPX channel or HP 91000 Subsystem.

DAC

AOV-1 Driver timeout
AOQOV-2 Addressed channel undefined.

13-9

External Subroutines

13-15. HP 2313/91000 TABLE PREPARATION

In order to use the HP 2313/91000 Subsystem subroutines you must provide information about the
subsystem which is incorporated in the Instrument Table (see paragraph 13-2).

You must also add the names of the subroutines you want to use to the Branch and Mnemonic Tables.
Generation of these tables is described in the HP 92064A RTE-M System Generation Manual. A list of
the RTMTG commands required to add these subroutines is given there.

13-16. HP 2313 SUBSYSTEM CONCEPT

Figure 13-1 illustrates the concept of the HP 2313 Subsystem configuration. A subsystem is defined as
the equipment occupying a computer I/O slot. Note that in the figure, the HP 2313 is one subsystem
(including all three boxes) having one I/O slot number, and the HP 91000 DAS Card is another
subsystem occupying an I/O slot number. The BASIC software treats the HP 91000 exactly like an HP
2313 Subsystem. The only difference is that there are no low-level multiplexers or Digital-to-Analog
cards in the HP 91000.

HP 2313 SUBSYSTEM

HP_COMPUTER 12768-60007 CHAN 1

MAINFRAME CARD 1 CHAN 2

(80X O : CHAN n

02313-60020

)t: ; CHAN n+1

INTERFACE CA.RD2 CHAN :*2
CARD

[]
- CARD n

HP 91000 12768-60007

DAS o] MAINFRAME [cARDT]
suBsYSTEM[g (BOX 1)

INPUTS

1276B-60007
L gw] MAINFRAME [CARD 1
A [carD 1]

1. The HP 2313 HLMPX and LLMPX input cards are divided as follows:

High-Level Multiplexer 16-Differential inputs
32-Single ended inputs

Low-Level Multiplexer 16-Differential
2. All HP 2313 HLMPX and LLMPX cards are numbered sequentially for programming purposes.

3. The HP 91000 DAS has either 8 HLMPX differential inputs or 16 HLMPX single-ended inputs.

Figure 13-1. HP 2313 Subsystem Configuration
13-10

External Subroutines

13-17. HP 2313 CARD CONFIGURATION

The configuration of the various types of cards in an HP 2313 Subsystem must follow the conventions
given in the HP ISA FORTRAN Extension Package Reference Manual. If expansion is anticipated,
configuration can include blank slots to accommodate future cards. The blank slots will then have
channel numbers assigned to them, but cannot be accessed until the hardware is added.

13-18. HP 2313/91000 CHANNEL NUMBERING

As a result of physically placing all high-level multiplexer (HLMPX) and low-level multiplexer
(LLMPX) cards in the required order, and then specifying how many of each type there are, all of the
multiplexer channels will be assigned a number starting with 1 for the first specified channel and
ending with n for the last. It is your responsibility to record the division line between channel numbers
as shown in the following example.

CHANNEL NUMBERS TYPE
1
2 HLMPX
: single-ended
32
33 HLMPX
34 differential
48
49
50
: Blank
64
65 LLMPX
66 Gain = 25
72
73 LLMPX
74 Gain = 100
75 1 channel
76 groups
77
78
79
80

Detailed channel numbering information is given in the HP ISA FORTRAN Extension Package
Reference Manual.

13-11

External Subroutines

13-19. SETTING GAIN

Gain must be specified for low-level multiplexer channels. At system generation time a gain is
assigned to a group of channels which is used until changed by the SGAIN command. Low-level
channels can be configured into groups of 1 to N channels where N is the total number of low-level
channels in a subsystem.

All of the channels in a group have the same gain, so if the gain of one channel in a group is changed by
the SGAIN command, all channels in that group are changed to the specified gain. If programming the
gain of each channel independently is required, then the groups would consist of only 1 channel. It
might be noted that the execution of the SGAIN command does not have any direct effect on the
hardware, but simply changes the group-gain entry in the configuration table. When a reading is
taken, this table is read to determine the gain with which to set the corresponding multiplexer card,
and the appropriate conversion factor to compute the actual terminal voltage. Therefore, the SGAIN
command only has to be issued to change the table and does not have to be issued following a system
normalize command or before each reading.

13-12

External Subroutines
13-20. HP 6940 MULTIPROGRAMMER SUBSYSTEM

The HP 6940 Multiprogrammer is the master control unit for bidirectional data transfers (i.e., output
data distribution/input data multiplexing). The HP 6940 can be used in a single-unit system employ-
ing from one to fifteen plug-in input/output cards, or in a multi-unit system consisting of up to 8 HP
6940 master units each with up to fifteen HP 6941A extender units. Each extender unit can also
accommodate up to fifteen input/output cards. The digital I/O capabilities include direct or isolated
digital input and interrupting event sense input, solid-state digital output, relay register output,
stepping motor control, voltage and current DAC, programmable timers, and pulse counters.

13-21. HP 6940 SUBSYSTEM SUBROUTINES

A series of subroutines are used to operate the subsystem. They vary depending on the characteristics
of the particular device. These subroutines are called in the same way as other BASIC subroutines:

CALL name(parameters as required)

Each call is listed in alphabetical order by name.

13-22. DAC

The DAC subroutine converts digital information to analog.

Format

CALL DAC(chan,value)

Parameters
chan number of the analog output channel.
value either the voltage or current (depending on the hardware) to be output by

the DAC. (Current is in milliamperes.)

DAC causes the desired analog voltage or current value (based on value) to be output on the channel
defined by chan.

Example

132 CALL DAC(1.,18) Outputs 10 volts on channel 1.

13-13

External Subroutines

13-23. MPNRM

The MPNRM routine clears the event sense mode and erases the channel/bit to trap number corres-
pondence. This call should be issued before any SENSE calls to insure there are no residual definitions
from previous programs. This command also negates any previous SENSE calls.

Format

CALL MPNRM

13-24. RDBIT

The RDBIT subroutine checks the state of a specified bit on a channel.

Format

CALL RDBIT(chan,nbit,bit)

Parameters

chan number of the channel being read.

nbit the bit position starting from the right with bit 0.
bit state of nbit, either 0 or 1.

RDBIT reads from the specified HP 6940 channel the state of a certain bit. Bit positions havinga 1 or 0
may represent relay contact opening or closing. The precise state is a function of the particular
hardware and its interface with the computer.

Digital input can be performed in two modes, either with or without wait for the input card flag. The
flag is set by making the channel number negative in the RDBIT call.

Examples
16@ CALL RDBIT(~1,3,®) Performs digital input with wait from channel 1
bit 3.
2% CALL RDBIT(1,2,B) Reads a bit from channel 1, bit position 2 into

location B without wait.

13-14

External Subroutines

13-25. RDWRD (Read Channel)

The RDWRD subroutine reads the contents of a channel into a word.

Format

CALL RDWRD(chan,word)

Parameters
chan number of the channel being read.
word location into which the results of the information from the channel will be

placed.

The RDWRD routine reads the HP 6940 interface board on the specified channel and places the twelve
input bits into the twelve low-order positions of the location defined by word. The four high-order
positions are zeroed. It is possible to read any digital signal up to 12 bits wide. The signals may
represent any type of device in any combinations.

Digital input can be performed in two modes, either with or without wait for the input card flag. The
flag is set by making the channel number negative in the RDWRD call.

Examples
126 CALL RDWRD(1,W) Reads a complete word of information from
channel 1 and places the information in location
Ww.

203 CALL RDWRD(-1,W) Digital input is performed with the wait flag set.

13-16

External Subroutines

13-26. SENSE

The SENSE (Event Sense) routine senses a change in the bit pattern.

Format
CALL SENSE(chan,nbit,bit,trapn)
Parameters
chan number of the channel being sensed.
nbit bit position starting from the right with bit 0.
bit) state of nbit, either O or 1.
trapn trap number to which the sensing is directed.

The SENSE subroutine allows you to ask the hardware to constantly monitor for the presence of a
specified condition. Specifically, the two conditions that can be sensed are:

® a given bit position becoming 1,
® a given bit position becoming 0.
As soon as one of the conditions is met, an interrupt is set and the associated TRAP is initiated. The
condition being met in one direction, and thereby causing the interrupt, does not imply any interrupt

in the opposite direction. If the SENSE is upon a given bit becoming 0 and that bit changes from the 0
condition, no action results in BASIC.

The SENSE command is designed for the HP 69434 Event Sense Card only. If the SENSE command is
addressed to any other card, the following message is given:

ERROR A6940-2 IN LINE nnnn

where nnnn is the line number.
The HP 69434 A card is operated in the “not equal” mode (jumper W3 in position D on the card). In this

mode, an event is detected when the external data is “not equal” to the reference bit (parameter bit in
the SENSE call).

13-16

External Subroutines

Example

Time the duration of the “on” (1) condition of bit 4 on channel 2.

323 TRAP S5 GOSUR 520 Define TRAP 5.

313 TRAP 6 GOSUB 640 Define TRAP 6.

323 SENSE(2, 4, 1, 5) Sense when bit 4 of channel 2 changes from 0 to
. 1.
* Execute TRAP 5.

S5@2 CALL TIME(X) Record time when bit changes. Then sense when

518 SENSE(2, 4, @, 6) turns “off” (1 to 0) and execute TRAP 6.

520 RETURN

626 CALL TIMECY) Record time when turns off.

613 LET Z = ¥ - X Compute interval between on and off.

62@ PRINT "TIME INTERVAL = “;Z Printinterval.

633 SENSE(2,4,1,5) Sense “on” again.

6473 RETURN

13-27. WRBIT

The WRBIT routine writes a bit onto a channel.

Format

CALL WRBIT(chan,nbit,bit)

Parameters

chan number of the channel.

nbit bit position starting from the right with bit 0.
bit state of nbit, either a 0 or 1.

WRBIT writes a single bit on the specified channel of the HP 6940. The bit can turn a light on or off,
close or open a relay, or perform any other discrete function.

Digital output can be performed in two modes, either with or without wait for the output card flag. The
flag is set by making the channel number negative in the WRBIT call.

Examples
186 CALL WRBIT(1,3,2) Write a 0 bit onto channel 1 position 3 without
wait.
26@ CALL WRBIT(-!,3,@) Perform digital output with wait.

13-17

External Subroutines

13-28. WRWRD (Write Channel)

The WRWRD routine writes the contents of a word onto a channel.

