(éﬁ HEWLETT

PACKARD

HP-71

Reference Manual

Computer

Museum

May 1984

Reorder Number
00071-90010

Printed in U.S.A. © Hewlett-Packard Company 1984

Contents

How To Use This Manual 5
INtroduCHioN e e 5
What Is a Keyword? 5
Finding Keyword Entries i 5
Format for Keyword Dictionary Entries 6
How To Read the Syntax Diagramsot .. 8
Using Blanks in Keyword Inputs i 9
Using the Glossary i e e 9
Using the Keyword Index e 9

HP-71 Keyword Dictionaryt 10

System Characteristics 314
Scope of ENvironments e 314
VanableS . . e 315

Simple Numeric Variables 316
Numeric Array Variables 316
Simple String Variables 316
String Array Variables 316
Array Bounds and Referencingl 316
Math Reference e 317
Precedence of Operatorsc.iiiininaniniieaannennnenennn. 317
NUMeEriC PreCision i 317
Range of Numbers 317
NUmMerc EXPressions it e e 318
System Flags e 319
Keyboard and Display Control 319
Input KeystroKes i 319
Editing Keystrokes 320
System KeystroKeso 321
Escape Keystrokes i e 322
Display Control e 322
CALC Mode keystrokesot e 322
HP-71 Character Set and Character Codes o it 322
Control CharaCters vt e e e 326
HP-71 Display Escape Code Sequencescouevununnnenn.n. 328
Reset Conditions 329

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

Contents

System Memory Requirements i 330
Memory Usage During Evaluation of Expressions 333
Mathematical Discussion of HP-71 Statistical Arrays 334
Matched Samples i 334
Summary Statistics 335
Recursive Calculation of Statistics, 336
Simple Linear Regression 337
IEEE Proposal for Handling Math Exceptions 338
Introduction 338
Setting and Clearing Math Exception Flags 338
The Five Math Exception Flags 338
Extended Default Values 339
Not a Number 340
Infinity .. 341
Denormalized Numbersand — 0 341
Classes of Numbers 342
The Unordered Comparison Operatorc. i iiiiiiina... 343
Table of Comparisons (X Compared to Y) 344
GloSSaATY . . e e e e 346
Errors, Warnings, and System Messages 378
INntroduction 378
Alphabetical Message Listing i 378
Numerical Message Listing and Descriptions 380
Math Errors (1 through 21) 380
System Errors (22 through 27) 382
Program Errors (28 through 56) 383

File and Device Errors (57 through 65) 387
Card Reader Errors (66 through 74) 389
Syntax Errors (756 through 88) 390
Card Reader Messages (89 through 97) 392
HP-71 Exception Flag Summary 393
IVL (Invalid Operation) 393
DVZ (Division By Zero) 393
OVF (Overflow) 393
UNF (Underflow) i, 393
INX (Inexact Result) 393
Keyword Index and Summary 394

Subject Index 406

3/4

g it L e o e g s eSO e SR e R e e oo
... e ,,,,ML,,,":;;;avxx«eyz@%ﬁx;gg;@g;@vaa:@;g - . "r’f:;;;;;z:;é»s;x;gy;fg;g,rk;;szzé;ém*ia«égzsiggg;ﬁiga@z?zgé:fzgaeég;”ezﬁiﬁz&;za;g@tﬁfrséx;,é;;zzaw&s‘nz %gﬁ;mmg; *?r:*%;;?f*’ig;"“zfé‘”~f",zir,§~‘"‘3§f'f':5f:ff7}'“5¥§i*2'«'~ 35’%@5@' . ééi“g;jgi%?? B §;’
- el gt e el e S e e e e e e st (;
Gl e e e e o e e e Sh é“ﬂ’?%m‘ s b
L ... ::'z'z;;ﬁgz‘%f;”gf“gng;»x‘ma:ﬂ:gtgz«;‘;!%,wf’,;,:ziz,éa:::,;,:zg:;,;:%;@{;ggzr,;z%ngggg;;gew?g‘!éxqgggiéﬁgi/”;rmw'“ ’ivﬁwt:‘nxzuﬁgyg%g;ﬂ%L;w»:;u;w'sau%@‘,‘;ﬁ@égzg,t{:;‘,y,~,«,(af;xq‘,:zgfg“g;gg;%;p;ygpg@;:;;::;;:v [;’;x;ﬁl {',5{7},4,“ Mjmxwgug o ,gwgérk e ;w;z\;w,ﬁ& ,j
Sl Lo e e e o . . s o s s nn e e 5;;7;;;“% St

... “‘wk‘”*““% ‘D%,M:w”‘fju;“f‘“?“gxr“ﬂ“@ . ’g’axw’x““w“in"”’sx -
S - ;“71"7211“5"'~;si'1&,::>;'si.%‘”1 'f:*‘ivi’:iév‘::;’s%z;ﬂ’f’:':::::zaz‘1;51«:’;‘&3 o “;" zz@‘ﬁ%‘?}f&‘vixsz*”wwéi“iiféi‘If%%‘éiéi';iéifsiz"*““”,z e e e o e é;*z,;g‘,;:;f: ~;fg»;;;g;v;g';szzzé’}g;”,Ws;;:‘zt::xn:;jg:if“;simséa, e
Smmee e e .. e 5%s’iﬂ,s):*z%}aiia::t’?"ffﬂ,iéf%?’amf%‘%ffi:u&fi;:&zr:;vﬁg;ggngsi - . ?:«”ég'g}ﬁ;vu;,iQ3:}@g;vtgg}g!?f;,%&é?f"?é‘xkxég&’, =
... . 5 xxsxn*x“n&m“g it ;“3“2NWMwrg%x,x:mmé”“é@,xm%‘ Sl e e
o e e s e s
e e T e e x;ssszm:;;zbkmnm;fgg,’x’uf,“ o
... . _____
Sl s e S iﬁ.ﬂ'guzg,i&??;ﬂ%“;izéi’ih"iﬁ’ﬁff?’;’m it o e Mo e e ;:»,(ylzzvig;;Zisz;%w G
......-~.____=~=~__=_=___~=~=«==«=« =« . W@sx,gg;;:%g;if&ii'fg:;z:;zzgéjgga:g;;x;ggggmgggwwww%g;ﬁW;gzzzsimwa«wzm,,f o s e e e
b Rl L e R e o A e s : i
...~~~ - . jgé;';;j!}z,,;K“,’,;):ng,'gtgiggg%ygﬁgg’;5%‘;5'gg@i;?@’,{??fj;}:;@?fi'si}?g]‘:?}}*:ixn;:ﬂ‘7;15’:”5’,&?‘7Ef;égffiifzf@i?t?,ﬁé?@5?’%?"5’322§:~:' S e . . o
SRS e i e e el e eGSR e e e T e e e e
... - .. . _ - . s coo e e e
dmaaehan e ... __ ... _ _ ... S Coan)
el g e ... _ e
e Gonn s G e b i G o
e . - e e e e e eee e
- . e “"i'j}:I:@%L}:’fi?::"":i’;ﬁa:»?ﬁl‘ﬁxgiﬂrr:&:E:fiﬂktﬁ'{ix%g@x‘@;r e . S Vf,,,:::,,g,»:,»:ész»g;;:;;;zs::v:,,&ﬁg%%%%;ggvﬁ@wa
e e e ... Trus i
S :3;,;é§:g§:~i'uu e e e s :azz,:tf;’:,;tzz’:;éf,(@;;g;,;,La;:s;>:7;3;;3§§~“xa,,xb§;,¢(;~L»;@;}:;n; :;:vs(a;oié,,i;&%w“m) f SRR e LiSﬁgiw,&(mixyi‘xqw,,7,,@ﬁ;‘(;,;“%;«;w,y(;;:w,v e .w;;g;;%;,;;;gw ,&«g%ﬂmm* "
e e L e G ... v
- e
Gedmana e e = s s s s . . o e s P e
e e L ggwtyﬂr‘:,r,(ktv,;;:;zm St e e G e e e
.. .. 2. e e e ,ii,:ébzgj;f;m,";g@éxix%‘,Ié;EEIﬁI&x;:ss’sz;‘}is’__._._____ |
... s e
... _
... __: _ _ @ __ - . . .
P e Lo Bl R S e B e e R e s s*usé;"fg,»gx»x,;i;, ERE L o e
...
S ... !'mwm;wg;ggxm P e e
..........______~_=_=«_««___ v%‘f”‘;g e xyx?x?iéiréé'ezzééém'ugzz“iizii:;é‘»;;Wfsi;;f”%:,::ff@;éf:az:w,;:”:;;mzz,\'@;;;s;;g‘ﬁ:,viz:«;':‘ o e
el e e Sl e c e il
... _ . . C e o]
Soelmede S Gl e e e e SR TO ~“7r::§'¢(a;:@?,’££5??“:: ”“,L':E’::iéf"'(W,'s'%‘,;Ié@,’;M?, i !LE::.::E:“f:(jx,z(g r'w’i Sog tw:;::pa;; Galan e - Al G e Bl e B e
... ...
L o - - ‘ - o . - : o L b .
.. sr:’é:“'zfa‘ﬁ?“‘;@;ﬁ"?’*s*"’*f"’””‘”‘%Wlﬁf;§;’ﬁ‘fcafé%z?ﬁéézz;inig;zzza;r;;frz;jsss:;~@mzé; et e e el e e eae s e
. 5 GG b s e e e
Mo e e s e e S e
... . eI e e e i Celanil e oy St B e s s
- :~;f~:?fsas§§?’¢5’féfzéf«%é%“usft’f*:fﬂzw;n, e - L . Zi%ﬂ
e e ai it e ;‘,:Q;”L AT e e e e T e e e P e e
...
Gmmeaiel e b e i B e L s e e B g e e i s e
ol nare e i s e e Banan e e el s e e e e e -]
e e s BRI G s G R e e e e anbnsns e G R e m,» SatEans
... . ..
. . o 22’N&m?‘rw/@ﬁd“”“Xwaxmé*éwx’“ L ﬁxsb%%wx“wmax” . r:;;;;:,:‘E;w;;3,,;ic,;m&gE:g;;%w; ;;,éh@gggggngsﬁg e
cigate o L aiien i L e Sl e B tane L;zzgmf»:zﬂ:ss:;%?’@ssz:;;zst%x@,z;z;%w??wa:vsféf, o sz;:ms;%zé s oo o ae s s G s e B o Db 0
e s g e o s g s Gl ‘,kségiifx,’:,~;55,(”7§ﬁ§£;?:"2;;;:§ ’z'ﬁ’:}&fiéé’zz:séz:z:‘rmzi:gzzs;3%fségiiﬁi*ﬁiféﬂ@”:’i?ffsﬁf';'s2%/%%;&?zfﬁ;:!»:%g;?z;~s$izg;,;,5§éz;;:~g:~f;z¢:;z:: L s fr’,::f”f*’«'vii!?}ﬁ::V’Q?f!fl5?Eg‘éi’g:i@%gé&i?@ig@%@@‘iﬁi?i“ .
... ...]
g Anlanie G e e e ;v’fﬁ?“"‘,i'&;kw’(,};;‘::s;”"‘f 3,”;;':w;sés’l::{::‘;;ffé'z}}”““5;3:5,;>er!"K:Mrn;;u':x;nx@??%;:’&&ﬁi:ﬁgﬂ{g!w:&f’ia}?iiﬁr:{“’,.’g;y@:':gzz ae e el e e s e i e G e
Lo e _ Paae e ... = .
Lo e L . e e ShoC e seet
. et o e i e ,Ei?;;'sw:ﬁ*:(;;z&é: :«:;r%“rzL;s5z£iaz;gzz;z;§gm;gg-uas@%a; . ohaoie o t:z;~'egrﬁi;§xg§§§%z£§mz
s S :;:::ﬁ' ;‘ BEndh s e s e e e e e e ‘ix’r":wfi‘r?u'?’r::f‘H';::(x&,x::g%’:i;i,:s’ o :i"’“ Chne i Gine e B e R Ko e
G e S S x«z%i:@;éi,siza:fféf’,&i‘%h:'%,“Eéé%:”s’?i:é£‘ﬁik;5?*v°§ﬁ"527f'%§"W@”””ﬁﬁéii*ﬁ” o Bl e el = . S ss;:;§g§@%§§g;%§mg;
Hen . - i : /i eSS e e i . o i "77*&1'5%%3%5:r'w*»,: diee NR,Xu e
. - Gommen o te ,,,,,@M:%@s,@ T Lee nean (,xumm::z,m,, W,m,xw s s e e
S e e B e e fWM e R e ,,[Mgg;(a;‘v‘rr&jj:r&;‘& i vzxg;f-,(gﬁ?e,vawmj 1"’5" ssmE G e s J’,;; ;L»;gn&:fwayi:%,f‘ ,V&u;:“m e
e e e ...
... - L
i s e e e
e Son _ .
Sk emee e B e B e e =l
W e w e V,;L:;;w: -
g'g:,:es:z;“':“‘”axr “& u»’:’z’«%%’dit"'i71~27£é¥%;;1”‘m;£ . zzgéz:zg;s*rzz;z;@zﬁé?‘@if%mff‘ﬁiéii'éﬁ,gm;f:’n~'s?%%&%zg;;;xg;;z%ﬁ§§¥fg;z¢Ve»'a«g%s:“*éy,g S e a0 G §§':"54:,’;,;;@,;::s;,;;;g%ffj;;;fg’z,;:v:(gggg,;:ﬁ;;jgcgzg,i;:gjg;::;m&;gg&%jﬁ%ig:,ﬁ%?%%
e - e e el e
e o L ... s
- A e ;L,;iu,,,L;,:;w’w,;;wzfsf‘sfzz"Xezziw’r‘ e §”EZ%§,§§%Z€&;’~“f§g%8§§¢~;€m5’:§:rngqéxzz‘sé'y’r’r
. -
... . mxxix"x oo il e el e i . . e e
b i ;s’s“f'll“""vsun‘fXT‘I: e s :'";r':%v””“?'::Iffﬂf e - ~‘v':a;§vfi;iifi3§,7§li:z:r~'~‘v" Camine s el pendnhi b e s e sy iE el e e e T Lenmen e SRR e e e
G E*”ff”" ““?‘”» . ffisszu;@*t«?”'ﬂ“: ‘t?:z'»zz:u:‘,xemgzw,«z,::mzi@zz‘m“~;tvg&,w,:z;;;;ﬁggtf,; t;:;gégz;qugng;:;;;;;y hnE X;‘,V’&‘ﬁé??ﬁi?ﬁiél,21;‘&;’3}23‘?‘,“:&722:713’;’&?};%Ai'i‘%i;&%{é;§75{§§3p;: o i e f;z:;g;,”t;;;‘,;:»;,;,;:z;::»;é;;{E%gx;:;r%g;gégxgg@g%g%gﬁa
e aeiti e e e it ... _
... _ e s e el e cieiiliendo e e e e e - -
... . . % ... f',;:Lu;?;ﬁ‘iiaﬁ‘ﬁ?mﬁﬂii;{';“’ii;ﬁ%?éi‘,‘:‘}z‘,&:s"i;)gé~}}éj"""L" . . .
G e e e e e R e e e - s L e e
o_.._____________,_________ - e .
. Té?f%f9z;f"gf»ungi;'?tiiy';'&@;”ﬁc%i"7?,;%%;;’1,17‘2{%”"egfféizgi%imm‘;“!i,‘;;«s‘;ﬁ{?;@[["z,t,:iés};1zr;;f’fii;;i;;;[i?izﬁﬁ;;:i%“?ié?i‘«iiiii»ﬁ%iﬁi f}g;’%ﬁ;‘;#?;’j;;;’gi;;;gz}g;?ﬁéit;zg,7(::,:f‘lI:f};”'mi}l'::i,’{”?h Lo ~;’eiz‘ﬁ&s::'»zZzsz;;?ii%%zsz;z;zé?;&%z;éﬁggmg%g;
= e s e ...
.. e e e
... z::‘:~§w%§;§:£é§”féif’;"If;fsﬁgff»‘%?ném:syg s,ngm:»:;vs%"“ffd“ff;é,;m@: e o ‘,fi;‘,‘,::v:;;;:zs;r:i:tf;’:”?:;;;“55;'???5:'7”‘2“Tfirr:':"? .
ﬁ;gx»x{'w;u Gl L ...
‘“tx‘ugc;r@'»?‘ L >"’ra>§>2i%'19*ré#?’iia‘?gisi‘éﬁf"riéiwis.;:,‘ffsx?fs/@,:y . &%;"se,kssw'@f%@;wM‘%??&e%;:&"*i”:bit('f';ls"’&?‘~~::~:‘Hs“::z: ..
o R RR e D e e
St e e e e s e e e e b Beo i Genthoniaio i e e e e et
e b s s e s e e .
S e e .. :kk:,,yj,{;a,,,Mgg%g,a;x,,e, St o sn:mawé;::z;m::~f;pzu,.;;;u;g; onte e e T wﬁ(g;r‘ue;ﬂ L
. e B o e s foraen bl L e e e e
... ... o e e m e e e
. . . :Efféi;é;’;’%i,ﬁ:?f?féxx’ix%%ﬂc“x;li /iaif”i};{%{g;;f;;ﬁx;7@,’5’!5@{,{?{(3‘%&;’;&75’&%&%Ff?ix’?§"‘;;“i;’;’;’;,{ihfi;;s“f:s;;gs:‘*g§°‘7;,’§§§§;:iw%x§é,:{'{f\jf;;fz;:;i:ﬁs&%é;’ﬁg;gs{ﬁz;;x?%::s:;:’m S e . ;75’5%;;;’5:3';:;15%2&;;23@;;;;&@»@5?@%
... _ .«
e s iw‘f{"z%;v’:»:t;«s;z;wg;g,;r;;;;;mssa;;q;,;gfsg;;;z:fzzy;~a;~*zzez?z:sz;;£9zz;£s?z«;i?:zx’zifﬁzzzg%:;;éezﬁfa:z:sz;;ég‘:g;uaééi;g%?@sz;gaz;';gx;;f:w&’w;;;:f;ﬁz& e ’@s‘zzr@;gwazgzsz?'zé:«zgg;rzzg;tu,f*:g:n:r;%:s»»,zh;gnmgé;;,;,;A;:;[;,;,,;,;,y,;;@gzﬁﬁ;:gg;,,y:;,,:zﬁ;v;; ,,;;(ag;z;;;5s;L;«,;ggf,ggg%%ﬁﬁg%&é iﬁgg*;*
-SSS......_.___._.=.._._._=_=<=_=—«« . _ __ ., __,____,,___,_______ ... _ . ..
Sodmead s e Gt S - Ao i e e D e e e e
... ... xﬁ'!f»i‘:a::z‘:;“%’;’?:!s%::“::%:;fs,g;?“:;‘;z‘s’s’ﬁz gt,sz;:?'s,‘zix"”"l','%?f:;é"r .. . x"“'Zé;st&%ﬁ;{é?“fi;&ﬁg::’5‘%53%977‘5@’;;‘”‘% e
fi e e s e SnE e V.’:’:;ﬁféi{ff{g;’;gg}};:'L’;,'M::::;:;EE::EEEQ}?] ~,w”;§3’f'>,§jf§'§ﬁ,::y“:r:::ﬂ”ffvgggx,ig‘!,,wvr,\ V‘;””V.g;;:'éﬁ’,“{:;:';;: G e e O S :;’:i:EE;E%,;fi;z::’;,ﬁEJ{a;,ﬁ;i{jgﬁ Broie S
.. mxmwmodﬁwgg Lot e s:xxxxﬁ,ﬁ“&mmﬂﬂa
e ... - = e G e ahaieen se e e EE s ':(”‘?‘”W e e R e e g
amRe e e e e T
... ____ :Lf%i‘ws's‘i‘ff'si@f?’nsf’%;s%%ffffi'fef?’5“;;itsz,f%fzsz,f:;:aé;'@%%a’;’f’zs?izeét:ggzi:’éé:%~ zf'w:%‘rfsé,%iaazzf»;xf’gz?;a%s:%@s%éi -
. . s . e e e
. - . . - Lonmbans e 7“’Z”;’?"EZ;’?}?’:f?i’":m""ii‘%;%‘,"’é%ﬂiﬁzisé};ﬁ;(f;,m;,;'L;;:;;»,,Aézzléw::s?ﬁ%z*g;ﬁ: G ;;g‘iy’:j';i‘,ff,".g,ds;i;§>>;5,;3;':”@?%‘,tﬁvgiﬁ;gyjj,;;::,;;s(,:;vﬁé;:fgg~p;,:;s&;:'sfg;ﬁ:;;';::,Vlgf :f,;:g'7‘,,,1‘31§§fg;§ux§71f: c
...
. s - . Shelae i il e _ . _________ e
- ;;\,,,ﬁ,,,:}fmw,,mf,;gigz,;g~;;,;,g:,;f;a;;;:;s;;;fwf;zsinggmgﬁ ... s e
... _
... ... _ __ . _ . _ =
s .. . o Pamme D e G e @;;:é??;r::ﬁ’mfx’iii’éi? Sam i e S e Samli
S s e e Cae e s 5';;n’?ﬁ;jjgggfiff;jjﬁ%jgt?,}gé“,’;;;ﬁ?’:;x::ru;;~(m’:ugs;kﬁEEXEéﬁﬁ;ii’f'gj,jgjé;,j?j;,;;g?,;g?;’;;;i;',:l'ggé;"é be o e e e
... g S
o e e e s e g s >Ja;ﬁfﬁ:ﬂ“;uﬁ"ﬁ&‘”" o e ~:V'L:nzs,:szi~:~"::;"fg;?:y:,:ﬁr;f’::’??é{g“ o
bl e G e R L e s e e Lo e el oL s s s e e e . 5§Z$;jgg‘jAg::::w;52>§V
. e g e ey :f'1;’,”&,’““"::&%’,::V'stv'ws;‘ o e e RS a G el e t'::;::r:,z TGS S i R e
Same e ahe s e e s e D e vreaes s .
G s L e e e i -
s e e g e e e e e o ... _ . Lo e R e
... Sanos LN e s
e e T L e e L s s s .. . Shob e e
... ... 5 . . . Cams e e ..
e e -]
... _ .

s e e
Lo ... o -
- S e s e

e L e e e ...
b e s s e S e G ... Lol e e

. e e

.- . e 5;;1;#’@:3*;‘,~,:fg»;;;&su;;@;;@; g:’;xi’:'%,;iﬁ_fym‘j'g;f'(f;;i:gz};;:;:Eif”%?lflmxxﬁgS‘i:;f'?g;;&,;ugf}fffg:j,"ggsgﬁ?;é;?iif;;,;':' ... S z,;:a;z:ff;z;zv‘u;tz;;?f:%ﬁﬁ:m"mv:sz;&»;ﬁ%@
B OGGE G sEgem SRR S n:,hz“lm;uu:;i’IV:J,: e e FUE G f~;*’ri§ "'fé*iis’sz,:s’@i‘;:w, CoRTT s s S e s e ey
Dambi b e e s‘(,x;jﬂ,,,~§y,,§y~,@ss~%sﬂ@g;,;“;gi;rr@,,&;; e -
s -
... = . . . szji'g»z;;,’;ﬁ‘i}r(:n;t:ﬁ"ifzf%7255:,':"V,?;}'f:w,"'3355,7'"?‘"" “;:wz;#’@{f’:iﬁ%’:g;z:;&cgf}z’céiﬁigsssﬁgzz';'% o e L L eae e
e E s D e B :e‘z:ﬁ@za:’:‘:1;1r’r’~f"~m,~s,zz;:sv::,:tczs’zu“:f?“ G et e MW;;H,";}H;%(@.;‘, . e imaeaiel e e
. . S ;i?‘%ﬁ;“i;s‘r”*"*“”’”;’;’;’2'1;:?5;%%?&4:H&%‘é!s“;%ﬁ;;’l}i:}a, etieie e e e 5 . ;s“:;‘?éh;}?f‘s?éézz,;!«:,; e e Lo n e e
- e Ctmeie e e o se e e o
E. . Smnmme sl e nnoa :,'zs;z“;sn:f,:,xéé’* e .. e
s e e Shommm G e ey St e o e 5:“%;7:“”::”” sensvitns i e Getnean e e e
. st
- ... - ... e e
... .. - . 3 @ . e o
e .- “";%z'if;;;{??afzm, o ??'{"tm?@,:"::szi::~>,;~:$z§s~'t' e e“, e o .. e ‘g”ziﬁggﬁi{g"
seeeae s s e Sl e ,,J;:w‘”,;‘u P ""Zf:‘"r?rr R e ';m;; g G BT oo e T o s e e
E . . G . ;v}fgiéf“@if':?x ... e e o sl il ae ey
. ... e ’s’z%:IffviiJ&;;w;ﬁf’:?‘”‘77L,,V,;;ﬂf;?iis;‘m;"x’ﬁtwff»z:mé;,:éa’%;;;':;%’,??:s%??f&%i*is’é?"“ S x -
e ;ﬂz:;;~ég>jzr,:g§z:~::a:; _ ,,, . s;‘,J e ~axm» .. 'm‘»“swmgzx
... Lm0 L e e
... ... _ . . e s e
o e e L e e
... o L .
. e . ’JJ?TZ;I'ii&l{{%,ﬁz'ﬁ?«i”;iﬁ?;&”"°r:;{{'2g -
.. . e e .
B o e o e s s o e ;"y@:u,:,5:7:?:,~:7”;“V”71'3;;:’”je’,’,}i‘l’(})ﬁ‘ Samaaanaa e L e .]
.. = ""“w’>'7£‘~57”5':;7&*"'~“”1%31&"»3‘”2%3‘27"3“"J'éfiw%*"*s'*"?a*"'”»’;“«"u’?zﬂ'm'f*”?wifﬁiz?h;,fész;,éz:z;zi‘*Zi\"rizf;’e‘m!fz . o
W iame e e Loe s e b e o
...
e ey S aea g e e L s e s e ;gg,;ggw e ;agzw; L ...
- :‘1'*,5’(&;':sm:xﬂ,,:;,,A&;:I“r;)g‘*"g);'543,;:gj,:§{;,:§°;;,:;;; ... Sodd s e e
... ... : . - ng;,,‘:,,ﬁ;;ga;ﬂ(; wk;x[::M:w;%é%:W . . e
... ... o .
... e e
e e e @;,fz;;;:::,::: Tmoi ... sl e
... o e g G -
... . . . o e S g :ff’ra:ﬂafie; e
... ?7;f"'?fa;'zééii;:w‘5ssz:;s?',z,~:“"x“5’r’r-‘::;:;“:i(si;”!?‘ ;’s"1,zz;,;zz,;ém;gzsm;z‘4»“,,3%%‘3” s b e e s’u;;zg;:,:;szx%:::::iiéuzzzgsézag;é”fm”
P e e e - s ol e
e e e G e e
L : e e e e o o
FE @
... ... e el s e e s e
il S L e e e
. e s . i L s ¢3§;~V’Ef»¢;’;x‘:’;;gg,>@g@é;mmr:y%: - -
Sraananm i enie .- . - :u;,gmg,,ﬁggz,&zii’ilelig:;fé'fff?’f;if l%x?:’s%‘:?iz"tf%ié':'“:ilié'l"af?fé?ﬁf#”;‘7“’"‘" ‘m”‘:?:zﬁf‘*‘fiiii s ;,?‘u:f:s»,%lés%;fiaiiéiﬁwh%,,,m},fffifififi;éw;iw~~"*' T e
e g B - fg . e o L d s s
... = @ o e s e s e .. . e s
pa e Seant e e s
... . . _ .. ”iti:il,,,';'ési;i:”'zj;%"'“‘i‘”,E:"E*i,f%;{@?:;:"}';:,Z;“f;;I?:?ill;ﬁ,‘:{ﬁ,:‘x::”'if Lo e e
Eedaasemde e s e ,'r‘gv;zt‘:zz: e :é’z;‘?zx;v:;z;:1zr::m;;:72;;f¢'f£77z¢s“'iir e s -
Shmaacn e e *:’ff"??zzrfzs‘z,i:f%;;éé%é’ff?£§”TI;§‘“?«~:??E’?:Z'?%i;:"'Ea’és;f :;:L,:zx;f'v:;:;"Lifff%§z;rs;:f%z;f»:z;;?iraii‘%agzg@zg;'e;%ﬁ
.. L s
... . Ra més‘sszs~‘7;ffz,f:f;;g:g,s;g;;g;g;;zw;,;;;w;;;;;:::,“:,;;;; Tl ,:’Lr??v;':'“'rm"‘”ﬁ""’;"{:‘M;;S,p;,,Qﬁifffiéi;q%;;l§zzh§§77(7;",,&53(5(,;;”f»;”(>7§113’, e }f,sH;;;ﬂ;;;z,jyr;;%;a;;gm,liz;éga,g G e u,;,:_,;,w,,% o 1;?‘”‘%%‘5“
e SR e B e E?if’!zi‘;é%‘,i;szzé;f'Eiéf"iaif,"zefﬁfzzwxz:,::::, e ‘*f;#wé;yi»fiaif,%ii%%iia%?ie'»t,:tgfi:’1 G e i ..
.. o e e e u;;qr,,f,tzzg;,gg,,,;u,:,n,,~ . o B s
e e s
w0 . e S ::v:,r'A~'~8x'xc:fx%z?é!%‘%’M?Eg??i&ffliif@’,‘,
e e e s L e e e
srbEE I S e e Sgaoesniinanndal e et le e Shoamaiaiena e G e e e Y e oo R
i .- . S
... - @ £ . . . = . . 1171;;{,«22,,t::;z,,gg«,,J»sz“;’fs:’vvw':aé,:;@tfzgazfz:;zgz';;:;:Z;Lsém»:z?’;»;zt;:,zfzzfz;s L e - ;;ﬂ:aggfzaﬁg"k:gﬁém@ﬁ
Soname e . o . ey S e
. s
- - e
. e o e e e e . . e oo -
. ... s _ e
e i PG e s e i R Ll e e e ~ e S
... e G e
... _ a8 G e e e o .
T = 4 ’J»," ,%’2“4,«,‘%%35* e .
. '::vuasfa”;% L MmN .. . !’:E:‘E’F;Eﬂ;ii;:;si::u, e ;fx,gggrzualﬁ;gu;; e S ey
... o Cooen
- u;; - :::z,n::»,; e oo
. . .. S
. .. ii‘izx,‘” : 1151219771 ‘;;;’fi?liﬁ?! .. o i e ’friiffiiié§§:f§j§ o ‘ww;%';éivzf»:ztfg:rzi:z«'%iéée’r;;;m,?1 e e ;;f;v,;jfﬁ;j;g;,g L e e
. R e G xg,,,:;g";,;g:w;,;sf::,:::::55:7,:5&::'5';7 S
. "k;%éf::gz{::*" = ... ;5,,;;/r';?"f{,\?[«f’fx;N"Rff,Aii::f’,:&?’,;:;‘y‘:Iéf"rr,;:g'(::"x'(sz:;:ﬁixi\t: . e G L e
... s r;‘,%;’%éé?";é%,fgrv%;g!'gﬂ,f,;'gcz?ggfzé;i;ﬁgzg;::L;:v:;g:;gz;;ggg;;’:":zz:z:;x;;e'“gg,n:gg),ta;;;;ggfgfgéﬁzgzéteg;sﬂzg;;Fr:;'zrz;wm~:L;~;:,:::: o e
e . . a e s :;%‘iz:,%?@:f{'f«::z'sz:':znz::;aagé*?i,f’h;f‘”xi‘x'«‘z Gnee e O D G e o e e "*5°?&§,Ifji;:s;é}%{ii‘%’:’s}ﬁs;ii
... el ey
...
. . . s - .
e - e ::,:;:s,,:c:v::,;v: celad e e e
... == _ ¢
... ___-~_=_=_=_ _ _____ ____
M e = <. -
i GalEm i e st hena il i e e e b Lo R e e “Z:; '::::D:ff?‘,:ff:i:ffbffiffﬁi’;’f.&i i 1::%5 “”r:’s’ra::;’:: China g e P e S e e
Sl e e sl s e - IXX,;P’;"WE;S‘%:;?';:
. L e e e e ...
o el 'fﬁ??:’éi?::::::g!“rw:i?i:u‘”é??’ii,ﬁ:?!",h:?::’ﬁ’Ei:gi?f‘ - ..
S Sl e cma i s e e B e e m';;g,;:g;,, s e z*:a;:e,:w;:;:;;;;':.,,uz,,u Lahm o e e e :;;b:«‘r;jﬁn;x;Vf«;;:Xg;,;§jh;§§&"’,;§ﬁ::yﬁ:
i s i s . = - - . .
.
G o anan . s :;;:{;;;,;b::rff:;q‘;;;::,::msnr::,m;,>§L,:fgg~;,,,;;f;;kgt;;;;::;;gf,,z, Gl e :%;;:u@;,:gg
el ;‘m,,yzg,,,%;ﬁ;:,;;;:;,;zw;vz;:: e e
:___~<~_=~=~_=_=_=_—_~_=_=_=—_—_—Z—_Z~,.___ 2, _,_,,__ ..
: mEa e -
.
: cah e S e e
s o e e B e e
. s e i L b e e G e e e G ke
2 i) S......_._.__.________ ______ __ _ | ...
e ?"sa,, . DnEiiha e R tEE 4:':,“3“,:;,Iu;v(a:”L;;j;g;,;,x“;;y;’:kjj?'f",i??‘;“' "?jx;“':”,M;y;:jg,;;,;;,:;:;;;,,A; e é§\%’;’;;§§¢f§§;:j;;§Eff;;jff,;,, s (;7355“:‘ff:iifjg‘l'§”:'~'»‘ Sl e ey E;;’:‘fiix:;:':'EZ::'7’:2?”"1?“‘:’r:5“"'451’5’?'”5’555575'%5755
Tt L s e e . s .. s “’A‘ x;f;:’{y‘ e e fxii;;?mii\'xmgxéw:’.N;'“(;E‘r”'f%ff*:""%i"§ e e Lo b s e
G ,,;;;M,y;,wm; e s L,r:;;;;a;;,(n;s,q;y;x;z;ggz,’gg;g,:gz,:f,w,;:,@;;(f,:J%tg»ﬁg;:',;ré;;;bui;;,msgzxs;j :?,”U,,;@;:w::w e]
e . e . Gl L s e i R

How To Use This Manual

Introduction

The HP-71 Reference Manual is a reference tool for users who are already familiar with HP-71 oper-
ation and BASIC language programming. If you are new to the HP-71, you should first turn to the
HP-71 Owner’s Manual to familiarize yourself with the computer’s features.

This manual provides a source of nontutorial information concerning HP-71 keywords, character sets,
memory requirements, error messages, and other topics. Included also are a glossary of HP-71 terms
(page 346), a Keyword Summary and Index (page 394), and a Subject Index (page 406).

The HP-71 Keyword Dictionary covers keyword use, syntax, parameter guidelines, operating details,
and related keywords. Before you begin referring to the dictionary, read through the information on the
next four pages to familiarize yourself with the dictionary’s format and use.

What Is a Keyword?

The term keyword refers to your HP-71’s BASIC statements, functions, and operators. All but nine of
the keywords are programmable. These nine are termed nonprogrammable statements. (In some com-
puter literature, such nonprogrammable keywords are referred to as commands.)

Finding Keyword Entries

The HP-71 keyword entries are placed in alphabetical order. Each entry begins at the top of a new page
and can be quickly identified by the keyword name printed in large, blue characters. The keywords for
some trigonometric functions have acceptable alternate spellings. Such alternates are indicated in
parentheses at the top of the page, following the more common spelling. Middle keywords, such as T,
cannot be executed alone and therefore are not listed separately.

Combined Keyword Descriptions. Where two or more keyword entries begin with the same word(s)
and perform similar operations, their descriptions are grouped together under one heading. For exam-
ple, 4 ERRORE GOSUE and OH ERREOR GOTO are described under the page heading ON ERROR
GOSUB / GOTO. In these instances, common features such as identical input parameters are repre-
sented once for all keywords in the group.

Operator Descriptions. Logical operators (AHD, EX2F, HOT, and &) appear in alphabetical order
in the Keyword Dictionary. The & character, the # concatenation operator, and the math operators (+,
-, %~ %, and ™) appear at the end of the dictionary. Relational operators (:, =, >, #, 7, <=, =, and

7#) are listed under “Precedence of Operators” on page 317, but do not appear in the Keyword
Dictionary.

6 How To Use This Manual

Format for Keyword Dictionary Entries

Each of the numbered circles shown below links a feature of the Keyword Dictionary format to a
corresponding illustration in the sample dictionary entry on the facing page.

@ Keyword Name: Identifies the keyword entry and includes, within parentheses, the keyword’s
acceptable alternate spelling, if any.

@ Purpose: Describes what operations the keyword is designed to perform. If the keyword is one of
the nine nonprogrammable statements, this fact is noted in this description.

@ Keyword Type and Execution Options: The filled-in squares (@) in this chart indicate the
keyword type (statement, function, or operator) and whether you can execute the keyword from the
keyboard, in CALC mode, and/or after THEH or ELZE inan [F ... THER ... ELZE statement.

@ Syntax Diagram: Illustrates the required and optional syntax for HP-71 keywords. A description
of how to read the syntax diagrams is provided on page 8 (following the sample of the [ISF
dictionary entry).

@ Examples: Illustrate some of the different ways you can use the keyword. (The examples are sepa-
rate from each other and, unless otherwise indicated, should rot be read as if they are part of the
same instruction.) Examples that use quoted strings are shown with pairs of double quotes
(" ..."). Except in the case of quotes within quotes ("' ... ' "), or where a pair of double quotes
enclose one single quote (" ... ' ... "), a pair of single quotes (' ... ') can be used in place of a
pair of double quotes.

@ Input Parameters Table: Further specifies the parameters used in the syntax diagram.

Note: The various types of input parameters referred to in the syntax diagrams and “Input
Parameters” tables are defined in the glossary.

@ Comments: Additional information about the use of the keyword.

Related Keywords: Other keywords that have either a functional similarity to the keyword being
described or an influence on its results.

DISP

displays numeric and string data.

How To Use This Manual

7

8 Statement
[0 Function
[J Operator

B Keyboard Execution
0 CALC Mode
B {F.. THEN...ELSE

e

Examples

expression

Input Parameters

Item Description Restrictions
expression Numeric or string expression. None.
column Numeric expression rounded to an integer. | Greater than zero.
Comments

You can omit the statement name itself in all cases except immediately after

Related Keywords

Ho

How 7 tlse This Manual

~ To Aead the Syntax Diagrams

The diagrams indicate acceptable keyword input syntax. (Incorrect syntax in an input prevents the
computer from accepting that input, which results in an error message.)

sote: The syntax diagrams illustrate the general use of blanks in keyword inputs. For a more

detailed discussion of this topic, refer to “Using Blanks in Keyword Inputs,” on the next page.

Double quotes are used in these diagrams. However, you can also use single quotes. (The opening and
closing quote symbols must match.)

Example.

DISP

expression

+ Items enclosed in ovals and circles can be entered in either uppercase or lowercase letters. Blanks

should not be embedded unless explicity shown.

+ Items in the boxes correspond directly to entries in the “Item” column of the “Input Parameters”

%

s

&

table included in the keyword description.

All valid paths through the diagrams are indicated by arrows. Looping paths indicate a parameter
or sequence that can be repeated.

An item is optional if there is a valid path around it. Options are generally shown as descending
loops.

An arrow (—) terminating the exit path from a statement indicates that you can use the &
character to append another statement to the illustrated statement.

An arrow and an “X” (—X) terminating the exit path from a statement indicates that no
statement can be appended after the subject statement.

An arrow with a vertical bar (—{) used to terminate the exit path from a statement indicates
that other statements can be appended, but they will not be executed following execution of the
illustrated statement.

How To Uus Th MManual g

Using Blanks in Keyword Inputs

You can use blanks as separators between keywords, parameters, and punctuation unless otherwise
indicated in a keyword entry. However, blanks are not needed as separators except where required by
the HP-71 to prevent misinterpretation or error conditions when processing a keyword input.

The HP-71 uses blanks as delimiters for unquoted strings. Without these delimiters, using an
unquoted string for an input such as a file type name or an unquoted file specifier can cause an error.
For example, the HP-71 accepts file type names having up to five characters. Thus, to tell the com-
puter to “create file ABC of type TEXT,” you would use the statement

which must have blanks as shown. Omitting the blanks results in the statement

which the HP-71 interprets as “create file BC of type TEXTA” (which is a nonexistent type). This
second interpretation results in an error message because there is no such file type. Similarly, if you
wanted your HP-71 to copy file A to file B, you would enter COFY A T E. (Using the same state-

Ambiguity in program statements can also occur in certain uses of an unquoted file specifier that con-
tains a device specifier. For example, to tell the computer to copy file # from a plug-in device to file E,
you would use a program statement such as

100 COPY A:PORT TO B
which must have blanks, as shown. Omitting the blanks results in the statement

100 COPYA:PORTTOB

which causes the computer to interpret the string as a label. Because the remainder of the
statement (as interpreted) does not contain a valid statement, an error results.

Using the Glossary

The Glossary (page 346) describes the terminology used in this manual and in your HP-71 Owner’s
Manual, and includes syntax diagrams that illustrate some of the common terms used in the keyword
dictionary to specify keyword inputs.

Using the Keyword Index
The keyword index, which begins on page 394, provides you with both a reference for locating keywords

by page number and a listing of keywords by functional category (such as “Input/Out” statements and
“File Management” statements).

HP-71 Keyword Dictionary

HEZ =1 returns the value of : with its sign set to “+.”
O Statement M Keyboard Execution
B Function B CALC Mode
O Operator B IF...THEN... ELSE
0 O
Examples

Input Parameters

Item Description Restrictions
argument Numeric expression. None.
Comments

=+ returns the value of = with its sign set to “+.” This also applies to the following two

= 40
= NaN, with its sign field forced to +.

Related Keywords

10

11

ACOS (ACS)

(arccosine) returns the principal value of the angle having a cosine equal to its argument. The

angle returned is expressed in the current angular setting.
O Statement B Keyboard Execution
B Function B CALC Mode
0 Operator B IF...THEN...ELSE

argument

ACOS

Examples

Input Parameters

Item Description Restrictions
argument Numeric expression. —1 through 1.
Comments
The range of the result of AZ'Z is shown in the table to the right.
Angular Range of
You can change the angular setting by executing DEGREE S (when in Setting ACOS
Radianf setti{lg), or FADIAMS (when in Degrees setting). Refer also Degrees 0 through 180
to the OFTIOH statement. Radians 0 through Pl

Related Keywords

12

AD

adds the coordinates of a data point to the summary statistics in the current statistical array.

Statement

[] B Keyboard Execution

| O Function O CALC Mode

LD Operator W IF.. . THEN.. ELSE
ADD -

e

Examples

Input Parameters

| Item Description Restrictions
oo SR . ,.;,iw R S
coordinate i Numeric expression giving coordinate None.

; " (value) of the data point.

Comments

Numeric expressions you specify when you execute

point. The number of expressions must be within the range specified by a preceding =

(0 through 15). Any missing coordinates are assumed equal to zero.

Related Keywords

represent the coordinates (values) of the data

i statement

13

ADDRS$

FLOR$ (address string) returns a string representing the hexadecimal address of the file you specify.

O Statement B Keyboard Execution
B Function O CALC Mode
O Operator R IF. .. THEN...ELSE
“ file specifier }——--@———» Computer
_Museutn
Examples

Input Parameters

Item Description Restrictions
file specifier String expression containing a file File name with optional port
specifier. specifier.
Comments

= returns the address of the beginning of the file header.

Related Keywords

14

ADJABS

% (adjust-absolute) performs an absolute adjust on the system clock.

B Statement B Keyboard Execution
O Function O CALC Mode
O Operator B IF...THEN... ELSE

o) Lo
adjustment
string

Examples

Input Parameters

Item Description Restrictions
seconds Numeric expression. Seconds (s) in the range —360000
< s < 360000.
adjustment string String expression in form *HH: MM: Maximum of 99" 59™ 59s,
88" or “-HH: MM: SS.*

Comments

the clock time and the clock speed, refer to the Fili.ili%T statement on the next page.

Related Keywords

15

ADJUST

A I simultaneously changes the clock time and specifies a clock speed correction that is stored
and applied the next time you execute & " to calibrate the clock.

B Statement B Keyboard Execution
O Function O CALC Mode
[0 Operator B IF...THEN...ELSE

—(_apuusT

seconds

adjustment
string

Examples

Input Parameters

Item Description Restrictions
seconds Numeric expression. Seconds (s) in the range —360000
< s < 360000.
adjustment string | String expression of form "HH: MM : Maximum of 99P 59™ 595
S8S" or "~HH: MM: SS§".

Comments

AOMUIET performs the following:
1. Changes the clock time by the amount you specify.

2. Stores the difference between amount you specify and the nearest multiple of 30 minutes as an
error correction that will be implemented the next time you execute E:ACT.

16

ADJUST (continued)

Relative Clock Adjustment

om 3om 60m gom
T T BT B
F —
+d
Relative Adjustment
om 3om 60m gom
IR T ST R
|
Relative Adjustment —d
Executing AO.IIST performs the relative clock adjust-
ment and stores d as data for E:ALCT correction factor

computation.

Because the error correction is added to any error correction already stored as a result of earlier
executions of § 7, you can execute T as many times as you want to before executing
" uses the accumulated error correction, then clears it from memory.

ADJUST i .
Time Change Error Correction
Input
—3300 —55m +5M (Measured from —60™ to —55™.)
00:03:35 + 3™ 35° +3™ 358 (Measured from 00™ to 3™ 35%,)
—00:02:14 — 2™ 14¢ —2™M 148 (Measured from 00™ to —02M
148)

" more than once before executing E ¥

the corresponding error correc-

tions are accumulated.

The resolution of the clock system is 0.0019° (1/512th of a second). Numeric input for FI
specify fractional seconds; string input cannot.

can

Related Keywords

17

AF

&F returns the current value of the clock system adjustment factor (expressed in seconds), and gives

you the option of setting a new adjustment factor.

O Statement
B Function

B Keyboard Execution
B CALC Mode
O Operator B IF...THEN...ELSE

new adjustment
factor

Examples

Input Parameters

Item Description

Restrictions

new adjustment Numeric expression rounded to an
factor (in seconds) | integer.

Must be either 0 or within one of
the following ranges:

e 10 <= new af <= 8,388,607.

e —8.388,608 <= new af <=
—-10.

Comments

If you specify a new adjustment factor with FF, that factor replaces the current adjustment factor in

returns the current adjustment factor.

The HP-71 adjusts the clock’s internal time base by applying a 1-second correction at the intervals
specified by the adjustment factor. A positive AF adds the correction; a negative AF subtracts the
correction. Specifying a new adjustment factor in the range of either 1 <= new af <= 9or —9 <=
new af <<= —1resultsin an Irwzalid RAF (error 27) message. Specifying new af > 8,388,607 or

new af < —8,388,608 defaults the new adjustment factor to 0.

18

AF (continued)

Related Keywords

19

AND

{1 returns a 1 or a 0, based on the logical AND of its operands.

O Statement B Keyboard Execution
O Function B CALC Mode
B Operator B IF.. . THEN.. .ELSE
——I operand J——CANDH operand l——»
Examples

Input Parameters

Item Description Restrictions
operand Numeric expression. Subject to operator precedence.
Comments

The operands of & are considered to be logically false
if zero and logically true if nonzero. The table to the right
indicates the range of results for &

Operand Result

Left | Right

in relation to the HP-71’s other

The precedence of Fif

operators is described under “Precedence of Operators” i::zg ;:_?lljsee g
on page 317. True | False 0
True True 1

Related Keywords

HOT, OF.

20

ANGLE

" returns the polar angle determined by the (x,y) coordinate pair. The angle returned is ex-
pressed according to the current angular setting.

0 Statement B Keyboard Execution
M Function M CALC Mode
O Operator M IF...THEN...ELSE
@5 —~(O) O O
Examples

Input Parameters

Item Description Restrictions

x-argument Numeric expression representing first None.
coordinate of pair (x,)).

y-argument Numeric expression representing second None.
coordinate of pair (x,y).

21

ANGLE (continued)

Comments

The arguments need not both be finite. (Notice, however, that there are invalid argument pairs. For
example, AHGLE ¢ IMF, IMF » is invalid.) Certain cases distinguish the sign of a zero argument. The
range of RHZLE is shown in the following illustration.

Range of Degrees Setting: —180° through 180°
Range ot Radians Setting: —= through =

90° or /2

—180° or — 7

y
180° or « < x0°or0

—90° or —x/2
Where s(a) = sign(a)—except for s(4+0) = 1 and s(—0) = —1—the following table defines
Normal Inputs
ANGLE ‘x, y=
X y
+0 +0 y
s(x) = 1 Any Number ATAN(y/x)
s(x) = —1 s{y)=1 ATAN(y/x) + 180 (in Degrees setting)
six) = -1 sy) = —1 ATAN(y/x) — 180 (in Degrees setting)

Related Keywords

RCOS, ACS, RSIH, ARSZH, ATAM, ATH, COS, DEG, DECREES, OPTIOH, RAD, RAZIAHE,
SIH, TRH.

22
ASIN (ASN)

RS IH (arcsine) returns the principal value of the angle having a sine equal to its argument. The angle
returned is expressed in the current angular setting.

