HP64000
Logic Development
System

File Format
Reference Manual

(bﬁ HEWLETT

PACKARD

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

3Y3aH Q04

HEWLETT
() P | | " " |

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 1303 COLORADO SPRINGS, COLORADO

(. POSTAGE WILL BE PAID BY ADDRESSEE

HEWLETT-PACKARD

Logic Product Support Dept.
Attn: Technical Publications Manager

Centennial Annex - D2
P.O. Box 617
Colorado Springs, Colorado 80901-0617

NO POSTAGE
NECESSARY
{F MAILED
IN THE
UNITED STATES

FOLD HERE

Your cooperation in completing and returning this form
will be greatly appreciated. Thank you.

READER COMMENT SHEET

Operating Manual
File Format Reference Manual
64980-90933, July 1984

Your comments are important to us. Please answer this questionaire and return it to us. Circle the number that best
describes your answer in questions 1 through 7. Thank you.

1. The information in this book is complete:

Doesn’t cover enough 1 2 3 4 5 Covers everything
(what more do you need?)

2. The information in this book is accurate:
Too many errors 1 2 3 4 5 Exactly right
3. The information in this book is easy to find: |
I can't find things | need 1 2 3 4 5 | can find info quickly
4. The Index and Tabie of Contents are useful:
Helpful 1 2 3 4 5 Missing or inadequate
5. What about the "how-to” procedures and examples:
No help 1 2 3 4 5 Very helpful
Too many now 1 2 3 4 5 I'd like more
6. What about the writing style:
| Confusing 1 2 3 4 5 Clear
7. What about organization of the book:
Poor order 1 2 3 4 5 Good order
8. What about the size of the book:
too big/smail 1 2 3 4 5 Right size

Comments:

Particular pages with errors?

Name (optional):
Job title:
Company:
Address:
Note: If mailed outside U.S.A., place card in envelope. Use address shown on other side of this card.

Fiile Format
Reference Manual

OHEWLETT-PACKARD COMPANY 1984
LOGIC SYSTEMS DIVISION
COLORADO SPRINGS, COLORADO, U. 8. A.

ALL RIGRTS RESERVED

Printing History

Each new edition of this manual incorporates ail materiai updated since the previous
edition. Manual change sheets are issued between editions, ailowing you to correct or
insert information in the current edition.

The part number on the back cover changes only when each new edition is published.
Minor corrections or additions may be made as the manual is reprinted between edi-
tions. Vertical bars in a page margin indicates the location of reprint corrections.

First Printing May, 1984

ii

{("\

(@

File Format
Reference Manual

TABLE OF CONTENTS

Chapter I: 64000 System Files and Their Organization

INErOdUCION ... o e 1-1
] T Y7 T -1 OO 1-1

Chapter 2: 64000 System File Generation and Usage

System Software Generation ... 2-1
=Y« 1] (o] S ST 2-1
F -1 11 o =Y - T O 2-1
PascCal anNd "C CoMPIlEIS ..ot e e e 2-1
1= - S S PP 2-4
Symbol Definitions and LOOK =UPcoiiiiiiiiiiiiii e e eeeaa e e 2-5

(234411 F- 1 (o] - SO OO PTUUPRRt 2-6

Software Performance ANAIYZEIcoiiiiiiiiiiiii et e e aeaans 2-8

TiMING ANAlYZer ... T PSP USROS 2-9

State/ SotWare ANAlY Zer ... 2-9

Chapter 3: System File Format

SyYsteM File (File TyP@ 1) i e et e e ea e e e e 3-1

Chapter 4: Source and Listing File Formats

Source File (Type 2) and Listing File (Type 8) ..., 4-1

Special Source or Listing Files ...t e 4-3

Chapter 5: Relocatable File Format

Relocatable File (File TYPe 3) ...cociiiiiiiiiii e e e anees 5-1
N E Ty - R UYed o] o [oY ¢ - | P 5-3
Global ReCOrd FOrmMat L i i e e v iee e et raete s e teeaenenes 5-6
External RecoOrd FOIrmMat ..o ettt e et e e e e 5-8
Double ReCOrd FOrMat ... et et r e e e et eeeans 5-9
B I o 1 T 1) € 6 T TN 5-12
ENnd RECOId FOrmMat . oo et ettt e e et a e e enenes 5-15
Chapter 6: Absolute File Format
ADSOIULE File (File TYP@) ..ot et ans 6-1
Processor INformation ReCord 6-2
(D L & W = {- Yol] o« PP 6-2
Chapter 7: Emulation Command File Format
Emulation Command File (File TyPe B) ...ocoiuiiniiiiiiiie e eaens 7-1
Special Emul__Com Files ... e 7-1

Chapter 8 Linker Command File Format

Linker Command File (File Ty P 7 oot e ee e 8-1

Chapter 9: Trace File Format

Trace File (File TyPe B) .o e et as 9-1

Product DescCriplions ... e 8-3
Software Performance ANAlY Zer ..o s 8-3
TN G AN Y 2O oo e e e e e 9-6
State/SottWaAre ANalY zZer .o e 9-8

File Format
Reference Manual

TABLE OF CONTENTS (Cont’d)

Optional Data Header Record Format -

State Analyzer Trace File ..., 9~-13
Optional Overview Data Record Format -

State ANAlYzZer FIle ..o 9-15
Optional Tracelist Data Record Format -

Sate ANAIY Zer TraCE .o it e e e e e 9-16
Emulation With Internal AnalysSis ..o e 9-17
TG FIl S oo e e e e e 9-17
Y oY Tof - VI I - Ul - 1 - T SRR 9-20
MEaASUI M BNt Sy S oM i e s 9-20

Chapter 10: Prom File Format

Prom File (FIle TYP@ O) oo e e it 10-1
Chapter 11: Data File Format
Data File (File TYPe 10) (i et 11-1
Chapter 12. State Analyzer Database File Format
State Analyzer Database File (File Type 11) ..ot 12-1
Header Record Format - State
Analyzer Database File ..o s 12-2
32-Bit Program Range Record - State
Analyzer Database File ..o e 12-4
16-Bit Symbol Record - State Analyzer
Database File ... e e et as 12-5
32-Bit Symbol Record - State Analyzer
Database FIle ...t et e e 12-6
16-Bit Line Number Symbol Record - State
Analyzer Database FHle ..o 12-7
32-Bit Line Number Symbol Record - State
Analyzer Database File ... e 12-7
Chapter 13: Assembler Symbol File Format
Assembler Symbol Flle (FIle TYP@ 12) oot eaes 13-1
Assembler SYmboOl ReCOrd ... e 13-2
Chapter 14: Linker Symbol File Format
Linker SYmbol File (File TYPe@ 13) ..o e et e e 14-1
Processor Configuration RECOrd e rreee e 14-3
Global SYMBOI RECOIA ... it s e e e eas e e e n v s e e e sn e enesnens 14-5
SoUrce Name ReCOINd et e e e e e e e e e e enes 14-7
MEMOTY SPACE RO COIT Lo i ettt e e s e e e eaneeens 14-9
Chapter 15: Temporary File Format
Temporary File (File Type 800H = 8FFH) ..ot ee e e 15-1
RegQUIAr T emMP FileS .o et et ettt ra e e a e reeaeaes 15-1
SPECIAl TeMP FilS ..ot et et et e vt a e s eeenane 15-1

iv

@

File Format
Reference Manual

TABLE OF CONTENTS (Cont’d)

Chapter 16. Device File Format

Device File (File Type 8000H = 8FFFH)ccooiiiiiiii e 16-1

Chapter 17: Simulated 1/0 File Format

Simulated 170 File (all non-=specified types) ...t 17-1

Appendix A: Supported Processors and Format Number Descriptions

Format Numbers and Skeleton Requirementscooiiiiiiiiiiiii e A-2
8085/ 80 AN Z B0 ...ttt et A-2
8800/ 01/ 02/ 08/ 05/ 00 .ot e e e aaas A-3
L5710). PN A-4
Lo X= 10 Lo T o LT A-4
8021722/ 81748 ..o s A-6
9900/ A0/ 857 89/ OO ..o e A-7
1212) O & U O N A-8
1 =10 3 OO A-9
L < S U TN A-10
A - S NPTt A-11
BB/ B8/ 80 .ot A-12
b4 =100 b I PP A-13
20 2> U O PON A-18
LI >0 7 S U U PP A-19
I T 3L o I PO A-19

Appendix B: Source Name Description - Fixed Lengthccccciviiiiiiiiiiiiiiinnnnnn. B-1

Appendic C: Linker Table Description -~ FixedLengthccoiiiiiiiiiiiiiinnnn, c-1

Appendix D: Symbol Name Description - Variable Lengthccooieiiiiiine. D-1

Appendix E: Memory Space Record - Source Name Description -
(D Y WY T | { o P E-1

LIST OF ILLUSTRATIONS

2-1. File Generation and Usage During Microprocessor

Software Generation AcCtivitieso 2-2
2-2. File Generation and Usage During Emulationc.ccooiiiiiiiiiiiii . 2-7
2-3. File Generation and Usage tor

Software Performance ANAIYZerccooiiiiiiiii e e 2-8
2-4. File Generation and Usage for Timing ApalyzZercccoooiiiiiiiiiiiiiineeeieanes 2-9
2-5. File Generation and Usage for State/Software Analyzer 2-9

File Format

Reference Manual

4-1, Source and Listing Files - Overall Structurecoiiiiiiiiiiee, 4-1
4-2. Source and Listing Files — Source Record Formatcoooiiiiiiiiiiiiiiiannnnan.. 4-2
5-1. Relocatable Files = Overall Structurecocoiiiii e, 5-2
5-2. Relocatabie File —Name Record Format ... 5-4
5-3. Global Symbol Record - Overall Structureocociiiiiiiiiiiren, 5-7
5-4. External Symbol Record — Overall Structure ..o, 5-9
5-5. Double Record — Overall Structurec.cooooiriiiiiiii e 5-10
B=8. TIm OO FOrMaAt o e 5-12
R P B 0 b I e 1 1 F- 1 S PN 5-13
R - T W 1o I LT o 117 | U 5-13
5=, T POMmMat L s 5-14
5-10. End Record = Overall Structure ... 5-15§
6-1. 64000 Systemb Files - Overall Structure ..ot 6-1
6-2. Absolute File - Processor Information Record Formatc.oooviiinn. 6-2
6-3. Absolute File —Data Record Format ..., 6-3
9-1. Trace Files —Overall Structure ..., 9-1
9-2. Identification Record - Overall Structurecooeiiiiiiiiii 9-2
9-3. Trace File Format - Software Performance Analyzercccooviviiinininininn. 9-3
9-4. Identification Record - Software Performance Analyzerc.ocovvveeeeninnnnn. 9-4
O=5. EVeNt ATTay ENITY o 9-5
9-6. Data ReCord FOrmat ... e e 9-5
9-7. Time Event Boundry Definition ..o 9-6
9-8. Time Event Boundary EXampPle ..ottt 9-6
9-9. Trace File Format = Timing ANAIYZer ..o e 9-7
9-10. Identification Record = Timing ANAIYZerccooiviiiriiiiiiii e eneees 9-7
9-11. Trace File Format ~ State Analyzer ... 9-9
9-12. Identification Record - State Analyzerocoiiiiiiiiiiiie e 9-11
9-13. Fixed Configuration Dump Record Format ..., 9-11
9-14. Last Configuration Dump Record Formatcccoiiiiiiiiiiiiiie, 9-12
9-15. Symbol Table Record Format ... 9-12
9-16. Expression Record Format 9-12
9-17. Optional Data Header Record Format ..., 9-14
9-18. Optional Overview Data Record Formatccoiiiiiiiiiiiiiiii e, 9-15
9-19. Optional Tracelist Data Record Format ...t 9-17
9-20. Trace File Format —Internal Analysisc.cooiiiiiiiiiiiiiii e, 9-18
9-21. Identitication Record - Internal Analysis ...t s 9-18
9-22. Display Spec Record Format ... 9-19
9-23. Trace Status Record Format ..., 9~-19
9-24. Data Record Format —Emulation ... 9-20
~1.Data Files = Overall Structure ... e 11-1
=2.Data ReCOrd FOrmat e 11-2
12~1. Database File Format - State Analyzer ... 12-1
12-2. Header Record FOrmat e e eees 12-3
12-3. 32-Bit Program Range Record Format ..o, 12-4
12-4. 16-Bit Symbol Record Format ... 12-5

LISTOFILLUSTRATIONS (Cont’'d)

File Format
Reference Manual

LISTOFILLUSTRATIONS (Cont’'d)

12~5. 32-Bit Symbol Record FOrmato e 12-6
12-6. 16-Bit Line Number Symbol Record Formatc.oovveriiiiiiiiiiiin, 12-7
12~7. 32-Bit Line Number Symbol Record Foramtccoiiviiiiiiinin., 12-7
13~-1. Assembler Symbol File - Overall Structure ..., 13-1
13-2. Assembler Symbol File - Assembler Symbol Record Format 13-3
14-1. Linker Symbol File = Overall Structureooooiiiiiiiii i, 14-2
14-2. Linker Symbol File - Processor Contiguration Record Format 14-4
14-3. Linker Symbol File - Global Symbol Record Formatccooviiniininnn.. 14-6
14-4. Linker Symbol File - Source Name Record Formatcoeiiiiiriiininn.. 14-8
14-5. Linker Symbol File - Memory Space Record Format 14-11
17-1. Simulated 1/0 Files ~ Overall Structureocovveiiiiiiiiiieen, 17-1
17-2. Data Record FOrmat ... e 17-2
B-1. Source Name Description BIOCKccooiiiiiiiiiii B-1
B-2. Source Name Description EXampleccooiiiiiiiiiiiiiii e B-2
C-1. Linker Table DescCription BIOCKccoooiiiimiiiiiiiiiiie e v c-1
C-2. Linker Table Description Example ..ot e, c-2
D-1. Symbol Name Description BIOCKoviniiiiii e D-1
D-2. Symbol Name Description EXamplecoooiviiiiiiiiiiiiiir e D-2
E-1. Memory Space Record - Source Name Description Blockc.....ooeinil. E-1
E-2. Memory Space Record - Source Name Description Example E-2

LIST OF TABLES

1-1. 64000 System File Type Numbers and Associated Names 1-2

A-1. SUPPOrted MICrOPrOCESSONS ...ttt et ea e e A-1

A-2. Format Number Descriptions tor 8080/852Z80cciiiiiiiiiiiiiiiiiiiiie e, A=-2

A-3. Format Number Descriptions tor 6800/01/02/03/05/09cocoviiiiiiiiiinnnns A-3

A-4. Format Number Descriptions tor 650X ..ot A-4

A-5. Format Number Descriptions tor 68000 ... A-5

A-6. Format Number Descriptions for 8021/22/41/48coiiiiiiiiiiiiiiiinenn A-6

' A-7. Format Number Descriptions for 8800/40/85/88/99cccooveiiveviiinirnnnnnnnn. A-7
;.- A-8. Format Number Descriptions tor 9980coiiiiiiiiiiiiiii A-7
N A-9. Format Number Descriptions for S9XXXccooeiiiiiiiiiinii e A-8
A-10. Format Number Descriptions for 1802 A-9

vii

File Format
Reference Manual

LIST OF TABLES (Cont’d)

A-11. Format Number DesScriptions 1Oor F8o.ooviviiviiiiii s e A-10
A-12. Format Number Descriptions for Z8 ..ot A-11
A-13. Format Number Descriptions for 8088/86/88/89c.covivivviiiiiiiiiiinnnns A-12
A-14. Format Number Descriptions for Z8001/2 ..ot A-13
A-15. Format Number Descriptions for 8051o.ooiiiiiiiiiii e, A-18
A-16. Format Number Descriptions for 1750Ao, A-19
A-17. Format Number Descriptions for TMS320 ..., A-20

viii

Chapter 1

64000 SYSTEM FILES
AND THEIR ORGANIZATION

INTRODUCTION

This manual provides descriptions of the Hewlett-Packard 64000 System file struc-
tures. However, it is not intended to provide methods for manipulating these files. For
that information, piease refer to the applicable HP documentation on Simulated 1/0,
terminal mode and HP protocol, copy command, HOST Pascal, and HP|B transfers.