Format

CALL WRWRD(chan,word)

Parameters
chan number of the channel.
word location from which the information is written.

WRWRD writes on the channel specified, the contents of the word stated by the parameter word. This
provides a 12-bit parallel digital output which corresponds to the 12 least significant bits (right-most
bits) of word. Depending upon the associated hardware, lights will be operated, relays closed, etc.

Digital output can be performed with or without wait for the output card flag. The flag is set by
making the channel number negative in the WRWRD call.

Examples
128 CALL WRWRD(1l,W) Writes the lower 12 bits of information from the
location W onto channel 1 without wait.
20@ CALL WRWRD(=~1,W) Performs the same output with wait.

13-29. HP 6940 SUBSYSTEM ERRORS

All error messages generated by the previous subroutines take the following form:

ERROR name-numb IN LINE xx

where name is the module name, numb is the error type, and xx is the line in which the error occurs.

The following is a list of HP 6940 errors.

INPUT/OUTPUT CALLS

A6940-1 Driver timeout.

A6940-2 Parameter value outside defined range.
DAC CALL

DAC-1 Driver timeout.

DAC-2 Parameter value outside defined range.

13-18

External Subroutines

13-30. HP 6940 TABLE PREPARATION

In order to use the HP 6940 subroutines you must provide information about the subsystem which is
incorporated in the Instrument Table (see paragraph 13-2).

You must also add the names of the subroutines you want to use to the Branch and Mnemonic Tables.
Generation of these tables is described in the HP 92064A RTE-M System Generation Manual. A list of
the RTMTG commands required to add the HP 6940 subroutines is given there.

13-31. HP 6940 CARD CONFIGURATION

The configuration of the various types of cards in an HP 6940 Subsystem must follow the conventions
given below. If expansion is anticipated, configuration can include blank slots to accommodate future
cards. The blank slots then have channel numbers assigned to them, but cannot be accessed until the
hardware is added.

Figure 13-2 illustrates the concept of the HP 6940 Subsystem configuration. The cards must be
installed in the order described in the HP ISA FORTRAN Extension Package Reference Manual.

HP 6940 SUBSYSTEM
HP COMPUTER HP 6940

BOX 0O CARD 1 ——()\

P- Computer
TMuseum

HP 12556
Interface CARD 2 o

Card

L

CARD 15p—0O

HP 6941
BOX 1 CARD 1 —O
MAXIMUM OF 240 12 BIT

CARD 2———0 > DIGITAL 1/O
CHANNELS/PER 6940

o

—o0

HP 6941
BOX 2 CARD 1 }——0O

hal

CARD 2 ——oJ

l—— CARD 15}——O

TO AN ADDITIONAL
13 HP6941 EXTENDER
UNITS FOR A TOTAL
OF 15 PLUS THE
MPE340 MASTER
CONTROL UNIT.

Figure 13-2. HP 6940 Subsystem Configuration

13-19

External Subroutines

13-32. HP 6940 EXPANSION

The system may be expanded by adding additional HP 6940 Subsystems or by adding HP 6941
Extenders to existing subsystems. The card order applies to each HP 6940 added. The card order also
applies to the slots beginning with slot 401 in the 6940 through slot 414 in a HP 6941, if one is added.
Remember that Event Sense cards are not allowed in the HP 6941.

13-33. HP 6940 CHANNEL NUMBERING

The channels are numbered sequentially starting after the last HP 2313 channel number. If there is no
HP 2313, the first HP 6940 channel is 1.

Figures 13-3 and 13-4 illustrate two channel numbering schemes and the effect of expanding the
system in one of the two ways described above. Assume that the system shown in the examples has 96
HP 2313 channels.

Detailed channel numbering information is given in the HP ISA FORTRAN Extension Package
Reference Manual.

CHANNEL NUMBERS 6940/6941 SLOT NUMBERS CARD TYPE
97 400 Event Sense
98 401 Event Sense
99 402 Digital 7O
1st P : . '
6940 108 411 Digital /O
109 412 Voltage DAC
110 413 Current DAC
\ 111 414 Current DAC
112 400 Event Sense
13 401 Digital VO
2nd . . .
6940 . . .
126 414 Digital /O

Figure 13-3. Channel Numbers for Additional 6940

13-20

External Subroutines

CHANNEL NUMBERS 6940/6941 SLOT NUMBERS CARD TYPE
97 400 Event Sense
(98 401 Event Sense
99 402 Event Sense
100 403 Blank cards for
101 404 future Event Sense
1st 102 405 expansion
4
6940 103 406 Digital /0
111 413 Digital 1/O
112 414 Blank (future Digital I/O)
113 400 Vottage DAC
4
6941 { 114 401 Current DAC

Figure 13-4. Channel Numbers for Addition of a 6941 Extender

13-21

External Subroutines
13-34. HP 7210 PLOTTER

The plotter draws precise lines on a paper surface that is a maximum size of 15 by 10 inches. The lines
are drawn by a pen on the plotter which moves from a desired point to some other desired point in
either a pen-up (no line) or pen-down position. To facilitate the drawing of these lines, several routines
have been written for your use with BASIC programs. The routines can be separated into two
categories:

® those that draw characters (alphabetic characters and special symbols), and
® those that draw lines.

Figure 13-5 at the end of this section contains a program which uses most of these routines, and figure
13-6 contains a program which uses some of the special routines (e.g. scale, axis, lines).

The HP 7210 Plotter routines interface with the RTE Driver, DVR10. There are two versions of this
driver. The Complete Plotter Driver DVR10 supports both character and line drawing routines. The
Minimum Plotter Driver DVR10 supports only line drawing routines. Refer to the HP 92064A
Software Numbering Catalog for the module names and part numbers of these drivers.

13-35. AXIS

The AXIS routine plots one axis (horizontal or vertical) of a graph with a specified axis label, a
specified length, and a specified value at each inch marker.

Format
CALL AXIS(x,y,"label” length,angle,min val, inc val)
Parameters
x horizontal coordinate.
y vertical coordinate.
label axis label (Enclose in quotes as a literal string.)
length length of axis in inches.
angle angle of axis in degrees. 0° is horizontal, angle increases in counter-clockwise
direction.
min val minimum value of axis (may be calculated with SCALE routine).
inc val incremental value (may be calculated with SCALE routine).

Parameter length can be positive to place label counterclockwise to axis (as in y axis) and negative to
place clockwise (as in x axis).

SCALE must be called before AXIS if points on the graph are scaled by SCALE. AXIS calls the SYMB
routine to plot the labels 0.14 inches high.

Numbers are printed with .07 inch character height. Since X and Y always refer to the origin of the
axis, leave at least .5 inch for axis label and numbers.

13-22

External Subroutines

Example
182 CALL AXIS(@3,3,"PS1'",18,93,1,1) Plots the Y axis with the label "PSI”
on the counterclockwise side, 10 inches
long at 90 degrees.
13-36. FACT

The FACT (factor) routine sets the ratio between the horizontal and vertical axis.

Format

CALL FACT(x,y)

Parameters
x horizontal axis
y vertical axis

FACT and SFACT are interrelated routines. Once SFACT is used to establish the graph limits (paper
size), FACT does not need to be called unless you want to change the scale relationship.

Initially the horizontal and vertical axis in FACT are automatically set to 1 (e.g. the magnitude of 2
equals two inches in both directions). If you wish to have something plotted at half size, and SFACT
has been set to 15 X 10, set FACT (.3333,.5) in the program. x and y are multiplied by 1000 plotter
increments per inch when the new scaling factor is established.

The following equations give the actual translation from the X,Y in the plot call to the value actually
put out by the plotter.

Xout = 1000.0 * Xm * Xfact

Yout = 1000.0 * Yin * Yfact

Xin is X in PLOT call. Xy, is X in FACT call (set to 1 originally). Y,,is Y in PLOT call. Y is Y in
FACT call (set to 1 originally).

13-37. LINES

The LINES routine plots a line and/or symbols through successive data points in arrays previously
scaled by the SCALE routine.

13-23

External Subroutines

Format
CALL LINES(x(1),y(1),numb,scale,cntrl,symb)
Parameters
x array scaled for the abscissa.
y array scaled for the ordinate.
numb number of points to be plotted.
scale integer that specifies the point to be scaled.
1 = every point.
2 = every second point.
n = every nth point.
cntrl control value:
0 = line plot only.
1 = symbol at every point with line.
—1 = symbol at every point.
2 = line and symbol at every second point.
—2 = symbol at every second point.
n = line and symbol at every nth point.
—n = symbol at every nth point.
symb number of centered symbol to be plotted (see SYMB routine).

Since the LINES routine requires the adjusted minimum and delta values produced by the SCALE
routine, SCALE must be called before LINE for each graph.

Before calling this routine, the pen should be moved to the point 0,0 on the graph, and the origin
should be set at that point with LLEFT.

13-38. LLEFT

The LLEFT routine lifts the pen and moves it to the lower-left corner.

Format

CALL LLEFT

When LLEFT is called, the internal x and y references are set to zero. This provides a defined reference
for starting a plot. The pen is left in the up position at the completion of this call. This means that a call
to PLOT must be made to put the pen down.

13-24

External Subroutines

13-39. NUMB

The NUMB routine plots a number, with or without the decimal point, at a specified height, location,
and angle.

Format
CALL NUMB(x,y,height,numb,angle,digits)
Parameters
x horizontal coordinate of lower left corner of number.
y vertical coordinate.
height height of number in inches.
numb number to be plotted.
angle angle at which the number is to be plotted.
digits number of digits.
0 = print the decimal point of an integer.
—1 = suppress the decimal point.
n = number of digits to print to the right of the decimal point (maximum of
seven).
Example
123 CALL NUMB(S5.32,8.79,08.1,8.8,-1) Plot three numbers .1 inches high, with

113 CALL NUMB(6¢3,8¢79,8¢1,J,8.2,~-1) decimal point suppressed, at 8.79 inches

1260 CALL NUMB(7+16,8.79,08.1,Ks8.0,-1) @bove0,0and532,6.3,and7.16 inches
to the right of 0,0.

13-40. PLOT

The PLOT routine moves the pen from an origin to a destination.

Format

CALL PLOT (x,y,pram)

Parameters

x horizontal coordinate in inches.

y vertical coordinate in inches.

pram constant or variable name set equal to one of the following:
—2 = move with pen down; consider the point where the pen stops (x,y) as the

new origin,

—3 = move with the pen up; consider the point where pen stops as new origin.
+2 = move with the pen down; origin unchanged.