O Statement M Keyboard Execution
B Function B CALC Mode
8 Operator B IF.. THEN.. ELSE

Examples

Input Parameters

Item Description Restrictions
argument Numeric expression. —1 through 1.
Comments
You can change the angular setting by executing DEGREEZ Anaul]
(when in Radians setting) or FROIAMHS (when In Degrees S:,-gtlijnar Ra:g;:‘o
setting). Refer also to the OF TIOH statement. The range of 9
the result of AZIHM is shown in the table to the right. Degrees ~90 through 90
Radians —PI/2 through PI/2

Related Keywords

23

ASSIGN #

associates a symbolic channel number with a specified file and opens that file.

B Statement
O Function
[0 Operator

B Keyboard Execution
[0 CALC Mode
B IF...THEN...ELSE

——{ ASSIGN#)——l cnannel

file
specifier

Examples

Input Parameters

Item

Description

Restrictions

channel number

file specifier

Numeric expression rounded to an

integer.

String expression or unquoted string.

1 through 255.

File name with optional device
specifier. Cannot reference CARD
device.

24

ASSIGN # (continued)

Comments

A given channel can be assigned to only one file at a time. Thus, if you specify a channel that is already
assigned to another file, that file is closed and the channel is then assigned to the new file.

An assigned channel is automatically released, and its associated file closed, by assigning the channel
number to ¥, “#%" or "". Also:

¢ Executing or releases all channels.

+ Executing or = or encountering the end of the program releases all channels in the

local environment.

o Executing releases only those channels local to the subprogram.

If A= IGH# specifies a file, but no device, and cannot find the file, the HP-71 creates a DATA file (of
size zero, with a 256-byte record length) in main RAM and gives this file the name specified by

SZIGH#. However, if ASS IGH# specifies a file and a device, but the file cannot be found on this
device, an error condition occurs.

Related Keywords

The angle returned is expressed in the current angular setting.

25

ATAN (ATN)

(arctangent) returns the principal value of the angle having a tangent equal to its argument.

O Statement M Keyboard Execution
B Function N CALC Mode
O Operator M IF.. THEN.. ELSE

ATAN

argument

Examples

Input Parameters

Item Description Restrictions
argument Numeric expression. —INF through INF.

Comments
You can change the angular setting by executing DEGREES i

. . - - A . Angular Range of
(when in Radians setting) or RADIAMHS (when in Degrees Settin ATAN
setting). Refer also to the OF T IH statement. The range of 9
the result of A#TAHM is shown in the table to the right. Degrees —90 through 90

Radians —Pl/2 through P1/2

Related Keywords

26

AUTO

AUTD begins automatic line numbering for editing the current file, and is nonprogrammable.

B Statement B Keyboard Execution
O Function O CALC Mode
0 Operator B IF...THEN.. ELSE

AUTO X
start
11 Foneer |~

Examples

Input Parameters

Item Description Restrictions
start line number Integer constant identifying a program 1 through 9999.
line.
Default: 10.
increment Integer constant. 1 through 9999.
Default: 10.
Comments

: numbers new program lines as they are entered and stored. Automatic numbering begins with
the start line number and continues with the specified or default increment. If an automatically dis-
played line number corresponds to an existing line in program memory, that line is displayed. If the
current line number added to the increment value exceeds 9999, a wrap-around takes place. That is:

Next Line Number = (Current Line Number + Increment) — 9999

27

AUTO (continued)

Any one of the following operations terminates : operation:

e Typing over the displayed line number with a syntactically correct line that does not begin with a

line number, then pressing [END LINE].
® Deleting the line by pressing when the display following the line number is blank.

* Pressing [ATTN].

28

BEEP, BEEP OFF/ON

disables the

causes a tone to sound at the specified frequency and duration.

beeper. 4 enables the beeper.
B Statement M Keyboard Execution
O Function O CALC Mode
O Operator W IF.. THEN.. ELSE

BEEP —-
——! frequency Ir
— (o)

° duration

OFF J

Examples

Input Parameters

—
Item Description Restrictions
frequency Numeric expression rounded to an Refer to ""Comments,” below.
integer.
Default: 500 Hz.
duration Numeric expression rounded to the nearest | D <= 1048.575 seconds.
thousandth.
Default: 0.25 seconds.
Comments

The beeper has two volume settings; normal (default) and loud. You can switch the volume to a loud
tone by setting flag —25 (the system beep volume flag). Clearing flag —25 returns the beep volume to
its normal (default) level.

29

BEEP, BEEP OFF/ON (continueq)

BEEP Statement. The frequency of the tone is subject to the resolution of the built-in tone gener-
ator. The maximum frequency is approximately 4900 Hz. A specified duration greater than the maxi-
mum indicated under “Restriction” on the preceding page defaults to the maximum.

BEEP OFF Statement. deactivates the beeper by setting flag —2 (the beep flag).
When deactivated, the beeper does not operate for any purpose, including execution of

Note: After executing
tion.

, a tone does not sound when the HP-71 detects an error condi-

¥ does not affect the current setting of the beep volume flag (flag —25).

BEEP ON Statement. ¢ Gird activates the beeper by clearing flag —2 (the Beep flag).
i does not affect the current settlng of flag —25 (the beep volume flag).

30
BYE

£ turns off the HP-71.

B Statement W Keyboard Execution
O Function O CALC Mode
O Operator B IF.. THEN...ELSE
BYE
Examples

Comments

General Operation. Pressing [ON] after executing E¥E turns on the HP-71. Executing E¥E ina
program causes the HP-71 to automatically resume execution of the program—at the instruction fol-
lowing &% E—when the computer is turned on again. However, when executing EYE from the key-
board, any statements concatenated after Z¥F are not executed when the computer is turned on
again.

Timer Control of Program Executlon If the HP-71 activates a timer by executing 0+ TIMER
then subsequently executes E¥E, the computer turns itself off as described above. However when the
timer expires, the computer turns on, executes the branch indicated by the timer, then continues
executing the program.

Related Keywords

31

CALL

7 f1.1. transfers program execution to a specified subprogram and may also pass parameters to that
subprogram.

M Statement B Keyboard Execution
O Function O CALC Mode
O Operator B IF.. THEN... ELSE

\J

CALL

file

subprogram IN
\ specifier

name

string
variable name

o

parameter

Examples

32

CALL {continued)

Input Parameters

Item Description Restrictions

subprogram name | Quoted or unquoted string. One to eight characters. The first

string variable Refer to Glossary. Must evaluate to subprogram
name name.
actual parameter Constant, expression, variable name, or Expressions cannot reference
channel expression (numeric expression user-defined functions. Rounded
preceded by #). value of a channel expression
must be in the range of 1 through
255.
file specifier String expression or unquoted string. File name, with optional device

character must be a letter; any
remaining characters can be letters
and/or digits in any combination.

specifier. Expressions cannot
reference user-defined functions.

Comments

A subprogram may call itself. User-defined functions may not appear anywhere in the parameter list.

Passing Parameters.

The parameters must be of the same type (numeric, string, or channel number) as the correspond-
ing parameters in the subprogram’s = statement.

Numeric expressions are passed by value to the corresponding numeric variable.
A numeric variable may be passed by value by enclosing it in parentheses.

An array passed by reference may have < : or ¢ . following the variable name indicating the
number of dimensions (1 or 2) of the passed array. However, the ¢ : or <. is necessary only in
the %ii¥ parameter list.

String expressions or substrings are passed by value (up to a maximum length of 32 characters).

String variables can also be passed by reference.

33

CALL {continued)

A channel number in the actual parameter list is a # followed by an integer constant or a numeric
expression. However, the corresponding formal parameter must be a # followed by an integer con-
stant. A channel number opened by a subprogram (and not passed as a parameter) is local to the
subprogram. If a subprogram has no parameter list, then the subprogram’s channel numbers are the
same as those for the calling program, but all variables are local to the subprogram.

Note: Because of this feature, if the subprogram takes no parameters due to an omission in
or , you may unexpectedly discover channel numbers intended for local use are being used by
the calling program.

Subprograms. You can enter more than one subprogram in a program file. A subprogram must start
with %1% and end with Any program lines between two subprograms will not be ex-
ecuted in normal program flow. You can store subprograms in the same file as a main program, as long
as the the main program precedes any subprograms. It is recommended that you use a different name
for each of your subprograms. Otherwise, there is a possibility that one of two or more commonly-
named subprograms will always be called, regardless of your intent, while any other subprograms hav-
ing that name will not be found by the computer.

The HP-71 searches for a subprogram as follows:
1. The current program file.

2. Any other program files in HP-71 memory, in the order in which they appear in the system
catalog.

3. Program files in any plug-in memory modules, in port number order.

4, If the subprogram is not found, and . passes no parameters, then the subprogram name is
searched for as a program file name. (If a file name is specified by the I keyword, as shown in
the syntax diagram on page 31, only that file will be searched.)

Executing ¢ creates a local environment* for the subprogram. (That is, a new set of variables is
created which does not disturb the old variables unless they were passed as parameters). When execu-
tion returns from the subprogram to the calling program, the HP-71 reactivates the calling program’s
environment.

* For further information concerning local and global environments, refer to “Scope of Environments” on page 314, and to your
HP-71 Owner’s Manual.

34

CALL (continued)

Executing CALL From the Keyboard. The current file can be executed in a local environment by

executing from the keyboard.

Note: If you execute CHLL from the keyboard and
1. You concatenate other statements after CHLL, and
2. TALL invokes a subprogram that is subsequently suspended, then resumed,

then, when the HP-71 returns from that subprogram it does not execute any of the remaining
concatenated statements.

Related Keywords

35

CAT

I returns a catalog of file information.

B Statement W Keyboard Execution
O Function 0O CALC Mode
[0 Operator B IF...THEN...ELSE
CAT -
ALL

Examples

Input Parameters

Item Description Restrictions
file specifier String expression or unquoted string. A device specifier or a file name
Default: File name without device with optional device specifier.

specifier catalogs named file. Device
specifier without file name catalogs all
files on that device. Executing :fi7
without specifying either file name or
device specifier catalogs the current file.

36
CAT (centinued)

Comments

The catalog display provides the following file information:

» Name.

= Protection, coded as one of the following: ¥ (private), % (secure), ¥ (private and secure), or
blank (no protection).

« Type.

Length (in bytes).

Creation date, time, and port number (if any). The date is displayed in the MM/DD/YY format,
and the time is displayed in the HH:MM format.

When you use ©HT to list the information on more than one file in a memory device, the files appear
in the order in which they were created, beginning with the oldest file. The (o] and [¥] keys scroll from
one file to the next. Pressing [9][A] positions the HP-71 to the first (oldest) file in the catalog. Pressing
{9)[¥] positions the HP-71 to the last (newest) file in the catalog.

S ec1fy1ng Devices. : device id returns information on all files residing on the given device.
¢ returns information on all files residing in MAIN memory, while i :
turns information on all files residing on port #1.

Cataloging Devices. If one or more memory devices containing files are plugged into your HP-71:

+ Executing 7 i returns information on the files in main RAM and in any plug-in memory
modules and independent RAMS.

= Executing
independent RAMs

returns information only on the files in any plug-in memory modules and

Pressing [f][v] during a CAT ALL or CAT : FORT operation causes the HP-71 to move from the cur-
rent memory device catalog to the next plug-in memory module.

Assigning a Displayed BASIC File to “Current” Status. Pressing the F3!7 typing aid
([f] (eniT)) while in any multlple file catalog causes the currently displayed file to become the current
file. An I - condition occurs if the file you select is not of type BASIC.

Cataloging a Magnetic Card Containing an HP-71 File. Executing CHT CHRED displays
CAT: Aligrn then EHDLHM to prompt you to read a magnetic card into the HP-71.After you pull
the card through the card reader, the HP-71 displays the file name, track number, and catalog informa-
tion for the card in the same way as described in the preceding text for other file media.

37

CAT (continued)

Note: Because of the overhead information needed for card storage, the indicated file size may be
larger than the actual file size. In BASIC files, this discrepancy will be, at the most, one byte. However,
for TEXT files—which are always “padded” to a 256-byte boundary—the discrepancy will be in the
range of 0 to 255 bytes.

Cataloging a Magnetic Card Containing an HP-75 File. The HP-71 catalogs HP-75 magnetic
cards in the same way as for HP-71 cards, except that the file type is displayed as # for any file that
is not a “LIF1” type.

Catalogmg Key Assignments. Executing 8 7% displays catalog information for the
b=yuz file, which is the system file of current key a551gnments

Note: If you create a file using keywords from a plug-in module or device, then remove the module or
device and subsequently execute ¢ , one or both of the following may occur:

¢ Instead of displaying file type, the HP-71’s five-digit internal code for the file type may be dis-
played.

s File size may be represented by a value that is 1 to 125 bytes greater than the actual file size.

Reexecuting the 7
discrepancies.

instruction with the subject module or device plugged in eliminates both

Executing ¢ with a line rate of 0.5 and a character rate of infinity
prevents the catalog header from scrolling. Refer to the DELAY keyword entry.

Related Keywords

38

CATS

£ returns catalog information for the specified file.

OO0 Statement M Keyboard Execution
MW Function O CALC Mode
O Operator B IF...THEN... ELSE
@ o file number X ¢@-——>
L‘@——‘Eevice ':‘-pei:ifier*J—J
Examples

Input Parameters

Item Description Restrictions

file number Numeric expression (rounded to an None.
integer) that corresponds to the file’s
position in the HP-71 or plug-in device.

device specifier String expression. First character must be a colon.
Default:

Comments

For a specified file, # 7% returns in string form the same catalog information as that returned by
Z#HT. For files in main RAM, the length of the string returned is 38 characters; for files on plug-in
memory devices and independent RAMs, the string length is 43 characters. The last character is a
blank. The character positions in the string are assigned as follows:

Port Number
IfIn a
Port

Security File Size Date Time

File Name | o ..~ | File Type | | Bytes | Created | Created

1-8 10 12-16 18-22 24-31 33-37 39-42

39

CAT$ (continued)

Note: If the file type is unrecognized, the five-digit signed integer file type number occupies characters
11 through 16.

A positive file number refers to a file’s position on the memory device. For example, ¥ ore-
turns information on the second file in main RAM. If the specified file number is less than or equal to
zero, and no second parameter is given, then ;FT7# returns information on the current file.

Specifying a file number greater than the last file in the specified device returns the null string. The
null string is also returned if the file number is less than or equal to zero and a second parameter is
specified.

If a device specifier string includes a file name, an
occurs.

(error 58) condition

Related Keywords

40

CEIL

i. (ceiling) returns the smallest integer greater than or equal to a specified argument.

0 Statement B Keyboard Execution
M Function B CALC Mode
0 Operator W IF. .THEN... ELSE
® O
Examples

Input Parameters

Item Description Restrictions
argument Numeric expression. None.
Comments

i returns a value of type REAL. If the value of the numeric expression is an integer, that value is
returned. For example:

: returns .

+ returns -~ 1.

i+ returns ~ 1.

41

CFLAG

“ (clear flag) clears user and/or system flags specified by keyword or by a flag number list.

B Statement B Keyboard Execution
O Function O CALC Mode
O Operator B F.. THEN...ELSE

G SR gy S

(e

FLAG NUMBER

Examples

Input Parameters

Item Description Restrictions
flag number Numeric expression rounded to an —32 through 63.
integer.
Comments

CFLAG ALL clears all user flags. CFLAG MATH clears the math exception flags. ZFLAG with a flag
number list clears the system and user flags specified by the values (rounded to integers) of the numeric
expressions in the list. System flags numbered less than —32 cannot be cleared by CFLHAG,

Related Keywords

OuweE, FLAG, THE, TML, OMF, SFLAG, UHF,

42

CHAIN

purges the current file, copies the specified file into main RAM, and begins executing that

file.
B Statement B Keyboard Execution
O Function O CALC Mode
O Operator B IF. .THEN...ELSE
—-’@A IH P efclilfel er]—_’X
Examples

Input Parameters

Item Description Restrictions
fite specifier String expression or unquoted string. File name with optional device
specifier.
Comments

Chaining allows programs of unlimited size to be run by breaking up such programs into segments. A
statement in the first segment directs the system to copy and run a second segment. A
- # statement in the second segment directs the system to copy and run a third segment, and so
on. When execution of a chained file begins, that file becomes the current file.

Note: When
chained file.

1 calls the next file, the calling file is purged from memory before execution of the

r releases local environments and clears all program control information associated with a prior
suspended program.

Related Keywords

43

CHARSET

CHRRESET (character set) defines the alternate character set in the ASCII code range of 128 through

255.

B Statement

B Keyboard Execution

[J Function O CALC Mode

O Operator B IF...THEN... ELSE
—{ CHARSET)—-—-l P }———
Examples

Input Parameters

Item

Description

Restrictions

charset string

String expression.

None.

Comments

The character set string is interpreted as a series of six-byte
groups. Each successive group defines a successive character
from an alternate character set. The first group defines
character 128; the second group defines character 129, and
so on, up to character 255. To add a new character to an ex-

isting character set, use the .

7£ function in the

same way as shown in the second example, above (and de-
scribed under the next keyword entry).

HP-71 Character Sets

0
Standard 1
HP-71)
Character
Set .
L 127
Alternate (128
HP-71
Character 3
Set .
L L 255

a4
CHARSET (continued)

Once an alternate character set is established, you can access any character in the set using CHF %, For
example, DI =F CHE#¢ 1221 displays the fifth character in the current alternate character set. If
you specify less than 128 alternate characters and then use CHFE % to select a character number outside
of the defined range, the HP-71 returns the corresponding character from the standard HP-71 char-
acter set. Thus, if (1) you have an alternate set consisting of 11 characters (which would be numbered
from 128 through 138), and (2) you specify the nonexistent 12th character by executing CHRE {122,
then the HP-71 returns the 12th character in the standard HP-71 character set. That is, the computer
returns the same character that would be returned by executing CHE+ 113,

All predefined characters in the HP-71 are six columns wide—although the sixth column is left blank
to allow for space between characters. Each six-byte group in the character set string corresponds to
the dots of six consecutive columns in the HP-71 display. The first byte in a group specifies the
leftmost column in the displayed version of the character. The sixth specifies the rightmost column.
The lowest-valued bit of each byte corresponds to the topmost dot in a column, and the highest-valued
bit corresponds to the lowest dot in the column. (Refer to the next illustration.)

The first of the statements listed under “Examples” on the preceding page defines an alternate char-
acter set having only one character (which corresponds to character number 128). This character
resembles the symbol used in integration.

Byte No. Decimal Value
of Bit
1 2 3 4 5 6

1

32

64
128

CHR$(64) CHR$(128) CHR$(126) CHR$(1) CHR$(2) CHR$(0)
01000000 10000000 01111110 00000001 00000010 00000000

Display
Dots

(o2 B e B

45

C HAR SET {continued)

If you specify more than 128 characters (768 bytes) in an alternate character set, the HP-71 uses only
the first 128. If the last group in the string does not contain six bytes, then the remaining bytes of that
character are assumed to be zero.

An alternate character set uses three and one-half bytes of user memory, plus six bytes for each charac-
ter in the set. CHRRESET " * deactivates the alternate set and restores the memory to the user’s avail-
able space.

Certain plug-in ROMs may activate alternate character sets without using this statement. In this case
the character set resides in ROM and requires only seven bytes of user memory (RAM).

Related Keywords

46

CHARSETS

CHARSET# (character set) returns a string representing the current alternate character set.

O Statement M Keyboard Execution

B Function O CALC Mode

O Operator B IF...THEN... ELSE
Examples

Comments

The length of the returned string is determined by the number of alternate characters currently de-
fined. Each character you define adds 6 bytes to the string; up to 128 characters can be defined. The
maximum string length is 6 X 128 bytes.

CHARSET$ returns the string of bytes specified in the last THRESET statement. (Refer to the CHARSET
keyword entry for the significance of the bytes.)

Related Keywords

47

CHRS

(string conversion) converts a numeric value into an ASCII character.

O Statement B Keyboard Execution
B Function O CALC Mode
O Operator B IF...THEN... ELSE
© 0
Examples

Input Parameters

Item Description Restrictions
argument Numeric expression rounded to an 0 through 255. (i:HEE performs
integer. modulo 256 on numeric arguments.)

Comments

CHE# returns the one-character string having the specified ASCII value. For a table of ASCII characters
and their equivalent decimal values, refer to pages 322 through 326.

Related Keywords

48

CLAIM PORT

I returns an independent RAM module to main RAM status, and is nonprogrammable.

B Statement B Keyboard Execution
O Function O CALC Mode
0 Operator B F...THEN.. ELSE

port
specifier

Examples

Input Parameters

Item Description Restrictions
port specifier Numeric expression truncated to two 0<=p<=25.
digits after the decimal point; interpretedas | 0 < = dd < = 15,
p.dd, where:

p = port number
dd = device number.

Comments

Port 0 contains the internal chain of devices and the HP-IL port. Ports 1 through 4 are the four ports
in the front of the HP-71. Port 5 is the card reader port.

Device number refers to the position of a plug-in device in a chain of such devices. In the HP-71, the
internal RAM (Port 0) device numbers are 0.00, 0.01, 0.02, and 0.03 (where each device number repre-
sents 4K of RAM).

Because L.

4 changes the system configuration, all file pointers are reset, the workfile becomes the
current file, and all FoiE ... MHE:

#T loops are terminated.

Related Keywords

FREE, THOW.

49

CLASS

% returns a value indicating the numeric class of the argument.

[J Statement B Keyboard Execution
B Function B CALC Mode
00 Operator B IF...THEN ... ELSE
® O
Examples

Input Parameters

Item Description Restrictions
argument Numeric expression. None.
Comments

The primary use for |
between +0 and —0.

is program control. also provides a mechanism to discriminate

50

CL ASS {continued)

returns a nonzero integer in the range of —6 through 6, where:
e The sign of the result agrees with that of the argument.

e The result separates the machine representable numbers into 12 classes, as follows:

Class of Argument (x) CLASS(x) | CLASS(—x)
Zero (+0 or —0) 1 -1
Denormalized (MINREAL <= ABS(X) < EPS) 2 -2
Normalized (EPS <<= ABS(X) < +INF) 3 -3
Infinity (+INF, or —INF) 4 —4
Quiet NaN 5 —5
Signalling NaN 6 —6

Related Keywords

51

3 " (clear statistical array) clears (sets to zero) all elements in the currently specified statistical
array.

B Statement W Keyboard Execution

0O Function O CALC Mode

0 Operator W [F.. THEN...ELSE
Examples

Related Keywords

EII:

52
CONT

COMT (continue execution) continues execution of a suspended program, and is nonprogrammable.

W Statement B Keyboard Execution
0O Function 00 CALC Mode
0O Operator B IF. THEN...ELSE

CONT
statement
identifier

Examples

input Parameters

item Description Restrictions
statement Line number or label of a program Any valid line number or label
identifier statement. reference.
Comments

CONT Operation. A running program will be suspended by a F
dition, pressing [ATTN], or single-stepping ((SST]).

Executing without specifying a line number or label reference (or pressing
resumes execution at the suspend statement. Specifying a line number or label reference with
resumes program execution at that line number or statement. If the HP-71 does not find the specified
line number, but does find a higher-numbered line, execution is continued from this line number.

statement, an error con-

)

If an error occurs during program execution, executing [{if#{7 continues the program with the state-
ment causing the error. This feature enables you to debug a program that has been halted by an error,
then resume execution. For example, errors related to variables can be corrected and the program
continued from the statement in error.

53
CONT (continued)

Note: Editing a program clears the suspended state of a program. Thus, attempting to continue a
program after editing that program causes execution to begin at the start of the program.

Continuing a program that is not suspended is equivalent to running the program.

Suspended Programs. When a program is suspended for any reason, the SUSP annunciator is dis-
played. While a program is suspended, memory is allocated to the suspended program for local
variables, subprograms and other program control information. Modifying a program or executing

or : = clears the SUSP annunciator and releases the memory used for program
i clears the SUSP annunciator, but does not release memory.

control.

Related Keywords

EHD, PAUSE, STOF. See also the descriptions of the [ATTN], [SST], and [CONT] keys in your HP-71 Own-
er’s Manual.

54

CONTRAST

" adjusts the display contrast (viewing angle).

B Statement B Keyboard Execution
O Function 0 CALC Mode
[Operator B F...THEN...ELSE
——{ CONTRAST)—” contnast l———
Examples

input Parameters

Item Description Restrictions
contrast value Numeric expression rounded to an 0 through 15.
integer.
Comments

controls the parameter specifying the angle at which the display is most easily viewed.

The contrast value may be varied between 0 and 15, where 0 is the shallowest angle and 15 is the
steepest. This corresponds to the lowest and highest contrast, respectively.

The default display contrast value is 9.

55

COPY

ey creates a new (destination) file and copies information from an existing (source) file to the new
file.

B Statement B Keyboard Execution
O Function 0O CALC Mode
O Operator B IF.. THEN...ELSE

CoPY -
file 10 file
specifier specifier

)]
() —)

Examples

Input Parameters

Item Description Restrictions

file specifier String expression or unquoted string. Any valid file specifier.
Defaults: Refer to comments, below.

Comments

The source and destination files for a 0¥ operation can exist in main RAM, in an independent
RAM, on a magnetic card, or on an external file storage device (except that when copying a file from a
card, the destination file must be in main RAM). When copying into main RAM or to independent
RAM, the destination file is a new file. The source file is never altered.

56

COPY (continued)

Defaults.
e When the current file is the source file, it is unnecessary to specify a source file name.
¢ It is unnecessary to specify either the source or destination file names when the following three con-
ditions apply:
1. The current file is the source file.
2. The current file is in a device that is plugged into a port.

3. You want the destination file to be created in main RAM with the same name as the source
file.

Note: The destination file specifier can be omitted only when the source file is in an external
device or on a magnetic card. (The HP-71 treats a device plugged |nto a port as an external
dewce) If the source file is a special system file (such as : the HP-71
converts the destination file name to uppercase.

e When the destination device is not specified, it is assumed to be main RAM.

If a ﬁle having the same name as the destination file already exists in the destination device, a ¥
B = (error 59) condition results when ¢ attempts to create the new (destination) file.

or
specifier following the destination file name cre-

Card Reader Operation. You can use the reserved word i or the device specifiers
: "t to reference the card reader. The

ates a “private” card file.

When copying a file to a card, the source file specifier must refer to a file that is currently in either
the HP-71 or a memory device plugged into the computer. If the source file specifier is omitted, the
current file is copied to the card. If the destination file spec1ﬁer is omitted, the source file name is
used as the destlnatlon ﬁle name on the card For example : : creates a
card file named i T

from the source file (named).

creates a card ﬁle named

%), and the destination file-
the HP 71 converts the destination file name to

If the source file is a special system file (such as
name is omitted, (as in ¢
uppercase.

When copying a file to a card, each side of each card must be passed through the card reader twice. The
second pass verifies that the data was recorded correctly. If the data was not recorded correctly, the HP-71
prompts you to rewrite the card.

When copying a card to memory, if the destination file name is omitted, the file name on the card
becomes the destination file name.

57

COPY (continued)

It has no effect on the

Specifying as the source device is equivalent to specifying
privacy of the destination file.

Attemptlng to copy a card that was written on the HP-75 and contains a non-LIF1 file type causes an
! i i (error 69) condition. This condition can also be caused by an HP-71 file of an
unknown type. {An unknown HP-71 file type results if the computer requires a certain LEX file or
plug-in module to recognize the file type, and that LEX file or module is not present.)

Key Assignments. You can use i
copying from a key assignment file to

o If &
o If

= to store the current key assignments in a file. When
(which is the current system key assignment file}):

= does not already exist, simply execute

" file specifier

already exists, either purge it (by executing

: or rename it (by executing
¢ file specifier 7! (Attemptlng to
% already exists results in a

: Tt file specifier), then execute
copy a key assignment file to & : when &
error 59 — condition.)

Related Keywords

58

CORR

(correlation) returns the sample correlation between a pair of variables in the current statisti-
cal array.

0 Statement W Keyboard Execution
B Function B CALC Mode
0 Operator B {F. .THEN... ELSE
© O ®
Examples

Input Parameters

Item Description Restrictions
]
variable number Numeric expression rounded to an Must be a value in the range of 1
integer. through the current =7 =7 array
dimension.

Comments

returns a REAL value.

Related Keywords

59

COS

{015 (cosine) returns the cosine of its argument.

O Statement B Keyboard Execution
B Function B CALC Mode
O Operator B IF.. THEN.. ELSE

@Oz 0

Examples

Input Parameters

Item Description Restrictions
argument Numeric expression. Must be a finite number.
Comments

i7:% assumes that the argument is expressed in the current angular setting. The HP-71 first reduces
the argument by 360° (or 2« if in radians setting). If in radians setting, this reduction takes place with
a 31-digit representation of = for increased accuracy. Also:

e COS(90 + n*180) = [(—1)"] *0; n = 0,1,2,3, ... (Degrees setting).
e COS(—x) = COS(x).

Related Keywords

RHGLE, ACOS, ACS, ASIN, ASH, ATAM, ATH, DEG, DEGREES, OFTION, RAD, RADIAMNE, STH,
THH.

60

CREATE

ATE creates a data file in main RAM or in an independent RAM.

M Statement B Keyboard Execution
J Function 10 CALC Mode
[J Operator B F.. THEN.. ELSE

Y

file file |
CREATE type P_——’{§pecifiEQJ7
file

record
length

Examples

Input Parameters

Item Description Restrictions
file type Unguoted string indicating the type of file TEXT, LIF1, DATA, or SDATA file
to create. type.
file specifier String expression or unquoted string. File name with optional device
specifier.
file size } Numeric expression rounded to an DATA and SDATA files: 1 through
record length integer. 65,535; TEXT files: 1 through
Default: Refer to ''Comments.” 1,048,575.

Comments

The file type tells the HP-71 which format to use when writing information into the file.

£ does not open the created file. To open a newly created data file for writing, use
statement.

61
CR EATE (continued)

A file placed in memory as a result of executing CREATE will increase in size if you use FRIMNT# to
sequentially write to a new record immediately following the current last record of the file.

TEXT (LIF1) Files. A TEXT file contains variable length records of ASCII character data. The
name “LIF1,” by which this file type is referenced in the HP-75, can be used in place of the name
“TEXT.” However, the HP-71 still regards as a TEXT file any file carrying a “LIF1” designation. This
file type is the same as that of the HP Logical Interchange Format (LIF) file type “1” which serves as
an interchange file format among most Hewlett-Packard computers. The file size is specified in bytes.
Both the minimum file length and the default file size are zero. Because a LIF1 file contains records of
varying length, you cannot specify the file’s record length.

DATA files. A DATA file type has fixed length records which can contain both numeric and string
values. The file size is specified in number of records, with a default size of zero. The record length is
specified in number of bytes. If not specified, or specified as 0, the record length defaults to 256 bytes.

SDATA files. The SDATA file type is the same file format as the DA (data) file produced by the
HP-41 calculator. Thus, SDATA files are register-oriented. Each record is 8 bytes in length. The HP-71
can write only numeric values to this type of file. Notice, however, that the HP-41 can store both
numeric and alpha data in this file, which can be read by the HP-71 FEAL# statement. (Refer to
READ# and PRINT# for further information.) The file size is specified by the number of records in the
file, with a default size of zero.

Related Keywords

Computer
. Museum

62

DATA

statements contain data that can be read by statements.
B Statement 0O Keyboard Execution
O Function O CALC Mode
0 Operator O IF...THEN... ELSE

OATA "This 12 2 =strirna" & " esspressiaon”

Input Parameters

Item Description Restrictions
expression Refer to glossary. None.
unquoted string Refer to ‘“‘Punctuation and Space in Data None.
ltems,” on the next page.

Comments

statements provide the means for ordering string and/or numeric data items for assignment to
corresponding variables listed in ¥ statements. Each time a running program encounters a vari-
able in a | statement, it assigns to that variable the next consecutive data item from a D&7TH
statement. If a : statement variable is encountered after all of the data items in a [state-
ment have been assigned, the first data item in the next consecutively-numbered : statement is
assigned to that variable. A program or subprogram can contain any number of [statements at
any locations.

63
DATA (continued)

Data Statements in Subprograms. When a subprogram is called, the HP-71 remembers the loca-
tion of the next item to be read in the calling program in anticipation of returning from the
subprogram. Within the subprogram, the first item read is the first item in the lowest numbered
statement within the subprogram. When program execution returns to the calling program, the
operations resume where they were suspended when the subprogram was called.

Constants and Variables. A numeric or string constant must be read into a variable that can store
the constant. In the HP-71 a numeric constant (or expression) in a :*:T# statement can be read into
either a numeric variable or a string variable. However, a string constant can be read only into a string
variable. That is:

¢ Numeric values in a o statement can correspond to either numeric or string variables in a
statement used to access that | statement. A numeric value read into a string vari-
able is interpreted as an unquoted string.

¢ String values in a | statement can correspond only to string variables in a statement
used to access that : statement. Attempting to read a string value into a numeric variable
causes an immediate error condition.

If a string can be interpreted as a valid string expression (such as) followed by a
comma or the end of the line, then it will be evaluated as such when read. Otherwise, the computer
treats it as an unquoted string.
Punctuation and Spaces in Data Items. A data item can be any one of the following:

¢ Numeric expression.

e String expression.

e Unquoted string.

To place an unmatched quote mark in a string expression, you must enclose the mark within a pair of
the opposite type quote marks. For example:

Also, the computer ignores any leading or trailing blanks in an unquoted string expression. Thus, to
include such blanks in a string expression, they must be within quotes (that is, in a quoted string).

Since * statements can contain | and # symbols,
another statement.

4 cannot be followed by a comment or

64
DATA (continued)

Related Keywords

65

DATE

" returns the current clock date.

0 Statement B Keyboard Execution

B Function B CALC Mode

O Operator B F...THEN.. ELSE
Examples

Comments

- returns the current clock date as an integer in a year/day (YYDDD) format, where YY is the
year and DDD is the day number of the year.

Related Keywords

66

DATES$

-+

(date string) returns the current calendar date as an eight-character string in a year/month/
day (YY/MM/DD) format.

OO0 Statement B Keyboard Execution

M Function O CALC Mode

O Operator B [F...THEN...ELSE
Examples

Related Keywords

67

DEF FN

(define function) indicates the beginning of a user-defined function definition.

B Statement O Keyboard Execution
O Function O CALC Mode
O Operator O IF...THEN...ELSE

numeric | -

vaPiaDIEI
sl

—{(oEF FN

numeric
expression

parameter

string
variable

(formal) string
parameter expression

Examples

Input Parameters

Item Description Restrictions

numeric variable Letter, or letter followed by a digit. None.

formal parameter Numeric or string variable name. None.

numeric expression | Refer to the Glossary. None.

string variable Letter followed by # or letter and digit None.

followed by #.

maximum string Numeric constant. 0 to 65535.

length Default: 32.

string expression Refer to the Glossary. None.

68
DEF FN {continued)

Comments

A user-defined function computes a single value, and is used by specifying the function’s name and
actual parameter list in an expression; for example: Z#FHF < » +1. (Refer to the FN keyword entry on
page 116.) A function definition can appear anywhere in a main program or subprogram, and can be
composed of either a single statement or multiple statements. A EF FH statement with no = symbol
is the beginning of a multiple-statement function definition that must have a corresponding
=MD [IEF statement.

A user-defined function can have from 0 to 14 parameters. The formal parameters must match the
actual parameters in both number and type. All parameters passed to a function are passed by value.
Parameters appearing in the function definition list are local to the function and are inaccessable
from the main program. However, all global variables having names that differ from the function’s
formal parameters can be accessed from within the function.

A string function returns a string value. The string length of a formal string parameter is automati-
cally increased, if necessary, to match the length of the actual string value passed at execution. How-
ever, if the length of the formal string parameter becomes greater than the length of the actual string,
an error results. For example, in the following program segment the actual string value (#%) is three
characters, but the corresponding formal string parameter (contains five characters. Thus, line
110 would cause an error because the formal string length cannot be increased beyond that specified
by the actual string length.

10 A$="ABC"
20 DISP FNL$(A$)

100 DEF FNL$(T$)
110 T$="12345"
120 END DEF

A function can call itself (which is termed recursion).

For a user-defined string function to return a string containing more than 32 characters, you must
specify the maximum string length parameter. Otherwise, whenever the function value exceeds 32
characters, a Str ina Owfl (error 37) condition occurs. (The way that DEF FH uses the maximum
string length parameter for a user-defined string function is similar to the way that O uses the
maximum string length parameter for a string variable.)

Related Keywords

69

DEF KEY

DEF KEEY (define key) assigns a character string to the specified key.
MW Statement B Keyboard Execution
OO Function 0 CALC Mode
0 Operator B [F...THEN... ELSE
=< KEY) » nkaemye }; T >
DEF L‘@——" a:tri“?:;d —.! assign;zr{t type "}
Examples

Input Parameters

Item Description Restrictions
key name String expression indicating key to be Less than five characters.
defined. (Refer to glossary.)
assigned string String expression. None.
key assignment : or : symbol, or blank. (Refer to None.
type " Assigning Keys,” on the next page.)
Comments

Key assignments are useful for repetitive character string entry, data entry, partial command entry,
direct execution, and generally customizing the keyboard to your needs.

70

DEF KEY (continued)

Assigning Keys. The following table describes the three types of key assignments:

. Punctuation Used .
Assignment To Define Key Result of Pressing
Type Assignment Type the Assigned Key
Typing Aid Semicolon (:). Displays the assigned string as though you
manually typed it in.
Direct Execution Colon (). The assigned string is executed without
altering the display.
Immediate Execution None (default). The HP-71 displays the assigned string, then
performs the same as if you typed in the
assigned string and pressed .

Key assignments are only active when the user keyboard is active. If the first character of a multiple-
character key name string is #, the string is interpreted as a key number. If the first character of a
two-character string is upper- or lowercase “F” or “G,” the string is interpreted as the (f]- or [g]- shift
of the key specified by the second character. Any excess or unnecessary characters in the key name
string cause an error condition.

The numbers to use when entering a ¢ assign-

ment are shown in the table to the right. Key Set Key Numbering

] Primary Key | 1 through 56
Note: The (f]- and (g]- shift keys cannot be redefined. Functions (@, W), (E),...)

(- Shift 57 through 112
Functions ((1F], (THEN] . . . [CONT])

(g]- Shift 113 through 168
Functions ([a, .2

#. Each time you

The HP-71 stores any current key assignments in a special system file named
execute *, the computer updates the i = file.

»

Deassigning Keys.

¥ also deassigns keys by returning them to their default assignments.
To deassign a key, enter '

* and the key name only, then press [END LINE].

71
DEF KEY (continued)

Related Keywords

72

DEFAULT EXTEND/ON/OFF

" sets the math exception traps to specific values.

B Statement B Keyboard Execution
O Function O CALC Mode
O Operator B IF.. . THEN.. ELSE

©

OFF

Examples

Comments

The trap actions may be set individually for each of the five exception flags by using the TEHF func-
tion described on page 293. However, there are some groups of actions that are common and can easily
be set by the DEFHLILT statements:

: Sets the traps for the UNF, OVF, DVZ, and IVL flags to zero. Sets the trap
for the INX flag to 1. For the INX flag (flag —4) a trap value of 1 or 2
produces the same results. Refer to the description of the - function
in your HP-71 Owner’s Handbook.

: Sets the traps for the INX, UNF, OVF, DVZ, and IVL flag to 1.

Sets the traps for the INX, UNF, OVF, and DVZ errors to 2. Sets the trap
for the IVL flag to 1.

Related Keywords

73

DEG

DEG (radians to degrees conversion) converts arguments expressed in radians to degrees.

1 Statement B Keyboard Execution
B Function O CALC Mode
0 Operator B [F...THEN...ELSE
52— o
Examples

Input Parameters

Item Description Restrictions
argument Numeric expression. None.
Comments

The conversion constant used by = is accurate to 15 digits, which often produces more accurate
results than a conversion which does not use this function.

Related Keywords

74

DEGREES

E% sets the unit of measure for expressing angles to degrees. It is a short form of the
Ok AMGLE DECGREEES statement.

B Statement B Keyboard Execution

O Function 0O CALC Mode

O Operator B IF.. THEN... ELSE
Examples

Comments

After you execute ;, executing any function that returns an angle will return the angle in
degrees units. Operations using parameters to represent angles interpret the angles in degrees.

The Degrees setting is the HP-71 default angular setting. Both the Degrees setting and its coun-
terpart, the Radians setting, are global.

Executing clears both the RAD annunciator and system flag —10.

Related Keywords

75

DELAY

" sets the rate at which lines and characters within a line will scroll in the display.

B Statement B Keyboard Execution
0O Function 0 CALC Mode
0 Operator B IF.. . THEN... ELSE

line -
DELAY mate -
character
rate

Examples

Input Parameters

Item Description Restrictions

line rate Numeric expression rounded to the Zero to infinity.
nearest 1/32 second. Values greater than
or equal to 8 are considered infinite.

character rate Numeric expression rounded to the nearest | Zero to infinity.
1/32 second. Values greater than or equal
to 8 are considered infinite.

Default: 0.125 second.

Comments

The character rate is the number of seconds to delay between characters in the display. A zero char-
acter rate causes the display to be immediately advanced to show the last part of the line. An infinite
character rate causes the first part of the line to remain in the display indefinitely.

The line rate is the number of seconds to hold each display line (after character movement halts)
before displaying the next line. An infinite line rate causes the line to remain in the display until you
press a key. A line rate of zero implies that lines are not held in the display at all.

The HP-71 interprets as infinite any line and character rates that equal or exceed eight seconds. Rates
of less than O are interpreted as 0.

76

DEL AY (continued)

Related Keywords

77

DELETE

~ deletes one or more program lines from the current file, and is nonprogrammable.

B Statement B Keyboard Execution
O Function O CALC Mode
OO0 Operator B IF.. THEN...ELSE

DELETE »{ ALL } -
start final
O

Examples

Input Parameters

Item Description Restrictions
start line number Integer constant identifying a program 1 through 9998.
line.
final line number Integer constant identifying a program Start line number through 9999.
line.
Default: Start line number.

Comments

To delete a single line, specify only that line number. (You can also delete a single line without using
the statement by entering the line number and pressin). To delete a block of
program lines, specify the start and final line numbers in the statement.

[

deletes all lines in the current file. (The file header remains.)

78

DESTROY

* deletes variables and arrays from memory.

B Statement B Keyboard Execution
O Function O CALC Mode
O Operator B IF...THEN...ELSE

S
Examples
Input Parameters
Item Description Restrictions
variable Numeric or string variable name. None.

Comments

Destroys variables and arrays, reclaiming the memory they consumed. Memory-reclaiming deletion of
a specified array or variable occurs when © 1s executed. If the computer is executing a
subprogram or user-defined function, only the variables created by that entity are deleted.
; il deletes all Varlables in the current entity (program, subprogram, or user-defined func-
tlon) Executing fl.L. within a user-defined function causes program executlon to
immediately exit from that function in the same way that it does when executing

Related Keywords

79

DIM

(dimension) allocates memory for string or REAL variables and arrays.

numeric |

B Statement B Keyboard Execution
O Function O CALC Mode
U Operator B IF. .THEN.. ELSE
(N
S

variable

dimension
l1imit 1

string

dimension
limit 2

variable

dimension
limit 1

Examples

Input Parameters

max imum
string length

Item Description

Restrictions

numeric variable Letter followed by optional digit.

string variable Letter followed by # . or letter and digit

followed by #.
dimension limit 1
dimension limit 2

J

maximum string

length Default: 32.

Numeric expression rounded to an integer.

Numeric expression rounded to an integer.

None.
None.

Option Base setting to 65535.

1 to 65535.

80

DIM (continued)

Comments

[: 1t creates REAL variables and arrays, and string variables and arrays. Creation occurs upon execu-
tion of 2'IH. The dimension limits are evaluated at creation time. The lowest-numbered subscript in
any dimension is 0 or 1, depending on the TZFTIZH EASE setting when the array is created.
ZFTICOH EASE has no effect on maximum string length or on substring indices; the first character
always occurs at position 1. Numeric elements are initialized to zero and string elements are initialized
to null (no characters).

If T 11 specifies a simple numeric variable that already exists, the variable is reinitialized to zero. Other
variables are redimensioned, but not reinitialized (unless the data type—or, if a string variable, the
maximum string length—is changed). If DIH expands an array, it also initializes all newly-created
elements in the array. Notice that redimensioning does not necessarily preserve an element’s position
within an array, but does preserve the sequence of elements within an array. (Refer to “Declaring Ar-
rays (DIM, REAL, SHORT, INTEGER)” in section 3 of your HP-71 Owner’s Manual.)

The following tables indicate the conditions that apply to REAL numeric variables and arrays, and to
string variables.

REAL Numeric Variables

Initial Value 0

Numeric Precision 12 Decimal Digits
Exponent Range +499

Maximum No. of Array Dimensions 2

Maximum Dimension Limit 65535

Memory Usage in Bytes
e Simple Variable 95
» Array 8%(Dim1 - Base + 1)*(Dim2 - Base + 1) + 9.5

81

DlM (continued)

String Variables

Initial Value Null
Default Maximum Length 32 Characters
Possible Maximum Length 65535 Characters
Maximum No. of Array Dimensions 1
Maximum Dimension Limit 65535
Memory Usage in Bytes
« Simple Variable Memory Usage Maximum Length + 11.5
e Array (dim — base + 1) * (Maximum Length + 2) + 9.5

Related Keywords

82

DISP

" (display) displays numeric and string data.

ooOm

Statement
Function
Operator

B Keyboard Execution
O CALC Mode
B IF.. THEN...ELSE

o

Examples

expression

Input Parameters

ltem Description Restrictions
expression Numeric or string expression. None.
column Numeric expression rounded to an integer. | Greater than zero.
Comments

You can omit the statement name itself in all cases except immediately after

The numeric format depends on the currently selected display format. (Refer to the STR$ keyword
entry for details on various formats.) A leading blank is added before positive numbers and a trailing
blank is appended to the end of all numbers. These blanks are associated with the displayed number
itself, and not with the punctuation on either side of it. No blanks are added to either side of string

items.

i or i

83

DlSP (continued)

After * is executed, the display remains unchanged until explicitly changed by another state-
ment, keyboard entry, or program error.

Punctuating DISP Statements. Items to be displayed must be separated by semicolons or com-
mas, which themselves affect the display format. When the HP-71 encounters a semicolon after an
item, it displays the next item immediately adjacent to the first item (although numbers always have
one or two blanks associated with them, as described above). However, if the remaining line width is
not sufficient for the entire item, it will be displayed on the next line.

Commas between items cause the HP-71 to format the items in display “zones.” A display zone is 21
characters wide. (The last zone in a display is less than 21 characters if it exceeds the remaining
display width.) The normal display width of 96 characters includes five zones: four 21-character zones
and one 12-character zone. When the HP-71 encounters a comma between items in the display list, it
skips to the beginning of the next zone (or to the next line if the remaining line width is not sufficient
for the entire item). To cause a blank zone of 21 characters, enter two adjacent commas in the display
list.

The effect of commas and semicolons can be used to added advantage when these symbols are the last
ones in the display list. For example, ending the list with a semicolon causes subsequent characters to
be displayed adjacent to the last output. Ending the list with a comma causes subsequent characters
to be displayed on the same line, but in the next display zone. Ending the list with neither causes
subsequent characters to be displayed on the next line by sending a carriage return/line feed to termi-
nate the line.

The I

display list is equivalent to the ANSI minimal BASIC print list.

Use of TAB. 7#E positions i {and T} output at the column you specify. If the current
column position is beyond the specified the computer first moves to the next line, then posi-
tions itself to the specified column. If the column position value exceeds the current line width, the
computer reduces the position value by a multiple of the line width (in a manner similar to the
function), then moves to the reduced column position.

Related Keywords

84

DISP USING

ODISF USIHG (display using) displays the display list items in a user-specified image format.

B Statement

B Keyboard Execution
O CALC Mode

O Function
00 Operator B [F.. THEN... ELSE
DISP USING nanpe | : -~
format .
Examples

Input Parameters

Item

Description

Restrictions

line number

format string

expression

Integer constant identifying a program
line.

String expression.

numeric or string expression.

1 through 9999.

Refer to the IMAGE keyword entry.

None.

85

DlSP US'NG (continued)

Comments

D' TSF may be omitted in all cases except after THEH or ELZE. The display items in the display list
must be separated by commas or semicolons. Notice that, contrary to the use of commas and
semicolons with the [1 I 5F statement, such punctuation has no effect on the spacing between displayed
or printed items.

! . requires a format string to format the output items. If there are no display items,
there may or may not be any output to the display, depending on the items entered in the format
string.

If ¢ i: references a line number, I##5:% must be the first statement in that line. When
executed from the keyboard, the computer searches for an statement at the referenced line
number in the current file.

If 0I5F USIHG contains a string expression for the image, that expression must evaluate to a valid
format string, as described in the IMAGE keyword entry.

Example.

Program segment:

10 S$= 2X,” ' & “Today’s” & ' ”,10A,'$’2D.DD’
20 DISP USING S§; “* Special”’,2.95

Program output:

Today’s Special $2.95

Related Keywords

86

DISP$

O 1%F# (display string) returns a string containing all readable characters in the display.