The first two chapters of this manual provide an overview of the 84000 System file
types, their generation, and their usage. Succeeding chapters more fully describe the
contents of each file type by showing the overall file structure and by presenting the
specific details of each record type in the file.

FILE TYPES

A collection of information is stored on a 64000 system disc as a file. Each 64000 file
has four associated attributes which give it a unique identification: the name, the
userid, the disc logical unit (LU) number, and the file type. For more information on the
name, userid, and LU number, refer to the System Software Reference Manual.

There are 15 designated file type names currently in use by the 64000 system. These
are the names which appear in the column labeled "TYPE” in a directory listing. Each
file type name has a file type number associated with it. The file type number is stored
in one 16-bit word. The 64000 System file type names and numbers are shown in
Table 1-1.

1-1

File Format
Reference Manual

1-2

Table 1-1. 64000 System File Type Numbers and Associated Names

File Type # File Type Name Abbreviation
1 system
2 source
3 relocatable reloc
4 absolute
5 listing
6 emulation command emul_com
7 linker command link_com
8 troce
9 prom
10 data
11 assembler database asmb_db
12 assembier symbaol asmb_sym
13 linker symbol link _sym
0800H—-Q8FFH temporary temp
8000H—-8FFFH device
all others simulated 1/0 sim_I/0

Chapter 2

64000 SYSTEM FILE
GENERATION AND USAGE

SYSTEM SOFTWARE GENERATION

The relationships between the files generated and used by the 64000 System in the
process of creating software for execution on target microprocessors are shown in
Figure 2-1.

EDITOR

The 64000 System Editor allows the user to create new tiles of type :source or type
listing or to edit existing source or listing files. In the process of generating micro-
processor software, tiles of type :source must be used. The next step is to assemble
or compile the source file.

ASSEMBLERS

Assemblers in the 64000 System accept source files as input and typically create two
files, each having the same name, userid, and disc LU number as the source file which
was assembied. The tirst, a file of type .reloc, contains the relocatable code, along
with global and external symbol information. The second, of type :asmb__sym, is an
assembler symbol file which contains all of the symbols detined in the source file along
with their relocatable addresses.

Additionally, a file of type .listing, showing the code generated by each assembly lan-
guage instruction (in hexadecimal) and symbol usage, will be generated by the 64000
System Assembler when the user requests it. For more detailed information on file
generation and usage, reter to the 64000 System Assembler/Linker Reference Manual.

PASCAL AND "C" COMPILERS

The 64000 System Pascal and "C" Compilers accept source files as input and typically
create two files, each having the same name, userid, and disc LU number as the source
tile which was compiled. The tirst, a tile of type :reloc, contains the relocatable code,
along with global and external symbol information. The second, ot type :asmb__sym, is
an assembler symbol tile which contains all of the local compiler generated symbols,
along with their relocatable addresses.

2-1

File Format
Reference Manual

EDITOR
:source or
:listing file
ASSEMBLER
V' %
reloc :asmb_sym listing
file file file (opt)
PASCAL /64000
OR IICII
COMPILER
] YV Vi
‘reloc :assmb_.sym Hlisting (O?:::::l:r)
file file file (opt) file (opt)
V \
LINKER link_com file
¥ v
:link_sym :absolute listing
file file file (opt)

Figure 2-1. File Generation and Usage During
Microprocessor Software Generation Activities

2-2

=Y

N

File Format
Reference Manual

The user may specify the generation of files of type :listing or :source by the 64000
System Pascal and "C" Compilers. The listing file gives assembly language code
generated and symbol usage, while the source tile consists of assembly language code
which can be assembled to generate separate relocatable and assembler symbol files.

For more information on tile generation and usage, refer to the Pascal/ 64000 Compiler
Reference Manual or the C/64000 Compllier Reference Manual.

PASCAL COMPILER GENERATED SYMBOLS. Assembler symbol files which are
generated by the Pascal/64000 Compilers contain any user-defined labels within
procedures. The compiler generates these labels in the form LABEL__ NN, where NN is
the number ot the label; they are always local. In addition, the asmb__sym file contains
several types of symbols which are detined by the compiller itself. Line number labels
of the form #dddd, where dddd Is a fixed-length, four-digit number which Is right-
justitied and blank ~fllled, are specitied for each line of source code. Their addresses
correspond to those of the tirst executable line of code which Is generated as a result
of the source statement. These line numbers are then referenced by measurement
system module software upon user request.

Also defined is a Procedure Entry Label which has the name of the procedure itself. It
will be a global symbol it the procedure is global and its address corresponds to that
of the tirst executable line ot assembly language code generated tor the procedure.

(The maln program is always global.) Other symbols generated by the Pascal/ 64000
Compilers are of the form Xfunc, where X is a character and func is the user-defined
procedure name, truncated (if necessary) so that the total label has a maximum length
ot 15 characters.

The first of these symbols, called an End Label, consists of the letter "E” concatenated
with the procedure name; it is generated for each procedure. Its address is the same
as that of the last byte of assembly language code generated for the procedure. This
includes any data associated with the procedure which Is in the PROG area. The End
Label will be global it the procedure is giobal.

The return instruction from a procedure is labeled with the letter "R” concatenated
with the procedure name and called a Return Label. Its address corresponds to that ot
the assembly language return instruction. The Return Label will be global if the proce-
dure is global.

If a procedure has an associated data area in memory, the beginning of that area wiil
be labeled with the letter "D” concatenated with the procedure name. This Is called a
Data Label, and it is always a local symbol.

Other labels may be used by specific processor Pascal/ 64000 compilers. For more in-
tormation, reter to the appropriate Pascal/64000 Compiter Supplement Manual.

2-3

File Format
Reference Manual

“C* COMPILER GENERATED SYMBOLS. Assembler symbol files which are generated
by the 64000 System "C" Compilers contain any user-defined labels wlithin functions.
These labels are always local. In addition, the asmb__sym file contalns several types
of symbols which are defined by the compiler Itselt. Line number labeis of the form
#dddd, where dddd is a fixed-length, four-digit number which is right-justifled and
blank ~fliled, are specified for each line of source code. Their addresses correspond
to those of the first executable line of code which is generated as a result of the
source statement. These line numbers are then referenced by measurement system
module software upon user request.

The first of these symbols, called a Function Entry Label, has the name otf the function
itself. It wlll be a global symbol it the function is global and its address corresponds to
that of the tirst executable line of assembly language code generated for the function.
Other symbols generated by the 64000 System "C" Compilers are of the form Xfunc,
where X Is a character and func Is the user-defined function name, truncated, If
necessary, so that the total labei has a maximum length of 15 characters.

The first of these symbols, called an End Label, consists of the letter "E” concatenated
with the function name; it is generated for each function. Its address is the same as
that of the last byte of assembiy language code generated tor the function. This in-
cludes any data associated with the function which is in the PROG area. The End L.abel
will be global it the function is global.

The return instruction from a function is iabeled with the letter "R™ concatenated with
the function name and called a Return Labei. its address corresponds to that of the
assembly language return instruction. The Return Label will be global if the function is
giobal.

It a function has an associated data area in memory, the beginning of that area will be
labeled with the ietter "D” concatenated with the function name. This is cailed a Data
Label, and it is always a local symbol.

Other labels may be used by specific processor "C" compilers. For more information,
refer to the appropriate "C” Compiier Suppiement Manual.

LINKERS

The final step in the microprocessor software generation process on the 64000
System is the creation of the absoiute fiie. This is accomplished by a 64000 System
Linker which accepts reiocatable and/or linker symbol files as inputs and typicaiiy
produces three fiies which have the same name, userid, and LU number as specified in
the answer to the question "Absolute file?” which is asked during linker configuration.

2-4

File Format
Reference Manual

The first, a file of type :absolute, contains the absolute data to be used to program a
PROM or Is loaded Into the microprocessor memory space by the emulator along with
information indicating where the code is to be loaded. If only :link__sym flles have
been iinked, the absolute file consists solely of a header record with no data records
specified.

A linker symboi flle, type :link__sym, is the second file type generated by the linker. it
contains a list of the sources from which the relocatabie files that were linked were
derived and the starting addresses of each of the segments of code (PROG, DATA,
COMN, and ABSOLUTE) that were produced for that file. Additionaily, it contains a list
of all global symbols from those sources and their addresses. (Giobal symbols are
those symbols which are defined in the source file as being global.) If any :link__sym
files have been linked, the global symbols from each of those files, along with their ad-
dresses, are Iincluded in the new linker symbol file which is created. This new linker
symbol flle DOES NOT contain the list of the original source files from which those
globai symbols were gathered.

A file of type :link__com is the third file type generated by the 64000 System Linker.
This file stores the answers given to the questions that were asked during linker con-
figuration. configured. Future links may be accomplished simply by calling up the link
command file and having the linker read the configuration information.

A file of type listing, showing the load map for the absoiute file and global symbol
usage, will be generated by the 64000 System Linker when the user requests it.

For more detailed information, refer to the 64000 System Assembler/Linker Reference
Manual, the Pascai/64000 Compiler Reference Manual, or the C/64000 Compiler
Reference Manual.

SYMBOL DEFINITIONS AND LOOK-UP

An important part of the 64000 System microprocessor software generation process
is the creation of symbols which may be used to reference addresses from the 64000
Measurement System modules. Two types of symbols are identified in the 64000
System: local and global; they may be defined by the user in the source program or
supplled by the 64000 System Compilers. (Refer to "PASCAL AND "C" COMPILERS" in
this chapter.)

LOCAL SYMBOLS. Local symbois are those symbols which are defined in, and only
referenced by, a single source program. They are not declared to be global by the
user. Locai symboi names and their relocatable addresses are stored in the
:asmb__sym file. It Is important to note that the address stored with the locai symbol
name in the asmb__sym file is not necessarily the same address that will be as-
sociated with the symbol in the absolute file.

2-5

File Format
Reference Manual

GLOBAL SYMBOLS. Global symbols are those symbols which are defined in one
source program and may be referenced by it and any other source program. They are
declared by the user to be global. Global symbol names and their associated address-
es in the absolute tile are stored In the :link__sym file.

SYMBOL LOOK-UP. When the user specifies a symbol name instead of an actual ad-
dress in a Measurement System module such as the Software Performance Analyzer
or the Emulation System, the address value of the symbol must be looked up or caicu-
lated. This is done using the appropriate :link__sym and :asmb__sym files. Each
Measurement Module has a particular absoiute file name associated with it at any time.
in the 64000 System Emulators, for example, that is the name of the last file to be
loaded via a "load__memory” or "continue” command. Similarly, the link__sym tile to be
searched for symbol information is the one with the same name as the absolute tlle
currently associated with the Measurement System module. For more information,
refer to the appropriate Measurement System module reference manual.

When a symbol is specitied in a Measurement System module as SYMBOL __NAME, the
appropriate :link__sym file will be searched to determine whether it is a global symbol.
if it is found, the address will be obtained and the symbol resolution is complete. if it is
not found, then a message indicating that it is not a global symbol will be displayed, and
the user has the opportunity to define the source file in which the local symbol was
specified. This definition takes the form SYMBOL__ NAME:SOURCE__NAME.

When a symbol is specified in a Measurement System module as
SYMBOL __ NAME:SOURCE__NAME, the appropriate :link_sym file is searched to find
the SOURCE__NAME. If the source name is not tound, a resulting message is displayed
for the user. It the source name is found, information on relocating symbols in the
areas that were used by the source (PROG, DATA, COMN, etc.) is obtained and the
:asmb__sym tlile of the same name is then searched to find SYMBOL__NAME. If the
symbol name is not found, a resulting message is displayed for the user.

When the symbol name Is found, its relocatable address is obtained and combined with
the pertinent information from the :link__sym file to complete the symbol address
resolution. It is important to note that the 64000 System must have access to all of
the appropriate files in order to do the symbol address resolution it symbolic
reference is desired.

EMULATORS

Files generated and used by the 64000 System Emulators are outlined in Figure 2-2.
These emulators can contigure from or generate configuration information files of type
:emul__com. Emulation command (emul__com) files are given the name provided to the
emulation configuration question "Command flle name?”

2-6

®

File Format
Reference Manual

if no command flle name is given, a fite of type :emul__com named EcnfgXY:HP (where X
Is the System Bus Address of the station in use and Y is the card slot number contain-
ing the Emulation Control Card of the Emulator in use) is automatically generated or
rewritten by the Emulation System. This flle may then be used to conflgure the
emulator automaticaily in the future, either by the system if the emulator is exited and
re—entered with a "continue”, or by the user if so specified.

The 64000 System Emulators can reload into the emulator or store away information
gathered when a trace command was executed In files of type :trace.

Upon leaving an emulation session, the 64000 Emulation System creates or rewrites a
tile of type :trace named EcntgXY:HP (where X is the System Bus Address of the sta-
tlon in use and Y is the card slot number containing the Emulation Control Card of the
Emulator in use). This file may then be used to access that trace Information auto-
matically in the future, either by the system if the emuiator is exited and re-entered
with a "continue,” or by the user it so specitied. Similarly, microprocessor memory
may be loaded from or stored to files of type :absolute.

Symbol address information from the files of type :link__sym and :asmb__sym as-
sociated with the last absolute file which has been loaded by the Emulator can be ac-
cessed by the 64000 System Emulators. For more information on how this works,
refer to "SYMBOL DEFINITIONS AND LOOK-UP" in this chapter.

Finally, files of type :listing will be generated by the 64000 System Emulators when the
user issues a "list” or "listtile” command. For more information, reter to the Emulator
Reference Manual for the specitic microprocessor emulator being used.

link—sym :asmb_sym :trace
file file file
EMULATORS
remul_com :listing :absolute
file file file

Figure 2-2. File Generation and Usage During Emulation

2-7

File Format
Reference Manual

SOFTWARE PERFORMANCE ANALYZER

The files generated and used by the 64000 System Software Performance Analyzer
are outlined in Figure 2-3.

The Software Performance Analyzer (Model 64310A) works in conjunction with a
64000 System Emulator. It can configure from or generate contiguration information
files of type :trace. '

When a user specifies the name of the absolute file he is working with, symbol address
information from the files of type :link__sym and :asmb__sym associated with this ab-
solute file is available to the Software Performance Analyzer. For more information
on how this works, refer to "SYMBOL DEFINITIONS AND LOOK -UP” in this chapter.

In order for the 64000 System Software Performance Analyzer to automatically
reference a Pascal or "C” procedure, the Return Labels and End Labels must be avail-
able to it (refer to PASCAL AND "C” COMPILERS” on Page 2-1). Additionaily, to
specify a module as a range of compiler source line numbers, the assembier symbol
tile for the source must contain line number labels.

The file spa__table:HP of type :data provides the algorithms for use in the statisticail
analysis done by the Software Performance Analyzer.

Finally, files of type :.isting will be generated by the 64000 System Software
Pertormance Analyzer when the user issues a "copy” command. For more informa-
tion, refer to the Software Performance Analyzer Reference Manual.

dink_aym :data :aamb_sym
file file file
SOFTWARE
PERFORMANCE
ANALYZER
:trace dlisting
file fila

Figure 2-3. File Generation and Usage for Software Performance Analyzer

@

File Format
Reference Manual

TIMING ANALYZER

The files generated and used by the 64000 System Timing Analyzer are outlined in
Figure 2-4. The Timing Analyzer (Model 64600A) can configure from or generate con-~
figuration information files of type :trace. Additionally, files of type :listing will be
generated by the 64000 System Timing Analyzer when the user issues a "copy”
command. For more information, refer to the Timing Analyzer Reference Manual.