+3 = move with the pen up; origin unchanged.

13-25

External Subroutines

If the LLEFT routine is called first to establish the lower-left corner, the pen is left up. The PLOT
routine must be called as follows to put the pen down:

CALL PLOT(0,0,2)

The parameters of the routine determine whether the origin is the original reference of the lower-left
corner of the paper or the last known position from the previous plot.

Example

Plot a rectangle 8.5” by 11” starting at the origin (assuming the pen starts at the origin and that
scaling has been set at 15 by 10 inches by calling LLEFT and SFACT(15,10)).

128 CALL PLOT(@.,9,2) Sets the pen down.

112 CALL PLOT(11+,0.,2) Moves the pen from X,Y =0,0 to X,Y = 11,0.
126 CALL PLOT(ll+,8.5,2) Moves the pen from X,Y = 11,0 to X,Y = 11,8.5.
133 CALL PLOT(Be«,8.5,2) Moves the pen from X,Y = 11,85t X,Y = 0,8.5.
143 CALL PLOT(BesT¢52) Moves the pen from X,Y = 0,8.5 to the origin.

13-41. PLTLU

The PLTLU routine defines the logical unit number of the plotter for all the plotter calls.

Format

CALL PLTLU(u)
Parameter

lu logical unit number of the plotter.

The PLTLU routine must be the first routine called to establish the logical unit number.

13-42. SCALE

The SCALE routine scales an array of numbers to fit a specified size graph; the values generated are
used by the LINES and AXIS routines.

Format

CALL SCALE(array(1),length,num pts,scale)

Parameters

array an array of values.

length length of axis in inches.

num pts number of points to be plotted.

scale integer specifying the points to be scaled:

1 = every point.

2 = every second point.

n = every nth point.

13-26

External Subroutines

Separate calls are required for X and Y axis.

The adjusted minimum value is a number less than or equal to the minimum data value. The adjusted
delta value is the result of subtracting the minimum data value from the maximum data value,
divided by the length of the axis and adjusted to provide one-inch increments that will cover the data.
The adjusted scale values are used by the LINES and AXIS routines.

The adjusted values are stored following the array. The minimum value of Y is stored in Y(np*k+1)
where np is the number of points to be plotted; the delta value is stored in Y(np*k+2). Therefore, the
array must be dimensioned (k+2) locations larger than (np*k), which is the number of locations

necessary for data points. Normally, k equals 1, so an array Z of ten data points would be dimensioned
as Z(12).

Example

18 DIM X(52),Y(52) Dimension X and Y arrays.

12¢ CALL SCALE(X(1),6¢5,58,1) Scale every point in a 50 point array, fitting X
113 CALL SCALE(Y(1),133,53,1) valuesona6.5inch X axis and Y values on a 10
inch Y axis.

13-43. SFACT

The SFACT routine sets or adjusts the plotter for the particular size paper being used.

Format

CALL SFACT(width,height)

Parameters
width width scale for horizontal movements.
height height scale for vertical movements.

SFACT and FACT are interrelated routines. Once SFACT is used to establish the graph limits (paper
size) FACT does not need to be called unless you wish to change the scale size. Initially the width and
height parameters in SFACT are automatically set to 10 inches by 10 inches.

SFACT should be used as follows:
a. Place the paper on the plotter bed.

b. Manually adjust the pen and carriage travel to the lower left and then upper right corners of the
paper (image area if desired).

c¢. Call SFACT with the parameters set to the paper size that was set up in step b.

After the plotter is adjusted and SFACT has been called with the proper dimensions, the horizontal
and vertical dimensions in other calls are set for a one-to-one relationship.

13-27

External Subroutines

Example
18 CALL PLTLUC(CI3) The pen moves five inches horizontally and five
20 CALL LLEFT inches vertically for a paper size of 15 by 10
25 CALL SFACT(15,13) inches.

3¢ CALL PLOT(2.,83,2)
4@ CALL PLOT(S5,5.,2)

13-44. SYMB

The SYMB routine is used when characters are to be plotted.

Format
string variable
CALL SYMB(x,y,size, "char” ,theta,pram)
integer
Parameters
x horizontal starting coordinate.
y vertical starting coordinate.
size character height in inches.
“char” actual characters to be plotted enclosed in quotes (string literal).
string variable string variable containing characters to be printed.
integer any single integer 0 through 25 (without quotes) representing a special
character.
theta number of degrees counterclockwise that the line of plotting is to be
rotated.
pram constant or variable name set equal to one of the following:
1 = plot the characters between the quotes or in the string variable.
—1 = draw the special character and leave the pen up.
—2 = draw the special character and leave the pen down.

The SYMB routine is used to write characters on the paper if pram = +1. If pram = -1 or -2, the
special character represented by the ASCII number is drawn. If the pen is left down, moving the pen to
the place where the next character is to be drawn causes the special characters to be connected like
points along a graph. If the pen is left up, the points are drawn without intervening connecting lines.
When drawing graphs, it is recommended that symbols that are centered be used. The coordinates
specified by you refer to the lower left corner of an imaginary box enclosing the character to be drawn.
If you wish to continue to call PLOT and have the set of ASCII characters be contiguous, place the
value 9999 as the x and y coordinates. Be aware that the x and y coordinates from one subroutine are
not transmitted to the other subroutines. You can use WHERE (see paragraph 13-46) to supply
missing information when you transfer from the PLOT to the SYMB routine, etc.

13-28

External Subroutines

The following are the ASCII characters which may be enclosed within quotes:

A through Z and 0 through 9.

@I \ 1! “ # 8 % & O *, - ./70:,; <=> 17 “space’

These symbols are centered and have their ASCII reference number immediately above the symbol:

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25

MOA+XOAXZYHXX | & - | | <=3 > a2 %

13-45. URITE

The URITE routine lifts the pen and moves it to the upper right corner of the paper to facilitate
unloading the paper at the end of a plot. This routine does not affect any of the coordinates.

Format

CALL URITE

13-46. WHERE
The WHERE routine indicates the current position of the plotter pen.

Format

CALL WHERE(x,y)

Parameters
x variable in which the horizontal coordinate is returned.
y variable in which the vertical coordinate is returned.

13-47. TABLE PREPARATION

In order to use the plotter subroutines, you must add the name of the routines to the Branch and
Mnemonic Tables. The procedure for doing this is described in the HP 92064A RTE-M System
Generation Manual. The required RTMTG commands are provided there.

13-29

External Subroutines

1 # weidoig ojdweg [013uo) 191301 "G-€1 °an3ig

[¢1.0- BT 44
*J8uI0D

wd0e 40 ONJu LNINd 2C¢

WBu-seddn ey; 0} ABMm ey} jo N0 peaow sy ued eyf 11en ¥y 62s
(1'@'udne»(/° 8 () BXEN,'2°'6666'6666)BWAS 1vD UIS
‘pausep euj meu yoBe jo bujuuibeq oy} 1e ued ey} (112 uT+iN{1 0 2° ‘G 9 S8 1) BKHAS 11D ¢S
Buuoiysod js1y AQ peyord 6.e s1e)98./8Yy0 bujurBe. Y (1/0/u60L9CPR2TH, 2/ L°9'C2°C)URNAS 1Tv] U6V
(1@ wZAXMANLSHOGONKINTINIW!Z " 6666°6666)8nAS 11vD ¢y

(1°9'ud300’2°'6666°6666)8WAS NvD k(P
(1@ udAY, 27 1°2 6L 1) 8kAS 19D woY
(12a’gv1°°¢ £ p*€)aLAs Tvd dap
. wST10IWAS CGANTINIING &Y J3T Ebp

Pefoqs] 6.8 seuy omi &4l (1'n'qv’1°'g2l®a’g eIguas 1vd uce

SI0AWAS 0F¥IMAY,mgy 13T €2y

J tx3IN wiy
G6468ARx 130 vop

‘52 [(1=fa’3%2 4 X)94AS V) e6€

ybnony) Gi S/e40BmRYO 10/d 0} pesn S1 ABo| eums 8y] Ge 0L S1ed dUS4 (115
§L%¢ma 13T w¢e

T¢ax 31 a0¢€

‘PoNOId 1514 018 i YBNON} § SIB)IBIBYD (81D 666504 ux ix wn snm

. . od FO8AR d “y
ods ouy juﬁwcuimmosingouou&co.su (I=?@?2¢2° A X)EWAS 1Vv) ace
ued s8] 8y JoyBeoy UOnNI9Xe GINAS, ISy eyl Pl 0L 9m9 MU4 cas
uonysod Bugm)s ey 0} jues st ued ayj uey) pug (0L'St) St gma 131 swn
Aq seyour o} ;nbe epvu st epnyubBuws ey BUIOI s n *Tax ._..ﬂ Gag
PUBY-YB}-10MOf 8y} JO UoSOd UMOUY 8y} OF iybnoig (W1461)1Iv4s ¥ ve2
st ued ey} ‘umourun s; ued ey} jo uoysod ey sy 143797 Mv) el
(Tl uX3d 3Mdu’‘Se /) RUAS 1TVD 4l
“8ulf pios & buronpoud Aqesew 0 OLXIN nqz

(666°666) 40 sejeuIps000 Bukoidwe Aq uomsod ©9+Can 137 462
POSN-ISBI S} WL} UMBID 6/8 SI6J0BIBYD juenbesqns vl xm_ﬂ ..hvm
e ryi pue Jurod Buners sedosd eyl 1e ued ey 808K A6668AX LY Ay
M b :. (Z='0'G1¢Z2* A x)aWwAS Tv)D wee
03 uaniB st ued ey) jo Bumes BuLI Oy} Jey) 8JON "UOB) i1 Tey sp ’

-UBUO AUB Ul S16}0BI8YI MBID O} AIGE B} SBIBASUOL v m»: ey nu_, S M_ MM
-ep Siyj ‘uobBxey B MBID O} Pesn S| 16}0BIBYD 2 A L._.UJ a5l
.BUiIOpUN,, 8y} puB jeses umbB Si J0}0B] &BIS By} eax 137 el
(Apf@9) LIV4S Tvd wisl

LS ¥ 1Y (12

(€='¢'¢)100a 1V P13

(22'ug) 13v4ds 1v) upl

‘Suener eyl jo 8215 By} 0} 0SB S6}jddE J0}0B) (1@ 4lovdSu*S2° ‘6 1°CIRWAS 1Tv) egl