O Statement B Keyboard Execution

M Function O CALC Mode

O Operator M IF...THEN .. ELSE
Examples

Comments

% returns a string of up to 96 characters containing all i : readable characters in the
dlsplay (A ‘“readable” character is any character displayed while the cursor is on, as it is during key-
board entry.) D:IZF# allows a number (% 7) or string keyed into the display to be used
directly by a user- deﬁned key or a subsequently-run program. If there are no readable characters in
the display, the null string is returned. In general, characters displayed by a * statement are not
readable.

87

DIV

DIY (integer quotient division) returns the integer portion of the quotient of the dividend and the
divisor. That is:

x OIVy = IFOx-y:.

O Statement B Keyboard Execution
O Function B CALC Mode
B Operator B IF.. THEN...ELSE

Examples

Input Parameters

Item Description Restrictions
dividend _ _ Subject to operator precedence.
divisor Numeric expression. Division by zero and division of Inf
by Inf are not allowed.

Comments

The backslash character (ASCII 92) is an alternative form of the operator.

Related Keywords

-~ (division operator),

88

DROP

{ & removes the coordinates of a data point from the data set represented by the summary statis-
tlcs in the current statistical array.

B Statement B Keyboard Execution
O Function O CALC Mode
O Operator M IF...THEN... ELSE

DROP

coordinate

Examples

Input Parameters

Item Description Restrictions

coordinate Numeric expression giving coordinate None.
(variable value) of data point.

Comments

The number of coordinates must be within the range specified by a preceding = 7#7 statement. Any

missing coordinates are assumed to equal zero.

Related Keywords

89

DTH$

DTH# (decimal-to-hexadecimal string) converts a decimal number to a five-digit string representing its
hexadecimal value, with leading zeroes included.

O Statement B Keyboard Execution
B Function O CALC Mode
O Operator B IF.. . THEN.. .ELSE
® ®
Examples

Input Parameters

Item Description Restrictions
argument Numeric expression rounded to an 0 through 1,048,575.
integer.
Comments

At

ical usage is converting a decimal number to a hexadecimal address in conjunction with the

and % functions, and the ~ statement.

’

Related Keywords

90
DVZ

[%Z (divide-by-zero) returns the divide-by-zero flag number (—7).

0O Statement M Keyboard Execution
M Function M CALC Mode
0O Operator M IF...THEN...ELSE
Dvz
Examples

Related Keywords

91

EDIT

f i enables you to enter a new BASIC program or to edit a BASIC program already in memory,
and is nonprogrammable.

B Statement W Keyboard Execution
OO0 Function 0 CALC Mode
O Operator B IF.. .THEN.. ELSE

Computer

Museuim:

o

specifier

Examples

Input Parameters

Item Description Restrictions
file specifier String expression or unquoted string. File name with optional device
Default: System workfile. specifier.
Comments

The BASIC file you specify with EZI 7 becomes the current file. If the file does not exist,
creates it. If you do not specify a file, the : 1% becomes the current file. When you execute
i 7, the HP-71 displays the specified file’s catalog information.

You can perform |. ! -, and other file operations on the current
file without spemfylng its file name. Also, the file’s program lines may be viewed and edited using the
scroll keys.

i file name: i initiates a search in main RAM only for the specified file. If the file is not
found it is created in main RAM.

92

ED'T (continued)

EDIT file pame: FORT {n initiates a search of port n only for the specified file. If the file is not found
and if the device plugged into that port is an independent RAM, the file is created in that device.

¥ file name: " (no particular port specified) initiates a search of all plug-in memory devices
for the specified file. If the file is not found, " creates the file on the first independent RAM
having enough room.

If you do not specify any device, and T does not find the file, the HP-71 creates the file in main
RAM. As is always the case when no device is specified, the HP-71 searches main RAM first, then
searches any plug-in memory devices.

I clears any program control information. This includes collapsing all (internally-maintained)
execution stacks and releasing any local environments. (In this regard, " performs the equivalent
of £H i..) Consequently, executing " while a program is suspended (SUSP annunciator
dlsplayed) removes the program from the suspended state and clears the SUSP annunc1ator Also,
because -7 clears the aforementioned stacks, it cannot be used in a 5T loop.

Related Keywords

93

END

EHD terminates a subprogram, user-defined function, or program.

B Statement B Keyboard Execution
O Function O CALC Mode
O Operator B IF.. THEN...ELSE
END >
ALL
Examples

Comments

END in a Program. EHD is the last statement executed in a program. (Program execution can also
be terminated with =TQF.) When a program has been suspended (refer to the PAUSE keyword entry),
you can clear the suspended state by executing EHD from the keyboard.

END in a Subprogram. Executing EHD in a subprogram is equivalent to executing EHD 3ZLIE. Re-
fer to “END SUB Comments” on the next page.

END in a User-Defined Function. Executing EHD in a user-defined function is equivalent to ex-
ecuting EHO OEF. Refer to “END DEF Comments” on the next page.

The END ALL Statement. i releases all levels of local variables and memory associated
with a program, any subprogram(s) it called, and any user-defined functions in either the program or
the subprogram(s) it calls.

Related Keywords

94

END DEF/SUB

(end function definition) causes a normal return from a multiple line user-defined func-

tion call.

EHD ZUR (end subprogram) causes a normal return from a subprogram invoked by a 030 L statement.
M Statement B Keyboard Execution
O Function 0 CALC Mode
0 Operator O IF...THEN...ELSE

END DEF

it

END SUB

Examples

Comments

END DEF Comments. EHDO [DEF indicates the end of a user-defined function, and must be the last
statement in a multiple statement user-defined function definition. EHDO DOEF terminates function
execution and returns control to the expression containing the FH call. The value of the function is set
by the most recent execution of F4 variable name = expression.

When a user-defined function is invoked, it not only uses memory to create its local variables, but it
also requires memory to retain information about the global environment. If program execution halts
during execution of a user-defined function, the local variables and memory used by that function
are not automatically released. However, you can release this memory by executing ; from
the keyboard. This terminates the user-defined function and also affects control of execution in one of
the following two ways:

¢ If the user-defined function was invoked by a program, then suspended, executing
from the keyboard suspends program execution at the statement following the statement that
called the function.

e If the user-defined function was invoked from the keyboard, then suspended, executing
from the keyboard returns control to the keyboard and does not continue the statement that
invoked the function.

and

When used in a user-defined function,

95

END DEF/SUB (continued)

END SUB Comments. Encountering ZUE during subprogram execution terminates the sub-
program, releases the local variables and memory associated with the terminated subprogram, and
returns program execution to the statement following the i i that invoked the subprogram. If the
subprogram was invoked by a i i statement from the keyboard, control returns to the keyboard.
(In this case, if there are one or more keywords concatenated after _,the HP-71 executes these
keywords before returning control to the keyboard.)

When a subprogram is suspended, executing EHMT =UUE from the keyboard terminates the subprogram,
releases any local variables and memory associated with the subprogram, and affects control of execu-
tion in one of the following two ways:

e If the subprogram was called from another program execution returns to that program and is
suspended at the statement following the #ii}

¢ If the subprogram was called from the keyboard, control returns to the keyboard. This means that
if you concatenated one or more keywords after those keywords are not executed.

=1

You can use EH[in place of EMHG ZUE to end a subprogram. Also, EHIl ZiE operates in the same
way as Er[if no local environment exists.

Related Keywords

96

ENDLINE

specifies the end-of-line sequence used in " and ¥ I statements.
B Statement B Keyboard Execution
O Function 0O CALC Mode
0O Operator M IF.. .THEN...ELSE
endline
Examples
Input Parameters
Item Description Restrictions
endline string String expression. Up to three characters.
Default: CR/LF (carriage return/line
feed).

Comments

statement whenever either of the

The specified string is appended to the output of each
following two conditions exist:

¢ The statement is not terminated by a comma or semicolon (. or ;).

¢ An end-of-line sequence is sent to the printer.

= without a string expression restores the normal CR/LF end-of-line.

Related Keywords

97
ENG

EHG (engineering format) sets the engineering display format (ENG mode) and the number of signifi-
cant digits to be displayed (or printed).

B Statement MW Keyboard Execution
O Function O CALC Mode
0 Operator B IF...THEN... ELSE
— (oo)—{"e
Examples

Input Parameters

ltem Description Restrictions

number of digits Numeric expression rounded to an 0 through 11.
integer.
Default: A value less than O defaults to
0. A value greater than 11 defaults to
11,

98
ENG (continued)

Comments

Display format statements control the format settlng for dlsplaylng numbers The display setting
remains in effect until you execute another : %7t statement.

In format the displayed value appears as
(Sign) Mantissa E (Sign) Exponent,
where, for normalized numbers,

1 <= mantissa < 1000,

and the exponent is a multiple of 3. In - format, the HP-71 displays one s1gn1ﬁcant digit more
than the rounded integer value you specify in the & statement. For example, = produces the
following four-digit outputs:

If a displayed value has an exponent of —499, it is displayed in = format to the number of digits
specified in the ¢ statement. Denormalized numbers have a mantissa of less than 1.

Related Keywords

99

EPS

= (epsilon) returns the smallest positive, normalized number that the HP-71 can represent (1.0
E-—499).

[0 Statement B Keyboard Execution
B Function B CALC Mode
O Operator B (F...THEN...ELSE
EPS
Examples

Comments

100

ERRL

. (error line) returns the line number where the most recent program error or warning occurred.

00 Statement B Keyboard Execution

M Function B CALC Mode

0O Operator B IF.. THEN...ELSE
Examples

Comments

The current value is affected only by errors and warnings occuring during program execution.
An error occurring in a subprogram sets L. equal to the appropriate line number in that
subprogram, and not the line number of the main (calling) program.

If no error or warning has occured in a running program since the last memory reset, executing &
returns . If the last error occurred during execution of a nonBASIC program, also returns &,

Related Keywords

101

ERRM$

(error message string) returns the message text of the most recent error or warning.

O Statement B Keyboard Execution

B Function O CALC Mode

O Operator B IF...THEN... ELSE
Examples

Comments

If no
returns the

returns the message text identified by the number of the most recent error (
error or warning has occurred since the last memory reset, is zero and
null string.

Related Keywords

102
ERRN

: (error number) returns the number of the most recent error or warning.

O Statement B Keyboard Execution

B Function B CALC Mode

O Operator B IF...THEN...ELSE
Examples

Comments

Both syntax and run-time errors update the number returned by If no error or warning has

oceurred since you initialized your HP-71, i returns .

Related Keywords

103

EXACT

. " calibrates the system clock and tells the HP-71 that the time currently stored is the correct
time.

B Statement B Keyboard Execution

O Function O CALC Mode

O Operator B IF. .THEN.. ELSE
Examples

Comments

sets the Exact flag (—46), and directs the HP-71 to compute an internal adjustment factor
that is used to continuously update a fast- or slow-running clock. The recommended use of ¢ N
as follows:

1. After either powering up your HP-71 or performing a level three reset, execute =
the clock. Then immediately execute I to set the Exact flag and begin the first adjustment
period.

2. Following an interval of several days, weeks, or months, use " and/or = one or
more times to correct the clock. The HP-71 accumulates all corrections except multiples of a half
hour (refer to the and = statements). Ensure that the clock time is correct by
comparing it to a reliable time information source. Then execute ¥

Note: A loss of precision occurs if the corrections made between executions of EXHCT do not
correspond exactly to the true time. However, the longer the interval between executions of
EXACT, the smaller this precision error will be in proportion to any error resulting from a slow or
fast clock. Thus, correcting the clock after several weeks gives better results than correcting the
clock after only one day.

After executing , if further corrections are necessary, repeat the process at step 2.

104

EXACT (continued)

The interval between two ¥ I commands is termed an adjustment period. Executing F
affects the adjustment period as follows:

¢ Recomputes the adjustment factor based on:
¢ The current adjustment factor.
® The time corrections accumulated during the current adjustment period.
e The length of the adjustment period.

¢ Begins a new adjustment period.

value of the computed adjustment factor (af;) is in the range 0 < af, < 10, an
~ (error 27) condition occurs.

If the absolute

To access the adjustment factor, refer to the AF keyword entry.

Note: The internal clock uses the Exact flag. The /nexact flag is a math flag and has no relationship to
the Exact flag.

Related Keywords

105

EXOR

(exclusive or) generates the logical Exclusive Or of its operands.

0] Statement B Keyboard Execution
0] Function B CALC Mode
B Operator B IF...THEN...ELSE
—-i operand ‘—{EXOMerandP
Examples

Input Parameters

Item Description Restrictions
operand Numeric expression. Subject to operator precedence.

Comments

The operands of E <IF are considered to be logically false if o d]

zero and logically true if nonzero. The possible results of peranﬂ Result

this operation are summarized in the table to the right. Left | Right

E+0F has the same precedence as 0F, which is the lowest

of all operators. False False 0
False True 1
True False 1
True True 0

The precedence of E=F in relation to the HP-71’s other operators is described under “Precedence of
Operators” on page 317.

Related Keywords

106

EXP

E®F (natural antilogarithm) returns the number e = 2.718281828... raised to the power given by the
argument.

O Statement B Keyboard Execution
B Function B CALC Mode
I Operator H IF...THEN...ELSE
E)—O O
Examples

Input Parameters

Item Description Restrictions

argument Numeric expression. None.

Related Keywords

E=FM1 (natural antilogarithm minus 1) returns the value of e* —1.

107

EXPM1

O Statement

B Keyboard Execution

B Function B CALC Mode
O Operator B IF.. . .THEN... ELSE
®
Examples

Input Parameters

Item Description Restrictions
argument Numeric expression. None.
Comments

This function allows for an accurate evaluation of the quantity e* — 1, which is useful for values of x

that are close to zero.

Related Keywords

108

EXPONENT

" returns the exponent of its normalized argument.

[0 Statement B Keyboard Execution
B Function M CALC Mode
O Operator W IF...THEN...ELSE
TEEDSNO, O
Examples

Input Parameters

Item Description Restrictions
argument Numeric expression. None.
Comments

: " enables you to perform extended range computations that might otherwise produce an
underﬂow or overflow. For a ﬁmte nonzero argument the result is an integer in the range —510
through 499. @ returns ~1HF and sets the DVZ (division-by-
zero) exception flag.

Related Keywords

109

FACT

FHALCT (factorial) returns the factorial of a nonnegative integer argument.

O Statement B Keyboard Execution
B Function B CALC Mode
O Operator B [F...THEN...ELSE
o ®
Examples

Input Parameters

Item Description Restrictions

argument Numeric expression. Nonnegative integer less than or
equal to 253, or equal to Inf.

Comments

I returns a value of type REAL.

The factorial of a positive integer is the product of all positive integers less than or equal to that
integer. The factorial of 0 is defined as 1. The factorial function overflows for finite arguments greater
than 253. However,

110

FETCH

¢ displays any line in the current program file for editing, and is nonprogrammable.

B Statement B Keyboard Execution
O Function OO CALC Mode
0 Operator B IF. .THEN ... ELSE

FETCH X
statement
identifier

Examples

Input Parameters

Item Description Restrictions
statement Line number or label of a program Any valid line number or label
identifier statement. reference.

Comments

Fetching a line sets the file pointer to that line and allows you to edit the line.

If a line number or label reference is not specified, the current line is displayed. If the line number is
not found, the HP-71 displays that line number followed by the cursor. This allows you to create a new
program line. In a suspended program (SUSP annunciator displayed), executing £ H without an
argument displays the line containing the next statement to be executed.

If a specified statement label is not found an error occurs.

Related Keywords

7, LIZT. See also the descriptions of the (a] and [¥] keys in the HP-71 Owner’s Manual.

111

FETCH KEY

displays a specified key assignment for editing, and is nonprogrammable.

B Statement B Keyboard Execution
O Function 0O CALC Mode
0 Operator B IF...THEN... ELSE
——(FETCH KEY }— K&% L—mx
Examples

Input Parameters

Item Description Restrictions
key name String expression.. Less than five characters.
Comments

f KEY retrieves the character string assigned to the specified key. The string is displayed in
one of the following formats:

¢ Direct execution: DEF KE'Y key name . assigned string :
e Typing aid: DEF KE" key name. assigned string :
¢ Immediate execution: DEF KEY key name. assigned string

If no string has been explicitly assigned to the key, the computer displays OEF EE* key name. (For
further information concerning these formats, refer to the DEF KEY keyword entry.)

The key displays the string assigned to the next key you press. The string remains in the
display as long as you hold the key down. When you release the key, the display returns to its original
state. If the key is unassigned, the HP-71 displays .

Related Keywords

112

FIX

I (fixed format) sets both the fixed display format and the number of fractional digits to be dis-
played (or printed).

M Statement 8 Keyboard Execution
O Function [J CALC Mode
0 Operator B |F.. . THEN...ELSE
—(FIX > tractionel Sloses —
Examples

Input Parameters

Item Description Restrictions
number of Numeric expression rounded to an integer. | 0 through 11.
fractional digits Default If the value is less than zero,

USes zero; lf the value is greater
@ uses 11.

than eleven,

Comments

Display format statements control the format for dlsplaymg numbers. The display setting remains in

effect until you execute another ¥ i1 statement.

In 1 display setting the displayed or printed value appears as:
(Sign) Mantissa.

The mantissa appears rounded to d places to the right of the decimal, where d is the specified number
of digits. While the fixed display format is active, the HP-71 automatically displays a value in %1
format, rounded to d places past the decimal, in either of the following two cases:

o If the number of digits to be displayed exceeds 12.

¢ If a nonzero value rounded to d places past the decimal point would be displayed in fixed display
format as zero.

113
FIX (continued)

Related Keywords

114

FLAG

: returns the current value (0 or 1) of the specified flag, and optionally sets or clears the flag.

O Statement B Keyboard Execution
B Function B CALC Mode
O Operator B IF.. THEN...ELSE

flag , .
FLAG 0 number '()) »
new
flag value

Examples

Input Parameters

Item Description Restrictions
flag number Numeric expression rounded to an If you do not enter a new flag
integer. value, the range is —64 through 63.

If you enter a new flag value, the
range is —32 through 63.

new flag value Numeric expression. None.

Comments

If you do not specify a new flag value, the flag value remains unchanged. Otherwise, the HP-71 sets the
specified flag to 0 or 1, according to whether the new flag value is zero or nonzero.

You can use F
—33.

to set, clear, test, save, and restore any user or system flags numbered greater than

Related Keywords

115

FLOOR

returns the greatest integer less than or equal to the argument.

O Statement B Keyboard Execution

B Function B CALC Mode

[0 Operator B IF.. THEN...ELSE
® O

Examples

Input Parameters

Item Description Restrictions
argument Numeric expression. None.
Comments

If the value of the numeric expression is an integer, that value is returned. If the value of the expres-
sion is not an integer, = returns the greatest integer value less than or equal to the expression.
For example:

1.5 returns i.

returns ~ 1.
returns - ..

are identical functions.

and

Related Keywords

116

FN

FH (function) transfers program execution to the specified user-defined function and may pass param-
eters to that function.

O Statement B Keyboard Execution
W Function B CALC Mode*
O Operator O IF...THEN...ELSE

*Multiple-line user-defined functions cannot be used in CALC mode.

—{_FN

numeric
variable name|

string
variable name

parameter

-

Examples

input Parameters

Item Description Restrictions
variable name Numeric or string variable name. None.
actual parameter Numeric or string expression. None.
Comments

When invoked in an expression, a function is evaluated and its value is returned to that expression. In
a user-defined function definition, ¥ is used in the left-hand side of an assignment statement to
assign the value to be returned from the function to the expression that invoked the function. A user-
defined function can be used in either a running program or a statement executed from the keyboard.
(Use the &'+ statement to create user-defined functions.)

The actual parameters must be of the same type (numeric or string) as the corresponding parameters
(formal parameters) in the £ Fri statement. All actual parameters are evaluated, then passed as
values.

117
FN (continued)

The referenced function must be in the current program scope. If you execute the user-defined func-
tion from the keyboard, the computer searches only the main program or subprogram in the current
file, depending upon which environment is currently active. If the currently active environment pro-
gram contains more than one user-defined function with the same name, uses the one on the
lowest-numbered line.

For further information concerning environments, refer to “Scope of Environments” on page 314 and
to your HP-71 Owner’s Manual.

Note: It is possible for a subprogram to contain one or more user-defined functions having the same
name as a function in the main program. In this case, if you (1) suspend program execution while in
the subprogram and (2) execute the user-defined function from the keyboard, i uses the function
on the lowest-numbered line in the subprogram.

Related Keywords

118

FOR...NEXT

is used with to define a loop that is repeated until the loop counter exceeds the specified

value.

B Statement B Keyboard Execution
0 Function O CALC Mode
O Operator O IF...THEN ... ELSE

loop intial final .
CFDR) ’ counter value 10 value | o
) I step
program STEP sizeJ
segment

CNEXTH c oluonotpe i}_>

Examples

Input Parameters

Item Description Restrictions
loop counter Simple numeric variable. None.
initial value Numeric expression. None.
final value Numeric expression. None.
step size Numeric expression. None.
Defaulit: 1.

program Any number of contiguous program lines. None.
segment

119
FORNEXT (continued)

Comments

General Operation. The loop counter is set to its initial value when program execution encounters
the ¢ statement. Each time execution encounters the corresponding statement, the step
size is added to the loop counter, and the resulting new loop counter value is tested against the final
value. If the new loop counter value does not exceed the final value in the direction indicated by the
step size, the computer executes the loop again, beginning with the statement immediately following
the ¥{i& statement. If the new loop counter value exceeds the final value in the direction indicated by
the step size, the computer exits from the loop and continues program execution with the statement
following the ## 7T statement. Refer to the loop test that is described under “Operating Details,”
below. Notice that the step size can be positive, negative, or zero (which results in an infinite loop).
Whenever you do not specify a step size, the HP-71 uses a default step size value of 1.

Operating Details. The HP- 71 uses the following loop test to determine whether to execute the
program segment between the F{iF and HEXT statements:

If (loop counter - final value) * SGN(step size) <<= 0 then execute the program segment; else
transfer execution to the statement following the corresponding i statement.

When the loop is initialized, the loop counter is assigned its initial value, and the preceding loop test
is then performed to determine whether the L program segment should be executed or
bypassed.

The initial, final, and step size values for a loop are determined (initialized) when program execution
enters the loop. If you use a variable or expression for any of these values, you can change that variable
or expression value after the computer initializes the loop without affecting how many times the loop
is repeated. However, changing the value of the loop counter after the computer initializes the loop
affects the number of times that the loop will be repeated.

The loop counter variable is allowed in expressions that determine the initial, final, or step size values.
However, the value of the loop counter variable is established before the HP-71 computes the final and
step size values.

If you use * to exit from a loop before the exit condition is satisfied, the loop counter contains
the value it had at that time.

FOR-NEXT loops can be nested.

When the loop control values involve NaN or Inf there are exceptions to the loop test. For example 1f
the initial value, final value, or step size has the value of NaN upon loop entry, then an i
(error 20) condition occurs. If the IVL trap value is “2,” then the loop counter is set to NaN and the
program segment between F and i ¢ is executed at least once.

120
FORNEXT (continued)

Related Keywords

121

FP

FF (fractional part) returns the fractional part of a numeric value.

0 Statement B Keyboard Execution
B Function B CALC Mode
[0 Operator B IF...THEN...ELSE
® ®
Examples

Input Parameters

Item Description Restrictions
argument Numeric expression. None.
Comments

The returned fraction has the same sign as the argument. For example:

e FFi< 1.5 returns . 5.
e FFi—12 returns —H.

o FFi—1,51 returns —. 5.

Related Keywords

122

FREE PORT

3 I switches the RAM in a port from main RAM to independent RAM status.
" is nonprogrammable.

H Statement W Keyboard Execution
O Function O CALC Mode
O Operator B IF...THEN... ELSE

port
specifier

Input Parameters

Item Description Restrictions

port specifier Numeric expression truncated to two 0 <=p<=05.
digits after the decimal point. Interpreted 0 <= dd <= 15.
as p.dd, where:

p = port number.
dd = device number.

Comments

Operation. i separates a RAM from system memory and prepares the RAM to receive
and maintain files independently of the computer’s main RAM If there is not enough memory avail-
able to remove the RAM, the computer displays an i 2 (error 24) message.
Following execution of i T, you can remove the RAM from the HP-71 without disrupting
the computer’s memory configuration. (Removing a RAM from the computer without first separating
it from system memory by using | can cause a ! 2 Lozt condition).

Note: Executing F =

FLOET changes the system configuration. That is, when you execute
c o

FORET, all file pointers are reset, the workfile becomes the current file, and all
I loops are terminated.

123

FREE PO RT {continued)

Port Information. Port 0 contains the HP-IL port and four internal memory modules. Ports 1
through 4 are the four ports in the front of the machine, numbered from left to right. Port 5 is the
card reader slot.

The device number (dd) is the position of a plug-in device in a device chain.

Related Keywords

124

GDISP

i F (graphic display) sets the dot pattern in the display according to a specified string.

W Statement B Keyboard Execution
O Function O CALC Mode
O Operator B IF.. THEN...ELSE
GDISP pattern
Examples

Input Parameters

Item Description Restrictions

bit pattern String expression truncated to 132 None.
characters or extended with nulls to 132
characters. (The display is composed of
132 columns containing 8 dots per column.)

Comments

* gets the HP-71’s liquid crystal display bit pattern (but does not affect the display buffer con-
tents).

The LCD window consists of a field of 132 dot columns. Each column contains eight dots. The HP-71
displays information by turning on various dots. Any character in a GL I ZF string has a character code
that can be represented as an eight-bit binary number. (Refer to “HP-71 Character Set and Character
Codes” on page 322.) Each character in a G0 1%F string corresponds to one column of dots in the
display; each bit in the character’s binary representation corresponds to one dot in that column. The
least significant bit of a binary character code defines the top dot of that character’s display column;
the most significant bit defines the bottom dot of the display column. For example, =0 I =F uses the bit
pattern for the character “A” (binary code: 0100 0001) to affect a display dot column as shown on the
facing page.

125
GD'SP (continued)

0100 0 0 01

I L A display of this column would
show the first and seventh dots.

L4

\/

Y

Y

Y

Notice that the 1’s in the binary code correspond to the displayed dots and the 0’s correspond to the
undisplayed dots.

A - string character can be either a character you type in from the keyboard or a character
specified by

The

string is a one-dimensional array of bytes used to determine the dots to turn on for a

graphic pattern you want to place in the display. The character code for the first character defines the
first dot column in the display, the second character defines the second column, and so forth. The
least significant bit of each character defines the top dot of that display column and the most signifi-
cant bit defines the bottom dot of the column. For example, the following illustration shows the result

of executing

126

GD'SP {continued)

01111100 CHR$(124)
01100100 d
01010100 T
01001100 L

01111100 CHR$(124)
\/ l

j (Least Significant Bit of Each Column)

(Most Significant Bit of Each Column)

=D 1%F redefines all dot columns in the display, regardless of the 4 I HOIOH setting. However, by using
GOISF and MIMOOWH prior to executing 01 5F, you can “lock” a bit pattern in a subsection of the
display. (That is, you can protect a G0OI5F dot pattern in a designated portion of the display from
being cleared by subsequent executions of DI ZF.

Where a i *.created symbol is not protected by a setting, the symbol remains in the
display until either some operation sends a character to the display or you press a key while the
computer is waiting for an input.

Related Keywords

127
GDISP$

S0 ISF% (graphic display string) returns a 132-character string reflecting the bit pattern in the LCD
display:

O Statement B Keyboard Execution

B Function O CALC Mode

O Operator B F...THEN...ELSE
Examples

Comments

The first character of a =01 5F# string corresponds to the first dot column of the display, and the
132nd character of this string corresponds to the last dot column of the display. For any =[0I %F char-
acter, the bits in that character’s binary code represent the dots in the corresponding display column.
(Refer to “Comments” in the GDISP keyword entry.)

dlsplays the current string (leading and imbedded nulls are ignored).
¥ displays the dot pattern specified by the current % string. In
is used in a loop to obtain the character string from the

Executing
Executing = 2" :
the following program example, [
current display for use in the next display.

10 REM PiISTON PROGRAM

20 GDISP CHR$(255) & CHR$(255) Displays a solid vertical bar that is two columns
wide.

30 FOR | = 1 TO 60 Begins countup loop.

40 GDISP CHR$(24) & GDISP$ Appends column corresponding to Z4: to

current display, which, on the first pass through the
loop, is composed only of characters resulting from
execution of line 20; on subsequent passes through
the loop, is composed of all characters previously
specified in both line 20 and in the loop. Effects are
to build on CHREF2HS:

ing image to the right.

128

G D | S P$ {continued)

50 NEXT |
60 FOR | = 60 TO 1 STEP —1
70 GDISP GDISP$[2]

80 NEXT !
90 GOTO 20

Related Keywords

Terminates countup loop.
Begins countdown loop.

Shortens by one column the displayed image created
in the first loop, and scrolls image one column to the
left.

Ends countdown loop.

Repeats program.

129

GOSUB

GOSUE (go to subroutine) transfers program execution to the subroutine beginning at the specified

RETUFRH associated with a IS UE statement returns the program exeuction to the statement immedi-

ately following that IS LE,

B Statement B Keyboard Execution

O Function O CALC Mode

O Operator B F...THEN...ELSE
Examples

Input Parameters

Item Description Restrictions
statement Line number or label of a program Any valid line number or label
identifier statement. reference.

Comments

If you execute i
computer

from the keyboard with another keyword concatenated after i the

1. Executes the referenced program segment.

2. Executes the statement concatenated after Z:Ziif (only if the called program segment ends with

F).

3. Returns the computer to keyboard control.

130

GOSUB (continued)

However, if G0 Z1IE execution is suspended and then resumed, upon encountering a FETLUFEHM the com-
puter halts without returning to the statement concatenated after GizLE,

All variables in a program are accessible to any subroutine within that program. Also, changing the
value of a variable during execution of a subroutine within that program changes the value of the same
variable in the main program.

Related Keywords

131
GOTO

When executed in a program, GOTO (go to statement) transfers program execution to the specified
statement. When executed from the keyboard, =0T positions the HP-71 to the specified statement.

B Statement B Keyboard Execution
O Function 0O CALC Mode
O Operator B IF.. THEN.. ELSE
'(GOTO) 'l isdteantteimfeinetr ‘ 'l
Examples

input Parameters

Item Description Restrictions
statement Line number or label of a program Any valid line number or label
identifier statement. reference.

Comments

The specified line number or label must be within the current program scope.

i is frequently used as follows:

¢ In a running program to perform unconditional branching.
¢ From the keyboard to:

e Commence execution from a particular statement using or (when the program is
suspended).

¢ Position the computer to a particular line in order to edit that line. (To view and/or edit a line
within the current file, but outside of the current program scope, use 1).

(Executing =070 from the keyboard displays the SUSP annunciator and sets the suspend statement to
either the first statement in the specified line or the first statement following the specified label. Also,
the line containing the suspend statement becomes the current line.)

132
GOTO (continued)

Related Keywords
Refer also to the description of the key in your HP-71 Owner’s

Manual.

133

HTD

HTO (hexadecimal string to decimal) converts a string argument representing a hexadecimal number to
a decimal number.

O Statement B Keyboard Execution
Bl Function 0 CALC Mode
0 Operator B IF...THEN... ELSE

hexadecimal
110 (O O

Examples

Input Parameters

Item Description Restrictions
hexadecimal value | String expression containing hexadecimal Up to five uppercase or lowercase
digits. digits.
Comments

is to convert a hexadecimal address in conjunction with

A typical usage of

HTI is a numeric function that accepts a string expression as input. The string expression must rep-
resent a hexadecimal integer value in the range 0 through FFFFF. Any string expression having more
than five characters or containing a character that is not a hexadecimal digit causes an error con-
dition. A null string also causes an error condition.

Leading zeroes in the string expression will be accepted, although they are not necessary.

Related Keywords

134

IF. THEN. ELSE

provides conditional execution.

B Statement B Keyboard Execution

I Function O CALC Mode

O Operator W IF.. THEN...ELSE*
*Following (only). Refer to “'Further Restrictions’ on the next page.

statement

logical
expression

identifier

o)

declaration

executable
statement

Examples

statement
ELSE identifier

label
declaration

executable
statement

Input Parameters

Item Description

Restrictions

logical expression | Numeric expression evaluated as true if
non-zero and false if zero.

statement Line number or label of a program
identifier statement.

executable Executable BASIC statement.
statement

label declaration Quoted or unquoted string followed by a

None.

Any valid line number or label
reference.

Any statement legal inan I¥
construct. (Refer to “‘Further
Restrictions,” on the next page.)

Any valid label.

135
IFTHENELSE (continued)

Comments

General Operation. If the logical expression evaluates to a nonzero value, it is considered true, and
program control is transferred to the statement immediately following . Execution of state-
ments following - continues until the computer encounters either & or the end of the line
(unless a i: % unconditionally branches execution to another statement). If the logical expression
evaluates to zero, it is considered false, and execution is either transferred to the statement immedi-
ately following & or, if E is not used, to the next program line.

Note: A logical expression can be constructed with numeric or string expressions separated by rela-
tional operators, as well as with a numeric expression.

is considered to be an “im-

A line number or label reference immediately following or
plied 1,” and execution is transferred to the specified statement.

Ay

Further Restrictions. Most BASIC statements are legal following However,
- ¥#, and, generally, any nonexecutable statements are illegal after
constructs cannot be nested, i cannot follow

Because
but can follow &

An implied
IF construct.

¥ is not legal immediately following , but is otherwise legal in an

Computer
» Museum

136

IMAGE

is used In conjunction with i
dlsplayed and printed output.

% to control the format of

B Statement O Keyboard Execution
O Function O CALC Mode
O Operator O IF...THEN.. .ELSE

f t
TMAGE @——x

page
. control item '

Examples

Input Parameters

Item Description Restrictions

format string Refer to “Using - Symbols to None.
Control Output”” on the next page.

page control item Refer to ‘*Page control symbols’ on page
138.

Comments

i is the last keyword recognized in a program line. Since the # symbol is a valid
symbol there can be no statements concatenated after =, Also, an i statement cannot
contain a trailing remark, as inclusion of ! generates an error.

137

l M AG E (continued)

must be the first state-
as the last statement
statement in this posi-

To be executed properly by I)
ment in a program line. Although you can enter a program line having
in a multiple-statement line, program execution does not access an I
tion, and causes an error.

" anywhere in a program, as location with respect to
is not significant. During program execution, state-
statements.

You can place a program line containing I
oor FE
ments are ignored in the same way as

T
i

Using IMAGE Symbols to Control Output.

Format String:
page

(control jtem|™ ™

(D

(format
string
multiplier
1 -
multiplier

277 ¢

numeric field
(see diagram on page 140)

The use of field specifiers in OIZF USIHG or FRIMT WSIHG statements is shown on the next
page. Also, in the following discussion, multipliers are represented by n.

138

|MAGE {continued)

Several ! symbols can be used with a multiplier, as shown in the syntax diagrams. (A multi-
plier is a numeric constant in the range 1 through 9999.)

e Carriage control symbol: Although this symbol is the first encountered in the format string, it is
not acted upon until all other output has been processed.

Suppresses the automatic output of the end-of-line sequence at the end of the
output list.

e Page control symbols:

Page control item:

L —

®

Note: Editing symbols may precede or follow any I

character (except #).

n . : sends a carriage-return, line-feed to the display.
sends an end-of-line sequence to the printer device.
n i Sends a form-feed to the output device.

¢ Grouping symbols:

noo: Parentheses are used to delimit field specifiers and to group several fields for
replicated output. There is no limit, except for the amount of memory avail-
able, to the number of levels of nested parentheses.

139
|MAGE (continued)

* Special output symbols:

Compact field. Displays/prints a number or string in current display format,
with no leading or trailing blanks.

Same as !, except the European radix (,) is substituted for a decimal point
in numeric output.

Displays/prints a single character. The number to be output is rounded to an
integer and the least significant eight bits of the number are sent. That is, a
modulus (256) is performed. The & symbol is equivalent to o

Supression field. Causes the computer to evaluate the corresponding variable
without displaying or printing the result. For example, the statement

displays

¢ Fditing Symbols:

{ (7 1,

A\l

e P (O e ()

Note: Editing symbols may precede or follow any

character (except #).

n Displays/prints a blank.

n “chars.” Displays/prints the characters contained in the quotes. Any accompanying mul-
tiplier must precede the leading quote(s).

¢ String Field Symbol:

n A Displays/prints a string character. Generates trailing blanks if the specified
number of characters is greater than the number available in the corresponding
string. If the field specifier becomes exhausted while the corresponding string
still contains characters, those characters are ignored.

140

|MAGE (continued)

e Numeric Field Symbols:

]

Extension
A

=%

mu“"lpller ' @j

@
(®

B

Note: Editing symbols may precede or folliow any IMAZE character (except #).

Continue at
" | extension A.

Continue at
extension 8.

141

IMAGE (continued)

¢ Digit specifiers:

n i Displays/prints one digit. Replaces a leading zero with a blank. If the number
is negative, but no sign symbol is specified, the minus sign occupies a leading
digit position. If a sign is displayed, it “floats” to the left of the leftmost digit.
Any editing symbols preceding the first [specifier are also “floated” to the
left of the leftmost digit (or sign, if appropriate).

n Same as for i, except leading zeroes are replaced with “#”. Since blanks are
not filled, no symbols float to the leftmost digit.

n z Same as for #, except leading zeroes are displayed.
¢ Sign specifiers:
Displays/prints the number’s sign (+ or —).
Displays/prints the number’s sign if negative, and a blank if positive.
No more than one % or 7 is allowed per numeric field.
¢ Radix specifiers:
Displays/prints a decimal point radix.
B Displays/prints a comma for the European radix.
¢ Digit separators:
o Displays/prints a comma as a digit separator.
F Displays/prints a decimal point for the European digit separator.
¢ Exponent specifier:

e Displays/prints ¥ with a sign and a three-digit exponent. (Leading zeroes in
the exponent are displayed.)

Field Specifiers. I " items are grouped into logical field specifiers, with each output item
formatted by a new field. There are two types of field specifiers:

e Output Field: Consists of numeric, string or special specifiers, all requiring items from the output
list.

¢ Editing Symbol Field: Consists of blanks or quoted characters that do not require an output item.
A special case of this type is the null field, which consists of either a pair of adjacent commas or a
pair of parentheses that do not enclose any characters.

142

|MAGE (continued)

Each field terminates when it encounters a Field Delimiters
delimiter. Delimiters indicate that formatting is -
completed for an output item, whether or not the Delimiter Usage

entire item was used. The chart to the right illus-

) e The usual way to separate two field
trates the five field delimiters.

specifiers.

n .- Page control character (output EOL
sequence).

n & Page control character (output form
feed).

n x Left parenthesis.

Right parenthesis.

*The n indicates that the symbol can be preceded by a multiplier.

When the HP-71 executes ; or , 1t sequentially accesses the items in
the output list; one for each output ﬁeld in the list. If the computer encounters a field that
does not require output items (editing symbol field), the field is acted upon without accessing the
output list.

The processing of field specifiers stops when the computer encounters an output field having no
matching output item. If the output fields are exhausted while output items remain, the fields are
reused, beginning with the first field.

IMAGE Overflow. An - overflow results when a numeric item requires more digit places to
the left of the decimal point than are provided by the field specifier. This occurrence is reported in the
same manner as math overflows; that is, as an error or as a warning, depending upon the value of the
OVF trap. With either | i overflow is reported as an
error, thus halting execution. Wlth Tk , or with CE
set to i or =% overflow is reported as a warning. After the warning is displayed, the
numeric field is filled w1th % symbols and execution continues.

A minus sign takes a digit place if you do not specify 1 or %, and can generate unexpected overflows
of the field specifier. If the number contains more digits to the right of the decimal point than the
field specifier, it is rounded to fit the field specifier.

String Field Output. If a string is longer than the field specifier, it is truncated, and the rightmost
characters are not sent out. If the string is shorter than the specified field, trailing blanks are used to
fill out the field.

143

|MAGE {continued)

IMAGE Syntax Details. The HP-71 checks the syntax of an statement only when {
execute that statement. Only those parts necessary to exhaust
the output list are checked, since not all of the field specifiers may be used if there are fewer items in
the output list. Thus, a syntax error near the end of the format string is not reported if there is no
output item to access it. In addition, since the computer processes field specifiers sequentially, several
items may be generated before a syntax error is reported.

Typing for Readability. You can type symbols in upper- or lowercase characters. A space
imbedded anywhere in an } - statement Is ignored, except where the space is imbedded in a
quoted series of characters.

Carriage Control Symbol. Only one occurrence of the # carriage control symbol is allowed in any
format string, and only as the first nonblank character in that list. The carriage control symbol must
be followed by a delimiter.

Parentheses. Although parentheses allow repeated output with multipliers, they always function as
delimiters for a new field. When building the format string, you should include parentheses only when
needed for field delimiters. For example, in each of the following program segments, the
i #{: operations are the same, except for the parentheses appearing in one of the two

statements

¢ Program segment:

10 DISP USING 100; "LUNCH","FRIDAY"
20 DISP USING 200; "LUNCH’,"FRIDAY"
100 IMAGE AA3"."AA |, 2X
200 IMAGE AA3("."AA , 2X

Program output:

¢ Program segment:

10 DISP USING 100; 5280, 1760
20 DISP USING 200; 5280, 1760
100 IMAGE 3ZCZZZ, 2X
200 IMAGE 3(2CZZZ), 2X

144

|MAGE (continued)

Program output:

¢ Program segment:

10 DISP USING 100; 1.25,6.50
20 DISP USING 200; 1.25.6.50
100 IMAGE "$’DDD.DD , 2X
200 IMAGE ("$")DDD.DD , 2X

Program output:

¥ 01.25 %

Ty
noon
1N

Ty
o

Multipliers. Multipliers are integer values in the range 1 to 9999. A multiplier of 1 is ignored in all
cases (that is, no error will be generated in cases where a multiplier is not allowed). Only the following
types of symbols allow a multiplier.

¢ Editing symbols: i, *chars.*.

¢ Page control symbols: -,

Symbols specifying individual characters in an output item: I

e Left parenthesis .

For a description of the preceding characters, refer to “Using IMAGE symbols to Control Output” on
page 137.

You can replicate any field by enclosing it in parentheses with a preceding multiplier. Thus, since the
symbols ¥ ,H,E, and ~ are fields specifying entire output items, they must be enclosed in parentheses
in order to be replicated. For example:

The Special Output Symbols H, K, B, and *. A special output specifier, because it uses an entire
item, comprises an entire field. H, k, and ™ can be used to generate string or numeric items; E can be
used only with numeric items.

The ¥ and 4 symbols generate an item in the current display format, except that no leading or
trailing blanks are generated. £ and M differ only in the type of radix symbol for numeric output.
uses the decimal point, whereas H uses the comma (European radix).

145
|MAGE (continued)

: of the number. The

£, which is used to format a numeric item, is equivalent to sending out
numeric item n must be in the range

— 1048575 <= n <<= 1048575.

The symbol allows output items to be skipped. Any such item is still evaluated, which allows the HP-
71 to execute a function without displaying or printing the returned value. This is useful if the evalu-
ated function changes the state of the machine, such as changing the display device.

Examples Using H, K, B, and ~.
Program segment:

10 DISP USING 100; 583.5,247.3,"June”,20

20 DISP USING 200; "Blue”,"Red”,"Hat","Shirt"

30 DISP USING 300; 65,66.67,CHR$(65),CHR$(66),CHR$(67)
100 IMAGE H,3X.K

200 IMAGE K X,”

300 IMAGE 3(B),” =",3(A)

Program output:

For the next example, assume a plug-in ROM provides the § statement to change ink colors on a

printer.

Program segment:

10 PRINT USING 100; FNX(B,C), A

20 STOP

100 IMAGE ~, "Account #”,6Z,X,”Updated”

200 DEF FNX(B,C)

205 REM PEN 1 = black ink; PEN 2 = red ink
210 IF B>=C THEN PEN 1 ELSE PEN 2

220 FNX=B—C

230 END DEF

146
|MAGE {continued)

Printer output with B=33, C=22, and A=118042:

(in black ink)

Printer output with B=18, C=22, and A=118042:
(in red ink)

Editing symbols. The symbol * and quoted characters can be imbedded within any other field
specifier without delimiters.

Editing Example.

Program segment:

10 DISP USING 100;2592, "Tues”
100 IMAGE DDD" dollars and "DD” cents.”,2XK"day”

Program output:

Numeric Specifiers. The symbol i sends out a digit, with leading zeroes replaced by blanks.
The # symbol generates a digit, with each leading zero replaced by #.

The 7 symbol generates a digit, with leading zeroes shown.

Numeric Specifier Example.

Program segment:

10 DISP USING 100; 12.4, 101, 6
100 IMAGE DDDDD,2X,*+2X,227727

Program output:

Digit output before the radix can be specified with a O, #, or Z, but not a mixed set of these symbols.
The only exception is that a = can always occupy the unit digit’s place. This unit digit Z is only
necessary with decimal output, since integer output will always show a digit in the unit place.

Sign specifiers (£ and) can be imbedded anywhere within a numeric field. Only one = or I is
allowed in each numeric field.

147
IMAGE icontinued)

If = or M is not specified, and the number is negative, then the minus sign will take up one digit
position before the radix.

Radix specifiers (. and &) can only be followed by [symbols if digits are to be shown after the
decimal point. Only one decimal (.) or & is allowed in each numeric field.

Digit separators (= and F) can appear anywhere in a numeric field. They cannot be adjacent to (or
separated only by editing symbols from) other digit separators, radices, exponent specifiers, or
delimiters. If a = or F appears when leading zeroes are being output, the symbol causes output as
shown below:

Program segment:

10 DISP USING 100;2
20 DISP USING 200;2
30 DISP USING 300;2
100 IMAGE DC3DC3D.3DCD
200 IMAGE *C3xC3*.3DCD
300 IMAGE Z(C3ZC3Z.3DCD

Program output:

When used with 3 symbols, a digit separator within
leading zeroes is replaced with a blank.

When used with # symbols, a digit separator within
leading zeroes is replaced with a #

When used with 7 symbols, a digit separator within
leading zeroes appears as specified.

The [symbol allows output to “float” past blanks to the leftmost digit of the number, or to the radix
indicator. The allowable floating specifiers are =, * and quoted characters that precede all digit
specifiers in the field. These characters will float over any blank digit positions or separator positions
before the first nonzero digit is encountered. When the first i is encountered, the floating capability
is lost for any following =, I, i, or quoted characters. However, an implied negative sign always
floats past all blanks.

148
|MAGE (continued)

Examples.

Program segment:

10 DISP USING 100; 1234.56, —65.8

20 DISP USING 200; 1234.56, —65.8

30 DISP USING 300; 1234.56, —65.8
100 IMAGE "$"6D.DD, X, "$"6D.DD

200 IMAGE "$'DC4D.DD, X, M"$"5D.DD
300 IMAGE "$"2DC3D.DD, X, D"$"4DZ.DD

Program output:

At Ieast one dlglt spec1ﬁer must precede the £ symbol. The maximum exponent value allowable in
o 1 % output is £999. This is only obtainable through display form
manipulation, since, for normahzed numbers, the maximum exponent value obtainable through
arithmetic operations is +499,

Program segment:

10 DISP USING 100; 1E—480
20 DISP USING 100; 1E—481
100 IMAGE 520DE

Program output:

.. {Generates 525 # symbols.)

NaN and Inf. Numeric field specifiers display the numeric values Hatr and It f if there are at least
three numeric specifiers in the field (four in the case of ~1rif). Numeric specifiers include the symbols
o,2,% %M C,F, ., R, and E. For NaN and Inf output, each specifier corresponds to one position,
except that E corresponds to five positions. Where there are insufficient positions to print or display
the characters, the result depends on the current trap setting. That is, if the OVF trap is set to 0, the
HP-71 displays the IMAGE w1l (error 47) message. Otherwise, the computer generates a warning
and fills the numeric field with * symbols.

149

IMAGE (continued)

In the numeric field, and I::¥ characters are right-justified, and will not be divided by editing

symbols. All excess positions in the numeric field are filled with blanks, regardless of the type of

symbol you use. (For example, 7 and # symbols are ﬁlled with blanks when generating
¢ output.) Generating =i

¢ output with = symbols disables the floating characterlstlcs
of all editing symbols.

Program segment:

Note: In the following program, line 10 sets the IEEE traps to allow NaN, Inf, and error on overflow.
Assigning the trap value to T in each case simply avoids displaying the value returned by 7 The
variable T is otherwise not used in the program.

10 T=TRAP(VL,2)@T=TRAP(DVZ 2)@T=TRAP(OVF 0)
20 SFLAG(—1) !SET QUIET TO SUPPRESS WARNINGS
30 DISP USING 100;SQR(—1),1/0

40 DISP USING 110;—123,—Inf

50 DISP USING 120;NaN

100 IMAGE Z.D,3".",3DC3D.2D

110 IMAGE ”{”S4D”:"2D"}"

120 IMAGE 2D

Program output:
HaH Inf
1=‘~j- =Irmf
EEH LS8 ITMAGE Owfl

Related Keywords

“ (infinity) returns the machine representation of positive infinity.

[0 Statement B Keyboard Execution
B Function B CALC Mode
1 Operator B IF...THEN.. ELSE
INF
Examples

Comments

Any (non-NaN) number x is less than or equal to Inf. Most arithmetic functions accept I+:f as an
argument and process it according to standard arithmetic rules. For further information, refer to the
descriptions of the individual functions in this manual, or to your HP-71 Qwner’s Manual.