TIMING
ANALYZER

:itrace :listing
file file

Figure 2-4. File Generation and Usage for Timing Analyzer

STATE/SOFTWARE ANALYZER

The files generated and used by the 64000 System State/Software Analyzer are out-
lined in Figure 2-5. The State/Software Analyzer (Model 64620A) can configure from
or generate contiguration information files ot type :trace. This trace file exists in one
of two forms: the first contains only analyzer contiguration information and the second
contains trace data as well as the configuration information.

When using the symbol information from the :asmb__sym and link__sym files, the state
analyzer creates an :asmb__db file. This file allows the analyzer to quickly access the
symbol table information. Additionally, files of type .listing will be generated by the
64000 System State/Software Analyzer when the user issues a "copy” command. For
more information, refer to the State/Software Analyzer Reference Manual.

STATE/
SOFTWARE
ANALYZER
:trace Jlisting
file file

Figure 2-5, File Generation and Usage for State/Software Analyzer

File Format
Reference Manual

2-10

Chapter 3

SYSTEM FILE FORMAT

SYSTEM FILE (FILE TYPE 1)

System files contain software to run the 64000 system. System file names begin with
a lower-case letter, making normal access to these files by a system user impossible.
All system files are stored under userid :HP. System files are not stored in a record
format but are images of memory. The only access of system files permitted is the
ability to display, copy or remove modules of system files from a floppy disc equipped
station via the system generator (sys__gen) program.

File Format
Reference Manual

3-2

Chapter 4

SOURCE AND LISTING FILE FORMATS

SOURCE FILE (TYPE 2) and LISTING FILE (TYPE 5)

A source file is a user-generated file consisting of a series of ASCIll records. Each
ASCIl source record is of variable length and may contain up to 128 sixteen-bit words.
Each 16-bit word is made up of two 8-bit ASCIl bytes.

NOTE

The 64000 system editor program will only read or write 240
characters (120 words). In editing a file with lines longer than
240 characters, those characters in words 120 through 127
will be truncated.

A listing file is generated whenever the user issues a "listtile <FILE>" or "list <someth-
ing> to <FILE>" command. its format is exactly the same as that of a source file. For

a pictorial representation of the source and listing file formats, see Figures 4-1 and
4-2

Word # Record Type
/ 0 Source Record
Record 1— — . Contains up to 128
. 16—bit words made up of
N n two ASCIl bytes per word n <= 127
(0 Source Record
Record 2— — This and all subsequent
source records have the
. same format as the first
N n ane n <= 127
etc.

Figure 4-1. Source and Listing Files - Overall Structure

File Format
Reference Manual

Word # B15 B8 | B7 0
0 ASCIl byte O ASCIl byte 1
1 ASCIl byte 2 | ASCIl byte 3
n ASCIl byte x ASCIl byte y
n <= 127

Figure 4-2 Source and Listing Files ~ Source Record Format

WORD n - If the last byte of word n is not used, it should be padded with an ASCIl
blank (20H) such that all records are word-aligned. @

4-2

))))))

File Format
Reference Manual

SPECIAL SOURCE OR LISTING FILES

Ndestfile:HP

When ending an edit session the Editor creates an intermediate file named
Ndestifile:HP, where N is the System Bus address of the station in use. This file is of
type :souce or 'listing, depending upon the type of file being edited.

CAUTION

The occurrence of a power fajlure or of SHIFT-RESET being
pressed before the edit session is completely ended will result
in that intermediate file remaining on the disc. Depending upon
when the power failure or SHIFT RESET occurs, it is possible
that the original file and the current file which is ending will
BOTH be lost. There is no way to recover either file.

To eliminate an Ndestfile:HP, edit a file which already exists from the station at
System Bus Address N and end the edit session.

4-3

File Format
Reference Manual

4-4

Chapter 5

RELOCATABLE FILE FORMAT

RELOCATABLE FILE (FILE TYPE 3)

Relocatable files are produced by the HP 64000 system assemblers and compiiers, and
are the input used by the HP 64000 system linker. As such, they must provide to the
linker all the information it needs to produce absolute code. For each relocatable
tile the tirst record must be a Name record. This is followed by a variable number of
Global Symbol Records, External Symbol Records, and Double Records in any order.
The last record must be an End record.

Relocatable files are also the input and output ot the library command. The command
library A to B appends the relocatable tile A to the relocatable tile B. This creates a
file which consists of one or more relocatable file overall structures. All tfuture
references to a relocatable file in this document are referring to a tile created by as-
sembling or compiling a source file.

In the discussion of the relocatable file format it is important to keep in mind the
relationship between relocatable file names and source file names. The name of the
source file that is assembled or compiled is permanently saved in the Name Record of
the Relocatable File. Since tiles may be renamed, it is possible to have a relocatable
tile with a name that is different from the source tile name which was saved in the
Relocatable Name Record. In the case of a library of relocatables there is only one
relocatable file name, but multiple source file names are associated with the library.

For this document, the term Source Name is used to refer to the source tile which was
assembled or compiled to create an individual relocatable file or one ot the individual
relocatabie tiles in a library.

For a pictorial representation of the relocatable tile format, see Figures 5-1 through
5-10.

File Format
Reference Manual

(

Recaord 1-— —

\
/

Record 2— —

Record y—

Word #

Record Type

Name Record

Contains up to 128
words describing the
program which generated
this relocatable

Global Symbol record OR
External Symbol recard
OR Double record

This and all following
records except the last
record can be any one of
the above record types

etc.

End Record

This record has a fixed
length of 5 words

Figure 5-1. Relocatable Files - Overall Structure

127

127

A library of relocatable files consists of one or more relocatable file blocks con- -
catenated together. (Name/record for next file immediately follows End record of

previous file.)

5-2

L

File Format
Reference Manual

NAME RECORD FORMAT

WORD O - A Record ID of 1is specified to indicate that this is a Name Record. The
Record ID is used internally to the relocatable file and should not be confused with
the 64000 System file type number, which is 3.

WORD 1 through WORD 8 make up the Source File Name Description Block. This
block provides the source file name which generated the relocatable file. For a com-
plete description of this block see Appendix B.

WORD 9-10 - The PROG segment length is the number of bytes or words
{processor dependent) of code which are produced by the assembler or compiler
as the PROG relocatable code.

WORD 11-12 - The DATA segment length is the number of bytes or words
(processor dependent) ot code which are produced by the assembler or compiler
as the DATA relocatable code.

WORD 13-14 - The COMN segment length is the number of bytes or words
{processor dependent) of code which are produced by the assembler or compiler
as the COMN relocatable code.

WORD 15 - A word containing the number of external symbols defined in this file.
The maximum number of external symbols in a relocatable file is 512.

WORD 16-23 - This group of words is used to define the name of the linker table used
to generate the corresponding absolute tile. For a complete description of this block
see Appendix C.

WORD 24 - contains the Date on which the relocatable was created. Encoded as
a binary number describing the number of days since January 1, 1976. January 1,
1976 = 0.

WORD 25 ~ contains the time at which the reiocatable was created. Encoded as
a binary number describing the number of minutes since midnight. Midnight = O.

WORD 26 through WORD 36 ~ contains 22 characters of comment (unused charac-
ters must be set to blank (20H). This field is given a value using the pseudo opcode
NAME in the assembler and otherwise is unused (all bytes set to 20H). This field is
output in the comments field of the linker listing file.

WORD 37 through n-1 contain up to 22 (all are optional) Absolute Code Segment

Blocks. These blocks define the memory space used by the ORG'd code segments.
These words are not used _unless there are absolute code segments to be described.

5-3

File Format
Reference Manual

Word # B15 B8 | B7 8

G Record ID Word = 1

1 fff uu ddd ASCIl byte 1 Source File
Name
Block
(Fixed length
8 words)

8 ASCHl byte 14 | ASCIl byte 15

9 PROG segment length — LSW

10 PROG segment length — MSW

11 DATA segment length — LSW

12 DATA segment length — MSW

13 COMN segment length — LSW

14 COMN segment length — MSW

15 # of Externals

16 fff uu ddd ASCHl byte 1 Linker
Table
Description
Block
(Fixed length

23 ASCIl byte 14 | ASCII byte 15 8 words)

24 Bate encoding

25 Time encoding

Figure 5-2. Relocatable File - Name Record Format
(Continued on next page)

5-4

"’ i Word #

B15 B8 | B7

0

26

ASCIl byte 1 ASCIl byte 2

36

37

38

39

40

ASCIl byte 21 | ASCIl byte 22
Start address of ORB — LSW
Start address of ORG — MSW
End address of ORG — LSW
End address of ORG — MSW
Start address of ORG - LSW
Start address of ORG — MSW
End address of ORG — LSW
End addrass of ORG — MSW
16 bit additive checksum

File Format
Reference Manual

Comment
Block

Absolute Code
Segment
Block 1

Absolute Code
Segment
Block k

Figure 5-2. Relocatable File - Name Record Format (Cont'd)

5-5

File Format
Reference Manual

GLOBAL RECORD FORMAT

WORD O - A Record ID of 2is specitied to indicate that this is a Global Symbol record.
The Record ID is used internally to the relocatabie file and should not be confused
with the 64000 System tile type number, which is 3.

WORD 1 through n-1 make up the k Global Symbol Detinition Blocks. These blocks
describe the global symbols generated as part of the relocatable tile. Each global
symbol definition block has a variable length of from 2 to 10 words.

The structure of each Global Symbol Detinition Block is as follows:

WORD 0 through WORD sss (of a Global Symbol Definition Block) make up the Global
Symbol Name Description Block. This block provides the name of the global symbol
being defined. For a complete description ot this block see Appendix D.

WORDS sss+1 and sss+2 (of a Giobal Symbol Definition Block) contain the value of
the symbol. WORD sss+2 exists only in those processors which generate 2 words
tor each address (see Appendix A).

Word # B15 B8 B7 0
0] Record ID Word = 2
1 sss 000 rr ASCIl byte 1
ASCll byte 14 ASCIl byte 15
LSW address
a MSW address
p sss 000 rr ASCll byte 1
ASCII byte 14 ASCIl byte 15

LSW address

n—1 MSW address

n 16 bit additive checksum

Figure 5-3. Global Symbol Record - Overall Structure

File Format
Reference Manual

| Global
Symbol
Definition
Block 1
(Variable
Length)

Global
Symbol
Definition
[Block k
(variable
Length)

5-T

File Format
Reference Manual

EXTERNAL RECORD FORMAT

WORD O - A Record ID of 4is specitied to indicate that this is an External Symbol
record. The Record ID is used internally to the relocatable file and should not be
confused with the 64000 System file type number, which is 3.

WORD 1 through n-1 make up the k External Symbol Definition Blocks. These blocks
describe the external symbols required by the relocatable code. Each external sym-
bol detinition block has a variabie length of from 2 to 9 words.

The structure of each External Symbol Definition Block is:

WORD O through WORD sss (of an External Symbol Definition Block) make up the
External Symbol Name Description Block. This block provides the name of the giobali
symbol being defined. For a complete description of this block see Appendix D.
WORD sss+1 - contains the external ID number of the symbol. The up to 512sym-

bols are numbered from O to S11. The external ID number is used when this external
symbol is referenced in a double record in the same relocatable file.

5-8

File Format
Reference Manual

Ward # B15 B8 B7
0 Record ID Word = 4
1 s$88 XXXXX ASC“ byte 1 External
Symbol
Definition
Block 1
ASCIl byte u ASCIl byte v (Variable
a 0000000 eeeceeceee Length)
P sss XXXXX ASCIl byte 1 External
Symbol
Definition
| Block k
ASCll byte x ASCIl byte y (Variable
n—1 0000000 eeceeeeecece / Length)
n 16 bit additive checksum
n<=127

Figure 5-4. External Symbol Record - Overall Structure

DOUBLE RECORD FORMAT

WORD O - A Record ID of 3is specitied to indicate that this is a Double record. This
record is called a double record because it holds two kinds of information, 1) reloca-
tion and 2) external references. The Record ID is used internally to the relocatable
tile and should not be conftused with the 64000 System file type number, which is
also 3.

WORD 1 (and WORD 2 only for processors using 2 words for each address; see
Appendix A) contains relative address of first byte or word (processor depen-
dent) defined in this record.

File Format
Reference Manual

word 2 (3) - rr indicates with respect to which relocation counter the relative
address described in WORD 1 is being relocated.

00 = absolute (no relocation)

01 =PROG
10 = DATA
11 = COMN

WORD 3 (4) through n—-1 contain the k T Parameter Blocks. These blocks are vari-
able length from 2 to 41 words.

Word # B15 B8 B7 o
0 Record ID Word = 3
1 LSW address
MSW address
00000000 000000 rr
q Tt T2 T3 T4 TS5 T6 T7 T8 \
q+1 T1 parameter

T2 parameter

T3 parameter

T Parameter
T4 parameter ~ Black 1

TS parameter

T6 parameter

T7 parameter

q+n T8 parameter /

Figure §-5. Double Record - Overall Structure
{Continued on next page)

5-10

File Format
Reference Manual

P T1T T2 T3 T4 T5 T6 T7 T8 |
p+1 T1 parameter T Parameter
Black k
T2 parameter Note: The
T3 parameter last T
T4 parameter [parameter
block ma
TS parameter y
nat have 8T
T6 parameter parameter
T7 parameter
p+m T8 parameter /
n 16 bit additive checksum
n<=127

Figure 5-5. Double Record ~ Overall Structure (Cont’d)

5-11

File Format
Reference Manual

The structure of each T Parameter Block is:

WORD O - contains 8 two bit fieilds T1 through T 8 describing the action to be per-
tormed by the linker on the T parameters which follow. All T Parameter Blocks in a
record must be complete (use all of T1 through T8) except the last data description
block.

WORD 1 through the end of this T Parameter Block contain the T Parameters as
described below.

T-PARAMETERS
it Ti = 00, the required T-parameter is a single word of which the low order byte

contains a byte of code which will be written as is to the absolute file by the linker.
The high order byte is not used.

Word # B15 B8 B7 0
1 00000000 HEX byte

Figure 5-6. Ti = 00 Format

5-12

‘@

-t

File Format
Reference Manual

If Ti = 01, the required T-parameter is a single word in which both bytes of data will

be written as is by the linker to the absolute file.

tirst byte loaded, B7 through BO is the second byte loaded.

Word #

1

The byte in B15 through B8 is the

B15 B8 B7

HEX byte

HEX byte

Figure 5-7. Ti = 01 Format

It Ti = 10, the required T-parameter is from 2 to S words of data organized as

follows:

Word # B15 B8 B7 0
1 0000000 r r freffff
2 LSW address

MSW address

instruction skeleton

instruction skeleton

WORD 1 - The contents of Word 1 is broken down as follows:

Figure 5-8. Ti = 10 Format

rr - bits 9,8 - contain a code describing which relocation counter to use in relocating

00 = absolute (no relocation)

this symboi.
01 = PROG
10 = DATA
11 = COMN

ftiffff —— a 7 bit field used to indicate to the linker the tormat number tor processor
dependent instructions. See Appendix A for description of processor dependent for-

mat numbers.

WORD 2 (and WORD 3 for processors using 2 words for each address) contains the
address to be relocated (see Appendix A).

5-13

File Format
Reference Manual

WORD 3 (or WORDs 4 & S as indicated in Appendix A) contains an instruction skeleton.
A given format number for a specitic processor requires having or not having a 16 bit
or 32 bit (depending on processor) instruction skeleton. See Appendix A for details.

It Ti = 11, the required T-parameter is from 2 to 5§ words of data organized as
shown in Figure 5-9.

Word # 815 B8 B7 0
1 eeeeeeee e fffffff
2 signed displacement

signed displacement

instruction skeleton

instruction skeleton

Figure 5-9. Ti = 11 Format

WORD 1 - The contents of Word 1is broken down as tollows: eceeeeeee -~ a nine
bit tfield which holds the external identitication number of a symbol in an external
symbol record. The external symbol record defining this symbol must be physically
located before any data deftinition record referencing it.

ftfttt ~—~ a 7 bit field used to indicate to the linker the format for processor depen-
dent instructions. See Appendix A for description of processor dependent format
numbers. .