8/B80S JUBIBIHIP 8Y) 1B} Q0N X0q 18618} jBuLIBLO ey} jo (2¢1'1)107d Iv) w2l
}iey-euo PEBOS 8q O} UMBID XOG PUOIBS 8y} Busned (2'6°1)107¢ VD (A8
02°0E) 01 185 s1)y ewn pucoes eyl (oL'sL) O i8S (256 £)10%¢ 1I¥D 2el
S, 1OV4S,, oW ISI§ 8L '80IM) XOQ B SMBID LUOHISS (2'1°6¢°/)107d 1) 1]
S1y} ‘92151040 U0 1 DV S, JO 19846 By} 8lBASUOWSP O (C*1°1)107¢ v) 28
2 01 lsv 3C4 Al

139377 1%y @as

(M1G1) LIv4s 1vd ¥

wORIO L0dw AMINg QP
eaxzOmy 437 eC

17 430 @e

(aglsv wio

LA}

1344S

12448

E=<>t /= x(), 3 88T~ \[]0
68LISVYELCTO
ZAXMANLSYOJONWINMIHO 430288

S 108WAS (03¥3IN3IINN
FEVL+~=5T |~
ST08HAS 03IYIINID

| XKHAZXSOX+ VO

13-30

External Subroutines

10
2
Y]
4
50
6y
7u
8¢
Qu
16
i12
1292
131‘/&
142
152
{64
17A
1E2
192
2em
2i7
2ev
24
240
250
26
274
282
2G¢
Jun
14
NYas
B3n
347
dba
404
81
A2
4380
Aat
S0
12
b JARE]
537
$4:
302
55W
570
)35}
H5
Bt
nin
SHNN

REM

REM 7219 PLOTTER EXAMPLE

REM

LET N338

CALL PLTLUC(18)

CaL!, LLEFT

CALL SFACT(192,14)

CALL PLOTY(,5,6,=4)

W E M
RE™ PLOT AXES FOR X AND Y
REm
CALL AAIS(GIS,IIR‘DIANS"'-141mpuy1)
CalLl aXIS(@,1,"VOLTAGE",B,0¢,=,4,,1)
LET Fza

LET F3F+]

NE M

’E™ PLOGI CUKVES
RE M

bIm £0142),710142)
IF F=2 CaLl PLDT(t,1,=3)
FOR 132 Tt 14 STEP L1
LET x[{Ix1a+i]lal
ifF Fsl LET v[Iwiv+1l)leS8IN(I)wd
IF Fe2 LET Y[1*1R+1]13CUS(IYnd

NEXT]
KEM
rE™ SCALE AwKAY
WE ™

CaLL SCALE(X{1),14,144,1)
CapL STALE(YL1Y,1m,141,1)

M
HEM FLOT ThRE AWNRAY
KE M

Calll LINES(xU1),¥YL1Y,142,1,1,F)
IF F¢2 GOTO 15y

o
Nes PRINT PLUT NUMBER
REM

CALL 3YMR(12,72,845, 410, "FLGT a",0,1)
CALL ~NUMB(9939,9909,,15,N,8,=1)

kEm

A PRINT LEGEND

RCm

CALL SYyMr(12,2,1.9,,.2,"LEGEND",2,1)
CaLL PLUT(12,2:1.4,3)

CALL PILDT(13,3,1.6,2)

CALL Sfﬂﬁ(izg?ilnllnlbillwl'lj

CALL SYN&(‘;}:JQy,QQQQ,,lﬁ," Sink WAVE"lfﬂliJ

CAL—L 3“‘:.‘1%(12‘2'Qb'.lb’,"k(,-1]

LALL, SYMB(9YYG,505%9,,18," COSIMNE wWAVEY,n, 1)

CaLL uwITE
STyR
R

Figure 13-6. Plotter Control Sample Program #2

13-31

External Subroutines

(301d) 7 # weidoig ajdweg [o13uo) I9110[d “L-€T 2Indig

1
3ABM 3NISOD V
IABM 3NIS O P
ON3937
NBT10a8y
Qo.w._ oo.-m._ oonh oo..._ 00 Q.J
. <
=
—
D
[#)
| orh
-
B
:
9g# 107d

13-32

HP CHARACTER SET

FOR COMPUTER SYSTEMS

A

Effect of Control key * r_L @
7 TN

|+— 0000378 —»-|4— 040-0778 —-|4—100-1 378 —w-|4—140-1778 —»|
0 1

b7_—bsb5—_—___ 0 o01 o10 o11 100 101 110 1,

BITS w 0 1 2 3 4 5 6 7
bg by by by| ROW {
olof{alo 0 NUL DLE se 0 @ P ' p
olo]o]1 1 SOH DC1 ' 1 A Q a q
olof1o 2 STX DC2 " 2 B R b r
o|o]|1]1 3 ETX DC3 # 3 c S ¢ s
ol1/o|o a EOT DC4 $ a D T d t
ol1]0]1 5 ENQ | NAK % 5 E U e u
ol1]1]o 6 ACK | SYN & 6 F v f v
o[1/1]1 7 BEL ETB ' 7 G W g w
1/0/0]0 8 BS CAN { 8 H X h x
1/0{0]|1 9 HT EM) 9 I Y i y
110(1]0 10 LF suB » J 2z j z
11011 1 vT ESC + ; K { k {
111/0(0 12 FF FS , < L \ | !
1(1]0/l1 13 CR GS — = M] m }
11|10 14 SO RS . > N A n ~
111]1]1 15 sl us / ? o) _ o DEL
N———
32 CONTROL)
dpsins
<—— 64 CHARACTER SET ———]
<«—— 96 CHARACTER SET >
- 128 CHARACTER SET >

EXAMPLE: The representation for the character "K'’ {column 4, row 11) is.

b7 bg bg ba b3 b3 by
BINARY 1 001 0 1 1
N ot —n

ocTAL 1 1 3

* Depressing the Control key while typing an upper case letter produces
the corresponding control code on most terminals. For example,
Control-H is a backspace.
9206- 1A

A1

HP Character Set

g1 -90Z6

ginoany 'a1saQ = 13a 121000 00v/L0 121
ABW UONSBND ¢ £.0000 00v.E0 £9 Jo1esedag WUn % sn /€0000 00v £ 10 e
uey] Jsjeasn < 9/0000 000.£0 29 Joresedag piodsy Sy Sy 9£0000 000/10 0g
sienb3 = 50000 00v9€0 19 iojeiedes dnoin B3 5] SE£0000 00910 62
uey| s > ¥20000 0009€0 09 Joleiedag By =W sS4 $£0000 000910 8e
uoj0oIWSS ¢ £.£0000 00vSE0 65 ,odeasy 5 083 ££0000 00vS10 /2
uojoy 20000 000S€0 85 annsang & ans 2£0000 000610 9z
6 120000 00vve0 /5 WnIpap 4o pu3 W [E! 1£0000 00v¥10 s2
8 00000 000v€0 95 |8oue) Ny NVO 0£0000 000v L0 ve
! /90000 00rE€0 S5 ¥00(g UOISSIWSUBI] 4O pul g a13 120000 00vEL0 jord
9 990000 000€€0 vS 3(p} SNOUOIYOUAG ‘5 NAS 920000 000€ 10 ze
siaqunn ‘sibig [+ $90000 oorze0 (o] abpajmounoy anneban ¥ HYN 520000 ooveLo e
v 90000 000z€0 cS (3dvL) ¥ 100000 82IARQ % roa ¥20000 000210 0c
€ £90000 00¥1€0 IS (440-X) € l1ouoD 8dinaQ fg €00 £20000 00¥L 10 6l
Z 290000 0001€0 0S (3dv1) ¢ 104u0D 8dinaQ % 2oa 220000 000110 8l
L 190000 00v0€0 6v (NO-X) L 101u0D 3dIn8Q a 100a 120000 00¥0L0 Ll
0 090000 0000€0 8y adeos3 yui eleg L 37a 020000 600010 9l
ueiS ‘yse|g / 150000 00v220 it 185 1e10BIBYD Ul s 's 1S £10000 00200 Sl
luiod jewroaq 'poudd 950000 000220 9 BIBWIBIY | N0 yus & 0s 910000 000200 vl
useq 'sPUIW 'uaydAy - 550000 00v920 Sy uiniay ebeuse) o Sle} 510000 00¥900 €L
eIpa) 'ewwoy ‘ ¥S0000 000920 44 paay wiod | 44 10000 000900 2l
snid + £50000 00v520 Ev uoneinge| 1B 4 A €10000 00500 L
JB1S Msualsy - 250000 000520 44 paa4 aumM 3, 47 210000 000500 o8
sisayluaied (6uisod) by (150000 00vve0 £ uoneiNge | (eluoZLoH oY 1H 110000 00100 6
sisayluased (Buiusdo) Yo) 050000 000+20 oy aoedsxoeg % S8 010000 000+00 8
U802y 9INdY ‘aydoiisody , /70000 00ve20 6E [eubig uonuany ‘jlag 9 138 200000 00v£00 i
ubis puy ‘puesiadwy bl 9¥0000 000£20 8¢ abpajmoundy * MOV 900000 000€00 9
JEWIES! % S¥0000 00v220 L€ Ainbu3 % ON3 500000 00200 S
ubig Jejioq $ v0000 000220 9€ UOISSIWSUBI] JO pU3 5 103 00000 000200 e
ubig punod 'ubIg JaquINN # ££0000 00v120 SE 1xa] jo pu3 X5 X13 €00000 00v 100 €
NEW UoNeIoND “ 2r0000 000120 ve 1X8] 4O ueIg X X1S 200000 000100 z
UI0d UOHBWE|OX3 i #0000 00r020 € BuipesH Jo LeIS s HOS 100000 00000 L
yuelg ‘adedg 0v0000 000020 4% INN IV NN 000000 000000 0
adg by | aiig Yo enjeA oikg by | aukg yoT anjeA
Bujusep 91081840 a Bujusonw .u_:nEO SJucwWeuW a
SaN|BA (€100 SaN[BA 19120

$3P09O J9jorRIRYD 91k 9/ | ybnoiyl Oy SeNjeA [B}O0 8yl 'S8P0D j0LU0D BIB //L PuB /£ yBnosyl O SaN(eA [Bjo0 aul