Operations that cause an overflow can result in an infinite value if you set the overflow trap (OVF) to
2. Also, operations that set the divide-by-zero (DVZ) exception create - " if you set the
DVZ trap to 2.

Related Keywords

1571

INPUT

enables you to assign values to program variables from the keyboard.

Statement
Function
Operator

oom

B Keyboard Execution
O CALC Mode
iF...THEN...ELSE

variable

Examples

specifier

default
string

Input Parameters

item

Description

Restrictions

prompt string

default string

variable specifier

Quoted string.
Default: “7

String expression.
Default: Null string.

Numeric variable specifier or
string variable specifier.

Cannot contain the same quote
character as that used to delimit the
string.

None.

None.

152

INPUT (continued)

Comments

You can assign values from the keyboard to any numeric or string variable, substring, or array element.

Prompts. Executing I HFUT displays the input prompt (7). If the last | - state-
ment was terminated (EOL suppressed) with a comma or semicolon for a delimiter, the 7 prompt is
appended to the specified display message. If the last such statement did not terminate (EOL not
suppressed) with a comma or semicolon delimiter, the 7 prompt appears on a line by itself.

Responding to Prompts. You can respond to a prompt in the following ways:

e Enter a list containing one or more numeric expressions, string expressions, or unquoted strings in
any combination. The individual items must be separated by commas and must match the I ,
list variables in number and type. To enter an unquoted null string, key in two consecutive
commas.

o If the input statement specifies a default string, you can either accept the string by pressing

or change the string by editing it, then pressing [ENDLINE]. When you execute an
IHFUT prompt containing a default string, the HP-71 displays this string immediately after the
prompt with the cursor positioned at the first character in the string. For example:

Program Segment:

100 INPUT "CURRENT YEAR: ","1984"; A$
~ ~——

Input Default
Prompt String

Prompt:

E 3
Display
Cursor

If the [statement requires a string, but the item you key in is not a string, the computer
interprets the item as an unquoted string.

If you provide an improper number of inputs or enter an item that cannot be interpreted as a numeric
expression when requires a numeric input, the computer gives an error message and again
prompts you for an 1nput If this occurs, the cursor appears on the input character at which the error
was detected.

153

|NPUT (continued)

When prompted by an I#FiiT statement, if you press [CONT], the computer:

-

¢ Terminates the I

operation without changing the variables in the input list.

¢ Continues program execution with the next statement.

Executing INPUT and Other Operations Simultaneously. While the
played, the following operating conditions are active:

prompt is dis-

¢ The command stack is always active during I1HFLIT execution. (Pressing the command stack key
—(d](cMDS]— is not required in order to initiate command stack operation.) You can use the
and keys to move up and down in the command stack. The same command stack is used for
keyboard input regardless of whether the computer is in BASIC or CALC mode, or is executing an
IMFLUT statement.

o If you press a direct execute user-defined key, the computer ignores the display and uses the input
of that user-defined key as the response to the {T prompt.

o The [VIEW] key and the (9] [ERRM] key sequence are active during

e Pressing either clears the input buffer (if it is not already clear) or pauses the program (if
the input buffer is already clear). Thus, pressing twice in a row during execution of IHFIJT
interrupts program execution. If you subsequently continue the program, the interrupted [HFLIT
statement is reexecuted.

" execution.

¢ Pressing [RUN], [SST), or [CALC] during
(ENDLiNE]

e The keyboard buffer allows you to “type ahead” in anticipation of a prompt if you know what
input will be required by that prompt. As soon as the prompt appears, the key(s) held in the
buffer are accepted as the input, and program execution continues.

execution has the same effect as pressing

. The HP 71 temporarily suspends any i i - & operations that come due during execution of
an T statement. After (1) you complete the input process and (2) the computer assigns all
values (and unless a multiple-line user-defined function is invoked), any suspended ¢ i
operations are processed.

e An error can cause an branch. If there is no active i statement, and if
an input response results in an input error, the computer prompts you to reenter all variables in
the input list.

The HP-71 automatically turns itself off after ten minutes of inactivity. To continue execution, press
to turn the computer on, then press to reexecute the I I statement.

Related Keywords

154

INT

IHT (integer < argument) returns the greatest integer that is less than or equal to the argument, and
is identical to FLOOE,

O Statement W Keyboard Execution
B Function B CALC Mode
O Operator B [F...THEN...ELSE
2D—0 O
Examples

Input Parameters

Item Description Restrictions
argument Numeric expression. None.
Comments

If the value of the numeric expression is an integer, that value is returned. If the value of the expres-
sion is not an integer, I#7 returns the greatest integer value less than or equal to the expression. For

example:

G : returns i

¢ returns !

1+ returns — .

155

INTEGER

allocates memory for integer variables and arrays.

@ Statement B Keyboard Execution
O Function O CALC Mode
O Operator B IF...THEN .. .ELSE

(N
U]
- (INTEGER vnaurmiearbilce [i >

dimension 2

Examples

Input Parameters

Item Description Restrictions
numeric variable Letter followed by optional digit. None.
dimension limit 1 Numeric expression rounded to an Current i1 setting
dimension limit 2 integer. to 65535.

Comments

© creates integer variables and arrays. Creation occurs upon execution of I} . The
dimension limits are evaluated at creation time. The lowest-numbered subscript in any dimension is 0
or 1, depending on the setting when the array is created. All elements are initial-
ized to zero.

156

|NTEGER (continued)

If IHTEGER specifies a simple numeric variable that already exists, the variable is reinitialized to zero.
Array variables are redimensioned, but not reinitialized to zero (unless the data type is changed). If
IMTEGER expands an array, it also initializes all newly-created elements in the array. Notice that
redimensioning does not necessarily preserve an element’s position within an array, but does preserve
the sequence of elements within an array. Refer to “Declaring Arrays (DIM, REAL, SHORT, IN-

TEGER)” in section 3 of the HP-71 Owner’s Manual.

The following table indicates the conditions that apply to variables and arrays:

Integer Numeric Variables

Initial Value of Variables 0
Integer Range +99999
Maximum Number of Array Dimensions 2
Maximum Dimension Limit 65535
Memory Usage in Bytes:
« Simple Variable 95
e Array 3x(dim1—base+1)*(dim2— base+1)+9.5

Related Keywords

¢ (inexact) returns the number of the inexact result flag (—4).

157

INX

O Statement W Keyboard Execution
M Function B CALC Mode
O Operator B IF...THEN ... ELSE
INX
Examples

Related Keywords

Computer
Museum’

158

O Statement

M Keyboard Execution

B Function W CALC Mode
O Operator iF...THEN ... ELSE
® o
Examples

Input Parameters

Item Description Restrictions
argument Numeric expression. None.
Comments

The returned value has the same sign as the argument. For example:

+ returns i.

returns - 1.

i .53 returns ~1i.

Refated Keywords

(invalid operation) returns the number of the invalid operation flag (—8).

159

IVL

0 Statement

B Keyboard Execution

B Function B CALC Mode
O Operator B IF. .THEN.. ELSE
VL
Examples

Related Keywords

160

KEY$

K.EY ¥ (key string) returns a string representing the oldest key or keystroke combination currently held
in the key buffer, and removes that key or keystroke combination from the buffer.

O Statement B Keyboard Execution

B Function O CALC Mode

O Operator B IF...THEN... ELSE
Examples

Comments

The key buffer can contain up to 15 keys or keystroke combmatlons The format in which the key
data is returned is the same as that for EEY i, and . If the key buffer is
empty then the null string is returned.

The string returned for a given key is determined as follows:

o If there is a single ASCII character that uniquely identifies the key, - returns this character.
For example, i identifies the [Q] key and = identifies the (g])-shifted [Q] key.

o If the key is an [f]- or [g])-shifted key, and the key’s primary function is uniquely 1dent1ﬁed by a
single ASCII character, then i returns a two-character string. This string consists of +
followed by the corresponding primary character. For example, =% is the (9]-shift of the @ key

o If neither of the above apply, ¥ returns # followed by the decimal-numbered key code for
that key. For example if you press [RUN] during execution of the following program, the HP-71
displays #4&

10 DELAY 0,0 Suppresses display time (because any keys held
in the display buffer at the start of a dis-
play are cleared).

20 FOR I=1 TO 100
30 DISP KEYS; Adds the key designation to the current display.

40 NEXT |

The I.7: statement does not affect the returned string.

161
KEY$ (continued)

Related Keywords

162

KEYDEF$

HEYDIEF £ (key definition string) returns the redefined value of a key.

(0 Statement MW Keyboard Execution
M Function 0 CALC Mode
O Operator B IF...THEN...ELSE
® O
Examples
RE=KEYOEFEC"Q" 2
IF EEYDEFFC"#43"201,173 # "U" THEM OISF "Attn key has been
redef ined”
Input Parameters
Item Description Restrictions
key name String expression. Less than five characters.

Comments

The returned string has the same format as is seen by pressing [VIEW].

uses the same format as i ¥ to specify a key name. The first character in the
returned string indicates the type of definition for the key. The following list describes the possible
first characters:

¢ : : Nonterminating.
¢ Blank: Terminating.
e : : Direct execute.

¢ ii : Key is not redefined.

The remaining characters in the string describe the key redefinition text.

1

If a specified key has not been redefined, ¥ returns the message

163

KEYDEF$ (continued)
Related Keywords

164

KEYDOWN

returns either a 0 or a 1, depending on whether a key is being pressed.

kY
&

O Statement B Keyboard Execution
B Function O CALC Mode
O Operator W F.. THEN...ELSE

KEYDOWN —-

Examples

Input Parameters

Item Description Restrictions

key name String expression. Less than five characters. Also refer
to “Comments,” below.

Comments

enables you to test for either any key being pressed or a specific key being pressed.
without any key parameter. The and (g]

¢ To test for any key being pressed, use ¥
keys are not ignored by this

option.

¢ To test for a specific key being pressed, use &
key. Parameter options are as follows:

with a parameter specifying the desired

o Key name expressed as a character: For unshifted keys identified by a symbol, such as a letter
or the key, enter a quoted string containing only that character. Where a shifted or
unshifted key enters a symbol having a corresponding ASCII code, you can specify that key
by using CHRE % n», where n is the ASCII code for that symbol.

165

KEYDOWN (continued)

¢ Key name identified by key number: If the first character of a multiple-character key name is
#, KEvDOOMH interprets the string as a key number. You can use this method to specify any
unshifted key. The key numbers are as follows:

Key Numbers

Description

Keys

1 through 56

Unshifted keys

(o), o], ...

The preceding parameters use the same formats as those used with
parameter, the HP-71 returns zero.

string for a

The HP-71 accepts

Related Keywords

. If you use the null

(without a parameter) in CALC mode.

166

LC

L. (case lock) toggles between the uppercase lock and the lowercase lock on the keyboard.

B Statement B Keyboard Execution
O Function [0 CALC Mode
O Operator W IF. .THEN...ELSE

—(c -

Examples
Comments
During usual keyboard input the primary alpha keys enter upper case letters and the [g]-shifted alpha
keys enter lower case letters. The .0 statement is used primarily for switching these assignments, as
follows:

e Executing i T sets system flag —15, which assigns the lowercase characters to the cor-

responding primary alpha keys and assigns the uppercase characters to the [9]-shifted alpha keys.

e Executing i.: clears system flag —15, which assigns the uppercase characters to the cor-
responding primary alpha keys and assigns the lowercase characters to the [g]-shifted keys.

e Executing i.0 switches the current setting of system flag —15, which exchanges the current
uppercase and lowercase key assignments for the primary and (g]-shifted alpha keys. You can
switch this same flag from the keyboard by pressing the key.

167

LEN

LEH (string length) evaluates the specified string expression and returns its length.

0 Statement B Keyboard Execution
B Function 0O CALC Mode
O Operator W IF...THEN...ELSE

string
et (O exsresnton ()

Examples

Input Parameters

Item Description Restrictions
string expression Refer to the Glossary. None.
Comments

Leading, trailing, and enclosed spaces are included in the returned value. For example, executing

“: returns 1%,

168

LET

is the assignment statement, which is used to assign values to variables.

B Statement

M Keyboard Execution

O Function M CALC Mode*
O Operator W IF.. THEN...ELSE
* You can use only the implicit form of L.Z7 in CALC mode—for example . That is, the explicit form of L& ¥ — for example, L& T

=¥ —is not allowed in CALC mode.

LET

Examples

| numeric numeric
"} variable specifier expression
string string
variable specifier expression
numeric numeric
variable expressian

FN

string
variable

Input Parameters

string
expression

Item

Description

Restrictions

numeric variable
specifier

numeric
expression

string variable
specifier

string expression
numeric variable
string variable

Refer to Glossary.
Refer to Glossary.
Refer to Glossary.

Refer to Glossary.
Refer to Glossary.
Refer to Glossary.

None.

None.

None.

None.
None.
None.

169

LET (continued)

Comments

If the specified variable does not exist, it is created when the HP-71 executes the corresponding |
statement. If the variable is an element of a nonexistent array, the HP-71 creates that array (where the
maximum allowed indices are 10 and minimum allowed indices correspond to the current

ERSE setting). A string variable created by L.E7T has a default maximum length of 32 characters
Thus, larger maximum lengths must be explicitly dimensioned.

A numeric variable of type SHORT causes rounding (according to the current round-off setting) to
five significant decimal digits. However, the calculation itself is performed in 12-digit arithmetic. A
numeric variable of type INTEGER causes rounding to an integer (according to the integer rounding
method). If, after rounding, the result has more than five digits, the stored value will be + 99999 or
INF, depending on the current trap settings for the math exception flags.

In addition to assigning a numeric result to the specified variable, the HP-71 stores the result in the
register reserved for use by FEZ. (The value stored for use by FEZ is the result calculated prior to
any rounding for SHORT or INTEGER.)

In a user-defined function having multiple statements, the function name itself is a legal variable.
Therefore, whatever value is in this variable when the HP-71 finishes executing the corresponding
function is the value returned by that function.

A string value replaces the current value of the specified string variable. If the new value exceeds the
string variable’s maximum length, the replacement is not performed, and a S+ imz Cw¥ 1 (error
37) condition occurs.

The following illustrates how the HP-71 handles string assignments:

Statement: AF="ABIIEFGH I JELHHGE! Replaces any earlier A% string value.
Output: ABCOEFGHIJELMHOFR

Statement; FFEL S I=" TV " Replaces portion of A# that begins with posi-
Output: AECDTLW tion 5. (TLIU{ becomes the new end-of-string,

starting at position 5.)

Statement: A$L S, 1 I="EFGHI K~
Output: AECDOEFGHIJE QRS T

Inserts string between positions 4 and 5. No-
tice that second substring index is less than
the first (by an arbitrary amount), which
causes the HP-71 to insert the substring into
the existing string instead of overwriting part
of that string.

170

LET (continued)

Statement: i
Output:

Statement:
Output:

Statement:
Output:

Statement: ¥
Output: —Null—

Related Keywords

Replaces a two-character substring with a five-
character string.

Replaces a 21-character substring with a 1-
character string.

Uses a “blank-filling” technique that allows
the . string to be appended.

Sets 7% to null. Note that a null value differs
from a blank space value.

171

LINPUT

(line input) assigns an entire line from the display to a string variable.

B Statement B Keyboard Execution
3 Function 0 CALC Mode
1 Operator B [F. .THEN.. ELSE

string
(LINPUT } "1varlab1e specifier
prompt
string
default
string

Examples

Input Parameters

Item Description Restrictions

prompt string Quoted string. Cannot contain delimiting
Default: "7 character.

default string String expression. None.
Default: Null string.

string variable Refer to Glossary. None.

specifier

Comments

) T 1s similar to the : I statement in that it causes the HP-71 to pause execution, activate
the keyboard, and allow you to enter a variable. L. I !T assigns the resulting line to the speC1f1ed
string variable. F117 1s distinguished from [in that it allows punctuation, whereas
treats punctuation as delimiters. (Unlike the 1! statement, the string you enter with i. [
interpreted literally, and not as a string expression.)

172

LlNPUT {continued)

You can respond to a i 7 prompt in either of the following ways:
e Enter any number of characters.

o Enter an “execute only” string. (That is, a string that has been used with a colon to redefine a
key.) Notice that if you enter an execute only string, the HP-71 ignores any other characters that
may already be in the display.

For information concerning prompts and default inputs, refer to the comments provided in the INPUT
keyword entry.

Related Keywords

173

LIST

displays the specified BASIC or KEY file.

B Statement
0 Function
O Operator

B Keyboard Execution
O CALC Mode
B (F...THEN...ELSE

LIST

file
specifier

_

start line
or key number

final 1line
or key number

Examples

Input Parameters

Item

Description

Restrictions

file specifier

start line or key
number

final line or key
number

String expression or unquoted string.
Default: Current file.

Integer constant identifying a program line
or key number.
Default: First program line or key
assignment in file.

Integer constant identifying a program line
or key number.
Default: Start line or key number, if
specified; otherwise, last programline or
key assignment in file.

File name with optional device
specifier.

1 through 9999.

Start line or key number through
9999.

174
LlST (continued)

Comments

General Operation. Specifying a file that is not a BASIC or KEY file generates an
; . (error 63) condition.

Executing LIST KEYS results in a listing of the current key assignment file, i == (if present).

Specifying a single line or key parameter lists only that line or key assignment. If you specify a range
and the HP-71 does not find the start line or key number, but does find a higher-numbered line or key
number within the specified range, the listing begins with that higher-numbered line or key. Execut-
" without specifying any line or key numbers generates a listing of the entire file.

The current * setting determines how long the computer displays each line.

The current setting determines the width of the display line.

Interrupting a Listing. To halt a listing and display the cursor, simply press [ATTN].

Related Keywords

OELAY, MIDTH, FLIST. See also the descriptions of FETCH and the [a], [v], [9)(X], and (9] [¥]
keystrokes in your HP-71 Owner’s Manual.

175

LOCK

¥ specifies a password to provide for security against unauthorized use of your HP-71. Anyone
who turns on the computer will be prevented from using it until they enter the password.

B Statement B Keyboard Execution

O Function O CALC Mode

0O Operator B IF...THEN...ELSE
Examples

Input Parameters

Item Description Restrictions
password String expression. 0 through 8 characters.
Comments

The password can be any combination of up to eight letters, numbers, spaces, and symbols.

Note: Because the lock is absolute, it is recommended that you choose an easy-to-remember pass-
word. If you cannot enter the correct password, the HP-71 will not respond to your instructions. If this
situation occurs, you can regain control of the computer only by resetting the computer, which clears
both the memory and the clock.

Using LOCK. After initially executing ! with a password, each time you turn on the HP-71,
you are prompted by the message r: #7. To unlock the computer, type in the exact password
that you specified using L:0k, then press [ENDLINE]. The HP-71 then displays the cursor and you
can continue with your work. Any attempt to unlock the computer by entering an invalid password
simply turns off the computer.

Deactivating LOCK. To deactivate 1.7k, remove the password by entering L 7Tk with a null
argument, as shown in the rightmost statement example, above. (Ensure that there are no spaces be-
tween the quotes. If a space is included, it will be interpreted as a new password.)

176

LOG (LN)

returns the natural logarithm (base ¢) of the argument.

O Statement Keyboard Execution
B Function W CALC Mode
O Operator W IF.. THEN... ELSE

argument

Examples

Input Parameters

Item Description Restrictions
argument Numeric expression. Refer to ““Comments,”” below.
Comments

& 1s subject to the following restrictions:

s Attempting to compute the natural logarithm of zero results in a i + (error 12) condition.

e Attempting to compute the natural logarithm of a negative number results in a L
(error 13) condition.

Related Keywords

E

177

LOGP1

LOGF1 (logarithm of (argument +1)) returns In(1 + x).

O Statement B Keyboard Execution
B Function B CALC Mode
O Operator B IF.. . THEN.. ELSE
® ®
Examples

Input Parameters

Item Description Restrictions
argument Numeric expression. Must be greater than —1.
Comments

You can use i3F 1 to eliminate large relative errors in certain calculations. For instance, i

is accurate to 12 significant digits, but ¥ 1 +3 i becomes L
* (because the HP-71 uses 12 digits). This results in a large relative difference
from the accurate answer, since 1n(1.00000000012) is quite different from In(1+1.2345E—10).

Related Keywords

178

LOG10 (LGT)

: returns the logarithm (base 10) of the argument.

O Statement B Keyboard Execution
B Function B CALC Mode
O Operator B IF...THEN... ELSE

argument

-
LGT

Examples

Input Parameters

Item Description Restrictions
argument Numeric expression. Refer to ‘‘Comments,” below.
Comments

The following exceptions can occur:

£ (error 12) condition.

(error 13)

e Attempting to compute the logarithm of zero results in a L:

e Attempting to compute the logarithm of a negative number results in a ¢
condition.

Related Keywords

179

LR

LF (linear regression) specifies the current linear regression model and computes the intercept and
slope for that model. The computed intercept and slope are returned in optional variables.

W Statement B Keyboard Execution
O Function O CALC Mode
O Operator B IF.. THEN...ELSE

dependent independent

LA variable number variable number
intercept
variable

Examples

Input Parameters

slope
variable

independent Numeric expression rounded to an integer.
variable

number

intercept Numeric variable specifier. (Refer to
variable Glossary.)

slope Numeric variable specifier. (Refer to

variable Glossary.)

Item Description Restrictions
dependent Numeric expression rounded to an integer. Zero through the current
variable dimension.
number

One through the current
dimension.

None.

None.

array

180
LR (continiied)

Comments

.F* specifies the linear regression of the first (dependent) variable on the second (independent) vari-
able. The intercept and slope are stored in the intercept and slope variables, if present.

Related Keywords

181

MAX

(maximum) returns the larger of two values.

O Statement B Keyboard Execution
B Function B CALC Mode
O Operator B IF.. THEN...ELSE

D b~ Oz ()

Examples

Input Parameters

Item Description Restrictions

argument Numeric expression. None.

Related Keywords

182

MAXREAL

i) *S5E493 which is the overflow thresh-
old—the maximum positive finite number that the HP-71 can represent.

O Statement B Keyboard Execution
B Function B CALC Mode
O Operator B IF...THEN.. . ELSE
Examples
=Tk ZHER=EAPOHEMTCMASEEAL) ~EHFOHEHT iMINREEAL *@TREAF CLUIMF L

Comments
The HP-71’s exponent range is —510 through 499 (R=1009).

Related Keywords

183

MEAN

i returns the sample mean of the specified variable in the current statistical array.

O Statement B Keyboard Execution
B Function B CALC Mode
(0 Operator B IF.. . THEN...ELSE

MEAN)} —
variable
number

Examples

Input Parameters

Item Description Restrictions
variable number Numeric expression rounded to an Zero through the current :
integer. array dimension.
Default: 1.

Related Keywords

184

MEM

t (memory) returns the number of available bytes in either main RAM or a memory device.

O Statement B Keyboard Execution

B Function B CALC Mode

O Operator B IF.. . THEN... ELSE
MEM -

port
specifier

Examples

Input Parameters

Item Description Restrictions

port specifier Numeric expression truncated to two 0 <= P <=5
digits after the decimal point. Interpreted 0 <=dd <= 15
as P.dd, where:
P = port number.
dd = device number.
Default: Returns current
for main RAM.

185

MEM (continued)
Comments
The following can help you plan how to use available memory.
. Bytes Used per Bytes Used per ..
P n
Variable Type Simple Variable Array* Variable recisio
INTEGER 9.5 3 +99999
SHORT 9.5 4.5 5-digit
REAL 9.5 8 12-digit
STRING 11.5+MAXIMUM LENGTH 2+MAXIMUM LENGTH —
*Any array has a 9.5-byte overhead.

186

MERGE

~ integrates a portion of the file you specify into either the current BASIC file or the system
file, depending on the type of the specified file.

M Statement M Keyboard Execution
0 Function 0 CALC Mode
O Operator B IF. THEN... ELSE

file -
specifier

start line
or key number

final line
or key number

Examples

Input Parameters

Item Description Restrictions
file specifier String expression or unquoted string. File name with optional device
specifier.
start line or key Integer constant identifying a program line | 1 through 9999.
number or key number.

Default: First program line or key
assignment in file.

final line or key Integer constant identifying a program line Start line or key number through
number or key number. 9999.

Default: Start line or key number, if
specified. Otherwise last line or key
assignment in file.

187
MERGE (continued)

Comments

If you specify a BASIC file, it is merged into the current file. If you spec1fy a KEY file, it is merged
into the system & =wvx file. Any other file type results in an s = (error 63)
condition. If the specified file is a KEY file and the system &
creates it.

file does not already exist,

- inserts all line numbers or key assignments into their proper positions in the destination file.
If a line or key number in the file to be merged already exists in the destination file, the line or key
number in the source file replaces the corresponding program line or key assignment in the destina-
tion file. In a BASIC file, you can prevent any duplicate line numbers from being replaced in the
destination file by first renumbering either of the files to ensure that there are no common line
numbers.

Merging a BASIC file by executing in a running program performs the merging operation,
then terminates program execution, releasing local environments and clearing all program control in-
formation.

Merging a file does not alter the file being merged. Only the current or & : file is altered.

Related Keywords

Computer
Museum

188

MIN

(minimum) returns the smaller of two values.

O Statement B Keyboard Execution
B Function B CALC Mode
O Operator B IF...THEN .. . ELSE
0 O o
Examples

input Parameters

Item Description Restrictions

argument Numeric expression. None.

Related Keywords

5

189

MINREAL

MIMEEAL returns @ . BEAGEEAEEERIE-49%, which is the smallest positive number that the

HP-71 can represent. To return this number, set the underflow trap to 2 before executing

MIMREALCTRAFCUMFE , 23, Otherwise, executing MIHFEERL generates an underflow exception.
O Statement B Keyboard Execution
M Function B CALC Mode
[0 Operator B IF.. . THEN...ELSE

Examples

U=TEAFTUHF , 22 EN=1-E=FOHEHT cMIMREAL-EFS2ETREAF CUHF , U2

Comments

The value MIMEEAL returns is one example of a denormalized number. (For a discussion of
denormalized numbers, refer to “Denormalized Numbers and —0” on page 341.) Executing MIHREERAL
sets the underflow exception flag (flag —5) if TRAF ¢ UHF » is set to 0 or 1.

Related Keywords

190

MOD

.y (modulo) returns a remainder that is defined by the expression x — y = INT(x/y).

O Statement B Keyboard Execution
B Function B CALC Mode
O Operator B IF.. .THEN... ELSE
GoD)—0 O o
Examples

Input Parameters

Item Description Restrictions
argument1 Numeric expression Refer to "Comments,” below.
argument2 Numeric expression. Refer to "Comments,” below.

Comments

and ! and has the following properties:

is similar to

s

x.y* is periodic in x with period |y |

x.y: lies in the interval [0,y) for y > 0 and (y,0] for y < 0.

e MO can set the Inexact Result flag (I1H:). When this occurs, it indicates that the value returned
by MO0 requires rounding in order to fit into a REAL variable. For example, MOD{ —E —20,360) is
(360 —1E—20), which cannot be represented exactly with 12 digits of precision.

(error 11) condition occurs.

If either x = Infory = 0, an I:

Related Keywords

191

NAME

names the system :

B Statement B Keyboard Execution
O Function O CALC Mode
O Operator B [F...THEN...ELSE
NAME fine
Examples

Input Parameters

Item Description Restrictions
file name String expression or unquoted string. Any valid file name.
Comments

While

HESR T the current file you can easily access it. However, once you move the edit
pointer away from there is no way to reference the file without redesignating it as the
current file (by executing 1T [ENDLINE]). Assigning a name to : - enables you to ref-
erence it without designating it as the current file.

192

NAN

HFH (not-a-number) returns the value of a Signaling NaN.

O Statement B Keyboard Execution
B Function . B CALC Mode
O Operator B IF...THEN ... ELSE

Examples

performs the logical NOT of its operand.

193

NOT

O Statement B Keyboard Execution
O Function W CALC Mode
W Operator B IF. .THEN...ELSE

Examples

Input Parameters

Item Description

Restrictions

operand Numeric expression.

Subject to operator precedence.

Comments

Operands used with HOT are considered logically false if
zero and logically true if nonzero. The table to the right
indicates the range of results for HOT.

The precedence of HT in relation to the HP-71’s other
operators is described under “Precedence of Operators” on
page 317.

Related Keywords

Operand |Result
True 0
False 1

194

NUM

i (number) returns the ASCII character code for the first character of a string.

] Statement
B Function
CJ Operator

u
O
|

Keyboard Execution
CALC Mode
IF...THEN...ELSE

NUM (O

Examples

argument 0

input Parameters

Item Description Restrictions
argument String expression. None.
Comments

is null,

1 1s the tnverse of the

function.

Related Keywords

1 returns a decimal number. For example, executing *
returns .

i returns

If a specified string

195

OFF, OFF ERROR/TIMER

turns off the HP-71.

disables any previous ! statement, thus returning the computer to its de-

fault method of error reporting.

deactivates the corresponding # statement.
W Statement B Keyboard Execution
0O Function 0O CALC Mode
O Operator B IF...THEN.. ELSE

OFF

Y

TIMER

Examples

Input Parameters

Item Description Restrictions

timer number Numeric expression rounded to an Timer number 1, 2, or 3.
integer.

196

OFF, OFF ERROR/TIMER (continued)

Comments

The OFF Statement. ¥ F is equivalent to EvE. Executing ¥ in a program, then later turning
on the HP-71 causes program execution to automatically resume with the statement immediately fol-
lowing the " statement. If you execute :iFF from the keyboard, any statements concatenated
after [IFF¥ are not executed when the HP-71 is turned on again.

The OFF ERROR Statement. In addition to OFF EERFCOF, any one of the following four operations
disables a previously executed M EFFRIFE statement:

¢ Executing F
e Executing the last statement of a program.
e Editing a program.

¢ Running another program.

Timer Control of Program Execution. If the HP-71 activates a timer by executing i
then subsequently executes :FF, the computer turns itself off as described above. However, when the
timer expires, the computer turns itself on, services the timer, and resumes program execution.

The OFF TIMER Statement. There are three timers, numbered 1, 2, and 3. When rounded, an
DFF TIMER number must equal an integer from 1 to 3.

statement. No further

An GFF TINMEE 4 statement deactivates the corresponding !
interrupts from that timer will occur until you reactivate it.

= statement also deactivates all

Any of the four operations listed above that disables an
three timers.

Related Keywords

197

ON ERROR GOSUB/GOTO

oM EFR causes the computer to execute the specified subroutine or branch when an error occurs
during program execution.

W Statement O Keyboard Execution
0 Function O CALC Mode
[0 Operator B (F.. THEN.. ELSE

statement
identifier

(D)

Examples

Input Parameters

item Description Restrictions
statement Line number or label of a program Any valid line number or label
identifier statement. reference.
Comments

This keyword allows you to design specialized error-handling routines into your programs.

is a local declaration that, when executed, activates an condition that traps

program errors in the following manner:

e An (M E condition transfers execution to the specified statement n the same
way as for a subroutme call. Thus, when execution subsequently encounters a | # state-
ment, execution transfers to the first statement following the one in which the error occurred.

e An ¢ i1 condition unconditionally transfers execution to the specified statement
in the same way as for a program branch.

198

ON ERROR GOSUB/GOTO (continued)

1is subject to the following operating conditions:

* Regardless of the number of errors that occur, an 3/
program that executed it until replaced with another

statement.

declaration remains active for the
declaration or disabled with

and (iF! - act locally, affecting only the program or subprogram in Wthh
they appear. When one program calls another, the computer temporarily suspends any active [
declaration in the first program until execution returns to that first program.

If an

routine itself contains an error, program execution halts. If an
i1 routine contains an error, an infinite loop can occur between the statement in error and
the routme specified by ¢

deactivates

Executing

When using M+ ERFEOR it is sometimes helpful to also use ERFEL, ERREHM, or EFFEM# in the specified
O+ ERRORE subroutines or branches, which produces the following results:

Returns the most recent line number in error.

Returns the most recent error number.
Returns the error message associated with the most recent error number.

199
ON...GOSUB/GOTO/RESTORE

QM ... GOSUE and OH ... GOTD transfer program execution to the destination specified by GOSUE or
GOTO. OH ... RESTIORE resets the REARD data pointer to the closest A TH statement following the
selected statement.

B Statement B Keyboard Execution
O Function O CALC Mode
O Operator B IF...THEN...ELSE

Y

ON pointer identifier

Examples

200
ON.. GOSUB/GOTO/RESTORE (continued)

Input Parameters

Item Description Restrictions
pointer Numeric expression rounded to an 1 through the number of
integer. statement identifiers listed.
statement Line number or label of a program Any valid line number or iabel
identifier statement. reference. If more than one is listed,
use . to separate.

Comments

The ON ... GOSUB and ON ... GOTO Statements. . executes any of one of sev-
eral subroutlnes that you have llsted by statement ldentlﬁer in an ¥ statement, The
HP-71 uses the current value of the pointer in {17 .. LE to select a statement identifier from
the list. That is, executing 0OH ... TOZUE causes the computer to:

1. Determine the specified pointer value.

2. Use the pointer value as a position in the : address list. A pointer value of 1
corresponds to the first statement identifier; 2 corresponds the the second statement identifier,
and so on.

3. Execute the subroutine that begins at the statement specified by the statement identifier listed
in the selected position in the i list.

Following an statement, when a running program encounters a |

i statement,
program executlon returns to the statement following that ¢ statement.

¢ transfers execution to another location in program memory in the same way as
, but has no provision for a subsequent return of execution.

The ON.. RESTORE Statement. specifies a statement in the same way as
statement, the computer then resets the !
; statement. If the specified statement is not a state-

data pointer to the first item in the first " statement that

and i ", If that statement is a DIFET

)

data pointer to the flrst item in that
ment, the computer resets the F
follows the specified statement.

Related Keywords

201

ON TIMER #

interval and cause the specified branching to occur.

OHOTI # enables one of three individual timers to interrupt a program at the specified time

B Statement 00 Keyboard Execution
0 Function 0O CALC Mode
0O Operator B IF. . . THEN. .ELSE

statement
identifier

(oN TIMER # —={ ineT.

Examples

Input Parameters

Item Description Restrictions
timer number Numeric expression rounded to an 1 through 3.
integer.
seconds Numeric expression. 1/32 second through 134,217,727
seconds.
statement Line number or label of a program Any valid line number or label
identifier statement. reference.

202
ON TlMER # (continued)

Comments

The timer number must be either 1, 2, or 3. The time interval must be specified in seconds. Time
intervals less than the minimum or greater than the maximum are set to the minimum or maximum,
respectively.

When the HP-71 executes ifi 1 , the appropriate timer is activated. When that timer ex-
pires, program execution transfers to the spemﬁed line. Where more than one timer has expired, the
expired timers are serviced in numeric order. If the timer expires during execution of a program state-
ment, the transfer does not occur until the computer has completed execution of that statement.

Executing the
responding

statement deactivates the timer previously activated by the cor-
statement. Any of the following operations deactivates all three timers:

¢ Executing
¢ Executing the last statement of a program.
e Editing a program.
¢ Running a program.

Timer Subroutines. When the timer set by an 0H TIMER. .. GOSUE statement expires, program
execution transfers to the indicated statement and continues. The computer terminates the subroutine
when it executes a FETURH statement. Execution then returns to the statement following the last
statement executed before the timer interruption occurred, and resumes. Simultaneously, the subject

timer is reset to the time interval you originally specified in the 2H TIMER. .. GOQZUE statement.

Timer Branches. When the timer set by an ¢ statement expires:

e Program execution transfers to the indicated statement and continues.

e The subject timer is immediately reset.
Timers continue to run after a program is suspended, but the interrupt does not cause the specified
branching until the program is resumed.

Timer Operating Details. If a or statement within a program turns off the HP-71
after a timer has been activated, when that timer expires, the computer turns itself on and:

1. Executes the subroutine or branch specified by the timer.

2. When { is encountered after -
resumes program execution with the first statement followmg the

executlon the computer
statement.

203

ON TlMER # (continued)

Timers are global. Thus, after a program has called a subprogram, any timers activated by the calling
program and expiring during execution of the subprogram are not acted upon until execution returns

to the calling program. Also, a timer activated within a subprogram supersedes any other timer that
was activated earlier by another program.

Related Keywords

204

OPTION ANGLE/BASE/ROUND

o
L

" selects the global unit of measure for expressing angles.
the subscript lower bound(s) for subsequently dimensioned arrays.
roundoff setting.

- specifies
selects the

B Statement M Keyboard Execution
0 Function O CALGC Mode
O Operator B F.. THEN.. ELSE

OPTION

subscript
base

Examples

Input Parameters

Item Description Restrictions

subscript base Numeric expression rounded to an 0 or 1.
integer.

205
OPT'ON ANGLE/BASE/ROUND (continued)

Comments

Any 4 setting has a global effect. That is, an - setting has the same
effect regardless of whether it is executed in a program or subprogram, or from the keyboard.

The OPTION ANGLE Statement. When executed subsequent to {: -, all func-
tions that return an angle do so in the specified units, and all subsequently executed operations that
use parameters representing angles will interpret angles in the specified units.

Selecting radians setting turns on the RAD annunciator and sets system flag —10. Selecting degrees
setting clears the RAD annunciator and clears system flag —10.

The OPTION BASE Statement. Any array you create or redimension after executing
OFTIOH EASZE will have the subscript lower bound(s) specified in that OFTIOH ERSE statement.
However, subscript lower bounds for previously dimensioned arrays will not be changed. That is, chang-
ing the OF TIOH ERSE setting after creating an array does not change the array’s option base. (The
lowest-numbered element in any array has a subscript of either 0 or 1, depending upon the current
OFTIOH EASE setting.)

Executing & clears flag —16. Executing i

i sets flag —16.

The OPTION ROUND Statement. Executing JFTIOH REOUHD HERER selects rounding to the
nearest machine value. Where there is a choice between two values, the even value is selected.
OQFTIOW ROUMD FPOZ selects rounding upward (towards +infinity). OFTIOH REOUHD HEG se-
lects rounding downward (towards —infinity). OF TIOH ROUHD ZERD selects rounding towards zero
(rounds the absolute value downward).

¢ sets or clears system flags —11 and

—12 as shown in the table to the right. OPTION | Flag | Flag

ROUND -1 —12

Clear Clear

Clear Set
Set Clear
Set Set

Related Keywords

206

OR

The binary operator performs the logical OR of its two operands.
0O Statement M Keyboard Execution
O Function B CALC Mode
B Operator B IF...THEN...ELSE
©
Examples

Input Parameters

item Description Restrictions
operand Numeric expression. Subject to operator precedence.
Comments
Operands used with & are considered logically false if

zero, and logically true if nonzero. The table to the right
indicates the range of results for

the lowest of all HP-71 operators. (Refer to “Precedence
of Operators” on page 317.)

Related Keywords

(0] nd
pera Result
Left | Right
False False 0
False True 1
True False 1
True True 1

207

OVF

& (overflow) returns the number of the overflow flag (—6).

O Statement M Keyboard Execution
B Function @ CALC Mode
O Operator B IF...THENELSE
OVF
Examples

Related Keywords

208

PAUSE

. suspends program execution.

B Statement OO0 Keyboard Execution

0O Function O CALC Mode

O Operator B IF...THEN... ELSE
Examples

Comments

In a running program, - suspends program execution. Subsequently executing I or press-
ing either the key or the key resumes execution at the statement immediately following
the statement.

Executing ., running a program, or editing a program clears the “sus-
pended” status (that is, releases local environments and clears all program control information main-
tained in the computer).

Note: A suspended program retains any memory allocations it has already estabhshed for Iocal
variables, pending subprogram calls, subroutine levels, statements and
statements.

(error 79)

Attempting to execute from the keyboard results in an

condition.

Related Keywords
¥, and the and keys.

209

PEEK$

% returns the contents of a specified section of memory.

O Statement B Keyboard Execution
@ Function O CALC Mode
O Operator B IF...THEN...ELSE

hexadecimal number
peexs)}—=(O (O o meties)

Examples

Input Parameters

Item Description Restrictions
hexadecimal String expression containing hexadecimal Up to five uppercase or lowercase
address digits. digits.
number of nibbles | Numeric expression rounded to an 0 through 524,287.

integer.
Comments

Specifying memory that is located in a private file results in a (error 61)

condition.

Related Keywords

210

Pi

F1 returns a 12-digit value (3.14159265359) representing .

[0 Statement
B Function
O Operator

B Keyboard Execution
B CALC Mode
B (F...THEN...ELSE

Examples

211

PLIST

" displays the specified BASIC or KEY file on the print device.

W Statement
O Function
O Operator

B Keyboard Execution
O CALC Mode
B IF.. . THEN.. ELSE

(PLIST)

-

file
specifier

start line

or key number

Examples

final line
or key number

Input Parameters

Item

Description

Restrictions

file specifier

start line or key
number

final line or key
number

String expression or unquoted string.
Default: Current file.

Integer constant identifying a program line
or key number.
Default: First program line or key
assignment in file.

Integer constant identifying a program line
or a key number.
Default: Start line or key number, if
specified; otherwise, last program line or
key assignment in file.

File name with optional device
specifier.

1 through 9999.

Start line or key number through
9999.

212

PL'ST (continued)

Comments

%7 operation is identical to that of L 15T, except the output goes to the print
device 1nstead of to the display device.

Tid Fils - (error 63)

Specifying a file that is not a BASIC or KEY file generates an 1.
condition.

. results in a listing of the current key assignment file, |

Executing

Specifying a single line or key parameter lists only that line or key assignment. If you specify a range
and the HP-71 does not find the start line or key number, but does find a higher-numbered line or key
number w1th1n the specified range, the listing begins with that higher-numbered line or key. Execut-
ing FLI%T without specifying any line or key numbers generates a listing of the entire file.

If the print device is the display, the current EL ™Y setting determines how long the computer

displays each line.

H setting determines the width of the printed line.

The current ¥

Interrupting a Listing. To halt a listing and display the cursor, simply press .

Related Keywords

213

POKE

FkE writes to memory at the specified hexadecimal address.

CAUTION

Executing F3XE can cause a | w Lozt condition. Also, executing FiiE for some areas
of memory can result in a condition from which the onfy methods of recovery are either to execute
IHITZ or to remove the batteries. 11173 destroys all files in main RAM. Removing the batteries
causes a loss of memory in all of RAM.

B Statement M Keyboard Execution
0O Function 0O CALC Mode
O Operator B IF...THEN... ELSE

—(Poke —+ "ranees F—()

Examples

Input Parameters

Item Description Restrictions
hexadecimal String expression containing hexadecimal Up to five uppercase or lowercase
address digits. digits.
data String expression containing hexadecimal No restriction on number of

digits. characters in data.
Comments

writes to memory all digits preceding the
(error 11) condition.

If there is a nonhexadecimal digit in the data string, F
nonhexadecimal digit, then generates an I+

The amount of data written is limited only by the amount of available memory. Attempting to use
within a secure or private file results ina Fi i: - (error 61) condition.

214

POKE (continued)

Related Keywords

AR, DTHE

215

POP

= cancels the pending return of program execution from the current subroutine.

B Statement B Keyboard Execution

O Function O CALC Mode

O Operator B IF...THEN... ELSE
Examples

Comments
P is similar to i except that it causes program execution to continue at the instruction
following the Fi:F statement instead of at the instruction following the calling ! statement.

(That is, F

cancels the pending return established by the last : statement.)

Related Keywords

216
POS

PO (substring position) returns the position of a given substring within a string.

O Statement 8 Keyboard Execution
& Function O CALC Mode
O Operator @ (F... THEN...ELSE

POS string substring
searched searched for)
O

Examples

FOSCUMISSISSIFRIY, "IV, 33

Input Parameters

Item Description Restrictions
string searched String expression. None.
substring
searched for . .
Numeric expression rounded to an If the rounded value is less than or
start character integer. equal to zero, -
number Default: 1. default value of "1.”
Comments

[

1% searches within the first string for the second string. If the second string is found within the
ﬁrst the starting character position of the second string is returned.

If the search is to start at a position other than the first character, use the optlonal thlrd parameter to
specify the starting position. In the above examples, i i returns %,
which represents the result of a search beginning at character 3

for the character .

217

POS (continued)

FOZ returns zero when the substring cannot be found. For example:

3 returns 5.

+ returns 0.

~Computer
" Museum

218

PREDV

FrEDY (predicted value) returns the predicted value (based upon the current statistical array) of the
dependent variable, the last LF statement, and the value of the independent variable specified as the

argument.

0 Statement B Keyboard Execution
B Function B CALC Mode
J Operator B IF.. THEN... ELSE
® o
Examples

Input Parameters

Item Description Restrictions
argument Numeric expression. None.
Comments
2 must be preceded by execution of i.% to specify the dependent and independent variables.

Related Keywords

FFIHT causes the print items to be sent to the print device.

219

PRINT

B Statement B Keyboard Execution
{0 Function 00 CALC Mode
{1 Operator B IF...THEN...ELSE

A0S

expression

Y

=

Examples

Input Parameters

Item Description

Restrictions

expression Numeric or string expression. None.

column Numeric expression rounded to an integer. | Greater than zero.

220

PRINT (continued)

Comments

Operation. FRINT operates in a manner similar to that of I'I=F. However, FEIHT is not af-
fected by HITTH statements (and, conversely, TISF is not affected by FUIDTH statements).

You can use EHLL IME to alter the string that F!
default string is the carriage return/line feed.)

T appends to the end of each print line. (The

Use of TAB. THE positions FEIHT (and [I%F) output to begin at the column you specify. If the
current column position is beyond the specified column, the computer first moves to the next
line, then positions itself to the specified column. If the column position value exceeds the current line
width, the computer reduces the position value by a multiple of the line width (in a manner similar to
the FED function), then moves to the reduced column position.

Related Keywords

i T
v

L,

221
PRINT USING

FEIMT USING causes the print list to be sent to the print device in a user-specified image format.

B Statement M Keyboard Execution
O Function 0 CALC Mode
8 Operator W F...THEN...ELSE

——GHINT USING

Examples

i

Input Parameters

item Description Restrictions
line number | Integer constant identifying a program line. 1 through 9999.
format string | String expression Refer to the IMAGE keyword entry.
expression Numeric or string expression. None.

222

PR'NT US'NG (continued)

Comments

F i = uses a format string to format output items. If there are no output items, there may
or may not be any output to the printer, depending on the items in the format string.

If ¢ references a line number, an I - statement must be the first statement in
that line. When executed from the keyboard, the computer searches for an ! statement at the
referenced line number in the current file.

If FRIHT LIS IHG contains a string expression for the image, that expression must evaluate to a valid
format string, as described in the IMAGE keyword entry. For example:

The following program provides a further ! illustration:
10 8$= 2X,” & "Today's” & "",8A,"$"2D.DD’ Uses string expressions for images.
20 PRINT USING S$; 7 Special”,2.95 References string expression.
Todaw's Special 2,95 Result of executing lines 10 and 20.

The items in an output list must be separated by commas or semicolons. However, unlike :
these punctuation characters have no further meaning in statements.

Related Keywords

223

PRINT #

% writes data items to a data file associated with a specified channel number.

B Statement B Keyboard Execution
0O Function O CALC Mode
O Operator B IF. .. THEN... ELSE

ey
_mm

specifier

—»{(PRINT # }——{ Cn“uam”b“:pﬁ[

record
number

Examples

Input Parameters

Item Description Restrictions

channel number Numeric expression rounded to an 0 through 255.
integer.

record number Numeric expression rounded to an 0 through 1,048,575.
integer. The first record of the file is record
0.

expression Numeric or string expression. None.

array specifier Array name followed by an empty set of None.
parentheses « : or <. which indicates
that the entire array is to be written to the
file.

224
PR'NT # (continued)

Comments

FRINT # writes data items to the file assigned to the specified channel number. The file type can be
DATA, TEXT, or SDATA.

If you do not specify a record number, the data items are sequentially written to the specified file
(termed sequential access), beginning with the current position of the data pointer within the file.
The HP-71 automatically increases the file size if the end of the file is reached before all data is
written to the file. If you specify a record number, the file pointer moves to that record and the data
items are written. This process is termed random access, and can be used w1th all data ﬁle types
except TExT files. (Attempting to randomly access a T file results in an I ils

Tupe (error 63) condition. Also, for a file of type DA TH or ZDATH, specifying a record number greater
than the last record number in the file generates an End of File (error 54) condition.)

-

The format of numeric and string values depends upon the types of files to which they are written.

For information concerning the amount of memory required for various HP-71 file types, refer to the
information listed under “Files” in the “System Memory Requirements” table that begins on page 330.

TEXT Files. Every data item written to a text file forms an individual record. The computer writes
an end-of-file mark when it completes execution of each FFEIHT # statement. (Only sequential access
is allowed on a TEXT file—a record number must not be specified.) The computer converts numeric
data to text form—according to the current display format—before writing the data to the file.

DATA Files. =i # uses eight bytes of memory to write each numeric value to the file, and uses
three bytes plus one byte per character for each string. Sequential access starts at the current file
position, may cross record boundaries, and writes an end-of-file mark after the last data item written.
Random access writes data items to the specified record number, then writes an end-of-record mark.
(Random access does not cross record boundarles) Thus, for random access, all of the data must fit
into one record. Otherwise, a F = (error 29) condition results.

SDATA Files. You can write only numeric data to an SDATA file. Each value uses eight bytes of
memaory.

Related Keywords

225

PRIVATE

limits access to the specified file and restricts changes in its protection.