WORD 2 (and WORD 3 for processors using 2 words for each address) contains the
address to be relocated (refer to Appendix A).

WORD 3 (or WORDs 4 & 5 for processors indicated in Appendix A) contains an in-
struction skeleton. A given format number for a specitic processor requires having or
not having a 16 bit or 32 bit (depending on processor) instruction skeleton. See
Appendix A for details.

5-14

File Format
Reference Manual

END RECORD FORMAT

WORD O ~ A Record ID of S5is specified to indicate that this is an End record. The
Record ID is used internally to the relocatable file and should not be confused with
the 64000 System tile type number, which is 3.

WORD 1 - bits 2,1, and O (rrr) define with respect to which relocation counter the
transfer address of the program is defined.

000 = absolute (no relocation)

001 = PROG
010=DATA
011 = COMN

100 = no transfer address for this module
WORD 2 and WORD 3 contain the transfer address for the program reiative to the
relocation counter specified in word 1. Note the MSW is not optional but is set to
O for processors requiring only 1 word of address (see Appendix A).

WORD 4 - 18 bit additive checksum of this record.

Word # B15 B8 B7 o)
0 Record ID Word = 5
1 00000000 00000 rrr
2 LSW address
3 MSW address
4 16 bit additive checksum

Figure 5-10. End Record ~ Overall Structure

5-15

File Format
Reference Manual

5-16

Chapter 6

ABSOLUTE FILE FORMAT

ABSOLUTE FILE (FILE TYPE 4)

An absolute file is a binary object tile generated by the linker, or by the emulation
system when a "store memory to <FILE>" command is executed. It consists of a vari-
able number of records, the first of which, called the Processor Information Record,
provides information about the microprocessor for which the ftile is intended. All
subsequent records, called Data Records, are of variable length up to 128 sixteen-bit
words and contain header information about the record along with data words.

For a pictorial representation of the absolute file format, see Figures 6-1, 6-2 and
6-3.

word # Recaord Type

a Processor Information
Racord

Record 1 Contains four 16-bit
words giving information Fixed
on the processor length

Data Record

Specifies # of data
bytes in this record and
. load address, foilowed
n by the data words n <= 127

Record 2

Data Record

This and all subsequent
data records have the

. same farmat as the first
n data record n <= 127

Record 3

/_Jﬁ /—l_—\

etc.

Figure 6-1. 64000 System Absolute Files - Overall Structure

6-1

File Format
Reference Manual

PROCESSOR INFORMATION RECORD

WORD 0 - Data Bus Width is the width of processor data bus (i.e. 816, etc. See
Appendix A).

WORD 1 - Data Width Base is the minimum addressable entity (group of bits) used
by the microprocessor. Usually this will be 8, but not always (see Appendix A).

WORD 2-8 - Transfer Address is the value to be loaded into the microproces-
sor Program Counter by the emutator. It is generated only by the linker and is set to
zero when an absolute file is created by storing memory from the emulator. The Most
Signiticant Word of the Transfer Address should be set to zero if it is not needed by
the processor (see Appendix A).

Word # B15 B8 B7 0
0 Data Bus Width
1 Data Width Base
2 Transfer Address LS Word
3 Transfer Address MS Word

Fixed Length = 4 words

Figure 6-2. Absolute File ~Processor Information Record Format

DATA RECORD

WORD O - # of Data Bytes in this record expressed in binary.

WORD 1-2 - Load Address is the binary address in the microprocessor memory
space into which the first data byte (from WORD 3) should be loaded. Subsequent
data tfrom this record is loaded into the following microprocessor memory space.
The Most Significant Word of the Load Address should be set to zero it it is not
needed by the processor (see Appendix A).

WORD 3 through n - Data Words are the binary representation of the absolute
data to be Iloaded into microprocessor memory space.

WORD n - If the last byte of word n is not used, it should be set to O.

6-2

File Format
Reference Manual

Word # 815 B8 87 0
0 # of Data Bytes in Record
1 Load Address LS Word
2 Load Address MS Word
3 Data Word 1
n Data Word m
n <= 127

Figure 6-3, Absolute File - Data Record Format

6-3

File Format
Reference Manual

6-4

Chapter 7

EMULATION COMMAND FILE FORMAT

EMULATION COMMAND FILE (FILE TYPE 6)

Emulation command files contain information used to configure an emulator.
These files are very complicated, and the user will find it easier to change, create, or
decode an :emul__com file by using measurement system. For this reason, the details
of the structure of an emulation command file will not be described.

SPECIAL EMUL__COM FILES

EcnfgXY:HP

If a name is not given for the emul__com file when you are configuring the emulator, an
emul_com file will be created for you with the name EcnfgXY:HP where X is the
System Bus address of your station, and Y is the card cage number of the slot which
has the emulator control card init.

7-1

File Format
Reference Manual

Chapter 8

LINKER COMMAND FILE FORMAT

LINKER COMMAND FILE (FILE TYPE 7)

Linker command files contain information used to tell the linker how to create an ab-
solute file with the same name as the :link__com file (which files to link together,
where to relocate them, etc.). The format used to store this information is a memory
dump which has a very complex format. The user will find it easier to modity, cre-
ate, or decode a link command file by using the linker. For this reason, the details of
the structure of a linker command ftile will not be described.

File Format
Reference Manual

8-2

Chapter 9

TRACE FILE FORMAT

TRACE FILE (FILE TYPE 8)

Trace files are created and used by the HP64000 system software performance
analyzer, state analyzer, timing analyzer, and emulation with anaiysis systems. They

are used to store configuration

information and/or

measurement data. Each

module has defined its trace files ditferently. The basic structure of a trace file is
an Identitication Record followed by a variable number of additional records (see

Figures 9-1 and 9-2).

Word #

Record Type

Record 1

Identification Record

Length varies.
Word 1 must be ID code

Vo
®

AN
o

Record 2 —

of the product.
Other Record

This and all other
records are defined
differently for trace
files generated by
different praducts

etc.

Figure 9-1, Trace Files - Overall Structure

n <= 127

n <= 127

9-1

File Format
Reference Manual

WORD O - The 4 HEX digit ID code describing the board which generated the trace file.

0101 -- HP64310 Software Performance Analyzer

1001 -- HP64601 Timing Analyzer

1100 -- HP64620. State Analyzer

0102 -- HP64300/HP 64302 internal analysis running with emulation
0000 -- Measurement System

WORD 2 through n - provides other information needed by the product. See "Product
Descriptions” for more complete information.

Word # B15 B8 B7 0
0 HEX O | HEX 1 HEX 2 | HEX 3
1 varies
n varies

n <= 127

Figure 9-2. ldentification Record - Overall Structure

9-2

File Format
Reference Manual

PRODUCT DESCRIPTIONS

SOFTWARE PERFORMANCE ANALYZER

WORD O - A board ID of 0101H is specified to indicate that this trace file was
created by a Software Performance Analyzer (see Figures 9~3 and 9-4).

WORD 1 - file lock provides the user with a way to protect his files from being over-
written. A zero in this location means the file may be read or written. A non-zero
value means the file can only be read.

Software Performance Analyzer stores only configuration information in the trace
tile. There is no data stored. in most cases, it is simplest for the user to modity his
configuration by using measurement systems and modifying a previous contiguration
tile. However, it a user is doing remote development, it may be useful to recon-
tigure the EVENT__ARRAY remotely. For such a purpose, only that part ot the
configuration file is described here. IMPORTANT: To incorrectly change this trace
tile should be attempted ONLY by a highly experienced SPA user. It is very important
that the user does not modity any part of the trace tile other than the event array.
Note also that NO guarantees are made concerning operation of SPA if invalid
values are written into the event array.

Word # Record Type
4] ID Record — SPA
Record 1
. 40 word fixed length
39 record.
Q Data Records — SPA
Record 2
. 40 word fixed length
39 records.
etc.

Figure 9-3. Trace File Format - Software Performance Analyzer

File Format
Reference Manual

Word # B15 B8 B7 0
0 0000 0001 00Q0 0001
1 file lock
2 don’t care
39 don’t care

Figure 9-4. Identification Record - Software Performance Analyzer

The EVENT__ARRAY is stored in records 1 through 28, and the first 28 words of
record 30. There are S99 EVENT__ARRAY entries, each having a length 12 words.
Since all records have a fixed length of 40 words, the array entries will cross
record boundaries. The EVENT_ ARRAY has a format as shown in Figure 9-5 See
Figure 8-6 for a detailed description of the Data record format.

WORD O through WORD 7 - Provides the 15 character title for the event specified as
well as some information indicating what the event was. Word 0 through word 6 con-
tain the first 14 characters packed two characters per word. The fifteenth character
is stored in the upper byte ot word 7. All unused characters must be set to blank
(20H). The lower byte of word 7 is decoded as follows:

Bits 7,6,5,4 - this four-bit field detines the number of bytes in the title field that con-
tain title information.

Bit 3 - This bit detines whether the event specified is a time event. A one indicates a .

time event.

Bit 2 - This bit defines whether the event specified is an address event. A one indi-
cated an address event.

Bit 1 - This bit indicates whether the title field contains 2 title for this event. A one in-
dicates that the title exists.

Bit O - This bit indicates whether this is a valid entry in the event array. A one indi-
cates it is a valid event.

9-L

File Format
Reference Manual

Word # B15 B8 87 0
o ASCI O ASCIl 1
1 ASCIl 2 ASCIl 3
2 ASCll 4 ASCIl 5
3 ASCIll 6 ASCll 7
4 ASCIl 8 ASCIl 9
5 ASCIl 10 ASCII 11
6 ASCIl 12 ASCIl 13
7 ASCIl 14 Mtanv
8 LSW lower bound
g MSW lower bound
‘ 10 LSW upper bound
@ 11 MSW upper bound

Figure 9-5. Event Array Entry

Word # B15 B8 B7 0
0 data O
1 data 1
2 data 2
39 data 39

Figure 9-6. Data Record Format

9-5

File Format
Reference Manual

WORD 8 through 11 - lower bound/upper bound: For an address event, these fields
are defined to contain a 32-bit absolute address. At present only the lower 24 bits
are used. For a time event, the boundary field is defined as shown in Figure 9-7.

Word # B15 B8 B7 0
0 16—bit decimal number
1 exp digits

Figure 9-7. Time Event Boundary Definition

To encode the field:

1) Time = (x.yza X 10 exp w) microseconds. This number is in scientific notation (w
is a multiple of 3).

The binary equivalent of decimal xyza (no decimal point) is stored in the first
word.

The number of digits to the right ot the decimal point is stored in the lower byte
of the second word.

The exponent (w) is stored in the upper byte of the second word.

For example: If time is 65.74 X 10 exp 3 microseconds, the time event would be stored
as shown in Figure 9-8.

Word # B15 B8 B7 0
0 0001 1001 1010 1110
1 00000011 00000010

Figure 9-8. Time Event Boundary Example

TIMING ANALYZER

WORD O - A board ID of 1001H is specified to indicate that this trace file was
created by a Timing Analyzer (see Figures 9-9 and 9-10).

WORD 1 - ID code of data structure provides a version number. It is set up as an HP
date code and converted to HEX. For example if the ID code was 08AA, that would
be 2218 decimal or week 18 of 1982

@

File Format
Reference Manual

WORD 3 and WORD 4 - provide a 32-bit checksum of the rest of the records of the
tile. The checksum is computed by adding the 16-bit words together. To get the
LSW of the checksum, and every time there is an overflow incrementing the MSW of
the checksum.

WORD 5 - file lock provides the user with a way to protect his files from being over-
written. A zero in this location means the file may be read or written. A non-zero
value means the file can only be read.

The Timing Analyzer currently stores only configuration information in the trace file.
There is no data stored. If the user wishes to modity his contiguration he should do
so by entering measurement systems and modifying a previous configuration file.
IMPORTANT: Be very careful if you modity any part of a trace file and then try to
use it again to contigure the timing analyzer;to do otherwise may cause unexpected
results.

Word # Record Type
0 ID Record ~ Timing
Record 1
5 6 words fixed length
0 Configuration Records
Record 2
thru 8
. Used by timing to tell
126 how to configure analyzer

Figure 9-9. Trace File Format - Timing Analyzer

Word # B15 B8 B7 0
0 0001 0000 0000 0001
1 ID code of data structure

0000 0000 0000 0000

LSW checksum of entire file

MSW checksum of entire file

Nl | WIN

file lock

Figure 9-10. Identification Record - Timing Analyzer

9-7

File Format
Reference Manual

STATE/SOFTWARE ANALYZER

WORD O - A board ID of 1100H is specified to indicate that this trace file was
created by the Model 64620 State Analyzer (see Figures 9-11 and 9-12).

WORD 1 ~The identification code provides a version number for the data structure.

WORD 2 - Modification number provides a version number. It is a binary encoded
decimal number representing an HP date code. For example, if the moditication number
was 2218, that would represent week 18 of 1882,

WORD 3 through 10 ~ Provides the State Analyzer software with the name of the dis-
assembler table it is to use. This should be in the form of an HP64000 system file
name (nnnnnnnnn:uuuuuy). nnnnnnnnn is the file name, up to nine characters. uuuuuu is
the userid of the file, up to 6 characters. The file name should be packed with the
extra bytes set to blank (20H). The colon (:) must be included.

WORD 11 and WORD 12 - provide a 32-bit checksum of the rest of the records of
the tile. The checksum is computed by adding the 16-bit words together. to get the
LSW of the checksum, and every time there is an overflow incrementing the MSW of
the checksum.

WORD 13 - tile lock provides the user with a way to protect his files from being
overwritten. A zero in this location means the tile may be read or written. A non-
zero value means the tile can only be read.

The State Analyzer stores configuration information in the trace tile. However, the in-
formation is stored as an image of memory, and as such it would not be feasible to
try to extract or modity these parts of the trace files.

NOTE: Modifying any part of the configuration portion of the trace file trace tile and
then using it again to configure the state analyzer may cause unexpected results.

9-8

File Format
Reference Manual

@ Word # Record Type
0 ID Record ~ state
Record 1 -< .
13 14 words fixed length
8] Fixed config dump records
Record 2 ' .
. A memory image is saved
thru 7 -
. to ensure capability of
126 restoring current state
0 Last config dump record
Record 8 . A memory image is saved
. to ensure capability of
55 restoring current state
/ 0 Symbol table records
. A symbol table image is
Record 9 . saved to ensure
. capability of restoring
. current state
(. a 9<=0<=67

- . 1 to 16 Symbol Table Records

0 Expression records

AN

A symbol table image is
Record A . saved to ensure
capability of restoring

. current state

b 4<=mh<=67

. 1 to 186 Expression Records

Figure 9-11. Trace File Format - State Analyzer
(Continued on next page)

9-9

File Format
Reference Manual

Record B —(

77

Opt. data header record

78 words fixed length

/
Record C *L

Opt. overview data
records

5<=e<=68

. 1 to 16 Qverview Data Records

Record F

Opt. tracelist data
records

9<=g<=15

. D to 256 Tracelist Data
Records

Figure 9-11. Trace File Format - State Analyzer (Cont’d)

9-10

File Format
Reference Manual

Word # 815 B8 B7 0
0 0001 0001 0000 0000
1 o111 Q010 0000 0100
2 modification number

3 to 10 Disassembler table file

name packed in standard
HP 640Q0 file name format

11 LSW checksum of entire file
12 MSW checksum of entire file
13 file lock

Figure 9-12. Identification Record - State Analyzer

The configuration dump records contain information used to contigure the analyzer.
These records are memory images and are very complicated. Users will find it easier
to create or change the information using the measurement system. For this reason,
only the structures of the configuration records (Configuration Dump, Symbol Table,
and Expression Records) are shown (see Figures 9-13 thru 9~16). NOTE: Moditying
any of therecords and then attempting to use them again to configure the state
analyzer may cause unexpected resuits.