(‘uEUD Siy) ul 0JazZ ase sig Aled ayl) 20S0r0 wialed jejoo ay) seonpoxd | gy.. 'aidwexa
104 SeNnjeA Oml 8yl PPE ‘PIOM SWES 8Y) U S1810BIBYD OM} JO LINEd Byl Pulj 0 0182 aiB SHA 8Y) JO 181 BY) pue (3lAq wbu)g o
040 (21AQ Yot) v 018 SIig $8IAND20 J9IORIBYD BY) UBUM PIOM UG 91 B Ul SuIBjjed |B]O0 8yl MOYS Suwn|od 91Aq 1ybu pue yaj au|

921A3p INOA IO}
Jenuew 8yl INSUOY (U0} UBIABUBPURBDS U0 Jag Buimeiq au ‘sidwexa JOJ} WBYD SIY) Ul UMOYS 3SOY) wolj Sidjoeseyd aleussie
aimisans ABW SIOIABP BWOS €/61-2E EX SNV PUB (I10SVYSN) 896L-7 €X SNY jO UonBluawaldwr SdH SMOUS 3Iqel SiyL
SWILSAS HILNAWOD HOH 13S UILOVHVHO QHVIOVI-LLITMIH

A-2

HP Character Set

19%0BIQ I3 B O} PAUBAUOD aQ piNom adeia Yai sul ‘aldwexs 104 { v
ybnouy} @) JaloeseyD ased 1addn Bupuodssnod ayj o) (~ yBnoiyl \) SIOQWAS pUB S18}18] 9SED 13m0 YIysSdn $821A8P BWOG
MOLIE ¥OBQ PUB MOLE dn 8y} AINIISGNS SIDIASP 3wog 'paAeidsip a1e aulidpun pue 18/e2 8yl 'A||BWION,
aoeds 10 ', @, '~ . se pakeidsip 8q Aew ajaiaQc
[euwId)
09z B U0 AB(dSIp 8y} SiBaI0 ., AQ Pamo||0} DS ‘BiIdwexs Jo4 '82uanbas (04UOD [B103dS B JO Ja)oBIeYD 1Sl 8yl SI adeos3,

aoeds 10 °,®. ".|l.. SB $8p02 |0JIUOD ||B ABdSIp S3DIABP BWOS paiouby 10 ‘paindsxa ‘pateldsip
S| P02 |0JIUOD BY} JI SUILLIBIBP WAISAS UNOA Ul SIEMDIEY PUB 8JEMJOS 8Y| uonejuasasdal Aeidsip piepuels ayl si SIy], S8ION D1 -90Z6
yMOLY ®OBg ‘Bulliapun - ££1000 00vLS0 S6
$BUIIIBAQ ‘apIIL ~ 9/1000 000440 9cl yMOLY AN IX8YWND 11D L ov 9€£1000 000450 v6
;90rIg (BuIsSopd) Wby { $21000 00v9.0 G2l1 12%0esg (Burso|) by [SEL000 00v950 €6
$3UIN [BOILBA ! ¥£1000 000920 velL JUBIS 8SJanay 'Useisxoeg AN ¥E£1000 000950 26
saorig (Buwado) yan } ££1000 00¥S.0 oA 19x0eig (Buluado) yan 1 ££1000 00¥SS0 16
z ¢.1000 000S.0 ccl z 2€1000 000S50 06
A 121000 00P¥L0 %44 A L€1000 Q0vySo 68
x 041000 000 .0 ocl X 0€ 1000 000vS0 88
m 291000 0oveL0 6L1 M £21000 00pES0 /8
A 991000 000€.0 gil A 921000 000£50 98
n 591000 0oveLo LIl n S21000 00¥eso S8
I 91000 00020 911 1 21000 000250 v8
s €91000 00vLL0 SHi S £21000 00%1 50 €8
i 291000 000420 4%} Y 221000 000150 Z8
b 191000 00040 €Ll @] 121000 00v0S0 18
d 091000 000020 49} d 021000 000050 08
o 2451000 00v£90 (3" sieye ende)] 211000 00pLp0 6L
BIENERIEN -Ig W1 en] u 961000 000£90 oL “eqeydiy aseq Jaddn N 911000 0004%0 8L
w SS1000 00¥930 601 W S11000 00v9v0 LL
| ¥G1000 000990 801 hl 11000 0009%0 9/
b £51000 00rS980 L01 M €11000 00pS¥0 St
I 251000 000590 901 r 211000 000S+0 vi
! LS1000 00v¥90 SOl | 141000 [6[s]244¢] €L
Y 051000 000¥90 ol H 011000 000v¥0 el
6 Ly 1000 00v€90 €01 3] £01000 [o]0}:4540] LL
} 911000 000€90 2ol E] 901000 000€¥Y0 0L
9 S¥1000 00v290 101t 3 501000 00ver0 69
p ¥ 1000 000290 00t a 01000 00020 89
el £¥1000 00v190 66 o} £01000 00¥1v0 L9
q 2y 1000 000490 86 <] 201000 0001+0 99
e L¥ 1000 00090 L6 v 101000 00voro S9
5JUBDIDY BABID) \ 0t 1000 000090 96 ¥ [BI2I8WIWOY O] 001000 0000¥0 9
aiig Wby aiig Yo snisA oilg by | aikg yeq oMeA
Bujusey Je10048YD [euitoeq Bujusew y 198Q
sen|eA 18190 sen|eA 9130

A-3

HP Character Set

RTE SPECIAL CHARACTERS

Mnemonic Octal Value
SOH (Control A) 1
EM (Control Y) 31
BS (Control H) 10
EOT (Control D) 4

9206-1D

A-4

Use

Backspace (TTY)
Backspace (2600)

Backspace (TTY, 2615, 2640, 2644,
2645)

End of file (TTY, 2615, 2640, 2644,
2645)

SUMMARY OF STATEMENTS,
COMMANDS AND SUBROUTINES |[B

B-1. STATEMENT SUMMARY

This summary of BASIC statements provides the statement names in alphabetical order with a brief
description and a reference to the paragraph or paragraphs containing a complete statement
description.

PARAGRAPH
STATEMENT DESCRIPTION REFERENCE

CALL Calls for execution of an external subroutine, optionally passing 6-2
parameters to the subroutine.

CcoMm Declares a common block to contain specified variables used 3-13
in common by more than one program.

DATA Provides data to be read by READ statements. 3-10

4-12

DEF Defines a function. 5-2

DIM Reserves storage for arrays and sets upper bounds on the 3-12
number of elements.
DIM also reserves storage for strings and sets their maximum 4-5
character length.

END Terminates execution of the current program. Last statement 3-4
in the program must be END.

FOR ... NEXT Allows repetition of a group of statements between FOR and 35
NEXT (a program loop). The number of repetitions is deter-
mined by the initial and final values of a FOR variable, and by
an optional step specification.

GOTO Transfers control to a specified statement label. 3-3

GOTO .. OF Multibranch GOTOQO transfers control to one of a list of state- 33
ment labels depending on the value of an integer expression.

GOsSuUB Causes execution of a subroutine beginning at a specified 6-1
statement label. Following execution of a RETURN statement in
the subroutine, control returns to the statement following
GOsUB.

GOSUB ... OF Multibranch GOSUB executes one of a list of subroutines 6-1
depending on the value of an integer expression.

'F EOF #/u .. . THEN Specifies action to be taken when an end-of-file condition 7-5
occurs on input from a peripheral device (see READ #/u).

IF. .. THEN Evaluates a conditional expression and specifies action to be 3-6
taken if the condition is true. The condition is a numeric or 4-10

string expression. The action may transfer to a statement label
or may be a single executable statement.

B-1

Statements

STATEMENT

INPUT

LET

NEXT

PAUSE

PRINT

PRINT #/u

READ

READ #/u

REM

RESTORE

RETURN

STOP
TRAP

WAIT

B-2

DESCRIPTION
Requests user input to one or more variables by printing a
guestion mark (?) prompt. Following the prompt, string or
numeric data is accepted from the terminal.
Introduces assignment statement that assigns one or more
values to a variable or array element. The word LET may be

omitted from the assignment statement.

Terminates a loop introduced by a FOR statement. Specifies a
variable that must match the FOR variable.

Stops program execution without terminating the program.
Prints a PAUSE message on your terminal.

Prints the contents of a list of numeric or string expressions on
the list device.

Prints the contents of a list of numeric or string variables or
expressions to a specified logical unit number.

Assigns constants and string literals from one or more DATA
statements to the variables specified in READ. Treats contents
of all DATA statements as a single data list.

Reads one or more items from a specified logical unit number.

Introduces remarks and comments in the program listing.

Resets the data pointer to the beginning of the program or to
the first DATA statement following a specified label.

Returns control from a GOSUB subroutine to the statement
following the last previous GOSUB statement.

Terminates execution of the program run.
Associates a trap number with a task.

Causes an executing program to stop for a specified number of
milliseconds.

PARAGRAPH
REFERENCE

3-11
4-7

3-5

3-7
4-8

4-13
7-9

3-10
4-9

4-14
7-7

6-1

3-4

10-11

3-15

Commands

B-2. COMMAND SUMMARY

Each command is listed by name in alphabetical order followed by a brief description and a reference
to the paragraph containing a complete description of the command.

PARAGRAPH
COMMAND DESCRIPTION REFERENCE
BACKF Backspaces magnetic tape past previous file mark on speci- 12-1
fied logical unit number.
*BR,BASIC Breaks execution of a BASIC program. 9-8
BYE Terminates execution of the BASIC Interpreter. 9-6
DELETE or DEL Deletes one or a range of more than one statement from the 9-4
current program.
LIST Lists the contents of the current program at a specified 9-7
peripheral device or to the default output device.
LOAD Loads all or a portion of a source program. 9-1
MERGE Merges a source program with a program in memory. 9-3
REWIND Rewinds magnetic tape on a specified logical unit number. 12-1
RUN Executes the current program or loads and executes a program 9-5
from a specified peripheral device, or the default input device.
SAVE Saves the current program at a specified peripheral device or 9-5
the default output device.
SKIPF Skips magnetic tape to end of current file on specified logical 12-1
unit number.
WEOF Writes an EOF mark to magnetic tape on specified logica! unit 12-1

number.

Change1 B-3

Subroutines

B-3. SUBROUTINE SUMMARY

Each subroutine is listed in alphabetical order followed by a brief description and a reference to the
paragraph containing a complete description of the routine.