Bl Statement B Keyboard Execution
0O Function O CALC Mode
0 Operator B IF...THEN...ELSE

—{(PRIVATE —+ opecitier —>

Examples

Input Parameters

Item Description Restrictions
file specifier String expression or unquoted string. File name with optional device
specifier.
Comments

A private file may not be altered, listed, or otherwise read. This means that you cannot use it as the
destination file in a statement or otherwise modify it. Because of the permanent results of
executing , this statement requires that you always specify the name of the file you want
to make private.

Note: As an added precaution, only an unsecured file can be made private.

You can execute and purge an unsecured file that is private. The catalog listing for an unsecured
private file appears with a ¥ in the protection field. A secured private file can only be executed. In a
catalog listing, a secured private file appears with an ¥ in the protection field. Once you make a file
private, the file remains private. Thus, its protection can only oscillate between the protection types &
and ¥. Also, you can designate as private, only the files that you can execute. That is, only executable

BASIC and BIN (binary) files can be designated as private.

Related Keywords

226

PROTECT

write-protects one track of a magnetic card.

B Statement B Keyboard Execution

O Function 00 CALC Mode

O Operator M IF...THEN...ELSE
Examples

Comments

" is available only when the HP 82400A Card Reader is installed in your HP-71. When you
execute F R T, the computer prompts you for a card and then allows you to pull the card
through the card reader once. This operation, which places a write-protect code on the track accessed
by the card reader, protects that track from being overwritten by a subsequent C:F% operation. To
protect the card’s other track, turn the card around, reexecute ¥ -7, and again pull the card
through the card reader.

When a track has been protected, you cannot write over it unless you first execute an U
operation for that track.

Related Keywords

deletes a file (or files) from RAM.

227

PURGE

B Statement
0 Function
0 Operator u

B Keyboard Execution
O CALC Mode
IF...THEN...ELSE

PURGE

Examples

\J

ALL

Input Parameters

Item Description Restrictions
file specifier String expression or unquoted string. File name with optional device
Default: Current file. specifier.
Comments

After you purge a file, you cannot access the information it contained. If you purge the current file,
wark f i 1e becomes the current file.

228

P U RG E (continued)

Purging the current file during program execution:

1. Halts the program.

2. Clears the program from memory.

3. Releases local environments.

4. Clears all internally-maintained program control information.
5

= as the current file.

. Designates

Attempting to purge the current file when (1) the :
enough memory to create the : iis results in the
condition.

does not exist, and (2) there is not
1 M -+ (error 24)

Executing i
purges the system E

clears all unsecured files from main RAM. Executing F
file.

Related Keywords

229

PUT

F1i7T enters a key code (specified by the key’s string argument) into the key buffer.

M Statement B Keyboard Execution
O Function O CALC Mode
O Operator B IF. .THEN.. ELSE

— (Ut — L

Examples

Input Parameters

Item Description Restrictions
key name String Expression. Less than five characters.
Comments

This statement adds the specified key to the end of the list of keys currently held in the buffer. (The
buffer can hold up to 15 keys.)

The key name is specified in the same format as that for F
FLIT leaves the buffer unchanged.

7%, If the buffer is full, executing

Related Keywords

230

PWIDTH

4 (print width) defines the line length of ! statements.
M Statement B Keyboard Execution
O Function 0O CALC Mode
O Operator B IF.. . THEN...ELSE
Examples
Input Parameters
Item Description Restrictions
print width Numeric expression rounded to an FRILTH interprets a value less
integer. than 1 as 1, and a value greater
than 255 as infinity.
Comments

4 specifies a line width that is used during execution of subsequent ¥ " statements to

determine the output format.

statements reduces the - argument modulo the + argument,

231

RAD

(degrees to radians conversion) converts arguments expressed in degrees to radians.

[J Statement B Keyboard Execution
B Function B CALC Mode
[J Operator B IF.. THEN... ELSE
ED—O o
Examples

Input Parameters

ltem Description Restrictions
argument Numeric expression. None.
Comments

The conversion constant is accurate to 15 digits, which often produces more accurate results than a
conversion that does not use F

Related Keywords

232

RADIANS

HZ selects Radians mode, which specifies radians as the unit of measure for expressing angles.
It is a short form of the i IO RHGLE EARDIANDS statement.

B Statement B Keyboard Execution

O Function O CALC Mode

O Operator B IF.. THEN... ELSE
Examples

Comments

% turns on the RAD annunciator.

After executing i
¢ Any function that returns an angle does so in radian units.

o Instructions that use angles for parameters will interpret such parameters in radian units.

Related Keywords

233

RANDOMIZE

ZE specifies a seed for the =:i: function.

B Statement B Keyboard Execution
O Function 0O CALC Mode
O Operator B IF...THEN...ELSE
—>< RANDOMIZE } -
Examples

T

Input Parameters

Item Description Restrictions

seed Numeric expression. None.
Default: Current value in clock register.

Comments

The random number series generated by executions of the FHD function depends upon the starting
seed value you specify with RAHOOM I ZE. If you specify O for a seed, the subsequent FHL sequence will
consist of all zeroes. Otherwise, EAHDIM I ZE uses the given seed’s absolute value or the contents of a
clock register. EAHOOMIZE is a global declaration. That is, executing FAHOCOMIZE in a subprogram
affects the subsequent FHDO series in the calling program.

Related Keywords

234

READ

assigns values from statements to variables.

1.

variable
specifier

Examples

Input Parameters

B Statement B Keyboard Execution
O Function O CALC Mode
O Operator @ IF.. THEN...ELSE
(N
N

Item Description

Restrictions

variable specifier Numeric variable specifier or string
variable specifier.

array name Name of a numeric or string array.

Indicates that the entire array is to be read.

None.

The number of dimensions must
match the empty subscripts that
follow, if specified.

235
R EAD (continued)

Comments

The numeric items stored in i statements are read into the numeric variables in a state-
ment. If they are not in the correct form (that is, if they are not valid numeric expressions) then an
error results. A string variable may read what appears to be a numeric item, as long as it is
dimensioned large enough to contain the characters.When the current program context changes due to
execution of : , the DATA pointer is reset. The first statement in a program
accesses the first item in the first statement in that program unless you used to
specify a different i statement as the starting point. Successive operations access
successive [items, progressing sequentially through the i 7# statements as necessary. Trying
to read past the end of the last statement causes an error. The § statement may be
used to alter the order in which accesses i statements.

Avalid ! : expression may contain any function calls or variable references that are allowed in any
other expression. This feature may be useful for reading computed constants or special characters that

are normally unavailable from the keyboard, such as [I3 and §

Related Keywords

236

READ #

reads data items from a data file associated with a specified channel number.

B Statement
O Function
O Operator

B Keyboard Execution
O CALC Mode
B JF...THEN.. ELSE

channel |
number ¥

Examples

record
number

Input Parameters

—~
variable -

specifier

item

Description

Restrictions

channel number

record number

variable specifier

array name

Numeric expression rounded to an
integer.

Numeric expression rounded to an
integer. The first record of the file is record
0.

Numeric variable specifier or string variable
specifier.

Name of a numeric or string array.
Indicates that the entire array is to be
read.

1 through 255.

0 through 1,048,575.

None.

The number of dimensions must
match the empty subscripts that
follow, if specified.

237

READ # (continued)

Comments

reads data items from the file assigned to the specified channel number. The file’s type can
be DATA, TEXT, or SDATA. The data type of each item in the # read list must match the
type of corresponding data item in the data file.

If you specify a record number, the file is positioned to that record and the data items are read. This is
termed random access. For a file of type DATA or SDATA spemfymg a record number greater than
the number of records in the file causes an Ew =¥ Fils (error 54) condition.

If you do not specify a record number, the computer begins reading data items from the data pointer’s
current position in the file. This is termed sequential access.

TEXT Files. Every record is assumed to contain a single data item represented as a string of char-
acters. If a data item is to be read into a numeric variable, the computer attempts to evaluate the
ASCII string as a numeric expression in a manner similar to that of the i function. If the specified
record number is greater than the number of records in the file, the file pointer is set to the end of the
file.

DATA Files. For random access, the number of items in the read list must not exceed the number of
data iterns in the record.

SDATA Files. Each record of this file type can contain a single numeric or string data item. Note
that strings are limited to six characters.

Related Keywords

238

REAL

_ allocates memory for real variables and arrays.

B Statement B Keyboard Execution

&0 Function 0 CALC Mode

0O Operator B IF...THEN.. ELSE
(N

{ "
numeric | w
REAL variable i -
dimension
limit 1)
dimension
limit 2

Examples

Input Parameters

Item Description Restrictions

numeric variable Letter followed by an optional digit. None.
dimension limit 1
dimension limit 2

Numeric expression rounded to an integer. | Current
through 65535.

setting

Comments

. creates real variables and arrays. Creation occurs upon execution of i . The dimension
limits are evaluated at creation time. The lowest-numbered subscript in any dimension is 0 or 1,
depending on the setting when the array is created. All elements are initialized to
zero.

239

REAL (continued)

If FEAL specifies a simple numeric variable that already exists, the variable is reintialized to zero.
Array variables are redimensioned, but not reinitialized to zero (unless the data type is changed). If
FEAL expands an array, it also initializes all newly-created elements in the array. Notice that
redimensioning does not necessarily preserve an element’s position within an array, but does preserve
the sequence of elements within an array. (Refer to “Declaring Arrays (DIM R
IMTEZER)” in section 3 of your HP-71 Owner’s Manual.)

The following table indicates the conditions that apply to &
REAL Numeric Variables

variables and arrays:

Initial Value 0
Numeric Precision 12 Decimal Digits
Exponent Range +499
Maximum No. of Array Dimensions 2
Maximum Dimension Limit 65535
Memory Usage in Bytes
» Simple Variable 9.5
* Array 8x*(dim1—base+1)*(dim2 — base + 1) + 9.5

Related Keywords

240

RED

RED<x,y* (reduction) returns a remainder defined by the expression
x —y *n

where n is the nearest integer to x/y. If x/y lies exactly between two integers, F
integer.

& uses the even

0 Statement B Keyboard Execution
M Function B CALC Mode
O Operator W IF...THEN...ELSE
@) —0O O ®
Examples

IF REDCE,Z»=1 THEH FREIHNT K

Input Parameters

Item Description Restriction
argument1 }) . Refer to “Comments,” on the facing
Numeric expression.
argument2 page.

241
RED (continued)

Comments

FED is the remainder function defined by the IEEE Floating Point Standard.* FEL has the following
properties:

i x,y: is periodic in x with period | y!, except at multiples of y, where the period is 21yl
tix,y: lies in the interval [—ly!/2, lyl/2].

i generates exact answers (that is, no rounding is necessary for the 12-digit result).

is useful for angle reductions, since
—180 <= (x,360) <<= 180

and the result is exact. For example,

= —1E—20, exactly.

If argumentl is I+¢{ or argument2 is equal to zero, the I

Related Keywords

* The remainder function is referred to as REM in the IEEE Floating Point Standard.

242

REM

(remarks) enables you to document your programs with comments.

MW Statement B Keyboard Execution

O Function O CALC Mode

O Operator B IF.. .THEN... ELSE
REM —™X

)

Examples

Input Parameters

Item Description Restrictions

character Any character. None.

Comments

When program execution encounters i, it assumes that any remaining information in that line
consists of remarks, and not executable keywords. Thus, in the following example, the
is ignored:

10 IF B$=C$ THEN PURGE B$ @ REM PURGED B$ @ DISP C$

When you want to enter a comment in a program line without using the # FEH... construction, use
the | exclamation point. (Wherever FEHM is allowed, ! is also allowed. Notice, however, that ! does not
require use of the @ character.)

243

RENAME

B Statement B Keyboard Execution
0 Function O CALC Mode
0 Operator W IF...THEN... ELSE

file

. specifier '

RENAME

Input Parameters

Item Description Restrictions
file specifier String expression or unquoted string. File name with optional device
Default: Current file. specifier. Proposed file name must

not already exist on the device
containing the designated file.

Comments

- when the

You can use i 1# is the current

file.

file name renames the current key assignment file, which deactivates any active
file name T = designates the specified KEY file to become the

key assignments. -
current key assignment file. If the specified file is not in main RAM, an error occurs.

244

RENAME (continued)

A device specifier for the file you rename may be given in either file specifier (that is, before or after

(whether implicit or explicit) is always interpreted as the device containing the file to be renamed. In
such cases the second device specifier is ignored. An example of an implicit device specifier is:

EEHAME T H: P

The preceding example implicitly specifies the device containing the current file. Thus, F!
ignores the I device specifier.

FEHUMEBEER renumbers the lines in a program file.

245

RENUMBER

B Statement
O Function
0O Operator

M Keyboard Execution
O CALC Mode
B IF.. . THEN...ELSE

RENUMBER

Examples

new start
line number

Input Parameters

increment
value

old start
line number

old final
line number

item

Description

Restrictions

new start line
number

increment value

old start line
number
old final line
number

Integer constant.
Default: 10.

Integer constant.
Default: 10.

Integer constant.
Default: Start of file.

Integer constant.
Default: End of file.

1 through 9999.
1 through 9999.
1 through 9999.

1 through 9999.

246
RENUMBER (continued)

Comments

i operations are subject to the following:

e If the HP-71 cannot find the old start line number, it locates the next successive line number and
begins renumbering from that line.

¢ If, during renumbering, FEMUMEER reaches line 9999 before the entire program is renumbered,
the computer automatically renumbers the program lines using 1 for the increment between lines.
In this case, if the new start line number was not specified, it defaults to 1.

¢ If a renumbered line is referenced by a program statement such as

T the com-
puter automatically changes that reference to reflect the new line number

Note: Where , L
numbers, any execution of
the new line numberings.

are program statements referring to specific line
= does not adjust those references to correspond to

247
RES

RES (result) returns the value of the most recently executed numeric expression.

[0 Statement B Keyboard Execution
M Function ¥ CALC Mode
[0 Operator B IF...THEN.. ELSE
RES
Examples

Comments

The HP-71 stores the result of each numeric assignment and calculator statement in a register re-
served for use by F This occurs prior to any rounding that may take place due to a SHORT or
INTEGER destination variable. EE% recalls the value currently stored in this register. % can be
particularly useful in iterative computations because it is much faster than variable references.

In CALC Mode, the computer implicitly executes = whenever a null subexpression is completed.
Thus, = : returns the sine of the previous result, and ¥ returns the larger of the pre-
vious result and variable #.

248

RESET, RESET CLOCK

FESET resets user and system flags to their default settings. FEESET CLACE

executing ExfCT.

nullifies the effect of

B Statement B Keyboard Execution
0 Function O CALC Mode
1 Operator B IF.. .THEN...ELSE

Comments

The RESET Statement. FESET clears all user flags (0 through 63) and the system flags that can be
set or cleared by users (flags —1 through —32). Reset also sets all math traps to their DEFAULT OH
settings.

The RESET CLOCK Statement.
tem clock’s adjustment factor.

'+ clears the Exact flag (flag —46) and the sys-

Related Keywords

249

RESTORE

~ specifies which [#7# statement will be used by the next EEZfi: operation.

B Statement B Keyboard Execution
O Function O CALC Mode
0 Operator W IF.. THEN.. ELSE

RESTORE

statement
identifier

Examples

Input Parameters

Item Description Restrictions
statement Line number or label of a program Any valid line number or label
identifier statement. reference.

Default: First i}
program.

+ statement in the

Comments
If

specifies a line that does not contain a
statement following the specified line. F
program. If no line number is specified, the next
the current program or subprogram.

¢ statement, the computer uses the first
- can only refer to lines within the current
statement uses the first ! statement in

Related Keywords

250

RESTORE #

FEZTORE # sets the file pointer associated with the specified channel number to the indicated
record number.

@ Statement B Keyboard Execution
3 Function O CALC Mode
0 Operator B IF...THEN...ELSE

—(RESTORE # }—] el L -

Examples

Input Parameters

Item Description Restrictions
channel number Numeric expression rounded to an 1 through 255.
integer.
record number Numeric expression rounded to an 0 thru 1,048,575.
integer. The first record of the file is record
0.
Detfault: Beginning of the file.

Comments

For a file of type DATA or SDATA spec1fy1ng a record number greater than the number of records in
the file results in an . (error 54) condition. For a TEXT file, if the record number
does not exist, F sets the ﬁle pointer to the end of the file, which causes the next record
written to the file to be appended to the current end of the file.

Related Keywords

251

RETURN

FE ¢t returns program execution to the statement following the invoking =
B Statement B Keyboard Execution
O Function O CALC Mode
[0 Operator B IF.. THEN...ELSE
Examples

Program Segment:

r-—-=-==

1

Comments

In the above example, the on line 310 transfers execution to the subroutine beginning at line
700. The & TLEY at line 720 terminates subroutine execution and transfers program execution to
line 320.

Related Keywords

252
RMD

FMlcx.y+ (remainder) returns the remainder defined by the expression x — v « IF(x/y).

O Statement B Keyboard Execution
B Function B CALC Mode
O Operator B IF... THEN...ELSE
0 O O
Examples

Input Parameters

Item Description Restrictions
argumentt) .
Numeric expression. Refer to Comments, below.
argument2
Comments

MO is the remainder function defined by the ANSI BASIC Standard,* and has the following
properties:

'x.y* is not periodic in x across x = 0.

‘x. y» lies in the interval
o [0)y]) for x >= 0.
o (—lyl0] for x <= 0.
e For x,y > 0, RMOux,yr = MODOx,yx.

¢ Returns results that are exact. (¥ never sets the INX flag. No rounding needs to be done
because the result is never greater than 12 digits.)

If either argumentl equals I f or argument 2 equals zero, the Irwalid Hrg (error 11) condition
results.

* The remainder function is referred to as REM in the ANSI BASIC Standard.

253

R M D (continued)

Related Keywords

254

RND

FHit (random number) returns the next real number in a pseudo-random number sequence and up-
dates the random number seed.

0 Statement B Keyboard Execution

B Function B CALC Mode

O Operator B IF.. . THEN...ELSE
Examples

b =

Comments

The HP-71 uses a linear congruential method and a seed value to generate a random number value (r),
which always lies in the range 0 <= r << 1. Each succeeding execution of & returns an r-value
computed from a seed based upon the previous ¥ value.

Note: If the seed is zero, the FHIi sequence will likewise be zero.

You can change the seed by executing

Related Keywords

255

RUN

RLUH executes a BASIC or binary program.

B Statement B Keyboard Execution

O Function O CALC Mode

O Operator B F.. . THEN...ELSE
RUN > X

line
number
file
specifier

statement
identifier

Examples

Input Parameters

Item Description Restrictions
file specifier String expression or unquoted string. File name with optional device
Default: Current file. specifier or ;
line number Integer constant. 1 to 9999.
statement Line number or label of a program Any valid line number or label

identifier statement. reference.

256
R U N {continued)

Comments

If an external device contains the specified file, it is first copied into main RAM, then executed. When
you enter a file specifier and execute Fili, that file becomes the current file.

AR

that line or statement. Otherwise, ¥ begins execution at the first statement of the program. If the
computer does not find the specified line number, but does find a higher-numbered line, Fii#i begins
execution with that line. If you enter only a line number or label reference (and no file name), F it
begins executing the current program from the specfied statement.

Note: The label reference must be preceded by a comma to distinguish it from a file specifier. The
comma preceding the line number is optional.

Effect of RUN on Suspended or Running Programs. Executing ¥ from within a running
program causes the computer to halt the current program, switch to the specified program (which
becomes the “current file”), and run the new program.

If you suspend a program (which turns on the SUSP annunciator), subsequently executing FU/H turns
off the SUSP annunciator, closes all files, releases local environments, clears all program control in-
formation with respect to the suspended program, and executes the specified program, as described
above.

The Key. This key is a direct execute key. It causes program execution to begin with the first
statement of the current program.

The Effect of RUN on Current Memory Status. closes all files, releases local environ-
ments and clears all program control information associated with a prior suspended program. (This is
equivalent to J

Related Keywords

257

SCI

SC1 (scientific format) sets the scientific display format (SCI mode) and the number of significant
digits to be displayed (or printed).

B Statement W Keyboard Execution
O Function O CALC Mode
O Operator B IF...THEN...ELSE
humber
(o)
Examples

Input Parameters

Item Description Restrictions

number of digits Numeric expression rounded to an 0 through 11. [interprets a
integer. value less than 0 as 0, and a value
greater than 11 as 11.

Comments

Display format statements control the format setting for dlsp]aymg numbers. The display setting
remains in effect until you execute another = ' or statement.

="=y -y

=11 display format displays values in scientific notation to d + 1 significant digits, where d is the
specified number of digits. The value appears as

(Sign) Mantissa E (Sign) Exponent

where, for normalized numbers,
1 <= Mantissa < 10
and, for denormalized numbers,

Mantissa < 1.

258
SCI (continued)

Related Keywords

sy POl o bl

259

SDEV

ey (standard deviation) returns the sample standard deviation for the specified variable in the
current statistical array.

0O Statement B Keyboard Execution
B Function B CALC Mode
O Operator B JF.. THEN...ELSE

Y

varible
number

Examples

Input Parameters

Item Description Restrictions
variable number Numeric expression rounded to an Zero through the current :
integer. array dimension.

’ Default: 1.

Comments

The sample standard deviation calculation uses n — 1 as the denominator, where n is the sample size.
For information concerning statistical arrays, refer to the “Mathematical Discussion of HP-71 Statis-
tical Arrays,” page 334.

Related Keywords

260

SECURE

protects a file from being altered or purged.

B Statement B Keyboard Execution
O Function O CALC Mode
0O Operator M IF.. THEN... ELSE

SECURE
file
.'
KEYS

Examples

Input Parameters

Item Description Restrictions
file specifier String expression or unquoted string. File name with optional device
Defauit: Current file. specifier.
Comments

If a secured file is not private:
* In a catalog listing the file appears with an % in the file protection field.
* The file can be read, listed, and executed.
e The file cannot be altered, purged, or declared private.
A file that is both secure and private appears in a CAT listing with an £ in the file protection field.

Access to such files is limited to execution only. To remove a file from secure status, refer to the
UNSECURE keyword entry.

261
SECURE (continued)

Related Keywords

262

SETDATE

- sets the system clock to the specified date.

B Statement B Keyboard Execution
0 Function 0 CALC Mode
0 Operator B IF.. . THEN... ELSE

numeric
date

—(SETDATE

Examples

Input Parameters

Item Description Restrictions
numeric date Numeric expression rounded to an Must be of the form YYDDD or
integer. YYYYDDD, where YYor YYYY =

year and DDD = day-in-year. For
leap year: DDD is in the range of 1
through 366. For other years, DDD
is in the range of 1 through 365.

date string String expression. Must be a valid date of the form
YY/MM/DD ot YYYY/MM/DD.

263

SETDATE (continued)

Comments

You can specify either a year and the day number of the day in that year, or a date string. The HP-71
uses either YY or YYYY formats for year inputs, MM for month inputs, and DD for day inputs.
For numeric date inputs and for date string inputs, if you use the two-digit year format, and if:

e 60 <= YY <<= 99, then YY = YY + 1900.

e () <= YY <= 59, then YY = YY + 2000.
If you use the date string format that specifies a four-digit year, the computer interprets the year as

entered. Although and display only the last two digits of the year portion of a date,
all four year digits are maintained internally.

Related Keywords

264

SETTIME

- sets the time on the system clock.

B Statement
O Function
O Operator

@ Keyboard Execution
0 CALC Mode
B IF...THEN.. ELSE

SETTIME

Examples

seconds
since midnight

Input Parameters

Item

Description

Restrictions

seconds since
midnight

time string

Numeric expression rounded to an integer. | 0 <= seconds < 86400.

String expression.

Must be of the form HH:MM:SS
representing time < 24 hours.

265

SETT'ME (continued)

Comments
Hours (HH) must always be entered as two digits, and in Hour
the 24-hour clock format shown in the table to the right. a.m./p.m. HH
12 Midnight 00
1 am. 01
12 Noon 12
1 p.m. 13
2 14
10 22
11 23

The HP-71 uses

1. The time you enter is used to set the clock time.

inputs in two ways:

2. The difference between the time currently maintained by the clock and the time you enter is
interpreted as two entities, as follows, for interpreting the error correction factor:

e The portion of the difference that is a multiple of 30 minutes is interpreted as an absolute
adjustment, such as that used for a time zone or daylight savings change, and is not used as
an error correction input.

¢ The portion of the difference that is not a multiple of 30 is used to automatically determlne
and store an error correction factor that is applied the next time you execute &' . The
HP-71 measures this portion from the nearest 30-minute increment and applies the appro-
priate sign.

For example, if the current HP-71 clock time is 10:03:17 and you execute i
; to correct the clock, the HP-71’s clock is set to 10:05:30 and an error factor is

computed on the basis of 5™ 30° — 3™ 175, or +2™ 13, and is automatically stored.

266
SETT'ME (continued)

The =
to execute

error correction factor is cumulative between executions of E

". This allows you

The resolution of the clock system is 1/5612 second. A numeric input for
tional seconds; a string input cannot.

~ can specify frac-

Related Keywords

267

SFLAG

: (set flag) sets user and/or system flags specified by keyword or by a flag number list.

B Statement |
{0 Function 0
O Operator |

Keyboard Execution
CALC Mode
IF...THEN .. ELSE

Examples

Input Parameters

Item Description Restrictions
flag number Numeric expression rounded to an —32 through 63.
integer.
Comments

sets flags as follows:
. sets all user flags (0 through 63).

i sets the math exception flags.

values of the numeric expressions in the list. &
—32.

Related Keywords

with a flag number list sets the system and user flags specified by the integer-rounded

. cannot set system flags numbered less than

268

SGHO R (sign (x)) returns —1 if x is less than zero; 0 if x equals zero; and 1 if x is greater than zero.
0 Statement B Keyboard Execution
M Function B CALC Mode
OO0 Operator B (F.. .THEN... ELSE
G ®
Examples

Input Parameters

Item Description Restrictions
argument Numeric expression. None.

Comments

The table to the right shows the values returned by SGH. X SGN(x)
>0 1
=0 0
<0 -1

= NaN NaN

Related Keywords

269

SHORT

v allocates memory for short (5-digit precision) variables and arrays.

B Statement B Keyboard Execution
O Function O CALC Mode
(0 Operator B IF...THEN...ELSE
Afi\\‘
N w
SHORT vnaurmieapbilce 1 >

dimension
limit 1

Examples

Input Parameters

Item Description Restrictions

numeric variable Letter foliowed by optional digit. None.
dimension limit 1

Numeric expression rounded to an Current i

5 setting
integer. through 65535

dimension limit 2

Comments

creates short variables and arrays. Creation occurs upon execution of ". The dimension
llmlts are evaluated at creation time. The lowest-numbered subscript in any dimension is 0 or 1,

depending on the - setting when the array is created. All elements are initialized to
Zero.

270

SHORT (continued)

If SHORT specifies a simple numeric variable that already exists, the variable is reinitialized to zero.
Array variables are redimensioned, but not reinitialized to zero (unless the data type is changed). If
ZHORT expands an array, it also initializes all newly-created elements in the array. Notice that
redimensioning does not necessarily preserve an element’s position within an array, but does preserve
the sequence of elements within an array. (Refer to “Declaring Arrays (CtIFM, REAL, SHORT,
IMTEGER)” in section 3 of the HP-71 Owner’s Manual.)

The following table indicates the conditions that apply to variables and arrays:

SHORT Numeric Variables

Initial Value 0
Numeric Precision 5 Decimal Digits
Exponent Range +499
Maximum No. of Array Dimensions 2
Maximum Dimension Limit 65535
Memory Usage in Bytes:
¢ Simple Variable 9.5
* Array 4.5x(Dirm —Base+1)*(Dim2 — Base + 1) + 9.5

Related Keywords

271

SHOW PORT

| FOET displays the type and size, in bytes, of all the plug-in memory devices and independent
RAM in your HP-71. % T is nonprogrammable.

W Statement B Keyboard Execution

O Function 0O CALC Mode

[0 Operator B IF.. .THEN.. ELSE
Examples

Comments

For each memory device =i displays the port number, the device size in bytes, and the
device type number. Memory type numbers range from 0 through 15:

Device Type Device Type Number
Independent RAM 1
ROM 2

for port numbering information.

Refer to

272

SIN

S IH (sine) returns the sine of its argument.

0O Statement B Keyboard Execution
B Function B CALC Mode
0O Operator B IF...THEN...ELSE
GO—(O ©
Examples

Input Parameters

Item Description Restrictions
argument Numeric expression. Must be finite value.
Comments

% IH first reduces the argument modulo 360 (when in Degrees setting) or modulo 2+7 (when in Radians
setting). S IH assumes that the argument is expressed according to the current angular setting. In
Radians setting, = 1t uses a 31-digit representation of = to increase accuracy. Also:

e SIH:+A: = 40
e SINC1EA % nd = [(—1)7] + ; where n — 1,2,3,... (Degrees mode).

e SIMU-x: = —%IHix:; for example, ZIHI-13E8: = +0.

Related Keywords

273

SQR (SQRT)

(square root) returns the square root of the argument.

O Statement B Keyboard Execution
B Function B CALC Mode
O Operator B IF...THEN...ELSE

argument

P~ Computer
;.;;{;MUseum

Examples

Input Parameters

Item Description Restrictions

argument Numeric expression. The argument must be greater than
or equal to zero. Refer also to
“Comments,” below.

Comments

If the argument is less than zero, then the (error 10) condition occurs.

Note: Because —0 is non-negative (—0=0), SQR(—0)=—0.

274

STARTUP

 defines a command string to be executed when you turn on the HP-71.

R Statement B Keyboard Execution
O Function O CALC Mode
O Operator B F... THEN...ELSE
—{ STARTUP }———! hmand }———
Examples

Input Parameters

Item Description Restrictions
command string String expression. 0 through 95 characters.
Comments

When specifying a : # string, you can use any string of instructions that you can otherwise
execute from the keyboard. To enter a multistatement string, use # to concatenate the statements in
the same way that you would when executing multistatement commands from the keyboard or in a
program.

STARTUP Operation. When you execute = *, the HP-71 stores the specified command
string as it is typed, without checking for syntax errors. The computer maintains only one =7
string at any given time. When you switch the computer off, then on, if the string is error-free, the

! [l string is executed. Otherwise, the computer displays an error message. If the computer is
in CALC mode when you turn it off, or if E%E or “ turns off the computer during program
execution, the string is not executed when you turn the computer on again.

Clearing a STARTUP String. Once you specify a

string, it remains active until
cleared. To clear a string, execute '

with a null string (: s,

275

STAT

ZTHT (statistics) either creates and dimensions a statistical array to the appropriate size for a speci-
fied number of variables, or designates a previously dimensioned statistical array as the current statis-
tical array.

B Statement B Keyboard Execution
0O Function O CALC Mode
O Operator B IF.. .THEN... ELSE

array |
—{(STAT)—-| name | >
number
© O

Examples

Input Parameters

Item Description Restrictions
array name Numeric variable. None.
number of Numeric expression rounded to an 0 through 15.
variables integer.
Comments

" allows you to simultaneously store several statistical arrays and to analyze them in any order.

Before performing statistical calculations, you must specify both the array to use for accumulating
summary statistics and, if the array did not already exist, the number of statistical variables (coordi-
nates) for each data point.

Creating an Array. Z7&7T specifies the current statistical array and the number of variables per
data point. You can specify the number of variables as any numeric expression whose rounded value is
in the range of 0—15.

The HP-71 uses the number of variables to automatically allocate enough space for the array. The
array has an fif G BRSE setting of zero, regardless of the current iHOEREE setting.

276

STAT {continued)

Selecting an Existing Array. In an existing statistical array the number of variables is already set.

Thus, you need not specify the number of variables when using =
array.

to select an existing statistical

Related Keywords

277

STD

. (standard) selects the HP-71’s standard BASIC format for displaying numbers.

B Statement B Keyboard Execution
O Function O CALC Mode
O Operator B IF...THEN... ELSE
STD
Examples

Comments

The =7i: format conforms to ANSI Mimimal BASIC Standard X3J2, and produces the following
results when displaying or printing a number:

e Numbers that can be represented exactly as integers with 12 or fewer digits are displayed without
a decimal point or exponent.

e Numbers that can be represented exactly with 12 or fewer digits, but not as integers, are displayed
with a decimal point but no exponent. Leading zeroes to the left of the decimal point and trailing
zeroes in the fractional part are omitted.

s Zero is displayed as &.

¢ All other numbers are displayed in the following format:
(Sign) Mantissa E (Sign) Exponent

where the value of the mantissa is in the range 1 <= x << 10, and the exponent is represented by
one to three digits. (A denormalized number has a mantissa that is less than 1 and an exponent of
—499.) Trailing zeroes in the mantissa and leading zeroes in the exponent are omitted.

278

STD (continued)

The following table provides examples of numbers displayed in =7 format:

Representable

Number Displayed As With 12 Digits?
10" 100000000000 Yes-integer.
10" 1.E12 No.
1072 .000000000001 Yes.
1.2+107" .000000000012 Yes.
1.23«107" 1.23E—11 No.
12.345 12.345 Yes.

Any display setting remains in effect until changed by another ¥ I3,

Related Keywords

279
STOP

STOF operates in the same was as EMD to end a subprogram, user-defined function, or a program.

B Statement B Keyboard Execution

O Function 00 CALC Mode

O Operator B IF...THEN...ELSE
Examples

IF =<m THEHW STOF

Comments

A program can contain more than one = " statement.

Executing from the keyboard releases a suspended program.

Related Keywords

280

STR$

ZTR¥ (numeric-to-string conversion) returns a string representation of the value of the argument.

0 Statement B Keyboard Execution
B Function 0O CALC Mode
O Operator W IF.. .THEN.. ELSE
® ®
Examples

Input Parameters

Item Description Restrictions
argument Numeric expression. None.
Comments

The returned string is in the current display (or print) format, except that a positive value represented
as a string is shifted one space to the left. formats infinity as I ¢, and NaN as i

Standard (STD) Display Format. The STD format conforms to ANSI Minimal BASIC Standard
X3J2, and is enabled by executing =TL. (Refer to the STD keyword entry.)

Fixed-Precision (FIX) Display Format. The value is displayed rounded to n places past the

decimal point, where n is specified by ¥ 1% n Where the number of digits displayed by this method

would exceed 12, the value is displayed in %I n format. Where the nonzero value rounded to n
I n format.

places past the decimal point would be zero, the value is displayed in &

281

STR$ (continued)

Scientific (SCI) Display Format. The value is displayed in scientific notation to n + 1 significant
digits, where n is specified by %7 I n. The value appears as:

(Sign) Mantissa E (Sign) Exponent

where 1 <<= mantissa << 10 for normalized numbers, and the mantissa is less than 1 for denormalized
numbers.

Engineering (ENG) Display Format. The value is displayed to n + 1 significant digits, where n
is specified by F n. The value appears as:

(Sign) Mantissa E (Sign) Exponent

where 1 <= mantissa < 1000, and the exponent is divisible by 3. If the value has an exponent of
—499, it is displayed in Zi:

-1 n format.

Related Keywords

282

SUB

SUE (begin subprogram) is the first statement in a subprogram and can specify the subprogram’s for-
mal parameters.

B Statement O Keyboard Execution
O Function O CALC Mode
O Operator O IF...THEN. ..

subprogram | _
—{ SUB)—Dl name | —-
)

parameter

ELSE

Examples

Input Parameters

Item Description

Restrictions

subprogram name | Unquoted string consisting of letters and

digits, and starting with a letter.

formal parameter Simple or array variable name, or channel

Up to eight characters.

Channel number must be integer
constant in the range 1 to 255.

Comments

identifies the start of a subprogram. An

iy

statement that invoked the subprogram.

Parameter Passing. Actual parameters (those in the
(those in the

as Hie, o).

another %

. parameter list) and formal parameters
parameter list) must match in type and number. Parameters can be passed to a
subprogram by value or by reference. The distinction is specified in the i
variables passed by reference must be specified by the variable name, followed by an empty set of
parentheses to specify the number of dimensions. (For example, a two-dimensional array, &, appears

. statement, or the end of the
program file terminates the subprogram and returns program execution to the statement following the

statement. Array

283

SUB (continued)

All variables used in the subprogram, except those passed as parameters, are local to the subprogram.
If a subprogram takes no parameters, then the channel numbers it uses are those of the calling pro-
gram. Any channel number specified in the formal parameter list must be a constant.

Subprograms in Files. A BASIC program file can contain more than one subprogram. Also, a
subprogram can reside in the same file as a main program.

If a subprogram is in the same file as the main program it must follow the main program. If there is
more than one subprogram in a file, the subprograms must be placed consecutively. Any statement
placed between two subprograms is ignored during program execution.

Binary Subprograms. You can write a subprogram in BASIC or in assembly code.
voke either subprogram type.

. can in-

How the HP-71 Searches for Subprograms. If no file specifier is given in the [1. statement,
the subprogram search begins with the current file. If the subprogram is not found, the search contin-
ues through the files in main RAM, then through the files on plug in memory devices and independent
RAMs. If the subprogram is not found in any file, and if the statement lists no parameters, the
HP-71 then begins searching for a Program having the specified name.

Related Keywords

284

TAN

(tangent) returns the tangent of its argument.

O Statement B Keyboard Execution
B Function B CALC Mode
O Operator B IF...THEN...ELSE
wO—=(O
Examples

Input Parameters

Item Description Restrictions
argument Numeric expression. Must be finite value.
Comments

first reduces the argument modulo 360 (when in Degrees setting) or modulo 2 *x # (when in
Radians setting). T#H assumes that the argument is expressed according to the current angular set-

ting. In Radians setting,

285

TIME

© returns the time of day expressed in seconds since midnight (00" 00™ 00*).

0 Statement B Keyboard Execution

B Function B CALC Mode

O Operator W IF...THEN.. ELSE
Examples

Related Keywords

286

TIMES

TIME# (¢ime string) returns the time of day as a string in the format HH:MM:SS.

O Statement B Keyboard Execution

M Function O CALC Mode

O Operator B (F...THEN... ELSE
Examples

Comments

The TirE# function uses the 24-hour format shown in
the table to the right.

Related Keywords

Hour
a.m./p.m. HH
12 Midnight 00
1 al.m. 01
12 Noon 12
1 pm. 13
11 23

287

TOTAL

Si. returns the total of the specified variable in the current statistical array.

O Statement W Keyboard Execution
B Function B CALC Mode
O Operator B IF...THEN... ELSE

Input Parameters

Item Description Restrictions
variable number Numeric expression rounded to an Zero through current - array
integer. dimension.
Default: 1.

Comments

Because variable “0” of a statistics array accumulates the number of coordinate inputs, executing
H i+ returns the number of data points currently summarized in an array.

Related Keywords

288

TRACE FLOW/VARS/OFF

T " FLOH reports changes in the flow of a running program. T = reports all variable

assignments in a running program. T

¥ turns off all 7 operations.
W Statement W Keyboard Execution
0 Function O CALC Mode
[0 Operator B F.. THEN...ELSE

TRACE ﬂ
—
OFF

Examples
.

Comments

TRACE FLOM traces program execution during branches from the current statement, as when =0T
or GIISUE is executed.

= traces the changes in the values of all program variables.

does not trace the effects of

Note:

and variable redimensioning.

“ turns off any active T -~ operations.

Trace operates globally. Thus, if a subprogram sets Trace mode, but does not subsequently clear it, the
mode remains active when execution returns to the calling program.

5 and can be active at the same time.

289
TRANSFORM

THE 11 is used to transform BASIC program files into TEXT files for interchange purposes, or
to transform them back into BASIC program format.

B Statement B Keyboard Execution
0 Function 0 CALC Mode
O Operator W F...THEN...ELSE

—»(TRANSFORM) ~(INTO type | —
file file

Examples

Input Parameters

item Description Restrictions
source file File specifier of file from which lines to be String expression or unquoted
reformatted will be read. string containing a file name with an
Default: Current file. optional device specifier.
file type File type specifying format of destination Must be BASIC or TEXT (LIFT).
file.
destination file File specifier of the file into which fines to | String expression or unquoted
be reformatted will be written. string containing a file name with an
Default: Source file. optional device specifier.

290
TRANSFORM (continued)

Comments

The HP-71 TEXT file type can be referred to as LIF1, and is in fact identical to the LIF1 file type
generated by the HP-75 computer. The HP-71 interprets and decompiles LIF1 as TEXT. For example,
if you enter

100 TRANSFORM "AAA” INTO LIF1
then list this line, the HP-71 displays

100 TRANSFORM "AAA”" INTO TEXT.

Transformation In-Place. If you omit the destination file, or if it is the same as the source file, the
source file itself is transformed into the spemﬁed file type. If the file is already of the desired type, no
action is taken. If the file is the i it is renamed to &, and a new
is created. The HP-71 allows in-place transformation only for files residing in RAM.

=y

Transformation Qut-of-Place. If the destination file is not the source file, a transformation des-
tination file is created (it cannot already exist). If the source file is already of the desired type, a
simple copy occurs. If the destination file is to be created on an external device, the HP-71 makes a
preliminary pass through the source file to determine the file size needed for the destination file. The
computer then creates the destination file and writes the transformed data, line by line, to the des-
tination file. Any warning messages displayed during the preliminary pass will be displayed again
when the file is actually transformed.

BASIC-To-TEXT Transformations. A BASIC-to-TEXT transformation converts (“decompiles”)
a BASIC program file into equivalent lines of ASCII text. The starting line number of each statement
is decompiled as a four-digit number with leading zeroes supplied. A decompiled line exceeding 120
characters generates the i. {(error 65) condition.

291

TRANSFORM (continued)

TEXT-To-BASIC Transformations. TRANSF IR generally uses the same statement entry rules
that the HP-71°s operating system uses for statements entered from the keyboard, with certain excep-
tions and restrictions. TFfi} £+ accepts a maximum line length of 120 characters instead of the
95-character keyboard limit. Longer lines are truncated to 120 characters, and generate the L iwns
= Lang (error 65) condition. Restrictions are that every line must begin with a line number, and

that an implied '] =~ statement may not begin with an expression that itself begins with a variable.
For example:

100 3%SIN(A)
will be interpreted as
100 DISP 3*S|‘N(A)
but the statement
100 A

generates a syntax error.

Note: A transformation can take up to several minutes to complete, depending upon the size of the
file being transformed.

Error Handling During Transformation. Errors detected during a transformation are handled
automatically. If the error is a recoverable error (that is an error that will not prevent completion of
the transformation), a warning message is displayed in the following format:

The nnnn indicates the line number of the source file line on which the error exists, and “...” indicates
the warning message. If the computer cannot identify a line number for the source line, nnnn indicates
the sequential number of the line in the source file. After the transformation is complete, the Surit 2
error message is generated if one or more recoverable errors occurred during the transformation.

When transforming a TEXT file to BASIC, a line having a valid line number but an invalid BASIC
statement is a recoverable error and results in a warning. In this case the line is converted to a BASIC
remark statement by preceding it with the characters “! = ”. A BASIC-to-TEXT transformation
removes these characters. Thus, original TEXT lines that cause an entry error when transformed from
TEXT to BASIC will be restored when transformed back to TEXT.

292

TRANSFORM (continued)

If an error is unrecoverable (that is, an error that will prevent completion of the transformation), the
computer displays the warning message

and aborts the transformation. If the transformation is out-of-place, the destination file is purged. If
the transformation is in-place, the file is restored to its original format. After the HP-71 completes
either operation, an error message identifying the cause of the unrecoverable error appears in the
display.

CAUTION

An error condition that prevents completion of an in-place transformation causes the computer to
perform a reverse transformation on the portion of the file already changed in order to restore the file
to its original format. If the reverse transformation is aborted by another error, such as insufficient
memory, the file is rendered unrecoverable and is automatically purged. Note that in low memory
conditions with extended keywords supplied by external ROMS or LEX files, there is a remote pos-
sibility that despite all system safeguards an error that prevents completion of a transformation oper-
ation can occur during the inverse transformation. For this reason, in-place transformation is not
recommended in conditions of limited memory or on a file for which you do not have a backup copy.

293

TRAP

= returns the current value of the trap for the specified flag number, and optionally allows you to
supply a new value.

O Statement B Keyboard Execution
@ Function B CALC Mode
O Operator B IF.. THEN... ELSE

flag i
TRAP 0 number @_’
new
trap value

Examples

Input Parameters

Item Description Restrictions
flag number Numeric expression rounded to an —8 through —4.
integer.
new trap value Numeric expression rounded to an 0 through 15. (Refer to *Com-
integer. ments” on the next page.)

294

TRAP (continued)

Comments

You can use to set, test, save, and restore individual trap values. If an optional new trap value
is specified, the trap is then assigned the new value. Otherwise, the trap is left unchanged. For in-
formation concerning trap values, refer to your HP-71 Owner’s Manual.

A trap value in the range of 3 through 15 is treated in the same was as a trap value of 0.

Related Keywords

295

UNF

{underflow) returns the underflow flag number (—5).

O Statement B Keyboard Execution

W Function B CALC Mode

[0 Operator B IF...THEN... ELSE
Examples

Related Keywords

296

UNPROTECT

" removes the write-protection from one track of a magnetic card.

B Statement B Keyboard Execution

O Function O CALC Mode

O Operator B F.. . THEN...ELSE
Examples

Comments

T 1s available only when the HP 82400A Card Reader is installed in your HP-71. When
you execute , the computer prompts you for a card and then allows you to pull the card
through the card reader once. If the track accessed by the card reader was previously write-protected
by T, the 1 I operation removes the write protection. To remove the write-
protection from the card’s other track, turn the card around, reexecute ", and again pull
the card through the card reader.

¢ to write over that track.

When you remove write-protection from a track, you can then use i

Related Keywords

297

UNSECURE

& clears the file access restriction that is set by =

M Statement B Keyboard Execution
00 Function O CALC Mode
O Operator B IF...THEN...ELSE

UNSECURE —-
file
..
KEYS

Examples

UHZECURE CRTHOHZ
UHZECURE FILEZ

Input Parameters

Item Description Restrictions
file specifier String expression or unquoted string. File name with optional device
Default: Current file. specifier.
Comments

"= reverses the effects of

on the current key assignment file,

You can purge an unsecured file. If such a file is not private, it may be read, listed, and altered without
restriction.

Note: All files are unsecured at creation.

Related Keywords

298

UPRCS$

t (uppercase conversion) converts all lower case letters in a string to their uppercase
counterparts.

(0 Statement B Keyboard Execution
M Function 0 CALC Mode
0 Operator B IF.. THEN...ELSE
© ®
Examples

Input Parameters

Item Description Restrictions

string String expression. None.

Comments

UFRC¥# returns a string that is identical to its argument except that all lowercase letters contained in
the string are converted to uppercase.

This function is useful when you wish to allow input in lowercase, but require that such input pe
converted to uppercase before determining its value.

299

USER

activates or deactivates the User keyboard, in which user-defined key assignments are active.

B Statement B Keyboard Execution
O Function 0 CALC Mode
O Operator R [F...THEN.. ELSE

=
o
OFF

Examples

Comments

When the User keyboard is inactive, all keys correspond to those indicated on your HP-71’s keyboard,
and the USER mode annunciator is not displayed. When User mode is active, any user-defined key
assignments maintained in the \ ew= file are active and the USER annunciator is displayed. For a
description of how to redefine keys, refer to the DEF KEY keyword entry.

Executing
opposite status.

without specifying or & switches the current status of User mode to its

Activating User mode sets system flag —9; deactivating User mode clears flag —9.

Related Keywords

300

VAL

WAL (string-to-numeric conversion) converts to a numeric value any numeric expression within a string
expression.

00 Statement B Keyboard Execution
B Function O CALC Mode
0O Operator B F.. . THEN...ELSE
® ©
Examples

Input Parameters

item Description Restrictions

string String expression. Must contain a valid numeric
expression.

Comments

The parameter string is entered as a numeric expression.

e Any characters following the first valid numeric expression are ignored. For example,
i * would return 1773

s Any numeric expression is allowed including those that return

¢ oor

If cannot interpret the string as a numeric expression, an error results. For example,
: “: which the computer interprets as an incomplete expression, causes an

(error 80) condition.

Related Keywords

301

VERS$

WERE (version string) returns a string indicating the versions of the system ROMs built into your
HP-71. VEF# also returns the names of any LEX files present in the computer’s memory or in a plug-
in ROM.

00 Statement B Keyboard Execution
W Function 0 CALC Mode
0 Operator B IF...THEN ... ELSE

Computer
Museuim:

Examples

Comments

This function can provide useful information to Service personnel should your computer ever need
service.

The default string returned by - indicates the version of your computer’s system ROM set. The
default string uses the following format:

HFY1:1CCCC

where each character (C) in the string following the colon indicates the version of each of the comput-
er’s four system ROMs.

If there are any LEX files in main RAM, plug-in ROMs or independent RAMs, the HP-71 appends to
the default string a separate string identifying each of these files. The format for any appended string
is:

name [: version identifier] *'.

The number of characters in the string depends upon the number of LEX files in the machine.

302

WAIT

" causes the computer to wait for the specified number of seconds.

B Statement
0 Function
O Operator

@ Keyboard Execution
O CALC Mode
B IF. .THEN... ELSE

WAIT interval

Examples

Input Parameters

Item Description Restrictions
interval Numeric expression giving number of 0 through 19,531,250,000,000.
seconds to wait. Both integer and fractional values
allowed.
Comments

To interrupt the waiting period, press the key.