Word # tB15 B8 B7 0
0 0000 0000 0000 0001
1 relative position pointer

2 to 124 123 words of memory image
125 LSW checksum of record
126 MSW checksum of record

Figure 9-13. Fixed Configuration Dump Record Format

9-11

File Format
Reference Manual

Word # B15 B8 B7 0
0 0000 0000 0000 0001
1 relative position pointer
2 to 53 52 words of memory image
54 LSW checksum of record
55 MSW checksum of record
Figure 9-14. Last Configuration Dump Record Format
Word # B15 B8 | B7 0
0 0000 0000 0000 0002
1 relative position pointer
2 to a-2 a—3 wards of memary image
a-—1 LSW checksum of record
a MSW checksum of record
Figure 9~15. Symbol Table Record Format
Word # B15 B8 B7
0 0000 0000 0000 0003
1 relative position pointer
2 to b—2 b—3 words of memory image
b—-1 LSW checksum of record
b MSW checksum of record

9-12

Figure 9~16. Expression Record Format

File Format
Reference Manual

OPTIONAL DATA HEADER RECORD FORMAT - STATE ANALYZER TRACE FILE
(See Figure 9-17.)

Word - O An ID code of 0100 is given to indicate that this record is the data header
record.

Word - 1 Signifies whether the count is time count or state count.
Word - 2 Specifies the width of the analyzer used in the measurement
Word - 3 Indicate the mode used in the measurement.

bit O - sequence on

bit 1 - window 1 on

bit 2 - window 2 on

Word 4 - It the trigger condition was met the HISTORY__FLAG will be O, otherwise it
will be equal to 1 signitying that the information represents data history.

Word 5 - the number of words added in the trace fist data records. This value can be
from 2 thru 8.

Word 6 and Word 7 - the valid range of lines contained in the data records.
Word 8 and Word 9 - specifies the first and last line of valid trace data.
Word 10 - specifies the number of valid data cells in the overview records.

Word 11 - this value is the identification code of the preprocessor used to capture
the data.

Words 12to 75 - This information represents special information required by the in-
verse assembler and shouid not be required by a user.

Words 76 and Word 77 - provide a 32-bit checksum of the rest of the record. The
checksum is computed by adding the 16-bit words together to get the LSW of the
checksum and also every time there is an overflow incrementing the MSW of the
checksum,.

9-13

File Format
Reference Manual

Word # B15 B8 B7 0
0 0000 0001 0000 0000
1 state or time count flag
2 number of bits of analysis
3 sequencer made
4 HISTORY _FLAG
5 MICRO_SIZE 2<=g<=8
6 MIN _LINE
7 MAX _LINE -
8 FIRSTVALID
9 LASTVALID
10 NUM_QF _OVERVIEW 0<=e<=4096
11 PP_ID
12 to 75 soft tag array for IAL
76 LSW checksum of record
77 MSW checksum of record

Figure 9-17. Optional Data Header Record Format

9-14

File Format
Reference Manual

Q OPTIONAL OVERVIEW DATA RECORD FORMAT ~ STATE ANALYZER FILE (See
e Figure 9-18))

Word O - the ID code for the overview data record
Word 1 - starting line number ot the aoverview data it can range from O to 4096.

Word 2 to Word e-2 - Overview data of from 1 to 64 words each containing 4 nibbles
ot overview data.

Words e-1 and e - provide a 32-bit checksum of the rest of the record. The
checksum is computed by adding the 16-bit words together to get the LSW of the
checksum, and everytime there is an overtflow incrementing the MSW of the checksum.

Word # B15 B8 B7 0
0 0000 0000 0000 | 0001
1 starting line number
2 to e—2 captured overview data
. e—1 LSW checksum of record
@ e MSW checksum of record

Figure 9-18. Optional Overview Data Record Format

9-15

File Format
Reference Manual

OPTIONAL TRACELIST DATA RECORD FORMAT - STATE ANALYZER TRACE

Word O - ID code for tracelist data
Word 1 - the 16-bit two's complement number of the first trace list line number.
Word 2 - specifies the trace status

bit 15 - Overview Trigger tlag, signities that the trigger on overview event condi-
tion was true for this state.

bit 14 - Micro count reset flag **

bit 13 - Store block flag, indicates that there is a discontinuity in the trace data
due to a store disable occurring.

bit 12 - always zero

bit 11 - Sequence occurrence flag **
bit 10 - Sequence resource 2 **

bit 9 - Sequence resource 1 **

bit 8 - Sequence resource 0 *#*

bit 7 - Window 2 enable flag **

bit 6 - Window 1 enable tlag **

bit 5 - Sequence enable flag **

bit 4 - always zero

bit 3to O - Logical sequencer state **
** These flags are used by the state analyzer to correctly format and calculate the
various information in the trace. Since the data in the trace list data record have been -

formatted correctly, these flags are not needed by the user.

Word 3 thru Word 4 - the number of states or clock ticks (40 nsec) relative to the
FIRST__VALID line of the trace data.

Word 6 thru Word g-2 - captured trace data, the least significant bits in word 6.
Words g-1 and g - provide a 32-bit checksum of the rest of the record. The

checksum is computed by adding the 16-bit words together to get the LSW of the
checksum, and every time there is an overtiow incrementing the MSW of the checksum.

9-16

File Format
Reference Manual

Word # B15 B8 B7 0
0 0000 0001 0000 0002
1 trace list line number
2 trace status
3 LSW of count for the state
4 MID of count for the state
5 MSW of count for the state
6 captured state data
7 to g—2 capturéd state data
g-—-1 LSW checksum of record
g MSW checksum of record

Figure 9-19. Optional Tracelist Data Record Format
EMULATION WITH INTERNAL ANALYSIS

The variables in the trace specification record are all related to the commands as
the user sets up emuiation. This record is very complicated and its details are not
needed by the user. Therefore, the details of its structure will not be presented
here.

TRACE FILES (See Figures 9-20 thru 9-23)

WORD O - run/step indicates the status of the emulator. Oindicates the emulator was
stepping. therefore data (if present) is not valid. Not Oindicates the emulator was
running.

WORD 1 - data stored indicates whether data was stored in this trace tile. Oindi-
cates data is not stored in the tile. Not O indicates that data follows.

9-17

File Format
Reference Manual

Word # Record Type

Record 1 — o ID Record — emulation

/ o Trace Spec Record
Record 2 — . Describes the spec for

L\ . the trace stored in

40 this file

/ 0 Display Spec Record

Record 3 —
Describes the spec of the

18 display for the trace.

0] Trace Status Record
Record 4

A s

0 Data Record ~ Emulation

Record 5
each record holds info

for one captured state

I

etc.

Figure 9-20. Trace File Format - Internal Analysis

Word # B15 B8 B7 0

o 0000 0001 0000 0010

Figure 9-21. Identification Record - Internal Analysis

9-18

File Format
Reference Manual

Word # B15 B8 B7 0
0 Trace point
1 Start of trace
2 -3 Not needed by user
4 Count Overflow
5 —- 14 Not needed by user
15 Prestore
16 Totalstore
17 — 18 Not needed by user

Figure 9-22. Display Spec Record Format

Word # B15 B8 B7 0
0 run/step
1 data stored

Figure 9-23. Trace Status Record Format

9-19

File Format
Reference Manual

One data record is stored for each state captured (see Figure 9-24). Information
stored is the address, data, and status during the state, and a 24-count value. Count
starts at OFFFFFFH at the beginning of the measurement and counts down to O.

Word # B15 B3 B7 0
0 LSW address
1 MSW address
data
status

LSW of countdown

Ol IW]|N

MSW of countdown

Figure 9-24. Data Record Format - Emulation

SPECIAL TRACE FILES

When you exit emulation, a trace ftile will be created called EcnfgNM:HP where N is
the HPIB address of the station, and M is the slot number of the emulator being used.
This file is used by emulation when options continue is specified.

MEASUREMENT SYSTEM
When you exit measurement systems, a trace file will be created called
meas__sy3N:HP where N is the HPIB address of the station. This file is used by

measurement system when options resume is specitied. The contents of this file are
not needed by the user.

9-20

® Chapter 10

PROM FILE FORMAT

PROM FILE (FILE TYPE 9)

Prom files are no longer created by the 64000 system. The format of existing prom
files is the same as the absolute file format. Refer to Chapter 6 for information about
the absolute file format.

Compute,
Useym

10-1

File Format
Reference Manual

10-2

o —

i

Chapter 11

DATA FILE FORMAT

DATA FILE (FILE TYPE 10)

Data ftiles (file type = 10) are for the convenience of the user.
used by the system is spa__table:HP used by the Software Performance Analyzer.

Because of its file name, this file is not accessible by the user.

The only :data ftile

SPA wiill never

use a users data file so the exact format of this data file is not needed by the user.
Data files are created and accessed using Sim I/O or HOST Pascal. The system
commands {copy, rename, directory, purge, and recover} will work on files of type

:data.

For a pictorial representation of the data file format, see Figures 11-1and 11-2.

Word #

Record Type

0

Record 1

1

Data Record

Contains up to 128
18-bit words made up of
four HEX digits per word

Record 2

/_L_\
3

Data Record

Contains up to 128
16—bit words made up of
four HEX digits per word

etc.

Figure 11-1. Data Files - Overall Structure

n <= 127

n <= 127

11-1

File Format

Reference Manual

Word #

0

1

11-2

B15 B8 B7 0

HEX 1 HEX 2 HEX 3 | HEX 4

HEX 5 | HEX 6 HEX 7 | HEX 8

HEX w | HEX x HEX y HEX z
n <= 127 z <= 256

Figure 11-2. Data Record Format -

~y

C

STATE ANALYZER DATABASE FILE (FILE TYPE 11)

The state analyzer database file is created by the state analyzer. It combines the

Chapter 12

STATE ANALYZER DATABASE FILE FORMAT

relevant information in the link__sym and asmb__sym tiles which apply to the absolute
file being debugged. The structure of this file allows quick access to the symbols
during operation of the analyzer (see Figure 12~1).

Record 1 —(
N

N\

any number —
N
N

any number ‘(

N

any number —

Word #

Record Type

o

14

header record

15 words fixed length

program range records
forming the index as how
to interpret the asmb_db
file.

symbol records and line
records corresponding to
the local symbols in
each segment.

symbol records for the
global symbols to be
included.

Figure 12-1. Database File Format ~ State Analyzer

12-1

File Format
Reference Manual

HEADER RECORD FORMAT - STATE ANALYZER DATABASE FILE (See Figure
12-2)

There is a program range record for each segment of the program: PROG, DATA
COMM and all absolute segments.

Word O - ID code for the database header record

Word 1 thru Word 4 ~ define the range of physical address within which all Ji the
segments falil.

Word 5 thru Word 8 - range of record numbers for local and giobal symbols
Word 9 —address information

bit 15 to bit 8 (highshift) - specifies the number of bits to the right to shift a
16-bit segment number to create the physical address.

bit 7 to bit O (address size) - indicates whether the addresses to be used are
1 or 2 words long

Word 10 - total number of local symbols in the database

Word 11 - total number of line number symbols in the database
Word 12 - total number of global sysmbols in the database
Word 13 - the identification code ot the database file structure

Word 14 - modification of this specific database file structure

12-2

File Format
Reference Manual

Word # B15 B8 B7 0
0 0000 0000 0000 0000
1 LSW low bound
2 MSW low bound
3 LSW high bound
4 MSW high bound
5 first local sym rec no
6 last local sym rec no
7 first global sym rec no
8 last global sym rec no
9 highshift address size
10 number of local symbols
11 number of line numbers
12 number of global symbols
13 0000 0000 0000 0001
14 0002 0003 0004 0004

Figure 12-2. Header Record Format

12-3

File Format
Reference Manual

32-BIT PROGRAM RANGE RECORD - STATE ANALYZER DATABASE FILE (See
Figure 12-3)

There is a program range record for each segment in the program: PROG, DATA,
COMM and each absolute segment.

Word O - 32-bit program range record ID code

Word 1 - number of the tirst symbol record for this segment

Word 2 - number of the last symbol record for this segment

Wword 3 -record number of the first line number symbol record for this segment

Word 4 - record number of the last line number symbol record for this segment.

Word 5 thru Word 8 - physical address range of this segment. The LSW and MSW are

always in physical address form and are sorted in increasing address order in the file.
In the case of the 8086/88, the data in the link__sym file has been converted.

Word # B15 B8 B7 o
0 0000 | 0000 0000 | 0002

—

symbol start record

symbol end record

line start record

line end record

LSW line bound

MSW fow bound

LSW high bound

MSW high bound

O |0 N TO | |W DN

fff u u O rr cl

9 - 16 var length file name

Figure 12-3. 32-Bit Program Range Record Format

12-4

File Format
Reference Manual

16-BIT SYMBOL RECORD -~ STATE ANALYZER DATABASE FILE (See Figure 12-4))

The symbol records contain the symbols and their values, a 16-bit symbol record will

be used to conserve space if the address is less than 65536.

Wword O - ID code tor the 16-bit symbol record

word 1 - symbol length and type

bit 15 to bit 13 - number of 16-bit words minus 1 in the symbol name

bit 12 to bit 10 - always zero

bit 9to bit 8 - type of segment:

0 - absolute
1 - program relocatabie
2 - data relocatable

3 - common relocatable

bit 7 to bit O - the beginning of the symbol name filiing out the record in standard

64000 format (refer to Appendix B).

Word #

0

1

815 88 87 Q
0000 0000 0001 0001
sss 000 rr C1

1 to 8

var length symbol, standard
64000 format.

2t 9

LSW symbol reloc address

Figure 12-4. 16-Bit Symbol Record Format

AN

data node repeated
1 to 63 times

12-5

File Format
Reference Manual

32-BIT SYMBOL RECORD - STATE ANALYZER DATABASE FILE (See Figure 12-5.)

Word O - ID code for the 32-bit symbol record
Word 1 - symbol length and type
bit 15 to bit 13 - number of 16-bit words minus 1 in the symbol name
bit 12 to bit 10 - always zero
bit 9to bit 8 - type of segment:
0 - absolute
1 - program relocatable
2 - data relocatable

3 - common relocatable

bit 7 to bit O - the beginning of the symbol name filling out the record in standard
64000 format (refer to Appendix B).

Word # B1S 88 87 0]

0 00QQ 0000 0001 Q010

1 sss 000 rr C1 N\
1 to 8 var length symbol, standard

64000 format. dota node repeated
1 to 42 times

2t 9 LSW symbol reloc address
3 to 10 MSW symbol reloc qddress

Figure 12-5, 32-Bit Symbol Record Format

12-6

@

File Format
Reference Manual

16-BIT LINE NUMBER SYMBOL RECORD - STATE ANALYZER DATABASE FILE
(See Figure 12-6.)

Word O - ID code for the 16-bit line number symbol
Word 1 to Word 2 - the range of line numbers assigned to the value in Word 3

Wword 3 - value of the above line nhumber symbols

Word # B15 B8 B7 0
0 0000 0000 Q010 0001
1 firat line numbar
. data node repeated
last line number 1 to 42 times
LSW line reloc address

Figure 12-6. 16-Bit Line Number Symbol Record Format

32-BIT LINE NUMBER SYMBOL RECORD - STATE ANALYZER DATABASE FILE
(See Figure 12-7.)

Word O - ID code for the 32-bit line number symbol

Word 1to Word 2 - the range of line numbers assigned to the value in Word 3 & Word
4

Word 3 and Word 4 - the value of the above line number symbols.

Word # 815 B8 | B7 0
0 0000 | 0000 0010 | 0010

first line number

-

last line numbar data node repeated
1 to 31 times

LSW line reloc address

AN

>l (N

MSW line reloc address

Figure 12-7. 32-Bit Line Number Symbol Record Format

12-7

File Format
Reference Manual

12-8

Chapter 13

ASSEMBLER SYMBOL FILE FORMAT

ASSEMBLER SYMBOL FILE (FILE TYPE 12)

An assembler symbol (:asmb__sym) file is generated whenever a source file is as-

sembled or compiled, except with options no__code.

it consists o©of one or more

records of up to 128 sixteen-bit words long which contain descriptions for local

symbols defined in the source file.