PARAGRAPH
SUBROUTINE DESCRIPTION REFERENCE

AIRDV Reads HP 2313 analog input in a random manner. 13-7

AISQV Reads HP 2313 analog input sequentially. 13-8

AOV Converts HP 2313 digital value to analog output. 13-9

AXIS Plots an axis of a graph. 13-35

DAC Converts HP 6940 digital value to analog output. 13-22

DSABL Disables a specified task. 10-6

ENABL Enables a specified task, permits scheduling of a previously 10-7
disabled task.

FACT Sets the ratio between the horizontal and vertical axis of a 13-36
graph.

LINES Plots a line and/or symbol through successive data points in 13-37
arrays.

LLEFT . Lifts the piotter pen and moves it to the lower left plotter 13-38
corner.

MPNRM Clears the event sense mode and erases the channel/bit to 13-23
trap number correspondence (HP 6940).

MTTFS Writes an end-of-file or rewinds magnetic tape. 12-6

MTTPT Positions a magnetic tape forward or backward a specified 12-5
number of files and/or records.

MTTRD Read a magnetic tape data record into an array. 12-4

MTTRT Writes a record to magnetic tape. 12-3

NORM Normalizes the HP 2313 Subsystem; that is, resets it to a home 13-10
or known state.

NUMB Plots a number, with or without decimal point, at a specified 13-39
height, location, and angle.

PACER Sets the pace rate of the HP 2313 Subsystem. 13-11

PLOT Moves the plotter pen from an origin to a destination point. 13-40

PLTLU Defines the logical unit number of the plotter for all subsequent 13-41
plotter calls.

RDBIT Reads (or checks the state) of a specified bit on a channel 13-24
(HP 6940).

RDWRD Reads the contents of a channel into a word (HP 6940). 13-25

B-4

SUBROUTINE
RGAIN
SCALE

SENSE

SETP

SFACT

SGAIN
START
SYMB
TIME
TRNON

TTYS

URITE

WHERE
WRBIT

WRWRD

DESCRIPTION
Reads the gain on a particular channel (HP 2313).
Scales an array of numbers to fit a specified graph size.

Sets up link between event sense and a specified trap. Senses
a change in the bit pattern (HP 6940).

Sets the priority of a task.

Sets or adjusts the graph limits (paper size) and/or the scale
size for the plotter.

Sets the gain for all channels in a group (HP 2313).
Schedules a task for processing after a specified delay.
Writes characters on a plot operation.

Returns the time according to the system real-time clock.
Executes a task at a specified time.

Sets up a link between a trap number and a teleprinter logical
unit number.

Lifts and moves the plotter pen to the upper right comer to
facilitate paper removal.

Requests the current position of the plotter pen.
Writes a bit onto a channel (HP 6940).

Writes the contents of a word onto a channel (HP 6940).

Subroutines

PARAGRAPH
REFERENCE

13-12
13-42

13-26

10-8

13-43

13-13
10-9
13-44
10-10
10-12

10-13

13-45

13-46
13-27

13-28

B-5/B-6

APPENDIX

C

SUMMARY OF ERROR MESSAGES

Four types of errors may cause error messages: command errors, statement syntax errors, pre-
execution errors, and execution errors resulting from program execution. The numeric error codes and
their associated error messages are listed in Table C-1.

COMMAND ERRORS

Command error messages are printed following the command that caused the error.

SYNTAX ERRORS

When a syntax error in a statement is detected, an error message is printed. You may type a carriage
return and enter the statement correctly.

PRE-EXECUTION ERRORS

These errors are detected following a RUN command but before execution of the program. If no errors
are detected, the program will be executed. Otherwise, the pre-execution phase terminates with no
attempt to run the program.

Whenever possible, the line number in which the error occurred will be appended to the message in the
form: IN LINE nnnn, where nnnn is the line number of the statement that caused the error.

EXECUTION ERRORS

These errors are detected during program execution and printed as they occur; program execution
terminates.

The line number where the error occurred is appended to all run error messages in the form: IN LINE
nnnn, where nnnn is the line number of the statement that caused the error.

Error Messages

C-2

ERROR
NUMBER

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28

Table C-1. BASIC Error Messages

MESSAGE
ILLEGAL EXPONENT

NOT A FORTRAN FUNCTION
MISSING ASSIGNMENT OPERATOR
NOT A SUBROUTINE CALL

MISSING OR BAD FUNCTION NAME
MISSING OR BAD SIMPLE VARIABLE
MISSING OR BAD TRAP NUMBER
MISSING OR [LLEGAL 'THEN’
MISSING OR ILLEGAL ‘OF

MISSING OR ILLEGAL ‘TO’

MISSING OR ILLEGAL 'STEP

MISSING OR ILLEGAL SUBROUTINE
WRONG NUMBER OF PARAMETERS

MISSING OR ILLEGAL DATA ITEM
ILLEGAL READ OR INPUT VARIABLE

NO CLOSING QUOTE

MISSING OR BAD LIST DELIMITER
ILLEGAL PARAMETER

ILLEGAL STRING VARIABLE
PARAMETER NOT STRING
MISSING OR ILLEGAL SUBSCRIPT

STRING OR DIM LARGER THAN 255

ILLEGAL STRING RELATIONAL OPERATOR

STRING NOT PERMITTED

MISSING LEFT PARENTHESIS

MISSING RIGHT PARENTHESIS

UNDECIPHERABLE OPERAND

MISSING OR BAD ARRAY VARIABLE

PHASE
Syntax Check
Syntax Check
Syntax Check
Syntax Check
Syntax Check
Syntax Check
Syntax Check
Syntax Check
Syntax Check
Syntax Check
Syntax Check
Syntax Check
Syntax Check
Syntax Check
Syntax Check

Syntax Check

Syntax Check

Syntax Check
Syntax Check
Syntax Check
Syntax Check
Syntax Check
Syntax Check

Syntax Check
Syntax Check

Syntax Check
Syntax Check

Syntax Check

ERROR
NUMBER

29

30

31

32

33

34

35

36

37

38

39

40

4

42

43

44

45

46

47

48

49

50

51

52

53

54

55

Table C-1. BASIC Error Messages (Continued)

MESSAGE
ILLEGAL OR MISSING INTEGER
SIGN WITHOUT NUMBER
CHARACTERS AFTER STATEMENT END
OUT OF STORAGE
ARRAY TOO LARGE
COM STATEMENT OUT OF ORDER
FUNCTION DEFINED TWICE
UNMATCHED FOR
NEXT WITHOUT MATCHING FOR
DIMENSIONS NOT COMPATIBLE
LAST STATEMENT NOT ‘END’
VARIABLE DIMENSIONED TWICE
ARRAY OF UNKNOWN DIMENSIONS
ARRAY TOO LARGE
OUT OF STORAGE
SYMBOL TABLE OVERFLOW
OUT OF STORAGE
GOSUBS NESTED 20 DEEP
RETURN WITH NO PRIOR GOSUB
OUT OF DATA
WRONG DATA TYPE
SUBSCRIPT OUT OF BOUNDS
REFERENCED STATEMENT NOT DATA
UNDEFINED STATEMENT ACCESSED
BAD DATA
BAD EXPONENT

SUB. OR FUNCT. TERMINATED ABNORMALLY

Error Messages

PHASE
Syntax Check
Syntax Check
Syntax Check
Syntax Check
Syntax Check
Pre-execution
Pre-execution
Pre-execution
Pre-execution
Pre-execution
Pre-execution
Pre-execution
Pre-execution
Pre-execution
Pre-execution
Pre-execution

Execute

Execute

Execute

Execute

Execute

Execute

Execute

Execute

Execute

Execute

Execute

Change 1

C-3

Error Messages

ERROR
NUMBER

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

75

NOTE: The file handler module will print any FMP error numbers as they occur.

C-4 Change 1

Table C-1. BASIC Error Messages (Continued)

MESSAGE
TRAP TABLE FULL
ILLEGAL TRAP/SEQ NUMBER
SCHEDULED BUT DELETED TASK
TRAP TABLE BUSY
NEGATIVE STRING LENGTH
NON-CONTIGUOUS STRING
STRING OVERFLOW
UNDEFINED STATEMENT REFERENCE
NEGATIVE NUMBER TO REAL POWER
ZERO TO ZERO POWER
ZERO TO NEGATIVE POWER
OUT OF RANGE IN FUNCTION
LOG OF NEGATIVE ARGUMENT
EXP OF OUT OF RANGE
ILLEGAL FUNCTION
INVALID COMMAND
INVALID LIMITS
INVALID LU OR STATEMENT NUMBER
INVALID STATEMENT NUMBER

NO LU NUMBER REFERENCE FOUND

PHASE
Execute
Execute
Execute
Execute
Execute
Execute
Execute
Execute
Execute
Execute
Execute
Execute
Execute
Execute
Execute
Command
Command
Command
Command

Syntax Check

HP-IB/BASIC DATA CONVERSION

In computer-based HP-IB systems, it is very often necessary to have complete control over
manipulation of numeric data formats for a given HP-IB device. This is particularly true of a device
that requires a stringent fixed data format in order to operate properly. It is equally desirable to have a
free-field conversion capability that will automatically translate different representations of the same
data value. Although normal I/O programming statements provide part of this capability, they are
primarily for I/O and do not provide for simple memory-to-memory conversions. This appendix
provides general data conversion techniques for use in BASIC programming. Included are examples of
converting variables to strings, or strings to variables.

For details about HP-IB callable subroutines, refer to the HP 59310A/B Interface Bus I/O Kit User’s
Guide, HP Manual Part No. 59310-90064.

DATA CONVERSION REQUESTS

The general BASIC data conversion requests are as follows: CGomputer

Museun

100 DCODE(V1,A$,F$)
100 DCODE(BS$,V2,F$)

where

V1 = variable to be converted.

A$ = string to contain result. (Note that the string must be predefined as to size and content, as
discussed later.)

B$ = string to be converted.

V2 = variable to contain result.

F$ = format statement by which conversion will occur.

The format specification must be contained within parentheses and may be either of the following:

Fn.d = floating point form: n is the number of characters including sign and decimal point; d is
number of digits following the decimal point.
End = E-format floating point form: n is the number of characters including sign, decimal point, E,

and exponent sign; d is number of digits following the decimal point.