303

WIDTH

i defines the line length for the & statements.
B Statement B Keyboard Execution
O Function OO CALC Mode
O Operator B |F...THEN...ELSE
—(wom—{ "R
Examples
input Parameters
Item Description Restrictions
display width Numeric expression rounded to an 1 to infinity. Arguments exceeding
integer. 255 are interpreted as infinite.
Arguments less than 1 are
interpreted as 1.

Comments

b '+ affects only the displayed output. i+ does not set an absolute length on stored lines,
but rather sets the number of characters for any line you display. If a stored line has more characters
than spemﬁed by the current i setting, the line is split into two or more lines when included
in and 1. " operations. For example, if you execute i 1, then execute

the HP-71 displays the string as

and

affects input prompt displays in the same way.

304

WlDTH (continued)

Using THE in [& statements reduces the T

function value modulo display width.

Related Keywords

305

WINDOW

i sets the display window size and location.

B Statement B Keyboard Execution
O Function O CALC Mode
O Operator B IF...THEN ... ELSE

@[NDOW Hfoilrus mtﬂl -
O

Examples

Input Parameters

Item Description Restrictions
first column Numeric expression rounded to an 1 through 22.
integer.
last column Numeric expression rounded to an First column to 22.
integer.
Default: 22.
Comments

A display window specified by i contains the “free portion” of the display that you can access
and edit. Any portions of the display outside of the current display window are protected fields and
cannot be edited. Any scrolling is thus performed in the free portion of the window. Any dot pattern
in a protected field remains unchanged until one of the following occurs:

e Another i

* Al

command clears the protected field in which the dot pattern is located.
& statement changes the dot pattern.

e You perform an IHIT 1 reset operation. (Refer to “Verifying Proper Operation” in appendix A of
the HP-71 Qwner’s Manual.)

If the current window is [1,22] then the entire LCD is reserved for the display. If the value of the first
column specifier is greater than 1, locks six dot columns into the display for each display
character position not in the window. The effective size of the LCD is reduced by that amount, and
scrolling occurs within the reduced window.

306

@

The @ concatenation character joins statements, which enables you to enter more than one statement
in a program line or keyboard instruction.

0O Statement B Keyboard Execution
O Function O CALC Mode
0 Operator M IF.. THEN... ELSE
O,
Examples

Comments

Using multistatement lines instead of single-statement lines conserves memory. (Refer to the “BASIC”
entry under “Files” in the “System Memory Requirements” chart on pages 330 through 332.)

Most HP-71 statements can be used in multistatement lines without restriction. However,
r “, and cannot be followed by an @&.

The # concatenation operator joins strings.

307

[0 Statement
[0 Function
M Operator

|
O
O

Keyboard Execution
CALC Mode
IF...THEN ... ELSE

string string
expression expression

Examples

Program segment:

10 A$="AMPERSAND: ”
20 C$="CONCATENATOR"
30 DISP A$ & “ STRING” & C$

Program output:

308

+

The + (addition) binary operator returns the sum of its operands. When used as a unary operator, +

returns the value of its operand.

O Statement
O Function
M Operator

M Keyboard Execution
W CALC Mode
WM IF...THEN...ELSE

A O

Examples

Input Parameters

Item Description Restrictions
operand Numeric expression. Subject to operator precedence.
Also, refer to “Comments,”” below.
Comments

Executing I:#:+¥

" 3 results in the I:

-1y ¥ (error 15) condition.

309

The - (minus) unary operator reverses the sign of its operand. When used as a binary operator, x — y
is defined as x + (—y).

0O Statement B Keyboard Execution
O Function B CALC Mode
B Operator B IF.. . THEN.. ELSE

e O

Examples

Input Parameters

Item Description Restrictions

operand Numeric expression. Subject to operator precedence.
Also, refer to “Comments,”” below.

Comments
The —x operation reverses the sign of x. (This is true even for = 0 and for NaN.)

Inf — Inf results in an Ivf-Int (error 15) condition.

310

*

The #% (multiplication) binary operator returns the product of its operands.

[0 Statement

B Keyboard Execution

O Function B CALC Mode
B Operator B IF.. THEN...ELSE
®
Examples

Input Parameters

item Description Restrictions
operand Numeric expression. Subject to operator precedence.
Cannot multiply Inf by zero.
Comments
Z: oand {6 * results in an v (error 16) condition.

The . (division) binary operator returns the quotient of its operands.

311

0 Statement
O Function
@ Operator

Keyboard Execution
CALC Mode
IF...THEN ... ELSE

ET G S ey

Examples

Input Parameters

Item Description Restrictions
dividend . . Subject to operator precedence.
Numeric expression. c t divide by ze divide Inf
divisor annot divi y zero or
by Inf.
Comments

The following exceptions can occur:

& results in an error 7 condition,

results in an error 8 (.

" results in an error 14 condition.

Related Keywords

=) condition.

312

The - (exponentiation) binary operator returns the first operand raised to the power given by the
second operand.

O Statement B Keyboard Execution
O Function 8 CALC Mode
B Operator M IF...THEN...ELSE

Input Parameters

Item Description Restrictions
base . . Subject to operator precedence.
Numeric expression. Also, refer to “Comments,” below.
power ' ' :
Comments

The following exceptions can occur:

o A negative value raised to an non-integer power results in a Heg “Hon-1imt (error 9) condition.

¢ The value of 1 raised to an I power results ina 1~1nf (error 17) condition.

e Zero raised to a negative power results in a 1 (error 5) condition.

e The operations B~% and Inf™~& give warnings, but return the default value 1 wunless
DEFAULT 0OFF is active. (Refer to the DEFAULT OFF/ON keyword entry.)

313

%

The * (percent) binary operator returns x percent of y for the operation x = y.

[0 Statement
[0 Function
B Operator

B Keyboard Execution
B CALC Mode
B [F...THEN...ELSE

EZIN0

Examples

T=R%3

Input Parameters

F:x Fx IH T " 1 [R [} 1: T otal

item Description

Restrictions

argument

ercent . .
P } Numeric expression.

Subject to operator precedence.
Also, refer to ““Comments,” below.

Comments

The x * y operation is defined by
x % y = (x/100) * y.

Executing & % Inf or Inf

& results in the Iwf#& (error 16) condition.

System Characteristics

Scope of Environments

An environment is the set of variables, pointers, flags, and other information within which a program or a
subprogram operates. Three types of environments can exist in the HP-71:

1. Global environment. This can be accessed by every program and subprogram and from the keyboard.
For example, a flag set in one subprogram can be tested in another subprogram.

2. Main environment. This is the default environment. It is active when a subprogram isn’t running or
execution is not halted in a subprogram. The main environment consists of those variable items and
channel numbers that are saved when a subprogram is called. Executing EHMO ALL returns the
computer to the main environment.

3. Subprogram environment. This is similar to the main environment, except that it is created when a
subprogram is called. Running a subprogram saves the main environment. A subprogram’s environ-
ment is saved if it calls another subprogram. When the second subprogram ends, its environment
is erased and the first subprogram’s environment is restored. When the first subprogram ends, its
environment is erased and the main environment is restored.

The illustration on the facing page indicates the components of the global, main, and subprogram
environments.

314

System Characteristics

Global, Main, and Subprogram Environments

Global Environment
File Names
Command Stack
Flags
Trap Values
Timers

Main Environment (saved)

Variables

Arrays

User-Defined Functions
Channel Numbers
Statement Labels
DATA Statements
Subroutines
FOR...NEXT Loops

Subprogram Environment (active)

Variables

Arrays

User-Defined Functions
Channel Numbers
Statement Labels
DATA Statements
Subroutines
FOR...NEXT Loops

315

A user-defined function can be used only by the main program or subprogram in which the function is
created. A user-defined function created by a program or a subprogram cannot be used by another pro-
gram or subprogram. Also,the DATH statements contained within a program or subprogram can be read

only by READ statements.

Channel numbers listed as parameters in a subprogram’s SIJE statement are not local to that sub-
program. Channel numbers not listed in a SLIE statement are local unless the =E statement contains
no other parameters, in which case the channel numbers in the calling environment are shared with

those of the subprogram’s environment.

Variables

A simple variable and an array variable cannot use the same identifier.

Note: in the following information, any optional parameter is indicated by a pair of square brack-

ets, as shown below:

required parameter [optional parameter]

316 System Characteristics

Simple Numeric Variables
o Identifier: letter[digit]
o Types: L. (default type)

o Examples: F

’

Numeric Array Variables
o Identifier: fetter{digit]: subscript] . subscript] :
o Types: (default type)

o Examples: #:< 1, ¢

Simple String Variables
¢ Identifier: /etter[d/g/t]

¢ Examples:

e Default string size: 32.
(Refer to the DIM keyword entry.)

String Array Variables

¢ Examples:
e Default element size: 32. (Refer to the DIM keyword entry.)

Array Bounds and Referencing
1) is 0.(Refer to the

The default lower bound on array subscripts at memory reset (:::
OPTION BASE keyword entry.)

The default upper bound on array subscripts is 10. (1M, REAL, SHORT, or INTEGEFR declarations
specify an upper bound.)

The maximum upper bound on array subscripts is 65535.

You can reference entire arrays in #, #, , and { {. statements hy specify-
ing only the array name. Also, you can use an array name with parentheses and no subscripts. For

example, you can use 7¢.: instead of the array name alone.

System Characteristics 317

Math Reference

Precedence of Operators

The table below lists HP-71 operators in their order of precedence. The first line indicates the highest
precedence. Where an expression contains two or more operators having the same level of precedence,
those operators will be evaluated in the left-to-right order in which they occur within the expression.

Performed First

(Nested parentheses are evaluated from the inside out.)
Functions (such as = i, etc.)
unary + , unary -,
Performed Last
Numeric Precision
Type Precision Maximum Value

12 digits +9.99999999999 X 10*
5 digits +9.9999 X 10=4%
5 digits ~ +99999

Range of Numbers

The shaded areas in the followmg 1llustrat10n 1ndlcate intervals that do not contain any HP-71 repre-
sentable numbers. i, and 1 i are functions that return the endpoints of these
intervals. and EFZ return the overflow and underflow thresholds respectively. The HP-
71 representable numbers whose magnitudes lie between and #1i i are “denormalized.”
That is, they have the minimum exponent, —499, but contain one or more leading zeroes in the
mantissa.

318 System Characteristics

~MIHMEEAL MIHMREEAL
~MAXFERAL —0.00000000001E — 499 0.00000000001E — 499 MA“EEAL
—9.99999999999E499 - - 9.99999999999E 499
~THF —1.E—499 1.E—499 l IHF
{F wL {r y O #r y y
e m— “m—— —

Denormalized
Numbers

Numeric Expressions

A numeric expression can include any of the following:
¢ A numeric constant.
* A numeric variable.
¢ A numeric function.

A numeric expression can also be any of the preceding forms, combined by operators (arithmetic,
relational, or logical) or pairs of parentheses.

System Flags

A memory reset (m

System Characteristics

= +) clears all of the following flags except flag —61.

Flag Effect Set/Clear
Number When Set by User
—1 Warning messages suppressed. Yes
-2 Beeper is off. Yes
-3 Continuous on. Yes
—4 Inexact result (Yes
-5 Underflow (Yes
-6 Overflow (¢ Yes
—7 Division by zero (Yes
-8 Invalid operation (i . Yes
-9 User keyboard is active. Yes
—10 Angular setting is radians. Yes
—11, -12 Round-off setting. Yes
—13, —14 Display format. Yes
—15 Lowercase lock. Yes
—-16 Base option 1. Yes
—17 to —20 Number of display digits. Yes
—25 Beep set to loud. Yes
—26 Don't prompt. Yes
—46 Exact flag. No
—57 AC annunciator on. No
—60 Alarm annunciator on. No
—61 BAT annunciator on. No
—62 PRGM annunciator on. No
—63 SUSP annunciator on. No
—64 CALC annunciator on. No

Keyboard and Display Control

Input Keystrokes

through
[9](a] through
(9)(=]

(0] through (9]

SPC

o

} Uppercase and lowercase letters.

Digits.
Space.

Period. Used as a decimal point in numbers.

319

320 System Characteristics

), &, . I,
), ()

GJ

(8

(), (80
EE2

(91Ce]
ey
W, (810

(e)le]
(IG]
=)

()<
(BI=]

B, B0
(8]

B3

Editing Keystrokes
(gold key)

Arithmetic symbols: addition (plus), subtraction (minus), multiplicatior
(asterisk), division (slash), exponentiation (circumflex), and percent.

Comma. Used to separate items in commands, statements, and func-
tions; and to separate keyboard responses to the 7 statement.
Also used to space between items displayed.

Parentheses. Used to key in expressions and to dimension variables.

Exclamation mark. Used for end-of-line comments in program state-
ments.

Double and single quotation marks. Used to enclose strings.

Number sign. Used to specify file numbers of BASIC files in ASSIGH
#,PFEINT # EEZTORE #, and FERD # statements. Also used to as-
sign timer numbers in OH TIMEER # and OFF TIMER# statements
and for inequality in relational tests.

Dollar sign. Used to specify string variables and string functions.
Ampersand. Used to concatenate string expressions.

Opening and closing brackets. Used to dimension string variables and to
specify substrings.

Statement separator. Used between statements to form multistatement
lines.

Semlcolon Used as a delimiter in , /
statements, and as a “typing aid” specifier in key re-

deﬁmltlons

Equals. Used to assign values to variables and to test for equality.
Less than. Used in relational tests.

Greater than. Used in relational tests. Also used as the BASIC prompt.
Left brace and right brace.

Colon. Used as a delimiter and as an “execution only” specifier in key
redefinitions.

Question mark, The default prompt for the i statement. Also

used as a relational operator.

The f-shift key. Used to access f-shifted keywords, commands, and func-
tions.

(9] (blue key)
(9)(cTRL]

&, L)

System Keystrokes

(oN], (ATTN]

System Characteristics 321

The g-shift key. Used to access lowercase letters, characters indicated in
blue on the keyboard, and certain editing features.

Control character prefix. Used to display certain characters from the
HP-71 character set.

Lowercase lock. Switches keyboard between uppercase and lowercase.
Insert/Replace. Switches between insert cursor and replace cursor.

Backspace. Backspaces the cursor one character position and deletes
the character at the cursor’s new position.

Delete character. Deletes the character at the cursor position and shifts
all succeeding characters one position to the left.

Delete line. Deletes all characters from the cursor position to the end of
the line.

Next port catalog. Used during ¢ and

oper-
ations to access the catalog on the next port in sequence.

Left and right arrows. Moves the cursor to the left or right across the
display or, if no cursor, scrolls the display window to the left or right.

Far left and far right arrows. Moves cursor to the far left and the far
right of the display. If no cursor, shifts the display window to the far
left or far right.

Up and down arrows. Moves the display up and down through BASIC
program files, through the system and mass storage catalogs, and
through the command stack.

Far up and far down arrows. Moves display to first and last line of a
BASIC program file and catalog, and to oldest and most recent entry in
the command stack.

Attention. Turns on the display, clears the display, and interrupts run-
ning programs.

Turns the display off. Memory and clock system remain active.

Reset. When pressed simultaneously, causes a reset to occur. The com-
puter prompts for one of three initialization settings.

Typing aid for 317 function. If pressed during a multiple file catalog
operation, causes the currently displayed file to become the current file.

Typing aid for FZ 7+ function.

End line. Causes an expression, statement, or command in the display
to be evaluated, stored, or executed.

322 System Characteristics

RUN

O
[@)cwios)

B
@I SER)

Escape Keystrokes
(9)CeTrL] ()0

Display Control

Run program. Runs the current program when in BASIC mode.

Single step. Displays and executes the next program statement in the
current file.

Command stack. Displays most recent instruction executed from the
keyboard and sets display to command stack. When in the command
stack, this key sequence returns you to the BASIC prompt.

While held down, displays most recent error message.

Toggles user keyboard for one shifted or unshifted keystroke.

Generates ASCII character 27 (escape). The HP-71 responds to the es-
cape sequences listed under “HP-71 Display Escape Code Sequences”
on page 328.

Delay function. Controls the rate at which information is sent to and
scrolled across the display.

Sets line length of output to printer devices.
Sets line length of output to display devices.

Sets number of characters in display window.

CALC Mode Keystrokes

[Esn)
[@)(EACK]

(a].

Causes evaluation of the rightmost operator or function.

Backup execution. For the current expression, restores the last operator
or function that was evaluated.

Command stack scroll up, down. Scrolls through command stack. While
in CALC mode, unnecessary to press [8)[CMDS] to enter command stack.

Causes expression to be evaluated and the results of numeric expressions
to be stored in the RES variable.

HP-71 Character Set and Character Codes

The following table shows the HP-71 character set. Where keystrokes are shown to the right of a
character, you can use either those keystrokes or the UHF# function to display the character. Where no
keystrokes are shown to the right of a character, you can use only the ZH®# function to display that
character. (In most cases, the default display characters in the right side of the table are duplicates of
the display characters in the left side of the table.)

Note: You can use the CHARZET statement to change the display character symbol for one or

System Characteristics

more of the default display characters corresponding to character codes 128 through 255.

Decimal Decima Default
Binary (CHE# Display (CHF %) :
Hex Charactt)ar Character Keystrokes Character Cﬁ:rglgtye r
Left | Right Code Code

00 0000 0000 0 -None- (9)(cTrL] (9])(e] 128 Space
01 0000 0001 1 (9)(cTRL] 129 ¥
02 0000 0010 2 B (9)(cTRL] 130
03 0000 0011 3 = (9)(cTRL] 131

04 0000 0100 4 o (9)(cTrL] (D] 132

05 0000 0101 5 & (9)(cTRL) (€] 133

06 0000 0110 6 r [g)(cTrL) 134
07 0000 0111 7 4 (9)(cTRL 135
08 0000 1000 8 -Blank- (9)(cTRL] 136

09 0000 1001 9 g (g)(cTrL] (1) 137

0A 0000 1010 10 -Blank- (9)(CTRL] 138

0B 0000 1011 11 (g)(cTRL] 139

0C 0000 1100 12 L (g)(cTRL] 140

0D 0000 1101 13 -Blank- (g)(eTRL] (M) 141

OE 0000 1110 14 T (g)(cTRL] [N] 142

OF 0000 1111 15 3 (g)(cTrL] (O] 143

10 0001 0000 16 2 (g](cTRL] (P] 144

11 0001 0001 17 0 (g)(cTrL] (@] 145

12 0001 0010 18 & (@)(cTRL] [R] 146
13 0001 0011 19 (g)(cTRrL] 147 :
14 0001 0100 20 ™ (9)(CTRL 148 W
15 0001 0101 21 = (9)(cTRL] 149 Fi
16 0001 0110 22 E (9)(cTRL] 150 E
17 0001 0111 23 a] [g){cTRL 151 %
18 0001 1000 24 & (g)(cTRL] 152 &
19 0001 1001 25] (9)(cTRL 153 O
1A 0001 1010 26 i (9)(€TRL] 154 i,
1B 0001 1011 27 -Blank- (9)(eTrL] (9)(@ 155 E
1C 0001 1100 28 i -None- 156 z
1D 0001 1101 29 # (9)(eTrL] (8)(1] 157 *
1E 0001 1110 30 £ [g)(cTrL] [9)[~] 158 £
1F 0001 1111 31 =S -None- 159 kS
20 0010 0000 32 Space 160 Space
21 0010 0001 33 t 9 161 !
22 0010 0010 34 " @] 162 "
23 0010 0011 35 # E1E3; 163 #

(Continued on next page.)

323

324

System Characteristics

(Continuation of Character Set/Code Table)

Decimal

Decimal

. R . - Detault
Binary (CHEZ®) Display (CHREE) .
Hex Character | Character Keystrokes Character Dispiay
Left | Right | Code Code | Character
24 0010 0100 36 ¥ BB 164 £
25 0010 0101 37 (9)(] 165 =
26 0010 0110 38 (9)&] 166
27 0010 0111 39 : @] 167
28 0010 1000 40 i 168)
29 0010 1001 41 B 169 K
2A 0010 1010 42 # (] 170 ¥
2B 0010 1011 43 + 171
2C 0010 1100 44 3] 172
2D 0010 1101 45 - O 173 -
2E 0010 1110 46 . B 174 .
2F 0010 1114 47 175
30 0011 0000 48 a 0] 176 5
31 0011 0001 49 1 177 i
32 0011 0010 50 z 178 z
33 0011 0011 51 e 179 3
34 0011 0100 52 4 (4] 180 4
35 0011 0101 53] 181 =
36 0011 0110 54 £ (6] 182 £
37 0011 01M 55 v 183 v
38 0011 1000 56 z 184 2
39 0011 1001 57 E 9] 185 E
3A 0011 1010 58 : 18 186 :
38 0011 1011 59 ; @] 187
3C 0011 1100 60 (9lx] 188
3D 0011 1101 61 = 189 =
3E 0011 1110 62 - @1>] 190
3F 0011 1111 63 ° @] 191
40 0100 0000 64 B (9)(e] 192 i
41 0100 0001 65 Fi 193 Fi
42 0100 0010 66 E 194 E
43 0100 0011 67 L 195 C
44 0100 0100 68 K D] 196 Y
45 0100 0101 69 E 3 197 E
46 0100 0110 70 F 198 F
47 0100 0111 71 G 199 G
48 0100 1000 72 H 200 H
49 0100 1001 73 I] 201 I
4A 0100 1010 74 A 202 d

(Continued on next page.)

System Characteristics

(Continuation of Character Set/Code Table)

Decimal Decimal
_ e Default
Binar CHEF) Display (CHEF) .
Hex ! C(haracter Character Keystrokes Character C?rfrzlztir
Left | Right Code Code
4B 0100 1011 75 k. 203 F
4C 0100 1100 76 L 204
4D 0100 1101 77 g (M] 205 i
4E 0100 1110 78 H (N] 206 2|
4F 0100 1111 79 0 (0] 207 0
50 0101 0000 80 F (P] 208
51 0101 0001 81 i (a] 209 i
52 0101 0010 82 K (R] 210 E
53 0101 0011 83] 211 i
54 0101 0100 84 T 212 T
55 0101 0101 85 L 213
56 0101 0110 86 L 214
57 0101 O111 87 7] 215 b
58 0101 1000 88 # 216 #
59 0101 1001 89 i 217 i
5A 0101 1010 90 Z 218
58 0101 1011 9 L E) 219 r
5C 0101 1100 92 -None- 220
50 0101 1101 93] E1i 221]
5E 0101 1110 94 @) 222
5F 0101 1111 95 _ -None- 223 _
60 0110 0000 96 : -None- 224 ’
61 0110 0001 97 a (9)(@] 225 a
62 0110 0010 98 o] (9] 226]
63 0110 00M 99 I (9)(c] 227 o
64 0110 0100 100 d (9)(@] 228 d
65 0110 0101 101 =) (9)(e] 229 =)
66 0110 0110 102 f (9)(1] 230 f
67 0110 0111 103 = E1E) 231 =
68 0110 1000 104 b o)) 232 b
69 0110 1001 105 i B0 233 i
6A 0110 1010 106 J EllR 234 A
6B 0110 1011 107 k 90k} 235 I
6C 0110 1100 108 1 90 236 1
6D 0110 1101 109 &) (9)(m] 237 i
6E 0110 1110 110 m E 238 n
6F 0110 1111 111 o (9)(e) 239 o
70 0111 0000 112 F (9)(e] 240 P
71 0111 0001 113 q (s)la] 241 q

(Continued on next page.)

325

326 System Characteristics

(Continuation of Character Set/Code Table)

Decimal Decimal Default
Binary (ZHR¥) | Display CHEE$ h
Hex Character Char’;cter Keystrokes C(haractc)er Display

Left | Right Code Code Character
72 0111 0010 114 r @ 249 -
73 0111 0011 115 = @@ 243 =
74 0111 0100 116 f @ 044
75 0111 0101 17 T @ 245 i
76 0111 0110 118 @) 246
77 0111 0111 119 il @ 247 ot
78 0111 1000 120 e @ 248 .
79 o111 1001 121 L @E 249 o
7A 0111 1010 122 T 9z 250 -
78 0111 1011 123 £ @0 251 ;
7C 0111 1100 124 | -None- 252 |
7D 0111 1101 125 T @ 253 5
7E 0111 1110 126 -None- 254
7F 0111 1111 127 F -None- 255 -

Control Characters

Characters 0 through 31 in the preceding table are also special control characters defined by the Ameri-
can Standard Code for Information Interchange (ASCII). These characters (also known as control
codes) are primarily used in data communications to control peripheral devices. The following table

shows the standard ASCII definitions for those characters.

Note Except for the four special control character codes marked with an asterisk, none of the
characters represented by the following codes perform any control function in the HP-71. Also,
adding 128 to the character code for any of these four special control characters displays the

symbol for that code instead of performing the indicated control function.

System Characteristics

Decimal
(CHRF) Mnemonic Control Function
Character
Code
0 NUL The Null Character
1 SOH Start of Header
2 STX Start of Text
3 ETX End of Text
4 EOT End of Transmission
5 ENQ Enquiry
6 ACK Acknowledge
7 BEL Ring Bell
8* BS Backspace
9 HT Horizontal Tab
10* LF Linefeed
1 VT Vertical Tab
12 FF Form Feed
13* CR Carriage Return
14 SO Shift Out
15 SI Shift In
16 DLE Data Link Escape
17 DCA1 Device Control 1
18 DC2 Device Control 2
19 DC3 Device Control 3
20 DC4 Device Control 4
21 NAK Negative Acknowledge
22 SYN Synchronous Idle
23 ETB End of Transmission Block
24 CAN Cancel Line
25 EM End of Medium
26 suB Substitute
27" ESC Escape
28 FS File Separator
29 GS Group Separator
30 RS Record Separator
31 us Unit Separator

327

328 System Characteristics

HP-71 Display Escape Code Sequences

To enter an escape (ESC) sequence, press [9](CTRL] (9](1] followed by the key corresponding to the
desired sequence.

Press

(9][CTRL

Effect

Inserts cursor.

Inserts cursor (with wrap-around).
Replaces cursor.

Moves cursor right.

Moves cursor left.

Homes cursor.

Clears dispiay.

REEEEERE| i

Deletes through end of line.

@] Turns cursor on.
@] Turns cursor off.
Resets display.
] Deletes character.
o) Deletes character (with wrap-around).
% Sets cursor position in video monitor. Refer to following paragraph.

(9)(cTRL] Moves cursor to right of rightmost character.
(9)(cTRL)[D] Moves cursor to leftmost character.

To reposition the cursor to a specific row and column in a video monitor, use the CHE# ¢ 27 » form of

the escape sequence with the ¥ symbol as follows:

ODISF CHRE#CZTY & "%" & CHE$ <column: % CHE$irow:
Using the key sequence [8](CTRL] (@]([] (8](%] (as indicated in the preceding table) instead of
CHR#:C27r % "X" causes the cursor to move to the column position specified by the ASCII char-

acter code for the first key you press after [%].

Reset Conditions

The following conditions exist in the HP-71 when you first install the batteries, or whenever a ¥
SER® condition occurs or you execute a memory reset—[INIT] (3] ([on] [/]).

System Characteristics

329

Condition

After the Machine Reset or After
the Batteries Are First Installed

Display:

... (lowercase lock)
User Keyboard
Alternate Character Set

Flags:
All user flags.
System flags

Files:
File Catalog
File Access
k : File

Numeric Settings:
Display Format
Angular Setting
Random Number Seed

Varrables and Arrays

Round- off Settrng
Password:

Accuracy Factor (AF)

Off.
Not Active.
None.

Clear.
—1 through —32 Clear.

One file, the system &
No files are open.
Nonexistent.

None allocated.
&
Nearest.

Set to null string.
CR/LF.

i
BEAE-01 .01
.

2 ¥ 1 1#, which is the current file.

(Continued on next page.)

330 System Characteristics

Reset Conditions (continued)

Condition

After the Machine Reset or After
the Batteries Are First Installed

Programming:
Current File
i1 mode
Timers

Warning Messages

Continuous i

String

System i
Off.

Off.

Off.
Displayed.

Not set.
Set to

None.

and i

System Memory Requirements

Item

Memory Required

Alternate Character Set

Command Stack

Data File Channels

Expressions
Constants:
One-Digit Integer Constant
Multi-Digit Integer Constant

Exponent > 11

String Constants

Constant With Fractional Part or

3'2 bytes, plus 6 bytes per character.

15 bytes, plus 1 byte for each character in each
command in the stack, including carriage return.

312 bytes for each file opened, plus 2'2 bytes for
each new channel number. (Up to 64 files can be
opened at once.)

1 byte.
1 byte plus 2 byte for each digit.
2Y2 bytes plus Y2 byte for each digit.

2 bytes plus 1 byte per character.

(Continued on next page.)

System Characteristics 331

(Continuation of System Memory Requirements Table)

Item

Memory Required

Variable References:
» Simple Variable

+ Array Variable

Function References:

« User-Defined Functions

» System Functions

Operators:
* Relational Operators
* Other Operators

Substring References

Files
BASIC

TEXT

DATA

KEY

1 byte per character in variable name.

1%2 bytes, plus 1 byte per character in array name,
plus memory requirement for subscript expres-
sion(s).

1%2 bytes, plus 1 byte per character in function
name, plus memory requirement for parameter
expression(s), if present.

1 or 3% bytes, plus memory requirement for
parameter expression(s), if present.

12 bytes.
1 byte.

1%2 bytes plus memory requirement for index
expression(s).

24%, bytes for the empty file. Also, in addition to
the memory used for the statement(s) you enter in
a line, any single-statement line uses four bytes,
and any multiple-statement line uses four bytes
plus two more bytes for each concatenated state-
ment. (Thus, by using a multiple-statement line in-
stead of two or more single-statement lines, you
conserve two bytes per concatenated statement.)

18%2 bytes plus 2 bytes per line plus 1 byte per
character plus 2 bytes for end-of-file.

222 bytes plus record size in bytes times number
of records. String data items written to the file use
3 bytes plus 1 byte per character plus 3 bytes per
crossing of a record boundary. Numeric data items
occupy 8 bytes.

18%2 bytes plus 3 bytes per definition, plus 1 byte
per character in assigned string(s).

(Continued on next page.)

332 System Characteristics

(Continuation of System Memory Requirements Table)

ltem

Memory Required

LEX

BIN
SDATA

Plug-in ROM or RAM Device

Subprogram Calls

User-Defined Function Calls

Subroutine Calls
FOR.LHEST Loop Configuration

Pre-allocated System RAM

Variables
Simple Numeric

Simple String

Numeric Array

String Array

18Y2 bytes plus file’'s data size. Requires an
additional 5Y2 bytes of system overhead for each
LEX file in memory.

2472 bytes plus file’s data size.
182 bytes plus 8 bytes for each record.

5 bytes per device plus 5%z bytes of system over-
head for each LEX file, if any.

392 bytes plus 92 bytes for each numeric param-
eter, plus 9'2 bytes for each string parameter
passed by reference, plus, for each string param-
eter passed by value, 2 bytes plus one byte per
character.

50 bytes plus 9%z bytes per numeric parameter
plus, for each string parameter, 2 bytes plus one
byte per character. The function name itself re-
quires an added amount of memory (as if the
name were a passed parameter).

3 bytes each.
20%2 bytes for each loop.

755 bytes minimum. Add 5 bytes for every ROM,
RAM, or memory-mapped l/O device plugged in.

92 bytes, regardless of type.

11%2 bytes, plus 1 byte per character in a maximal
string. (For example, a default length simple string
variable consumes 43%2 bytes, regardiess of how
many characters the variable contains.)

9z bytes, plus:
* 8 bytes per REAL number.
* 4%z bytes per SHORT number.
* 3 bytes per INTEGER number.

9Vz bytes, plus 2 bytes for each element, plus the
maximum element string length times the number
of elements.

System Characteristics 333

Memory Usage During Evaluation of Expressions

The HP-71 stores expressions in postfix form. During evaluation, the computer copies operands to a
stack (maintained by the operating system), which temporarily consumes user-available memory. Each
numeric operand requires eight bytes; each string operand requires eight bytes, plus one byte for each
character in the string.

Substrings are extracted by a postfix operation which requires the entire parent string to be present on
the stack. For this reason, it may be preferable to store related data fields as smaller elements of a

string array instead of grouping these fields in a single, large string from which substrings are
extracted.

Mathematical Discussion of HP-71 Statistical Arrays

Matched Samples

A sample is a collection of observations of a random variable. A matched sample consists of one or
more samples where each observation in a sample is matched with an observation in each of the other
samples. Each sample has the same number of elements, which is denoted by N. NVAR will denote the
number of variables (samples). A matched sample data set can then be visualized as a table with N
rows and NVAR columns.

Sample Set of Matched Data

Variable Number
Element
1 2 . i . k e NVAR
x(1) x(1.2 ... x(1j) ... x(1k) ... x(1,NVAR)
2 x(21) x@22) ... x(2j) ... x(2k) ... x(@2NVAR)
i x (i,1) xGi2 ... xUGf) ... xGk) ... x(NVAR)
N x(NDY x(N2y ... x(Nj) ... x(Nk) ... x(NNVAR)

Each row of this table represents a point in NVAR-dimensional space and will be called a data point.
A data point can be considered an observation or realization of an NVAR-dimensional random vari-
able, resulting in N such realizations.

334

Statistical Arrays 335

Summary Statistics

For the purposes of performing statistical operations and functions, the HP-71 does not need to store
the entire data set. Instead, the computer reduces, or summarizes, the data in the following way. Let
x(ij) represent the entry in row i and column j for i=12,...,N and j=1,2,...,NVAR. The summary
statistics are then:

N

NVAR

TG) = Zx(3) j=12,...,NVAR

S(k) = Zi[x(ij) — TG)/Nlix(ik) — T(k)/N] j,k=12,..NVAR

T(j) represents the sums of the columns and the S(jk) represents the sums of squares and cross-
products of the mean-adjusted variables.

Some calculators and handheld computers with statistical functions accumulate the sums of squares
and sums of cross-products of the unadjusted variables,
Zx(i)x(ik),
rather than the S(jk) Three advantages to using the mean-adjusted sum S(jk) are:
1. It reduces the potential for loss of significance errors when the data points have non-zero means.
2. Calculations based on mean-adjusted values are faster than those based on the unadjusted ones.
3. It is easier to use sample means, variances, and correlations as inputs in place of the original data.
The Z7#7T statement reserves space for these summary statistics by dimensioning a statistical array.

This array has one dimension and has length (NVAR+1)(NVAR+2)/2. NVAR is stored in the statisti-
cal array’s internal representation. The other statistics are stored as

(N,T(1),5(11),7(2),5(12),5(22),. . ., S(NVAR,NVAR)).

Multiple matched samples can be stored simultaneously and analyzed in any order by using more than
one statistical array.

ST T T

The =7THT statement specifies the current statistical array. The HP-71 contains only one current
statistical array at a time. All other statistical arrays are preserved, however, like any array or simple
variable, up to the limit of memory. A noncurrent statistical array can be made current by specifying it
with a ZTHT variable name statement.

336 Statistical Arrays

Recursive Calculation of Statistics
A data point V = (V(1),..

., V(NVAR)) is “added” to or “dropped” from the current data set using the
and [,

- statements, respectively. The NVAR numeric expressions in an =i
statement are evaluated and are interpreted as the coordinates of the data point. If less than N VAR
numeric expressions are included, the missing trailing expressions are assumed equal to zero.

updates the summary statistics according to:

If N < 0 then display

For k = 0 to NVAR

For j = 1 to k (skip if k = Q)
If N=0 then S(jk): =

else S(jk): = SGR)HN*V()j)—=TONN*V(R)—T(k))/[N(N+1)]

Ztztiztic and stop.

Next j

T(k): = T(R)+ V(k)
Next k
N:= N+1
End.

7 updates the summary statistics according to:
If N <0or0 < N <1 then display EFF: Irwali: ti=zt1ic and stop.
If N = 0 then display EfE:Irnvalid Zizt Dp and stop.
For B = 0 to NVAR
For j = 1tok (skipif Kk = 0)
If N = 1 then S(jk): =
else S(jk): = S(jk)—(N*V())—T(NH(IN*V(R)—T(R)/[N(N—1)]
Next J
T(k). = T(R)—V(k)
Next k
= N-—1
End.

The CLETHT statement sets the elements of the current statistical array to zero. This prepares the
statistical array for accumulating statistics for another data set.

Statistical Arrays 337

Simple Linear Regression

The simple linear regression model is:
X(j) = a + b*xX(k) + e,

where X(j) is the dependent variable, X(k) is the independent variable, a and b are constants to be
determined (estimated), and e represents random errors (uncorrelated with zero mean and with un-
known but constant variance). The constants a and b are determined by the method of least squares.
That is, they are chosen to minimize the residual sum of squares:

Zix(j) — a — b » x(ik)]%
The solution is:

b = S(jk)/S(kk), and

a = [T(j) — b*T(k)]/N.

Notice that a (constant) random variable equal to one and having the coefficient a is implicitly present
in the regression model. This interpretation can be quite useful when adding and dropping variables
{or terms) to or from multiple linear regression models.

The mean-adjusted sum of squares for this constant variable and any mean-adjusted sum of cross-
products involving this variable are zero. The sum of the values for this variable is N. Therefore, no
additional summary statistics need be accumulated in order to implicitly include this variable in the
data set.

For these reasons, this random variable (numbered zero) will always be considered present in a data
set, and zero will be considered a valid variable number for all statistical statements and functions,
except where explicitly stated otherwise.

The LE statement specifies the dependent and independent variables. Any variable number in
[0, NVAR] is allowed to be the dependent variable, and any variable number in [1, NVAR] is allowed to
be the independent variable.* These variable numbers are stored by the computer.

If one or two variable names are included in the L7 statement, the estimated intercept a is stored in
the first variable and the estimated slope b is stored in the second variable, if appropriate.

* For a definition of “variable number” refer to the table on page 334.

The IEEE Proposal for Handling Math Exceptions

Introduction

The IEEE Radix Independent Floating-Point Proposal divides all of the floating-point “exceptional
events” encountered in calculations into five classes of math exceptions: invalid operation, division by
zero, overflow, underflow, and inexact result. Associated with each math exception is a flag that is set
by the HP-71 whenever an exception is encountered. These flags remain set until you clear them. Each
of these flags can be accessed by its number or by its name.

Setting and Clearing Math Exception Flags

You can clear and set the math exception flags in the same way as any flag, except that flag names can
be used as well as flag numbers.

Examples. Both of these statements clear the invalid and inexact flags.

The keyword F#iTH specifies all math exception flags as a group. It can be used with the =
and : statements.

The Five Math Exception Flags

The following describes the conditions that set each of the math exception flags:

e IYL. Invalid operations are those for which no real value can reasonably be returned as a result.

Some examples that set the I1'\/L flag are SRR ~1r, LOGS—1, ACOSC2 T, and @.-8.
e [1./7. The division by zero flag is set whenever finite operands give rise to an exact infinite result.
Typical examples: 1.-@, LH«&, TAH<CAA > in degrees, and 8¢ ~57.

e 1UF. The overflow flag is set when:

1. The finite 12-digit rounded result r of an operation satisfies Irl > MAXRERAL, such as
r = 1E499+10.

2. A SHORT variable is assigned a finite value r such that the five-digit rounded value r satisfies
Ir’l > 9.9999E499, such as r = 9.99996E499.

338

|EEE Proposal 339

3. An INTEGER variable is assigned a finite value r which, when rounded to an integer r’,
satisfies Ir’l > 99999, such as r = 100000.

4. A decimal string representmg a value greater than ¥
value, such as & B

_ is converted to a numeric

. The underflow flag is set when:

1. The 12-digit rounded result r satisfies 0 < Irl < 1E—499 and will not be represented exactly
in its destination. For instance, 1E~-43%.-3 sets the UHF flag, although 1E-42%. 105
depends on the default value dictated by the TRERAF (LIHF setting. If TERF CLUHF) = 2,
then the denormalized result . B81E—-439 is exact, and UIHF is not set. (The next topic
covers default values.)

2. A SHORT variable is assigned a value r such that the five-digit rounded result r’ satisfies

0 <Ir'l < 1IE—499 and will not be represented exactly in its ZHIFET destination.

is converted to a numeric value.

3. A decimal string representing a number less than &

i +:. Generally, the inexact flag is set if and only if the rounded real result of an operation is not
identical to the exact result. This is true for most HP- 71 functlons, including all functlons speci-
ﬁed by the IEEE Proposal (+, -, :%2, and t). For example, and
all set I while 1. , and 1 11

K 5

% do not set I

i

Ty

However, for some compound operations, such as :
tical to determine exactness in all cases. Thus, for these compound and statistics operations, the fol-
lowing is true: if IH} is not set, the result is exact, but some exact results may (overcautiously) set
IH:. This is also the rule for any sequence of HP-71 operations. If 1t is not set by a sequence of
operations, then no rounding errors have occurred, and you can be sure that your result is exact. But if
I+ was set by any of the operatlons it is not necessarily true that the result is inexact. For example,
the statement ¥=50RE Sy SRR HD sets 1M even when = =5. This is because the HP-71 reacts to
the rounding errors committed in S2F ¢S and SAF <, but, of course, does not detect the fact that
they compensate each other. Although some exact calculations will set I+, these cases have been kept
to a minimum so that the flag will retain its usefulness in more complicated calculations.

Extended Default Values

When exceptions occur, it is sometimes desirable to continue the calculation by using a default value
for the result. The HP-71 extends the normal range of floating-point values to include, as proposed by
the IEEE, special default results which can be used with relative safety for each exception.

By setting the appropriate traps with the T=AF function or with the GEFi T statement, you can
select the action of continuing the calculation with a choice of default values or of suspending the
program with an error message.

340 IEEE Proposal

A TE#AP value of & causes all math exceptions to return the new default values introduced by the
IEEE Proposal.

Default Values with 1 Value of =

and i Active
Exception Default Value Comment
THL Not a Number, explained below.
m } Mathematically exact infinity, explained below.
&, ~&, or a Denormalized Explained below.
Number

Not a Number

When an invalid operation (7.i.) occurs, the IEEE default result is the value “Not a Number,” dis-
played as t+imr. This value conveys the information that an invalid operation has occurred and the
result of the calculation is not a number.

Example. When you enter the following three concatenated statements, the display will first show
the current trap value associated with the I:/i. flag, whatever it happens to be. This example assumes

the current trap value is 1. Then the two following statements will display the outputs shown.

Input/Result

4 . #* returns the current trap value
and sets = as the new trap value for 1%

returns a warning, since the current
L trap value is now 2.

e Z returns the value of =.

If you do not wish to preserve an I.i trap value of =, execute TE
TRAF:

A Mat value propagates through the usual math operations so that it generally appears in the final
result. For example, using Z from the above example, = % 2 + 1 returns the original HaH with no
exceptions being raised. In the event that two HaMs enter one operation (for example, £ + <), then
the result will also be HaH. Exceptions to this are logical operations and numeric comparisons, which
always return A or 1.

fztl can be stored ina SHORT or IMTEGER precision variable.

IEEE Proposal 341

Since Hat has no ordering with the other REFAL numbers, when H=aHs are involved in certain compari-
sons the 14| flag will be set. Refer to the topic “The Unordered Comparison Operator” on page 343.

The H=zts described above are called Quiet Hars. There is also another type of M=t called a Signaling
HaM. This HaH is created directly by the user when the HaH function is executed, and at this time no
exception results. Later, a Signaling Hal will set the I\l flag whenever it is first encountered in a
math operation. The Signaling HzH then becomes a Quiet Hxzt. The Signaling HaH can be used to
initialize any uninitialized data so that the I''L flag will be set whenever this data unexpectedly enters
into a calculation.

Infinity

and

When the I or 1iiF exception occurs, the IEEE Proposal specifies default values ! :
. These behave like mathematlcal infinity in subsequent operations. For example,
T . and Lt o E

The
variable.

¢ can be stored in an

function returns the value I

Denormalized Numbers and —0

On many computers, the simple test for x—y=0 does not guarantee that x=y. For,
when [x| and |yl are small enough to be near the underflow threshold, x—y may underﬂow to 0 w1th-
out having equality. For instance, with i active, 1. : !
produces a w warning, followed by .

The IEEE Proposal specifies that gradual underflow be implemented. This requires that small results
be denormalized to the minimum exponent of the number system Gradual underflow is implemented
when E is in force. With [active, the above example
1.8 i7 does not underﬂow Rather, the HP-71 returns the

Here’s another example: i : displays, after the warning, the rounded,
, w1th 0T = active. The expo-

functlon Executing

When the magnitude of the rounded result is smaller than 110> (I i HERE
tive), it underflows to & and the LIMF flag is set. To retain more information about the underﬂow
the value G preserves the sign of the underflowed value. For instance, a result of —1*10 %" would
underflow to —£i.

342 IEEE Proposal

This extra information in the sign of zero can bhe useful for carefully written programs designed to
handle exceptions like i .-« » automatically. Otherwise, in unexceptional calculations, # and -#
behave in the same way. They even compare equally, so that -# is true and - i is false.

The s1gn of zero will normally be preserved through functions F(x), where F(0)=0. For example,
» returns # and t: returns —# (recall that ~i# is not less than).

Classes of Numbers

The inclusion of 7 default values for math exceptions extends the normal range and type of
numbers. This extended range is divided into 12 classes as shown in the table below.

Classes of Numbers

Value or Range of x Class of x

or —i
Denormalized

Normalized
or - i . Or —¢
Quiet +iaH Soor =E
Signaling =+ £oor -
Examples. The value returned by CLFZ% identifies the class of numbers to which its argument
belongs. The sign of the result 1nd1cates the sign of the argument. The returned values are shown in
display format with [B set. Whlle you can execute =71 and [

only in BASIC mode, you can execute

Returns ~ 3.

Returns Z.

Returns -Z.

Returns 4.

IEEE Proposal 343

The Unordered Comparison Operator

The introduction of i to represent the result of an invalid operatlon requires a new comparlson

operator, 7, to complement the usual relational operators <, =, and The comparison 7Y is
true if and only if one (or both) of * and * i ;. With any comparison of * and ¥ exactly one of
four conditions is true:
1. # is less than + is true). ;
A :os Computer
2. is equal to * _ is true). ~"Museéuin.
3. # is greater than ¥
4, ¥ is unordered with
One consequence of HzH is that <> % is no longer identical to , as the following table shows:
Differences Between the Operators > and #
Comparison Equivalent To

If either < or % is H=zH, a is false but b is true. Note that if i is
false. In fact, the comparison =3 can be used to test if isa !
49) can also do this test.

then the comparison #=3

. is
. The function (page

The invalid (IVL) flag is set for numerical comparisons whenever the expressions being compared are
unordered and the relational operator being used to compare the expressions contains < or but
not 7. That is, the IVL flag is set when the expressions are “unexpectedly” unordered. Note that even
though the flag is set, no Mzt is created.

Example. Assume the current trap value for the invalid flag is 1. This example assigns a trap value of
2 for the invalid flag so the HP-71 will respond to an invalid operation with a warning and a default
value rather than an error and an operation halt.

Input/Result

H The HP-71 displays the current trap value for the
invalid flag.

Next, the computer warns that an invalid oper-
ation has occurred and sets the IVL flag.

344 IEEE Proposal

Input/Result

The result of is “Not a Number,” since the
trap value for the IVL flag is 2.

Display the answer to the question: is @ less than
or greater than R?

The computer sets the IVL flag and warns that a
comparison involving at least one has been
attempted.

C is assigned @, not MaM. The comparison is
false. Since € is a MaH, the only true comparison
would be one involving the unordered comparison
operator, .

Table of Comparisons (X Compared to Y)

The table shown below illustrates the ordering relation-
ships among values represented by + infinity, finite posi-
tive and negative numbers, *+ zero, and NAN (not-a-
number). The symbols used in the table are described in
the box to the right. In the table itself:

n = a real negative number.

p = a real positive number.

Less Than
= Equal To

i Greater Than
Unordered

True Results of Comparing X to Y

+irmt

b

IEEE Proposal 345

Example using the Relational Operator Table. Suppose that you wish to evaluate x < = y, where
x = —37.3 and y = —0. Since the x-value corresponds to row 2 (n) of the table and the y-value cor-
responds to column 3(-#3) of the table, the tabular result is -. Thus, the table indicates that, in this
case, x < =y is true.

Glossary

Introduction

This glossary describes terms used in both the HP-71 Reference Manual and the HP-71 Owner’s
Manual. If a term you are looking for is not described in the glossary, refer to the HP-71 Owner’s
Manual index.

Special Symbols
String concatenator.
3 Used to close a channel. (Refer to the ASSIGN# keyword entry on page 23.)
T Separates statements in multistatement lines.
Allows end-of-line comments in program lines.

Two special uses:
* The default

® Used as a relational operator. (See unordered.)

prompt.

Displayed in lieu of a line number to indicate an execution error in a non-BASIC program.

E Two uses:
* Exponent—precedes a power of 10 in a floating point number.

* Indicates a private and secure file in a catalog entry (an “execute only” file).
F Indicates a private file in a catalog entry.

= Indicates a secure file in a catalog entry.