For a pictorial representation of the assembler symbol file format, see Figures 13-1

and 13-2.

Record 1 —

Word #

Record m —

Record Type

Assembler Symbol
Record

Made up of ane ar mare
Local Symbol Definition
Blocks which define
names and relocatable
or absolute addresses of
local symbols

n <= 127

1 to m Assembler

Symbol Records

Assembler Symbol
Recard

Made up of one or more
Local Symbol Definition
Blocks which define
names and relocatable
or absolute addresses of
local symbals

Figure 13-1. Assembler Symbol File - Overall Structure

n <= 127

13-1

File Format
Reference Manual

ASSEMBLER SYMBOL RECORD

WORD O - A Record ID of 6is specified to indicate that this is an Assembler
Symbol Record. The Record ID is used internaily to the linker symbol file and should
not be confused with the 64000 System file type number, whichis 12

WORD 1 through n-1 make up the k Local Symbol Definition Blocks. These blocks
define the local symbois trom the source tile. Each local symbol block has a variable
length of from 2 to 10 words.

The structure ot each Local Symbol Definition Block is:

WORD O through WORD sss (of a Local Symbol Definition Block) make up the Local
Symbol Name Description Block. This block provides the name of the local symbol
being defined. For a complete description of this block see Appendix D.

WORDS sss+1 and sss+2 (of a Local Symbol Definition Block) contain the value of
the symbol. WORD sss+2 exists only in those processors which generate 2 words
tfor each address (see Appendix A).

See the User-Deftinable Emulator Manual for more information about symbol usage in
the UDE.

13-2

G Word # B15 B8

B7 0
0 Record ID Word = 6
1 sss 000 rr ASCIl byte 1
ASCll byte 14 ASCIl byte 15

Symbol Address LS Word

a Symbol Address MS Word (opt)
p+1 sss 000 rr ASCll byte 1
ASCil byte 14 ASCIl byte 15
Symbol Address LS Word
n—1 Symbol Address MS Word (opt)
n Checksum for this record
n <= 127

File Format
Reference Manual

Local Symbol
Definition

— Block 1

(Vvariable
Length)

Local Symbol
Definition

— Block k

(Variable
Length)

Figure 13-2, Assembler Symbol File ~Assembler Symbol Record Format

13-3

File Format
Reference Manual

13-4

‘® Chapter 14

LINKER SYMBOL FILE FORMAT

LINKER SYMBOL FILE (FILE TYPE 13)

A linker symbol (link__sym) file is generated by the linker and it contains four
types of records.

There is one Processor Configuration Record, which is used to configure the linker
when only link__sym files are being linked. It is followed by one or more Global
Symbol Records which provide global symbol names and their relocated addresses.
Next, the linker symbol tile contains one or more Relocatable Name Records, which
provide the names of the relocatable files which created each segment in the ab-
solute file. These are followed by one or more Memory Space Records which give
lists of the memory bounds of each of the sections of code which were linked.

In the discussion of the linker symbol file format it is important to keep in mind the

relationship between relocatabie tile names and relocatable file names. The name of

the reiocatable tile that is assembled or compiled is also permanently saved in the

Name Record of the Relocatable File (see description of Relocatable File Record

Formats). Since ftiles may be renamed, it is possible to have a relocatable file with

a name that is different from the relocatable file name which was saved in the

Relocatable Name Record. It is also possible to combine multiple relocatable files into

@ a single relocatable file (a library.) In this case there is only one relocatable file
name, but multiple relocatable file names are associated with the library.

Relocatable Names are specified in the Relocatable Name Record; File Names in the
Memory Space Record.

For a pictorial representation ot the linker symbol file format, see Figures 14-1
through 14-5.

14-1

File Format
Reference Manual

Word # Record Type

0 Pracessor Configuration
Recard

Record 1 Contains 25 16-bit Fixed
. words giving information Length =
25 on the processar 25 wards

/ Q Global Symbal Record

Made up of one or more
Globat Symbol Definition
Blocks which define
names and relocated

. addresses af global

N n symbols n <= 127

Record 2 -

1 to m Global Symbol
Records

Record —(Q Global Symbol Recoard
1+m \

n <= 127

0 Relocatable Name Recard

. Made up of one or more

Record . Relocatable Name Definition
2+m -{ . Blocks which define

names and relocated

addresses of files

. linked ta farm absolute

N n file n <= 127

.1 to p Relocatable Name Records

Figure 14-1, Linker Symbol File = Overall Structure
{Continued on next page)

14-2

File Format
Reference Manual

Record J/ a Relocatable Name Recard
1+m+p ’
n n <= 127
/ 0 Memaory Space Record
Record
2+m+p . Defines memory space
. used by files linked
n to form absolute n <= 127

1 to g Memary Space Records

Record / 0 Memory Space Record

1+m+p+ :
pTq n n <= 127

Figure 14-1, Linker Symbol File -~ Overall Structure (Cont’d)

PROCESSOR CONFIGURATION RECORD

WORD O - A Record ID of 1 is specified to indicate that this is a Processor
Configuration Record. The Record ID is used internally to the linker symbol filte and
should not be confused with the 64000 System tile type number, which is 13.

WORD 1-15 - These Pad Words containing all zeros are added so that Words 16-23
in this record match the corresponding words in the Name Records in 64000 System
Relocatable files.

WORD 16-23 - This group of words is used to define the name of the linker table used

to generate the corresponding absolute file. For a complete description of this block
see Appendix C.

14-3

File Format
Reference Manual

WORD 24 - Hishift = a number of bits to be used as follows:

For conversion of 32-bit logical addresses consisting of a 16-bit segment and a
16-bit offset to physical addresses, the segment is loaded into the most significant 16
bits of a 32 bit register. it is then shifted RIGHT by the number of bits specified in
Hishift and the resulting 32-bit number is added to the 16-bit offset value to ob-
tain the physical address. (For the Intel 8086 and 8088 processors the value of
Hishift is 12.)

Address Size is the number of words necessary to detfine microprocessor address-
es. See Appendix A tor a description ot the number of address words needed for
each processor. This tield should always contain 1 or 2.

WORD 25 - The checksum word contains the arithmetic sum ot the binary values ot
words O through 24.

Word # 815 B8 87 0

0 Record ID Word = 1

1 Pad Words = 0

15

16 fff uu 000 ASCIl byte 1 N Linker
Table
Description
Block
(Fixed length

23 ASCIl byte 14 ASCIl byte 15 8 words)

24 Hishift Address Size

25 Checksum far Record

Figure 14-2. Linker Symbol File -Processor Configuration Record Format

1h-h

File Format
Reference Manual

GLOBAL SYMBOL RECORD

WORD O - A Record ID of 2is specified to indicate that this is a Global Symbol
Record. The Record ID is used internally to the linker symbol file and should not be
confused with the 64000 System file type number, whichis 13

WORD 1 through n-1 make up the k Global Symbol Definition Blocks. These blocks
describe the global symbols generated as part of the relocatabie file. Each global
symbol definition block has a variable length of from 2 to 10 words.

The structure of each Global Symbol Definition Block is:

WORD 0 through WORD sss (of a Global Symbol Definition Block) make up the Global
Symbol Name Description Block. This block provides the name of the global symbol
being defined. For a complete description of this block see Appendix D.

WORDS sss+1 and sss+2 (of a Global Symbol Definition Block) contain the value of
the symbol. WORD sss+2 exists only in those processors which generate 2 words
for each address (see Appendix A).

See the User-Detfinable Emulator Manual for more information about symbol usage in
the UDE.

14-5

File Format
Reference Manual

Word # B15 B8 B7 0
0 Record ID Word = 2
1 sss 0C0d rr ASCH byte 1 \
Global
Symbol
Definition
[~ Block 1
ASCIl byte u ASCIl byte v (Variable
Length)
Symbol Address LS Word
a Symbol Address MS Word (opt) /
p+1 sss 00d rr ASCIll byte 1 N
Global
Symbaol
Definition
[~ Block k
ASCIl byte x ASCIl byte y (Variable
Length)
Symbol Address LS Word
n—1 Symbol Address MS Word (apt) /
n Checksum for this record
n <= 127

Figure 14-3. Linker Symbol File - Global Symbol Record Format

14-6

(®

e

File Format
Reference Manual

RELOCATABLE NAME RECORD

WORD O ~ A Record ID of 3 is specitied to indicate that this is a Program Name
Record. The Record ID is used internally to the linker symbol file and should not he
confused with the 64000 System file type number, whichis 13.

WORD 1 through n-1 make up the k Relocatable Name Definition Blocks. These
biocks describe the relocatable ftiles which generated the absolute files. Each
relocatable name definition block has a fixed length of 14 words.

The structure of each Relocatable Name Detinition Block is:

WORD O through WORD 7 make up the Relocatable Name Description Block. This
block provides either the relocatable file name from which this absolute segment was
generated or the tile name ot the library containing the relocatable code from which
this absolute segment was created.

WORD 8-9 - The Program Load Address is the address in the microprocessor
memory space into which the first byte of the code designated by the linker to
reside in program space will be loaded. The remaining bytes of code will follow in sub-
sequent memory locations. If the processor only requires one word of address (see
Appendix A), the MSW should be filled with O's.

WORD 10-11 - The Data Load Address is the address in the microprocessor memory
space into which the tirst byte of the code designated by the linker to reside in
data space will be loaded. The remaining bytes of code will follow in subsequent
memory locations. It the processor only requires one word of address (see
Appendix A), the MSW should be ftilled with O's.

WORD 12-13 - The Common Load Address is the address in the microprocessor
memory space into which the tirst byte of the code designated by the linker to
reside in common space will be loaded. The remaining bytes of code will follow In
subsequent memory locations. It the processor only requires one word of address
(see Appendix A), the MSW should be filled with O's.

14-7

File Format

Reference Manual

Word # B15 B8 B7 o
0 Record ID Word = 3
1 fff uu ddd ASCIl byte 1
8 ASCll byte 14 ASCIl byte 15
9 PROG Load Address LSW
10 PROG Load Address MSW
11 DATA Load Address LSW
12 DATA Load Address MSW
13 COMN Load Addreas LSW
14 COMN Load Address MSW
n-14
n;1
n Checksum for this record
n <= 127

/

Relocatable Name
Definition

Block 1

(Fixed Length

14 Words)

Relocatable Name
Definition

Block k

(Fixed Length

14 Words)

Figure 14-4. Linker Symbol File -~ Relocatable Name Record Format

14-8

(@

File Format
Reference Manual

MEMORY SPACE RECORD

There are one or more Memory Space Detfinition Blocks for each Relocatable Name
Detinition Block in the Linker Symbol File. It only Program space is occupied by the
relocatable, then there will be one Memory Space Definition Block corresponding to the
Relocatable Name Definition Block. it Program space and Data space are occupied,
then there will be two Memory Space Definition Blocks for the Relocatable Name
Definition Block, etc.

For absolute code, the Memory Space Definition Blocks contain the ORG'd addresses
supplied in the Name Record of the 64000 System Relocatabie File.

WORD 0 -A Record ID of 4is specitied to indicate that this is a Memory Space Record.
The Record ID is used internally to the linker symbol file and should not be confused
with the 64000 System file type number, whichis 13.

WORD 1 through n~1 make up the k Memory Space Definition Blocks.
The structure of each Memory Space Detinition Block is:

WORD 0-1 -The Low Bound Address is the Load Address as defined in the
Relocatable Name Definition Block,or in the case of absolute code, the address as
defined in the Absolute Code Segment Block of the Name Record in 64000 System
Relocatable Files. It is keyed to either Program, Data, Common, or Absolute by the
contents of the rr bits in WORD 4 of this block. It the processor only requires one
word of address (see Appendix A), the MSW should be filled with O's.

Memory Space Definition Blocks appear in the Memory Space Record in sorted order
on the Low Bound Address, with the record with the smallest Low Bound Address ap-
pearing first, the next largest next, etc.

WORD 2-3 -The Hi Bound Address is the last address tilled by the code which started

at the Low Bound Address defined in WORD 1-2. (f the processor only requires one
word of address, the MSW should be filled with O's,

14-9

File Format
Reference Manual

WORD 4 - The contents of Word 4 of each Memory Space Definition Blocks are
broken down as follows:

Relocatable Index # - bits 15-2 - is obtained by numbering each of the Relocatable
Name Definition Blocks in the Relocatable Name Record starting with the number O.
The Memory Space Detinition Block is then tied to the Relocatable Name Definition
Block by supplying its numerical order number in this field.

rr - bits 1,0 - a two bit tield used to indicate the program counter with respect to
which the code has been relocated. The meaning of the value is as follows:

00 - Absolute
01 - Program
10 - Data

11 - Common

WORD 5 through WORD 12 make up the Relocatable tile Description Block. This block
provides the name ot the relocatable file from which this segment of the code was
generated. For a complete description ot this block see Appendix E.

WORD 13 - bits 14,13,12 (ddd) ~ contains the disc number where the file described in
this block resides.

WORD 13 ~ All remaining bits are reserved for future use by the 64000 system and
should contain O's

14-10

Word #

B15 B8

B7 0

Record ID Word = 4

—

Low Bound Address LSW

Low Bound Address MSW

Hi Bound Address LSW

Hi Bound Address MSW

BN]+ WM

13

14

Source Index # rr
fff uw O m n ASCll byte 1
ASCIl byte 14 ASCIl byte 15
0 ddd 0000 0000 0000

n-14

Checksum for this record

File Format
Reference Manual

Memory Space
Definition

~ Block 1

(Fixed Length
14 Words)

Memary Space
Definition
Block k

(Fixed Length
14 Words)

/

Figure 14-5. Linker Symbol File - Memory Space Record Format

14-11

File Format
Reference Manual

R i - i e 2 e s o e

\,

Chapter 15

TEMPORARY FILE FORMAT

TEMPORARY FILE (FILE TYPE 800H ~ 8FFH)
REGULAR TEMP FILES

Temporary tiles are created in several ways, but are rarely seen by the user. A tem-
porary file will exist on a disc it someone is using one of the modules which uses a
temporary file. In the normal course of events, that temp file will disappear when the
process is finished. However, if the 64000 station is powered off, or a shift RESET
is pertormed, the temporary files may remain on the disc. A temporary file is ai-
ways associjated with a System Bus address, so that in order to get rid of a temp
file one must work at the station with that System Bus address.

SPECIAL TEMP FILES
scratchIN:HP, scratch2N:HP, Ndestfile;HP, Ntempfile:HP

One process that uses temporary files is the editor. Editor temporary tiles may have
one of the following names, scratch IN:HP, scratch2N:HP, Ndestfile:HP, or Ntemptile:HP.
In all these cases, N is the System Bus address of the station which created the tile. It
an editor temporary file remains on your disc, get into the editor, pertorm the action
listed below and then end or RESET RESET out of the file. (NOTE: do NOT shift
RESET) If the temporary tile is a Ntemptile:HP you will need to do a copy or extract in
the editor. It the temporary tile is a scratchxN:HP, try merging a large tile or paging
back and torth in a large tile.

sym__N:default userid
Emulation will use temporary tiles for sorting symbols. The file name associated
with an emulation temp file is sym__N:HP where N is the System Bus address of the

station. To get rid of this tile, get into emulation and display local__symbols or display
global__symbols. The file should be gone when you get out of emulation.

15-1

File Format
Reference Manual

15-2

Chapter 16

DEVICE FILE FORMAT

DEVICE FILE (FILE TYPE 8000H-8FFFH)

Device files are dummy tiles used by the tile manager system so that the printer, dis-
play, and HPIB input and output can be treated in the same manner as disc files.
Information regarding the devices is kept in the tile directory under a name selected
tor that device. File names tor the devices are:

printer:HP

display:HP

hpibi:MP (HPIB input)
hpibo:HP (HPIB output)

The device files printer'HP and display:HP can be accessed using Simulated I/0
and the copy command. The files hpibi:HP and hpibo:HP can only be accessed using
the copy command in a standalone system. For more information on accessing these
files, see the System Software Reference Manuai for information about the copy
command, and any emuiation manual for information about Simulated 1/0.