BINARY-TO-ASCII

When converting from a binary value to an ASCII string, certain conditions are assumed. The string
variable where the converted results will be stored has been predefined. This means that the length of
the string has been established (by a DIM statement) and that the contents of the string have been
initialized. Thus, when conversion occurs the actual results are placed in the indicated string positions
without regard to the string’s attributes, such as length, current content, etc. This type of operation
facilitates the piecemeal construction of strings as desired. However, this also means that the overall
string requirements be anticipated by the user according to his application as demonstrated in the
examples given later. (Also, refer to Section IV for an in-depth discussion of strings and Sections II, I1I,
V, VI and VII for a discussion of normal language capability.) Two conversion format types are
discussed in the following paragraphs.

D-1

Data Conversion

Fn.d (F) FORMAT. When using binary-to-ASCII conversions, the Fn.d format performs certain special
operations. This format specification generates the following:

n-field
S ———
+ XXXXX.XXXX

[—

d-digits

The n-field positions include sign and decimal point as well as the digits. Plus signs are suppressed in
the result but minus signs are always supplied. When the magnitude of the converted value is less
than the n-field specification, the resulting string is always right-justified with the decimal point in
the indicated position. The remainder of the n-field is filled with blank spaces to the left. When the
magnitude of the value matches the exact n-field width and the d-digit sub-field is zero, the decimal
point is suppressed and the result is an integer string. (Note that rounding off always occurs in the
least significant digit of the resulting string.) When the magnitude of the value exceeds the n-field
specification, dollar signs ($) appear in the result. This indicates an impossible conversion format was
specified by the user and a correction should be made in his program. (See example 1 below.)

EXAMPLE 1. Predefined strings and F-format conversions; (A =Dblank).

10 DIM A$(7),B$(6) <define string length>

20 LET A$ = "xxx.xxx" <initialize string content>

30 LET B$ = "“(F7.3)>" <define format specification>

40 DCODE (V,A$,B$) <perform conversion>
variable (V) string result (A§)
1.234 AAY . 234
12.34 A2.340
123.456 123.456
1234.567 1234.57
-1.3579 A-1.358
12345600 $$8668$

A special use of the F-format is the production of integer strings. The method consists of defining an
F-format as Fn.0, where n is the exact number of integer digits to be produced. For example, 123.0
would result in an integer string when the F-format is specified as F3.0. (See example 2 below.)

EXAMPLE 2. F-format conversion to produce an integer string.

10 DIM A$(12) <define string length>

20 LET A$ = "INTEGER=xxxx" <initialize string contént>

30 DCODE (V,A$(9,12),"(F4.0)0") < perform conversion>
variable (V) string result (AS$)
1234.0 INTEGER=1234
-765.432 INTEGER=-765

D-2

Data Conversion

En.d (E) FORMAT. Like the F-format, the En.d format conversion also provides special operations.
This format specification generates the following:

n-field
————
+.xxxxxxE+xx
— e’

d-digits

The specified n-field positions include mantissa sign, decimal point, all digits, E, exponent sign, and
exponent. A plus sign for the mantissa is always suppressed in the result but a minus sign is supplied.
The decimal point is also supplied, followed by the d-digits. As in the F-format above, the least
significant digit in the resulting string is rounded off. In the exponent part, the E and sign are always
supplied, followed by the two-digit exponent. When the converted value requires fewer positions than
indicated in the n-field, the result is right-justified and filled with blanks to the left. (See example 3.)

EXAMPLE 3. Use of substrings, literals, and E-format conversion.

10 DIM A$(25) <define string length>
20 LET A$="VALUE IS+.xxxxExxx UNITS" <initialize string content>
30 DCODE (V,A$(10,19),"(E10.4)') <perform conversion>

Note the use of substring character positions 10 through 19 to indicate the position in the A3 string
where the results are to be placed. Also, note the use of a string literal for the format specification
instead of a string variable as in example 1.

variable (V) string result (A$)

1.234 VALUE IS .1234E+01 UNITS
12.3 VALUE IS .1230E+02 UNITS
123.456 VALUE IS .1235E+03 UNITS
-.00123 VALUE IS -.1230E-02 UNITS
0 VALUE IS .0000E+00 UNITS

ASCII-TO-BINARY

ASCII-to-binary data conversions provide operations somewhat similar to the reverse conversions
discussed in the preceding paragraphs. In general, the format specifications indicate n-field positions
(columns) of the ASCII string to be converted. Leading and trailing blanks within the n-field are
ignored and may be used as data delimiters by the user. Data conversions occur as described in the
following paragraphs.

Fn.d (F) FORMAT. The Fn.d format describes the floating point form of the string to be converted.
The n-field position establishes the bounds of the string. Within this field, the data conversion takes
place according to the actual decimal point position in the string. If a decimal point is not in the string
then it is assumed to exist according to the d-digit specification as indicated. (See example 4 below.)

D-3

Data Conversion

EXAMPLE 4. ASCII-to-binary conversion by F-format; (A= blank).

10 DIM A$(40),Bs(&) <define string length>
20 READ #12; As$ <input string via LU 12>
30 LET B$="(F7.3)" < define format specifications>
40 DCODE (A$,V,B$) < perform conversion>
ASCII string (A$) result (V)
123.456 123.456
123. 45 123.4
Al23. 4 123.4
AN 23.4 123.4
-00.123 -.123

En.d (E) FORMAT. The En.d format also uses the n-field to establish string bounds and the
conversion occurs according to the decimal point position in the string. If a decimal point is not

present, then it is assumed to be positioned as specified by the d-digit part of the format. (See example
5)

EXAMPLE 5. ASCII-to-binary conversion by the E-format.

10 DIM A$C40) < define string length>
20 READ #12; AS <input string via LU 12>
30 DCODE (A$(5,16),"(E12.62") < perform conversion>
ASCII string (A$) result (V)
DCV -.12345S6E+01 -1.23456
DCV +.123E+03 123.0
ABCD1.379E+00 1.379

D-4

INDEX

In this index, the page number for the principal reference of each item is printed in boldface type. Page numbers
for all other references to the item are printed in standard typeface.

*BR command, 9-1, 9-8, B-3

ABS function, 5-1

addressing /O devices, 1-5

AIRDV (HP 2313 random scan), 13-3, B-4
AISQV (HP 2313 sequential scan), 13-4, B-4
analog input, 13-2

analog output, 13-2

AND (function), 11-1

AOV (HP 2313 digital to analog), 13-5, B-4
arithmetic operators, 2-4

array definition, 3-16

array variable, 2-3

ASCII-to-binary conversion (HP-IB), D-3
assignment statement (LET), 3-1
assignment statement, string, 4-5

ATN function, 5-1

auxiliary teleprinter (TTYS), 10-12, B-5
AXIS (HP 7210 plot axis), 13-22, B-4

BACKF, magnetic tape, 12-1, B-3
BACKSPACE (character delete), 1-5
BASIC,
commands, 1-4, 9-1, B-3
error messages, C-2
memory allocation, 1-3
scheduling, 8-1
start up, 8-1
binary-to-ASCII conversion (HP-IB), D-1
bit clear (IBCLR), 11-2
bit manipulation,
operations, 11-1
word format, 11-1
bit multiply (AND), 11-1
bit set (IBSET), 11-3
bit test (IBTST), 11-3
BR command, 9-1, 9-8, B-3
branch and mnemeonic table preparation,
bit manipulation functions, 11-7
external subroutines, 13-1
HP 2313 subroutines, 13-10
HP 6940 subroutines, 13-19
HP 7210 subroutines, 13-29
magnetic tape functions, 12-5
task scheduling functions, 10-17
BYE command, 9-1, 9-6, B-3

CALL subroutines statement, 6-5, 13-1, B-1
calling external subroutines, 13-1
character delete (BACKSPACE), 1-5
character set, HP computers, A-1

command errors, C-1
command summary, B-3
commands,
*BR, 9-1, 9-8, B-3
BYE, 9-1, 9-6, B-3
DELETE, 9-1, 9-5, B-3
LOAD, 9-1, 9-2, B-3
LIST, 9-1, 9-7, B-3
MERGE, 9-1, 9-4, B-3
RUN, 9-1, 9-6, B-3
SAVE, 9-1, 9-3, B-3
COM statement, 3-2, 3-16, B-1

common,
area, 3-16
array, 3-17

comparing strings, 4-8
concatenation, strings, 4-5
conditional transfer, 3-8
configuration, typical RTE-M system, 1-2
console start up, BASIC, 8-2
constants, 2-1

control transfer, GOTO, 3-4, B-1
conversational programming, 1-1
conversion, parameter passing, 6-9
converting string parameter, 6-10
correction of typing errors, 1-5
COS function, 5-1

DAC (HP 6940 digital to analog), 13-13, B-4
data conversion requests (HP-IB), D-1
data input, instruments, 3-13, 3-14
DATA statement, 3-2, 3-13, B-1

DEF FN statement, 5-2, B-1

defining user functions, 5-2

delaying program execution, 3-18
deleting programs, 9-5

DELETE command, 9-1, 9-5, B-3

DIM statement, 3-2, 3-16, B-1

DIM statement, string, 3-2, 3-16, 4-4, B-1
DSABL, task disable, 10-5, B-4

ENABL, task enable, 10-5, B-4
END statement, 3-2, 3-5, B-1
environment,

hardware, 1-2

software, 1-3
error messages,

BASIC, C-1

HP 2313, 13-9

HP 6940, 13-18

magnetic tape, 12-4

summary, C-1

task scheduling, 10-17

Index

In this index, the page number for the principal reference of each item is printed in boldface type. Page numbers
for all other references to the item are printed in standard typeface.

evaluating expressions, 2-5 IBCLR (bit clear), 11-2

event task scheduling, 1-1 IBSET (bit set), 11-3

exclusive OR (IEOR), 11-4 IBTST (bit test), 11-3

executing programs, 9-6 IEOR (exclusive OR), 11-4

execution errors, C-1 IERR function, 5-1, 6-9

execution pause, 3-17 IF. . THEN statement, 3-2, 3-8, B-1
expression, logical, 2-6 IF EOF #. . .THEN statement, 7-3, B-1
expressions, evaluation, 2-5 inclusive OR, 11-5