346

Glossary 347

Terms
A

accessory: Devices or modules that plug directly into the HP-71, such as the HP 82400A Magnetic
Card Reader or the HP 82420A 4K Memory Module.

accuracy factor: See adjustment factor.
active environment: The currently accessible local environment.

actual parameter: An expression or variable that is passed as an argument to a subprogram or
function. In a “Fi. 1. statement, an actual parameter can also be a channel number (preceded by
#). See also formal parameter.

address space: The range of memory locations the computer can access. The HP-71 address space
is 1,048,576 four-bit locations.

adjustment factor: The amount of correction applied to the internal clock of the HP-71. The
adjustment factor is expressed as the number of seconds the HP-71 waits before adding (or
subtracting) one second to correct a slow (or fast) clock. Sometimes referred to as accuracy factor.
Refer to the EXACT entry in the Keyword Dictionary.

". The computer uses

this period to calculate the adjustment factor.

alternate character set: A set of user-defined characters that are represented by the ASCII char-
acter codes 128 through 255. The HP-71 alternate character set is entirely user-definable.

annunciators: Symbols that appear in the left and right ends of the display window to indicate
certain machine conditions.

ANSI BASIC Standard: A standard for the BASIC language that was developed by the American
National Standards Institute. Two standards have been developed. The first was ANSI X3.60-1978
and is referred to as “ANSI Minimal BASIC.” The second, referred to as the Level 1 standard, was
proposed by ANSI subcommittee X3J2. As of the original printing of this manual, the second
standard was not yet adopted.

argument: A parameter.

348 Glossary

arithmetic operator: One of the elementary operators: +, -, &, ., ™, %

array: A variable containing an ordered collection of values. Each value is termed an element. An
element is specified by an array name followed by a list of one or two subscripts enclosed in
parentheses. (The rules governing numeric and string array names are the same as those for
numeric and string variable names.) All elements of an array are of the same data type. See also
numeric array and string array.

array base: The lowest-numbered subscript that can be used to reference an element of an array.
The base of an array is automatically set at the time that you create the array and is determined
by the current ! setting (1 or 0). The HP-71 default 1 £ setting is
0.

array element: One of the values in an array. An array element is referenced by array name and
element subscript(s).

ASCII: The American Standard Code for Information Interchange. This is a standard used by the
computer industry to represent characters by numeric values. This code enables different types of
computers to exchange information. Each HP-71 character, either built-in or user-defined, cor-
responds to a decimal code in the range 0 through 255.

assignment statement: A [FT statement or an implied { £7 statement used to give a variable a

value.

available memory: The part of RAM that is not currently being used to hold files, variables, ar-
rays, or any system control information. returns the amount of available memory in main
RAM, in a specified plug-in memory device, or in an independent RAM.)

B

base: See array base.
base part: See mantissa.

BASIC: Beginner’s All-purpose Symbolic Instruction Code. BASIC is the HP- 71’s programming
language. Also refers to a file type.

Glossary 349

BASIC mode: The computer mode in which you can write BASIC programs and perform most
keyboard operations. It is distinct from CALC mode.

binary operator: An operator that performs its operation on two expressions. It is placed between
the two expressions. The following binary operators are available:

Arithmetic | Relational | Logical

N n AND
¥ = Ok
_* E=DRE

* The “-" operator is a unary operator that can
be used as a binary operator.

See also unary operator.

bit: The smallest unit of memory, equivalent to one binary digit. A bit can have one of two values: 0 or
1.

bit pattern: The pattern formed in the HP-71 display by a group of binary digits (bits). Each bit
represents one dot on the display. (The bit pattern is described under “Defining Alternate Char-
acters” on page 132 in the HP-71 Owner’s Manual.)

branch: To transfer program execution to a specified program statement.

byte: A standard unit of memory equivalent to eight binary digits (bits). Depending on the value of
each bit, a byte can have a value of 0 through 255. Each ASCII character occupies one byte of
memory. See also bit and nibble.

C

CALC mode: A mode in which you can perform keyboard calculations and view intermediate re-
sults. Pressing switches the computer between CALC mode and BASIC mode.

350 Glossary

calling environment: The local environment of a program or subprogram that has referenced a user-
defined function or called a subprogram. When a program or subprogram calls a subprogram, the
calling environment is maintained in an inactive status until the called subprogram ends. See also
active environment, environment, global environment, local environment, and main
environment.

calling program: A program that executes another program or subprogram using the
statement.

calling statement: A statement that transfers execution to a subroutine (GI5UE) or a subprogram
(ZALL). When a subroutine or a subprogram ends, program execution returns to the statement
following the calling statement.

CARD: A keyword that specifies the HP 82400A Magnetic Card Reader as a device. This keyword is
used in COF or AT statements.

card file: A file that resides on one or more magnetic cards.

carriage-return (CR): A control character (character code 13) that causes the cursor to return to
the left edge of the display.

carriage-return/line-feed (CR/LF): A sequence of two characters normally generated by the ter-
mination of keyboard entries and FEIHT and I 5F statements. The and keys send car-
riage-return/line-feeds to display devices.

catalog entry: A display line of information showing the name, protection, type, length, creation
date and time, and port (if any) of a file in memory or on a mass storage medium.

channel: A path through which the computer stores and retrieves information from a data file. A
channel is assigned a number and is associated with a file when you execute F3

channel number: A number assigned to a channel at the time the channel is associated with a
specific data file.

character: An elementary symbol, such as a letter, numeral, punctuation mark, or other special
symbol that can be displayed on the HP-71. The HP-71 has 128 predefined ASCII characters and
128 user-definable characters.

Glossary 351

character code: The numeric value, ranging from 0 through 255, associated with a character. For
example, the character code for # is 65. (Refer also to “HP-71 Character Set and Character
Codes,” pages 322 through 326.)

character delay: The length of time between successive horizontal scrolls in the display. When the
computer displays a line longer than 22 characters, it scrolls the line through the display one
character at a time, from right to left. The character delay is the length of time a portion of that
line is displayed before the computer scrolls it one character. This value can be set using the
i v statement.

[string: A group of characters whose character codes represent a bit pattern for a user-
defined character set. This string is an argument the user supplies to the statement.

close a file: To dissociate a file from a channel. You can close a file by executing

command stack: A portion of main RAM that stores the five most recent commands entered from
the keyboard. You can access the command stack by pressing (9] .

concatenate: To join string expressions (with %) or to join statements (with %) on a single line.
(Some statements cannot be followed by #. The Keyword Dictionary entries for such statements
include this information.)

conditional branch: A type of conditional execution in which a program branch occurs as a result
of a conditional test.

conditional execution: The execution of a statement or statements based on the outcome of a
conditional test.

conditional test: A test based upon a logical expression or an implied comparison between two
O/ B/RESTO statements.

values, as in IF or OH...IE0

continuous on: A condition in which the automatic shut-off feature of the computer is disabled.
This condition can be set on the HP-71 by setting flag —3.

contrast value: The argument used by the TOHTEAST statement to adjust the viewing angle of
the display.

352 Glossary

control character: One of 32 characters that controls the operation of a printer or display. The
character codes for the control characters are 0 through 31.

CR: See carriage return.
CR/LF: See carriage return/line feed.
current file: The file that receives the program lines you type into the computer. Also, the current

file is the default file for the following operations:
* Pressing the key.

¢ Executing

- without specifying a file name.
¢ Performing most file operations when no file is specified.

Note: The “current file” designation can be changed by RLiM, EDIT, CHAIH, CALL, FURGE,
TEAMSFORM, CLAIM FORT, and FREE FORT.

current key assignments: The key definitions in the system & =:wi= file. These definitions are
the assignments that become active when the User keyboard is active (USER annunciator
displayed).

current line: The program line at which the computer is positioned. You can display the current line
by executing FETH with no argument. If a program is paused, the line containing the suspend
statement (the statement at which execution will resume if you press [fJ[CONT]) is the current line.
When you run a program, the current line (as displayed by executing or FETH without
an argument) does not change unless the program is paused by [ATTN], FALSE, or (SST], or if an
error or warhing condition occurs. If the program is paused, the current line contains the state-
ment at which execution will resume if you press (f](CONT]. When a running program is suspended
by FAUZE, the current line is the line containing the statement after the FALIZE.

current statistical array: The statistical array most recently selected by executing =757, You
can define several statistical arrays, but you can perform statistical operations on only the current
statistical array.

cursor: A blinking symbol that indicates the point on the display line at which characters can be
entered or deleted.

Glossary 353

D

data item: A numeric expression, string expression, or unquoted string contained in a
statement.

data pointer: The computer’s internal mechanism for indicating the next !
can reposition the data pointer using ¢
pointer.

item to read. You
See also file pointer, pointer, and program

data type: A category in which a data item falls. HP-71 data types are:
e String
¢ Real
¢ Integer

e Short

Also, a simple variable differs in data type from an array variable.
debug: To locate and correct errors (particularly logical errors) in a program.

default setting: A setting (such as the display contrast value) that the HP-71 uses until you
specify a different setting.

default value: A value supplied by the HP-71 in either of the following cases:
¢ If an optional parameter is not specified in a statement or function.

¢ If an improper operation has occurred, thus requiring a substitute value so that execution can
continue.

- setting used for expressing trigonometric function ar-

guments and results in degrees.

delimiter: A character, such as a comma, that separates items in an input list or separate arguments
supplied to a statement.

denormalized number: A floating point number that has a true exponent less than —499. (Refer to
the section entitled “The IEEE Proposal For Handling Math Exceptions”—page 338—for more
information about denormalized numbers.) See also gradual underflow.

destination file: The file that is created or modified as the result of a copy, merge, or transform
operation.

354 Glossary

device identifier: A special system device word. MA I refers to main RAM; CHFED and FCRD refer
to the optional magnetic card reader; F IR T refers to plug-in memory and independent RAM. The
FIRT device word can be followed by an optional port specifier for referencing a particular plug-in
port.

port
specifier

device specifier: A colon (:) followed immediately by a device identifier.
©
identifier

digit: One of the following characters: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, for decimal numbers. Also includes A,
B, C, D, E, F, for hexadecimal numbers.

dimension: Used as a noun to refer to either the maximum length of a string variable or the num-
ber of elements in an array. If an array’s base is 0, the number of elements is equal to the maxi-
mum subscript value plus 1. If an array’s base is 1, the number of elements is equal to the
maximum subscript value. “Dimension” is also used as a verb to describe the execution of £i1# to
set the dimension of a string variable or an array.

direct execute key: A key or keystroke combination that, when pressed, executes one or more
instructions without altering the display. Refer also to the DEF ¥ entry in the Keyword
Dictionary.

display format: The way that numeric information appears in the display. Refer to the FIX, SCI,
ENG, and STD entries in the Keyword Dictionary.

display line: The line currently in the HP-71 display. It can be up to 96 characters in length, minus
zero or more character positions for the prompt. The display window displays up to 22 characters
at a time and can scroll back and forth along the display line.

dummy array variable: A formal parameter that is indicated by a variable name followed by 1 >
for one dimension or . : for two dimensions.

Glossary 355

E

editing: Using keyboard operations to add, delete, or alter information in either the display or a
file.

end-of-file mark: An internal marker placed by the computer to indicate the end of information
in certain files.

end-of-line sequence: The sequence of characters indicating the end of a line. The sequence usu-
ally consists of a carriage return and a line feed, and is sometimes called the end-of-line mdzcator
You can use the statement to set an end-of-line sequence for the I and
= " statements.

entry slot: The left-hand opening of the card reader slot. Magnetic cards are inserted through this
opening.

environment: The combination of the local and global environment that can be accessed by a pro-
gram or subprogram. See also active environment, calling environment, global environ-
ment, local environment, and main environment.

EOL indicator: See end-of-line sequence.

EPS: The smallest normalized number representable on the HP-71: 1 . @E -4 2!

L

error condition: A condition in which the computer cannot perform an operation. An error con-

dition results in an error message. For further information, see section 9, Error Conditions, in
your HP-71 Qwner’s Manual.

error message: A message the computer associates with a given error. You can view the most re-
cent error message using ERF¥F or (9] (ERRM]. In some cases, a warning message occurs instead

of an error message. For further information, see section 9, Error Conditions, in your HP-71 Own-
er’s Manual.

escape character: The control character whose character code is 27. Used as the first character in an
escape sequence. This character can be generated on the HP-71 by pressing [9)[CTRL] [@](1] or by

(el

evaluating CHR$ (27 1.

356 Glossary

escape sequence: A sequence of characters, the first being the escape character, that controls the
operation of a display or printer. Escape sequences that control the HP-71 display are listed on
page 328.

evaluate: To compute the value of an expression. The result is always a string or numeric value.
exception flag: See math exception flag.

exit slot: The right-hand opening of the card reader slot. Magnetic cards exit through this opening.
exponent: See floating point number.

expression: See numeric expression and string expression.

external medium: See mass storage medium.

F

field specifier: A sequence of one or more symbols used in a format string to indicate the printer
or display format for a data item.

file: A set of lines or other data in memory or on a mass storage medium. A file can be manipulated
as a single unit and has a unique name.

file name: A string of one to eight characters that specifies a file in memory. The first character
must be a letter. Remaining characters may be any combination of letters and digits. The HP-71
automatically changes lowercase letters to uppercase letters. In general, file names can be speci-
fied by string expressions or unquoted strings. A blank character terminates a file name. See also
reserved word.

file pointer: An internal mechanism the computer uses to indicate the position in an open file
where the next read or write operation on that file will occur.

Glossary 357

file specifier: An unquoted string or a string expression that, when evaluated, indicates the name of a
file and, optionally, the device in which the file is located.

file
name o

file type: The characteristic format of a file. A file type is indicated by an unquoted string. The
HP-71 recognizes the following file types:

. (BASIC program).

(machine language program).

% (fixed-length record data file).

(key definition file).

(language extension file).

(same format as TEXT).

i (serial data file from the HP-41).

I (variable length record file of character data).

final character position: The position of the last character to be replaced by an assignment to a
string variable. Also refers to the last character of a substring. A value greater than the variable’s
current string length is interpreted as equal to the current string length. A value less than the
start character position is interpreted as specifying a null substring immediately preceding the
start character position. The default value is the current string length. See also start character
position.

flag: An internal system variable that can have two possible values, 0 and 1, which correspond to the
“clear” and “set” states. Refer to the FLAG, CFLAG, and SFLAG entries in the Keyword Dictionary.

floating-point number: A number represented internally by the HP-71 in the decimal format
m * 10°€
where m is the mantissa, which is a 12-digit number in the range

1 <= Im! <= 9.99999999999
for normalized numbers, and

Im| < 1

for denormalized numbers;

358 Glossary

and where e is the exponent, which is a 3-digit integer in the range
0 <=lel <= 499.

formal parameter: A variable name that appears in a : or Fri statement. A formal
parameter either references or assumes the value of an actual parameter passed to it. You can
specify a channel number as a formal parameter in a %! statement by using # followed by an
integer constant in the range of 1 through 255.

format string: The characters in an IMARGE, DIZF USIHG, or FRIMT LISIHG statement that
specify the formatting of information sent to display and printer devices.

free a port: To use ¥ " to set aside a portion of main RAM as independent RAM.

function: A built-in routine that can operate on arguments and produces a single string or numenc
value A user-defined function is a function that is defined in a BASIC program using the
'+ statement.

G-H

global environment: The set of files, flags, and other settings that are accessible to any program,
subprogram, or user-defined function. See also active environment, calling environment,
environment, main environment, and local environment.

gradual underflow: A process by which numbers too small to be represented in normal floating
point format are represented instead by the minimum allowable exponent and a mantissa less than
1 (for example, 0.0123E—499). These values are called denormalized numbers.

hexadecimal address: A location in memory specified by a base 16 number.
hexadecimal digit: A digit 0 through 9 or a letter A through F.
HH:MM:SS: Hours, minutes, and seconds.

hierarchy: A prescribed order in which data is ordered or operations are performed. Refer also to the
information under “Precedence of Operators” on page 317.

HP-IL: Hewlett-Packard Interface Loop. A means of controlling peripherals used by the HP-71 and
other computers.

Glossary 359

Identifier: A string expression or unquoted string that identifies a file and/or device.

IEEE default value: The default values specified by the IEEE Floating Point standard. These
values can be supplied by the HP-71 when math exceptions occur. (Refer to the section entitled
“The IEEE Proposal For Handling Math Exceptions” for further information about IEEE default
values.)

immediate execute key: A key or keystroke combination that, when pressed, displays an instruc-
tion, then executes it. Compare with direct execute key. Refer also to the DEF KEY entry in the
Keyword Dictionary.

independent RAM: RAM that is separated from main RAM by executing T. An in-

dependent RAM contains files and is referenced by its port number.

inexact result: A numeric result that cannot be exactly represented in the HP-71 floating point
format, such as an irrational number or a number having a repeating decimal.

IHF: A function used to return the HP-71 representation for infinity (1 f).

initialize a variable: To assign an initial value to a variable. In the HP 71, all numeric variables
and array elements are initialized to zero when created by executing ! , and

i . All strlng variables and array elements are initialized to the null string when created
by executing 1.

input: To enter data from the keyboard or from a data file. Also refers to the data itself.
integer value: A number that has no fractional part.

instruction: A generic term for all operations that can be performed on the HP-71, including any
statement, function, or operator (with its corresponding operands).

interchange file: A file of type TEXT (or LIF1) written to a mass storage medium and used to
interchange information between the HP-71 and other computers.

360 Glossary

interface: The circuitry that connects a computer to other devices and enables them to function
together.

1/0: Abbreviation for input/output, indicating an operation that either receives input from a device
or sends output to a device. The HP-71’s built-in input and output devices are the keyboard and
display. The card reader is both an input and an output device.

K

key definition: The current functionality of a key or keystroke combination, which can be to dis-
play a string of characters and/or to execute one or more instructions. Refer also to the DEF KEY
entry in the Keyword Dictionary.

key name: A string expression that identifies a key. A single-character string refers to the key that
enters that character. (Letters can be uppercase or lowercase.) A two-character string in which the
first character is upper- or lowercase “f” or “g” refers to the (f]- or [g]- shift of the specified key. A
string beginning with # and followed by one to three digits refers to a key number. For further
information, refer to the DEF KEY entry in the Keyword Dictionary.

keyboard buffer: An area of main RAM in which the computer stores keystrokes until it can
process them. The keyboard buffer can contain up to 15 keystrokes.

keyboard execution: To perform HP-71 operations from the keyboard, as opposed to operations
performed by a running program.

EEWS: A reserved word that specifies the system kewg= filee. When used, it must be an unquoted
string.

= file: The system file that contains the current key redefinitions. This file is named &
To reference it, use the KEv% keyword.

keyword: A word having a predefined meaning in the HP-71. Usually a statement, function, or
operator.

Glossary 361

L

label: A quoted or unquoted string, immediately followed by a colon, that identifies a program
statement. A label can precede any statement within a BASIC program, and can follow a line
number, an #, or another label. That is, multiple labels can identify the same statement.

A label can consist of one to eight characters. The first character must be a letter. Each of the
remaining characters can be either a letter or a digit. The HP-71 converts all letters in program
labels to uppercase and places the label within single quotes.

label reference: A string expression or unquoted string used in GO T, Z0JZLUE, and other statements
to transfer execution to the statement immediately following the corresponding label. A label refer-
ence contains the same string as its corresponding label. See also label.

language extension (LEX) file: A type of file used to define new keywords and to extend HP-71
capabilities. LEX files can be maintained on mass storage media and in the computer’s memory.

least significant bit: The bit contributing the smallest amount to the value of a binary number. In
the owner’s manual and the reference manual, it refers to the rightmost bit of a binary number. See
also most significant bit.

left justify: To write a string beginning at the leftmost column of a display or print field.
LEX file: See language extension (LEX) file.

LIF: See logical interchange format (LIF).

line editing: Adding to, modifying, or deleting characters in the display.

line-feed: A control character (decimal code 10) that causes the HP-71 to advance to a new display
line.

line number: An integer constant in the range 1 through 9999 that identifies a program line.

362 Glossary

local environment: The environment that the HP-71 defines for exclusive use by a specific main
program or subprogram. See also active environment, calling environment, environment,
global environment, and main environment.

logical error: An error in a program’s design. A logical error can result from using a faulty al-
gorithm or from simply keying in a program improperly. Logical errors aren’t detected by the
computer, but are evident from faulty program output.

logical expression: A numeric expression used in a conditional test. Evaluated as true if nonzero,
and false if zero. Usually includes relational operators. Refer also to the IF... THEN...ELSE
entry in the Keyword Dictionary.

logical interchange format (LIF): A mass media format that is common to several Hewlett-
Packard computers. This format enables different computers to interchange programs and
information.

logical operator; An operator that returns a logical value (0 or 1). The logical operators on the
HP-71 are #, and i

loop counter: The simple numeric variable in a
loop iterations.

i loop that controls the number of

looping: Repeatedly executing a series of statements, usually until a specified condition is satisfied.

M

main environment: The local environment of a main program. The main environment is also active
when no program is running or suspended. See also active environment, calling environment,
environment, global environment, and local environment.

M, Or i

main program: A program that is not called by another program or subprogram, but is typically

executed by [RUN], F

main RAM: The memory used by the computer to create the main environment or subprogram
environments. (The computer uses part of this memory to maintain operating information that is
not directly accessible to users.) Main RAM is distinct from independent RAM. (Main RAM is
referenced by 1711 ti. Creating a file either when no device is specified or when MAIN is specified
causes the HP-71 to create the file in main RAM. Refer to “Device Names” in your HP-71 Own-
er’s Manual.

Glossary 363

mantissa: The normalized part of a number displayed or prlnted with an exponent in scientific
display format. For example, the number i 7 has i as its mantissa and 7 as its
exponent of 10. See also floating point number.

mass storage device: An I/0O device such as the HP 82400A Magnetic Card Reader or an HP 82161A
Cassette Drive that you can use to copy files between memory and mass storage media.

mass storage medium: A magnetic card, cassette, or disc on which you can store computer files.

math exception: An event that occurs during evaluation of a numeric expression and is in one of
the following categories:

Invalid operation.

Computer

¢ Division by zero. ¢ i
useum

e Overflow.
Underflow.

¢ Inexact.

Depending upon the trap value that corresponds to the exception, the HP- 71 can either treat
such events as errors or supply a default value for the expression.

math exception flag: A flag that the HP-71 sets whenever a math exception occurs. The five math
exception flags are:

_ (invalid operation).
division by zero).
overflow).

underflow).

(
-
(
(

inexact result).

The largest finite value the HP-71 can represent, which is: 9.99999999999E499.

memory reset: A condition in which the memory of the computer is cleared of all programs, data, and
other information. This happens when you execute IHIT: 2 (in which case independent RAM is
protected) or remove the batteries for an extended period (independent RAM is not protected). To
execute an IMIT: 3, refer to “Memory Reset, BASIC Mode, and the BASIC Prompt” in section 1
of your HP-71 Owner’s Manual.

364 Glossary

message number: A number that identifies an error, warning, or instructional message. Error mes-
sages and their corresponding numbers are listed on pages 380 through 392.

MIMREEAL: The smallest positive value the HP-71 can represent, which is the denormalized number
0.00000000001E —499. Refer to the MINREAL entry in the Keyword Dictionary.

mode: A condition of the computer that determines which operations can be performed. For exam-
ple, a BASIC program can be edited in BASIC mode only; it cannot be edited in CALC mode.

module: A device that fits into one of the HP-71 ports and extends its memory or its capabilities.

most significant bit: The bit contributing the greatest amount to the value of a binary number. Often
referred to as the leftmost bit.

multiple-statement function: A user-defined function that contains more than one program
statement.

multistatement line: A line containing two or more BASIC statements concatenated by the
symbol.

N

HEM: The HP-71 function that returns a Signaling NaN. When entered from the keyboard and used
in an expression, it signals the computer to set the I'/L flag and supplies the value Hal (not-a-
number).

NaN: An abbreviation for Not-a-Number. This is a default value supplied for invalid operations
(operations that set the 1%/l flag) when the I/i exception trap is set to 2. NaN is supplied for
such invalid operations as 0/0.

" loop contained within another such loop.

nested loop: A F
nested subroutine: One subroutine that is invoked by another subroutine.

nibble: One-half of a byte; equivalent to four bits. The HP-71 individually addresses nibbles in
Mmemory.

normalized number: A number represented internally by the HP-71 in the decimal format

m * 10°

where m is the mantissa, which is a 12-digit number in the range
1.00000000000 <= Im| <= 9.99999999999,
and e is the exponent, which is a 3-digit number in the range

—499 <= e <= 499.

null string: String of zero length, specified by * * or

numeric array: An array containing elements that are numeric values.

Glossary

numeric constant: A fixed numeric value within the range the HP-71 can represent.

365

numeric expression: A valid combination of values and operators that produce a numeric result.

The following diagram describes the syntax of a numeric expression,

binary

operator

{‘ o[numeric |

1.

"Lconstant |

unary numeric
operatar variable name
subscript

numeric
function keyword

oy

N user—-defined numeric |
function name]

string relational string |
expression operator expression [°

numeric)
expression

Note: The ~ binary operator cannot be followed immediately by a binary operator.

366 Glossary

numeric function: An operation (that is, an HP-71 keyword or a user-defined function) that, given
the appropriate type, number, and range of arguments, returns a single numeric value. Some
numeric function keywords, like FE %, require no arguments.

numeric variable name: A letter or letter-digit combination that represents a location in memory
where you can store numeric information.

numeric variable specifier: Designates a simple numeric variable or a numeric array element
that is to receive a new value, as in & : PLT L r, LET, and LF.

§

aumeric o
variable name A—Oj o

subscript

0

open a file: To associate a file with a channel number. Opening a file enables the computer to read
and write information to that file. A file is opened by executing

operand: A numeric or string value upon which an operation is performed.

operating system: A collection of built-in programs that control the overall operation of the com-
puter, performing such tasks as interpreting and executing BASIC programs, assigning places in
memory for files, processing keyed-in information, controlling the display, and performing
calculations.

operator: A symbol that combines or compares the values of two expressions. Arithmetic, rela-
tional, and logical operators result in a numeric quantity; the string operator (%) results in a
string quantity.

output: Information that the computer sends to a device such as a printer or display.

Glossary 367

P

parameter: The numeric or string information acted on by a keyword. Also, numeric or string in-
formation used by a function to determine the function’s value. Parameters passed to a
subprogram can be passed by reference or by value. See reference parameter and value
parameter.

pass by reference: To pass a variable as an actual parameter to a subprogram so that it can be
altered.

pass by value: To pass an expression value as an actual parameter to a subprogram or user-defined
function. A variable is passed to a subprogram by value only if it is enclosed in parentheses (which
ensures that it cannot be altered by the subprogram.) All parameters passed to user-defined func-
tions are passed by value.

password: A string expression specified in the statement. A password prevents
unauthorized use of the HP-71. Refer to the LOCK entry in the Keyword Dictionary.

peripheral: Any external device on a standard interface controlled by the HP-71.

pointer: An internal mechanism the computer uses to indicate the next piece of information to
process. The HP-71 uses pointers to access information such as data items, files, and program
lines. See also data pointer, file pointer, and program pointer.

port specifier: A number of the form m.nn or m that identifies one of the computer’s ports. The
value for m is in the range from 0 through 5; nn is in the range from 00 through 15. (Values of nn
less than 10 must be expressed with two digits; for example 09, 08, ... 01.) If the port specifier is
contained within an unquoted string, the specifier can be designated by a numeric expression.

precision: The number of significant digits a computer uses when it computes and stores a numeric
value. The HP-71 performs computations in 15-digit precision and stores in 12-digit precision.

precedence of operators: The order in which mathematical operations are performed by the
computer, based on the types of operators in an expression. Refer to “Precedence of Operators” on
page 317.

predefined function: Any functions that are defined for you by either the HP-71 or by a language
extension file present in the computer.

368 Glossary

private file: A file on a magnetic card or other external medium that can be copied into memory
and run, but which cannot be changed or recopied. (A private file in memory can be run and/or
purged, but cannot be copied.)

program: A set of instructions that performs some computing task and controls the input, process-
ing, and output of data. You can store programs in BASIC files and in BIN (binary) files.

program line: One line of a BASIC file; contains a line number and one or more statements.

program pointer: The mechanism used to identify the next function or statement to be executed
in a BASIC program. See also pointer.

program scope: The environment of the current program or subprogram. This environment deter-
mines which variables and statement identifiers can be referenced.

program unit: A program, subprogram, or user-defined function that performs a specified task.

prompt: The symbol that appears at the left edge of the display (the right edge when in CALC
mode) to indicate readiness for user input. Also, a text string used in an " statement to
indicate that the user should key in some information.

protected field: A portion of the display or a display line that cannot be overwritten. The
statement defines protected fields in the 22-character display window. Escape sequences can
deﬁne protected fields in the 96-character display line.

R

radians setting: The
guments and results in radians.

setting used for expressing trigonometric function ar-

radix mark: The mark, such as a decimal point, that separates the integer portion of a number from
its fractional part.

RAM: See random access memory.

random access memory (RAM): Nonpermanent memory circuits in which a computer can read
and write. RAM requires a constant source of power to retain its memory. Compare with read-
only memory (ROM).

Glossary 369
random file access: The process of reading from or writing to a specified record in a data file.

to generate a random number. You can set the random seed

random seed: A number used by
using

read-only memory (ROM): Permanent memory from which a computer can only read. ROM re-
tains its memory when disconnected from a power source.

real value: A numeric value represented as a floating point number.
record: The smallest addressable unit of a data file.

recursion: A process or procedure that is defined in terms of itself.
recursive subprogram: A subprogram that calls itself.

reference parameter: A parameter that can be changed by the subprogram to which it is passed.
See also parameter and value Parameter.

relational operator: A binary operator that compares two arguments and returns a 0 or a 1 based
on the outcome of the comparison. The following relational operators are available: <, =, =, <=,
':::::’ _::-y :—’ and

reserved word: A word that has a predefined meaning in the HP-71 and cannot be used as a file
name unless the word is part of a string expression. The reserved words are: T, Fl.L, KEYS,
and I . The reserved words are a subset of the HP-71 keywords.

ROM: See read-only memory.
ROM-based file: Files residing in read-only memory.

round: To adjust the least significant digits of a number according to digits that were either trun-
cated or cannot be represented due to limits of precision.

rounding error: The error resulting from rounding a quantity by deleting the less significant digits
and applying some rule of correction to the part retained. For example, 2.6641 can be rounded to
2.664 with a rounding error of .0001.

370 Glossary

round-off setting: Any one of four settings that determine how the computer rounds numbers in
arithmetic operations. Refer to the OPTION ROUND entry in the Keyword Dictionary.

routine: A program, program segment, user-defined function, or subprogram that performs a spe-
cific task and supports the execution of a larger program.

run-time error: An error that occurs during execution of a program or individual keyboard
instruction and is not due to a syntax error. See also logic error.

scope: The range of operation or accessibility of a program, statement, user-defined function, file,
setting, or other information.

scroll: Apparent horizontal movement of characters across the display or apparent vertical move-
ment of program lines, command stack items, or catalog entries through the display.

scroll key: The (a], (], and keys, and their (g]-shifted counterparts.
SDATA file: A data file with a fixed record length of eight bytes.
secure file: A file that cannot be purged, altered, or declared private.

sequential file access: The procedure of reading from or writing to successive records in a data
file.

setting: A flag or operating condition (such as the % setting) that is

part of the global environment.
shifted keystroke: A keystroke that is preceded by pressing the [f]- or [¢]-shift key.

format.

short value: A numeric value that is represented according to the

signaling NaN: A NaN entered from the keyboard. Such a NaN, when used in a subsequent math
operation, causes the HP-71 to set the 1.t flag.

Glossary 37

simple numeric variable: A variable name (a single letter or a letter and a digit) representing a
memory location in which a single numeric value has been stored.

simple string variable: A variable name (a single letter followed by # or a letter and a digit
followed by #) representing a memory location in which a single string value has been stored.

single step: To execute a program one statement at a time using (ssT]. Also, to evaluate an
expression one operation at a time while in CALC mode.

source file: A file that contains information that the computer either reads or transfers to another
file.

start character position: The position of the first character to be replaced by an assignment to a
string variable. Also refers to the first character of a substring. Values less than 1 are interpreted
as 1, and the default value is 1. For an assignment, the value cannot exceed the string variable’s
maximum length. See also final character position.

statement and executed as a com-

start-up string: A string that is specified in the
mand when the computer turns on.

statement: A BASIC instruction that can be executed in a running program or from the keyboard.
Statements can be concatenated with & to form a multistatement line.

statement identifier: A line number or label reference that specifies a program statement.

statistical array: A numeric, one-dimensional array in which summary statistics are accumulated.
Statistical arrays are created using the = [statement.

string: An arbitrary sequence of characters that is not regarded as a number. In general, you can
specify such a sequence as a string expression or as an unquoted series of characters.

string array: A one-dimensional array having elements that are strings.

string constant: An arbitrary sequence of characters delimited by quotation marks (' ... " or
“ ... "), Also called a quoted string.

372 Glossary

string expression: A valid combination of string components that produces a string result. The
following two diagrams describe string expression syntax and components.

String Expression:

ll

component

String Component:

variable
$

O}

string
function keyword]

() user—-defined string
FN function name $

parameter

ll

string)
expression

Extension . -
A

start 1]
character position |

final
character position

string function: An operation (that is, an HP-71 keyword or a user-defined function) that, given
the appropriate type, number, and range of arguments, returns a single string value. Some string

function keywords, like require no argument.

Glossary 373

string variable name: A letter or a letter-digit combination followed by :#, that represents a
location in memory where you can store character information.

string variable specifier: Designates a simple string variable or a string array element (or a por-
tion of that string) that is to receive a new string value, as in ¥
= 7, and i.F7. The portion of the destination string variable to be replaced is speCIﬁed by
the start character position and the final character position. The computer always begins the
substitute string at the start character position.

varible
name

subprogram: A set of program lines that forms a routine that is independent of any main program
within the file in which it’s stored. A subprogram is delimited by the and
statements.

subroutine: A program segment that begins execution as a result of a | statement and that

returns control when it executes a F statement.

subseript: A number that specifies the row (or column) location of an array element. A subscript
value must be less than or equal to the array dimension limit, and greater than or equal to the
array base.

substring: A portion of a string variable; contains zero or more contiguous characters. To specify a
substring, follow a string variable specifier with a numeric expression (or numeric expressions)
enclosed in brackets (C J).

string 1 -
varisble specifier r o
start]
charactsr position |
final
character position

suspend statement: When a program is suspended, the statement at which program execution will
resume when you press (] .

suspended program: A program that has been interrupted without affecting its program control
information. The SUSP annunciator is displayed when a program is suspended. A suspended pro-
gram can be resumed by pressing [f] [CONT].

374 Glossary

syntax: The rules governing the spelling of keywords, variable names, operators, file names, etc.,
and the construction of statements and functions.

system file: A file that is designated by the computer for a special use. Two such files are
and ks#w=z. System files can be identified by their lowercase spelling in a catalog

entry.

system flag: A flag used by the computer to indicate a condition, such as a low battery or an
overflow in a calculation, System flags are numbered from —1 through —64.

system message: A message displayed by the computer to give instructions.

T

tab: To move the cursor to a specified column.

A keyword that moves the " position ahead to a specified column.
text: An arbitrary collection of characters.

TEAT file: A file composed of textual information in a form that can be transmitted to other comput-
ers. In the HP-71, the TEXT file type is identical to the LIF1 file type on the HP-75.

timer number: An integer from 1 through 3 that is used in an i
a system timer.

statement to specify

track: One of two read/write channels on a magnetic card.

trap: To detect certain exceptional conditions when they occur in calculations and to take an action
based on the type of exception and the setting of its corresponding trap value. Refer to “The
IEEE Proposal for Handling Math Exceptions” section that begins on page 338.

trap action: The actual computer response to errors as determined by the trap value.

trap value: A value associated with the five math exception flags to indicate how the computer
responds to the errors that set those flags. A trap value can be 0, 1, or 2.

Glossary 375

trappable error: Any error that, when it occurs, allows use of an 0+ EFRFRIF branch or subroutine
to take some action other than halting the program; an error that either sets one of the five math
exception flags or can cause a branch to occur during an JH ERFROE condition.

truncate: To cut off a portion of a string or number. For example, the [function truncates a
number at its decimal point. No rounding occurs.

typewriter key: A key that normally displays a letter, digit, or other symbol.

typing aid: A key or keystroke combination that enters a string of characters when pressed, as if
they had been typed in. Typing aids can be user-defined. Refer to the DEF KEY entry in the
Keyword Dictionary.

U-v

unconditional branch: A branch that occurs every time the statement is executed, as when pro-
gram execution encounters a i statement.

unary operator: An operator that performs its operation on one operand. It is placed in front of
the operand. The following unary operators are available.

e — : Reverses sign of its operand.
e +: Identity operator. (This is a binary operator that can be used as a unary operator.)

e M T: Logical complement.

See also binary operator.

underflow: A condition in which the computer cannot represent a very small result within its nor-
mal range of precision. Some results that cause an underflow condition can be represented as de-
normalized numbers.

unquoted string: A series of characters, regarded as a string, that is not enclosed in quotes.

unordered: A relation in which a value is neither greater than, equal to, or less than another value,
as when a NaN is compared to another value. An unordered relation is tested by the 7 operator.

user-defined function: A numeric or string function that a user defines in a program by means of
CEF FH and EMD DEF statements.

376/377 Glossary

user-defined function name: F# followed by a letter and an optional digit. A user-defined string
function name always ends with .

user flag: A flag whose use is determined by the user. The user flags on the HP-71 are those num-
bered 0 through 63.

user keyboard: The set of key redefinitions in the current &

ing (f] (USER].

z file that are activated by press-

value parameter: A parameter that cannot be changed by the subprogram to which it is passed.
Value parameters include numeric expressions, string expressions, and variable names enclosed in
parentheses. See also Parameter and reference parameter.

variable name: Consists of a letter followed by an optional digit, and is used to identify a variable.
String variable names end with #. See numeric variable specifier and string variable
specifier.

variable number: An integer identifying a particular statistical variable.

verify: To check a magnetic card to ensure that information was properly written to it.

W-X

warning condition: A condition in which either a math result needs a default value or the com-
puter has detected an undesirable hardware condition (such as low batteries).

wor bk f1ile: A system file existing as a BASIC scratch file in main RAM.

#%FH: An abbreviation used in either an error message or a displayed line to refer to a function in a
plug-in ROM or language extension (LEX) file when the ROM or LEX file has been removed from
the HP-71.

“HORD: An abbreviation used in an error message or a displayed line to refer to a keyword defined in
a plug-in ROM or language extension (LEX) file when the ROM or LEX file has been removed
from the HP-71.

Errors, Warnings, and System Messages

This section contains the error, warning, and system messages related to the HP-71 computer. For
messages related to devices that can be connected to the HP-71, please refer to the manuals for those
devices.

Introduction

This section contains two listings:

1. An alphabetically-ordered listing of error, warning, and system message names, with their cor-
responding error numbers. You can use this listing to determine the number of any message.

2. A numerically-ordered listing of error, warning, and system messages, with a description of each
message.

An error message begins with £E#%; and names the error type. In most cases, an error halts execu-
tlon, which indicates that the computer cannot perform a pending operation. A warning begins with
jFH: and names the warning type. A warning indicates that a default value has been substituted for
a value that the computer could not compute, and does not halt execution. Some messages can be
either error messages or warning messages, depending upon the arithmetic trap values. An error or
warning message displayed during program execution indicates the line number causing the error or
warning, such as .76 (error at line 30) and WFEH 1.%%: (warning at line 95).

A system message is usually a procedural message, such as a prompt for card reader operations. For a
description of error and warning conditions, refer to your HP-71 Owner’s Manual.

Alphabetical Message Listing

Messages beginning with nonalphabetical characters are placed at the end of this listing.

Message Number Message Number

Cat

Chir L #

1 =
Cort i “1le Mot
Data F ol R mi o i iintnennneenns 62
Dewioce File Frotedt iiiiiieniennens 61
Ered o File [T = I~ R 74
Ewi FH Mot Fu-uruj 33

(Continued on next e.)
378 bag

Errors, Warnings, and System Messages 379

(Continuation of Message Table)

Message Number

boed bl bed beed o]

T e beed ped e b

Mot This File oo, 67

Mumaer 1o T0EuT o i e e i, 38
Cperand Expeots 86
Operator
Owertlow
Farameter Mizmatoh ..., 36
Frecedernoe (o i i i ittt 84

Mt
o S S
SWORD
v E

Message J Number

Filiamn
[S
Boet
Rl -2 v R

............................

380 Errors, Warnings, and System Messages

Numerical Message Listing and Descriptions

Math Errors (1 through 21)

Error .
Number Message and Condition
The magnitude of a result is too small to fit exactly into its destination format. Sets UNF
(underflow) flag (—5).
The magnitude of a result is too large to fit into its destination format. Sets OVF (overflow)
flag (—6).
Indicates attempt to compute the exponent of a zero argument. Sets DVZ (division-by-zero)
flag (—7).
4
i argument is an odd integral multiple of 90 degrees. Sets DVZ (division-by-zero) flag
5
x%, where x = 0 and y < 0. Sets DVZ (division-by-zero) flag (—7).
6 :
x Y, where x = y = 0. Does not set an exception flag.
7
x/y or x DIV y, where x = y = 0. Sets IVL (invalid operation) flag (—8).
8 : o
x DIV y or x/y, where 0 < Ix] < Inf and y = 0. Sets DVZ (division- by-zero) flag (—7).
9 : 1t
x¥, where x < 0,0 < lyl < Inf, and y is noninteger. Sets IVL (invalid operation) flag (—8).
10 :
Attempt to compute the square root of a negative number. Sets VL (invalid operation) flag
(—8).
11 ; =
An argument of a function, operation, or statement has the correct data type, but lies outside
the domain of definition of that function, operation, or statement. In some circumstances sets
IVL (invalid operation) flag (—8).

(Continued on next page.)

Errors, Warnings, and System Messages

Math Errors (continued)

381

Error
Number Message and Condition
12
. Attempt to compute the logarithm of 0.
° i If argument equals —1. ,.(?v‘l)unggﬂtrﬁr
Sets DVZ (division-by-zero) flag (—7). N
13 K
Attempt to compute the logarithm of a negative number.
i F1: If argument is less than —1.
Sets IVL (invalid operation) flag (—8).
14 1 : .5.
An operation requires the division of an infinite dividend by an infinite divisor. Sets IVL (invalid
operation) flag (—8).
15
An operation requires the subtraction of an infinite value from another infinite value of like
sign. Sets IVL (invalid operation) flag (—8).
16
An operation requires multiplying an infinite argument by a zero argument. Sets IVL (invalid
operation) flag (—8).
17 i
Attempt to raise +1 or —1 to an infinite power. Sets IVL (invalid operation) flag (—8).
18
Attempt to raise an infinite argument to the power of zero. Does not set an exception flag.
19 i e
An input (parameter or data) is a signaling NaN. Sets IVL (invalid operation) flag (—8).
20
A companson involves at Ieast one NaN and either a < or operator without the ** oper-
ator. Occurs with if either or both arguments are NaNs. Sets IVL (invalid
operation) flag (—8).
21 !

The result of a function or operation may not be exact. Sets INX (inexact result) flag (—

4).

382 Errors, Warnings, and System Messages

System Errors (22 through 27)

Error -
Number Message and Condition
22 P HI
During a card reader operation, warns that the battery level is low and continued operation
may cause incorrect results.
The integrity of information in memory has been disrupted such that the computer cannot
process the information. This can be caused, for example, by deleting a calling program while
its corresponding subprogram is executing. At this ponnt du to the memory disruption, the
HP-71 may not operate properly until you execute an IHI 7T 3
CAUTION
Executing # clears all of the HP-71's main RAM. Refer to your HP-71 Owner’s
Manual.
24

Generally, insufficient memory available to complete an operation. Specifically, indicates in-

sufficient memory for the following functions to perform their indicated operations:
Creating the 1/O buffer needed to open the file.

Copying in the specified file.
. Storing the alternate character set.

7. Creating the destination file. When copying to a card, building the card header in
main RAM.

Creating a variable with the specified dimensions.

Creating a statistical array for the specified number of variables.
Creating a file that does not already exist.

7. There is not enough memory to save the needed

: There is not enough memory to remove RAM from main RAM.

A+ The file specified is on an external device and there is not enough memory to copy
the file into main RAM.

= does not exist and

|

- Attempting to purge the current file when the
there is not enough memory to create the :. i

(Continued on next page.)

Errors, Warnings, and System Messages 383

System Errors (continued)

Error .
Number Message and Condition
25 = = Ful led
A module was removed while the computer was turned on. Doing so causes a system
reconfiguration and, if any ROMs have moved in address space, causes an automatic
. The system :file is now the current file.
26 [ﬁﬁi P at i
A configuration error has occurred, such as too many ROMs for the address space or insuffi-
cient memory to build alf of the configuration tables. The computer should operate satisfac-
torily, but will not find all of the plug-in memory and 1/O devices.
27 FiE
An invalid value was specified for the clock adjustment factor. (Executing either #F (param-
eter)or L T with an adjustment factor whose absolute value lies between 0 and 10.)
Program Errors (28 through 56)
Error -
Number Message and Condition
28
29
The data items in a print list cannot fit into the specified record.
4 #: A random access read from a data file has specified a record that has fewer
data items than the number of items in the read list.
30 st F
A statement identifier that is not in the current program scope has been referenced. For
example, occurs when ¥ i references a label that is not in the current file.
31 i d
The HP-71 cannot use a variable, result, or quantity as it has been specified. Can be gen-
erated, for example, by referencing an existing variable as an array.
32 ’
cannot be found.
33

A function was not being evaluated when the computer executed

¥ Attempting to execute a user-defined function that is not defined in the current
program.

(Continued on next page.)

384 Errors, Warnings, and System Messages

Program Errors (continued)

Error
Number

Message and Condition

34

35

36

37

38

39

40

41

42

43

44

Bot Found

language extension (LEX) file required to execute a function cannot be found.
Mot fo
The language extension (LEX) file required to execute a sfatement cannot be found.
i f¢

The number or type of the actual parameters in a I

does not match the number or type of the formal parameters in the corresponding
statement.

The

statement or function reference

o or

Either a string result is too long for the given destination or a =
characters in length.

= string exceeds 95

requfres numeric input. (Reprompts you for input.)

Too many items entered in response to an i ¥ statement. (Reprompts you for input.)

Famps S
Too few items entered in response to an I

" statement. (Reprompts you for input.)

The specified channel number has not been assigned by an RZZILH # statement.

The HP-71 has encountered a FCF statement that is not going to be executed, and can-
not find a corresponding HE T statement. This can occur, for example, where a state-
ment such as FOR I = 1 To -5 STEF .5 occurs without a corresponding
T statement.

A statement has been encountered for which a corresponding ¥ statement can-

not be found.

has been encountered for which there is no corresponding

(Continued on next page.)

Errors, Warnings, and System Messages 385

Program Errors (continued)

Error

Number Message and Condition

45

An imaéé list has one or more errors, as follows:
® Carriage return symbol not followed by a delimiter.
* Unrecognized character in the format string.
* lllegal use of image symbols. For exampie:
® I} in a string fieid.
* Mixed L
® Adjacent I or .

and

symbols in a numeric field.

® i or ¥ beginning or ending a numeric field.

¢ = or ¥ adjacent to radix or exponent specifier.

® Specifying more than one = or i,

® Leading % or ¥ with no following digit or radix specifier.

® |eading . or ¥ with no following .

* Omitting the closing quote on a quoted string.

® Specifying a multiplier for a symbol that does not allow one.
® Specifying a zero multiplier or a multiplier greater than 9999.
* Following a multiplier with a comma or closing parenthesis.
® Specifying a multiplier for a unit digit's .

¢ No matching closing parenthesis.

¢ Closing parenthesis without opening parenthesis.

46

Either JmIEG or FRINT UL iz statement references a line number that has
no I statement, or the output item is not of the type specified in the image list. (For
example, a numeric output field may be matched to a string item.)

A field in an image list does not have enough digits specified to the left of the decimal point.
This can also occur when the number is negative and the implied negative sign reduces the
number of specified digits by occupying the leftmost digit. Also occurs when an £ symbol in
a numeric field would result in a displayed exponent having more than three digits.

(Continued on next page.)

386 Errors, Warnings, and System Messages

Program Errors (continued)

Error .
Number Message and Condition
48 Irivalid TABE
E: column rounds to a value less than 1. A warning condition occurs and a value of 1 is
supplied.
49 b Mot Fourd
CHLL: The called subprogram cannot be found.
50 Var Comtexi
An attempt has been made to expilicitly or implicitly create or destroy a variable within a mul-
tiple-statement user-defined function, where that variable is already defined as either a des-
tination in an assignment statement or as a function parameter.
51 I i Zrat FAreag
No valid statistical array is currently defined.Sometimes occurs when redimensioning an exist-
ing array within a user-defined function when the pending assignment statement’s destination
is a variable element in the array.
52 Irmwalid o iEEIc
The sample size is invalid for : or a sum of
squares is less than zero for
53 i Tigh Sray g
Can be caused by any of the following:
* The variable list length is greater than the number of variables for i
* The sample size is zero for © F,LE, {, FE p
* The sample size is 1 for
* A sum of squares is zero for
54 i of Fils
The specified record number is greater than the last record number in the file. In a text file this
can also occur if a line length header points beyond the end of the file.
Generated by the 7 1 statement if the desired transformation from the source file
type to the destination file type is not allowed.
¥ failed due to an unrecoverable error, such as insufficient memory.