16-1

File Format
Reference Manual

16-2

Chapter 17

SIMULATED 1/0 FILE FORMAT

SIMULATED 1/0 FILE (all non-specified types)

Simulated I/0 ftiles are for the convenience of the user. They are not used by the
HP 64000 in a system capacity. They are created and accessed using Simulated 170
from a 64000 System Emulator or HOST Pascal. The system commands {copy,
rename, directory, purge, and recover} will not work on files of type :sim__io. If you
want to access files made by Simulated I/0 or HOST Pascal using system com-
mands, use file type = 10 (data files).

At some point, file type numbers which are currently unassigned may be assigned to
new file types. It is suggested that user programs use files of type 10 (data), and not
use other tile types which are currently unassigned.

For a pictorial representation of the Simulated /O tile tormat, see Figures 17-1
and 17-2

Word # Record Type

0 Data Record

Record 1 Contains up to 128

16—-bit words made up of
four HEX digits per word n <= 127

I

0 Data Record

Record 2 Contains up to 128

16—bit words made up of
four HEX digits per word n <= 127

/—L—\

etc.

Figure 17-1. Simulated I/0 Files - Overall Structure

17-1

File Format

Reference Manual

Word #

17-2

B15 B8 B7 0

HEX 1 | HEX 2 HEX 3 | HEX 4

HEX 5 | HEX 6 HEX 7 | HEX 8

HEX w | HEX x HEX y | HEX z
n <= 127 z <= 256

Figure 17-2. Data Record Format

Appendix A

SUPPORTED PROCESSORS AND
FORMAT NUMBER DESCRIPTIONS

Supported microprocessors are listed below in Table A-1.

Table A-1. Supported Microprocessors

micro— words used to words used to processor dato data width
processor define address define skeleton bus width base
8080/85 1 word 1 word 8 bits 8 bits
Z80
€800/01/ 1 word 1 word 8 bits 8 bits
03/05/089
650x 1 word 1 word 8 bits 8 bits
68000 2 words 2 words 16 bits 8 bits
8021/22 1 word 1 word 8 bits 8 bits
/41/48
9900/40/ 1 word 1 word 16 bits 8 bits
85/89/99
9980 1 word 1 word 8 bhits 8 bits
99xxx 1 word 1 word 16 bits 16 bits
1802 1 word 1 word 8 bits 8 bits
f8 1 word 1 word 8 bits 8 bits
8 1 word 1 word 8 bits 8 bits
lBo8e,/88/89/ 2 wards 2 words 16 bits 8 bits
186/188/286
280Q1/2 2 words 2 words 16 bita 8 bits
8051 1 word t word 8 bits 8 bits
1750A 1 word 1 word 16 bits 16 bits
T™MS320 2 wards 2 words 18 bits 16 bits

File Format
Reference Manual

FORMAT NUMBERS AND SKELETON REQUIREMENTS
8080/85 and Z80

Uses linker table 18085__Z80:HP

The first step in all cases is to read the 16-bit address/displacement field passed by
the assembler and add to it the value of the relocation counter or external symbol
specified. This quantity will be referred to as the address in the definitions listed in
Table A-2. All output is to the absolute tile.

Table A-2. Format Number Descriptions for 8080/85, Z80

words of
Format # skeleton Definition
o o Write address — high byte, low byte
1 0 Write address — low byte, high byte
2 o Write low byte of address
3 0 Write high byte of address
4 0 Write low byte of address
Check address in range 0 to 255
5 0 Write low byte of address
Check address in range —128 to 127
6 0 Write law byte of address
Check address in range —126 to 129

File Format
Reference Manual

6800/01/02/03/05/09

Uses linker table 168XX:HP

Y

The tirst step in all cases is to read the 16-bit address/displacement field passed by
the assembler and add to it the value of the relocation counter or external symbol
specitied. This quantity will be referred to as the address in the definitions shown in
Table A-3. All output is to the absolute file.

Table A-3. Format Number Descriptions for 6800/01/02/03/05/09

words of
Format # skeleton Definition
o 0 Write address — high byte, low byte
1 0 offset = current PC — address -1
Write low byte of offset
Check offset in range ~-128 to 127
2 g Write low byte of address
Check address in range —128 to 255
3 a offset = current PC — address -2
i Write offset — high byte, low byte
4 1 6808 only. Skeleton has value of DP
reqister. offset = address — skeleton
Write low byte of offset.
Check for offset in range Q to 255

A-3

File Format
Reference Manual

650X

Uses linker table 1650X:HP

The tirst step in all cases is to read the 16-bit address/displacement field passed by
the assembler and add to it the value ot the relocation counter or external symbol
specified. This quantity will be referred to as the address in the definitions shown in
Table A-4. Al output is to the absoiute file.

Table A-4. Format Number Descriptions for 650X

words of
Format # skeleton Definition
o) 0 Write address — low byte, high byte
1 0 offset = current PC — address —1
Write low byte of offset
Check affset in range —128 to 127
2 0 Write low byte of address
Check address in range O to 255
3 0] Write low byte of address
4 0 Write low byte of address
Check address in range —128 to 255

68000
Uses linker table 168000:HP

The first step in all cases is to read the 32-bit address/displacement field passed by
the assembler and add to it the value of the relocation counter or external symbol
specitied. This quantity will be referred to as the address in the definitions listed in
Table A-5. All output is to the absolute file.

A-4

File Format
Reference Manual

Table A-5. Format Number Descriptions for 68000

words of
Format # skeleton Definition
0 0 Write low byte of address
Check address in range —128 to 255
1 0 Write address — high byte, low byte
Check address in range -32768 to 65535
2 0 Write address — high word: high byte,
low byte, low ward: high byte, low byte
3 0 offset = address — current PC
Write offset — high byte, low byte
Check offset in range —-32768 ta 32767
4 0] Offset = address — current PC —1
If offset is odd, add 1 to put on even
boundary. Write low byte of offset
Check offset in ronge —128 to 127
5 0 Offgset = address — current PC —1
Write low byte of offset
Check offset in range =128 to 127
6 0 Write address — high byte, low byte
Check address in range —32768 to 32767
7 0 Write low byte of address
Check address in range —128 to 127
8 0 offset = address — current PC
Write offset — high word: high byte,
low byte, low word: high byte, low byte
9 0 Offset = address — current PC —1
If offset is odd, add 1 to put on even
boundary. Write low byte of offset
Check offset in range —126 to 129
10 2 Skeleton bits 7,6,5,4 contain object

code. Check address in range 0 — 16
Output byte consisting of bits 7,6,5,4
from the skeleton and bits 3,2,1,0
from the address.

A-5

File Format
Reference Manual

8021/22/41/48

Uses linker table 18048:HP

The first step in all cases is to read the 16-bit address/displacement tield passed by
the assembler and add to it the value of the relocation counter or external symbol
specitied. This quantity will be reterred to as the address in the definitions shown in
Table A-8. All output is to the absolute file.

Table A-6. Format Number Descriptions for 8021/22/41/48

words of
Format # skeleton Definition

o} 0 Write low byte of address
Check address in range of current page

1 0 Write low byte of address

2 1 8048 only.
Check address in range O to 4096
Write byte consisting of bits 10,9,8 of
address, ond bits 4,3,2,1,0 of skeleton
Then write low byte of address

3 0] Write address — high byte, low byte

4 0 Write high byte of address

5 1 8021/41 only
Check address in range O to 1024
Write byte consisting of bits 10,9,8 of
address, and bits 4,3,2,1,0 of skeleton
Then write low byte of address

File Format
Reference Manual

9900/40/85/89/99
Uses linker table 199XX:HP
The first step in all cases is to read the 16-bit address/displacement field passed by
the assembler and add to it the value of the relocation counter or external symbol

specified. This quantity will be referred to as the address in the definitions shown in
Tables A-7 and A-8. All output is to the absolute file.

Table A-7. Format Number Descriptions for 9900/40/85/89/99

words of
Formaot # skeleton Definition
0 0 Write low byte of address
Check address in range —128 to 127
1 o Write address — high byte, low byte
2 0 offset = address — current PC -1
Write low byte of offset
Check offset in range —128 to 127
3 0 Write low byte of address

Table A-8. Format Number Descriptions for 9980

words of
Format # skeleton Definition
o 0 Write low byte of address
Check address in range —-128 to 127
1 0 Write address — high byte, low byte
2 g offset = address — current PC —1
Write low byte of offset
Check offset in range —~128 to 127
3 0 Write low byte of address

ol e tadat

File Format
Reference Manual

99X XX
Uses linker table 199XXX:HP
The first step in all cases is to read the 16-bit address/displacement field passed by
the assembler and add to it the vajue of the relocation counter or external symboi

specified. This quantity will be referred to as the address in the definitions shown in
Table A-9. All output is to the absolute file.

Table A-9 Format Number Descriptions for 99XXX

words of
Format # skeletan Definition
0 0 Write low byte of address
Check address in range —128 to 127
1 0 Write address — high byte, low byte
2 0 offset = address — current PC —1
Write low byte of offset
Check offset in range —128 to 127
K] Q Write low byte of address

A-8

File Format
Reference Manual

1802
Uses linker table 11802:HP
The first step in all cases is to read the 16-bit address/displacement field passed by
the assembler and add to it the value of the relocation counter or external symbol

specitied. This quantity will be referred to as the address in the definitions shown in
Table A-10. Al output is to the absolute file.

Table A-10. Format Number Descriptions for 1802

words of
Format # skeleton Definition

Q0 0 Write address — high byte, low byte

1 o Write low byte of address

2 o Write high byte of address

3 0 QOffset = address — current page
Write low byte of offset
Check offset in ronge of current page

e o {7 s TU L, ST I ARSI § YL, - =57 e S P = o AR S T3y camy g)) e g S ——— - S —— e Ton L] LD —

File Format
Reference Manual

F8

Uses linker table IFS:HP

The first step in all cases is to read the 16-bit address/displacement field passed by
the assembler and add to it the value of the relocation counter or external symbol
specified. This quantity will be referred to as the address in the definitions shown in
Table A-11. All output is to the absolute file.

Table A-11. Format Number Descriptions for F8

words of
Format # skeleton Definition

0 0 offset = address — current PC
Write low byte of offset
Check offset in- range —128 to 127

1 0 Write address — high byte, low byte

2 0 Write low byte of address
Check address in range O to 255

3 1 Write byte consisting of skeleton bits
7.6,5,4 and address bits 3,2,1,0
Check address in range 0O to 15

4 1 Write byte consisting of skeieton bits
7,6,5,4,3 and address bits 2,1,0
Check address in range O to 7

A-10

File Format
Reference Manual

Z8

Uses linker table IZ8:HP

The first step in all cases is to read the 16-bit address/displacement field passed by
the assembler and add to it the value of the relocation counter or external symbol
specified. This quantity will be referred to as the address in the definitions shown in
Table A-12. All output is to the absolute tile.

Table A-12. Format Number Descriptions for Z8

words of
Format # skeleton Definition
0 0 Write low byte of address
Check address in register range:
o to 128, 240 to 255
1 o Write low byte of address
Check address is even and in reqgiater
range: O to 128, 240 to 255
2 0 Write low byte of address
Check address in range O to 255
3 0 Offset = address — current PC -1
Write low byte of offset
Check offget in range —128 to 127
4 0 Write address — high byte, low byte
5 Q Write low byte of address
6 1] Write high byte of address

A-11

File Format
Reference Manual

8086/88/89/186/188/286

Uses linker table 18086:HP for 8086, 8089, or 80186
Uses linker table 18088:HP for 8088, 8089, or 80188
Uses linker table 180286:HP for 80286

The first step in all cases is to read the 32 bit address/displacement field passed by
the assembler and add to it the value ot the relocation counter or external symbol
specified. This quantity will be referred to as the address in the detinitions shown in
Table A-13. All output is to the absolute file.

Table A-13. Format Number Descriptions for 8086/88/89/186/188/286

Format # | words of skeleton Description

0 0 Write low byte of address (low word)
Check address in range —128 to 127

1 0 Write low byte of address (low word)
Check address in range ~256 to 255

Write low byte of address (low word)

Write high byte of address (low word)

Write address — low word: high byte, low byte

Write address — low word: low byte, high byte

Write address — high word: low byte, high byte

N]jolOh |~]|W|N
oftaoalo|lojo o

Write address — low word: low byte, high byte
high word: low byte, high byte

8] offset = address — current PC —1
Write low byte of offset (low word)
Check offset in range —128 to 127

9 0 offset = address — current PC -2
Write offset iow word — high byte, low byte
Check offset in range —32768 to 32767

10 0 Writes NOP: increments current modula numhar

11 0 Writes current module number

12 0 Write low byte of address (low word)
Check address in range O to 255

13 0 Write address — low word: low byte, high byte,
high word: low byte

A-12

File Format
Reference Manual

Z8001/2
Uses linker table 1Z8000:HP
The tirst step in all cases is to read the 32 bit address/displacement tield passed by
the assembler and add to it the value of the relocation counter or external symbol

specified. This quantity will be referred to as the address in the definitions shown in
Table A-14. All output is to the absolute tile.

Table A-14, Format Number Descriptions for Z8001,/2

words of
Format # skeleton Definition

0 ' o Write byte consisting of O followed by
low 7 bits of high word of address.
Then write Low byte of low ward of
address. Check for high byte of low
word of address = O

1 0 Write byte consisting of 1 followed by
low 7 bits of high word of address.
Then write ¢ byte of 0’s.

2 0 Write byte consisting of O followed by
low 7 bits of low word of address

3 o Write low byte of low word of address.
Check upper byte of low word = O

4 2 Write high byte of low word of skeleton
Write byte consisting of hit 7 of the
low word of skeleton and bits 6,5,4,3,
2,1,0 of the low byte of the low word
of the address. Check for upper 9 bits
of low word of address = Q. Check for
high word of address = legal segmaent

5 2 Write high byte of low word of skeleton
Write low byte of low word of address.
Check for upper byte of address = 0

Check for high word of address to be

legal segment

A-13

File Format
Reference Manual

Table A-14. Format Number Descriptions for Z8001/2 (Cont'd)

8 2 Write byte consisting of bits 15,14,13,
12 of the low word of skeleton followed
by bits 11,10,9,8 of the low word of
address. Then write low byte of low
word of address. Check for upper 4 bits
of low word of address = 0. Check for
high word of oddress = legal segment

7 0 offset = address — current PC -2
Write low word of offset — high byte
low byte. Check for high word of
address to be legal sagment.

8 0 Write low byte of low word of address

Write low byte of low word of address
twice. Check high byte of low word = O

10 2 offget = qddreas - 1

Write high byte of low word of skeleton
Write byte consisting of bits 7,6,5,4

of law word of skeletan followed hy
bits 3,2,1,0 of low word of offsat.
Check bits 15 to 4 of offset = O

11 2 Write high byte of low word of akelaton
Write byte consisting of bits 7,6,5,4
of low word of skeleton followed by
bits 3,2,1,0 of low word of address.
Check hits 15 to 4 of addreas = (

A-1h

File Format
Reference Manual

(3 Table A-14, Format Number Descriptions for Z8001/2 (Cont’d)

12 2 Write high byte of low ward of skeleton
Write byte consisting of bits 7,6,5,4,3
of low word of skeleton followed by
bits 2,1,0 of low word of address.
Check bits 15 to 3 of address = 0O

13 2 Write high byte of low ward of skeleton
Write low byte of low word of address.
Check for upper byte of address = 0

14 2 Write high byte of low ward of skeleton
If address = 2, offgset = 2

if address = 1, offset = O

Otherwise ERROR.

Write byte consisting of bits 7,6,5,4,
J.2,0f low word of skeleton, followed
by bita 1,0 of low ward of offaet.