EXP function, 5-1 initiating tasks, 10-1

external subroutine calls, 13-1 input, string, 4-6

INPUT statement, 3-2, 3-14, B-2
INPUT statement, string, 4-6, B-2
input/output (I/0),

capabilities, 1-1

device addressing, 1-5

logical units, 7-1

peripheral device, 1-1

standard devices, 1-5
instrument table preparation,

external subroutines, 13-1

HP 2313 subsystem, 13-10

HP 6940 subsystem, 13-19
INT function, 5-1
integers, 2-2
interrupting program execution (*BR), 9-8
introduction of HP BASIC, 1-1
ISETC (set to octal), 11-6
ISHFT (register shift), 11-6

FACT (HP 7210 factor set), 13-23, B-4
FAIL error option (subroutines), 6-8
features of HP BASIC, 1-1
fixed point numbers, 2-2
fixed point numbers (PRINT), 3-12
floating point numbers, 2-2
floating point numbers (PRINT), 3-12
FOR statement, 3-2, 3-6, B-1
FOR loops, nested, 3-7
function,

definition, 2-3

system defined, 5-1

user defined, 5-2

LEN function, 5-1
GOSUB/RETURN statements, LET statement, 3-1, B-2
multi-branch, 6-1, B-1 line delete (RUBOUT), 1-5
ngsted, 6-1, B-1 line number, statement, 3-1
single-branch, 6-1, B-1 LINES (HP 7210 line/symbol plot), 13-23, B-4
GOTO statement, 3-2, 3-4, B-1 LIST command, 9-1, 9-7, B-3
listing programs, 9-7
literal strings, 2-2
LLEFT (HP 7210 pen lower left), 13-24, B-4
LN function, 5-1

Hardware environment, 1-2 LOAD command, 9-1, 9-2, B-3
HP character set, A-1 loading programs, 9-2
HP 2313/91000 subsystem, LOG function, 5-1

channel numbering, 13-11 logical expression, 2-6

concept, 13-10 logical unit input/output, 7-1
configuration, 13-11 logical unit numbers, 1-5]
error messages, 13-9 looping statements (FOR. . NEXT), 3-2, 3-6, B-1

setting gain, 13-12 loops, nested (FOR. . .NEXT), 3-7
subroutines, 13-2, B-4

HP 6940 subsystem,

channel numbering, 13-20 magnetic tape,
configuration, 13-19 control sample program, 12-5
error messages, 13-18 error messages, 12-4
expansion, 13-20 function calls, 12-3, B-4
subroutines, 13-13, B-4 input/output, 12-1
HP 7210 subroutines, 13-22, B-4 operator commands, 12-1, B-3
HP-IB subsystem, record positioning, 12-3
ASCII to binary conversion, D-3 measurement of analog input, 13-2
binary to ASCII conversion, D-1 memory allocation, RTE-M with BASIC, 1-3
data conversion requests, D-1 MERGE command, 9-1, 9-4, B-3

I-2

Index

In this index, the page number for the principal reference of each item is printed in boldface type. Page numbers
for all other references to the item are printed in standard typeface.

merging programs, 9-4

MPNRM (HP 6940 clear event sense), 13-14, B-4
MTM environment, 8-2

MTTFS, magnetic tape EOF/rewind routine, 12-4, B-4
MTTPT, magnetic tape positioning routine, 12-3, B-4
MTTRD, magnetic tape read routine, 12-2, B-4
MTTRT, magnetic tape write routine, 12-2, B-4
multi-branch GOSUB, 6-1, B-1

multi-branch GOTO, 3-2, 3-5, B-1

Multi-Terminal Monitor (MTM), 8-2

nested GOSUB, 6-1, B-1
nesting FOR. . .NEXT loops, 3-7
NEXT statement, 3-2, 3-6, B-2
NORM (HP 2313 system normalization), 13-6, B-4
NOT (word complement), 11-5
null string, 4-1
NUMB (HP 7210 number plot), 13-25, B-4
numeric constant,
fixed point, 2-1
floating point, 2-1
integer, 2-1
numeric output formats (PRINT), 3-11
numeric variable,
simple, 2-3
subscripted, 2-3

OCT function, 5-1
operator commands, 9-1, B-3
operators,
arithmetic, 2-4
relational, 2-4
unary, 2-5
OR (inclusive OR), 11-5
output line, 3-9
output to terminal, 3-9

PACER (HP 2313 set pace rate), 13-7, B-4
parameter passing conversion, 6-9
PAUSE statement, 3-2, 3-17, B-2
pausing execution, 3-17
peripheral device,
input/output, 1-1, 4-10
status check, 7-3
string input, 4-10
string output, 4-10
PLOT (HP 7210 move pen), 13-25, B-4
plotter control (HP 7210) sample program, 13-30
PLTLU (HP 7210 logical unit definition), 13-26, B-4
pre-execution errors, C-1
priorities, task, 10-2
print list, 3-9
PRINT statement, 3-2, 3-9, 4-6, B-2
PRINT # statement, 4-10, 7-2, B-2
printing strings, 4-6
printing strings to a peripheral device, 4-10

program remarks (REM), 3-4
program execution delay, 3-18
programmatic start up, BASIC, 8-2
programming, conversational, 1-1
prompt character, BASIC, 1-4, 8-1

RDBIT (HP 6940 check channel bit), 13-14, B-4
RDWRD (HP 6940 check channel word), 13-15, B4
read operation, serial, 7-1

READ statement, 3-2, 3-13, B-2

READ # statement, 4-10, 7-1, B-2

reading data, 3-13, 3-14, 4-7

reading strings, 4-7

reading strings from a peripheral device, 4-10
real-time scheduling, 1-1

record positioning, magnetic tape, 12-3
register shift (ISHFT), 11-6

relational operators, 2-4

REM statement, 3-2, 3-4, B-2

remarks, program (REM), 3-2, 3-4, B-2
response time, task, 10-3

RESTORE statement, 3-2, 3-13, B-2
RETURN statement, 6-1, B-2

REWIND, magnetic tape, 12-1, B-3

RGAIN (HP 2313 check gain set), 13-8, B-5
RND function, 5-1

RTE special character set, A-4

RUBOUT (line delete), 1-5

RUN command, 9-1, 9-6, B-3

running programs, 9-6

SAVE command, 9-1, 9-3, B-3
saving programs (SAVE), 9-3
SCALE (HP 7210 graph scale), 13-26, B-5
scheduling,
BASIC, 8-1
real-time, 1-1
tasks, 10-1, 10-3
serial read operation, 7-1
set to octal (ISETC), 11-6
setting gain (HP 2313), 13-12
SENSE (HP 6940 event sense), 13-16, B-5
SERR function, 5-2, 6-9
SETP, task priority, 10-6, B-5
SFACT (HP 7210 paper scale), 13-27, B-5
SGAIN (HP 2313 set gain value), 13-9, B-5
SGN function, 5-2
SIN function, 5-2
single-branch GOSUB, 6-1, B-1
SKIPF, magnetic tape, 12-1, B-3
software environment, 1-3
special character set (RTE), A-4
SQR function, 5-2
standard I/O devices, 1-5, 1-6
START, task schedule, 10-7, B-5
start up options, 8-2

1-3

Index

In this index, the page number for the principal reference of each item is printed in boldface type. Page numbers
for all other references to the item are printed in standard typeface.

starting BASIC, task,
general information, 8-1 definition, 1-1
from console, 8-2 disable (DSABL), 10-5, B-4
from programs, 8-2 enable (ENABL), 10-5, B-4
statement, assignment, 3-1 execution (TRNON), 10-11, B-5
statement, line number, 1-4, 3-1 initiating, 10-1
statement, summary, B-1 priorities, 10-2
status check, peripheral device, 7-3 priority set (SETP), 10-6, B-5
string, response time, 10-3
assignment statement, 4-5 schedule (START), 10-7, B-5
compare, 4-8 scheduler, 10-3
concatenation, 4-5 scheduling, 1-1, 10-1
DATA statement, 4-9, B-1 state definitions, 10-4
definition, 4-1 TIME routine, 10-8, B-5
DIM statement, 4-2, B-1 TRAP statement, 10-9, B-2
dimensions, 3-16, 4-4, B-1 task scheduling,
IF statement, 4-8, B-1 branch and mnemonic table, 10-17
input, 4-6, 4-10 error messages, 10-17
INPUT statement, 4-6, B-2 program example, 10-12
LEN function, 4-8, 5-1 terminating program execution (BYE), 3-5, 9-1, 9-6, B-3
LET statement, 4-6, B-2 TIM function, 5-2
literal, 2-2 TIME routine, task, 10-8, B-5
null, 4-1 timed delay, execution, 3-18
output, 4-10 transfer control,
parameter conversion, 6-10 GOTO, 3-4, B-1
PRINT statement, 4-6, B-2 conditional GOTO, 3-8
printing, 4-6 TRAP statement, task, 10-9, B-2
READ statement, 4-7, B-2 TRNON, task execution, 10-11, B-5
variable, 2-2, 4-2 TTYS routine, 10-12, B-5
string and substring manipulation, 4-3 TYP function, 5-2
strings in DATA statements, 4-9 typing error correction, 1-5

STOP statement, 3-2, 3-5, B-2

storing programs, 9-3

substring, 4-2

substring and string manipulation, 4-3

subroutine, unary operator, 2-5
CALL statement, 6-5, B-1 URITE (HP 7210 pen upper right), 13-29, B-5
FAIL error option, 6-8 user defined functions, 5-2
GOSUB/RETURN statements, 6-1, B-1, B-2 using BASIC, 8-1

IERR function, 6-9
parameter passing, 6-9
SERR function, 6-9

summary, B-4 variable,
subroutines, 6-1, B-4 array, 2-3
SWR function, 5-2 N definition, 2-2
SYMB (HP 7210 character plot), 13-28, B-5 numeric, 2-2
syntax, string, 2-2, 4-2
conventions, 1-6
errors, C-1
system configuration (typical), RTE-M, 1-2
system defined functions, 5-1 WAIT statement, 3-2, 3-18, B-2

WEOF, magnetic tape, 12-1, B-3

WHERE (HP 7210 pen position), 13-29, B-5

word complement (NOT), 11-5
TAB function (PRINT), 3-13, 5-2 WRBIT (HP 6940 write channel bit), 13-17, B-5
TAN function, 5-2 WRWRD (HP 6940 write channel word), 13-18, B-5

1-4

HEWLETT lhﬁ; PACKARD

PART NO. 92065-90001 Sales and service from 172 offices in 65 countries.
Printed in US.A. 2/77 11000 Wolte Road, Cupertino, California 95014 .