Errors, Warnings, and System Messages 387

File and Device Errors (57 through 65)

Error .
Number Message and Condition
57 File Mot Fournd
The specified file does not exist. (Can be generated upon return from a subprogram if execu-
tion of the calling program file cannot be resumed because it has been purged or
transformed.)
58 Filespec

F|Ie specmer contains an invalid name or an invalid device specifier. The specified file resides
in a device that is not appropriate for the attempted operation.

59 File Ewizts

specified an external file which cannot be copied into main memory for execution
due to a duplicate filename.

cannot operate on system file :: fils or k
% already exists on the specified dewce

60 Tilesa imooSs
Elther an attempt to alter, purge, or declare private a file that resides in ROM, or an attempt
to ? £ into a restricted part of memory.
61 File i
* Attempt to purge, alter, or declare private a file that is secure.
* Prlvacy violation. Attempt to aIter a private file or to access such a file through . I=7,
: T, OfF f i. A private file may only be executed, purged, or
copled from an external medlum into memory.
* Attempt to copy into the HP-71 a private file of unrecognized type.
e DEF KEY attempted when system k = file is secured.
62 Fils

Attempt to open more than 64 files or attempt to open a file that is already open. Can be
generated, for example, by attempting to execute = # to open a file to a channel
number when that file is already open to another channel number.

(Continued on next page.)

388 Errors, Warnings, and System Messages

File and Device Errors (continued)

Error

Number Message and Condition

63

* Specified file is not of appropriate type for the operation.

¢ Attempt to execute i
BASIC.

* Attempt to run a file that is not BASIC or BINARY in type.
* Copying to a card when the source file type is not recognized by the operating system.

For , or to edit a line when the current file type is not

* Copying from a card when the source file type is not recognized by the operating system
and is not within the standard file type range.

64

* Specified device cannot-be found.

¢ Attempt to either free a port that does not contain main RAM or to claim a port that is
not an independent RAM.

¢ Attempt to create a file on an unspecified port when no independent RAM with enough
memory is available.

65
¢ Attempt to display a line that exceeds 95 characters.

¢ A line exceeds 120 characters. (Occurs as a

i warning.)
¢ Attempt to enter a statement having an internal representation exceeding 127 bytes.

¢ In CALC mode, either the expression being entered has more than 95 characters or there
i5 N0 memory available.

Errors, Warnings, and System Messages 389

Card Reader Errors (continued)

Error .
Number Message and Condition
The computer encountered a track that has been write-protected by F ’ and there-
fore cannot be written on.
The computer has attempted to read a track which is not in the same file as other tracks
already read.
68 Py F]
The computer failed to verify the card against the data which was written to it.
69 o L]
The computer does not recognize the card format.
70 Eod B
* A wait of more than 7.5 seconds after the ~ . message has occurred.
® Checksum error in card header or data field.
* Hardware data error.
71 T F %
Card pulled too fast.
Card pulled too slowly.
73 B
During a operation the name on the card does not match the name specified in the
¥ command.
74

During a operation the source file is larger than 65535 bytes.

390 Errors, Warnings, and System Messages

Syntax Errors (75 through 88)

Error -
Number Message and Condition
75
* Missing keyword; incorrect (or missing) characters in a statement.
*® Valid line number or statement label not given for one of the following:
[]
[]
. file specifier
* 7 : A syntax error occurred during the transformation (accompanied by a
warning message).
M : More than one subscript in a string array.
* Mandatory expressions not entered in = statement.
76 i
* At end of parameter list for TiE:
® After port specification of F
® Array variable in F =
* Dummy array variable in :
77
and | ! statements.
78
® Extra characters at the end of an otherwise legal statement.
* Statement followed by & when not allowed.
= FH: More than 14 parameters specified in parameter list.
79 St
® Statement not programmable.
* Statement not keyboard executable.
* Statement not legal in an IF construct.

(Continued on next page.)

Errors, Warnings, and System Messages 391

Syntax Errors (continued)

Error M -
Number essage and Condition
* Syntax error in an expression.
* Assignment with type mismatch (string on one side, numeric on other).
* Quoted fabel declaration without a closing quote. (Statement interpreted as an implied
* File command interpreted as an unquoted label declaration due 10 no spaces; for exam-
ple: 1 where is interpreted as a label declaration, and
the computer interprets F as an implied * statement.
81
and
* Invalid keyword in statement.
* Invalid parameter in = parameter list.
No input received for expected parameter:
* Line number expected in and
L
* Missing keyword in statement.
* Missing parameter in parameter list.
Either an array variable has been specified where a simple variable is required, or a variable of
the wrong data type has been specified.
84 £
After single-step in CALC mode, an operator has been entered that has a higher precedence
than the operator that was executed by the last single-step operation.
85

in CALC mode:
* A systemn typing aid begins with a space. Does not apply to user-defined typing aids.

* User-defined key that is an immediate execute key definition instruction (specified
with : when defining).

(Continued on next page.)

392 Errors, Warnings, and System Messages

Syntax Errors (continued)

Error .
Number Message and Condition
86 Operand Expected
In CALC mode an operator is input when an operand is required.
87 Dpeiraior Expected
In CALC mode an operand is input when an operator is required.
88 TEM HWREH Lnonn: message
The syntax error message occurred on source file line nnn during execution of TEAMS
F{EM, This warning condition is reported during the transformation, but does not halt
execution.
Card Reader Messages (89 through 97)
Message M d Conditi
Number essage and Condition
89 i onnn o mmm
Prompt for all write and verify pulls, and for the second and any subsequent pulls needed to
read a file.
90
91
92
93
operation.
94 Frot
Prompt for [operation.
95 Limpr r B
Prompt for operation.
96 T
Prompt for operation.
97 Trk nnn
After verifying or reading each track.

Errors, Warnings, and System Messages 393

HP-71 Exception Flag Summary

The following summarizes the conditions under which the HP-71 sets any of the five exception flags.

IVL (Invalid Operation)

The IVL exception (sets flag —8) occurs when an operand has the appropriate data type, but its value
is a signaling NaN and/or is invalid for the operation to be performed.

DVZ (Division By Zero)

The DVZ exception (sets flag —7) occurs when a finite operand produces an exact infinite result
(+1Inf or —Inf). The actual result depends on the T setting.

OVF (Overflow)

The OVF exception (sets flag —6) occurs when the magnitude of a result is too large to fit into its
destination format.

UNF (Underflow)

The UNF exception occurs when the magnitude of a nonzero result is less than 1E—499. If TEARF
CUMF % 2, the underflow exception flag (flag —5) is set whenever the underflow exception occurs.
Otherwise, the HP-71 sets this flag only if the underflow exception occurs and the result cannot be
exactly represented in the destination’s denormalized format.

INX (Inexact Result)

The INX exception (sets flag —4) occurs when a result may be inexact. If the HP-71 does not set the
inexact result flag, the result is exact. For several functions (+, ~, %, », & , and 1), the flag is set
only if the result is inexact. However, for some compound functions like " and the statistics functions,
the computer sometimes sets the flag for results that are actually exact.

HP-71 Keyword Index and Summary

Some keywords appear in more than one category.

Keyword

Page

Description

AUTO
DELETE
EDIT
FETCH
LIET
HAME
FLIZT
FRIVATE
FEM (')

FREHUMEER
ZECURE
TEAMSFORM
UHSECURE

CHLL

CHAIH

COMT
FLH

Program Execution

Program Entry/Editing

26
77
91
110
173
191
211
225
242

245
260
289
297
306

31

42

52
255

Numbers lines automatically.

Deletes program line(s) from current file.

Assigns “current file” status to specified file.

Displays any line of current program.

Displays listing of specified lines in a file.

Names the waorkfile.

Prints listing of specified lines in a file.

Limits access to file and restricts changes in its protection.

Enables entry of comments in program lines for program
documentation.

Renumbers lines in current file.

Protects file from being altered or purged.
Transforms BASIC file to TEXT file, or reverse.
Clears file access restriction set by SECUFRE.
Appends a statement in a multiple-statement line.

Transfers program execution to subprogram.

Purges current file, copies specified file into main RAM, and exe-
cutes that file.

Continues execution of suspended program.
Executes a BASIC or binary program.

394

HP-71 Keyword Index and Summary 395

Keyword Page Description

Program Control

Y E 30 Turns computer off.

CHLL 31 Transfers program execution to subprogram.

CHAIH 42 Purges current file, copies specified file into main RAM, and exe-
cutes that file.

GEF FH 67 Indicates beginning of user-defined function definition.

EHD 93 Terminates a subprogram, user-defined function, or program.

EHO CDEF 94 Causes normal return from a multiple-statement user-defined
function.

EHD =UE 94 Causes normal return from subprogram invoked by CHLL
statement.

FH 116 Transfers program execution to specified user-defined function.

FOR ... HEST 118 Defines loop that is repeated until loop counter exceeds specified
value.

COSUE 129 Transfers program execution to subroutine.

COTO 131 Transfers program execution to specified statement.

IF ... THEHW...ELSE 134 Provides conditional execution.

LFF 195 Turns computer off.

OFF ERROR 195 Disables any previous M ERRDOFE statement.

OFF TIMER 195 Deactivates corresponding [t TIMER # statement.

OH ERROR GOSUE 197 Executes specified subroutine when an error occurs.

OH ERROE GOTO 197 Executes specified branch when an error occurs.

OH TIWMER # 201 Interrupts program at specified time and causes specified branching
to occur.

OH .. GOSUE 199 Transfers program execution to selected subroutine.

OH .. E0TO 199 Transfers program execution to selected statement or line.

GH .. . RESTORE 199 Selects which OHTH statement will be used by next RERD
statement.

FAUSE 208 Suspends program execution.

FOF 215 Cancels pending return of program execution from current

i Compuier

Museum,

subroutine.

396 HP-71 Keyword Index and Summary

Keyword Page Description
FETURH 251 Returns program execution to statement following invoking
GOSUE.
STOF 279 Terminates a subprogram, user-defined function, or program.
SUE 282 Identifies beginning of subprogram.
HWAIT 302 Causes program execution to wait for specified number of seconds.
Debugging
COMT 52 Continues execution of suspended program.
DEFAULT 72 Sets math exception traps to specific values.
EREL 100 Returns line number of most recent error or warning.
EFEREME 101 Returns message text of most recent error or warning.
ERFH 102 Returns error number of most recent error or warning.
OH ERROR GOSUE 197 Executes specified subroutine when an error occurrs.
OH ERREOR GOTO 197 Executes specified branch when an error occurs.
FARUZE 208 Suspends program execution.
TEACE 288 Traces program execution and variables in a running program.

Storage Allocation

CLAIM PORT 48 Returns independent RAM to main RAM status.
DESTROY 78 Deletes variables and arrays from memory.
DI 79 Allocates memory for string or REAL variables and arrays.
FEEE FORT 122 Switches a portion of main RAM to independent RAM status.
IHTEZER 155 Creates INTEGER variables and arrays.
MEN 184 Returns number of bytes available in memory.
ORFTION BASE 204 Specifies subscript lower bounds for arrays.
REAL 238 Creates REAL variables and arrays.
SHORT 269 Creates SHORT variables and arrays.
271 Displays type and size of all plug-in memory devices and indepen-
dent RAMs.

ZTHT 275 Selects or creates a statistical array.

HP-71 Keyword Index and Summary 397

Keyword

Page

Description

Logical and Relational Operators

AND
EXOR
HOT
OF

#

19
108
193
206
317
317
317
317
317
317
317
317

Arithmetic Operators

+

F

[ERRY

General Math
HES
CEIL

CLAZSZ
ouwz
EXFOMEMT
FRCT
FLOOE

308
309
310
311

87

312
313

10
40

49
90
108
109
115

Performs logical And of its operands.

Performs logical Exclusive Or of its operands.

Performs logical Not of its operand.

Performs logical Or of its operands.

Performs Equality test on its operands.

Performs Inequality test on its operands.

Performs Less Than or Greater Than test on its operands.
Performs Less Than test on its operands.

Performs Less Than or Equal To test on its operands.
Performs Greater Than test on its operands.

Performs Greater Than or Equal To test on its operands.
Performs Unordered Comparison test on its operands.

Addition.

Subtraction.

Multiplication.

Division.

Divides one argument by another and returns integer portion of
quotient.

Exponentiation.

Percent.

Returns absolute value of its argument.

Returns smallest integer greater than or equal to specified
argument.

Returns value indicating class of argument.
Returns divide-by-zero flag number (—7).

Returns exponent of its normalized argument.
Returns factorial of non-negative integer argument.

Returns greatest integer less than or equal to argument.

398 HP-71 Keyword Index and Summary

Keyword Page Description

FF 121 Returns fractional part of numeric value.

IHT 154 Returns greatest integer less than or equal to argument.

THA 157 Returns inexact result flag number (—4).

IF 158 Returns integer part of argument.

IWL 159 Returns invalid operation flag number (—8).

LET 168 Assigns value to variable.

MR 181 Returns larger of two values.

MIH 188 Returns smaller of two values.

M0 190 Returns remainder of modulo reduction.

QFTICOH ROLUMD 204 Selects roundoff setting.

OWF 207 Returns overflow flag number (—6).

FAHDOMIZE 233 Specifies a “seed” for the RHDO function.

RED 240 Returns remainder of argument reduction.

RES 247 Returns value of most recently executed numeric expression.

RO 252 Returns remainder of division.

FHE 254 Returns next real number in a pseudo-random number sequence
and updates current seed.

SGH 268 Returns —1, 0, or 1 if argument is less than zero, equal to zero, or
greater than zero, respectively.

SRR 273 Returns square root of argument.

SRET 273 Alternate spelling for =R,

UHF 295 Returns underflow flag number (—5).

Logarithmic Operations

E=F 106 Returns the number e = 2.718281828 . . . raised to power given by
argument.

ExFMIL 107 Returns value of gument _ 1,

ESFOMENT 108 Returns exponent of its normalized argument.

LGT 178 Alternate spelling for LOG14.

LH 176 Alternate spelling for L0,

LOG 176 Returns natural logarithm (base e} of argument.

LOGF1 177 Returns In(1 + argument).

LOG1a 178 Returns iogarithm (base 10} of argument.

HP-71 Keyword Index and Summary 399

Keyword

Page

Description

Trigonometric Operations

HCOS

ACS
AHGLE

COs

DET

ODEGREES=
OFTION AMGLE
READ

FAOIAMS

SIH

THH

Statistics
ADD

CLETAT
CORE

OROF
LF

MEAH
FREEDW
SOEY
STHT
TOTAL

11
11
20
22
22
25
25
59
73
74
204
231
232
272
284

12

51
58

88

179

183
218
259
275
287

Returns arccosine of its argument.

Alternate spelling for ARCO%,

Returns polar angle determined by (x,y) coordinate pair.
Returns arcsine of its argument.

Alternate spelling for A IH.

Returns arctangent of its argument.

Alternate spelling for ATHH.

Returns cosine of its argument.

Converts argument in radians to degrees.

Sets unit of measure for expressing angles to degrees.
Selects unit of measure for expressing angles.
Converts arguments expressed in degrees to radians.
Sets unit of measure for expressing angles to radians.
Returns sine of its argument.

Returns tangent of its argument.

Adds coordinates of a data point to data set represented by sum-
mary statistics in current statistical array.

Clears all elements in current statistical array.

Returns sample correlation coefficient between a specified pair of
variables.

Removes coordinates of a data point from the data set represented
by summary statistics in current statistical array.

Specifies current linear regression model and computes intercept
and slope for that model.

Returns sample mean of specified variable.
Returns predicted value of dependent variable.
Returns standard deviation of specified variable.
Selects or creates statistical array.

Returns total of specified variable.

400 HP-71 Keyword Index and Summary

Keyword Page Description
Constants
EF= 99 Returns HP-71’s smallest positive, normalized number
(1.0 E—499).
IHF 150 Returns machine representation of positive infinity.
MAXEEAL 182 Returns maximum positive finite number that the HP-71 can repre-
sent (9.99999999999E499).
MIMREEAL 189 Returns smallest positive number that HP-71 can represent
(0.00000000001E —499).
HAH 192 Returns Signaling NaN.
FI 210 Returns 12-digit value representing .
Strings
e 307 Concatenation operator.
CHE# 47 Converts numeric value into ASCII character.
LEH 167 Returns length of specified string.
R 194 Returns ASCIl numeric code for first character of string.
FOS 216 Returns position of given substring.
STR# 280 Returns string representation of value of argument.
LUPRECE 298 Converts lowercase letters to uppercase.
WAL 300 Converts a numeric expression within a string expression to a nu-
meric value.
VER# 301 Indicates versions of system ROMs and LEX files.
Input/Output
ASSIGH # 23 Associates symbolic channel number with specified file and opens
that file.
EEEF 28 Causes specified tone to sound.
EEEF 0OFF 28 Disables beeper.
BEEEF 0OH 28 Enables beeper.
COMTRAST 54 Adjusts display contrast.
55 Copies information from source file to destination file.
60 Creates a data file.
62 Contains data that can be read by EERD.
75 Sets line and character scroll rates in display.

HP-71 Keyword Index and Summary 401

Keyword Page Description

OISk 82 Displays numeric and string data.

OISP WSIMG 84 Displays items according to specified format.

OIZF¥ 86 Returns string containing all readable characters in display.

EHOLIHE 96 Specifies end-of-line sequence used in FEIMT and FLIST
statements.

EHG 97 Selects engineering display format.

FIX 112 Selects fixed display format.

GOIZF 124 Sets specified dot pattern in display.

COISF® 127 Returns 132-character string reflecting dot pattern in display.

IMAGE 136 Controls format of displayed and printed output.

IHFUT 151 Enables assigning values to program variables from keyboard.

FEEYDORH 164 Returns 0 or 1, depending on whether key is being pressed.

L 166 Selects between uppercase and lowercase lock on keyboard.

LIMFUT 171 Assigns display line to string variable.

LIZT 173 Displays listing of specified lines in a file.

CH ... RESTORE 199 Selects which DATH statement will be used by next RERD
statement.

FLIST 211 Prints on print device a listing of specified lines in a file.

FRIHT 219 Causes print list to be sent to print device.

FRINT USIHG 221 Causes print list to be sent to print device according to specified
format.

FRINT # 223 Writes data items to data file in memory.

FLT 229 Enters a specified key code into key buffer.

FUIDTH 230 Defines line length of FEIMT and FLIZT statements.

FEARD 234 Assigns values from [ATH statements to variables.

FEARD # 236 Reads data items from data file.

FESZTORE 249 Specifies which DRTH statement will be used by next READ
operation.

FESTORE # 250 Sets specified file pointer to indicated record number.

Ll 257 Selects scientific notation display format.

STD 277 Selects standard BASIC display format for numbers.

402 HP-71 Keyword Index and Summary

Keyword Page Description
THE 82 Moves OIZF or FREIMT position ahead to specified column.
219 (Refer to the DISP or PRINT keyword entry.)
HFRELCE 298 Converts lowercase letters to uppercase.
USER 299 Activates or deactivates user-defined key assignments.
WIODTH 303 Defines line length for T'I=ZF and LIST statements.
WIHDOOH 305 Sets display window size and location.
Graphics
GOISF 124 Sets specified dot pattern in display.
COISFS 127 Returns a 132-character string reflecting dot pattern in display.
File Management
RODOFE£ 13 Returns string representing hexadecimal address of specified file.
CHT 35 Gives catalog of file information.
CHT# 38 Returns catalog information for a specified file.
CLAIM FORET 48 Returns independent RAM to main RAM status.
CoORYy 55 Copies information from source file to destination file.
CREEATE 60 Creates a data file.
EOIT 91 Assigns “current file” status to specified file.
FREE FORET 122 Switches a portion of main RAM to independent RAM status.
MEHM 184 Returns number of bytes available in memory.
MERGE 186 Merges all or part of file into another file.
HAME 191 Names system workfile,
FEIVATE 225 Limits access to file and restricts changes in its protection.
FEOTECT 226 Write-protects one track of a magnetic card.
FURGE 227 Deletes file from RAM.
FEHARME 243 Changes name of file.
SECUEE 260 Protects file from being altered or purged.
SHOW FOET 271 Displays type and size of all plug-in memory devices and indepen-
dent RAMs.
TEAHZFOREH 289 Transforms BASIC files into TEXT files, or the reverse.
UHPROTECT 296 Removes the write-protection from one track of a magnetic card.
UHZECIIRE 297 Clears file access restriction set by SECUFRE.

HP-71 Keyword Index and Summary 403

Keyword Page Description

Time and Date

AOJAES 14 Performs an absolute adjust on system clock.

ADJUST 15 Changes clock time and specifies clock speed correction.

AF 17 Returns current value of clock accuracy factor and gives option of
setting new adjustment factor.

OATE 65 Returns current clock date as an integer (YYDDD).

OATE#* 66 Returns current clock date in year/month/day format.

EXALCT 103 Calibrates system clock and tells HP-71 that time currently stored is
the correct time.

FESET CLOCE 248 Nullifies effect of executing E<ALCT.

SETODATE 262 Sets date on system clock.

SETTIME 264 Sets time on system clock.

TIHME 285 Returns time of day in seconds since midnight.

TIME# 286 Returns time of day in HH :MM :SS format.

System Settings and Flags

CFLAG
DEFAULT
DEGREES
OELAY
ouz

FLAG

TH

WL

OFTICOH AMGLE
OFTICH EBASE
OFTION EOUHD
ouF

FAODIAHS
EESET

41
72
74
75
90
114

157
159
204
204
204
207
232
248

267

Clears specified user and/or system flags.
Sets math exception traps to specific values.
Selects degrees as unit of measure for angles.
Sets line and character scroll rates in display.
Returns divide-by-zero flag number (—7).

Returns current value (0 or 1) of specified flag, and optionally se-
lects new flag setting.

Returns inexact result flag number (—4).
Returns invalid operation flag number (—8).
Specifies unit of measure for expressing angles.
Specifies subscript lower bounds for arrays.
Specifies round-off setting.

Returns overflow flag number (—6).

Selects radians as unit of measure for angles.

Resets user and system flags and traps to their system default
settings.

Sets specified user and/or system flags.

404/405 HP-71 Keyword Index and Summary

HOOREF
CHRESET

CHARZETE*
COMTREAST

13
43

46
54
69
75
89

111
112

133

136
69
160

162
164
166
175

209
213
229
274
299
305

Keyword Page Description
TEAF 293 Returns trap for specified flag number and optionally selects new
trap setting.
LHF 295 Returns underflow flag number (—5).

Customization, Keyboard, and Display Control

Returns string representing hexadecimal address of specified file.

Specifies alternate character set in ASCll code range of 128
through 255.

Returns string representing current alternate character set.
Adjusts display contrast.

Assigns character string to specified key.

Sets line and character scroll rates in display.

Converts decimal number to string representing its five-digit hexa-
decimal value.

Displays specified key assignment for editing.

Sets fixed display format and number of fractional digits to be
displayed.

Converts string argument representing hexadecimal number to deci-
mal number.

Controls format of displayed and printed output.
Assigns character string to specified key.

Returns and deletes oldest key or keystroke combination from key-
board buffer.

Returns redefined value of a key.

Returns & or 1, depending on whether key is being pressed.
Selects between uppercase and lowercase lock on keyboard.

Sets password. Causes HP-71 to prompt for that password the
next time computer is turned on.

Returns contents of specified section of memory.

Writes to memory at specified hexadecimal address.

Enters a specified key code into key buffer.

Defines command string to be executed when HP-71 is turned on.
Activates or deactivates user-defined key assignments.

Sets display window size and location.

Subject Index

Page numbers in bold type indicate primary references; page numbers in standard type indicate
secondary references. Because the manual mentions some indexed topics only in a secondary sense,
such topics are listed without any primary references. Also, because the HP-71 keywords are listed
alphabetically in the Keyword Dictionary, main keyword entries are not indexed.

A

Abort, transformation, 292
Absolute value, 10
Access

random, 224, 237

sequential, 224, 237
Accuracy, 7, 284
Accuracy factor, default, 329
Actual parameter, 68, 116
Addition, 308
Address, hexadecimal, 89, 133, 209, 213
Adjust clock, 15
Adjust clock, absolute, 14
Adjustment

factor, 17, 104

interval, 17

period, clock, 103-104
Allocating memory, 79, 155, 156
Altering a file, protection, 260
Alternate character set, 43-45, 46, 323-326, 330

deactivating, 45

memory, 45
Ampersand, 307
Angle, unit of measure, 204-205
Angular setting, 11, 20, 22, 25, 59
Angular setting default, 74
Annunciator

flags, 319

RAD, 205, 232

SUSP, 110, 256, 53
ANSI

BASIC Standard, 252

minimal BASIC, 83

minimal BASIC Standard X3J2, 277, 280
Antilogarithm, 106, 107

Argument

normalized, 108

pairs, invalid, 20
Array, 155, 156

bounds, 316

creating, 169

deleting, 78

integer, 155-156

lower bounds, 204, 205

pass by reference, 32

real, 79-80, 238-239

real string, 80

redimensioning, 80, 156, 239

SHORT, 269-270

statistical, 12, 88, 218, 259, 275, 276, 287, 334-

337
statistical default OF TIOH EASE setting, 275,
276

string, 333

variable, 315, 316

variable, parameter passing, 282
ASCII, 61, 326

character, 47

character code, 43, 328

string, 237
Assigning variables, 151-153
Assignment

statement, 168-170

variable, 234-235
At (12) symbol, 274
At (12) symbol, with ITMAGE, 136
[ATTN], during input, 153
Automatic

line numbering, 26

startup, 274

timeout, 153

406

B

Base 10, logarithm, 178
BASIC file, 225
BASIC file, memory requirements, 331
BASIC-to-TEXT transformation, 290
Batteries, 329
EEEF, default setting, 330
BIN file, 225
BIN file, memory requirements, 332
Binary
codes, 323-326
operator, 206, 308-313
program, 255
representation, display, 124-126
subprogram, 283
Bit pattern, 127, 124-126
Bit pattern, locking, 126
Blank, 8
leading, 63, 82
trailing, 63, 82
use in inputs, 9
Branch, 197
on error, 197
timer, 201-203
tracing, 288
unconditional, 131, 135
Buffer
display, 124
input, 153
key, 160, 229
EYE, operation with timer, 202

C

(CALC], during input, 153
mode, 247, 274
mode, assignment statement, 168
Calendar date, 262-263
Calibrate, clock, 15, 103-104
Call
function, 235
subroutine, 197
Calling program, 63, 233
Card
copying, 226
file, private, 56
magnetic, 226, 296
protection, 296
reader, 36, 123, 226
verifying 56
Carriage return, 138, 220
Carriage return/line feed, 96. See also CR/LF.

Subject Index

Case lock, 166
Catalog

listing, 260

purged, 42

string form, 38

unsecured private file, 225
Channel, 23, 24, 32, 33
Channel number, 224, 236, 237, 250, 315
Character

code, 124, 125, 322-326

rate, 75

readable, 86

set, 322-326

set, alternate, 43-45, 46, 330

set, standard, 43

width, 44
Characters, control, 326-327
CHR$, 125, 127, 139, 145, 164, 194,

with character codes, 322-326

with escape sequence, 328
CLASS, 342
Classes of numbers, 342
Clearing a flag, 114
Clock, 103, 248, 262-266

absolute adjust, 14

adjustment

calibrate, 15

default settings, 329

factor, 17, 103-104

interval, 17

resolution, 16, 266

setting, 103

speed, 14, 15

stored correction, 15

time, 14
Codes, binary, 323-326
Codes, hexadecimal, 323-326
Columns, display, 44
Command stack, during input, 1563
Command stack memory requirements, 330
Commands, 5
Comments, 242
Comparison table, math exceptions, 344
Comparisons, unordered (), 343
Concatenation, 30, 34, 129, 130, 196, 274

IMAGE, 136

operator, 5

statements, 306

string, 307
Conditional execution, 134-135
Congruential method, linear, 254

407

408 Subject Index

Constants, memory requirements, 330
Continuing a program, 208

Control characters, 326-327. See also [CTAL].

Conversion
degrees to radians, 231
numeric-to-string, 280
string-to-numeric, 300
Coordinate pair, 20
Coordinates, of data point, 12
Copying a card, 226
Counter, loop, 118, 119
CR/LF, 96, 220
[CTRL), 328

keystrokes, 323. See also Control characters.

Current file, 91, 227, 228, 256
Curgent file, assigning, 36
Customizing the keyboard, 69

D

Data

assignments, 234-235

file, 60, 61, 223, 224, 236, 237, 250

file channels, memory requirements, 330

memory requirements, 331

point, 334, 336

pointer, 199, 200, 237

reading, 234-237, 249

type, changing, 239
Date, setting, 262-263
Deactivating timers, 196
Deassigning keys, 70
Debugging, 52
Decompile, TEXT/LIF1 file, 290
DEFAULT, math exceptions, 339
DEFALLT EXTEHD, 341
Default

angular setting, 74

environment, 314

settings, 329-330

value, math exceptions, 339-343
Degrees setting, 11
Degrees-to-radians conversion, 231
Deleting

file, 227-228

line number, 27

variables and arrays, 78

Delimiter, 9, 143, 171
field, 142
IMAGE, 146, 147

Denormalized number, 98, 189, 257, 277, 317, 341-

342
Dependent variable, 179, 180, 218
Destination file, 55-57, 187, 225, 290
Deviation, standard, 259
Device chain, 123
Device number, 48
Direct execute key, 162, 256

Direct execute user-defined key, during input, 153

Direct execution, 69, 70, 111,
['izr, implied, 135
Display, 124-126, 127, 128
buffer, 124
character set, 322-326
columns, 44
escape code sequences, 328
format, 277-278
format control, 136-149
formatting, 83, 85
line length, 303
list, 84
locking a bit pattern, 126
rounding, 280
setting, 112, 257
setting, changing, 278
setting, default, 329
string, 86
window, 305
zones, 82
Division-by-zero, 338, 393
Division-by-zero flag, 108
Dot pattern, 124-126, 127
Dot pattern display, 305
Duplicate names, subprograms, 33
Duration, 28, 29
0wz, 338
DVZ, 108, 150, 393

E

Subject Index

e, 106, 107, 176
Editing, 53, 91, 131
End-of-file mark, 224
End-of-line sequence, 96, 138
EHOL IHE, default setting, 329
Endline string, 96
Engineering display format, 97-98, 281
Environment, 33, 34, 256, 314
global, 33
local, 42, 228, 92
Environment, maintaining, 314
Environment, user-defined function, 117
EOL, 152
(ERRM], during input, 153
Error
clock precision, 103
correction, accumulated, 16
during input, 153
during transformation, 291-292
handling, in programs, 197-198
IMHGE syntax, 143
in subprogram, 100
line number, finding, 100
message, 378-392
message, defined, 378
nonBASIC program, 100
number, 102
reporting, 195
rounding, 339
rounding, string, 101
program, 197
Escape code sequences, display, 328
European digit separator, 141
European radix, 139, 141, 144
Exact flag, 103
Exception
flag, 72
flag, DVZ, 108
flag, DVZ, summary, 393
math, comparison table, 344
traps, 72
Exclusive or, 105
Execute only string, 172
Execution,
suspend, 117, 130
transferring, 251
Exponent

ODI%F or FRIWT USIHE maximum, 148

range, 182
Exponentiation, 312
Extended range computations, 108

Field delimiter, 142
File

access restriction, 260, 297
alter or purge protection, 260
automatic purge, during transformation, 292
backup, 292

BASIC, 225

BIN, 225

creating, 91-92

current, 36, 91, 227, 228, 256
DATA, 224, 237, 250

data, 223, 236

default condition, 329

deleting, 227-228

destination, 55-57, 187, 225, 290
header, 13, 77

independent of main RAM, 122
KEY, 243

key assignment, 297

kews, 212, 228, 299

LEX, 57, 292, 301

LIF1, 37, 57

list, 173-174

listing, 225

listing on printer, 211-212
memory requirements, 331
merging, 186-187

pointer, 110

private, 209, 213, 225, 260
private secured, 225

protection, 36, 260

purging. See deleting.
renaming, 243-244

reset, 48

SDATA, 224, 237, 250

source, 55-57, 187, 290

TEXT, 224, 237, 250

type unrecognized, 39
unrecoverable, during transformation, 292
unsecured, 225, 228, 297
warkfile, 191

Final value, loop, 119
Fixed format, 112
Fixed-precision display format, 280

409

410 Subject Index

Flag, 248
—5, 295
~10, 205
—15, 166
— 46, 248
clearing, 114
default settings, 329
divide-by-zero, 108, 90
Exact, 103
exception summary, 393
inexact result, 104, 157, 190
invalid operation, 159
INX, 252
math exception, 338
numbers
overflow (—6), 207
set, clear, test, save, 114
setting, 114, 267
subprogram, 314
system, 319
underflow exception {—5), 189
volume, 28
Floating specifiers, 147
FOE..HE*T loops, memory requirements, 332
Form feed, 138
Formal parameter, 33, 67, 68, 116
Format
control, display and printer, 136-149
display, 83, 85, 277-278
engineering, 97-98
fixed, 112
image, 221
Keyword Dictionary, 6-7
scientific, 257-258
string, 85, 138, 222
Fractional part, 121
Frequency, 28, 29
Function, call, 235
Function references, memory requirements, 331

G

Global
angular settings, 74
declaration, 233
effect, settings, 205
environment, 33, 314
timer, 203
tracing, 288
variables, 68
Glossary, using, 9
GOT, implied, 135
Gradual underflow, 341
Graphics, display, 124-128

H-1

Hexadecimal
address, 13, 209, 213
codes, 323-326
conversion, 89
to decimal conversion, 133

HP 82400A card reader, 296. See also Card reader.

HP Logical Interchange Format (See LIF1.)
HP-41, 61
HP-75, 61, 290
IEEE
Floating Point Standard, 241
Math Exceptions, 338-345
remainder function, 241
traps, 149
I[MAZE, location in program, 137
Image format, 221
Immediate execution, 70, 111
Implied
OIEF, 135
GOTO, 135
negative, 147
In-place transformation, 290, 292
Independent RAM, 122
Independent variable, 179, 180, 218
Inexact, 157
flag, 104, 190
result, 339, 393
INF, 169
Inf, 280, 300, 310, 311, 312, 313, 341
in IMAGE, 148-149
loop control value, 119
subtraction, 309
Infinite loop, 119, 198
Infinity, 341
Infinity, positive, 150
Initial value, loop, 119
Initialize, 155, 238, 239, 269
data, signalling NaN, 341
loop, 119
numeric array, 155
Input, line, 171-172
Imsufficient Memora, 122
INTEGER, 169
INTEGER variable, 247
Integer, greatest, 115
Integer, part, 158
Intercept, 179, 180
Interchanging files, 289

Invalid operation, 338, 393
Invalid operation flag, 159
Inverse transformation, 292
I, 339

It flag, 190, 252

VL, 338, 393

IVL trap value, loop control, 119

K

KEY file, 211, 243

KEY file, memory requirements, 331

Key
assignment, 70, 111, 243
assignment file, 297
buffer, 160, 229
code, 229
deassigning, 70
definition, 162
direct execute, 162, 256
file, list, 173, 174
nonterminating, 162
renaming, 243
terminating, 162
test, 164, 165
Keyboard, concatenation, 196
Keyboard control, 129
kewgs, 297
kews file, 70, 186, 212, 228, 299

Keystroke combinations, 319-322

Keyword
combined entry, 5
defined, 5
dictionary, how to use, 5
dictionary format, 6-7
finding entries, 5
index, using, 9
middle, 5
operators, 5
plug-in-module, 37
related, 6

Subject Index

L

LCD, 305
Leading blank, 63
Length of string expression, 167
LEX file, 57, 292, 301
LEX file memory requirements, 332
LIF1, 57, 60, 61
LIF1 file, 37, 290
Limits of numerical representation, 318
Line
feed, 138, 220
input, 171-172
length, 303
length, maximum, during transformation, 291
length, printer, 230
renumbering, 187
Line number, 131
automatic, 26
deleting, 27
Line rate, 75
Lines, renumbering, 245-246
Linear congruential method, 254
Linear regression, 179, 180
Linear regression, simple, 337
List display, 84
List halt, 174
Listing file, 225
Listing on a printer, 211-212
Local environment, 33, 34, 42, 228
Lock, case, 166
Locking a bit pattern, 126
Locking the HP-71, 175
Logarithm, natural, 176, 177
Logarithm base 10, 178
Logical NOT, 193
Logically false, 19
Loop, 118, 119, 122, 127, 128
Loop, infinite, 198
Loss of memory, 213
Lower bounds, subscript, 204, 205
Lowercase, 8, 166, 298

411

412 Subjent index

M

Machine—représentable numbers, 50

Magnetic card, 36, 226, 296. See also Card reader.

file size, 37
HP-75 file, 37
overhead, 37
track, 36
Main
environment, 314
program, variables, 130
RAM, 122
Matched sample, 334
Math exception, 338-345
comparison table, 344
CFLALG, 338
flag, 267
traps, 72
Math operators, 5
Math trap, 248
Maximum real number, 182
Maximum value, 181
Mean, sample, 183
Memory 184-185
allocating, 79, 155, 156
allocating, suspended program, 208
conserving, 306, 333
contents, 209
DATA files, 224
external, 184
insufficient during transformation, 292
loss, 213, 329
reclaiming, 78
releasing, 93, 94, 95
reset, 100, 101, 316, 329
reset, flags, 319
SDATA files, 224
system requirements, 330-332
type, 271
use, user-defined function, 94
writing to, 213
Memor g Lozt 122
Memorw Lozt condition, 329
Merging files, 186-187
Message string, error or warning, 101
Minimum of two values, 188
Minimum real number, 189
Minus, 309
Mode
CALC, 274
radians, 232
SCI, 257-258

Modulo, 190, 272, 284, 304
Multiple-statement function definition, 94
Multiple-statement line, 137
Multiplication, 310
Multistatement line, 306

restriction, 306

string, 274

string or command, 274

N

NaN, 150, 192, 280, 300, 340-341, 343
in IMAGE, 148-149
loop contro] value, 119
sign, 309
Natural logarithm, 176
Negative, implied, 147
Nested parentheses, 138
Nesting, IF...THEH...ELZE, 135
NonBASIC program, error, 100
Nonprogrammable function, 271

Nonprogrammable statement, 5, 110, 111, 122, 26,

48, 52, 77, 91
Nonterminating key, 162
Normalized

argument, 108

number, 98, 257, 342

number, smallest positive, 99
Not-a-number, 340-341. See also NaN.
Notation, scientific, 257
Null, 80, 247, 274

argument, 175

string, 101, 133, 160, 194, 274

string, k. E*¥OCKH parameter, 165
unquoted, 152
Number

classes, 342

denormalized, 189

machine-representable, 50
Numeric

expression, 318

precision, 80

settings, default, 329

variable, creating, 169

variable, REAL, 80, 239

variable, SHORT, 270
Numeric-to-string conversion, 280

0

Off, 30
Off, operation with timer, 202
On, continuous, default, 330
Opening a file, 60
Operator
binary, 308-313
concatenation, 5
descriptions, location 5
math, 5
memory requirements, 331
precedence, 105, 317
relational, 5
OFTIOH EASE setting, 80
Out-of-place transformation, 290
Output field, reusing, 142
Output list, 138, 142
Overflow, 108, 207, 338-339, 393
Overflow, factorial, 109
Overflow, IMAGE, 142
Overflow, string, 169
Overflow, threshold, 182, 317, 318
OVF, 150, 338-339, 393
OVF, trap, 142, 148

P

Padded file size, 37
Parameter
actual, 116
formal, 33, 116
passing, 31, 68, 116
passing, subprograms, 282-283
Pass by reference, 32
Pass by value, 32
Passing parameters, 31, 32
Passing parameters by value, 68
Password, 175
Password, default, 329
FEH, 145
Pending return, 215
Percent, 313
Pi (w), accuracy, 272
Pi (x), number of digits, 59
Piston program, 127, 128
Pointer
data, 199, 200, 235, 237
file, 110, 122, 250
program, 200
Polar angle, 20

Subject Index

Port, 122-123, 184, 271
device number, 122, 123
HPIL, 123
search, 92
Postfix form, 333
Precedence, operators, 105, 317
Precision, numeric, 80
Predicted value, 218
Print list, 221
Printer
format control, 136-149
listing a file, 211-212
width setting, 212
Private, 36
card file, 56
file, 209, 213, 225, 260
file, secured, 225
Program
binary, 255
calling, 233
debugging, 52
editing, 53, 91
entering, 91
error handling, 197-198
interruption, 256
line, multiple-statement, 137
scope, 117, 131
suspend, 42, 52, 92, 93, 208, 279, 339
suspend timer operation, 202
transfer execution, 199, 200, 201-203
Programming, default conditons, 330
Prompt, display message, 152
Prompt, input (7), 152
Protected field, display, 305
Protection, file, 36, 260
Pseudo-random number, 254
Purging a file, protection, 260

QR

413

Question mark (%) symbol, input, 152

Question mark () symbol, unordered comparisons,

343

Quiet NaN, 341, 342
Quoted strings, 6
Quotes, 6
Quotes, matching, 6
RAD annunciator, 74, 205, 232
Radians mode, 232
Radians setting, 11, 59
Radix, 141, 144, 146, 147

European, 139

IEEE proposal, 338

414 Subject Index

RAM Rounding, 341
independent, 122 error, 339
main, 122, 184 INTEGER variable, 169
plug-in, memory requirements, 332 SHORT variable, 169
removing, 122 Roundoff setting, 204, 205

Random [RUN], 256
access, 224, 237 during input, 153
number, 254 Run-time error, 102
number seed, 233

Range, exponent, 182 8

Range of numbers, diagram, 318 Sample, 334

Read list, 237 correlation, 58

Readable character, 86

r mean, 183

Real number, maximum, 182 standard deviation, 259
REAL numeric variables, 80, 190 SCI mode, 257-258
Record, 61, 224 Scientific

Record number, 224, 237, 250

A . notation, 257
Recoverable error, during transformation, 291

display format, 281

Recurs@on, 68 format, 257-258

Recursive calculation, statistics, 336 Scope, program, 117, 131
Redimensioning, 79, 288 Scrolling, 75, 127, 128, 305
Redimensioning an array, 156 SDATA file, 60, 61, 224, 237, 250

Reduction, 240-241

SDATA file, memory requirements, 332
Reference, parameter passing, 282

Search order, subprograms, 33

Regression, linear, 179, 180 Secure, 36

Reinitialize, 80, 156, 239, 270 Secured private file, 225
Reinitialize, numeric or array variable, 156 Seed, random number, 233, 254
Related keywords, 6 Sequential access, 224, 237
Relational operators, 5 Service, 301

Relative errors, logarithms, 177 Setting, display, 112

Releasing variables and memory, 93 Setting a flag, 114

REN, 137 Shifted keys, 1, g, 160
Remainder, 252 SHORT, 169

Remainder function, IEEE, 241 numeric variables, 247, 270
Remark, 63, 242 precision, 269-270
Remark with THAGE, 136 Sign, floating, 141
Renumbering lines, 187, 245-246
Replication, 138, 144 Signalling NaN, 192, 341, 342
Representable numbers, 317-318 Significance errors, 335
Reset, 175, 305 Simple variable, 315, 316
level three, 103 Single-step execution, 131

Sign of zero, 342

memory, 100, 101, 329 Slope, 179, 180
Restoring data pointer, 200 Smallest integer, 40
Return Source file, 55-57, 187, 290

from function, 94

Space, ignored in IMAGE, 143
from subprogram, 94

Specifier, port, 122

pending, 215) {(ssT], during input, 153
Reverse transformation, warning, 292 Standard deviation, 259
ROM

Standard display format 277-278, 280

plug-in, 145 Start line number, 26

plug-in memory requirments, 332
system, 301

SZTHRTLUF string, default, 330
Statement
concatenation, 306
joining, 306
suspend, 131
Statistical array, 259, 275, 276, 287, 334-337
default OFTIOH BEASE setting, 275, 276
specifying, 335
Statistics, 88
AOO, 336
CLETAHT, 336
OROF, 336
linear regression, 337
LF, 337
math exceptions, 339
ZTAHT, 335
ZTEFR, 118, 119
String
array, 333
assignments, 168-170
catalog, 38
concatenation, 307
execute only, 172
expression, length, 167
multistatement, 274
null, 101
overflow, 169
time, 286
variable, creating, 169
variable length, 81
String-to-numeric conversion, 300
Subprogram, 31, 32, 33, 34, 208, 233, 279, 282-283,
288, 315
calls, memory requirements, 332
DATA statements, 63
data reading, 249
duplicate names, 33
ending, 94
environment, 314
error, 100, 198
parameter list, 32
passing parameters, 31, 32, 116, 282-283
recursion, 32
search order, 33
suspended, 34, 95
terminating, 95
timer operation, 203

Subject Index

Subroutine, 129, 130, 200, 208, 215
call, 197
call, memory requirements, 332
on error, 197
return, 251
suspended execution, 130
timer, 202
Subscript, 155, 238
Subscript, array, 269, 316
Subscript, array, lower bounds, 204, 205
Substring, 216, 333
Substring, references, memory requirements, 331
SUSP annunciator, 53, 92, 110, 131, 256
Suspend
program, 93, 208
statement, 131
subprogram, 34, 95
user-defined function, 94
Suspended
execution, single-step, 131
program, 42, 52, 256, 279
program, timer operation, 202
Symbolic channel number, 23
Symbols, special, 346
Syntax
diagrams, 6
diagrams, how to read, 8
error, 102
error, IMAGE, 143
System
catalog, 33, 262-266
configuration, change, 122
flag, 114, 319
messages, 378, 382-383

T

415

THE, 82, 83, 220, 230, 304

Terminate program, subprogram, or user-defined
function, 93

Terminating key, 162

Test, loop, 119

TEXT file, 60, 61, 224, 237, 250, 289-292

TEXT file, memory requirements, 331

TEXT-to-BASIC transformation, 290

Threshold, overflow, 182

Threshold, underflow, 99, 341

416 Subject Index

Time
base, 17
error correction, 265-266
of day, 285, 286
setting, 264-266
string, 286
Timeout, automatic, 153
Timer, 195, 196, 201-203
Timer, suspended during input, 153
Tone, 28
Track, magnetic card, 36, 226, 296
Trailing blank, 63
Transfer, program execution, 199, 200, 201-203
Transferring execution, 129-132
Transforming files, 289-292
Trap, 150, 378, 339
1EEE, 149
math, 248
math exceptions, 72, 339, 340
OVF, 142
program errors, 197
settings, 169
underflow, 189
values, 293, 294
Trigonometric functions, spellings, 5
Truncated string, 142
Turn off, 195, 196
Typing aid, 70, 111

U

Unary operator, 308, 309
UHASESIGHED, 111
Unconditional branching, 135
Underflow, 108, 295, 339, 393
exception, 189
gradual, 341
threshold, 99, 317, 318, 341
UNF, 339, 393
Unlock, 175
Unordered comparisons (+), 343-344
Unrecoverable error, during transformation, 292
Unsecured file, 225, 228, 297
Uppercase, 8, 166
Uppercase conversion, 298
User
annunciator, 299
flag, 114
keyboard, 70, 299
mode, system flag, 299

User-defined function, 32, 116-117, 279, 315
calls, memory use, 94, 332
ending, 94
precedence, 117
same name, 117
suspend execution, 94, 117
value, 94
variable, 169
User-defined key assignments, 299

\Y

Value, parameter passing, 282
Variable
array, 315, 316
assigning, 151-153
assignments, 234-235
deleting, 78
dependent, 179, 180, 218
independent, 179, 180, 218
integer, 155-156, 247
local, 208
memory requirements, 332
numeric, 316
numeric, REAL, 80
numeric, SHORT, 270
passing, 31, 32, 33
real, 79-80, 238-239
real string, 80
reference, 235
reference, memory requirements, 331
redimensioned, 80
releasing, 93
SHORT, 247, 269-270
simple, 315, 316
simple, numeric, 270
string, 81, 316
string length, 81
subprogram, local, 283
subroutine access, 130
Verifying a card, 56
Version string, 301
(ViEw], 111
during input, 153
Viewing angle, 54
Volume flag, 28

W

Subject index

Z

417

Waiting period, 302
Warning, 100
defined, 378
during transformation, 290, 291-292
message string, 101
number, 102
Warnings, 378-381
Window, display, 305
Window, setting, 126
Workfile, 122
wark £ile, 91, 48, 191, 227, 228, 243, 290, 290
Wrap-around, 26
Write protection, 226, 296

Zero, positive and negative, 49, 50
Zero, sign of, 342

Zeroes, leading, 133

Zone, display, 82

How to Use This Manual (page 5)

HP-71 Keyword Dictionary (page 10)

System Characteristics (page 314)

Mathematical Discussion of HP-71 Statistical Arrays (page 334)
IEEE Proposal for Handling Math Exceptions (page 338)
Glossary (page 346)

Errors, Warnings, and System Messages (page 378)

Keyword Index and Summary (page 394) |

4 Subject Index (page 406)

ﬂﬁ HEWLETT

PACKARD

Portable Computer Division
1000 N.E. Circle Bivd., Corvallis, OR 97330, U.S.A.

European Headquarters HP-United Kingdom

" 150, Route Du Nant-D’Avril {Pinewood)
P.O. Box, CH-1217 Meyrin 2 . ' GB-Nine Mile Ride, Wokingham
Geneva-Switzerland A . Berkshire RG11 3LL

eorder Numbér
<9001 00071-90087
g2 =

e PCE—

Printed in U.S.A 5/84