15 Q if addrass >32 then offgset = 32
Otherwise offsat = address

Write low word of offset — high byte
low byte

16 0 If oddress >16 then offset = 16
Otherwise offset = address

Write low word of offset — high byte
low byte

A-15

File Format
Reference Manual

Table A-14. Format Number Descriptions for Z8001 /2 (Cont’d)

17 0 If address > B then offset = 8
Otherwise offset = address
Write low word of offset — high byte
low byte

18 0 If addreas >32 then offaet = —32
Qtherwise offset = twos complement of
address.
Write low word of offsaet — high byte
low byte

16 0 If addreas >16 then aoffset = —16
Otherwise offset = twos compiement of
address.
Write law word of offset — high byte
low byte

20 0 If address >8 then offset = -8
Otherwise offset = twos complement of
address.
Write low word of offset — high byte
low byte

21 0 Write low word of address — high byte,
low byte. Check upper word = Q.

A-16

<

,

File Format
Reference Manual

Table A-14. Format Number Descriptions for Z8001/2 (Cont’d)

22

0

Write low ward of address — high byte
low byte

23

Write byte consisting of 1 followed by
low 7 bits of low word of address.
Then write a byte of 0O’s.

24

Write low word of address — high byte,
low byte

25

Write address — high waord: high byte,
low byte, low word: high byte, low byte

26

Write byte consisting of 1 followed by
low 7 bits of high word of address.
Then write a byte of 0‘s. Then write
the low word of address — high byte,
low byte.

27

Write high byte of low word of skeleton
Write low byte of low word of address
Check address in range —128 to 255

28

Write low word of address — high byte,
low byte.

Check address in range —32768 to 65535

29

Write low byte of low word of address
twica. Check address in range —128 to
255.

A-1T7

File Format
Reference Manual

8051

Uses linker table 18051:HP

The first step in all cases is to read the 16-bit address/displacement field passed by
the assembler and add to it the value of the relocation counter or external symbol
specified. This quantity will be referred to as the address in the definitions shown in
Table A-15. All output is to the absolute file.

Table A-15. Format Number Descriptions for 8051

words of
Format # skeletan Definition

Q Q offset = address —~ current PC -1
Write low byte of offset
Check offset in range —127 to 128

1 Q Write low byte of address
Check address in range —256 to 255

2 1 Check address in range Q to 2048
Write byte consisting of bits 10,9,8, of
address, and bits 4,3,2,1,0 of skeleton
Then write low byte of oddress

Write address — high byte, low byte

Write high byte of address

Write low byte of address

[N B¢ N &
o|lo|Oo| O

Write low byte of addresas
Check address in range 0 to 255

A-18

File Format
Reference Manual

1750A
Uses linker table 11750A:HP
The first step in all cases is to read the 32 bit address/displacement field passed by
the assembler and add to it the value of the relocation counter or external symbol
specified. This quantity will be referred to as the address in the detinitions shown in
Table A-16. All output is to the absolute ftile.

Table A-16. Format Number Descriptions for 1750A

words of
Format # skeleton Deacription

0 o Write low word of address
high byte, low byte

1 o offset = address — current PC
write low byte of offset
check offsat in range —128 to 127

2 o Write address high word — high byte,
low byte; low word — high byte,
low byte

TMS320

Uses linker table ITMS320:HP

The tirst step in all cases is to read the 32 bit address/displacement field passed by
the assembler and add to it the value of the relocation counter or external symbol
specified. This quantity will be referred to as the address in the definitions shown in
Table A-17. All output is to the absolute file.

A-19

e s At Ak e L, RS B

[ESURSIRPIENS ST NP ZX R o BHrow REE AN

File Format
Reference Manual

Table A~17. Format Number Descriptions for TMS320

wards of
Format # skeleton Description

0 0 output low byte of address,
check for <256

1 o output low byte of address,
check for <128

2 2 OR skeleton with bits 3,2,1,0 of
address. Qutput low byte, check
address <16

3 2 OR skeleton with bits 2,1,0 of
address. OQutput low byte, check
address <8

4 0 Write law word of address high byte,
low byte, check address <4096

5 2 OR bits 15,14,13 of skeleton with
bits 12—0 of address. Write
high byte, low byte

6 2 Write low byte of skeletan. Check
for skeleton =0

7 2 OR skeleton with address — oautput
low byte. Check address = 0,1 or 4.

8 2 OR low bit of address with skeleton
Write low byte, check address <=1

9 0 Write low word of address high byte,
low byte. Check address <=865535
>==32767

10 0 Qutput 32 bit address
high word: high byte, low byte,
low word: high byte, low byte

A-20

Appendix B

FILE NAME DESCRIPTION
= FIXED LENGTH

WORD 0 - The contents of Word O (see Figure B-1) is broken down as follows:

ttt - bits 15,14,13 ~ contain the number of 16-bit words necessary to define the file
name. The file name is packed two characters per word, with the first character
stored in the last byte of word 1. This number is caiculated as foilows: Take the
number of characters in the file name and subtract one. Divide this nhumber by two and
round up. For example, the file name START 1 consists of 6 ASCHl characters. This
would require 3 words in addition to word 1in which to fit all the characters of the
name. (6-1) /2 = 2.5 which rounds up to 3. If the last character of the tile name is
stored in the upper byte of a word, the lower byte must contain a blank (20H).

uu - bits 12,11 - contain the number of 16-bit words necessary to define the userid
associated with the file name. The userid is packed, two characters per word,
starting in the word after the one containing the last byte of the file name. For ex-
ample the userid HP is two characters which will fit into one 16-bit word; the number
appearing in location uu will be 1. If the last character of the userid is in the upper
byte of a word, the lower byte must contain a blank (20H). |If the field uu contains
zero, the current userid is used. To express the blank userid, the field uu contains
one, and the both bytes of that word contain blanks (20H).

Word # B15 B8 B7 0
0 fff uu ddd ASCIl byte O N
1 ASCIl byte 1 ASCIl byte 2
2 ASCIl byte 3 ASCIl byte 4
3 ASCIl byte 5 ASCIl byte 6 File Name
— Description
4 ASCIll byte 7 ASCIl byte 8 Block
5 ASCIl byte 9 ASCIl byte 10
] ASCIl byte 11 ASCIl byte 12
7 ASCIl byte 13 ASCIl byte 14 /

Figure B-1. File Name Description Block

B-1

File Format
Reference Manual

ddd - bits 10,8,8 - contains the disc number where the source file corresponding
to this relocatabie file resides.

ASCIl hyte O - bits 7-0 - contain the tirst character of the file name. (All file names
are made up of at least one character.)

WORD 1-7 - The remaining characters in the file name and the characters making up
the files’ userid appear in words 1-7 of the Name record. The userid characters start
in the word immediately following the word containing the last character of the file
name. The words tollowing the one in which the last character of the userid is stored
are not used. The linker does not care what values these words hold.

The example described above file = START 1:HP:0 would be stored as shown in Figure
B-2.

0 011 01 000 S (53H)
1 T (54H) A (41H)
2 R (52H) T (54H)
3 1 (31H) (20H)
4 H (48H) P (50H)
5 XX XXX XXX XXXXXXXX
6 XXX XXX XX XXXXXX XX
7 XXXXXXXX XXXXXX XX

Figure B-2. File Name Description Example

Appendix C

LINKER TABLE DESCRIPTION
- FIXED LENGTH

WORD O - The contents of Word O (see Figure C-1) is broken down as follows:

fft - bits 15,14,13 - contain the number of 16-bit words necessary to define the file
name of the linker. The file name is packed two characters per word with the
first character stored in the last byte of word 1. This number is calculated as foi-
lows: Take the number of characters in the tile name and subtract one. Divide this
number by two and round up. For example, the file name 168000 consists of 6
ASCIl characters. This would require 3 words in addition to word 1in which to ftit all
the characters of the name. (6-1) /2 = 2.5 which rounds up to 3. If the last character
of the file name is stored in the upper byte of a word, the lower byte must contain a
blank (20H).

uu - bits 12,11 - contain the number of 16-bit words necessary to define the userid
associated with the tile name. The userid is packed, two characters per word,
starting in the word after the one containing the last byte of the file name. For ex-
ample the userid HP is two characters which will fit into one 16-bit word; the number
appearing in location uu will be 1. it the last character of the userid is in the upper
byte of a word, the lower byte must contain a blank (20H). |If the field uu contains
zero, the current userid is used. To express the blank userid, the field uu contains
one, and the both bytes of that word contain blanks (20H).

Word # B15 B8 B7 o

) fff uu ddd ASCIl byte 0 |«

1 ASCIll byte 1 ASCIl byte 2

2 ASCIl byte 3 ASCIl byte 4 Linker
Table

3 ASCIHl byte 5 ASCIl byte 6 Description

4 ASCIl byte 7 ASCIl byte 8 [Block
(Fixed length

5 ASCIl byte 9 ASCIl byte 10 8 words)

6 ASCIl byte 11 ASCIl byte 12

7 ASCIl byte 13 ASCIl byte 14 |7

Figure C-1. Linker Table Description Block

Cc-1

File Format
Reference Manual

ddd - bits 10,9,8 - contains the disc number where the source file corresponding
to this relocatable ftile resides.

ASCIl byte 1 - bits 7-0 - contain the first character of the file name. (All file names
are made up of at least one character.)

WORD 1 through 7 - The remaining characters in the file name and the characters
making up the files’ userid appear in words 1-7 of the Name record. The userid
characters start in the word immediately follow the word containing the last charac-
ter of the file name. The words following the one in which the last character of the
userid is stored are not used. The linker does not care what values the words hold.

The standard linker table names are:

11000 18048 18088 128000

11802 18051 19980 ILINK (used to link
1650% 18080 199X the User-Definable
168000 18085_z80 1F8 Linker)

168xx 18086 128

Other linker table names may have been defined using the User-Definable
Assembler/Linker, and those names will also appear in this record.

The example described above file = 168000:HP:1 would be stored as:

VR 0 S5 I S SO U ST A SR NSRS

0 011 01 001 1 (6CH)
1 6 (36H) 8 (38H)
2 0 (30H) 0 (30H)
3 0 (30H) 0 (30H)
4 H (48H) P (50H)
5 XX XXX XXX XX XXX XXX
6 XXX XXXXX XXXXXXXX
7 XXXXXXXX XXXXXXXX

Figure C-2. Linker Table Description Example

Halasi i

Appendix D

SYMBOL NAME DESCRIPTION
- VARIABLE LENGTH

WORD O - The contents of Word O (see Figure D-1) is broken down as follows:

sss - bits 15,14,13 ~ contain the number of 16-bit words necessary to define the

symbol name. The symbol name is packed two characters per word, with the first

character stored in the last byte of word 1. This number is calculated as follows: |
Take the number of characters in the symbol name and subtract one. Divide this \
number by two and round up. For example, the symbol name ASSEMBLER 1 consists |
ot 10 ASCIl characters. This would require 5 words in addition to word 1 to fit

all the characters ot the name . (10-1) /2 = 4.5, which rounds up to 5. If the last

character ot the symbol name is stored in the upper byte of a word, the lower byte

must contain a blank (20H).

Word # B15 B8 B7 0]
o sss 00d rr ASCIl byte O \
1 ASCIHl byte 1 ASCIl byte 2

2 ASCll byte 3 ASCIl byte 4 Symbol Name
Description

3 ASCIl byte 5 ASCIl byte 6 Block

4 ASCIl byte 7 ASCIl byte 8 (Variable
Length)

5 ASCIl byte 9 ASCIl byte 10 Max = 8 Words

6 ASCIl byte 11 ASCIl byte 12

7 ASCIl byte 13 ASCIl byte 14 /

Figure D-1. Symbol Name Description Block

D-1

File Format
Reference Manual

d - This bit is Oin all file types except link_sym. In a link__sym file, this bit indicates
whether the symbol was detined. A 1in this bit indicated that the reference to this
symbol was not resolved.

rr -bits 9,8 —-contain a code describing which relocation counter to use in relocating
this symbol.

00 = absolute (no relocation)

01 = PROG
10 = DATA
11 = COMN

ASCIl byte O - bits 7-0 - contains the first character of the symbol name. (All
symbol names are made up of at least one character.)

Up to WORD sss+1 - Additional characters in symbol name. Note that for a one
character symbol name, sss = 0, so there are no additional words used.

The example described above symbol = ASSEMBLER relocatable wrt DATA count-
er would be stored as shown in Figure D~2.

0 101 000 10 A (41H)
1 S (53H) S (53H)
2 E (45H) M (4DH)
3 B (42H) L (4CH)
4 E (45H) R (52H)
5 1 (31H) (20H)

Figure D-2. Symbol Name Description Example

D-2

Appendix E

MEMORY SPACE RECORD - SOURCE NAME
DESCRIPTION - FIXED LENGTH

WORD 1 - The contents of Word 1 (see Figure D-1) is broken down as foliows:

fft - bits 15,14,13 - contain the number ot 16-bit words necessary to define the file
name. The file name is packed two characters per word, with the tirst character
stored in the last byte of word 1. This number is calculated as follows: Take the
number of characters in the file name and subtract one. Divide this number by two and
round up. For example, the file name START 1 consists of 6 ASCIl characters. This
would require 3 words in addition to word 1 in which to tit all the characters of the
name. (6-1) /2 = 2.5 which rounds up to 3 It the last character of the file name is
stored in the upper byte of a word, the lower byte must contain a btank (20H).

uu - bits 12,11 - contain the number of 16-bit words necessary to detine the userid
associated with the ftile name. The userid is packed, two characters per word,
starting in the word atter the one containing the last byte of the file name. For ex-
ample the userid HP is two characters which will fit into one 16-bit word; the number
appearing in location uu will be 1. If the last character of the userid is in the upper
byte of a word, the lower byte must contain a blank (20H). [f the tield uu contains
zero, the current userid is used. To express the blank userid, the field uu contains
one, and the both bytes of that word contain blanks (20H).

Word # B15 B8 B7 0
0] fff uu O m n ASCIl byte Q \
1 ASCIl byte 1 ASCli byte 2
2 ASCIl byte 3 ASCH byte 4
3 ASCli byte 5 ASCIl byte 6 Source Name
— Description
4 ASCIl byte 7 ASCIl byte 8 Block
5 ASCIl byte 9 ASCIl byte 10
6 ASCHl byte 11 ASCIHl byte 12
7 ASCIl byte 13 ASCIl byte 14)

Figure E-1. Memory Space Record - Source Name Description Block

E-1

File Format
Reference Manual

0 - bit 10 - is reserved for future use by the 64000 system and should contain O's.

m - bit 9 - contains a 1 if and only if multiple relocatables are collected under one
File Name (as for a library) or it the Program Name Detinition Block for the relocatable
in the link__sym file is not the same name as the Source file from which the
relocatable was obtained. Otherwise, this bit contains a O.

n - bit 8 - contains a 1 if and only if this file was no-loaded. Otherwise, this bit
contains a 0.

ASCIl byte O - bits 7-0 - contain the tirst character of the tile name. (All file names
are made up of at least one character.)

WORD 1-7 - The remaining characters in the file name and the characters making up
the files' userid appear in words 1-7 of the Name record. The userid characters start
in the word immediately following the word containing the fast character of the file
name. The words following the one in which the last character of the userid is stored
are not used. The linker does not care what values these words hold.

The example described above tile = START 1:HP would be stored as:

E-2

0 011 01 000 S (53H)
1 T (54H) A (41H)
2 R (52H) T (54H)
3 1 (31H) (20H)
4 H (48H) P (50H)
5 XXXXXXXX XXXXXXXX
6 XXX XXXXX XX XXX XXX
7 XXXXXXX X XX XXXXXX

Figure E-2. Memory Space Record - Source Name Description Example

D
64980-90933, JULY 1984 [ﬁ

HEWLETT
Replaces: 64980-90933, May 1984 PACKARD PRINTED IN U.S.A.

